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MATHEMATICAL PERIODS

with some major contributions and contributors

{many dates are approximate)

EGYPTIAN AND

BABYLONIAN
(3000 B.C. to A.D. 260)

GREEK
(600 B.C. t0 A.D. 450)

CHINESE

(1030 B.c. to A.D. 1644)

HINDU

(200 B.c. to aA.D. 1250)

Essentially empirical,
or inductive,
mathematics

Introduction of early
numeral systems
(decimal and
sexagesimal)

Simple arithmetic,
practical geometry

Mathematical tables,
collections of
mathematical

problems

Chief primary
sources:
Moscow (1850 B.c.),
Rhind (1650 B.c.), and
other Egyptian papyri;
Babylonian cuneiform
tablets (2100 B.c. to 1600
B.C. and 600 B.C.
to a.p. 300)

Significant
introduction, then
dey,q]opment, of
deductive geometry
(Thales, 600 B.c.;
Pythagoras, 540 B.c.)

Start, of
number theory
(Pythagorean School,
540 B.c.)

Discovery of
incommensurable
magnitudes
(Pythagorean School,
before 340 B.C.)

Systematization of
deductive logic
(Aristotle, 340 B.C.)

Axiomatic
development
of geometry
(Euclid, 300 B.c.)

Germs of the
integral calculus
(Archimedes, 225 B.C.)

Geometry of
conic sections
(Apollonius, 225 B.c.)

Practical geometry
(Heron, a.p. 75?)

Trigonometry
(Hipparchus, 140 B.c.;
Menelaus, A.p. 100;
Ptolemy, A.D. 150)

Number theory,
syncopation of algebra
(Diophantus, A.D. 250?)

Largely isolated from
the mainstream of
mathematical
development

Decimal numeral
system, rod numerals
magic squares (from

earliest time)

Chou-pei, oldest of
Chinese mathematical
classics
(300 B.C.7)

Arithmetic in
Nine Sections
(100 B.C.?)

Horner’s method
(Ch’in Kiu-Shoo, 1247)

Pascal’s arithmetic
triangle, binomial
theorem
(Chu Shi-ki¢, 1303)

Jesuit missionaries
infiltrated China in
early 1600s

Introduction of Hindu-
Arabic numeral
system
(before a.D. 250)

Negative numbers and
invention of zero
symbol

(early centuries A.D.)

Development of early
computing algorithms
(a.0. 900-1000)

Syncopated algebra,
indeterminate
equations
(Brahmagupta, A.D. 628;
Bhaskara, A.D. 1150)

ARABIAN
(.. 650 to 1200)

Preservers of Hindu
arithmetic and Greek
geometry
(encouraged by caliph
patrons of learning, such
as Harun al-Rashid,
A.D. 790)

Influential treatise on
algebra and a book on
the Hindu numerals
(Al-Khowarizmi, A.D. 820)

Trigonometric tables
(AbQ’l Wefa, A.p. 980;
Ulugh Beg, A.p. 1435)

Geometric solution of
cubic equations
(Omar Khayyam,

A.D. 1100)




DARK AGES

(a.D. 450 to 1120)

MODERN
(first half, a.p. 1450 to 1700)

MODERN

(second half, A.n. 1700 to present)

A sterile period for all
learning in Western
Europe

Slender thread of
Greek and Latin
learning preserved
in monasteries

PERIOD OF
TRANSMISSION

(A.n. 950 to 1500)

Learning preserved by
the Arabs slowly
transmitted to
Western Europe

Translation of
Arabic works
(Plato of Tivoli, a.n. 1120;
Robert of Chester, A.D.
1140; Adelhard of Bath,
A.D. 1142; Gherardo of
Cremona, A.D. 1150;
Campanus, A.D. 1260)

Advocacy of Hindu-
Arabic numeral
system
(Fibonacci, a.p. 1202)

Fourteenth century,
the century of
the Black Death

First mathematics book
printed in the Western
World
(Treviso Arithmetic, 1748)

First printed edition of
Euclid’s Elements
(Campanus’ translation,

A.D. 1482)

Early trigonometry
(Regiomontanus, 1464; Copernicus,
1530; Rhaeticus, 1550)

Early arithmetics
(Borghi, 1484; Widman, 1489; Pacioli,
1494; Kobel,1512; Riese, 1518; Tonstall,
1522; Buteo, 1525)

Beginnings of algebraic symbolism
(Recorde, 1557; Bombelli, 1572; Viete,
1579; Oughtred, 1631)

Algebraic solution of cubic and
quartic equations
(Tartaglia, Cardano, Ferrari, 1545)

Development of classical algebra
(Viete, 1580; Harriot, 1631)

Decimal fractions
(Stevin, 1585)

Boost from science
(Galileo, 1600; Kepler, 1609)

Logarithms
(Napier, 1614; Briggs, 1615)

Modern number theory
(Fermat, 1635)

Analytic geometry
(Fermat, 1629; Descartes, 1637)

Start of projective geometry
(Desargues, 1639; Pascal, 1648)

Mathematical probability
(Fermat and Pascal, 1654)

Calculus
(Fermat, 1629; Cavalieri, 1635; Barrow,
1669; Leibniz, 1684; Newton, 1687)

Applied calculus
(Jakob and Johann Bernoulli, 1700;
Clairaut, 1743; d’Alembert, 1743; Euler,
1750; Lagrange, 1788; Laplace, 1805;
Fourier, 1822; Legendre, 1825;
Green, 1828; Poisson, 1831)

Infinite series
(Taylor, 1715; Maclaurin, 1742;
Fourier, 1822)

Non-Euclidean geometry
(Saccheri, 1733; Lambert, 1770;
Legendre, 1794; Gauss, 1800;
Lobachevski, 1829; J. Bolyai, 1832)

Topology
(Euler, 1736; Gauss, 1799; Listing, 1847;
Riemann, 1851; Mdbius, 1865;
Poincaré, 1895)

Advanced analytic geometry
(Monge, 1795; Plicker, 1826;
Mobius, 1827)

Analysis
(Lagrange, 1797; Abel, 1826; Cauchy,
1827; Riemann, 1851; Dedekind, 1872;
Weierstrass, 1874; Lebesgue, 1903)

Projective geometry
(Poncelet, 1822; Gergonne, 1826; Steiner,
1834; Von Staudt, 1847; Clifford, 1878)

Modern computing machines
(Babbage, 1823; ASCC, 1944; ENIAC,
1945; SSEC; EDVAC; MANIAC; UNIVAC)

Rise of abstract algebra
(Galois, 1832; Hamilton, 1843;
Grassmann, 1844; Cayley, 1857)

Mathematical logic
(Boole, 1847; De Morgan, 1847;
Schroder, 1890; Peano, 1894; Whitchead
and Russell, 1910; Lukasiewicz, 1921)

Set theory
(Cantor, 1874; Hausdorff, 1914)

Foundations and philosophy
of mathematics
(Frege, 1884-1903; Hilbert, 1899;
Brouwer, 1907; Whitehead and Russell,
1910; Godel, 1931)

Abstract spaces
(Fréchet, 1906; Hausdorff, 1914,
Banach, 1923)
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PREFACE

Advantage has been taken in this sixth edition to include a large number of
improvements, ranging from historical amplifications and updatings to the in-
troduction of some new sections and the expansion of some old ones. Much
new illustrative material has been added and women in mathematics have been
given a more deserving attention.

There is scarcely a section of the 15 chapters of the book that has not
undergone some amplification and/or updating—these improvements are far
too numerous to list here. Among the more major changes are a considerable
expansion of the discussion of the contents of Euclid’s Elements in Chapter 5,
the entire treatment of Chinese mathematics in Chapter 7, the treatment of
logarithms in Chapter 9, an entirely new section on Maria Agnesi and the
Marquise du Chatelet in Chapter 12, a consideration of the contributions of
Argand and Wessel to the geometric representation of complex numbers in
Chapter 13, a new section in Chapter 13 devoted to Sophie Germain and Mary
Somerville, another new section in Chapter 13 devoted to Bolzano, a consider-
able expansion in Chapter 13 of the material on the liberation of geometry in the
early nineteenth century, a complete rewriting and expansion of the section on
differential geometry in Chapter 14, the addition of material on Grace Chisholm
and Charlotte Scott in Chapter 14, and a new concluding section of the book
devoted to a prognostication of the future of mathematics.

A very significant addition to the book are the Cultural Connections writ-
ten by Jamie Eves. These have been supplied at the request of those earlier
users of the book who have felt that a more in-depth cultural setting of the
various eras and times of the history of mathematics would be beneficial to the
student. A wise student will peruse each Cultural Connection before embarking
upon the historical material of the associated chapter.

Ten new pieces of pictorial material have been added to the book and 16
new portraits of mathematicians have been added (bringing the total number of
such portraits to 76). Finally, the Bibliography has been significantly updated.

One desiring a more detailed description of many of the features of the
book may consult the Introduction that immediately precedes Chapter 1.

As with the previous editions, it is a pleasure once again to express my
appreciation of the very warm reception given to the book by both school
teachers and college professors. I especially want to thank all who took the
time and trouble to write me encouraging words and to send me suggestions for
further betterment of the book. It is largely from a carefully filed collection of
these suggestions that each new edition has been fashioned.

There are many others who have been particularly helpful. Among these
are Duane E. Deal of Ball State University, Florence D. Fasanelli of Sidwell

vii
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Friends School, David E. Kullman of Miami University, and Gregorio Fuentes
of the University of Maine, each of whom made valuable suggestions that have
led to improvement of the text. Of these reviewers, I want to extend special
thanks to Professor Deal, who unstintingly gave so much of his time toward
supplying me with excellent and scholarly material enhancing many parts of the
book. Ouyang Jiang and Zhang Liangjin of Taiwan furnished helpful advice and
valuable material concerning the mathematics of ancient China. The Bookstore
and Library of the University of Maine at Machias and the Article Retrieval
Service of the University of Maine at Orono were very helpful.

It gives me special pleasure to thank my son Jamie H. Eves for embellish-
ing the book with his Cultural Connections. It has been a great advantage to
benefit from his wide, deep, and enthusiastic scholarship in the field of history.

And, finally, thanks go to the efficient folks of Saunders College Publishing
for their splendid help and cooperation.

Fox Hollow, Lubec, Maine H. E.
Summer, 1989



CONTENTS

I
Preface vii
Introduction
PART 1 BEFORE THE SEVENTEENTH CENTURY 5
Cultural Connection I: The Hunters of the Savanna
(The Stone Age) 6
1 Numeral Systems 9

1-1 Primitive Counting 1-2 Number Bases
1-3 Finger Numbers and Written Numbers

1-4 Simple Grouping Systems

1-5 Multiplicative Grouping Systems

1-6 Ciphered Numeral Systems 1-7 Positional
Numeral Systems 1-8 Early Computing

1-9 The Hindu-Arabic Numeral System

1-10 Arbitrary Bases

Problem Studies 27

1.1 Number Words 1.2 Written Numbers

1.3 Alphabetic Greek Numeral System 1.4 OId
and Hypothetical Numeral Systems 1.5 Finger
Numbers 1.6 Radix Fractions

1.7 Arithmetic in Other Scales 1.8 Problems in
Scales of Notation 1.9 Some Recreational
Aspects of the Binary Scale 1.10 Some Number

Tricks
Essay Topics 31
Bibliography 32

Cultural Connection 1l: The Agricultural Revolution
(The Cradles of Civilization) 34

2 Babylonian and Egyptian Mathematics 38

2-1 The Ancient Orient BABYLONIA:

2-2 Sources 2-3 Commercial and Agrarian
Mathematics 2-4 Geometry 2-5 Algebra
2-6 Plimpton 322 EGYPT: 2-7 Sources
and Dates 2-8 Arithmetic and Algebra

2-9 Geometry 2-10 A Curious Problem in the
Rhind Papyrus

ix



X

CONTENTS

Problem Studies 57

2.1 Regular Numbers 2.2 Compound Interest
2.3 Quadratic Equations 2.4 Algebraic
Geometry 2.5 The Susa Tablets

2.6 Cubics 2.7 Square Root Approximations
2.8 Duplation and Mediation 2.9 Unit
Fractions 2.10 The Sylvester Process

2.11 The Seqt of a Pyramid 2.12 Egyptian
Algebra 2.13 Egyptian Geometry

2.14 The Greatest Egyptian Pyramid

2.15 Some Problems from the Moscow Papyrus
2.16 The 3,4,5 Triangle 2.17 The Cairo
Mathematical Papyrus

Essay Topics 66

Bibliography 67

Cultural Connection Ill: The Philosophers of the
Agora (Hellenic Greece) 68

3 Pythagorean Mathematics 72

3-1 Birth of Demonstrative Mathematics

3-2 Pythagoras and the Pythagoreans

3-3 Pythagorean Arithmetic 3—-4 Pythagorean
Theorem and Pythagorean Triples

3-5 Discovery of Irrational Magnitudes

3-6 Algebraic Identities 3-7 Geometric
Solution of Quadratic Equations

3-8 Transformation of Areas 3-9 The Regular
Solids 3-10 Postulational Thinking

Problem Studies 93

3.1 The Practical Problems of Thales

3.2 Perfect and Amicable Numbers

3.3 Figurate Numbers 3.4 Means

3.5 Dissection Proofs of the Pythagorean

Theorem 3.6 Pythagorean Triples

3.7 Irrational Numbers 3.8 Algebraic Identities
3.9 Geometric Algebra 3.10 Geometric Solution
of Quadratic Equations 3.11 Transformation of
Areas 3.12 Regular Solids 3.13 Some
Problems Concerning the Regular Solids

3.14 Golden Section 3.15 Constructions of Vn
by Theodorus 3.16 An Interesting Relation

Essay Topics 102
Bibliography 103



Contents Xi

4 Duplication, Trisection, and Quadrature 105

4-1 The Period from Thales to Euclid

4-2 Lines of Mathematical Development

4-3 The Three Famous Problems 4-4 The
Euclidean Tools 4-5 Duplication of the Cube
4-6 Trisection of an Angle 4-7 Quadrature of
the Circle 4-8 A Chronology of 7

Problem Studies 124

4.1 Euclidean and Modern Compasses

4.2 Duplication by Archytas and Menaechmus
4.3 Duplication by Apollonius and Eratosthenes
4.4 The Cissoid of Diocles 4.5 Some
Seventeenth-Century Duplications

4.6 Applications of the Insertion Principle

4.7 The Conchoid of Nicomedes 4.8 Trisection
by Conics 4.9 Asymptotic Euclidean
Constructions 4.10 The Quadratrix

4.11 Approximate Rectification 4.12 Lunes of
Hippocrates 4.13 Computation of 7

4.14 The Snell Refinement 4.15 Mnemonics

for =
Essay Topics 133
Bibliography 133

Cultural Connection IV: The Oikoumene (The Persian
Empire, Hellenistic Greece, and the Roman Empire) 135

5 Euclid and His Elements 140
5—-1 Alexandria 5-2 Euclid 5-3 Euclid’s
“Elements’’ 5-4 Content of the ‘‘Elements’’

5-5 The Theory of Proportion 5-6 Regular
Polygons 5-7 Formal Aspect of the
‘““Elements”’ 5-8 Euclid’s Other Works

Problem Studies 155

5.1 The Euclidean Algorithm 5.2 Applications
of the Euclidean Algorithm 5.3 The
Pythagorean Theorem 5.4 Euclid’s Book 11
5.5 Applications of the Fundamental Theorem of
Arithmetic 5.6 The Eudoxian Theory of
Proportion 5.7 Regular Polygons 5.8 The
Angle-Sum of a Triangle 5.9 A Deductive
Sequence Concerning Areas 5.10 A Deductive
Sequence Concerning Angles 5.11 Elements
5.12 Data 5.13 Constructions Employing
Data 5.14 Divisions

Essay Topics 161
Bibliography 162



X CONTENTS

6 Greek Mathematics After Eudid 164

6—1 Historical Setting 6-2 Archimedes

6-3 Eratosthenes 6-4 Apollonius

6-5 Hipparchus, Menelaus, Ptolemy, and Greek
Trigonometry 6—6 Heron 6-7 Ancient
Greek Algebra 6-8 Diophantus

6—-9 Pappus 6-10 The Commentators

Problem Studies 186

6.1 Measurements by Aristarchus and
Eratosthenes 6.2 On the Sphere and Cylinder
6.3 The Problem of the Crown 6.4 The Arbelos
and the Salinon 6.5 The Theorem of the
Broken Chord 6.6 The Focus-Directrix
Property 6.7 Tangencies 6.8 Problems from
Apollonius 6.9 Ptolemy’s Table of Chords

6.10 Stereographic Projection 6.11 Problems
from Heron 6.12 Simultaneous Equations

6.13 Problems from the ‘‘Greek Anthology”’

6.14 Type Problems from the ‘‘Greek

Anthology”’ 6.15 Diophantus 6.16 Some
Number Theory in the *‘Arithmetica’

6.17 Problems from Pappus 6.18 The Centroid
Theorems 6.19 The Trammel Construction of
an Ellipse 6.20 The Theorem of Menelaus

6.21 More on Means

Essay Topics 202
Bibliography 202

Cultural Connection V: The Asian Empires (China,
India, and the Rise .of Islam) 205

7 Chinese, Hindu, and Arabian Mathematics 211

CHINA: 7-1 Sources and Periods 7-2 From
the Shang to the Tang 7-3 From the Tang
through the Ming 7-4 Concluding Remarks
INDIA: 7-5 General Survey 7-6 Number
Computing 7-7 Arithmetic and Algebra

7-8 Geometry and Trigonometry 7-9 Contrast
Between Greek and Hindu Mathematics
ARABIA: 7-10 The Rise of Moslem Culture
7-11 Arithmetic and Algebra 7-12 Geometry
and Trigonometry 7-13 Some Etymology
7-14 The Arabian Contribution

Problem Studies 237

7.1 Some Problems from the ‘‘Arithmetic in Nine
Sections’’ 7.2 The Pythagorean Theorem
7.3 Magic Squares 7.4 Some Early Hindu



Contents Xiil

Problems 7.5 Problems from Mahavira

7.6 Problems from Bhaskara 7.7 Quadratic
Surds 7.8 Indeterminate Equations of the First
Degree 7.9 The Diagonals of a Cyclic
Quadrilateral 7.10 Brahmagupta’s
Quadrilaterals 7.11 Tabit ibn Qorra, al-Karkhi,
and Nasir ed-din 7.12 Casting Out 9s

7.13 Casting Out 11s 7.14 Double False
Position 7.15 Khayyam’s Solution of Cubics
7.16 A Geometric Solution of Cubics

7.17 Geometrical Constructions on a Sphere

Essay Topics 248
Bibliography 249

Cultural Connection VI: Serfs, Lords, and Popes
(The European Middle Ages) 251

8 European Mathematics, 500 to 1600 258

8-1 The Dark Ages 8-2 The Period of
Transmission 8-3 Fibonacci and the Thirteenth
Century 8-4 The Fourteenth Century

8-5 The Fifteenth Century 8-6 The Early
Arithmetics 8-7 Beginnings of Algebraic
Symbolism 8-8 Cubic and Quartic Equations
8-9 Frangois Viéte 8-10 Other Mathematicians
of the Sixteenth Century

Problem Studies 282

8.1 Problems from the Dark Ages 8.2 The
Fibonacci Sequence 8.3 Problems from the
Liber abaci 8.4 Further Problems of
Fibonacci 8.5 Star-Polygons 8.6 Jordanus
and Cusa 8.7 Diirer and Magic Squares of
Doubly Even Order 8.8 Problems from
Regiomontanus 8.9 Problems from Chuquet
8.10 Problems from Pacioli 8.11 Early
Commercial Problems 8.12 The Gelosia and
Galley Algorithms 8.13 Gematria or
Arithmography 8.14 Cubic Equations

8.15 Quartic Equations 8.16 Sixteenth-Century
Notation 8.17 Problems from Viete

8.18 Problems from Clavius 8.19 Some
Geometry

Essay Topics 296

Bibliography 296



Xiv CONTENTS

PART 2 THE SEVENTEENTH CENTURY AND AFTER 299

Cultural Connection VII: Puritans and Seadogs
(The Expansion of Europe) 300

9 The Dawn of Modern Mathematics 306

9-1 The Seventeenth Century 9-2 Napier

9-3 Logarithms 9-4 The Savilian and Lucasian
Professorships 9-5 Harriot and Oughtred

9-6 Galileo 9-7 Kepler 9-8 Desargues
9-9 Pascal

Problem Studies 332

9.1 Logarithms 9.2 Napier and Spherical
Trigonometry 9.3 Napier’s Rods

9.4 The Slide Rule 9.5 Freely Falling Bodies
9.6 Sector Compasses 9.7 Some Simple
Paradoxes from Galileo’s ‘‘Discorsi’

9.8 Kepler’s Laws 9.9 Mosaics

9.10 Proving Theorems by Projection

9.11 Pascal’s Youthful Empirical ‘‘Proof™

9.12 Pascal’s Theorem 9.13 Pascal’s Triangle

Essay Topics 343
Bibliography 344

10 Analytic Geometry and Other Precalculus
Developments 346

10-1 Analytic Geometry 10-2 Descartes
10-3 Fermat 10-4 Roberval and Torricelli
10-5 Huygens 10-6 Some
Seventeenth-Century Mathematicians of France
and Italy 10-7 Some Seventeenth-Century
Mathematicians of Germany and the Low
Countries 10-8 Some Seventeenth-Century
British Mathematicians

Problem Studies 369
10.1 Geometric Algebra 10.2 Descartes’ ‘‘La
géométrie”’ 10.3 Descartes’ Rule of Signs

10.4 Problems from Descartes 10.5 Fermat’s
Theorems 10.6 The Problem of the Points

10.7 Problems from Huygens 10.8 Higher Plane
Curves 10.9 Recreational Problems from
Bachet 10.10 Some Geometry

10.11 Computation of Logarithms by Series

Essay Topics 376
Bibliography 377



Contents Xv

11 The Calculus and Related Concepts 379

11-1 Introduction 11-2 Zeno’s Paradoxes
11-3 Eudoxus’ Method of Exhaustion

11-4 Archimedes’ Method of Equilibrium
11-5 The Beginnings of Integration in Western
Europe 11-6 Cavalieri’s Method of
Indivisibles 11-7 The Beginning of
Differentiation 11-8 Wallis and Barrow
11-9 Newton 11-10 Leibniz

Problem Studies 407

11.1 The Method of Exhaustion 11.2 The
Method of Equilibrium 11.3 Some Archimedean
Problems 11.4 The Method of Indivisibles

11.5 The Prismoidal Formula

11.6 Differentiation 11.7 The Binomial
Theorem 11.8 An Upper Bound for the Roots
of a Polynomial Equation 11.9 Approximate
Solution of Equations 11.10 Algebra of Classes

Essay Topics 413
Bibliography 413

Cultural Connection VIII: The Revolt of the Middle Class
(The Eighteenth Century in Europe and America) 417

12 The Eighteenth Century and the Exploitation of
the Calculus 422

12-1 Introduction and Apology 12-2 The
Bernoulli Family 12-3 De Moivre and
Probability 12-4 Taylor and Maclaurin

12-5 Euler 12-6 Clairaut, d’Alembert, and
Lambert 12-7 Agnesi and du Chételet

12-8 I.agrange 12-9 Laplace and Legendre
12-10 Monge and Carnot 12-11 The Metric
System 12-12 Summary

Problem Studies 455

12.1 Bernoulli Numbers 12.2 De Moivre’s
Formula 12.3 Distributions 12.4 Formal
Manipulation of Series 12.5 A Conjecture and a
Paradox 12.6 Euler and an Infinite Series

12.7 Orbiform Curves 12.8 Unicursal and
Multicursal Graphs 12.9 Some Differential
Equations 12.10 Hyperbolic Functions

12.11 The Witch of Agnesi 12.12 Lagrange and
Analytic Geometry 12.13 Buffon’s Needle
Problem 12.14 Random Chord in a Circle

12.15 The Method of Least Squares

12.16 Some Mongean Geometry 12.17 Sensed
Magnitudes 12.18 Carnot’s Theorem



Xxvi

CONTENTS

Essay Topics
Bibliography

Cultural Connection IX: The Industrial Revolution
(The Nineteenth Century)

13 The Early Nineteenth Century and the Liberation of
Geometry and Algebra

13—1 The Prince of Mathematicians

13-2 Germain and Somerville 13-3 Fourier and
Poisson 13-4 Bolzano 13-5 Cauchy
13-6 Abel and Galois 13-7 Jacobi and
Dirichlet 13-8 Non-Euclidean Geometry
13-9 The Liberation of Geometry 13—-10 The
Emergence of Algebraic Structure 13-11 The
Liberation of Algebra 13—-12 Hamilton,
Grassmann, Boole, and De Morgan

13-13 Cayley, Sylvester, and Hermite

13-14 Academies, Societies, and Periodicals

Problem Studies

13.1 The Fundamental Theorem of Algebra

13.2 Basic Properties of Congruence

13.3 Gauss and Numbers 13.4 Fourier Series
13.5 Cauchy and Infinite Series 13.6 Group
Theory 13.7 Examples of Groups

13.8 Abelian Groups 13.9 Saccheri
Quadrilaterals 13.10 The Hypothesis of the
Acute Angle 13.11 A Euclidean Model for
Hyperbolic Geometry 13.12 Non-Euclidean
Geometry and Physical Space 13.13 Systems
with a Common Algebraic Structure

13.14 Algebraic Laws 13.15 More on Algebraic
Laws 13.16 Complex Numbers as Ordered
Pairs of Real Numbers 13.17 Quaternions
13.18 Matrices 13.19 Jordan and Lie
Algebras 13.20 Vectors 13.21 An
Interesting Algebra 13.22 A Point Algebra
13.23 An Infinite Non-Abelian Group

13.24 The Hamiltonian Game

Essay Topics
Bibliography

14-1 Sequel to Euclid 14-2 Impossibility of
Solving the Three Famous Problems with
Euclidean Tools 14-3 Compasses or

468
469

471

476

522

535
536

14 The Later Nineteenth Century and the Arithmetization
of Analysis

539



Contents Xvii

Straightedge Alone 14-4 Projective

Geometry 14-5 Analytic Geometry

14-6 N-Dimensional Geometry

14-7 Differential Geometry 14-8 Felix

Klein and the Erlanger Programm 14-9 The
Arithmetization of Analysis 14-10 Weierstrass
and Riemann 14—-11 Cantor, Kronecker, and
Poincaré 14-12 Sonja Kovalevsky, Emmy
Noether, and Charlotte Scott 14-13 The Prime
Numbers

Problem Studies 579

14.1 The Feuerbach Configuration

14.2 Commandino’s Theorem 14.3 The
Altitudes of a Tetrahedron 14.4 Space

Analogs 14.5 Isogonal Elements

14.6 Impossible Constructions 14.7 Some
Approximate Constructions 14.8 Mascheroni
Construction Theorem 14.9 Constructions with
Straightedge and Rusty Compasses 14.10
Lemoine’s Geometrography 14.11 Principle of
Duality 14.12 A Self-Dual Postulate Set for
Projective Geometry 14.13 Principle of Duality
of Trigonometry 14.14 Coordinate Systems
14.15 Line Coordinates 14.16 Dimensionality
14.17 Abridged Notation 14.18 Homogeneous
Coordinates 14.19 Plicker’s Numbers

14.20 N-Dimensional Geometry 14.21 Gaussian
Curvature 14.22 The Tractoid 14.23 The
Erlanger Programm 14.24 Mysticism and
Absurdity in the Early Calculus 14.25 Early
Difficulties with Infinite Series 14.26 Some
Paradoxes in Elementary Algebra 14.27 Some
Paradoxes in Calculus 14.28 A Continuous
Curve Having No Tangents 14.29 Algebraic
and Transcendental Numbers 14.30 Bounds
14.31 Prime Numbers

Essay Topics 599
Bibliography 600

Cultural Connection X: The Atom and the Spinning

Wheel (the Twentieth Century) 603
15 Into the Twentieth Century 606
15-1 Logical Shortcomings of Euclid’s
‘“Elements’’ 15-2 Axiomatics 15-3 The

Evolution of Some Basic Concepts

15-4 Transfinite Numbers 15-5 Topology
15-6 Mathematical Logic 15-7 Antinomies of
Set Theory 15-8 Philosophies of

Mathematics 15-9 Computers



Xviii

CONTENTS

15-10 The New Math and Bourbaki 15-11 The
Tree of Mathematics 15-12 What’s Ahead?

Problem Studies

15.1 Tacit Assumptions Made by Euclid

15.2 Three Geometrical Paradoxes

15.3 Dedekind’s Continuity Postulate

15.4 A Coordinate Interpretation of Euclid’s
Postulates 15.5 A Spherical Interpretation of
Euclid’s Postulates 15.6 Pasch’s Postulate

15.7 An Abstract Mathematical System

15.8 Axiomatics 15.9 Associated Hypothetical
Propositions 15.10 Intuition versus Proof

15.11 A Miniature Mathematical System

15.12 A Set of Inconsistent Statements

15.13 A Postulate Set Related to Relativity
Theory 15.14 Bees and Hives 15.15 Metric
Space 15.16 Equivalent Segments

15.17 Some Denumerable and Nondenumerable
Sets 15.18 Polynomials of Heights 1, 2, 3, 4,
and § 15.19 The Measure of a Denumerable Set
of Points 15.20 Transfinite Numbers and
Dimension Theory 15.21 Circles and Lines
15.22 Homeomorphic Surfaces 15.23 Sides and
Edges 15.24 Paradromic Rings

15.25 Polyhedral Surfaces 15.26 Faces and
Vertices of Polyhedral Surfaces

15.27 Hausdorff Space 15.28 Allied
Propositions 15.29 Three-Valued Logics

15.30 The Russell Paradox 15.31 A Paradox
15.32 Some Dilemmas and Some Questions

15.33 Recreational Mathematics

Essay Topics
Bibliography

General Bibliography
A Chronological Table

Answers and Suggestions for the Solution of the
Problem Studies

index

647

662
663

670
675

687
722



AN INTRODUCTION
TO THE HISTORY
OF MATHEMATICS



INTRODUCTION

This book differs from many existing histories of mathematics in that it is
not primarily a work for the reference shelf, but an attempt to introduce the
history of mathematics to undergraduate college mathematics students. There-
fore, in addition to the historical narrative, there are also pedagogical devices
designed to assist, interest, and involve the student. Let us describe some of
these devices and comment on other characteristics of this work.

1. In the belief that a college course in the history of mathematics should
be primarily a mathematics course, an effort has been made to inject a consid-
erable amount of genuine mathematics into this book. It is hoped that a student
using this book will learn much mathematics, as well as history.

2. Perhaps chief among the pedagogical devices of the book are the Prob-
lem Studies listed at the conclusion of each chapter. Each Problem Study
contains a number of related problems and questions concerning some part of
the material of the associated chapter. It is felt that by discussing a number of
these Problem Studies in class and assigning others to be worked out at home,
the course will become more concrete and meaningful for the student, and the
student’s grasp of a number of historically important concepts will crystallize.
For example, the student can gain a better appreciation and understanding of
numeral systems by actually working with the systems. Again rather than just
reading that the ancient Greeks solved quadratic equations geometrically, the
student can solve some by the Greek method and, in doing so, attain a deeper
appreciation of Greek mathematical achievement. Some of the Problem Studies
concern themselves with historically important problems and procedures,
others furnish valuable material for the future teacher of either high school or
college mathematics, still others are purely recreational, and many are de-
signed to lead to short ‘‘junior’’ research papers by the students. A large
number of instructors in both high schools and colleges have used material from
these Problem Studies to enliven and augment various courses that they teach.
The Problem Studies have been extensively employed by college mathematics
clubs, and many school students have used them in high-school mathematics
fairs.

3. There are many more Problem Studies than can be covered in either one
or two semesters, and they are of varying degrees of difficulty. This permits the
instructor to select problems that fit his or her students’ abilities and to vary
assignments from year to year.

4. At the end of the book is a collection of hints and suggestions for the
solution of many of the Problem Studies. It is hoped that these hints and
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suggestions are not so broad as to “‘spoil”’ the problems. A good problem
should be more than a mere exercise; it should be challenging and not too easily
solved by the student, and it should require some ‘‘dreaming’’ time.

5. Itis of interest that, on the grounds that problems constitute the heart of
mathematics,! problem courses have been given in some colleges based solely
upon the Problem Studies of this book.

6. Many instructors of the history of mathematics like to assign essay
papers; therefore, at the end of each chapter, immediately following the Prob-
lem Studies, some Essay Topics are listed that relate to material covered in that
chapter. These topics are merely suggested; an instructor can easily devise an
extended list of his or her own. An assigned Essay Topic should require the
student to read more than the textbook; the student should find it necessary to
delve into some of the literature listed in the chapter’s Bibliography. A number
of these Essay Topics have led to excellent term papers, many to masters
theses, and several to student papers that received publication in mathematics
and pedagogical journals.

7. It is axiomatic that the history of a subject cannot be properly appreci-
ated without at least a fair acquaintance with the subject itself.? Accordingly,
an attempt has been made to explain the material under consideration, espe-
cially in the later chapters, where the subject matter is more advanced. This is
one of the ways a beginning student can learn a considerable amount of mathe-
matics, as well as history, from a study of this book.

8. One will notice that terms that are defined in the text are made promi-
nent by appearing in boldface type.

9. The historical material is presented in essentially chronological order,
with occasional departures motivated either by pedagogical and logical consid-
erations or by the desires of some readers and instructors. A couple of places
where a more direct chronological development may be desired are clearly
marked, and instructions are given for carrying out the rearrangement.

10. The reader will find that a knowledge of simple arithmetic, high school
algebra, geometry, and trigonometry is generally sufficient for a proper under-
standing of the first nine chapters. A knowledge of the rudiments of plane
analytic geometry is needed for Chapter 10, and a knowledge of the basic
concepts of the calculus is required for the remaining chapters (11 through 15).
Any concepts or developments of a more advanced nature appearing in the
book are, it is hoped, sufficiently explained at the points where they are intro-
duced. A certain amount of mathematical maturity is desirable, and whether

! See P. R. Halmos, ‘‘The heart of mathematics,”’ The American Mathematical Monthly 87
(1980): 519-524.

2 It is interesting and pertinent that, conversely, a true appreciation of a branch of mathematics
is impossible without some acquaintance with the history of that branch, for mathematics is largely
a study of ideas, and a genuine understanding of ideas is not possible without an analysis of origins.
A particularly obvious example of this observation is the study of non-Euclidean geometry. It was
J. W. L. Glaisher who aptly said, ‘I am sure that no subject loses more than mathematics by any
attempt to dissociate it from its history.”
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nine, ten, eleven, or all fifteen chapters are to be covered depends upon class
time and the students’ previous preparation. Here the Problem Studies form an
elastic element, for one can include or omit as many problems as convenience
and time dictate.

11. Frankly, it is not easy to cover the history of mathematics from antiqg-
uity up through modern times in a one-semester course that meets three hours a
week; to do so requires too much reading on the part of the student and almost
complete neglect of the problem material. An ideal situation is to offer a one-
year course in the subject, covering Part 1 (the first eight chapters), or Part 1
along with selections from Chapters 9, 10, and 11 in the first semester, and Part
2, or the remaining material, in the second semester. The advanced students
and the mathematics majors would enroll for both semesters; the elementary
students and the prospective teachers of high-school mathematics might enroll
for only the first semester.

12. The history of mathematics is so vast that only an introduction to the
subject is possible at the undergraduate college level, even in a two-semester
course. Accordingly, a Bibliography has been appended to each chapter that
deals with the material of that chapter. A General Bibliography, which immedi-
ately follows the final chapter, applies to all, or almost all, chapters. It must be
realized that the General Bibliography, extensive as it is, makes no pretense to
completeness and is intended merely to serve as a starting point for any search
for further material. Many periodical references are furnished in the book at
appropriate places in footnotes. An excellent source of periodical references
appears near the end of the General Bibliography; important references of this
sort are very numerous and will soon be encountered by an inquiring student.
To accommodate the general undergraduate student, the references in the Bib-
liographies are generally accessible and in English.

13. A great pitfall in writing a book such as this one lies in including more
material than can be covered and/or digested within the time limits of the
course; a writer simply knows too much about his or her subject. The delicate
balance between a too brief and a too voluminous treatment is not easy to
maintain, and is perhaps achieved more through teaching experience than any-
thing else. No one is more aware than the author of the many topics that,
because of the purpose and clientele of the book, had to be slighted or omitted.
If an instructor feels deeply that certain omitted material should be included in
his course, by all means introduce it if it can be managed. A textbook is never
meant to replace an instructor or to interfere with creative teaching; it is merely
offered as an aid.

14. The Cultural Connections supplied by Jamie H. Eves may be included
or omitted at the discretion of the instructor. They have been inserted for those
who feel that such connections are important because mathematics did not
develop in a vacuum. Some of the material presented in the Cultural Connec-
tions has been repeated in the text proper since some instructors may elect to
omit the Cultural Connections.
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Cultural Connection

THE HUNTERS OF THE SAVANNA
The Stone Age—ca. 5,000,000-3000 B.C.
(to accompany Chapter One)

he first people were hunters of small game and gatherers of fruits, nuts, and
roots. They lived, for the most part, in the open spaces of the savannas, seas of
tall grass that covered most of the habitable portions of Africa, southern Eu-
rope, southern Asia, and Middle America. They were a migratory people,
constantly moving from place to place in search of food and in response to
climatic flux. Their culture was forged in the crucible of a harsh, hostile world
where life was short and the search for food an unabating constant. Everything
was geared toward the hunt: their tools of stone, wood, bone, and shell were
designed for either hunting or food preparation; the fire they tamed was used
for cooking as well as keeping warm; their art depicted scenes of hunts; their
religion was a fearful attempt to understand and control the raw wilderness
around them and only dimly grappled with the concept of ultimate destiny.

We cannot say with certainty when the Stone Age began. It was perhaps as
early as 5,000,000 B.C., when Australopithecus, a four-foot-tall ancestor of
humanity who lived in Africa, might have made crude stone choppers and
cutting flakes by striking one pebble against another. Certainly by approxi-
mately 400,000 B.C., Homo erectus in China routinely constructed stone chop-
ping tools, flakes, and scrapers. Homo erectus also moved out of the storms of
the open savanna into caves near modern Peking, an innovation continued by
their cousins, Homo neanderthalensis, who lived in Europe and the Middle
East between approximately 110,000 B.C. and 35,000 B.C. Homo neandertha-
lensis heated their caves with fire and cooked the game they had captured on
the savanna. They preserved records of their hunts in detailed, elegant wall
paintings. By 30,000 B.C., Homo sapiens (modem people) replaced cave dwell-
ings with mobile structures, wooden lean-tos and huts of animal skins, that they
could take with them on the hunt. At about the same time, they also began to
carve stone fertility figurines and other religious icons.

We cannot precisely fix the end of the Stone Age. Stone Age cultures
persisted in some parts of the world into the nineteenth and twentieth centu-
ries. Most of southern Africa, Australia, and the Americas were peopled with
Stone Age hunter/gatherers when encountered by European explorers in the
sixteenth and seventeenth centuries. In the mid-twentieth century, lumbeijacks
chanced upon the hitherto “undiscovered” Tasadays, a Stone Age forest tribe
living deep in the interior of one of the Philippine islands. Historical conven-

6
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tion, however, ends the Stone Age in approximately 3000 B.C., when metal-
smelting city cultures emerged in the Middle East, India, and China.

Like all historical epochs, the Stone Age was not static. Society and cul-
ture changed over time to adapt to a changing world. Historians diagram this
change by dividing the Stone Age into three periods. During the Paleolithic
period, or Old Stone Age (ca. 5,000,000-10,000 B.C.), Homo sapiens evolved
from smaller, slighter creatures and developed the basic socioeconomic struc-
tures of the Stone Age. In the Mesolithic period, or Middle Stone Age (ca.
10,000-7000 B.C.), the hunter/gatherer economy of the Stone Age crystallized.
In the Neolithic period, or New Stone Age (ca. 7000-3000 B.C.), the Stone Age
began to fade into the Bronze and Iron Ages, as people began to turn away from
a hunter/gatherer society to one involving early forms of agriculture and the
domestication of animals. The Paleolithic era was a transition from a prehuman
world to a society of human hunters. The Neolithic period was also a transition,
from a society of hunters to one of farmers.

Because it was a time when almost all people were migratory hunters, the
Stone Age was a period of limited scientific and intellectual advancement. This
is not because the people of the Stone Age lacked intelligence. By 20,000 B.C.,
the hunters of the savanna had developed a complex culture that included tool
making, language, religion, art, music, and commerce. Progress in mathematics
and science, however, was hampered by the social and economic structures of
those early times. Because Stone Age people were hunters rather than farmers,
they had to move with the seasons, following the migrations of animals and the
seasonal availability of naturally growing fruits and nuts. They were able to
carry along with them only small, easily transported tools, clothing, and per-
sonal items. There was no room in a hunter/gatherer society for the bulky
equipment needed to forge metals, or for voluminous libraries; hence, Stone
Age people did not develop metal tools or a written language. There were no
cities, as the savannas could provide enough food to support only about forty
persons per hundred square miles. In the busy, often short life of a hunter,
there was no leisure time to ponder questions of philosophy or science. To be
sure, some very basic scientific progress took place during the Stone Age.
Stone Age people traded with one another, and they needed to keep track of
each family’s share of the hunt; both activities required the necessity of count-
ing, a prelude to scientific thinking. Some Stone Age people, like the Sioux
Indians, had pictographic calendars that recorded several decades of history.
Anything beyond the most primitive counting systems, however, had to wait
until the development of full-scale, intensive agriculture, which required more
sophisticated arithmetic.

In the final millennia of the Stone Age, during the Neolithic era, humanity
moved from simply gathering naturally growing wild fruits, nuts, roots, and
vegetables to actually planting seeds and cultivating crops. Neolithic men and
women were still primarily hunters and gatherers, however, and their small,
tangled fields would have resembled unweeded vegetable gardens more than
farms. These late-Stone Age gardens probably looked very much like the corn-
fields planted by American Indians and described by European explorers in the
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sixteenth century, with several different crops planted haphazardly in the same
field.

To recapitulate, the Stone Age lasted several million years, from perhaps
as early as 5,000,000 B.C. until about 3000 B.C. In a world of vast grasslands
and savannas where wild game was abundant, people were chiefly hunters and
gatherers. Their lives were harsh and difficult, so early people were too busy
staying alive to develop scientific traditions. After 3000 B.C., densely popu-
lated farming communities emerged along the Nile River in Africa, along the
Tigris and Euphrates Rivers in the Middle East, and along the Yellow River in
China. These communities developed cultures in which science and mathemat-
ics could begin to develop.



Chapter

NUMERAL SYSTEMS

1-1 Primitive Counting

In giving a chronological account of the development of mathematics, one is
beset with the problem of where to begin. Should one start with the first me-
thodical deductions in geometry traditionally credited to Thales of Miletus
around 600 B.C.? Or should one go back further and start with the empirical
derivation of certain mensuration formulas made by the pre-Greek civilizations
of Mesopotamia and Egypt? Or should one go back even further and start with
the first groping efforts made by prehistoric man to systematize size, shape,
and number? Or can one say mathematics originated in prehuman times in the
meager number sense and pattern recognition of certain animals, birds, and
insects? Or even before this, in the number and spatial relations of plants? Or
still earlier, in the spiral nebulae, the courses of planets and comets, and the
crystallization of minerals in preorganic times? Or was mathematics, as Plato
believed, always in existence, merely awaiting discovery? Each of these possi-
ble origins can be defended.1

Since it is man’s primal efforts to systematize the concepts of size, shape,
and number that are popularly regarded as the earliest mathematics, we shall
commence there, and begin with the emergence in primitive man of the concept
of number and the process of counting.

The number concept and the counting process developed so long before
the time of recorded history (there is archeological evidence that counting was
employed by man as far back as 50,000 years ago) that the manner of this
development is largely conjectural. It is not difficult, though, to imagine how it
probably came about. It seems fair to argue that humans, even in most primi-
tive times, had some number sense, at least to the extent of recognizing more
and less when some objects were added to or taken from a small group, for
studies have shown that some animals possess such a sense. With the gradual
evolution of society, simple counting became imperative. A tribe had to know
how many members it had and how many enemies, and a man found it neces-
sary to know if his flock of sheep was decreasing in size. Probably the earliest
way of keeping a count was by some simple tally method, employing the
principle of one-to-one correspondence. In keeping a count on sheep, for exam-

1For a start, see D. E. Smith, History of Mathematics, vol. 1, chap. 1, and Howard Eves, In
Mathematical Circles (Items 1°, 2°, 3°, 4°), which are cited in the General Bibliography at the end of
the book.
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Two views of the Ishango bone, over 8000 years old and found at Ishango, on the

shore of Lake Edward in Zaire (Congo), showing numbers preserved by notches cut
in the bone.

(Dr. de Heinzelin.)

A Peruvian Indian census quipu, showing numbers recorded by knots in

cord. Larger knots are multiples of smaller ones, and cord color may
distinguish male from female.

(Collection Musee de L’Homme, Paris.)
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ple, one finger per sheep could be turned under. Counts could also be main-
tained by making collections of pebbles or sticks, by making scratches in the
dirt or on a stone, by cutting notches in a piece of wood, or by tying knots in a
string. Then, perhaps later, an assortment of vocal sounds was developed as a
word tally against the number of objects in a small group. And still later, with
the refinement of writing, an assortment of symbols was devised to stand for
these numbers. Such an imagined development is supported by reports of an-
thropologists in their studies of present-day primitive peoples.

£1000 F ﬁ v-notch a hand in width
£100 F E curved notch a thumb in width
£20 m v-notch a little finger in width
£1 ‘ ) v-notch a ripe barleycorn in width

s K———ﬁ smaller but still seen as a notch

d g::b a cut with no wood removed
£50 Q note the half-notch for £10

Drawing showing the official system of notching used on twelfth-
century exchequer tallies of the British Royal Treasury. Such
tallies continued in use until 1826.

In the earlier stages of the period of vocal counting, different sounds
(words) were used, for example, for two sheep and two men. (Consider, for
example, in English: team of horses, span of mules, yoke of oxen, brace of
partridge, pair of shoes, couple of days.) The abstraction of the common prop-
erty of two, represented by some sound considered independently of any con-
crete association, probably was a long time in arriving. OQur present number
words in all likelithood originally referred to sets of certain concrete objects, but
these associations, except for that perhaps relating five and hand, are now lost
to us.?

_? For an interesting alternative to the classical evolutionary view of nonliterate peoples, see
Marcia and Robert Ascher, ‘‘Euthomathematics,’” History of Science 24, no. 2 (June 1980): 125~
144.
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1-2 Number Bases

When it became necessary to make more extensive counts, the counting pro-
cess had to be systematized. This was done by arranging the numbers into
convenient basic groups, the size of the groups being largely determined by the
matching process employed. Essentially, the method was like this. Some num-
ber b was selected as a base (also called radix or scale) for counting, and names
were assigned to the numbers 1, 2, . . . , b. Names for numbers larger than b
were then given by combinations of the number names already selected.

Since fingers furnished such a convenient matching device, it is not sur-
prising that 10 was ultimately chosen far more often than not for the number
base b. Consider, for example, our present number words, which are formed on
10 as a base. We have the special names one, two, . . ., ten for the numbers 1,
2,...,10. When we come to 11, we say eleven, which, the philologists tell us,
derives from ein lifon, meaning ‘‘one left over,”” or one over ten. Similarly,
twelve is from twe lif (‘‘two over ten’’). Then we have thirteen (‘‘three and
ten’’), fourteen (‘‘four and ten’’), up through nineteen (‘‘nine and ten’’). Then
comes twenty (twe-tig, or ‘‘two tens’’), twenty-one (‘‘two tens and one’’), and
so on. The word hundred, we are told, comes originally from a term meaning
““ten times’’ (ten).

There is evidence that 2, 3, and 4 have served as primitive number bases.
For example, there are natives of Queensland who count ‘‘one, two, two and
one, two twos, much,’’ and some African pygmies count ‘‘a, oa, ua, oa-oa, oa-
oa-a, and oa-oa-oa’’ for 1,2, 3,4, 5, and 6. A certain tribe of Tierra del Fuego
has its first few number names based on 3, and some South American tribes
similarly use 4.

As might be expected, the quinary scale, or number system based on 5, was
the first scale to be used extensively. To this day, some South American tribes
count by hands: ‘‘one, two, three, four, hand, hand and one,’’ and so on. The
Yukaghirs of Siberia use a mixed scale by counting ‘‘one, two, three, three and
one, five, two threes, one more, two three-and-ones, ten with one missing,
ten.”” German peasant calendars used a quinary scale as late as 1800.

There is evidence that the duodecimal scale, or number system based on
12, may have been used in some societies during prehistoric times, chiefly in
relation to measurements. Such a base may have been suggested by the approx-
imate number of lunations in a year, or perhaps because 12 has so many integral
fractional parts. At any rate, we have 12 as the number of inches in a foot,
ounces in the ancient pound, pence in a shilling, lines in an inch, hours about
the clock, months in a year, and the words dozen and gross used as higher
units.

The vigesimal scale, or number system based on 20, has been widely used,
and recalls man’s barefoot days. This scale was used by American Indian
peoples, and is best known in the well-developed Mayan number system. Celtic
traces of a base 20 are found in the French quatre-vingt instead of huitante, and
quatre-vingt-dix instead of nonante. Traces are also found in Gaelic, Danish,
and Welsh. The Greenlanders use ‘‘one man’’ for 20, ‘‘two men’’ for 40, and so
on. In English we have the frequently used word score.
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The sexagesimal scale, or number system based on 60, was used by the
ancient Babylonians, and is still used when measuring time and angles in min-
utes and seconds.

1-3  Finger Numbers and Written Numbers

In addition to spoken numbers, finger numbers were at one time widely used.
Indeed, the expression of numbers by various positions of the fingers and hands
probably predates the use of either number symbols or number names. Thus,
the early written symbols for 1, 2, 3, and 4 were invariably the suitable number
of vertical or horizontal strokes, representing the corresponding number of
raised or extended fingers, and the word digit (that is, “finger”) for the num-
bers 1through 9 can be traced to the same source.

Finger numbers from Pacioli’s Suma of 1494. The first two
columns represent the left hand, the other two the right hand.
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In time, finger numbers were extended to include the largest numbers
occurring in commercial transactions; by the Middle Ages, they had become
international. In the ultimate development, the numbers 1, 2, . . . , 9 and 10,
20, . . ., 90 were represented on the left hand, and the numbers 100, 200, . . .,
900 and 1000, 2000, . . . , 9000 on the right hand. In this way, any number up to
10,000 was representable by the use of the two hands. Pictures of the finger
numbers were given in Renaissance arithmetic books. For example, using the
left hand, 1 was represented by partially folding down the little finger; 2 by
partially folding down the little and ring fingers; 3 by partially folding down the
little, ring, and middle fingers; 4 by folding down the middle and ring fingers; 5
by folding down the middle finger; 6 by folding down the ring finger; 7 by
completely folding down the little finger; 8 by completely folding down the little
and ring fingers; and 9 by completely folding down the little, ring, and middie
fingers.

Although finger numbers originated in very early times, they are still used
today by some primitive races of Africa, by Arabs, and by Persians. In North
and South America, some native Indian and Eskimo tribes still employ the
fingers.

Finger numbers had the advantage of transcending language differences
but, like the vocal numbers, lacked permanence and were not suitable for
performing calculations. We have already mentioned the use of marks and
notches as early ways of recording numbers. In such devices, we probably have
the first attempt at writing. At any rate, various written number systems gradu-
ally evolved from these primitive efforts to make permanent number records. A
written number is called a numeral, and we now turn our attention to a simple
classification of early numeral systems.

1-4 Simple Grouping Systems

Perhaps the earliest type of numeral system that was developed is that which
has been called a simple grouping system. In such a system, some number b is
selected for number base, and symbols are adopted for 1, b, b?, b*, and so on.
Then any number is expressed by using these symbols additively, each symbol
being repeated the required number of times. The following illustrations will
clarify the underlying principle.

A very early example of a simple grouping system is that furnished by the
Egyptian hieroglyphics, employed as far back as 3400 B.C. and chiefly used by
the Egyptians when making inscriptions on stone. Although the hieroglyphics
were sometimes used on other writing media than stone, the Egyptians early
developed two considerably more rapid writing forms for work on papyrus,
wood, and pottery. The earlier of these forms was a running script, known as
the hieratic, derived from the hieroglyphic and used by the priesthood. From
the hieratic, there later evolved the demotic writing, which was adopted for
general use. The hieratic and demotic numeral systems are not of the simple
grouping type.
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The Egyptian hieroglyphic numeral system is based on the scale of 10. The
symbols adopted for 1 and the first few powers of 10 are

1 I a vertical staff, or stroke
10 m a heel bone, or hobble, or yoke

102 @ a scroll, or coil of rope
103 g) a lotus flower

104 f a pointing finger

10° &, a burbot fish, or tadpole

106 Lg/ a man in astonishment, or a god holding up the universe

Any number is now expressed by using these symbols additively, each symbol
being repeated the required number of times. Thus,

13015 = 1(10%) + 3(10% + 1(10) + 5 = ffff I|I||

We have written this number from left to right, although it was more customary
for the Egyptians to write from right to left.

The early Babylonians, lacking papyrus and having little access to suitable
stone, resorted principally to clay as a writing medium. The inscription was
pressed into a wet clay tablet by a stylus, the writing end of which may have
been a sharp isosceles triangle. By tilting the stylus slightly from the perpendic-
ular, one could press either the vertex angle or a base angle of the isosceles
triangle into the clay, producing two forms of wedge-shaped (cuneiform) char-
acters. The finished tablet was then baked in an oven to a time-resisting hard-
ness that resulted in a permanent record. On cuneiform tablets dating from 2000
to 200 B.C., numbers less than 60 are expressed by a simple grouping system to
base 10, and it is interesting that the writing is often simplified by using a
subtractive symbol. The subtractive symbol and the symbols for 1 and 10 are

7= v«
respectively, where the symbol for 1 and the two parts making up the subtrac-
tive symbol are obtained by using the vertex angle of the isosceles triangle, and
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the symbol for 10 is obtained by using one of the base angles. As examples of
written numbers employing these symbols, we have

25 =2(10) + 5 =<(<( VVVVV

38=40-2= %%Vlﬁ

The method employed by the Babylonians for writing larger numbers will be
considered in Section 1-7.

The Attic, or Herodianic, Greek numerals were developed some time prior
to the third century B.C. and constitute a simple grouping system to base 10
formed from initial letters of number names. In addition to the symbols I, A, H,
X, Mfor 1, 10, 102, 10%, 10¢, there is a special symbol for 5. This special symbol
is an old form of II, the initial of the Greek pente (‘‘five’’), and A, H, X, and M
are the initial letters of the Greek deka (ten), hekaton (hundred), kilo (thou-
sand), and myriad (ten thousand). The symbol for 5 was frequently used both
alone and in combination with other symbols in order to shorten number repre-
sentations. As an example, in this numeral system we have

2857 = XX TAHHHIAT

in which one can note the special symbol for 5 appearing once alone and twice
in combination with other symbols.

As a final example of a simple grouping system, again to base 10, we have
the familiar Roman numerals. Here the basic symbols I, X, C, M for 1, 10, 102,
103 are augmented by V, L, D for 5, 50, and 500. The subtractive principle, in
which a symbol for a smaller unit placed before a symbol for a’larger unit means
the difference of the two units, was used only sparingly in ancient and medieval
times. The fuller use of this principle was introduced in modern times. As an
example, in this system we have

and

1944 = MDCCCCXXXXIIII,
or, in more modern times, when the subtractive principle became common,
1944 = MCMXLIV.
In using the subtractive principle, however, one is to abide by the following

rule: I can precede only V or X, X can precede only L or C, C can precede only
D or M.
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There has been no lack of imagination in the attempts to account for the
origins of the Roman number symbols. Among the more plausible explanations,
acceptable to many authorities on Latin history and epigraphy, is that I, II, III,
1111 were derived from the raised fingers of the hand. The symbol X may be a
compound of two V’s, or may have been suggested by crossed hands or
thumbs, or may have originated from the common practice of crossing groups
of ten when counting by strokes. There is some evidence that the original
symbols for 50, 100, and 1000 may have been the Greek aspirates ¥ (psi), 6
(theta), and @ (phi). Older forms for psi were

NN SRR IR B

all of which were used for 50 in early inscriptions. The symbol 8 for 100
probably later developed into the somewhat similar symbol C, influenced by
the fact that C is the initial letter of the Latin word centum (‘‘hundred’’). A
commonly used early symbol for 1000 is C|D, which could be a variant of ®.
The symbol for 1000 became an M, influenced by the fact that M is the initial
letter of the Latin word mille (‘‘thousand’’). Five hundred, being half of 1000,
was represented by |D, which later became a D. The symbols C|D and | for
1000 and 500 are found as late as 1715.

1-5 Multiplicative Grouping Systems

There are instances in which a simple grouping system developed into what
may be called a multiplicative grouping system. In such a system, after a base b
has been selected, symbols are adopted for 1,2, . .., b — 1, and a second set
of symbols for b, b%, b*, . . . . The symbols of the two sets are employed
multiplicatively to show how many units of the higher groups are needed. Thus,
if we should designate the first nine numbers by the usual symbols, but desig-
nate 10, 100, and 1000 by 4, b, c, say, then in a muitiplicative grouping system
we would write

5625 = 5c6b2as.

The traditional Chinese-Japanese numeral system is a multiplicative
grouping system to base 10. Writing vertically, the symbols of the two basic
groups and of the number 5625 are as shown on p. 18.

Lacking a paperlike writing material, the early Chinese and Japanese re-
corded their findings on bamboo slips. The piece of a bamboo stalk between
two knots was split lengthwise into thin strips. After these strips were dried and
scraped, they were laid side by side and tied together by four crosswise cords.
The narrowness of the strips necessitated that the characters written on them
be arranged vertically from top to bottom, giving rise to a custom of writing that
persisted into more modern times, when bamboo slips were replaced by silk
and paper as more convenient writing materials.
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Example: 5625
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1-6 Ciphered Numeral Systems

In a ciphered numeral system, after a base b has been selected, sets of symbols
are adopted for 1,2, ...,b—1;b,2b, ... ,(b— 1)b;b?,2b2,...,(b— 1)b?%
and so on. Although many symbols must be memorized in such a system, the
representation of numbers is compact.

The so-called Ionic, or alphabetic, Greek numeral system is of the ci-
phered type and can be traced as far back as about 450 B.C. It is a system that is
based on 10 and employs twenty-seven characters—the twenty-four letters of
the Greek alphabet together with the symbols for the obsolete digamma,
koppa, and sampi. Although the capital letters were used (the small letters were
substituted much later), we shall now illustrate the system with the small let-
ters. The following equivalents had to be memorized:
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1 a alpha 10 ¢ iota 100 p rho

2 B beta 20 K kappa 200 o sigma
3 Y gamma 30 A lambda 300 T tau

4 ) delta 40 73 mu 400 v upsilon
5 € epsilon 50 v nu 500 ) phi

6 obsolete digamma 60 3 xi 600 X chi

7 14 zeta 70 o omicron 700 ] psi

8 n eta 80 T pi 800 ) omega
9 0 theta 90 obsolete koppa 900 obsolete sampi

As examples of the use of these symbols, we have
12 = 8, 21 = ka, 247 = opd.

Accompanying bars or accents were used for larger numbers (see Problem
Study 1-3 (b)).
Symbols for the obsolete digamma, koppa, and sampi are

S 2 m

Other ciphered numeral systems are the Egyptian hieratic and demotic,
Coptic, Hindu Brahmi, Hebrew, Syrian, and early Arabic. The last three, like
the Ionic Greek, are alphabetic ciphered numeral systems.

1-7 Positional Numeral Systems

Our own numeral system is an example of a positional numeral system with
base 10. For such a system, after the base b has been selected, basic symbols
are adopted for 0, 1,2, . . . , b — 1. Thus, there are b basic symbols, frequently
called the digits of the system. Now any (whole) number N can be written
uniquely in the form

N=ab"+ a,b" '+ + ab®+ a1b + ay,

where0 =aq; < b,i=0,1, ..., n We then represent the number N to base b
by the sequence of basic symbols

anay-y . . . Ayaap.

Thus, a basic symbol in any given numeral represents a multiple of some power
of the base, the power depending on the position in which the basic symbol
occurs. In our own Hindu-Arabic numeral system, for example, the 2 in 206
stands for 2(10%), or 200, whereas in 27, the 2 stands for 2(10), or 20. Note that
for complete clarity some symbol for zero is needed to indicate any possible
missing powers of the base. A positional numeral system is a logical, although
not necessarily historical, outgrowth of a multiplicative grouping system.
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Sometime between 3000 and 2000 B.C., the ancient Babylonians evolved a
sexagesimal system employing the principle of position. The numeral system,
however, is really a mixed one in that, although numbers exceeding 60 are
written according to the positional principle, numbers within the basic 60 group
are written by a simple grouping system to base 10, as explained in Section 1-4.
As an illustration we have

524,551 = 2(60%) + 25(60%) + 42(60) + 31 = VY VVV% <f YV Y

Until after 300 B.C., this positional numeral system suffered from the lack of a
zero symbol to stand for any missing powers of 60, thus leading to possible
misinterpretations of given number expressions. The symbol that was finally
introduced consisted of two small, slanted wedges, but this symbol was used
only to indicate a missing power of the base 60 within a number, and not for any
missing power of the base 60 occurring at the end of a number. Thus, the
symbol was only a partial zero, for a true zero serves for missing powers of the
base both within and at the end of numbers, as in our 304 and 340. In the
Babylonian numeral system, then, 10,804 would appear as

10,804 = 3(602) + 0(60) + 4 = V V Vé g g
and 11,040 as

1,040 = 360 + 4(60) = |/ V

rather than as

NARLZS

The Mayan numeral system is very interesting. Of remote but unknown
date of origin, it was uncovered by the early sixteenth-century Spanish expedi-
tions into Yucatan. This system is essentially a vigesimal one, except that the
second number group is (18)(20) = 360 instead of 202 = 400. The higher groups
are of the form (18)(20”). The explanation of this discrepancy probably lies in
the fact that the official Mayan year consisted of 360 days. The symbol for zero
given in the table below, or some variant of this symbol, is consistently used.
The numbers within the basic 20 group are written very simply by dots and
dashes (pebbles and sticks) according to the following simple grouping scheme,
the dot representing 1 and the dash §.

1 e 6 *_ 11 _°* 16 _9®

2 ee 7 e 12 oo 17 e
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3 eee g 2ee 13 2°0e 18 2ee
40000 g ®%¢e 150000 19 oo 0@
5 —— 10 =——= 15 =—= 0 <=

An example of a larger number, written in the vertical Mayan manner, is shown
below.

=
43,487 = 6(18)(20%) + 0(18)(20) + 14(20) + 7 = e o o @

The mixed-base system we have described was used by the priest class.
There are reports of a pure vigesimal system that was used by the common
people but which has not survived in written form.

1-8 Early Computing

Many of the computing patterns used today in elementary arithmetic, such as
those for performing long multiplications and divisions, were developed as late
as the fifteenth century. Two reasons are usually advanced to account for this
tardy development; namely, the mental difficulties and the physical difficulties
encountered in such work.

The first reason, mental difficulties, must be somewhat discounted. The
impression that the ancient numeral systems are not amenable to even the
simplest calculations is largely based on lack of familiarity with these systems.
It is clear that addition and subtraction in a simple grouping system require only
the ability to count the number symbols of each kind and then to convert to
higher units. No memorization of number combinations is needed.? In a ci-
phered numeral system, if sufficient addition and multiplication tables have
been memorized, the work can proceed much as we do it today. The French
mathematician Paul Tannery attained considerable skill in multiplication with
the Greek Ionic numeral system and even concluded that that system has some
advantages over our present one.

The physical difficulties encountered, however, were quite real. Without a
plentiful and convenient supply of some suitable writing medium, any very
extended development of arithmetic processes was bound to be hampered. It
must be remembered that our common machine-made pulp paper is little more
than a hundred years old. The older rag paper was made by hand; conse-

3 For the performance of long multiplications and divisions with Roman numerals, see, for
example, James G. Kennedy, ‘‘Arithmetic with Roman numerals,”” The American Mathematical
Monthly 88 (1981): 29-33.
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quently, it was expensive and scarce. It was not introduced into Europe until
the twelfth century, although it is likely that the Chinese knew how to make it a
thousand years before.

An early paperlike writing material, called papyrus, was invented by the
ancient Egyptians, and by 650 B.C. had been introduced into Greece. It was
made from a water reed called papu, which is found in abundance in the Nile
delta. The stems of the reed were cut into long, thin strips and laid side by side
to form a sheet. Another layer of strips was laid crosswise on top and the whole
soaked with water, after which the sheet was pressed out and dried in the sun.
Probably because of a natural gum in the plant, the layers stuck together. After
the sheets were dry, they were readied for writing by laboriously smoothing
them with a hard, round object. Papyrus was too valuable to be used in any
quantity as mere scratch paper.

Another early writing medium was parchment, which was made from the
skins of animals, usually sheep and lambs. Naturally, this was scarce and hard
to get. Even more valuable was vellum, a parchment made from the skin of
calves. In fact, parchment was so costly that the custom arose in the Middle
Ages of washing the ink off old parchment manuscripts and using them over
again. Such manuscripts are called palimpsests (palin, ‘‘again’’; psao, ‘‘rub
smooth’’). In some instances, after the passage of years, the original writing of
a palimpsest reappeared faintly beneath the later treatment. Some interesting
restorations have been made in this manner.

Small boards bearing a thin coat of wax, along with a stylus, formed a
writing medium for the Romans of about 2000 years ago. Before and during the
Roman Empire, sand trays were frequently used for simple counting and for the
drawing of geometrical figures. Of course, stone and clay were used very early
for making written records.

The way around these mental and physical difficulties was the invention of
the abacus (Greek abax, ‘‘sand tray’’), which can be called the earliest mechan-
ical computing device used by man. It appeared in many forms in parts of the
ancient and medieval world. Let us describe a rudimentary form of abacus and
illustrate its use in the addition and subtraction of some Roman numbers. Draw
four vertical parallel lines and label them from left to right by M, C, X, and I,
and obtain a collection of convenient counters, like checkers, pennies, or peb-
bles. A counter will represent 1, 10, 100, or 1000 units according to its position
on the I, X, C, or M line. To reduce the number of counters that may subse-
quently appear on a line, we agree to replace any five counters on a line by one
counter in the space just to the left of that line. Any number less than 10,000
may then be represented on our frame of lines by placing not more than four
counters on any line, and not more than one counter in the space just to the left
of that line.

Let us now add

MDCCLXIX and MXXXVII.

Represent the first of the two numbers by counters on the frame, as illustrated
at the left in Figure 1. We now proceed to add the second number, working
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=
x

M C X I
FIGURE 1

from right to left. To add the VII, put another counter between the X and I lines
and two more counters on the I line. The I line now has six counters on it. We
remove five of them and instead put another counter between the X and I lines.
Of the three counters now between the X and I lines, we ‘‘carry over’ two of
them as a single counter on the X line. We now add the XXX by putting three
more counters on the X line. Since we now have a total of five counters on the
X line, they are replaced by a single counter between the C and X lines, and the
two counters now found there are ‘‘carried over’ as a single counter on the C
line. We finally add the M by putting another counter on the M line. The final
appearance of our frame is illustrated at the right in Figure 1, and the sum can
be read off as MMDCCCVI. We have obtained the sum of the two numbers by
simple mechanical operations and without requiring any scratch paper or re-
course to memorization of any addition tables.

Subtraction is similarly carried out, except that now, instead of ‘‘carrying
over’’ to the left, we may find it necessary to ‘‘borrow”’ from the left.

The Hindu-Arabic positional numeral system represents a number very
simply by recording in order the number of counters belonging to the various
lines of the abacus. The symbol 0 stands for a line with no counters on it. Our
present addition and subtraction patterns, along with the concepts of ‘‘carrying
over’’ and ‘‘borrowing’”’ may have originated in the processes for carrying out
these operations on the abacus. With the Hindu-Arabic numeral system, we are
working with symbols instead of the actual counters, so it becomes necessary
either to commit the simple number combinations to memory or to have re-
course to an elementary addition table.

1-9 The Hindu-Arabic Numeral System

The Hindu-Arabic numeral system is named after the Hindus, who may have
invented it, and after the Arabs, who transmitted it to western Europe. The
earliest preserved examples of our present number symbols are found on some
stone columns erected in India about 250 B.C. by King Asoka. Other early
examples in India, if correctly interpreted, are found among records cut about
100 B.C. on the walls of a cave in a hill near Poona and in some inscriptions of
about A.D. 200 carved in the caves at Nasik. These early specimens contain no
zero and do not employ positional notation. Positional value and a zero must
have been introduced in India sometime before A.D. 800, because the Persian
mathematician al-Khowarizmi describes such a completed Hindu system in a
book of A.D. 825.
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The abacist versus the algorist.
(From Gregor Reisch, Margarita Philosophica, Strassbourg, 1504.)

How and when the new numeral symbols first entered Europe is not set-
tled. In all likelihood, they were carried by traders and travelers of the Mediter-
ranean coast. They are found in a tenth-century Spanish manuscript and may
have been introduced into Spain by the Arabs, who invaded the peninsula in
A.D. 711 and remained there until A.D. 1492. The completed system was more
widely disseminated by a twelfth-century Latin translation of al-Khowarizmi’s
treatise and by subsequent European works on the subject.

The next 400 years saw the battle between the abacists and the algorists, as
the advocates of the new system were called, and by A.D. 1500 our present
rules in computing won supremacy. In another hundred years, the abacists
were almost forgotten, and by the eighteenth century no trace of an abacus was
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found in western Europe. Its reappearance, as a curiosity, was due to the
French geometer Poncelet, who brought back a specimen to France after his
release as a Russian prisoner of war following the Napoleonic Russian cam-
paign.

Considerable variation was found in the number symbols until these sym-
bols became stabilized by the development of printing. Our word zero probably
comes from the Latinized form zephirum of the Arabic sifr, which in turn is a
translation of the Hindu sunya, meaning ‘‘void” or ‘‘empty.”” The Arabic sifr
was introduced into Germany in the thirteenth century by Nemorarius, as cifra,
from which we have obtained our present word cipher.

1-10 Arbitrary Bases

We recall that to represent a number in a positional numeral system with base b
we need basic symbols for the integers zero up through » — 1. Even though the
base b = 10 is such an important part of our culture, the choice of 10 is really
quite arbitrary, and other bases have great practical and theoretical impor-
tance. If b = 10, we may use our ordinary digit symbols; thus, for example, we
may consider 3012 as a number expressed to base 4 with the basic symbols 0, 1,
2, 3. To make clear that the number is considered as expressed to base 4, we
shall write it as (3012),. When no subscript is written, it will be understood in
this treatment that the number is expressed to the ordinary base 10. If b > 10,
we must augment our digit symbols by some new basic symbols, for we always
need b basic symbols. If b = 12, therefore, we may take0,1,2,3,4,5,6,7,8,9,
t, e for our basic symbols, where ¢ and e are symbols for ten and eleven; for
example, we might have (3t1e),.

It is easy to convert a number from a given base to the ordinary base 10.
Thus, we have

(3012), = 3(4%) + 0(4%) + 1(4) + 2 = 198
and
(Btle)y; = 3(12%) + 10(12%) + 1(12) + 11 = 6647.

If we have a number expressed in the ordinary scale, we may express it to
base b as follows. Letting N be the number, we have to determine the integers
an, Qu—y, . . . , Ao in the expression

N =ab"+ ap_ b1 + -+ - + ab? + a1b + ay,
where 0 = q; < b. Dividing the above equation by b, we have
N/b = a,,b"“ + a,,_lb"‘2 + ...+ azb + a + a()/b =N'+ a()/b.

That is, the remainder ay of this division is the last digit in the desired represen-
tation. Dividing N’ by b, we obtain

N'/b=ab" 2+ ab" 3+ + a + ai/b,
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and the remainder of this division is the next to the last digit in the desired
representation. Proceeding in this way, we obtain all the digits ao, ai, . . . , @,.
This procedure can be systematized quite conveniently, as shown below. Sup-
pose, for example, we wish to express 198 to the base 4. We find

4198
4|49  remainder 2
4112 remainder 1

4|3  remainder 0
0 remainder 3

The desired representation is (3012),. Again, suppose we wish to express 6647
to the base 12, where ¢ and e are employed to represent ten and eleven, respec-
tively. We find

126647
12|553  remainder e

12|46  remainder 1
12|3  remainder ¢
0  remainder 3

The desired representation is (31¢),;.

One is apt to forget, when adding or multiplying numbers in our ordinary
system, that the actual work is accomplished mentally and that the number
symbols are used merely to retain a record of the mental results. Our success
and efficiency in carrying out such arithmetic operations depend on how well
we know the addition and multiplication tables, the learning of which absorbed
so much of our time in the primary grades. With corresponding tables con-
structed for a given base b, we can similarly perform additions and multiplica-
tions within the new system, without spending any time reverting to the ordi-
nary system.

Let us illustrate with base 4. We first construct the following addition and
multiplication tables for base 4.

Addition Multiplication
0 1 2 3 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 10 1 0 1 2 3
2 2 3 10 11 2 0 2 10 12
3 3 10 11 12 3 0 3 12 21
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The addition of 2 and 3, therefore, by reference to the table, is 11, and the
multiplication of 2 and 3 is 12. Using these tables, exactly as we are accustomed
to using the corresponding tables for base 10, we can now perform additions
and multiplications. As an example, for the multiplication of (3012), by (233),
we have, omitting the subscript 4,

3012
233

21102
21102
12030

2101122

Considerable familiarity with the tables will be needed in order to perform the
inverse operations of subtraction and division. This, of course, is also true for
the base 10 and is the reason for much of the difficulty encountered in teaching
the inverse operations in the elementary grades.

Problem Studies

1.1 Number Words

Furnish explanations of the following primitive number words.

(a) For a Papuan tribe in southeast New Guinea, it was found necessary to
translate the Bible passage (John 5:5): ‘“And a certain man was there,
which had an infirmity 30 and 8 years’ into ‘‘A man lay ill one man,
both hands, 5 and 3 years.”

(b) In (British) New Guinea, the number 99 comes out as ‘‘four men die,
two hands come to an end, one foot ends, and four.”

(c) The South American Kamayura tribe uses the word peak-finger as their
word for 3, and ‘3 days’’ comes out as ‘‘peak-finger days.”

(d) The Zulus of South Africa use the following equivalents: 6 (‘‘taking the
thumb’’), 7 (‘‘he pointed’’).

(¢) The Malinké of West Sudan use the word dibi for 40. The word literally
means ‘‘a mattress.”’

(f) The Mandingo tribe of West Africa use the word kononto for 9. The
word literally means ‘‘to the one in the belly.”

1.2 Written Numbers

Write 574 and 475 in (a) Egyptian hieroglyphics, (b) Roman numerals, (c) Attic
Greek numerals, (d) Babylonian cuneiform, (€) traditional Chinese-Japanese,
(f) alphabetic Greek, (g) Mayan numerals.
Record in Roman numerals: (h) § of MCXXVIII, (i) 4 times XCIV.
Record in alphabetic Greek: (j) 4 of 78, (k) 8 times pka.
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1.3 Alphabetic Greek Numeral System

(a) How many different symbols must one memorize in order to write
numbers less than 1000 in alphabetic Greek? In Egyptian hieroglyph-
ics? In Babylonian cuneiform?

(b) In the alphabetic Greek numeral system, the numbers 1000, 2000, . . .,
9000 were often represented by priming the symbols for 1,2, ..., 9.
Thus, 1000 might appear as a’. The number 10,000, or myriad, was
denoted by M. The multiplication principle was used for multiples of
10,000. Thus, 20,000, 300,000, and 4,000,000 appeared as SM, AM, and
vM. Write, in alphabetic Greek, the numbers 5780, 72,803, 450,082,
3,257,888.

(c) Make an addition table up through 10 + 10 and a multiplication table up
through 10 X 10 for the alphabetic Greek numeral system.

1.4 Old and Hypothetical Numeral Systems

(a) As an alternative to the cuneiform, or wedge-shaped, numeral sym-
bols, the ancient Babylonians sometimes used circular numeral sym-
bols, so named because they were formed by circular-shaped imprints
in clay tablets, made with a round-ended stylus instead of a triangular-
ended one. Here the symbols for 1 and 10 are D and O. Write, with
circular Babylonian numerals, the numbers 5780, 72,803, 450,082,
3,257,888.

(b) State a simple rule for multiplying by 10 a number expressed in Egyp-
tian hieroglyphics.

(c) An interesting numeral system is the Chinese scientific (or rod) numeral
system, which is probably 2000 or more years old. The system is essen-
tially positional, with base 10. Figure 2 shows how the digits 1, 2, 3, 4,
S, 6,7, 8, 9 are represented when they appear in an odd (units, hun-
dreds, and so forth) position. But when they appear in an even (tens,
thousands, and so forth) position, they are represented as shown in
Figure 3. In this system, a circle, O, was used for zero in the Sung
Dynasty (960-1279) and later. Write, with rod numerals, the numbers
5780, 72,803, 450,082, 3,257,888.

(d) In a simple grouping system to base 5, let 1, 5, 52, 53 be represented by
/, *,), (. Express the numbers 360, 252, 78, 33 in this system.

(e) In a positional numeral system to base 5, let 0, 1, 2, 3, 4 be represented
by #, /, *,), (. Express the numbers 360, 252, 78, 33 in this system.

1.5 Finger Numbers

(a) Finger numbers were widely used for many centuries; from this use,
finger processes were developed for some simple computations. One of

AT 1010 T

FIGURE 2
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these processes, by giving the product of two numbers, each between 5
and 10, served to reduce the memory work connected with the multipli-
cation tables. To multiply 7 by 9, for example, raise 7 — 5 = 2 fingers on
one hand and 9 — 5 = 4 fingers on the other hand. Now add the raised
fingers, 2 + 4 = 6, for the tens digit of the product, and multiply the
closed fingers, 3 X 1 = 3, for the units digit of the product, giving the
result 63. This process is still used by some European peasants. Prove
that the method gives correct results.

(b) Explain the ninth-century riddie that is sometimes attributed to Alcuin
(ca. 775): *‘I saw a man holding 8 in his hand, and from the 8 he took 7,
and 6 remained.”’

(c) Explain the following, found in Juvenal’s tenth satire: ‘‘Happy is he
indeed who has postponed the hour of his death so long and finally
numbers his years upon his right hand.”

1.6 Radix Fractions

Fractional numbers can be expressed, in the ordinary scale, by digits following
a decimal point. The same notation is also used for other bases; therefore, just
as the expression .3012 stands for

3/10 + 0/10% + 1/10° + 2/104,
the expression (.3012), stands for
3/b + 0/b* + 1/ + 2/b*.

An expression like (.3012), is called a radix fraction for base b. A radix fraction
for base 10 is commonly called a decimal fraction.
(a) Show how to convert a radix fraction for base b into a decimal fraction.
(b) Show how to convert a decimal fraction into a radix fraction for base b.
(c) Approximate to four places (.3012), and (.3¢1¢),, as decimal fractions.
(d) Approximate to four places .4402 as a radix fraction, first for base 7,
and then for base 12.

1.7 Arithmetic in Other Scales

(a) Construct addition and multiplication tables for bases 7 and 12.

(b) Add and then mulitiply (3406); and (251),, first using the tables of (a) and
then by converting to base 10. Similarly, add and then multiply (3104¢);,
and (51¢1);5.

(c) We may apply the tables for base 12 to simple mensuration problems
involving feet and inches. For example, if we take 1 foot as a unit, then
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3 feet 7 inches become (3.7);;. To find, to the nearest square inch, the
area of a rectangle 3 feet 7 inches long by 2 feet 4 inches wide, we may
multiply (3.7); by (2.4);; and then convert the result to square feet and
square inches. Complete this example.

1.8 Problems in Scales of Notation

(a) Express (3012)s in base 8.

(b) For what base is 3 X 3 = 10? For what base is 3 X 3 = 11? For what
base is 3 X 3 = 12?

(c) Can 27 represent an even number in some scale? Can 37? Can 72
represent an odd number in some scale? Can 82?

(d) Find b such that 79 = (142),. Find b such that 72 = (2200),.

(e) A 3-digit number in the scale of 7 has its digits reversed when ex-
pressed in the scale of 9. Find the 3 digits.

(f) What is the smallest base for which 301 represents a square integer?

(® If b > 2, show that (121), is a square integer. If b > 4, show that
(40,001),, is divisible by (221),.

1.9 Some Recreational Aspects of the Binary Scale

The positional number system with base 2 has applications in various branches

of mathematics. Also, there are many games and puzzles, like the well-known

game of Nim and the puzzle of the Chinese rings, that have solutions that
depend on this system. Following are two easy puzzles of this sort.

(a) Show how to weigh, on a simple equal-arm balance, any weight w of a

whole number of pounds, using a set of weights of 1 pound, 2 pounds,

22 pounds, 2° pounds, and so forth, there being only one weight of each

kind.
(b) Consider the following four cards containing numbers from 1 through
15.
1 9 2 10 4 12 8 12
3 11 3 11 5 13 9 13
5 13 6 14 6 14 10 14
7 15 7 15 7 15 11 15

On the first card are all those numbers whose last digit in the binary system is 1;
the second contains all those numbers whose second digit from the right is 1;
the third contains all those whose third digit from the right is 1; the fourth
contains all those whose fourth digit from the right is 1. Now someone is asked
to think of a number N from 1 through 15 and to tell on which cards N can be
found. It is then easy to announce the number N by merely adding the top left
numbers on the cards where it appears. Make a similar set of 6 cards for
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detecting any number from 1 through 63. It has been noted that if the numbers
are written on cards weighing 1, 2, 4, . . . units, then an automaton in the form
of a postal scale could express the number N.

1.10 Some Number Tricks

Many simple number tricks, in which one is to ‘‘guess a selected number,”’
have explanations depending on our own positional scale. Expose the following
tricks of this kind.

(a) Someone is asked to think of a 2-digit number. He is then requested to
multiply the tens digit by 5, add 7, double, add the units digit of the
original number, and announce the final result. From this result, the
conjurer secretly subtracts 14 and obtains the original number.

(b) Someone is asked to think of a 3-digit number. He is then requested to
multiply the hundreds digits by 2, add 3, multiply by 5, add 7, add the
tens digit, multiply by 2, add 3, multiply by 5, add the units digit, and
announce the result. From this result, the conjurer secretly subtracts
235 and obtains the original number.

(c) Someone is asked to think of a 3-digit number whose first and third
digits are different. He is then requested to find the difference between
this number and that obtained by reversing the 3 digits. Upon disclosing
only the last digit of this difference, the conjurer announces the entire
difference. How does the trickster do this?
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Cultural Connection

THE AGRICULTURAL REVOLUTION
The Cradles of Civilization—ca. 3000-525 B.C.
(to accompany Chapter Two)

N ear the end of the Stone Age, in certain parts of the world, people were
compelled toward a full-scale, intensive agriculture by changes in the world’s
climate. The vast, grassy savannas where Stone Age hunters lived began to
shrink late in the Neolithic period, as they continue to shrink today. In some
places, the savannas were reclaimed by expanding forests; in others, they
became arid and lifeless, turning into deserts. As their environment changed,
people adapted as best they could. In Europe, southern Africa, southeast Asia,
and eastern North and South America, people moved into the new forests and
became woodland hunters, a relatively minor adaptation.

In the growing deserts of north Africa, the Middle East, and central Asia,
however, the transformation was not so simple. As the grass withered and the
streams dried up, as mammoth sand dunes marched out from the centers of the
new deserts, the animals that once lived in these regions left, crowding into
oases, and then moving on when the oases dried up. The people followed the
animals in this flight before the advance of the towering dunes, eventually
settling in oasis-like wetlands on the edges of the deserts. These new places
acted as catch basins for all forms of life, including people, and large numbers
of men and women came to live there after they fled the desert. In Africa, on
the marches of the Sahara Desert, which had once been rolling prairie, the Nile
River valley offered water to the migrating animals and their human hunters. In
the Middle East, the Tigris and Euphrates Rivers, sharing a single valley,
formed a catch basin for those fleeing the growing Arabian Desert. The Indus
River valley at the periphery of India’s Thar Desert and the Yellow River valley
in China at the frontier of the Gobi Desert also served as catch basins. In the
Americas, although at a later date, the Pacific coastal plain turned dry and sere,
and people climbed the high peaks of the Sierra Madre Mountains in Mexico
and Central America and the Andes in Peru and Colombia, where the loftiest
mountains scraped the clouds and tore loose the rain. Today, a similar process
of desertification is being played out on a terrifying scale in Africa, where the
Sahara is again on the move and people from the withering grasslands are
crowding into refugee camps along the Niger River and Upper Nile.

The civilizations that emerged in these catch basins were vastly different
from the hunter/gatherer societies of the Stone Age. Human population densi-
ties in these wetlands were too high to permit everyone to continue to survive

34
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as hunters and gatherers. To keep from starving, people in these places had to
find other ways to obtain food. Not surprisingly, they turned to intensive agri-
culture, which could support populations as thick as forty people to the square
mile. This was a sort of “agricultural revolution,” and it precipitated profound
cultural changes.

One such change was the creation of written language. Farming meant
irrigation in the largely rainless valleys of north Africa and the Middle East, and
the seasonal flooding of the Yellow, Nile, and Tigris and Euphrates Rivers
meant diking—activities that required not only cooperation and engineering
skill, but record-keeping systems as well. The farmers needed to know when
the floods, or the rainy season, would come, and that meant calendars and
almanacs. Landowners kept written accounts of agricultural production and
drew maps noting the locations of irrigation ditches. Farmers prayed to the
gods to ensure that the floods and rains would come as scheduled and, in the
process, watched the movements of the stars. All these activities gave rise to a
new class of educated men: priests, scribes, and astrologers.

Along with literacy came a need for new technologies. Early engineers
planned dikes and irrigation works. Metal plows were better than wooden ones;
people learned to forge bronze around 3000 B.C. and iron about 1100 B.C. The
need for specialized tools created a need for yet another new social class:
skilled artisans.

Another important change was the adoption of a sedentary lifestyle. Un-
like hunters and gatherers, farmers did not need to travel great distances
searching for food. They built permanent villages and towns, and small cities
grew up along the river banks. By 2500 B.C., the cities of Memphis and Thebes
had emerged as the leading metropoli in Egypt; not long after, Pharoah Pepi Il
(?-ca. 2200 B.C.) built the city of Heracleopolis as his capital. In the valley of
the Tigris and Euphrates, the city of Ur emerged earlier, in approximately 3000
B.C. Although small by modern standards, these early cities dwarfed Neolithic
villages. Ur had 24,000 inhabitants and covered 150 acres. The cities provided
central marketplaces where farmers and artisans could exchange goods, and a
merchant class sprang into being to facilitate that process.

For the first time in history, some people had leisure time. While the
farmers, who made up the majority of the population during the agricultural
revolution, generally spent the entire day in toil, other people—Xkings, priests,
merchants, scribes—found time at the end of the day that could be spent
pondering the mysteries of nature and science. At last, all the ingredients for
scientific progress were brought together: written languages, a need for new
technologies, urban environments, and leisure time. It is little wonder, then,
that historians refer to ancient Egypt, India, China, and the Middle East as
“cradles of civilization.” (The deserts in the Americas appeared later than
those in the eastern hemisphere; hence, the agricultural revolution in the west
was longer in coming. Historians now acknowledge, however, that Mexico and
Peru during the days of the Mayas, Incas, and their forebears were also true
“cradles of civilization.”)

The agriculturalists developed new forms of political organization. In the
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Stone Age, “the government” had been the tribe or clan—a small band of men
and women bound together by Kinship ties and under the nominal direction ofa
chief. The complex activities attendant to farming (planting common fields,
building granaries, digging irrigation trenches, regulating marketplaces to pro-
tect unwary buyers, appeasing the gods) required more centralized systems of
government. Tribes were replaced by city-states, kingdoms, and small empires,
and the tribal chief was supplanted by extensive bureaucracies.

The city-state was the most common form of government in the cradles of
civilization, consisting of a single city or town and the surrounding countryside.
Tiny by modern standards, city-states were so small that, in their ideal form,
which was described by the Chinese philosopher Confucius (551-479 B.C.), a
citizen might hear roosters crowing in neighboring countries. Each of the cra-
dles of civilization was, at one time or another, divided into city-states: Egypt
between 2200 B.C. and 2050 B.C., and again between 1786 B.C. and 1575 B.C,;
the valley of the Tigris and Euphrates Rivers between approximately 3000 B.C.
and 2150 B.C.; and China from 600 B.C. (or earlier) until 221 B.C. Most often, a
city-state was an oligarchy, governed by a small clique of wealthy citizens. A
few were monarchies, however, and some were theocracies (that is, ruled by a
class of priests). A very few were republics, with broad citizen participation in
affairs of state. We shall visit some of these republics in Greece, Rome, and
Carthage in Cultural Connections 11l and IV.

In each of the cradles of civilization, city-states eventually gave way to
expanding empires. According to tradition, Egypt was united under a single
pharoah in 3100 B.C., at the beginning of the agricultural revolution, although
the kingdom seems to have broken up by 2200 B.C. into a collection of small
principalities ruled by petty lords called nomarchs. In 1575 B.C., Egypt was
reunited under a single, absolute ruler, and would remain so until conquered by
Persia in 525 B.C. Like Egypt, tradition holds that the China of antiquity was a
united country under the mysterious Hsia Dynasty, about which little is actu-
ally known. Between 1500 B.C. and 1027 B.C., the land along the Yellow River
was governed from the city of An-Yang by the Shang Dynasty and, after that,
by the Chou Dynasty. By 600 B.C., Chou power had declined, and China was
actually a collection of city-states until unified in 221 B.C. by the Chin Dynasty.
The Chins were supplanted by the Han Dynasty fifteen years later, which
established an empire that would endure unil A.D. 221. In both Egypt and
China, we cannot be sure whether the traditional early dynasties represented
centralized empires or merely strong city-states that dominated their neigh-
bors, but later dynasts ruled as powerful autocrats over large, cohesive em-
pires. The Tigris and Euphrates River valley in the Middle East was first united
into a single empire by the warrior Sargon | (ca. 2276-2221 B.C.), although his
kingdom broke up soon after his death. Permanent unification did not come
until Amorite invaders conquered the valley in approximately 2000 B.C. and
forged the Babylonian Empire. It is not known what political systems existed in
the Indus River valley.

The fruits of the new agricultural civilizations were not enjoyed equally by
everyone. There were strict class divisions. Most of the people, probably in
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excess of ninety percent, were poor farmers. These folk could not read or
write. They often did not own the land they tilled, which belonged instead to an
overlord. They toiled constantly, with scant time to relax or enjoy life. They
had little in the way of material wealth or comforts, although they did most of
the work. Wealth was instead concentrated in the hands of a small upper class
of lords, priests, warriors (the first recorded war in history was a battle over an
irrigation ditch in the Middle East in ca. 2000 B.C.), merchants, and craftsmen.
Below even the farmers on the social scale were slaves, usually the victims of
conquest, and women, who with few exceptions were treated merely as work-
ers and bearers of children and were not accorded opportunities for intellectual
expression.

All the new agricultural societies were not identical. On the fringes of the
cultivated valleys lived nomadic tribes of herders who periodically made war
on their plant-cultivating neighbors. In India, Aryan nomads from Central Asia
possibly wiped out the civilization of the Indus River. In the Middle East,
invading armies came in a number of waves, either horsemen from the Arabian
Desert or fierce warriors from the Zargos Mountains. Each new conqueror
established itself as the new ruling class and adopted the customs and manners
of those it had supplanted. Among these conguerors were the Amorites, who
invaded the valley of the Tigris and Euphrates Rivers in approximately 2000
B.C., learned the local culture, and produced the legal code of Hammurabi.
The Amorites built the city of Babylon, and from it ruled a great empire that
persisted for a thousand years, when the Assyrians conquered the land be-
tween the two rivers. The Assyrians were in turn overthrown by a revolt in
approximately 600 B.C., and the rebels instituted the Chaldean or Neo-Babylo-
nian Empire of Nebuchadnezzar. In 550 B.C., the Persians massed out of the
Zargos Mountains and conquered Babylon. China was threatened by invaders
from the Gobi Desert but managed each time to drive the would-be conquerors
back.

In summary, the period from 3000 to 525 B.C. witnessed the birth of a new
human civilization that was sparked by an agricultural revolution. New soci-
eties based on farming economies emerged from the mists of the Stone Age in
the valleys of the Nile, Yellow, Indus, and Tigris and Euphrates Rivers. These
new societies created written languages; worked metals; built cities; empiri-
cally developed the fundamental mathematics of surveying, engineering, and
commerce; and spawned upper classes who had enough leisure time to pause
and consider the mysteries of nature. After millions of years, humanity was at
last embarked on the road toward scientific achievement.



Chapter

BABYLONIAN AND EGYPTIAN
MATHEMATICS

2-1 The Ancient Orient

Early mathematics required a practical basis for its development, and such a
basis arose with the evolution of more advanced forms of society. It was along
some of the great rivers of Africa and Asia that the new forms of society made
their appearance: the Nile in Africa, the Tigris and Euphrates in western Asia,
the Indus and then the Ganges in south-central Asia, and the Hwang Ho and
then the Yangtze in eastern Asia. The rivers furnished convenient transporta-
tion, and with marsh drainage, flood control, and irrigation, it was possible to
convert the lands along the rivers into rich agricultural regions. Extensive
projects of this sort not only knit together previously separated localities, but
the engineering, financing, and administration of both the projects and the
purposes for which they were created required the development of consider-
able technical knowledge and its concomitant mathematics. Thus, early mathe-
matics can be said to have originated in certain areas of the ancient Orient (the
world east of Greece) primarily as a practical science to assist in agriculture,
engineering, and business pursuits. These pursuits required the computation of
a usable calendar; the development of systems of weights and measures to
serve in the harvesting, storing, and apportioning of foods; the creation of
surveying methods for canal and reservoir construction and for parceling land;
and the evolution of financial and commercial practices for raising and collect-
ing taxes and for purposes of trade.l

As we have seen, the initial emphasis of mathematics was on practical
arithmetic and mensuration. A special craft came into being for the cultivation,
application, and instruction of this practical science. In such a situation, how-
ever, tendencies toward abstraction were bound to develop, and to some ex-
tent, the science was then studied for its own sake. It was in this way that
algebra ultimately evolved from arithmetic and the beginnings of theoretical
geometry grew out of mensuration.

1There is an alternative thesis that finds the origin of mathematics in religious ritual—agricul-
ture, trade, and surveying being later contributors. See A. Seidenberg, “The ritual origin of geome-
try,” Archivefor History ofExact Sciences 1(1962): 488-527, and *The ritual origin of counting,”
Archive for History of Exact Sciences 2 (1962): 1-40. Another alternative thesis can be advanced
claiming that mathematics originated in art, the universal language of man.

38



2-2 / Sources 39

It should be noted, however, that in all ancient Oriental mathematics one
cannot find even a single instance of what we today call a demonstration. In
place of an argument, there is merely a description of a process. One is in-
structed, ‘Do thus and so.”” Moreover, except possibly for a few specimens,
these instructions are not even given in the form of general rules, but are simply
applied to sequences of specific cases. Thus, if the solution of quadratic equa-
tions is to be explained, we do not find a derivation of the process used, nor do
we find the process described in general terms; instead we are offered a large
number of specific quadratics, and we are told step by step how to solve each of
these specific instances. It was expected that from a sufficient number of spe-
cific examples, the general process would become clear. Unsatisfactory as the
‘‘do-thus-and-so’’ procedure may seem to us, it should not seem strange, for it
is the procedure we must frequently use in teaching portions of grade-school
and high-school mathematics.

There are difficulties in dating discoveries made in the ancient Orient. One
of these difficulties lies in the static nature of the social structure and the
prolonged seclusion of certain areas. Another difficulty is due to the writing
media upon which discoveries were preserved. The Babylonians used imper-
ishable baked clay tablets, and the Egyptians used stone and papyrus, the latter
fortunately being long lasting because of the unusually dry climate of the re-
gion. But the early Chinese and Indians used very perishable media like bark
and bamboo. Thus, although a fair quantity of definite information is now
known about the science and the mathematics of ancient Babylonia and Egypt,
very little is known with any degree of certainty about these studies in ancient
China and India. Accordingly, this chapter, which is largely devoted to the
mathematics of the pre-Hellenic centuries, will be limited to Babylonia and
Egypt.

BABYLONIA
2-2 Sources

Since the first half of the nineteenth century, archeologists working in Mesopo-
tamia have systematically unearthed some half-million inscribed clay tablets.
Over 50,000 tablets were excavated at the site of ancient Nippur alone. There
are many excellent collections of these tablets, such as those in the great
museums at Paris, Berlin, and London, and in the archeological exhibits at
Yale, Columbia, and the University of Pennsylvania. The tablets vary in size
from small ones of only a few square inches to ones approximately the size
of the present textbook, the latter being about an inch and a half thick
through their centers. Sometimes writing appears on only one side of the tab-
let, sometimes on both sides, and frequently on the rounded edges of the
tablet.

Of the approximately half-million tablets, about 400 have been identified as
strictly mathematical tablets, containing mathematical tables and lists of mathe-
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matical problems. We owe our knowledge of ancient Babylonian2 mathematics
to the scholarly deciphering and interpretation of many of these mathematical
tablets.

Successful attempts at deciphering cuneiform writing did not occur until
shortly before 1800, when European travelers noticed the inscriptions accom-
panying a monumental bas relief carved some 300 feet above ground on the
great limestone cliff near the village of Behistun, in the northwestern part of
present-day Iran. The puzzle of the inscriptions was finally solved in 1846 by
the remarkable pertinacity of Sir Henry Creswicke Rawlinson (1810-1895), an
English diplomat and Assyriologist who perfected a key earlier suggested by
the German archeologist and philologist Georg Friedrich Grotefend (1775—
1853). The inscriptions are engraved in thirteen panels on a smoothed surface
measuring 150 feet by 100 feet and are in the three ancient languages of Old
Persian, Elamite, and Akkadian, all of which employed cuneiform script. The
relief and inscriptions were executed in 516 B.C. at the command of Darius the
Great.

With the ability to read the cuneiform texts of the excavated Babylonian
tablets, it was found that these tablets appear to bear upon all phases and

2 It should be understood that the descriptive term Babylonian is used merely for convenience,
and that many peoples, such as Sumerians, Akkadians, Chaldeans, Assyrians, and other early
peoples who inhabited the area at one time or another, are subsumed under the general term.
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interests of daily life and to range over many periods of Babylonian history.
There are mathematical texts dating from the latest Sumerian period of perhaps
2100 B.C.; a second and very large group from the succeeding First Babylonian
Dynasty of King Hammurabi’s era, and on down to about 1600 B.C.; and a
third generous group running from about 600 B.C. to A.D. 300, covering the
New Babylonian Empire of Nebuchadnezzar and the following Persian and
Seleucidan eras. The lacuna between the second and third groups coincides
with an especially turbulent period of Babylonian history. Most of our knowl-
edge of the contents of these mathematical tablets does not predate 1935 and is
largely due to the remarkable findings of Otto Neugebauer and F. Thureau-
Dangin. Since the work of interpreting these tablets is still proceeding, new and
perhaps equally remarkable discoveries are quite probable in the near future.

2-3 Commercial and Agrarian Mathematics

Even the oldest tablets show a high level of computational ability and make it
clear that the sexagesimal positional system was already long established.
There are many texts of this early period dealing with farm deliveries and with
arithmetical calculations based on these transactions. The tablets show that the
ancient Sumerians were familiar with all kinds of legal and domestic contracts,
like bills, receipts, promissory notes, accounts, both simple and compound
interest, mortgages, deeds of sale, and guaranties. There are tablets that are
records of business firms, and others that deal with systems of weights and
measures.

Many arithmetic processes were carried out with the aid of various tables.
Of the 400 mathematical tablets, a good half contain mathematical tables. These
table tablets show multiplication tables, tables of reciprocals, tables of squares
and cubes, and even tables of exponentials. These latter tables were probably
used, along with interpolation, for problems on compound interest. The recip-
rocal tables were used to reduce division to multiplication.

The calendar used by the Babylonians was established ages earlier, as
evidenced by the facts that their year started with the vernal equinox and that
the first month was named after Taurus. Because the sun was in Taurus at this
equinox around 4700 B.C., it seems safe to say that the Babylonians had some
kind of arithmetic as far back as the fourth or fifth millennium B.C.

For examples concerning Babylonian table construction and Babylonian
use of tables in business transactions, see Problem Studies 2.1 and 2.2.

2—-4 Geometry

Babylonian geometry is intimately related to practical mensuration. From nu-
merous concrete examples, the Babylonians of 2000 to 1600 B.C. must have
been familiar with the general rules for the area of a rectangle, the areas of right
and isosceles triangles (and perhaps the general triangle), the area of a trape-
zoid having one side perpendicular to the parallel sides, the volume of a rectan-
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gular parallelepiped, and, more generally, the volume of a right prism with a
special trapezoidal base. The circumference of a circle was taken as three times
the diameter and the area as one-twelfth the square of the circumference (both
correct for = = 3), and the volume of a right circular cylinder was then obtained
by finding the product of the base and the altitude. The volume of a frustum of a
cone or of a square pyramid is incorrectly given as the product of the altitude
and half the sum of the bases. The Babylonians also knew that corresponding
sides of two similar right triangles are proportional, that the perpendicular
through the vertex of an isosceles triangle bisects the base, and that an angle
inscribed in a semicircle is a right angle. The Pythagorean theorem was also
known. (In this connection, see Section 2-6.) There is a recently discovered
tablet in which 3% is used as an estimate for 7 [see Problem Study 2.5(b)].
The chief feature of Babylonian geometry is its algebraic character. The
more intricate problems that are expressed in geometric terminology are essen-
tially nontrivial algebra problems. Typical examples may be found in Problem
Studies 2.3 and 2.4. There are many problems concerning a transversal paraliel
to a side of a right triangle that lead to quadratic equations; there are others that
lead to systems of simultaneous equations, one instance giving ten equations in
ten unknowns. There is a Yale tablet, possibly from 1600 B.C., in which a
general cubic equation arises in a discussion of volumes of frustrums of a
pyramid, as the result of eliminating z from a system of equations of the type

Ax2+ y?) = A, z=ay+ b, X =c.

We undoubtedly owe to the ancient Babylonians our present division of
the circumference of a circle into 360 equal parts. Several explanations have
been put forward to account for the choice of this number, but perhaps none is
more plausible than the following, advocated by Otto Neugebauer. In early
Sumerian times, there existed a large distance unit, a sort of Babylonian mile,
equal to about seven of our miles. Since the Babylonian mile was used for
measuring longer distances, it was natural that it should also become a time
unit—namely, the time required to travel a Babylonian mile. Later, sometime
in the first millennium B.C., when Babylonian astronomy reached the stage in
which systematic records of celestial phenomena were kept, the Babylonian
time-mile was adopted for measuring spans of time. Since a complete day was
found to be equal to twelve time-miles, and one complete day is equivalent to
one revolution of the sky, a complete circuit was divided into twelve equal
parts. For convenience, however, the Babylonian mile was subdivided into
thirty equal parts; thus, we arrive at (12)(30) = 360 equal parts in a complete
circuit.

2-5 Algebra

By 2000 B.C. Babylonian arithmetic had evolved into a well-developed rhetori-
cal, or prose, algebra. Not only were quadratic equations solved, both by the
equivalent of substituting in a general formula and by completing the square,
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but some cubic (third degree) and biquadratic (fourth degree) equations were
discussed. A tablet has been found giving a tabulation not only of the squares
and the cubes of the integers from 1 to 30, but also of the combination n® + n?
for this range. A number of problems are given that lead to cubics of the form
x3 + x2 = b. These can be solved by using the n3 + n? table. Problem Study 2.4
concerns itself with possible uses of this particular table.

There are some Yale tablets of about 1600 B.C. listing hundreds of un-
solved problems involving simultaneous equations that lead to biquadratic
equations for solution. As an example, we have

xy = 600, 150(x — y) — (x + y)? = —1000.

As another illustration from the same tablets, we have a pair of equations of the
form

Xy = a, bx¥y + cy¥lx +d =0,
that lead to an equation of the sixth degree in x, but that is quadratic in x3.
Neugebauer has found two interesting series problems on a Louvre tablet
of about 300 B.C. One of them states that
1+2+22+...+22=22+2°—-1,

and the other one that

12+22+32+...+102=[1(%)+10(§):|55=385.

One wonders if the Babylonians were familiar with the formulas

rn+l -1

5=

and

™M

i
i1 6

E":i2=2n+1 = ,=n(n+1)(2n+l).
The first of these was known to contemporary Greeks, and Archimedes found
practically the equivalent of the second.
The Babylonians gave some interesting approximations to the square roots
of nonsquare numbers, like 17/12 for V2 and 17/24 for 1/V2. Perhaps the
Babylonians used the approximation formula

@2+ "2 = q + h/2a.
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A very remarkable approximation for V2 is
1 + 24/60 + 51/60%* + 10/60° = 1.4142155,

found on the Yale table tablet 7289 of about 1600 B.C. (see Problem Study 2.7).

There are astronomical tablets of the third century B.C. that make explicit
use of the law of signs in multiplication.

In summary, we conclude that the ancient Babylonians were indefatigable
table makers, computers of high skill, and definitely stronger in algebra than
geometry. One is certainly struck by the depth and the diversity of the prob-
lems that they considered.

2—6 Plimpton 322

Perhaps the most remarkable of the Babylonian mathematical tablets yet ana-
lyzed is that known as Plimpton 322, meaning that it is the item with catalogue
number 322 in the G. A. Plimpton collection at Columbia University. The tablet
is written in Old Babylonian script, which dates it somewhere from 1900 to 1600
B.C., and it was first described by Neugebauer and Sachs in 1945.3

Figure 4 gives an idea of the shape of the tablet. Unfortunately, a missing
piece has been broken from the entire left edge, and the tablet is further marred
by a deep chip near the middle of the right edge and a flaked area in the top left
corner. Upon examination, crystals of modern glue were found along the left
broken edge of the tablet. This suggests that the tablet was probably complete
when excavated, that it subsequently broke, that an attempt was made to glue
the pieces back together, and that later the pieces again separated. Thus, the
missing piece of the tablet may still be in existence but, like a needle in a
haystack, lost somewhere among the collections of these ancient tablets. We
shall shortly see that it would prove very interesting if this missing piece were
to be found.

The tablet contains three essentially complete columns of figures that, for
convenience, are reproduced on Figure 4 in our own decimal notation. There is
a fourth and partly incomplete column of figures along the broken edge. We
shall later reconstruct this column.

It is clear that the column on the extreme right merely serves to number
the lines. The next two columns seem, at first glance, to be rather haphazard.
With study, however, one discovers that corresponding numbers in these
columns, with four unfortunate exceptions, constitute the hypotenuse and a leg
of integral-sided right triangles. The four exceptions are noted in Figure 4 by
placing the original readings in parentheses to the right of the corrected read-
ings. The exception in the second line has received an involved explanation,*

3 A detailed study of the tablet has more recently been done by Joéran Friberg. See ‘‘Methods
and traditions of Babylonian mathematics,’’ Historia Mathematica 8, no. 3 (August 1981): 277-
318.

4 See R. J. Gillings, The Australian Journal of Science, 16 (1953): 34-36, or Otto Neugebauer,
The Exact Sciences in Antiquity, 2d ed., 1962.
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but the other three exceptions can easily be accounted for. Thus, in the ninth
line, 481 and 541 appear as (8,1) and (9,1) in the sexagesimal system. Clearly
the occurrence of 9 instead of 8 could be a mere slip of the stylus when writing
these numbers in cuneiform script. The number in line 13 is the square of the
corrected value, and the number in the last line is half of the corrected value.

A set of three positive integers, like (3,4,5), which can be the sides of a
right triangle, is known as a Pythagorean triple. Again, if the triple contains no

Plimpton 322.
(Columbia University.)
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common integral factor other than unity, it is known as a primitive Pythagorean
triple. Thus, (3,4,5) is a primitive triple, whereas (6,8,10) is not. One of the
mathematical achievements over a millenium after the date of the Plimpton
tablet was to show that all primitive Pythagorean triples (a,b,c) are given
parametrically by

a = 2uv, b = u? — 1?2, c=u’+ v?,

where u and v are relatively prime, of different parity, and 4 > v; thus, if u = 2
and v = 1, we obtain the primitive triple a = 4, b = 3, ¢ = 5.

Suppose we compute the other leg a of the integral-sided right triangles
determined by the given hypotenuse ¢ and leg b on the Plimpton tablet. We find
the following Pythagorean triples:

a b c u v
120 119 169 12 5
3456 3367 4825 64 27
4800 4601 6649 75 32
13500 12709 18541 125 54
72 65 97 9 4
360 319 481 20 9
2700 2291 3541 54 25
960 799 1249 32 15
600 481 769 25 12
6480 4961 8161 81 40
60 45 75 2 1
2400 1679 2929 48 25
240 161 289 15 8
2700 1771 3229 50 27
) 56 106 9 5

One may notice that all of these triples, except the ones in lines 11 and 15, are
primitive triples. For discussion, we have also listed the values of the parame-
ters u and v leading to these Pythagorean triples. The evidence seems good that
the Babylonians of this remote period were acquainted with the general para-
metric representation of primitive Pythagorean triples as given above. This
evidence is strengthened when we notice that 4 and v, and hence a (since a =
2uv), are regular sexagesimal numbers (see Problem Study 2.1). It appears that
the table on the tablet was constructed by deliberately choosing small regular
numbers for the parameters « and v.

This choice of ¥ and v must have been motivated by some subsequent
process involving division, because regular numbers appear in tables of recip-
rocals and are used to reduce division to multiplication. An examination of the
fourth, and partially destroyed, column gives the answer, for this column is
found to contain the values of (c/a)? for the different triangles. To carry out the
division, the side a and, hence, the numbers « and v, had to be regular.



2-7 / Sources and Dates 47

It is worth examining the column of values for (c/a)? a little more closely.
This column, of course, is a table giving the square of the secant of the angle B
opposite side b of the right triangle. Because side a is regular, secant B has a
finite sexagesimal expansion. Moreover, it turns out, with the particular choice
of triangles as given, that the values of secant B form a surprisingly regular
sequence that decreases by almost exactly 1/60 as we pass from one line of the
table to the next, and the corresponding angle decreases from 45° to 31°. We
thus have a secant table for angles from 45° to 31°, formed by means of integral-
sided right triangles, in which there is a regular jump in the function, rather than
in the corresponding angle. All this is truly remarkable. It seems highly proba-
ble that there were companion tables giving similar information for angles
ranging from 30° to 16° and from 15° to 1°.

The analysis of Plimpton 322 shows the careful examination to which some
of the Babylonian mathematical tablets must be subjected. Formerly, such a
tablet might have been summarily dismissed as being merely a business list or
record.

EGYPT
2-7 Sources and Dates

Ancient Babylonia and ancient Egypt differ considerably in their political histo-
ries. The former was open to invasion by neighboring peoples, with the result
that there were periods of much turmoil when one empire succeeded another.
Ancient Egypt, on the other hand, remained secluded and naturally protected
from foreign invasion and was governed more peacefully and uninterruptedly
by a succession of dynasties. Both societies were essentially theocracies that
were ruled by rich and powerful bureaucrats hand-in-glove with the temple
priests. Most of the manual labor was done by a large slave class, established in
Babylonia mainly by the overthrowing of a present empire by a conquering
invading one, and in Egypt by deliberate military importation from foreign
lands. It was principally this slave class that dug and maintained the irrigation
systems and built the ziggurats in Babylonia and erected the great temples and
pyramids in Egypt. Basic surveying and engineering practices, with their con-
comitant mathematics, were created to assist in the design and construction of
these works.

Contrary to popular opinion, the mathematics of ancient Egypt never
reached the level attained by Babylonian mathematics. This may have been due
to the more advanced economic development of Babylonia. Babylonia was
located on a number of great caravan routes, whereas Egypt stood in semi-
isolation. Also, the relatively peaceful Nile did not demand such extensive
engineering and administrative efforts as did the more erratic Tigris and
Euphrates.

Nevertheless, until the recent deciphering of so many Babylonian mathe-
matical tablets, Egypt was long the richest field for ancient historical research.
The reasons for this lie in the veneration that the Egyptians had for their dead
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and in the unusually dry climate of the region. The former led to the erection of
long-lasting tombs and temples with richly inscribed walls, and the latter pre-
served many papyri and objects that would otherwise have perished.

Following is a chronological list of some of the tangible items bearing on
the mathematics of ancient Egypt. In addition to these items, there are numer-
ous wall inscriptions and minor papyri that contribute to our knowledge.
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Sketches of some ancient Egyptian instruments

A. Oldest extant astronomical instrument (plumb line and sight rod) (in the Berlin
Museum). With the aid of the plumb line, an observer could hold the rod vertically over a
given point and sight through the slit to some object, such as the North Star.

B. A level (exhibited in the Museum at Cairo).

C. Oldest extant sundial (in the Berlin Museum). In the morning the crosspiece would be
turned to the east and in the aftermoon to the west.

1. 3100 B.C. In a museum at Oxford is a royal Egyptian mace dating from
this time. On the mace are several numbers in the millions and hundred thou-
sands, written in Egyptian hieroglyphics, recording exaggerated results of a
successful military campaign.

2. 2600 B.C. The Great Pyramid at Gizeh was erected about 2600 B.C. and
undoubtedly involved some mathematical and engineering problems. The
structure covers thirteen acres and contains over 2,000,000 stone blocks, aver-
aging 2.5 tons in weight, very carefully fitted together. These stone blocks were
brought from sandstone quarries located on the other side of the Nile. Some
chamber roofs are made of fifty-four-ton granite blocks, twenty-seven feet long
and four feet thick, hauled from a quarry 600 miles away and set 200 feet above
ground. It is reported that the sides of the square base involve a relative error of
less than 1/14,000, and that the relative error in the right angles at the corners
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does not exceed 1/27,000. The engineering skill implied by these impressive
statistics is considerably diminished when we realize that the task was accom-
plished by an army of 100,000 laborers working for a period of thirty years.

The Great Pyramid is the largest of three pyramids sitting on the desert at
Gizeh, a little south of the site of present-day Cairo. These huge structures
were built as royal tombs. The Egyptians believed in an afterlife that depended
upon the preservation of the deceased body. Embalming was accordingly de-
veloped, and valuables and objects of daily life were placed in the tombs for use
in the afterlife.

The Great Pyramid (originally some 481 feet high) was built to house the
body of Pharaoh Khufu (Cheops). The other two lesser pyramids at Gizeh were
constructed as tombs for Khafre (Chephren) and Menkaure (Mycerinus), the
two pharaohs who immediately succeeded Khufu. There are about eighty
Egyptian pyramids still standing. The Great Pyramid became known as one of
the Seven Wonders of the Ancient World.*

3. 1850 B.C. This is the approximate date of the Golenischev, or Moscow,
papyrus, a mathematical text containing twenty-five problems that were al-
ready old when the manuscript was compiled. The papyrus, which was pur-
chased in Egypt in 1893 by the Russian collector Golenischev, now reposes in
the Moscow Museum of Fine Arts. It was published with editorial comment in
1930. It is about eighteen feet long and about three inches high. For a sample of
problems from the papyrus, see Problem Studies 2.14 and 2.15. The problem
discussed in Problem Study 2.14 is particularly remarkable.

4. 1850 B.C. The oldest extant astronomical instrument, a combination
plumb line and sight rod, dates from this time and is preserved in the Berlin
Museum.

5. 1650 B.C. This is the approximate date of the Rhind (or Ahmes) papy-
rus, a mathematical text in the form of a practical handbook, which contains
eighty-five problems copied in hieratic writing by the scribe Ahmes from an
earlier work. The papyrus was purchased in 1858 in Egypt by the Scottish
Egyptologist A. Henry Rhind and then later acquired by the British Museum.
This and the Moscow papyrus are our chief sources of information concerning
ancient Egyptian mathematics. The Rhind papyrus was published in 1927. It is
about eighteen feet long and about thirteen inches high. When the papyrus
arrived at the British Museum, however, it was shorter and in two pieces, with
a central portion missing. About four years after Rhind purchased his papyrus,
the American Egyptologist Edwin Smith (d. 1906) bought in Egypt what he
thought was a medical papyrus. The Smith purchase was given to the New
York Historical Society in 1932, where antiquarians discovered that it was a
pasted-up deception, and that beneath the fraudulent covering lay the missing

4 The Seven Wonders of the Ancient World are as follows: (1) The Great Pyramid of Egypt, (2)
the Hanging Gardens of Babylon, (3) the Statue of Zeus at Olympia, (4) the Temple of Diana at
Ephesus, (5) the Mausoleum at Halicarnassus, (6) the Colossus of Rhodes, and (7) the Pharos
Lighthouse at Alexandria. Of the Seven Wonders, only the Great Pyramid is still standing.
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piece of the Ahmes papyrus. The Society accordingly gave the scroll to the
British Museum, thus completing the entire Ahmes work.

The Rhind papyrus is a rich primary source of ancient Egyptian mathemat-
ics, describing the Egyptian methods of multiplying and dividing, the Egyptian
use of unit fractions, their employment of false position, their solution of the
problem of finding the area of a circle, and many applications of mathematics to
practical problems. The reader will find much of this material in the succeeding
sections of the chapter and in Problem Studies 2.9, 2.11, 2.12, and 2.13.

6.1500 B.C. The largest existing obelisk, erected before the Temple of the
Sun at Thebes, was quarried about this time. It is 105 feet long with a square
base 10 feet to the side and weighs about 430 tons.
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The Rosetta Stone (196 b.c.).
(Courtesy of the Trustees of the British Museum.)
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7. 1500 B.C. The Berlin Museum possesses an Egyptian sundial dating
from this period. It is the oldest sundial extant.

8. 1350 B.C. The Rollin papyrus of about 1350 B.C., now preserved in the
Louvre, contains some elaborate bread accounts showing the practical use of
large numbers at the time.

9. 1167 B.C. This is the date of the Harris papyrus, a document prepared
by Rameses IV when he ascended the throne. It sets forth the great works of
his father, Rameses II1. The listing of the temple wealth of the time furnishes
the best example of practical accounts that has come to us from ancient Egypt.

Among other great structures of ancient Egypt that involved some engi-
neering prowess are the Colossi of Rameses II at Abu Simbel, the Great Sphinx
standing near the Great Pyramid at Gizeh, and the Temple of Amon-Re at
Karnak. Rameses 1l completed the Great Hall of the temple in the 1200s B.C.;
with columns seventy-eight feet tall, it was the largest columned hall ever built
by man.

Ancient Egyptian sources more recent than those just listed show no ap-
preciable gain in either mathematical knowledge or mathematical technique. In
fact, there are instances showing definite regression.

Ability to read Egyptian hieroglyphic and demotic characters resulted
from the successful decipherment by Jean Francgois Champollion (1790-1832)
of inscriptions on the Rosetta Stone, a polished basaltic slab that was found in
1799, during Napoleon’s fateful Egyptian campaign, by French engineers while
they were digging foundations for a fort near the Rosetta branch in the delta of
the Nile. The stone measures three feet and seven inches by two feet and six
inches, and the inscriptions on it give a common message repeated in Egyptian
hieroglyphic, Egyptian demotic, and Greek. Since scholars were able to read
the Greek, the stone furnished a clue to the decipherment of ancient Egyptian
writing. The stone was engraved in 196 B.C., and as part of the treaty of
capitulation when the French surrendered to the British, it went to England,
where it now rests in the British Museum.

2-8 Arithmetic and Algebra

All of the 110 problems found in the Moscow and Rhind papyri are numerical,
and many of them are very simple. Although most of the problems have a
practical origin, there are some of a theoretical nature.

One consequence of the Egyptian numeral system is the additive character
of the dependent arithmetic. Thus, multiplication and division were usually
performed by a succession of doubling operations, based on the fact that any
number can be represented as a sum of powers of 2. As an example of multipli-
cation, let us find the product of 26 and 33. Since 26 = 16 + 8 + 2, we have
merely to add these multiples of 33. The work may be arranged as follows:

1 33
*2 66
4 132
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* 8 264
"6 528
858

Addition of the proper multiples of 33, that is, those indicated by an asterisk,
gives the answer 858. Again, to divide 753 by 26, we successively double the
divisor 26 up to the point where the next doubling would exceed the dividend
753. The procedure is shown below.

1 26

2 2

*4 104

*8 208

*16 416
28

Now, since

753 = 416 + 337
= 416 + 208 + 129
= 416 + 208 + 104 + 25,

we see, noting the starred items in the column above, that the quotient is 16 + 8
+ 4 = 28, with a remainder of 25. This Egyptian process of multiplication and
division not only eliminates the necessity of learning a multiplication table, but
is so convenient on the abacus that it persisted as long as that instrument was in
use, and even for some time beyond.

The Egyptians endeavored to avoid some of the computational difficulties
encountered with fractions by representing all fractions, except %, as the sum of
so-called unit fractions, or fractions with unit numerators. This reduction was
made possible by tables so representing fractions of the form 2/n, the only case
necessary because of the dyadic nature of Egyptian multiplication. The prob-
lems of the Rhind papyrus are preceded by such a table for all odd »n from 5 to
101. Thus, we find % expressed as } + s; & as g5 + b5 + 745; and &5 as ¢ + is.
Only one decomposition is offered for any particular case. The table is utilized
in some of the problems of the papyrus.

Unit fractions were denoted in Egyptian hieroglyphics by placing an ellipti-
cal symbol above the denominator number. A special symbol was also used for
the exceptional %, and another symbol sometimes appeared for i. These sym-
bols are shown below.

=% =4
or/_ =14,

<
q =3
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A portion of the Rhind papyrus.
(British Museum.)

There are interesting theories to explain how the Egyptians obtained their unit
fraction decompositions (see Problem Study 2.9).

Many of the 110 problems in the Rhind and Moscow papyri show their
practical origin by dealing with questions regarding the strength of bread and of
beer, with feed mixtures for cattle and domestic fowl, and with the storage of
grain. Many of these require nothing more than a simple linear equation and are
generally solved by the method later known in Europe as the rule of false
position. Thus, to solve

X+ xll =24

assume any convenient value for x, say x = 7. Then x 4-xIl = 8, instead of 24.
Since 8 must be multiplied by 3 to give the required 24, the correct x must be
3(7), or 21.

There are some theoretical problems involving arithmetic and geometric
progressions. (See, for example, Problem Study 2.12(c) and Section 2-10.) A
papyrus of about 1950 B.C., found at Kahun, contains the following problem:
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*“A given surface of one hundred units of area shall be represented as the sum
of two squares whose sides are to each other as 1:3/4.”” Here we have x? + y?
= 100 and x = 3y/4. Elimination of x yields a pure quadratic in y. We may,
however, solve the problem by false position. Thus, take y = 4. Then x = 3, and
x? 4+ y2 =25, instead of 100. We must therefore correct x and y by doubling the
initial values, obtaining x = 6, y = 8.

There is some symbolism in Egyptian algebra. In the Rhind papyrus, we
find symbols for plus and minus. The first of these symbols represents a pair of
legs walking from left to right and the other a pair of legs walking from right to
left. Symbols, or ideograms, were also employed for equals and for the un-
known.

2-9 Geometry

Twenty-six of the 110 problems in the Moscow and Rhind papyri are geometric.
Most of these problems stem from mensuration formulas needed for computing
land areas and granary volumes. The area of a circle is taken as equal to that of
the square on § of the diameter, and the volume of a right circular cylinder as
the product of the area of the base by the length of the altitude. Recent investi-
gations seem to show that the ancient Egyptians knew that the area of any
triangle is given by half the product of base and altitude. Some of the problems
concern themselves with the cotangent of the dihedral angle between the base
and a face of a pyramid (see Problem Study 2.11), and others show an acquaint-
ance with the elementary theory of proportion. Contradicting repeated and
apparently unfounded stories, no documentary evidence has been found show-
ing that the Egyptians were aware of even a particular case of the Pythagorean
theorem. In later Egyptian sources, the incorrect formula K = (a + ¢)(b + d)/4
is used for finding the area of an arbitrary quadrilateral with successive sides of
lengths a, b, c, d.

The existence, in the Moscow papyrus, of a numerical example of the
correct formula for the volume of a frustum of a square pyramid is quite
remarkable (see Problem Study 2.14(a)). No other unquestionably genuine ex-
ample of this formula has been found in ancient Oriental mathematics, and
several conjectures have been formulated to explain how it might have been
discovered. E. T. Bell aptly refers to this early Egyptian example as the *‘great-
est Egyptian pyramid.’’

2-10 A Curious Problem in the Rhind Papyrus

Although little difficulty was encountered in deciphering and then in interpret-
ing most of the problems in the Rhind papyrus, there is one problem (Problem
Number 79) for which the interpretation is not so certain. In it occurs the
following curious set of data, here transcribed:
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Estate
Houses 7
Cats 49
Mice 343
Heads of wheat 2401
Hekat measures 16807

19607

One easily recognizes the numbers as the first five powers of 7, along with
their sum. Because of this, it was at first thought that perhaps the writer was
here introducing the symbolic terminology houses, cats, and so on, for first
power, second power, and so on.

A more plausible and interesting explanation, however, was given by the
historian Moritz Cantor in 1907. He saw in this problem an ancient forerunner
of a problem that was popular in the Middle Ages, and that was given by
Leonardo Fibonacci in 1202 in his Liber abaci. Among the many problems
occurring in this work is the following: ‘“There are seven old women on the
road to Rome. Each woman has seven mules; each mule carries seven sacks;
each sack contains seven loaves; with each loaf are seven knives; and each
knife is in seven sheaths. Women, mules, sacks, loaves, knives, and sheaths,
how many are there in all on the road to Rome?’’ As a later and more familiar
version of the same problem, we have the old English children’s rhyme:

As I was going to St. Ives

I met a man with seven wives;
Every wife had seven sacks;
Every sack had seven cats;

Every cat had seven Kkits.

Kits, cats, sacks, and wives,

How many were going to St. Ives?

According to Cantor’s interpretation, the original problem in the Rhind papyrus
might then be formulated somewhat as follows: ‘‘An estate consisted of seven
houses; each house had seven cats; each cat ate seven mice; each mouse ate
seven heads of wheat; and each head of wheat was capable of yielding seven
hekat measures of grain. Houses, cats, mice, heads of wheat, and hekat mea-
sures of grain, how many of these in all were in the estate?”’

Here, then, may be a problem that has been preserved as part of the puzzle
lore of the world. It was apparently already old when Ahmes copied it, and
older by close to 3000 years when Fibonacci incorporated a version of it in his
Liber abaci. More than 750 years later, we are reading another variant of it to
our children. One cannot help wondering if a surprise twist such as occurs in
the old English rhyme also occurred in the ancient Egyptian problem.

There are many puzzle problems popping up every now and then in our
present-day magazines that have medieval counterparts. How much further
back some of them go is now almost impossible to determine.®

6 See D. E. Smith, ¢‘On the origin of certain typical problems,”” The American Mathematical
Monthly 24 (February 1917): 64-71.
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Problem Studies

2.1 Regular Numbers

A number is said to be (sexagesimally) regular if its reciprocal has a finite
sexagesimal expansion (that is, a finite expansion when expressed as a radix
fraction for base 60). With the exception of a single tablet in the Yale collection,
all Babylonian tables of reciprocals contain only reciprocals of regular num-
bers. A Louvre tablet of about 300 B.C. contains a regular number of 7 sexages-
imal places and its reciprocal of 17 sexagesimal places.
(a) Show that a necessary and sufficient condition for n to be regular is that
n = 293b5¢ where a, b, ¢ are nonnegative integers.
(b) Express, by finite sexagesimal expansions, the numbers %, 3, 3, i, séo,
1
3600
(c) Generalize (a) to numbers having general base b.
(d) List all the sexagesimally regular numbers less than 100, and then list
all the decimally regular numbers less than 100.
(e) Show that the decimal representation of  has six-place periodicity.
How many places are there in the periodicity of the sexagesimal repre-
sentation of ?

2.2 Compound Interest

There are tablets in the Berlin, Yale, and Louvre collections containing prob-
lems in compound interest, and there are some Istanbul tablets that appear
originally to have had tables of a" for n = 1 to 10 and a = 9, 16, 100, and 225.
With such tables, one can solve exponential equations of the type a* = b.

(a) On a Louvre tablet of about 1700 B.C. occurs the problem: Find how
long it will take for a certain sum of money to double itself at compound
annual interest of 20 percent. Solve this problem by modern methods.

(b) Solve the problem of (a) by first finding (1.2)? and (1.2)* and then, by
linear interpolation, x such that (1.2)* = 2. Show that the result so
obtained agrees with the Babylonian solution 3;47,13,20 (expressed
sexagesimally) of this problem.”

2.3 Quadratic Equations

(a) A Babylonian problem asks for the side of a square if the area of the
square diminished by the side of the square is the (sexagesimal) number
14,30. The solution of the problem is described as follows: ‘“Take half
of 1, which is 0;30; multiply 0;30 by 0;30, which is 0;15; add the 0;15 to
14,30 to obtain 14,30;15. This last is the square of 29;30. Now add 0;30
to 29;30; the result is 30, which is the side of the square.’” Show that
this Babylonian solution is exactly equivalent to solving the quadratic

7 As an illustration, the expression 9,20,8;30,10,23 means 9(60)2 + 20(60) + 8 + 30/60 +
10/(60)2 + 23/(60)°.
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equation
x*—px=gq
by substituting in the formula
x = V(pR2P + q + pl2.
(b) Another Babylonian text solves the quadratic equation
11x? + 7x = 6;15
by first multiplying through by 11 to obtain
(11x)% + 7(11)x = 1,8;45,
which, by setting y = 11x, has the ‘‘normal form”’
y2+py = q.
This is solved by substituting in the formula
y = V(p2F + q - pi2.

Finally, x = y/11.
Show that any quadratic equation ax? + bx + ¢ = 0 can, by a
similar transformation, be reduced to one of the normal forms

yr+py=gq, y'=py+gq, ¥y +gq=py,

where p and g are both nonnegative. The solution of such three-term
quadratic equations seems to have been beyond the capabilities of the
ancient Egyptians.

2.4 Algebraic Geometry

(a) The algebraic character of Babylonian geometry problems is illustrated
by the following, found on a Strassburg tablet of about 1800 B.C. ‘“‘An
area A, consisting of the sum of two squares is 1000. The side of one
square is 10 less than % of the side of the other square. What are the
sides of the squares?’’ Solve this problem.

(b) On a Louvre tablet of about 300 B.C. are four problems concerning
rectangles of unit area and given semiperimeter. Let the sides and
semiperimeter be x, y, and a. Then we have

xy =1, x+y=a.

Solve this system by eliminating y and thus obtaining a quadratic in x.
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(c) Solve the system of (b) by using the identity

2 2
(5 - (5 -
This is essentially the method used on the Louvre tablet. It is interest-
ing that the identity appeared contemporaneously as Proposition 5 of
Book 11 of Euclid’s Elements.

(d) An Old Babylonian problem reads: ‘‘One leg of a right triangle is 50. A
line parallel to the other leg and at distance 20 from that leg cuts off a
right trapezoid of area 5,20. Find the lengths of the bases of the trape-
zoid.”” Solve this problem.

(e) Another Old Babylonian problem claims that an isosceles trapezoid
with bases 14 and 50 and with sides 30 has area 12,48. Verify this.
(f) Still another Old Babylonian problem concerns a ladder of length ;30
standing upright against a wall. The problem asks how far the lower
end of the ladder will move out from the wall if the upper end slides

down the wall a distance of 0;6. Solve this problem.

(g) A Seleucid tablet of 1500 years later proposes a problem similar to that
of (f). Here a reed is given standing upright against a wall. The problem
asks for the length of the reed if the top end of the reed slides down the
wall 3 units when the lower end of the reed moves 9 units away from
the wall. The answer is given as 15 units. Is this correct?

2.5 The Susa Tablets

(a) In 1936 a group of Old Babylonian tablets was lifted at Susa, about 200
miles from Babylon. One of the tablets compares the areas and the
squares of the sides of regular polygons of 3, 4, 5, 6, and 7 sides. For
the pentagon, hexagon, and heptagon, these ratios are given as 1;40,
2;37,30, and 3;41. Check these values for accuracy.

(b) On the same tablet considered in (a), the ratio of the perimeter of a
regular hexagon to the circumference of the circumscribed circle is
given as 0;57,36. Show that this leads to 3;7,30 or 3} as an approxima-
tion of =.

(c) On one of the Susa tablets appears the problem: ‘‘Find the circumra-
dius of a triangle whose sides are 50, 50, and 60.”” Solve this problem.

(d) Another Susa tablet requests the sides x and y of a rectangle, given

xy = 20,0 and x3d = 14,48,53,20,

where d is a diagonal of the rectangle. Solve this problem.
2.6 Cubics

(a) A Babylonian tablet has been discovered that gives the values of n3 +
n? for n = 1 to 30. Make such a table for n = 1 to 10.

(b) Find, by means of the above table, a root of the cubic equation x3 +
2x? — 3136 = 0.
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(c) A Babylonian problem of about 1800 B.C. seems to call for the solution
of the simultaneous system xyz + xy = 7/6, y = 2x/3, z = 12x. Solve
this system using the table of (a).

(d) Otto Neugebauer believes that the Babylonians were quite capable of
reducing the general cubic equation to the ‘‘normal form*’ n?® + n? = ¢,
although there is as yet no evidence that they actually did do this. Show
how such a reduction might be made.

(e) In connection with the table of (a), Neugebauer has noted that the

n

Babylonians may well have observed the relation 2 i’ = (2 i) for
i=1 i=1

various values of n. Establish this relation by mathematical induction.

2.7 Square Root Approximations

It is known that the infinite series obtained by expanding (a? + h)'? by the
binomial theorem process converges to (a2 + h)\2 if —a? < h < a’.
(a) Establish the approximation formula

(a2+h)"2za+fhg, 0 < |h| < a?.

(b) Take a = % and 4 = % in the approximation formula of (a), and thus find
a Babylonian rational approximation for V2. Find a rational approxi-
mation for V5 by takinga = 2, h = 1.

(c) Establish the better approximation formula

h R
2 12 ~ -
(@*+ h) a+ 52 3a3

0 < |h| < a?,
and approximate V2 and V'S by using the same values for a and 4 as in
(b).

(d) Take a = 4 and & = —1 in the formula of (a) and find the ancient
Babylonian approximation 1 for V2.

(e) Take a = {f and & = —xiz in the formula of (a) and find the value
1;24,51,10 for V2 as given on the Yale table tablet 7289.

2.8 Duplation and Mediation

The Egyptian process of multiplication later developed into a slightly improved
method known as duplation and mediation, the purpose of which was me-
chanically to pick out the required multiples of one of the factors that have to
be added in order to give the required product. Taking the example in the text,
suppose we wish to multiply 26 by 33. We may successively halve the 26 and
double the 33, thus

26 33
13 66*
6 132
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3 264*
1 o8
858

In the doubling column, we now add those multiples of 33 corresponding to the
odd numbers in the halving column. Thus, we add 66, 264, and 528 to obtain the
required product 858. The process of duplation and mediation is utilized by
high-speed electronic computing machines.
(a) Multiply 424 by 137 using duplation and mediation.
(b) Prove that the duplation and mediation method of multiplication gives
correct results.
(c) Find, by the Egyptian method, the quotient and remainder when 1043 is
divided by 28.

2.9 Unit Fractions

(a) Show that z/pq = l/pr + 1/qr, where r = (p + q)/z. This method for
finding possible decompositions of a fraction into 2 unit fractions is
indicated on a papyrus written in Greek probably sometime between
A.D. 500 and 800, and found at Akhmim, a city on the Nile River.

(b) Take z = 2, p = 1, ¢ = 7, and obtain the unit fraction decomposition of
2/7 as given in the Rhind papyrus.

(c) Represent 2/99 as the sum of two different unit fractions in 3 different
ways.

(d) By taking z = 1, p = 1, ¢ = n in the relation of (a), obtain the more
particular relation

In=1n+1+ 1/nn+1),

and show that when 7 is odd, this leads to a representation of 2/n as a
sum of 2 unit fractions. Many of the entries in the Rhind papyrus can be
obtained in this way.

(e) Show that if n is a multiple of 3, then 2/n can be broken into a sum of
two unit fractions of which one is 1/(2n).

(f) Show that if n is a multiple of 5, then 2/n can be broken into a sum of
two unit fractions of which one is 1/(3n).

(g) Show that for any positive integer n, 2/n can be expressed by the sum
1/n + 1/2n) + 1/(3n) + 1/(6n). (In the 2/n table of the Rhind papyrus,
only 137 is expressed by this decomposition.)

(h) Show that if a rational number can be represented as a sum of unit
fractions in one way, then it can be represented as a sum of unit
fractions in an infinite number of ways.

2.10 The Sylvester Process

The British mathematician J. J. Sylvester (1814-1897) provided the following
procedure for uniquely expressing any rational fraction between 0 and 1 as a
sum of unit fractions:
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1. Find the largest unit fraction (that is, the one with the smallest denomi-
nator) less than the given fraction.

Subtract this unit fraction from the given fraction.

Find the largest unit fraction less than the resulting difference.
Subtract again, and continue the process.

To find the largest unit fraction less than a given fraction, divide the
denominator of the given fraction by the numerator of the fraction and
take the next integer greater than the quotient as the denominator of the
unit fraction sought.

Yo

(a) Express # as a sum of unit fractions using the Sylvester process. Note
that the decomposition is the same as that given in the 2/n table of the
Rhind papyrus.

(b) Express & as a sum of unit fractions using the Sylvester process. Note
that the decomposition is different from that given in the 2/n table of
the Rhind papyrus.

(c) Establish the rule given in the fifth step of the Sylvester process.

2.11 The Seqt of a Pyramid

(a) The Egyptians measured the steepness of a face of a pyramid by the
ratio of the ‘‘run’’ to the ‘‘rise’’—that is, by giving the horizontal
departure of the oblique face from the vertical for each unit of height.
The vertical unit was taken as the cubit and the horizontal unit as the
hand; there were 7 hands in a cubit. Utilizing these units of measure-
ment, the measure of steepness was called the seqt of the pyramid.
Show that the seqt of a pyramid is 7 times the cotangent of the dihedral
angle formed by the base and a face of the pyramid.

(b) In Problem 56 of the Rhind papyrus, one is asked to find the seqt of a
pyramid 250 cubits high with a square base 360 cubits on a side. The
answer is given as 535 hands per cubit. Is this correct?

(c) The great pyramid of Cheops has a square base 440 cubits on a side and
a height of 280 cubits. What is the seqt of this pyramid?

(d) Problem 57 of the Rhind papyrus asks for the height of a square pyra-
mid with a seqt of 5§ hands and 1 finger per cubit and a base 140 cubits
on a side. Solve this problem, where there are S fingers in a hand.

2.12 Egyptian Algebra

The following problems are found in the Rhind papyrus.

(a) ““If you are asked, what is § of , take the double and the six-fold; that is
% of it. One must proceed likewise for any other fraction.’’ Interpret this
and prove the general statement.

(b) ‘A quantity, its §, its 1, and its 4, added together, become 33. What is
the quantity?”’ Solve this problem by the rule of false position.

() “Divide 100 loaves among 5 men in such a way that the shares received
shall be in arithmetic progression and that one-seventh of the sum of
the largest 3 shares shall be equal to the sum of the smallest two.”
Solve this problem using modern methods.
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2.13 Egyptian Geometry

(a) In the Rhind papyrus, the area of a circle is repeatedly taken as equal to
that of the square of § of the diameter. This leads to what value for 7?

(b) Form an octagon from a square of side 9 units by trisecting the sides of
the square and then cutting off the 4 triangular corners. The area of the
octagon looks, by eye, to differ very little from the area of the circle
inscribed in the square. Show that the area of the octagon is 63 square
units, whence the area of the circle cannot be far from that of a square
of 8 units on a side. There is evidence in Problem 48 of the Rhind
papyrus that the formula for the area of a circle as given in (a) may have
been arrived at in this way.

(c) Prove that of all triangles having a pair of given sides, the one in which
these sides form a right angle is the maximum.

(d) Denote the lengths of the sides AB, BC, CD, DA of a quadrilateral
ABCD by a, b, ¢, d, and let K represent the area of the quadrilateral.
Show that K = (ad + bc)/2, equality holding if and only if angles A and
C are right angles.

(e) For the hypothesis of (d) now show that K = (a + c)(b + d)/4, equality
holding if and only if ABCD is a rectangle. Thus, the Egyptian formula
for the area of a quadrilateral, cited in Section 2-9, gives too large an
answer for all nonrectangular quadrilaterals.

(f) An extant deed from Edfu, dating some 1500 years after the Rhind
papyrus, employs the inexact Egyptian formula for the area of a quadri-
lateral. From this formula, the author of the deed deduces, as a corol-
lary, that the area of a triangle is half the sum of two sides multiplied by
half the third side. Show how this corollary can be so deduced. Is the
corollary correct?

(g) It looks to the eye that the area of a circle may be exactly halfway
between those of an inscribed and a circumscribed square. Show that
this is equivalent to taking = = 3.

2.14 The Greatest Egyptian Pyramid

(a) In Problem 14 of the Moscow papyrus, we find the following numerical
example: “‘If you are told: A truncated pyramid of 6 for the vertical
height by 4 on the base by 2 on the top. You are to square this 4, result
16. You are to double 4, result 8. You are to square 2, result 4. You are
to add the 16, the 8, and the 4, result 28. You are to take one third of 6,
result 2. You are to take 28 twice, result 56. See, it is 56. You will find it
right.”” Show that this illustrates the general formula.

V = Mh(a? + ab + b?)

giving the volume of a frustum of a square pyramid in terms of the
height 4 and the sides a and b of the bases.

() If m and n are two positive numbers, m = n, then we define the
arithmetic mean, the heronian mean, and the geometric mean of m and
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ntobeA = (m + n)/2,R = (M + Vmn + w)/3, G = \fmn. Show that
A ™~ R ™ G, the equality signs holding if and only if m = n.

(c) Assuming the familiar formula for the volume of any pyramid (volume
equals one-third the product of base and altitude), show that the vol-
ume of a frustum of the pyramid is given by the product of the height of
the frustrum and the heronian mean of the bases of the frustum.

(d) Leta, b, and h denote the lengths of an edge of the lower base, an edge
of the upper base, and the altitude of a frustum J of a regular square
pyramid. Dissect T into: (1) A rectangular parallelepiped P of upper
base b2and altitude h. (2) 4 right triangular prisms A, B, C, and D each
of volume b{a —b)hl4, (3) 4 square pyramidsE, F, G, H each of volume
(a —b)2h!'12. Now obtain the formula of (a) for the volume of T.

(e) Consider the dissected frustum of (d). Horizontally slice P into 3 equal
parts, each of altitude hi3, and designate one of these slices by J.
Combine A, B, C, D into a rectangular parallelepiped Q of base b(a - b)
and altitude h, and horizontally slice Q into three equal parts, each of
altitude hi3. Replace E, F, G, H by a rectangular parallelepiped R of
base (la —b)2and altitude hi3. Combine one slice of P with one slice of
Q to form a rectangular parallelepiped K of base ab and altitude hi3.
Combine one slice of P, two slices of Q, and R to form a rectangular
parallelepiped L of base a2and altitude h!3. The volume of T is then

Problem 14 of the Moscow papyrus, with hieroglyphic transcription of the
hieratic text.
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equal to the sum of the volumes of the three rectangular parallelepipeds
J, K, L. Using this fact, find the formula of (a) for the volume of T. It
has been suggested that the Egyptian formula of (a) may have been
obtained in this fashion. The procedure assumes familiarity with the
formula for the volume of a (regular square) pyramid.

2.15 Some Problems from the Moscow Papyrus

Solve the following two problems found in the Moscow papyrus:
(a) The area of a rectangle is 12 and the width is § the length. What are the
dimensions?
(b) One leg of a right triangle is 2} times the other and the area is 20. What
are the dimensions?

2.16 The 3,4,5 Triangle

There are reports that ancient Egyptian surveyors in the time of the pharaohs
laid out right angles by constructing 3, 4, 5 triangles with a rope divided into 12
equal parts by 11 knots. Since there is no documentary evidence to the effect
that these Egyptians were aware of even a particular case of the Pythagorean
theorem, the following purely academic problem arises:® Show, without using
the Pythagorean theorem, its converse, or any of its consequences, that the 3,
4, 5 triangle is a right triangle. Solve this problem by means of Figure 5, which
appears in the Chéu-pei, the oldest known Chinese mathematical work, which
may date back to the second millennium B.C.

FIGURE 5

2.17 The Cairo Mathematical Papyrus

The so-called Cairo Mathematical papyrus was unearthed in 1938 and exam-
ined in 1962. Dating from about 300 B.C., this papyrus contains forty mathe-
matical problems, nine of which deal exclusively with the Pythagorean theorem

8 See Victor Thébault, ‘A note on the Pythagorean theorem,”’ The Mathematics Teacher 43
(October 1950): 278.
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and show that the Egyptians of that time not only knew that the 3,4,5 triangle is

right angled, but that the 5,12,13 and 20,21,29 triangles were right angled as

well. Solve the following problems found in the Cairo Mathematical papyrus.

(a) A ladder of 10 cubits has its foot 6 cubits from a wall. To what height
does the ladder reach?

(b) A rectangle with an area of 60 square cubits has a diagonal of 13 cubits.
Find the sides of the rectangle.

(c) A rectangle with an area of 60 square cubits has a diagonal of 15 cubits.
Find the sides of the rectangle.
The scribe’s method for solving (b) and (c) is as follows: Denoting the
sides, diagonal, and area of a rectangle by x, y, d, and A, we have

x2+ y?=d? and xy =A,
which yield
x24+2xy +y?=d?+ 24, x2—-2xy+y*=d?- 24,
or
(x+yP=d*+24, (x—y)=d?-2A
In (b), d? + 2A and d? — 2A are perfect squares, and one readily finds values for

x + yand x — y, and so forth. In (c), d> + 2A and d? — 24 are not perfect
squares, and the scribe uses the approximation formula

Va®+ b=a+ bla,

arriving at
Vs =VIg +21 =18+ # =18+ 31+ &%
and
V105 =VI0?+5=10 + 7% = 10 + §.
Essay Topics

2/1 The ‘‘do-thus-and-so’’ procedure in teaching portions of elementary
mathematics today.

2/2 Inductive (or empirical) mathematics versus deductive (or demonstra-
tive) mathematics.

2/3  The pedagogical value of inductive mathematics.
2/4 The importance of inductive procedures in mathematical discovery.

2/5 The comparative influence in the rise of early geometry of an interest in
astronomy and a need for surveying.
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2/6 The importance of early religious ritual in the origin of geometry.
2/7 Grotefend, Rawlinson, and the Behistun Rock.

2/8 Napoleon, Champollion, and the Rosetta Stone.

2/9 The origin of certain typical problems.

2/10 Representation by unit fractions.

2/11 The Egyptian Mathematical Leather Roll.

2/12 The Babylonian tablet, Yale Babylonian Collection, 7289.

2/13 Pyramidology.
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Cultural Connection

THE PHILOSOPHERS
OF THE AGORA

Hellenic Greece—ca. 800-336 B.C.
(to accompany Chapters Three and Four)

#ms we have seen, an agricultural revolution beginning in approximately 3000
B.C. sparked a long period of intellectual and scientific progress. In agricultural
regions called “cradles of civilization” (the Middle East, China, and Egypt),
people built the first cities, sprawling irrigation projects, and towering monu-
ments like the pyramids, the Sphinx, and the Hanging Gardens of Babylon.
These same people invented writing, early mathematics, astrology, and metal-
lurgy. Complex systems of government, city-states and small empires, replaced
the tribe as the principal forms of political organization. Probably the most
impressive cultural achievements of the agricultural revolution took place in
Greece during its Hellenic Age (ca. 800-336 B.C.) and in China during its early
Classical period (ca. 600-221 B.C.). We will look at China in Cultural Connec-
tion V: The Asian Empires. In the following pages, we will explore the society
and culture of the ancient Greeks.

Without doubt, the greatest scientists of the ancient world lived in tiny
Greece, a collection of city-states perched atop ajumble of rocky islands and
peninsulas at the eastern end of the Mediterranean Sea, on the very edge of
Middle Eastern civilization. The agricultural revolution reached Greece from
Egypt and the Middle East about 2000 B.C., shortly after the founding of the
Babylonian Empire by the Amorites. Within 300 years, a mysterious, highly
advanced, literate culture had evolved on the Greek island of Crete. This
civilization, designated Minoan by historians, flourished between 1700 and 1200
B.C. The Greek mainland was populated by a less advanced, more warlike, but
also literate people, the Myceneans, who, according to legend, fought the
Trojan War. Between 1200 and 1150 B.C., these civilizations were destroyed
abruptly by barbaric invaders from Asia, the Dorians, a tribe of herders closely
related to the Aryans, whom we have met previously as the supplanters of the
Indus River civilization in India. The Dorians settled on the lands they con-
quered and adopted much of the farming culture of the previous inhabitants. By
800 B.C., written language, which was lost after the collapse of the Minoan and
Mycenean civilizations, was reintroduced by Phoenician merchants from the
Middle East. The period of Greek history that followed (from ca. 800-336
B.C.), termed the Hellenic Age by historians, was an era of breathtaking intel-
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lectual and scientific progress—one of the most remarkable epochs of human
achievement in history!

Hellenic Greece was a mosaic of city-states and small, scattered farms.
Not a broad plain cleaved by great, muddy rivers, like Egypt and Babylonia, it
was instead a country cut by steep mountain ranges and long, winding bays that
bit deep inland from the sea. Its valleys were narrow and clotted with large
stones, its rivers shallow, and its soil parched. Its city-states were separated
from each other by rugged, steep-cliffed mountains; the farms in the little
valleys were divided by rocky outcroppings and patches of infertile ground.
Due in part to their isolation and in part to the small size of their neighbors, the
small cities and farms of Hellenic Greece were somewhat protected against the
designs of aggrandizers. To be sure, the Greeks fought numerous wars, but
rarely was one city-state successful in annexing another. Some wealthy Greek
farmers did succeed in assembling large estates, but never on the scale found in
Egypt or Babylonia. In such a crucible, where wealth and power were dis-
persed, it was possible to create democratic republics; in the city of Athens,
overlooking the island-dotted Saronic Gulf, the Greeks did just that.

Although several dozen Greek city-states existed, some were more promi-
nent than others. Corinth and Argos, both seaports, were bustling commercial
centers. Miletus and Smyrna were central market towns on the shores of lonia,
in present-day Turkey. Rhodes, Delos, and Samos were fishing and trading
communities on islands. Delphi was home to the oracle of Apollo, the sun god.
Syracuse was the largest of the Greek colonies in Italy. Aristocratic Thebes
(not to be confused with the Thebes of Egypt) was an important agricultural
center. Olympia hosted the famous quadrennial Olympic Games. The most
important cities of Hellenic Greece, however, were commercial Athens and
militaristic Sparta.

Sparta was located inland, away from the sea, in the small, confined valley
of the Evrotas River, a place the Greeks called Laconia. At the beginning of the
eighth century B.C., Sparta faced a food shortage; its population had grown too
large and could no longer be supported by the meager crops produced by the
poor, stony soil of the Evrotas valley. Driven by hunger, Sparta, in two bloody
wars, invaded and conquered the neighboring, more populous city-state of
Messene, which was located in the next valley, on the other side of the Tafy-
etos Mountains. The Spartans enslaved the Messenians, called helots, and put
them to work in the fields growing food for the tables of their new overlords.
From time to time, the helots staged rebellions, but each revolt was brutally
suppressed. Outnumbered by its Messenian thralls, Spartans exerted control
by maintaining a large standing army and staging periodic raids on helot vil-
lages. Spartan boys were taken from their parents at an early age and placed
into military regiments, where they lived under a military discipline throughout
most of their lives. The Spartan army was feared throughout Greece for its
ferocity and fighting prowess, and Sparta was the preeminent Greek military
power. However, although the Spartans unquestionably stood foremost among
the Greeks as soldiers, the barracks proved infertile ground for scholarship,
and Spartan intellectual accomplishments were negligible.
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Although Sparta had the most powerful army in Hellenic Greece, the
commercial and cultural center of the Greek world was the city-state of Athens.
Located on a small, sere, rocky plain overlooking the sea, Athens, like Sparta,
admitted to only a meager agriculture, and, before 600 B.C., it too faced
chronic food shortages. The community was rocked by civil wars between rich
and poor. In 594 B.C., the small Athenian middle class (merchants, artisans,
and some farmers) engineered the election of the reform-minded Solon (639?-
599? B.C.) as archon, or leader. Solon outlawed slavery for debt (although
other forms of slavery persisted), granted citizenship to foreign craftspeople in
the hope that they would teach their skills to native Athenians, encouraged
farmers to abandon unprofitable wheat cultivation and grow olives and grapes
instead, and instituted a popular assembly, or legislature. Despite such re-
forms, democracy did not come easily in Athens, and several times over the
next century despots seized power in coups d'etat. In 510 B.C., after one such
coup, a new constitution was instituted. This constitution was even more dem-
ocratic than Solon’s and granted the right to vote to all adult male citizens. It
was not a perfect democracy (women could not vote, and neither could slaves,
who made up about a quarter of the city’s population), but it was the closest
thing to it in the ancient world.

Athens after Solon was as prosperous as it was democratic. Athenian olive
oil and wine were considered the finest produced in the Mediterranean Sea
region. They were sold widely in Greece and beyond and packaged in ornate
vases crafted by the city’s talented artisans. The city’s marketplace, the agora,
became the principal commercial nexus of the eastern Mediterranean. Intellec-
tual life in Athens focused about the agora. There, farmers from the country-
side, merchants and artisans from the city’s shops, and traders and sailors just
off the docks mingled and talked. Philosophers like Socrates (4697-399 B.C.)
and Plato (4277-347 B.C.), scientists like Aristotle (384-322 B.C.), and play-
wrights like Aristophanes (4457-385? B.C.) sat in the shade of the marketplace,
surrounded by students, admirers, and interested citizens, and exchanged
ideas. Although the Athenian agora was the grandest in Hellenic Greece, mar-
ketplaces served a similar function in other commercial cities, such as Corinth,
Rhodes, and Miletus. Furthermore, as the Greek population continued to grow,
pioneers erected new city-states in far away Italy and Cyprus, and on the
shores of the Black Sea. Such colonies, among them Syracuse and Neapolis
(Naples—literally, “New City”) in Italy, Massilla (Marseilles) on the French
riviera, and Sinope in modern Turkey, had agoras too—smaller imitations of
the one at Athens—where philosophers and scientists gathered.

In 432 B.C., Athens was at the height of its prestige and power and was led
by its greatest statesman, Pericles (4907-429 B.C.). It had a powerful navy,
built to repulse two earlier invasions by Persia, one in 490 B.C. and another a
decade later. The city stood at the center of the Delian League, a political and
commercial network that included a dozen or more other Greek city-states and
controlled the League’s treasury.

The prosperity did not last. Persia revenged itself for its defeats by annex-
ing Miletus, Smyrna, and other Greek towns along the lonian coast. Worse,
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Sparta grew jealous of the powerful Athenian navy, and the two states quar-
relled frequently. In 431 B.C., they were at war, a struggle that lasted until
404 B.C., ruined both countries, and involved most of the other Greek city-
states. This war was followed by others that lasted until 336 B.C., when Alex-
ander the Great (356-323 B.C.) united all of Greece in his Macedonian Empire.

Despite political disunity, chronic food shortages, overpopulation, and
almost constant warfare, the Hellenic Age in Greece (ca. 800-336 B.C.) wit-
nessed remarkable intellectual achievement. In the agoras of Athens and other
city-states, philosophers taught students and advanced new ideas. It was a time
that witnessed the writing of the first real histories: Herodotus’ (4847-424?
B.C.) optimistic account of Greece’s glorious victories over the Persian in-
vaders and Thucydides’ (4607-400? B.C.) anguished telling of the fratricidal
struggle between Sparta and Athens. It saw the application of deductive rea-
soning to mathematics by Thales of Miletus (6407-564? B.C.) and Pythagoras
(5867-5007? B.C.), the foundation of modern medicine by Hippocrates of Cos
(4607-377? B.C.), who devised the famous Hippocratic Oath of physicians; and
the systematization of logic by Aristotle. It was an age of great literature and
theater, with playwrights like Sophocles (4967-406? B.C.) and Aristophanes
(4457-385? B.C.). Here, in the small cities in the rocky valleys at the eastern
end of the Mediterranean Sea, more than 2000 years ago, were laid the founda-
tions of western society.



Chapter

PYTHAGOREAN MATHEMATICS

3-1 Birth of Demonstrative Mathematics

The last centuries of the second millennium B.C. witnessed many economic
and political changes. Some civilizations disappeared, the power of Egypt and
Babylonia waned, and new peoples, especially the Hebrews, Assyrians, Phoe-
nicians, and Greeks, came to the fore. The Iron Age was ushered in and
brought with it sweeping changes in warfare and in all pursuits that required
tools. The alphabet was invented, and coins were introduced. Trade was in-
creasingly stimulated, and geographical discoveries were made. The world was
ready for a new type of civilization.

The new civilization made its appearance in the trading towns that sprang
up along the coast of Asia Minor and later on the mainland of Greece, on Sicily,
and on the Italian shore. The static outlook of the ancient Orient became
impossible, and in a developing atmosphere of rationalism, men began to ask
why as well as how.

For the first time, in mathematics, as in other fields, men began to ask
fundamental questions such as “Why are the base angles of an isosceles trian-
gle equal?” and “Why does a diameter of a circle bisect the circle?” The
empirical processes of the ancient Orient, quite sufficient for the question how,
no longer sufficed to answer these more scientific inquiries of why. Some at-
tempt at demonstrative methods was bound to assert itself, and the deductive
feature, which modern scholars regard as a fundamental characteristic of math-
ematics, came into prominence. Thus, mathematics, in the modern sense of the
word, was born in this atmosphere of rationalism and in one of the new trading
towns located on the west coast of Asia Minor. For tradition has it that demon-
strative geometry began with Thales of Miletus, one of the “seven wise men”
of antiquity, during the first half of the sixth century B.C.1

Thales seems to have spent the early part of his life as a merchant, becom-
ing wealthy enough to devote the latter part of his life to study and some travel.
It is said that he resided for a time in Egypt, and there evoked admiration by
calculating the height of a pyramid by means of shadows (see Problem Study
3.1). Back in Miletus, his many-sided genius won him a reputation as a states-
man, counselor, engineer, businessman, philosopher, mathematician, and as-

1 There are some historians of ancient mathematics, in particular Otto Neugebauer, who
disagree with the traditional evolutionary account of the origin of demonstrative mathematics and
favor a more revolutionary account, wherein the change was probably brought on by the discovery
of the irrationality of V2.
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tronomer. Thales is the first known individual with whom mathematical discov-
eries are associated. In geometry, he is credited with the following elementary
results:

1. A circle is bisected by any diameter.

2. The base angles of an isosceles triangle are equal.

3. The vertical angles formed by two intersecting lines are equal.

4. Two triangles are congruent if they have two angles and one side in

each respectively equal. [Thales perhaps used this result in his determi-
nation of the distance of a ship from shore (see Problem Study 3.1).]
5. An angle inscribed in a semicircle is a right angle. (This was recognized
by the Babylonians some 1400 years earlier.)
The value of these results is not to be measured by the theorems themselves,
but rather by the belief that Thales supported them by some logical reasoning
instead of intuition and experiment.

Take, for example, the matter of the equality of a pair of vertical angles
formed by two intersecting lines. In Figure 6, we wish to show that angle a is
equal to angle b. In pre-Hellenic times, the equality of these two angles proba-
bly would have been considered as quite obvious, and if anyone should have
had doubts, that person would have been convinced by performing the simple
experiment wherein the angles are cut out and then one applied to the other.
Thales, on the other hand, preferred to establish the equality of angles ¢ and b
by logical reasoning, perhaps in much the same way as we do today in our
elementary geometry texts. In Figure 6, angle a plus angle ¢ equals a straight
angle; also, angle b plus angle ¢ equals a straight angle. Since all straight angles
are equal, therefore, angle a equals angle b (if equals are subtracted from
equals, the remainders are equal). The equality of angles ¢ and b has been
established by a short chain of deductive reasoning, starting from more basic
principles.

As with other great men, many charming anecdotes are told about Thales
that, if not true, are at least apposite. There was the occasion when he demon-
strated how easy it is to get rich; foreseeing a heavy crop of olives coming, he
obtained a monopoly on all the oil presses of the region and then later realized a
fortune by renting them out. And there is the story, recounted by Aesop, of the
recalcitrant mule that, when transporting salt, found that by rolling over in the
stream he could dissolve the contents of his load and thus travel more lightly.
Thales broke him of the troublesome habit by loading him with sponges. He
answered Solon’s query as to why he never married by having a runner appear
next day with a fictitious message for Solon stating that Solon’s favorite son

FIGURE 6
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had been suddenly Kkilled in an accident. Thales then calmed the grief-stricken
father, explained everything, and said, ‘‘I merely wanted to tell you why I
never married.”’

Recent research indicates that there is no evidence backing an often-re-
peated story that Thales predicted a solar eclipse that took place in 585 B.C.

3—2 Pythagoras and the Pythagoreans

The history of the first 300 years of Greek mathematics is obscured by the
greatness of Euclid’s Elements, written about 300 B.C., because this work so
completely eclipsed so many preceding Greek writings on mathematics that
those earlier works were thenceforth discarded and have become lost to us. As
the eminent twentieth-century mathematician David Hilbert once remarked,
one can measure the importance of a scientific work by the number of earlier
publications rendered superfluous by it.

Consequently, unlike ancient Egyptian and Babylonian mathematics,
there exist virtually no primary sources that throw much light upon early Greek
mathematics. We are forced to rely upon manuscripts and accounts that are
dated several hundred years after the original treatments were written. In spite
of this difficulty, however, scholars of classicism have been able to build up a
rather consistent, although somewhat hypothetical, account of the history of
early Greek mathematics, and have even plausibly restored many of the origi-
nal Greek texts. This work required amazing ingenuity and patience; it was
carried through by painstaking comparisons of derived texts and by the exami-
nation of countless literary fragments and scattered remarks made by later
authors, philosophers, and commentators.?

The debt of early Greek mathematics to ancient Oriental mathematics is
difficult to evaluate, and the path of transmission from the one to the other has
not yet been satisfactorily uncovered. That the debt is considerably greater
than formerly believed became evident with twentieth-century research of Bab-
ylonian and Egyptian records. Greek writers themselves expressed respect for
the wisdom of the East, and this wisdom was available to anyone who could
travel to Egypt and Babylonia. There are also internal evidences of a connec-
tion with the East. Early Greek mysticism in mathematics smacks strongly of
Oriental influence, and some Greek writings exhibit a Hellenic perpetuation of
the more arithmetic tradition of the Orient. Also, there are strong links con-
necting Greek and Mesopotamian astronomy.

Our principal source of information concerning very early Greek mathe-
matics is the so-called Eudemian Summary of Proclus. This summary consti-
tutes the opening pages of Proclus’ Commentary on Euclid, Book I, and is a
very brief outline of the development of Greek geometry from the earliest times
to Euclid. Although Proclus lived in the fifth century A.D., a good thousand

z A debt is owed, along these lines, to the profound and scholarly investigations of such men as
Paul Tannery, T. L. Heath, H. G. Zeuthen, A. Rome, J. L. Heiberg, and E. Frank.
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years after the inception of Greek mathematics, he still had access to a number
of historical and critical works that are now lost to us, except for the fragments
and allusions preserved by him and others. Among these lost works was a
resume of an apparently full history of Greek geometry, already lost in Proclus’
time, covering the period prior to 335 B.C., written by Eudemus, a pupil of
Aristotle. The Eudemian Summary is so named because it is based upon this
earlier work. The account of the mathematical achievements of Thales,
sketched in the preceding section, was furnished by the Eudemian Summary.

The next outstanding Greek mathematician mentioned in the Eudemian
Summary is Pythagoras, whom his followers enveloped in such a mythical haze
that very little is known about him with any degree of certainty. It seems that
he was born about 572 B.C. on the Aegean island of Samos. Being about fifty
years younger than Thales and living so near Thales’ home city of Miletus, it
may be that Pythagoras studied under the older man. He then appears to have
sojourned in Egypt and may even have indulged in more extensive travel.
Returning home, he found Samos under the tyranny of Polycrates and lonia
under the dominion of the Persians; accordingly, he migrated to the Greek
seaport of Crotona, located in southern Italy. There he founded the famous
Pythagorean school, which, in addition to being an academy for the study of
philosophy, mathematics, and natural science, developed into a closely knit
brotherhood with secret rites and observances. In time, the influence and aris-
tocratic tendencies of the brotherhood became so great that the democratic
forces of southern Italy destroyed the buildings of the school and caused the
society to disperse. According to one report, Pythagoras fled to Metapontum
where he died, maybe murdered, at an advanced age of seventy-five to eighty.
The brotherhood, although scattered, continued to exist for at least two centu-
ries more.

PYTHAGORAS
(David Smith Collection)
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The Pythagorean philosophy rested on the assumption that whole number
is the cause of the various qualities of man and matter. This led to an exaltation
and study of number properties, and arithmetic (considered as the theory of
numbers), along with geometry, music, and spherics (astronomy), constituted
the fundamental liberal arts of the Pythagorean program of study. This group of
subjects became known in the Middle Ages as the quadrivium, to which was
added the trivium of grammar, logic, and rhetoric. These seven liberal arts
came to be looked upon as the necessary equipment of an educated person.

Because Pythagoras’ teaching was entirely oral, and because of the broth-
erhood’s custom of referring all discoveries back to the revered founder, it is
now difficult to know just which mathematical findings should be credited to
Pythagoras himself and which to other members of the fraternity.

3-3 Pythagorean Arithmetic

The ancient Greeks made a distinction between the study of the abstract rela-
tionships connecting numbers and the practical art of computing with numbers.
The former was known as arithmetic and the latter as logistic. This classifica-
tion persisted through the Middle Ages until about the close of the fifteenth
century, when texts appeared treating both the theoretical and practical aspects
of number work under the single name arithmetic. It is interesting that today
arithmetic has its original significance in continental Europe, while in England
and America the popular meaning of arithmetic is synonymous with that of
ancient logistic. In these two countries, the descriptive term number theory is
used to denote the abstract side of number study.

It is generally conceded that Pythagoras and his followers, in conjunction
with the fraternity’s philosophy, took the first steps in the development of
number theory, and at the same time laid much of the basis of future number
mysticism. Thus, Iamblichus, an influential Neoplatonic philosopher of about
A.D. 320, has ascribed to Pythagoras the discovery of amicable, or friendly,
numbers. Two numbers are amicable if each is the sum of the proper divisors?
of the other. For example, 284 and 220, constituting the pair ascribed to Py-
thagoras, are amicable, since the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20,
22,44, 55, 110, and the sum of these is 284, whereas the proper divisors of 284
are 1, 2,4, 71, 142, and the sum of these is 220. This pair of numbers attained a
mystical aura, and superstition later maintained that two talismans bearing
these numbers would seal perfect friendship between the wearers. The num-
bers came to play an important role in magic, sorcery, astrology, and the
casting of horoscopes. It seemed that no new pair of amicable numbers was
discovered until the great French number theorist Pierre de Fermat in 1636
announced 17,296 and 18,416 as another pair. It has recently been established,

3 The proper divisors of a positive integer N are all the positive integral divisors of N except N
itself. Note that 1 is a proper divisor of N. A somewhat antiquated synonym for proper divisor is
aliquot part.
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however, that this was a rediscovery, and that this pair of amicable numbers
had been previously found by the Arab al-Banna (1256-1321) in the late thir-
teenth or early fourteenth century, perhaps by using the Tabit ibn Qorra for-
mula. (For this formula, see Problem Study 7.11.) Two years after Fermat’s
‘announcement, the French mathematician and philosopher René Descartes
gave a third pair. The Swiss mathematician Leonhard Euler undertook a sys-
tematic search for amicable numbers and, in 1747, gave a list of thirty pairs,
which he later extended to more than sixty. A curiosity in the history of these
numbers was the late discovery, by the sixteen-year-old Italian boy Nicolo
Paganini® in 1866, of the overlooked and relatively small pair of amicable num-
bers, 1184 and 1210. All amicable number pairs below one billion have now
been found.

Other numbers having mystical connections essential to numerological
speculations, and sometimes ascribed to the Pythagoreans, are the perfect,
deficient, and abundant numbers. A number is perfect if it is the sum of its
proper divisors, deficient if it exceeds the sum of its proper divisors, and
abundant if it is less than the sum of its proper divisors. So God created the
world in six days, a perfect number, since 6 = 1 + 2 + 3. On the other hand, as
Alcuin (735-804) observed, the whole human race descended from the eight
souls of Noah’s ark, and this second creation was imperfect, for 8, being
greater than 1 + 2 + 4, is deficient. Until 1952, there were only twelve known
perfect numbers, all of them even numbers, of which the first three are 6, 28,
and 496. The last proposition of the ninth book of Euclid’s Elements (ca. 300
B.C.) proves that if 2* — 1 is a prime number,’ then 2"-'(2" — 1) is a perfect
number. The perfect numbers given by Euclid’s formula are even numbers, and
Euler has shown that every even perfect number must be of this form. The
existence or nonexistence of odd perfect numbers is one of the celebrated
unsolved problems in number theory. There certainly is no number of this type
having less than 200 digits.

In 1952, with the aid of the SWAC digital computer, five more perfect
numbers were discovered, corresponding to n = 521, 607, 1279, 2203, and 2281
in Euclid’s formula. In 1957, using the Swedish machine BESK, another was
found, corresponding to n = 3217. In 1961, with an IBM 7090, two more were
found, for n = 4253 and 4423. There are no other even perfect numbers for n <
5000. The values n = 9689, 9941, 11213, 19937, 21701, 23209, 86243, 132049,
and 216091 also yield perfect numbers, bringing the list of known perfect num-
bers to thirty. The last was found by scientists at Chevron in 1985 on a
$10,000,000 Cray X-MP supercomputer.

The concept of perfect numbers has inspired certain generalizations by
modern mathematicians. If we let o(n) represent the sum of all the divisors of n

4 Not to be confused with Nicolo Paganini (1782-1840), the noted Italian violinist and com-
poser.

> A prime number is a positive integer greater than 1 and having no positive integral divisors
other than itself and unity. An integer greater than 1 that is not a prime number is called a composite
number, thus, 7 is a prime number, whereas 12 is a composite number.
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Triangular numbers

and so on

1 3 6 10 and so on

FIGURE 7

(including n itself), then n is perfect if and only if o(n) = 2n. In general, if we
should have o(n) = kn, where k is a natural number, then # is said to be k-tuply
perfect. One can show, for example, that 120 and 672 are triply perfect. It is not
known if infinitely many multiply perfect numbers, let alone just perfect ones,
exist. It is also not known if any odd multiply perfect number exists. In 1944,
the concept of superabundant numbers was created. A natural number n is
superabundant if and only if o(n)/n > o(k)/k for all k < n. It is known that
there are infinitely many superabundant numbers. Other numbers related to
perfect, deficient, and abundant numbers that have been introduced in recent
times are practical numbers, quasiperfect numbers, semiperfect numbers, and
weird numbers. We merely mention these concepts to illustrate how ancient
number work has inspired related modern investigations.

Although not all historians of mathematics feel that amicable and perfect
numbers can be ascribed to the Pythagoreans, there seems to be universal
agreement that the figurate numbers did originate with the earliest members of
the society. These numbers, considered as the number of dots in certain geo-
metrical configurations, represent a link between geometry and arithmetic.
Figures 7, 8, and 9 account for the geometrical nomenclature of triangular
numbers, square numbers, pentagonal numbers, and so on.

Many interesting theorems concerning figurate numbers can be established
in purely geometric fashion. To show Theorem I (any square number is the sum
of two successive triangular numbers), for example, we observe that a square
number, in its geometric form, can be divided as in Figure 10. Again, Figure 11
illustrates Theorem II (the nth pentagonal number is equal to n plus three times
the (n — 1)th triangular number). Theorem III (the sum of any number of
consecutive odd integers, starting with 1, is a perfect square) is exhibited
geometrically by Figure 12.

Square numbers
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FIGURE 8



3-3 / Pythagorean Arithmetic

Pentagonal numbers
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Of course, these theorems can also be established algebraically once we
obtain the algebraic representations of the general triangular, square, and pen-
tagonal numbers. It is clear that the nth triangular number, T, is given by the
sum of an arithmetic series,$

+ 1
T,,=1+2+3+--.+n=&”2———),
and, of course, the nth square number, S,, is n2. Our first theorem may now be
re-established algebraically by an identity as follows:

2=n(n+1)+(n—l)n

S.=n > 3

= T,, + T,,_|.

The nth pentagonal number, P,, is also given by the sum of an arithmetic
series.

P.=1+4+7+---+@Bn-2)

nBn — 1) 3n(n - 1)

B
=n+ 3T,.,.

This proves the second theorem. The third theorem is obtained algebraically by
summing the arithmetic series

l+3+5+...+(2n—1)=@=n2.

As a last and very remarkable discovery about numbers, made by the
Pythagoreans, we might mention the dependence of musical intervals upon
numerical ratios. The Pythagoreans found that for strings under the same ten-
sion, the lengths should be 2 to 1 for the octave, 3 to 2 for the fifth, and 4 to 3 for
the fourth. These results, the first recorded facts in mathematical physics, led
the Pythagoreans to initiate the scientific study of musical scales.

3-4 Pythagorean Theorem and
Pythagorean Triples

Tradition is unanimous in ascribing to Pythagoras the independent discovery of
the theorem on the right triangle that now universally bears his name—that the
square on the hypotenuse of a right triangle is equal to the sum of the squares

6 The sum of an arithmetic series is equal to the product of the number of terms and half the
sum of the two extreme terms.
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on the two legs. We have seen that this theorem was known to the Babylonians
of Hammurabi’s time, more than a thousand years earlier, but the first general
proof of the theorem may well have been given by Pythagoras. There has been
much conjecture as to the proof Pythagoras might have offered, and it is gener-
ally felt that it probably was a dissection type of proof’ like the following,
illustrated in Figure 13. Let q, b, ¢ denote the legs and hypotenuse of the given
right triangle, and consider the two squares in the accompanying figure, each
having a + b as its side. The first square is dissected into six pieces—namely,
the two squares on the legs and four right triangles congruent to the given
triangle. The second square is dissected into five pieces—namely, the square
on the hypotenuse and four right triangles congruent to the given triangle. By
subtracting equals from equals, it now follows that the square on the hypote-
nuse is equal to the sum of the squares on the legs.

To prove that the central piece of the second dissection is actually a square
of side ¢, we need to employ the fact that the sum of the angles of a right
triangle is equal to two right angles. But the Eudemian Summary attributes this
theorem for the general triangle to the Pythagoreans. Because a proof of this
theorem requires, in turn, a knowledge of some properties of parallels, the
early Pythagoreans are also credited with the development of that theory.

Since Pythagoras’ time, many different proofs of the Pythagorean theorem
have been supplied. In the second edition of his book, The Pythagorean Propo-
sition, E. S. Loomis has collected and classified 370 demonstrations of this
famous theorem.

Closely allied to the Pythagorean theorem is the problem of finding inte-
gers a, b, ¢ that can represent the legs and hypotenuse of a right triangle. A
triple of numbers of this sort is known as a Pythagorean triple and, as we have
seen in Section 2-6, the analysis of Plimpton 322 offers fairly convincing evi-
dence that the ancient Babylonians knew how to calculate such triples. The

7 See, however, Daniel Shanks, Solved and Unsolved Problems in Number Theory, vol. 1,
pp. 124, 125.
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Pythagoreans have been credited with the formula

m? — 1)2 <m2 + 1)2
2 —3
m +( 2 2 )

the three terms of which, for any odd m, yield a Pythagorean triple. The similar
formula

m)z + (m? — 12 = (m? + 1)2,

where m may be even or odd, was devised for the same purpose and is attrib-
uted to Plato (ca. 380 B.C.). Neither of these formulas yields all Pythagorean
triples.

3-5 Discovery of hirational Magnitudes

The integers are abstractions arising from the process of counting finite collec-
tions of objects. The needs of daily life require us in addition to counting
individual objects, to measure various quantities, such as length, weight, and
time. To satisfy these simple measuring needs, fractions are required, for sel-
dom will a length, as an example, appear to contain an exact integral number of
linear units. Thus, if we define a rational number as the quotient of two integers
plq, q # 0, this system of rational numbers, since it contains all the integers and
fractions, is sufficient for practical measuring purposes.

The rational numbers have a simple geometrical interpretation. Mark two
distinct points O and  on a horizontal straight line (I to the right of O) and
choose the segment OI as a unit of length. If we let O and I represent the
numbers 0 and 1, respectively, then the positive and negative integers can be
represented by a set of points on the line spaced at unit intervals apart, the
positive integers being represented to the right of O and the negative integers to
the left of O. The fractions with denominator g may then be represented by the
points that divide each of the unit intervals into g equal parts. Then, for each
rational number, there is a point on the line. To the early mathematicians, it
seemed evident that all the points on the line would in this way be used up. It
must have been something of a shock to learn that there are points on the line
not corresponding to any rational number. This discovery was one of the great-
est achievements of the Pythagoreans. In particular, the Pythagoreans showed
that there is no rational number corresponding to the point P on the line where
the distance OP is equal to the diagonal of a square having a unit side (see
Figure 14). New numbers had to be invented to correspond to such points, and
since these numbers cannot be rational numbers, they came to be called irratio-
nal numbers (meaning, nonrational numbers). Their discovery marks one of the
great milestones in the history of mathematics.

To prove that the length of the diagonal of a square of unit side cannot be
represented by a rational number, it suffices to show that V2 is irrational. To
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FIGURE 14

this end, we first observe that, for a positive integer s, s? is even if and only if s
is even. Now, suppose, for the purpose of argument, that \/2 is rational—that
is, V2 = alb—where a and b are relatively prime integers.® Then

a=bV2,
or
a? = 2b2.

Since a? is twice an integer, we see that a2 and, hence a, must be even. Put
a = 2c; then the last equation becomes

4c? = 2p2,
or
2¢% = b,

from which we conclude that b2 and, hence, b must be even. This is impossible,
however, since a and b were assumed to be relatively prime. Thus, the assump-
tion that /2 is rational, which led to this impossible situation, must be aban-
doned.

The discovery of the existence of irrational numbers was surprising and
disturbing to the Pythagoreans. First of all, it seemed to deal a mortal blow to
the Pythagorean philosophy that all depends upon the whole numbers. Next, it
seemed contrary to common sense, for it was felt intuitively that any magnitude
could be expressed by some rational number. The geometrical counterpart was
equally startling, for who could doubt that for any two given line segments one
is able to find some third line segment, perhaps very very small, that can be
marked off a whole number of times into each of the two given segments? But
take as the two segments a side s and a diagonal d of a square. Now if there
eXists a third segment ¢ that can be marked off a whole number of times into s
and d, we would have s = bt and d = at, where a and b are positive integers.
But d = s V2, whence at = bt V2—that is, a = bV2, or V2 = a/b, a rational
number. Contrary to intuition, then, there exist incommensurable line seg-
ments—that is, line segments having no common unit of measure.

8 Two integers are relatively prime if they have no common positive integral factor other than
unity. Thus, 5 and 18 are relatively prime, whereas 12 and 18 are not relatively prime.
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Let us sketch an alternative, geometrical demonstration of the irrationality
of V2 by showing that a side and diagonal of a square are incommensurable.
Suppose the contrary. According to this supposition, then, there exists a seg-
ment AP (see Figure 15) such that both the diagonal AC and side AB of a square
ABCD are integral multiples of AP, that is, AC and AB are commensurable with
respect to AP. On AC, lay off CB, = AB and draw B,C, perpendicular to CA.
One may easily prove that C\B = C 1B, = AB,. Then AC|, = AB — AB; and AB,
are commensurable with respect to AP. But AC, and AB, are a diagonal and a
side of a square of dimensions less than half those of the original square. It
follows that, by repeating the process, we may finally obtain a square whose
diagonal AC, and side AB, are commensurable with respect to AP, and AC, <
AP. This absurdity proves the theorem.

The first proof is essentially the traditional one known to Aristotle (384-
322 B.C.). This discovery of the irrationality of V2 caused some consternation
in the Pythagorean ranks. Not only did it appear to upset the basic assumption
that everything depends on the whole numbers, but because the Pythagorean
definition of proportion assumed any two like magnitudes to be commensura-
ble, all the propositions in the Pythagorean theory of proportion had to be
limited to commensurable magnitudes, and their general theory of similar fig-
ures became invalid. So great was the ‘‘logical scandal’’ that efforts were made
for a while to keep the matter secret. One legend has it that the Pythagorean
Hippasus (or perhaps some other) perished at sea for his impiety in disclosing
the secret to outsiders, or (according to another version) was banished from the
Pythagorean community and a tomb was erected for him as though he was
dead.

For some time, V2 was the only known irrational.’ Later, according to
Plato, Theodorus of Cyrene (ca. 425 B.C.) showed that V3, V5, V6, V7, V8,
V10, V11, V12, V13, V14, V15, V17 are also irrational. About 370 B.C., the

““scandal’’ was resolved by the brilliant Eudoxus, a pupil of Plato and of the

9 There is some possibility that (V5 — 1)/2, which is the ratio of a side to a diagonal of a regular
pentagon, was the first known irrational.
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Pythagorean Archytas who put forth a new definition of proportion. Eudoxus’
masterful treatment of incommensurables appears in the fifth book of Euclid’s
Elements, and coincides essentially with the modern exposition of irrational
numbers that was given by Richard Dedekind in 1872.

The treatments of ratio and proportion and similar triangles in early twenti-
eth-century high school geometry texts reflect the difficulties and subtleties
introduced by incommensurable magnitudes. In these treatments, two cases,
depending upon the commensurability or incommensurability of certain magni-
tudes, are considered (see, for example, Section 5-5 and Problem Study 5.6).
More recent texts circumvent the difficulties by the use of more sophisticated
postulational bases.

3-6 Algebraic Identities

Imbued with the representation of a number by a length and completely lacking
any adequate algebraic notation, the early Greeks devised ingenious geometri-
cal processes for carrying out algebraic operations. Much of this geometrical
algebra has been attributed to the Pythagoreans and can be found scattered
through several of the earlier books of Euclid’s Elements. Thus, Book II of the
Elements contains a number of propositions that in reality are algebraic identi-
ties couched in geometric terminology. It seems quite certain that these propo-
sitions were developed, through means of a dissection method, by the early
Pythagoreans. We may illustrate the method by considering a few of the propo-
sitions of Book II.
Proposition 4 of Book II establishes geometrically the identity

(a + b)? = a? + 2ab + b?

by dissecting the square of side a + b into two squares and two rectangles
having areas a2, b2, ab, and ab, as indicated in Figure 16. Euclid’s statement of
the proposition is: If a straight line is divided into any two parts, the square on
the whole line is equal to the sum of the squares on the two parts together with
twice the rectangle contained by the two parts.

a b

a b

FIGURE 16
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The statement of Proposition 5 of Book Il is: If a straight line is divided
equally and also unequally, the rectangle contained by the unequal parts,
together with the square on the line between the points of section, is equal to
the square on half the line. Let AB be the given straight-line segment, and let it
be divided equally at P and unequally at Q. Then the proposition says that

(AQ)QB) + (PQ) = (PB).
If we set AQ = 2a and QB = 2b, this leads to the algebraic identity
dab + (a — b)* = (a + by,
or, if we set AB = 2a and PQ = b, to the identity
(a + b)a — b) = a®> — b2

The dissection given in the Elements for establishing this theorem appears in
Figure 17. It is more complicated than that for Proposition 4. In the figure,
PCDB and QFLB are squares described on PB and QB as sides. Then

(AQXQ@B) + (PQ) = AGFQ + HCEF = AGHP + PHFQ + HCEF
= PHLB + PHFQ + HCEF
= PHLB + FEDL + HCEF = (PB)%.

The statement of Proposition 6 of Book I is: If a straight line is bisected
and produced to any point, the rectangle contained by the whole line thus
produced and the part of it produced, together with the square on half the line
bisected, is equal to the square on the straight line made up of the half and the
part produced. Here (see Figure 18), if the given straight-line segment AB with
midpoint P is produced to Q, we are to show that

(AQ)BQ) + (PB)* = (PQ).

c E D

FIGURE 17
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If we set AQ = 2a and BQ = 2b, we are led again to the identity
dab + (a — b)* = (a + b)?,

and a similar dissection to that used for Proposition 5 may be used here.
Figure 19, with AB = a and BC = b, suggests a less cumbrous proof of the
identity

4ab + (a — b)t = (a + b)2.

3-7 Geometric Solution of Quadratic Equations

In their geometric algebra, the Greeks employed two principal methods for
solving certain simple equations—the method of proportions and the method of
application of areas. There is evidence that both of these methods originated
with the Pythagoreans.

The method of proportions permits one to construct (exactly as we do
today in our high school geometry courses; see Figure 20) a line segment x
given either by a:b = c:x or by a:x = x:b, where a, b, ¢ are given line
segments. That is, the method of proportions furnishes geometrical solutions of
the equations

ax = bc and x% = ab.
To explain the method of application of areas, consider (see Figure 21) a

line segment AB and a parallelogram AQRS having side AQ lying along the ray
AB. If Q is not at B, take C so that QBCR is a parallelogram. When Q is

FIGURE 19
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FIGURE 20

between A and B, parallelogram AQRS is said to be applied to segment AB,
falling short by parallelogram QBCR; when Q coincides with B, parallelogram
AQRS is said to be applied to segment AB; when Q lies on AB produced
through B, parallelogram AQRS is said to be applied to segment AB, exceeding
by parallelogram QBCR.

Proposition 44 of Book I of Euclid’s Elements solves the construction: To
apply to a given line segment AB a parallelogram of given area and given base
angles. Consider the special case in which the given base angles are right
angles, so that the applied parallelogram is a rectangle. Denote the length of AB
by a, the altitude of the applied rectangle by x, and the dimensions of a rectan-
gle of area equal to that of the applied rectangle by b and c. Then

bc
ax = bc or x =

Proposition 28 of Book VI of the Elements solves the construction: To
apply to a given line segment AB a parallelogram AQRS equal in area to a
given rectilinear figure F, and falling short by a parallelogram QBCR similar to
a given parallelogram, the area of F not exceeding that of the parallelogram
described on half of AB and similar to the defect QBCR. Consider the special
case in which the given parallelogram is a square. Denote the length of AB by a,
the base AQ of the applied parallelogram (which is now a rectangle) by x, and
the side of a square F equal in area to the applied rectangle by b. Then

x(a — x) = b2 or xI—ax + b*=0. 1)

Proposition 29 of Book VI solves the construction: To apply to a given line
segment AB a parallelogram AQRS equal in area to a given rectilinear figure

S R [ S R S /C R
A a B8 A 8,Q A 8 Q

FIGURE 21
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F, and exceeding by a parallelogram QBCR similar to a given parallelogram.
Consider the special case in which the given parallelogram is a square. Denote
the length of AB by a, the base AQ of the applied parallelogram (which is now a
rectangle) by x, and the side of a square F equal in area to the applied rectangle
by b. Then

x(x — a) = b? or x—ax— b =0. )

It follows that Proposition I 44 yields a geometric solution to the linear
equation ax = bc, and Propositions VI 28 and 29 yield geometric solutions to
the quadratic equations x? — ax + b2 = 0 and x2 — ax — b? = 0, respectively.

Constructions can easily be devised for the above special cases of Proposi-
tions VI 28 and 29 that are considerably simpler than the more general con-
structions given in the Elements.

Consider, for example, the special case of Proposition VI 28. Here we
want to apply to a given line segment a rectangle that falls short by a square.
From the first of equations (1), we see that we may restate the problem as
follows: To divide a given line segment so that the rectangle contained by its
parts will equal a given square, the square not exceeding the square on half the
given line segment. To clarify the problem, let AB and b be two line segments, b
not greater than half of AB. We are to divide AB by a point Q such that
(AQ)(QB) = b*. To accomplish this, we mark off PE = b on the perpendicular
to AB at its midpoint P, and with E as center and PB as radius, draw an arc
cutting AB in the sought point Q, as in Figure 22. The proof is furnished by
Proposition II 5 (which was probably devised by the Pythagoreans to serve
here), for by that proposition

(AQ)QB) = (PB)? — (PQ)* = (EQ)* — (PQ)* = (EP)* = b’.
Denoting the length of AB by a and that of AQ by x, we have solved the
quadratic equation x2 — ax + b? = 0; the roots are represented by AQ and QB.10
The roots of the quadratic equation

x*+ax+b*=0

are represented by the negatives of the lengths of AQ and QB.

10 If r and s are the roots of the quadratic equation x2 — ax + b? = 0, we know from elementary
algebra that r + s = a and rs = b%. But it is AQ and QB whose sum is AB, or a, and whose product
is b2.
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FIGURE 23

For the special case of Proposition VI 29, we want to apply to a given line
segment a rectangle that exceeds by a square. From the first of equations (2)
above, we see that we may restate the problem as follows: To produce a given
line segment so that the rectangle contained by the extended segment and the
extension will equal a given square. Again, let AB and b be two line segments.
We are to produce AB to a point Q such that (AQ)(BQ) = b%. To this end, we
mark off BE = b on the perpendicular to AB at B, and with P, the midpoint of
AB, as center and PFE as radius, draw an arc cutting AB produced in the sought
point Q, as in Figure 23. This time, the proof is furnished by Proposition II 6,
for by that proposition

(AQ)BQ) = (PQ)? — (PB)? = (PE)? — (PB)? = (BE)® = b~

As before, we see that AQ and BQ, where we take the first one as positive and
the second one as negative, are the roots of the quadratic equation

x2—ax — b* =0,
a being the length of AB. The roots of
x2+ax—-b2=0

are the same as those of x2 — ax — b? = 0, only with their signs changed.

The geometric algebra of the Pythagoreans, ingenious though it is, intensi-
fies one’s appreciation of the simplicity and convenience inherent in present-
day algebraic notation.

3-8 Transformation of Areas

The Pythagoreans were interested in transforming an area from one rectilinear
shape into another rectilinear shape. Their solution of the basic problem of
constructing a square equal in area to that of a given polygon may be found in
Propositions 42, 44, 45 of Book I and Proposition 14 of Book II of Euclid’s
Elements. A simpler solution, probably also known to the Pythagoreans, is the
following. Consider any polygon ABCD . . . (see Figure 24). Draw BR parallel
to AC to cut DC in R. Then, since triangles ABC and ARC have a common base
AC and equal altitudes on this common base, these triangles have equal areas.
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FIGURE 24

It follows that polygons ABCD . . . and ARD . . . have equal areas. But the
derived polygon has one less side than the given polygon. By a repetition of this
process, we finally obtain a triangle having the same area as the given polygon.
Now if b is any side of this triangle and h the altitude on b, the side of an
equivalent square is given by V(bh)/2—that is, by the mean proportional be-
tween b and h/2. Since this mean proportional is easily constructed with
straightedge and compasses, the entire problem can be carried out with these
tools.

Many interesting area problems can be solved by this simple process of
drawing parallel lines (see Problem Study 3.11).

3-9 The Regular Solids

A polyhedron is said to be regular if its faces are congruent regular polygons
and if its polyhedral angles are all congruent. Although there are regular poly-
gons of all orders, it turns out that there are only five different regular polyhe-
dra (see Problem Study 3.12). The regular polyhedra are named according to
the number of faces each possesses. Thus, there is the tetrahedron with four
triangular faces, the hexahedron, or cube, with six square faces, the octahe-
dron with eight triangular faces, the dodecahedron with twelve pentagonal
faces, and the icosahedron with twenty triangular faces (see Figure 25).

The early history of these regular polyhedra is lost in the dimness of the
past. A mathematical treatment of them is initiated in Book XIII of Euclid’s

FIGURE 25
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Elements. The first scholium of this book remarks that the book *‘will treat of
the so-called Platonic solids, incorrectly named, because three of them, the
tetrahedron, cube, and dodecahedron are due to the Pythagoreans, while the
octahedron and icosahedron are due to Theaetetus.”” This could well be the
case.

In any event, a description of all five regular polyhedra was given by Plato,
who, in his Timaeus, shows how to construct models of the solids by putting
triangles, squares, and pentagons together to form their faces. Plato’s Timaeus
is the Pythagorean Timaeus of Locri, whom Plato presumably met when he
visited Italy. In Plato’s work, Timaeus mystically associates the four easily
constructed solids—the tetrahedron, octahedron, icosahedron, and cube—
with the four Empedoclean primal ‘‘elements’’ of all material bodies—fire, air,
water, and earth. The disturbing difficulty of accounting for the fifth solid,
the dodecahedron, is taken care of by associating it with the enveloping uni-
verse.

Johann Kepler (1571-1630), master astronomer, mathematician, and nu-
merologist, gave an ingenious explanation of the Timaeus associations. Of the
regular solids, he intuitively assumed that the tetrahedron encloses the smallest
volume for its surface, while the icosahedron encloses the largest. Now these
volume-surface relations are qualities of dryness and wetness, respectively,
and since fire is the driest of the four ‘‘elements’ and water the wettest, the
tetrahedron must represent fire and the icosahedron water. The cube is asso-
ciated with earth, since the cube, resting foursquare on one of its square
faces, has the greatest stability. The octahedron, held lightly by two of its
opposite vertices between a forefinger and thumb, easily spins and has the in-
stability of air. Finally, the dodecahedron is associated with the universe
because the dodecahedron has twelve faces and the zodiac has twelve
signs.

The tetrahedron, cube, and octahedron can be found in nature as crystals,
for example, of sodium sulphantimoniate, common salt, and chrome alum,
respectively. The other two cannot occur in crystal form, but have been ob-
served as skeletons of microscopic sea animals called radiolaria. In 1885, a toy
regular dodecahedron of Etruscan origin, believed to date back to about 500
B.C., was unearthed on Monte Loffa, near Padua.

3-10 Postulational Thinking

Sometime between Thales in 600 B.C. and Euclid in 300 B.C., the notion was
perfected of a logical discourse as a sequence of rigorous deductions from some
initial and explicitly stated assumptions. This process, the so-called postula-
tional method, has become the very core of modern mathematics; undoubtedly,
much of the development of geometry along this pattern is due to the Pythago-
reans. Certainly one of the greatest contributions of the early Greeks was the
development of this postulational method of thinking. We shall return to a fuller
discussion of the subject in Sections 5-7 and 15-2.
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Problem Studies

3.1 The Practical Problems of Thales

(a) There are two versions of how Thales calculated the height of an
Egyptian pyramid by shadows. The earlier account, given by Hierony-
mus, a pupil of Aristotle, says that Thales noted the length of the
shadow of the pyramid at the moment when his shadow was the same
length as himself. The later version, given by Plutarch, says that he set
up a stick and then made use of similar triangles. Both versions fail to
mention the difficulty, in either case, of obtaining the length of the
shadow of the pyramid—that is, the distance from the apex of the
shadow to the center of the base of the pyramid.

Devise a method, based on similar triangles and independent of
latitude and time of year, for determining the height of a pyramid from
two shadow observations.

(b) We are told that Thales measured the distance of a ship from shore,
using the fact that 2 triangles are congruent if 2 angles and the included
side of one are equal to 2 angles and the included side of the other.
Heath has conjectured that this was probably done by an instrument
consisting of 2 rods AC and AD, hinged together at A, as shown in
Figure 26. The rod AD was held vertically over point B on shore, while
rod AC was pointed toward the ship P. Then, without changing the
angle DAC, the instrument was revolved about AD, and point Q noted
on the ground at which arm AC was directed. What distance must
be measured in order to find the distance from B to the inaccessible
point P?

FIGURE 26

3.2 Perfect and Amicable Numbers

(a) Show that in Euclid’s formula for perfect numbers, n must be prime.

(b) What is the fourth perfect number furnished by Euclid’s formula?

(c) Prove that the sum of the reciprocals of all the divisors of a perfect
number is equal to 2.

(d) Show that if p is a prime, then p* is deficient.

(e) Show that Nicolo Paganini’s numbers, 1184 and 1210, are amicable.

(f) Show that any multiple of an abundant or perfect number is abundant.
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(g) Find the 21 abundant numbers less than 100. It will be noticed that they
are all even numbers. To show that all abundant numbers are not even,
show that 945 = 33 - S - 7 is abundant. This is the first odd abundant
number.

(h) Estimate the number of digits in the perfect numbers corresponding to
Mn=17Q2)n=127.

(i) A cyclic sequence of three or more numbers such that the sum of the
proper divisors of each is equal to the next in the sequence is known as
a sociable chain of numbers. Only two sociable chains involving num-
bers below 1,000,000 are known: one of 5 ‘‘links’’ (found by the
Frenchman P. Poulet) starting with 12,496, and one of 28 links starting
with 14,316. Find the first of these sociable chains. A sociable chain of
exactly 3 links is called a crowd; no crowds have yet been found.

(j) Show that 120 is triply perfect.

(k) Is 12 superabundant?

3.3 Figurate Numbers

(a) List the first four hexagonal numbers.

(b) An oblong number is the number of dots in a rectangular array having
one more column than rows. Show, geometrically and algebraically,
that the sum of the first n positive even integers is an oblong number.

(c) Show, both geometrically and algebraically, that any oblong number is
twice a triangular number.

(d) Show, geometrically and algebraically, that 8 times any triangular num-
ber, plus 1, is a square number.

(e) Show, geometrically and algebraically, that the nth pentagonal number
equals the nth square number plus the (n — 1)th triangular number—
that is, that P, = S, + T,—.

(f) Denoting the oblong number n(n + 1) by O,, show, geometrically and
algebraically, that 0, + §, = T,,and O, — S, = n.

(g) Prove that every even perfect number is also a triangular number.

(h) Prove that the sequence of m-gonal numbers is given by

an? + bn, n=12,...,

for a certain fixed pair of rational numbers a and b.
(i) Find a and b of (h) when m = 7.

3.4 Means

The Eudemian Summary says that in Pythagoras’ time there were three means,
the arithmetic, the geometric, and the subcontrary, the last name being later
changed to harmonic by Archytas and Hippasus. We may define these three
means of two positive numbers a and b as

A=““2Lb, G=Vab, H=

2ab
a+ b’
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respectively.

(a) Show that A = G = H, equality holding if and only if a = b.

(b) Show that a: A = H : b. This was known as the ‘‘musical’’ proportion.

(c) Show that H is the harmonic mean between a and b if there exists a
number n such that a = H + a/n and H = b + b/n. This was the
Pythagorean definition of the harmonic mean of a and b.

(d) Show that 1/(H — a) + 1/(H — b) = 1/a + 1/b.

(e) Since 8 is the harmonic mean of 12 and 6, Philolaus, a Pythagorean of
about 425 B.C., called the cube a ‘‘geometrical harmony.”” Explain
this.

(f) Show that if a, b, ¢ are in harmonic progression, so also are a/(b + c¢),
b/(c + a), c/(a + b).

(g) If a and ¢, a < ¢, are a pair of positive numbers, then any number b
between ¢ and c is, in some sense, a mean (or average) of a and ¢. The
later Pythagoreans considered ten means b of a and c, defined as fol-
lows:

1. (b — a)(c — b) = ala 6. (b—a)(c —b)=clb

2. (b—a)(c — b)=alb 7. (¢c — a)/(b — a) = cla

3. (b — a)lc — b) = alc 8. (¢ — a)/(c — b) = cla

4. (b — a)l(c — b) =cla 9. (¢ — a)(b — a) = bla, a<b
5. (b — a)l(c = b) = bla 10. (¢ — a)/(c — b) = bla, a<b
Assuming 0 < a < ¢, show that in all ten cases a < b < c.

(h) Show that (1), (2), and (3) of (g) give the arithmetic, the geometric, and
the harmonic means, respectively, of a and c.

3.5 Dissection Proofs of the Pythagorean Theorem

(a,b) Two areas, or 2 volumes, P and Q, are said to be congruent by
addition if they can be dissected into corresponding pairs of congru-
ent pieces. They are said to be congruent by subtraction if corre-
sponding pairs of congruent pieces can be added to P and Q to give 2
new figures that are congruent by addition. There are many proofs of
the Pythagorean theorem that achieve their end by showing that the
square on the hypotenuse of the right triangle is congruent either by
addition or subtraction to the combined squares on the legs of the
right triangle. The proof given in Section 3-4 is a congruency-by-
subtraction proof. Give 2 congruency-by-addition proofs of the Py-
thagorean theorem suggested by Figures 27 and 28, the first given by
Henry Perigal (dates unknown) in 1873!" and the second by H. E.
Dudeney (1857-1930) in 1917.

(c) Give a congruency-by-subtraction proof of the Pythagorean theorem
suggested by Figure 29, which is said to have been devised by
Leonardo da Vinci (1452-1519).

It is interesting that any two equal polygonal areas are congruent
by addition, and the dissection can always be carried out with

"I ' This was a rediscovery, for the dissection was known to Tébit ibn Qorra (826-901).
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FIGURE 27
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straightedge and compasses. In 1901, however, Max Dehn (1878~
1952) showed that two equal polyhedral volumes are not necessarily
congruent by either addition or subtraction. In particular, it is impos-
sible to dissect a regular tetrahedron into polyhedral pieces that can
be reassembled to form a cube. Dehn achieved these results in solv-
ing one of David Hilbert’s (1862—1943) twenty-three Paris problems
(see the final sentence of Section 15--8).

3.6 Pythagorean Triples

(a) What is the relation between the hypotenuse and the longer leg of the
integral-sided right triangles given by the Pythagorean formula of Sec-
tion 3-4?

(b) Find the Pythagorean triples given by the Pythagorean formula of
Section 3-4 for which the hypotenuse does not exceed 100.

(c) Prove that no isosceles right triangle exists whose sides are integers.

(d) Prove that no Pythagorean triple exists in which 1 integer is a mean
proportional between the other 2.

(e) Prove that (3,4,5) is the only Pythagorean triple containing three con-
secutive positive integers.

(f) Find the 16 primitive Pythagorean triples (a,b,c) for which b is even
and ¢ < 100. Now show that there are exactly 100 distinct Pythagorean
triples (a,b,c) with ¢ < 100.

(g) Show that if (a,a + 1,c) is a Pythagorean triple, so is

(Ba +2c + 1,3a + 2¢ + 2,4a + 3¢ + 2).

It follows that, from a given Pythagorean triple whose legs are succes-
sive natural numbers, we can obtain another such Pythagorean triple
with bigger sides. ‘

(h) Starting with the Pythagorean triple (3,4,5), find 5 more Pythagorean
triples whose legs are successive natural numbers and whose sides are
progressively bigger.

(i) Prove that in each Pythagorean triple: (1) at least 1 is a multiple of 4,
(2) at least one leg is a multiple of 3, (3) at least 1 side is a multiple of 5.

(j) Prove that for any natural number n > 2 there exists a Pythagorean
triple with a leg equal to n.

(k) Prove that there are only a finite number of Pythagorean triples having
a given leg a.

(1) Show that for any natural number n and fork =0,1,2,...,n -1,

[2n+l , 2k(22n-—2k — 1)’ 2k(22n—2k + 1)]
are Pythagorean triples. It follows that for each natural number n there

exist at least n different Pythagorean triples with the same leg a =
27+1 Tt can be shown, with more difficulty, that for each natural num-
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ber n there exist at least » different primitive Pythagorean triples with
a common leg.

(m) Let (ai,bi,ci), k = 1,2, ..., n, be n different primitive Pythagorean
triples. Set

sc=ag + by + ¢ and S=S8152...8,.

Now set a; = ais/sk, bi = bys/sk, ck = aslsyfork=1,2,. . ., n.
Show that (a;,b;,ct) is a Pythagorean triple with

ar+ by + ci=3s.

It now follows that for each natural number n there exist at least n
noncongruent Pythagorean triples with the same perimeter.

3.7 Irrational Numbers

‘(a) Prove that the straight line through the points (0,0) and (1, V?2) passes
through no point, other than (0,0), of the coordinate lattice.

(b) Show how the coordinate lattice may be used for finding rational ap-
proximations of V2.

(c) If p is a prime number, show that \/1_) is irrational.

(d) Show that logyy 2 is irrational.

(e) Generalize (d) by showing that log, b is irrational if g and b are positive
integers and 1 of them contains a prime factor not contained in the
other.

(f) Draw a 60-30 right triangle; mark off the longer leg, from the 30° angle
vertex, on the hypotenuse; draw a perpendicular to the hypotenuse
from the dividing point. Using this figure, formulate a geometrical
proof of the irrationality of V3.

(g) Prove that the sum (product) of a nonzero rational number and an
irrational number is an irrational number.

3.8 Algebraic Identities

Indicate how each of the following algebraic identities might be established
geometrically:

(@) (@ — b)? = a%? — 2ab + b?

(b)ab + c) =ab + ac

(€)(a + b)(c + d) = ac + bc + ad + bd

(d) a*> — b* = (a + b)(a — b)

(e) The statement of Proposition 9 of Book II of Euclid’s Elements is: If a
straight line is divided equally and also unequally, the sum of the
squares on the two unequal parts is twice the sum of the squares on
half the line and on the line between the points of section. From this
theorem, obtain the algebraic identity

(@ + b2 + (a — b)? = 2(a® + b?).
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3.9 Geometric Algebra

Let the lengths of 3 given line segments be a, b, 1 (a > b > 1). With straightedge
and compasses, construct line segments of lengths
(@a+ banda — b,
(b) ab,
() a/b,
(d) Va,
(e) a/n, n a positive integer,
(f) Vab,
(g) a'V'n, n a positive integer,
(h) (a® + b)l(a® + b?),
@) all + V2 + V3]12,
(j) (abcd)¥*, where ¢ and d are the lengths of 2 further given line seg-
ments,
(k) x = (a* + b? — ab)"2 . If we form a triangle with sides a, b, x, what is the
size of the angle between sides a and 5?
() Show that x = ab/(a? + b?)"? is equal to the altitude of a right triangle
with legs a and b.

3.10 Geometric Solution of Quadratic Equations

(a) Given a unit segment, solve the quadratic equation x> — 7x + 12 = 0 by
the Pythagorean method.

(b) Given a unit segment, solve the quadratic equation x> + 4x — 21 = 0 by
the Pythagorean method.

(c) With straightedge and compasses, divide a segment 4 into 2 parts such
that the difference of their squares shall be equal to their product.
(d) Show that in (c) the longer segment is the mean proportional between
the shorter segment and the whole line. The line segment is said to be

divided in extreme and mean ratio, or in golden section.

(e) A quadratic equation x> — gx + h = 0 is given. On a rectangular
Cartesian frame of reference, plot the points B:(0,1) and Q:(g,h). Draw
the circle with BQ as a diameter and let it cut the x-axis in M and N.
Show that the signed lengths of OM and ON represent the roots of the
given quadratic equation. This geometrical solution of quadratic equa-
tions appeared in Leslie’s Elements of Geometry with the remark:
‘“The solution of this important problem now inserted in the text, was
suggested to me by Mr. Thomas Carlyle, an ingenious young mathema-
tician, and formerly my pupil.”’

(f) Solve the quadratic equations x> — 7x + 12 =0and x? + 4x — 21 =0 by
Carlyle’s method.

(g) Again, the quadratic equation x? — gx + h = Q is given. On a rectangu-
lar Cartesian frame of reference, plot the points (k/g,0) and (4/g,2), and
let the join of these two points cut the unit circle of center (0,1) in
points R and S. Project R and S from the point (0,2) onto points (r,0)
and (s5,0) on the x-axis. Show that r and s are the roots of the given
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quadratic equation. This geometric solution of quadratic equations was
given by the German geometer Karl Georg Christian von Staudt (1798-
1867).

(h) Solve the quadratic equations x2 — 7x + 12 =0and x? + 4x — 21 =0 by
Staudt’s method.

(i) Verify the following geometrical solution of the quadratic equation
x2 — gx + h =0, h > 0. First construct V'h as the mean proportional
between 1 and 4. Then on AB = |g| as a diameter, construct a semicir-
cle and draw the vertical half-chord CD = V/h, where D is on AB. Then
AD and DB, each taken with signs the same as g, are the roots of the
quadratic equation. Solve, by this method, the quadratic equation x2 —
Tx+ 12 =0.

(j) Verify the following geometrical solution of the quadratic equation
x*— gx + h = 0, h <0. Draw a circle on AB = |g| as a diameter and
draw tangent AC = V/—h. Draw the diametral secant CDE through C to
cut the circle in D and E. Then CD and CE, taken with opposite signs
and with that of CE the same as that of g, represent the roots of the
quadratic equation. Solve, by this method, the quadratic equation x? +
4x — 21 = 0.

3.11 Transformation of Areas

(a) Draw an irregular hexagon and then construct, with straightedge and
compasses, a square having the same area.

(b) With straightedge and compasses, divide a quadrilateral ABCD into 3
equivalent parts by straight lines drawn through vertex A.

(c) Bisect a trapezoid by a line drawn from a point P in the smaller base.

(d) Transform triangle ABC so that the angle A is not altered, but the side
opposite the angle A becomes parallel to a given line MN.

(e) Transform a given triangle into an isosceles triangle having a given
vertex angle.

3.12 Regular Solids

(a) Show that there can be no more than 5 regular polyhedra.

(b) Find the volume and surface of a regular octahedron of edge e.

(c) For each of the 5 regular polyhedra, enumerate the number of vertices
v, edges e, and faces f, and then evaluate the quantity v — e + f. One of
the most interesting theorems relating to any convex (or more generally
any simply connected) polyhedron, is that v — e + f = 2. This may
have been known to Archimedes (ca. 225 B.C.), and was very nearly
stated by Descartes about 1635. Since Euler later independently an-
nounced it in 1752, the result is often referred to as the Euler-Descartes
formula.

(d) A cuboctahedron is a solid whose edges are obtained by joining to-
gether the midpoints of adjacent edges of a cube. Enumerate v, e, and f
for a cuboctahedron.
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(e) Consider a solid cube with regular pyramids built on a pair of opposite
faces as bases. Now let a hole with square cross section, and with its
axis on the line joining the vertices of the pyramids, be cut from the
solid. Evaluate v — ¢ + ffor this ring-shaped solid.!

3.13 Some Problems Concerning the Regular Solids

(a) In Section 3-9, the definition of regularity of a polyhedron involves 3
properties: regular faces, congruent faces, and congruent polyhedral
angles. Many textbooks on solid geometry do not give all 3 of the
defining properties. Show, by counterexamples, that all 3 properties
are necessary.

(b) From the 3 defining properties listed in (a), one can deduce the regular-
ity of the polyhedral angles. Do this, and then show that the 3 defining
properties can be replaced by only 2: regular faces and regular polyhe-
dral angles.

(c) The uninitiated will almost always intuitively believe that, when a regu-
lar dodecahedron (a solid having 12 faces) and a regular icosahedron (a
solid having 20 faces) are inscribed in the same sphere, the icosahedron
has the greater volume. Show that the reverse is actually the case, and
also show that when a cube (a solid having 6 faces) and a regular
octahedron (a solid having 8 faces) are inscribed in the same sphere,
the cube has the larger volume.

(d) Show that a regular dodecahedron and a regular icosahedron inscribed
in the same sphere have a common inscribed sphere.

(e) In Section 3-9, we noted that Kepler intuitively assumed that, of the 5
regular solids, for a given surface area, the icosahedron encloses the
largest volume. Is this so?

(f) A regular dodecahedron, a regular icosahedron, and a cube are in-
scribed in the same sphere. Prove that the volume of the dodecahedron
is to the volume of the icosahedron as the length of an edge of the cube
is to the length of an edge of the icosahedron.

3.14 Golden Section

A point is said to divide a line segment in extreme and mean ratio, or in golden
section, when the longer of the two segments formed is the mean proportional
between the shorter segment and the whole line. The ratio of the shorter seg-
ment to the longer segment is called the golden ratio. The Pythagoreans showed
considerable interest in the golden section and the golden ratio.
(a) Show that the golden ratio is (VS — 1)/2.
(b) The symbol of the Pythagorean brotherhood was the pentagram, or 5-
pointed-star, formed by the 5 diagonals of a regular pentagon. Prove
that each of the § sides of a pentagram divides into golden section the 2
sides of the pentagram that it intersects.

12 Construction patterns for 100 different solids can be found in Miles C. Hartley, Patterns of
Polyhedrons. Rev. Ed., Ann Arbor, Mich.: Edwards Brothers, 1957.
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(c) Let point G divide line segment AB in golden section, where AG is the
longer segment. On AB, mark off AH = GB. Show that H divides AG in
golden section.

(d) Construct, with straightedge and compasses, a regular pentagon, given
a side of the pentagon.

(e) Construct, with straightedge and compasses, a regular pentagon, given
a diagonal of the pentagon.

(f) Inscribe a regular pentagon in a given circle, using straightedge and
compasses alone.

3.15 Constructions of Vi by Theodorus

(a) Theodorus of Cyrene (born ca. 470 B.C.) constructed Vn as half the leg
of a right triangle whose hypotenuse is n + 1 and other leg is n — 1.
Justify this construction.

(b) It has been suggested that Theodorus also obtained Vn (2 = n < 17) by
constructing a spiral-like figure made up of a sequence of right triangles
having a common vertex, where the first triangle in the sequence is the
“isosceles right triangle of leg 1, and where in each succeeding right
triangle one leg is the hypotenuse of the previous triangle in the se-
quence and the other leg (opposite the common vertex) has length 1.
Show that the hypotenuse of the nth triangle in the sequence has length
Vn + 1.

(c) Show how the construction process of (b) might explain why
Theodorus cut off his consideration of Vz with n = 17.

3.16 An Interesting Relation

Prove geometrically that

B+234+ ... +n3=0+2+...+n)

Essay Topics

3/1 Possible reasons for the Greek introduction of deduction into mathe-
matics.

3/2  Stories of Thales’ prowess in engineering and astronomy, and their
credibility.

3/3 Pythagorean number mysticism.

3/4 The case for Pythagoreanism, as evidenced by modern physical for-
mulas.

3/5 Pythagoras justified, insofar as mathematics is concerned.

3/6 How the discovery of incommensurable magnitudes produced a crisis in
the development of mathematics.

3/7 The golden ratio in art and architecture.
3/8 Simple examples of applied geometry for an elementary geometry class.
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3/9 Early history of the regular solids, with patterns for their construction.
3/10 The debt of Greek mathematics to ancient Mesopotamia and Egypt.
3/11 Reasons for treating logistic and arithmetic as unrelated subjects.

3/12 Advantages and disadvantages of the Greek method of treating arith-
metic from a geometric standpoint.
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Chapter

DUPLICATION, TRISECTION, AND
QUADRATURE

4-1 The Period from Thales to Euclid

The first three centuries of Greek mathematics, commencing with the initial
efforts at demonstrative geometry by Thales about 600 B.C. and culminating
with the remarkable Elements of Euclid about 300 B.C., constitute a period of
extraordinary achievement. In the last chapter, we considered some of the
Pythagorean contributions to this achievement. Besides the lonian school
founded by Thales at Miletus and the early Pythagorean school at Crotona, a
number of mathematical centers arose and flourished at places and for periods
that were largely governed by Greek political history.

It was about 1200 B.C. that the primitive Dorian tribes moved southward
into the Greek peninsula, leaving their northern mountain fastnesses for more
favorable territory. Their chief tribe, the Spartans, subsequently developed the
city of Sparta. Many of the former inhabitants of the invaded region fled to Asia
Minor and the lonian islands of the Aegean Sea, where in time they established
Greek trading colonies. It was in these colonies, in the sixth century B.C., that
the lonian school was founded, Greek philosophy blossomed, and demonstra-
tive geometry was born.

Meanwhile, Persia had become a great military empire and, following the
inevitable expansionist program induced by a slave-based economy, conquered
the lonian cities and the Greek colonies of Asia Minor in 546 B.C. As aresult, a
number of Greek philosophers, like Pythagoras and Xenophanes, abandoned
their native land and moved to the prospering Greek colonies in southern Italy.
Schools of philosophy and mathematics developed at Crotona, under Pytha-
goras, and at Elea, under Xenophanes, Zeno, and Parmenides.

The yoke of oppression rested uneasily on the conquered lonian cities, and
in 499 B.C. a revolt was fomented. Athens, which was becoming a center of
Western civilization with political progress toward democracy, aided the revo-
lution by sending armies. Although the revolt was crushed, the incensed King
Darius of Persia decided to punish Athens. In 492 B.C., he organized a huge
army and navy to attack the mainland of Greece, but his fleet was destroyed in
a storm, and his land forces suffered expeditionary difficulties. Two years later,
the Persian armies penetrated Attica, where they were decisively defeated by
the Athenians at Marathon. Athens assumed the mantle of Greek leadership.

In 480 B.C. Xerxes, son of Darius, attempted another land and sea inva-
sion of Greece. The Athenians met the Persian fleet in the great naval battle of

105
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Salamis and won, and although the Greek land forces under Spartan leadership
were defeated and wiped out at Thermopylae, the Greeks overcame the Per-
sians the following year at Plataea and forced the invaders out of Greece. The
hegemony of Athens was consolidated, and the following half century of peace
was a brilliant period in Athenian history. This city of Pericles and Socrates
became the center of democratic and intellectual development. Mathematicians
were attracted from all parts of the Greek world. Anaxagoras, the last eminent
member of the Ionian school, settled there. Many of the dispersed Pythagore-
ans found their way to Athens, and Zeno and Parmenides, of ‘the Eleatic
school, went to Athens to teach. Hippocrates,! from the lonian island of Chios,
visited Athens and is reputed by ancient writers to have published the first
connected geometry there.

Peace came to an end in 431 B.C. with the start of the Peloponnesian War
between Athens and Sparta. This proved to be a long, drawn-out conflict.
Athens, at first successful, later suffered a devastating plague that killed off a
fourth of its population; finally, in 404 B.C., Athens had to accept humiliating
defeat. Sparta assumed political leadership, only to lose it, in 371 B.C., by
defeat at the hands of a league of rebellious city-states. During these struggles,
little progress was made in geometry at Athens, and once again development
came from the more peaceful regions of Magna Graecia. The Pythagoreans of
southern Italy had been allowed to return, purified of political association, and
a new Pythagorean school at Tarentum arose under the influence of the gifted
and much admired Archytas.

With the end of the Peloponnesian War, Athens, although reduced to a
minor political power, regained her cultural leadership. Plato was born in or
near Athens in 427 B.C., the year of the great plague. He studied philosophy
under Socrates there, and then set out upon his extensive wanderings for
wisdom. He studied mathematics under Theodorus of Cyrene on the African
coast and became an intimate friend of the eminent Archytas. Upon his return
to Athens around 387 B.C., he founded his famous Academy, an institution for
the systematic pursuit of philosophical and scientific inquiry. He presided over
his Academy for the rest of his life, dying in Athens in 347 B.C. at the venerable
age of eighty. Almost all the important mathematical work of the fourth century
B.C. was done by friends or pupils of Plato, making his Academy the link
between the mathematics of the earlier Pythagoreans and that of the later, long-
lived school of mathematics at Alexandria. Plato’s influence on mathematics
was not due to any mathematical discoveries he made, but rather to his enthusi-
astic conviction that the study of mathematics furnished the finest training for
the mind and, hence, was essential for the cultivation of philosophers and those
who should govern his ideal state. This explains the renowned motto over the
door of his Academy: Let no one unversed in geometry enter here. Because of
its logical element and the pure attitude of mind that he felt its study created,

! Not to be confused with Hippocrates of Cos, the famous Greek physician of antiquity.
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mathematics seemed of utmost importance to Plato; for this reason, it occupied
avalued place in the curriculum of the Academy. Some see in certain of Plato’s
dialogues what may be considered the first serious attempt at a philosophy of
mathematics.

Eudoxus, who studied under both Archytas and Plato, founded a school at
Cyzicus, in northern Asia Minor. Menaechmus, an associate of Plato and a
pupil of Eudoxus, invented the conic sections. Dinostratus, brother of Me-
naechmus, was an able geometer and a pupil of Plato. Theaetetus, a man of
unusual natural gifts, to whom we are probably indebted for much of the mate-
rial of Euclid’s tenth and thirteenth books, was another Athenian pupil of
Theodorus. Mention should also be made of Aristotle who, although not a
professed mathematician, was the systematizer of deductive logic and a writer
on physical subjects; some parts of his Analytica posteriora show an unusual
grasp of the mathematical method.
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with accented syllable indicated

CHAPTER FOUR / DUPLICATION, TRISECTION, AND QUADRATURE

Anaxag'oras Eudox'us Phi'lon
An'tiphon Euto'cius Pla'to
Apollo'nius Her'on Polyc'rates
Archime'des Hippar'chus Pro'clus
Archy'tas Hippa'sus Ptol'emy
Aristae’'us Hip'pias Pythag'oras
Avristar'chus Hippoc'rates Slmpll'cius
Aristotle Hypa'tia Soc'rates
Co'non Hyp'sides So'lon
Democ'ritus lam'blichus Tha'les
Dinos'tratus Menaech'mus Theaete'tus
Di'ocles Menela'us Theodo'rus
Diophan'tus Metrodor'us Theodo'sius
Dosi'theus Nicom'achus The'on
Eratos'thenes Nicome'des Thymar'idas
Eu‘clid Pap'pus Xenoc'rates
Eude'mus Philola'us Ze'no
PLATO

(David Smith Collection)

4 -2 Lines of Mathematical Development

One can notice three important and distinct lines of development during the
first 300 years of Greek mathematics. First, we have the development of the
material that ultimately was organized into the Elements, ably begun by the
Pythagoreans and then added to by Hippocrates, Eudoxus, Theodorus,
Theaetetus, and others. We have already considered portions of this develop-
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ARISTOTILE
(Brown Brothers)

ment and shall return to it in the next chapter. Second, there is the development
of notions connected with infinitesimals and with limit and summation pro-
cesses that did not attain final clarification until after the invention of the
calculus in modern times. The paradoxes of Zeno, the method of exhaustion of
Antiphon and Eudoxus, and the atomistic theory associated with the name of
Democritus belong to this second line of development; these are discussed
more logically in the early sections of Chapter 11 devoted to the origins of the
calculus.

Any student or instructor desirous of adhering strictly to chronological
order can, at this point, turn to Sections 11-2 and 11-3.

The third line of development is that of higher geometry, or the geometry of
curves other than the circle and straight line, and of surfaces other than the
sphere and plane. Curiously enough, most of this higher geometry originated in
continued attempts to solve three now famous construction problems. This
chapter discusses these three famous problems.

4-3 The Three Famous Problems

The three famous problems are the following:
1. The duplication of the cube, or the problem of constructing the edge of
a cube having twice the volume of a given cube.
2. The trisection of an angle, or the problem of dividing a given arbitrary
angle into three equal parts.
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3. The quadrature of the circle, or the problem of constructing a square

having an area equal to that of a given circle.

The importance of these problems lies in the fact that they cannot be
solved, except by approximation, with straightedge and compasses, although
these tools successfully serve for the solution of so many other construction
problems. The energetic search for solutions to these three problems pro-
foundly influenced Greek geometry and led to many fruitful discoveries, such
as that of the conic sections, many cubic and quartic curves, and several
transcendental curves. A much later outgrowth was the development of por-
tions of the theory of equations concerning domains of rationality, algebraic
numbers, and group theory. The impossibility of the three constructions, under
the self-imposed limitation that only the straightedge and compasses could be
used, was not established until the nineteenth century, more than 2000 years
after the problems were first conceived.

The great stimulation to the development and creation of new mathematics
furnished by the continued efforts to solve the three famous problems of antig-
uity illustrates the heuristic value of attractive, unsolved problems in mathe-
matics.

4-4 The Eudidean Tools

It is important to be clear as to just what we are permitted to do with the
straightedge and compasses. With the straightedge, we are permitted to draw a
straight line of indefinite length through any two given distinct points. With the
compasses, we are permitted to draw a circle with any given point as center
and passing through any given second point. The drawing of constructions
with straightedge and compasses, viewed as a game played according to these
two rules, has proved to be one of the most fascinating and absorbing games
ever devised. One is surprised at the really intricate constructions that can be
accomplished in this manner; accordingly, it is hard to believe that the seem-
ingly simple construction problems presented in Section 4-3 cannot also be so
accomplished.

Since the postulates of Euclid’s Elements restrict the use of the straight-
edge and compasses in accordance with the above rules, these instruments, so
used, have become known as Euclidean tools. Note that the straightedge is to
be unmarked. We shall see that with a marked straightedge, it is possible to
trisect a given angle. Also, we notice that the Euclidean compasses differ from
our modern compasses, for with the modern compasses we are permitted to
draw a circle having any point C as center and any segment AB as radius. In
other words, we are permitted to transfer the distance AB to the center C, using
the compasses as dividers. The Euclidean compasses, on the other hand, may
be supposed to collapse if either leg is lifted from the paper. It might seem that
the modern compasses are somewhat more powerful than the Euclidean, or
collapsing, compasses. Curiously enough, the two are equivalent tools (see
Problem Study 4.1).
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4-5 Duplication of the Cube

There is evidence that the problem of duplicating a cube may have originated in
the words of some mathematically unschooled ancient Greek poet (perhaps
Euripides) who represented the mythical King Minos as dissatisfied with the
size of a tomb erected to his son Glaucus. Minos ordered that the tomb be
doubled in size. The poet then had Minos add, incorrectly, that this could be
accomplished by doubling each dimension of the tomb. This faulty mathematics
on the part of the poet led the geometers to take up the problem of finding how
one can double a given solid while keeping the same shape. No progress seems
to have been made on the problem until sometime later, when Hippocrates
discovered his famous reduction, which we give below. Again, still later, it is
told that the Delians were instructed by their oracle that, to get rid of a certain
pestilence, they must double the size of Apollo’s cubical altar. The problem
reputedly was taken to Plato, who submitted it to the geometers. It is this latter
story that led the duplication problem frequently to be referred to as the Delian
problem. Whether the story is true or not, the problem was studied in Plato’s
Academy, and there are higher geometry solutions attributed to Eudoxus,
Menaechmus, and even (though probably erroneously) to Plato himself.

The first real progress in the duplication problem was, no doubt, the reduc-
tion of the problem by Hippocrates (ca. 440 B.C.) to the construction of two
mean proportionals between two given line segments of lengths s and 2s. If we
denote the two mean proportionals by x and y, then

S:x=Xx:y=y:2s.

From these proportions, we have x? = sy and y? = 2sx. Eliminating y, we find
that x3 = 2s3; thus x is the edge of a cube having twice the volume of the cube
on edge s.

After Hippocrates made his reduction, subsequent attempts at duplicating
the cube took the form of constructing two mean proportionals between two
given line segments. One of the earliest, and certainly one of the most remark-
able, higher geometry solutions in this form was given by Archytas (ca. 400
B.C.). His solution rests on finding a point of intersection of a right circular
cylinder, a torus of zero inner diameter, and a right circular cone! The solution
sheds some light on the unusual extent to which geometry must have been
developed at this early date. The solution by Eudoxus (ca. 370 B.C.) is lost.
Menaechmus (ca. 350 B.C.) gave two solutions of the problem and, as far as is
known, invented the conic sections for the purpose. A later solution, using a
mechanical contrivance, is credited to Eratosthenes (ca. 230 B.C.), and another
of about the same time to Nicomedes. A still later solution was offered by
Apollonius (ca. 225 B.C.). Diocles (ca. 180 B.C.) invented the cissoid curve to
obtain the desired end. And, of course, many solutions using higher plane
curves have been devised in more recent times.

A number of the solutions mentioned above may be found in the Problem
Studies at the end of the chapter. To illustrate the spirit of the attempts, let us
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reproduce the one credited to Plato by Eutocius. Since the solution is by
mechanical means, and since it is known that Plato objected to such methods, it
is felt that the ascription to Plato is erroneous.

Consider two triangles (see first part of Figure 30), CBA and DAB, right
angled at B and A, respectively, and lying on the same side of the common leg
AB. Let the hypotenuses AC and BD of the triangles intersect perpendicularly
in P. From the similar triangles CPB, BPA, APD, it follows that

PC.PB = PB.PA=

Thus, PB and PA are the two mean proportionals between PC and PD. It
follows that the problem is solved if a figure can be constructed having PD =
2 (PC).The second part of Figure 30 shows how such a figure can be drawn by
mechanical means. Draw two perpendicular lines intersecting in P and mark off
PC and PD on them, with PD - 2(PC). Now place a carpenter’s square, with
inner edge RST, on the figure so that SR passes through D and the vertex S of
the right angle lies on CP produced. On ST, slide a right triangle UVW, with leg
VW on ST, until leg VU passes through C. Now manipulate the apparatus2until
V falls on DP produced.

4 -6 Trisection of an Angle

Of the three famous problems of Greek antiquity, the trisection of an angle is
pre-eminently the most popular among the mathematically uninitiated in Amer-
ica today. Every year the mathematics journals and the members of the mathe-
matics teaching profession of the country receive many communications from
“angle trisectors,” and it is not unusual to read in a newspaper that someone
has finally “solved” the elusive problem. The problem is certainly the simplest

2 For an improved form of this apparatus see, for example, Richard Courant and H. E.
Robbins, What Is Mathematics? p. 147.
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FIGURE 31

one of the three famous problems to comprehend, and since the bisection of an
angle is so very easy, it is natural to wonder why trisection is not equally easy.

The multisection of a line segment with Euclidean tools is a simple matter,
and it may be that the ancient Greeks were led to the trisection problem in an
effort to solve the analogous problem of multisecting an angle. Or perhaps,
more likely, the problem arose in efforts to construct a regular ninesided poly-
gon, where the trisection of a 60° angle is required.

In dealing with the trisection problem, the Greeks seem first to have re-
duced it to what they called a verging problem. Any acute angle ABC (see
Figure 31) may be taken as the angle between a diagonal BA and a side BC of a
rectangle BCAD. Consider a line through B cutting CA in E and DA produced in
F, and such that EF = 2(BA). Let G be the midpoint of EF. Then

EG = GF = GA = BA,
whence
XABG = XAGB = XGAF + XGFA = 2XGFA = 2XGBC,

and BEF trisects angle ABC. Thus, the problem is reduced to that of construct-
ing a straight-line segment EF of given length 2(BA) between AC and the
prolongation of DA so that FE verges toward B.

If, contrary to Euclidean assumptions, we permit ourselves to mark, on
our straightedge, a segment E'F’ = 2(BA), and then to adjust the straightedge
so that it passes through B and has the marked points E’ and F' on AC and the
prolongation of DA, the angle ABC will be trisected. This disallowed use of the
straighted