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FOREWORD TO THE FIRST EDITION

What is the universe made of? We do not know. If standard gravitational theory is
correct, then most of the matter in the universe is in an unidentified form that
does not emit enough light to have been detected by current instrumentation.
Astronomers and physicists are collaborating on analyzing the characteristics of
this dark matter and in exploring possible physics or astronomical candidates for
the unseen material.

The Fourth Jerusalem Winter School (December 30, 1986 to January 8, 1987)
was devoted to a discussion of the so-called “missing-matter” problem. The goal
of the School was to make current research work on unseen matter accessible to
students or faculty without prior experience in this area. As in previous years, the
lectures were informal and the discussions extensive.

The lecturers were J. Bahcall (IAS), R. Blandford (CalTech), M. Milgrom
(Weizmann Institute), J. P. Ostriker (Princeton), and S. Tremaine (CITA). Because
of the avowedly pedagogical nature of the School and the strong interactions between
students and lecturers, the written lectures often contain techniques and explana-
tions that are not available in more formal journal publications. M. Best cheerfully
and expertly converted the lectures to their attractive TEX format.

The continued success of the School is made possible by the intelligent and
effective leadership of its scientific coordinator, Tsvi Piran, by the strong support
of the Israeli Ministry of Science and the Hebrew University, and by Jerusalem’s
inspiring historical context.

John Bahcall Steven Weinberg
Co-Director Permanent Director
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Chapter 1

INTRODUCTION

John N. Bahcall

School of Natural Sciences,
Institute for Advanced Study,
Princeton, NJ 08540, USA

Every so often in the history of physics a golden opportunity for great progress
becomes apparent to contemporary physicists. In the twentieth century, enormous
progress was made when, for example, the regularities of atomic spectra became
apparent, when the Lamb shift was measured, and when the symmetries of suppos-
edly elementary particles were recognized.

The enigma of dark matter represents a challenge and an opportunity on the
same scale as the great physics advances of the twentieth century. Researchers liv-
ing today are lucky because they can participate in the effort to understand the
enigmatic dark matter.

What is the dark matter? It seems very likely that the answer to this question
will be of fundamental significance for physics and for astronomy and perhaps for
all of science. After all, most of the matter that we know about in the Universe
is dark, i.e., we have not been able to detect it yet with our telescopes or other
measuring devices. Understanding dark matter will refocus astronomy research and
may reveal new types of fundamental particles, e.g., supersymmetric analogues of
the known particles.

In 1986, Steven Weinberg and I organized the Fourth Jerusalem Winter School
on the subject of dark matter. Tsvi Piran was the very able scientific coordina-
tor. The refereed and edited versions of those pedagogical lectures were published,
together with a few relevant reprints, in 1988 by World Scientific Publications as
“Dark Matter in the Universe,” with J. N. Bahcall, T. Piran, and S. Weinberg as
editors. Most of the lectures of that School are reproduced here together with a
review article that appears as the last chapter in this book and which summarizes
succinctly the state of dark matter research in 2004.

The lectures presented in 1986 represent a solid introduction to the field of
dark matter studies (and incidentally to a number of other currently hot topics
in astrophysics) and will enable a graduate student or researcher in astronomy or
physics to read with understanding the contemporary research papers in the subject.
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Most of what we have learned since 1986 is what the dark matter is not; discovering
what the dark matter really is remains an exciting challenge.

The lectures and the reprints reproduced in this book have some special advan-
tages for the student and for the active researcher. First of all, the style of the
lectures is pedagogical and detailed. This makes it easier to understand the argu-
ments and the assumptions that underlie the conclusions. Second, much of the
basic research on dark matter was fresh at the time these lectures were pre-
sented and therefore the reader will see the way people participating in these
first analyses thought about the puzzles and the challenges. Often, first-look
approaches are easier to understand than the more polished presentations that come
afterwards.

Of course, much important work has been done in the almost two decades since
the Jerusalem Dark Matter Winter School was held. I have resisted the temptation
to try to provide a list of references that would cover the more recent literature. It
would be a very long list indeed and any given reader would only be interested in a
small fraction of the newer literature. Today, there are excellent tools available on
the Web so that anyone can find articles that cite earlier articles, like the ones that
are cited in the lectures reproduced here. These Web based applications have the
advantage of being both convenient and continuously updated.

The most important progress in understanding the astronomical role of dark
matter since the 1986 Winter School has been in the context of the formation of large
scale structure in the universe and of galaxy formation. The concluding chapter of
this book is new; all of the other chapters appeared in the previous edition. The new
final chapter, by A. Aguirre, summarizes the current theoretical ideas, the existing
observational results, and the future challenges for the very successful cosmological
scenario based upon the hypothesis of Cold Dark Matter.

I have chosen to omit from this edition the lectures that I gave at the Winter
School on the topic of dark matter in the Disk of our Galaxy. The mathematical
techniques described in the omitted lectures have been used by J. Holmberg and C.
Flynn (see MNRAS, 313, 209 (2000) and astro-ph/0405155) to show, using recent
Hipparcos observations that are a great improvement over earlier data, that there
is no appreciable amount of dark matter in the Galactic Disk. There is a lesson in
this development which is useful for all students (and researchers) of astronomy and
astrophysics: theoretical inferences are — at best — no better than the observations
on which they are based.

Contents of This Book

Chapter 2 of this book is a reprint of a prototypical study of the dark matter in
the galaxy NGC 3198, of the kind carried out so fruitfully and systematically by
Vera Rubin and her colleagues. The extensive observational data available for this
galaxy made possible a detailed analysis that illustrates clearly the astronomical
context and the general nature of dark mater in galaxies. This observational paper,
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by T. S. van Albada and colleagues, symbolizes that the fact that Nature forced
us to acknowledge dark matter without the slightest a priori theoretical motivation
for its existence. Chapter 3, by J. N. Bahcall and S. Casertano, describes one of
the most persistent puzzling aspects of dark matter. There is a conspiracy between
dark matter and luminous matter to arrange themselves so that the transition in a
galaxy from domination by dark matter to domination by luminous matter produces
no easily observable features. The reader can see the conspiracy at work in the
measurements reported in Chapter 2 for NGC 3198.

Chapter 4, by J. P. Ostriker and C. Thompson, discusses the evolution of glob-
ular clusters — systems of typically 105 stars. This chapter exposes the readers
to some of the classical stellar dynamical questions and techniques that are useful
in treating the equilibrium and the evolution of large numbers of stars. The con-
cluding section of this chapter considers the possibility that massive black holes
are a significant component of the dark matter in the halos of galaxies like NGC
3198. Chapter 5, also by Ostriker and Thompson, describes in pedagogical detail
the effects of positive-energy perturbations in an expanding universe. The authors
have in mind perturbations from a galaxy undergoing a burst of star formation,
an active quasar, or even a superconducting cosmic string. For the students or
researchers interested in astrophysical problems, the most valuable aspect of this
chapter is that it describes in an accessible way the “dirty details” of the subject,
including hydrodynamics in an expanding universe, shock waves, instabilities, and
the influence of dark matter.

Chapter 6, by Scott Tremaine and Hyung Mok Lee, is a concise and accessible
introduction to the entire subject of dark matter in galaxies and clusters of galaxies.
If you read this pedagogically presented collection of five lectures and verify the
equations, then you will be well equipped to do research in the subject. In fact, this
chapter is a self-contained summary of the tools needed to address many problems
in modern astrophysics. Separate sections are devoted to an overview of the subject
of dark matter, the theory of stellar dynamics, the cores of elliptical galaxies and
dwarf spheroidal galaxies, the Halo of the Milky Way Galaxy, binary galaxies, and
masses of groups and clusters of galaxies. Imagine you were a graduate student in a
university where there was no active research in astrophysics. In this case, Chapter
6 would be just what you need. You could easily find a number of interesting and
important topics for a graduate thesis by studying this chapter and then applying
the techniques described by Tremaine and Lee to new data sets — data sets that are
much more extensive than those that were available in 1986. In fact, Chapter 6 is
written so clearly and logically that the uninitiated and the expert can both benefit
greatly by studying the material systematically.

The ideal way to study dark matter is, in many contexts, by gravitational lens-
ing. Lensing measures the total amount of matter independent of the light that the
matter emits. This is just what we want in order to study dark matter. Chapter 7, by
R. D. Blandford and C. S. Kochanek, presents an exceptionally clear introduction
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to the theory and practice of gravitational lensing. The subject has grown enor-
mously since these lectures were given but the principles have not changed. You
can find in the lectures everything you need to know to read with understanding
the multitude of current papers on gravitational lensing. The topics covered include
order of magnitude estimates, the different formalisms for describing gravitational
lensing and a comparison of their relative advantages, results for a variety of spe-
cial cases, generic features of the images, an unusually clear discussion of caustics
and catastrophe theory, and compound lenses. Every serious student of dark matter
should read this chapter carefully.

Chapters 8–10, by W. H. Press and D. N. Spergel, cover in an introductory
but mathematically explicit style three important subjects: inflationary cosmology,
cosmic strings, and WIMPS in the Sun and in the laboratory. The lectures are
characterized by their directness; the students are given succinct physical arguments
followed by the corresponding mathematical equations that in each case summarize
the essence of the topic. If you never heard before of inflation or cosmic strings or
WIMPS, you could learn what you need to know to be an intelligent consumer of the
modern literature on these subjects by reading the introductions in Chapters 8–10.
You can’t go to a contemporary conference on cosmology without hearing about
inflation and you can’t go to a contemporary conference on the physics of dark
matter without hearing about WIMPS. Although important details have changed
since these lectures were written, the basic principles outlined by Press and Spergel
are valid today. There is less current interest in cosmic strings today than there
was in 1986, largely because they have not been observed, but the subject is still
relevant for cosmological investigations.

Nearly all physicists and astronomers assume that dark matter is real. But in
the 19th century, nearly all physicists assumed that the aether was real. Consensus
does not guarantee correctness. In Chapter 11, Mordehai Milgrom presents a non-
relativistic description, usually referred to as MOND, in which the phenomena that
are conventionally ascribed to dark matter are instead explained by the failure of
Newtonian gravitation at a very low acceleration. This mathematical model makes
a number of remarkable predictions. The most remarkable of all the predictions
is that every rotation curve of an isolated spiral galaxy can be obtained from the
distribution of observed baryonic material using only one parameter (the mass to
light ratio). Only a small number of measured rotation curves were available when
this prediction was first made in 1983, but today many hundreds of rotation curves
are known with good accuracy. If there are any exceptions to the prediction, for the
rotation curves of isolated galaxies, of the modified Newtonian dynamics advocated
by Milgrom, then they are rare. This is an extraordinary situation. If the usual dark
matter picture is correct, then there is no reason why rotation curves measured in
different galaxies should not have large random differences. A conspiracy of the kind
described in Chapter 3 is required to suppress variety and to hide the signature of
dark matter in galactic rotation curves. Something deep is right about MOND,
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if only to describe in a succinct way a number of a priori surprising regularities
in the data for galactic systems. Everyone interested in dark matter should read
Chapter 11 and think about its implications.

The concluding Chapter 12 by Anthony Aguirre presents the theoretical basis
for understanding the role of Cold Dark Matter in determining the observed
anisotropies of the Cosmic Microwave Background, the power spectra of the Ly-α
forest, and the distribution of galaxies. Aguirre also clearly and succinctly sum-
marizes the theoretical ideas and the observational data related to the formation
of galaxies and their halos. In the concluding section of this chapter, Aguirre steps
back and outlines objectively and insightfully the current status of galaxy formation
theory, as well as the outstanding challenges to the hypothesis of Cold Dark Matter.
Everyone interested in modern cosmology can benefit from reading this chapter.

May 2004
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Chapter 2

DISTRIBUTION OF DARK MATTER IN
THE SPIRAL GALAXY NGC 3198∗

T. S. van Albada, K. Begeman and R. Sanscisi

Kapteyn Astronomical Institute,
Postbus 800, 9700 AV Groningen, The Netherlands

J. N. Bahcall

Institute for Advanced Study,
Princeton, NJ 08540, USA

Two-component mass models, consisting of an exponential disk and a spherical
halo, are constructed to fit a newly determined rotation curve of NGC 3198 that
extends to 11 disk scale lengths. The amount of dark matter inside the last point
of the rotation curve, at 30 kpc, is at least 4 times larger than the amount of
visible matter, with (M/LB)tot = 18M�/LB�. The maximum mass-to-light ratio
for the disk is M/LB = 3.6. The available data cannot discriminate between
disk models with low M/L and high M/L, but we present arguments which
suggest that the true mass-to-light ratio of the disk is close to the maximum
computed value. The core radius of the distribution of dark matter is found to
satisfy 1.7 < Rcore < 12.5 kpc.

1. Introduction

The problem of dark matter surrounding spiral galaxies, made evident by the
flatness of rotation curves, is one of the most enigmatic questions in present-day
astrophysics. A number of years of intensive research have brought little or no clar-
ification, and suggestions offered in the explanation of flat rotation curves include
extremes like the possibility that Newtonian dynamics is at fault (Milgrom 1983;
Sanders 1984) and Kalnajs’s (1983) conclusion that — for some data sets — there
is no problem at all.

In order to set the stage for the discussion in this paper, and to elucidate the
confusing situation noted above, it is useful to review what one expects for the
shape of the rotation curve. Let us assume that a typical spiral galaxy consists
of two distinct distributions of matter: an exponential disk and a de Vaucouleurs
spheroid, each with constant M/L. Surface brightness distributions of about half
of the galaxies surveyed so far can indeed be explained by the sum of two such

∗Published in Astrophy. J. 295, pp. 305–313, 1985.
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components (Boroson 1981; Wevers 1984). Following Boroson, we further assume
that deviations from this simple picture shown by other galaxies can be attributed
to irregularities in the distribution of bright young stars contributing little to the
total mass. The maxima of the rotation curves for spheroid and disk lie at 0.3
effective radii and at 2.2 disk scale lengths, respectively. In the interval between
these two points the shape of the rotation curve depends on the ratio of spheroid to
disk mass, but it can be quite flat. Beyond about 3 disk scale lengths the rotation
curve will show an approximately Keplerian decline.

In comparing this model with observations we first consider optical data. Rubin
et al.’s rotation curves typically extend to 0.8 times the radius, R25, of the 25th
mag arcsec−2 isophote (Rubin 1983). Since the central surface brightnesses of disks
of spiral galaxies lie in the range 20.5 < Bc(0) < 23.0 (Boroson 1981; Wevers 1984),
optical velocity information stops at 1.5–3.5 disk scale lengths. At 3.5 scale lengths
the rotation curve of an exponential disk has decreased only 8% cent relative to
the maximum value (and even less for a truncated disk; Casertano 1983). With
optical data alone, it is not easy to see the Keplerian decline of the rotation curve.
In many cases, a combined model with a bulge and a disk can produce a circular
velocity that is nearly independent of radius, without the need for nonluminous
matter.

Another important aspect of this problem is that Rubin et al. (1982; see also
Rubin 1983) find a well-established change in the shape of the rotation curve with
luminosity for Sb galaxies. High-luminosity Sb galaxies show a rapid rise of rota-
tion velocity, Vcir, with fractional radius and then reach a more or less constant
level, while rotation curves of low-luminosity Sb galaxies show a more gradual
rise. [Note that the scaling of radius in terms of R25 corresponds to expressing
the radius in the number of disk scale lengths if there is no scatter in Bc(0).]
On the bulge disk picture, this progression in shape with luminosity could only
be explained if there exists a strong correlation of bulge-to-disk ratio with lumi-
nosity within a given Hubble type. The sense required is that high-luminosity
galaxies have a prominent bulge — in terms of mass — while low-luminosity
galaxies have no bulge at all. We show for illustrative purposes in Fig. 1 the
rotation curve for a high-luminosity galaxy, with spheroid and disk parameters
adjusted in such a way that the rotation curve is flat for a large range in radii.
Rotation curves and surface photometry are necessary to test whether bulge and
disk properties deduced from the photometry are consistent with the assump-
tion that such a bulge and disk, with constant M/L, produce the rotation curve
observed.

We conclude from the above discussion that one can explain the shape of rotation
curves inside 3 disk scale lengths, at least in principle, by a combination of matter
distributions with constant M/L, without an additional component of dark matter.
In this respect our conclusions agree with those of Kalnajs (1983). However, rotation
curves obtained from the 21 cm line of neutral hydrogen gas in the outer region of
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Fig. 1. Rotation curve due to the sum of a de Vaucouleurs spheroid and a truncated exponential
disk. The parameters have been chosen such that the rotation curve is flat over a large range in
radii. The peak of the rotation curve of the spheroid lies at 0.8 kpc. Rotation curves such as these
can probably explain observed flat rotation curves inside the luminous body of a galaxy, without
the need for an additional component of dark matter. Reff (spheroid) = 2.7 kpc; scale length disk,
h = 10 kpc; truncation radius disk, Rtrunc = 4h; mass ratio Msph/Mdisk = 0.25.

spiral galaxies leave no doubt that “dark halos” do exista (Faber and Gallagher
1979; Bosma 1981). Thus one must have both optical (for the inner regions) and
H i data (for the outer regions) to obtain a complete picture of the distribution of
matter.

Unfortunately, the distribution of neutral hydrogen in the outer regions of galax-
ies is sometimes irregular, and, in galaxies seen edge-on, it is not always clear
whether H i gas is present at the line of nodes. In such cases, a precise measure-
ment of the circular velocity is not possible. But there are also several galaxies with
warped H i disks which can be represented successfully by a tilted ring model. For
moderate warps such a tilted ring model should be good enough to allow a reliable
determination of the circular velocity.

These considerations show that galaxies with large, relatively unperturbed
hydrogen disks, seen at inclinations of say 50◦ to 80◦, are required for studies of the
distribution of dark matter. A good example meeting these criteria is NGC 3198.
This Sc galaxy, which has no nearby bright companions, has been observed by

aAs pointed out by Freeman (1970) in an epochal paper, rotational velocities of H i (for NGC 300)
do not show the expected decline at large radii (that is, beyond the turnover point of the disk).
Freeman concluded: “If the H i rotation curve is correct, then there must be undetected matter
beyond the optical extent of NGC 300; its mass must be at least of the same order as the mass of
the detected galaxy.”
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Bosma (1981) with the WSRT. Its velocity field is regular and agrees with that

for a disk in differential rotation. In addition, the H i distribution extends to at

least 2.3R25, even though Bosma’s observations were not particularly sensitive. New

21 cm line observations with the WSRT, with improved sensitivity, have recently

been obtained by one of us (Begeman, in preparation). The rms noise in these new

H i maps is a factor of 4 smaller than in Bosma’s maps, and the velocity field of H i

can now be determined out to 2.7R25 (1.9 Holmberg radii), which corresponds to 11

scale lengths of the disk (see below). Even at these large distances from the center,

deviations from axial symmetry in the velocity field are small. To our knowledge,

this is the largest number of disk scale lengths over which a galactic rotation curve

has been measured. A map of H i contours superposed on a IIIa-J photograph is

shown in Fig. 2 (Plate 13).

In this paper we discuss the implications of these observations, in combination

with photometry, for the distribution of matter in NGC 3198. Surface photometry

of NGC 3198 (Wevers 1984) shows that a single component, i.e. an exponential disk

with a scale length of 60′′, gives an adequate representation of the distribution of

Fig. 2. Full resolution (25′′ × 35′′) map of the H i column density distribution of NGC 3198
superposed on an optical image of the galaxy (IIIa-J) (with Wr 2c), kindly made available by
J. W. Sulentic. Contour levels are 1, 4, 8, 12, . . . , 28 times 1020 atoms cm−2.
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light. Since the circular velocity is essentially constant beyond 2.5 disk scale lengths,
this implies that a mass distribution with constant M/L is ruled out.

We find that the amount of dark matter associated with NGC 3198 inside 30 kpc,
that is, the outermost point of the rotation curve, is at least 4 times larger than
the visible mass. Inside one Holmberg radius (15.9 kpc) the ratio of halo mass to
maximum disk mass is 1.5.

The organization of the paper is as follows. In Secs. 2 and 3 we describe the
distribution of light and the rotation curve. Two-component mass models fitted to
the observed rotation curve are presented in Sec. 4; the results are discussed in
Sec. 5.

2. Distribution of Light

Surface photometry of NGC 3198 in three colors (U ′, λ ≈ 3760 Å; J , λ ≈ 4700 Å;
F , λ ≈ 6400 Å) has been published by Wevers (1984). An earlier study of
van der Kruit (1979) gives photometry in the J band. Although the photograph
of NGC 3198 in Bosma (1981) shows a distinct nucleus, Wevers’s radial lumi-
nosity profiles can in first approximation be fitted with an exponential disk. Fit-
ting straight lines to these profiles by eye, we find the following scale lengths:
U ′, 63′′; J, 58′′; F, 54′′, with uncertainties of 5%.

Comparison of the U ′ and F profiles shows that, near the center, there is a
distinct color gradient, with the central region being redder. This may be related to
the presence of a bulge or a depletion of young stars. For the purposes of this paper,
an exponential law is a satisfactory representation of the light distribution; we adopt
a scale length of 60′′, corresponding to 2.68 kpc for H0 = 75 km s−1 Mpc−1. (From
the rotation curve we also find that the bulge must be small; see Sec. 4). A summary
of properties of NGC 3198 relevant for this paper is given in Table 1.

Table 1. Properties of NGC 3198

Parameter Value Notes

Type Sc(rs)I–II 1
Vhel (km s−1) 660 ± 1 2
Distance (Mpc) 9.2 3
B0

T 10.45 4
M0

BT
– 19.36

(B − V )0T 0.42 4
LB/LB� (8.6 ± 0.9) × 109

LV /LV� (7.0 ± 0.7) × 109

Scalelength disk 60′′(= 2.68 kpc)
R25 4′.2 4
Holmberg diameter 11′.9 × 4′.9 5

Notes. — (1) Sandage and Tammann (1981). (2) Begeman (1985).
(3) H0 = 75 km s−1Mpc−1. (4) Radius 25th mag arcsec−2

isophote; de Vaucouleurs, de Vaucouleurs, and Corwin (1976).
(5) Holmberg (1958).
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3. Rotation Curve

A rotation curve was derived from the new WSRT observations (FWHM beam 30′′)
as follows. (Full details are given elsewhere; Begeman, in preparation). We represent
the hydrogen disk by a number of circular rings, each ring being characterized by an
inclination i, a position angle ϕ, and a circular velocity Vcir. The width of the rings
is 30′′ on the major axis. Excluding a sector with opening angle 90◦ (in the plane
of the galaxy) about the minor axis, we use the grid points at which the velocity
field is recorded inside each ring to obtain a least-squares solution for i, ϕ, and Vcir

as a function of radius. An advantage of this method is that ring-to-ring variations
in i and ϕ, in combination with the formal errors from the least-squares solution,
indicate to what extent the hydrogen disk is warped. As expected, the position
angle is well determined, while Vcir and i are not completely independent. Yet,
taking the dependence into account, the formal errors in Vcir and i are extremely
small: 1 km s−1 and 1◦, respectively. We find small variations of inclination with
radius: from 72◦ inside 2′, through a minimum of 70◦ at 6′, to 76◦ at 10′ from
the center. There is also a systematic variation of a few degrees in position angle
with radius. Thus, there appears to be a small warp of the disk; it corresponds to
a vertical displacement of 2.3 kpc at the “edge” (29 kpc from the center).

As a further check of these findings, the same procedure was applied to the
northern and southern halves of the galaxy separately. The results clearly show the
symmetric large-scale structure of NGC 3198: both halves show the same depen-
dence of position angle and inclination on radius, and in the region beyond 6′ from
the center, i.e. the interval that is most critical for the subject of this paper, the
inclinations derived separately for the two halves agree to within 1◦ (see Fig. 3). On
the other hand, the rotation curves for the two halves are slightly different: in the
southern half there is almost no change in Vcir with radius beyond the maximum at
3′, but in the northern half Vcir decreases slowly between 3′ and 8′ by a few km s−1

and then rises between 8′ and 11′. The maximum difference between the two halves
is 6 km s−1.

In the inner region, i.e. inside ∼3′, this method of deriving the circular velocity
does not work since there are only a few grid points per ring. Moreover, the gradient
in the velocity field across a ring, and across the beam, must be taken into account.
As described by Begeman, for small radii the circular velocity can be derived from
an l–v diagram along an adopted direction for the major axis and with an adopted
value for the inclination of the disk (l is the position along the major axis). Using
the information in the l–v diagram a first estimate of the rotation curve is obtained
by plotting the velocities corresponding to peak intensity, corrected for inclination,
against l. A correction for beam smearing is then calculated by taking a model veloc-
ity field and convolving it with the WSRT beam. (A correction for beam smearing
was calculated and applied for all radii, but beyond 3′ this correction becomes negli-
gibly small.) The rotation curve determined by Cheriguene (1975) from the motion
of H ii regions 2′ from the center agrees well with the l–v diagram and H i at the
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Fig. 3. Variation of inclination angle with radius in NGC 3198, according to a tilted ring fitted
to the velocity field, separately for the northern and southern half of the galaxy. 1′ corresponds
to 2.68 kpc.

Table 2. H i Rotation Curve of NGC 3198.

Distance from Center Vhel (km s−1) Distance from Center Vhel (km s−1)

0.25 55 ± 8 4′.5 153 ± 2
0.50 92 ± 8 5.0 154 ± 2
0.75 110 ± 6 5.5 153 ± 2
1.00 123 ± 5 6.0 150 ± 2
1.25 134 ± 4 6.5 149 ± 2
1.50 142 ± 4 7.0 148 ± 2
1.75 145 ± 3 7.5 146 ± 2
2.00 147 ± 3 8.0 147 ± 2
2.25 148 ± 3 8.5 148 ± 2
2.50 152 ± 2 9.0 148 ± 2
2.75 155 ± 2 9.5 149 ± 2
3.00 156 ± 2 10.0 150 ± 2
3.50 157 ± 2 10.5 150 ± 3
4.00 153 ± 2 11.0 149 ± 3

position angle of her data for r ≥ 60′′. At 30′′ from the center, the beam-corrected
H i rotation velocities are ∼20 km s−1 higher than those of Cheriquene. H i emission
on the scale of the beam (30′′) has been detected everywhere in the central region.

The final rotation curve is given in Table 2. Inside 2′.5 they correspond to 0.5
times the mean difference between the rotation curves derived separately for the
northern and southern halves (∼ 2 km s−1). The last two points of the rotation
curve are based on adopted values for position angle and inclination.

Between 5′ and 9′, Bosma’s (1981) rotation velocities are systematically lower
than the new ones by ∼ 7 km s−1. This is partly due to the use of a fixed inclination
as a function of radius by Bosma. The cause of the remaining difference is not
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entirely clear. The sense of Bosma’s velocity residuals is such that a somewhat
larger rotation velocity in the region of interest would have improved the fit. Due
to the correction for beam-smearing — amounting to 23 km s−1 at 30′′ from the
center — the new rotation curve rises more steeply than Bosma’s.

4. Mass Models

4.1. Choice of Components

We consider mass models consisting of the following two components: (i) a thin
exponential disk (de Vaucouleurs 1959; Freeman 1970); (ii) a spherical halo, repre-
senting the distribution of dark matter:

ρhalo(R) ∝
[(

a

R0

)γ

+
(

R

R0

)γ]−1

, (1)

where R0 is a fiducial radius (Bahcall, Schmidt, and Soneira 1982; hereafter BSS).
The parameter a, which is linked to the core radius, and the exponent γ can be varied
freely. We choose R0 equal to 8 kpc. This allows a comparison of ρhalo(R0) for the
models with the halo mass density in the solar neighborhood (∼0.01−0.12 M� pc−3;
Bahcall and Soneira 1980). Equation (1) is equivalent to

ρhalo(R) = ρhalo(0)
[
1 +

(
R

a

)γ]−1

.

In addition, we estimate the maximum mass of a bulge component, represented
by a de Vaucouleurs spheroid, from the shape of the rotation curve in the inner
region. To model the spheroid we use the approximations given by Young (1976;
see BSS, Table 1).

4.2. Fits with Exponential Disk and Halo

To limit the number of free parameters of the models we shall only consider exponen-
tial disks with scale lengths equal to that of the light distribution.b This is equivalent
to the use of exponential disks with M/L independent of radius. As described in
Sec. 2, there is no clear evidence for a bulge in NGC 3198. Therefore we will first
restrict ourselves to the combination of a disk and halo. The distribution of light also

bFollowing a suggestion by J. P. Ostriker and the referee, we have checked the exponential disk
approximation of the light distribution by calculating rotation curves directly from the light profiles
(assuming an infinitely thin disk). The rate of decline beyond the maximum agrees well with that
for an exponential disk with scale length 60′′ for all three curves (U ′, J, and F ). In the inner region
there is also good agreement between the exponential disk rotation curve and the rotation curve
calculated from the F profile, which presumably gives the better indication of the underlying mass
distribution. The U ′ rotation curve rises less steeply, indicating that compared to F , the dominant
population contributing to U ′ has a central depression in its radial distribution. No J data are
available in the inner region. These results confirm our choice of 60′′ for the scale length of the
disk. We thank S. Casertano for lending us his programs to perform these calculations.
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shows that any truncation of the disk must occur outside 5.5 scale lengths. For such
a large truncation radius the difference between a truncated and an untruncated
disk is very small as far as the rotation curve is concerned (Casertano 1983; Bahcall
1983). It will therefore be sufficient to consider only the simple case of infinite disks.
Another reason for considering infinite disks only is that in the outer regions the
contribution of H i to the total mass density cannot be neglected. Between 5′.5
and 11′ the surface density of H i is well represented by an exponential with scale
length 3′.3. For the maximum disk case to be discussed below the surface densities
of stars and H i are about equal at R = 5′.5. The total amount of H i present in
NGC 3198 is 4.8 × 109 M�; its contribution to the maximum disk mass is 15%.

Our first model consists of a disk with the largest possible mass and a halo. A
strict upper limit for Vmax of this disk is 150 km s−1. This choice would require a halo
with a hollow core, however, which is implausible. Thus Vmax must be somewhat
smaller. We find that a reduction of Vmax(disk) to 140 km s−1 is sufficient to allow a
halo with a density that decreases monotonically with galactocentric distance. The
fit of this disk (total mass 3.1×1010 M�) and halo to the observed rotation curve is
shown in Fig. 4. The parameters deduced for the halo are not unique; curves with
two free parameters are generally sufficient for mass modeling purposes (Kormendy
1982). In this case the halo exponent γ and the scale length a can be varied in a
correlated fashion (1.9 < γ < 2.9, 7 < a < 12), while ρ(R0) is fixed to within a
narrow range. This freedom in the choice of halo parameters need not concern us: our
main interest is the mass distribution in the dark halo, which follows directly from

Fig. 4. Fit of exponential disk with maximum mass and halo to observed rotation curve (dots
with error bars). The scale length of the disk has been taken equal to that of the light distribution
(60′′, corresponding to 2.68 kpc). The halo curve is based on Eq. (1), a = 8.5 kpc, γ = 2.1, ρ(R0) =
0.0040 M� pc−3.
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Fig. 5. Cumulative distribution of mass with radius for disk and halo for the maximum disk mass
case. Two halo fits are shown. The curve labeled “normal” halo is based on Eq. (1); the parameters
of the fit are the same as those in Fig. 4. The curve labeled “minimum” halo is based on Eq. (2);
it corresponds to a density distribution whose slope changes from −2 in the inner regions to −3.5
in the outer regions. This curve represents an estimate of the minimum amount of dark matter in
NGC 3198 inside 50 kpc.

the shape of the rotation curve for the halo component. The latter is fixed by the
observed rotation curve and the adopted disk. Defining the core radius of the halo
mass distribution with ρ(Rcore) = 2−3/2ρ(R = 0), we have Rcore = (23/2 − 1)1/γa.
From this we find the — subjective — 95% confidence interval 9.6 < Rcore < 15.4.
Thus, Rcore = 12.5 ± 1.5 (1σ) kpc = 4.7 ± 0.6 disk scale lengths. Note that this
is an upper limit for Rcore: for smaller disk masses Rcore decreases (see below).
Cumulative mass distributions for disk and halo are shown in Fig. 5. From this
figure it follows that the ratio of dark matter to visible matter inside the last point
of the rotation curve (at 30 kpc) is 3.9. The enclosed halo mass is 0.8 times the disk
mass at R25; the enclosed halo mass is 1.5 times the disk mass at the Holmberg
radius. The total mass inside 30 kpc is 15 × 1010 M�. Another property of interest
is the mass-to-light ratio of the disk; we find M/LB(disk) ≤ 3.6 M�/LB� and
M/LV (disk) ≤ 4.4 M�/LV� .

The disk-halo model shown in Fig. 4 has the characteristic flat rotation curve
over a large part of the galaxy. Beyond 30 kpc it is a mere extrapolation, but the
observations inside 30 kpc do not show any sign of a decline, and the extrapolated
curve may well be close to the true one. To obtain an estimate of the minimum
amount of dark matter at large distances from the center we have also made a fit,
shown in Fig. 6, with a halo density law whose slope changes from −2 in the inner
region to −4 in the outer region:
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ρhalo(R) ∝
[(

a

R0

)2

+
(

R

R0

)2

+ 0.08
(

R

R0

)4
]−1

, (2)

where ρhalo(R0) = 0.0042 M� pc−3, a = 10 kpc, and R0 = 8 kpc; see BSS. Gradients
for this density law are d log ρ/d log R = −2, −3, −3.5 at R = 17, 32, and 48 kpc,
respectively. (These values, we feel, are not unreasonable. One could, of course,
also simply truncate the halo at 30 kpc, but this is physically implausible.) The
cumulative mass distribution for this case is shown in Fig. 5 as “minimum” halo.
Using this curve, we find that the minimum amount of dark matter associated with
NGC 3198 inside 50 kpc is probably at least 6 times larger than the amount of visible
matter; thus, for the galaxy as a whole M/LB ≥ 25 M�/LB� .

We now consider a family of disks with Vmax < 140 km s−1 (all with
the same scale length); the previous results apply to the maximum disk case.
We find that for each of the disks with Vmax < 140 km s−1 it is possi-
ble to find a matching halo described by Eq. (1), such that the sum of
disk and halo fit the observed rotation curve. As an example, Fig. 7 shows
a disk with mass equal to 30% of the maximum disk allowed. Even a fit
with a halo only cannot be rejected straight away (see Fig. 8). The main
difference between the resulting halos is the core radius: it decreases from
Rcore = 12 kpc for the maximum disk mass case to 1.7 kpc when the dark
halo dominates. The exponent γ of the halo density distribution is always close
to 2.

Fig. 6. Fit of “maximum” disk and “minimum” halo to observed rotation curve. The halo is
represented by Eq. (2). See also Fig. 4.
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Fig. 7. Fit of exponential disk with M = 0.3 × Mmax
disk and halo to observed rotation curve. The

parameters for the halo are a = 1.3 kpc, γ = 2.05, ρ(R0) = 0.0063 M� pc−3.

Fig. 8. Fit of halo without disk; a = 1.5 kpc, γ = 2.25, ρ(R0) = 0.0074 M� pc−3.

4.3. An Upper Limit for the Mass of the Spheroidal Component

Bulges of late-type spirals have fairly small effective radii (Simien and de
Vaucouleurs 1983). Since there is also a rough relation between bulge luminosity
and effective radius (Kormendy 1982), the effective radius of the bulge of NGC 3198
is expected to be quite small: Reff ≈ 3 kpc is a generous upper limit. We obtain an



Distribution of Dark Matter in the Spiral Galaxy NGC 3198 19

upper limit for the mass of a possible bulge component. The result is

Msph(30 kpc)/Mtot(30 kpc) < 0.026,

and

Msph(30 kpc)/Mmax
disk (30 kpc) < 0.12.

In reality the mass of the spheroidal component is probably much smaller, since in
the optical data (Cheriguene 1975), which covers the region inside 2′ all the way to
the center, there is no indication of a more rapid rise of the rotation in the innermost
region.

Although the above upper limits are not very stringent, they indicate that our
conclusions in the preceding paragraph are not affected by uncertainties regarding
the properties of the spheroidal component.

5. Discussion

An important question left unanswered by the preceding analysis is the value of
M/L for the disk. Should one seriously consider the case where the amount of
visible matter is negligible with respect to the amount of dark matter (Fig. 8)? Or
is the maximum disk case (Fig. 6) closer to the truth? There are three suggestive
(but not definitive) reasons that support the latter possibility: (i) Measurement
of mass and luminosity density in the solar neighborhood yields M/LV = 3.1 ±
0.6 M�/LV� (Bahcall 1984). This value of M/L includes the dark material that
must reside in the disk. The uncertainty represents an effective 95% confidence
level. For NGC 3198 M/LV (disk) ≤ 4.4 M�/LV� . (Note that M/L is proportional
to the Hubble constant.) (ii) The shape of the rising part of the rotation curve agrees
with that expected for a disk with scale length as given by the distribution of light.
If the rotation curve were determined by the dark halo, such agreement would
be a coincidence. (iii) The close relationship between luminosity of spiral galaxies
and maximum circular velocity, implied by the small scatter in the Tully–Fisher
relation, indicates that it is, after all, the amount of visible matter that determines
the maximum rotation velocity in a galaxy. If this were not the case the amount of
dark matter inside, say, 2.5 disk scale lengths must be related in a unique way to
the amount of visible matter. (This may not be a strong argument; see Appendix.)

Of course, the overall flatness of rotation curves also implies a relation between
the distributions of dark and visible matter. Indeed, indications at present are that
rotation curves for spiral galaxies of all types and luminosities are approximately
flat, or slightly rising, beyond the turnover radius of the disk (see Carignan 1983
and Carignan and Freeman, in preparation, for late-type spirals with MB in the
range −16 to −18). It is not clear yet whether this implies that the distributions
of dark and visible matter are closely related. In analogy with the disk-bulge case,
for which it is relatively easy to produce a flat rotation curve by combining a
declining curve for the bulge with a rising one for the disk, it is also not difficult to
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make an approximately flat rotation curve beyond the turnover point of the disk by
combining the declining curve for the disk with a rising one for the dark halo (see
BSS). Carried one step further, this reasoning might be used as an argument against
the motivation for Milgrom’s (1983) proposal that Newtonian dynamics must be
modified. Given the existence of dark halos, “fine tuning” of their properties to those
of the visible matter would only be required if rotation curves of many galaxies turn
out to be strictly flat until far beyond the turnover radius of the disk, like in NGC
3198.

So far we have assumed that dark halos are spherical. Alternatively, one might
conjecture that the mass-to-light ratio of visible matter in disks of spiral galaxies
increases with radius. In this case our calculations regarding the amount of dark
matter require a downward adjustment by a factor of ∼1.5. It is too early to rule
out this possibility, but a comparison of the thickness of H i layers with the vertical
velocity dispersion of H i in face-on galaxies suggests that the dark matter needed
to make the rotation curve flat cannot be hidden in a disk (van der Kruit 1981;
Casertano 1983).

After these general remarks let us return to the case of NGC 3198. Having
established that there is a large amount of dark matter, one would like to know its
spatial distribution. Unfortunately, the present data provide only weak constraints.
If we assume the mass of the disk to lie between 0.6 and 1 times the maximum
value allowed by the rotation curve, we find that the core radius of the halo lies
in the range 1.8–12.5kpc. It is also of interest to compare the volume density of
dark matter in the spherical halo with the density of H i. The surface density of
H i outside R = 6′ can be represented by

µH I(R) ≈ 120e−R/hHIM� pc−2,

where hH I = 3′.3. Consider a point in the midplane of H i at a distance of 27 kpc
from the center, i.e. close to the outermost point on the rotation curve. Assume
that the vertical density distribution of H i at this location is Gaussian with a
1σ scale height of 1 kpc. For the halo density law used for the maximum disk case
(Fig. 4) we then find that the H i density in the plane still exceeds the density of
dark matter by a factor of 8!

Finally, one may ask: how unique is NGC 3198? Can the results be general-
ized? The only unique feature that we know about for this galaxy is its relatively
undisturbed, extended H i envelope, which allows an accurate determination of
the rotation curve to large galactocentric distances. In other respects NGC 3198 is
normal; in particular, its mass-to-light ratio inside one Holmberg radius is typical
of Sc galaxies (Faber and Gallagher 1979). We thus have a solid determination of
M/LB = 18 M�/LB� inside 30 kpc, and a speculative estimate M/LB ≥ 25 inside
50 kpc, that are probably typical for galaxies of this morphology. The high M/L

values found for binary galaxies (see the discussion by Faber and Gallagher) are
therefore consistent with those for single galaxies over the same length scale.
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Appendix: Dark Matter and the Tully Fisher Relation

Below we discuss, in a semiquantitative way, the effect of dark matter on the relation
between luminosity and 21 cm profile width (T–F relation; Tully and Fisher 1977).
We use the T–F relation in the following form:

L ∝ V ∝, (A1)

where L is the total luminosity in a given wave band and V is the maximum circular
velocity in the galaxy outside the bulge. Maximum circular velocity and profile width
are, apart from a scale factor, nearly identical, as long as H i is present in the region
around 2–3 disk scale lengths from the center. The value of α depends on the wave
band and on the sample choice. For Sb–Sc galaxies, α ≈ 3.5 in B and α ≈ 1.3 in H

(Aaronson and Mould 1983).
On the assumption that a galaxy consists of three components, a spheroid, an

exponential disk, and a dark halo, Eq. (A1) can be rewritten as follows:

L ∝ {G[0.39Mdisk + 0.45Msph(2.2h) + 0.45Mhalo(2.2h)]/h}∝/2, (A2)

where h is the disk scale length. Here we have made the additional assumptions
that both spheroid and dark halo are spherical and that the location of maximum
circular velocity coincides with the turnover point of the rotation curve of the disk.
For reasonable choices of disk scale length and effective radius of the spheroid, most
of the spheroid mass lies inside 2.2h. Thus, for disk-dominated systems, we make a
very small error — on the percent level — if we replace 0.45Msph(2.2h) in Eq. (A2)
by 0.39Msph(∞). [In fact, for 15 galaxies in Boroson (1981) with known h and Reff ,
the median value of 0.45Msph(2.2h) is 0.42Msph(∞).] Then

L ∝ {[M + 1.2Mhalo(2.2h)]/h}∝/2; (A3)

M is the total visible mass of the galaxy, equal to Mdisk + Msph.
If the amount of dark matter inside 2.2 disk scale lengths is negligible, the T–F

relation takes the simple form:

L ∝ (M/h)∝/2. (A4)

Such a relation is easy to understand if mass-to-light ratio and disk scale length
vary with mass (see Burstein 1982). Adopting power-law relations, M/L ∝ M a and
h ∝ M b, one finds

∝= 2(1 − a)/(1 − b). (A5)

For a family of galaxies with disks with constant central surface density, b ≈ 0.5
(b = 0.5 if there is no spheroidal component). Then α ≈ 4(1 − a), and for M/L
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independent of mass, α ≈ 4. This is the original explanation of Aaronson, Huchra,
and Mould (1979) for the exponent 4 of the Tully–Fisher relation in the near-
infrared.

Equation (A3) shows that the small observed spread in the T–F relation implies
either a negligible amount of dark matter inside 2.2 disk scale lengths, or a correla-
tion between the amounts of dark and visible matter. Such a correlation is indeed
built-in: since disk scale length is known to depend on mass, the amount of dark
matter inside 2.2 disk scale lengths also depends on mass. Thus, a relation between
mass, luminosity, and disk scale length among galaxies as given in Eq. (A4) may
not be destroyed by the presence of a moderate amount of dark matter, even if the
density distribution of dark matter is largely independent of the visible matter.
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Chapter 3

SOME POSSIBLE REGULARITIES IN MISSING MASS∗

John N. Bahcall and Stefano Casertano†

The Institute for Advanced Study,
Princeton, NJ, USA

The unseen matter in a sample of spiral galaxies exhibits simple regularities and
characteristic numerical values.

1. Introduction

The missing mass (or light) problem has spawned many imaginative solutions involv-
ing neutrinos, gravitinos, axions, and other special proposals. Higher quality rota-
tion curves now permit, for some galaxies, a quantitative measure of the distribution
of dark matter inside galaxies. In this paper, we show first how remarkable is the
observed simplicity of observed rotation curves, requiring fine-tuning if the visi-
ble and invisible matter are unrelated. We then draw attention to the fact that
some internal properties of the dark mass seem to vary only over a relatively small
range despite large differences in the scale properties of these galaxies (e.g. their
masses and scale lengths). These characteristic numerical values in the galaxy data
provide hints as to the nature of the missing matter and constraints on theories of
galaxy formation. We discuss some of the implications for galaxy formation with
inos and consider in somewhat more detail the possibility that the observed regu-
larities may imply that the unseen matter is baryonic.

2. The Simplicity

Accurate rotation curves are now available for a number of galaxies, often extending
well beyond the optical image of the galaxy. The rotation velocities do not decline
in the outer reaches of galaxies where no appreciable light is visible. This lack of
a decrease in rotation velocities is an example of the “missing light” or “missing
mass” problem. For a few of these galaxies, it has been possible to estimate the
different contributions of the visible and of the dark material to the total mass.
The limited information already available is sufficient to hint at some surprising
regularities, which may indicate the nature of the unseen material.

∗Published in Astrophys. J. Lett. 293, pp. L7–L10, 1985.
†Current address: Space Telescape Science Institute, Baltimore, MD 21218, USA.
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Fig. 1. Observed rotation curve and mass models for NGC 3198. The disk scale length h is 2.7 kpc
(Wevers 1984). The observed rotation curve (dots) is taken from van Albada et al. (1985), and
extends almost to 30 kpc, or 11 disk scale lengths (2.4 Holmberg radii). There is no variation of
the rotation velocity (within 10%) beyond two disk scale lengths. The mass models all consist of a
disk with the same scale length as the observed light and a nearly isothermal halo with core radius
of 7 kpc. The best fit (a) to the observed rotation curve is obtained with both the halo and disk

masses equal to M ≡ 3.1× 1010M� (inside the Holmberg radius). Models (b) and (c) are similar,
except for a rescaling of masses in two components. Model (b) has 1.5 M in the disk and 0.5 M
in the halo; model (c) has 0.5 M in the disk and 1.5 M in the halo.

The most striking feature of rotation curves is that there are no striking features.
There is no overall change in the observed rotation curves that marks the transition
between the inner region, in which the visible material dominates the gravitational
field, and the so-called halo region which is filled with unseen material or missing
mass. Collections of accurate optical and HI rotation curves (Bosma 1978; Rubin,
Ford, and Thonnard 1980; Rubin et al. 1982) for many different galaxies exhibit
this general characteristic of a featureless rotation curve. The most remarkable
example is probably that of NGC 3198, an Sc galaxy whose 21 cm rotation curve
extends well beyond two Holmberg radii. The rotation curve obtained by van Albada
et al. (1985) (see dots in Fig. 1) remains constant within 10% over all the observed
range between 7 kpc and 28 kpc. A few galaxies, like NGC 5907, do show some local
feature (Casertano 1983a), but this is believed to be related to an abrupt truncation
of the disk.

To illustrate the significance of the approximate constancy of the rotation curves,
we show in Fig. 1 three different disk-halo mass models with the same geometrical
properties. Model (a) fits the observations with an equal mass, M , in the disk and
in the halo inside the Holmberg radius (van Albada et al. 1985). For model (b),
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the disk mass is 1.5 M , and the halo mass is 0.5 M . For model (c), the disk mass
is reduced to 0.5 M , and the halo mass is increased to 1.5 M . Neither model (b)
nor (c), with the disk and halo masses changed by only 50%, exhibit the same
characteristic flatness as the observed rotation curve. Figure 1 shows that at least
one parameter of a two-component mass model must be finely tuned in order to
reproduce the observed flatness of the rotation curve.a

The simplest interpretation of Fig. 1 may be that there is only one type of
galactic mass. We return to this point in the last section.

3. The Numerical Characteristics

For eight spiral galaxies detailed mass models exist and both visible and invisible
components can be constrained. Table 1 summarizes the parameters of the mass
distributions of these galaxies.

The masses of galaxies in our sample vary by almost a factor of one hundred.
Though small, the sample covers a fairly wide range in galaxy types (from Sb to
SBm) and external scale properties (mass, velocity, scale length). Despite these
differences, the ratio MH/MD, of halo to disk mass inside the outer optical radius,
seems to be always close to unity. Carignan and Freeman (1984) already noted this
fact for the three late-type galaxies they studied.

The characteristic value of unity for MH/MD is not simply related to any obvious
external property of galaxies. Until specific mass models were available, the ratios
were not strongly constrained. There is no observational selection effect of which we
are aware that can account for the relatively small variation that appears in Table 1.

In order to ensure homogeneity in the descriptions of the mass models, several
choices had to be made, which will be detailed in the following. However, none of
our conclusions is sensitive to the specific choices we have adopted: using somewhat
different definitions we have found the same regularities.

The outer radius Rout has been defined as either the radius of the optical cutoff,
if observed, or the radius at which the surface brightness, corrected for inclination
and internal and galactic absorption, drops to 26.6 blue magnitudes per square
arcsec (corresponding to 0.65 L�/pc2). We have derived the halo mass inside Rout

directly from the mass models, and the disk masses from the published disk rotation
curves. Sometimes small differences are present between the mass thus obtained
and the value quoted by the original authors; but such differences are immaterial
to our purpose. The disk surface density at Rout (used to evaluate the disk volume
density ρD) is obtained by extrapolating an exponential disk, with the disk scale
length h determined by the photometry. [This might increase the dispersion in
ρH/ρD, since a pure exponential density distribution is not a good model for all

aIf one varies two parameters, e.g. the core radius and the total mass of the halo within a fixed
number of disk scale lengths, it is easy to construct a continuum of models with flat rotation
curves. However, such models still occupy only a small fraction of the available parameter space.
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Table 1. Parameters of the Mass Distribution of Some Spiral Galaxies.

h Rout Vmax
a MD MH z0 ρD ρH

NGC Type (kpc) (kpc) (km s−1) (1010M�) (1010M�) MH/MD (kpc) (M� pc−3) (M� pc−3) ρH/ρD References

MW Sbc 3.5 14.7b 223 6.6c 9.5 1.4 0.50 0.0103 0.0047 0.46 1

891 Sb 4.9 21.0 231 9.1d 9.0 0.99 0.98 0.0042 0.00044 0.10 2

3198 Sc 2.68 12.7e 156 3.1 3.1 1.0 0.54f 0.0055 0.0014 0.26 3

4565 Sb 5.5 24.9 244 13.0g 14.6 1.1 0.79 0.0034 0.00097 0.28 4

5907 Sc 5.7 19.3 240 8.8 13.6 1.5 0.83 0.0102 0.0015 0.15 5

247 Sd 2.9 9.8h 100 1.20 1.08 0.90 0.58f 0.0067 0.0025 0.38 6

300 Sd 2.1 7.4h 83 0.63 0.54 0.84 0.42f 0.0080 0.0026 0.33 6

3109 SBm 1.6 5.8h 48 0.16 0.15 0.93 0.32f 0.0041 0.0016 0.38 6

aInside Rout, and excluding the central peak (if present).
bAssumed (= 4.2h) from central surface brightness.
cIncludes spheroid and nuclear component; 5.3 for pure disk.
dIncludes spheroid; 8.7 for pure disk.
eAssumed (= 4.75h) from central surface brightness.
fAssumed from z0 ≈ 0.2h.
gIncludes spheroid; 9.0 for pure disk.
hFrom photometry, corrected for inclination, etc.

References: (1) Bahcall, Schmidt, and Soneira 1982. (2) Bahcall 1983. (3) van Albada et al. 1985. (4) Casertano 1983b. (5) Casertano

1983a. (6) Carignan and Freeman 1985.
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galaxies; see Carignan (1984a, b), and van der Kruit & Searle (1981a, b).] The
thickness is expressed in terms of z0, the parameter appearing in the sech2 law;
we recall that, in first approximation, z0 is twice the exponential scale height of
the disk.b For the four galaxies in the sample for which the thickness cannot be
measured, we have used the rule z0 ≈ 0.2h, which is approximately valid for the
other galaxies.

The following equations summarize the relatively well determined parameters
that characterize the internal properties in all the mass models in our sample; they
are evaluated at Rout:

MH/MD ≈ 1, (1)

ρH/ρD ≈ 0.3, (2)

ρH ≈ 0.0015 M�/pc3. (3)

These numerical values constitute benchmarks relative to which theories of spiral
galaxy formation can be tested.

Relations (1) and (2) are satisfied with a total dispersion of only ±30% in the
values of MH/MD and ±50% for ρH/ρD. The tightness of relation (1) is especially
striking since the disk and halo masses separately vary by a factor of 100. The
third relation shows much more scatter, but it may be important because it sets
the dimensional scale for the relevant physical processes.

A relation similar to Eq. (1) can be obtained by assuming a Tully–Fisher relation
that is independent of Hubble type, a constant central surface brightness, and a
universal ratio of mass to luminosity. However, the actual central brightnesses vary
in our sample by about a factor of 7, and the mass–luminosity ratios differ for the
individual galaxies by a factor of order 3 (according to the individual estimates of
the original authors). From the previously known relations, we would have expected
a total dispersion larger than the observed 30%.

One might worry that relation (1) is an artifact of the method used in deriving
the mass models. In fact, if the rotation curves were always flat and the disk was
always assumed to dominate the rotation curve in the inner parts (the “maximum
disk” assumption), one would expect a constant ratio of disk to halo mass inside a
specified number of disk scale lengths. However, the mass models have been derived
by the different authors using a variety of methods. Only in four cases (NGC 3198,
van Albada et al. 1985, and NGC 247, 300 and 3109, Carignan & Freeman 1984)
has the “maximum disk” method been used. For the Milky Way, the disk mass
has been normalized (Bahcall, Schmidt, & Soneira 1982) to the value in the solar
neighborhood; for NGC 5907 the disk is “measured” through the amplitude of the

bThe sech2 law, ρ(z) = ρ0 · sech2(z/z0), is probably not a good model of the vertical density
distribution at the outer radius of the disk (Bahcall and Casertano 1984). However, z0 is an
adequate measure of the thickness of the disk.
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truncation blip (Casertano 1983a); and for the remaining two galaxies, NGC 891
and NGC 4565, the authors (Bahcall 1983 and Casertano 1983b, respectively) have
used a standard mass-to-light ratio — compatible with the rotation curve — to
obtain the disk mass. Given this variety of methods, it is surprising that relation
(1) is valid to 30%.

A word of caution is in order. The galaxies we consider are among the best stud-
ied and the most constrained in their mass distribution. But, even for these cases,
the mass models are far from unique. For example, there is no dynamical evidence
(except for the Milky Way and perhaps for NGC 5907) that the disk has any appre-
ciable mass. In all but these two cases, it would be possible to make models in which
the mass of the disk is negligible and the halo dominates the gravitational field. The
numbers in Table 1, although state-of-the-art, require plausibility arguments (see
preceding paragraph) in addition to the observed rotation curves.

The only criterion used in selecting the galaxies in our sample is the existence
of a detailed mass model that reproduces high-quality observations. Therefore, the
galaxies included do not constitute a well-defined population in any sense. In partic-
ular, there are no galaxies earlier than Sb and no normal barred spirals. A number
of additional galaxies must be observed carefully and analyzed in detail in order to
test whether or not the relations that we have summarized here are general. In our
discussion (Sec. 5), we will assume that the regularities we have found are indeed
characteristic of a large class of spiral galaxies.

4. The Local Missing Mass

In at least one well studied case, the missing matter cannot all be in a dissipation-
less component. Bahcall (1984a, b) has shown that about half the matter in the
solar neighborhood is unseen and has an exponential scale height that is less than
0.7 kpc (twice the scale height of the old disk stars). This result is obtained by a
modern reanalysis of the Oort limit using three stellar samples with improved data
and theoretical computations, combined with the upper limit on the total mass
within the solar position that is inferred from the galactic circular velocity at the
sun. Therefore, at least some of the dark matter is in a dissipational component,
which has been able to collapse into a highly flattened disk.

5. Implications

What is the meaning of the regularities described in Secs. 2 and 3? One possi-
bility, considered by Milgrom (1983), is that the law of gravitation differs from
the Newtonian theory at the very small accelerations that are characteristic of the
outer reaches of galaxies. In fact, Milgrom’s modification to the law of gravitation
would explain both the observed flatness of the rotation curves and the constancy of
MH/MD (in Milgrom’s theory the “halo” is not real). We will not discuss this alter-
native. We prefer to consider instead the alternatives that do not require changes
in the accepted laws of physics.
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In more popular scenarios, many authors have suggested that the unseen mate-
rial is intrinsically different from the visible matter: the former being made of exotic
particles and the latter being made of ordinary stuff, like stars and gas. Thus, the
observed material would be dissipational and the unseen material dissipationless.

The phenomenological relations that we have discussed between visible and invis-
ible matter can be summarized as follows:

(i) Featureless rotation curves require fine tuning if the inner galactic material
(stars and gas) is physically different from the halo (dark mass).

(ii) There are regularities in the mass models [Eqs. (1)–(3)] that suggest a close
relation between the visible and invisible matter.

(iii) The missing matter in the disk is dissipational, like the visible material.

The regularities listed above must be telling us something important about galaxy
formation if there is indeed a fundamental distinction between visible and invisible
matter. The significance of the regularities may be revealed by detailed calculations
(or numerical simulations) of the formation of galaxies from primordial perturba-
tions in the early universe. One possible mechanism that might provide a natu-
ral explanation of some of the observed regularities, based on the reaction of the
halo to the gravitational field of the collapsing disk, is currently being considered
(J. Barnes, private communication).

On the basis of the above-cited phenomenological relations between visible and
invisible matter, we now explore the possibility that both the invisible and the visible
matter are baryonic. In this picture, some of the original mass condensed into a disk
and formed visible stars, changing only slightly the overall mass distribution and the
rotation curve. This hypothesis accounts in a plausible way for featureless rotation
curves (see Fig. 1). The difference between seen and unseen material is attributed to
the ability of galactic matter to form easily observable stars — stars massive enough
to burn hydrogen (> 0.085 M�) — above the critical mass density represented
by Eq. (3). Regularities (1) and (2) can then be interpreted as representing the
efficiency of star formation.

Where could this dark baryonic mass be located? Several authors have stated
that it is “unlikely” that the unseen mass is in the disk (Casertano 1983a; Lake
1981; van der Kruit 1981), but the observational evidence is not conclusive. It is at
least conceivable that the dark material is all in a thick disk, a scenario that can
be tested by more realistic theoretical studies of the stability of galactic disks. A
less extreme possibility is that part of the unseen matter has collapsed to a disk
and some invisible mass is still in a rounder component. However, if the baryonic
picture is to account in a natural way for the regularities expressed in Eqs. (1)–(3),
the dark mass must have collapsed to much the same extent as has the disk.

The unseen material is probably not in a gaseous form (see, e.g. Bergeron and
Gunn 1977). The existing observational upper limits on H i emission at large galac-
tocentric distances show that the halo contains only a relatively small amount of
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neutral gas. Similarly, a hot gaseous halo would produce — by bremsstrahlung —
a much higher total X-ray emission (>1042 erg sec−1) than is observed for typi-
cal spiral galaxies (Fabbiano, Trinchieri, and Macdonald 1984). At an intermediate
temperature like 104 K, the emission measures in the models discussed here are suf-
ficiently large that they could be observed with existing techniques. The best cases
for detecting intermediate temperature gas are edge-on spirals for which the emis-
sion measure would be expected to be ∼40 cm−6 pc outside the Holmberg radius
on the major axis and could be a factor of several higher along the minor axis.
However, the emission measure for the Milky Way would be ∼300 cm−6 pc, more
than two orders of magnitude larger than the most recent measurements permit
(Reynolds 1984). At least for the Galaxy, the unseen material cannot be in gas at
about 104 K.

The only remaining baryonic candidates for the unseen material are: (1) massive
collapsed objects, or (2) stellar-like objects that are not massive enough to burn
hydrogen. None of the existing observational constraints are in conflict with these
suggestions. Either possibility requires that stars form in the non-collapsed phase
with an initial mass function quite different from that of the Population I disk stars.
In addition, the formation of stars from low density primordial gas must have blown
away nearly all of the gas by a combination of winds, shocks and radiation pressure,
or the gas must have been removed by interaction with the intergalactic medium (see
Bergeron and Gunn 1977). Elliptical galaxies have managed to largely rid themselves
of gas; perhaps the baryonic halos of spiral have been similarly successful.
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Chapter 4

EVOLUTION OF GLOBULAR CLUSTERS AND THE
GLOBULAR CLUSTER SYSTEM I

J. P. Ostriker

Princeton University Observatory
Princeton, NJ 08544, USA

C. Thompson∗

Joseph Henry Laboratories
Princeton, NJ 08544, USA

In this first part of these lectures, we review the observed properties and dynami-
cal evolution of globular clusters and the globular cluster system. We concentrate
on the behavior of a cluster during core collapse, and discuss how the formation
of binaries in the core may heat the cluster and reverse the collapse. We review
the various processes which disrupt clusters, and their cumulative effect on the
globular cluster system. We briefly consider the constraints which may be placed
on baryonic dark matter in the Galactic halo.

Later in the second part, we review the properties of positive energy pertur-
bations in an expanding universe. We construct self-similar solutions of various
types for blast waves in both static and expanding media. We concentrate on
those features which distinguish blast waves in these two types of media. We
briefly consider the stability of the thin shells formed by cosmological blasts, and
what happens when shells interact.

1. Globular Clusters

Globular clusters are one of the oldest subjects of theoretical study in astronomy;
only the dynamics of the solar system, and binary star systems, have been inves-
tigated in greater detail. A globular cluster, more so even than a galaxy, is the
prototypical self-gravitating system of many point masses. The equilibrium struc-
ture of globular clusters has been adequately understood for some time, but only
recently has much progress been made in unravelling their evolution.

At first sight, the study of globular clusters may seem to reveal little about dark
matter; for example, there is no evidence that globular clusters contain dark matter
(but, see Peebles 1984). We will find, nonetheless, that globular clusters do place
some indirect constraints on the distribution and composition of dark matter in the
Galaxy.

∗Current address: CITA, University of Toronto, Toronto, ON M5S 3H8, Canada.
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Detailed compendia of recent work on globular clusters can be found in the
proceedings of IAU Symposia 113 and 126. For an expository account, the reader
is referred to the forthcoming book by Spitzer (1987).

2. Basic Properties of Globular Clusters

A globular cluster is a nearly spherical assembly of stars, bound by its own grav-
ity. About 150–200 clusters are distributed through the halo of the Galaxy, with
approximate spherical symmetry about its center. The average mass of a cluster is
� 105M�, and the mass to light ratio is typically M/LV � 1 − 2, in solar units.
The space density of clusters is strongly concentrated toward the Galactic center,
falling off with distance R from the center as R−3 for R < 10 kpc, and as R−4

for R > 10 kpc. Several clusters lie beyond 50 kpc. The core radius of the cluster
distribution is approximately 1 kpc. We cannot determine directly the number of
clusters within 1 kpc; but a study of the decay of cluster orbits toward the Galactic
center, indicates that this number may be about 50 (Oort 1977).

In an individual cluster, one may distinguish three characteristic distances, as
measured from the center. The core radius Rc is defined to be the radius at which the
surface brightness is half its central value, and takes on the values 0.3 to 3 pc. The
“tidal” radius Rt is the radius at which the extrapolated surface brightness reaches
zero. One finds Rt/Rc ∼ 10–100. The radius Rh containing half the projected
light, and presumably the mass, of the cluster is found empirically to satisfy the
approximate relation Rh ∼ √

RtRc. The velocity dispersion of the stars parallel to
the line of sight is V‖ = 3–5 km s−1. From the virial theorem we obtain

2 · 3
2
MhV 2

‖ � (
GM2

h/2Rh

)
, or Mh � 6RhV

2
‖ /G = 105M�

for typical values V‖ = 5 km s−1 and Rh = 5 kpc.
The measured distribution of cluster velocities in the Galactic halo is consistent

with an isotropic distribution (Frenk and White 1980), although there is evidence
that some clusters rotate at < 50 km s−1 (Zinn 1985). There is no evidence of
any trend in these rotational velocities, if they exist, with radius. (But see the
contribution of Tremaine and Lee on the dynamics of satellite dwarfs.)

There is an apparent division (Zinn 1985) in the properties of globular clusters
between those within ∼ 5 kpc of the Galactic center (the “Disk” population) and
those outside this radius (the “Bulge” population). The Disk population appears to
be flattened (with an axis ratio of 2:1), rotating, and metal rich ([Fe/H ] > −0.8).
The Bulge population is spherically symmetric and relatively metal poor (−2 <

[Fe/H ] < −0.8). There is a clear negative gradient in the mean density and core
density ρc of Bulge clusters, outward from the Galactic center.

The age of globular clusters is determined by comparing the position of the
observed main sequence turn-off on the HR diagram, to that inferred from the
observed helium abundance and metallicity of the cluster. The main uncertainties
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arise from the calibration of the distance scale to the clusters (using RR Lyrae stars,
or comparing the main sequence luminosity with that of a nearby cluster), and the
indirect determination of helium abundance. The ages thus determined typically lie
in the range (12–17) × 109 yr. Recent work has suggested that much of this spread
may be real, and that metal rich clusters are younger.

The stellar population of globular clusters is dominated by dwarfs, with red
giants comprising 4%, degenerate dwarfs anywhere up to 30%, and neutron stars
perhaps a few percent of the mass. In all, globular clusters contribute a fraction
∼1% of the optical luminosity of the spheroidal component of the Galaxy.

A half-dozen strong X-ray sources, with luminosities 1035–1037 erg s−1, have
been found in globular clusters. These are interpreted as neutron star–main
sequence binaries. A much larger number of weaker X-ray sources, with luminosities
1033 erg s−1, have also been detected. These are probably degenerate dwarf–main
sequence binaries. The relative concentration of X-ray binaries in globular clusters
indicates that binaries may form by two-body tidal capture (Fabian, Pringle and
Rees 1975) in the dense cores, where the density of stars is in the range 103–105 pc−3.

3. Equilibrium Structure of Globular Clusters

Let us now consider the equilibrium configuration of a spherical star cluster, bound
by its own gravity. First, we compare the time for an individual star to complete one
orbit, with the time for that orbit to be modified by interactions with other stars.
Even though the density of stars in the core of a cluster is large, individual orbits
change only slowly. Thus, the idea of an equilibrium configuration is well-defined.

The dynamical time of passage of a star with velocity V∗ through the cluster is

td ∼ Rh

V∗
= 106

(
Rh

5 pc

) (
V∗

5 km s−1

)−1

yr. (1)

We have substituted a typical line-of-sight velocity for V∗. Now, a typical encounter
between stars occurs at a separation ∆r ∼ N

−1/3
∗ Rh ∼ 0.1 pc where N∗ ∼ 105 is

the number of stars in the cluster. The characteristic deflection of each star in one
encounter is small:

∆V⊥
V∗

∼ Gm∗
(∆r)2

∆r

V 2∗
∼ 1

N∗
Rh

∆r
∼ N

−2/3
∗ . (2)

Now let us sum the effects of many encounters. The component of a star’s velocity,
perpendicular to its initial direction of motion, grows diffusively as

∂

∂t

(
V⊥
V∗

)2

�
∫ ∆r(max)

∆r(min)

2π∆r d(∆r)n∗V∗

(
∆V⊥
V∗

)2

= 2πn∗
G2m2∗
V 3∗

ln
(

Rh

Gm∗/V 2∗

)
. (3)

The cumulative effect of distant encounters diverges with ∆r, so we impose a cut-
off at the size Rh of the cluster. In addition, the deflection is no longer small at
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separations less than Gm∗/V 2∗ , and we choose this as the lower cut-off. Our main
conclusion is that the deflection rate due to distant encounters exceeds that due to
near encounters (at ∆r < Gm∗/V 2∗ ) by a factor ln Λ = ln(0.4N∗). The coefficient
in the logarithm and the overall numerical coefficient are given by a more careful
treatment (cf. Spitzer 1987) which we will summarize shortly.

We can now compute the time for a single orbit to evolve significantly — the
relaxation time, tr. We find that it greatly exceeds the dynamical time, and in many
cases is comparable to the age of the cluster:

tr =

[
∂

∂t

(
V⊥
V∗

)2
]−1

=
N∗

β ln(0.4 N∗)
td

∼ 1
β

104 td ∼ 1
β

1010 yr, (N∗ = 105). (4)

This represents the relaxation time at the half-mass radius. Our estimate (3) indi-
cates that β ∼ 10. In the core of a cluster, where the density of stars is high, the
relaxation time is much shorter. As we will see, core evolution is a central topic in
contemporary research on globular clusters.

To construct a self-consistent model of a globular cluster, one may simply choose
the distribution function f . Recall that the number of stars in an infinitesimal
volume of phase space is

dN = f(r,v, t)d3rd3v. (5)

The fact that tr � td allows us to neglect individual two-body encounters in calcu-
lating the equilibrium configuration of the cluster. Liouville’s theorem then tells us
that the distribution function evolves according to

Df

Dt
=

∂f

∂t
−∇φ · ∂f

∂v
+ v · ∂f

∂r
= 0. (6)

This is the collisionless Boltzmann equation, or the Vlasov equation. We have sub-
stituted dv/dt = −∇φ(r, t), where φ is the coarse-grained gravitational potential
at r due to all the stars in the cluster. That is, in neglecting two-body encounters
we are using φ = φ̃, where

∇2φ̃ = −4πGρ̃. (7)

Here, ρ̃ ≡ (∆V )−1
∫
∆V ρ dV is the stellar mass density averaged over a volume ∆V

which contains many stars, but is small compared to the size of the cluster.
The number density of stars is related to the distribution function by n∗ =∫

f(r,v, t)d3v. The local mean velocity u(r) = n−1
∗

∫
vfd3v, and the velocity dis-

persion V 2
m(r) = n−1

∗
∫

(v − u)2 f d3v.

When a globular cluster has attained an equilibrium configuration, the distri-
bution function f is independent of time, ∂f/∂t = 0. For each orbit, it is easy to
find one or more conserved integrals of motion: namely, the energy per unit mass
E = 1

2v2 + φ(r); and also, the component Jz of the specific angular momentum, if
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the cluster is axially symmetric; or all three components J = r × v of the angular
momentum, if the cluster is spherically symmetric.

Now, an immediate consequence of Liouville’s theorem (6) is that the distribu-
tion function depends only on the integrals of motion. This is sometimes known as
Jeans’ theorem in the literature on stellar dynamics. For an orbit in three dimen-
sions, there are generally six independent integrals of motion (five when ∂f/∂t = 0),
and the integrals displayed above do not exhaust the list.

We conclude that the distribution function in a spherical system may be chosen
to be f = f(E, J2); but this is not the most general form that f may take. Now,
in an isolated system, E and J2 may each take on only a limited range of values.
Namely, if a star is bound to the cluster, then E < 0; and, given a value of E, the
angular momentum cannot be greater than that of a circular orbit.

The two most common choices for the distribution function are as follows. In a
“polytrope” model, one takes

f ∝ (−E)p (9)

which implies ρ ∝ φp+3/2. The choice p = − 3
2 corresponds to a uniform sphere, and

p = 7
2 is the Plummer model, which is known in the literature of stellar structure

as a polytrope of index n = 5. In this latter case, the density and potential are

ρ(R) =
3M

4πR3
0

1
(1 + R2/R2

0)5/2
,

φ(R) =
GM

R0

1
(1 + R2/R2

0)1/2
= −2V 2

m(R).
(10)

The King model (1966) has an isothermal distribution function with an upper cut-off
in energy (representing the outer radius of the cluster),

f =

{
K(e−βE − e−βE0) E < E0

0 E > E0

. (11)

The “temperature” β−1 of the stars is related to the central velocity dispersion in
the cluster by

β−1 =
1
3
V 2

m(0) = V 2
‖ (0).

Here, V 2
‖ is the line-of-sight velocity dispersion. For example, if the tidal field of

the Galaxy determines the outer radius of the cluster, then (2Rt/Rg) · GMg/R2
g =

GMcl/R2
t and the tidal radius is

Rt =
(

Mcl

2Mg

)1/3

Rg, (12)

where Mcl is the cluster mass, Rg the distance from the center of the Galaxy, and
Mg the mass of the Galaxy interior to Rg. That is, we choose for the energy cut-off

E0 = φ(Rt) = −GMcl

Rt
. (13)
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Note also that the core radius Rc is defined in terms of the central velocity dispersion
and central density by

Rc =
(

3V 2
m(0)

4πGρ(0)

)1/2

. (14)

In summary, a King model may be parametrized by the dimensionless ratio Rc/Rt.
We may relate the escape velocity from the cluster to the virial velocity as

follows. The mean escape velocity is

1
2
Mcl〈V 2

esc〉 =
1
2

∫
dr4πr2ρ∗(r)V 2

esc(r) = −
∫

dr4πr2ρ∗(r)φ(r) = −2Eφ,

where Eφ is the gravitational binding energy of the cluster and Mcl is its mass. By
the virial theorem, Eφ = −2 · 1

2Mcl〈V 2
m〉 so we have the following general relation,

〈V 2
esc〉 = 4〈V 2

m〉. (15)

The mean escape velocity is only a factor of two larger than the mean r.m.s. velocity
of stars in the cluster. This is our first clue that the equilibrium configurations under
consideration may not persist over many relaxation times.

Indeed, it is clear that stars on the exponential tail of the velocity distribu-
tion will evaporate from the cluster, reducing its mass but increasing its binding
energy (Ambartsumian 1938; Spitzer 1940). In spite of this, the stars outside the
core expand. The angular momentum of an individual star is conserved during the
gradual loss of mass. For example, if it is in a circular orbit at radius R, then
j2 = GM(<R)R is conserved, and

1
R

∂R

∂t
= − 1

M(<R)
∂M(<R)

∂t
. (16)

In order to avoid a contradiction, we conclude that the density and velocity disper-
sion of stars in the core must increase as the cluster loses mass. The evaporation of
stars from the cluster leads eventually to core “collapse”.

So far, we have only considered the effect of successive distant encounters on the
component of a star’s velocity perpendicular to its initial direction of motion. We
found that the growth of V⊥ was diffusive, because the expected deflection in one
encounter 〈∆V⊥〉 = 0. Once again, let us consider the motion of a test star with
velocity V∗ and mass m∗ through a background field of stars of mean density ρf and
mass mf . During distant encounters, the field stars absorb momentum and energy
from the test star. It follows that the expected change in the parallel component of
the test star’s velocity during a distant encounter, does not vanish.

We may estimate the deceleration of the star, by dynamical friction, as follows.
The original treatment is due to Chandrasekhar (1942). Suppose for simplicity that
the field stars are at rest. The velocity ∆V‖ imparted to a field star during one
encounter at impact parameter ∆r is ∆V‖ ∼ ∆V 2

⊥/V∗. The dynamical friction time
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is therefore

t−1
df =

1
m∗V∗

d(m∗V∗)
dt

=
∫

d(∆r)2π∆r · ρV∗∆V‖ � 2π
G2ρm∗

V 3∗
ln Λ, (17)

where ln Λ = ln(0.4N∗) as before. Assuming that V 2
∗ ∼ V 2

m, we may compare tdf

with the two-body relaxation time:

tdf ∼ tr ·
(

mf

m∗

)
. (18)

A massive star slows down before its orbit is significantly deflected.
Spitzer (1987) provides more exact results. These are〈

∂

∂t
∆V‖

〉
= −12πG2ρf(mf + m∗)

V 2
m,f

ln Λ · G(x) , (19)

〈
∂

∂t
∆V 2

‖

〉
=

12πG2ρfmf

V 2
m,f

ln
(

Λ · G(x)
x

)
, (20)

and 〈
∂

∂t
∆V 2

⊥

〉
=

12πG2ρfmf

V 2
m,f

ln
(

Λ · Φ(x) − G(x)
x

)
, (21)

where V 2
m,f is the velocity dispersion of the field stars,

x =
√

3V 2∗ /2V 2
m,f ,

Φ(x) ≡ 2√
π

∫ x

0

e−y2
dy ,

G(x) ≡ 1
2
x−2[Φ(x) − xΦ′(x)].

Heavy stars, of mass m∗, lose energy to lighter stars, of mass mf in a time

teq =
(V 2

m,f + V 2
m,∗)

3/2

8
√

6πG2m∗ρf ln Λ
, (22)

in the limit where the kinetic energy of the heavy stars greatly exceeds that of the
lighter stars. Indeed, the initial velocity dispersion of the heavy stars in a cluster
(after violent relaxation; see below) is expected to be comparable to that of the
lighter stars, V 2

m,∗ ∼ V 2
m,f .

Applying these results to a globular cluster composed of stars of constant mass
m∗, one finds that the relaxation time at the half-mass radius is (Spitzer and Hart
1971),

trh =
V 3

h

15.4G2m∗ρh ln Λ
, (23)

where ρh = 3Mcl/8πR3
h is the mean density within Rh, and V 2

h = V 2
m(Rh). Heavy

stars sink to the center of the cluster in a time �trh.
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4. Methods of Computing the Evolution of a Globular Cluster

Three different numerical methods of calculating the detailed evolution of a globu-
lar cluster have been used extensively. A cluster contains too many stars for direct
Nobody techniques to be applied. Hénon (1965) developed an “orbit-averaged”
Monte Carlo technique, which follows the evolution of the energy E and angular
momentum J of ∼1000 test stars. Since the exact positions and velocities of the
test stars are not known, statistically significant results are obtained by averag-
ing over many orbits. Shapiro and Marchant (1976) modified Hénon’s method to
account for the loss of stars from the cluster. The more direct Monte Carlo method
used by Spitzer and Thuan (1972) computes the positions and velocities of the
test stars. Subsequently Cohn (1979, 1980) has used a variant of the orbit-averaged
Fokker–Planck equation adopted from plasma physics. In this case, the averaging is
done instantaneously over all particles with the same angular momentum. Goodman
(1983a) has modified this approach to allow for strong encounters between stars,
and has developed a Fokker–Planck code for an axisymmetric stellar system, in
which the average is over particles of identical E and Jz (1983b).

5. Early Evolution of an Isolated Globular Cluster

In this section, we will review some well-established results concerning the evolution
of a globular cluster before core collapse.

The prevailing idea as to how a globular cluster first attains its equilibrium
state, is that the stars undergo violent relaxation. During the initial collapse from an
unrelaxed configuration, the energy of a single star is not conserved, even neglecting
two-body encounters, since the smoothed gravitational potential is time-dependent.
Hénon (1964) and Lynden–Bell (1967) have shown that, during the collapse, the
random velocities of the stars in the inner parts of the cluster may achieve a nearly
Maxwellian distribution. This idea has its most important application in models
of galaxy formation. The two-body relaxation time is longer than the age of the
universe, in elliptical galaxies and the spheroidal component of spirals, and in clus-
ters of galaxies; but the random velocities in these systems are observed to have an
approximately Maxwellian distribution.

Since violent relaxation occurs over a dynamical timescale (that is, over only a
small fraction of the two-body relaxation time) the phase space distribution function
f evolves according to

∂f

∂t
−∇φ̃ · ∂f

∂v
+ v · ∂f

∂r
= 0, (24)

where φ̃ is the smoothed potential. As the orbital phases of neighboring elements
of the initial phase space distribution lose coherence, the velocity distribution
approaches a Maxwellian. Since the acceleration of a star in the potential φ̃ is
independent of its mass, the final random velocities of light and heavy stars are the
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same. The “temperature” of the Maxwellian distribution for each stellar component
is proportional to the stellar mass.

One clear observational fact is that most globular clusters are nearly spherical,
with ellipticities < 0.2. This fact has a straightforward explanation in the evapora-
tion of stars from the cluster (Agekian 1958; Shapiro and Marchant 1976; Goodman
1983b). The idea that cluster rotation is damped by evaporation is supported by
the fact that (presumably younger) clusters in the Magellenic clouds have larger
ellipticities and rotation rates.

If a cluster rotates slowly, then an escaping star on average carries away a specific
angular momentum J ∼ RhVesc � RhVrot, where Vrot is the rotational velocity
of cluster stars. The loss of stars in this part of phase space is replenished in a
relaxation time. Modeling a cluster as a Maclaurin ellipsoid, Agekian (1958) and
Shapiro and Marchant (1976) found that it became rounder if the initial ellipticity
was less than 0.74.

Goodman (1983b) treated this problem more carefully with a numerical inte-
gration of the Fokker–Planck equation. He found that the ellipticity was damped
in a few trh. This work implies that the approximation of a globular cluster as
a Maclaurin ellipsoid is not quantitatively accurate, because a cluster is highly
inhomogenous.

There is an instability which sets in when too large a fraction of the mass of a
globular cluster is in massive stars (cf . Spitzer 1987). As we discussed in Sec. Ib, two-
body encounters tend to equalize the random energies of stars, transferring energy
from massive stars to light stars. The random velocities of massive stars steadily
decrease with time, and they tend to accumulate at the center of the cluster. The
further details of this process depend on the relative fraction of the cluster mass
in heavy and light stars. Consider the case of two populations with masses m1 and
m2, m2 > m1. The total mass in each population is denoted by M1 and M2. If M1 is
small compared to M2, then all the light stars are quickly expelled from the cluster.
If M2 is sufficiently small compared to M1, then the heavy stars settle to the center
of the cluster, but the central potential is still dominated by the light stars, and
the two populations reach equipartition. If, however, the central potential becomes
dominated by heavy stars before equipartition is reached, then the density of heavy
stars in the core continues to increase, along with their kinetic energy. Eventually
all but a few of the light stars are expelled from the core, and energy transfer ceases.
The boundary between these two domains of behavior is where M1r

−3
h1 ∼ M2r

−3
h2 at

equipartition (GM1m1/rh1 ∼ GM2m2/rh2). That is, the instability occurs for

M2

M1
> κ

(
m2

m1

)−3/2

. (25)

A detailed calculation gives κ = 0.16 (Spitzer 1987).
The last, and perhaps most important, instability to consider is the gravithermal

collapse (Antonov 1962; Lynden-Bell and Wood 1968). A self-gravitating isothermal
gas sphere, contained by a rigid shell, may attain a stable hydrostatic equilibrium
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only when the ratio of central to outer densities is less than 710. When instability
is reached, heat is conducted from the inner parts of the sphere to the outer parts;
the inner parts become more compact, and the outer parts more rarefied. Thus,
we expect that when the central density ρ0 in a globular cluster exceeds the mean
density ρh within Rh by a comparable value, the cluster core begins to contract. This
contraction progresses on a timescale somewhat longer than the initial relaxation
time, namely tcol � 14trh. The numerical solution of the Fokker–Planck equation
yields (Cohn 1980)

ρ0(t) ∝ [Rc(t)]−2.23, (26)

ρ0(t) = ρ0(t = 0)
(

1 − t

tcol

)−1.2

, (27)

and

V 2
m,0(t) = V 2

m,0(t = 0)
(

1 − t

tcol

)−0.12

. (28)

At any given time during the self-similar collapse, t− tcol � 300 trh,0. These results
agree well with those obtained by Lynden-Bell and Eggleton (1980), who modeled
a cluster as a continuous, conductive fluid. As the core collapses, the core mass
∼ρ0(t)R3

c(t) gets progressively smaller, as does the outward energy flow. In other
words, a relatively modest source of heat may reverse the collapse in its late stages.
Hénon (1965) was the first to postulate that the formation of binaries might provide
the necessary heating. He calculated self-similar solutions for a cluster expanding
after core collapse, based on the Fokker–Planck equation (1961, 1965).

The process of core collapse has a real if not quite perfect analogy with stellar
evolution. When the source of hydrogen fuel is exhausted in a high mass star,
the helium core becomes isothermal. The core mass grows until it exceeds the
Schönberg–Chandrasekhar limit, at which point the core contracts until a new
energy source is tapped. Similarly, a globular cluster grows more centrally con-
densed until its mass exceeds the Antonov limit, at which point it undergoes core
collapse. If the energy source which halts the contraction of the core in a high mass
star is centrally concentrated, then the resulting Cowling models are the stellar
analogs of the Hénon models.

6. Effects of Finite Stellar Size: Heating and Core Bounce

If all stars were true point masses, then two-body encounters in the core of a globular
cluster would never result in the formation of binaries, since these encounters would
be elastic. That is, binaries form in two-body collisions only due to the effects of
finite stellar size. Stellar oscillations provide a sink for the kinetic energy of the
passing stars.
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The cross section for two stars of equal mass m∗ and relative velocity V∞ to
collide is

σ = πR2
min

(
1 +

4Gm∗
RminV 2∞

)
� 2πRminR∗

(
VR∗
V∞

)2

. (29)

Here, R∗ is the radius of the stars and VR∗ is the surface escape velocity. Gravi-
tational focussing dominates the cross section because VR∗ � V∞. The minimum
separation must be Rmin ≤ R∗ if the stars physically collide; and Rmin < 2Gm∗/V 2∞
is the separation required for a strong encounter, in the sense that each star is
strongly deflected. Therefore the rate for strong encounters greatly exceeds that of
actual collisions, by a factor (VR∗/V∞)2.

Binary formation is a rare process, in the sense that a two-body encounter
results in a binary only when the minimum separation is comparable to the size of
the stars. Consider two stars approaching each other from a large distance, with
relative velocity V∞ = 2Vm. Each star excites tides adiabatically on the other, and
the energy dissipated in each star during the encounter is (Fabian, Pringle and Rees
1975; Press and Teukolsky 1977; Lee and Ostriker 1986)

∆E = 5
Gm2

∗
R∗

(
R∗

Rmin

)10

. (30)

The stars capture each other if ∆E > 1
2m∗V 2∞ , or

Rmin ≤ 1.26
(

VR∗
V∞

)0.2

� 2.5R∗. (31)

The net capture cross-section is

σ2b = f · πR2
∗

(
VR∗
V∞

)2

; f = 0.54
(

VR∗
V∞

)0.2

. (32)

The rate of two-body binary formation in a cluster core is thus

ν2b · trh = 0.24
lnΛ
f

(
VR∗
V∞

)2

� 1200
(

VR∗
600 km s−1

)2.2 (
Vm

20 km s−1

)−2.2

. (33)

During core collapse, however, the rate of binary formation increases as ν2b(t) ∝
ρ0(t)−1.1; and the effective relation time trh,eff ∼ ρ0(t)/ρ0(t) ∼ 3.10−3trh,0, where
trh,0 is the central relaxation time. As as result, binaries are formed faster than they
are ejected from the core when ρ0 has increased by a factor of ∼106. An integration of
the Fokker–Planck equation gives for the number of core binaries (Statler, Ostriker
and Cohn 1987)

Nb

N∗
=

30
ln Λ

(
Vm

VR∗

)1.8
[
1 −

(
∆t

tcol

)0.29
]

, (34)

where the time is measured from the onset of core collapse, ∆t = t − 9trh,0. In a
cluster with N∗ = 106 and r.m.s. velocity Vm = 20 km s−1, the number of binaries
formed from t = 9trh,0 to collapse is Nb = 3000. From t = 6trh,0 to 9trh,0 another
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2000 binaries are formed, and the fraction of stars in binaries (formed by two-body
interactions) is

Nb

N∗
∼ 5 × 10−3. (35)

This number of binaries will heat the core sufficiently to reverse the collapse.
The binaries formed by this mechanism are so tight, that the stellar orbits are

circularized in <107 yr. The resulting orbital radius Rcirc = 2Rmin � 5R∗. We
conclude that two-body encounters produce only very close binary pairs, which
decay by radiating gravitational waves in ∼ 109 yr.

Binaries are also formed in three-body interactions. Let us determine their rate
of formation in rough order of magnitude. The density of pairs of stars with mutual
separation less than ∆r is ∼n2∗(∆r)3, and the collision rate of stars with each of
these pairs is ∼n3∗(∆r)2Vm. Now a binary will not form unless ∆r ∼ Gm∗/V 2

m,
or smaller, so that the overall rate is ∼n3∗G3m3∗/V 9

m. A detailed calculation of the
overall rate (Hut 1985) gives

ν3b = 0.9
n3
∗G

3m3
∗

V 9
m

. (36)

A binary is expected to form only rarely (in a relaxation time) since

ν3b · trh =
0.4

fN2∗

(
VR∗
Vm

)2

, (37)

where f is defined in Eq. (32). It seems that only a few three-body binaries form
during core collapse.

Let us estimate the rate at which stars in the core are heated by interactions
with binaries. If V∞ is the relative velocity between a binary and a third star, each
with masses mb and m∗ (m∗ < mb), then for an impact parameter less than the
binary separation a, the energy imparted to the third star is ∆E ∼ m∗(Gmb/a).
The cross section for this interaction is dominated by gravitational focussing, σ �
2πaG(mb + m∗)/V 2∞, so the heating rate per unit volume is

Ėb = ∆E · nbn∗σV∞ ∼ ρ∗
G2(mb + m∗)

V∞
nb. (38)

One may readily see that this heating rate will halt core collapse, even for a small
number of binaries. However, the calculations of Spitzèr and Mathieu (1980) show
that the binaries are simultaneously ejected when they scatter off stars in the core.
Thus, binaries will prevent core collapse only if their rate of formation is sufficiently
rapid.

In a series of numerical experiments, Statler, Ostriker and Cohn (1987) have
investigated the collapse, bounce and re-expansion of a globular cluster core, as a
result of heating by the formation of tidally captured binaries. The experiments
calculate the interactions between stars in the Fokker–Planck approximation, and
use a Plummer model for the initial equilibrium state. During core collapse, the
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energy dissipated in the process of forming binaries is accounted for, as are the
effects of dynamical friction. Heating and ejection of core stars occurs as a result
of interactions both between single stars and binaries, and between two binaries,
leading to the halt of core collapse and re-expansion of the cluster. The effect of
the ejection of core stars on the stars remaining in the core is self-consistently
accounted for.

The following simplifications were made in these experiments. The stars were
assumed to have constant mass, and a locally isotropic velocity distribution. The
merging of field stars in physical collisions, and the decay of binary orbits due to
gravitational radiation, were neglected. Finally, no account was made for stellar
evolution.

The initial state chosen for the cluster is a reasonable representation during
one or two relaxation times after formation. As lighter stars evaporate from the
cluster, and heavier stars settle to the core, the cluster passes through a sequence
of isothermal equilibria. Eventually, it reaches an unstable equilibrium, and by t �
14trh the core has collapsed. The sudden growth of the central density during core
collapse, and the subsequent bounce, are shown in Fig. 1 (from Statler et al 1987).
During re-expansion, the central density ρ0 ∝ t−4/3, the central velocity dispersion
(V 2

m)0 ∝ t−2/3 and the half-mass radius Rh ∝ t2/3. These scaling relations were
first obtained by Hénon (1961, 1965). In addition, the core radius Rc ∝ t1/3. Three-
body binary formation is always negligible compared to tidal capture. The density

Fig. 1. Total central density as a function of time. From Statler et al (1987).
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Fig. 2. Density profile of single stars at the times labeled by squares in Fig 1. From Statler et al
(1987).

profile through the core as a function of time is shown in Fig. 2 during collapse and
re-expansion.

We may obtain the above scaling relations for the quasi-static expansion of the
core, as follows. The essential point is that the form of these scaling relations does
not depend on the exact nature of the heat source in the core. In a steady state,
the rate at which energy is conducted out of the core is

Lcore = const × MhV 2
h /trh = const × V 5

h m∗ ln Λ/GMh.

Now, we are looking for a self-similar solution in which all quantities scale as a
power of time. Then we have

Lcore ∼ d

dt

(
MhV 2

h

) ∼ MhV 2
h /t

and the self-similar solutions are

Vh = k1

(
Gm∗
ln Λ

)1/3

N
2/3
∗ t−1/3, (39)

and

Rh = k2(Gm∗ ln Λ2)1/3 N
−1/3
∗ t2/3 (40)

under the assumption that the number of stars N∗ is constant.
In almost all the calculations of binary reheating which have been performed to

date, the effects of physical collisions and mergers between stars have been neglected.
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While the calculations of Lee and Ostriker (1986) indicate that a significant fraction
of tidally captured binaries may in fact be mergers (a very close encounter is required
to bind the stars), the effects of mergers on the overall evolution of a cluster are
probably small. Lee (1987) has studied core bounce under the assumption that all
two-body binaries end up as mergers. He finds that for 105 < N∗ < 106, the massive
stars formed in subsequent mergers evolve quickly and eject their mass from the
core. The heating of the core is dominated by this process. The important point
here is that the rate of mass loss from the core is fixed by the rate at which binaries
form by tidal capture; how the mass is lost is only of secondary importance to the
global evolution of the cluster. Three-body binaries are the dominant heat source
only for N∗ < 105.

7. External Effects on the Evolution of a Globular Cluster

A globular cluster passing near or through another object, such as the Galactic disk
or bulge, or the Magellenic clouds, is subject to a “tidal shock”. In the center-of-
mass frame of the cluster, each star experiences a time-dependent tidal field. In the
outer parts of the cluster, some stars may receive enough energy to escape.

The simplest problem to consider is a cluster passing a point mass M, with
velocity Vcl and distance of closest approach ∆r. The tidal acceleration at Rh is
∼GMRh(∆r)−3, so that a typical star receives a kick ∆V ∼ GMRh(∆r)−2V −1

cl

during the time of closest approach ∼∆r/Vcl. The cluster will be disrupted if
(∆V )2 > V 2

h � GMcl/2Rh, where Mcl is the cluster mass.
The first calculation of Galactic tidal heating of a cluster was done for the case of

a cluster passing through the disk (Ostriker, Spitzer and Chevalier 1975). A cluster
with orbital period tcl is disrupted after a time

tshock = tcl
GMclV

2
cl

20g2R3
h

, (41)

where Vcl is the velocity of the cluster through the disk, and g is the gravitational
acceleration toward the disk, exterior to the disk. The compatibility of Eq. (41)
with the estimate above may be seen by the substitution g → GM/(∆r)2.

Another important effect to consider is the loss of stars from a cluster which is
at rest in a static but inhomogenous external gravitational field. Recall that stars in
the exponential tail of the velocity distribution leave the cluster, and other stars fill
their orbits only over a relaxation time. The rate of mass loss from a post-collapse
cluster is therefore

dMcl

dt
= −α

Mcl

trh
, (42)

where the constant α � 4 × 10−3 is small because the number of stars with V 2 >

〈V 2
esc〉 = 4〈V 2

m〉 is small. Indeed, the rate of mass loss is very nearly constant, as
the following argument shows. Substituting expression (23) for trh in Eq. (42), and
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using the fact that the ratio td(Rt)/td(Rh) is constant during self-similar expansion,
we find

tevap =
1
α

trh � N∗
ln N∗

td(Rh) ∝ N∗
ln N∗

td(Rt) � N∗
ln N∗

· Rcl

Vcl
,

or

tevap = 1.3 × 1010

(
N∗
105

)(
Rcl

1 kpc

) (
Vcl

220 km s−1

)−1

yr. (43)

Here we have also used the fact that the dynamical time of a cluster star at
the tidal radius is comparable to the orbital time of the cluster through the
Galaxy, Rcl/Vcl. We conclude that the cluster mass decreases linearly with time,
Mcl = Mcl(0)(1 − t/tevap).

A repeat of the simulations of core bounce of Statler et al. (1987), with the
effects of the Galactic tidal cut-off included, gives very similar results (Ostriker and
Lee 1987). During the re-expansion of the cluster after core collapse, stars flow over
the tidal boundary are lost from the cluster.

A globular cluster moving through the Galaxy suffers dynamical friction in
a similar manner to a single star moving through a field of stars. The cluster’s
orbit decays, and it spirals toward the Galactic center. As calculated by Tremaine
et al. (1975), the timescale for this to occur is

tdf = 8 · 109

(
N∗
105

)−1 (
Rcl

10 kpc

)(
Vcl

220 km s−1

)
yr. (44)

That is, massive clusters within a distance Rcl = 1 kpc of the Galactic center suffer
significant decay of their orbits.

The potential of the Galaxy is almost certainly triaxial, rather than perfectly
axisymmetric. As a result, the motion of a cluster is never exactly radial, and its
orbit precesses. Some fraction of halo orbits have envelopes with the shape of a
pinched box, hence the term box orbit. The number of times a cluster has passed
near the Galactic center in the age tg of the Galaxy is

N ∼ tgσ/2Ra = 750(tg/1010 yr)(σ/150 km s−1)(Ra/1 kpc)−1, (44a)

where σ is the radial velocity of the cluster, and Ra is the apogalacticon of the cluster
orbit. If the minimum separation of the long side of the box from the Galactic center
is ωRa, then the distance of closest approach of the cluster to the Galactic center is

Rmin ∼ N−1/2ωRa

= 15
( ω

0.4

)(
Ra

1kpc

)3/2 (
tg

1010 yr

)−1/2 ( σ

150 km s−1

)−1/2

pc. (45)

As a result, we may place a constraint on the mass and core radius of a cluster, if it
is not to be totally disrupted by the tidal shock suffered during its closest approach
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to the Galactic nucleus:(
N∗
105

) (
Rh

5 pc

)−3

> 0.9
(

Mn

107M�

)2 (
Ra

1 kpc

)−6

. (46)

Here, Mn is the mass of the nucleus.
The main conclusions of this section are, then, as follows. As a globular cluster

collapses and its core grows denser, a heat source turns on in the core, halting the
collapse of the cluster and causing it to re-expand. The main heating mechanism
is the interaction of stars in the core with tight binaries formed during close two-
body encounters. Since the time to core collapse is often shorter than the age of the
Galaxy, one suspects that many clusters have already passed through core collapse.
Ultimately, clusters evaporate totally in the tidal field of the Galaxy, this taking
roughly N∗/100 orbits, where N∗ is the original number of stars in the cluster.

8. Evolution of the Globular Cluster System:
Destruction of Clusters

Let us summarize the processes which may result in the destruction of globular
clusters (cf. Ostriker 1987).

First, many globular clusters will have already undergone core collapse, but the
formation of binaries apparently heats the core and causes the cluster to re-expand.
During re-expansion, stars flow over the tidal radius of the cluster, and the estimate
of the previous section shows that many clusters will have lost a significant fraction
of their mass in this fashion.

Globular clusters may also be disrupted by shock heating, as they pass near or
through a massive object. Calculations of this effect were first done for the Galactic
disk (Ostriker et al. 1975), and have been performed more recently for the Galactic
bulge (Aguilar et al. 1987), and massive black holes in the halo (Wielen 1987). The
heating of a cluster by giant molecular clouds (which are denser than the cluster)
may be neglected compared to heating by the rest of the disk (Grindlay 1985;
Chernoff et al. 1986). (See section Ij for a discussion of the observable consequences
of massive black holes.) Wielen finds that a substantial fraction of clusters should
have been disrupted if the halo is composed of ∼106M� black holes.

Chernoff et al. and Aguilar et al. have investigated the evolution of the system
of globular clusters. The latter work includes most of the above effects, with the
exception of shocks by GMC’s. In addition the triaxiality of the Galactic potential is
ignored, as are the effects of normal stellar evolution. The main conclusion reached
by Aguilar et al. is that tidal shocks in the Galactic bulge are the most destructive
process. Most clusters with apogalacticon Ra < 2 kpc are destroyed. Only dense
clusters on circular orbits survive today. The inner scale radius of the globular
cluster system is established in this manner. The main effect outside Ra = 2 kpc is
that the cluster orbits are isotropized. Thus, if the initial cluster distribution was as
anisotropic as the distribution of the extreme RR Lyrae stars (2 : 1 axis ratio), then
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loss cone effects would by now have produced an essentially isotropic distribution.
A significant fraction of clusters in the range 3 kpc < Ra < 10–15 kpc which have
either:

(i) very eccentric orbits;
(ii) very high mass; or
(iii) very low density, are destroyed.

In constrast, essentially all clusters survive at Ra > 15 kpc. It is possible that a
significant part of the spheroidal (or bulge) population in the inner parts of the
Galaxy is the remnant of disrupted globular clusters. However, the current rate of
destruction of clusters is only a few per 109 yr.

We may summarize how the evolution of a cluster is expected to depend on its
mass Mcl and half-mass radius Rh. At any given Rh, there is a minimum Mcl below
which the cluster will already have evaporated by tidal overflow; and a maximum
Mcl above which the cluster’s orbit will already have decayed due to dynamical
friction. For any given Mcl, there is a minimum Rh below which the cluster will
have undergone core collapse, and a maximum Rh above which tidal shocks will
have disrupted the cluster. That is, there is a finite region of the Mcl − Rh plane
at a fixed distance Rcl from the Galactic center, in which clusters are expected to
have survived. The area of this region decreases as Rcl decreases, and vanishes at
Rcl ∼ 2 kpc.

9. Outstanding Issues

Let us now consider some unresolved questions about globular clusters. First,
Peebles (1984) has suggested that globular clusters might have dark matter haloes,
but there is no positive evidence in favor of this idea, and some evidence against
it. Observations of the surface brightness and line-of-sight velocity dispersion in the
outer parts of clusters are compatible with the presence of non-luminous matter.
But the introduction of dark matter increases the mean density within Rt, so that
the cut-off in star-light at Rt can no longer be explained by the Galactic tidal field.

In the presence of dark matter, core collapse happens sooner, and clusters sink
faster to the center of the Galaxy due to the effects of dynamical friction. Our under-
standing of these processes is not sufficiently quantitative to place any interesting
constraints on the presence of dark haloes.

A second issue is: what fraction of the initial population of globular clusters
has been destroyed? Within 2 kpc from the center of the Galaxy, this is probably a
large fraction; it is possible that the bulge is composed of the remains of old clusters.
Outside 2 kpc, this fraction is very uncertain. Most destruction mechanisms do not
work efficiently in this region — but only for clusters of observed densities. It is
possible that an initial population of low density clusters has been disrupted.

Third, it is not clear whether there is any evidence for triaxiality of the Galactic
potential in the distribution of clusters.
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Fourth, globular clusters are a probe of the distribution of mass in the outer part
of the Galaxy. Tremaine and Lee (this volume) discuss how the outer clusters as well
as the dwarf satellites may be used to place constraints on the mass distribution in
the outer parts of the Galaxy. Since the line-of-sight velocity of a cluster is the only
dynamical information available, the statistical uncertainties are considerable.

Finally, globular clusters have a potential use as a cosmological distance indica-
tor. Unlike galaxies, globular clusters have a well-defined peak to their luminosity
function, and the characteristic luminosity at the peak is similar in the Galaxy
and in M31. The width of the peak is, however, different in M87. The position of
the peak is not measured accurately enough in other galaxies to make this method
immediately useful.

10. Nature of the Dark Halo of Our Galaxy

It is possible that most of the matter in the halo of our galaxy is baryonic. Recall
that the “local” mass-to-light ratio dM/dL = dM/dR · (dL/dR)−1 grows from �5
at the center of the Galaxy, to �500 at R = 15 kpc. Clearly, in the outer parts of the
halo, there is a significant amount of unseen material. The calculations of primor-
dial nucleosynthesis imply that the mean cosmic density of baryons, as a fraction
of closure density is (see, for example, Yang et al 1985), Ωb = (0.04–0.14)h−2

50 where
h50 is Hubble’s constant in units of 50 km s−1 Mpc−1. In comparison, the fraction of
closure density observed in stars is at most Ω∗ = 0.01, and indirect arguments imply
that all components of the inter-galactic medium contribute ΩIGM = 0.03 (Ikeuchi
and Ostriker 1986). Therefore, if the calculations of primordial nucleosynthesis cor-
rectly predict the cosmic baryon abundance, and if h50 is closer to 1 than 2, then
most baryons must exist in the form of dark matter. It is an interesting coincidence
that all dynamical measurements of the density of the universe, which are sensitive
to dark matter in galactic haloes and in clusters of galaxies, give values for Ω in the
range 0.1–0.3 (see, for example, Peebles 1986).

If most of the the Galaxy’s mass, including the dark matter, is baryonic, we
may ask what form it may take. Most of the mass in the Galactic halo cannot
be gaseous. If it were hot and hydrostatically supported (∼107 K), the emission at
∼1 keV would significantly exceed the brightness of the soft X-ray background. If
it were in cool lumps (∼104 K), it would again be too bright, in this case at 21 cm.
It is also difficult to see how most of the mass could be in dust, since one would
expect at least 100 times as much H and He to be present.

Low mass stars are certainly a viable candidate for the main constituent of the
halo, as long as they are light enough (<0.07M�) that nuclear burning does not
occur in their cores. One might worry that if most of the stars had masses just
below this limit, then there would be a hint of their presence in the mass function
of Population II objects.

There is no firm objection to most baryons being incorporated in stars that form
before galaxies, or “Population III” objects. These could be clusters of low mass
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stars with masses ∼106M� (the Jeans mass at decoupling; cf. Peebles and Dicke
1968, and Fall and Lacy 1986), or supermassive stars that collapsed to form black
holes. However, black holes with masses in the range 10–100M� can probably be
excluded, because the stars that collapsed to form them would over-produce heavy
elements (Carr and Rees 1984). For example, a 100M� star forms a black hole of
∼20M� and ejects ∼20M� of material with Z > 6, as well as ∼60M� of helium and
unprocessed hydrogen. Supermassive stars (�102M�) collapse directly to a black
hole without ejecting any material; so we cannot rule out supermassive black holes
in a similar manner.

Let us consider some of the consequences of the existence of supermassive black
holes in the halo of the Galaxy (Lacey and Ostriker 1985). The most interesting
observable effect is that the black holes will heat stars as they pass through the
disk, causing it to flair. One may immediately predict that older stars have a larger
scale height, since they have been heated longer.

The expected increase in the vertical velocity of a disk star is, per unit time,〈
∂

∂t
∆V 2

⊥

〉
= 21/24π

G2nHm2
H

σH
ln

[
Λ · Φ(x) − G(x)

x

]
≡ 4Dz, (47)

where σH is the one-dimensional velocity dispersion of the black holes, mH their
mass, and nH their density in the halo. The dimensionless variable x =

√
V 2∗ /2σ2

H ,
where V∗ is the velocity of the disk star with respect to the black hole population.
The functions Φ and G are defined in Sect. Ib.

The vertical velocity dispersion of the disk grows as

σ2
z(t) =

(
σ2

z(0) + Dzt
)1/2

, (48)

since in interactions between a light stellar component and a heavier, more energetic
component, the light component is heated. This result matches with the vertical
profile of the disk of the Galaxy, as well as other spirals, if mH � 2 × 106M�. In
particular, the time-dependence ∝ t1/2 fits the observed distribution of scale heights
in stars of different ages (Wielen 1987). The value for V 2

⊥/V 2
‖ obtained also agrees

well with that observed in the Galaxy.
To test this model, we may ask what it predicts for the high velocity tail of

the disk population — in particular, of a group with low velocity dispersion. The
distribution of vertical velocities w (normalized to one) has the form

f(w) =
1√

2πσw
exp

(
− w2

2σ2
w

)
, w < wc,

=
√

π

ln Λ
σDσ3

w

w5
, wc < w < wH ,

(49)

where σD is the vertical velocity dispersion of the background disk, and wc � 3.6σw.
Now, there is a population of high velocity A stars with normal disk metallicities,
extending several kiloparsecs from the disk, with σw = 10 km s−1. A fraction ∼10−3

of A stars are observed to have w > 50 km s−1; the prediction of Eq. (48) is 3×10−4.
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Chapter 5

POSITIVE ENERGY PERTURBATIONS IN COSMOLOGY II
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The purpose of this second part is to study the effects of a localized injection
of energy in an expanding universe. We are mainly interested in cases where
hydrodynamical forces are important. A far more detailed treatment is presented
in Ostriker and McKee (1988).

1. Hydrodynamics in a Cosmological Setting

To begin, let us review the properties of a compressible, inviscid fluid (see, for
example, Landau and Lifshitz 1959). We shall be satisfied with a completely non-
relativistic treatment, and treat only perturbations small compared to the horizon.
The equation of continuity is

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

Euler’s equation is

∂u
∂t

+ (u · ∇)u = −1
ρ
∇P −∇φ + f , (2)

and the equation expressing conservation of energy is

∂

∂t

(
e +

1
2
u2 + φ

)
+ ∇ ·

[
ρu

(
h +

1
2
u2 + φ

)]
= 0. (3)

Here, ρ is the density of the fluid and P its pressure. The specific enthalpy
h = γ

γ−1 (kT/µ) for a perfect gas with ratio of specific heats γ and mean molecular
weight µ. The gravitational potential φ is calculated in the Newtonian approxi-
mation; for a perturbation with spherical symmetry in a homogeneous, isotropic

∗Current address: CITA, University of Toronto, Toronto, ON M5S 3H8, Canada.
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universe,

−∇φ = −GM(< r)
r2

(4)

where M(< r) = 4π
∫ r

0
[ρ(r) + 3P (r)/c2]r2dr is the gravitational mass interior to r.

The additional acceleration f include effects such as inverse Compton drag between
electrons and the cosmic background radiation. The velocity u is measured with
respect to the center of symmetry, and may be written

u = v + Hr, (5)

when r � ct, u � c. The second term is the velocity of the unperturbed Hubble flow,
and v is the “peculiar” velocity with respect to this flow. If the universe is flat, and
dominated by non-relativistic matter, then the unperturbed density ρ(t) ∝ r−3(t),
and the solution to Eq. (1) and (2) is r ∝ t2/3 and ρ = (6πGt2)−1. It follows that
Hubble’s constant H = ṙ/r = 2/(3t). We will usually take the fractional density in
baryonic matter to be Ωb < 1, and assume that the remaining component — the
dark matter — interacts only gravitationally. (It should be remembered that much
of the dark matter for which there is dynamical evidence may be baryonic, and
that only one measurement, that of Loh and Spillar (1986), requires the existence
of non-baryonic dark matter.)

We adopt a point of view suitable for the study of the dirty details of (spherical)
perturbations to the Hubble flow, in which the “center” of the expansion lies at
the center of the perturbation. The Hubble flow at any radius is braked by the
gravitational attraction of matter with that radius. Now, if we completely remove
all matter within a sphere, then Birkhoff’s theorem tells us that the spacetime inside
this sphere is flat. In other words, we may calculate the gravitational acceleration a
shell (of mass ∆M and radius R) by assuming that it moves in an empty Euclidean
space and feels only the gravitational attraction of the material within it. The
potential energy with respect to infinity of the shell (moving in empty space) is

−GM(<R)∆M

R = −1
2
∆M(HR)2,

and the kinetic energy of the shell is − 1
2∆M(HR)2. In this Newtonian approxima-

tion, the Hubble flow has zero net energy. This result does not surprise us, since in
the limit t → ∞, the flow velocity u → 0. We do note, however, that even if kinetic
and potential energy are presently observed to balance only roughly, they do balance
to a very high degree of accuracy at early times. (We can contemplate extrapolat-
ing our classical cosmological model back to times t ∼ √

�G/c5 = 10−43 s!) The
extraordinary fine tuning at early times required to produce the rough equality
between kinetic and potential energy observed today is sometimes known as as the
flatness problem, and was one of the main motivations for the idea of an inflationary
universe (Guth 1981).
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We therefore call a local release of energy — from a galaxy undergoing a burst
of star formation, a quasar, or even a superconducting cosmic string — a positive
energy perturbation to the Hubble flow. A similar class of perturbations which we
will not discuss are those which start as a localized negative density fluctuation
with positive potential energy relative to the unperturbed Hubble flow.

If the energy is released in a short time and a small volume, then an expanding
shock wave forms. This shock quickly becomes spherical if the surrounding medium
is homogeneous, since the shock moves subsonically with respect to its hot inte-
rior. Gravity further increases the tendency of blast waves to become spherical
(Bertschinger 1983).

To proceed further, we require some information about shock waves. Consider
the problem of time-independent flow in one dimension. Equations (1–3) reduce to

∂

∂x
(ρu) = 0,

∂

∂x

(
P + ρu2

)
= ρ

(
−∂φ

∂x
+ f

)
,

∂

∂x

(
h +

1
2
u2 + φ

)
= 0.

(6)

An important property of these equations is that, having fixed u, ρ, P and h at one
point in the flow, these variables may take on one of two sets of values throughout
the rest of the flow. In particular, a discontintuity may exist in the flow, across which

ρ1u1 = ρ2u2,

P1 + ρ1u
2
1 = P2 + ρ2u

2
2,

h1 +
1
2
u2

1 = h2 +
1
2
u2

2.

(7)

In the case of a detonation wave, this last condition is generalized to

h1 +
1
2
u2

1 + εc2 = h2 +
1
2
u2

2. (8)

This discontinuity is a shock wave. The subscript 1 will denote fluid moving toward
the shock, and 2 fluid moving away. (We choose a frame in which the shock is at
rest.) In a perfect gas, the jump conditions are (for ε = 0)

ρ2

ρ1
=

u1

u2
� γ + 1

γ − 1
,

P2 � 2ρ1u
2
1

γ − 1
,

kT2

µ
� 2

γ − 1
(γ + 1)2

u2
1.

(9)

when the Mach number u1/c1 � 1. Here, c =
√

γkT/µ is the speed of sound in a
perfect gas with ratio of specific heats γ, and mean molecular weight µ.
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One obtains the appropriate boundary conditions for the blast wave by sub-
stituting the shock velocity US for u1, if the ambient medium is static; whereas
one substitutes the peculiar velocity VS = US − HRS if the ambient medium is
expanding with velocity HRS at the radius RS of the shock.

2. Various Self-Similar Solutions for Blast Waves

The classic problem of the evolution of an an adiabatic blast wave in a medium of
constant density, was solved by Sedov and Taylor (see, for example, Sedov 1959).
The radius RS of the shock grows as power of time, which may be determined by
noting that the kinetic energy of material swept up by the shock is comparable to
the energy E released: ρR3

S · (RS/t)2 ∼ E, or

RS(t) = κ

(
Et2

ρ

)1/5

∝ t2/5, (10)

where the constant κ ∼ 1 is yet to be determined. Here, ρ is the ambient density.
This result is valid only so long as the thermal energy of the material swept up by
the blast wave is small, ρ · (kT/µ) ·R3

S � E; or, equivalently, so long as the shock is
strong, V 2

S � γkT/µ = c2. Here, T is the temperature of the surrounding medium,
which we assume to be gaseous, and c2 is the adiabatic speed of sound. When this
condition no longer holds, the blast wave weakens into an expanding sound wave.

It is instructive to consider this prototypical example in some detail. In writing
down Eq. (10), we have assumed that the evolution of the blast wave is self-similar,
in the sense that the quantities ρ, P , u, T may all be expressed as functions of r and t

in the form x(r, t) = X(t) x̃(r/RS(t)). In fact, this equation is accurate only when
there is no characteristic timescale in the problem, such as may be introduced by
effects like cooling, drag or, as just mentioned, the accumulation of thermal energy
from the surrounding medium. But if such processes may be neglected, then, as has
been shown by numerical simulations, a wide range of initial conditions converge to
the self-similar solution, which is stable to both radial and non-radial perturbations.

In sum, we always find that the radius of a self-similar blast wave scales as

RS(t) = RS(t0)
(

t

t0

)η

. (11)

The velocity of the shell with respect to the center of the blast is US = ηRS/t.
In the case of a cosmological blast wave in an Einstein–de Sitter universe, the
peculiar velocity

VS = US − HRS =
(

3
2
η − 1

)
HRS . (12)

One direct consequence of self-similarity is that the kinetic and thermal energy
(and, in the case of a cosmological blast wave, the potential energy) are constant frac-
tions of the total conserved energy E. In this, we will find an important distinction
between blast waves in a static medium, and blast waves in an expanding universe.
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Whereas most of the energy is thermal in the Sedov solution (Eth/E = 0.70), the
energy of a cosmological blast is mainly kinetic and potential (Eth/E = 0.03). One
may therefore view a cosmological blast as a solitary wave in the Hubble flow. This
results in important qualitative changes in the evolution of a blast wave. Complete
numerical treatments of the non-self-similar evolution of a cosmological blast wave
(cf. Ikeuchi, Tomisaka and Ostriker 1983) show that a very wide range of initial
conditions do lead to the self-similar state after several doubling times.

It should also be noticed that, in the presence of dissipative effects like thermal
conduction and viscosity, blast waves are not damped. The shock is smoothed out
(indeed, it cannot exist without a finite viscosity), but energy is not lost by the blast
wave, because the shock moves faster than the speed of sound in the surrounding
medium. The bulk kinetic energy lost to dissipation is added to the thermal energy of
the blast, and is restored as the blast sweeps up new material from the surrounding
medium. Now, the density is very small at the center of an adiabatic blast wave,
and the temperature is very high, so one effect of thermal conduction is to raise the
density and lower the temperature; cf. Sedov (1959). (The density vanishes and the
temperature is infinite at the center, under the assumption of a perfect gas equation
of state with constant γ; but this assumption breaks down at a finite radius.)

With these thoughts, let us turn to the problem of an adiabatic blast wave in
an expanding universe. In this case, the ambient density is decreasing in time, as
ρ ∝ t−2, so that

RS(t) = κ′
(

GEt4

Ωb

)1/5

∝ t4/5, (η = 4/5). (13)

The peculiar velocity of the shell is VS = 1
5HRS . If Ωb = 1, then this solution

holds so long as the thermal energy of swept up material is less than E. But if
Ωb < 1, we must consider the dynamical effects of the dark matter. In passing
through the shell of baryons, the energy of dark matter increases by an amount
GMS/RS = 1

2Ωb(HRS)2 per unit mass. Therefore, the self-similar solution holds
only so long as 1

2MS(HRS)2 � E. The details of what happens when this inequality
ceases to be true are complicated. In short, if the dark matter is pressureless, then
all the dark matter interior to the shell eventually passes the shell and oscillates
about it. The asymptotic form of RS(t) is given approximately by the substitution
Ωb → 1 in Eq. (13).

Another important situation to consider is one where the material heated behind
the shock can cool efficiently. This material is swept up in a very thin shell, and,
when gravity may be neglected, the momentum of the shell PS = MSUS is conserved.
Now, PS may or may not be easy to determine, as follows.

In the case where a certain amount of mass ∆M is injected with kinetic energy
E (as in a supernova explosion), both energy and momentum are conserved until a
time tM , when the mass swept up becomes comparable to ∆M . If the cooling time
tcool < tM , then momentum is conserved throughout the expansion of the blast
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wave. But if tcool > tM , then the blast wave undergoes a period of adiabatic expan-
sion with constantly increasing momentum, before cooling sets in. The subsequent
evolution of the blast wave depends on the details of this intermediate phase.

Assuming that PS has been determined, the radius of the shock scales as
ρR3

S(RS/t) ∼ PS , or

RS(t) =
(

3PSt

πρ

)1/4

∝ t1/4, (η = 1/4), (14)

when the ambient medium has constant density. This is the Oort (1951) “snowplow”
solution.

A related case is a hot bubble driving a cool shell; that is, the interior of the
bubble is so rarefied that it cannot cool, but the denser material in the shell can
cool. In this case, PS does increase, but the blast wave steadily loses energy as the
heated post-shock gas cools. To determine the motion of the shell, we must do a
little more work. The equation of motion is

d(MSUS)
dt

= 4πR2
S · Pint, (15)

and the pressure Pint of the hot interior evolves according to

Pint(t) = Pint(0)
[

RS(t)
RS(0)

]−3γ

. (16)

Equation (15) has the self-similar solution

RS(t) = RS(0)
[
3(2 + 3γ)2

6(2 − γ)
Pint(0)
RS(0)2

t2
]2/(2+3γ)

. (17)

So for γ = 5
3 , the radius of the shell scales as Rs ∝ t2/7 (Ostriker and McKee 1988),

a dependence only slightly different from the case of pure momentum conservation.
We defer to later our discussion of a cosmological solution for a cold, radiative

shell driven by a hot bubble.
Now, the present intergalactic medium is so rarefied that it never cools if heated

at late epochs to temperatures �105 ◦K. Nonetheless, at z > 10, hot electrons
cool efficiently, by inverse Compton scattering off the cosmic background radiation.
Once plasma has cooled and condensed sufficiently, other cooling processes such as
free-free emission can become important. Recall that the momentum of a particle,
measured in a comoving frame, decays in an expanding universe: dp/dt = −Hp.
The peculiar velocity of a cold, expanding shell decays analogously, and in a few
expansion times it essentially comoves with with the Hubble flow. In the limit
Ωb � 1 = Ω, the mass of the shell may be neglected with respect to the mass
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interior to it, and

RS(t)
(

t

ti

)−2/3

= RS(ti) + 3ti · VS(ti)

[
1 −

(
t

ti

)−1/3
]

. (18)

If the initial peculiar velocity is VS(ti) = f.HRS(ti), then the comoving radius
increases asymptotically to only (1 + 2f) times its initial value in an Einstein–de
Sitter universe.

Next let us consider the evolution of a blast wave into which energy is contin-
uously released — perhaps from an active galaxy, a quasar, or a superconducting
string. In particular, we assume that the injection rate Ė is constant. Then the
analog of the adiabatic Sedov solution is

RS(t) = κ′′
(

Ėt3

ρ

)1/5

∝ t3/5, (η = 3/5), (19)

when the ambient medium has constant density. In an expanding universe, the
relation is instead

RS(t) = κ′′′
(

GĖ

Ωb

)1/5

· t ≡ κ′′′VEt (η = 1). (20)

The shock expands with a constant velocity US = κ′′′VE and peculiar velocity
VS = 1

3US . Shortly, we will discuss the case where the shock-heated gas may
efficiently cool, but the hot interior of the blast wave suffers only adiabatic losses.
Then the expression for RS is identical to Eq. (20), except for a slight difference
in the coefficient κ′′′. After the energy release stops, the blast wave asymptotically
approaches a comoving state.

Until now, we have been considering the effects of the release of energy in a small
volume. Of course, it is possible an expanding shock will trigger additional heating,
giving rise to a detonation wave. For example, the shocked gas may be sufficiently
heated to undergo nuclear burning; alternately, is may cool sufficiently to be turned
into stars, some of which explode as supernovae. The simplest prescription to take
is that a fraction ε of the rest energy of the baryons swept up by the detonation
wave is released as heat; in this case MS(RS/t)2 ∼ εMSc2, and we find

RS(t) ∼ ε1/2ct. (21)

The form of this expression does not depend on whether the ambient medium is
static or time-dependent.

The complete solution for a detonation wave usually results in the following
condition, originally postulated by Chapman and Jouget: in the rest frame of the
shock, the motion of the post-shock gas is transonic, so that u2 = c2. This condition
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is sufficient to determine the motion of the wave,

RS(t) =
[
2(γ2 − 1)ε

]1/2
ct, (22)

a result which is compatible with our previous estimate (21). In the absence of
burning, the Chapman–Jouget condition would imply that the shock was weak —
in effect, a sound wave. But in this case, the shock is not weak. For example, the
density increases behind the shock,

ρ2

ρ1
=

γ + 1
γ

. (23)

When the heating is by supernovae, we may estimate the velocity of the det-
onation wave by assuming that the energy released by the supernovae is that
required to explain observed metallicities. Supposing that each supernova releases
3.1051 erg s−1 of kinetic energy for every solar mass of metals, the heating rate
per unit mass which results in a metallicity Z is ε = 1.7 × 10−3Z. For solar
abundances, this is ε = 3 × 10−5, and the velocity of the shell is quite large,
1 × 10−2 c = 3000 km s−1. This corresponds, for a cosmological blast wave, to a
peculiar velocity of 1000 km s−1. However, this is almost certainly an overestimate.
Cosmological blast waves fueled by nuclear energy are too small to explain directly
the voids observed in in the distribution of galaxies, which have a typical radius of
1500 km s−1 (de Lapparent et al. 1986).

3. Shell Structure

A characteristic of all blast waves is that the material swept up is concentrated
in a thin shell behind the shock. The simple reason for this is that the post-shock
density is larger than that of the ambient medium. If the density in the shell were
constant, then its thickness would be

∆R =
1
3

γ − 1
γ + 1

RS

=
1
12

RS , (γ = 5/3). (24)

This is a reasonable estimate for a Sedov-Taylor blast wave.
In this respect, there is an important difference in behavior between an adiabatic

blast wave in a homogeneous medium, and in an expanding universe (or a medium
with density strongly decreasing from the center of the blast wave). In the former
case, the density in the shell decreases monotonically from the shock to the center
of the blast wave. In the latter case, the density increases from its postshock value
to a very large value at a finite radius — which is the inner edge of the shell. This
difference may be easily explained. The farther a fluid element lies from the shock,
the earlier it passed through the shock. Denote by P ∗, ρ∗ and S∗ the post-shock
pressure, density and entropy at time t∗. In the approximation where P varies
slowly through the shell, the density increases inward from the shock, if the entropy
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decreases; and vice versa. But the entropy of any fluid element is conserved after it
passes through the shock, so we are lead to ask how the post-shock entropy scales
with time. When the fluid is a perfect gas, the entropy eS∗(γ−1) ∝ P∗/ργ

∗ . Now, in
an expanding universe,

ρ∗ ∝ (t∗)−2 and P ∗ ∝ ρ∗V 2
S (t∗) ∝ (t∗)2η−4.

Therefore eS∗(γ−1) ∝ (t∗)2γ+2η−4, and the density increases inward from the shock
if γ > 2 − η. We expect this condition to be satisfied since, for a point blast, it is
γ > 6

5 ; and when the rate of energy injection is constant, it is γ > 1.
We cannot take the limit t∗ → 0, which would imply an infinite density at the

inner edge of the shell, since the blast wave presumably originates at some finite
time, t0. At times t − t0 � t0, the blast wave grows in a constant density medium,
and the evolution of the blast follows the Sedov solution. That is, we expect ρ to
reach some large but finite value at the inner edge of the shell, and then decrease
smoothly to zero at the center of the blast wave (cf. Ikeuchi, Tomisaka and Ostriker
1983). Correspondingly, the pressure vanishes at the inner edge of the shell, and
everywhere in the interior, only in the self-similar limit.

When the density of the ambient medium decreases from the center of the blast
wave as ρ ∝ r−kρ , we may determine the structure of the shell in a similar manner.
Using the self-similar solution (10), one finds that the density increases inward from
the shock if (cf. Sedov 1959)

kρ >
7 − γ

γ + 1
= 2 (γ = 5/3). (25)

We may conclude from this discussion that the shell of a cosmological blast wave
is thinner than that of a blast wave in a static, homogeneous medium. For example,
the adiabatic cosmological blast has ∆R = 0.033 RS for γ = 5

3 (Bertschinger 1983).
The main reason is that the entropy gradient behind the shock is reversed, so that
the density increases from the shock. Alternately, one may view the thinness of these
shells as a direct corollary of the small thermal energy of the blast. Indeed, a cooling
shell is even thinner; its thickness is determined by the equilibrium temperature of
the shell and the requirement of pressure balance.

4. Equation of Motion of a Thin Shell

Under the assumption that the mass swept up by the blast wave is concentrated in
a thin shell (of thickness ∆R), we can write down a simple equation of motion for
the shell. Taking the integral

∫ RS

RS−∆R
dr4πr2ρ of both sides of Euler’s equation (2),



66 J. P. Ostriker and C. Thompson

we obtain
∂

∂t
(MSUS) = Pint · 4πR2

S − 1
2
MSH2RS

(
1 − 1

2
Ωb

)

+ HRS
∂MS

∂t
+ MSf(RS), (26)

where Pint = P (RS − ∆R) is the pressure at the inner edge of the shell. We
have assumed a strong shock and neglected the pressure of the ambient medium.
The mean gravitational acceleration through the shell is − 1

2H2RS

(
1 − 1

2Ωb

)
,

and the term HRS(∂MS/∂t) represents the momentum collected by the shell
from the Hubble flow.

In an adiabatic blast wave, one cannot calculate Pint accurately without intro-
ducing further approximations (or calculating the full self-similar solution). The
reason is that the decrease in the thermal energy of the hot interior due to expan-
sion is balanced by heating behind the shock, and this second effect is difficult to
account for. The result of an exact calculation for the undetermined constant κ in
the Sedov solution, Eq. (10), is (Sedov 1959),

RS(t) = 1.152
(

Et2

ρ

)1/5

(γ = 5/3; ρ = constant),

RS(t) = 1.033
(

Et2

ρ

)1/5

(γ = 7/5; ρ = constant).

(27)

It is now possible to estimate the relative contributions of the kinetic, thermal
and potential energy to the total energy of a blast wave. In the thin-shell approxi-
mation, we take the velocity of the shell to be the post-shock velocity, and the kinetic
energy is

Ek =
1
2
MS

(
2US

γ + 1

)2

=
2η2

(γ + 1)2
MS

(
RS

t

)2

(28)

for a blast wave in a static medium, and

Ek =
1
2
MS

(
2US

γ + 1
+

γ − 1
γ + 1

HRS

)2

− 2
15

MS

(
RS

t

)2

=

[
1
2

(
6η + 2γ − 2

3(γ + 1)

)2

− 2
15

]
MS

(
RS

t

)2

(29)

for a cosmological blast wave (we have subtracted the kinetic energy of the unper-
turbed Hubble flow). We assume a self-similar solution, RS ∝ tη.

The potential energy of a cosmological blast wave is (relative to the Hubble flow)

Eφ = −GM2
S

2RS
+

2
15

MS

(
RS

t

)2

=
1
45

MS

(
RS

t

)2

(30)

when Ωb = 1. Thus, Eφ is positive. The change in the potential energy relative
to the Hubble flow is small compared to the change in the kinetic energy for the
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most important self-similar solutions which we have catalogued above. The potential
energy is also small when Ωb � 1. We ignore the effects of gravity if the ambient
medium is static.

For the Sedov solution, we have MS(RS/t)2 = 4π
3 κ5E. In the thin shell approx-

imation, we then have Ek/E = 0.38(γ = 5
3 ). The thermal energy is Eth/E = 0.62,

and is the dominant contribution to the total energy. (The exact self-similar solution
of the Sedov-Taylor problem gives Ek/E = 0.30 and Eth/E = 0.70; we will find
that the thin-shell approximation works much better in a cosmological blast wave.)

In the approximation where the pressure is constant through the shell, the ther-
mal energy of a cosmological blast wave very small,

Eth =
2

γ − 1
MS

kTps

µ

=
2

(γ + 1)2

(
η − 2

3

)2

MS

(
RS

t

)2

. (31)

Here, Tps is the post-shock temperature. Such an estimate is not accurate for the
Sedov solution, because P changes only by a factor of two or three between the
center and the shock. The thermal energy of the blast wave is dominated by the
very hot and rarefied interior of the blast wave. On the other hand, the pressure
goes to zero at the inner edge of the shell in the cosmological analog of the Sedov
solution. The thermal energy of the blast wave is contained entirely by the shell.

Let us now compare the various contributions to the total energy of an adiabatic
cosmological blast wave. Substituting η = 4

5 in Eqs. (29)–(31) and taking Ek +Eφ +
Eth = E, we find Ek/E = 0.85, Eφ/E = 0.12 and Eth/E = 0.03 (for γ = 5

3 ). These
results are in excellent agreement with those obtained from the exact self-similar
solution (Bertschinger 1983; Ikeuchi, Tomisaka and Ostriker 1983). We may also
solve for the unknown constant κ′ in Eq. (13), obtaining

RS(t) = 1.887
(

GEt4

Ωb

)1/5

(γ = 5/3; ρ ∝ t−2),

RS(t) = 1.869
(

GEt4

Ωb

)1/5

(γ = 7/5; ρ ∝ t−2)

(32)

The difference between these two values is small because of the relative unimpor-
tance of the thermal energy. Since the thermal energy of a cosmological blast wave
is small, the blast wave is essentially a rearrangement of the Hubble flow.

The thin-shell approximation is sufficient to calculate the motion of a blast wave,
in the case where the hot interior of the blast wave cannot cool, but the postshock
gas can. First let us consider a point blast wave. The pressure Pint of the hot interior
decreases according to Eq. (16). We look for a self-similar solution of Eq. (26), and
obtain in the case Ωb = 1 (Ostriker and McKee 1988),

RS(t) ∝ t(15+
√

17)/24 = t0.797. (33)
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The energy decays as

E ∝ t−(21−5
√

17)/24 = t−0.016. (34)

That is, the introduction of post-shock cooling results in only a very slight change
from the adiabatic self-similar solution, which was RS ∝ t0.8. The main reason for
this is, of course, that the thermal energy of the blast wave is small. The net energy
of the blast decreases very slowly, since the losses during each expansion by a factor
of two are only of order Eth. The various contributions to the total instantaneous
energy of the blast wave are Ek/E = 0.88, Eφ/E = 0.12 and Eth/E = 0 (in the
limit of zero cooling time).

A cooling shell driven by a hot bubble is the relevant problem when the
active ingredient is a superconducting cosmic string (Ostriker, Thompson and
Witten 1986). The hot interior may either be filled by ultra-low frequency elec-
tromagnetic radiation, or a hot plasma which is so rarefied that electrons and ions
do not couple. The pressure is then constant throughout the interior, and evolves
according to the first law of thermodynamics,

∂Pint

∂t
=

Ė

4πR3
S

− 4P
US

RS
, (35)

when the interior is filled with radiation. The first term on the RHS represents
heating by the string, and the second adiabatic losses due to the expansion of the
bubble. We know already that US = RS/t, so the solution to Eq. (35) is

Pint =
Ėt

8πR3
S

. (36)

Substituting this expression in the equation of motion (26), and assuming the self-
similar solution, we find for the coefficient κ′′′ in Eq. (20):

RS(t) =

(
81
20

GĖ

Ωb

)1/5

· t = 1.323 VEt, (37)

where VE is defined in Eq. (20). If instead the interior of the bubble is filled with
a hot plasma, and non-relativistic ions provide the main contribution to Pint, then
the result is

RS(t) =

(
27
10

GĖ

Ωb

)1/5

· t = 1.220 VEt. (37′)

5. Gravitational Instability in a Shell

Cosmological blast waves are subject to a number of instabilities. The simplest
instability to consider is that induced by the self-gravity of the expanding shell.
Now, an adiabatic blast wave is stable even in the presence of gravity. The basic
reason for this is that the sound speed is high enough in the blast for pressure to
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balance the attractive force of gravity at all length-scales. When the blast is able
to cool, however, the density of the shell may be high enough for the shell to be
gravitationally unstable. We may estimate the characteristic size of the fragments
produced by this instability, as follows (Ostriker and Cowie, 1981).

Consider a circular patch of a smooth shell with surface mass density Σ. The
patch has radius a, and the shell has radius RS . In a frame comoving with the shell,
the energy per unit mass of the patch is

E = Ek + Eφ + Eth =
a2

4
Σ

(
US

RS

)2

− kπaGΣ + e. (38)

Here, we have assumed that the shell is isothermal, with internal energy e per
unit mass. k is a numerical coefficient of order unity. For a uniform, isolated disk,
k = 0.849. The kinetic term appears because the shell is expanding, so that an
observer comoving with the shell experiences an effective two-dimensional Hub-
ble expansion. The patch is most strongly bound at the value of a = acrit where
dE/da = 0. This is

acrit

RS
= 2πk

GΣRS

U2
S

. (39)

The patch is bound (E < 0 at a = acrit) only for

e <

(
kΩb

18η

)2(
RS

t

)2

. (40)

This means that a shell of comoving radius Rc
S is gravitationally unstable only if

its temperature is less than

T < 4.103 ◦K
k

η
(1 + z)

(
Ωb

0.1

) (
Rc

S

1500 km s−1

)
. (41)

Here, we have taken e = 3kT/mp.
The characteristic mass of the shell fragments is ∆M = πa2

critΣ, or

∆M =
k2

324η4
Ω2

bMS = 2 · 1010M�
k2

η4h50

(
Ωb

0.1

)3(
Rc

S

1500 km s−1

)3

. (42)

Note that ∆M does not depend on the temperature of the shell, in so far as the
shell is unstable. The above analysis is confirmed by detailed numerical simulations
(White and Ostriker 1988) of a collisionless gas shell.

We should add that, irrespective of whether it is gravitationally unstable, a
cooling shell does suffer from Rayleigh–Taylor instabilities (Vishniac 1983).

6. Interactions between Cosmological Blasts

Finally, let us consider briefly what may happen when cosmological blast waves
interact, and how these interactions may be changed by the presence of dark matter.

There are various ways that one could determine that isolated cosmological
blast waves were comprised of baryons moving through a more uniform background
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of dark matter. All of these would be difficult to implement, in the absence of a
knowledge of the original blast energy, or current peculiar velocity of the shells.

However, the interactions between shells are substantially different when all,
or only a fraction, of matter is swept up in the blast waves. For example, if the
fraction of closure density in baryons were Ωb = 1, then numerical simulations
(Dekel, Ostriker and Weinberg 1987) show that the common membrane between
two interacting shells will disappear rapidly. After considerable overlap occurs, most
of the matter will drain to the common vertices (cf. the numerical simulations of
Peebles 1987), so that the shells will be replaced by linear and point-like features.
But if Ωb � 1, then collisionless shells of galaxies will pass through each other
largely unaffected by their mutual gravity. It is easy to show that the mass which
accumulates at the places where three shells intersect is only a fraction ∼Ω2

b of the
mass in each of the shells. Preliminary work indicates (Dekel, Ostriker and Weinberg
1987) that the fraction of the baryonic mass accumulated in vertices is comparable
to the fraction of galaxies in rich Abell clusters.
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Chapter 6

DARK MATTER IN GALAXIES AND GALAXY SYSTEMS

Scott Tremaine∗ and Hyung Mok Lee†

Canadian Institute for Theoretical Astrophysics,
University of Toronto, Toronto, Canada

We review the dynamical evidence for dark matter in galaxies, groups of galaxies
and clusters of galaxies. A summary, expressed in terms of the mass-to-light ratios
of various systems, is presented in Fig. 3 near the end of the review.

1. Introduction

In astronomy, most information regarding the presence of different kinds of mass
comes from photons at various wavelengths. Very hot gases emit X-rays, while stars
produce most of their energy at optical wavelengths. Some atomic or molecular
gases in interstellar space show emission lines at radio wavelengths (e.g. HI, CO,
etc.). In addition, there are non-luminous objects whose existence can be inferred
from other considerations. For example, interstellar dust grains are known to exist
because of interstellar reddening, and the number of non-luminous stellar remnants
(e.g. black holes, neutron stars or white dwarfs) can often be estimated from stellar
population and stellar evolution theory.

Sometimes, certain masses manifest themselves only through gravitational inter-
action. We will use the term dark matter (abbreviated as DM) to denote mat-
ter whose existence is inferred only through its gravitational effects. Therefore the
best — indeed only — way of studying dark matter is to accurately determine the
mass of astronomical objects from their dynamics and to compare this mass with
the mass inferred from the light emitted by the objects. A discrepancy indicates the
presence of dark matter.

The determination of dynamical mass, however, is not a trivial task. The main
difficulty is that even perfect observations (i.e. observations without error) cannot
always provide enough information to completely constrain theoretical models. This
is because we always observe projected positions on the plane of the sky and line-
of-sight velocities at a given instant rather than complete three-dimensional orbits
over an extended period of time. The subject of these lectures is the methods of
determining dynamical masses of galaxies and systems of galaxies. The plan of the
lectures is as follows: the basic theoretical framework is discussed in the next lecture.

∗Current address: Princeton University Observatory, Princeton, NJ 08544, USA.
†Current address: Department of Astronomy, Seoul National University, Seoul 151-742, Korea.
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The subsequent four lectures describe the determination of masses of various sys-
tems. The final lecture provides a summary. Additional details and other topics are
provided in many review articles, conference proceedings, and textbooks, including
Binney and Tremaine (1987), Faber and Gallagher (1979), Kormendy and Knapp
(1987), Primack (1987), and Trimble (1987).

We would like first to discuss some introductory subjects that do not fit easily
into the main arguments in the other lectures.

1.1. Virial Theorem

One of the simplest ways to determine the mass of a stellar system is through the
virial theorem.

Consider a self-gravitating system composed of N point masses. We denote by
mi, �ri, and �vi the mass, position and velocity of each particle. The moment of inertia
of such a system is

I =
N∑

i=1

mi�r
2
i . (1.1)

Now take first and second time derivatives of the moment of inertia to get

İ = 2
N∑

i=1

mi�ri · �vi (1.2)

and

Ï = 2
N∑

i=1

mi(�vi
2 + �ri · �̈ri). (1.3)

Since the system is self-gravitating, the acceleration of particle i can be computed
by summing over the contribution from all the particles

�̈ri =
∑
j �=i

Gmj
(�rj − �ri)
|�rj − �ri|3 , (1.4)

so that Eq. (1.3) can be rewritten as

1
2
Ï = 2K +

N∑
i=1

∑
j �=i

Gmimj
�ri · (�rj − �ri)
|�rj − �ri|3

= 2K − G

2

N∑
i=1

∑
j �=i

mimj

|�ri − �rj | = 2K + W, (1.5)

where

K =
1
2

N∑
i=1

mi�vi
2, (1.6)
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is the total kinetic energy and

W = −G

2

N∑
i=1

∑
j �=i

mimj

|�ri − �rj | , (1.7)

is the total gravitational potential energy of the system.
If the system is in a stationary state, we may assume that 〈Ï〉t = 0, where 〈〉t

is the time average taken over several times the dynamical timescale of the system.
The dynamical timescale is the time required for typical particles to complete one
orbit, that is, to move across the whole system. In practice, we observe at only one
epoch. Thus, although the rigorous form of the virial theorem is 2〈K〉t + 〈W 〉t = 0,
in practice the theorem is used without the time average as follows:

2K + W ≈ 0. (1.8)

Equation (1.8) is valid only if the system is in equilibrium and in a stationary
state. Such a condition is achieved if the age of the system is much longer than its
dynamical timescale.

The virial theorem formed the basis for most mass determinations of galaxies
and galaxy systems for decades, and although it has now largely been superseded
by more sophisticated methods, it is still used to provide rough mass estimates for
systems such as groups of galaxies with few members where detailed modelling is
inappropriate.

1.2. History of Dark Matter

The discovery of dark matter can be clearly traced to a seminal paper by Zwicky
(1933). By the early 1930’s, Hubble’s law relating radial velocities v of distant
galaxies to their distances d through

v = H0d, (1.9)

was established, although the Hubble constant H0 was very poorly determined.
The above relation holds for galaxies with v � 2000 km s−1. We will parametrize
the Hubble constant as

H0 = 100 h kms−1 Mpc−1, (1.10)

where 1 Mpc = 1 megaparsec = 3.086×1024 cm and h is a dimensionless parameter.
In the early 1930’s, h was known to be 5.58, while it is currently believed to lie
between 0.5 and 1.

At the time of Zwicky’s paper, rotation curves were available for some spiral
galaxies so that the mass-to-light ratios of galaxies were determined to be

M

L
≈ 1 h

(
M�
L�

)
V

. (1.11)

The subscript V in the above equation indicates that the luminosity is measured in
the visual band. The unit for mass-to-light ratios adopted in the above equation,
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i.e. (M�/L�)V , will be used throughout these lectures, and we will usually omit the
units in expressing M/L from here on.

For h = 5.58, the mass-to-light ratio in Eq. (1.11) was consistent with obser-
vations of the Solar neighbourhood, which gave M/L ≈ 3, not far from the Solar
value. This agreement, together with the fact that galaxy spectra resembled the
Solar spectrum, led to the simple and compelling picture that galaxies are made up
of stars like the ones around us and that the Sun is a typical star in a galaxy.

Zwicky applied the virial theorem to the Coma cluster of galaxies. Radial veloc-
ities were known for seven galaxies in Coma at that time. The mean and root mean
square velocities Zwicky used were

v‖ ≈ 7300 km s−1; v‖,rms =

[
1

N − 1

N∑
i=1

(v‖,i − v‖)2
]1/2

≈ 700 km s−1. (1.12)

For spherical systems, the gravitational potential energy can be expressed in
the form

W = −α
GM2

R
, (1.13)

where M and R are the total mass and radius of the system, respectively, and α

is a constant depending on the density distribution. For a uniform sphere α = 3/5,
while α = 3/(5− n) for a polytropic sphere with polytropic index n. Note that this
constant is not very sensitive to the specific form of the density distribution, which
was poorly known at that time; thus the value for the uniform sphere (α = 3/5)
was used by Zwicky. If the cluster is spherical and the galaxies have the same mass,
the total kinetic energy can be computed from the formula K = 3

2Mv2
‖,rms. After

plugging these numbers into Eq. (1.8), he obtained the total mass of the Coma
cluster

M ≈
5v2

‖,rmsR

G
≈ 1 × 1015 h−1M�, (1.14)

where he took the size of the cluster to be 1.5◦ ≈ 2h−1 Mpc. The total luminosity
of the cluster was known to be

LV ≈ 2 × 1013h−2L�, (1.15)

which gives the mass-to-light ratio M/L ≈ 50 h in Solar units. This is about a factor
of 50 larger than the M/L’s of individual galaxies [Eq. (1.11)], whatever the value
of h may be. Therefore he concluded that a large amount of non-luminous matter
is required if the Coma cluster is in dynamical equilibrium.

By modern standards, Zwicky’s analysis has several problems, including crude
estimates for the cluster radius, luminosity, and density distribution, poor statistics
due to the small number of radial velocities, and possible contamination from back-
ground or foreground galaxies. Nevertheless his principal result has survived. The
mass-to-light ratios for both galaxies and clusters of galaxies have gone up, but the
discrepancy of a factor of 50 found by Zwicky still remains. More detailed analyses
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show that the best present estimate of M/L for the Coma cluster is about 400 h, as
will be discussed in greater detail in lecture 6.

Zwicky’s remarkable result implies that at least 95% of the mass in Coma is in
some invisible form. It suggests that on scales larger than ≈ 1 Mpc, visible stars
represent only a minor contaminant in a vast sea of dark matter of completely
unknown nature.

1.3. A Quick Review of Cosmology

One of the most important assumptions in standard cosmological models is that
the Universe is isotropic and homogeneous on large scales (say, between 30 h−1

and 3000 h−1 Mpc). This means that there exists a set of “fundamental observers”
for whom the Universe looks isotropic, and a cosmic time such that Universe is
homogeneous for all fundamental observers at any fixed time. Any observer living
in a galaxy is a fundamental observer to a good approximation. Of course, this is not
the only available cosmological model, but one of the simplest and the most widely
used one, and the assumption of large-scale homogeneity and isotropy is consistent
with observations of galaxy counts and the microwave background. [This part of
the lecture is mainly based on Gunn (1978).]

Suppose lij(t) denotes the distance between two fundamental observers i and j,
which can be written as

lij(t) = lij(t0)R(t), (1.16)

where t0 is the present time and R(t) is the scale factor, which depends only on
t because the Universe is isotropic and homogeneous. Note that R(t0) = 1. The
subscript 0 in the above equation represents the value at the present epoch. The
relative velocity between i and j is simply the time derivative of lij :

vij(t) = lij(t0)Ṙ(t) =
Ṙ(t)
R(t)

lij(t) = H(t)lij(t), (1.17)

which is equivalent to Hubble’s law of expansion with the Hubble constant being

H(t) =
Ṙ(t)
R(t)

; H0 = H(t0). (1.18)

Next, consider a non-relativistic free particle passing a fundamental observer at
point A with a velocity vp at time t and passing an observer at point B at a later
time t + dt. If the separation between the points A and B is dl, the relationship
between dt and dl is

dl = vpdt. (1.19)

The velocity seen at the point B is

v′p = vp − H(t)dl, (1.20)
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so that
dvp

dt
= −H(t)vp, (1.21)

which can be integrated to give the relation vp ∝ 1/R(t). For the case of relativis-
tic particles like photons, a similar argument gives the relationship between the
frequency at which the photon is emitted and the frequency observed by us,

ν0

νe
=

R(te)
R(t0)

≡ 1
1 + z

, (1.22)

where the subscript e represents the time of emission and z is the redshift of the
photon.

Now let us consider dynamics. We will use Birkhoff’s theorem of general relativ-
ity, which states that in a spherical system the acceleration at any radius depends
only on the mass distribution within that radius. Thus if we consider two galaxies
separated by a distance l(t), when l is sufficiently small their relative acceleration
is described by the Newtonian formula

d2l

dt2
= −GM

l2
, (1.23)

where M is the mass inside a sphere of radius l. If the Universe is matter-dominated,
then M is constant in time [since the Hubble flow is smooth, galaxies neither enter
nor leave the comoving sphere of radius l(t)], and Eq. (1.23) can be integrated over
t to yield

1
2
l̇2 − GM

l
= E, (1.24)

where

M =
4
3
πρ(t)l3; l = l0R(t), (1.25)

and E is the integration constant, which is equivalent to binding energy in Newto-
nian dynamics. Dividing through by 1

2 l20, we get

Ṙ2 − 8
3
πGρR2 = ε, (1.26)

where ε = 2E/l20. At the present epoch, Eq. (1.26) can be written

H2
0 − 8

3
πGρ0 = ε, (1.27)

or

1 − Ω0 =
ε

H2
0

, (1.28)

where the density parameter Ω0 is defined to be the value at the present epoch of

Ω =
8πGρ

3H2
. (1.29)
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We may also express the density parameter as

Ω0 = ρ0/ρc, (1.30)

where the critical density

ρc ≡ 3H2
0

8πG
= 1.88 × 10−29 h2g cm−3 = 2.76 × 1011 h2 M�Mpc−3, (1.31)

which corresponds the present mean density required to make the Universe bound
(ε < 0).

The solutions to Eq. (1.26) can be divided into three cases: Ω0 < 1, Ω0 > 1 and
Ω0 = 1:

(1) Ω0 < 1: In this case the parametrized solution to Eq. (1.26) is

R = A(cosh η − 1), t = B(sinh η − η), (1.32)

where

Ω0 = sech2

(
1
2
η0

)
,

A3

B2
=

4πGρ0

3
. (1.33)

This solution represents a model for an open Universe. The curvature of three-
dimensional space for this solution is negative and the Universe expands forever.

(2) Ω0 > 1: The parametrized solution for this case is

R = A(1 − cosη), t = B(η − sin η), (1.34)

where

Ω0 = sec2

(
1
2
η0

)
,

A3

B2
=

4πGρ0

3
. (1.35)

This solution represents a closed Universe which eventually recollapses after
maximum expansion. The space part of this solution has positive curvature.

(3) Ω0 = 1: Finally, in this case, the solution for Eq. (1.26) becomes

R =
(

3H0t

2

)2/3

, (1.36)

which represents a flat Universe. This solution also expands forever, but the
expansion rate becomes asymptotically zero. The space part of this solution
has zero curvature, and can be represented by Euclidean geometry.

The determination of Ω0 from observation is of great importance because this
parameter determines the future evolutionary path of the Universe. Notice that the
value of Ω changes through the evolution, but the sign of Ω−1 remains unchanged.
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1.4. Mass-to-light Ratio in the Solar Neighbourhood

The most important indicator of the presence of dark matter is the mass-to-light
ratio, M/L. It is very instructive to know M/L in the region close to the Sun, where
high precision observations are possible. Since we have a reasonably good idea of
the constituents in the Solar neighbourhood — certainly better than in any other
system — comparison of the dynamically determined M/L with that deduced from
an inventory of the constituents serves to indicate the amount of dark matter more
accurately than in more distant systems.

Since different stellar populations have different scale heights, the surface density
integrated along the direction perpendicular to the Galactic plane is a more funda-
mental quantity than the volume density. Table 1 summarizes the surface density
of mass and luminosity per square parsec integrated within |z| < 700 pc, where z is
the height above the Galactic midplane.

From this table we deduce M/L in the Solar neighbourhood to be Σ/I ≈ 3.3 for
all known constituents.

The total mass density can be determined from carefully selected star samples
by analyzing the velocity dispersion and density profile in the direction normal to
the Galactic plane. These studies give the mass-to-light ratio within 700pc,

M

L
(|z| < 700 pc) ≈ 5, (1.37)

which is slightly larger than that given by Table 1. Therefore, there is marginal
evidence for dark matter in the Solar neighbourhood. This subject is discussed in
greater detail in the lectures by John Bahcall.

The M/L’s derived for the Solar neighbourhood are only benchmarks and should
not necessarily be expected to apply to other systems. For example, roughly 95%
of the light in the Solar neighbourhood comes from stars brighter than the sun but
about 75% of the mass is contained in the stars fainter than the sun. Therefore, any
slight variation of the initial mass function can change M/L significantly.

1.5. Classification Scheme of Dark Matter

Dark matter has been discussed in various astronomical contexts, and it is worth
bearing in mind that both the reliability of the evidence and the nature of the dark

Table 1. Surface density and brightness
of Solar neighbourhood.

Species Σ(M�/pc2) I(L�/pc2)

Visible stars 27 15
Dead stars 18 0
Gas 5 0
Total 50 15



Dark Matter in Galaxies and Galaxy Systems 79

matter may be quite different in different contexts. There are at least four different
categories of possible dark matter (DM):

(1) DM in the Solar neighbourhood,
(2) DM in galaxies,
(3) DM in clusters and groups of galaxies, and
(4) DM in cosmology.

As we discussed above, there is marginal evidence for DM in the Solar neighbour-
hood. This is based on the discrepancy between the mass determined by local verti-
cal dynamics and the mass detected by direct observations. The study of the Solar
neighbourhood is important even though not much DM may be present, because
it is here that we have best hope of determining the nature of the DM. One fur-
ther property of the DM in the Solar neighbourhood is that it is concentrated in a
disk, and hence must almost surely be composed of baryons, since dissipation in a
rotating gas is by far the most common way to form disks.

Stronger evidence for DM can be found in galaxies. Recent 21-cm radio obser-
vations have revealed the ubiquity of flat rotation curves in spiral galaxies out to
radii much larger than the radii containing most of the visible stars. (It is much
more difficult to measure the rotation curves for elliptical galaxies.) If the mass is
proportional to the light, the rotation curves should exhibit a Keplerian falloff at
large radii (that is, Vrot ∝ r−1/2). The flat rotation curves, instead, suggest that
the mass within the radius r

M(r) ≈ V 2
rotr

G
∝ r, (1.38)

which yields M/L’s of up to 30–40 for individual galaxies and possibly much more
depending on the extent of the flat rotation curve beyond the last measured point.
If the rotation curves remain flat to several hundred kiloparsecs (as proposed by
Ostriker et al. 1974), the M/L’s of individual spiral galaxies may be comparable to
those in clusters.

Clusters of galaxies have provided the best evidence for DM ever since Zwicky’s
original work. The Coma cluster of galaxies provides perhaps the single strongest
piece of evidence for DM because of the dramatic difference in its M/L from that
of the Solar neighbourhood (see lecture 6).

The principal cosmological evidence for DM is that theoretical prejudice, as
well as some specific models of the early Universe such as inflationary models,
require Ω0 = 1. To determine what M/L this implies we must estimate the mean
luminosity density. The determinations of the present average luminosity density in
the Universe by Davis and Huchra (1982) and Kirshner et al. (1983) can be averaged
to give

j0 ≈ 1.7 × 108 h(L�Mpc−3)V . (1.39)
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Using Eq. (1.31), the density parameter can be expressed as

Ω0 =
ρ0

ρc
=

M

L

j0
ρc

≈ 6.1 × 10−4h−1

(
M

L

)
V

≈ (M/L)V

1600 h
, (1.40)

which means that M/L should be about 1600 h in order for Ω0 to be unity. This
M/L is larger than that of the Coma cluster by about a factor of four. There is
no known system of galaxies whose dynamical mass implies a mass-to-light ratio
as high as 1600 h; hence, if the Universe is closed, the mass-to-light ratio must be
much larger outside galaxy systems — even those as large as Coma — than within
them.

An independent constraint on the total amount of baryonic matter in the Uni-
verse comes from the study of primordial nucleosynthesis. The present amount of
deuterium and helium is mainly produced during an early phase of the Universe.
The observed abundances of deuterium and helium set a limit on Ω0 in the form of
baryonic matter

ΩB ≈ (0.011 − 0.048)h−2, (1.41)

which translates to 20 h−1 < (MB/L)V < 80 h−1 through Eq. (1.40), where MB is
the mass of baryons.

If all these arguments are taken seriously, then (1) there must be both baryonic
DM (to provide the DM in the Solar neighbourhood) and non-baryonic DM [so that
Ω0 = 1 without violating Eq. (1.41)]; (2) the DM in galaxies may be baryonic but
the DM in clusters like Coma must be non-baryonic (unless h is as small as 0.5,
in which case the upper limit to MB/L implied by nucleosynthesis may be barely
consistent with the M/L’s of rich clusters); (3) the ratio of DM to luminous mass
must be larger outside galaxies, groups, and clusters than inside, since the mass-to-
light ratios of these systems are not sufficient to close the Universe.

The candidates for non-baryonic DM in the context of particle physics are dis-
cussed by H. Harari in his lectures.

2. Theory of Stellar Dynamics

In most cases the determination of masses of galaxies and systems of galaxies is
based on the dynamical theory of stellar systems. Here by “stellar systems” we
mean systems composed of self-gravitating point masses, which may be either stars
or galaxies. For the following lectures, we will restrict ourselves to spherical systems,
although many of the objects we are interested in are not spherical. The main reason
for using the spherical approximation is simplicity. Also the potential distribution
is much more round than the density distribution so that even for flattened mass
distributions a spherical potential is often not a bad approximation.

2.1. Collisionless Boltzmann Equation

We will first consider the equation of continuity for a fluid, and draw the analogy
to the dynamics of discrete point masses in the next paragraph. The rate of change
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of mass within a volume V with surface S is
dM

dt
=

∫
V

∂ρ

∂t
d3�r = −

∫
S

ρ�v · d2 �S, (2.1)

where ρ(�r, t) is the density distribution and �v(�r, t) is the velocity field. Using Gauss’s
theorem, ∫

S

ρ�v · d2�S =
∫

∇ · (ρ�v)d3�r, (2.2)

so that Eq. (2.1) can be written,

dM

dt
=

∫
V

∂ρ

∂t
d3�r = −

∫
V

∇ · (ρ�v)d3�r. (2.3)

Since the equation must hold for an arbitrary volume in the absence of source and
sink terms, we have

∂ρ

∂t
+ ∇ · (ρ�v) = 0, (2.4)

which is the usual equation of continuity for fluids.
The dynamics of a system of point masses can be conveniently described by

employing the phase space density distribution f(�r, �v; t), where f(�r, �v; t)d3�rd3�v is
either the number, luminosity or mass contained in a phase space volume d3�rd3�v.
Then one can derive a similar equation to the equation of continuity for the phase
space density distribution using the same particle conservation argument in six-
dimensional phase space rather than in normal three-dimensional space:

∂f

∂t
+

3∑
i=1

[
∂

∂xi
(fẋi) +

∂

∂vi
(f v̇i)

]
= 0. (2.5)

Now notice that ẋi = vi, and ∂vi/∂xi = 0. Furthermore v̇i = −∂Φ/∂xi, where Φ is
the gravitational potential, so that ∂v̇i/∂vi = 0. Thus we find

∂f

∂t
+

3∑
i=1

(
vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

)
= 0, (2.6)

which is called the Vlasov or collisionless Boltzmann equation. Now define a con-
vective derivative operator

D

Dt
≡ ∂

∂t
+

∑
i

(
vi

∂

∂xi
− ∂Φ

∂xi

∂

∂vi

)
, (2.7)

which gives the rate of change of a quantity as seen by an observer moving with a
given star. Thus the collisionless Boltzmann equation is simply

Df

Dt
= 0. (2.8)

The collisionless Boltzmann equation states that the local phase space density as
viewed by an observer moving with a given star is conserved. This is analogous to
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a phenomenon seen in a marathon race. In the beginning of the race the spatial
density of runners is high but their speeds vary over a wide range. As the race
progresses, runners whose speed is nearly the same stay together so that near the
finish, the runners in any given location have a low spatial density but travel at
nearly the same speed. Therefore, phase space density remains roughly constant
throughout the race. (We have assumed that all the runners who started the race
finish so there are no sinks, and that each runner travels at constant speed.)

2.2. The Jeans Theorem

If the stellar system is in a steady state, the partial derivative with respect to time
in Eq. (2.6) vanishes. We define integrals of motion I(�x,�v) to be functions such that

d

dt
I[�x(t), �v(t)] = 0, (2.9)

along any trajectory [�x(t), �v(t)]. The integrals satisfy the relation,

dI

dt
=

3∑
i=1

(
ẋi

∂I

∂xi
+ v̇i

∂I

∂vi

)
=

3∑
i=1

(
vi

∂I

∂xi
− ∂Φ

∂xi

∂I

∂vi

)
= 0. (2.10)

Therefore, the integrals satisfy the time-independent collisionless Boltzmann equa-
tion and thus the phase space density distribution is a function only of the inte-
grals, i.e. f = f(I1, I2, . . .). This is known as the Jeans theorem. In general an
arbitrary stellar system can have six different integrals. In spherical systems only
four of these are important for stellar dynamics: the energy per unit mass, E, and
three components of the angular momentum per unit mass, �L. If the system is
spherically symmetric in all respects (that is, any variable depends only on the dis-
tance from the center), the distribution function depends only on E and the square
of the angular momentum, L2. Therefore, the general solution of the collisionless
Boltzmann equation for a spherically symmetric stellar system is any function of
the form f(E, L2).

The number density distribution in a spherical system can be computed from

ν(r) =
∫ ∞

−∞
dvr

∫ ∞

0

2πvtdvtf

(
1
2
v2

r +
1
2
v2

t + Φ(r), r2v2
t

)
, (2.11)

where vt and vr are the tangential and radial velocities, respectively. If f repre-
sents the luminosity density or mass density, we can replace ν(r) by j(r) or ρ(r),
respectively. The gravitational potential Φ satisfies Poisson’s equation

1
r2

d

dr

[
r2 dΦ(r)

dr

]
= 4πGρ(r). (2.12)

Ideal observations could give us, at best, the distribution of I( �R, v‖), where
I(�R, v‖)d2 �Rdv‖ is the luminosity in the area d2 �R and velocity interval dv‖ at pro-
jected position �R and line-of-sight velocity v‖. Even this information — far more
than we are able to glean from present-day observations — is insufficient to give
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the distribution function f(E, L2), since we do not know the potential Φ to use
in Eq. (2.11). Therefore, the determination of f is always an intrinsically under-
determined problem. One must make additional assumptions to get the distribution
function and mass distribution [for example, j(r) ∝ ρ(r)].

2.3. Examples of Distribution Functions

In general the distribution functions for real stellar systems are not well-known.
However, one often can make reasonable models using known analytic distribution
functions. We will give two very simple examples of such distribution functions.

2.3.1. Plummer model

This is a power-law model for the phase space distribution function

f(E, L2) =

{
K|E|7/2 for E < 0

0 for E > 0
. (2.13)

In this case, the density distribution becomes

ν(r) = 4πK

∫ √
2|Φ|

0

(
|Φ| − 1

2
v2

)7/2

v2dv = 7π2 · 2−11/2K|Φ|5. (2.14)

Now assume that ν = ρ, i.e. ν(r) satisfies Poisson’s equation

1
r2

d

dr

(
r2 d|Φ|

dr

)
= −4πGν = −4πG · 7π2 · 2−11/2K|Φ|5. (2.15)

A solution is a potential of the form

Φ = − Φ0√
1 + r2/a2

, (2.16)

where Φ0 is the central potential and the characteristic length scale a satisfies the
relation,

a2 =
3 · 27/2

7π3GKΦ4
0

. (2.17)

We have normalized the potential so that it vanishes at infinity. The Plummer model
is one of the simplest models of stellar systems. The density distribution extends
to infinity, but the mass is finite. It is obvious from Eqs. (2.14) and (2.16) that
the density falls off as r−5 at large radius. Generally speaking, such a rapid falloff
of density at large r is not compatible with the observed brightness distribution of
galaxies, which decays somewhat more slowly (r−3 to r−4). The Plummer model has
the same density distribution as a gaseous polytrope with polytropic index n = 5.
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2.3.2. Isothermal sphere

Consider a distribution function that follows the Maxwell–Boltzmann law

f(E) = Fe−E/σ2
. (2.18)

Such a distribution is achieved in gases through relaxation by collisions. However, in
galaxies, where the relaxation timescale due to two-body gravitational encounters
is much longer than the Hubble time, there is no fundamental reason to reach such
a state. Nonetheless, the cores of elliptical galaxies and bulges of spirals are often
found to be fitted with this model very well.

The density distribution for this model is

ν(r) = 4πF

∫ ∞

0

v2dve−Φ/σ2
e−v2/2σ2

= F (2πσ2)3/2e−Φ/σ2
. (2.19)

If we set ν = ρ, and choose the potential at the center to be zero, the density
distribution becomes

ρ(r) = ρ0e
−Φ/σ2

. (2.20)

By substituting Eq. (2.20) into Poisson’s equation, we get

1
r2

d

dr

(
r2 dΦ

dr

)
= 4πGρ0e

−Φ/σ2
. (2.21)

If we introduce the dimensionless variables, ψ = −Φ/σ2, r0 =
√

9σ2/4πGρ0, s =
r/r0, we get the dimensionless equation for ψ

1
s2

d

ds
s2 dψ

ds
= −9eψ, (2.22)

which also should satisfy the boundary conditions,

ψ(0) = 0, ψ′(0) = 0. (2.23)

Figure 1 shows the density and surface density distribution for the solution of
Eq. (2.22), which is called the isothermal sphere. The central surface density satis-
fies Σ0 ≈ 2ρ0r0 (more precisely the constant is 2.018), and the volume density falls
as r−2 at large r. The radius parameter r0 is called the core radius and it roughly
corresponds to the radius where the surface density becomes half of the central
value.

However, the isothermal sphere is unrealistic in that the total mass is infinite
since ρ ∝ r−2 at large radii. More realistic models can be obtained by decreasing
the phase space density at high energy. Models of this type are known as King
or Michie models, but we will not discuss them here since the truncation affects
only the outer parts, while we are concerned mostly with the inner parts in fitting
observations of elliptical galaxies.
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Fig. 1. Density ρ(r) and surface density Σ(r) for an isothermal sphere, in units of the central
density ρ0 and core radius r0.

2.4. Moments of the Collisionless Boltzmann Equation

By taking moments of the collisionless Boltzmann equation, we can get some useful
equations relating observable quantities. The first step is just to integrate Eq. (2.6)
over velocity space to get

∂ν

∂t
+

∂

∂xi
(νv̄i) = 0, (2.24)

where νv̄i =
∫

fvid
3�v, and we have adopted the Einstein summation convention for

simplicity of notation. The above equation is simply the equation of continuity (2.4).
We can also multiply Eq. (2.6) by vj and integrate over velocity space to obtain

∂

∂t
(νv̄j) +

∂

∂xi
(νvivj) +

∂Φ
∂xj

ν = 0, (2.25)

where νvivj =
∫

fvivjd
3�v. By introducing the stress tensor

νσ2
ij =

∫
f(vi − v̄i)(vj − v̄j)d3�v = νvivj − νv̄iv̄j , (2.26)

and employing Eq. (2.24) we can rewrite Eq. (2.26) as

∂v̄j

∂t
+ v̄i

∂v̄j

∂xi
= − ∂Φ

∂xj
− 1

ν

∂

∂xi
(νσ2

ij), (2.27)

which is similar to Euler’s equation for fluids. We can go further to obtain higher-
order moment equations, but these are not generally useful for stellar dynamics.
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If we restrict ourselves to the spherical, steady-state system, Euler’s equation
becomes,

d

dr
(νv2

r ) +
2ν

r
(v2

r − v2
φ) = −ν

dΦ
dr

, (2.28)

where vr is the radial velocity and vφ is one component of the tangential velocity.
We have used the fact that v2

φ = v2
θ , where vθ is another component of tangential

velocity orthogonal to the direction of φ, a necessary condition for spherical symme-
try. If v2

φ = v2
r , the velocity distribution is isotropic, and the second term of the left

hand side of Eq. (2.28) vanishes. If v2
r > v2

φ, the particles have predominantly radial

orbits. On the other hand, if v2
φ > v2

r , the orbits are predominantly tangential and
near circular. In general, the anisotropy of the velocity ellipsoid varies with radius.
If a system is formed through collisionless collapse, the central parts of the system
tend to be isotropic while the outer parts are generally radial.

3. Elliptical Cores and Dwarf Spheroidal Galaxies

The theory developed in the previous lecture now can be applied to galaxies. We first
attempt to determine mass-to-light ratios of cores of elliptical and dwarf spheroidal
galaxies. To do this, we assume that the cores of these galaxies are (1) spherically
symmetric and (2) have an isotropic velocity distribution. We further assume that
(3) M/L is independent of radius. Finally we will assume that (4) the surface
brightness distribution fits the isothermal distribution discussed in the previous
lecture. By fitting the surface brightness profile to the isothermal sphere (Fig. 1) we
can determine the core radius r0 and the central surface brightness I0. Then, Fig. 1
shows that the central emissivity is

j0 ≈ I0

2r0
. (3.1)

But by the definition of the core radius, the central density is

ρ0 =
9σ2

4πGr2
0

, (3.2)

which can be used to determine M/L through

M

L
=

ρ0

j0
=

9σ2

2πGI0r0
. (3.3)

One can generalize the above formula a little if one assumes that the cores
of galaxies satisfy only the first three assumptions: spherical symmetry, isotropic
velocity distribution and constant M/L. In this case, one can write the mass-to-
light ratio as

M

L
= η · 9σ2

p

2πGI0rh
, (3.4)

where σ2
p is the line-of-sight mean square velocity dispersion at the center, η is

a constant that depends on the actual distribution function of the stellar system,
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and rh is the radius at which the surface brightness drops to half of its central value.
The constant η is found to be very insensitive to the details of the actual models.
For example, η = 0.971 for a Plummer model. One finds empirically that η = 1
to within a few percent for most stellar systems satisfying the three assumptions
that have density distributions resembling those of real galaxies (Richstone and
Tremaine 1986). Equation (3.4) with η = 1 is known as King’s core-fitting formula
and is commonly used for the determination of the mass-to-light ratios in the cores
of galaxies.

How accurate is the core-fitting formula likely to be? The most serious concerns
are the assumptions of velocity isotropy and spherical symmetry. A spherical galaxy
composed entirely of stars on circular orbits would have σp = 0 and hence η → ∞.
However, such models are unrealistic; in the more plausible case of radial anisotropy
(v2

r > v2
φ), the constant η can be as small as 0.65 (Merritt 1987b). For non-spherical

models η can be as low as 0.4 if the galaxy is viewed along its long axis (Merritt
1987b). The sensitivity to shape and velocity anisotropy is reduced if the dispersion
is averaged over the central core rather than being measured precisely at the center.

Despite these concerns, in the absence of information on the orientation and
velocity anisotropy of a given galaxy, the core-fitting formula (3.4) with η = 1 offers
the best available estimate of the central M/L.

This technique has been applied to the cores of elliptical galaxies and bulges of
spiral galaxies by Kormendy (1987a). No systematic differences are found between
bulges and elliptical cores. The median value for the elliptical cores is found to be
M/L ≈ 12 h, which is similar to the mass-to-light ratio expected from the Solar
neighbourhood if gas and young stars are removed. This suggests that the DM
in the Solar neighbourhood is also present in ellipticals and probably is a normal
component of the stellar population.

The same technique has been applied to dwarf spheroidal galaxies by Aaronson
and Olszewski (1987). There are about a half dozen low mass dwarf spheroidals that
are satellites of our own Galaxy. Such galaxies are good places to look for DM since
the density of luminous matter is very low. However, there are some difficulties in
obtaining reliable velocity dispersion data for dwarf spheroidals since the velocity
dispersion is low and the surface brightness is small. One has to measure accurate
velocities of a number of individual stars to get a reliable velocity dispersion.

The velocity dispersion may be misleading if the measured stars are members of
binary systems. To avoid contamination due to binaries, Aaronson and Olszewski
measured the velocities of individual stars more than once to see if there is any veloc-
ity variation over the observation interval (typically one year). Any stars showing
velocity variation are excluded in obtaining the velocity dispersion. The resulting
M/L’s for the dwarf spheroidals are listed in Table 2, as determined by Eq. (3.4)
with η = 1. Notice that the stars used in estimating σp are spread out over the
galaxy rather than being concentrated at the center; this implies that our estimates
of M/L will be systematically low, by up to a factor of two or so.
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Table 2. Mass-to-light ratios of dwarf spheroidal galaxies.

Name N σp(km s−1) I0(L�pc−2) rh(kpc) M/L

Fornax 5 6.4 ± 2 16.2 0.50 1.7
Sculptor 3 5.8 ± 2.4 9.7 0.17 6.8
Carina 6 5.6 ± 1.6 4.0 0.22 12
Ursa Minor 7 11 ± 3 1.2 0.15 220
Draco 9 9 ± 2 2.5 0.15 71

Notes: N denotes the number of stars used to determine the veloc-
ity dispersion. Parameters from Kormendy (1987b).

The M/L’s of some dwarf spheroidals are normal (similar to the Solar neigh-
bourhood or central parts of elliptical galaxies), but two, Draco and Ursa Minor,
show very large M/L. If these large M/L’s are correct, they show that some dwarf
spheroidals are composed mostly of dark matter.

It has often been asked whether the exceptionally large M/L for Draco and Ursa
Minor could be due to binary stars. Thus, one needs to know how much velocity
dispersion can be attributed to the orbital motion of binaries, given the selection
criterion against velocity variation employed by Aaronson and Olszewski. To address
this question quantitatively, we have made a simple simulation. We have calculated
the velocity dispersion due to orbital motions of binaries assuming that

(1) all stars are in binary systems;
(2) the primary component has mass M1 = 0.8 M� and the cumulative mass distri-

bution of the secondaries is ∝ M 0.4
2 with M2 < M1, similar to the distribution

for binaries in the Solar neighbourhood;
(3) the binary periods P are uniformly distributed in log(P ) over a interval ±0.25,

centered on some value log(P0); and
(4) the eccentricity distribution is uniform in e2, as expected in statistical

equilibrium.

Stars showing velocity variation ≥ 4 km s−1 between two epochs separated by 1 year
are excluded in computing the line-of-sight velocity dispersion since the observers
exclude them as well. Figure 2 shows the line-of-sight velocity dispersion σp as a
function of period P0. Also shown is the ratio fv of the number of stars show-
ing velocity variation to the number showing no variation. This graph shows that
there is a good correlation between the velocity dispersion due to binary systems
and the fraction of stars showing velocity variation. Therefore, once the fraction of
stars showing velocity variation among the sample is known, one can estimate the
contribution to the velocity dispersion from binary orbital motions.

This result can be applied to the two observed dwarf spheroidals with high
M/L’s. The Draco system has 11 stars observed with radial velocities. Two of
them show velocity variation, so fv ≈ 0.2. From Fig. 2, the velocity dispersion
contribution due to binaries is then at most about 2 km s−1. The contribution of
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Fig. 2. Plot of line-of-sight velocity dispersion σp due to binaries as a function of binary period,
as well as the ratio fv of the number of stars showing velocity variation exceeding 4 kms−1 over a
1 year interval to the number showing variation < 4 km s−1. We have assumed that all stars are in
binaries with log(P ) uniformly distributed over the interval ±0.25 around the plotted value. The
error bars indicate the width of the assumed distribution in log(P ) and the statistical uncertainty
in the results. The curves are not completely smooth because of resonance effects between the
mean binary period and the observation interval.

binaries to the observed dispersion of 9 km s−1 is therefore less than about 5% in
quadrature. The same analysis for Ursa Minor, which has a dispersion of 11 km s−1

from 7 stars (3 out of 10 measured stars show velocity variation, so fv ≈ 0.43), shows
that the dispersion due to binaries is about 4 km s−1 so that the observed velocity
dispersion is in error by at most 13%. Similar results are obtained for other period
distributions. Therefore it may safely be concluded that the effects of binaries are
negligible in Draco and Ursa Minor.

Are there other effects that might contribute to erroneous M/L’s? The radial
velocity data could be contaminated by motions of the stellar atmospheres. However,
K-giants, which are the main sources of velocity determinations, have very small
atmospheric motions. The core-fitting formula (3.4) is already biased toward low
M/L’s because it is based on the central velocity dispersion while the measured
stars often lie outside the core where the dispersion is lower. Statistical errors are
also biased toward smaller M/L since the χ2 distribution is asymmetric.

Perhaps the most interesting alternative to the existence of large quantities
of dark matter is the possibility that Draco and Ursa Minor are unbound sys-
tems. Their extremely low surface brightness, and their location in the plane of
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the orbit of the Magellanic Clouds, suggest that they may be only apparent density
enhancements arising, for example, from the crossing of streams of tidal debris from
the Clouds.

4. The Extent of the Galactic Halo

Most spiral galaxies, including our own, have flat rotation curves as far as one can
measure. This naturally leads to the question, how far beyond the last measured
point do rotation curves stay flat, that is, how far do dark galactic halos extend?
Here we will discuss various methods to determine the extent of the dark halo of
our Galaxy.

We shall employ a very simple spherical model in which the Galaxy has a flat
rotation curve up to the radius r∗; thus

V 2
rot =

{
V 2

0 for r < r∗
∝ 1

r for r > r∗
, (4.1)

which gives the mass distribution

M(r) =

{
V 2
0 r
G for r < r∗

M∗ = V 2
0 r∗
G for r > r∗

. (4.2)

Now our aim is to determine the value of r∗. Rotation curve measurements show
constant rotation velocity up to r ≈ 2R0, where R0 is the Galactocentric distance
of the sun; thus r∗ � 2R0 ≈ 17 kpc.

4.1. Local Escape Speed

The velocity distribution of stars in the Solar neighbourhood with respect to the rest
frame of our Galaxy shows a cut-off near vmax ≈ 500 km s−1 (Carney and Latham
1987). This is interpreted as a lower limit to the escape speed of stars in the Solar
neighbourhood. This means that the following equation holds,

1
2
v2
max + Φ(R0) < 0. (4.3)

The gravitational potential satisfies the equation,

dΦ
dr

=
GM(r)

r2
, (4.4)

which in the model of Eqs. (4.1) and (4.2) can be integrated to yield

Φ =




V 2
0

[
ln r

r∗ − 1
]

for r < r∗

−V 2
0 r∗
r for r > r∗

, (4.5)

where we have normalized the potential to vanish at infinity. By plugging V0 =
220 km s−1 and vmax = 500 km s−1 into Eq. (4.3), we get r∗ � 4.9R0. If we further
use R0 ≈ 8.5 kpc, the extent of the halo of our galaxy is roughly r∗ � 41 kpc.
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This corresponds to a mass M∗ � 4.6 × 1011M�. Since the total luminosity of our
galaxy at the V band is LV ≈ 1.4 × 1010 L�, the mass-to-light ratio becomes

M

L
� 33, (4.6)

at least a factor of six larger than the M/L in the Solar neighbourhood.

4.2. Magellanic Stream

The Large Magellanic Cloud (LMC: Galactocentric distance d = 52 kpc and M ≈
2× 1010 M�) and Small Magellanic Cloud (SMC: d = 63 kpc and M ≈ 2× 109 M�)
are the two nearest satellite galaxies to us. They contain ≈ 5 × 109 M� of neutral
hydrogen gas. In addition, there is a stream or trail of HI extending away from the
clouds. This HI trail follows a great circle and contains almost 109 M� of neutral
hydrogen. It is presumably composed of gas from the Clouds that has been stripped
off by the tidal field of the Galaxy.

Most of this gas is probably on free Kepler orbits, not too dissimilar from that
of the Clouds. At the tip of the stream, gas is falling towards us at high speed
(v ≈ −220 km s−1 in the Galactic rest frame). If the Galactic potential were that of
a point mass, this large velocity would suggest that the material at the tip has fallen
deep into the potential, to a Galactocentric distance � 15 kpc. However, parallax
effects due to the offset of the Sun from the Galactic center should then spoil the
great circle shape of the stream. This argument suggests that there is a massive halo
in our Galaxy, since then the required infall velocity can be achieved at a larger
radius.

Detailed dynamical models have been constructed by Murai and Fujimoto (1980)
and Lin and Lynden-Bell (1982). If a flat rotation curve is assumed for our Galaxy,
the best fitting circular velocity is 244 ± 20 km s−1, and the rotation curve must
remain flat to at least 70 kpc. This suggests that there is a very large amount of
DM in our Galaxy, much more than the lower limit obtained above using the local
escape velocity. The mass-to-light ratio of the Galaxy would exceed 56 in Solar units
if such an extended halo were present.

4.3. Local Group Timing

The nearest giant spiral galaxy M31 is about 730 kpc away. Together with the
associated satellite galaxies, we and M31 compose a relatively isolated system of
galaxies, known as the Local Group. The relative radial velocity of the center of mass
of us and M31 is −119 km s−1, which has the opposite sign to the usual Hubble flow.
It is possible that the two galaxies are approaching each other by chance. However,
a more natural explanation is that the two galaxies were once moving apart due
to the Hubble expansion, but that the expansion was slowed and reversed by their
mutual gravitational attraction. If we assume M31 and Galaxy to be point masses
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and ignore the presumably small masses of other Local Group members, the relative
orbit of the two galaxies can be written parametrically as

r = a(1 − e cosη), t =

√
a3

GM
(η − e sin η) + C, (4.7)

where C is a constant, a is the semi-major axis, e is the eccentricity, η is the eccentric
anomaly, and M is the total mass of the Local Group [compare Eq. (1.34)]. Since
the two galaxies were presumed to be at the same place at the beginning of the
expansion, r = 0 at t = 0 so that we have to choose e = 1 and C = 0, corresponding
to a radial orbit. The relative radial velocity may be written

dr

dt
=

√
GM

a

sin η

1 − cos η
=

r

t

sin η(η − sin η)
(1 − cos η)2

. (4.8)

By plugging in dr/dt = −119 km s−1 and t = 10–20 Gyr (1 Gyr = 109 years), we get
η = 4.11 (for t = 10 Gyr) to 4.46 (t = 20 Gyr) radians. Then the mass of the Local
Group is found to be M = 5.5 × 1012 M� (for t = 10 Gyr) or 3.2 × 1012 M� (for
t = 20 Gyr). This gives the mass-to-light ratio of the Local Group

M

L
= 76 − 130, (4.9)

which is again very large. We expect that this roughly represents the M/L of our
Galaxy if there is no big variation of M/L between M31 and the Galaxy.

4.4. Kinematics of Satellite Galaxies

In principle, the kinematics of satellite galaxies and globular clusters can provide
a useful tool to determine the mass of the Galaxy. However, this determination is
intrinsically difficult since there are only a few objects and only the line-of-sight
velocities are known. In particular, the satellite galaxies are at distances large com-
pared to the distance to the Galactic center from the Sun, so we see mainly the
radial component of their velocity. Thus we must make some statistical assumption
about the ratio of tangential to radial velocity.

If we assume r∗ is large compared to the distances of the sample objects, the
gravitational potential (4.5) has the form

Φ(r) = V 2
0 ln r + constant. (4.10)

The moment of inertia per unit mass is

I = r2 , (4.11)

and its first and second derivatives are

İ = 2�r · �̇r; Ï = 2�r · �̈r + 2v2. (4.12)

By taking an average over several galaxies, we get

〈v2〉 =
〈

r
dΦ
dr

〉
= V 2

0 . (4.13)
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Table 3. Globular clusters and satellite galaxies used for
Galactic mass determination.

Name d�(kpc) v�(km s−1)† vG(km s−1)§

LMC + SMC 52 245 ± 5 62
Draco 75 −289 ± 1 −95
Ursa Minor 63 −249 ± 1 −88
Sculptor 79 107 ± 2 75
Fornax 138 55 ± 5 −34
Carina 91 230 ± 1 14
AM1 116 116 ± 15 −42
NGC 2419 90 −20 ± 5 −26
Pal 3 91 89 ± 9 −59
Pal 4 105 75 ± 5 54

NotesThe list contains all known satellites with d� > 50 kpc
and published velocity error < 20 km s−1. Data sources given
by Little and Tremaine (1987).
†: radial velocity with respect to the Sun
§: radial velocity with respect to the Galactic center

If the velocity distribution is isotropic, 〈v2
r〉 = 1

3 〈v2〉 = 1
3V 2

0 . For V0 = 220 km s−1,
this gives 〈v2

r〉1/2 = 127 km s−1, while the actual data exhibit 〈v2
r 〉1/2 = 60 km s−1

(Table 3). This means that the existing data are consistent with a flat rotation
curve extending to very large distances only if the velocity distribution is primarily
tangential, a conclusion first reached by Lynden-Bell et al. (1983). Dissipationless
collapse leads to galaxies with a velocity distribution that varies from radial to
isotropic, and it is difficult to construct galaxies with predominantly tangential
velocities. Thus we are led to question the existence of an extended massive halo
for the Galaxy.

There have recently been substantial improvements in the accuracy of velocity
data for satellite galaxies. Furthermore, it is unlikely that the quality or quantity
of radial velocity data will be improved drastically in the near future. Therefore it
is perhaps appropriate to elaborate on the arguments above and to make a careful
statistical model of the currently available kinematic data for satellites (Little and
Tremaine 1987).

Let us introduce a fictitious mass for an observed satellite i

µi ≡
v2

r,iri

G
, (4.14)

where ri and vr,i are the distance from the Galactic center and the radial velocity
with respect to the rest frame of the Galaxy, respectively. For a Galactic mass M ,
let us denote P (µi|M)dµ as the probability of finding µi in the range between µi

and µi + dµ, which can be computed from

P (µ|M) =
∫

d3�rd3�vf(�r, �v)δ(µ − v2
rr/G)∫

d3�rd3�vf(�r, �v)
, (4.15)
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where f(�r, �v) is the usual phase space density distribution. Two different models for
the Galactic potential, a point mass and an infinite halo, and two different models
for the velocity distribution, radial and isotropic, are considered. For the point mass
potential,

P (µ|M) =




2
5π

max[0,(2M−µ)]5/2

µ1/2M3 for isotopic orbits

1
π

max[0,(2M−µ)]1/2

µ1/2M
for radial orbits

. (4.16)

Now what we want to know is the corresponding probability distribution for M

given µ, that is, P (M |µ). The relation between P (µ|M) and P (M |µ) is given by
Bayes’s theorem

P (M |µ) =
P (µ|M)P (M)∫

P (µ|M ′)P (M ′)dM ′ , (4.17)

where P (M)dM is the a priori probability for a galaxy to have mass between M

and M + dM . If several objects are available the probability becomes

P (M |µ1, . . . , µN ) = P (M)
∏N

i=1 P (µi|M)∫ ∏N
i=1 P (µi|M ′)P (M ′)dM ′ . (4.18)

We now have to specify P (M) to proceed with our analysis. One of the most rea-
sonable choices is that the a priori distribution is uniform in log M so that

P (M)dM ∝ d log M or P (M) ∝ 1
M

. (4.19)

This choice is obviously somewhat arbitrary. However, the results become less and
less sensitive to the choice of the functional form of P (M) as the number of data
points increases, and for the numbers we are dealing with (N ≈ 10) the choice of
P (M) has no strong influence on the results.

The data set has been gathered from various sources. All globular clusters and
satellite galaxies at distances d > 50 kpc with velocity errors less than 20 km s−1 are
used. The data are listed in Table 3. The LMC and SMC are treated as one data
point at their center of mass since the motion of each Cloud is greatly influenced
by the other Cloud.

Using Eqs. (4.16) and (4.18) we find that for isotropic orbits there is a 90%
probability that the Galactic mass M lies in the range [1.4, 5.2]× 1011 M� with the
median value being 2.4 × 1011 M�. For radial orbits the mass is even smaller. If
we define r∗ so that the mass obtained above corresponds to V 2

0 r∗/G with V0 =
220 km s−1, we get r∗ ≤ 46 kpc at the 95% confidence level for isotropic orbits. This
result is self-consistent in that the upper limit to r∗ is smaller than the lower limit
of 50 kpc for the data so that the point mass approximation is valid over most of
the orbit of a typical satellite.

A similar analysis has been made assuming an infinite halo potential. In this
case, the unknown is the circular speed V0 rather than the total mass of the
Galaxy. Here we find the range of circular velocity at the 90% confidence level
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Table 4. Values of r∗ from various methods.

Method r∗(kpc)

Direct measurement of rotation curve � 20
Local escape velocity � 40
Magellanic Stream � 80
Local Group timing ≈ 100
Kinematics of satellites ≈ 50

to be [77, 165] km s−1, with the median value being 107 km s−1. This is clearly too
small compared to the local speed of 220 km s−1, and once again implies that the
Galaxy’s massive halo has only a limited extent.

This analysis strongly suggests that the Galactic halo does not extend much
beyond the outermost visible components of the Galaxy at r ≈ 30 kpc. However,
it should be noted that the value for r∗ obtained here is considerably lower than
the values obtained from the Magellanic Stream and Local Group timing. If some
unknown formation mechanism has placed the satellites on orbits with predomi-
nantly tangential velocities, then the satellite kinematics could be consistent with
these other arguments.

4.5. Summary

We summarize the various results for the determination of the Galactic mass in
Table 4.

All of these estimates agree that the Galactic halo is much more extended than
the bulk of the visible stars and gas. Hence most of the mass of the Galaxy is
dark. However, there are some contradictions between various determinations of
the Galactic mass, particularly between the satellite kinematics on the one hand
and the Magellanic Stream and Local Group timing on the other. The source of
this discrepancy remains mysterious. Perhaps (1) the gas in the Magellanic Stream
is not on free Kepler orbits; (2) the Galaxy and M31 are embedded in a low-density
mass concentration so that most of the mass in the Local Group is not associated
with either galaxy; or (3) the satellite galaxies and distant globular clusters are on
nearly circular orbits.

Thus, it is still unclear whether the halo of the Galaxy — and by analogy, the
halos of other spiral galaxies — extends only to 50 kpc or so, about twice the optical
extent, or out to much larger distances, up to several hundred kiloparsecs.

5. Binary Galaxies

Carefully selected samples of binary galaxies provide another opportunity to deter-
mine the mass of individual galaxies. However, constructing a well-defined sample
is not an easy task. As an example, we discuss the sample used by Turner (1976).
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From the Zwicky catalogue of galaxies, he restricted his sample to galaxies in
the northern hemisphere (i.e. declination δ > 0) in order to ensure completeness.
To avoid heavy Galactic extinction, he also selected only galaxies at Galactic lat-
itude |b| > 40◦. The flux limit for his sample was taken to be 15th magnitude,
again to help ensure completeness. The selection criteria for binary galaxies were:
(1) the separation of the binary (θ12) does not exceed 8 arcminutes; (2) the next
nearest galaxy should lie beyond 5θ12. The second criterion was used to avoid pos-
sible contamination from groups and clusters. The final number of binary galaxies
was 156 pairs out of some 30,000 galaxies in Zwicky catalogue.

Despite these stringent selection criteria, later close visual examination by White
et al. (1983) showed that many of Turner’s pairs are members of larger clusters or
groups. There are two reasons why Turner’s selection criteria prove to be insuffi-
ciently stringent. First, groups or clusters can easily have one or two bright members
that are included in Turner’s sample, while the other group members fall below the
magnitude limit. Second, if two galaxies happen to be nearby in the plane of the
sky, there may well be no other galaxy within five times their separation even in
rich clusters. White et al. find that only 76 pairs out of Turner’s 156 survived the
additional culling of all pairs in visible clusters or groups. Clearly, it is very difficult
to construct a large, well-defined sample of isolated binaries.

If we ignore this concern, we can carry out some analysis using the existing
sample. We shall work with the moment Eq. (2.28) for spherical systems. If we
assume a flat rotation curve so that the potential Φ(r) = V 2

c ln r + const, and the
degree of anisotropy β = 1 − v2

φ/v2
r is a constant independent of r, then Eq. (2.28)

reduces to

d

dr
(νv2

r ) +
2v2

rν

r
β = −νV 2

c

r
. (5.1)

The statistical analysis of large catalogs of galaxies shows that the galaxies have
a two-point correlation function ξ ∝ r−γ , with γ ≈ 1.8. This implies that the
distribution of binary galaxies follows ν ∝ r−γ . A solution to Eq. (5.1) is then

v2
r = const = V 2

c /(γ − 2β).

If the system has an isotropic velocity dispersion tensor (β = 0), we get
Vc = 170 km s−1 after plugging in the observed rms velocity difference (v2

‖)
1/2 =

127 km s−1 from Turner’s sample (v2
‖ = v2

r since the velocities are isotropic). This is
more or less consistent with other determinations. However, if the orbits are radial
(β = 1), no solution with v2

r and V 2
c positive is possible. In general, we can get any

value of Vc < 170 km s−1 by adjusting the unknown parameter β between 0 and
0.5γ = 0.9; thus the results are entirely dependent on the unknown anisotropy of
the orbits.

Do we learn anything from binary galaxies? Because of the problems we have
mentioned above, the answer is “not much”. Perhaps the most interesting result so
far is that the velocity difference between the galaxies does not correlate either with
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the projected distance between binaries or the luminosity. This suggests that mass
is not related to the luminosity of the host galaxy.

6. Masses of Groups and Clusters of Galaxies

6.1. Groups of Galaxies

The virial theorem discussed early in these lectures can be used to determine the
masses of groups or clusters of galaxies in much the same way Zwicky did. The
virial theorem [Eq. (1.8)] states

N∑
i=1

miv
2
i − G

2

N∑
i,j=1
i�=j

mimj

|�ri − �rj | ≈ 0, (6.1)

where we have used ≈ rather than = because the equation is only precisely true in
a time averaged sense. We now take an average of Eq. (6.1) over angle, denoted by
〈〉Ω. We have

v2
i = 3〈v‖,i〉Ω, (6.2)

where v‖ denotes the line-of-sight velocity. The projected distances �Ri are likewise
related to the three-dimensional distances �ri through〈

1

|�Ri − �Rj |

〉
Ω

=
1

|�ri − �rj |
〈∣∣∣∣ 1

sin θij

∣∣∣∣
〉

Ω

=
π

2
1

|�ri − �rj | , (6.3)

where we have assumed that the direction of a vector �r is random. The averages in
Eqs. (6.2) and (6.3) are not meaningful if one looks at only one or two galaxies. How-
ever, these relations can be used to estimate average three-dimensional velocities
and separations when summed over many galaxies.

Thus we may write Eq. (6.1) as

3
N∑

i=1

miv
2
‖,i −

G

π

N∑
i,j=1
i�=j

mimj

|�Ri − �Rj |
≈ 0. (6.4)

We now have several different options for determining the mass of the system:
(1) we may assume that mi ≈ (M/L)Li (i.e. the mass-to-light ratio is constant for
all galaxies) or (2) we may assume that mi = M/N , where N is the total number
of galaxies and M is the total cluster mass (i.e. the number distribution of galaxies
in phase space is proportional to the distribution of mass). If we take the second
assumption, the total mass-to-light ratio may be written

M

L
=

3πN

G

∑
i v2

‖,i∑
k Lk

∑
i�=j 1/|�Ri − �Rj |

. (6.5)

Several alternative methods to the virial theorem for estimating masses of groups
of galaxies have been proposed by Heisler et al. (1985). For example, there is the
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“median mass” estimator

MMe =
fMe

G
medi,j

[
(v‖,i − v‖,j)2|�Ri − �Rj |

]
, (6.6)

where medi,j denotes the median over all pairs of galaxies (i, j). The proportionality
constant fMe is determined to be approximately 6.5 from numerical experiments.

The median mass estimator is found to give similar masses to the virial theorem.
No one method appears to be superior to another, and in a given case it appears
that all known estimators tend to err in the same direction.

These mass estimators are applied to the catalog of groups of galaxies compiled
by Huchra and Geller (1982). The median mass-to-light ratios are found to be
approximately 400 h in Solar units with errors being about ±0.4 in the logarithm
between the median and the quartiles (that is, a factor of 3). Thus there is clear
evidence for large quantities of DM in groups.

6.2. Rich Clusters: Coma Cluster

We can make more elaborate models for rich clusters than for groups, since there are
many more galaxies available. For the sake of definiteness, we will concentrate on
the Coma cluster, which provides one of the best examples of the evidence for DM.
The virial theorem is not useful in this case because it is plagued by issues of cluster
membership in the outer parts. The core-fitting method discussed in lecture 3 is not
particularly useful either, in part because there is no well-defined core in the Coma
cluster.

The moment Eq. (2.28) can be written

d

dr
(νv2

r ) +
2νv2

r

r
β(r) = −ν

dΦ
dr

= −ν
GM(r)

r2
, (6.7)

where the anisotropy parameter β(r) = 1−v2
φ/v2

r . If we assume spherical symmetry,
we can determine the line-of-sight dispersion profile v2

‖(r) and the number density
profile ν(r) from observations. However, Eq. (6.7) is still underdetermined, since
it involves four functions, β(r), M(r), v2

r(r), and ν(r), and we have only three
constraints (the two observable quantities and the equation). Merritt (1987a) has
made several assumptions to determine the mass of the cluster as follows:

(1) Number traces mass (i.e. ν ∝ ρ): With this assumption, the observed disper-
sion and number density profiles imply a nearly isotropic velocity distribution
(i.e. β ≈ 0). The determination of mass in this case is straightforward, and gives
M = 1.8 × 1015 h−1M�.

(2) Minimum mass model: Such models can be obtained by concentrating the mass
in the center as much as possible without violating observations. The density
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profile is assumed to be

ρ(r) ∝ 1
(1 + r2/r2

0)n/2
. (6.8)

Then Merritt attempts to make r0 as small as possible. He finds rather implausi-
ble models in this case, that is, all the orbits are nearly circular outside the core.
For these models the total mass never becomes lower than 0.7 × 1015 h−1M�.
The DM is mostly concentrated within two optical core radii.

(3) Maximum mass model: One can obtain a rather high mass model by distributing
the DM more or less uniformly. The total mass and central density vary over
a wide range. However, the mass within 1 h−1 Mpc is within 25% of the value
obtained for case (1).

(4) Radial dependence of anisotropy: One also can choose a functional form for the
radial dependence of the velocity anisotropy,

β(r) =
r2

r2 + r2
a

, (6.9)

where ra is a free parameter. This choice has some nice features, in particular,
the orbits are more radial in the outer parts, as one expects from a collisionless
collapse process. Furthermore, models of this kind have a known distribution
function of the form

f = f

(
E +

L2

2r2
a

)
. (6.10)

Models with the anisotropy radius ra exceeding the optical core radius r0 are
found to be consistent with observations. This means that models having pre-
dominantly radial orbits outside the core radius, in which the DM is more
uniformly distributed than the galaxies, are allowed.

In conclusion, the mass of the Coma cluster is about 2×1015 h−1M� if the dark
matter is distributed like the galaxies; the mass cannot be less than 40% of this
value but may be much more if the dark matter is more extended than the galaxies.
For a total luminosity of 5 × 1012 h−2L�, the corresponding mass-to-light ratio is
about 400 h in Solar units. The distribution of DM is not well-constrained, but it
seems to be inescapable that most of the mass in the Coma cluster is dark.

There are several other methods to determine the masses of galaxies and galaxy
systems, and we will close by mentioning two.

X-ray observations of elliptical galaxies have been used to determine the mass
of these galaxies, assuming hydrostatic equilibrium for the X-ray emitting hot gas.
The advantage of this technique is that the distribution function of the gas is known
to be isotropic, so that the anisotropy parameter β = 0. However, existing spectral
data, which are essential to determine the temperature profile, have no spatial
resolution, and the results are sensitive to the assumed temperature profile. The sole
exception, where adequate resolution is available, is the giant elliptical galaxy M87.
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One problem in this case is that M87 is located in the center of the Virgo cluster so
that its mass may not be typical of other galaxies. The analyses derive a very large
mass-to-light ratio, at least 750 in Solar units (Fabricant and Gorenstein 1983).
This technique will become more widespread when high-resolution spectral data
are available from the AXAF satellite.

The perturbations to the Hubble flow induced by the nearby Virgo cluster of
galaxies have been used to estimate the mass of the cluster. The mass-to-light ratio
appears to be comparable to that of Coma and other rich clusters, but substantially
less than the value required so that the Universe is closed.

7. Summary

The determinations of masses of galaxies and systems of galaxies on various scales
show large variations in M/L. Generally M/L increases as the scale of the object
increases. For example, M/L ≈ 5 in the Solar neighbourhood (on a scale of a few

Fig. 3. Mass-to-light ratios of galaxies and galaxy systems discussed in the text. The key to
the labels is: “N”, nucleosynthesis; “I”, inflation; “V”, Virgo flow; “groups”, groups of galaxies;
“Coma”, Coma cluster of galaxies; “LG”, Local Group timing; “M87”, X-ray observations of M87
galaxy; “sat”, satellites of our Galaxy; “MS”, Magellanic Stream; “esc”, escape speed from Solar
neighbourhood; “EC+SB”, elliptical cores and spiral bulges; “dSph”, dwarf spheroidal galaxies;
“vis”, visible components of the Solar neighbourhood; “Oo”, Oort limit. All values are plotted for
h = 1, but a line with an asterisk at the end is used to show how results for M/L and scale change
when h = 0.5. This is a revised version of a diagram due to Ostriker et al. (1974).
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hundred parsecs) while M/L ≈ 400 h in the Coma cluster which has a scale of
several Mpc. One notable exception to this trend is that some dwarf spheroidal
galaxies show large M/L on scales less than a kiloparsec. The mass density implied
by these M/L’s is never large enough for closure, which corresponds to an average
M/L ≈ 1600 h for the entire Universe.

Baryonic matter can account for the DM on scales up to the size of dark halos
of galaxies, but non-baryonic mass is probably required to provide the dark mass
in rich clusters unless the Hubble constant is as small as 50 km s−1 Mpc−1.

To summarize, we have prepared a schematic graph in Fig. 3, which shows the
various determinations of M/L in different objects and on different scales.

Acknowledgements

Much of the material in these lectures is drawn from a book that Tremaine has
written with James Binney (Binney and Tremaine 1987), and the treatment given
here has been greatly influenced by our joint labours over the past several years.
We are grateful to David Merritt for constructive suggestions and criticisms on a
number of topics. Of course, the responsibility for errors is our own.

References

Aaronson, M. and Olszewski, E. (1987) In: Dark Matter in the Universe, IAU Symposium
No. 117, p. 153, eds. Kormendy, J. and Knapp, G. R., Reidel, Dordrecht, The Nether-
lands.

Binney, J. J. and Tremaine, S. (1987) Galactic Dynamics, Princeton University Press,
Princeton, NJ.

Carney, B. W. and Latham, D. W. (1987) In: Dark Matter in the Universe, IAU Sym-
posium No. 117, p. 39, eds. Kormendy, J. and Knapp, G. R., Reidel, Dordrecht, The
Netherlands.

Davis, M. and Huchra, J. (1982) Astrophys. J., 254, 425.
Faber, S. M. and Gallagher, J. S. (1979) Ann. Rev. Astron. Astrophys., 17, 135.
Fabricant, D. and Gorenstein, P. (1983) Astrophys. J., 267, 535.
Gunn, J. E. (1978) In: Observational Cosmology, Eighth Advanced Course of the Swiss

Society of Astronomy and Astrophysics, p. 1, eds. Maeder, A., Martinet, L., and Tam-
mann, G., Geneva Observatory, Geneva, Switzerland.

Heisler, J., Tremaine, S., and Bahcall, J. N. (1985) Astrophys. J., 298, 8.
Huchra, J. P. and Geller, M. J. (1982) Astrophys. J., 257, 423.
Kirshner, R. P., Oemler, A., Schechter, P. L., and Shectman, S. A. (1983) Astron. J., 88,

1285.
Kormendy, J. (1987a) In: Structure and Dynamics of Elliptical Galaxies, IAU Symposium

No. 125, ed. de Zeeuw, T., Reidel, Dordrecht, The Netherlands.
Kormendy, J. (1987b) In: Dark Matter in the Universe, IAU Symposium No. 117, p. 139,

eds. Kormendy, J. and Knapp, G. R., Reidel, Dordrecht, The Netherlands.
Kormendy, J. and Knapp, G. R., eds. Dark Matter in the Universe, IAU Symposium No.

117, Reidel, Dordrecht, The Netherlands.
Lin, D. N. C. and Lynden-Bell, D. (1982) Mon. Not. R. Astron. Soc., 198, 707.
Little, B. and Tremaine, S. (1987) Astrophys. J., 320, 493.



102 S. Tremaine and H. M. Lee

Lynden-Bell, D., Cannon, R. D., and Godwin, P. J. (1983) Mon. Not. R. Astron. Soc.,
204, 87p.

Merritt, D. (1987a) Astrophys. J., 313, 121.
Merritt, D. (1987b) Submitted to Astron. J.
Murai, T. and Fujimoto, M. (1980) Publ. Astr. Soc. Japan, 32, 581.
Primack, J. R. (1987) In: Proceedings of the International School of Physics “Enrico Fermi”

92, ed. Cabibbo, N. Italian Physical Society, Bologna, Italy.
Ostriker, J. P., Peebles, P. J. E., and Yahil, A. (1974) Astrophys. J. Lett., 193, L1.
Richstone, D. and Tremaine, S. (1986) Astron. J., 92, 72.
Trimble, V. (1987) Ann. Rev. Astron. Astrophys., in press.
Turner, E. L. (1976) Astrophys. J., 208, 20.
White, S. D. M., Huchra, J. P., Latham, D., and Davis, M. (1983) Mon. Not. R. Astron.

Soc., 203, 701.
Zwicky, F. (1933) Helv. Phys. Acta, 6, 110.



103

Chapter 7

GRAVITATIONAL LENSES

Roger D. Blandford∗ and Christopher S. Kochanek†

Theoretical Astrophysics, California Institute of Technology,
Pasadena, CA 91125, USA

These lecture notes provide an introduction to the theory of gravitational lensing
and an assessment of the current observational position. The optics of gravita-
tional lenses is described using vector, scalar, and propagation formalisms and
the uses of these three descriptions are outlined. Image properties for isolated
lenses of increasing complexity are derived. The importance of including elliptic-
ity and finite core sizes in models of galaxies is emphasized. The properties of
singular lenses such as black holes and strings are also distinguished. A topologi-
cal classification of image combinations is derived using the scalar formalism, and
a second classification for highly amplified images together with a general scaling
law is obtained using catastrophe theory. Microlensing by stars inside a galaxy
can introduce granularity into the image of a point source. The behavior of the
microimages is discussed as the optical depth of the stars increases. There is, as
yet, no evidence for microimaging. Compound lenses, in which the deflecting mass
is localized in two or more deflecting screens, are discussed. Next, a critical review
of ten claimed gravitational lens candidates is presented. It is argued that four
of these are most probably multiply imaged quasars. One case is almost certainly
not a lens and three are probably independent quasars with similar optical spec-
tra. Assessment of the remaining two cases requires further observation. The four
strong cases exhibit magnifications (high for bright quasars and of order unity
for faint quasars) that reflect the quasar luminosity function. There is, as yet,
no need to invoke new forms of dark matter to account for the observed lenses.
The prospects for a larger, systematically derived samples of lenses, which is vital
for statistical studies, seems reasonably bright. Methods proposed to use gravita-
tional lenses to derive the Hubble constant, the mass density of the universe, and
galactic masses are critically analyzed.

1. Introduction

1.1. History

The problem in question, however, takes on a radically different aspect, if, instead
of in terms of stars we think in terms of extragalactic nebulae. Provided that our
present estimates of the masses of cluster nebulae are correct, the probability

∗Current address: SLAC, MS 75, Menlo Park, CA 94025, USA.
†Current address: Department of Astronomy, The Ohio State University, Columbus, OH 43210,
USA.
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that nebulae which act as gravitational lenses will be found becomes practically
a certainty.

— Zwicky 1937b

The 1919 solar eclipse expedition confirmed the gravitational bending of light by
the sun to be the value predicted by general relativity

α =
4M�
r�

= 1.75′′ (1.1)

at the limb of the sun (in units where G = c = 1, which we will use throughout).
This experiment is a classic test of general relativity, and the best experimental

data on the bending of light by the sun gives the ratio of the measured to the
predicted values to be 1.007 ± 0.009. However, no one seriously proposed multiple
imaging and amplification until Einstein discussed gravitational lensing by stars
in 1936. (Although it was reported to Zwicky that E. B. Frost, a director of the
Yerkes observatory, had proposed a search program in 1923.) The first discussion of
gravitational lensing by galaxies is due to Zwicky in a series of two letters and an
article printed in 1937. Even in this series of papers, Zwicky includes the proviso
that the masses of the nebulae, and the distances to them, were still a matter of
debate. The subject appears to have been ignored until the 1960s when theoretical
discussions appeared by Refsdal and Barnothy and Barnothy. The predictions were
considered further in the early 1970s by Bourassa, Kantowski, Norton, Press, Gunn,
and many others. And so, theorists were not taken by surprise when the first lens
0957 + 561 was discovered in 1979 by Walsh, Carswell, and Weymann.

Since 1979 the field has expanded rapidly. We now have at least ten lens candi-
dates, which are listed in Table 1, with some basic information and our prejudices as
to how strong a case exists for each. Theoretical study has likewise burgeoned, with
three main topics dominating: models of specific lenses, the statistics of lensing, and
microlensing.

1.2. Simple Estimates

“The time has come,” the Walrus said, “to talk of many things: of shoes — and
ships — and sealing wax — Of cabbages — and kings — And why the sea is
boiling hot — And whether pigs have wings.”

— Lewis Carroll in Through the Looking Glass

Given the equation for the bending of light by a spherical mass, we can estimate the
requirements for gravitational lenses and the size of the image splittings generated.
For a mass M, and impact parameter r, the bending angle

α ∝ M

r
∝ σ2 (1.2)

where σ is the characteristic one dimensional velocity dispersion. In particular, for
an isothermal sphere, α = 4πσ2 = 2.6′′σ2

300. Using the simple geometry shown
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Table 1. Lens candidates.

QSO zQ zL mQ θ(′′) arc-seconds Number of images How strong a case? Who

0957 + 561 1.4 0.36 17 6 2 strong Walsh et al., 1979
1115 + 080 1.7 ? 16 2 4 Weymann et al., 1980
2016 + 112 3.3 0.8, ? 22 3 3 Lawrence et al., 1984
2237 + 031 1.7 0.04, 0.6? 17 1 2 Huchra et al., 1985

3C324 1.2 0.84 20 2 2 preliminary Le Fèvre et al., 1987
1042 + 178 0.9 ? 19 3 4 Hewitt et al., 1987
0023 + 171 1.0 ? 23 5 2 Hewitt et al., 1987

2345 + 007 2.2 ? 19 7 2 controversial Weedman et al., 1982
1635 + 267 2.0 ? 19 4 2 Djorgovski et al., 1984

1146 + 111 1.0 ? 18 157 2 not a lens Turner et al., 1986
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Fig. 1. Schematic diagram of the normal lensing geometry. The observer is at point O, the
source at point S, and the lens is some blob of mass lying in plane L. The image I is deflected by
angle α relative to the source. The impact parameter at the lens is r, and D is a measure of the
distance scale.

in Fig. 1, the condition for multiple imaging is αD � r where D is a measure of
the distance, and r a measure of the lens size. For cosmological distances, D ∼
(1/3)H−1

0 ∼ h−1Gpc, so that the multiple imaging condition becomes

σ � 100
(

rc

1 kpc
1h−1Gpc

D

)1/2

km s−1 (1.3)

where rc is the core radius of the object defined by the radius of the region in
which the surface density falls to half of its peak value. In this and in subsequent
equations, the numerical values are more accurate than the arguments used to derive
them. Condition (1.3) implies that galaxies generally can create multiple images,
but clusters probably cannot. Alternatively, we can deduce a critical surface density
of matter Σ for multiple imaging,

Σ ∼ M/r2 ∼ α/r � Σcrit ∼ 1/D ∼ 0.4 g cm−2 (1.4)

for a cosmological distance D. Essentially, as much matter as is found in a column
out to z � 1 must be compressed into the lens plane. (Multiple imaging can result
from arbitrarily small surface densities if the density profile is suitably contrived.
However, for reasonable mass distributions, the approximate relation in Eq. (1.4)
still stands.) This can also be related to a critical surface brightness,

I0 � 21 + 2.5 log
(

M

10L

L�
M�

)
(1.5)

magnitudes in a square arc second, or gravity, g � 10−8 cm s−2. Given two such rays,
we can estimate the time delay between them to scale as ∆t ∼ M ∼ (1/4)Dθ2 ∼
0.02(θ/1′′)2 years, where θ is the image separation. In principle this provides a
means of measuring galactic masses or the Hubble constant.

The probability of lensing can be estimated by an argument due to Press and
Gunn. If the lens number density is n, then the optical depth of the universe is
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approximately τ = nr2D ∼ nMD2 ∼ Ωlens. Where Ωlens is the fraction of the
critical density to close the universe contained in the lenses. For galaxies this leads
to τ ∼ Ωgal ∼ 0.01. While providing a rough estimate, this argument can over-
estimate the optical depth found using potentials associated with extended mass
distributions. Lenses are well described by geometric optics, and are achromatic.
Diffraction will be important only if the diffraction length

√
λD is greater than

the typical impact parameter
√

MD which implies λ � M . Recall that for a one
solar mass object, M ∼ 1 km, so that diffraction will never matter for astrophysical
lenses.

1.3. Uses

Proposed uses of gravitational lenses include:

(a) Dark Matter — Lenses can provide information about dark matter either
directly through models of specific lenses and microlensing phenomena, or indi-
rectly through the statistics of lenses. In both cases, only information about
clumped dark matter will be unambiguous. While the mean background den-
sity contributes to the process of lensing by focusing light rays, the effect is
weak compared to the effects of a specific lens.

(b) Hubble Constant/Galactic Masses — The time delay between two images
of a lens system is a measure of the mass of the lens or the Hubble constant.
In either case, the results are highly sensitive to the lens model which is used.
This probably means that no single lens will ever yield a value for the Hubble
constant which is less subject to systemic error than current methods. The
results given by a statistical ensemble of lenses may eventually provide an inde-
pendent measure of H0.

(c) Natural Telescopes — Gravitational lenses do not make very good
telescopes — their behavior is strongly non-linear, and the properties of the
cosmological optical bench are largely unknown. Nonetheless, lenses do amplify
and magnify distant QSOs. For example, microlensing has the promise of mea-
suring the size of the continuum optical emission region in QSOs on scales far
smaller than is possible by any other observational method.

1.4. Organization of Lectures

I mistrust all systematizers and I avoid them. The will to a system is a lack of
integrity.

— Nietzsche in The Twilight of the Idols

In these lectures, we will try to summarize the field as it stands today. We will
proceed by discussing three theoretical approaches to gravitational lensing. These
will then be applied to a series of simple lenses to give a feeling for the types of
images that ought to be produced in nature. This serves as the beginning of a dis-
cussion of the topological properties of image configurations, their stability, and
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their likelihood. Next we will discuss microlensing, its use and implications for the
determination of the size of distant sources, as well as the absence of any observed
events. The final theoretical topic will be the complications introduced by having
more than one deflection of the light rays by a compound lens. We will discuss the
observations next; what is seen, and how it relates to our theoretical knowledge.
Finally, we will discuss applications of gravitational lensing to the problem of cos-
mology and dark matter. In keeping with the lecture format, we have not cited
original references in the text. However, we do provide a bibliography at the end of
each section which can be consulted for further information on the topics covered.
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2. The Optics of Gravitational Lenses

For now we see through a glass, darkly;

— I Corinthians 13

There are three separate formalisms that are useful for different problems in gravi-
tational lensing.
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2.1. Vector Formalism

2.1.1. The lens equation

We can derive the equation governing gravitational lensing by the geometrical con-
struction shown in Fig. 2. The lens equation for a single lens follows from simple
geometry,

�θSDOS + �α(�θI)DLS = �θIDOS , (2.1)

where �θS is the angular position of the source, �θI is the angular position of the
image, and the bending angle �α can be computed by superposing the deflections
due to each element of the lens,

�α(�θI) = 4DOL

∫
d2θ

Σ(�θ)(�θI − �θ)

|�θI − �θ|2 (2.2)

where Σ is the surface mass density of the lens.
The distances between the observer and the source DOS , and the lens and source,

DLS, are some measure of the distance, the details of which we will discuss later.
An equivalent geometrical construction is given by a bending angle diagram, shown
in Fig. 3, where the deflection angle is plotted as a function of the image position on
the lens plane on which the curve θI − θS is superposed. The images are located at
the intersections of the curve and the line. Note that for a non-singular gravitational
potential, the deflection angle will be ∝ M/r at large radii, and ∝ Σ0r at small radii,
where Σ0 is the central surface density. As long as the potential is non-singular and

Fig. 2. Diagram of light ray paths in a typical lens. The solid lines show the true path of the light
rays from the source S to the observer O as they are deflected in the lens plane L. The observer
sees the images I1 and I2 of the source as if the light had followed the path of the dashed lines.
The lensing equation is shown to be the geometrical construction derived from the distances
(DOL, DLS , DOS) and the angles (θI , θS , α) in the problem. The source S, which has a real
position at θS , is seen at the image position θI due to a deflection at the lensing mass by angle α.
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Fig. 3. A bending angle diagram for a typical spherical lens, characterized by a linear rise at
small radii, and a 1/r drop off at large radii. To construct the image positions for a source at
position θS , the line θI − θS is drawn on the bending angle diagram, and the images (A, B, and
C) are at the interesections of the bending angle curve and the line.

circularly symmetric, only one or three images will be generated unless the mass
distribution is very contrived. Singular potentials will generally capture one image
in the singularity of the potential.

2.1.2. Image amplification and parity

Since surface brightness is conserved by lensing, the flux of the images depends
only on their area on the sky. The amplification is the Jacobian of the transforma-
tion (2.1)

A =

∣∣∣∣∣ ∂�θI

∂�θS

∣∣∣∣∣ =
θI

θS

dθI

dθS
if the lens is circular. (2.3)

A is the ratio of the areas of an infinitesimal region of the source plane, and its
projection onto the image plane. The amplification for a circular lens consists of
two parts. The first term, θI/θS , is the tangential spreading of the image due to
the purely geometrical effect that the angle subtended by the image relative to
the origin of the potential is the same as the angle subtended by the source. The
second term dθI/dθS is due to the focusing or defocusing of the source in the radial
direction. For the circular lens this can also be exhibited geometrically as shown in
Fig. 4. The same construction also shows that images can be inverted in the process;
to see this, label each of the sides of the source and see where that side appears in
the images. These changes in the orientation of the images are referred to as their
partial parities. The partial parity of an image in any direction is + if it has the
same orientation as in the source and − if it has been reflected. Hence each image
has a parity label (radial parity, angular parity), and a total parity which is positive
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Fig. 4. Construction of image amplifications and parities. For a spherical lens, all images subtend
the same angle relative to the origin of the lens as the source does. Hence by taking an extended
source from θS to θS + dθS and constructing the image positions from the bending angle diagram,
the pattern of images on the sky can be found by expanding the images in arcs covering the same
angle as the source. The amplification of an image is simply the area of the image on the sky
divided by the area of the source. The parities are found by following the mapping of the edges of
the source to the edges of the images. Shown at the bottom is the effect of the parities on a bent
feature such as a kinked radio jet.

if the partial parities have the same sign and negative if they have opposite signs.
The partial parities are the signs of the eigenvalues of the second rank tensor which
describes the distortion of the images relative to the source (see Sec. 4.1).

The original image has parity (+, +), and the C image has the same orientation,
and hence the same parity, (+, +). The B image has been reflected in both direc-
tions, and hence has partial parities (−, −), but the total parity (the product of the
two parities) is positive indicating that the orientation can be related to the original
orientation by a rotation. The A image is reflected only in the angular direction,
giving it partial parities of (+, −) and negative total parity. In practice, the relative
(but not the absolute) parities can be established from changes in the orientation of
structures in the images — three non-collinear identifiable points are needed, such
as can be provided by a kinked radio jet.

2.1.3. Distance measures

The universe is, of course, not Euclidean, and the distances used in the lensing equa-
tion should not be Euclidean distances. The correct distance measure in a homoge-
neous universe is the angular diameter distance because it is the distance measure
which is defined so as to make the geometric construction described above correct.
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In a smooth Friedmann universe with current density fraction Ω0 = 2q0 (where q0

is the deceleration parameter) of the critical density for closing the universe, the
angular diameter distance is given by the expression

Dij =
2

H0

(1 − Ω0)(Gi − Gj) + (GiG
2
j − G2

i Gj)
Ω2

0(1 + zi)(1 + zj)2
(2.4)

where zi < zj , and

Gi = (1 + Ω0zi)1/2. (2.5)

If point i is the observer, this reduces to the more familiar form

DOj =
2

H0

(1 − Ω0)(1 − Gj) + (G2
j − Gj)

Ω2
0(1 + zj)2

. (2.6)

If we restrict ourselves to Friedmann universes, the effects of the cosmological model
(choice of Ω0) are generally smaller than those due to the choice of a lens model (see
Sec. 8.1). For most purposes, it is acceptable to use the Einstein–De Sitter model
in which Ω0 = 1,

Dij =
2

H0

(1 + zi)1/2(1 + zi) − (1 + zi)(1 + zj)1/2

(1 + zi)(1 + zj)2
(2.7)

and

DOj =
2

H0

(1 + zj) − (1 + zj)1/2

(1 + zj)2
. (2.8)

The angular diameter distance, and the ratios which commonly appear in the
lensing equations are shown in Fig. 5 for sources at redshifts 1, 2, and 3 in an
Einstein–De Sitter universe. The major effect is that the universe “stops” beyond
some redshift (1 for Einstein–De Sitter) in the sense that the effective deflec-
tion angle αDLS/DOS is strongly reduced. For the Einstein–De Sitter case, the
most probable lens position is near zL = 0.5 where DLS/DOS ∼ 0.5 whereas by
zL = 1.5, DLS/DOS ∼ 0.1. This changes slightly when Ω0 is changed.

If some fixed fraction of the mass density is localized in large clumps, we can
still define an approximate angular diameter distance by using the affine parameter
and ignoring the matter “outside the beam” (cf. Sec. 2.3).

2.2. Scalar Formalism: Fermat’s Principle

With a single non-circular lens, the angles become two dimensional vectors on the
sky and it is more convenient to introduce a scalar formalism based on Fermat’s
principle. In the weak field limit (φ � 1), the metric near the lens is

ds2 = −(1 + 2φ)dt2 + (1 − 2φ)dxidxi + O(φ2) (2.9)

where φ is the Newtonian gravitational potential of the lens. The equation for the
geodesic followed by a light ray is simply ds2 = 0 which we can integrate along



Gravitational Lenses 113

Fig. 5. Typical combinations of angular diameter distances which appear in the lensing equations
for an Einstein–De Sitter universe. (a) The angular diameter distance from the observer to a source
at a given redshift. (b) The effective bending angle of a lens is αe = (DLS/DOS)α where α is
the intrinsic bending angle of the object. Here, DLS/DOS is shown for three source redshifts
zS = 1, 2, and 3. (c) The strength of a lens can be measured by the overdensity of the lens relative
to a critical surface density Σ−1

crit = 4πDOLDLS/DOS (see Sec. 3.1). Here we show the cosmological
term DOLDLS/DOS for three source redshifts zS = 1, 2, and 3. The factors of DOL and DLS

are due to the large surface densities required when the lens approaches either the observer of
the source.

the trajectory to determine a time along the path. In a cosmological setting, the
lens is always thin and will cause only small angle deflections (except for singular
lenses); this allows the use of the “paraxial approximation”. After subtracting the
time along the geodesic in the absence of the lens we have two contributions to the
time delay as measured in the lens plane.

t′geom =
1
2
�α · DOL

�θI =
DOSDOL

2DLS
(�θI − �θS)2, (2.10a)

t′grav = −2
∫

φdz. (2.10b)
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Fig. 6. Time Delays and Fermat’s Principle. Diagram showing the source of the geometrical time
delay. The two arcs are contours of constant propagation time from the source and observer. Hence
the geometrical time delay is the length of the light path between the two arcs at distance DOLθI

from the fiducial ray in the lens plane. Using the fact that the deflection angle is small, the result
is simply �α · DOL

�θI/2.

The source of the geometrical contribution is shown in Fig. 6. We must convert to
observer time using t = (1 + zL)t′ to give the time delay for a virtual ray with an
image at �θI as seen by the observer,

t(�θI) = (1 + zL)
[
1
2

DOLDOS

DLS
(�θI − �θS)2 − 2

∫
φ(�ξ)dz

]
. (2.11)

Using Fermat’s principle, the actual rays are the virtual rays which extremize the
time t(�θI), so that

�θS = �θI − DLS

DOS
2�∇�xφ(2)(�x) (2.12)

where �x = DOL
�θI . The deflection angle is the gradient of twice the two-dimensional

Newtonian potential

φ(2)(�x) = φ(2)(DOL
�θI) = 2D2

OL

∫
d2θΣ(�θ) ln |�θI − �θ|. (2.13)

This is the same result as in Eqs. (2.1) and (2.2) where we identify

�α = 2�∇�xφ(2) = 2�∇�x

∫
φ(�x, z)dz. (2.14)

If we define an effective potential ψ = 2DOLDLSφ(2)/DOS then the magnification
tensor is simply

A =
∣∣∣∣1 − ∂x∂xψ −∂x∂yψ

−∂x∂yψ 1 − ∂y∂yψ

∣∣∣∣
−1

. (2.15)

We discuss the use of the virtual time delay in Sec. 4 below.
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2.3. Propagation Formalism: The Optical Scalar Equations

The relativistic optical scalar equations were developed by Sachs (1961) and Penrose
(1966); they are useful in an inhomogeneous universe where there are no well-defined
lens planes at which the light rays are bent. We will give a simple Newtonian dis-
cussion. The basic idea is to follow a congruence of light rays from the observer to
the source or vice versa. If we regard the rays as particles in the plane perpendicular
to their direction of motion, we can perform Taylor expansions to find approximate
equations for the evolution of the cross section of the congruence. Using the New-
tonian equations with the usual doubling of the Newtonian potential to determine
the acceleration, the change in the cross section is:

dxa

dt
= va,bxb = va, (2.16a)

dva

dt
= −2φ,abxb. (2.16b)

The time t is the distance along the ray (for c = 1). Equation (2.16) is basically
a formula for the tidal distortion of the bundle of rays relative to the path of the
fiducial ray (coordinates xf

a , velocity vf
a ) which is determined by

dxf
a

dt
= vf

a , (2.17a)

dvf
a

dt
= −2φ,a. (2.17b)

We can rewrite the symmetric tensor va,b in terms of a real rate of expansion, θ,
and a complex shear, σ = σr + iσi,

va,b =
(

θ + σr σi

σi θ − σr

)
. (2.18)

The symmetry of va,b implies there is no “angular velocity” and hence no rotation
of the images. Note that the acceleration dva/dt is just twice the Newtonian gravity
in the weak field limit. Combining Eqs. (2.16a) and (2.16b) and using a dot to
denote the time derivatives, we get two equations which separately determine the
evolution of the beam due to matter inside the beam (Ricci focusing)

θ̇ + θ2 + |σ|2 = −(φ,11 + φ,22) = −4πρ (2.19a)

and deflections caused by matter outside the beam, (Weyl focusing)

σ̇ + 2θσ = −φ,11 + φ,22 − 2iφ,12. (2.19b)

(Equation (2.19b) is really two equations, one for each component of σ.) The matter
within the beam focuses the light ray and must decrease the cross sectional area.
To see this, consider a bundle of rays with elliptical cross section and area πl2,
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Fig. 7. Optical Scalar Equation. A congruence of rays is show propagating through space, with the
variation in the cross section of the bundle about the fiducial ray shown below. The coordinates of
the optical scalar equation are measure in the plane perpendicular to the direction of propagation
of the fiducial ray.

where l evolves according to

l̇ = θl,

l̈ = −(σ2
r + σ2

i + 4πρ)l.
(2.20)

The quantity in parenthesis is positive definite as long as the stress tensor satisfies
the strong energy condition, and so, this equation implies that the beam will always
be focussed (see Fig. 6).

In a cosmological or relativistic situation, the time derivatives become derivatives
with respect to an affine parameter λ =

∫
dt(1 + z)−1 parametrizing the geodesic,

and the density and potentials become elements of the Ricci and Weyl tensors. For
an Einstein–De Sitter universe (Ω0 = 1; (1+z) ∝ t−2/3) a simple computation gives
the affine parameter back to redshift z to be

λ = 2H0[1 − (1 + z)−5/2]/5.

The conclusions are unchanged provided the stress tensor is reasonably well
behaved.
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3. Gravitational Potential Wells

Let us now examine some simple potentials and their lensing effects. Our procedure
is to build up from simple, high symmetry examples to more general potentials that
could be used to model a galaxy or cluster.

3.1. Uniform Sheet

For a uniform sheet of surface mass density Σ0, the lensing equation is

θS = θI

(
1 − Σ0

Σcrit

)
(3.1)

where we define a critical surface density

Σcrit ≡ DOS

4πDOLDLS
. (3.2)

The magnification is

A =
(

1 − Σ0

Σcrit

)−2

(3.3)

which has the property that for Σ0 = Σcrit the sheet focuses the beam onto the
observer and the amplification is infinite. Smaller surface densities cannot focus the
beam fully, and larger surface densities over focus the beam so that it is diverging
again at the observer.

3.2. Point Mass (Black Hole)

Let us consider a Newtonian point mass of mass M; two images are always generated
as shown in Fig. 8. The lensing equation can be written in the form

�θS = �θI

[
1 − θ2

+

|θI |2
]

. (3.4)
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Fig. 8. Bending angle diagram and critical curves of a point mass. The singular lens has one
critical line C+ located at θ+ in the lens plane corresponding to a degenerate caustic at the origin
of the source plane. One image will always appear inside the critical line on the side opposite the
source (I2), and one will appear outside the critical line on the same side as the source (I1). As the
images approach the critical line (source approaching the caustic) they become more tangentially
extended, eventually forming an Einstein ring image for a source at the origin. A point mass will
always generate two images, but the second image (I2) becomes increasingly faint as the source
moves away from the lens.

It is only necessary to consider radial components of �θI and �θS . Here θ+ =
(2GMDLS/DOS)1/2. Images appear on opposite sides of the center of the potential
and are of opposite parity. The amplification A can be expressed as

A−1 = 1 − θ4
+

|θI |4
. (3.5)

If the flux ratio of the two images |A1/A2| = R > 1 so that image 1 is the brighter,
then the amplifications of the two images are

A1 =
R

R − 1
, A2 = − 1

R − 1
. (3.6)

If the source is near the optic axis, behind the black hole, there are two images
that are very bright and tangentially extended. If the circular symmetry is perfect,
an Einstein ring image is formed with radius θ+ on which the image is infinitely
amplified. The curve on the sky formed by the ring image is termed a critical line.
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The positions of the images are completely determined by R and θ+,

θ1 = θ+R1/4, θ2 = −θ+R−1/4. (3.7)

The brighter image 1 lies outside the critical line, and the fainter image 2 lies inside
the critical line.

3.3. Singular Isothermal Sphere

The singular isothermal sphere can be used to give a crude model for elliptical
galaxies. It is derived from the equations of hydrostatic equilibrium for a spherical
distribution,

1
ρ

dP

dr
= g, (3.8a)

1
r2

d

dr
(r2g) = −4πGρ, (3.8b)

where the isotropic pressure is P = ρσ2. The one-dimensional velocity dispersion σ

is taken to be constant, leading to a singular solution with ρ = (σ2/2πG)r−2. The
deflection angle is fixed at all impact parameters, α = 4πσ2 = 2.2′′σ2

300 where σ300

is the velocity dispersion measured in units of 300 km s−1. The lens equation is

�θS = �θI − DLS

DOS
α

�θI

|θI | (3.9)

and the amplification is

A−1 = 1 − DLS

DOS
α

1
|θI | . (3.10)

This results in the bending angle diagram and image configurations shown in Fig. 9.
The lens produces two images (of opposite parity) provided

θS < θ+ = αDLS/DOS .

The radius of the C+ critical line is θ+, again corresponding to a source on the optic
axis. The two images are positioned at θ1,2 = θS ± θ+, and the amplifications are
A1,2 = θ+/θS ± 1. We will call this arrangement of the brightest images an opposed
geometry because the bright images are located on opposite sides of the lens. The
condition for the creation of two images is equivalent to having the mean surface
density of the lens Σ̄ inside the critical line greater than the critical density intro-
duced in Sec. 3.1. Again, Σcrit measures the surface density where the amplification
becomes infinite, and above which multiple images are created.

3.4. Isothermal Sphere with Finite Core

By adding a finite core size and eliminating the singularity at the center of the
potential, three images can be created. Let us concentrate on the bright images
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Fig. 9. Bending angle diagram and critical curves of a singular isothermal sphere. The lens has
only one critical curve C+ located at θ+ in the lens plane corresponding to a degenerate caustic
at the origin of the source plane. The amplification is due only to the tangential expansion or
contraction of the image relative to the source.

located near critical lines. The critical lines in the lens plane are images of caus-
tic lines in the source plane — hence a source will appear to be strongly amplified
if it is near a caustic line. With a finite core size, there are two critical lines C+

and C− located at θ+ and θ−. The images near the θ− critical line are elongated
radially rather than tangentially, and the two bright images straddle the C− critical
line on the same side of the potential. This arrangement of the brightest images, we
will refer to as an allied geometry (see Fig. 10).

In most cases, the third image in the core (opposed geometries) is strongly
deamplified

A3 �
(

Σcrit

Σ

)2

∼ r2
c

v4
c2

(3.11)

where rc is the core radius in units of kpc and vc2 is the central velocity dispersion
in units of 100 km s−1. It is easy for such an image, usually located in the core of
the lens galaxy, to be unobservably faint. In the region inside C− or outside C+

the images have positive parity. Between the two critical lines they have negative
parity. In general, the opposed geometry always comprises most of the cross section
for multiple imaging provided the core size is fairly small. If the core size becomes
large, and the lens is only marginally able to generate multiple images (a marginal
lens), then the cross section for the allied and opposed geometries are approximately
equal.
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Fig. 10. Bending angle diagram and critical curves of an isothermal sphere with a core. The lens
now has two critical curves C+ and C− located at θ+ and θ− in the lens plane. The C+ critical
line is still due to the degenerate caustic at the origin of the source plane associated with the
Einstein ring image. The C− critical line is located at the point where the line is tangent to the
bending angle curve. At this point, the image becomes extended in the radial direction leading
to two bright image straddling the C− critical line. For sources inside the caustic associated with
C−, there are three images, and for sources outside, there is only one image.

3.5. Elliptical Potentials

If we introduce some ellipticity into the potential, the lens can generate five images,
and the five image cross section exceeds the three image cross section at moderate
amplification. Highly amplified images are no longer opposed when the mean ampli-
fication of the two brightest images Ā12 � ε−1, where ε is the ellipticity of the poten-
tial. A simple argument shows that this is a general result. The time delay between
two opposed images can be estimated using a Taylor expansion as ∆t ∼ Dθ2

+/Ā12

where θ+ is the radius of the C+ critical line. If the potential has ellipticity ε, an
azimuthal perturbation ∆φ ∼ εDθ2

+ will be imposed on the arrival time surface near
the critical line. When ∆t ∼ ∆φ, the opposed images will be displaced leading to
a five image geometry with the brightest two images allied. Numerical simulations
verify this rule for a range of potentials. In general this means that highly amplified
images will not have large separations on the sky; instead, pairs of bright images
will closely straddle critical lines. The total cross section for producing an image
with mean magnification of the two brightest images Ā12 > A is

σ(Ā12 > A) ∼ S+

A2
(3.12)
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where S+ is the area enclosed by the critical lines on the sky. The A−2 behavior
of the integral cross section is a general result which will be derived in Sec. 4.1.
Marginal lenses in which Σ0 ∼ Σcrit will generally produce three bright images, the
brightest of which are allied.

For all image configurations, the time delay between the two brightest images
scales as

∆t12 ∼ (1 + zL)DOLDLS

DOS

θ2
12

Ā12
(3.13)

where θ12 is their separation on the sky and Ā12 their mean amplification. This
results from Taylor expansions of the lensing equation for image positions near the
C+ critical line. Again, this is verified by numerical simulation.

3.6. Irregular Potentials

If several potentials are superposed (as in a small cluster of galaxies), then an irreg-
ular pattern of caustics and critical lines will be created (see Fig. 12). There is no
simple way to describe the image location and magnification for low amplifications.
However, at high amplifications, bright images are found to straddle the critical
lines so that results from regular potentials found by expansions near caustics are
general. Also as a rule, singularities and near singularities in the potentials will
attract and strongly deamplify images associated with the maximum in the arrival
time surface.

3.7. Cosmic Strings

Cosmic strings result from a cosmological phase transition; the string’s metric is
determined by the equation of state P = −ρ and it has extent in only one dimension.
For an infinite straight string, the metric is

ds2 = −dt2 + dr2 + dz2 + (1 − 4µ)r2dφ2 (3.14)

where µ ∼ 3 × 10−6 corresponding to a mass per unit length of order kilotons
per Fermi. This spacetime is locally flat, but has an angle deficit of 4πµ giving a
deflection angle

α = 4πµ sin θ (3.15)

where θ is the inclination of the string relative to the optic axis. A moving straight
string need not be perpendicular to the line connecting the images. These properties
differ from those of line mass in flat space. A straight string produces two images
neither of which is amplified, and both of which have the same parity. This allows
lensing by a string to be differentiated from other singular lenses, such as a black
hole, which produce images of differing parity and amplification (see Fig. 13).

If cosmic strings exist at all, then they are probably irregular and in constant
mildly relativistic motion. If they are looped on the scale of the image separation
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Fig. 11. Caustic lines and critical curves for an elliptical potential. (a) Shows the caustics of an
elliptical potential which models a typical galaxy. The inner caustic has four cusps (cf. Sec. 4.2.3)
and a source inside it will generate five images. Sources between the outer and inner caustics
generate three images, and sources outside both caustics generate only one image. (b) Three
image opposed image configuration. The solid lines are the critical curves of the lens, the outer
one is C+ the inner one C−. Inside C− and outside C+ the image parity is even, while between the
critical curves, it is odd. (c) Three image allied image configuration. (d). Five image configuration.
The brightest two images are allied.

Fig. 12. Caustics of an Irregular Potential. Caustics (left) and critical lines (right) of two super-
posed elliptical potentials. In this case only one, three, or five image regions exist. The intersecting
caustics form a hyperbolic-umbilic catastrophe (cf. Sec. 4.2.5).

then the metric will change on the scale of the time it takes light to pass the string
(because the internal oscillations of the string are strongly relativistic). In this case,
Fermat’s principle no longer applies, and there is essentially no restriction on image
type and behavior.
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Fig. 13. Bending angle diagram for a cosmic string. The wedge shaped region missing from
the circle represents the angle deficit of the string 4πµ. A light ray enters and leaves the wedge
perpendicular to the edge. This limits the region in which the string generates a second image to
an area of 4πµ on either side of the string.
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4. Generic Features of Images

4.1. Arrival Time Surfaces

We next want to examine the properties of the arrival time surface formed by the
virtual time delay introduced in Sec. 2.2. We define the renormalized time delay

r =
DLSt

(1 + zL)DOLDOS
(4.1)
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and the renormalized two dimensional Newtonian potential (cf. Sec. 2.2)

ψ =
2DOLDLS

DOS
φ(2) =

4DOLDLS

DOS

∫
d2θ′Σ(�θ′) ln(�θI − �θ′). (4.2)

The potential ψ satisfies the Poisson equation in two dimensions with the source
equal to twice the density measured in units of the critical density (cf. 3.1) for lensing

∇2ψ =
2Σ

Σcrit
. (4.3)

Expressed in terms of ψ, the time delay is

r =
1
2
(�θI − �θS)

2 − ψ(�θI). (4.4)

For the moment, we can choose our image plane coordinates to be centered on the
source position �θS so that

r =
1
2
�θ2

I − ψ(�θI). (4.5)

The stationary points of the virtual time correspond to extrema in the time delay
surface so that the location of images is easily determined by examining a contour
plot of the time delay. If ψ = 0 the surface is a parabola centered on �θI = �0
and the image is located at the origin. If ψ �= 0 the contours become distorted
(see Fig. 14). In particular, contours which pass through saddle points, which we will
call crossing contours, give a topological classification of allowed image geometries.
The time delay can also be used directly for attempts to determine the Hubble
constant or the mass of the lens from observations, when it is evaluated along the
actual ray.

Fig. 14. Time Delay Surfaces. The figure on the left is of the unperturbed parabolic time delay
surface. The figure on the right shows the surface when it is sufficiently perturbed to multiply
image. The crossing contour which characterizes this time delay surface is the limaçon.
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The magnification of an image (cf. Sec. 2.2) is determined by the extrinsic cur-
vature of the surface

τ,ij =
∂θSi

∂θIj
. (4.6)

Physically, τ,ij , which we will call the magnification tensor, measures the ratios of
the areas of a small region on the source plane, and its projection onto the image
plane. The determinant H = |τ,ij |, which is called the Hessian of the transformation
�θI → �θS , is the inverse of the image amplification, H−1 = A.

Notice that if the time surface is locally flat (small curvature) the image will be
strongly amplified. The magnification tensor is symmetric, so its diagonalized form
can be written as

τ,ij =
(

κ + µ 0
0 κ − µ

)
(4.7)

where κ = 1 − Σ/Σcrit and µ are respectively the expansion and the shear of the
image. If we imagine increasing the lens distance DOL then the rates of change of
κ and µ are related to the quantities θ and σ introduced in Sec. 2.3. The signs
of the two eigenvalues κ + µ and κ − µ determine the parity of the images, and
the character of the extremum in the time delay at which the image is located.
If the signs of the eigenvalues are (+, +) the extremum is a minimum, if they are
(+,−) the extremum is a saddle point, and if they are (−,−) the extremum is a
maximum. In general, if there are N images, (N + 1)/2 will have positive total
parity, and (N − 1)/2 will have negative total parity. High resolution observations
of gravitational lenses with the HST (or VLBI if the images have radio structure)
allow the determination of the relative parities of the images. Because the Hessian
is formed from the second derivatives of a scalar function, the magnification tensor
is symmetric, and the images can be sheared or reflected, but not rotated. This is
no longer true if there is more than one lens plane contributing to the deflection
(Sec. 6).

These diagrams characterize some topological limits on time variations and
potential shape depending on the parity of the image, and certain combinations of
parity with time variation order are forbidden. For example, all maxima (cf. Sec. 2.3)
must have passed through a region with Σ > Σcrit. The parity of a maximum, and
hence the signs of the eigenvalues of (4.7), are (–, –) so that both κ + µ and κ − µ

must be negative. This is true only if κ < 0 and hence Σ > Σcrit. Similarly, a mini-
mum has parity (+, +) which requires that κ > 0 and hence a region with Σ < Σcrit.
In fact, all minima must be amplified because the (+, +) parity requirement implies
|µ| < κ < 1 so the magnification satisfies

A = (κ2 − µ2)
−2

> 1.

The first image to vary must be a minimum because the time delay surface
approaches +∞ for large |θI |. This means the time delay surface must have a
global minimum. This result is general and will hold for an arbitrary odd number
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Fig. 15. Crossing contours for three image topologies.

of images, even with multiple lens planes. Near the transitions between topologies,
there are strongly amplified images. At least one eigenvalue of the curvature tensor
passes through zero as the critical curve is crossed. Hence, the magnification |τ,ij |−1

becomes infinite.
By examining the crossing contours of the time delay, we can classify the allowed

parity combinations if the time delay asymptotically becomes parabolic. The “odd
image theorem” which states that non-singular lenses generate only odd numbers
of images also becomes geometrically clear when lensing is viewed in terms of defor-
mations of a parabolic surface. When there is only one image, the only extremum is
a minimum and there are no crossing contours of the surface (see Fig. 15). If there
are three images, then there are two topologically distinct cases. The first is called
a limaçon, and the second is called a lemniscate. The limaçon has a minimum, a
maximum, and a saddle point, and its limiting case is a black hole which generates
two images of different parity. The lemniscate has two minima and a saddle point,
and its limiting case, the cosmic string, generates two images of the same total and
partial parities (cf. Sec. 3.2). If we allow five images, there are six different non-
degenerate geometries (see Fig. 16). For seven images, there are 25 different allowed
non-degenerate crossing contours.

4.2. Caustics and Catastrophes

4.2.1. Structural stability of images

Caustics are the loci of source positions for which two or more associated image
magnifications diverge to infinity. (Normally in optics we imagine the caustics as
existing in the image space of a fixed point source. However, in the application
to gravitational lenses, it is more convenient to fix the observer and construct the
complementary caustics in the source space.) The nature of the caustics is sensitive
to the degree of symmetry in the lens. If there is sufficient asymmetry, then the
caustics will be structurally stable to small perturbations in the lens. However, high
symmetry (e.g. circularly symmetric lenses) produce structurally unstable caustics
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Fig. 16. Crossing contours for five image topologies.

which change their characteristics as soon as the symmetry is broken. The caustics
can be described by catastrophe theory, which has a long tradition of application to
optics (albeit not under this name), and a shorter history of imaginative application
to the social sciences.

4.2.2. Isolated image

Before considering the form of catastrophes, let us discuss the behavior of the time
delay surface for an isolated image. If we choose the origin of the lens and source
spaces so that a source located at θS = 0 produces and image at θI = 0, then the
time delay surface is locally

r(θ1) =
1
2
ax2

I +
1
2
by2

I + · · · (4.8)

where xI and yI are Cartesian coordinates and an additive constant has been
dropped. The constants a and b are derived from a Taylor expansion of the Newto-
nian potential about the image point, and a+b ≤ 2 is required for a positive surface
density. For a general source position θS the images are located at

xI =
1
a
xS , yI =

1
b
yS , (4.9)

which means the mapping is simply a stretching of the coordinate systems by factors
of 1/a and 1/b along the coordinate axis. A circular source is mapped into an ellipse,
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with magnification A = (ab)−1 and axis ratio b/a. This fully characterizes the local
behavior of an isolated image.

4.2.3. Fold catastrophe

The simplest catastrophe is the fold catastrophe, which corresponds to caustics trac-
ing a smooth curve in the source plane. A source on one side of a fold generates two
images which straddle a critical line in the lens plane, while on the other side it gen-
erates no images (see Fig. 17). As the source crosses the fold, the two images merge
producing strongly amplified images. Locally, the time delay surface can be written

r(θI) =
1
3
ax3

I +
1
2
bx2

I +
√

bcxIyI +
1
2
cy2

I (4.10)

where a > 0, without loss of generality. The image positions are

xI = ± 1√
a

[
xS −

√
b

c
yS

]1/2

, yI =
1
c
yS −

√
b

c
xI (4.11)

and the magnification of each image is

A =
1

2acxI
=

1
2c
√

a(xS − √
b/cyS)1/2

. (4.12)

For xS > (b/c)1/2yS there are two images, and for xS < (b/c)1/2yS there are
no images. When xS = (b/c)1/2yS the two images merge at xI = 0 with infinite
amplification. Thus, the line xI = 0 is a critical line, and xS =

√
b/c yS is a caustic.

If a source approaches a fold at x0 with constant velocity, the amplification of the
image A ∝ |x−x0|−1/2 ∝ |t−t0|−1/2 where t0 is the time at which the source reaches
the fold. Globally, there must be another image to satisfy the odd-number theorem

Fig. 17. Fold Catastrophe. Diagrams of the source plane and image plane near a fold as a source
crosses over the fold starting from the multiple imaging side. The images start on opposite sides
of the fold, and merge when the source is on the fold caustic where they are infinitely amplified.
When the source has crossed the catastrophe there are no images (locally, globally there must be
at least one if the lens is non-singular).
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(assuming a non-singular lens). To this order, a fold caustic is locally a straight line;
globally, the fold must form a closed loop. If the caustic has self-intersections, these
may correspond to higher order catastrophes. As the images appear on opposite
sides of the critical line, they will have opposite parities.

These properties, and the fact that essentially all of the length of the caustics
in a lens consist of folds, allows a simple calculation of the cross section of a lens as
a function of amplification. The cross section is

σ =
∫

d2θS =
1
2

∫
d2θIH(θI) (4.13)

where H(θI) is the Hessian (cf. Eq. (4.6)). The factor of 1/2 is needed to prevent
double counting, as there are two images per source near a fold catastrophe. If we
perform a Taylor expansion of the Hessian near a critical line, decomposing the
integral into directions locally parallel (θ||) and perpendicular (θ⊥) to the critical line

σ � 1
2

∫
dθ||dθ⊥

∂H

∂θ⊥
θ⊥

� 1
2A2

∫
dθ||

|∇θ⊥H|H=0

. (4.14)

This gives the general rule that the cross section for amplification greater than
some value A is proportional to A−2 if the caustic structure is dominated by folds.
This result is verified by numerical calculations. Hence there is a low probability for
amplifications of A � 1, but there are many more faint quasars than bright quasars
and it may be possible that the two effects balance (cf. Sec. 7.4).

4.2.4. Cusp catastrophe

The next generic catastrophe is the cusp, which generates either three images or
one image. The time delay surface can be expanded locally in the form

r(θI) =
1
4
ax4

I +
1
2
bx2

IyI +
1
2
cy2

I (4.15)

with images located at the solutions of the equations

ax3
I + bxIyI = xS ,

1
2
bx2

I + cyI = yS . (4.16)

The magnification is

A =
1

(3ac − b2)x2
I = bcyI

. (4.17)

The critical line and the caustic are the curves for which the magnification diverges:
the critical line is a parabola,

yI =
b2 − 3ac

bc
x2

I (4.18)
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Fig. 18. Cusp Catastrophe. Diagrams of the source plane and image plane near a cusp as a source
crosses through the cusp. There are initially three images, which merge as the source approaches
the cusp. On the cusp there is one infinitely amplified image, and when the source has passed the
cusp, there is only one image.

and the caustic is

y3
S =

27c2

8b

(
1 − 2ac

b2

)
x2

S . (4.19)

For sources “inside” the caustic there are three images, and for sources “outside”
there is one image. When θS = 0 the three images merge at θI = 0 leaving
one infinitely amplified image at the same location. As the caustic is approached,
the images become elongated parallel to the critical line (see Fig. 18). In general,
cusps consist of only a tiny fraction of the total length of caustics in a lens, and
hence do not usually affect the scaling laws of Sec. 4.2.4 (for an exception, see
Sec. 5.4).

4.2.5. Higher order catastrophes

Higher order catastrophes will occur in non-degenerate lenses although the cross
section associated with them will be much lower than for the fold. In general, as we
vary the observer’s position the number of images changes, but there are relatively
few ways this can happen in a generic case. What we need is a classification of the
way crossing contours can have merging extrema (e.g. source position coordinates
or lens parameters). Suppose we have n rays involved in a catastrophe; then we
need (n−1) “control” parameters to explore the general case, measuring the angles
between images. The image positions θI are called “state” variables.

For example, with only two rays (n = 2), the arrival time surface must look like
Fig. 19 with only one control parameter, the separation between the images. This
corresponds to a fold catastrophe. With three rays (n = 3), there are two control
parameters, and we can form cusps. Notice that this can occur for the lemniscate



132 R. D. Blandford and C. S. Kochanek

Fig. 19. Higher order catastrophes. Schematic drawings of the crossing contours of higher order
catastrophes, for the case in which the saddle points all share the same contour. The general
case, when the saddles do not share the same contour, can be simply derived from these. Similar
diagrams can be drawn for five ray catastrophes.

Fig. 20. Optical scalar equation and caustics. The upper diagram shows the bundle propagating
through space. The lower diagram shows the cross section of the bundle. Caustics occur when the
cross section becomes degenerate and forms a line.

topology, but not the limaçon topology. If there are more than two control param-
eters, a little experiment suffices to determine the topologically distinct nestings of
crossing contours. With n = 4 we can form three distinct catastrophes, which are
known as the swallowtail, the hyperbolic umbilic, and the elliptic umbilic. Finally,
with n = 5 there are the butterfly and parabolic umbilic catastrophes. For a single
elliptical lens, the highest order generic catastrophe is the hyperbolic umbilic (see
Figure 12).

4.3. Caustics as Conjugate Points of Ray Congruences

The catastrophes can be interpreted from the point of view of the optical scalar
equation in terms of congruences of rays (see Fig. 20). If we follow a pencil of rays
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with circular cross section about the fiducial ray near the source, than this cross
section will be distorted along the ray, and will in general be elliptical. Eventually,
the cross section may degenerate into a line where the rays cross the fiducial ray.
The point where this occurs is conjugate to the source, and observer located there
would clearly see a point subtend a finite solid angle and so be infinitely magnified.
At this point, the source lies on a caustic. If the congruence is traced further, it
may yield additional conjugate points. If we now trace the rays backwards in time
from the observer, we can trace out the source caustics as the loci of points at the
source which are conjugate to the observer. The caustic surfaces will generally be
smooth on the scale of the scattering potential.

References

Caustics and Catastrophes

Arnold, V. I. (1984) Catastrophe Theory (Springer-Verlag, New York).
Berry, M. V. and Upstill, C. (1976) Progress in Optics XVIII, 2, 57.
Poston, T. and Stewart, I. N. (1978) Catastrophe Theory and Its Applications (Pitman,

London).
Thom, R. (1975) Structural Stability and Morphogenesis (Benjamin, Reading, Mass.).

5. Microlensing

5.1. Order of Magnitude Estimates

Using the order of magnitude estimates for the scale of angular deflections, we
estimate the mean deflection for objects of mass M to be

θ ∼ (M/D)1/2 ∼ (M/M�)1/2µas (5.1)

where D is the effective cosmological distance. The optical depth for the occurence
of microlensing can be estimated from the angular cross section for microlensing,
σ ∼ πθ2, and the number of stars per unit angular area n∗. The optical depth is

τ ∼ f∗Σ/Σcrit (5.2)

where f∗ is the fraction of the local mass in stars, and Σ is the local surface density
of the galaxy. In the outer parts of galaxies, Σ � Σcrit and f∗ � 1 so that galaxies
are optically thin; but in the central regions, Σ > Σcrit and f∗ ∼ 1 so that the
optical depth exceeds unity and the problem becomes non-linear due to multiple
scatterings. If we model the galaxy by an isothermal sphere, the central surface
density is

Σ0 =
9σ2

0

2πrc

∼= 6σ2
0,300

rc,kpc
g cm−2.

Recall from Eq. (1.4) Σcrit ∼ 1 g cm−2, so that the optical depth in the center of
galaxies is τ ∼ 10. The impact parameter with respect to the star is b∗ ∼ √

MD ∼
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1016(M/M�)1/2 cm � r∗ where r∗ is the radius of the star. This condition allows
the microlensing potential to be treated as that of a point mass.

Another phenomenon which we might call “millilensing” can be caused by
objects whose masses lie between stellar and galactic masses such as globular clus-
ters, giant molecular clouds (GMCs), and hypothetical halo black holes with masses
of order 106M�. In this range of masses, the characteristic scale of the deflection
angle is milliarcseconds. They will only produce multiple images if they have surface
densities Σ > Σcrit. Globular clusters certainly satisfy this condition, but the frac-
tion of galactic mass in these objects is small, so the optical depth will be small and
globular cluster lensing will be correspondingly rare. Giant molecular clouds have
the opposite problem, because although they contain a large fraction of the mass,
they are not dense enough to cause multiple imaging. Local condensations within
molecular clouds, however, may exceed the critical surface density. The dark mass
in galactic halos may be contained in black holes with masses �106M�: heavier
objects will fall into the galactic center through the effects of dynamical friction.
Limits on the incidence of millilensing will eventually set limits on the mass density
of objects in this mass range.

If the angular size of the source is much larger than the scale of the deflections
then microlensing becomes unimportant. When the lensed objects are quasars, we
can estimate whether or not the source size scales are small enough for microlensing
to occur. Quasar radio and optical emission lines come from regions with scales
∼3 pc � 1016 cm, which means that microlensing will not occur, but “millilensing”
might. The size of the optical continuum source is unknown. If the UV bump is
roughly black body radiation from the inner regions of an accretion disk, then the
size is 1015 to 1016 cm, which would allow microlensing to occur. However, time
variability on the scale of months to years implies a source size of ∼1017 cm which
preclude it. The X-ray flux can vary on scales of weeks to days, which may imply
an emission region small enough for microlensing to be important.

The predicted time scales for the variations due to microlensing range from
weeks to centuries depending on the impact parameter and the relative velocities
of the source and microlensing object on the sky. The time scale must be roughly

t ∼ b∗/v = 30(M/M�)1/2v−1
100

years where v100 is the relative velocity in units of 100 km s−1. The source of
the velocity can be the velocity dispersion of the stars, the motion of the source, if
the microlens’ galaxy is in a cluster the motion of the galaxy, and the motion of the
observer. The relative velocity may be up to v ∼ 1000 km s−1 in which case t ∼ 3
years. Canizares has compared the ratio of continuum emission to line emission since
microlensing should change the relative profiles. No evidence for such behavior has
been found, implying that microlensing is generally unimportant for quasars.
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5.2. The Character of Microimages: Low Optical Depth

At low optical depths, we can consider one star at a time, and the star can
be modelled as a point mass. The character of the microlensed images depends
on what the time delay surface of the macro image would be in the absence of
microlensing.

If the unperturbed image is at a minimum then the local time delay surface is
deformed into a limaçon with the maximum located on the star. Thus there are two
images, one at the minimum, and one at the saddle point. For simplicity, assume
there is no shear so the time delay is locally given by

r =
1
2
aθ2

I − 4M

D
ln|θI − θ∗| (5.3)

in coordinates θI centered on the position of the unperturbed image, where D =
DOSDOS/DLS, a ≡ 1 − Σsmooth/Σcrit, and θ∗ is the distance from the star to the
unperturbed image. The images are located at the solutions of

aθI =
4M

D

1
θI − θ∗

. (5.4)

If we define a critical angle θc = (4M/aD)1/2, then the minimum is located at θI �
−θc(θc/θ∗) with amplification a−2, and the saddle is located at θI ∼ θ∗ + θc(θc/θ∗)
with amplification (θc/θ∗)4 � 1 provided θ∗ � θc. The image at the saddle will be
faint, and if there are many uncorrelated microlenses there will be a bright image
plus many faint images with amplification A ∝ (θc/θ)4 the bright image.

If the unperturbed image is at a maximum maximum (this is the most likely case
for multiply imaged sources since maxima are usually associated with galactic cores
where the optical depth is highest), we can use the same theory, except Σsmooth >

Σcrit so that a < 0. The local time delay surface will be a lemniscate with two
maxima and a saddle point, the second maximum being absorbed by the star.
However, if θ∗ ≤ θc then there is only one solution to the lensing equation. In this
case the saddle merges with the original maximum, annihilating it and leaving only
the maximum pinned inside the star. Effectively, the star absorbs the original image
leaving an even number of images globally — this is one possible solution to the
odd image problem.

If the unperturbed image is a saddle point, then two images will be created. This
may apply to the B image in 0957 + 561 which is only 1′′ from the galactic core.
However, in this case the approximation of circular symmetry used for maxima and
minima is suspect.

5.3. The Character of Microimages: Moderate Optical Depth

The optical depth becomes moderately large if the number of stars within θc of
another star is approximately equal to one. This requires Σ∗/aΣcrit ∼ 1 so that
several stars interact. Two new features develop: the first is that the shear from
other nearby stars amplifies the microlensed images, and the second is that, rather
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Fig. 21. Amplification signature of microlensing event. After the source crosses the fold at t0 (at
which time the amplification is formally infinite), the observed flux decays as |t − t0|−1/2, and
similarly the flux rises again as the source approaches the second caustic at time t1.

Fig. 22. Crossing contours for microlensing at a minimum. The unperturbed minimum is distorted
into a limaçon crossing contour. The black region covers the maximum, which is unobservable
because it is inside the star.

Fig. 23. Crossing contours for microlensing at a maximum. The unperturbed maximum is dis-
torted into a lemniscate crossing contour with two maxima and a saddle. The black region covers

one of the maxima, which is unobservable because it is inside the star.

than isolated caustics, a caustic network begins to develop as the caustics from one
star overlap with another. As an image crosses a fold of the caustic network, a cusp
will appear in the source intensity which varies as t−1/2 where t is the time away
from crossing the fold. The resolution of the intensity cusp depends on the source
size, and microlensing could be a good way of determining source sizes on scales far
smaller than any other observational method. For multiply imaged systems, intrinsic
source fluctuations can be distinguished from microlensing events by comparing the
light curve of the microlensed image with the light curves at the other images.
In principle parallax observations within the solar system could be used to separate
microlensing effects from intrinsic source fluctuations for singly imaged objects.
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We can crudely regard each star as having a fold length associated with its
caustics of lF ∼ 2πθc, and, given the local density of stars, the fold spacing is
roughly

∆fold ∼ M∗
D2

OLΣ∗lF
∼ Σcritθc

2aΣ∗
. (5.5)

If Σ∗ � Σcrit then the interval between fold crossings becomes short, and fluctua-
tions occur on time scales much shorter than 30 years. The peak magnification of
the image depends on the angular size of the source ∆θ, with

Amax ∼
(

∆θ

θc

)−1/2

∼ 3
(

Rsource

1015 cm

)−1/2

. (5.6)

The most optimistic assumptions give ∆θ/θc ∼ 0.01 in which case Amax ∼ 10, and
pessimistic assumptions give ∆θ/θc ∼ 1 in which case A ∼ 1 and microlensing is
difficult to recognize. The estimated size of optical continuum emission region in
quasars is large enough that we are closer to the latter case than the former.

5.4. The Character of Microimages: Large Optical Depth

At large optical depths, the idea of a caustic network becomes less useful. Folds
may no longer completely dominate the cross sections so that the A−2 cross section
law may be violated. The variations become much smoother and it is difficult to
separate intrinsic variations from the effects of microlensing. The overall effect may
be described by a point spread function, with a central Gaussian core and a power
law tail ∝ θ−4 where θ is the distance from the central intensity peak. This is in
reasonable agreement with numerical simulations.
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6. Compound Lenses

At least two of the multiply imaged quasars, 2016 + 112 and 2237 + 031, appear
to have two lensing galaxies at substantially different redshifts. Furthermore, some
models of galaxy formation predict the existence of large numbers of dark halo
potential wells which, although too shallow to cause multiple imaging individu-
ally, may be able to do so by acting in concert. In this section, we consider the
modifications that are brought about when there are two or more distinct lens
planes.

Suppose we have a system of n lenses located on “screens”, and we call the
source, the n + 1 “screen” (see Fig. 24). Then, the time delay along a virtual path

Fig. 24. An N screen lens. There are N deflecting planes labeled by 1 to N with the observer
at point O and the source at point S. It is notationally convenient to label the observer as point
number 0 and the source as point number N + 1.
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parametrized by the intersection of the ray with the screens (�θi) is the sum of the
contributions from each screen

t =
n∑

i=1

(1 + zi)
[
1
2

(
�θi+1 − �θi

)2 D0 iD0 i+1

Dii +1
− 2φ

(2)
i (�θi)

]
(6.1)

where the Dij are angular diameter distances in the usual notation, and φ
(2)
i is the

two dimensional Newtonian potential of the ith screen. The position of the image
for a given source is found by solving the 2n variational equations

0 = (1 + zi)(�θi+1 − �θi)
D0iD0i+1

Dii+1

− (1 + zi−1)(�θi − �θi−1)
D0i−1D0i

Di−1i
+ D0i(1 + zi)�αi (6.2)

where �αi = 2∇�θφ(�θ)/D0i. Solving the equation for the deflection between planes i

and i + 1,

(1 + zi)(�θi+1 − �θi)
D0iD0i+1

Dii+1
= −

i∑
j=1

(1 + zi)D0j�αj . (6.3)

Of course, we really want the position �θi+1 in terms of the image position �θ1,

�θi+1 = �θ1 −
i∑

j=1

D0j(1 + zi)�αj

i∑
k=j

Dkk+1

D0kD0k+1(1 + zk)

= �θ1 −
i∑

j=1

Dj0�αj

i∑
k=j

Dkk+1

Dk0D0k+1
(6.4)

where we have used the property of angular diameter distances that

(1 + zj)Dij = (1 + zi)Dji .

The second summation over the expression of angular diameter distances can be
simplified by examining the case in which only one �αj to be non-zero. Then, Eq. (6.4)
must simplify to the single lens plane equation (2.1) so that

i∑
k=j

Dkk+1

Dk0D0k+1
=

Dji+1

Dj0D0i+1
. (6.5)

This result can also be derived as a consequence of the following identity. For any
well defined angular diameter distance, the four points 0, 1, 2, and 3 along a geodesic,
obey the following relation:

D02D13 = D01D23 + D12D03.

This identity can be used recursively to prove Eq. (6.5). Hence,

�θi+1 = �θ1 −
i∑

j=1

Dji+1

D0i+1
�αj . (6.6)
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The amplification tensor, defined by the differential change in the image postion
for a change in the source position, is a non-linear product of the amplification
tensors of each screen considered separately.

Hαβ =
∂�θn+1

∂�θ1

= δαβ −
n∑

j=1

Djn+1

D0n+1

∂�αj

∂�θj

∂�̇θj

∂�θi

(6.7)

which can be expanded recursively in terms of the single screen amplification tensors:

Hαβ = δαβ −
n∑

k=1

D0kDkn+1

D0n+1
Ck

αβ +
n−1∑
k=1

n∑
l=k+1

D0kDklDln+1

D0n+1

∑
γ

Cl
αγCk

γβ

−
n−2∑
k=1

n−1∑
l=k+1

n∑
m=l+1

D0kDklDlmDmn+1

D0n+1

∑
γ

∑
δ

Cm
αγCl

γδC
k
δβ + · · · (6.8)

where the tensor

Ck
αβ =

1
DOk

∂α(k)α

∂θ(k)β
. (6.9)

While each of the individual 2 × 2 matrices Ck
αβ is symmetric, their products are

not. Hence, the magnification tensor is no longer symmetric so the images can be
rotated relative to one another. There is no global scalar arrival time except in 2n

dimensional space. In a few simple cases where all but one of the lenses are linear
(characterized by a quadratic potential), or the multi-screen system has a high
degree of symmetry, the lens system can be reduced to a single non-linear screen
with an extra quadratic contribution to the potential.

In general, if we parametrize a virtual ray by the 2n coordinates �θn, then we
can form a general Hessian

H ′(�θn) =
∂2t

∂θi
α∂θj

β

. (6.10)

Caustics are located where |H ′| = 0.
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7. The Observational Position

Gravitational lenses provide a theorists’ heaven and an observers’ hell.

— Anonymous

There are two aspects to be considered here. First, the geometry of the individual
cases coupled with estimates of the a posteriori probabilities, and secondly, the
statistical issues of lensing. We also append a summary of the space densities of
sources and lenses.

7.1. A Reprise of Existing Candidates

7.1.1. The double QSO: 0957 + 561

This is the first gravitational lens system found, and the most heavily observed.
We see two similar images of a quasar, A and B, with a separation of 6′′ and
a redshift of 1.41. The A image has optical (red) magnitude mr = 17.3 and the
B image is slightly fainter, with mr = 17.6. The lensing galaxy has a redshift of
0.36, and is located about 1′′ north of the B image. It is magnitude mr = 18.5,
fainter than the quasar images, and has ellipticity 0.13 at roughly 45 degrees to
the line between the images. Other galaxies between A and B are ruled out to a
limiting r magnitude of 25; however, the observed galaxy is the brightest of a large
cluster centered near the lens. The cluster center is not well determined by present
observations.

The quasar is a radio source that has been observed at both VLBI and VLA
scales. In VLA maps, a faint radio jet is seen extending from the B image to the core
of the lensing galaxy. The extended radio source provides an important constraint for
lens models. Using VLBI, the two images can be shown to be similar core-jet sources.

This lens is crudely explained by the combination of a galaxy and a cluster which
increases the separation from galactic scales (2′′) to the observed 6′′. The parities
of the two observed images found by VLBI observations are those expected by the
model. Time delays of approximately one year have been claimed, approximately
as predicted, but await confirmation. The expected third image probably lies in the
core of the galaxy, and is sufficiently deamplified (Sec. 3.3), or “captured” by a star
(Sec. 5.2), to make it unobservable. The light that forms one of the observed images,
B, passes through the galaxy and has a small probability of being microlensed.

7.1.2. PG 1115 + 080

In this case, we see four images of a redshift 1.72 quasar, two of which, A and A′,
are so close together that they were initially believed to be a single image. The A

and A′ images have a combined magnitude of 16.3 with a separation of 0.5′′ and a
position angle of 28 degrees measure clockwise from north. The magnitudes of the
separate components are not yet well determined. The B image is located 1.8′′ west
and 0.1′′ south of A − A′ and is approximately ten times fainter. The C image is
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located 1.4′′ west and 1.8′′ south of A− A′ and is approximately five times fainter.
There is probably a magnitude 19.8 galaxy located 1.1′′ west and 0.1′′ south of
A − A′. The four images are in the commonest image geometry for five images,
caused by a central elliptical lens. The fifth image would again be deamplified or
“captured” in the core of the lensing galaxy.

7.1.3. 2016 + 112

In 2016 + 112, three point sources of radio and emission lines are seen, as well as
two galaxies and two extended emission line regions. The emission lines correspond
to a quasar redshift of 3.3. The A image is the brightest, with magnitude 21. B is 3′′

west and 1.5′′ south of A with magnitude 21.5 in the emission line. The C ′ image
is 2.0′′ west and 3.4′′ south of A with magnitude 22.9 in the emission line. The
two regions of extended emission A′ and B′ are both magnitude 22.8, and they are
located at 2.9′′ west, 2.0′′ north, and 5.8′′ west and 1.2′′ south of A. Two objects
which cause the lensing are seen. C is a strong radio source located near the C ′

image, at 2.1′′ west, 3.2′′ south. It is not directly seen in the optical, but by using
the optical flux ratios of A to C ′, it can be estimated to have mr ∼ 26. The C −C ′

separation is only a few tenths of an arcsecond, but from the radio observations, C

and C′ are clearly distinct objects. D is probably a giant elliptical galaxy at z � 1.
It has an optical magnitude of approximately Mb � 22.6

With three images, 2016 is the only lens which seems to satisfy the odd image
theorem for non-singular lenses. Unfortunately, the image arrangement seems to
preclude simple three image models because of the acute angle between the A and
B images relative to the C image. The two patches of Ly α emission, A′ and B′,
may or may not be lensed images of a single object. Of the two galaxies, C and
D, only the redshift of D is known, and it is likely that the redshift of C will not
be determined in the near future because it is so faint. Recently a model has been
proposed (with both lenses at the same redshift) which has five images two of which
are deamplified by the two galactic cores. The model requires rather contrived and
extremely elliptical galactic potentials, and has difficulty preventing the generation
of extra visible images. A good test of the model is whether it is consistent with
VLBI observations. It seems very likely that a final model for this system will require
lenses at different redshifts.

7.1.4. 2237 + 0305

. . . the number of engagements that go on seems to me considerably above the
proper average that statistics has laid down for our guidance.

— Oscar Wilde in The Importance of Being Earnest

Located in a very large nearby spiral (σ = 300 kms−1 at z = 0.04) are two images of
a quasar approximately 1′′ apart. Because the galaxy is so close, it requires a large
surface density Σcrit = 3.5 g cm−2 to generate multiple images, and it is probably an
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example of a marginal lens. If the lensing is performed by a highly elliptical structure
in the galaxy, such as a bar, only half of the critical surface density is required, and
the topology is a lemniscate with the saddle lying in the bar. The third image will
be hard to locate because the quasar is not a radio source, and there could easily be
enough reddening to dispose of a third optical image. The mean magnification of the
images may be of order 10–20. There may be a second lens in the system identified
by an absorption line in the spectrum at z � 0.6 (Huchra, private communication).

What is disturbing about 2237 + 0305 is the probability of its occurrence. The
approximate cross section for such a lens is σL ∼ 10 square arc-seconds on the image
plane, which implies a source plane cross section σS ∼ σL/M ∼ 1 square arc-second
assuming a magnification of 10. In any square arc-second, we expect ∼ 10−6 quasars
(Sec. 7.1), and if the lens was found in a survey of ∼ 104 galaxies we estimate the
a posteriori probability for the existence of such a lens to be 10−2

7.1.5. 3C324

3C324 is a distant (z = 1.2) and very luminous radiogalaxy. Recent observations of
emission lines seem to indicate components coming from emission at a redshift z =
0.85. Filters centered on an emission line at z = 1.2 seem to show two components
separated by 1.1′′ and possibly two additional faint components. Simple models
based on this hypothesis suggest that 3C324 is amplified by ∼ 2 magnitudes. Further
work is required to confirm this.

7.1.6. 1042 + 178

Four radio images are seen roughly at the vertices of a diamond with a length of
∼ 2 − 3′′ across the diagonal. Each image is roughly three times fainter than the
next brightest. In the optical observations a single strongly distorted image is seen.
Clearly further observations are required.

7.1.7. The dark matter lenses: 2345 + 007, 1635 + 267, and 0023 + 171

There are three kinds of lies: lies, damn lies, and statistics.

— Benjamin Disraeli

In the 2345 + 007 system, two objects are seen, separated by 7′′ with no sign of a
lens. This could be interpreted as evidence for dark matter, but we would argue that
it is not a lens. The spectra are not strikingly similar as compared to other lenses.
If quasars and galaxies have approximately the same two point correlation function,
then the probability for unrelated quasars to be separated by 6′′ is approximately
2 × 10−4. The total number of QSOs found is approximately 6000 so we expect
∼ 1 such correlated pair on the scale of 2345. We expect the probability of random
association at different redshifts to be approximately the probability of correlated
association at the same redshift, and hence we should find a few QSOs separated
by 6′′ at different redshifts. This is in fact observed. A similar situation is found
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in 1635 + 267 where two objects are seen separated by 4′′, again without any
striking spectral similarity. This is probably a second example of a random spatial
correlation.

The recently discovered binary quasar pair PKS1145 – 071 has two optical images
separated by 4.2′′ with an optical luminosity ratio of 2.5. The spectra of the images
are remarkably similar, and the deduced redshifts are not grossly inconsistent with
∆z = 0. These observations are remarkably similar to those available for 2345 + 007
and 1635 + 267, and hence we might claim it as another example of a gravitational
lens. In this case, however, the brighter optical image is also a radio source, while
the fainter one is not — the lower limit on the radio luminosity ratio is 500. In short,
this cannot be a gravitational lens. Unfortunately, radio quasars consist of only 1–
10% of all quasars (depending on luminosity) so that clear cut distinctions between
lenses and binaries will be more difficult in most cases. In an unbiased sample of
binary quasars (i.e. one which will find all quasar pairs), for each optical-radio pair,
such as PKS1145 + 071, we expect ∼10 optical-optical pairs such as 2345 + 007.

The third case, 0023 + 171 was found as part of a VLA survey searching for
gravitational lenses. In the radio, two bright sources, A and B, which appear to be
opposed radio jets are seen 5′′ from a fainter unresolved source C. The peak flux
ratios of A : B : C are approximately 9 : 1.5 : 1. Optical counterparts are seen for
the AB pair and C with R magnitudes of 23.1 and 21.9 respectively. The apparent
redshift of the objects from the observed spectral lines is 0.94. There is no object
in the field which may be acting as a lens, except a very faint extended emission
region near the optical image of C. Because the object is so close, we should be
able to see the lensing object unless the M/L � 1000. While in an unbiased survey,
radio-radio pairs should be extremely rare (∼1 for each 100 optical-optical pairs),
this object (as well as PKS1145 + 071) was found by radio observations which will
find no optical-optical pairs. Hence this object could also be a chance correlation,
as the probability of finding a second radio source near a known radio source has a
much higher probability than the a priori probability of finding two radio sources
separated by 5′′.

7.1.8. 1146 + 111

When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.

— Sir Arthur Conan Doyle in The Sign of Four

This is the (in)famous pair of objects claimed to form a 157′′ separation lens system.
The pair is located in a region containing a large number of quasars. The enormous
mass required to generate a splitting of 157′′ should distort or amplify the other
quasars, and cause an observable dip in the microwave background radiation. None
of these effects is observed. There has been a great deal of controversy concerning
the spectra of the two objects. This is largely irrelevent to the issue of lensing
because even if they were two images of the same quasar the difference in transit
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times (∼1000 years) is large enough to allow the quasar’s spectrum to vary and the
images to become dissimilar. If QSOs are clustered as galaxies the probability of
random correlation at this scale is also 2 × 10−4 and the expected number of such
correlations on the observed sample of quasars is ∼1. Again, there should be a few
1146-like objects observed which are not lenses.

7.2. Space Density of Sources — Quasars, Galaxies,

and Radio Sources

The space density of sources is crucial to discussions of amplification biasing, and
positive results are a consequence of the chosen source distribution. The generally
accepted result is that quasars are uniformly distributed in redshift space from
z ∼ 0.5 to 2.5. The number of quasars per square degree brighter than visual
magnitude Bs is approximated by

log N(Bs) =

{
0.5 + 0.9(Bs − 19) 15 < Bs < 19

0.5 + 0.9(Bs − 19) − 0.14(Bs − 19)2 19 < Bs < 22 .
(7.1)

This means that at 16m there are 6.3 × 10−3 quasars per square degree, at 19m

there are 3.2, and at 22m there are 100. There are approximately 4 × 106 quasars
over the entire sky, and two to four thousand of them have been studied. Objects
fainter than 22m at z ∼ 2 are generally considered to be Seyferts (the definition of
quasar is generally taken to be MB < 23 for h = 0.5).

7.3. Space Density of Lenses — Galaxies and Clusters

The distribution of galaxy lenses is derived from the local comoving density of
galaxies. The fundamental assumption is that while the galactic luminosities may
have undergone substantial evolution, the galactic potentials are largely unchanged
from a redshift of approximately two to today. Nevertheless, this need not necessarily
be true, if, for example, large galaxies develop from the merger of many smaller
progenitors. Locally, the number density with luminosity L is well approximated by
a Schechter function

Φ(L)dL � φ∗
L∗

(
L

L∗

)α

e−L/L∗dL (7.2)

where

α � −1.3 ± 0.3,

φ∗ � (1.3 ± 0.1) × 10−2h3Mpc−3,

L∗ � 1.1 × 1010h−2L�.

The number of galaxies per unit comoving volume is

N =
∫ ∞

L0

Φ(L)dL (7.3)

which is finite if α < −1 with mean space density 〈N〉 = φ∗Γ(α + 1), and mean
luminosity density 〈L〉 = φ∗L∗Γ(α + 2) where Γ(x) is the gamma function. If we
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restrict ourselves to objects as luminous or more luminous than typical galaxies
(L0 � 0.2L∗) or giant galaxies (L0 � 3L∗) the mean densities are somewhat lower.
The comoving number density of galaxies at redshift z, corresponding to a local
comoving density N(0) is N(z) = (1 + z)3N(0). The local density of rich clusters
defined as having more than 50 bright galaxies within an Abell radius (1.5 h−2Mpc)
is N(0) = (5 h−1Mpc)−3.

7.4. Amplification Bias

He uses statistics as a drunken man uses lamp posts — for support rather than
illumination.

— Andrew Lang

As shown in Sec. 4.1, the cross section for a point source to have amplification greater
than A is σ ∝ A−2. As discussed in Sec. 7.2, the bright quasar counts rise with flux
decreasing S as N(> S) ∝ S−2.5 which suggests that multiply imaged systems are
more likely to be highly amplified faint quasars than marginally amplified bright
quasars. This is true only for sources brighter than 19m. The sharp turnover in the
quasar luminosity function above 19m means that faint multiple images are more
likely. As the brightest quasars are only about ten times brighter that 19m quasars,
amplification bias should enhance the incidence of multiple imaging by a factor of
at most ∼ 101/2 ∼ 3 at a given magnitude. It is not a large effect.

Ultimately the statistics of lenses may provide a simple test of the importance
of amplification bias. General lenses are expected to be elliptical, and as discussed
in Sec. 3.4, highly amplified images due to elliptical lenses are almost always five
image systems. Hence, the ratio of five image systems to three image systems is an
indication of whether or not the quasar counts do indeed turn over above 19m as
the Schmidt and Green luminosity functions indicate. A turnover in the luminosity
function is indicated by a drop in the ratio of five to three image systems at lower
observed luminosities. To the extent one can discuss statistics with four or five
objects (a practice allowed only in astronomy), this is in fact what is observed. The
two brightest lens systems are 1115 + 080 at 16m and 2237 + 031 and 17m. 1115 +
080 is the only known five image system (although 2016 + 112 may be one because
of the added complication of the two lensing galaxies), and 2237 + 031 is a special
case of a marginal lens.

7.5. Surveys and Future Prospects

Much of the promise of gravitational lensing has yet to be realized because of the
paucity of lenses found to date. This will change, because there should be approx-
imately one thousand lenses over the sky, and even finding fifty should begin to
give adequate statistics to discuss galactic potentials and correlations. A series of
surveys searching for multiple images on several scales should lead to better esti-
mates of cross sections and optical depths which imply limits on Ωlens. There are
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currently two surveys which are actively searching for gravitational lenses, and two
new approaches which should soon be tested.

The VLA survey by Hewitt and collaborators is being used to search image
splittings in the range of 0.1′′–1′′ and has found several candidates at the larger
separation (2016, 0023, and 1042). These observations imply limits of Ωlens < 0.4
at the smaller scale, and 0.7 at the larger. Similarly old VLBI data is being rean-
alyzed, looking for close pairs. An optical search is being conducted by Djorgovski
and collaborators which produced the candidate 1635 + 267 and the binary pair
PKS1154 + 071.

Automatic plate measuring (APM) offers the best means of finding galactic
scale lenses. Current efforts involve examining Schmidt plates and seem to be very
efficient down to 20m. In a region of 130 square degrees, 5000 QSO candidates
were found, of which 2500 were QSOs; 125 of 126 known QSOs in the field were
found, along with 74 lens candidates of which 22 were considered to be good. A very
significant result was that none of the candidates were found in the range 10′′ to 2′

— that is to say, nothing like 1146 + 111 was seen. There is some hope of finding
examples of lenses by kinking induced in the jets of steep spectrum quasars by
foreground galaxies. There are now enough sources (about 50) and VLA maps to
begin to examine the problem, but there is the difficulty of distinguishing the effects
of lensing from intrinsic kinks in the jet. Finally, the Hubble Space Telescope (HST)
may be extremely useful for finding faint lens galaxies and finding structure in the
lenses but not in surveys to find new lenses. Such information is crucial for improved
models of lenses which can be used to set constraints on galactic potentials.
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8. Lenses as Probes of the Universe

It is much easier to be critical than to be correct.

— Benjamin Disraeli

So far, we have confined most of our discussion to the physics of lensing rather than
its application to cosmology and the dark matter problem. As this is a school on
“Dark Matter in the Universe”, we should discuss the problem in this final lecture.
At various points, we have alluded to applications of lensing to this problem, and
here we will discuss some of these in greater detail. The real problem is that lensing
is subject to as many ambiguities and statistical uncertainties as other approaches
to the problem, so that there is no persuasive evidence for dark matter from any of
these proposals.

8.1. The Hubble Constant

Studying modern literature concerning this topic, we find that especially (Anglo-)
American authors (e.g. Young et al. 1981; Alcock and Anderson, 1985; Blandford,
Narayan, and Nityananda, 1985) argue pessimistically about the reliability of the
method outlined above. In my opinion this pessimism is unjustified.

— U. Borgeest, 1986, on determining H0 or galactic masses

As we are all aware, values for H0 range from 55 to 100 km s−1Mpc−1 with formal
errors of ±5 km s−1Mpc−1 and the question has remained this way for over a decade.
The application of lensing to determining H0 was suggested long before 0957 + 561
was discovered; today, the field is divided between the optimists, who believe that
lensing will solve the problem, and the pessimists, who reply that the same has been
said for all other approaches and that lensing is not going to remove the uncertainty.

Recall from Sec. 3.4 that the time delay between the two brightest images scales
as

∆t12 ∝ θ2
12

hĀ12
(8.1)

where the proportionality constant depends on the lens model and the cosmology,
θ12 is the image separation, and Ā12 is the mean amplification of the two brightest
images. The image separation can be very accurately measured for lenses which are
radio sources and opposed optical images-allied optical images will have higher mea-
surement errors because the separation scale is at best only marginally resolved. The
mean amplification is not an observable, and must be determined from a lens model.

The two image lens systems, such as 0957 + 561, provide only three numbers
to constrain a lens model and consequently the arrival time surface: the compo-
nents of the separation vector and the ratio of the image amplifications. (Actually,
0957+561 provides several more constraints because of the radio jet.) The potential
well itself is poorly determined by observations because the lens is not seen in all
systems, and other local effects, such as the cluster in 0957 + 561, may be impor-
tant. Furthermore, galactic and cluster potentials are poorly determined (otherwise
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there would not be a dark matter problem) and hence, given the position of the
lens, there is still substantial freedom in modeling. A third image if it is observed,
essentially gives the position of the lens and an estimate of the core size (from its
deamplification, see Sec. 3.4). However, there is still a large degree of freedom in
model selection, and hence a systematic error.

The simplest way to see this is to consider adding extra terms to the surface
potential φ(2)(�θ). Adding a constant changes neither the properties of the images
nor the time delays associated with pairs of images. Adding a term which is linear
in �θ is equivalent to adding a contribution to the time delays which is linear in the
image separation. Linear terms correspond to adding a fixed bending angle at all
images so that it has no effect on the image geometry or amplification. Adding a
quadratic term, aθ2 associated with a uniform density sheet, introduces changes in
the amplification of the images. However this change is equivalent to a change in
the distance factor DOLDLS\DOS and, consequently, to a change in the Hubble
constant. Only if we assert, in the face of all evidence to the contrary, that the
mass traces the light with a fixed mass to light ratio, can we hope to define the
lens model well enough to give an accurate determination of H0 (for a given cos-
mological model). The accuracy of this approach obviously improves as the number
of constraints increases — ideally you want many images with known time delays,
plus a well modeled lens galaxy (e.g. from knowing the rotation curve).

An additional problem concerns the choice of the angular diameter distance.
For Friedmann models, the combination D ≡ DOLDLS/DOS is fairly insensitive to
the choice of Ω0. A typical example is that for zL = 0.5 and zS = 3, D increases
from 0.15 to 0.17 as Ω0 decreases form 1 to 0 (see Fig. 25). However, if we model
the universe as being Einstein–De Sitter on the large scale, but with all of the
mass concentrated in large objects well removed from the beam which have a low
probability of influencing the geodesic, the angular diameter distance is roughly the
affine parameter λ defined in Sec. 2.3. In this case D � 0.12. As the deduced value
of H0 ∝ D−1, we see that “emptying” the beam significantly alters the deduced
value of the Hubble constant. In fact, the residual shear introduced by the matter
near the beam can alter the travel time in an indeterminate way. Furthermore, if
the universe is in any serious way inhomogeneous, then there is probably a fairly
serious observational selection because multiple imaging will be favored along those
lines of sight which happen to contain extra focusing matter. All in all, some fairly
strong cosmological assumptions will have to be made to measure H0.

8.2. Galactic Masses

As gravitational lensing couples directly to the gravitational potential of the lens
it offers the hope of measuring the potential or the mass of the lens. In theory,
lensing should give a value for the mass interior to the observed images. In practice,
many of the difficulties in measuring the Hubble constant apply to measuring the
mass; it is not so much the problem of finding a value as improving over other
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Fig. 25. Comparison of angular diameter distances for different Ω0. Top figure shows the angular
diameter distance DOL for Friedmann universes with Ω0 = 0 and 1. The figure at the bottom
shows D ≡ DOLDLs/DOS for the two cases. Note that D is much less sensitive to Ω0 than DOL.

techniques and understanding the systematic errors. (It is noteworthy that if the
potential is modeled by a uniform density sheet and a circular galaxy model, it is
possible to estimate the mass independent of the Hubble constant.) Detailed study
of the gravitational lenses is difficult because, as Fig. 5 shows, most lenses will be at
redshifts of 0.5 or greater where normal galaxies are too faint for good observations.
Moreover, the real debate is over dark matter halos in galaxies which are expected to
dominate the potential only on scales larger than the image splittings caused by an
isolated galaxy. Hence lensing will tend to measure the luminous mass rather than
the mass of a dark matter halo. In cases with larger splittings (such as 0957 + 561)
the effects of dark matter local to the lensing galaxy are difficult to separate from the
external effects of the surrounding cluster.
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Objects observed at large impact parameters will be distorted but not multi-
ply imaged by a lens. By studying the effect of lensing on the apparent shapes
of galaxies Tyson and collaborators have obtained a limit on the amount of
matter in galaxies. This translates into an upper limit on rotation velocities of
vcirc(65 kpc) < 190 km s−1 which corresponds to Ωgal < 0.03, not inconsistent with
conservative estimates for dark matter in galactic halos. However, this result is also
sensitive to the cosmographic assumptions that are made.

8.3. Lensing by Dark Matter

Lensing by dark galaxies or unilluminated dark matter halos have been proposed
as the explanation for the dark matter lenses described in Sec. 7.1.6. In particular,
recent cosmological simulations of galaxy formation suggest the existence of dark
halos of mass with central surface densities ∼ 0.6σ2

300r
−1
10 gm cm−2, which will

require two or three aligned halos to generate multiple images. The major difficulty
with this explanation is that the dark matter halos lack a deep core in which the
third image of the dark matter lenses could be captured and de-amplified. Such
lenses are likely to be marginal, and hence generate three equally bright images.
Alternative explanations are that these dark lenses are due to “burnt out galaxies”
in which an early elevated star formation rate leads to a non-luminous lensing galaxy
at later times. A final suggestion is to make galaxies more compact at earlier times by
having the potentials dominated by dark matter, which later decays and allows the
galaxy to expand. This would lead to larger splittings and stronger deamplification
of the odd image in the galactic core.

Compact objects either randomly distributed or in galactic halos are another
possible type of dark matter. There have been a number of tests for dark matter
in the mass range from 10−4M� to 106M�. There are a few weak constraints from
the observation that microlensing of field quasars is unimportant (because in most
QSOs the bright emission lines have roughly the same equivalent width). This rules
out ∼M� objects with Ω ∼ 1. Similarly, VLA surveys report finding no image
splittings in the range of 0.1–1′′ range which puts a limit of Ω < 0.4. The current
limit on compact objects in our galactic halo are that the optical depth must be
τ < 10−6.

Giant black holes (1015M�) and cosmic strings both generate two images with
large splittings. Both are detectable through a small dip in the microwave back-
ground radiation. This has been sought but not found in the case of 1146 + 111 for
which both objects have been suggested. In fact, the automated plate measurement
surveys limit the incidence of of multiple imaging with separations in the range
from 10′′ to 2′. This can be used to argue against large populations of objects more
massive than galaxies which are capable of lensing. At present, all of the claimed
lenses with no lensing galaxy are consistent with coincidence, so there is no reason
to believe strings or other exotica are responsible.
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Lensing caused by a cluster or supercluster would be interesting because it would
provide some information on the mean density in the cluster or supercluster. How-
ever, remember that lensing really depends on a density contrast, and generally
requires a fairly small core size to cause multiple imaging (see Eq. (1.3)). Even if
clusters are capable of multiply imaging, the gains in cross section due to their
large size are offset by their small number density. Recall that the probability of
galactic lensing is of the same order of magnitude as the probability of a random
association on the scale of arc seconds (if quasars cluster as galaxies). For clusters
or superclusters, the probability of random association is probably orders of magni-
tude larger than the probability of lensing, and the time delays between images are
too large for a correlation to confirm the existence of a lens. Lensing by clusters has
been suggested as an explanation for the Lynds–Petrosian arcs near giant elliptical
galaxies, but this is unlikely because of the small cross section and the extremely
high lens symmetry required. The arcs cannot be due to multiple imaging because
only a single arc is seen in each case, but one can imagine a scenario in which a
single image is produced which has an enormous tangential amplification. Clusters
and superclusters are generally too tenuous to image multiply and quasar pairs on
this scale are probably nearly impossible to distinguish from coincidences.

The prospects of determinating Ω0 directly from gravitational lensing are no
brighter. Probably the best way to do this would be to locate the most probable lens
redshift for a sample of high redshift lensed quasars. If we ignore any evolution in lens
surface density, and assume a constant comoving density of lenses, the most probable
redshift is at zL = 0.48 if the source redshift zS = 3. For Ω0 = 0 this changes to 0.56,
which is indistinguishable (see Fig. 25) from the Ω0 = 1 average. Again, selection
effects in the detectability of lenses threatens to introduce substantial bias.
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9. Concluding Remarks

The discovery of at least four gravitational lenses over the past eight years has
opened up a new subfield of extragalactic astronomy. However, we are probably
attending the winter school under false pretenses, because gravitational lenses have
not, as yet, illuminated the mystery of dark matter with which the school is con-
cerned. Indeed, if our interpretation of the ten claimed examples of lensing is correct,
it seems most likely that gravitational lenses will, at best, only be able to limit the
presence of cosmic strings, intergalactic massive black holes, cold dark matter halos,
etc. Nevertheless, in the case of 0957 + 561, gravitational lenses may provide con-
firmatory evidence that the centers of rich clusters do contain invisible matter with
a velocity dispersion in excess of that associated with normal galaxies. In the other
three good cases, the observations can be roughly explained in terms of isolated
galaxies, although the details of the optics remain a matter of controversy.

From an observational standpoint, it is clear that more stringent spectral criteria
must be satisfied than have been applied in the past before future claims of multiple
imaging can be seriously entertained. In particular, the probability that similar
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quasars belong to the same group is not small. We would dearly like to have a
better way of estimating this. The number of observed cases of multiple imaging
is consistent with the lensing probability ∼10−3 obtained using standard galactic
models. Many of the proposed uses and effects of lensing seem unpromising at
present. There is no indication or expectation that lensing will seriously influence
quasar counts, and neither is there yet any evidence for microlensing. We fear that
ignorance of the details of the mass distributions in lenses and along the line of sight
will thwart attempts to measure fundamental cosmological parameters (Ω0 and H0)
with higher accuracy than other techniques.

Nevertheless, gravitational lenses remain full of fascination for the theorists.
Various complementary approaches to the physics have been developed and applied.
The challenge of accounting for the observations of 2016 + 112 and 2237 + 031 in
detail remains. The development of an understanding of multiple screen propagation
must be high on the theoretical agenda in view of evidence for this in both of these
cases.

Gravitational lenses contribute one of the very few direct probes we have of
distant matter, and in so far as understanding the evolution of structure in the
universe is important, it is worthwhile to devote considerable amounts of observing
time to discovering more examples of these phenomena and carefully reobserving
the examples we have already found. As there are approximately 4 × 106 quasars
over the sky, and the probability of lensing is ∼10−3, there remain ∼4000 lenses
to be found. Automatic plate surveys followed up by optical spectroscopy are a
highly promising research technique, and if pursued, should furnish sufficient (�30)
examples of lenses to pursue serious statistical and possibly cosmographic studies.
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The previous lectures have considered the observational evidence for dark matter
on various scales. This paper will consider that dark matter for which there is
no observational evidence — the dark matter on very large scales needed to
make Ω = 1.

1. Review of Big Bang Cosmology

We first review the standard big-bang cosmology. We then explore the causal struc-
ture of the Robertson–Walker metric and find that different parts of our Universe
are causally disconnected. In light of this, the observed isotropy of the Universe
is very surprising and suggests either very special initial conditions or the need to
modify the standard big-bang scenario. Inflation provides an attractive solution to
this causality problem. Here, we introduce inflation and show how it provides a
framework for producing perturbations that will form galaxies.

The equation for the time evolution of the expansion factor R in an isotropic
homogeneous universe is (

Ṙ

R

)2

=
8πGρ

3
− K

R2
, (1)

where ρ is the energy density of the universe, and K is a constant. In a marginally
unbound universe, K = 0. Otherwise the universe is clearly open or clearly closed,
and K = ±1. We focus our attention on the “flat” K = 0 case. At early times,
the K �= 0 term was certainly negligible and, unless we live in a special epoch, it
is still unimportant today. (Inflation will suppress this term, as we will see later in
the lecture).
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Throughout these lectures, we will use particle-physics units: c = 1, k = 1, and
� = 1. We will not, however, set G = 1.

The first law of thermodynamics describes the evolution of the energy density,
dρ

dR
= − 3

R
(p + ρ), (2)

and we also need an equation of state for the pressure, p(ρ, s). We will make the
benign assumption that p = p(ρ), but will remember that there will be glitches in
p(ρ) whenever one of the components of the universe becomes non-relativistic.

There are two equations of state usually encountered in cosmology. If the uni-
verse is matter-dominated or cold, then p = 0. Most people believe that our current
Universe is in this state. Using Eqs. (1) and (2) yields,

ρ ∝ R−3, R ∝ t
2
3 . (3)

If the universe is radiation dominated, then p = 1
3ρ and in this “hot” universe,

ρ ∝ R−4, R ∝ t
1
2 . (4)

Later we will consider what happens when p = −ρ.
Now let us consider the causal structure of this expanding universe. We begin

with the metric which describes the proper distance, s, between points in the
universe,

ds2 = −dt2 + R2(t)[dr2 + r2(dθ2 + sin2 θdϕ2)]. (6)

Observers on fixed coordinate lines (θ = θ0, r = r0, ϕ = ϕ0) are unaccelerated.
Since ds2 = −dt2, their time is proper time.

Two points in space-time are causally connected, if the proper distance between
them is less than 0. This causal structure will be invariant under conformal transfor-
mations. That is, ds2 = 0 can be multiplied by a non-singular function f(t, r, θ, ϕ)
without doing any damage.

We will now use a series of conformal transformations in order to explore the
causal structure. This procedure is called Carter–Penrose compactification. Rewrit-
ing the metric in terms of dη = dt/R(t),

ds2 = R2(η)[−dη2 + dr2 + r2dΩ2] ≡ R2(η)ds̄2, (7)

reveals that space-time in a Robertson–Walker K = 0 universe is conformally flat.
This makes life more pleasant for field-theorists doing their calculation in a universe
with this metric. Note that in a radiation dominated universe, η ∝ t

1
2 , while in a

matter-dominated universe, η ∝ t
2
3 . In either case R(t) is a power law and the

interval 0 < t < ∞ is mapped into 0 < η < ∞.
Now switch to null coordinate, v = η + r and w = η − r, and the flat piece of

the metric can be rewritten as

d s̄2 = −dvdw +
1
4
(v − w)2dΩ2. (8)

The universe is now in an interval −∞ < v < ∞ and −∞ < w < ∞. This region
can be compactified to fit on a sheet of paper by transforming to new coordinates:
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tan p = v, tan q = w. The trigonometric identity,

(tan p − tan q)2

sec2 p sec2 q
=

1
4

sin2(p − q), (9)

simplifies the metric:

ds̄2 = sec2 p sec2 q(−dpdq +
1
4

sin2(p − q)dΩ2). (10)

The universe is now confined to the interval − π
2 < p < π

2 and −π
2 < q < π

2 . It is
revealing to undo the null coordinate, t′ = p + q and r′ = p − q, and to write the
metric in the final form:

d s2 = sec2

(
r + t

2

)
sec2

(
r − t

2

)
[−dt′2 + dr′

′
+ sin2 r′dΩ2]. (11)

Figure 1a shows the universe confined to the interval −π < t′ + r′ < π and −π <

t′ − r′ < π. It is also bounded at t = 0 by a jagged line — the international signal
for a singularity.

Fig. 1. Conformal diagrams showing causal structure (a) of a Friedmann cosmology, (b) of
exponentially-expanding deSitter spacetime, (c) of an early Friedmann epoch. Guth’s cosmology
is obtained by “sewing together” parts of the three spacetimes, as indicated. See text for details.
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The figure also shows the world-lines of galaxies in the universe. Note that at
very late times (t → ∞), our light-cone will include the entire big bang. Our horizon
is a particle horizon, since new bits of the universe keep crossing it. What is amazing
is that these disconnected pieces of the universe were “pre-programmed” to have the
same microwave background temperature. This requires either very special initial
conditions or a little help from the particle physicists.

2. Inflation

Particle physics offers an attractive solution to the causality problem. During a
phase transition, the universe undergoes a period of rapid expansion called “infla-
tion” (Guth 1981, Albrecht and Steinhardt 1982, Linde 1982).

Connecting particle physics with cosmology requires that we derive an equation
of state from a field theory. (See Piran (1986) for more detailed discussion.) The
stress energy tensor can be calculated from a Lagrangian,

Tµν =
−2√−g

δ(
√−gL)
δgµν

= −2
δL

δgµν
+ gµνL. (12)

The relation δ(ln(det |g|)) = −gµνδgµν was used to simplify Eq. (12). Locally, we
can switch to Minkowskian (3 + 1) space-time and relate density and pressure:

ρ = T00,

p =
1
3

∑
Tii. (13)

Consider the Lagrangian of a scalar field ϕ:

L = − 1
8π

[gαβϕ,αϕ,β + V (ϕ)]. (14)

Equation (12) yields

Tµν =
1
4π

[
ϕ,µϕ,ν − 1

2
gµν(ϕ,µϕ,νgµν + V (ϕ))

]
. (15)

Thus, pressure and density have different dependencies on ϕ̇,∇ϕ and V (ϕ):

ρ =
1
8π

[
ϕ̇2 + (∇ϕ)2 + V (ϕ)

]
, (16a)

p =
1
8π

[
ϕ̇2 − 1

3
(∇ϕ)2 − V (ϕ)

]
. (16b)

Example: For a free field of mass m, V (ϕ) = m2ϕ2 and ϕ ∼ exp[i(�q ·�x−Et)], where
E2 = q2 + m2. In this case,

ρ =
1
8π

[E2 + q2 + m2]ϕ2 =
1
4π

E2ϕ2, (17a)

p =
1
8π

[
E2 − 1

3
q2 − m2

]
ϕ2 =

1
12π

q2ϕ2. (17b)

If the field is rapidly oscillating, q 	 m, and the universe is “hot”: p = 1
3ρ. On the

other hand, if the field is slowly oscillating, q2 
 m2, the universe is “cold”: p = 0.
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Now let us consider the case of adding a constant to V (ϕ), that is, V (ϕ) =
V0 + m2ϕ2. This change will be unimportant when the universe is hot, T 	 V0.
However, later when ϕ → 0, it modifies the equation of state:

ρ � 1
8π

V0 ≡ 1
8π

Λ0, (18a)

p � − 1
8π

V0 = − 1
8π

Λ0 = −ρ, (18b)

where Λ0 is a cosmological constant. The stress energy tensor now has the form,

Tµν = ρ



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (19)

This Lorentz transforms like the identity matrix. It has no preferred state — it
looks the same to all observers just like the vacuum state. Thus, this state is called
a “False Vacuum” state. It has, however, a high gravitating density ρ.

Equations (1), (2), and (18) determine the cosmology of this False Vacuum state
or De Sitter universe:

dρ

dR
=

−3(p + ρ)
R

= 0. (20)

This implies the density of the universe does not change: ρ = ρ0! The expansion
equation,

Ṙ

R
=

√
8πGρ0

3
(21)

yields exponential expansion: R ∝ eHt, where H = (8πGρ0/3)
1
2 . In GUT theories,

we might expect ρ0 � aT 4
GUT. In this case,

H−1 =
(

TGUT

MPLANCK

)−2

tPLANCK � 10−35s. (22)

For any particular theory, it is convenient to think of this as the unit time scale,
the “tick”: we will define 1 tick ≡ 10−35s. The universe expands exponentially on
this time scale.

Now let us consider causal structure of De Sitter space. Its metric,

ds2 = −dt2 + r2
0e

2Ht(dr2 − r2dΩ2), (23)

no longer has a power law relation between R and t. We will again change coordi-
nates and study the causal structure. The transformation ρ = r0r, τ = (1−e−Ht)/H

reveals that space–time is again conformally flat:

ds2 = e2Ht[−dt2 + dρ2 + ρ2dΩ2]. (24)

We have not compactified in space, but we have compactified the future time: −∞ <

ρ < ∞,−∞ < τ < 1. Figure 1b shows the world-lines of observers in De Sitter space.
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These observers have event horizons, rather than particle horizons. Particles, which
were in causal contact since the beginning of time, redshift away. Events in other
galaxies that take place at late times lie forever outside our horizon.

We can learn more about the De Sitter metric through another change of
variables:

r′ = R0e
Htr, t = t′ +

1
2H

log |H2r′2 − 1|. (25)

The transformed metric,

ds2 = −(1 − H2r′2)dt′2 +
dr′2

1 − H2r′2
+ r′2dΩ, (26)

reveals that De Sitter spacetime is stationary and looks something like an “inside-
out Schwarzschild metric”. Figure 1b shows the worldlines of homogenous isotropic
observers in De Sitter spacetime. We will posit a pre-inflationary Robertson–Walker
phase that generated these observers. This is shown in Figure 1c.

What sort of potential does inflation demand from the particle physics? At
very high temperature, the universe should be in a radiation dominated De Sitter
phase: T 	 V (φ). As the universe cools, the potential term becomes important
and the universe enters the De Sitter phase with φ close to, but not exactly at the
minimum of the potential. In the new inflationary scenario (Albrecht and Steinhardt
1982, Linde 1982), the Higgs field slowly rolls down the potential towards the true
minimum. While it does so, the universe remains in a De Sitter phase. Since we
want the universe to inflate by ∼ 60–70 e-folds, the universe must spend about 60–
70 “ticks” in the rolling De Sitter phase. This requirement constrains V ′′(φ) to be
small, but not unnaturally tiny. Eventually, φ reaches its true minimum value φ0.
Its oscillations around φ0 are damped through its coupling to fermions. The Higgs
field decays into these fermions and “reheats” the universe. Inflation does not solve
the cosmological constant problem: It offers no explanation of why V (φ0) = 0.

What problems has inflation solved?

(1) Flatness problem: The K/R2 term in the expansion equation,(
Ṙ

R

)2

=
8πGρ0

3
− K

R2
(27)

has been suppressed relative to the ρ0 term by R2 ∼ e120 during the De Sitter
phase.

(2) Smoothness or causality problem: Figure 1 shows the worldlines of an isotropic
homogenous observer as the universe evolves from an initial Robertson–Walker
phase through a De Sitter phase and finally back to the present Robertson–
Walker phase. Particles that were causally connected during the De Sitter phase
cross the event horizon and drop out of causal contact. Later, the particles come
back across the particle horizon in the Robertson–Walker phase. In the De Sitter
phase, the universe had time to isotropize.
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(3) Monopole problem: Inflation dilutes the number density of particles relative to
ρ0 by R3 > e200. It provides a mechanism for depopulating the universe of unde-
sirable particles, topological defects and reducing any primordial anisotropy.

Inflation also provides a framework for generating gravitational perturbations.
These perturbations can collapse to form galaxies. Cosmologists are interested
in the spectrum of perturbations on scales between a few Kpc and the horizon
scale (2998h−1 Mpc). These physical scales correspond to quite a narrow range of
timescales in the De Sitter phase, just a few “ticks”.

It turns out that constant-amplitude perturbations which cross the outbound De
Sitter event horizon — and whose evolution is thus “frozen” into purely kinematic
behavior — reappear within the later Robertson–Walker particle horizon with a
Zel’dovich (scale-free) perturbation spectrum. Since, any physical process that is
slowly varying during the rolling phase (i.e. changes only over a timescale of 60 or
70 “ticks”) is likely to be approximately stationary over the few “ticks” that created
all scales of interest today, a Zel’dovich spectrum today is almost inevitable (Press
1981; Brandenberger, Kahn, and Press 1983; Brandenberger and Kahn 1984). The
quantum fluctuations of “Hawking Radiation” are an example of such a station-
ary source of perturbations (Hawking 1982, Guth and Pi 1982, Starobinskii 1982;
Bardeen, Steinhardt, and Turner 1983).

3. Additional Topics Not Covered Here

In the lectures on which this paper is based, several additional topics were reviewed:
(i) details on the evolution of density perturbations outside and inside the horizon;
(ii) the special case of cold dark matter, whose perturbations can start to grow
even while the rest of the matter is locked in place by the radiation field; (iii) the
relation between matter perturbations and the measured microwave anisotropy; and
(iv) comparison with observations.

These topics have all been extensively discussed elsewhere, and little would be
gained by another review here. For references, see Peebles (1982); Primack and
Blumenthal (1984); Bardeen, Steinhardt, and Turner (1983); Brandenberger and
Kahn (1983); Brandenberger (1985).

A small addendum to the standard literature on topic (ii) was discussed, namely
the extension of the two-fluid formulas of Olive, Seckel, and Vishniac (1985) to the
case where one fluid is the cooling, but not necessarily yet cold, dark matter, and the
other fluid is the radiation (photon) background. (See also Bardeen 1980.) A very
brief summary is as follows:

Choose units such that the expansion factor, now called a, equals unity when
ρm = ργ (first moment of dark matter dominance), and take the unit of comoving
wavenumber k to be the horizon size at that time.
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The rate of growth of the density perturbation in dark matter, δm, depends
upon the matter fluid velocity, vm and viscous stress, Πm:

δ̇m = −(1 + w)
k

a
vm − 2w

ȧ

a
Πm (28)

where w = Pm/ρm is a function of temperature through the equation of state (see
Service, 1986). When the matter is relativistic, w = 1/3, and when the matter is
non-relativistic, w → 0. The velocity perturbation grows in response to the matter
overdensity:

v̇m = − ȧ

a
vm +

k

a
ΦA +

k

a

c2
s

1 + w
δm − 2

3
k

a

w

1 + w
Πm (29)

where c2
s = dPm/dρm is the matter sound speed, also a function of temperature

through the equation of state. The matter viscous stress depends only on the velocity
perturbation. An adequate heuristic model of it is

Πm = 4
√

3vm
(k/ȧ)2

1 + (k/ȧ)2
. (30)

The rate of growth of the photon density perturbation amplitude,

δ̇γ =
ȧ

a
δγ − 4

3
k

a
vγ − 2

3
ȧ

a
Πγ (31)

depends on the photon drift velocity, vγ , and effective viscous stress Πγ (which may
actually be free-streaming or Landau damping). This photon viscous stress depends
on the photon velocity in the same heuristic manner,

Πγ = 4
√

3vγ
(k/ȧ)2

1 + (k/ȧ)2
. (32)

The photon velocity grows in response to the overdensity:

v̇γ = − ȧ

a
vγ +

k

a
ΦA +

1
4

k

a
δγ − 1

6
k

a
Πγ . (33)

The matter and radiation are coupled gravitationally by

ΦA = −3
2

(a

k

)2
[
1
2
δm

mw

T
a−3 +

1
2
δγa−4

]
−

(a

k

)2
[
1
2
Πγa−4 +

1
2
Πma−3

(mw

T

)]
.

(34)
Here m is the rest mass of the dark matter, so the factor mw/T (which depends on
the equation of state) is of order unity when the particle is non-relativistic.

Equations (28) through (34) are seven equations for the seven variables
δm, δγ , vm, vγ , Πm, Πγ , and ΦA. They can easily be integrated numerically in time
to give the famous “Zel’dovich spectrum with a bend” (e.g. Blumenthal et al. 1984,
Bond and Szalay 1983).
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Chapter 9

WIMPS IN THE SUN AND IN THE LAB

William H. Press∗

Harvard-Smithsonian Center for Astrophysics,
Cambridge, MA 02138, USA

David N. Spergel†

Institute for Advanced Study,
Princeton, NJ 08540, USA

This lecture explores the hypothesis that weakly interacting massive particles
(WIMPs) comprise the dark matter. Some kinds of proposed WIMP candidates
can solve not only the missing mass problem, but also the solar neutrino problem.
Future experiments may detect WIMPs.

1. WIMPS and the Solar Neutrino Problem

Over 60 years ago, Cecilia Payne, in her Harvard Ph.D. thesis, applied the newly
discovered theories of atomic physics to the spectra of the Sun. She realized that the
solar spectra suggested a disturbing discrepancy. While most of the Sun’s spectral
lines were metallic, the Sun seemed to be composed mostly of hydrogen and helium.
This result ran counter to other evidence: meteors were mostly metallic and the
Earth’s crust was manifestly not composed of hydrogen. Further research has, of
course, confirmed the work of Cecilia Payne: hydrogen and helium do compose 98%
of the Sun and the heavier elements are merely tracers.

Today, something is again amiss. Our theoretical prejudices about inflation sug-
gests that there ought to be sufficient matter to close the Universe, yet the baryon
density inferred from primordial nucleosynthesis arguments accounts for only 10% of
the closure density (Yang et al. 1984), if that. Within our own Galaxy, observations
of the dynamics of stars and gas suggest that most of the mass is in non-luminous
forms (Hegyi and Olive 1987). Even within the disc of our Galaxy, 50% of the mat-
ter is in some unknown forms (Bahcall 1984, Bahcall 1987). Perhaps matter as we
know it — protons, neutrons, and electrons — is only a test tracer of the underlying
distribution of the mass of the Universe.

Closer to home, the Sun is not behaving comprehensibly. From the Sun’s lumi-
nosity, mass, and surface composition, and our understanding of stellar interiors,

∗Current address: Los Alamos National Lab., DIR/MSA-121, Los Alamos, NM 87545, USA.
†Current address: Princeton University Observatory, Princeton, NJ 08544, USA.
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we can infer the nuclear reaction rates in the solar core. These reactions should pro-
duce a high-energy neutrino flux, yet Ray Davis’ chlorine detector in the Homestake
Mine observes only one-third of the predicted flux (Bahcall et al., 1982).

One of the joys of astrophysics is that stars and galaxies are complicated. There
are many possible sources for the discrepancy between theories of the solar interior
and the neutrino observations: nuclear physics, hydrodynamics, or perhaps, particle
physics. The candidates for the non-luminous matter range from 106 solar mass
black holes through very low mass stars down to 10−6 eV axions. However, like the
apocryphal drunk searching for his keys under the streetlight, we will attempt in
this paper to find the non-luminous matter in the Sun. This review thus explores
the hypothesis that unseen matter is the source of the “solar neutrino problem.” It
hypothesizes a massive weakly interacting particle,a and explores the astrophysical
consequences of that particle. It also describes experiments that could detect these
particles if they are indeed the “missing mass.”

As we have learned in previous lectures, “missing mass” is, of course, a misnomer.
What is missing is not the mass, but the light. Since from a dynamical point of view
our Galaxy is a mature system, observations of the kinematics of tracer populations
reveal the underlying mass distribution. Radio observations of atomic hydrogen in
the discs of spiral galaxies provide evidence that the density distribution of galaxies
falls off as r−2. The atomic hydrogen flares out near the end of the disc, confirming
that beyond 10Kpc the dominant component is spheroidal. On the other hand,
the light in the Galaxy is concentrated in the disc. The objects that compose the
halo must be almost entirely non-luminous, and non-dissipative. WIMPs satisfy
these conditions. (See Primack (1986) for a review of particle physics dark matter
candidates.)

Now let us return from the distribution of mass in the Galaxy to the seemingly
unrelated problem of the generation of energy in the Sun. The Sun generates it
luminosity through the fusion of hydrogen into helium. There are three possible
channels through which four protons can be converted into the two proton and two
nucleons of a helium nucleus. One of these channels, PPIII, involves the decay of
B8 into Be8, a positron, and an energetic neutrino. The neutrino flux from this
reaction in the Sun can be detected on earth through the inverse beta decay of
chlorine into argon. R. Davis and his collaborators, using a tank of 610 tons of
carbon tetrachloride in the Homestake mine, have measured this flux and found
that the observed flux is only one third of that predicted from standard solar models
(Bahcall et al., 1982).

Because all of the reaction rates in hydrogen fusion are limited by the need
to overcome the Coulomb repulsion of the nucleus, the relative rates of the three
PP channels in the Sun are very temperature dependent. Any mechanism which
cools the core of the Sun would reduce the rate of the reaction and hence the

aWe will refer to any weakly interacting massive particle as a WIMP and to those particles that
have the properties needed to solve the solar neutrino problem as “cosmions.”
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observed solar neutrino flux. We realized that weakly interacting particles could be
extremely efficient at energy transport (Spergel and Press 1985). After publication,
we learned that John Faulkner and Ron Gilliland had considered this possibility
several years earlier, but, lacking at the time a plausible mechanism for getting the
particles into the Sun, never published. Most of their conclusions were, however,
summarized in Stiegman et al. (1978) in a subsection forgotten even by Faulkner.
Their paper finally appeared seven years later (Faulkner and Gilliland 1985).

Particles with cross-sections of order 10−36 cm2 are ideal for transporting
energy in the Sun. In the conductive (large cross-section) regime, energy trans-
port scales as the mean free path. As the cross-section decreases, the cosmion
travels through a larger temperature gradient between collisions and is thus more
effective at transporting energy. In the small cross-section regime, collisions are so
rare that the energy transport scales as the collision rate. The cross-over between
these two regimes occurs at the optimal cross-section for energy transport: when
σ ≈ 10−36 cm2 and the cosmion’s mean free path is about its orbital radius. The cos-
mion can deposit a large fraction of its kinetic energy at aphelion and can increase
its kinetic energy at perihelion.

The timescale for the cosmion to transfer energy from the center of the Sun to a
cosmion scale height, the free fall time (≈100 s), is much shorter than the timescale
for photons to diffuse the same distance, the Kelvin-Helmholtz time (≈ 106 years).
A number density of cosmions of only 1011 is sufficient to significantly alter energy
transport in the solar core and lower the predicted SNU flux to the observed value.

The net effect of the cosmion on the temperature distribution in the Sun is
to cool the central core of the Sun while heating the region near the aphelion of
the typical orbit (Spergel and Press 1985, Nauenberg 1986 and Gould 1987a). The
scale height of the cosmion distribution can be estimated by equating the cosmion’s
thermal energy with its potential energy,

rx = 0.13
(

mp

mx

)1/2

R�.

Most of the B8 neutrinos are produced in the inner 0.05 R�, while most of the Sun’s
luminosity is produced in the inner 0.2 R�. Thus a cosmion with mass between 2
and 10 GeV will reduce the B8 neutrino production rate without reducing the solar
luminosity or affecting the production rate of pp neutrinos. Hence the predicted
count rate from a solar model cum cosmions for the pp-neutrino sensitive Ga71

experiment does not differ significantly from a standard model. Cosmions more
massive than 10GeV will be too centrally concentrated to affect the thermal struc-
ture in most of the B8 neutrino producing region (Gilliland, Faulkner, Press and
Spergel 1986).

The Sun will capture weakly interacting particles from the galactic halo. (This is
the point that originally eluded Gilliland and Faulkner, but which we were fortunate
enough to recognize.) The escape velocity from the Sun’s surface is 617 km/s,
while the escape velocity from the core is over 1000 km/s. A halo cosmion with
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typical velocity 30 km/s will fall into the Sun where it can be captured through
a single collision as long as its mass is less than ∼50 proton masses. The Solar
capture rate is approximately the geometrical rate πR2

�nv, where v is the typical
halo cosmion velocity and n the number density, times the gravitational focussing
factor (GM�)/(R�v2). Press and Spergel (1985) discuss the various effects and find
that the capture rate is sufficient for the Sun to accumulate a significant number
of cosmions in the solar lifetime. If we multiply the capture rate by the lifetime, we
find that we can achieve a significant concentration of cosmions relative to baryons,

nx

nb
� 3 × 10−10

(
ρx

1M�/pc3

) (vesc

v̄

)(
σ

σcrit

) (
mp

mx

)
.

Recall that a concentration of 10−11 of cosmions with cross-section of 4×10−36 cm2

can resolve the solar neutrino problem. If the cosmions compose the halo (ρHALO ≈
10−2M�/pc3, vHALO ≈ 300 km/s), then their cross-section must be within a factor
of 2 of σcrit. If cosmions compose the disc (ρDISC ≈ 10−1M�/pc3, vDISC ≈ 50 km/s),
then they might resolve the solar neutrino problem, if their baryon scattering cross-
section is between 10−37 and 10−34 cm2.

Halo particles will also be captured by the Earth and the other planets (Freese
1986, Gould 1987b and Bouquet and Salati 1987). For a particle to be capturable,
its velocity at infinity must be less than the escape velocity from the planet’s core.
Thus for the capturable particles, gravitational focusing is always important, even if
it is not important for the average particle in the distribution. Note that for stars,
for whom most of the flux is capturable, F ∝ v2

escR
2 ∝ MR, while for planets,

which can capture only a fraction of the flux, F ∝ v4
escR

2 ∝ M2.
Cosmions do not significantly alter main sequence stellar evolution. Since they

are centrally concentrated within the luminosity producing region, they do not alter
the mass of available fuel (hydrogen). Many other proposed solutions to the solar
neutrino problem that reduce the thermal gradient in the inner core also reduce the
gradient throughout the luminosity producing region, thus increasing its volume.
With more available hydrogen, the main sequence lifetime of a star is longer. Such
solutions aggravate the discrepancy between the Hubble time and the inferred age of
globular clusters. Cosmions intrinsically have little effect in the evolution of massive
stars: Since their number density in the star grows linearly with time, few cosmions
can accumulate in a massive star’s short lifetime.

Renzini (1986) argues that cosmions can significantly alter the evolution of hor-
izontal branch stars. Faulkner and Spergel (1987); however, point out that Renzini
severely overestimated the cosmion energy transport. Cosmions are only effective
at energy transport when their mean free path is comparable to an orbital length.

Cosmions can significantly alter the evolution of old stars with strong temper-
ature gradients and strongly temperature-dependent nuclear reactions. Pre-white
dwarfs cool through neutrino emission from their inner core (Lamb and van Horn
1975). This produces a strong temperature inversion (the core temperature of
3.3 × 108 K is much lower than the maximum temperature of 5.2 × 108 K at a
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radius of 4.4 × 108 cm). The scale height of cosmions in thermal equilibrium with
the carbon nuclei in the core is 5.3×108

√
mp/mx cm. Pre-white dwarfs might seem

like interesting candidate objects; however, preliminary estimates indicate that an
insufficient number density of cosmions will be accumulated to alter their evolution.
Cosmion energy transport is about 10−2 times less effective than conductive energy
transport.

Since cosmions alter the solar thermal structure, they affect the seismology of
the Sun. Solar seismology, which measures the sound speed as a function of radius,
might detect the variations in density and temperature induced by cosmion energy
transport. Dappen et al. (1986) and Faulkner et al. (1986) suggest that cosmions
can eliminate the discrepancy between the observed p-mode (pressure dominated)
spectrum and the standard solar model. Bahcall and Ulrich (1987) argue that this
discrepancy is not significant. Cosmions would have more dramatic effects on the
still unobserved g-mode (gravity dominated) spectrum, which is more sensitive to
the core conditions.

The good news is thus that a halo population of cosmions of the correct cross-
section (≈10−36 cm2) and mass (5–10GeV) will be captured by the Sun in sufficient
number to resolve the SNU problem, and yet will not alter other aspects of stellar
evolution. We now must turn to the bad news: Once captured by the Sun, cosmions
can be lost either through annihilation or through evaporation.

Most of the cosmions in the Sun are tightly bound: their typical velocities,√
3kT/2mx ≈ 300 km/s, is much less than the escape velocity from the core

v2
esc = 1400 km/s, so scatterings that produce v ≥ vesc are rare. In the conclusion

of Spergel and Press (1985), the evaporation rate is estimated as the fraction of
cosmion distribution with energy sufficient to escape divided by the time to repop-
ulate the tail. This estimate suggests that evaporation is negligible for cosmions
with m > 4mp.

The cosmion distribution function may differ significantly from Maxwellian in
its high energy tail. Nauenberg (1986), Greist and Seckel (1987) and Gould (1987a)
have considered this effect and conclude that this lowers the evaporation limit to
3.5 mp.

Annihilation can also reduce the number of cosmions in the core of the Sun. If
the cosmion is a Majorana particle, it is its own anti-particle and will self-annihilate.
If the cosmion is a Dirac particle and the Sun contains both it and its anti-particle
in equal numbers, annihilation will also reduce its solar abundance. The cosmion
annihilation timescale in the Sun can be estimated,

tann = (nxσannv)−1 =
(

np

nx

) (
σann

σbx

)
tcoll,

where σann is the cosmion annihilation cross-section and σbx is the cosmion-baryon
scattering cross-section. If the cosmion is to resolve the Solar neutrino problem

tcoll ≈ tdynamical ≈ 100 seconds
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and np/nx ≈ 1011. Most of the attractive particle physics cosmion candidates (photi-
nos, scalar neutrinos, massive and Dirac neutrinos) have scattering cross-sections
less than or on the order of their annihilation cross-sections; this implies tann < 1013

seconds, much shorter than the age of the Sun (Krauss, Freese, Spergel and Press
1986). Cosmions are more centrally concentrated than baryons; this enhances their
annihilation rate and exacerbates the problem.

Even if annihilation reduces the solar abundance of these particles below the
threshold for affecting the thermal structure of the Sun, these particles can still have
observable effects in the Solar System. Silk, Olive and Srednicki (1985) suggest that
the annihilation of 5 GeV photinos captured by the Sun from a halo population
would produce a detectable gamma ray flux. Their calculation; however, assumes
that the photino distribution function is well approximated by a Maxwellian even in
the high energy tail. Freese (1986) and Krauss, Wilczek and Srednicki (1986) argue
that if the halo is composed of massive or scalar neutrinos with masses greater than
12 GeV, a sufficient number density would be captured and retained by the Earth
for annihilation in the Earth’s core to produce a detectable flux of neutrinos in the
IMB detector. Evaporation sets the 12 GeV cut-off and is sensitive to the Earth’s
core temperature. Gaisser et al. (1986) attempt a detailed treatment of the capture
and annihilation of SUSY particles in the Sun. Gould (1987b) reconsiders WIMP
capture and shows that previous authors have underestimated capture rate in the
Earth. Silk and Srednicki (1984) and Stecker, Rudaz and Walsh (1985) suggest that
WIMPs may also be detectable through anti-protons produced by their annihilations
in the halo.

Requiring that annihilation does not greatly reduce the cosmion concentration
in the Sun places severe constraints on cosmion particle physics. Either the cosmion
annihilation cross-section in the Sun is much lower than its scattering cross-section
or there is a net asymmetry between cosmions and anti-cosmions that reduces the
number of anti-cosmions in the Sun. Either hypothesis constrains the physics of the
cosmion sector and eliminates several particle candidates.

Gelmini et al. (1987) suggests that the “annihilation problem” can be resolved
by imposing a net asymmetry between the cosmions and anti-cosmions. Either a net
cosmological overabundance of cosmions or the cosmion-baryon scattering cross sec-
tion exceeding the anti-cosmion–baryon scattering cross section will result in more
cosmions in the Sun than anti-cosmions. Thus, while annihilation will eliminate the
anti-cosmions, some of the cosmions will remain.

A slight asymmetry between the production rate of baryons and anti-baryons
is often said to be responsible for the existence of large numbers of baryons in our
Universe. (Hence, we exist to call it our Universe.) If the same mechanism functions
for both baryons and cosmions, so that every net baryon is paired by a conservation
law to a net cosmion, then their relative densities depend only on their mass:

ρcosmion

ρbaryon

=
mcosmion

mbaryon

.
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Primordial nucleosynthesis arguments yield ρbaryon/ρclosure ≈ 0.05–0.2 (Yang et al.,
1984). Thus, if the cosmions close the Universe, their mass lies between 4 and
20 GeV, the required range to effectively transport energy in the Sun. Raby and
West (1987a) suggest that this asymmetry could produce a Universe dominated
by fourth generation neutrinos with large magnetic moment that they have named
“magninos”. These particles have the needed properties to solve the solar neutrino
problem and may be detectable in accelerator experiments (Raby and West 1987b).

If there is no asymmetry between cosmion and anti-cosmion number densities,
the relic density is determined by the cosmion annihilation cross section. When
the Universe becomes optically thin to cosmions (called cosmion “freezeout”), their
annihilation ceases and their density per comoving volume reaches a constant. The
cosmion density depends strongly on annihilation rate. For example, 5 GeV particles
will close the Universe if their annihilation rate at decoupling is ≈ 8×10−38h−2

100 cm2.
If, on the other hand, annihilation is not to deplete the cosmion number density

in the Sun, σβ(1 KeV) ≤ 10−42 cm2. Thus we require a mechanism that will not
only reduce the cosmion annihilation cross section in the Sun to less than 10−6 of
the cosmion-baryon scattering cross section, but will also suppress low temperature
annihilation by 10−5 relative to the annihilation rate at decoupling (T ≈ GeV).
A lower cross section at the decoupling temperature would result in too large an
abundance of cosmions relative to baryons.

S-wave suppression provides a mechanism for depressing the annihilation rate
at low energies. Majorana particles will annihilate only with particles with opposite
helicity states. The “s-wave” term in the annihilation cross section is thus no longer
proportional to the square of the mass of the cosmion but rather the square of the
mass of its decay products. The remaining “p-wave” term is velocity-dependent,
σβ (p-wave only) ∝ v2 ∝ T and thus low temperature annihilation is suppressed.
Gelmini et al. (1987) describe a theory that exploits this suppression mechanism.

An intriguing possibility is that the cosmion might be a supersymmetric particle.
Supersymmetry is the only symmetry of the extended Poincare group that has no
observed experimental implications. It implies that every fermion has a supersym-
metric bosonic partner and every boson has a supersymmetric fermionic partner.
Supersymmetry resolves many theoretical particle physics problems. In many super-
symmetric theories, there is a new conserved quantum number called R parity. This
implies the existence of a new stable particle, since the lowest mass supersymmet-
ric particle cannot decay into a lower mass particle with a different R parity. This
particle, however, can still annihilate with an anti-particle of opposite R parity. All
known particles have one R parity, while their (yet unobserved) supersymmetric
partners have another R parity. For photinos (the supersymmetric partner of the
photon), this annihilation occurs through the exchange of a squark (the partner of
the quark) or the selectron (the partner of the electron). In many supersymmetric
theories, the selectron and squark masses are smaller than but of the same order
as the W mass. This implies that the photino will close the Universe if their mass
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is approximately 5 GeV. Krauss et al. (1986) found that despite the suppression
of s-wave photino annihilation into up and down quarks, photino annihilation into
more massive quarks and leptons would reduce the concentration in the Sun below
that needed to affect the high-energy neutrino flux. Sneutrino annihilation would be
more rapid than photino annihilation; hence, sneutrinos are not attractive cosmion
candidates (Greist and Seckel 1987).

In conclusion, the cosmion hypothesis is beautiful astrophysics, but contrived
particle physics. If cosmions exist, they can solve several long standing problems
in astrophysics. Several particle physics models have been proposed for cosmions;
however, none of these models were motivated by some profound symmetry such as
supersymmetry. What makes the cosmion hypothesis exciting is that it is falsifiable.
The next section describes how these particles could be detected in future laboratory
experiments.

2. Detecting WIMPS in the Lab

If the halo of our Galaxy is composed of WIMPs, then millions of these particles are
streaming through a square centimeter every second. Goodman and Witten (1985)
and Wasserman (1986) realized that this flux could be experimentally detectable.
There are, however, two difficulties involved with detecting WIMPs:

(1) They Don’t Do Much. All of the proposed WIMPs have some conserved quantum
number (R-parity for SUSY particles and fourth generation lepton number for
massive neutrinos); hence, the end-product of an interaction with a nucleus is
at best the deposition of a few keV of energy.

(2) They Don’t Do It Often. The lowest mass supersymmetric particle (which is
stable in many theories) is usually some linear combination of photino and hig-
gsino interaction eigenstates. This Majorana particle has only axial couplings
with quarks and thus has a typical elastic nuclear cross-section ∼ 10−37 cm2 for
WIMPs through its spin-dependent interactions with nuclei. If these “sparticles”
were the galactic missing mass, they would produce ∼ 10−1 − 1 counts per day
in a kilogram of detector. Scalar neutrinos and massive Dirac neutrinos have
vector couplings with quarks, and thus the neutrons in the nucleus construc-
tively interfere to yield a much larger cross-section ∼ 10−34 cm2 and a higher
count rate ∼ 103 counts/kg/day. In either case, the search for WIMPs requires
a detector with very good background rejection and a low energy threshold.

We already have limits on weakly interacting halo dark matter from germanium
spectrometers. These limits, however, only exclude particles more massive than
16 GeV and it does not seem likely that these limits could be extended below
8 GeV (Ahlen et al., 1987). Unfortunately, the most interesting region for Dirac
neutrinos is around 2–3 GeV (the range of the Lee–Weinberg limit). Particles with
spin-dependent interactions (e.g., photinos, higgsinos, and Majorana neutrinos) also
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evade detection since most of the abundant isotopes of germanium have zero spin.
(They have an even number of both protons and neutrons.)

This motivates the use of new types of detectors in the search for dark matter.
There are several schemes for direct detection of dark matter. One scheme relies on
the principle that “simple is beautiful”: the use of a single kilogram-mass crystal of
silicon to detect phonons produced by WIMP-nucleon scattering (Cabrerra et al.,
1985, Sadoulet 1987, Marthoff 1987). There are several groups actively exploring the
possibilities of phonon detectors: Cabrerra and Sadoulet and their collaborators at
Stanford and Berkeley; Smith and coworkers in Oxford; Moseley and collaborators
at NASA.

Other groups guided by the philosophy of “small is beautiful” are focusing on
superconducting grains. Here, we focus on these grains which detect the change
in state due to the nuclear recoil of a WIMP (Drukier and Vallette 1972, Drukier
et al., 1975, Drukier and Stodolsky 1984, Gonzalez-Mestres and Perret-Gallix 1985,
Drukier 1987). Several groups are now actively working on developing grains and
grain detectors: A. Drukier (Applied Research Corp.) and his collaborators at UBC,
Vancouver; G. Waysand and his collaborators in Orsay, Saclay and Annecy; L.
Stodolsky, K. Pretzel and collaborators at MPI für Physik und Astrophysik. There
are also several other novel proposals for dark matter detectors (e.g. Lanou et al.,
1987).

In a detector, the grains would be kept in a superheated superconducting state.
The deposition of a few keV of energy in an elastic scatter of a WIMP off of a nucleus
in the grain heats the grain and flips it from the superconducting to the normal
state. The background magnetic field can now permeate the grain. This produces
a change in the magnetic flux through a loop surrounding the grains equivalent to
the addition of a dipole whose strength is proportional to the product of the grain’s
cross-sectional area and the background magnetic field. SQUIDs (superconducting
quantum interference devices) would be ideal for detecting this small change in flux.
The grain could be composed of any type I superconductor. These include gallium
and aluminium, both of which are mostly composed of isotopes with an odd num-
ber of neutrons, and thus have large cross-sections for particles with spin-dependent
couplings. The grains would probably be coated with a dielectric composed of low
Z material. This dielectric separates the grains and suppresses diamagnetic interac-
tions with neighboring grains. The energy threshold of a grain, the minimum amount
of energy needed to flip the grain, is set by its composition, size, and temperature.
Micron size grains are needed to detect photinos of a few GeV.

The major source of background in the detector is the radioactive decay of trace
contaminants in the grains and the surrounding dielectric. Most of these decays
produce MeV electrons. Since the dielectric is composed of low Z material, these
electrons, which lose energy through Coulomb interactions, will deposit most of
their energy in the grains. Thus radioactive decays will flip multiple grains, which
will produce a large change in flux in the SQUID loop. The scatter of a WIMP off
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of a grain will flip only a single grain. Uniform grains, which have similar energy
thresholds, are needed for this background suppression mechanism to work. Most
of the grains must be in the superheated state so that there is little dead material
into which the β particle can deposit its energy.

The problem of grain production is presently the greatest challenge in the devel-
opment of these detectors. Many of the problems that workers in this field have had
with the grains are due to irregularities in grain size and shape. Strong fields near
corners of non-spherical grains lead to a spread in energy thresholds. Wide hystere-
sis curves are a symptom of variations in grain properties. At Vancouver, multiple
filtered grains has produced promisingly narrow hysteresis curves which suggest
that this process eliminates not only large variations in grain size but also removes
irregular grains. Lawrence Livermore National Laboratory has produced very high
quality grains. Gonzalez-Mestres and his co-workers at Annecy are obtained high
quality grains from a French industrial producer.

Another challenge in dark matter grain detector development will be the inte-
gration of the SQUID with the low background technologies. Avoiding background
signal due to vibrations producing spurious signals in the SQUID loop will require
that the detector is vibrationally well insulated from its environment and may neces-
sitate using multiple SQUID loops as a gradiometer.

Since it is possible for both radioactive decays and the elastic scatter of a halo
WIMP to flip a single grain, we must find a characteristic of the signal that will allow
differentiation from the background. Failing this, any “detection” could be writ-
ten off as a misunderstanding of the background. Fortunately, the Earth’s motion
around the Sun provides a significant modulation in the background rate (Drukier,
Freese and Spergel 1985).

The Sun is moving around the Galactic center at a velocity of about 250 km/s.
The non-dissipative dark matter in the galactic halo, on the other hand, never
collapsed into a disc; thus, it is not rapidly rotating. As a result of the Sun’s motion,
the detector is moving relative to the galactic halo. Since the grains have an energy
threshold, the anisotropy in the velocity distribution alters the predicted count rate.

The Earth’s motion around the Sun modulates the velocity of the detector rela-
tive to the halo. The Earth moves around the Sun with a velocity of 30km/s. Since
the ecliptic is inclined at 62◦ relative to the galactic plane, only a fraction of this
velocity is added to the Sun’s motion. In January, when the Sun is in Sagittarius
(the location of the Galactic center), the Earth is moving at ∼ 235 km/s relative
to the halo. (The Earth’s motion around the Sun is counter-clockwise, while the
Sun’s motion around the Galactic center is clockwise.) In July, more energetic par-
ticles will stream through the detector when the Earth is moving at ∼ 265 km/s
relative to the galactic halo. Since the detector has an energy threshold, the flux of
more energetic particles produces a higher count rate. Drukier, Freese and Spergel
estimate a modulation in the signal of ∼ 12% in a detector sensitive to 20% of
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the incident flux. This calculation assumes that the galactic halo has an isothermal
distribution of velocities.

The existence of this modulation effect does not depend upon details of models
of the galactic halo. It only requires that the Earth’s velocity relative to the rest
frame of the halo changes with time. The assumption that the halo is composed of
WIMPs implies that it is non-dissipative; hence, its rest frame should differ from
that of the Sun which is composed of baryons which collected in the disc through dis-
sipation. The only other astronomical requirement for the modulation effect is that
the Earth moves around the Sun. Seeing the modulation effect, however, requires
that grains have a narrow distribution of energy thresholds (<50%). This is yet
another incentive for developing more uniform grains.

In conclusion, a promising application of grain detectors is their use in the search
for dark matter. The Earth’s motion around the Sun produces a significant modula-
tion which can be used to confirm a detection. While hurdles such as the production
of uniform spherical grains remain, recent progress, the rewards of detection, and
the powerful limits that could be placed on SUSY theories through non-detection
will hopefully continue to motivate experimentalists to surmount these problems.

Astronomy is traditionally a science based on observing photons. The subject of
cosmions, however, begins with observations of solar neutrinos and looks towards
detecting galactic non-baryonic particles. The major discoveries of the past decades
were made possible through the development of instrumentation that opened up new
parts of the electromagnetic spectrum. The detection of neutrinos from Supernova
1987a in the LMC revealed some of the promise of non-photonic astronomy. Perhaps
the next decades will see the discovery of objects not through their photon emissions,
but through our observation of other extra-terrestrial messengers.
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Chapter 10

AN INTRODUCTION TO COSMIC STRINGS

William H. Press∗

Harvard-Smithsonian Center for Astrophysics
Cambridge, MA 02138, USA

David N. Spergel†

Institute for Advanced Study
Princeton, NJ 08540, USA

This lecture reviews the formation of cosmic strings, the evolution of the cosmic
string network, and the behavior of free loops. Also explored is the theory that
cosmic string loops are the seeds for galaxy formation.

1. Birth of Cosmic Strings

Cosmic strings sometimes get confused with superstrings. It is, however, easy to
distinguish between the two objects: superstrings are a theory of everything that
explains nothing in astrophysics, while cosmic strings are a theory of nothing, but
have been evoked to explain nearly everything in astrophysics. (This joke seemed
funny in the original lecture.)

A physical analog of a cosmic string can be formed in the laboratory. Start
with a block of metal in a magnetic field. Slowly cool the block. The outer layer
will become superconducting early, expelling magnetic field lines by the Meissner
effect. Some magnetic field lines will be trapped inside the block. As more of the
metal becomes superconducting, the field lines will be forced into a smaller region.
Eventually, they will form a vortex tube — a filament of the normal state trapped
inside the superconducting metal. The topological constraint that field lines cannot
end (∇ · B = 0) forces a filament of the metal to stay in the normal state.

Nielsen and Olesen (1974) realized that these vortex tubes (or strings) could
form not only at the superconducting phase transition in the laboratory, but also at
phase transitions in the early universe. All that is needed is the right sort of phase
transition.

Our discussion of inflation (see previous paper) assumed that when the high
temperature vacuum state is broken by a spontaneous symmetry breaking, the low
temperature vacuum state was unique. However this need not be true, and there
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†Current address: Princeton University Observatory, Princeton, NJ 08544, USA.
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may be many possible vacuums. For example, consider a theory in which a Higgs
field φ couples through a potential of the form V (φ) = λ(φ2 −η2)2. If φ is real, then
there are two discrete vacuum states: φ = η and φ = −η. This discrete two-fold
symmetry is called a Z2 symmetry and will not produce cosmic strings, but rather
another class of topological defects called domain walls.

When a phase transition occurs in the early universe, the gradient term
(DµφDµφ) in the Lagrangian will couple neighboring regions of space and encourage
them to assume the same vacuum value. Casually disconnected regions; however,
cannot communicate and can assume different vacuum states. If in one region, φ

has a vacuum expectation value of η and in neighboring region, φ has a vacuum
expectation value of −η, then there must be an intervening region were φ passes
through 0, and the original false vacuum state is restored. This narrow surface that
separates two regions with different vacuum expectation values is called a domain
wall. Domain walls are of little interest to most cosmologists, since if they did
exist they would have been observed as the dominant form of matter/energy in the
universe.

Cosmic strings require a more complicated theory. If φ is complex, then its
vacuum state will have a U(1) symmetry: φ = ηeiθ. At each point in space the field
can assume a phase, θ, between 0◦ and 360◦. The gradient term will try to line up
the phases, however, it is possible to have a region in which the phase around a loop
changes by 360◦, this implies the existence of a critical point at which the phase is
ill defined.

Brandenberger (1987) has offered a simple proof of why these points must con-
nect to form strings. Consider a closed curve. If the integral of ∇θ around a path
is 2π, then there must be a singularity somewhere on the surface inclosed by the
curve. ∇θ can only be singular when φ = 0. Thus somewhere on this surface, there
must be a point in the false vacuum state. We can deform this surface and find yet
another point of false vacuum. These points connect together to form a line.

The scale of the symmetry breaking, η, that produces the string network deter-
mines the mass per unit of length of the string, µ ≈ η2/MPL, where MPL = c2/G

is the Planck scale (1019 GeV). This mass per unit length can be enormous,

µ ≈ 1028

(
Gµ

c2

)
g/cm3 ≈ 1013

(
Gµ

c2

)
M�/pc . (1)

In typical GUT theories, η ≈ 1016 GeV and Gµ/c2 ≈ 10−6. The last section will
review how these massive strings may seed galaxy formation.

An unambiguous numerical scheme that simulates a string-generating phase
transition is to carve up a volume of space into a lattice of tetrahedrons and ran-
domly assign 1,2, or 3 to each vertex. Strings enter the tetrahedrons through cyclic
faces (123) and exit through an anti-cyclic faces (321). This procedure of imposing
of Z3 symmetry on the tetrahedron lattice avoids the ambiguity of schemes that
use cubes.



An Introduction to Cosmic Strings 185

Simulations of phase transitions have suggested that strings either reconnect
quickly or wander off to infinity has part of an infinite lattice (Kibble 1976,
Vachaspati and Vilenkin 1984). Approximately 60% of the length of the loops is
in the infinite length string; the remaining length is in small loops with a distribu-
tion dn ∝ l−2.5 dl. Scherrer and Frieman (1987) have explored the properties of the
infinite string network and have found that it behaves not like a Brownian random
walk, but rather a self-avoiding random walk, as observed in a dilute solution of
polymers.

The string network will oscillate and strings will cross. Three-dimensional sim-
ulations of string crossing suggest that the probability of “intercommutation” is
high. This “intercommutation” is akin to the reconnection of field lines in an MHD
plasma. This probability is certainly a function of angle and velocity; however, in
simulations of string evolution, it is usually assumed to be unity.

As the horizon expands, the infinite string network reconnects and forms loops.
The largest scale at which loops can form is the horizon size. There is some numerical
and theoretical evidence that this process of loop formation is self-similar (Albrecht
and Turok 1985, Bennett 1986): there is only one infinite loop crossing the horizon at
any time, the rest of the string’s length is in closed loops. This suggest that the mass
in strings with in the horizon is ≈Kµct, where K is a constant and ct is the length
of the infinite loop that cross the horizon. The volume within the horizon is growing
as c3t3, while the energy density in radiation decreases, ρrad ∼ aT 4 ∼ 1/Gt2. This
suggests that the energy density in strings is a constant fraction of the radiation
energy density:

ρs

ρrad
≈ Kµct/(ct)3

1/Gt2
≈

(
Gµ

c2

)
K ≈ 102 Gµ

c2
. (2)

This solution might possibly not be correct, however. It is possible that the
probability of an infinite string fragmenting into a infinite string plus loop is the
same as that of a loop rejoining an infinite string. This would allow the string
network to continually reassemble itself. Since the length of string per comoving
volume ∝ R, the energy density in strings would scale as R−2. Strings would very
rapidly dominate the universe.

A critical universe dominated by strings has the same dynamics as empty flat
space. The string’s negative pressure, p = − 1

3ρ cancels its density in the expansion
equation:

R̈

R
=

4πG

3
(ρ + 3p) = 0. (3)

The string dominated universe expands linearly.
Most of the interest in strings have focused not on the string-dominated universe,

but rather on a matter-dominated universe in which string loops are the seeds for
the formation of galaxy via gravitational collapse. The rest of the lecture will discuss
the dynamics of these string loops.
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2. The Motion of a Cosmic String Loop

We will derive the string’s equations of motion by analogy with a rubber band. We
can label points along the rubber band with s. The function �x(s, t) describes the
position of points along the rubber band at all times. The rubber band’s equation
of motion can be derived from its action,

S =
∫ ∫

Lds dt, (4)

where the Lagrangian has a kinetic energy and a tension contribution:

L =
1
2
µẋ2 − 1

2
Tx′2 . (5)

Dot denotes a time derivative and prime denotes a derivative with respect to s.

The Euler-Lagrange equation,

−δL

δ�x
+

∂

∂t

δL

δ�̇x
+

∂

∂s

δL

δx′ = 0 (6)

yields for constant µ:

�̈x =
T

µ
�x′′ (7)

which is instantly recognizable as a wave equation that separates for each Cartesian
component of �x. We now multiply the string equation of motion by ẋ and use the
identity d

ds(�x′ · �̇x) = �x′′ · �̇x + �x′ · �̇x′ to obtain

1
2

d

dt

(
�̇x2

)
=

T

µ

(
1
2

d

dt
(�x′)2 +

d

ds

(
�x′ · �̇x))

. (8)

If we integrate the above equation around the rubber band, we obtain a equation
of total conservation of energy:

d

dt

[∫
ds

(
1
2
�̇x2 +

T

µ
(�x′)2

)]
= 0. (9)

This suggests a reparamaterization of labels along the string so that we are tracking
energy packets rather than bits of string. We can make the gauge choice �x′ · �̇x = 0
which leads to a local energy conservation law (see Eq. 8).

We now turn to a cosmic string. The action for a cosmic string,

S = µ

∫
ds dτ L (10)

is the proper area of the world sheet swept out by the string. Recall that the action
of a free point particle is the length of its world line. The area of a world sheet
defined by �x′ and �̇x is:

L = |�x′||�̇x| sin θ =
√

�̇x2�x′2 + (�̇x · �x′)2. (11)

The action associated with the area of a world sheet is called the Nambu action.
It has attracted much attention in recent years as the action for superstrings. In
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superstring theory the strings are moving in a 10 dimensional space rather than
in the more familiar 4 dimensional space. This action has a property called Weyl
invariance: The action is invariant under any conformal transformation. This new
symmetry can have powerful mathematical and physical implications.

Written (1985) demonstrated that in certain particle theories, cosmic strings
can carry currents and behave much like superconducting wires. The addition of
electromagnetic interactions enriches the physics of the cosmic string by adding
new terms to the string action. The string can radiate not only graviational waves,
but also electromagnetic radiation. This lecture will concentrate on non-conducting
strings. We refer the interested reader to Spergel, Piran and Goodman (1987) for a
detailed treatment of the properties of superconducting cosmic strings.

When a non-conducting string loop is much smaller than the horizon size, it
obeys a simple wave equation that is derived from Eq. (11) in flat space:

�̈x = �x′′ (12)

in the gauge in which x0 = t, �x′ · �̇x = 0, (�x′)2 + (�̇x)2 = 0. Turok (1984) emphasized
that the string’s oscillations are the sum of left and right moving waves:

�x =
1
2
[
�a(t + s) + �b(t − s)

]
. (13)

The gauge conditions,

�̇x · �x′ =
1
4
[
(�̇a + �̇b) · (�̇a − �̇b)

]
=

1
4
(
�̇a

2 − �̇b
2)

,

�̇x
2

+ �x′2 = −1 +
1
4
[
2ȧ2 + 2ḃ2

]
, (14)

imply that |�̇a| = |�̇b| = 1. These two vectors describe paths on the unit circle. Since

�̇a and �̇b are derivatives of periodic functions, their mean must be zero. Thus they
will visit every hemisphere. This implies that they will generically cross. When they
cross, �̇a = �̇b, and a piece of the string reaches the speed of light. The point is called
a cusp at it is a square-root singularity in �x′. Because of their high velocities, cusps
are the dominant of gravitational and electromagnetic radiation from the string
loop.

Not all string loops must have cusps. There are special solutions without cross-
ings. For example, �a and �b can follow the “seams of a baseball” and avoid cusps.
Alternatively, there can be discontinuities in either curve. Reconnections naturally
produce these discontinuities which allow one curve to “jump” across the other and
avoid forming a cusp. These discontinuities result in kinks that propagate along
the string. Kinks are points at which the string’s velocity changes discontinuously.
It is not known whether gravitational and/or electromagnetic radiation from the
string will dampen these kinks and restore cusps. Recent articles by Vachaspati and
Garfinkle (1987) and Thompson (1987) provide lucid discussions of recent work on
kinks and cusps.
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Oscillating string loops can cross themselves reconnect and split into smaller
loops. Self-intersections can be found by examining �a and �b, rather than �̇a and
�̇b. Considering the curves �a(ξ) and �b(ξ) allows us to either follow a point, �x(t) =
�a(ξ) + �b(ξ), or to trace the whole string at a point in time, �x(s) = �a(ξ) + �b(−ξ).

Crossings will occur whenever there is a pair of points along the string (s1, s2)
such that,

�a(t + s1) + �b(t + s1) = �a(t + s2) + �b(t + s2). (15)

This will happen whenever a pair of chords on the �a and �b curves inscribe the same
arc-length and are parallel and of equal length, a point emphasized by R. Scherrer,

�a(t + s1) − �a(t + s2) = �b(t + s1) − �b(t + s2). (16)

While searching N points on the �̇a and �̇a curves for cusps in a N 2 process, examining
all pairs of curves for self-intersections is an N 3 search. Since there is both an extra
dimension in the search for crossings and an additional constraint, self-intersections
are also generic.

Witten has remarked that it is a special property of strings in a 4 dimensional
universe that both cusps and self-intersections are generic. In a higher dimensional
space, cusps are a set of measure zero. In a lower dimensional space, the set of
non-intersecting loops in a set of measure zero. This result is linked to the fact that
two dimensional surfaces in four space generically cross.

In an expanding universe, strings behave according to a modified equation of
motion. The Lagrangian can be rewritten for the Robertson-Walker metric,

ds2 = −dt2 + R(t)2(dr2r2dΩ2)

in the gauge in which �̇x · �x′ = 0 and dx0/dt = 1:

L = R2

(
d�x
ds

)2
(
−1 + R2

(
d�x
dt

)2
)

. (17)

The Euler–Lagrange equations now yield a more complicated equation of motion:

d

dt

(
R2�̇x

√
R2(�x′)2

1 − R2(�̇x)2

)
=

d

ds


R2�x′

√
R2(�̇x)2

1 − R2(�x′)2


 . (18)

By defining an effective energy per unit length,

ε =
√

R2(�x′)2/(1 − R2(�̇x)2),

Eq. (18) can be simplified to

d

dt
(R3�̇xε) = R

d

ds

(
�x′

ε

)
. (19)
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We can find an energy equation for a string oscillating in an expanding universe by
multiplying by Rε�̇x and integrating,

ε̇ = −2Ṙ

R
εR2(�̇x)2. (20)

The energy loss is due to the Doppler shifting of the loops’ velocity as the Universe
expands.

If the stings do not intersect, they will continue along the same trajectories,
returning to the same configuration every oscillation. These oscillating strings have
variable quadropole moments, thus are a source of gravitational radiation. The
graviational radiation from an oscillating source,

LGrav ≈ L2
int

c5/G
, (21)

where Lint is the internal luminosity of the string. A string of length R has a mass
of ∼µR. Every oscillation period, R/2c, the string moves µc2R of energy through
space. The string’s internal luminosity is E/t − µc3, thus it radiates,

LGrav ≈
(

Gµ

c2

)
µc3 (22)

in gravitational radiation. This implies that a string loses Gµ/c2 of its length
every oscillation time. Ostriker, Thompson and Witten (1986) suggest that if the
string carries electric current, it can emit a comparable amount of electromagnetic
radiation.

3. Cosmic Strings and the Formation of Galaxies

Over the past few years, there has been growing interest in the hypothesis that
cosmic strings could seed the growth of galaxies in the early universe. Initial work
suggests that cosmic strings could account for the number and distribution of clus-
ters and galaxies and explain the slope and amplitude of the cluster correlation
function (Zeldovich 1980, Vilenkin 1981, Brandenberger and Turok 1986 and refer-
ences therein). Peebles (1986a, l986b) has alerted workers in the field to discrepan-
cies between observations and the predictions of the cosmic string galaxy formation
scenario. Peebles claims that the cosmic string scenario does not explain the large
scale topology seen by deLapparent et al. (1986), nor does it explain large scale
biasing. Vachaspati (1987) has suggested that wakes of infinite string loops may be
responsible for the large scale frothy structure. Stebbins et al. (l987) claims that
these wakes may alleviate some of Peebles’ concerns.

Peebles (l986b) also questions whether the objects that accrete around string
loops would look like galaxies. The spherical accretion model yields structures with
small core radii and predicts too steep a slope in the galaxy luminosity function.
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These discrepancies motivate a reconsideration of how matter accretes around cos-
mic string loops. We will focus on how competition between loops limits their accre-
tion of dark matter and baryons and the role that galactic cannabalism may play
in the evolution of galaxies in the cosmic string scenario.

One of the challenges in studying the astrophysical implications of these massive
cosmic string loops is understanding how to associate galaxies and clusters with
these loops. Scherrer and Melott (1987) argue against the 1 : 1 association of large
cosmic string loops with rich Abell clusters. Their numerical simulations of cosmic
string seeded galaxy formation do not reproduce the Bahcall and Soniera (1983)
cluster-cluster correlation function.

The next section will review spherical accretion model of Gott (1975) and Gunn
(1977). This model ignores the effects of neighboring loops on the accretion of mat-
ter and the motion of cosmic string loops. Bertschinger (1987) has shown that the
string’s motion does not affect the amount of matter accreted around the loop, only
the shape of the galaxy. We will then consider the competition between loops and
show that the amount of mass that accretes onto a loop is initially proportional to
its length. This implies that initially most of the matter in a group or cluster is accu-
mulated in small ∼ 10−2L∗ objects. Larger systems may cannabalize these smaller
objects and steepen the correlation between galaxy mass, Mg, and loop radius, RL

to Mg ∝ R
3/2
L . If L∗ galaxies can cannabalize their smaller companions, then the

cosmic string model successfully predicts the slope of the galaxy luminosity func-
tion and the dependance of luminosity on velocity dispersion [“Faber-Jackson Law”
(Faber and Jackson 1976)]. If cannabalism is an inefficent process, then observed
galactic morphology conflicts with theoretical expectations.

3.1. Spherical Accretion Model

We review the accretion of cold dark matter around a loop of radius R and mass,
M = βµR, focussing on the “standard” scenario of Brandenberger and Turok
(1986). Zurek (1986) has suggested that a cascade of self-intersections would pro-
duce a dramatically different morphology. Bertschinger and Watts (1987) explore
the accretion of neutrinos (“hot” dark matter) onto cosmic string loops.

Albrecht and Turok (1985) find that their numerical simulations suggest a self-
similar spectrum of string loops. The number density of loops, n(R), of radius R,
produced in the radiation epoch (R < cteq):

n(R, t)dR = νR−5/2t1/2
eq c3/2t−2 (23)

where ν ≈ 0.01 and teq = 5.4×1010 h2 sec in a universe with 3 light neutrinos species.
These loops oscillate and emit gravitational radiation. Vachaspati and Vilenkin
(1984) have estimated that the luminosity of a typical loop is ∼ 50Gµ2c. This implies
that the loop distribution function is cut off at Rmin(t) = 50(Gµ/c2)ct. Loops that
were formed with smaller initial radii have decayed away through gravitational
radiation losses.
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The typical distance to the nearest loop of radius greater than R can be deter-
mined from Eq. (23):

d(R) =
(

9
8πν

)1/3

R1/2t−1/6
eq t2/3

= 5.5
(

R

1 pc

)1/2

h−4/3(1 + z)−1Mpc . (24)

Since d(R) � R, accretion around a loop can be modelled as accretion around a
point mass of mass βµR. Gott (1975) and Gunn (1977) have considered spherical
accretion in a cosmological context. Brandenberger and Turok (1986) applied this
model to galaxy formation around cosmic string loops.

Density perturbation will grow around all loops that survive to the matter-
dominated epoch, this implies that the smallest seed loops will be 0.05 pc and the
spacing between loops will be 1Mpc.

Consider a spherical shell of radius ri, centered around the cosmic string loop
initially has Hubble velocity Hiri. In a radiation dominated universe, the rapid
expansion of the universe prevents the cosmic string loop from having a substantial
effect on the motion of the shell. [See Stebbins (1985) for discussion of the growth
of the pertubation in the radiation epoch.] After teq, the excess density due to the
string loop has the effect of slowing the expansion of the shell. The shell that started
at distance req from the string at time teq will expand until a time,

tmax =
3π

4

(
2

9GµβR

)3/2

r9/2
eq t−2

eq c−3, (25)

at which it has expanded to rmax:

rmax =
4πr4

eq

3βµRc2t2eq

=
(

4
3π

)8/9 (
9βGµR

2

)1/3

t−2/9
eq t8/9. (26)

This shell will then collapse and the material in the shell will have a final radius of
∼ 0.5rmax. This accretion will build up a density profile around the loop,

ρ(R, r) � 1
3

(
3β

2π

)3/4

ρ1/4
eq (Rµ)3/4r−9/4 (27)

where r is the distance from the galactic center.
We can predict the rotation velocity, v(r) by equating the centrifugal force v2/r

to the gravitational force, GM(r)/r2. This yields a nearly flat rotation curve:

v(r) = πG

(
3β

2π

)3/8

ρ1/8
eq (Rµ)3/8r−1/8 . (28)

Baryonic infall; however, will steepen the rotation curve, possibly producing a dis-
agreement with observations (Peebles 1986a).
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The spherical accretion model ignores competition from other loops. We can
estimate the importance of competition by comparing the maximum radius reached
by a shell turning around a time t around a loop of radius R with the distance to
the nearest loop of radius R or larger:

rmax(t)
d(R, t)

= 4
(

R

1pc

)−1/6

(1 + z)−1/3

(
µ

2 × 10−6

)1/3

h−1/3. (29)

This ratio is greater than 1 for loops that will form L∗ galaxies: all of the matter has
already accreted into galaxy-size objects by a redshift of 1. This implies that the
total mass accreted onto a loop is limited by competition with loops of comparable
size. The big loops also must compete with the smaller loops for baryons and dark
matter. We now consider this competition.

3.2. Competition between Loops

Consider two loops a distance s0/(1 + z) apart. The longer loop has radius, RL,
while the smaller loop of radius has radius, Rs. Balancing the tidal force due to the
larger loop against the gravitational force of the large loop implies that all material
inside a radius rt(Rs, RL) is bound to the smaller loop where,

rt(Rs, RL) = (Rs/2RL)1/3s0/(1 + z). (30)

The total mass accreted by the smaller loop, Ms, is determined by its distance from
the larger loop:

Ms =
2π

3

(
Rs

RL

)
ρ0s

3
0, (31)

where ρ0 is the current matter density.
In the entire shell of radius s around the larger loop, the fraction f of material

bound to smaller loops,

f(s0, RL) = ρ−1
0

∫ RL

Rmin(teq)

n(R)Ms(Rs, RL, s0)dR (32)

can be calculated from Eqs. (23), (30), and (31):

f(s0, RL) =
4πν

3
(cteq)1/2s3

0

c2t20RL

(
R

−1/2
min − R

−1/2
L

)
(33)

where t0 is the current age of the universe. There is a critical distance, scrit, beyond
which f(s) > 1/2 and most of the material is bound to smaller loops. The loops
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that form L∗ galaxies have radii much larger than Rmin = γGµcteq, thus

scrit(RL) ≈
(

3
8πν

)
(ct0)2/3R

1/3
L (γGµ)1/6. (34)

The total mass that will initially bind directly to a large loop, Minit, is

Minit =
ρ0(ct0)2RL

2ν
(γGµ)1/2. (35)

This implies that the mass initially accreted directly onto a loop is proportional to
its length. Since most of the length of the string network is bound up in the loops
of length ∼ Rmin, most of the mass initially accretes onto dwarf galaxies of mass,

Msat =
4π

3
ρ0d(Rmin, t0)3. (36)

3.3. Galaxy Morphology

Now, we attempt to compare the predictions of the spherical accretion model with
observations of galaxy properties. If we assume that the mass to light ratio of
the accreted matter does not vary systematically with loop radius, then Eq. (23)
implies that the galaxy luminosity scales linearly with the radius of the seed loop:
L ∝ M ∝ R. Combining this relationship with Eq. (35) yields a very steep galaxy
multiplicity function:

n(L)dL ∝ n(R)dR ∝ L−5/2dL. (37)

Peebles (1987b) has noted the glaring discrepancy between the large number of
dwarf galaxies predicted in the cosmic string scenario and the small number of
dwarf galaxies observed in the local group.

Galaxy luminosity scaling linearly with loop radius also does not predict
the Faber-Jackson law. Equation (35) implies too steep a velocity-luminosity
relationship:

v ∝ R3/8 ∝ L3/8. (38)

Faber and Jackson’s (1976) observations of elliptical galaxies reveal that v ∝ L1/4.
Galactic cannabalism can perhaps save the cosmic string scenario. The previous

section showed that the matter accreted onto most of the smaller loops were bound
to the large loops. These subsystems may have merged. These systems have had
several dynamic times to interact. In small groups, galaxy mergering is a rapid and
efficent process. Perhaps, galaxies should not be identified with one string loop, but
rather with the material that accreted around a collection of seed loops.

If cannabalism is important, then the mass accreted around an individual
loop will be determined by the distance to the nearest loop of comparable size
(or bigger), d(R). Equation (24) suggests a steeper relation between loop size and
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galaxy mass:

M ∝ d(R)3 ∝ R3/2. (39)

Cannabalism reduces the number of small galaxies and correctly predicts the
Faber-Jackson law:

v ∝ L1/4. (40)

This analysis suggests that N-body simulations of the accretion of matter around a
collection of loops are needed to reveal if collective effects will remove the discrep-
ancy between the “standard” cosmic string model and observations.

4. Observing Cosmic Strings

Cosmic strings may be detected in the next few years. There are several possible
ways of observing the effects of cosmic string loops.

Cosmic strings can act as gravitational lenses. Gott (1984) and Vilenkin (1984)
show that a string crossing a segment of the sky would form pairs of images of equal
brightness seperated by Gµ/c2 radians. If Gµ/c2 ∼ 10−6, then a cosmic string would
act as an arc-second lens. Cowie and Hu (1987) have already detected 4 pairs of
galaxies of nearly equal brightness that they suggest as a candidate for lensing by
a cosmic string loop. Further observations will test the exciting possibility.

Hogan and Rees (1984) showed that the gravitational radiation from decaying
cosmic strings is also detectable. The millisecond pulsar monitored by Taylor and
his collaborators is a superb clock. A gravitational wave passing between the Earth
and a pulsar would produce a variation in the Earth-pulsar distance and noise in
the clock. Current observations rule out Gµ > 10−5. As the pulsar is observed over
longer time baselines, limits on Gµ will improve with observing time as t8! If the
pulsar behaves itself, we will soon be able to rule out strings massive enough to
form galaxies (Gµ > 10−6).

In certain theories, cosmic strings can behave as superconductors (Witten 1985).
The presence of electromagnetic interactions enables the string loop to have dra-
matic effects on its environment. Chudnofsky et al. (1986) suggest that synchotron
emission from hot plasma interacting with the magnetic fields around supercon-
ducting strings could be detected. Hill et al. (1987) and Babul et al. (1987) propose
observing ultra-high energy emission emitted from cosmic string cusps. If strings
are superconducting, they could be detected even if Gµ � 10−6.

The detection of a cosmic string loop would be a dramatic discovery. It would
reveal the existence of a phase transition at scales inaccessible in the laboratory and
would provide a window into the very earliest moments of the universe.
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Chapter 11

A DEPARTURE FROM NEWTONIAN DYNAMICS AT LOW
ACCELERATIONS AS AN EXPLANATION OF THE

MASS-DISCREPANCY IN GALACTIC SYSTEMS

Mordehai Milgrom

Department of Physics, Weizmann Institute
Rehovot 76100, Israel

Outline of the Lectures

1. The dark side of the dark matter hypothesis; wastefulness, arbitrariness,
uselessness.

2. All dynamical determinations are based on a single relation between mass, velo-
city, and separation.

3. A modification of only the r dependence of gravity conflicts with observations.
4. The basic assumptions of MOND:

a. Departure at low accelerations.
b. There exists ao such that for a � ao: a2/ao ≈ MGr−2.

5. Is MOND an amendment of the second law or of the law of gravity?
6. MOND is not a modification at large separations (it may also be required when

dealing with small systems such as the long-period comet system). MOND
entails accelerations that are nonadditive (nonlinear) in the attracting masses.

7. Different theories can be built on the basic assumptions [different forms of µ(x),
theories with more than one potential, etc.].

8. One finds ao ∼ cHo. Mach’s principle. Does ao vary with cosmic time?
9. A nonrelativistic gravitational potential theory: �∇ · {µ(|∇ϕ|/ao)�∇ϕ} = 4πGρ.

a. Conservation of momentum, angular momentum, and energy.
b. A composite (but small and light) particle with arbitrary internal accelera-

tions falls, in an ambient field, as does a test particle.

10. In systems with spherical (or cylindrical, or planar) symmetry µ(g/ao)�g = �gN .
11. The ambient field effect: The internal dynamics inside a system that is falling

in an external field may be strongly affected by the presence of that field. The
strong equivalence principle does not hold.

12. The dynamics in a system immersed in a dominant ambient field is quasi-
Newtonian but has a preferred direction and an effective gravitational constant
larger than G.
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Consequences of MOND.

13. Galaxies (in particular discs) hold the key to the mass discrepancy. Their obser-
vations involve good measurements, clear interpretation, large samples, well-
defined regularities.

14. No need for dark matter in galaxy binaries, small groups, clusters, and the Virgo
infall system.

15. Rotation curves: L(�r) → M(�r) → vMOND(r) ?= vobs(r).
16. In MOND, the shape of the rotation curve depends not only on the mass dis-

tribution but also on its normalization.
17. The rotation curve of an isolated galaxy is asymptotically flat, v → v∞.
18. v4

∞ = MGao.
19. The surface density Σo ≡ aoG

−1 plays a special role.
20. Isothermal spheres as models of ellipticals, galactic bulges, and galaxy clusters:

a. are finite, ρ
r→∞−−−→ r−α (α > 3).

b. Σ(≡ M/r2
1/2) � Σo.

c. aoGM = Qσ4; 1 ≤ Q ≤ 9/4.

21. The general expression for the phantom mass density: ρ(luminous) →
�g(MOND) → ρ∗(Newtonian).
ρp ≡ ρ∗ − ρ = ρ(1/µ− 1) + (4πG)−1L�eg · �∇|g|.

22. The Oort discrepancy: near the sun ρ∗ ≈ ρ/µ(v2�/rao).

a. ρ∗/ρ ≈ const.
b. The local Oort discrepancy factor equals that of the global mass discrepancy

at the solar orbit.

23. Negative “dark matter”.
24. Light bending and gravitational lensing.

1. Introduction

I want to present to you a solution to the mass discrepancy problem, that is utterly
different from the conventional explanation.

Masses in galaxies and aggregates of galaxies are deduced from the observed
velocities and distances in such systems. A relation that rests on Newton’s laws of
dynamics, between these quantities and the masses, is used.

The masses of galactic systems derived in this way (the Newtonian dynamical
masses) do not agree with the masses one observes directly. The former are, in
general, larger (and in many cases much larger) than the latter.

Newton’s laws have proven to be so reliable in describing laboratory and solar
system phenomena (when relativistic effects can be neglected), that there is an
overwhelming tendency to apply them in the realm of the galaxies as well. The
observed mass discrepancy is thus perceived as evidence for the existence of dark
matter in galactic systems.



Departure from Newtonian Dynamics at Low Accelerations 199

I have adopted the opposite view and taken the mass discrepancy to manifest
the breakdown of Newtonian dynamics under the conditions that prevail in galaxies.

Astrophysicists consider it bad form to challenge established laws of physics and,
on the whole, have been reluctant to spend much effort on possible alternatives.
Nonetheless, it is high time that we seriously study the possibility that the cosmic
mass discrepancy reflects the inadequacy of Newtonian dynamics.

What may be the motivation for following such a route? Firstly, the conventional
solution — the dark matter hypothesis (hereafter DMH) — leaves much to be
desired. The DMH is completely arbitrary in that one invokes the existence of
dark matter in just the correct amount and spatial distribution needed to explain
the mass discrepancy in each and every case, for itself. The explanation of every
phenomena connected with the mass discrepancy requires a separate assumption
about the alleged dark matter. It now appears, as we heard earlier, that we need
more than one type of dark matter to explain discrepancies on different scales (some
say at least three types).

One should also remember that, so far, not a trace of the dark matter has been
detected directly (and this is not merely due to the definition of dark matter).

In short, the dark matter hypothesis is very elaborate and yet quite useless. It has
not led to better understanding of galaxy dynamics (besides closing the mass gap)
and has not helped us find relations between different observed phenomena. These
shortcomings of the DMH cannot be taken as evidence against dark matter, but
one can, at least, draw some encouragement from them when pursuing iconoclastic
alternatives.

There are other facts that justify serious consideration of a breakdown of
Newtonian dynamics as the alternative to dark matter.

There now exist high quality data on galaxy dynamics that make it rather easy
to test any modified dynamics that is specific enough. Such theories are easily
falsifiable by present data. The data exhibit various clear-cut regularities (such as
flat rotation curves, the Fisher-Tully and Faber-Jackson relations, etc.) that the
DMH leaves unexplained and unrelated.

Secondly, we note that all the mass determinations in galactic systems are based
on a single dynamical relation. The velocity, v, of a test particle, its distance, r,
from the center of an attracting body that it is bound to, and the mass M of that
body, which we seek to determine, are related by

v2 = αMGr−2. (1)

Here α is a coefficient of order unity which depends on the exact definition of v

and r and on the geometry of the system, and G is the gravitational constant.
Equation (1) is derived from Newton’s second law and from the law of gravity (or
the Poisson equation).

It is only needed that this one relation breaks down, under the conditions typical
for galactic systems, to invalidate all the mass determination. If the correct modified
relation is used to determine the masses, the mass discrepancy will be eliminated
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and many concrete and unavoidable consequences pertaining to galaxy dynamics
will follow.

Of all the assumptions and relations of conventional physics on which the mass
determination is based, the first culprit that comes to mind is the distance depen-
dence of the law of gravity at large separations. One may assume that the acceler-
ation, a, of a test particle at a separation, �r, from a (point) mass, M , is given by

�a = −MG�r

r3
f(r/l), (2)

with f(x) ≈ 1 for x � 1, so that Newtonian gravity is a good approximation at
short distances. For x > 1, f(x) > 1 and the acceleration produced by an attracting
mass is larger than the Newtonian acceleration.

I had considered such a modification in detail, and found it to be in clear conflict
with the observations. A few of the main arguments are listed below.

An explanation of the mass discrepancy based on a modified r dependence pre-
dicts a mass velocity relation of the form M ∝ v2.5 Such a relation is practically
ruled out by the observed Fisher-Tully relation (see below). Also, in order to explain
observations in average size galaxies, one must adopt l ∼ 10 Kpc. Hence, one expects
to find practically no mass discrepancy in galaxies with sizes of a few Kpc or less.
Again, this is in conflict with recent observations. In general, one does not find
any correlations between the size of a galaxy and the level of mass discrepancy it
exhibits (we expect a strong correlation on the basis of Eq. (2)). The observed Oort
discrepancy (see below) cannot be explained because it appears on distances much
smaller than a Kpc.

2. Dynamics at Low Accelerations

Various other directions had been explored before I proposed a modified law of
motion in which the acceleration of test bodies is the parameter that determines
the degree of departure from Newtonian dynamics.1

The basic assumptions of the non-ralativistic version of the proposed dynamics
(MOND) may be enunciated as follows: Newtonian dynamics is a good approxima-
tion when the accelerations involved are large. In the opposite limit the relation
between the acceleration of a test particle at a distance r from a (point) mass M is
given by:

(a/ao)�a ≈ −MG

r2
�er (≡ �gN ). (3)

Here �gN is the Newtonian gravitational acceleration and ao as a constant with the
dimensions of acceleration, which we must introduce, and �er is a radial unit vector.
(Relation (3) replaces the Newtonian low of motion �a = �gN .)

The acceleration constant, ao, is also assumed to play another role, that of
the borderline acceleration between the Newtonian and low acceleration regimes.
For a 	 ao, the Newtonian relation is a very good approximation, whereas the
asymptotic relation (3) holds for a � ao.
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Matters can be complicated by positing a modification whose departure from
conventional physics depends on both distance and acceleration or one that involves
more than a single new constant (for instance, by adopting a more complicated
dependence of the inertia term on acceleration). There are no observations, at
present, that require such elaborateness and we should adhere to the more par-
simonious as long as possible.

Also, there are various theories that one can build on the assumptions listed
above. Fortunately, many major consequences and predictions of MOND follow
directly from the basic assumption.a

Even before deciding on the exact theory, one encounters the question of the
interpretation of MOND. Is it to be interpreted as a modification of the second law
so that the inertia force Fi is quadratic in the acceleration, for a � ao, instead of the
conventional relation Fi = ma? Or perhaps it signifies a breakdown of Newtonian
gravity, leaving the second law intact.1

To make the latter interpretation appear more transparently we write Eq. (3)
in the form

�a ≈ −
(

MGao

r2

)1/2

�er. (4)

Thus, the gravitational force on a test mass m at a distance r from a (point) mass
M is given by

F (m � M, M, r) ≈
{

m(MGao)1/2r−1 MGr−2 � ao

mMGr−2 MGr−2L 	 ao

. (5)

The two interpretations are drastically different of course. The former entails a
departure from Newtonian dynamics whenever the acceleration is small, no matter
what combination of forces produces it. According to the latter, deviations from
Newtonian gravity are expected only when the gravitational acceleration is much
smaller than ao.

We do not know, at present, which interpretation is to prevail. The only existing
relevant data describe dynamical behavior of galactic systems where gravity is the
only force of importance. Such data do not help us decide between the two interpre-
tations. The theory of MOND that we shall present below is based on a breakdown
of Newtonian gravity.

The value of ao was determined in a few independent ways which I shall describe
in the next lecture. All gave a value in the range (1–8)× 10−8cm s−2. (The deduced
value of ao depends on the values one adopts for the Hubble constant, Ho, and for
the mass-to-luminosity ratio of the stellar component. Most of the uncertainty in
the value of ao can be imputed to our ignorance of these astronomical parameters.)

aOne then has to assume in addition that a small object of a small mass moving in a field of a large
mass can be considered a test particle even if the former is made up of sub-particles that have
high (internal) accelerations. Any theory of MOND should satisfy this additional requirement.
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This range of values contains that of cHo ≈ 5× 10−8(Ho/50 km s−1 M pc−1)cm s−2,
were Ho is the Hubble constant.

This near equality between ao and cHo may be of great importance. Firstly, if
this relation is valid at all times, ao must vary on cosmological time scales. This
will affect strongly our view of galaxy evolution on such time scales.

Secondly, when we find a constant that appears in the equations of local dynam-
ics (in small systems) and equals to one related to cosmology, we are immediately
reminded of the Mach principle.

According to this principle, in local systems, whose size is small compared with
the size of the horizon, the dynamics is strongly affected by the interaction of the
system’s constituents with the content of the rest of the universe. This interaction
is not apparent in the laws of physics we use because one is able to write down an
effective theory that involves only variables of the small system itself. This theory is
only approximate and the interaction with the ambient universe comes in through
some of constants in the reduced theory. These constants can be calculated, in a
more general theory, from global cosmological properties. (This state of affairs is
much like that in a small isolated laboratory on the surface of the earth, where
one deduces that all free bodies move with a constant acceleration g, which is
then perceived as a constant of nature. Once one is free to leave the confine of
the laboratory, he discovers that g is calculable from parameters of the earth, and
indeed that it loses its significance as a constant of nature.)

In the theories that will be described below, ao is put in by hand, and the fact
that it nearly equals cHo is not brought to bear. It is hoped that in a future theory,
MOND will result as an effective theory and the value of ao will be calculable from
cosmological parameters.

Obviously, if the Machian point of view expressed above is valid, one may not
use, the local effective theory to describe cosmology. One should be cognizant of
this fact even when employing a relativistic version of MOND to discuss cosmology.
It is for this reason that I have been reluctant to try and apply some variant of
MOND to cosmology.

Note, in this connection, that an acceleration, a, defines a scale of length
ra = c2/a. This, for instance, is the transition radius from the near field to the
radiation zone of an accelerated charge. Also, an accelerated observer has a region
of space-time from which it is causally disconnected. The distance from the observer
to the boundary of this region is given by ra.

Now, when a is much larger than ao, ra is much smaller than the distance to
the cosmological horizon. If a � ao the horizon is within ra of the system.

The distance to the cosmological horizon, or alternatively, the expansion rate
at a given epoch, defines a quantity with the dimension of an acceleration. At the
present epoch this quantity has the value that we find for ao from studies of galaxy
dynamics.
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We may indeed expect that in a theory that is based on Mach’s principle, the
dependence of the inertia force on acceleration for a � ao is different than that at
a 	 ao.

MOND is occasionally mistaken for a modification of gravity at large separa-
tions. This is far from being the case even if we interpret MOND as a modification
of gravity. It is true that for a given attracting mass, M, the acceleration changes
from Newtonian to non-Newtonian as the separation increases. However, the tran-
sition does not occur at a universal radius (as is the case for modification that is
described be Eq. (2)). Rather, the transition occurs at a universal acceleration, ao.

The transition radius rt ≡ (MG/ao)1/2 depends on the attracting mass. Both the
radius and the mass dependence is modified.

Unlike theories that are described by Eq. (2), MOND gravity is a non-linear
theory. The acceleration produced by a collection of masses is not the sum of the
accelerations due to each mass separately.

3. A Nonrelativistic Formulation

On the basis of the assumptions of MOND we built a nonrelativistic Lagrangian
theory (Ref. 2), which I shall now outline. The acceleration field, �g(�r), of a test
particle in the gravitational field of a mass distribution, ρ(�r), is taken to be derivable
from a potential, ϕ(�r), i.e. �g = −�∇ϕ. The field equation for ϕ is a generalization of
the Poisson equation [∇2ϕ = 4πGρ] :

�∇ · [µ(|∇ϕ|/ao)�∇ϕ] = 4πGρ, (6)

which we must provide with appropriate boundary conditions. Equation (6) is deriv-
able from the Lagrangian

L = −
∫

d3r
{
ρϕ + (8πG)−1a2

oF [(∇ϕ)2/a2
o]

}
. (7)

The function µ(x) is given by µ(x) = [dF(y)/dy]y=x2 , and one chooses F(y) so that

µ(x) ≈
{

x x � 1

1 x 	 1
.

Given a source mass distribution ρ(�r) one solves Eq. (6) to obtain the potential and
acceleration fields. The solution of Eq. (6) exists and is unique in any volume, V,

within which ρ(�r) is given, and on the boundary of which either ϕ or µ(|∇ϕ|/ao)∂nϕ

is given.3 Here ∂nϕ is the derivative of ϕ normal to the boundary.
The motion of a test particle in the field of ρ(�r) is given by the equation of motion

�̈r = �g(�r). The force acting on a finite (non-test) body that occupies a sub-volume u

of the system is

�Fu =
∫

u

ρ(�r)�g(�r)d3r, (8)

and the acceleration of its center of mass, �R, can be shown to be �̈R = �Fu/mu where
mu =

∫
u

ρd3r is the mass in u.
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The total momentum,

�P ≡
∫

ρ(�r)�v(�r)d3r

as well as the angular momentum,

�J ≡
∫

ρ(�r)�r × �vd3r

of a closed system are conserved. Also

Ė ≡ ĖK − L̇ = 0,

where EK ≡ 1
2

∫
v2(�r)d3r.

MOND must satisfy an important requirement in order for it to provide the
explanation of the mass discrepancy. Consider a sub-system (“star”) in a large
system (“galaxy”) such that the mass of the star is much smaller than that of
the galaxy and the size of the star is much smaller than the extent over which the
“galaxy’s” field varies. It is required that the center of mass acceleration of the “star”
in the “galaxy” will be that given by MOND albeit the very large (gravitational)
accelerations exerted by elements of the “star” on each other.1

This requirement is satisfied by the theory that I have just described.2 Had this
not been the case, different objects such as stars, binaries, HI clouds, etc. would
have fallen with different accelerations at the same locations in the galaxy and the
weak equivalence principle would have been violated.

I shall now demonstrate that the Lagrangian theory indeed satisfies the assump-
tion of MOND. Eliminating ρ between the MOND equation

�∇ · [µ(g/ao)�g] = −4πGρ

and the Poisson equation for the Newtonian fields �gN and ϕN (i.e. �∇ · �gN =
−4πGρ), we get

�∇ · [µ(g/ao)�g − �gN ] = 0. (9)

(We remember, of course, that if MOND is valid then the Newtonian fields �gN and
ϕN are not the gravitational fields, they serve here only as calculational auxiliaries
defined as the solution of the Poisson equation.) The expression in square parenthesis
in Eq. (9) is thus a pure curl. In problems of high symmetry such as spherically,
cylindrically, or plane symmetric systems such a curl must vanish and we have the
exact result:

µ(g/ao)�g = �gN . (10)

This relation can also be shown to hold, in general, for the leading power in the
inverse distance, at a large distance from a bound mass. Since µ(x) ≈ x for x � 1
we have in this limit

g2/ao ≈ MGr−2, (11)

as required (compare with Eq. (3)).
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As it turns out, Eq. (10) is a very good approximation, for the acceleration field
by test particles, in a wide range of systems (not only those with high symmetry).
It may, for instance, be safely used to calculate rotation curves of galaxies.3 This is
very fortunate because Eq. (10) is much easier to solve than the field equation (6).
The latter is a nonlinear partial differential equation whereas the former is easily
solved once the Newtonian field is known.

4. Effects of an Ambient Field

Now consider the dynamics within a sub-system (for instance, an open cluster) that
is freely falling in the ambient acceleration field of a “mother” system (say a galaxy).
Assume that the “cluster” is much smaller than the length over which the ambient
field varies appreciably, so that tidal effects can be neglected altogether.

In Newtonian dynamics, indeed in any theory that satisfies the strong equiva-
lence principle, the internal dynamics (involving motion in the subsystem relative to
its center of mass) are oblivious to the presence of the constant ambient acceleration
field. This is not the case in MOND which does not satisfy the strong equivalence
principle even in its nonrelativistic form.1

Let ρ(�r) be a mass distribution that falls in a constant external acceleration field
�go. We seek the solution, �g, of the field equation (6) with the boundary condition

�g
r→∞−−−→ �go.

The center of mass itself falls with acceleration �go and so the internal dynamics
are governed by the field �q ≡ �g − �go.

The fact is that, in general, �q is very different from the solution of the field
equation with the condition

�g
r→∞−−−→ 0

(�q also vanishes at infinity).
So, an isolated system behaves very differently than it would have in an external

field. We demonstrate this point with an example of wide applicability.3

Suppose that |q| � go everywhere, and let �go be in the z direction. We can then
linearize the field equation by retaining only the lowest order terms in �q. We do this
by writing

|�go + �q | ≈ go + qz ,

µ(|go + q|/ao) ≈ µ(go/ao) + µ′(go/ao)qz/ao.

Thus,

�∇ · {µ(g/ao)�g} ≈ µ(go/ao)�∇ · �q + µ′(go/ao)goqz,z/ao = µo(�∇ · �q + Loqz, z)

where µo = µ(go/ao) and Lo = (d ln µ(x)/d ln x)x=go/ao . We find that with
�q = −�∇η, the intrinsic potential, η, satisfies
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∂2η

∂x2
+

∂2η

∂y2
+

∂2η

∂z′2
= 4πµ−1

o Gρ, (12)

with z′ ≡ z/(1 + Lo)1/2.
Equation (12) is just the Poisson equation for the density ρ̂(�r) ≡ µ−1

o ρ(�r) and
the coordinates

�r ′ = (x′, y′, z′) = [x, y, z(1 + Lo)−1/2].

The effective density ρ̂ can be much larger than ρ since µ−1
o ≈ ao/go for go � ao.

Hence, the internal field around a mass that produces a small perturbation on
an ambient field is quasi-Newtonian (i.e. it decreases like r−2 at large distances).
The field corresponds to a mass larger than the one actually present by a factor
1/µ(go/ao), and is aspherical.

For example, far away from a point mass (e.g. the sun) that is falling in an
external field (e.g. that of the galaxy), the acceleration of test particles (comets)
relative to the sun is described by an effective field with elliptical equi-potential
surfaces [x2+y2+z2/(1+Lo) = const] elongated in the direction of the galactic field.
The field of the sun is thus neither spherical nor radial. This asphericity becomes
most prominent at distances from the sun larger than rs, where rs is given by

µ(go/ao)go = M�Gr−2
s ,

and go is the acceleration of the sun in the galaxy.
When the external acceleration is much larger than ao we have µo ≈ 1, and

Lo � 1 [because µ(x 	 1) ≈ 1]. The resulting internal dynamics is very nearly
Newtonian in this case. For example, an experiment in a terrestrial laboratory
involving small relative accelerations will show practically no MOND effects because
it is immersed in the field of the earth (g > 1010ao).

In summary, if a subsystem with a typical internal acceleration, gin, falls in
an external field with an acceleration, gex, the internal dynamics in the subsys-
tem depends on the relative magnitudes of gin, gex, and ao. When the inequalities
between every two of these quantities are strong, and the subsystem is small com-
pared with the distance over which gex varies substantially, the description of the
internal dynamics takes a relatively simple form.

When either gin 	 ao or gex 	 ao the internal dynamics is Newtonian. When
gin 	 gex the system is isolated and MOND dynamics hold. When gin � gex �
ao the internal dynamics is quasi-Newtonian as we demonstrated above. Figure 1
shows, schematically, where various astronomical systems fall in the gin− gex plane.

More details of the properties of the field equation and its solutions can be found
in Refs. 2 and 3.

We still lack a satisfactory relativistic theory with the MOND non-relativistic
behavior. If a massive system of size R is to be both relativistic and of low accel-
eration, R should satisfy R > c2/ao. Because of the near equality ao ∼ cHo this
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Fig. 1. A classification of various systems according to their intrinsic and center-of-mass
accelerations.

implies: R > cH−1
o (the cosmological horizon’s size). We are then dealing with cos-

mology. We also find that a charge that is accelerated at a rate smaller than ao, has
it’s radiation zone beyond the cosmological horizon because then,

c2/a > c2/ao ∼ cH−1
o .

We also need a relativistic extension in order to describe light bending and
gravitational lensing which I discuss below.

5. Observational Consequences

Employing MOND, we find that a given mass distribution produces, on average,
larger accelerations than those dictated by Newtonian theory. Hence, if we insist
on using Newtonian dynamics, we will have to assume larger masses to explain
the observed accelerations. This, according to MOND, is the origin of the mass
discrepancy.

I believe that the key to the mass discrepancy problem lies in observing and
understanding galaxies, notably disc galaxies, in spite of the fact that other systems,
such as galaxy cluster, show wider discrepancies. The former are more regular in
shape, can be observed and interpreted more easily and with higher confidence. This
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is especially true for discs where the motion of the test articles (neutral hydrogen,
HII regions, etc.) can be shown to move in very nearly circular orbits.

In addition, observed properties of galaxies exhibit very clear-cut regularities
that are of great significance in providing strong constraints on any explanation of
the mass discrepancy.

I shall thus concentrate here only on some consequences of MOND that pertain
to galaxies. Before doing so I just wish to state the results for binary galaxies, small
groups and clusters of galaxies, and for the infall of the local group into Virgo. A
reanalysis of the observed dynamics of these systems in light of MOND,4 using the
same value of ao as obtained from the analysis of galaxies, eliminates the need to
invoke dark matter. In other words, the observed masses suffice to hold the systems
from breaking apart. All the aforementioned galactic systems produce acclerations
(a � ao) and thus the exact form of µ(x) or, for that matter, the exact form of the
theory we use is immaterial for their analysis. We are working in the deep asymptotic
regime and deal with motion of test particles (except for binary galaxies) and can
thus use directly the basic assumptions of MOND.

5.1. Disc Galaxies

Rotation curves: Rotation curves constitute a major prediction of MOND, one
that can be tested in most detail with present capabilities. Since we assume that
there is no dark matter in appreciable quantities, we should be able to derive the
mass distribution from the observed light distribution, assuming a constant M/L

value for each observed component of the galaxy (disc or bulge). (I am using the
term “light distribution” loosely. The mass distribution can have contributions from
neutral hydrogen emitting a 21 cm line, hot gas emitting X-rays, etc.) Given the
mass distribution, we calculate the rotation curve from MOND. This calculated
curve should agree with the one observed. The failure of such a comparison when
we use Newtonian dynamics is one manifestation of the mass discrepancy problem.

Some rotation curves calculated from MOND for model galaxies are shown in
Fig. 2 (taken from Ref. 5). The MOND velocity curve calculated from the light
distribution of NGC 3198 (M/L of the disc is the only free parameter) is shown in
Fig. 3 together with the data points (taken from Ref. 6).

A complete rotation curve test on a galaxy is sometimes too demanding a task
because it requires a reliable photometry (if possible in two colors to check on
variations in M/L), a good rotation curve, knowledge of the gas mass distribution
etc. There are consequences of MOND that can be tested on galaxies for which only
partial information is available. I give here two examples:

(1) If v(r) is the circular velocity around a bound mass M in an orbit of large radius
r, the acceleration v2(r)/r is given according to the assumptions of MOND2 by

(v2/r)2/ao ≈ MGr−2, (13)
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Fig. 2. Rotation curves for model galaxies calculated with Eq. (10) (see Ref. 5 for details). The
model galaxies are made of an exponential disc and a spherical halo. Each group of three curves
belongs to galaxies with the same mass distribution but different surface densities. Groups differ
by the ratio of disc to bulge mass and size.

or

v4 ≈ MGao ≡ v4
∞(M). (14)

Hence, the velocity approaches a constant value far outside the attracting mass.
The rotation curves of all isolated galaxies are thus flat asymptotically. The iso-
lation criterion requires that, at r, the acceleration due to the galaxy dominates
any external acceleration (e.g. the one the galaxy falls with, in a group or a clus-
ter). The rotation velocity will start to decline around the radius ri where the
external acceleration is comparable with the internal one.

The asymptotic flatness of galaxy rotation curves has been built into the
basic assumption of MOND (by requiring that the inertia term be quadratic in
a for small a). One may then claim that the verification of flatness at larger and
larger galaxy radii, and for more and more galaxies, should not be deemed a suc-
cess of MOND. However, the elevation of asymptotic flatness from an observed
property of a number of galaxies known at the time MOND was posited (at
moderate radii), to a general property of all isolated galaxies, is cornerstone of
MOND. Observed violation of this assumption will certainly rule out MOND. Its
verification should be taken as a strong support of the breakdown of Newtonian
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Fig. 3. The MOND rotation curve for NGC 3198 (line) and the data points (from Ref. 6).

dynamics as an explanation of the mass discrepancy, and of a basic (albiet
implicit) assumption of MOND.

(2) We learn from Eq. (14) that the asymptotic circular velocity depends only
on the total mass of the galaxy. The total mass can be obtained from the total
“luminosity” (no need for a detailed surface photometry) up to the uncertainties
in the stellar M/L, etc.

Take a sample of galaxies that the luminosity and the plateau velocity are
known for, and such that M/L does not vary much over the sample (at least not
systematically with L). We can then plot log L versus log v (the Fisher-Tully
relation). MOND predicts a slope of exactly 4.

Here we encounter the first method of determining the value of ao from the
intercept of the log L-log v relation. Assuming some theoretical M/L values for
galaxies we obtained ao ≈ 2 × 10−8(Ho/50 km s−1M pc−1)2cm s−2.5 This value
scales like inverse of the (M/L) value we adopt.

Surface densities: The constant ao, which is introduced by MOND, defines
a value of surface density Σo ≡ aoG

−1. (For ao = 5 × 10−8 cm s−2 we have
Σo ≡ 0.7 g cm−2.)

This value of the surface density plays a special role in galaxy dynamics. We shall
see later that it is roughly the maximal average surface density that an isothermal
sphere can have. In discs, the average surface density cannot exceed Σo appreciably
without the rotation curve acquiring a large hump (see Fig. 2 in which Σ � Σo
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correspond to ξ � 1). Such humps are not observed, and so MOND implies that the
distribution of average surface densities of disc galaxies should be cut off roughly
above Σo.

Comparing this value with the observed cut-off that is indeed observed
(the Freeman law) we get a second and independent determination of ao

5

ao ∼ 2× 10−8 cm s−2. (The resulting value of ao scales like the theoretical values of
M/L we adopt for galaxies.)

In this connection, note that in Newtonian dynamics the shape of the rotation
curve of a galaxy (presence of hump, etc.) depends only on the shape of the mass
distribution but not on its normalization (as expressed, say, by the value of the
average surface density).

In MOND, the shape of the rotation curve depends on the total mass too.
This is because the amount of mass the galaxy contains within a certain radius
determines the acceleration which, in turn, determines how strong the departure
from Newtonian dynamics is. We can see this clearly in Fig. 2 where rotation curves
are given for sets of galaxy models with the same mass distribution but different
surface densities, resulting in different rotation curves.

Another important prediction of MOND concerning “dark matter” inside galaxy
discs, will be discussed below after we develop some more tools.

5.2. Elliptical Galaxies

Our hypothesis is that galaxies contain no appreciable quantities of dark matter.
We should thus, in principle, be able to understand the observed light distribution
and velocity dispersions in a consistent manner.

However, as Scott Tremaine explained to us, this is a practically impossible task
unless we can make some strong assumptions about the distribution of stellar orbits
in the galaxy. Such assumptions substitute our knowledge that the trajectories in
disc galaxies are circular.

We may, for instance, approximate elliptical galaxies (and, for that matter, galac-
tic bulges or cluster of galaxies) by isothermal spheres (hereafter IS). The rationale
behind such an approximation is even more sound in the case of MOND than in
Newtonian dynamics. According to the latter, isothermal spheres are necessarily
infinite in mass, so one must assume some artificial cutoff device in order to make
them into acceptable models.

All MOND IS have a finite mass7 (and their density always decreases like a
power law at large radii ρ ∝ r−α with α > 3). The reason for this is easy to see. In
Newtonian dynamics, the escape speed from any point in the field of a finite mass
is finite. In an IS there are, at every point, particles with arbitrarily high velocities
that would have escaped from the system had it been of finite mass.

In MOND the escape speed is everywhere infinite. (To see this note that from
the basic assumptions of MOND the gravitational potential far from a finite mass
increases logarithmically: ϕ(r) → v2

∞ ln(r), where v∞ is the asymptotic circular
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velocity around that mass). Thus, particles at arbitrarily high velocities do not
escape and IS are of finite mass.

What other properties do MOND IS have?
We find that there is a maximum average surface density that an IS can have7

[the surface density defined, say, as the total mass divided by the area containing
half the total mass projected on the sky]. The upper limit is the critical surface
density we met before: Σo = aoG

−1.
Again, the role of Σo as limiting density can be deduced from the basic assump-

tions of MOND as follows: Let rt = (MG/ao)1/2 be the transition radius of an
isothermal sphere of mass M . The statement we made above amounts to the asser-
tion that the radius, r1/2, containing half the projected mass cannot be much smaller
than rt. If most of the mass is contained within rt, we get an IS that is Newtonian
(because, by the definition of rt the acceleration, in most of the sphere, is larger
than ao). Such spheres are infinite, and so r1/2 cannot be substantially smaller than
rt.

The cut-off found in the distribution of surface brightnesses of ellipticals is the
observation pertinent to this property of IS.

The total mass and velocity dispersion (temperature) of MOND IS obey a rela-
tion analogous to the M − v∞ relation for discs. We studied IS with constant radial
dispersion, σr, and tangential dispersion, σt.7 With β ≡ 1−σ2

t /σ2
r , the three dimen-

sional dispersion is

σ2 ≡ σ2
r + 2σ2

t = (3 − 2β)σ2
r .

We find that

aoGM = Qσ4, (15)

where Q is not a constant but varies, within a limited range 1 ≤ Q ≤ 9
4 , among

the isothermal spheres. The upper end of this range is obtained for low acceleration
(or low surface density) IS with g � ao everywhere in the sphere (or for which
r1/2 	 rt). For those, Q ≈ 9

4 and is independent of β. If galaxy clusters can be
modelled by IS they would fall in this category.

The relevant observational phenomenon is the Faber-Jackson relation between
the luminosity of an elliptical and its line-of-sight central velocity dispersion.
When comparing Eq. (15) with observations one should remember that σ is the
3-dimensional dispersion and not the average dispersion observed along a given line
of sight (the two are proportional to each other when β = 0). More details pertinent
to the M − σ relation are to be found in Ref. 7.

Another approach that may be taken, in studying ellipticals, is based on the use
of test particles (other than stars) falling in the fields of these galaxies. One can, for
instance, measure the density and temperature distribution of an X-ray emitting
envelope around ellipticals. The collisional mean-free-path in the gas is short and
hence the velocity distribution may be taken as Boltzmanian and isotropic. The
distribution of pressure and density in the gas gives us the gravitational field if
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the gas is in hydrostatic equilibrium. The measured field can then be compared
with the prediction of MOND as deduced from the distribution of the observed
mass. Preliminary observational results are described in Ref. 8 and comparison
with MOND in Ref. 9.

Some ellipticals may possess a gas disc in which rotational velocities can be
measured (e.g. Ref. 10). Studies of shells around ellipticals may also be used to
extract information on their potential fields.11

5.3. The General Expression for the “Dark Matter” Density

Let me now derive the general relation between the actual mass distribution and
that of the dark matter (or more appropriately, the phantom matter).

If MOND is correct, the acceleration field �g(�r) that will be measured about a
true mass distribution ρ(�r) will be related to ρ by

�∇ · [µ(g/ao)�g] = −4πGρ, (16)

or equivalently by

µ(g/ao)�∇ · �g + a−1
o µ′(g/ao)�g · �∇g = −4πGρ, (17)

where g ≡ |�g|. Note that this relation holds for both of the MOND formulations
Eqs. (6) and (10) given above.

One measures �g(�r) and, adhering to Newtonian laws, deduces the mass distri-
bution ρ∗(�r) via the Poisson equation:

ρ∗ = −(4πG)−1�∇ · �g = ρ/µ(g/ao) + (4πG)−1a−1
o (µ′/µ)�g · �∇g

= ρ/µ(g/ao) + (4πG)−1L(g/ao)�eg · �∇g. (18)

Here L(x) = d ln µ(x)/d ln x and �eg is a unit vector in the direction of �g. The density
distribution of the phantom matter will thus be

ρp ≡ ρ∗ − ρ = ρ(1/µ − 1) + (4πG)−1L�eg · �∇g. (19)

The phantom matter will, in general, be found to be distributed differently from
the “luminous” (actual) matter. This is because µ(g/ao) varies from point to point
and because of the presence of the second term in Eq. (19).

A general question comes to mind in this context. Given a mass distribution
ρ(�r) (or the energy momentum tensor in a relativistic problem) can one always add
a fictitious dark matter (energy-momentum density) so that the results of MOND
are obtained with Newtonian dynamics (general relativity). In other words, can an
observed mass discrepancy always be explained by dark matter even if the true
explanation is the departure entailed by MOND?

The answer to this question is negative. One possible counterexample involves
light bending and will be discussed later, another one follows.
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5.4. The Sign of the Phantom Density — Negative “Dark Matter”

There are mass configurations for which ρp < 0 in some regions of space. If a clear-
cut instance of this type is found it will rule out the conventional dynamics. This is
because the adherence to Newtonian dynamics will entail the acceptance of negative
“dark matter”, an utterly nonsensical alternative.

Examples of such configurations are given in Ref. 12, and I describe one here.
Consider a binary of galaxies, say of equal masses, situated on the z axis with the
origin at their midpoint. Starting at the origin where g = 0 we go away from it
in the x–y plane. At first g increases, and reaches a maximum at a distance rm

from the origin, then it declines. Everywhere in the x–y plane �g is in the direction
of the origin. Thus, �eg · �∇g is negative in the x–y plane below rm. Since ρ = 0 in
this plane, ρ∗ is negative in this region [see Eq. (18)]. A schematic depiction of the
whole ρ∗ < 0 regime, in such a system, is shown in Fig. 4.

5.5. Phantom Matter in Galactic Discs

Oort described a technique for measuring the distribution of the dynamical mass,
in the direction perpendicular to the disc of the Milky Way. John Bahcall gives a
detailed description of the method in his lectures, as well as the results of his own
improved analysis (see also Ref. 13).

I shall now give the relation that one expects on the basis of MOND, between the
actual and the Newtonian dynamical density distributions of this system. Consider
a disc galaxy observed near the galactic plane. At a distance r from the galactic
center g is of order µ−1M(r)Gr−2, and so the second term in Eq. (18) is of the
order of ρ̂/µ where ρ̂ is the average density of the galaxy within radius r. In the
region of the disc where the average density of the galaxy is negligible compared
with the local disc density we have from Eq. (18):

ρ∗ ≈ ρ/µ(g/ao). (20)

Fig. 4. A schematic view of the negative phantom density region in a system of two (equal mass)
galaxies.
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This condition holds within a few hundred parsecs from the galactic plane, in the
solar neighborhood. Also, g hardly varies in the direction perpendicular to the disc’s
plane and equals v2(r)/r where v(r) is the rotational velocity in the disc. We thus
predict the following results of an analysis of the Oort problem near the sun.

(a) The Newtonian dynamical mass is larger than the actual mass by a factor
1/µ(v2/rao).

(b) The phantom density is distributed in the same way as the actual mass (up
to a height, above the galactic mid-plane, where the second term in Eq. (18)
becomes important). This means that the discrepancies in the central density
and the surface densities are equal.

(c) The factor 1/µ(v2/rao) is also very nearly the ratio between the observed rota-
tion velocity squared and that deduced from the observed luminous mass in
Newtonian dynamics.

Prediction (c) connects two seemingly unrelated quantities (the local disc dis-
crepancy and the global galactic discrepancy within the solar orbit) in a way that
is independent on the value of ao or the form of µ(x). A similar discrepancy factor
is predicted for low surface density open clusters in the solar neighborhood.

The results of the analysis described by Bahcall can be used to determine ao

in yet another way, by requiring that the observed discrepancy factor equals that
given in (c) above. For a discrepancy factor of 0.5 � ρp/ρ � 1.5, as found by
Bahcall, and accounting for the uncertainties in v and the form of µ(x), we obtain
ao ≈ (1 − 8) × 10−8 cm s−2.

Lastly, I want to discuss light bending and gravitational lensing. Gravitational
lensing of quasar images by galaxies and clusters involves light rays that go through
the outskirts of galaxies and are bent in their field. The relevant accelerations are
small and we thus ask how lensing is affected by MOND.

Wanting a relativistic theory of MOND, we cannot answer this question. How-
ever, the phenomenon of lensing holds a promise to provide a crucial test of MOND,
the verification of which may conflict with the theory of general relativity. If ρ∗ is
the (fictitious) density distribution needed to explain the trajectories of massive
particles in the field of a true distribution ρ (as deduced e.g. from a rotation curve),
it is likely that a different ρ∗ will be needed to explain the trajectories of massless
particles. If this is found to be the case, the dark matter hypothesis and indeed the
conventional dynamics will be ruled out (more details in Ref. 1).

To summarize, there are many consequences of MOND that are amenable to
direct observations. Many of these results can be mimicked with dark matter. Some,
however, are inconsistent with the conventional dynamics even if one allows for the
presence of dark matter.
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Chapter 12

DARK MATTER IN COSMOLOGY

Anthony Aguirre
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Santa Cruz, CA 95064, USA

The last two decades in cosmological research have been an exciting time, and
produced an exciting product: we now have in hand a “standard model” of cos-
mology. While several aspects of this model remain mysterious, its predictions
are in remarkable accord with a vast range of observational data. A key aspect of
this model, and one of the aforementioned mysteries, is the dark matter: a cold,
collisionless consituent of the universe with ∼ 30% of the cosmic energy density.
In this article I broadly review the standard cosmological model, and the role and
place of (non-baryonic) dark matter in it.

1. Introduction

Since the lectures in this volume were given, there has been great progress in our
understanding of the role of, evidence for, and constraints on, dark matter. While
we still have no real idea what dark matter is (and indeed must now postulate a
new “dark energy” component of unknown nature as well), a rather precise and
increasingly well-tested (and testable) picture of dark matter’s role in cosmology
has emerged.

While our understanding of all of the issues discussed in the Jerusalem Winter
School lectures has been advanced, I will focus on the topic which has perhaps
advanced the most, and received least attention in the original lectures: the role
of cold dark matter (CDM) in the formation of large-scale structure and galaxies.
This is a vast subject and here I hope only to give an overview of the “big picture”
and indicate directions for further study. Likewise, I have made no attempt to make
comprehensive references; I have instead given for most subjects a few references
that I find particularly seminal or useful.

I will first review in Sec. 2 the initial conditions for the standard cosmologi-
cal model, and outline our theoretical understanding of the role of dark matter in
structure formation. I will then discuss the confrontation of this theory with obser-
vations of the Cosmic Microwave Background (CMB) (Sec. 3), the Lyα forest and
the large-scale distribution of galaxies (Sec. 4). Finally I will address the general
picture of galaxy formation in CDM cosmology in Sec. 5.7.
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2. Dark Matter and Structure Formation

2.1. Initial Conditions and the Standard Cosmological Model

The current standard model of cosmology posits that at a very early time, the
universe was nearly homogeneous and isotropic, radiation-dominated, and nearly
flat. Its geometry is thus described by the Friedmann-Robertson-Walker (FRW)
metric

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θdφ2)] , (1)

where a(t) is a scale factor evolving according to

ä

a
= −4πG

3
(ρ̄ + p̄) (2)

in terms of averages of the density ρ and pressure p. Two galaxies at small fixed
comoving separation ∆r will have physical separation d = a(t)∆r, and move apart
physically at a rate v = ȧ∆r = Hd, where H = ȧ/a is Hubble’s constant. The
observation of this relation led, of course, to the development of the big-bang cos-
mology.

Deviations from homogeneity are described by a random variable δ(�x, t), defined
as

δ(�x, t) ≡ ρ(�x, t) − ρ̄

ρ̄
, (3)

where �x are comoving coordinates (like r, θ, φ in the metric) which are fixed for a
particle at rest with respect to the cosmic fluid.

These perturbations are generally assumed to be Gaussian, i.e. the Fourier modes

δ�k(t) ≡
∫

d3�x exp(i�k.�x)δ(�x, t) (4)

at fixed t are each described by a Gaussian probability distribution of zero mean and
variance σk (note that k is a comoving wavenumber and has units of inverse length).
When computing statistical properties of δ for large volumes we can approximate29

σ2
k � |δk|2; the latter is often referred to as the power spectrum and taken to have

a power-law form:

P (k) ≡ |δk|2 = Akn . (5)

Such a power spectrum can be translated into a more physically suggestive measure
by integrating |δk|2 for modes below the inverse of some length scale r; then the
variation in mass M within a sphere of radius r goes as

∆M

M
∝ M−(n+3)/6 . (6)

Theoretically, n could take a number of values: n = 4 is maximal in that the non-
linear but momentum-conserving dynamics of particles on small scales would build
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a large-scale n = 4 “tail” to the power spectrum; n = 2 would result from randomly
throwing particles down within equal-mass cells, while n = 0 (Poisson fluctuations)
would correspond to just randomly throwing particles down (see, e.g., Peacock30).
The observed value for small k is n � 1, which is called “scale-invariant” because the
perturbation to the Newtonian gravitational potential is equal on all length-scales;
it also has the pleasing property that the perturbation amplitude on the scale of
the cosmological horizon is always the same.31

This described flat, homogeneous universe with n = 1 Gaussian density pertur-
bations is widely thought to have resulted from a period of inflation in the early
universe (see the article by Press and Spergel in this volume), though in principle
some other process could give rise to it — the reader is encouraged to look for one!

The remainder of the cosmological model is then specified by describing the
material and energetic contents of the cosmic fluid at some early time. This is
conveniently and conventionally done in terms of the ratio Ωi of the ith species’
present day energy density to the current critical energy density ρcrit,0 ≡ 8πG/3H2

0 ,
where H0 is the current Hubble constant. Extrapolation of each density component
to a smaller a(t) (e.g., ρ ∝ a−3 for pressureless matter) then gives each energy
density at earlier times.

Current observations (to be described below) indicate that our universe contains
Ωr ∼ 10−5 in radiation, Ωb � 0.04 in baryons, Ωdm � 0.23 in cold, collisionless,
non-baryonic particles (i.e. the Dark Matter), and ΩDE � 0.73 in some yet-more-
enigmatic substance called “Dark Energy” with p � −ρ. The repeated postulation of
mysterious substances is tolerated by most cosmologists only because of the striking
success of the theory these postulates engender.

2.2. Evolution of Perturbations

Understanding the growth of the perturbations δk rigorously is an intricate sub-
ject requiring a careful treatment of perturbation theory in General Relativity; see
Padmanabhan29 for a detailed treatment. It can, however, be understood at two
less rigorous but more tractable levels.

The first is somewhat heuristic (though in fact it can be made relatively
precise).31 Consider a density perturbation δ of comoving scale λ in a matter com-
ponent (i.e. baryonic or dark matter) during a time when the universe can be con-
sidered to be dominated either by radiation or by pressureless matter. This can be
thought to describe an over/underdense sphere of radius ∼ λ embedded in a uni-
form FRW-universe of density ρ̄. Birkhoff’s Theorem (the relativistic generalization
of Newton’s “spherical shell” theorem) indicates that the embedding space can be
ignored and the sphere treated as an independent universe.a If δ > 0 its expansion
will be slow relative to the outer region so that its density relative to ρ̄ (i.e. δ) will

aActually, it states only that a spherically symmetric vacuum solution to Einstein’s equations is
the Schwarzschild solution; but it can safely be interpreted in this more liberal way.
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increase if the inner and outer regions are compared at a later time in such a way
that the expansion rates are equal.b Working this out reveals that δ ∝ a2 during
radiation domination (a ∝ t1/2), and δ ∝ a during matter domination (a ∝ t2/3). If
λ exceeds the horizon length λ, this analysis captures much of the dynamics, since
on these scales different fluid components cannot evolve separately, and pressure
support cannot prevent the growth of perturbations (instead, pressure adds to the
source term for Einstein’s equations).

In either a matter- or radiation-dominated epoch, the horizon grows as t and
hence faster than a, so any perturbation of fixed comoving scale will eventually
enter the horizon if the epoch last sufficiently long. At this point two new effects
become important. First, pressure: prior to horizon entry the sound crossing time
across a perturbation (> λ/c) always exceeded the dynamical time ∼ t; now it will
not if

λ < λJ ≡ √
π

cs

(Gρ)1/2
, (7)

where cs is the sound speed (or velocity dispersion, in the case of collisionless par-
ticles) of the medium. This leads to a minimal “Jeans mass”, dependent upon the
temperature and density of the medium, below which fluctuations cannot grow. Sec-
ond, perturbations in different fluid components — such as matter and radiation, or
collisionless and collisional matter — may grow at different rates. For example, dark
matter, which interacts negligibly with radiation and baryonic matter, can — and
in some situations do — grow even if baryonic perturbations are supported against
collapse by their pressure. However, even a pressureless perturbation cannot grow
if its dynamical timescale tdyn = 1/

√
Gρ is longer than the expansion timescale t

(which is the dynamical time of the dominant fluid component).
Perturbations inside the horizon can be treated using the equations of motion

for a fluid in an expanding universe (for those versed in General Relativity, these
can be derived directly from the covariant conservation of the energy-momentum
tensor: ∇µT µν = 0) along with the weak-field version of Einstein’s equations:

∇2Φ = 4πG(ρ + 3p/c2) , (8)

where ∇Φ gives the acceleration of a slowly-moving test particle. In a medium
dominated by a non-relativistic fluid with sound speed cs ≡ ∂p/∂ρ, the analysis

bPerturbation theory in general relativity can be tricky because of the “gauge” ambiguity in
choosing a surface of constant time; e.g. for small perturbations one can always choose a surface
in which the universe is homogeneous (see Press and Vishniac33 for an amusing presentation of
some of these issues.) This difficulty can be overcome by carefully choosing a fixed gauge33 or by
working in carefully chosen gauge-independent variables.2,18
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gives:

δ̈k + 2
ȧ

a
δ̇k = δk

(
4πGρ̄ − c2

sk
2

a2

)
. (9)

The appearance of the Jeans length can be seen in the r.h.s.: if the physical wave-
length of the perturbation, a/k, does not exceed λJ , the solution is oscillatory;
otherwise the term in cs can be neglected and using the fact that ρ̄ ∝ t−2, the
solution splits into a growing mode δk ∝ t2/3 and a decaying mode δk ∝ t−1. For a
radiation-dominated phase with pressure gradients neglected,

δ̈k + 2
ȧ

a
δ̇k = 32πGρ̄δk , (10)

yielding two solutions δk ∝ t±1. For large λ the growing radiation- or matter-
dominated solutions are in agreement with the heuristic model, but on smaller
scales the behavior of each fluid component will depend crucially on whether or
not the perturbation exceeds λJ for that component, and whether the component
dominates the expansion.

These considerations factor together into an overall picture as follows. In a hot
big-bang, the universe is radiation-dominated until some time teq. During this epoch,
perturbations outside the horizon grow as δ ∝ a2. Upon entering the horizon, per-
turbations in the radiation and baryons are held up by pressure and fail to grow
(in fact they oscillate with near-constant amplitude). The dark matter, being both
cold and collisionless, would “like” to grow as δdark ∝ a, and is prevented only by
the rapid expansion (dominated by the radiation); the perturbations turn out to
grow, but only logarithmically (δdark ∝ ln a).

At teq, matter begins to dominate the expansion, and δdark ∝ a ∝ t2/3. Baryons,
however, are still coupled to the radiation; this provides strong pressure support
(i.e. a high Jeans mass) so that the perturbations in the baryons, like those in
the photons, cannot grow but instead oscillate (as discussed in more detail below).
During this epoch the dark matter perturbations can thus grow substantially relative
to those in the baryons, a fact which will be of great importance.

Finally, at some time tdec, the rate of collisional ionization becomes too low
to maintain the ionization of the baryonic fluid, and the nuclei and free electrons
combine to form atoms. With few free electrons, the baryons decouple from the
photons, the baryonic Jeans mass drops drastically, and baryonic perturbations can
subsequently grow as δbaryon ∝ a ∝ t2/3 on scales λ � λJ (the latter now being
determined by the baryonic pressure rather than that of the photons); on smaller
scales they continue to oscillate. In fact, due to their growth during teq < t <

tdec, the dark-matter perturbations are now larger than those in the baryons. The
baryons can then “fall in” to the existing dark-matter perturbations; thereafter their
amplitudes will be equal for λ � λJ , where λJ is now calculated using the combined
baryonic and dark matter density.

The resulting power spectrum of the matter (baryons+dark matter) after decou-
pling carries the imprint of this earlier epoch, and this imprint is encapsulated in
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the “transfer function” Tk:

Tk ≡ δk(z = 0)
δk(z)D(z)

, (11)

where δk(z) is the power spectrum at some very early z before which any relevant
perturbation had entered the horizon, and D(z) is the “linear growth function”
D(z), which is a general expression for the linear growth of perturbations in a
homogeneous background, absent effects such as free-streaming or pressure support:
D(z)/D(z0) = δ(z)/δ(z0) for some reference redshift z0. This is given by12

D(z) =
5Ωm

2
(1 + z0)g(z)

∫ z 1 + z′

g3(z′)
dz′ ,

g2(z) = Ωm(1 + z)3 + ΩΛ + (1 − Ω0 − ΩΛ)(1 + z)2 .

A full and precise calculation of Tk must be done numerically, and several pub-
licly available codes for doing so exist.28 However, there are approximations that
are sufficiently good for many purposes.3,16,12 The key features are exhibited in
Fig. 1, which shows the transfer function for cold dark matter computed using
Eisenstein and Hu.12 At large scales (small k) it is constant and the power spec-
trum at late times exactly reflects the “primordial” n � 1 power spectrum. At

Fig. 1. Transfer function T for standard cosmological model (top), and power-law index of T
(bottom).
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large k, corresponding to scales below the horizon size at Teq, T falls as knT so
that P (k) ∝ knT 2(k) ∝ kn+2nT , with nT decreasing with k to nT � −2 at
the smallest scales (see bottom panel of Fig. 1). If the ratio ΩB/ΩDM is fairly
small, the main effect of baryons on this transfer function is to change the effective
density of the dark matter in a scale-dependent way; taking this into account for
ΩB/ΩDM = 0.044/0.226 and h = 0.71 gives Tk as shown in Fig. 1 (top panel).

The power spectrum at decoupling can be directly connected to several impor-
tant cosmological phenomena. First, the power on large scales continues to grow
∝ a and describes the large-scale distribution of matter in the universe, as reflected,
for example, in the distribution of galaxies on scales � 10 Mpc. Second, on smaller
scales the perturbations provide the seeds for the nonlinear collapse of the fluid into
galaxies and clusters. Third (less important for the universe but more important for
our knowledge of it), the perturbations leave a detailed imprint in the CMB. The
signature of dark matter in all three of these phenomena is important and testable,
and will be discussed in the next several sections.

3. Tests and Constraints from the Microwave Background

Even before the confirmation of the precise thermal spectrum of the CMB by COBE,
it was recognized that anisotropies in the observed CMB temperature would provide
a snapshot of the density inhomogeneities that existed at the time when the universe
first became transparent to photons at tdec (often also called the “recombination
time” or “time of last scattering”). A number of excellent reviews of the physics
of CMB anisotropies have been written; see, e.g. Hu and Dodelson15; here I will
qualitatively review the basics, then focus on the role of dark matter.

The observed anisotropies of the CMB may be divided into primary anisotropies,
which result from density fluctuations at recombination, and secondary anisotropies
that are imprinted during later cosmological evolution. Primary anisotropies result
from three main effects: the gravitational red/blueshift of photons emerging from
potential wells, the Doppler shift of photons emitted from a medium with an inhomo-
geneous velocity field, and the lower-temperature emission of photons from regions
that are overdense and hence recombine slightly later. These three effects are often
termed, respectively, the “Sachs Wolfe effect”, the “Dopper effect”, and “intrinsic
fluctuations.” Since in linear theory the velocity field can be directly related to the
density field, all three effects essentially capture the imprint of density inhomo-
geneities on the last-scattering “surface”.

The analysis of the observed CMB generally proceeds by decomposing the tem-
perature T (θ, φ) into a sum of spherical harmonics Ylm of amplitude alm, and com-
puting the angular power spectrum

Cl ≡ 1
2l + 1

m=l∑
m=−l

|alm|2 .
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Roughly speaking, Cl gives an estimate of the power on angular scales ≈ 180/l

degrees.
This angular power spectrum contains a multitude of information about the

physics and constituents of the universe when the fluctuations were imprinted at z ≈
1100, as well as some information about the subsequent evolution of the universe.
The latter come primarily from the angular diameter distance dA(z) (defined as
D/θ, where θ is the angle subtended by an object of physical size D at redshift
z), which connects physical scales at the recombination epoch to angular scales in
the observed CMB anisotropies. This distance measure contains an integral over
redshift that involves the energy densities of all energy components (see Hogg17 for
explicit formulas and other distance measures). Since the physical size of the last
scattering surface is known, this gives one constraint on the energy densities that
turns out to be quite sensitive to curvature; it is from this measurement40 that we
now know that the universe is geometrically approximately flat (|Ω − 1| < 0.05).

While the angular diameter distance to z ≈ 1100 sets the overall scaling for
Cl, because of the complicated interplay (described in Sec. 2.2) of different com-
ponents in the evolution of density perturbations between when they enter the
horizon and when they are imprinted in the CMB, the measured power spectrum
also yields information on, among many other things, the prevalence of dark matter
and baryons. Consider first a scenario without dark matter. When fluctuations in
the baryon density enter the horizon (or, really, the horizon expands to encompass
them), they are pressure supported and oscillate until decoupling, when the CMB is
last scattered. At that time the largest scale just able to compress (before rarefying
due to pressure) imprints extra power at that scale; this leads to a peak in the power
spectrum on a physical scale of the horizon at recombination, or an angular scale of
about 0.5 degree. Higher harmonics are represented by a series of peaks at higher-
l; the second peak corresponds a scale of maximum rarefaction. (The anisotropies
measure the amplitude, rather than the value of the density fluctuations, which is
why this shows up as a peak.) Higher-l peaks alternate between compression and
rarefaction. With no further effects accounted for, the CMB would resemble a flat
line at l � 50 connected to a squared sinusoidal curve at l � 50. However, damping
at high-l due to the finite thickness of the last scattering surface, and the ability of
photons to diffuse out of small-scale density wells cause the peaks to fall off steadily
in amplitude as l increases.

Collisionless dark matter changes this picture by adding a compression com-
ponent that has no restoring force, so that the compression modes have greater
amplitude than the rarefaction modes. With sufficient dark matter content, there
is thus a fall in peak amplitude from the first to second peak, then a rise to the
third peak. In addition, the additional compressing force makes the peaks somewhat
narrower. Such effects provide a signature of dark matter, and their nature can be
seen visually by inspecting some of the many reviews of CMB physics in which the
cosmological parameters are varied.15
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A detailed comparison of the WMAP data to a suite of models44 shows that
even with all other parameters left to vary, ΩDMh2 = 0.10 ± 0.02 is required, and
when only 6 “standard” parameters are free, ΩDMh2 = 0.12+0.02

−0.02.
It is worth commenting here on possible alternatives to the dark matter hypoth-

esis such as that propounded by Milgrom (this volume), in which gravity is modified
so as to become stronger at small acceleration scales. Are these now ruled out by the
CMB? Perhaps, but it is not as yet entirely clear. It is nearly impossible to see how
such models would account for an alternation of peak amplitudes except by extreme
luck or contrivance, but the data regarding the third peak is (as of this writing)
insufficiently precise to warrant iron-clad conclusions. For the first two peaks, an
alternative to dark matter might hope to reproduce the CMB by positing that grav-
ity is unmodified at early times, so the only difference from the standard scenario is
the absence of collisionless matter. In this case “no-CDM” models can be generated
that provide a quite good qualitative fit to the observed power spectrum.24 Still,
the data on the first two peaks is very high quality, and it does not appear possible
to fit it without a substantial contribution by massive neutrinos44,24 (which would,
of course, be non-baryonic dark matter, albeit of a familiar type).

A second test of the presence and importance of dark matter is in the connection
between the CMB power spectrum and the power spectrum of galaxies that are the
result of structure formation at later times. A given cosmological model provides
a precise translation between the power spectrum of initial perturbations, and the
power spectrum of matter at late times z < 4, to which we now turn.

4. Tests and Constraints from the Ly-α Forest and
Distribution of Galaxies

Long before the CMB anisotropies were ever observed, attempts were made to
understand the large-scale distribution of matter using the distribution of galaxies,
and to use this information to infer the mechanism of structure formation. The
primary tool used has, again, been the power spectrum P (k). For galaxies it it
useful to relate this to the more easily measured 2-point correlation function

ξ(�r) ≡ 〈δ(�x)δ(�x + �r)〉 , (12)

which can be written in Fourier-transformed terms in a statistically isotropic uni-
verse as:

ξ(r) =
V

(2π)2

∫
P (k)

sin kr

kr
4πk2dk , (13)

where V is a volume over which the averaging in Eq. (12) is done. This can be
inverted to yield an expression for the power spectrum.

Galaxy surveys can give a measurement of the distribution of the cosmic (mainly
dark) matter, but only to a degree that either galaxies (or light from galaxies)
trace mass, or that the “bias” in the relation between light and mass is inde-
pendently known. The study of the power spectrum of galaxies has become quite
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mature with the completion of substantial parts of the SLOAN and 2dF galaxy
surveys.45,13 These surveys find that bias depends on galaxy type, but is near
unity when averaged over all galaxies. Further, both surveys derive a mass power
spectrum on comoving scales ∼ 20–200 Mpc that is a good match to the pre-
diction obtained by evolving the CMB-measured power spectrum forward in time
to the present epoch, using standard cosmological theory. This provides an excel-
lent consistency check on the standard cosmological model. These comparisons
are now being used to probe the primordial power spectrum over a wide range
of length-scales.44

A second way of measuring the mass power spectrum on scales � 10 Mpc that
has recently been developed uses absorption spectra of high-redshift quasars. These
spectra are filled with a “forest” of Ly-α absorption features caused by density fluc-
tuations in the highly-ionized IGM at z ∼ 1–4. Theoretical arguments37 and numer-
ical simulations10 indicate that there is a tight correlation between Ly-α absorption
and the density of the absorbing gas, so the correlation function of absorption in
a quasar spectrum can be rather directly converted into a 1-d power spectrum of
the intergalactic medium.7 On large enough scales this is expected to closely track
the dark matter distribution, and so gives an independent mass power spectrum on
rather small scales. Encouragingly, this power spectrum agrees fairly well with the
galaxy power spectrum where they overlap, and with the forward-evolved CMB-
inferred primordial power spectrum (although there are tantalizing hints that the
combination of CMB and Ly-α forest data may call for a non-standard primordial
spectrum40). Two groups are now undertaking a detailed study of the Ly-α power
spectrum using the SLOAN data.

Although the power specra from galaxy surveys and Ly-α absorption are excel-
lent tools for studying dark matter, structure formation, and their interplay, they
do not directly address the original purpose for which dark matter was proposed,
and in which the behavior of dark matter is least well-understood: its role in galaxy
formation and evolution.

For this, we must return to the story of structure formation to the point at
which an initially overdense perturbation forms a collapsed dark matter halo that
can host a galaxy.

5. Dark Matter and Galaxy Formation

5.1. Halo Formation

Once a perturbation grow sufficiently large, it will separate from the background
cosmic expansion and collapse to a self-gravitating “halo”. Under the assumption of
spherical symmetry, this can be seen to happen at a time when the overdensity as
calculated by linear theory reaches a critical level ∆ that depends (weakly) on the
background geometry and the constituents of the fluid; in a universe of only dark
matter, ∆ = 1.69.
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5.2. The Halo Mass Function

A truly accurate calculation of the properties of dark matter halos requires direct N-
body simulation. Such calculations are well-developed and publicly available codes
exist (such as GADGET 42) that can numerically evolve the cosmological dark
matter distribution from a very early time through the age of galaxy formation.

A basic understanding of the distribution function of halo masses can, however,
be gained from a simple model pioneered by Press and Schechter32 that, as it turns
out, provides a surprisingly good characterization of the mass function of halos
found numerically. In this approach, it is assumed that a structure of mass M

collapses when a density perturbation smoothed over that mass scale, as calculated
by linear theory, reaches a critical density δc. In this picture every overdense region
will collapse eventually, and the probability P that a randomly chosen point will be
in such a fluctuation of mass M is just

P (δ > δc; M) =
1
2

[
1 − erf

(
δc√

2σ(M)

)]
,

because σ(M), as described in Sec. 2, is just the width of a Gaussian probability
distribution governing the density contrast in regions of mass M . There are then
two more steps. First, it is assumed that the underdense gas simply accretes onto
the collpsed halos, the net effect of which is just to double P (δ > δc; M) (although
just a fudge by Press and Schechter, this is justified in the more rigorous approached
mentioned below). Second, it is reasoned that we should “attribute” each mote of
dark matter to the most massive collapsed region of which it is part: 2P (δ > δc; M)
then describes the fraction of the dark matter that is incorporated into halos of mass
> M . This is then a cumulative probability function that can be differentiated30

to yield a mass function f(M), where f(M)dM is the comoving number density of
halos of mass between M and M + dM :

Mf(M) =
ρ0

M

∣∣∣∣ d ln σ

d ln M

∣∣∣∣
√

2
π

exp(−ν2/2) . (14)

Here ν ≡ δc/σ(M), and ρ0 is the comoving dark matter density.
This function takes the form of a power law with an exponential cutoff at high-

mass, and as such provides the potential for accurately fitting luminosity functions of
galaxies, which tend to have this “Schechter function” form. However, the observed
luminosity function exhibits an approximate behvior of f(M) ∝ M−1, whereas
Eq. (14) gives f(M) ∝ M (n−9)/6, using Eq. (6). Since on the scale of small galaxies,
n < −2, the predicted number of very small halos greatly exceeds the number of
observed faint galaxies. This points to the “satellite problem” that has been greatly
discussed as one of the challenges for the CDM paradigm in galaxy formation; but
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of course there is no assurance that small halos should necessarily all form galaxies
around them.c

Although the Press-Schechter approach often suffices for everyday use, there are
more advanced treatments5,38 (still short of direct simulation) that provide greater
accuracy, and can yield additional information such as (a statistical description of)
the merger history of halos.

5.3. Halo Profiles

Numerical studies27 have shown that within the standard CDM model, halos col-
lapse to a nearly universal form with a spherically-averaged density profile of

ρ(r) =
ρc

r[1 + (r/rc)2]
, (15)

where ρc is the central density and rc is a “core radius”. These parameters can be
expressed in various combinations of the virial radius rv (the radius within which
the mean density is, say, 200ρ̄), the concentration parameter c ≡ rv/rc, and the
halo mass Mv within rv. The physical reason that the halo density profile takes this
universal form is unclear, though some attempts to derive it analytically have been
made.

The profile of Eq. (15) has some features of interest for the theory of galaxy
formation. First, the corresponding circular velocity profile is approximately flat
for r ∼ rc (as one would hope, in order to explain the flat rotation profile of
observed galaxies), but slowly falls off at large-r. Second, it contains a rather steep
central cusp of ρ ∝ r−1. The exact slope of this central cusp has been a matter of
some debate and consternation,27,23,35 because a number of (particularly small, low
surface-brightness) galaxies appear to have rotation curves inconsistent with such a
central cusp.11,43 Although a very active area, the issue of whether the fault for this
discrepancy lies in the CDM predictions, the CDM model itself, or in the accuracy
of the observations is at present still rather unresolved.

5.4. Angular Momentum

Also the key for galaxy formation is the angular momentum �J of the collapsing
halo, the magnitude of which can be expressed in dimensionless terms as

λ ≡ | �J |E1/2

GM
5/2
v

, (16)

where E is the binding energy of the object30; λ = 1 would correspond to angular
momentum fully supporting the halo against collapse. In numerical simulations,46

cThe predicted dark matter halo distribution and the galaxy luminosity functions are also dis-
crepant at the high-mass end; this can be seen very clearly in clusters which do not resemble
gigantic galaxies.
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ln λ is found to be distributed normally among halos, with 〈ln λ〉 ≈ −3.2 and σ ≈
0.5–0.6. The angular momentum is thought to result from tidal torquing by nearby
perturbations during collapse, but may also have contributions from the accretion
of smaller halos during subsequent evolution.48

5.5. From a Dark Halo to a Galaxy

The canonical description of galaxy formation after the collapse of a halo goes
as follows. The gas in the halo, unlike the dark matter, can dissipate energy by
cooling. This leads to a contraction of the gaseous halo to a radius ∼ λrv. At this
point, the halo is supported by angular momentum and cannot contract further in
the plane perpendicular to the total angular momentum vector. This leads to the
formation of a thin, axisymmetric disk with a density profile that is determined in
part by the initial angular momentum distribution of the gaseous halo. During the
collapse process, the increased baryonic density at small radii tends to contract the
dark halo, potentially enhancing even further the steep density profile predicted by
simulations.

What happens next to the disk depends upon what instabilities exist in the disk
density structure. A disk without a dark halo is highly unstable to the formation
of a bar — indeed this was another early argument for dark halos — and may
form one even in a halo’s presence. On a local level, density perturbations in the
disk are stabilized by shearing in the disk (which manifests in an r−dependence of
the angular rotation speed Ω) and thermal pressure. They can grow only when the
dynamical time of some region characterized by a surface density Σ is shorter than
both the sound-crossing time and the shearing time. This gives rise to the Toomre
Q−parameter4

Q ≡ vsκ

πGΣ
where κ2 = d

drΩ2 + 4Ω2, and vs is the sound speed. For Q > 1, local perturbations
are unstable against growth, and star formation can presumably proceed.

5.6. Current Status of Galaxy Formation Theory

The simple picture just outlined neglects an enormous set of complicated physical
processes that play a part in galaxy formation. Two particularly important ones
are, first, that halos accrete and collide with other halos and second, that energy
released from star formation affects the physics of the gas.

A great amount of work has been performed to attempt to treat these and
other complicated processes to assemble a reasonably comprehensive picture of
galaxy formation that can be compared to galaxy observations. There are two basic
approaches in this project. In the numerical approach, numerical simulations includ-
ing gas dynamics are evolved from an early time to produce an ab-initio calculation
of galaxy properties today. In the “semi-analytic” approach, in simplified prescrip-
tions for physics such as gas cooling, star formation, and feedback from stellar energy
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release are added to already completed dark-matter-only simulations (or, in simpler
models, extensions of the Press-Schechter approach) to produce a set of statistical
predictions for galaxy properties.d In both approaches predictions can be made for
the luminosity and mass function of galaxies, the global star formation history, and
other observables.

Overall, both programs have met with a great deal of success. Many of the
observed bulk properties of galaxies, as well as trends in those properties with time
or galaxy mass, are reasonably reproduced. This would by no means be assured in
any alternative to the standard CDM model. Nonetheless, there are several out-
standing difficulties in the details comparison of CDM galaxy formation theory to
observations that are sufficiently severe that they have led some theorists to con-
template modifying the dark matter properties or abandoning the notion of dark
matter altogether.

5.7. Outstanding Problems, and Alternatives to (Cold)

Dark Matter

The first possible problem was mentioned in Sec. 5.2: CDM theory predicts a number
of low-mass halos that is much larger than the number of low-mass galaxies we
observe. This had long been noticed in semi-analytic galaxy formation model,19,39

in which feedback was invoked to reduce the small-halo abundance. It was made
more acute when simulation groups produced dark-matter simulations meant to
resemble the Milky Way halo and discovered ∼ 100–1000 simulated dark-matter
satellites, compared to only ∼ 10 detected satellite galaxies.20,22 This problem,
however, has a number of quite plausible solutions — there is no particular reason
to believe that very small halos should have stars, and good reasons to believe they
should not: cosmic radiation after reionization could evaporate them, and feedback
could blow away their star-forming gas. In addition, the “missing” dark matter
subhalos may now be showing up observationally in the form of flux-ratio anomalies
in multiply-images lensing systems8 which indicate dark substructure in galaxies,
with approximately the density predicted in CDM theory.

The second potential problem was mentioned in Sec. 5.3: dark matter halos are
expected to have a steep ρ ∝ r−1 density cusp in their centers, yet observed dark
matter density profiles, as inferred from the dynamics of the central gas and stars,
tend to be better fit by a model with a constant-density core, and are often outright
incompatible with an r−1 cusp.11 The status of this problem is still not entirely
clear, though the observers and simulators are rapidly improving their results and
understanding to what degree there is conflict.

The third potential problem concerns the halo angular momentum discussed in
Sec. 5.4. Early calculations showed that λ ∼ 0.05, typical for galaxy halos, would

dDue to limited resolution, numerical simulations also must add parametrized prescriptions for
processes such as star formation.
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lead to a disk size comparable to observed spiral galaxy disks if the angular momen-
tum of the gas was strictly conserved.50 This nice general idea, however, breaks
down when implemented in more detail. First, numerical simulations of galaxy for-
mation find disks that tend to be far too small. This is believed to occur due to
tansfer of angular momentum from the gas to the dark matter, but it is as yet
unclear whether this is a correct physical effect or an artifact of limited numerical
resolution.26 Semi-analytic models also have difficulties, in that the net amount of
angular momentum in halos is approximately right (if conserved) but the distri-
bution of angular momentum in simulated dark halos, if applied to the gas and
conserved parcel-by-parcel, does not lead to an exponential disk.6 Like the density
profile, this problem is a subject of significant current attention.34

A final potential problem, slightly harder to crisply define, concerns the system-
atic properties of galaxies. Despite the array of complicated and stochastic effects
expected to be integral to galaxy formation (e.g., merger, starbursts, galactic feed-
back and winds, environmental effects, random formation times, etc.), the properties
of spiral galaxies appear to be remarkably regular. For example, the Tully-Fisher
relation between luminosity and asymptotic rotation speed is compatible with being
nearly exact — i.e. the scatter in the relation could plausibly be entirely observa-
tional error.47 In more detail, the simple relation proposed by Milgrom (this volume)
as a formulation of modified gravity fits the systematics of galaxies extraordinarily
well — given the observed gas/star density profile, the observed rotation curve can
be accurately predicted using only at most one free parameter.36 If CDM theory
is correct this requires a very tight (and probably not-quite-understood) coupling
between the visible and dark matter.

This rash of problems initially provoked a number of proposed modifications of
dark matter, e.g. to make it slightly warm,14,49 or self-interacting.41 The idea of all
of these was to reduce the small-scale structure — whether in halo cores or in tiny
subhalos. These models appear to have fallen largely out of favor, partially due to the
ameliorization of the “subhalo problem”, and partly because modifying the cores
of dwarf galaxies (where rotation curves are well-measured) without significantly
altering the density profile in the cores of clusters is difficult.9,21 Also, because it
probes small scales, the Ly-α can place direct constraints on dark matter itself; if
dark matter particles were light enough that they were not completely cold, the free
streming of the particles would erase small-scale power in the density field. Current
measurements from the Ly-α forest put a lower bound of ∼ 750 eV on the dark
matter particle mass.25

The final, rather radical alternative to CDM theory that bears mentioning is
MOND (see this volume), conceived as a modification of gravity that would obvi-
ate the need for dark matter. As mentioned above, MOND has great success in
accounting for the observed dynamics of galaxies and aacounting for the systematics
of galaxy properties. However, because it is not a full theory, it is far less predic-
tive than CDM: the CMB anisotropies, large-scale galaxy distribution, galaxy mass
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function, etc., cannot be reliably calculated and tested, and in some cases where
MOND does make some firm predictions (cluster dynamics, absence of substructure
in galaxies, etc.) it runs somewhat afoul of observations.1 The success of MOND
seems to be pointing to something, but whether or not it points to the need to
modify gravity and banish dark matter, I leave it to the reader to decide.

6. Conclusions

Although much has happened in astronomy and astrophysics since the 1986
Jerusalem Winter school, several things remain the same. First, the fundamental
nature of the dark matter is, as of this writing, still completely unknown. Its eluci-
dation ranks as one of the foremost tasks in astrophysics, and given the enormous
effort currently being put forth by many observational and experimental groups, we
have a reasonable hope that it may be forthcoming in the relatively near future.
Second, although many techniques of studying the dark matter have become some-
what more sophisticated in detail, they are the same in their basic structure, and
rely on the same basic physics, as when the following lectures were compiled nearly
two decades ago. The student will, therefore, find a great deal in the preceding
chapters that will help build a foundation for understanding a range of topics in
modern astrophysics and cosmology.
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