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(3 0 0 0  b .c . t o  a . d . 2 6 0 )
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(1 0 3 0  b .c . t o  a . d . 1 644)
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Essentially empirical, Significant Largely isolated from Introduction of Hindu-
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(T h a le s , 60 0  b .c .;
development (b e fo r e  a .d . 250)

numeral systems P y th a g o r a s , 540  b .c .) Decimal numeral Negative numbers and
(d ec im a l an d

Start, of
system, rod numerals invention of zero

se x a g e s im a l) magic squares (from symbol

Simple arithmetic,
number theory 

(P y th a g o r e a n  S c h o o l,
earliest time) (ea r ly  c e n tu r ie s  a .d .)

practical geometry 540 b .c .) Chou-pe'i, oldest of 
Chinese mathematical

Development of early 
computing algorithms

Mathematical tables, 
collections of

Discovery of 
incommensurable classics 

(300  b .c .?)

(A.D. 9 0 0 -1 0 0 0 )

mathematical magnitudes Syncopated algebra,
problems (P y th a g o r e a n  S c h o o l, Arithmetic in indeterminate

Chief primary
b e fo r e  340  b .c .) Nine Sections equations
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PREFACE

Advantage has been taken in this sixth edition to include a large number of 
improvements, ranging from historical amplifications and updatings to the in
troduction of some new sections and the expansion of some old ones. Much 
new illustrative material has been added and women in mathematics have been 
given a more deserving attention.

There is scarcely a section of the 15 chapters of the book that has not 
undergone some amplification and/or updating—these improvements are far 
too numerous to list here. Among the more major changes are a considerable 
expansion of the discussion of the contents of Euclid’s Elements in Chapter 5, 
the entire treatment of Chinese mathematics in Chapter 7, the treatment of 
logarithms in Chapter 9, an entirely new section on Maria Agnesi and the 
Marquise du Chatelet in Chapter 12, a consideration of the contributions of 
Argand and Wessel to the geometric representation of complex numbers in 
Chapter 13, a new section in Chapter 13 devoted to Sophie Germain and Mary 
Somerville, another new section in Chapter 13 devoted to Bolzano, a consider
able expansion in Chapter 13 of the material on the liberation of geometry in the 
early nineteenth century, a complete rewriting and expansion of the section on 
differential geometry in Chapter 14, the addition of material on Grace Chisholm 
and Charlotte Scott in Chapter 14, and a new concluding section of the book 
devoted to a prognostication of the future of mathematics.

A very significant addition to the book are the Cultural Connections writ
ten by Jamie Eves. These have been supplied at the request of those earlier 
users of the book who have felt that a more in-depth cultural setting of the 
various eras and times of the history of mathematics would be beneficial to the 
student. A wise student will peruse each Cultural Connection before embarking 
upon the historical material of the associated chapter.

Ten new pieces of pictorial material have been added to the book and 16 
new portraits of mathematicians have been added (bringing the total number of 
such portraits to 76). Finally, the Bibliography has been significantly updated.

One desiring a more detailed description of many of the features of the 
book may consult the Introduction that immediately precedes Chapter 1.

As with the previous editions, it is a pleasure once again to express my 
appreciation of the very warm reception given to the book by both school 
teachers and college professors. I especially want to thank all who took the 
time and trouble to write me encouraging words and to send me suggestions for 
further betterment of the book. It is largely from a carefully filed collection of 
these suggestions that each new edition has been fashioned.

There are many others who have been particularly helpful. Among these 
are Duane E. Deal of Ball State University, Florence D. Fasanelli of Sidwell
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PREFACE

Friends School, David E. Kullman of Miami University, and Gregorio Fuentes 
of the University of Maine, each of whom made valuable suggestions that have 
led to improvement of the text. Of these reviewers, I want to extend special 
thanks to Professor Deal, who unstintingly gave so much of his time toward 
supplying me with excellent and scholarly material enhancing many parts of the 
book. Ouyang Jiang and Zhang Liangjin of Taiwan furnished helpful advice and 
valuable material concerning the mathematics of ancient China. The Bookstore 
and Library of the University of Maine at Machias and the Article Retrieval 
Service of the University of Maine at Orono were very helpful.

It gives me special pleasure to thank my son Jamie H. Eves for embellish
ing the book with his Cultural Connections. It has been a great advantage to 
benefit from his wide, deep, and enthusiastic scholarship in the field of history.

And, finally, thanks go to the efficient folks of Saunders College Publishing 
for their splendid help and cooperation.

Fox Hollow, Lubec, Maine H. E.
Summer, 1989
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INTRODUCTION

This book differs from many existing histories of mathematics in that it is 
not primarily a work for the reference shelf, but an attempt to introduce the 
history of mathematics to undergraduate college mathematics students. There
fore, in addition to the historical narrative, there are also pedagogical devices 
designed to assist, interest, and involve the student. Let us describe some of 
these devices and comment on other characteristics of this work.

1. In the belief that a college course in the history of mathematics should 
be primarily a mathematics course, an effort has been made to inject a consid
erable amount of genuine mathematics into this book. It is hoped that a student 
using this book will learn much mathematics, as well as history.

2. Perhaps chief among the pedagogical devices of the book are the Prob
lem Studies listed at the conclusion of each chapter. Each Problem Study 
contains a number of related problems and questions concerning some part of 
the material of the associated chapter. It is felt that by discussing a number of 
these Problem Studies in class and assigning others to be worked out at home, 
the course will become more concrete and meaningful for the student, and the 
student’s grasp of a number of historically important concepts will crystallize. 
For example, the student can gain a better appreciation and understanding of 
numeral systems by actually working with the systems. Again rather than just 
reading that the ancient Greeks solved quadratic equations geometrically, the 
student can solve some by the Greek method and, in doing so, attain a deeper 
appreciation of Greek mathematical achievement. Some of the Problem Studies 
concern themselves with historically important problems and procedures, 
others furnish valuable material for the future teacher of either high school or 
college mathematics, still others are purely recreational, and many are de
signed to lead to short “junior” research papers by the students. A large 
number of instructors in both high schools and colleges have used material from 
these Problem Studies to enliven and augment various courses that they teach. 
The Problem Studies have been extensively employed by college mathematics 
clubs, and many school students have used them in high-school mathematics 
fairs.

3. There are many more Problem Studies than can be covered in either one 
or two semesters, and they are of varying degrees of difficulty. This permits the 
instructor to select problems that fit his or her students’ abilities and to vary 
assignments from year to year.

4. At the end of the book is a collection of hints and suggestions for the 
solution of many of the Problem Studies. It is hoped that these hints and

1
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suggestions are not so broad as to “ spoil” the problems. A good problem 
should be more than a mere exercise; it should be challenging and not too easily 
solved by the student, and it should require some “dreaming” time.

5. It is of interest that, on the grounds that problems constitute the heart of 
mathematics,1 problem courses have been given in some colleges based solely 
upon the Problem Studies of this book.

6. Many instructors of the history of mathematics like to assign essay 
papers; therefore, at the end of each chapter, immediately following the Prob
lem Studies, some Essay Topics are listed that relate to material covered in that 
chapter. These topics are merely suggested; an instructor can easily devise an 
extended list of his or her own. An assigned Essay Topic should require the 
student to read more than the textbook; the student should find it necessary to 
delve into some of the literature listed in the chapter’s Bibliography. A number 
of these Essay Topics have led to excellent term papers, many to masters 
theses, and several to student papers that received publication in mathematics 
and pedagogical journals.

7. It is axiomatic that the history of a subject cannot be properly appreci
ated without at least a fair acquaintance with the subject itself.2 Accordingly, 
an attempt has been made to explain the material under consideration, espe
cially in the later chapters, where the subject matter is more advanced. This is 
one of the ways a beginning student can learn a considerable amount of mathe
matics, as well as history, from a study of this book.

8. One will notice that terms that are defined in the text are made promi
nent by appearing in boldface type.

9. The historical material is presented in essentially chronological order, 
with occasional departures motivated either by pedagogical and logical consid
erations or by the desires of some readers and instructors. A couple of places 
where a more direct chronological development may be desired are clearly 
marked, and instructions are given for carrying out the rearrangement.

10. The reader will find that a knowledge of simple arithmetic, high school 
algebra, geometry, and trigonometry is generally sufficient for a proper under
standing of the first nine chapters. A knowledge of the rudiments of plane 
analytic geometry is needed for Chapter 10, and a knowledge of the basic 
concepts of the calculus is required for the remaining chapters (11 through 15). 
Any concepts or developments of a more advanced nature appearing in the 
book are, it is hoped, sufficiently explained at the points where they are intro
duced. A certain amount of mathematical maturity is desirable, and whether

1 See P. R. Halmos, “The heart of mathematics,” The American Mathematical Monthly 87 
(1980): 519-524.

2 It is interesting and pertinent that, conversely, a true appreciation of a branch of mathematics 
is impossible without some acquaintance with the history of that branch, for mathematics is largely 
a study of ideas, and a genuine understanding of ideas is not possible without an analysis of origins. 
A particularly obvious example of this observation is the study of non-Euclidean geometry. It was 
J. W. L. Glaisher who aptly said, “I am sure that no subject loses more than mathematics by any 
attempt to dissociate it from its history.”
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nine, ten, eleven, or all fifteen chapters are to be covered depends upon class 
time and the students’ previous preparation. Here the Problem Studies form an 
elastic element, for one can include or omit as many problems as convenience 
and time dictate.

11. Frankly, it is not easy to cover the history of mathematics from antiq
uity up through modern times in a one-semester course that meets three hours a 
week; to do so requires too much reading on the part of the student and almost 
complete neglect of the problem material. An ideal situation is to offer a one- 
year course in the subject, covering Part 1 (the first eight chapters), or Part 1 
along with selections from Chapters 9, 10, and 11 in the first semester, and Part 
2, or the remaining material, in the second semester. The advanced students 
and the mathematics majors would enroll for both semesters; the elementary 
students and the prospective teachers of high-school mathematics might enroll 
for only the first semester.

12. The history of mathematics is so vast that only an introduction to the 
subject is possible at the undergraduate college level, even in a two-semester 
course. Accordingly, a Bibliography has been appended to each chapter that 
deals with the material of that chapter. A General Bibliography, which immedi
ately follows the final chapter, applies to all, or almost all, chapters. It must be 
realized that the General Bibliography, extensive as it is, makes no pretense to 
completeness and is intended merely to serve as a starting point for any search 
for further material. Many periodical references are furnished in the book at 
appropriate places in footnotes. An excellent source of periodical references 
appears near the end of the General Bibliography; important references of this 
sort are very numerous and will soon be encountered by an inquiring student. 
To accommodate the general undergraduate student, the references in the Bib
liographies are generally accessible and in English.

13. A great pitfall in writing a book such as this one lies in including more 
material than can be covered and/or digested within the time limits of the 
course; a writer simply knows too much about his or her subject. The delicate 
balance between a too brief and a too voluminous treatment is not easy to 
maintain, and is perhaps achieved more through teaching experience than any
thing else. No one is more aware than the author of the many topics that, 
because of the purpose and clientele of the book, had to be slighted or omitted. 
If an instructor feels deeply that certain omitted material should be included in 
his course, by all means introduce it if it can be managed. A textbook is never 
meant to replace an instructor or to interfere with creative teaching; it is merely 
offered as an aid.

14. The Cultural Connections supplied by Jamie H. Eves may be included 
or omitted at the discretion of the instructor. They have been inserted for those 
who feel that such connections are important because mathematics did not 
develop in a vacuum. Some of the material presented in the Cultural Connec
tions has been repeated in the text proper since some instructors may elect to 
omit the Cultural Connections.
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Cultural Connection

THE HUNTERS OF THE SAVANNA
The Stone A ge— ca. 5,000,000-3000 B.C.
(to accompany Chapter One)

he first people were hunters of small game and gatherers of fruits, nuts, and 
roots. They lived, for the most part, in the open spaces of the savannas, seas of 
tall grass that covered most of the habitable portions of Africa, southern Eu
rope, southern Asia, and Middle America. They were a migratory people, 
constantly moving from place to place in search of food and in response to 
climatic flux. Their culture was forged in the crucible of a harsh, hostile world 
where life was short and the search for food an unabating constant. Everything 
was geared toward the hunt: their tools of stone, wood, bone, and shell were 
designed for either hunting or food preparation; the fire they tamed was used 
for cooking as well as keeping warm; their art depicted scenes of hunts; their 
religion was a fearful attempt to understand and control the raw wilderness 
around them and only dimly grappled with the concept of ultimate destiny.

We cannot say with certainty when the Stone Age began. It was perhaps as 
early as 5,000,000 B.C., when Australopithecus, a four-foot-tall ancestor of 
humanity who lived in Africa, might have made crude stone choppers and 
cutting flakes by striking one pebble against another. Certainly by approxi
mately 400,000 B.C., Homo erectus in China routinely constructed stone chop
ping tools, flakes, and scrapers. Homo erectus also moved out of the storms of 
the open savanna into caves near modern Peking, an innovation continued by 
their cousins, Homo neanderthalensis, who lived in Europe and the Middle 
East between approximately 110,000 B.C. and 35,000 B.C. Homo neandertha
lensis heated their caves with fire and cooked the game they had captured on 
the savanna. They preserved records of their hunts in detailed, elegant wall 
paintings. By 30,000 B.C., Homo sapiens (modem people) replaced cave dwell
ings with mobile structures, wooden lean-tos and huts of animal skins, that they 
could take with them on the hunt. At about the same time, they also began to 
carve stone fertility figurines and other religious icons.

We cannot precisely fix the end of the Stone Age. Stone Age cultures 
persisted in some parts of the world into the nineteenth and twentieth centu
ries. Most of southern Africa, Australia, and the Americas were peopled with 
Stone Age hunter/gatherers when encountered by European explorers in the 
sixteenth and seventeenth centuries. In the mid-twentieth century, lumbeijacks 
chanced upon the hitherto “undiscovered” Tasadays, a Stone Age forest tribe 
living deep in the interior of one of the Philippine islands. Historical conven

6
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tion, however, ends the Stone Age in approximately 3000 B.C., when metal
smelting city cultures emerged in the Middle East, India, and China.

Like all historical epochs, the Stone Age was not static. Society and cul
ture changed over time to adapt to a changing world. Historians diagram this 
change by dividing the Stone Age into three periods. During the Paleolithic 
period, or Old Stone Age (ca. 5,000,000-10,000 B.C.), Homo sapiens evolved 
from smaller, slighter creatures and developed the basic socioeconomic struc
tures of the Stone Age. In the Mesolithic period, or Middle Stone Age (ca. 
10,000-7000 B.C.), the hunter/gatherer economy of the Stone Age crystallized. 
In the Neolithic period, or New Stone Age (ca. 7000-3000 B.C.), the Stone Age 
began to fade into the Bronze and Iron Ages, as people began to turn away from 
a hunter/gatherer society to one involving early forms of agriculture and the 
domestication of animals. The Paleolithic era was a transition from a prehuman 
world to a society of human hunters. The Neolithic period was also a transition, 
from a society of hunters to one of farmers.

Because it was a time when almost all people were migratory hunters, the 
Stone Age was a period of limited scientific and intellectual advancement. This 
is not because the people of the Stone Age lacked intelligence. By 20,000 B.C., 
the hunters of the savanna had developed a complex culture that included tool 
making, language, religion, art, music, and commerce. Progress in mathematics 
and science, however, was hampered by the social and economic structures of 
those early times. Because Stone Age people were hunters rather than farmers, 
they had to move with the seasons, following the migrations of animals and the 
seasonal availability of naturally growing fruits and nuts. They were able to 
carry along with them only small, easily transported tools, clothing, and per
sonal items. There was no room in a hunter/gatherer society for the bulky 
equipment needed to forge metals, or for voluminous libraries; hence, Stone 
Age people did not develop metal tools or a written language. There were no 
cities, as the savannas could provide enough food to support only about forty 
persons per hundred square miles. In the busy, often short life of a hunter, 
there was no leisure time to ponder questions of philosophy or science. To be 
sure, some very basic scientific progress took place during the Stone Age. 
Stone Age people traded with one another, and they needed to keep track of 
each family’s share of the hunt; both activities required the necessity of count
ing, a prelude to scientific thinking. Some Stone Age people, like the Sioux 
Indians, had pictographic calendars that recorded several decades of history. 
Anything beyond the most primitive counting systems, however, had to wait 
until the development of full-scale, intensive agriculture, which required more 
sophisticated arithmetic.

In the final millennia of the Stone Age, during the Neolithic era, humanity 
moved from simply gathering naturally growing wild fruits, nuts, roots, and 
vegetables to actually planting seeds and cultivating crops. Neolithic men and 
women were still primarily hunters and gatherers, however, and their small, 
tangled fields would have resembled unweeded vegetable gardens more than 
farms. These late-Stone Age gardens probably looked very much like the corn
fields planted by American Indians and described by European explorers in the



sixteenth century, with several different crops planted haphazardly in the same 
field.

To recapitulate, the Stone Age lasted several million years, from perhaps 
as early as 5,000,000 B.C. until about 3000 B.C. In a world of vast grasslands 
and savannas where wild game was abundant, people were chiefly hunters and 
gatherers. Their lives were harsh and difficult, so early people were too busy 
staying alive to develop scientific traditions. After 3000 B.C., densely popu
lated farming communities emerged along the Nile River in Africa, along the 
Tigris and Euphrates Rivers in the Middle East, and along the Yellow River in 
China. These communities developed cultures in which science and mathemat
ics could begin to develop.

8 CULTURAL CONNECTION I /  THE HUNTERS OF THE SAVANNA



Chapter

NUMERAL SYSTEMS

1 -1  Primitive Counting

In giving a chronological account of the development of mathematics, one is 
beset with the problem of where to begin. Should one start with the first me
thodical deductions in geometry traditionally credited to Thales of Miletus 
around 600 B.C.? Or should one go back further and start with the empirical 
derivation of certain mensuration formulas made by the pre-Greek civilizations 
of Mesopotamia and Egypt? Or should one go back even further and start with 
the first groping efforts made by prehistoric man to systematize size, shape, 
and number? Or can one say mathematics originated in prehuman times in the 
meager number sense and pattern recognition of certain animals, birds, and 
insects? Or even before this, in the number and spatial relations of plants? Or 
still earlier, in the spiral nebulae, the courses of planets and comets, and the 
crystallization of minerals in preorganic times? Or was mathematics, as Plato 
believed, always in existence, merely awaiting discovery? Each of these possi
ble origins can be defended.1

Since it is man’s primal efforts to systematize the concepts of size, shape, 
and number that are popularly regarded as the earliest mathematics, we shall 
commence there, and begin with the emergence in primitive man of the concept 
of number and the process of counting.

The number concept and the counting process developed so long before 
the time of recorded history (there is archeological evidence that counting was 
employed by man as far back as 50,000 years ago) that the manner of this 
development is largely conjectural. It is not difficult, though, to imagine how it 
probably came about. It seems fair to argue that humans, even in most primi
tive times, had some number sense, at least to the extent of recognizing more 
and less when some objects were added to or taken from a small group, for 
studies have shown that some animals possess such a sense. With the gradual 
evolution of society, simple counting became imperative. A tribe had to know 
how many members it had and how many enemies, and a man found it neces
sary to know if his flock of sheep was decreasing in size. Probably the earliest 
way of keeping a count was by some simple tally method, employing the 
principle of one-to-one correspondence. In keeping a count on sheep, for exam-

1 For a start, see D. E. Smith, History o f Mathematics, vol. 1, chap. 1, and Howard Eves, In 
Mathematical Circles (Items 1°, 2°, 3°, 4°), which are cited in the General Bibliography at the end of 
the book.

9
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Two views of the Ishango bone, over 8000 years old and found at Ishango, on the 
shore of Lake Edward in Zaire (Congo), showing numbers preserved by notches cut 
in the bone.
(Dr. de Heinzelin.)

A Peruvian Indian census quipu, showing numbers recorded by knots in 
cord. Larger knots are multiples of smaller ones, and cord color may 
distinguish male from female.
(Collection Musee de L’Homme, Paris.)
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pie, one finger per sheep could be turned under. Counts could also be main
tained by making collections of pebbles or sticks, by making scratches in the 
dirt or on a stone, by cutting notches in a piece of wood, or by tying knots in a 
string. Then, perhaps later, an assortment of vocal sounds was developed as a 
word tally against the number of objects in a small group. And still later, with 
the refinement of writing, an assortment of symbols was devised to stand for 
these numbers. Such an imagined development is supported by reports of an
thropologists in their studies of present-day primitive peoples.

£1000 r— v-notch a hand in width

£100 r —= = = ^ ) curved notch a thumb in width

£20 d —Zd)v-notch a little finger in width

£1 CZ ~ZD v-notch a ripe barleycorn in width

s rdHd smaller but still seen as a notch

d ------ a cut with no wood removed

£50 ------------ J V V x l 3 note the half-notch for £10

Drawing showing the official system of notching used on twelfth- 
century exchequer tallies of the British Royal Treasury. Such 
tallies continued in use until 1826.

In the earlier stages of the period of vocal counting, different sounds 
(words) were used, for example, for two sheep and two men. (Consider, for 
example, in English: team of horses, span of mules, yoke of oxen, brace of 
partridge, pair of shoes, couple of days.) The abstraction of the common prop
erty of two, represented by some sound considered independently of any con
crete association, probably was a long time in arriving. Our present number 
words in all likelihood originally referred to sets of certain concrete objects, but 
these associations, except for that perhaps relating five and hand, are now lost 
to us.2

_2 For an interesting alternative to the classical evolutionary view of nonliterate peoples, see 
Marcia and Robert Ascher, “ Euthomathematics,” History o f Science 24, no. 2 (June 1980): 125— 
144.
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1 -2  Number Bases

When it became necessary to make more extensive counts, the counting pro
cess had to be systematized. This was done by arranging the numbers into 
convenient basic groups, the size of the groups being largely determined by the 
matching process employed. Essentially, the method was like this. Some num
ber b was selected as a base (also called radix or scale) for counting, and names 
were assigned to the numbers 1, 2, . . . , b. Names for numbers larger than b 
were then given by combinations of the number names already selected.

Since fingers furnished such a convenient matching device, it is not sur
prising that 10 was ultimately chosen far more often than not for the number 
base b . Consider, for example, our present number words, which are formed on 
10 as a base. We have the special names one, two, . . . , ten for the numbers 1, 
2, . . . , 10. When we come to 11, we say eleven, which, the philologists tell us, 
derives from ein lifon, meaning “one left over,” or one over ten. Similarly, 
twelve is from twe lif (“ two over ten”). Then we have thirteen (“three and 
ten”), fourteen (“four and ten”), up through nineteen (“nine and ten”). Then 
comes twenty (twe-tig, or “two tens”), twenty-one (“two tens and one”), and 
so on. The word hundred, we are told, comes originally from a term meaning 
“ten times” (ten).

There is evidence that 2, 3, and 4 have served as primitive number bases. 
For example, there are natives of Queensland who count “one, two, two and 
one, two twos, much,” and some African pygmies count “a, oa, ua, oa-oa, oa- 
oa-a, and oa-oa-oa” for 1, 2, 3, 4, 5, and 6. A certain tribe of Tierra del Fuego 
has its first few number names based on 3, and some South American tribes 
similarly use 4.

As might be expected, the quinary scale, or number system based on 5, was 
the first scale to be used extensively. To this day, some South American tribes 
count by hands: “one, two, three, four, hand, hand and one,” and so on. The 
Yukaghirs of Siberia use a mixed scale by counting “one, two, three, three and 
one, five, two threes, one more, two three-and-ones, ten with one missing, 
ten.” German peasant calendars used a quinary scale as late as 1800.

There is evidence that the duodecimal scale, or number system based on 
12, may have been used in some societies during prehistoric times, chiefly in 
relation to measurements. Such a base may have been suggested by the approx
imate number of lunations in a year, or perhaps because 12 has so many integral 
fractional parts. At any rate, we have 12 as the number of inches in a foot, 
ounces in the ancient pound, pence in a shilling, lines in an inch, hours about 
the clock, months in a year, and the words dozen and gross used as higher 
units.

The vigesimal scale, or number system based on 20, has been widely used, 
and recalls man’s barefoot days. This scale was used by American Indian 
peoples, and is best known in the well-developed Mayan number system. Celtic 
traces of a base 20 are found in the French quatre-vingt instead of huitante, and 
quatre-vingt-dix instead of nonante. Traces are also found in Gaelic, Danish, 
and Welsh. The Greenlanders use “one man” for 20, “two men” for 40, and so 
on. In English we have the frequently used word score.
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The sexagesim al scale, or number system based on 60, was used by the 
ancient Babylonians, and is still used when measuring time and angles in min
utes and seconds.

1-3 Finger Numbers and Written Numbers
In addition to spoken numbers, finger num bers were at one time widely used. 
Indeed, the expression of numbers by various positions of the fingers and hands 
probably predates the use of either number symbols or number names. Thus, 
the early written symbols for 1, 2, 3, and 4 were invariably the suitable number 
of vertical or horizontal strokes, representing the corresponding number of 
raised or extended fingers, and the word digit (that is, “finger”) for the num
bers 1 through 9 can be traced to the same source.

Finger numbers from Pacioli’s Suma of 1494. The first two 
columns represent the left hand, the other two the right hand.
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In time, finger numbers were extended to include the largest numbers 
occurring in commercial transactions; by the Middle Ages, they had become 
international. In the ultimate development, the numbers 1, 2, . . . , 9 and 10, 
20, . . . , 90 were represented on the left hand, and the numbers 100, 200, . . . , 
900 and 1000, 2000, . . . , 9000 on the right hand. In this way, any number up to 
10,000 was representable by the use of the two hands. Pictures of the finger 
numbers were given in Renaissance arithmetic books. For example, using the 
left hand, 1 was represented by partially folding down the little finger; 2 by 
partially folding down the little and ring fingers; 3 by partially folding down the 
little, ring, and middle fingers; 4 by folding down the middle and ring fingers; 5 
by folding down the middle finger; 6 by folding down the ring finger; 7 by 
completely folding down the little finger; 8 by completely folding down the little 
and ring fingers; and 9 by completely folding down the little, ring, and middle 
fingers.

Although finger numbers originated in very early times, they are still used 
today by some primitive races of Africa, by Arabs, and by Persians. In North 
and South America, some native Indian and Eskimo tribes still employ the 
fingers.

Finger numbers had the advantage of transcending language differences 
but, like the vocal numbers, lacked permanence and were not suitable for 
performing calculations. We have already mentioned the use of marks and 
notches as early ways of recording numbers. In such devices, we probably have 
the first attempt at writing. At any rate, various written number systems gradu
ally evolved from these primitive efforts to make permanent number records. A 
written number is called a numeral, and we now turn our attention to a simple 
classification of early numeral systems.

1-4  Simple Grouping Systems
Perhaps the earliest type of numeral system that was developed is that which 
has been called a simple grouping system. In such a system, some number b is 
selected for number base, and symbols are adopted for 1, b, b1, b3, and so on. 
Then any number is expressed by using these symbols additively, each symbol 
being repeated the required number of times. The following illustrations will 
clarify the underlying principle.

A very early example of a simple grouping system is that furnished by the 
Egyptian hieroglyphics, employed as far back as 3400 B.C. and chiefly used by 
the Egyptians when making inscriptions on stone. Although the hieroglyphics 
were sometimes used on other writing media than stone, the Egyptians early 
developed two considerably more rapid writing forms for work on papyrus, 
wood, and pottery. The earlier of these forms was a running script, known as 
the hieratic, derived from the hieroglyphic and used by the priesthood. From 
the hieratic, there later evolved the demotic writing, which was adopted for 
general use. The hieratic and demotic numeral systems are not of the simple 
grouping type.
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The Egyptian hieroglyphic numeral system is based on the scale of 10. The 
symbols adopted for 1 and the first few powers of 10 are

a vertical staff, or stroke

a heel bone, or hobble, or yoke

a scroll, or coil of rope

a lotus flower

a pointing finger

105 a burbot fish, or tadpole

lO6 ^  a man in astonishment, or a god holding up the universe

Any number is now expressed by using these symbols additively, each symbol 
being repeated the required number of times. Thus,

13015 = 1(104) + 3(103) + 1(10) + 5 ■ / ffln 1:

io n 
102 9

101 £

io4 f f

We have written this number from left to right, although it was more customary 
for the Egyptians to write from right to left.

The early Babylonians, lacking papyrus and having little access to suitable 
stone, resorted principally to clay as a writing medium. The inscription was 
pressed into a wet clay tablet by a stylus, the writing end of which may have 
been a sharp isosceles triangle. By tilting the stylus slightly from the perpendic
ular, one could press either the vertex angle or a base angle of the isosceles 
triangle into the clay, producing two forms of wedge-shaped (cuneiform) char
acters. The finished tablet was then baked in an oven to a time-resisting hard
ness that resulted in a permanent record. On cuneiform tablets dating from 2000 
to 200 B.C., numbers less than 60 are expressed by a simple grouping system to 
base 10, and it is interesting that the writing is often simplified by using a 
subtractive symbol. The subtractive symbol and the symbols for 1 and 10 are

^  • Y • <•
respectively, where the symbol for 1 and the two parts making up the subtrac
tive symbol are obtained by using the vertex angle of the isosceles triangle, and
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the symbol for 10 is obtained by using one of the base angles. As examples of 
written numbers employing these symbols, we have

25 - 2( 10) +  5 = ^ ^

and

The method employed by the Babylonians for writing larger numbers will be 
considered in Section 1-7.

The Attic, or Herodianic, Greek numerals were developed some time prior 
to the third century B.C. and constitute a simple grouping system to base 10 
formed from initial letters of number names. In addition to the symbols I, A, H, 
X, M for 1, 10, 102, 103, 104, there is a special symbol for 5. This special symbol 
is an old form of II, the initial of the Greek pente (“five”), and A, H, X, and M 
are the initial letters of the Greek deka (ten), hekaton (hundred), kilo (thou
sand), and myriad (ten thousand). The symbol for 5 was frequently used both 
alone and in combination with other symbols in order to shorten number repre
sentations. As an example, in this numeral system we have

2857 = X X rRHHHF,n i
in which one can note the special symbol for 5 appearing once alone and twice 
in combination with other symbols.

As a final example of a simple grouping system, again to base 10, we have 
the familiar Roman numerals. Here the basic symbols I, X, C, M for 1, 10, 102, 
103 are augmented by V, L, D for 5, 50, and 500. The subtractive principle, in 
which a symbol for a smaller unit placed before a symbol for a larger unit means 
the difference of the two units, was used only sparingly in ancient and medieval 
times. The fuller use of this principle was introduced in modern times. As an 
example, in this system we have

1944 = MDCCCCXXXXIIII,

or, in more modern times, when the subtractive principle became common,

1944 = MCMXLIV.

In using the subtractive principle, however, one is to abide by the following 
rule: I can precede only V or X, X can precede only L or C, C can precede only 
D or M.
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There has been no lack of imagination in the attempts to account for the 
origins of the Roman number symbols. Among the more plausible explanations, 
acceptable to many authorities on Latin history and epigraphy, is that I, II, III, 
IIII were derived from the raised fingers of the hand. The symbol X may be a 
compound of two V’s, or may have been suggested by crossed hands or 
thumbs, or may have originated from the common practice of crossing groups 
of ten when counting by strokes. There is some evidence that the original 
symbols for 50, 100, and 1000 may have been the Greek aspirates 'T (psi), 6 
{theta), and <t> (phi). Older forms for psi were

4. - 1 - 1 * L -
all of which were used for 50 in early inscriptions. The symbol 6 for 100 
probably later developed into the somewhat similar symbol C, influenced by 
the fact that C is the initial letter of the Latin word centum (“hundred”). A 
commonly used early symbol for 1000 is C| D, which could be a variant of <&. 
The symbol for 1000 became an M, influenced by the fact that M is the initial 
letter of the Latin word mille (“ thousand”). Five hundred, being half of 1000, 
was represented by |D ,  which later became a D. The symbols C | D  and |D for 
1000 and 500 are found as late as 1715.

1-5 Multiplicative Grouping Systems
There are instances in which a simple grouping system developed into what 
may be called a multiplicative grouping system. In such a system, after a base b 
has been selected, symbols are adopted for 1, 2, . . . , b -  1, and a second set 
of symbols for b, b2, b3, . . . . The symbols of the two sets are employed 
multiplicatively to show how many units of the higher groups are needed. Thus, 
if we should designate the first nine numbers by the usual symbols, but desig
nate 10, 100, and 1000 by a, b, c, say, then in a multiplicative grouping system 
we would write

5625 = 5c6b2a5.

The traditional Chinese-Japanese numeral system is a multiplicative 
grouping system to base 10. Writing vertically, the symbols of the two basic 
groups and of the number 5625 are as shown on p. 18.

Lacking a paperlike writing material, the early Chinese and Japanese re
corded their findings on bamboo slips. The piece of a bamboo stalk between 
two knots was split lengthwise into thin strips. After these strips were dried and 
scraped, they were laid side by side and tied together by four crosswise cords. 
The narrowness of the strips necessitated that the characters written on them 
be arranged vertically from top to bottom, giving rise to a custom of writing that 
persisted into more modern times, when bamboo slips were replaced by silk 
and paper as more convenient writing materials.
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Example: 5625

l

2

3

4

5

6

7

8 

9

10 3L

-=• 101 §
—
E3 S
S l

* +
-fc 3 .

A

1-6 Ciphered Numeral Systems
In a ciphered numeral system, after a base b has been selected, sets of symbols 
are adopted for 1, 2, . . . , b — 1; b, 2b, . . . , {b — 1 )b; b2, 2b2, . . . , {b -  1 )b2; 
and so on. Although many symbols must be memorized in such a system, the 
representation of numbers is compact.

The so-called Ionic, or alphabetic, Greek numeral system is of the ci
phered type and can be traced as far back as about 450 B.C. It is a system that is 
based on 10 and employs twenty-seven characters—the twenty-four letters of 
the Greek alphabet together with the symbols for the obsolete digamma, 
koppa, and sampi. Although the capital letters were used (the small letters were 
substituted much later), we shall now illustrate the system with the small let
ters. The following equivalents had to be memorized:
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1 a alpha
2 P beta
3 y gamma
4 8 delta
5 8 epsilon
6 obsolete digamma
7 £ zeta
8 V eta
9 e theta

10 L iota
20 K kappa
30 k lambda
40 V mu
50 V nu
60 z xi
70 o omicron
80 7T Pi
90 obsolete koppa

100 P rho
200 (T sigma
300 T tau
400 V upsilon
500 </> phi
600 X chi
700 * psi
800 (X) omega
900 obsolete sampi

As examples of the use of these symbols, we have 

12 = l(3, 21 = Ka, 247 =

Accompanying bars or accents were used for larger numbers (see Problem 
Study 1-3 (b)).

Symbols for the obsolete digamma, koppa, and sampi are

S ' .  V

Other ciphered numeral systems are the Egyptian hieratic and demotic, 
Coptic, Hindu Brahmi, Hebrew, Syrian, and early Arabic. The last three, like 
the Ionic Greek, are alphabetic ciphered numeral systems.

1-7 Positional Numeral Systems
Our own numeral system is an example of a positional numeral system with 
base 10. For such a system, after the base b has been selected, basic symbols 
are adopted for 0, 1, 2, . . . , b -  1. Thus, there are b basic symbols, frequently 
called the digits of the system. Now any (whole) number N  can be written 
uniquely in the form

N  = anbn + an~\bn~1 + • • • + a^b1 + a\b + ao,

where 0 ^  at <  b, i = 0, 1, . . . , n. We then represent the number N  to base b 
by the sequence of basic symbols

&n&n— 1 • • •

Thus, a basic symbol in any given numeral represents a multiple of some power 
of the base, the power depending on the position in which the basic symbol 
occurs. In our own Hindu-Arabic numeral system, for example, the 2 in 206 
stands for 2(102), or 200, whereas in 27, the 2 stands for 2(10), or 20. Note that 
for complete clarity some symbol for zero is needed to indicate any possible 
missing powers of the base. A positional numeral system is a logical, although 
not necessarily historical, outgrowth of a multiplicative grouping system.
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Sometime between 3000 and 2000 B.C., the ancient Babylonians evolved a 
sexagesimal system employing the principle of position. The numeral system, 
however, is really a mixed one in that, although numbers exceeding 60 are 
written according to the positional principle, numbers within the basic 60 group 
are written by a simple grouping system to base 10, as explained in Section 1-4. 
As an illustration we have

524,551 = 2(603) + 25(602) + 42(60) + 31 = VV<(<( yV ( (VY{{( Y
Until after 300 B.C., this positional numeral system suffered from the lack of a 
zero symbol to stand for any missing powers of 60, thus leading to possible 
misinterpretations of given number expressions. The symbol that was finally 
introduced consisted of two small, slanted wedges, but this symbol was used 
only to indicate a missing power of the base 60 within a number, and not for any 
missing power of the base 60 occurring at the end of a number. Thus, the 
symbol was only a partial zero, for a true zero serves for missing powers of the 
base both within and at the end of numbers, as in our 304 and 340. In the 
Babylonian numeral system, then, 10,804 would appear as

10,804 = 3(602) + 0(60) + 4 = Y" V  V  V V

and 11,040 as

11,040 3(602) + 4(60) = Y  Y  Y v v
V 7

rather than as

w w * .
The Mayan numeral system is very interesting. Of remote but unknown 

date of origin, it was uncovered by the early sixteenth-century Spanish expedi
tions into Yucatan. This system is essentially a vigesimal one, except that the 
second number group is (18)(20) = 360 instead of 202 = 400. The higher groups 
are of the form (18)(20n). The explanation of this discrepancy probably lies in 
the fact that the official Mayan year consisted of 360 days. The symbol for zero 
given in the table below, or some variant of this symbol, is consistently used. 
The numbers within the basic 20 group are written very simply by dots and 
dashes (pebbles and sticks) according to the following simple grouping scheme, 
the dot representing 1 and the dash 5. l

l • 6 • - ll • 16 •—

2 •  • 7 •  • 12 •  • 17 • •
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8 13 • • • 18 •  •  •

9 • • • • 14 • • • • 19 •  •  •  •

10 ------- 15 ------ 0

An example of a larger number, written in the vertical Mayan manner, is shown 
below.

43,487 = 6(18)(202) + 0(18)(20) + 14(20) + 7 =
•  •

The mixed-base system we have described was used by the priest class. 
There are reports of a pure vigesimal system that was used by the common 
people but which has not survived in written form.

1-8 Early Computing
Many of the computing patterns used today in elementary arithmetic, such as 
those for performing long multiplications and divisions, were developed as late 
as the fifteenth century. Two reasons are usually advanced to account for this 
tardy development; namely, the mental difficulties and the physical difficulties 
encountered in such work.

The first reason, mental difficulties, must be somewhat discounted. The 
impression that the ancient numeral systems are not amenable to even the 
simplest calculations is largely based on lack of familiarity with these systems. 
It is clear that addition and subtraction in a simple grouping system require only 
the ability to count the number symbols of each kind and then to convert to 
higher units. No memorization of number combinations is needed.3 In a ci
phered numeral system, if sufficient addition and multiplication tables have 
been memorized, the work can proceed much as we do it today. The French 
mathematician Paul Tannery attained considerable skill in multiplication with 
the Greek Ionic numeral system and even concluded that that system has some 
advantages over our present one.

The physical difficulties encountered, however, were quite real. Without a 
plentiful and convenient supply of some suitable writing medium, any very 
extended development of arithmetic processes was bound to be hampered. It 
must be remembered that our common machine-made pulp paper is little more 
than a hundred years old. The older rag paper was made by hand; conse

3 For the performance of long multiplications and divisions with Roman numerals, see, for 
example, James G. Kennedy, “Arithmetic with Roman numerals,” The American Mathematical 
Monthly 88 (1981): 29-33.



quently, it was expensive and scarce. It was not introduced into Europe until 
the twelfth century, although it is likely that the Chinese knew how to make it a 
thousand years before.

An early paperlike writing material, called papyrus, was invented by the 
ancient Egyptians, and by 650 B.C. had been introduced into Greece. It was 
made from a water reed called papuy which is found in abundance in the Nile 
delta. The stems of the reed were cut into long, thin strips and laid side by side 
to form a sheet. Another layer of strips was laid crosswise on top and the whole 
soaked with water, after which the sheet was pressed out and dried in the sun. 
Probably because of a natural gum in the plant, the layers stuck together. After 
the sheets were dry, they were readied for writing by laboriously smoothing 
them with a hard, round object. Papyrus was too valuable to be used in any 
quantity as mere scratch paper.

Another early writing medium was parchment, which was made from the 
skins of animals, usually sheep and lambs. Naturally, this was scarce and hard 
to get. Even more valuable was vellum, a parchment made from the skin of 
calves. In fact, parchment was so costly that the custom arose in the Middle 
Ages of washing the ink off old parchment manuscripts and using them over 
again. Such manuscripts are called palimpsests (palin, “again” ; psaoy “rub 
smooth”). In some instances, after the passage of years, the original writing of 
a palimpsest reappeared faintly beneath the later treatment. Some interesting 
restorations have been made in this manner.

Small boards bearing a thin coat of wax, along with a stylus, formed a 
writing medium for the Romans of about 2000 years ago. Before and during the 
Roman Empire, sand trays were frequently used for simple counting and for the 
drawing of geometrical figures. Of course, stone and clay were used very early 
for making written records.

The way around these mental and physical difficulties was the invention of 
the abacus (Greek abaxy “ sand tray”), which can be called the earliest mechan
ical computing device used by man. It appeared in many forms in parts of the 
ancient and medieval world. Let us describe a rudimentary form of abacus and 
illustrate its use in the addition and subtraction of some Roman numbers. Draw 
four vertical parallel lines and label them from left to right by M, C, X, and I, 
and obtain a collection of convenient counters, like checkers, pennies, or peb
bles. A counter will represent 1, 10, 100, or 1000 units according to its position 
on the I, X, C, or M line. To reduce the number of counters that may subse
quently appear on a line, we agree to replace any five counters on a line by one 
counter in the space just to the left of that line. Any number less than 10,000 
may then be represented on our frame of lines by placing not more than four 
counters on any line, and not more than one counter in the space just to the left 
of that line.

Let us now add
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MDCCLXIX and MXXXVII.

Represent the first of the two numbers by counters on the frame, as illustrated 
at the left in Figure 1. We now proceed to add the second number, working
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FIGURE 1

from right to left. To add the VII, put another counter between the X and I lines 
and two more counters on the I line. The I line now has six counters on it. We 
remove five of them and instead put another counter between the X and I lines. 
Of the three counters now between the X and I lines, we “carry over” two of 
them as a single counter on the X line. We now add the XXX by putting three 
more counters on the X line. Since we now have a total of five counters on the 
X line, they are replaced by a single counter between the C and X lines, and the 
two counters now found there are “carried over” as a single counter on the C 
line. We finally add the M by putting another counter on the M line. The final 
appearance of our frame is illustrated at the right in Figure 1, and the sum can 
be read off as MMDCCCVI. We have obtained the sum of the two numbers by 
simple mechanical operations and without requiring any scratch paper or re
course to memorization of any addition tables.

Subtraction is similarly carried out, except that now, instead of “carrying 
over” to the left, we may find it necessary to “borrow” from  the left.

The Hindu-Arabic positional numeral system represents a number very 
simply by recording in order the number of counters belonging to the various 
lines of the abacus. The symbol 0 stands for a line with no counters on it. Our 
present addition and subtraction patterns, along with the concepts of “carrying 
over” and “borrowing” may have originated in the processes for carrying out 
these operations on the abacus. With the Hindu-Arabic numeral system, we are 
working with symbols instead of the actual counters, so it becomes necessary 
either to commit the simple number combinations to memory or to have re
course to an elementary addition table.

1-9 The Hindu-Arabic Numeral System
The Hindu-Arabic numeral system is named after the Hindus, who may have 
invented it, and after the Arabs, who transmitted it to western Europe. The 
earliest preserved examples of our present number symbols are found on some 
stone columns erected in India about 250 B.C. by King Asoka. Other early 
examples in India, if correctly interpreted, are found among records cut about 
100 B.C. on the walls of a cave in a hill near Poona and in some inscriptions of 
about A.D. 200 carved in the caves at Nasik. These early specimens contain no 
zero and do not employ positional notation. Positional value and a zero must 
have been introduced in India sometime before A.D. 800, because the Persian 
mathematician al-Khowarizmi describes such a completed Hindu system in a 
book of A.D. 825.
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The abacist versus the algorist.
(From Gregor Reisch, Margarita Philosophica, Strassbourg, 1504.)

How and when the new numeral symbols first entered Europe is not set
tled. In all likelihood, they were carried by traders and travelers of the Mediter
ranean coast. They are found in a tenth-century Spanish manuscript and may 
have been introduced into Spain by the Arabs, who invaded the peninsula in
A.D. 711 and remained there until A.D. 1492. The completed system was more 
widely disseminated by a twelfth-century Latin translation of al-Khowarizmi’s 
treatise and by subsequent European works on the subject.

The next 400 years saw the battle between the abacists and the algorists, as 
the advocates of the new system were called, and by A.D. 1500 our present 
rules in computing won supremacy. In another hundred years, the abacists 
were almost forgotten, and by the eighteenth century no trace of an abacus was
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found in western Europe. Its reappearance, as a curiosity, was due to the 
French geometer Poncelet, who brought back a specimen to France after his 
release as a Russian prisoner of war following the Napoleonic Russian cam
paign.

Considerable variation was found in the number symbols until these sym
bols became stabilized by the development of printing. Our word zero probably 
comes from the Latinized form zephirum of the Arabic sifr, which in turn is a 
translation of the Hindu sunya, meaning “void” or “empty.” The Arabic sifr 
was introduced into Germany in the thirteenth century by Nemorarius, as cifra, 
from which we have obtained our present word cipher.

1-10 Arbitrary Bases
We recall that to represent a number in a positional numeral system with base b 
we need basic symbols for the integers zero up through b — 1. Even though the 
base b = 10 is such an important part of our culture, the choice of 10 is really 
quite arbitrary, and other bases have great practiced and theoretical impor
tance. If b ^  10, we may use our ordinary digit symbols; thus, for example, we 
may consider 3012 as a number expressed to base 4 with the basic symbols 0 ,1 , 
2, 3. To make clear that the number is considered as expressed to base 4, we 
shall write it as (3012)4. When no subscript is written, it will be understood in 
this treatment that the number is expressed to the ordinary base 10. If b >  10, 
we must augment our digit symbols by some new basic symbols, for we always 
need b basic symbols. If b = 12, therefore, we may take 0 ,1 ,2 , 3 ,4 , 5 ,6 ,7 , 8, 9, 
ty e for our basic symbols, where t and e are symbols for ten and eleven; for 
example, we might have (3tle)X2.

It is easy to convert a number from a given base to the ordinary base 10. 
Thus, we have

(3012)4 = 3(43) + 0(42) + 1(4) + 2 = 198

and

(3tle)X2 = 3(123) + 10(122) + 1(12) + 11 = 6647.

If we have a number expressed in the ordinary scale, we may express it to 
base b as follows. Letting N  be the number, we have to determine the integers 
an, an- 1 , . . . , a0 in the expression

N  = anbn + an- xbn~x + • • • + a2b2 + axb + a0,

where 0 ^  a, <  b. Dividing the above equation by fe, we have

Nib = anbn~l + an~\bn~2 + . . . + a2b + ax + a jb  = N r + a$lb.

That is, the remainder a0 of this division is the last digit in the desired represen
tation. Dividing AT by b> we obtain

N '/b  = anbn~2 + an- Xbn~3 + • • • + a2 + a xlb ,
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and the remainder of this division is the next to the last digit in the desired 
representation. Proceeding in this way, we obtain all the digits ao, a \ , . . . , an. 
This procedure can be systematized quite conveniently, as shown below. Sup
pose, for example, we wish to express 198 to the base 4. We find

4 |198
4 [49 remainder 2
4 [12 remainder 1

4 [3 remainder 0
0 remainder 3

The desired representation is (3012)4. Again, suppose we wish to express 6647 
to the base 12, where t and e are employed to represent ten and eleven, respec
tively. We find

12|6647
12 1553 remainder e

12 [46 remainder 1
12 [3 remainder t

0 remainder 3

The desired representation is (3/le)i2 -
One is apt to forget, when adding or multiplying numbers in our ordinary 

system, that the actual work is accomplished mentally and that the number 
symbols are used merely to retain a record of the mental results. Our success 
and efficiency in carrying out such arithmetic operations depend on how well 
we know the addition and multiplication tables, the learning of which absorbed 
so much of our time in the primary grades. With corresponding tables con
structed for a given base b, we can similarly perform additions and multiplica
tions within the new system, without spending any time reverting to the ordi
nary system.

Let us illustrate with base 4. We first construct the following addition and 
multiplication tables for base 4.

Addition

0 1 2 3

0 0 1 2 3

1 1 2 3 10

2 2 3 10 11

3 3 10 11 12

Multiplication

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 10 12

3 0 3 12 21
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The addition of 2 and 3, therefore, by reference to the table, is 11, and the 
multiplication of 2 and 3 is 12. Using these tables, exactly as we are accustomed 
to using the corresponding tables for base 10, we can now perform additions 
and multiplications. As an example, for the multiplication of (3012)4 by (233)4 
we have, omitting the subscript 4,

3012
233

21102
21102

12030
2101122

Considerable familiarity with the tables will be needed in order to perform the 
inverse operations of subtraction and division. This, of course, is also true for 
the base 10 and is the reason for much of the difficulty encountered in teaching 
the inverse operations in the elementary grades.

Problem Studies

1.1 Number Words

Furnish explanations of the following primitive number words.
(a) For a Papuan tribe in southeast New Guinea, it was found necessary to 

translate the Bible passage (John 5:5): “And a certain man was there, 
which had an infirmity 30 and 8 years” into “A man lay ill one man, 
both hands, 5 and 3 years.”

(b) In (British) New Guinea, the number 99 comes out as “four men die, 
two hands come to an end, one foot ends, and four.”

(c) The South American Kamayura tribe uses the word peak-finger as their 
word for 3, and “3 days” comes out as “peak-finger days.”

(d) The Zulus of South Africa use the following equivalents: 6 (“taking the 
thumb”), 7 (“he pointed”).

(e) The Malinke of West Sudan use the word dibi for 40. The word literally 
means “a mattress.”

(f) The Mandingo tribe of West Africa use the word kononto for 9. The 
word literally means “to the one in the belly.”

1.2 Written Numbers

Write 574 and 475 in (a) Egyptian hieroglyphics, (b) Roman numerals, (c) Attic 
Greek numerals, (d) Babylonian cuneiform, (e) traditional Chinese-Japanese,
(f) alphabetic Greek, (g) Mayan numerals.

Record in Roman numerals: (h) \  of MCXXVIII, (i) 4 times XCIV.
Record in alphabetic Greek: (j) £ of t8, (k) 8 times pna.
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1.3 Alphabetic Greek Numeral System

(a) How many different symbols must one memorize in order to write 
numbers less than 1000 in alphabetic Greek? In Egyptian hieroglyph
ics? In Babylonian cuneiform?

(b) In the alphabetic Greek numeral system, the numbers 1000, 2000, . . . , 
9000 were often represented by priming the symbols for 1, 2, . . . , 9. 
Thus, 1000 might appear as a '. The number 10,000, or myriad, was 
denoted by M. The multiplication principle was used for multiples of 
10,000. Thus, 20,000, 300,000, and 4,000,000 appeared as /3M, \M , and 
vM. Write, in alphabetic Greek, the numbers 5780, 72,803, 450,082,
3.257.888.

(c) Make an addition table up through 10+ 10  and a multiplication table up 
through 10 x 10 for the alphabetic Greek numeral system.

1.4 Old and Hypothetical Numeral Systems

(a) As an alternative to the cuneiform, or wedge-shaped, numeral sym
bols, the ancient Babylonians sometimes used circular numeral sym
bols, so named because they were formed by circular-shaped imprints 
in clay tablets, made with a round-ended stylus instead of a triangular- 
ended one. Here the symbols for 1 and 10 are D and O. Write, with 
circular Babylonian numerals, the numbers 5780, 72,803, 450,082,
3.257.888.

(b) State a simple rule for multiplying by 10 a number expressed in Egyp
tian hieroglyphics.

(c) An interesting numeral system is the Chinese scientific (or rod) numeral 
system, which is probably 2000 or more years old. The system is essen
tially positional, with base 10. Figure 2 shows how the digits 1, 2, 3, 4, 
5, 6, 7, 8, 9 are represented when they appear in an odd (units, hun
dreds, and so forth) position. But when they appear in an even (tens, 
thousands, and so forth) position, they are represented as shown in 
Figure 3. In this system, a circle, O, was used for zero in the Sung 
Dynasty (960-1279) and later. Write, with rod numerals, the numbers 
5780, 72,803, 450,082, 3,257,888.

(d) In a simple grouping system to base 5, let 1, 5, 52, 53 be represented by 
/, *, ), (. Express the numbers 360, 252, 78, 33 in this system.

(e) In a positional numeral system to base 5, let 0, 1, 2, 3, 4 be represented 
by # , /, *, ), (. Express the numbers 360, 252, 78, 33 in this system.

1.5 Finger Numbers

(a) Finger numbers were widely used for many centuries; from this use, 
finger processes were developed for some simple computations. One of

FIGURE 2
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FIGURE 3

these processes, by giving the product of two numbers, each between 5 
and 10, served to reduce the memory work connected with the multipli
cation tables. To multiply 7 by 9, for example, raise 7 - 5  = 2 fingers on 
one hand and 9 - 5  = 4 fingers on the other hand. Now add the raised 
fingers, 2 + 4 = 6, for the tens digit of the product, and multiply the 
closed fingers, 3 x 1 = 3, for the units digit of the product, giving the 
result 63. This process is still used by some European peasants. Prove 
that the method gives correct results.

(b) Explain the ninth-century riddle that is sometimes attributed to Alcuin 
(ca. 775): “I saw a man holding 8 in his hand, and from the 8 he took 7, 
and 6 remained.”

(c) Explain the following, found in Juvenal’s tenth satire: “Happy is he 
indeed who has postponed the hour of his death so long and finally 
numbers his years upon his right hand.”

1.6 Radix Fractions

Fractional numbers can be expressed, in the ordinary scale, by digits following 
a decimal point. The same notation is also used for other bases; therefore, just 
as the expression .3012 stands for

3/10 + 0/102 + 1/103 + 2/104, 

the expression (.3012)*, stands for

3/6 + 0/b2 + 1 /ft3 + 2/b4.

An expression like (.3012)*, is called a radix fraction for base b. A radix fraction 
for base 10 is commonly called a decimal fraction.

(a) Show how to convert a radix fraction for base b into a decimal fraction.
(b) Show how to convert a decimal fraction into a radix fraction for base b.
(c) Approximate to four places (.3012)4 and (.3/le)i2 as decimal fractions.
(d) Approximate to four places .4402 as a radix fraction, first for base 7, 

and then for base 12.

1.7 Arithmetic in Other Scales

(a) Construct addition and multiplication tables for bases 7 and 12.
(b) Add and then multiply (3406)7 and (251)7, first using the tables of (a) and 

then by converting to base 10. Similarly, add and then multiply (3f04e)i2 
and (51tt)i2-

(c) We may apply the tables for base 12 to simple mensuration problems 
involving feet and inches. For example, if we take 1 foot as a unit, then



30 CHAPTER ONE /  NUMERAL SYSTEMS

3 feet 7 inches become (3.7)i2. To find, to the nearest square inch, the 
area of a rectangle 3 feet 7 inches long by 2 feet 4 inches wide, we may 
multiply (3.7)n by (2.4)i2 and then convert the result to square feet and 
square inches. Complete this example.

1.8 Problems in Scales of Notation

(a) Express (3012)j in base 8.
(b) For what base is 3 x 3 = 10? For what base is 3 x 3  = 11? For what 

base is 3 x 3 = 12?
(c) Can 27 represent an even number in some scale? Can 37? Can 72 

represent an odd number in some scale? Can 82?
(d) Find b such that 79 = (142)*. Find b such that 72 = (2200)*.
(e) A 3-digit number in the scale of 7 has its digits reversed when ex

pressed in the scale of 9. Find the 3 digits.
(f) What is the smallest base for which 301 represents a square integer?
(g) If b >  2, show that (121)* is a square integer. If b >  4, show that 

(40,001)* is divisible by (221)*.

1.9 Some Recreational Aspects of the Binary Scale

The positional number system with base 2 has applications in various branches 
of mathematics. Also, there are many games and puzzles, like the well-known 
game of Nim and the puzzle of the Chinese rings, that have solutions that 
depend on this system. Following are two easy puzzles of this sort.

(a) Show how to weigh, on a simple equal-arm balance, any weight w of a 
whole number of pounds, using a set of weights of 1 pound, 2 pounds, 
22 pounds, 23 pounds, and so forth, there being only one weight of each 
kind.

(b) Consider the following four cards containing numbers from 1 through
15.

On the first card are all those numbers whose last digit in the binary system is 1; 
the second contains all those numbers whose second digit from the right is 1; 
the third contains all those whose third digit from the right is 1; the fourth 
contains all those whose fourth digit from the right is 1. Now someone is asked 
to think of a number N  from 1 through 15 and to tell on which cards N  can be 
found. It is then easy to announce the number N  by merely adding the top left 
numbers on the cards where it appears. Make a similar set of 6 cards for
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detecting any number from 1 through 63. It has been noted that if the numbers 
are written on cards weighing 1, 2, 4, . . . units, then an automaton in the form 
of a postal scale could express the number N.

1.10 Some Number Tricks

Many simple number tricks, in which one is to “guess a selected number,” 
have explanations depending on our own positional scale. Expose the following 
tricks of this kind.

(a) Someone is asked to think of a 2-digit number. He is then requested to 
multiply the tens digit by 5, add 7, double, add the units digit of the 
original number, and announce the final result. From this result, the 
conjurer secretly subtracts 14 and obtains the original number.

(b) Someone is asked to think of a 3-digit number. He is then requested to 
multiply the hundreds digits by 2, add 3, multiply by 5, add 7, add the 
tens digit, multiply by 2, add 3, multiply by 5, add the units digit, and 
announce the result. From this result, the conjurer secretly subtracts 
235 and obtains the original number.

(c) Someone is asked to think of a 3-digit number whose first and third 
digits are different. He is then requested to find the difference between 
this number and that obtained by reversing the 3 digits. Upon disclosing 
only the last digit of this difference, the conjurer announces the entire 
difference. How does the trickster do this?
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Cultural Connection

THE AGRICULTURAL REVOLUTION
The Cradles o f Civilization— ca. 3000-525 B.C.
(to accompany Chapter Two)

N e a r  the end of the Stone Age, in certain parts of the world, people were 
compelled toward a full-scale, intensive agriculture by changes in the world’s 
climate. The vast, grassy savannas where Stone Age hunters lived began to 
shrink late in the Neolithic period, as they continue to shrink today. In some 
places, the savannas were reclaimed by expanding forests; in others, they 
became arid and lifeless, turning into deserts. As their environment changed, 
people adapted as best they could. In Europe, southern Africa, southeast Asia, 
and eastern North and South America, people moved into the new forests and 
became woodland hunters, a relatively minor adaptation.

In the growing deserts of north Africa, the Middle East, and central Asia, 
however, the transformation was not so simple. As the grass withered and the 
streams dried up, as mammoth sand dunes marched out from the centers of the 
new deserts, the animals that once lived in these regions left, crowding into 
oases, and then moving on when the oases dried up. The people followed the 
animals in this flight before the advance of the towering dunes, eventually 
settling in oasis-like wetlands on the edges of the deserts. These new places 
acted as catch basins for all forms of life, including people, and large numbers 
of men and women came to live there after they fled the desert. In Africa, on 
the marches of the Sahara Desert, which had once been rolling prairie, the Nile 
River valley offered water to the migrating animals and their human hunters. In 
the Middle East, the Tigris and Euphrates Rivers, sharing a single valley, 
formed a catch basin for those fleeing the growing Arabian Desert. The Indus 
River valley at the periphery of India’s Thar Desert and the Yellow River valley 
in China at the frontier of the Gobi Desert also served as catch basins. In the 
Americas, although at a later date, the Pacific coastal plain turned dry and sere, 
and people climbed the high peaks of the Sierra Madre Mountains in Mexico 
and Central America and the Andes in Peru and Colombia, where the loftiest 
mountains scraped the clouds and tore loose the rain. Today, a similar process 
of desertification is being played out on a terrifying scale in Africa, where the 
Sahara is again on the move and people from the withering grasslands are 
crowding into refugee camps along the Niger River and Upper Nile.

The civilizations that emerged in these catch basins were vastly different 
from the hunter/gatherer societies of the Stone Age. Human population densi
ties in these wetlands were too high to permit everyone to continue to survive

34
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as hunters and gatherers. To keep from starving, people in these places had to 
find other ways to obtain food. Not surprisingly, they turned to intensive agri
culture, which could support populations as thick as forty people to the square 
mile. This was a sort of “agricultural revolution,” and it precipitated profound 
cultural changes.

One such change was the creation of written language. Farming meant 
irrigation in the largely rainless valleys of north Africa and the Middle East, and 
the seasonal flooding of the Yellow, Nile, and Tigris and Euphrates Rivers 
meant diking—activities that required not only cooperation and engineering 
skill, but record-keeping systems as well. The farmers needed to know when 
the floods, or the rainy season, would come, and that meant calendars and 
almanacs. Landowners kept written accounts of agricultural production and 
drew maps noting the locations of irrigation ditches. Farmers prayed to the 
gods to ensure that the floods and rains would come as scheduled and, in the 
process, watched the movements of the stars. All these activities gave rise to a 
new class of educated men: priests, scribes, and astrologers.

Along with literacy came a need for new technologies. Early engineers 
planned dikes and irrigation works. Metal plows were better than wooden ones; 
people learned to forge bronze around 3000 B.C. and iron about 1100 B.C. The 
need for specialized tools created a need for yet another new social class: 
skilled artisans.

Another important change was the adoption of a sedentary lifestyle. Un
like hunters and gatherers, farmers did not need to travel great distances 
searching for food. They built permanent villages and towns, and small cities 
grew up along the river banks. By 2500 B.C., the cities of Memphis and Thebes 
had emerged as the leading metropoli in Egypt; not long after, Pharoah Pepi II 
(?-ca. 2200 B.C.) built the city of Heracleopolis as his capital. In the valley of 
the Tigris and Euphrates, the city of Ur emerged earlier, in approximately 3000
B.C. Although small by modern standards, these early cities dwarfed Neolithic 
villages. Ur had 24,000 inhabitants and covered 150 acres. The cities provided 
central marketplaces where farmers and artisans could exchange goods, and a 
merchant class sprang into being to facilitate that process.

For the first time in history, some people had leisure time. While the 
farmers, who made up the majority of the population during the agricultural 
revolution, generally spent the entire day in toil, other people—kings, priests, 
merchants, scribes—found time at the end of the day that could be spent 
pondering the mysteries of nature and science. At last, all the ingredients for 
scientific progress were brought together: written languages, a need for new 
technologies, urban environments, and leisure time. It is little wonder, then, 
that historians refer to ancient Egypt, India, China, and the Middle East as 
“cradles of civilization.” (The deserts in the Americas appeared later than 
those in the eastern hemisphere; hence, the agricultural revolution in the west 
was longer in coming. Historians now acknowledge, however, that Mexico and 
Peru during the days of the Mayas, Incas, and their forebears were also true 
“cradles of civilization.”)

The agriculturalists developed new forms of political organization. In the



Stone Age, “ the government” had been the tribe or clan—a small band of men 
and women bound together by kinship ties and under the nominal direction of a 
chief. The complex activities attendant to farming (planting common fields, 
building granaries, digging irrigation trenches, regulating marketplaces to pro
tect unwary buyers, appeasing the gods) required more centralized systems of 
government. Tribes were replaced by city-states, kingdoms, and small empires, 
and the tribal chief was supplanted by extensive bureaucracies.

The city-state was the most common form of government in the cradles of 
civilization, consisting of a single city or town and the surrounding countryside. 
Tiny by modern standards, city-states were so small that, in their ideal form, 
which was described by the Chinese philosopher Confucius (551-479 B.C.), a 
citizen might hear roosters crowing in neighboring countries. Each of the cra
dles of civilization was, at one time or another, divided into city-states: Egypt 
between 2200 B.C. and 2050 B.C., and again between 1786 B.C. and 1575 B.C.; 
the valley of the Tigris and Euphrates Rivers between approximately 3000 B.C. 
and 2150 B.C.; and China from 600 B.C. (or earlier) until 221 B.C. Most often, a 
city-state was an oligarchy, governed by a small clique of wealthy citizens. A 
few were monarchies, however, and some were theocracies (that is, ruled by a 
class of priests). A very few were republics, with broad citizen participation in 
affairs of state. We shall visit some of these republics in Greece, Rome, and 
Carthage in Cultural Connections III and IV.

In each of the cradles of civilization, city-states eventually gave way to 
expanding empires. According to tradition, Egypt was united under a single 
pharoah in 3100 B.C., at the beginning of the agricultural revolution, although 
the kingdom seems to have broken up by 2200 B.C. into a collection of small 
principalities ruled by petty lords called nomarchs. In 1575 B.C., Egypt was 
reunited under a single, absolute ruler, and would remain so until conquered by 
Persia in 525 B.C. Like Egypt, tradition holds that the China of antiquity was a 
united country under the mysterious Hsia Dynasty, about which little is actu
ally known. Between 1500 B.C. and 1027 B.C., the land along the Yellow River 
was governed from the city of An-Yang by the Shang Dynasty and, after that, 
by the Chou Dynasty. By 600 B.C., Chou power had declined, and China was 
actually a collection of city-states until unified in 221 B.C. by the Chin Dynasty. 
The Chins were supplanted by the Han Dynasty fifteen years later, which 
established an empire that would endure unil A.D. 221. In both Egypt and 
China, we cannot be sure whether the traditional early dynasties represented 
centralized empires or merely strong city-states that dominated their neigh
bors, but later dynasts ruled as powerful autocrats over large, cohesive em
pires. The Tigris and Euphrates River valley in the Middle East was first united 
into a single empire by the warrior Sargon I (ca. 2276-2221 B.C.), although his 
kingdom broke up soon after his death. Permanent unification did not come 
until Amorite invaders conquered the valley in approximately 2000 B.C. and 
forged the Babylonian Empire. It is not known what political systems existed in 
the Indus River valley.

The fruits of the new agricultural civilizations were not enjoyed equally by 
everyone. There were strict class divisions. Most of the people, probably in
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excess of ninety percent, were poor farmers. These folk could not read or 
write. They often did not own the land they tilled, which belonged instead to an 
overlord. They toiled constantly, with scant time to relax or enjoy life. They 
had little in the way of material wealth or comforts, although they did most of 
the work. Wealth was instead concentrated in the hands of a small upper class 
of lords, priests, warriors (the first recorded war in history was a battle over an 
irrigation ditch in the Middle East in ca. 2000 B.C.), merchants, and craftsmen. 
Below even the farmers on the social scale were slaves, usually the victims of 
conquest, and women, who with few exceptions were treated merely as work
ers and bearers of children and were not accorded opportunities for intellectual 
expression.

All the new agricultural societies were not identical. On the fringes of the 
cultivated valleys lived nomadic tribes of herders who periodically made war 
on their plant-cultivating neighbors. In India, Aryan nomads from Central Asia 
possibly wiped out the civilization of the Indus River. In the Middle East, 
invading armies came in a number of waves, either horsemen from the Arabian 
Desert or fierce warriors from the Zargos Mountains. Each new conqueror 
established itself as the new ruling class and adopted the customs and manners 
of those it had supplanted. Among these conquerors were the Amorites, who 
invaded the valley of the Tigris and Euphrates Rivers in approximately 2000 
B.C., learned the local culture, and produced the legal code of Hammurabi. 
The Amorites built the city of Babylon, and from it ruled a great empire that 
persisted for a thousand years, when the Assyrians conquered the land be
tween the two rivers. The Assyrians were in turn overthrown by a revolt in 
approximately 600 B.C., and the rebels instituted the Chaldean or Neo-Babylo
nian Empire of Nebuchadnezzar. In 550 B.C., the Persians massed out of the 
Zargos Mountains and conquered Babylon. China was threatened by invaders 
from the Gobi Desert but managed each time to drive the would-be conquerors 
back.

In summary, the period from 3000 to 525 B.C. witnessed the birth of a new 
human civilization that was sparked by an agricultural revolution. New soci
eties based on farming economies emerged from the mists of the Stone Age in 
the valleys of the Nile, Yellow, Indus, and Tigris and Euphrates Rivers. These 
new societies created written languages; worked metals; built cities; empiri
cally developed the fundamental mathematics of surveying, engineering, and 
commerce; and spawned upper classes who had enough leisure time to pause 
and consider the mysteries of nature. After millions of years, humanity was at 
last embarked on the road toward scientific achievement.



Chapter

BABYLONIAN AND EGYPTIAN 
MATHEMATICS

2-1 The Ancient Orient
Early mathematics required a practical basis for its development, and such a 
basis arose with the evolution of more advanced forms of society. It was along 
some of the great rivers of Africa and Asia that the new forms of society made 
their appearance: the Nile in Africa, the Tigris and Euphrates in western Asia, 
the Indus and then the Ganges in south-central Asia, and the Hwang Ho and 
then the Yangtze in eastern Asia. The rivers furnished convenient transporta
tion, and with marsh drainage, flood control, and irrigation, it was possible to 
convert the lands along the rivers into rich agricultural regions. Extensive 
projects of this sort not only knit together previously separated localities, but 
the engineering, financing, and administration of both the projects and the 
purposes for which they were created required the development of consider
able technical knowledge and its concomitant mathematics. Thus, early mathe
matics can be said to have originated in certain areas of the ancient Orient (the 
world east of Greece) primarily as a practical science to assist in agriculture, 
engineering, and business pursuits. These pursuits required the computation of 
a usable calendar; the development of systems of weights and measures to 
serve in the harvesting, storing, and apportioning of foods; the creation of 
surveying methods for canal and reservoir construction and for parceling land; 
and the evolution of financial and commercial practices for raising and collect
ing taxes and for purposes of trade.1

As we have seen, the initial emphasis of mathematics was on practical 
arithmetic and mensuration. A special craft came into being for the cultivation, 
application, and instruction of this practical science. In such a situation, how
ever, tendencies toward abstraction were bound to develop, and to some ex
tent, the science was then studied for its own sake. It was in this way that 
algebra ultimately evolved from arithmetic and the beginnings of theoretical 
geometry grew out of mensuration.

1 There is an alternative thesis that finds the origin of mathematics in religious ritual—agricul
ture, trade, and surveying being later contributors. See A. Seidenberg, “The ritual origin of geome
try,” Archive for History o f  Exact Sciences 1 (1962): 488-527, and “The ritual origin of counting,” 
Archive for History o f  Exact Sciences 2 (1962): 1-40. Another alternative thesis can be advanced 
claiming that mathematics originated in art, the universal language of man.
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It should be noted, however, that in all ancient Oriental mathematics one 
cannot find even a single instance of what we today call a demonstration. In 
place of an argument, there is merely a description of a process. One is in
structed, “Do thus and so .” Moreover, except possibly for a few specimens, 
these instructions are not even given in the form of general rules, but are simply 
applied to sequences of specific cases. Thus, if the solution of quadratic equa
tions is to be explained, we do not find a derivation of the process used, nor do 
we find the process described in general terms; instead we are offered a large 
number of specific quadratics, and we are told step by step how to solve each of 
these specific instances. It was expected that from a sufficient number of spe
cific examples, the general process would become clear. Unsatisfactory as the 
“do-thus-and-so” procedure may seem to us, it should not seem strange, for it 
is the procedure we must frequently use in teaching portions of grade-school 
and high-school mathematics.

There are difficulties in dating discoveries made in the ancient Orient. One 
of these difficulties lies in the static nature of the social structure and the 
prolonged seclusion of certain areas. Another difficulty is due to the writing 
media upon which discoveries were preserved. The Babylonians used imper
ishable baked clay tablets, and the Egyptians used stone and papyrus, the latter 
fortunately being long lasting because of the unusually dry climate of the re
gion. But the early Chinese and Indians used very perishable media like bark 
and bamboo. Thus, although a fair quantity of definite information is now 
known about the science and the mathematics of ancient Babylonia and Egypt, 
very little is known with any degree of certainty about these studies in ancient 
China and India. Accordingly, this chapter, which is largely devoted to the 
mathematics of the pre-Hellenic centuries, will be limited to Babylonia and 
Egypt.

BABYLONIA

2 -2  Sources
Since the first half of the nineteenth century, archeologists working in Mesopo
tamia have systematically unearthed some half-million inscribed clay tablets. 
Over 50,000 tablets were excavated at the site of ancient Nippur alone. There 
are many excellent collections of these tablets, such as those in the great 
museums at Paris, Berlin, and London, and in the archeological exhibits at 
Yale, Columbia, and the University of Pennsylvania. The tablets vary in size 
from small ones of only a few square inches to ones approximately the size 
of the present textbook, the latter being about an inch and a half thick 
through their centers. Sometimes writing appears on only one side of the tab
let, sometimes on both sides, and frequently on the rounded edges of the 
tablet.

Of the approximately half-million tablets, about 400 have been identified as 
strictly mathematical tablets, containing mathematical tables and lists of mathe-
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matical problems. We owe our knowledge of ancient Babylonian2 mathematics 
to the scholarly deciphering and interpretation of many of these mathematical 
tablets.

Successful attempts at deciphering cuneiform writing did not occur until 
shortly before 1800, when European travelers noticed the inscriptions accom
panying a monumental bas relief carved some 300 feet above ground on the 
great limestone cliff near the village of Behistun, in the northwestern part of 
present-day Iran. The puzzle of the inscriptions was finally solved in 1846 by 
the remarkable pertinacity of Sir Henry Creswicke Rawlinson (1810-1895), an 
English diplomat and Assyriologist who perfected a key earlier suggested by 
the German archeologist and philologist Georg Friedrich Grotefend (1775— 
1853). The inscriptions are engraved in thirteen panels on a smoothed surface 
measuring 150 feet by 100 feet and are in the three ancient languages of Old 
Persian, Elamite, and Akkadian, all of which employed cuneiform script. The 
relief and inscriptions were executed in 516 B.C. at the command of Darius the 
Great.

With the ability to read the cuneiform texts of the excavated Babylonian 
tablets, it was found that these tablets appear to bear upon all phases and

2 It should be understood that the descriptive term Babylonian is used merely for convenience, 
and that many peoples, such as Sumerians, Akkadians, Chaldeans, Assyrians, and other early 
peoples who inhabited the area at one time or another, are subsumed under the general term.
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interests of daily life and to range over many periods of Babylonian history. 
There are mathematical texts dating from the latest Sumerian period of perhaps 
2100 B.C.; a second and very large group from the succeeding First Babylonian 
Dynasty of King Hammurabi’s era, and on down to about 1600 B.C.; and a 
third generous group running from about 600 B.C. to A.D. 300, covering the 
New Babylonian Empire of Nebuchadnezzar and the following Persian and 
Seleucidan eras. The lacuna between the second and third groups coincides 
with an especially turbulent period of Babylonian history. Most of our knowl
edge of the contents of these mathematical tablets does not predate 1935 and is 
largely due to the remarkable findings of Otto Neugebauer and F. Thureau- 
Dangin. Since the work of interpreting these tablets is still proceeding, new and 
perhaps equally remarkable discoveries are quite probable in the near future.

2 - 3  Commercial and Agrarian Mathematics

Even the oldest tablets show a high level of computational ability and make it 
clear that the sexagesimal positional system was already long established. 
There are many texts of this early period dealing with farm deliveries and with 
arithmetical calculations based on these transactions. The tablets show that the 
ancient Sumerians were familiar with all kinds of legal and domestic contracts, 
like bills, receipts, promissory notes, accounts, both simple and compound 
interest, mortgages, deeds of sale, and guaranties. There are tablets that are 
records of business firms, and others that deal with systems of weights and 
measures.

Many arithmetic processes were carried out with the aid of various tables. 
Of the 400 mathematical tablets, a good half contain mathematical tables. These 
table tablets show multiplication tables, tables of reciprocals, tables of squares 
and cubes, and even tables of exponentials. These latter tables were probably 
used, along with interpolation, for problems on compound interest. The recip
rocal tables were used to reduce division to multiplication.

The calendar used by the Babylonians was established ages earlier, as 
evidenced by the facts that their year started with the vernal equinox and that 
the first month was named after Taurus. Because the sun was in Taurus at this 
equinox around 4700 B.C., it seems safe to say that the Babylonians had some 
kind of arithmetic as far back as the fourth or fifth millennium B.C.

For examples concerning Babylonian table construction and Babylonian 
use of tables in business transactions, see Problem Studies 2.1 and 2.2.

2 - 4  Geometry

Babylonian geometry is intimately related to practical mensuration. From nu
merous concrete examples, the Babylonians of 2000 to 1600 B.C. must have 
been familiar with the general rules for the area of a rectangle, the areas of right 
and isosceles triangles (and perhaps the general triangle), the area of a trape
zoid having one side perpendicular to the parallel sides, the volume of a rectan



gular parallelepiped, and, more generally, the volume of a right prism with a 
special trapezoidal base. The circumference of a circle was taken as three times 
the diameter and the area as one-twelfth the square of the circumference (both 
correct for it = 3), and the volume of a right circular cylinder was then obtained 
by finding the product of the base and the altitude. The volume of a frustum of a 
cone or of a square pyramid is incorrectly given as the product of the altitude 
and half the sum of the bases. The Babylonians also knew that corresponding 
sides of two similar right triangles are proportional, that the perpendicular 
through the vertex of an isosceles triangle bisects the base, and that an angle 
inscribed in a semicircle is a right angle. The Pythagorean theorem was also 
known. (In this connection, see Section 2-6.) There is a recently discovered 
tablet in which 3£ is used as an estimate for it  [see Problem Study 2.5(b)].

The chief feature of Babylonian geometry is its algebraic character. The 
more intricate problems that are expressed in geometric terminology are essen
tially nontrivial algebra problems. Typical examples may be found in Problem 
Studies 2.3 and 2.4. There are many problems concerning a transversal parallel 
to a side of a right triangle that lead to quadratic equations; there are others that 
lead to systems of simultaneous equations, one instance giving ten equations in 
ten unknowns. There is a Yale tablet, possibly from 1600 B.C., in which a 
general cubic equation arises in a discussion of volumes of frustrums of a 
pyramid, as the result of eliminating z from a system of equations of the type

z(x2 + y 2) = A, z = ay + b, x -  c.

We undoubtedly owe to the ancient Babylonians our present division of 
the circumference of a circle into 360 equal parts. Several explanations have 
been put forward to account for the choice of this number, but perhaps none is 
more plausible than the following, advocated by Otto Neugebauer. In early 
Sumerian times, there existed a large distance unit, a sort of Babylonian mile, 
equal to about seven of our miles. Since the Babylonian mile was used for 
measuring longer distances, it was natural that it should also become a time 
unit— namely, the time required to travel a Babylonian mile. Later, sometime 
in the first millennium B.C., when Babylonian astronomy reached the stage in 
which systematic records of celestial phenomena were kept, the Babylonian 
time-mile was adopted for measuring spans of time. Since a complete day was 
found to be equal to twelve time-miles, and one complete day is equivalent to 
one revolution of the sky, a complete circuit was divided into twelve equal 
parts. For convenience, however, the Babylonian mile was subdivided into 
thirty equal parts; thus, we arrive at (12)(30) = 360 equal parts in a complete 
circuit.
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2 - 5  Algebra

By 2000 B.C. Babylonian arithmetic had evolved into a well-developed rhetori
cal, or prose, algebra. Not only were quadratic equations solved, both by the 
equivalent of substituting in a general formula and by completing the square,
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but some cubic (third degree) and biquadratic (fourth degree) equations were 
discussed. A tablet has been found giving a tabulation not only of the squares 
and the cubes of the integers from 1 to 30, but also of the combination n3 + n2 
for this range. A number of problems are given that lead to cubics of the form 
x 3 + x 2 = b. These can be solved by using the n3 + n2 table. Problem Study 2.4 
concerns itself with possible uses of this particular table.

There are some Yale tablets of about 1600 B.C. listing hundreds of un
solved problems involving simultaneous equations that lead to biquadratic 
equations for solution. As an example, we have

xy = 600, 150(x -  y) -  (x + y)2 = -1000.

As another illustration from the same tablets, we have a pair of equations of the 
form

xy = a, bx2ly + cy2/x + d = 0,

that lead to an equation of the sixth degree in x, but that is quadratic in x 3.
Neugebauer has found two interesting series problems on a Louvre tablet 

of about 300 B.C. One of them states that

1 + 2 + 22 + . . . + 29 = 29 + 29 -  1,

and the other one that

l2 + 22 + 32 + . . + 102 = + 10 55 = 385.

One wonders if the Babylonians were familiar with the formulas

r"+1 -  1 
r -  1

and

v  _  2n + 1 _  n(n + 1)(2« + 1)
t i  1 ~ 3 f t  1 ~ 6

The first of these was known to contemporary Greeks, and Archimedes found 
practically the equivalent of the second.

The Babylonians gave some interesting approximations to the square roots 
of nonsquare numbers, like 17/12 for V 2 and 17/24 for 1/V2. Perhaps the 
Babylonians used the approximation formula

(ia2 + h)m «  a + h/2a.



A very remarkable approximation for V 2 is

1 + 24/60 + 51/602 + 10/603 = 1.4142155,

found on the Yale table tablet 7289 of about 1600 B.C. (see Problem Study 2.7).
There are astronomical tablets of the third century B.C. that make explicit 

use of the law of signs in multiplication.
In summary, we conclude that the ancient Babylonians were indefatigable 

table makers, computers of high skill, and definitely stronger in algebra than 
geometry. One is certainly struck by the depth and the diversity of the prob
lems that they considered.
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2 - 6  Plimpton 322

Perhaps the most remarkable of the Babylonian mathematical tablets yet ana
lyzed is that known as Plimpton 322, meaning that it is the item with catalogue 
number 322 in the G. A. Plimpton collection at Columbia University. The tablet 
is written in Old Babylonian script, which dates it somewhere from 1900 to 1600 
B.C., and it was first described by Neugebauer and Sachs in 1945.3

Figure 4 gives an idea of the shape of the tablet. Unfortunately, a missing 
piece has been broken from the entire left edge, and the tablet is further marred 
by a deep chip near the middle of the right edge and a flaked area in the top left 
corner. Upon examination, crystals of modern glue were found along the left 
broken edge of the tablet. This suggests that the tablet was probably complete 
when excavated, that it subsequently broke, that an attempt was made to glue 
the pieces back together, and that later the pieces again separated. Thus, the 
missing piece of the tablet may still be in existence but, like a needle in a 
haystack, lost somewhere among the collections of these ancient tablets. We 
shall shortly see that it would prove very interesting if this missing piece were 
to be found.

The tablet contains three essentially complete columns of figures that, for 
convenience, are reproduced on Figure 4 in our own decimal notation. There is 
a fourth and partly incomplete column of figures along the broken edge. We 
shall later reconstruct this column.

It is clear that the column on the extreme right merely serves to number 
the lines. The next two columns seem, at first glance, to be rather haphazard. 
With study, however, one discovers that corresponding numbers in these 
columns, with four unfortunate exceptions, constitute the hypotenuse and a leg 
of integral-sided right triangles. The four exceptions are noted in Figure 4 by 
placing the original readings in parentheses to the right of the corrected read
ings. The exception in the second line has received an involved explanation,4

3 A detailed study of the tablet has more recently been done by Joran Friberg. See “Methods 
and traditions of Babylonian mathematics,’’ Historia Mathematica 8, no. 3 (August 1981): 277- 
318.

4 See R. J. Gillings, The Australian Journal o f Science, 16 (1953): 34-36, or Otto Neugebauer, 
The Exact Sciences in Antiquity, 2d ed., 1962.
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A

\ V\M 119 169

i

13367 4825 (11521) 24601 6649 312709 18541 465
319 97

481
2291 3541 7799 1249 8481 (541) 769 94961 8161 1045 75 111679 2929 12161 (25921) 289 13/1771 3229 14/56 106 (53) 7

FIGURE 4

but the other three exceptions can easily be accounted for. Thus, in the ninth 
line, 481 and 541 appear as (8,1) and (9,1) in the sexagesimal system. Clearly 
the occurrence of 9 instead of 8 could be a mere slip of the stylus when writing 
these numbers in cuneiform script. The number in line 13 is the square of the 
corrected value, and the number in the last line is half of the corrected value.

A set of three positive integers, like (3,4,5), which can be the sides of a 
right triangle, is known as a Pythagorean triple. Again, if the triple contains no

Plimpton 322.
(Columbia University.)



common integral factor other than unity, it is known as a primitive Pythagorean 
triple. Thus, (3,4,5) is a primitive triple, whereas (6,8,10) is not. One of the 
mathematical achievements over a millenium after the date of the Plimpton 
tablet was to show that all primitive Pythagorean triples (a,b,c) are given 
parametrically by

a = 2uv, b = u2 -  v2, c = u2 + u2,

where u and v are relatively prime, of different parity, and u >  v ; thus, if u = 2 
and v = 1, we obtain the primitive triple a = 4, b = 3, c = 5.

Suppose we compute the other leg a of the integral-sided right triangles 
determined by the given hypotenuse c and leg b on the Plimpton tablet. We find 
the following Pythagorean triples:
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a b c u V

120 119 169 12 5
3456 3367 4825 64 27
4800 4601 6649 75 32

13500 12709 18541 125 54
72 65 97 9 4

360 319 481 20 9
2700 2291 3541 54 25
960 799 1249 32 15
600 481 769 25 12

6480 4961 8161 81 40
60 45 75 2 1

2400 1679 2929 48 25
240 161 289 15 8

2700 1771 3229 50 27
90 56 106 9 5

One may notice that all of these triples, except the ones in lines 11 and 15, are 
primitive triples. For discussion, we have also listed the values of the parame
ters u and v leading to these Pythagorean triples. The evidence seems good that 
the Babylonians of this remote period were acquainted with the general para
metric representation of primitive Pythagorean triples as given above. This 
evidence is strengthened when we notice that u and u, and hence a (since a = 
2uv), are regular sexagesimal numbers (see Problem Study 2.1). It appears that 
the table on the tablet was constructed by deliberately choosing small regular 
numbers for the parameters u and v.

This choice of u and v must have been motivated by some subsequent 
process involving division, because regular numbers appear in tables of recip
rocals and are used to reduce division to multiplication. An examination of the 
fourth, and partially destroyed, column gives the answer, for this column is 
found to contain the values of {c!a)2 for the different triangles. To carry out the 
division, the side a and, hence, the numbers u and v, had to be regular.
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It is worth examining the column of values for {da)2 a little more closely. 
This column, of course, is a table giving the square of the secant of the angle B 
opposite side b of the right triangle. Because side a is regular, secant B has a 
finite sexagesimal expansion. Moreover, it turns out, with the particular choice 
of triangles as given, that the values of secant B form a surprisingly regular 
sequence that decreases by almost exactly 1/60 as we pass from one line of the 
table to the next, and the corresponding angle decreases from 45° to 31°. We 
thus have a secant table for angles from 45° to 31°, formed by means of integral
sided right triangles, in which there is a regular jump in the function, rather than 
in the corresponding angle. All this is truly remarkable. It seems highly proba
ble that there were companion tables giving similar information for angles 
ranging from 30° to 16° and from 15° to 1°.

The analysis of Plimpton 322 shows the careful examination to which some 
of the Babylonian mathematical tablets must be subjected. Formerly, such a 
tablet might have been summarily dismissed as being merely a business list or 
record.

EGYPT

2-7 Sources and Dates
Ancient Babylonia and ancient Egypt differ considerably in their political histo
ries. The former was open to invasion by neighboring peoples, with the result 
that there were periods of much turmoil when one empire succeeded another. 
Ancient Egypt, on the other hand, remained secluded and naturally protected 
from foreign invasion and was governed more peacefully and uninterruptedly 
by a succession of dynasties. Both societies were essentially theocracies that 
were ruled by rich and powerful bureaucrats hand-in-glove with the temple 
priests. Most of the manual labor was done by a large slave class, established in 
Babylonia mainly by the overthrowing of a present empire by a conquering 
invading one, and in Egypt by deliberate military importation from foreign 
lands. It was principally this slave class that dug and maintained the irrigation 
systems and built the ziggurats in Babylonia and erected the great temples and 
pyramids in Egypt. Basic surveying and engineering practices, with their con
comitant mathematics, were created to assist in the design and construction of 
these works.

Contrary to popular opinion, the mathematics of ancient Egypt never 
reached the level attained by Babylonian mathematics. This may have been due 
to the more advanced economic development of Babylonia. Babylonia was 
located on a number of great caravan routes, whereas Egypt stood in semi
isolation. Also, the relatively peaceful Nile did not demand such extensive 
engineering and administrative efforts as did the more erratic Tigris and 
Euphrates.

Nevertheless, until the recent deciphering of so many Babylonian mathe
matical tablets, Egypt was long the richest field for ancient historical research. 
The reasons for this lie in the veneration that the Egyptians had for their dead
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and in the unusually dry climate of the region. The former led to the erection of 
long-lasting tombs and temples with richly inscribed walls, and the latter pre
served many papyri and objects that would otherwise have perished.

Following is a chronological list of some of the tangible items bearing on 
the mathematics of ancient Egypt. In addition to these items, there are numer
ous wall inscriptions and minor papyri that contribute to our knowledge.
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Sketches of some ancient Egyptian instruments
A. Oldest extant astronomical instrument (plumb line and sight rod) (in the Berlin 
Museum). With the aid of the plumb line, an observer could hold the rod vertically over a 
given point and sight through the slit to some object, such as the North Star.
B. A level (exhibited in the Museum at Cairo).
C. Oldest extant sundial (in the Berlin Museum). In the morning the crosspiece would be 
turned to the east and in the afternoon to the west.

1. 3100 B.C. In a museum at Oxford is a royal Egyptian mace dating from 
this time. On the mace are several numbers in the millions and hundred thou
sands, written in Egyptian hieroglyphics, recording exaggerated results of a 
successful military campaign.

2 .2600B.C. The Great Pyramid at Gizeh was erected about 2600 B.C. and 
undoubtedly involved some mathematical and engineering problems. The 
structure covers thirteen acres and contains over 2,000,000 stone blocks, aver
aging 2.5 tons in weight, very carefully fitted together. These stone blocks were 
brought from sandstone quarries located on the other side of the Nile. Some 
chamber roofs are made of fifty-four-ton granite blocks, twenty-seven feet long 
and four feet thick, hauled from a quarry 600 miles away and set 200 feet above 
ground. It is reported that the sides of the square base involve a relative error of 
less than 1/14,000, and that the relative error in the right angles at the corners



does not exceed 1/27,000. The engineering skill implied by these impressive 
statistics is considerably diminished when we realize that the task was accom
plished by an army of 100,000 laborers working for a period of thirty years.

The Great Pyramid is the largest of three pyramids sitting on the desert at 
Gizeh, a little south of the site of present-day Cairo. These huge structures 
were built as royal tombs. The Egyptians believed in an afterlife that depended 
upon the preservation of the deceased body. Embalming was accordingly de
veloped, and valuables and objects of daily life were placed in the tombs for use 
in the afterlife.

The Great Pyramid (originally some 481 feet high) was built to house the 
body of Pharaoh Khufu (Cheops). The other two lesser pyramids at Gizeh were 
constructed as tombs for Khafre (Chephren) and Menkaure (Mycerinus), the 
two pharaohs who immediately succeeded Khufu. There are about eighty 
Egyptian pyramids still standing. The Great Pyramid became known as one of 
the Seven Wonders of the Ancient World.4

3.1850 B.C. This is the approximate date of the Golenischev, or Moscow, 
papyrus, a mathematical text containing twenty-five problems that were al
ready old when the manuscript was compiled. The papyrus, which was pur
chased in Egypt in 1893 by the Russian collector Golenischev, now reposes in 
the Moscow Museum of Fine Arts. It was published with editorial comment in 
1930. It is about eighteen feet long and about three inches high. For a sample of 
problems from the papyrus, see Problem Studies 2.14 and 2.15. The problem 
discussed in Problem Study 2.14 is particularly remarkable.

4. 1850 B.C. The oldest extant astronomical instrument, a combination 
plumb line and sight rod, dates from this time and is preserved in the Berlin 
Museum.

5.1650 B.C. This is the approximate date of the Rhind (or Ahmes) papy
rus, a mathematical text in the form of a practical handbook, which contains 
eighty-five problems copied in hieratic writing by the scribe Ahmes from an 
earlier work. The papyrus was purchased in 1858 in Egypt by the Scottish 
Egyptologist A. Henry Rhind and then later acquired by the British Museum. 
This and the Moscow papyrus are our chief sources of information concerning 
ancient Egyptian mathematics. The Rhind papyrus was published in 1927. It is 
about eighteen feet long and about thirteen inches high. When the papyrus 
arrived at the British Museum, however, it was shorter and in two pieces, with 
a central portion missing. About four years after Rhind purchased his papyrus, 
the American Egyptologist Edwin Smith (d. 1906) bought in Egypt what he 
thought was a medical papyrus. The Smith purchase was given to the New 
York Historical Society in 1932, where antiquarians discovered that it was a 
pasted-up deception, and that beneath the fraudulent covering lay the missing
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4 The Seven Wonders of the Ancient World are as follows: (1) The Great Pyramid of Egypt, (2) 
the Hanging Gardens of Babylon, (3) the Statue of Zeus at Olympia, (4) the Temple of Diana at 
Ephesus, (5) the Mausoleum at Halicarnassus, (6) the Colossus of Rhodes, and (7) the Pharos 
Lighthouse at Alexandria. Of the Seven Wonders, only the Great Pyramid is still standing.
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piece of the Ahmes papyrus. The Society accordingly gave the scroll to the 
British Museum, thus completing the entire Ahmes work.

The Rhind papyrus is a rich primary source of ancient Egyptian mathemat
ics, describing the Egyptian methods of multiplying and dividing, the Egyptian 
use of unit fractions, their employment of false position, their solution of the 
problem of finding the area of a circle, and many applications of mathematics to 
practical problems. The reader will find much of this material in the succeeding 
sections of the chapter and in Problem Studies 2.9, 2.11, 2.12, and 2.13.

6.1500 B.C. The largest existing obelisk, erected before the Temple of the 
Sun at Thebes, was quarried about this time. It is 105 feet long with a square 
base 10 feet to the side and weighs about 430 tons.
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The Rosetta Stone (196 b .c . ) .
(Courtesy of the Trustees of the British Museum.)



7. 1500 B .C . The Berlin Museum possesses an Egyptian sundial dating 
from this period. It is the oldest sundial extant.

8.1350 B.C. The Rollin papyrus of about 1350 B.C., now preserved in the 
Louvre, contains some elaborate bread accounts showing the practical use of 
large numbers at the time.

9 .1167B.C. This is the date of the Harris papyrus, a document prepared 
by Rameses IV when he ascended the throne. It sets forth the great works of 
his father, Rameses III. The listing of the temple wealth of the time furnishes 
the best example of practical accounts that has come to us from ancient Egypt.

Among other great structures of ancient Egypt that involved some engi
neering prowess are the Colossi of Rameses II at Abu Simbel, the Great Sphinx 
standing near the Great Pyramid at Gizeh, and the Temple of Amon-Re at 
Kamak. Rameses II completed the Great Hall of the temple in the 1200s B.C.; 
with columns seventy-eight feet tall, it was the largest columned hall ever built 
by man.

Ancient Egyptian sources more recent than those just listed show no ap
preciable gain in either mathematical knowledge or mathematical technique. In 
fact, there are instances showing definite regression.

Ability to read Egyptian hieroglyphic and demotic characters resulted 
from the successful decipherment by Jean Francois Champollion (1790-1832) 
of inscriptions on the Rosetta Stone, a polished basaltic slab that was found in 
1799, during Napoleon’s fateful Egyptian campaign, by French engineers while 
they were digging foundations for a fort near the Rosetta branch in the delta of 
the Nile. The stone measures three feet and seven inches by two feet and six 
inches, and the inscriptions on it give a common message repeated in Egyptian 
hieroglyphic, Egyptian demotic, and Greek. Since scholars were able to read 
the Greek, the stone furnished a clue to the decipherment of ancient Egyptian 
writing. The stone was engraved in 196 B.C., and as part of the treaty of 
capitulation when the French surrendered to the British, it went to England, 
where it now rests in the British Museum.
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2 -8  Arithmetic and Algebra
All of the 110 problems found in the Moscow and Rhind papyri are numerical, 
and many of them are very simple. Although most of the problems have a 
practical origin, there are some of a theoretical nature.

One consequence of the Egyptian numeral system is the additive character 
of the dependent arithmetic. Thus, multiplication and division were usually 
performed by a succession of doubling operations, based on the fact that any 
number can be represented as a sum of powers of 2. As an example of multipli
cation, let us find the product of 26 and 33. Since 26 = 16 + 8 + 2, we have 
merely to add these multiples of 33. The work may be arranged as follows:

1 33
*  2 66

4 132
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* 8 264
*16 528

858

Addition of the proper multiples of 33, that is, those indicated by an asterisk, 
gives the answer 858. Again, to divide 753 by 26, we successively double the 
divisor 26 up to the point where the next doubling would exceed the dividend 
753. The procedure is shown below.

1 26
2 52

* 4 104
* 8 208
*16 416
28

Now, since

753 = 416 + 337
= 416 + 208 + 129 
= 416 + 208 + 104 + 25,

we see, noting the starred items in the column above, that the quotient is 16 -f 8 
+ 4 = 28, with a remainder of 25. This Egyptian process of multiplication and 
division not only eliminates the necessity of learning a multiplication table, but 
is so convenient on the abacus that it persisted as long as that instrument was in 
use, and even for some time beyond.

The Egyptians endeavored to avoid some of the computational difficulties 
encountered with fractions by representing all fractions, except §, as the sum of 
so-called unit fractions, or fractions with unit numerators. This reduction was 
made possible by tables so representing fractions of the form 2/n, the only case 
necessary because of the dyadic nature of Egyptian multiplication. The prob
lems of the Rhind papyrus are preceded by such a table for all odd n from 5 to 
101. Thus, we find f expressed as \  + A; wr as m + efe + ih', and ^  as & + ifc. 
Only one decomposition is offered for any particular case. The table is utilized 
in some of the problems of the papyrus.

Unit fractions were denoted in Egyptian hieroglyphics by placing an ellipti
cal symbol above the denominator number. A special symbol was also used for 
the exceptional §, and another symbol sometimes appeared for i. These sym
bols are shown below.

< 0  = 1 < 0 = 1  ■ 3’ ■

c P o r ^ - =  1

=  i



54 CHAPTER TWO /  BABYLONIAN A N D  EGYPTIAN MATHEMATICS

u -TZTTZsfa - Uuia ŵ -111
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(British Museum.)

There are interesting theories to explain how the Egyptians obtained their unit 
fraction decompositions (see Problem Study 2.9).

Many of the 110 problems in the Rhind and Moscow papyri show their 
practical origin by dealing with questions regarding the strength of bread and of 
beer, with feed mixtures for cattle and domestic fowl, and with the storage of 
grain. Many of these require nothing more than a simple linear equation and are 
generally solved by the method later known in Europe as the rule o f false 
position. Thus, to solve

x + x l l  = 24

assume any convenient value for x, say x = 7. Then x 4- x ll  = 8, instead of 24. 
Since 8 must be multiplied by 3 to give the required 24, the correct x must be 
3(7), or 21.

There are some theoretical problems involving arithmetic and geometric 
progressions. (See, for example, Problem Study 2.12(c) and Section 2-10.) A 
papyrus of about 1950 B.C., found at Kahun, contains the following problem:
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“A given surface of one hundred units of area shall be represented as the sum 
of two squares whose sides are to each other as 1:3/4.” Here we have x2 + y 2 
= 100 and x = 3y/4. Elimination of x yields a pure quadratic in y. We may, 
however, solve the problem by false position. Thus, take y = 4. Then x = 3, and 
x 2 + y 2 = 25, instead of 100. We must therefore correct x and y by doubling the 
initial values, obtaining x = 6, y = 8.

There is some symbolism in Egyptian algebra. In the Rhind papyrus, we 
find symbols for plus and minus. The first of these symbols represents a pair of 
legs walking from left to right and the other a pair of legs walking from right to 
left. Symbols, or ideograms, were also employed for equals and for the un
known.

2 - 9  Geometry

Twenty-six of the 110 problems in the Moscow and Rhind papyri are geometric. 
Most of these problems stem from mensuration formulas needed for computing 
land areas and granary volumes. The area of a circle is taken as equal to that of 
the square on f of the diameter, and the volume of a right circular cylinder as 
the product of the area of the base by the length of the altitude. Recent investi
gations seem to show that the ancient Egyptians knew that the area of any 
triangle is given by half the product of base and altitude. Some of the problems 
concern themselves with the cotangent of the dihedral angle between the base 
and a face of a pyramid (see Problem Study 2.11), and others show an acquaint
ance with the elementary theory of proportion. Contradicting repeated and 
apparently unfounded stories, no documentary evidence has been found show
ing that the Egyptians were aware of even a particular case of the Pythagorean 
theorem. In later Egyptian sources, the incorrect formula K  = {a + c)(b + d)!4 
is used for finding the area of an arbitrary quadrilateral with successive sides of 
lengths a, b, c, d .

The existence, in the Moscow papyrus, of a numerical example of the 
correct formula for the volume of a frustum of a square pyramid is quite 
remarkable (see Problem Study 2.14(a)). No other unquestionably genuine ex
ample of this formula has been found in ancient Oriental mathematics, and 
several conjectures have been formulated to explain how it might have been 
discovered. E. T. Bell aptly refers to this early Egyptian example as the “great
est Egyptian pyramid.”

2 -1 0  A  Curious Problem in the Rhind Papyrus

Although little difficulty was encountered in deciphering and then in interpret
ing most of the problems in the Rhind papyrus, there is one problem (Problem 
Number 79) for which the interpretation is not so certain. In it occurs the 
following curious set of data, here transcribed:
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Estate
Houses 7
Cats 49
Mice 343
Heads of wheat 2401
Hekat measures 16807

19607

One easily recognizes the numbers as the first five powers of 7, along with 
their sum. Because of this, it was at first thought that perhaps the writer was 
here introducing the symbolic terminology houses, cats, and so on, for first 
power, second power, and so on.

A more plausible and interesting explanation, however, was given by the 
historian Moritz Cantor in 1907. He saw in this problem an ancient forerunner 
of a problem that was popular in the Middle Ages, and that was given by 
Leonardo Fibonacci in 1202 in his Liber abaci. Among the many problems 
occurring in this work is the following: “There are seven old women on the 
road to Rome. Each woman has seven mules; each mule carries seven sacks; 
each sack contains seven loaves; with each loaf are seven knives; and each 
knife is in seven sheaths. Women, mules, sacks, loaves, knives, and sheaths, 
how many are there in all on the road to Rome?” As a later and more familiar 
version of the same problem, we have the old English children’s rhyme:

As I was going to St. Ives
I met a man with seven wives;
Every wife had seven sacks;
Every sack had seven cats;
Every cat had seven kits.
Kits, cats, sacks, and wives,
How many were going to St. Ives?

According to Cantor’s interpretation, the original problem in the Rhind papyrus 
might then be formulated somewhat as follows: “An estate consisted of seven 
houses; each house had seven cats; each cat ate seven mice; each mouse ate 
seven heads of wheat; and each head of wheat was capable of yielding seven 
hekat measures of grain. Houses, cats, mice, heads of wheat, and hekat mea
sures of grain, how many of these in all were in the estate?”

Here, then, may be a problem that has been preserved as part of the puzzle 
lore of the world. It was apparently already old when Ahmes copied it, and 
older by close to 3000 years when Fibonacci incorporated a version of it in his 
Liber abaci. More than 750 years later, we are reading another variant of it to 
our children. One cannot help wondering if a surprise twist such as occurs in 
the old English rhyme also occurred in the ancient Egyptian problem.

There are many puzzle problems popping up every now and then in our 
present-day magazines that have medieval counterparts. How much further 
back some of them go is now almost impossible to determine.6

6 See D. E. Smith, “On the origin of certain typical problems,” The American Mathematical 
Monthly 24 (February 1917): 64-71.
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Problem  Studies

2.1 Regular Numbers

A number is said to be (sexagesimally) regular if its reciprocal has a finite 
sexagesimal expansion (that is, a finite expansion when expressed as a radix 
fraction for base 60). With the exception of a single tablet in the Yale collection, 
all Babylonian tables of reciprocals contain only reciprocals of regular num
bers. A Louvre tablet of about 300 B.C. contains a regular number of 7 sexages
imal places and its reciprocal of 17 sexagesimal places.

(a) Show that a necessary and sufficient condition for n to be regular is that 
n = 2a3b5c, where ay by c are nonnegative integers.

(b) Express, by finite sexagesimal expansions, the numbers i, J, J, i^, mo,

(c) Generalize (a) to numbers having general base b.
(d) List all the sexagesimally regular numbers less than 100, and then list 

all the decimally regular numbers less than 100.
(e) Show that the decimal representation of \  has six-place periodicity. 

How many places are there in the periodicity of the sexagesimal repre
sentation of j?

2.2 Compound Interest

There are tablets in the Berlin, Yale, and Louvre collections containing prob
lems in compound interest, and there are some Istanbul tablets that appear 
originally to have had tables of an for n = 1 to 10 and a = 9, 16, 100, and 225. 
With such tables, one can solve exponential equations of the type ax = b.

(a) On a Louvre tablet of about 1700 B.C. occurs the problem: Find how 
long it will take for a certain sum of money to double itself at compound 
annual interest of 20 percent. Solve this problem by modern methods.

(b) Solve the problem of (a) by first finding (1.2)3 and (1.2)4 and then, by 
linear interpolation, x such that (1.2)* = 2. Show that the result so 
obtained agrees with the Babylonian solution 3;47,13,20 (expressed 
sexagesimally) of this problem.7

2.3 Quadratic Equations

(a) A Babylonian problem asks for the side of a square if the area of the 
square diminished by the side of the square is the (sexagesimal) number 
14,30. The solution of the problem is described as follows: “Take half 
of 1, which is 0;30; multiply 0;30 by 0;30, which is 0;15; add the 0;15 to 
14,30 to obtain 14,30;15. This last is the square of 29;30. Now add 0;30 
to 29;30; the result is 30, which is the side of the square.” Show that 
this Babylonian solution is exactly equivalent to solving the quadratic

7 As an illustration, the expression 9,20,8;30,10,23 means 9(60)2 + 20(60) + 8 + 30/60 + 
10/(60)2 + 23/(60)3.



equation

x2 — px = q

by substituting in the formula

x = V (p/2)2 + q + pH.

(b) Another Babylonian text solves the quadratic equation

1 lx 2 + 7x = 6; 15 

by first multiplying through by 11 to obtain

(1 lx)2 + 7(1 1)jc = 1,8;45,

which, by setting y = 1 \x. has the “normal form”

y 2 + py = q.

This is solved by substituting in the formula

y  = V (p/2)2 + q -  p/2.
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Finally, x = y/11.
Show that any quadratic equation ax2 + bx + c = 0 can, by a 

similar transformation, be reduced to one of the normal forms

y 2 + py = q, y 2 = py + q, y 2 + q = py,

where p  and q are both nonnegative. The solution of such three-term 
quadratic equations seems to have been beyond the capabilities of the 
ancient Egyptians.

2.4 Algebraic Geometry

(a) The algebraic character of Babylonian geometry problems is illustrated 
by the following, found on a Strassburg tablet of about 1800 B.C. “An 
area A, consisting of the sum of two squares is 1000. The side of one 
square is 10 less than § of the side of the other square. What are the 
sides of the squares?” Solve this problem.

(b) On a Louvre tablet of about 300 B.C. are four problems concerning 
rectangles of unit area and given semiperimeter. Let the sides and 
semiperimeter be x , y, and a . Then we have

xy = 1, x + y = a.

Solve this system by eliminating y and thus obtaining a quadratic in x.
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(c) Solve the system of (b) by using the identity

w  m  - -
This is essentially the method used on the Louvre tablet. It is interest
ing that the identity appeared contemporaneously as Proposition 5 of 
Book II of Euclid’s Elements.

(d) An Old Babylonian problem reads: “One leg of a right triangle is 50. A 
line parallel to the other leg and at distance 20 from that leg cuts off a 
right trapezoid of area 5,20. Find the lengths of the bases of the trape
zoid.” Solve this problem.

(e) Another Old Babylonian problem claims that an isosceles trapezoid 
with bases 14 and 50 and with sides 30 has area 12,48. Verify this.

(f) Still another Old Babylonian problem concerns a ladder of length 0;30 
standing upright against a wall. The problem asks how far the lower 
end of the ladder will move out from the wall if the upper end slides 
down the wall a distance of 0;6. Solve this problem.

(g) A Seleucid tablet of 1500 years later proposes a problem similar to that 
of (f). Here a reed is given standing upright against a wall. The problem 
asks for the length of the reed if the top end of the reed slides down the 
wall 3 units when the lower end of the reed moves 9 units away from 
the wall. The answer is given as 15 units. Is this correct?

2.5 The Susa Tablets

(a) In 1936 a group of Old Babylonian tablets was lifted at Susa, about 200 
miles from Babylon. One of the tablets compares the areas and the 
squares of the sides of regular polygons of 3, 4, 5, 6, and 7 sides. For 
the pentagon, hexagon, and heptagon, these ratios are given as 1;40, 
2;37,30, and 3;41. Check these values for accuracy.

(b) On the same tablet considered in (a), the ratio of the perimeter of a 
regular hexagon to the circumference of the circumscribed circle is 
given as 0;57,36. Show that this leads to 3;7,30 or 3i as an approxima
tion of 7r.

(c) On one of the Susa tablets appears the problem: “Find the circumra- 
dius of a triangle whose sides are 50, 50, and 60.” Solve this problem.

(d) Another Susa tablet requests the sides x and y of a rectangle, given

xy = 20,0 and x 3d  = 14,48,53,20,

where d  is a diagonal of the rectangle. Solve this problem.

2.6 Cubics

(a) A Babylonian tablet has been discovered that gives the values of /i3 + 
n2 for n = 1 to 30. Make such a table for n = 1 to 10.

(b) Find, by means of the above table, a root of the cubic equation jc3 + 
2x2 -  3136 = 0.



(c) A Babylonian problem of about 1800 B.C. seems to call for the solution 
of the simultaneous system xyz +  xy =  7/6, y =  2jc/3, z =  12x. Solve 
this system using the table of (a).

(d) Otto Neugebauer believes that the Babylonians were quite capable of 
reducing the general cubic equation to the “normal form” «3 + n2 = c, 
although there is as yet no evidence that they actually did do this. Show 
how such a reduction might be made.

(e) In connection with the table of (a), Neugebauer has noted that the
n / " n. 2

Babylonians may well have observed the relation ^  '3 = ( 2  M f°r
1=1 1=1

various values of n. Establish this relation by mathematical induction.

2.7 Square Root Approximations

It is known that the infinite series obtained by expanding (a2 + h)m by the 
binomial theorem process converges to {a2 + h)m if - a 2 <  h <  a2.

(a) Establish the approximation formula

(a2 + h)m «  a + 0 <  \h\ <  a2.

(b) Take a = |  and h = f in the approximation formula of (a), and thus find 
a Babylonian rational approximation for V2. Find a rational approxi
mation for V 5 by taking a = 2, h = 1.

(c) Establish the better approximation formula

(a2 + h)m ~  a + ——  , 0 <  \h\ <  a2,2 a o a*

and approximate V 2 and V 5 by using the same values for a and h as in
(b).

(d) Take a = f and h = — J in the formula of (a) and find the ancient 
Babylonian approximation for V2.

(e) Take a = i i  and h = - r b  in the formula of (a) and find the value 
1;24,51,10 for V 2 as given on the Yale table tablet 7289.

2.8 Duplation and Mediation

The Egyptian process of multiplication later developed into a slightly improved 
method known as duplation and mediation, the purpose of which was me
chanically to pick out the required multiples of one of the factors that have to 
be added in order to give the required product. Taking the example in the text, 
suppose we wish to multiply 26 by 33. We may successively halve the 26 and 
double the 33, thus
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26 33
13 66*
6 132
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3 264*
1 528*

858

In the doubling column, we now add those multiples of 33 corresponding to the 
odd numbers in the halving column. Thus, we add 66, 264, and 528 to obtain the 
required product 858. The process of duplation and mediation is utilized by 
high-speed electronic computing machines.

(a) Multiply 424 by 137 using duplation and mediation.
(b) Prove that the duplation and mediation method of multiplication gives 

correct results.
(c) Find, by the Egyptian method, the quotient and remainder when 1043 is 

divided by 28.

2.9 Unit Fractions

(a) Show that z/pq = l/pr + l/qr, where r = (p 4- q)lz. This method for 
finding possible decompositions of a fraction into 2 unit fractions is 
indicated on a papyrus written in Greek probably sometime between 
A.D. 500 and 800, and found at Akhmim, a city on the Nile River.

(b) Take z = 2, p = l , q  = 7, and obtain the unit fraction decomposition of 
2/7 as given in the Rhind papyrus.

(c) Represent 2/99 as the sum of two different unit fractions in 3 different 
ways.

(d) By taking z -  1, p = l, q = n in the relation of (a), obtain the more 
particular relation

1 In = 1 /(ft + 1) + 1 ln{n + 1),

and show that when n is odd, this leads to a representation of 2In as a 
sum of 2 unit fractions. Many of the entries in the Rhind papyrus can be 
obtained in this way.

(e) Show that if ft is a multiple of 3, then 2In can be broken into a sum of 
two unit fractions of which one is l/(2ft).

(f) Show that if ft is a multiple of 5, then 2In can be broken into a sum of 
two unit fractions of which one is l/(3ft).

(g) Show that for any positive integer ft, 2In can be expressed by the sum 
1/ft + l/(2ft) + l/(3ft) + l/(6ft). (In the 2In table of the Rhind papyrus, 
only tSt is expressed by this decomposition.)

(h) Show that if a rational number can be represented as a sum of unit 
fractions in one way, then it can be represented as a sum of unit 
fractions in an infinite number of ways.

2.10 The Sylvester Process

The British mathematician J. J. Sylvester (1814-1897) provided the following 
procedure for uniquely expressing any rational fraction between 0 and 1 as a 
sum of unit fractions:



1. Find the largest unit fraction (that is, the one with the smallest denomi
nator) less than the given fraction.

2. Subtract this unit fraction from the given fraction.
3. Find the largest unit fraction less than the resulting difference.
4. Subtract again, and continue the process.
5. To find the largest unit fraction less than a given fraction, divide the 

denominator of the given fraction by the numerator of the fraction and 
take the next integer greater than the quotient as the denominator of the 
unit fraction sought.

(a) Express f as a sum of unit fractions using the Sylvester process. Note 
that the decomposition is the same as that given in the 2In table of the 
Rhind papyrus.

(b) Express ^  as a sum of unit fractions using the Sylvester process. Note 
that the decomposition is different from that given in the 2In table of 
the Rhind papyrus.

(c) Establish the rule given in the fifth step of the Sylvester process.

2.11 The Seqt of a Pyramid

(a) The Egyptians measured the steepness of a face of a pyramid by the 
ratio of the “run” to the “rise”—that is, by giving the horizontal 
departure of the oblique face from the vertical for each unit of height. 
The vertical unit was taken as the cubit and the horizontal unit as the 
hand; there were 7 hands in a cubit. Utilizing these units of measure
ment, the measure of steepness was called the seqt of the pyramid. 
Show that the seqt of a pyramid is 7 times the cotangent of the dihedral 
angle formed by the base and a face of the pyramid.

(b) In Problem 56 of the Rhind papyrus, one is asked to find the seqt of a 
pyramid 250 cubits high with a square base 360 cubits on a side. The 
answer is given as 5^ hands per cubit. Is this correct?

(c) The great pyramid of Cheops has a square base 440 cubits on a side and 
a height of 280 cubits. What is the seqt of this pyramid?

(d) Problem 57 of the Rhind papyrus asks for the height of a square pyra
mid with a seqt of 5 hands and 1 finger per cubit and a base 140 cubits 
on a side. Solve this problem, where there are 5 fingers in a hand.

2.12 Egyptian Algebra

The following problems are found in the Rhind papyrus.
(a) “If you are asked, what is f of J, take the double and the six-fold; that is 

§ of it. One must proceed likewise for any other fraction.” Interpret this 
and prove the general statement.

(b) “A quantity, its f, its i, and its y, added together, become 33. What is 
the quantity?” Solve this problem by the rule of false position.

(c) “Divide 100 loaves among 5 men in such a way that the shares received 
shall be in arithmetic progression and that one-seventh of the sum of 
the largest 3 shares shall be equal to the sum of the smallest two.” 
Solve this problem using modem methods.
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2.13 Egyptian Geometry

(a) In the Rhind papyrus, the area of a circle is repeatedly taken as equal to 
that of the square of f  of the diameter. This leads to what value for tt!

(b) Form an octagon from a square of side 9 units by trisecting the sides of 
the square and then cutting off the 4 triangular corners. The area of the 
octagon looks, by eye, to differ very little from the area of the circle 
inscribed in the square. Show that the area of the octagon is 63 square 
units, whence the area of the circle cannot be far from that of a square 
of 8 units on a side. There is evidence in Problem 48 of the Rhind 
papyrus that the formula for the area of a circle as given in (a) may have 
been arrived at in this way.

(c) Prove that of all triangles having a pair of given sides, the one in which 
these sides form a right angle is the maximum.

(d) Denote the lengths of the sides AB, BC, CD, DA of a quadrilateral 
ABCD by a, b, c, d, and let K  represent the area of the quadrilateral. 
Show that K  ^  (ad + bc)l2, equality holding if and only if angles A and 
C are right angles.

(e) For the hypothesis of (d) now show that K  ^  (a 4- c)(b 4- d)l4, equality 
holding if and only if ABCD is a rectangle. Thus, the Egyptian formula 
for the area of a quadrilateral, cited in Section 2-9, gives too large an 
answer for all nonrectangular quadrilaterals.

(f) An extant deed from Edfu, dating some 1500 years after the Rhind 
papyrus, employs the inexact Egyptian formula for the area of a quadri
lateral. From this formula, the author of the deed deduces, as a corol
lary, that the area of a triangle is half the sum of two sides multiplied by 
half the third side. Show how this corollary can be so deduced. Is the 
corollary correct?

(g) It looks to the eye that the area of a circle may be exactly halfway 
between those of an inscribed and a circumscribed square. Show that 
this is equivalent to taking tt = 3.

2.14 The Greatest Egyptian Pyramid

(a) In Problem 14 of the Moscow papyrus, we find the following numerical 
example: “If you are told: A truncated pyramid of 6 for the vertical 
height by 4 on the base by 2 on the top. You are to square this 4, result
16. You are to double 4, result 8. You are to square 2, result 4. You are 
to add the 16, the 8, and the 4, result 28. You are to take one third of 6, 
result 2. You are to take 28 twice, result 56. See, it is 56. You will find it 
right.” Show that this illustrates the general formula.

V = Ct)h(a2 + ab 4- b2)

giving the volume of a frustum of a square pyramid in terms of the 
height h and the sides a and b of the bases.

(b) If m and n are two positive numbers, m ^  n, then we define the 
arithmetic mean, the heronian mean, and the geometric mean of m and



n to be A  = (m + n)/2, R  = (m + Vmn + w)/3, G = \fmn. Show that 
A  ^  R  ^  G, the equality signs holding if and only if m = n.

(c) Assuming the familiar formula for the volume of any pyramid (volume 
equals one-third the product of base and altitude), show that the vol
ume of a frustum of the pyramid is given by the product of the height of 
the frustrum and the heronian mean of the bases of the frustum.

(d) Let a , b, and h denote the lengths of an edge of the lower base, an edge 
of the upper base, and the altitude of a frustum J  of a regular square 
pyramid. Dissect T into: (1) A rectangular parallelepiped P  of upper 
base b2 and altitude h. (2) 4 right triangular prisms A, B, C, and D each 
of volume b{a — b)hl4, (3) 4 square pyramids E, F, G, H  each of volume 
(a — b)2h! 12. Now obtain the formula of (a) for the volume of T.

(e) Consider the dissected frustum of (d). Horizontally slice P  into 3 equal 
parts, each of altitude hi3, and designate one of these slices by J. 
Combine A, B , C, D into a rectangular parallelepiped Q of base b(a -  b) 
and altitude h, and horizontally slice Q into three equal parts, each of 
altitude hi3. Replace E, F, G, H  by a rectangular parallelepiped R of 
base (ia — b)2 and altitude hi3. Combine one slice of P  with one slice of 
Q to form a rectangular parallelepiped K  of base ab and altitude hi3. 
Combine one slice of P, two slices of Q, and R  to form a rectangular 
parallelepiped L of base a2 and altitude h!3. The volume of T is then
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Problem 14 of the Moscow papyrus, with hieroglyphic transcription of the 
hieratic text.
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equal to the sum of the volumes of the three rectangular parallelepipeds 
Jf K , L. Using this fact, find the formula of (a) for the volume of T. It 
has been suggested that the Egyptian formula of (a) may have been 
obtained in this fashion. The procedure assumes familiarity with the 
formula for the volume of a (regular square) pyramid.

2.15 Some Problems from the Moscow Papyrus

Solve the following two problems found in the Moscow papyrus:
(a) The area of a rectangle is 12 and the width is I the length. What are the 

dimensions?
(b) One leg of a right triangle is 2\ times the other and the area is 20. What 

are the dimensions?

2.16 The 3,4,5 Triangle

There are reports that ancient Egyptian surveyors in the time of the pharaohs 
laid out right angles by constructing 3, 4, 5 triangles with a rope divided into 12 
equal parts by 11 knots. Since there is no documentary evidence to the effect 
that these Egyptians were aware of even a particular case of the Pythagorean 
theorem, the following purely academic problem arises:8 Show, without using 
the Pythagorean theorem, its converse, or any of its consequences, that the 3, 
4, 5 triangle is a right triangle. Solve this problem by means of Figure 5, which 
appears in the Chou-pei, the oldest known Chinese mathematical work, which 
may date back to the second millennium B.C.

2.17 The Cairo Mathematical Papyrus

The so-called Cairo Mathematical papyrus was unearthed in 1938 and exam
ined in 1962. Dating from about 300 B.C., this papyrus contains forty mathe
matical problems, nine of which deal exclusively with the Pythagorean theorem

8 See Victor Th6bault, “A note on the Pythagorean theorem,” The Mathematics Teacher 43 
(October 1950): 278.
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and show that the Egyptians of that time not only knew that the 3,4,5 triangle is 
right angled, but that the 5,12,13 and 20,21,29 triangles were right angled as 
well. Solve the following problems found in the Cairo Mathematical papyrus.

(a) A ladder of 10 cubits has its foot 6 cubits from a wall. To what height 
does the ladder reach?

(b) A rectangle with an area of 60 square cubits has a diagonal of 13 cubits. 
Find the sides of the rectangle.

(c) A rectangle with an area of 60 square cubits has a diagonal of 15 cubits. 
Find the sides of the rectangle.

The scribe’s method for solving (b) and (c) is as follows: Denoting the 
sides, diagonal, and area of a rectangle by x, y, d , and A, we have

x2 + y2 = rf2 an(J xy = A,

which yield

x2 4- 2xy + y 2 = d 2 4- 2A, x2 — 2xy 4- y 2 = d 2 -  2A, 

or

(jc + y)2 = d 2 4- 2A, (jc -  y)2 = d 2 -  2A.

In (b), d 2 + 2A and d 2 -  2A are perfect squares, and one readily finds values for 
x 4- y and x — y, and so forth. In (c), d 2 4- 2A and d 2 -  2A are not perfect 
squares, and the scribe uses the approximation formula

V a 2 4- b «  a 4- b/2a,

arriving at

V345 = V l8 2 + 21 =  18 + & = 1 8  + £ + A

and

V l05  = V102 + 5 «  10 + A = 10 + i

Essay Topics

2/1 The “do-thus-and-so” procedure in teaching portions of elementary 
mathematics today.

2/2 Inductive (or empirical) mathematics versus deductive (or demonstra
tive) mathematics.

2/3 The pedagogical value of inductive mathematics.
2/4 The importance of inductive procedures in mathematical discovery.
2/5 The comparative influence in the rise of early geometry of an interest in 

astronomy and a need for surveying.
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2/6 The importance of early religious ritual in the origin of geometry. 
2/7 Grotefend, Rawlinson, and the Behistun Rock.
2/8 Napoleon, Champollion, and the Rosetta Stone.
2/9 The origin of certain typical problems.
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Cultural Connection

THE PHILOSOPHERS 
OF THE AGORA
Hellenic Greece—ca. 800-336 B.C.
(to accompany Chapters Three and Four)

#m s we have seen, an agricultural revolution beginning in approximately 3000 
B.C. sparked a long period of intellectual and scientific progress. In agricultural 
regions called “cradles of civilization” (the Middle East, China, and Egypt), 
people built the first cities, sprawling irrigation projects, and towering monu
ments like the pyramids, the Sphinx, and the Hanging Gardens of Babylon. 
These same people invented writing, early mathematics, astrology, and metal
lurgy. Complex systems of government, city-states and small empires, replaced 
the tribe as the principal forms of political organization. Probably the most 
impressive cultural achievements of the agricultural revolution took place in 
Greece during its Hellenic Age (ca. 800-336 B.C.) and in China during its early 
Classical period (ca. 600-221 B.C.). We will look at China in Cultural Connec
tion V: The Asian Empires. In the following pages, we will explore the society 
and culture of the ancient Greeks.

Without doubt, the greatest scientists of the ancient world lived in tiny 
Greece, a collection of city-states perched atop a jumble of rocky islands and 
peninsulas at the eastern end of the Mediterranean Sea, on the very edge of 
Middle Eastern civilization. The agricultural revolution reached Greece from 
Egypt and the Middle East about 2000 B.C., shortly after the founding of the 
Babylonian Empire by the Amorites. Within 300 years, a mysterious, highly 
advanced, literate culture had evolved on the Greek island of Crete. This 
civilization, designated Minoan by historians, flourished between 1700 and 1200 
B.C. The Greek mainland was populated by a less advanced, more warlike, but 
also literate people, the Myceneans, who, according to legend, fought the 
Trojan War. Between 1200 and 1150 B.C., these civilizations were destroyed 
abruptly by barbaric invaders from Asia, the Dorians, a tribe of herders closely 
related to the Aryans, whom we have met previously as the supplanters of the 
Indus River civilization in India. The Dorians settled on the lands they con
quered and adopted much of the farming culture of the previous inhabitants. By 
800 B.C., written language, which was lost after the collapse of the Minoan and 
Mycenean civilizations, was reintroduced by Phoenician merchants from the 
Middle East. The period of Greek history that followed (from ca. 800-336 
B.C.), termed the Hellenic Age by historians, was an era of breathtaking intel
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lectual and scientific progress—one of the most remarkable epochs of human 
achievement in history!

Hellenic Greece was a mosaic of city-states and small, scattered farms. 
Not a broad plain cleaved by great, muddy rivers, like Egypt and Babylonia, it 
was instead a country cut by steep mountain ranges and long, winding bays that 
bit deep inland from the sea. Its valleys were narrow and clotted with large 
stones, its rivers shallow, and its soil parched. Its city-states were separated 
from each other by rugged, steep-cliffed mountains; the farms in the little 
valleys were divided by rocky outcroppings and patches of infertile ground. 
Due in part to their isolation and in part to the small size of their neighbors, the 
small cities and farms of Hellenic Greece were somewhat protected against the 
designs of aggrandizers. To be sure, the Greeks fought numerous wars, but 
rarely was one city-state successful in annexing another. Some wealthy Greek 
farmers did succeed in assembling large estates, but never on the scale found in 
Egypt or Babylonia. In such a crucible, where wealth and power were dis
persed, it was possible to create democratic republics; in the city of Athens, 
overlooking the island-dotted Saronic Gulf, the Greeks did just that.

Although several dozen Greek city-states existed, some were more promi
nent than others. Corinth and Argos, both seaports, were bustling commercial 
centers. Miletus and Smyrna were central market towns on the shores of Ionia, 
in present-day Turkey. Rhodes, Delos, and Samos were fishing and trading 
communities on islands. Delphi was home to the oracle of Apollo, the sun god. 
Syracuse was the largest of the Greek colonies in Italy. Aristocratic Thebes 
(not to be confused with the Thebes of Egypt) was an important agricultural 
center. Olympia hosted the famous quadrennial Olympic Games. The most 
important cities of Hellenic Greece, however, were commercial Athens and 
militaristic Sparta.

Sparta was located inland, away from the sea, in the small, confined valley 
of the Evrotas River, a place the Greeks called Laconia. At the beginning of the 
eighth century B.C., Sparta faced a food shortage; its population had grown too 
large and could no longer be supported by the meager crops produced by the 
poor, stony soil of the Evrotas valley. Driven by hunger, Sparta, in two bloody 
wars, invaded and conquered the neighboring, more populous city-state of 
Messene, which was located in the next valley, on the other side of the Tafy- 
etos Mountains. The Spartans enslaved the Messenians, called helots, and put 
them to work in the fields growing food for the tables of their new overlords. 
From time to time, the helots staged rebellions, but each revolt was brutally 
suppressed. Outnumbered by its Messenian thralls, Spartans exerted control 
by maintaining a large standing army and staging periodic raids on helot vil
lages. Spartan boys were taken from their parents at an early age and placed 
into military regiments, where they lived under a military discipline throughout 
most of their lives. The Spartan army was feared throughout Greece for its 
ferocity and fighting prowess, and Sparta was the preeminent Greek military 
power. However, although the Spartans unquestionably stood foremost among 
the Greeks as soldiers, the barracks proved infertile ground for scholarship, 
and Spartan intellectual accomplishments were negligible.



Although Sparta had the most powerful army in Hellenic Greece, the 
commercial and cultural center of the Greek world was the city-state of Athens. 
Located on a small, sere, rocky plain overlooking the sea, Athens, like Sparta, 
admitted to only a meager agriculture, and, before 600 B.C., it too faced 
chronic food shortages. The community was rocked by civil wars between rich 
and poor. In 594 B.C., the small Athenian middle class (merchants, artisans, 
and some farmers) engineered the election of the reform-minded Solon (639?- 
599? B.C.) as archon, or leader. Solon outlawed slavery for debt (although 
other forms of slavery persisted), granted citizenship to foreign craftspeople in 
the hope that they would teach their skills to native Athenians, encouraged 
farmers to abandon unprofitable wheat cultivation and grow olives and grapes 
instead, and instituted a popular assembly, or legislature. Despite such re
forms, democracy did not come easily in Athens, and several times over the 
next century despots seized power in coups d'etat. In 510 B.C., after one such 
coup, a new constitution was instituted. This constitution was even more dem
ocratic than Solon’s and granted the right to vote to all adult male citizens. It 
was not a perfect democracy (women could not vote, and neither could slaves, 
who made up about a quarter of the city’s population), but it was the closest 
thing to it in the ancient world.

Athens after Solon was as prosperous as it was democratic. Athenian olive 
oil and wine were considered the finest produced in the Mediterranean Sea 
region. They were sold widely in Greece and beyond and packaged in ornate 
vases crafted by the city’s talented artisans. The city’s marketplace, the agora, 
became the principal commercial nexus of the eastern Mediterranean. Intellec
tual life in Athens focused about the agora. There, farmers from the country
side, merchants and artisans from the city’s shops, and traders and sailors just 
off the docks mingled and talked. Philosophers like Socrates (4697-399 B.C.) 
and Plato (4277-347 B.C.), scientists like Aristotle (384-322 B.C.), and play
wrights like Aristophanes (4457-385? B.C.) sat in the shade of the marketplace, 
surrounded by students, admirers, and interested citizens, and exchanged 
ideas. Although the Athenian agora was the grandest in Hellenic Greece, mar
ketplaces served a similar function in other commercial cities, such as Corinth, 
Rhodes, and Miletus. Furthermore, as the Greek population continued to grow, 
pioneers erected new city-states in far away Italy and Cyprus, and on the 
shores of the Black Sea. Such colonies, among them Syracuse and Neapolis 
(Naples—literally, “New City” ) in Italy, Massilla (Marseilles) on the French 
riviera, and Sinope in modern Turkey, had agoras too—smaller imitations of 
the one at Athens—where philosophers and scientists gathered.

In 432 B.C., Athens was at the height of its prestige and power and was led 
by its greatest statesman, Pericles (4907-429 B.C.). It had a powerful navy, 
built to repulse two earlier invasions by Persia, one in 490 B.C. and another a 
decade later. The city stood at the center of the Delian League, a political and 
commercial network that included a dozen or more other Greek city-states and 
controlled the League’s treasury.

The prosperity did not last. Persia revenged itself for its defeats by annex
ing Miletus, Smyrna, and other Greek towns along the Ionian coast. Worse,
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Sparta grew jealous of the powerful Athenian navy, and the two states quar
relled frequently. In 431 B.C., they were at war, a struggle that lasted until 
404 B.C., ruined both countries, and involved most of the other Greek city- 
states. This war was followed by others that lasted until 336 B.C., when Alex
ander the Great (356-323 B.C.) united all of Greece in his Macedonian Empire.

Despite political disunity, chronic food shortages, overpopulation, and 
almost constant warfare, the Hellenic Age in Greece (ca. 800-336 B.C.) wit
nessed remarkable intellectual achievement. In the agoras of Athens and other 
city-states, philosophers taught students and advanced new ideas. It was a time 
that witnessed the writing of the first real histories: Herodotus’ (4847-424? 
B.C.) optimistic account of Greece’s glorious victories over the Persian in
vaders and Thucydides’ (4607-400? B.C.) anguished telling of the fratricidal 
struggle between Sparta and Athens. It saw the application of deductive rea
soning to mathematics by Thales of Miletus (6407-564? B.C.) and Pythagoras 
(5867-500? B.C.), the foundation of modern medicine by Hippocrates of Cos 
(4607-377? B.C.), who devised the famous Hippocratic Oath of physicians; and 
the systematization of logic by Aristotle. It was an age of great literature and 
theater, with playwrights like Sophocles (4967-406? B.C.) and Aristophanes 
(4457-385? B.C.). Here, in the small cities in the rocky valleys at the eastern 
end of the Mediterranean Sea, more than 2000 years ago, were laid the founda
tions of western society.



Chapter

PYTHAGOREAN MATHEMATICS

3-1 Birth of Demonstrative Mathematics
The last centuries of the second millennium B.C. witnessed many economic 
and political changes. Some civilizations disappeared, the power of Egypt and 
Babylonia waned, and new peoples, especially the Hebrews, Assyrians, Phoe
nicians, and Greeks, came to the fore. The Iron Age was ushered in and 
brought with it sweeping changes in warfare and in all pursuits that required 
tools. The alphabet was invented, and coins were introduced. Trade was in
creasingly stimulated, and geographical discoveries were made. The world was 
ready for a new type of civilization.

The new civilization made its appearance in the trading towns that sprang 
up along the coast of Asia Minor and later on the mainland of Greece, on Sicily, 
and on the Italian shore. The static outlook of the ancient Orient became 
impossible, and in a developing atmosphere of rationalism, men began to ask 
why as well as how.

For the first time, in mathematics, as in other fields, men began to ask 
fundamental questions such as “ Why are the base angles of an isosceles trian
gle equal?” and “ Why does a diameter of a circle bisect the circle?” The 
empirical processes of the ancient Orient, quite sufficient for the question how, 
no longer sufficed to answer these more scientific inquiries of why. Some at
tempt at demonstrative methods was bound to assert itself, and the deductive 
feature, which modern scholars regard as a fundamental characteristic of math
ematics, came into prominence. Thus, mathematics, in the modern sense of the 
word, was born in this atmosphere of rationalism and in one of the new trading 
towns located on the west coast of Asia Minor. For tradition has it that demon
strative geometry began with Thales of Miletus, one of the “ seven wise men” 
of antiquity, during the first half of the sixth century B.C.1

Thales seems to have spent the early part of his life as a merchant, becom
ing wealthy enough to devote the latter part of his life to study and some travel. 
It is said that he resided for a time in Egypt, and there evoked admiration by 
calculating the height of a pyramid by means of shadows (see Problem Study 
3.1). Back in Miletus, his many-sided genius won him a reputation as a states
man, counselor, engineer, businessman, philosopher, mathematician, and as

1 There are some historians of ancient mathematics, in particular Otto Neugebauer, who 
disagree with the traditional evolutionary account of the origin of demonstrative mathematics and 
favor a more revolutionary account, wherein the change was probably brought on by the discovery 
of the irrationality of V2.
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tronomer. Thales is the first known individual with whom mathematical discov
eries are associated. In geometry, he is credited with the following elementary 
results:

1. A circle is bisected by any diameter.
2. The base angles of an isosceles triangle are equal.
3. The vertical angles formed by two intersecting lines are equal.
4. Two triangles are congruent if they have two angles and one side in 

each respectively equal. [Thales perhaps used this result in his determi
nation of the distance of a ship from shore (see Problem Study 3.1).]

5. An angle inscribed in a semicircle is a right angle. (This was recognized 
by the Babylonians some 1400 years earlier.)

The value of these results is not to be measured by the theorems themselves, 
but rather by the belief that Thales supported them by some logical reasoning 
instead of intuition and experiment.

Take, for example, the matter of the equality of a pair of vertical angles 
formed by two intersecting lines. In Figure 6, we wish to show that angle a is 
equal to angle b. In pre-Hellenic times, the equality of these two angles proba
bly would have been considered as quite obvious, and if anyone should have 
had doubts, that person would have been convinced by performing the simple 
experiment wherein the angles are cut out and then one applied to the other. 
Thales, on the other hand, preferred to establish the equality of angles a and b 
by logical reasoning, perhaps in much the same way as we do today in our 
elementary geometry texts. In Figure 6, angle a plus angle c equals a straight 
angle; also, angle b plus angle c equals a straight angle. Since all straight angles 
are equal, therefore, angle a equals angle b (if equals are subtracted from 
equals, the remainders are equal). The equality of angles a and b has been 
established by a short chain of deductive reasoning, starting from more basic 
principles.

As with other great men, many charming anecdotes are told about Thales 
that, if not true, are at least apposite. There was the occasion when he demon
strated how easy it is to get rich; foreseeing a heavy crop of olives coming, he 
obtained a monopoly on all the oil presses of the region and then later realized a 
fortune by renting them out. And there is the story, recounted by Aesop, of the 
recalcitrant mule that, when transporting salt, found that by rolling over in the 
stream he could dissolve the contents of his load and thus travel more lightly. 
Thales broke him of the troublesome habit by loading him with sponges. He 
answered Solon’s query as to why he never married by having a runner appear 
next day with a fictitious message for Solon stating that Solon’s favorite son

FIGURE 6



74 CHAPTER THREE /  PYTHAGOREAN MATHEMATICS

had been suddenly killed in an accident. Thales then calmed the grief-stricken 
father, explained everything, and said, “I merely wanted to tell you why I 
never married.”

Recent research indicates that there is no evidence backing an often-re
peated story that Thales predicted a solar eclipse that took place in 585 B.C.

3-2  Pythagoras and the Pythagoreans
The history of the first 300 years of Greek mathematics is obscured by the 
greatness of Euclid’s Elements, written about 300 B.C., because this work so 
completely eclipsed so many preceding Greek writings on mathematics that 
those earlier works were thenceforth discarded and have become lost to us. As 
the eminent twentieth-century mathematician David Hilbert once remarked, 
one can measure the importance of a scientific work by the number of earlier 
publications rendered superfluous by it.

Consequently, unlike ancient Egyptian and Babylonian mathematics, 
there exist virtually no primary sources that throw much light upon early Greek 
mathematics. We are forced to rely upon manuscripts and accounts that are 
dated several hundred years after the original treatments were written. In spite 
of this difficulty, however, scholars of classicism have been able to build up a 
rather consistent, although somewhat hypothetical, account of the history of 
early Greek mathematics, and have even plausibly restored many of the origi
nal Greek texts. This work required amazing ingenuity and patience; it was 
carried through by painstaking comparisons of derived texts and by the exami
nation of countless literary fragments and scattered remarks made by later 
authors, philosophers, and commentators.2

The debt of early Greek mathematics to ancient Oriental mathematics is 
difficult to evaluate, and the path of transmission from the one to the other has 
not yet been satisfactorily uncovered. That the debt is considerably greater 
than formerly believed became evident with twentieth-century research of Bab
ylonian and Egyptian records. Greek writers themselves expressed respect for 
the wisdom of the East, and this wisdom was available to anyone who could 
travel to Egypt and Babylonia. There are also internal evidences of a connec
tion with the East. Early Greek mysticism in mathematics smacks strongly of 
Oriental influence, and some Greek writings exhibit a Hellenic perpetuation of 
the more arithmetic tradition of the Orient. Also, there are strong links con
necting Greek and Mesopotamian astronomy.

Our principal source of information concerning very early Greek mathe
matics is the so-called Eudemian Summary of Proclus. This summary consti
tutes the opening pages of Proclus’ Commentary on Euclid, Book /, and is a 
very brief outline of the development of Greek geometry from the earliest times 
to Euclid. Although Proclus lived in the fifth century A.D., a good thousand

2 A debt is owed, along these lines, to the profound and scholarly investigations of such men as 
Paul Tannery, T. L. Heath, H. G. Zeuthen, A. Rome, J. L. Heiberg, and E. Frank.



years after the inception of Greek mathematics, he still had access to a number 
of historical and critical works that are now lost to us, except for the fragments 
and allusions preserved by him and others. Among these lost works was a 
resume of an apparently full history of Greek geometry, already lost in Proclus’ 
time, covering the period prior to 335 B.C., written by Eudemus, a pupil of 
Aristotle. The Eudemian Summary is so named because it is based upon this 
earlier work. The account of the mathematical achievements of Thales, 
sketched in the preceding section, was furnished by the Eudemian Summary.

The next outstanding Greek mathematician mentioned in the Eudemian 
Summary is Pythagoras, whom his followers enveloped in such a mythical haze 
that very little is known about him with any degree of certainty. It seems that 
he was born about 572 B.C. on the Aegean island of Samos. Being about fifty 
years younger than Thales and living so near Thales’ home city of Miletus, it 
may be that Pythagoras studied under the older man. He then appears to have 
sojourned in Egypt and may even have indulged in more extensive travel. 
Returning home, he found Samos under the tyranny of Poly crates and Ionia 
under the dominion of the Persians; accordingly, he migrated to the Greek 
seaport of Crotona, located in southern Italy. There he founded the famous 
Pythagorean school, which, in addition to being an academy for the study of 
philosophy, mathematics, and natural science, developed into a closely knit 
brotherhood with secret rites and observances. In time, the influence and aris
tocratic tendencies of the brotherhood became so great that the democratic 
forces of southern Italy destroyed the buildings of the school and caused the 
society to disperse. According to one report, Pythagoras fled to Metapontum 
where he died, maybe murdered, at an advanced age of seventy-five to eighty. 
The brotherhood, although scattered, continued to exist for at least two centu
ries more.
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PYTHAGORAS
(David Smith Collection)
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The Pythagorean philosophy rested on the assumption that whole number 
is the cause of the various qualities of man and matter. This led to an exaltation 
and study of number properties, and arithmetic (considered as the theory of 
numbers), along with geometry, music, and spherics (astronomy), constituted 
the fundamental liberal arts of the Pythagorean program of study. This group of 
subjects became known in the Middle Ages as the quadrivium, to which was 
added the trivium of grammar, logic, and rhetoric. These seven liberal arts 
came to be looked upon as the necessary equipment of an educated person.

Because Pythagoras’ teaching was entirely oral, and because of the broth
erhood’s custom of referring all discoveries back to the revered founder, it is 
now difficult to know just which mathematical findings should be credited to 
Pythagoras himself and which to other members of the fraternity.

3 -3  Pythagorean Arithmetic

The ancient Greeks made a distinction between the study of the abstract rela
tionships connecting numbers and the practical art of computing with numbers. 
The former was known as arithmetic and the latter as logistic. This classifica
tion persisted through the Middle Ages until about the close of the fifteenth 
century, when texts appeared treating both the theoretical and practical aspects 
of number work under the single name arithmetic. It is interesting that today 
arithmetic has its original significance in continental Europe, while in England 
and America the popular meaning of arithmetic is synonymous with that of 
ancient logistic. In these two countries, the descriptive term number theory is 
used to denote the abstract side of number study.

It is generally conceded that Pythagoras and his followers, in conjunction 
with the fraternity’s philosophy, took the first steps in the development of 
number theory, and at the same time laid much of the basis of future number 
mysticism. Thus, Iamblichus, an influential Neoplatonic philosopher of about 
A.D. 320, has ascribed to Pythagoras the discovery of amicable, or friendly, 
numbers. Two numbers are amicable if each is the sum of the proper divisors3 
of the other. For example, 284 and 220, constituting the pair ascribed to Py
thagoras, are amicable, since the proper divisors of 220 are 1, 2, 4, 5, 10, 11,20, 
22, 44, 55, 110, and the sum of these is 284, whereas the proper divisors of 284 
are 1, 2, 4, 71, 142, and the sum of these is 220. This pair of numbers attained a 
mystical aura, and superstition later maintained that two talismans bearing 
these numbers would seal perfect friendship between the wearers. The num
bers came to play an important role in magic, sorcery, astrology, and the 
casting of horoscopes. It seemed that no new pair of amicable numbers was 
discovered until the great French number theorist Pierre de Fermat in 1636 
announced 17,296 and 18,416 as another pair. It has recently been established,

3 The proper divisors of a positive integer N are all the positive integral divisors of N except N 
itself. Note that 1 is a proper divisor of N. A somewhat antiquated synonym for proper divisor is 
aliquot part.
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however, that this was a rediscovery, and that this pair of amicable numbers 
had been previously found by the Arab al-Banna (1256-1321) in the late thir
teenth or early fourteenth century, perhaps by using the Tabit ibn Qorra for
mula. (For this formula, see Problem Study 7.11.) Two years after Fermat’s 
announcement, the French mathematician and philosopher Rene Descartes 
gave a third pair. The Swiss mathematician Leonhard Euler undertook a sys
tematic search for amicable numbers and, in 1747, gave a list of thirty pairs, 
which he later extended to more than sixty. A curiosity in the history of these 
numbers was the late discovery, by the sixteen-year-old Italian boy Nicolo 
Paganini4 in 1866, of the overlooked and relatively small pair of amicable num
bers, 1184 and 1210. All amicable number pairs below one billion have now 
been found.

Other numbers having mystical connections essential to numerological 
speculations, and sometimes ascribed to the Pythagoreans, are the perfect, 
deficient, and abundant numbers. A number is perfect if it is the sum of its 
proper divisors, deficient if it exceeds the sum of its proper divisors, and 
abundant if it is less than the sum of its proper divisors. So God created the 
world in six days, a perfect number, since 6 = 1 + 2 + 3. On the other hand, as 
Alcuin (735-804) observed, the whole human race descended from the eight 
souls of Noah’s ark, and this second creation was imperfect, for 8, being 
greater than 1 + 2 + 4, is deficient. Until 1952, there were only twelve known 
perfect numbers, all of them even numbers, of which the first three are 6, 28, 
and 496. The last proposition of the ninth book of Euclid’s Elements (ca. 300 
B.C.) proves that if  2n — 1 is a prime number,5 then 2n~l(2n — 1) is a perfect 
number. The perfect numbers given by Euclid’s formula are even numbers, and 
Euler has shown that every even perfect number must be of this form. The 
existence or nonexistence of odd perfect numbers is one of the celebrated 
unsolved problems in number theory. There certainly is no number of this type 
having less than 200 digits.

In 1952, with the aid of the SWAC digital computer, five more perfect 
numbers were discovered, corresponding to n = 521, 607, 1279, 2203, and 2281 
in Euclid’s formula. In 1957, using the Swedish machine BESK, another was 
found, corresponding to n = 3217. In 1961, with an IBM 7090, two more were 
found, for n = 4253 and 4423. There are no other even perfect numbers for n <  
5000. The values n = 9689, 9941, 11213, 19937, 21701, 23209, 86243, 132049, 
and 216091 also yield perfect numbers, bringing the list of known perfect num
bers to thirty. The last was found by scientists at Chevron in 1985 on a 
$10,000,000 Cray X-MP supercomputer.

The concept of perfect numbers has inspired certain generalizations by 
modern mathematicians. If we let a(n) represent the sum of all the divisors of n

4 Not to be confused with Nicolo Paganini (1782-1840), the noted Italian violinist and com
poser.

5 A prime number is a positive integer greater than 1 and having no positive integral divisors 
other than itself and unity. An integer greater than 1 that is not a prime number is called a composite 
number, thus, 7 is a prime number, whereas 12 is a composite number.
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1
A

Triangular numbers

6

FIGURE 7

(including n itself), then n is perfect if and only if cr(ri) = In. In general, if we 
should have o-(az) = kn, where k is a natural number, then n is said to be k-tuply 
perfect. One can show, for example, that 120 and 672 are triply perfect. It is not 
known if infinitely many multiply perfect numbers, let alone just perfect ones, 
exist. It is also not known if any odd multiply perfect number exists. In 1944, 
the concept of superabundant numbers was created. A natural number n is 
superabundant if and only if cr(n)ln >  a(k)lk  for all k <  n. It is known that 
there are infinitely many superabundant numbers. Other numbers related to 
perfect, deficient, and abundant numbers that have been introduced in recent 
times are practical numbers, quasiperfect numbers, semiperfect numbers, and 
weird numbers. We merely mention these concepts to illustrate how ancient 
number work has inspired related modern investigations.

Although not all historians of mathematics feel that amicable and perfect 
numbers can be ascribed to the Pythagoreans, there seems to be universal 
agreement that the figurate numbers did originate with the earliest members of 
the society. These numbers, considered as the number of dots in certain geo
metrical configurations, represent a link between geometry and arithmetic. 
Figures 7, 8, and 9 account for the geometrical nomenclature of triangular 
numbers, square numbers, pentagonal numbers, and so on.

Many interesting theorems concerning figurate numbers can be established 
in purely geometric fashion. To show Theorem I (any square number is the sum 
of two successive triangular numbers), for example, we observe that a square 
number, in its geometric form, can be divided as in Figure 10. Again, Figure 11 
illustrates Theorem II (the nth pentagonal number is equal to n plus three times 
the (n — 1 )th triangular number). Theorem III (the sum of any number of  
consecutive odd integers, starting with l, is a perfect square) is exhibited 
geometrically by Figure 12.

Square numbers

and so on

91 4

FIGURE 8
16 and so on
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Of course, these theorems can also be established algebraically once we 
obtain the algebraic representations of the general triangular, square, and pen
tagonal numbers. It is clear that the nth triangular number, Tn, is given by the 
sum of an arithmetic series,6

T„ 1 + 2 + 3 + • • • + n n(n + 1) 
2 ’

and, of course, the nth square number, Sn, is n2. Our first theorem may now be 
re-established algebraically by an identity as follows:

Sn
, n(n + 1) , (n -  l)n „  , „

= nz = -----z-----+ ------ r-----= T„ + Tn-1

The nth pentagonal number, P„, is also given by the sum of an arithmetic 
series.

P„ = 1 + 4 + 7 + • • • + (3n -  2) 
n(3n — 1) 3 n(n — 1)

“  2 ~ " +  2 
= n + 3Tn- i .

This proves the second theorem. The third theorem is obtained algebraically by 
summing the arithmetic series

1 + 3 + 5 + . . + {In -  1) = n(2n)
2 “

As a last and very remarkable discovery about numbers, made by the 
Pythagoreans, we might mention the dependence of musical intervals upon 
numerical ratios. The Pythagoreans found that for strings under the same ten
sion, the lengths should be 2 to 1 for the octave, 3 to 2 for the fifth, and 4 to 3 for 
the fourth. These results, the first recorded facts in mathematical physics, led 
the Pythagoreans to initiate the scientific study of musical scales.

3 -4  Pythagorean Theorem and 
Pythagorean Triples

Tradition is unanimous in ascribing to Pythagoras the independent discovery of 
the theorem on the right triangle that now universally bears his name—that the 
square on the hypotenuse of a right triangle is equal to the sum of the squares

6 The sum of an arithmetic series is equal to the product of the number of terms and half the 
sum of the two extreme terms.
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b a a b

on the two legs. We have seen that this theorem was known to the Babylonians 
of Hammurabi’s time, more than a thousand years earlier, but the first general 
proof of the theorem may well have been given by Pythagoras. There has been 
much conjecture as to the proof Pythagoras might have offered, and it is gener
ally felt that it probably was a dissection type of proof7 like the following, 
illustrated in Figure 13. Let a , b , c denote the legs and hypotenuse of the given 
right triangle, and consider the two squares in the accompanying figure, each 
having a + b as its side. The first square is dissected into six pieces—namely, 
the two squares on the legs and four right triangles congruent to the given 
triangle. The second square is dissected into five pieces—namely, the square 
on the hypotenuse and four right triangles congruent to the given triangle. By 
subtracting equals from equals, it now follows that the square on the hypote
nuse is equal to the sum of the squares on the legs.

To prove that the central piece of the second dissection is actually a square 
of side c, we need to employ the fact that the sum of the angles of a right 
triangle is equal to two right angles. But the Eudemian Summary attributes this 
theorem for the general triangle to the Pythagoreans. Because a proof of this 
theorem requires, in turn, a knowledge of some properties of parallels, the 
early Pythagoreans are also credited with the development of that theory.

Since Pythagoras’ time, many different proofs of the Pythagorean theorem 
have been supplied. In the second edition of his book, The Pythagorean Propo
sition, E. S. Loomis has collected and classified 370 demonstrations of this 
famous theorem.

Closely allied to the Pythagorean theorem is the problem of finding inte
gers a, b, c that can represent the legs and hypotenuse of a right triangle. A 
triple of numbers of this sort is known as a Pythagorean triple and, as we have 
seen in Section 2-6, the analysis of Plimpton 322 offers fairly convincing evi
dence that the ancient Babylonians knew how to calculate such triples. The

7 See, however, Daniel Shanks, Solved and Unsolved Problems in Number Theory, vol. 1, 
pp. 124, 125.
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Pythagoreans have been credited with the formula

j 2 -  1 \2 ( m 2 + 1 \2
n r ♦ ( ^

the three terms of which, for any odd m, yield a Pythagorean triple. The similar 
formula

(2m)2 + (m2 -  l)2 = (m2 + l)2,

where m may be even or odd, was devised for the same purpose and is attrib
uted to Plato (ca. 380 B.C.). Neither of these formulas yields all Pythagorean 
triples.

3 -5  Discovery of Irrational Magnitudes
The integers are abstractions arising from the process of counting finite collec
tions of objects. The needs of daily life require us in addition to counting 
individual objects, to measure various quantities, such as length, weight, and 
time. To satisfy these simple measuring needs, fractions are required, for sel
dom will a length, as an example, appear to contain an exact integral number of 
linear units. Thus, if we define a rational number as the quotient of two integers 
p l q , q + 0, this system of rational numbers, since it contains all the integers and 
fractions, is sufficient for practical measuring purposes.

The rational numbers have a simple geometrical interpretation. Mark two 
distinct points O and I  on a horizontal straight line ( /  to the right of O) and 
choose the segment OI as a unit of length. If we let O and I represent the 
numbers 0 and 1, respectively, then the positive and negative integers can be 
represented by a set of points on the line spaced at unit intervals apart, the 
positive integers being represented to the right of O and the negative integers to 
the left of O. The fractions with denominator q may then be represented by the 
points that divide each of the unit intervals into q equal parts. Then, for each 
rational number, there is a point on the line. To the early mathematicians, it 
seemed evident that all the points on the line would in this way be used up. It 
must have been something of a shock to learn that there are points on the line 
not corresponding to any rational number. This discovery was one of the great
est achievements of the Pythagoreans. In particular, the Pythagoreans showed 
that there is no rational number corresponding to the point P on the line where 
the distance OP is equal to the diagonal of a square having a unit side (see 
Figure 14). New numbers had to be invented to correspond to such points, and 
since these numbers cannot be rational numbers, they came to be called irratio
nal numbers (meaning, nonrational numbers). Their discovery marks one of the 
great milestones in the history of mathematics.

To prove that the length of the diagonal of a square of unit side cannot be 
represented by a rational number, it suffices to show that V2 is irrational. To
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FIGURE 14

this end, we first observe that, for a positive integer s, s 2 is even if and only if s 
is even. Now, suppose, for the purpose of argument, that V 2 is rational—that 
is, V 2 = alb—where a and b are relatively prime integers.8 Then

a = b \ f l ,

or

a1 = 2b2.

Since a2 is twice an integer, we see that a2 and, hence a, must be even. Put 
a — 2c; then the last equation becomes

4c2 = 2b2,

or

2c2 = b2,

from which we conclude that b2 and, hence, b must be even. This is impossible, 
however, since a and b were assumed to be relatively prime. Thus, the assump
tion that V 2 is rational, which led to this impossible situation, must be aban
doned.

The discovery of the existence of irrational numbers was surprising and 
disturbing to the Pythagoreans. First of all, it seemed to deal a mortal blow to 
the Pythagorean philosophy that all depends upon the whole numbers. Next, it 
seemed contrary to common sense, for it was felt intuitively that any magnitude 
could be expressed by some rational number. The geometrical counterpart was 
equally startling, for who could doubt that for any two given line segments one 
is able to find some third line segment, perhaps very very small, that can be 
marked off a whole number of times into each of the two given segments? But 
take as the two segments a side s and a diagonal d  of a square. Now if there 
exists a third segment t that can be marked off a whole number of times into s 
and d, we would have s = bt and d = at, where a and b are positive integers. 
But d -  s V 2, whence at = b tV 2—that is, a = b V 2, or V 2 = alb, a rational 
number. Contrary to intuition, then, there exist incommensurable line seg
ments—that is, line segments having no common unit of measure.

8 Two integers are relatively prime if they have no common positive integral factor other than 
unity. Thus, 5 and 18 are relatively prime, whereas 12 and 18 are not relatively prime.
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FIGURE 15

Let us sketch an alternative, geometrical demonstration of the irrationality 
of V 2 by showing that a side and diagonal of a square are incommensurable. 
Suppose the contrary. According to this supposition, then, there exists a seg
ment AP  (see Figure 15) such that both the diagonal AC  and side AB of a square 
ABCD are integral multiples of AP; that is, AC  and AB are commensurable with 
respect to AP. On AC, lay off CB\ = AB and draw B\C\ perpendicular to CA. 
One may easily prove that C\B = C\B\ = A B \. Then ACi = AB -  AB\ and ABX 
are commensurable with respect to AP. But ACi and AB\ are a diagonal and a 
side of a square of dimensions less than half those of the original square. It 
follows that, by repeating the process, we may finally obtain a square whose 
diagonal ACn and side ABn are commensurable with respect to AP, and ACn <  
AP. This absurdity proves the theorem.

The first proof is essentially the traditional one known to Aristotle (384- 
322 B.C.). This discovery of the irrationality of V 2 caused some consternation 
in the Pythagorean ranks. Not only did it appear to upset the basic assumption 
that everything depends on the whole numbers, but because the Pythagorean 
definition of proportion assumed any two like magnitudes to be commensura
ble, all the propositions in the Pythagorean theory of proportion had to be 
limited to commensurable magnitudes, and their general theory of similar fig
ures became invalid. So great was the “logical scandal” that efforts were made 
for a while to keep the matter secret. One legend has it that the Pythagorean 
Hippasus (or perhaps some other) perished at sea for his impiety in disclosing 
the secret to outsiders, or (according to another version) was banished from the 
Pythagorean community and a tomb was erected for him as though he was 
dead.

For some time, V 2 was the only known irrational.9 Later, according to 
Plato, Theodorus of Cyrene (ca. 425 B.C.) showed that V3, V5, V6, V7, V8, 
V lo , VTT, V l2 , V l3 , V l4 , V l5 , V f7  are also irrational. About 370 B.C., the 
“ scandal” was resolved by the brilliant Eudoxus, a pupil of Plato and of the

9 There is some possibility that (V5 -  l)/2, which is the ratio of a side to a diagonal of a regular 
pentagon, was the first known irrational.
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Pythagorean Archytas who put forth a new definition of proportion. Eudoxus’ 
masterful treatment of incommensurabl.es appears in the fifth book of Euclid’s 
Elements, and coincides essentially with the modern exposition of irrational 
numbers that was given by Richard Dedekind in 1872.

The treatments of ratio and proportion and similar triangles in early twenti
eth-century high school geometry texts reflect the difficulties and subtleties 
introduced by incommensurable magnitudes. In these treatments, two cases, 
depending upon the commensurability or incommensurability of certain magni
tudes, are considered (see, for example, Section 5-5 and Problem Study 5.6). 
More recent texts circumvent the difficulties by the use of more sophisticated 
postulational bases.

3-6  Algebraic Identities
Imbued with the representation of a number by a length and completely lacking 
any adequate algebraic notation, the early Greeks devised ingenious geometri
cal processes for carrying out algebraic operations. Much of this geometrical 
algebra has been attributed to the Pythagoreans and can be found scattered 
through several of the earlier books of Euclid’s Elements. Thus, Book II of the 
Elements contains a number of propositions that in reality are algebraic identi
ties couched in geometric terminology. It seems quite certain that these propo
sitions were developed, through means of a dissection method, by the early 
Pythagoreans. We may illustrate the method by considering a few of the propo
sitions of Book II.

Proposition 4 of Book II establishes geometrically the identity

(<a + b)2 = a2 + lab  + b2

by dissecting the square of side a + b into two squares and two rectangles 
having areas a2, b2, ab, and ab, as indicated in Figure 16. Euclid’s statement of 
the proposition is: I f  a straight line is divided into any two parts, the square on 
the whole line is equal to the sum o f the squares on the two parts together with 
twice the rectangle contained by the two parts.

FIGURE 16
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The statement of Proposition 5 of Book II is: I f  a straight line is divided 
equally and also unequally, the rectangle contained by the unequal parts, 
together with the square on the line between the points o f section, is equal to 
the square on half the line. Let AB be the given straight-line segment, and let it 
be divided equally at P and unequally at Q. Then the proposition says that

(AQXQB) + (PQ)2 = (PB)2.

If we set AQ  = 2a and QB = 2b, this leads to the algebraic identity

4ab + (a -  b)2 = (a + b)2, 

or, if we set AB = 2a and PQ = b, to the identity

(a + b)(a — b) = a2 — b2.

The dissection given in the Elements for establishing this theorem appears in 
Figure 17. It is more complicated than that for Proposition 4. In the figure, 
PCDB and QFLB are squares described on PB and QB as sides. Then

(AQXQB) + (PQ)2 = AGFQ + HCEF = AGHP + PHFQ + HCEF 
= PHLB + PHFQ + HCEF 
= PHLB + FEDL + HCEF = (PB)2.

The statement of Proposition 6 of Book II is: If a straight line is bisected 
and produced to any point, the rectangle contained by the whole line thus 
produced and the part o f it produced, together with the square on half the line 
bisected, is equal to the square on the straight line made up o f the half and the 
part produced. Here (see Figure 18), if the given straight-line segment AB with 
midpoint P is produced to Q, we are to show that

(AQ)(BQ) + (PB)2 = (PQ)2.

A P Q B

G H F

C E D

FIGURE 17
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FIGURE 18

H
Q

If we set A Q = 2a and BQ = 2b, we are led again to the identity

4ab + (a -  ft)2 = (0 + b)2,

and a similar dissection to that used for Proposition 5 may be used here.
Figure 19, with AB = a and BC = b , suggests a less cumbrous proof of the 

identity

4ab + (a -  fc)2 = (a 4- b f .

3-7  Geometric Solution of Quadratic Equations
In their geometric algebra, the Greeks employed two principal methods for 
solving certain simple equations—the method of proportions and the method of 
application of areas. There is evidence that both of these methods originated 
with the Pythagoreans.

The method of proportions permits one to construct (exactly as we do 
today in our high school geometry courses; see Figure 20) a line segment x 
given either by a :b  = c :x  or by a :x  = x :b , where a, b, c are given line 
segments. That is, the method of proportions furnishes geometrical solutions of 
the equations

ax = be and x 2 = ab.

To explain the method of application of areas, consider (see Figure 21) a 
line segment AB and a parallelogram AQRS having side AQ  lying along the ray
AB. If Q is not at B , take C so that QBCR is a parallelogram. When Q is

FIGURE 19
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between A and B, parallelogram AQRS is said to be applied to segment AB, 
falling short by parallelogram QBCR; when Q coincides with B, parallelogram 
AQRS is said to be applied to segment AB; when Q lies on AB produced 
through B, parallelogram AQRS is said to be applied to segment AB, exceeding 
by parallelogram QBCR.

Proposition 44 of Book I of Euclid’s Elements solves the construction: To 
apply to a given line segment AB a parallelogram o f given area and given base 
angles. Consider the special case in which the given base angles are right 
angles, so that the applied parallelogram is a rectangle. Denote the length of AB 
by a, the altitude of the applied rectangle by x , and the dimensions of a rectan
gle of area equal to that of the applied rectangle by b and c. Then

. beax = be or x = — .a

Proposition 28 of Book VI of the Elements solves the construction: To 
apply to a given line segment AB a parallelogram AQRS equal in area to a 
given rectilinear figure F, and falling short by a parallelogram QBCR similar to 
a given parallelogram, the area o f F not exceeding that o f the parallelogram 
described on half o f AB and similar to the defect QBCR. Consider the special 
case in which the given parallelogram is a square. Denote the length of AB by a, 
the base AQ  of the applied parallelogram (which is now a rectangle) by x , and 
the side of a square F equal in area to the applied rectangle by b. Then

x(a — jc)  = b2 or x 2 -  ax + b2 = 0. (1)

Proposition 29 of Book VI solves the construction: To apply to a given line 
segment AB a parallelogram AQRS equal in area to a given rectilinear figure

s r c s r s c R

A Q B A B,Q A B Q

FIGURE 21
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FIGURE 22

F, and exceeding by a parallelogram QBCR similar to a given parallelogram, 
Consider the special case in which the given parallelogram is a square. Denote 
the length of AB by a , the base AQ  of the applied parallelogram (which is now a 
rectangle) by x, and the side of a square F equal in area to the applied rectangle 
by b, Then

jc(jc — a) = b2 or x 2 — ax — b2 = 0. (2)

It follows that Proposition I 44 yields a geometric solution to the linear 
equation ax = be, and Propositions VI 28 and 29 yield geometric solutions to 
the quadratic equations x 2 -  ax + b2 = 0 and x 2 -  ax -  b2 -  0, respectively.

Constructions can easily be devised for the above special cases of Proposi
tions VI 28 and 29 that are considerably simpler than the more general con
structions given in the Elements,

Consider, for example, the special case of Proposition VI 28. Here we 
want to apply to a given line segment a rectangle that falls short by a square. 
From the first of equations (1), we see that we may restate the problem as 
follows: To divide a given line segment so that the rectangle contained by its 
parts will equal a given square, the square not exceeding the square on half the 
given line segment. To clarify the problem, let AB and b be two line segments, b 
not greater than half of AB, We are to divide AB by a point Q such that 
(AQ){QB) = b2. To accomplish this, we mark off PE = b on the perpendicular 
to AB at its midpoint P , and with E as center and PB as radius, draw an arc 
cutting AB in the sought point Q, as in Figure 22. The proof is furnished by 
Proposition II 5 (which was probably devised by the Pythagoreans to serve 
here), for by that proposition

(AQ)(QB) = (PB)2 -  (PQ)2 = (EQ)2 -  (PQ)2 = (EP)2 = b2.

Denoting the length of AB by a and that of AQ by xy we have solved the 
quadratic equation x 2 -  ax + b2 = 0; the roots are represented by AQ  and QB,10 
The roots of the quadratic equation

x 2 + ax + b2 — 0

are represented by the negatives of the lengths of AQ  and QB,

10 If r and s are the roots of the quadratic equation x2 -  ax + b2 = 0, we know from elementary 
algebra that r + s = a and rs -  b2. But it is AQ and QB whose sum is AB, or a, and whose product 
is b2,
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For the special case of Proposition VI 29, we want to apply to a given line 
segment a rectangle that exceeds by a square. From the first of equations (2) 
above, we see that we may restate the problem as follows: To produce a given 
line segment so that the rectangle contained by the extended segment and the 
extension will equal a given square. Again, let AB and b be two line segments. 
We are to produce AB to a point Q such that (AQ)(BQ) = b2. To this end, we 
mark off BE = b on the perpendicular to AB at B , and with P , the midpoint of 
AB, as center and PE as radius, draw an arc cutting AB produced in the sought 
point Q , as in Figure 23. This time, the proof is furnished by Proposition II 6, 
for by that proposition

(AQ)(BQ) = (PQ)2 -  (PB)2 = (PE)2 -  (PB)2 = (BE)2 = b2.

As before, we see that AQ  and BQ , where we take the first one as positive and 
the second one as negative, are the roots of the quadratic equation

x 2 -  ax — b2 = 0,

a being the length of AB. The roots of

x 2 + ax — b2 = 0

are the same as those of x 2 -  ax -  b2 = 0, only with their signs changed.
The geometric algebra of the Pythagoreans, ingenious though it is, intensi

fies one’s appreciation of the simplicity and convenience inherent in present- 
day algebraic notation.

3 -8  Transformation of Areas

The Pythagoreans were interested in transforming an area from one rectilinear 
shape into another rectilinear shape. Their solution of the basic problem of 
constructing a square equal in area to that of a given polygon may be found in 
Propositions 42, 44, 45 of Book I and Proposition 14 of Book II of Euclid’s 
Elements. A  simpler solution, probably also known to the Pythagoreans, is the 
following. Consider any polygon ABCD . . . (see Figure 24). Draw BR parallel 
to AC  to cut DC  in R. Then, since triangles ABC and ARC have a common base 
AC  and equal altitudes on this common base, these triangles have equal areas.
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It follows that polygons ABCD . . . and ARD . . . have equal areas. But the 
derived polygon has one less side than the given polygon. By a repetition of this 
process, we finally obtain a triangle having the same area as the given polygon. 
Now if b is any side of this triangle and h the altitude on b, the side of an 
equivalent square is given by V(bh)l2—that is, by the mean proportional be
tween b and hl2. Since this mean proportional is easily constructed with 
straightedge and compasses, the entire problem can be carried out with these 
tools.

Many interesting area problems can be solved by this simple process of 
drawing parallel lines (see Problem Study 3.11).

3 -9  The Regular Solids

A polyhedron is said to be regular if its faces are congruent regular polygons 
and if its polyhedral angles are all congruent. Although there are regular poly
gons of all orders, it turns out that there are only five different regular polyhe- 
dra (see Problem Study 3.12). The regular polyhedra are named according to 
the number of faces each possesses. Thus, there is the tetrahedron with four 
triangular faces, the hexahedron, or cube, with six square faces, the octahe
dron with eight triangular faces, the dodecahedron with twelve pentagonal 
faces, and the icosahedron with twenty triangular faces (see Figure 25).

The early history of these regular polyhedra is lost in the dimness of the 
past. A mathematical treatment of them is initiated in Book XIII of Euclid’s

FIGURE 25
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Elements. The first scholium of this book remarks that the book “will treat of 
the so-called Platonic solids, incorrectly named, because three of them, the 
tetrahedron, cube, and dodecahedron are due to the Pythagoreans, while the 
octahedron and icosahedron are due to Theaetetus.” This could well be the 
case.

In any event, a description of all five regular polyhedra was given by Plato, 
who, in his Timaeus, shows how to construct models of the solids by putting 
triangles, squares, and pentagons together to form their faces. Plato’s Timaeus 
is the Pythagorean Timaeus of Locri, whom Plato presumably met when he 
visited Italy. In Plato’s work, Timaeus mystically associates the four easily 
constructed solids—the tetrahedron, octahedron, icosahedron, and cube— 
with the four Empedoclean primal “elements’’ of all material bodies—fire, air, 
water, and earth. The disturbing difficulty of accounting for the fifth solid, 
the dodecahedron, is taken care of by associating it with the enveloping uni
verse.

Johann Kepler (1571-1630), master astronomer, mathematician, and nu- 
merologist, gave an ingenious explanation of the Timaeus associations. Of the 
regular solids, he intuitively assumed that the tetrahedron encloses the smallest 
volume for its surface, while the icosahedron encloses the largest. Now these 
volume-surface relations are qualities of dryness and wetness, respectively, 
and since fire is the driest of the four “elements” and water the wettest, the 
tetrahedron must represent fire and the icosahedron water. The cube is asso
ciated with earth, since the cube, resting foursquare on one of its square 
faces, has the greatest stability. The octahedron, held lightly by two of its 
opposite vertices between a forefinger and thumb, easily spins and has the in
stability of air. Finally, the dodecahedron is associated with the universe 
because the dodecahedron has twelve faces and the zodiac has twelve 
signs.

The tetrahedron, cube, and octahedron can be found in nature as crystals, 
for example, of sodium sulphantimoniate, common salt, and chrome alum, 
respectively. The other two cannot occur in crystal form, but have been ob
served as skeletons of microscopic sea animals called radiolaria. In 1885, a toy 
regular dodecahedron of Etruscan origin, believed to date back to about 500 
B.C., was unearthed on Monte Loffa, near Padua.

3— 10 Postulational Thinking

Sometime between Thales in 600 B.C. and Euclid in 300 B.C., the notion was 
perfected of a logical discourse as a sequence of rigorous deductions from some 
initial and explicitly stated assumptions. This process, the so-called postula
tional method, has become the very core of modern mathematics; undoubtedly, 
much of the development of geometry along this pattern is due to the Pythago
reans. Certainly one of the greatest contributions of the early Greeks was the 
development of this postulational method of thinking. We shall return to a fuller 
discussion of the subject in Sections 5-7 and 15-2.
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Problem Studies

3.1 The Practical Problems of Thales

(a) There are two versions of how Thales calculated the height of an 
Egyptian pyramid by shadows. The earlier account, given by Hierony
mus, a pupil of Aristotle, says that Thales noted the length of the 
shadow of the pyramid at the moment when his shadow was the same 
length as himself. The later version, given by Plutarch, says that he set 
up a stick and then made use of similar triangles. Both versions fail to 
mention the difficulty, in either case, of obtaining the length of the 
shadow of the pyramid—that is, the distance from the apex of the 
shadow to the center of the base of the pyramid.

Devise a method, based on similar triangles and independent of 
latitude and time of year, for determining the height of a pyramid from  
two shadow observations.

(b) We are told that Thales measured the distance of a ship from shore, 
using the fact that 2 triangles are congruent if 2 angles and the included 
side of one are equal to 2 angles and the included side of the other. 
Heath has conjectured that this was probably done by an instrument 
consisting of 2 rods AC  and AD, hinged together at A, as shown in 
Figure 26. The rod AD was held vertically over point B on shore, while 
rod AC  was pointed toward the ship P. Then, without changing the 
angle DAC, the instrument was revolved about AD, and point Q noted 
on the ground at which arm AC was directed. What distance must 
be measured in order to find the distance from B to the inaccessible 
point PI

FIGURE 26

3.2 Perfect and Amicable Numbers

(a) Show that in Euclid’s formula for perfect numbers, n must be prime.
(b) What is the fourth perfect number furnished by Euclid’s formula?
(c) Prove that the sum of the reciprocals of all the divisors of a perfect 

number is equal to 2.
(d) Show that if p  is a prime, then p n is deficient.
(e) Show that Nicolo Paganini’s numbers, 1184 and 1210, are amicable.
(f) Show that any multiple of an abundant or perfect number is abundant.
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(g) Find the 21 abundant numbers less than 100. It will be noticed that they 
are all even numbers. To show that all abundant numbers are not even, 
show that 945 = 33 • 5 • 7 is abundant. This is the first odd abundant 
number.

(h) Estimate the number of digits in the perfect numbers corresponding to
(1) n = 7, (2) n = 127.

(i) A cyclic sequence of three or more numbers such that the sum of the 
proper divisors of each is equal to the next in the sequence is known as 
a sociable chain of numbers. Only two sociable chains involving num
bers below 1,000,000 are known: one of 5 “links” (found by the 
Frenchman P. Poulet) starting with 12,496, and one of 28 links starting 
with 14,316. Find the first of these sociable chains. A sociable chain of 
exactly 3 links is called a crowd; no crowds have yet been found.

(j) Show that 120 is triply perfect.
(k) Is 12 superabundant?

3.3 Figurate Numbers

(a) List the first four hexagonal numbers.
(b) An oblong number is the number of dots in a rectangular array having 

one more column than rows. Show, geometrically and algebraically, 
that the sum of the first n positive even integers is an oblong number.

(c) Show, both geometrically and algebraically, that any oblong number is 
twice a triangular number.

(d) Show, geometrically and algebraically, that 8 times any triangular num
ber, plus 1, is a square number.

(e) Show, geometrically and algebraically, that the nth pentagonal number 
equals the nth square number plus the (n -  l)th triangular number— 
that is, that Pn = Sn + Tn- \ .

(f) Denoting the oblong number n(n + 1) by On, show, geometrically and 
algebraically, that On + Sn = Tln and On -  Sn -  n.

(g) Prove that every even perfect number is also a triangular number.
(h) Prove that the sequence of m-gonal numbers is given by

an2 + bn, n = 1, 2, . . . ,

for a certain fixed pair of rational numbers a and b .
(i) Find a and b of (h) when m = 7.

3.4 Means

The Eudemian Summary says that in Pythagoras’ time there were three means, 
the arithmetic, the geometric, and the subcontrary, the last name being later 
changed to harmonic by Archytas and Hippasus. We may define these three 
means of two positive numbers a and b as

. a + b A = G = Voft, H = lab
V + b '2
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respectively.
(a) Show that A >  G >  / / ,  equality holding if and only if a = b.
(b) Show that a :A  = H \b . This was known as the “musical” proportion.
(c) Show that H  is the harmonic mean between a and b if there exists a 

number n such that a = H  + a/n and H = b + bln . This was the 
Pythagorean definition of the harmonic mean of a and b.

(d) Show that 1 l(H  -  a) + 1 l(H  -  b) = 1 la + Mb.
(e) Since 8 is the harmonic mean of 12 and 6, Philolaus, a Pythagorean of 

about 425 B.C., called the cube a “geometrical harmony.” Explain 
this.

(f) Show that if a , b , c are in harmonic progression, so also are a/(b + c), 
b/{c + a), cl(a + b).

(g) If a and c, a <  c, are a pair of positive numbers, then any number b 
between a and c is, in some sense, a m ean (or average) of a and c. The 
later Pythagoreans considered ten means b of a and c, defined as fol
lows:

6 .
7.
8. (c -  a)!{c -  b) = d a
9. (c -  a)/(b -  a) = bla,

10. (c -  a)!(c -  b) = bla,

1.
2.
3.
4.
5.

(b 
(b 
(b 
(b 
(b

a)/(c
a)/(c
a)/(c
a)/(c
a)/(c

ala
alb
ale
c!a
bla

(b -  a)/(c -  b) = db  
(c -  a)/(b -  a) -  da

b) 
b) 
b) 
b) 
b)

Assuming 0 <  a <  c, show that in all ten cases a <  b <  c.
(h) Show that (1), (2), and (3) of (g) give the arithmetic, the geometric, and 

the harmonic means, respectively, of a and c.

a <  b 
a <  b

3.5 Dissection Proofs of the Pythagorean Theorem

(a,b) Two areas, or 2 volumes, P and Q , are said to be congruent by 
addition if they can be dissected into corresponding pairs of congru
ent pieces. They are said to be congruent by subtraction if corre
sponding pairs of congruent pieces can be added to P and Q to give 2 
new figures that are congruent by addition. There are many proofs of 
the Pythagorean theorem that achieve their end by showing that the 
square on the hypotenuse of the right triangle is congruent either by 
addition or subtraction to the combined squares on the legs of the 
right triangle. The proof given in Section 3-4 is a congruency-by- 
subtraction proof. Give 2 congruency-by-addition proofs of the Py
thagorean theorem suggested by Figures 27 and 28, the first given by 
Henry Perigal (dates unknown) in 187311 and the second by H. E. 
Dudeney (1857-1930) in 1917.

(c) Give a congruency-by-subtraction proof of the Pythagorean theorem 
suggested by Figure 29, which is said to have been devised by 
Leonardo da Vinci (1452-1519).

It is interesting that any two equal polygonal areas are congruent 
by addition, and the dissection can always be carried out with

11 This was a rediscovery, for the dissection was known to Tabit ibn Qorra (826-901).
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FIGURE 29
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straightedge and compasses. In 1901, however, Max Dehn (1878- 
1952) showed that two equal polyhedral volumes are not necessarily 
congruent by either addition or subtraction. In particular, it is impos
sible to dissect a regular tetrahedron into polyhedral pieces that can 
be reassembled to form a cube. Dehn achieved these results in solv
ing one of David Hilbert’s (1862-1943) twenty-three Paris problems 
(see the final sentence of Section 15-8).

3.6 Pythagorean Triples

(a) What is the relation between the hypotenuse and the longer leg of the 
integral-sided right triangles given by the Pythagorean formula of Sec
tion 3-4?

(b) Find the Pythagorean triples given by the Pythagorean formula of 
Section 3-4 for which the hypotenuse does not exceed 100.

(c) Prove that no isosceles right triangle exists whose sides are integers.
(d) Prove that no Pythagorean triple exists in which 1 integer is a mean 

proportional between the other 2.
(e) Prove that (3,4,5) is the only Pythagorean triple containing three con

secutive positive integers.
(f) Find the 16 primitive Pythagorean triples (a,b,c) for which b is even 

and c <  100. Now show that there are exactly 100 distinct Pythagorean 
triples (a,b,c) with c <  100.

(g) Show that if (a,a + l,c) is a Pythagorean triple, so is

(3 a + 2c + 1,3 a + 2c + 2,4 a + 3c + 2).

It follows that, from a given Pythagorean triple whose legs are succes
sive natural numbers, we can obtain another such Pythagorean triple 
with bigger sides.

(h) Starting with the Pythagorean triple (3,4,5), find 5 more Pythagorean 
triples whose legs are successive natural numbers and whose sides are 
progressively bigger.

(i) Prove that in each Pythagorean triple: (1) at least 1 is a multiple of 4,
(2) at least one leg is a multiple of 3, (3) at least 1 side is a multiple of 5.

(j) Prove that for any natural number n >  2 there exists a Pythagorean 
triple with a leg equal to n.

(k) Prove that there are only a finite number of Pythagorean triples having 
a given leg a .

(l) Show that for any natural number n and for k -  0, 1, 2, . . . , « -  1,

[2n+x, 2k(22n~~2k -  1), 2k(22n~2k + 1)]

are Pythagorean triples. It follows that for each natural number n there 
exist at least n different Pythagorean triples with the same leg a = 
2n+x. It can be shown, with more difficulty, that for each natural num
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ber n there exist at least n different primitive Pythagorean triples with 
a common leg.

(m) Let (ak,bk,ck), k = 1, 2, be n different primitive Pythagorean
triples. Set

sk — Qk + bk + Q and 51 = S\S2 . . . sn.

Now set = akslsk, bk = bks!sk, ck = cks/sk for k = 1, 2, . . . , n. 
Show that (ak,bk,ck) is a Pythagorean triple with

+ ci =

It now follows that for each natural number n there exist at least n 
noncongruent Pythagorean triples with the same perimeter.

3.7 Irrational Numbers

(a) Prove that the straight line through the points (0,0) and (1, V2) passes 
through no point, other than (0,0), of the coordinate lattice.

(b) Show how the coordinate lattice may be used for finding rational ap
proximations of V2.

(c) If p is a prime number, show that Vp is irrational.
(d) Show that logio 2 is irrational.
(e) Generalize (d) by showing that loga b is irrational if a and b are positive 

integers and 1 of them contains a prime factor not contained in the 
other.

(f) Draw a 60-30 right triangle; mark off the longer leg, from the 30° angle 
vertex, on the hypotenuse; draw a perpendicular to the hypotenuse 
from the dividing point. Using this figure, formulate a geometrical 
proof of the irrationality of V3.

(g) Prove that the sum (product) of a nonzero rational number and an 
irrational number is an irrational number.

3.8 Algebraic Identities

Indicate how each of the following algebraic identities might be established
geometrically:

(a) (a — b)2 = a2 — lab  + b2
(b) a{b + c) = ab + ac
(c) (a + b)(c + d) = ac + be + ad + bd
(d) a2 -  b2 = (a + b)(a -  b)
(e) The statement of Proposition 9 of Book II of Euclid’s Elements is: If  a 

straight line is divided equally and also unequally, the sum of the 
squares on the two unequal parts is twice the sum of the squares on 
half the line and on the line between the points o f section. From this 
theorem, obtain the algebraic identity

(a + b)2 + (a -  b)2 = 2(a2 + b2).
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3.9 Geometric Algebra

Let the lengths of 3 given line segments be a, b9 l (a >  b >  l). With straightedge 
and compasses, construct line segments of lengths

(a) a + b and a -  b9
(b) ab9
(c) a lb9
(d) V a,
(e) a/n9 n a positive integer,
(f) V ab,
(g) flV n, n a positive integer,
(h) (a3 + by)l(a2 + b2),
(i) a[\ + V 2  + V 3 ]1/2,
(j) (abed)114, where c and d are the lengths of 2 further given line seg

ments,
(k) x = (a2 + b2 -  ab)m . If we form a triangle with sides a, b9 x, what is the 

size of the angle between sides a and b l
(l) Show that x = abl(a2 + b2)m is equal to the altitude of a right triangle 

with legs a and b.

3.10 Geometric Solution of Quadratic Equations

(a) Given a unit segment, solve the quadratic equation x2 -  lx  + 12 = 0 by 
the Pythagorean method.

(b) Given a unit segment, solve the quadratic equation x2 + 4x -  21 = 0 by 
the Pythagorean method.

(c) With straightedge and compasses, divide a segment a into 2 parts such 
that the difference of their squares shall be equal to their product.

(d) Show that in (c) the longer segment is the mean proportional between 
the shorter segment and the whole line. The line segment is said to be 
divided in extreme and mean ratio, or in golden section.

(e) A quadratic equation x 2 -  gx + h = 0 is given. On a rectangular 
Cartesian frame of reference, plot the points £:(0,1) and Q:(g,h). Draw 
the circle with BQ as a diameter and let it cut the x-axis in M  and N. 
Show that the signed lengths of OM and ON  represent the roots of the 
given quadratic equation. This geometrical solution of quadratic equa
tions appeared in Leslie’s Elements o f Geometry with the remark: 
“The solution of this important problem now inserted in the text, was 
suggested to me by Mr. Thomas Carlyle, an ingenious young mathema
tician, and formerly my pupil.”

(f) Solve the quadratic equations x 2 -  lx  + 12 = 0 and x 2 + 4x -  21 = 0by  
Carlyle’s method.

(g) Again, the quadratic equation x 2 - g x  + /i = 0 is given. On a rectangu
lar Cartesian frame of reference, plot the points (hig,0) and (4/g,2), and 
let the join of these two points cut the unit circle of center (0,1) in 
points R and 5. Project R and S from the point (0,2) onto points (r,0) 
and (5,0) on the x-axis. Show that r and 5 are the roots of the given
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quadratic equation. This geometric solution of quadratic equations was 
given by the German geometer Karl Georg Christian von Staudt (1798- 
1867).

(h) Solve the quadratic equations x 2 -  7* + 12 = 0 and jc2 -+- 4jc — 21 = 0by 
Staudt’s method.

(i) Verify the following geometrical solution of the quadratic equation 
x 2 -  gx + h = 0, h >  0. First construct \fh  as the mean proportional 
between 1 and h. Then on AB = |g| as a diameter, construct a semicir
cle and draw the vertical half-chord CD = V/i, where D is on AB. Then 
AD  and DB , each taken with signs the same as g 9 are the roots of the 
quadratic equation. Solve, by this method, the quadratic equation x 2 -  
lx  + 12 = 0.

(j) Verify the following geometrical solution of the quadratic equation 
x 2 -  gx + h = 0, h <  0. Draw a circle on AB = \g\ as a diameter and 
draw tangent AC = \T -h . Draw the diametral secant CDE through C to 
cut the circle in D and E. Then CD and CE, taken with opposite signs 
and with that of CE the same as that of g, represent the roots of the 
quadratic equation. Solve, by this method, the quadratic equation*2 + 
Ax -  21 = 0.

3.11 Transformation of Areas

(a) Draw an irregular hexagon and then construct, with straightedge and 
compasses, a square having the same area.

(b) With straightedge and compasses, divide a quadrilateral ABCD into 3 
equivalent parts by straight lines drawn through vertex A.

(c) Bisect a trapezoid by a line drawn from a point P in the smaller base.
(d) Transform triangle ABC so that the angle A is not altered, but the side 

opposite the angle A becomes parallel to a given line MN.
(e) Transform a given triangle into an isosceles triangle having a given 

vertex angle.

3.12 Regular Solids

(a) Show that there can be no more than 5 regular polyhedra.
(b) Find the volume and surface of a regular octahedron of edge e.
(c) For each of the 5 regular polyhedra, enumerate the number of vertices 

v, edges e9 and faces/, and then evaluate the quantity v -  e + f. One of 
the most interesting theorems relating to any convex (or more generally 
any simply connected) polyhedron, is that v -  e + /  = 2. This may 
have been known to Archimedes (ca. 225 B.C.), and was very nearly 
stated by Descartes about 1635. Since Euler later independently an
nounced it in 1752, the result is often referred to as the Euler-Descartes 
formula.

(d) A cuboctahedron is a solid whose edges are obtained by joining to
gether the midpoints of adjacent edges of a cube. Enumerate v, e9 and/  
for a cuboctahedron.



Problem Studies 101

(e) Consider a solid cube with regular pyramids built on a pair of opposite 
faces as bases. Now let a hole with square cross section, and with its 
axis on the line joining the vertices of the pyramids, be cut from the 
solid. Evaluate v -  e + /  for this ring-shaped solid.12

3.13 Some Problems Concerning the Regular Solids

(a) In Section 3-9, the definition of regularity of a polyhedron involves 3 
properties: regular faces, congruent faces, and congruent polyhedral 
angles. Many textbooks on solid geometry do not give all 3 of the 
defining properties. Show, by counterexamples, that all 3 properties 
are necessary.

(b) From the 3 defining properties listed in (a), one can deduce the regular
ity of the polyhedral angles. Do this, and then show that the 3 defining 
properties can be replaced by only 2: regular faces and regular polyhe
dral angles.

(c) The uninitiated will almost always intuitively believe that, when a regu
lar dodecahedron (a solid having 12 faces) and a regular icosahedron (a 
solid having 20 faces) are inscribed in the same sphere, the icosahedron 
has the greater volume. Show that the reverse is actually the case, and 
also show that when a cube (a solid having 6 faces) and a regular 
octahedron (a solid having 8 faces) are inscribed in the same sphere, 
the cube has the larger volume.

(d) Show that a regular dodecahedron and a regular icosahedron inscribed 
in the same sphere have a common inscribed sphere.

(e) In Section 3-9, we noted that Kepler intuitively assumed that, of the 5 
regular solids, for a given surface area, the icosahedron encloses the 
largest volume. Is this so?

(f) A regular dodecahedron, a regular icosahedron, and a cube are in
scribed in the same sphere. Prove that the volume of the dodecahedron 
is to the volume of the icosahedron as the length of an edge of the cube 
is to the length of an edge of the icosahedron.

3.14 Golden Section

A point is said to divide a line segment in extreme and mean ratio, or in golden 
section, when the longer of the two segments formed is the mean proportional 
between the shorter segment and the whole line. The ratio of the shorter seg
ment to the longer segment is called the golden ratio. The Pythagoreans showed 
considerable interest in the golden section and the golden ratio.

(a) Show that the golden ratio is (V5 -  l)/2.
(b) The symbol of the Pythagorean brotherhood was the pentagram, or 5- 

pointed-star, formed by the 5 diagonals of a regular pentagon. Prove 
that each of the 5 sides of a pentagram divides into golden section the 2 
sides of the pentagram that it intersects.

12 Construction patterns for 100 different solids can be found in Miles C. Hartley, Patterns of 
Polyhedrons. Rev. Ed., Ann Arbor, Mich.: Edwards Brothers, 1957.
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(c) Let point G divide line segment AB in golden section, where AG  is the 
longer segment. On AB , mark off AH  = GB. Show that H  divides AG  in 
golden section.

(d) Construct, with straightedge and compasses, a regular pentagon, given 
a side of the pentagon.

(e) Construct, with straightedge and compasses, a regular pentagon, given 
a diagonal of the pentagon.

(f) Inscribe a regular pentagon in a given circle, using straightedge and 
compasses alone.

3.15 Constructions of V n by Theodorus

(a) Theodorus of Cyrene (born ca. 470 B.C.) constructed V h as half the leg 
of a right triangle whose hypotenuse is n + 1 and other leg is n -  1. 
Justify this construction.

(b) It has been suggested that Theodorus also obtained \fn  (2 <  n <  17) by 
constructing a spiral-like figure made up of a sequence of right triangles 
having a common vertex, where the first triangle in the sequence is the 

'isosceles right triangle of leg 1, and where in each succeeding right 
triangle one leg is the hypotenuse of the previous triangle in the se
quence and the other leg (opposite the common vertex) has length 1. 
Show that the hypotenuse of the rrih triangle in the sequence has length
V aTTT.

(c) Show how the construction process of (b) might explain why 
Theodorus cut off his consideration of Vn with n = 17.

3.16 An Interesting Relation

Prove geometrically that

l3 + 23 + . . . + n* = (1 + 2 + . . . + n)2.

Essay Topics

3/1 Possible reasons for the Greek introduction of deduction into mathe
matics.

3/2 Stories of Thales’ prowess in engineering and astronomy, and their 
credibility.

3/3 Pythagorean number mysticism.
3/4 The case for Pythagoreanism, as evidenced by modern physical for

mulas.
3/5 Pythagoras justified, insofar as mathematics is concerned.
3/6 How the discovery of incommensurable magnitudes produced a crisis in 

the development of mathematics.
3/7 The golden ratio in art and architecture.
3/8 Simple examples of applied geometry for an elementary geometry class.
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3/9 Early history of the regular solids, with patterns for their construction. 
3/10 The debt of Greek mathematics to ancient Mesopotamia and Egypt. 
3/11 Reasons for treating logistic and arithmetic as unrelated subjects. 
3/12 Advantages and disadvantages of the Greek method of treating arith

metic from a geometric standpoint.
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Chapter

DUPLICATION, TRISECTION, AND 
QUADRATURE

4 -1  The Period from Thales to Euclid

The first three centuries of Greek mathematics, commencing with the initial 
efforts at demonstrative geometry by Thales about 600 B.C. and culminating 
with the remarkable Elements of Euclid about 300 B.C., constitute a period of 
extraordinary achievement. In the last chapter, we considered some of the 
Pythagorean contributions to this achievement. Besides the Ionian school 
founded by Thales at Miletus and the early Pythagorean school at Crotona, a 
number of mathematical centers arose and flourished at places and for periods 
that were largely governed by Greek political history.

It was about 1200 B.C. that the primitive Dorian tribes moved southward 
into the Greek peninsula, leaving their northern mountain fastnesses for more 
favorable territory. Their chief tribe, the Spartans, subsequently developed the 
city of Sparta. Many of the former inhabitants of the invaded region fled to Asia 
Minor and the Ionian islands of the Aegean Sea, where in time they established 
Greek trading colonies. It was in these colonies, in the sixth century B.C., that 
the Ionian school was founded, Greek philosophy blossomed, and demonstra
tive geometry was born.

Meanwhile, Persia had become a great military empire and, following the 
inevitable expansionist program induced by a slave-based economy, conquered 
the Ionian cities and the Greek colonies of Asia Minor in 546 B.C. As a result, a 
number of Greek philosophers, like Pythagoras and Xenophanes, abandoned 
their native land and moved to the prospering Greek colonies in southern Italy. 
Schools of philosophy and mathematics developed at Crotona, under Pytha
goras, and at Elea, under Xenophanes, Zeno, and Parmenides.

The yoke of oppression rested uneasily on the conquered Ionian cities, and 
in 499 B.C. a revolt was fomented. Athens, which was becoming a center of 
Western civilization with political progress toward democracy, aided the revo
lution by sending armies. Although the revolt was crushed, the incensed King 
Darius of Persia decided to punish Athens. In 492 B.C., he organized a huge 
army and navy to attack the mainland of Greece, but his fleet was destroyed in 
a storm, and his land forces suffered expeditionary difficulties. Two years later, 
the Persian armies penetrated Attica, where they were decisively defeated by 
the Athenians at Marathon. Athens assumed the mantle of Greek leadership.

In 480 B.C. Xerxes, son of Darius, attempted another land and sea inva
sion of Greece. The Athenians met the Persian fleet in the great naval battle of
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Salamis and won, and although the Greek land forces under Spartan leadership 
were defeated and wiped out at Thermopylae, the Greeks overcame the Per
sians the following year at Plataea and forced the invaders out of Greece. The 
hegemony of Athens was consolidated, and the following half century of peace 
was a brilliant period in Athenian history. This city of Pericles and Socrates 
became the center of democratic and intellectual development. Mathematicians 
were attracted from all parts of the Greek world. Anaxagoras, the last eminent 
member of the Ionian school, settled there. Many of the dispersed Pythagore
ans found their way to Athens, and Zeno and Parmenides, of the Eleatic 
school, went to Athens to teach. Hippocrates,1 from the Ionian island of Chios, 
visited Athens and is reputed by ancient writers to have published the first 
connected geometry there.

Peace came to an end in 431 B.C. with the start of the Peloponnesian War 
between Athens and Sparta. This proved to be a long, drawn-out conflict. 
Athens, at first successful, later suffered a devastating plague that killed off a 
fourth of its population; finally, in 404 B.C., Athens had to accept humiliating 
defeat. Sparta assumed political leadership, only to lose it, in 371 B.C., by 
defeat at the hands of a league of rebellious city-states. During these struggles, 
little progress was made in geometry at Athens, and once again development 
came from the more peaceful regions of Magna Graecia. The Pythagoreans of 
southern Italy had been allowed to return, purified of political association, and 
a new Pythagorean school at Tarentum arose under the influence of the gifted 
and much admired Archytas.

With the end of the Peloponnesian War, Athens, although reduced to a 
minor political power, regained her cultural leadership. Plato was born in or 
near Athens in 427 B.C., the year of the great plague. He studied philosophy 
under Socrates there, and then set out upon his extensive wanderings for 
wisdom. He studied mathematics under Theodorus of Cyrene on the African 
coast and became an intimate friend of the eminent Archytas. Upon his return 
to Athens around 387 B.C., he founded his famous Academy, an institution for 
the systematic pursuit of philosophical and scientific inquiry. He presided over 
his Academy for the rest of his life, dying in Athens in 347 B.C. at the venerable 
age of eighty. Almost all the important mathematical work of the fourth century 
B.C. was done by friends or pupils of Plato, making his Academy the link 
between the mathematics of the earlier Pythagoreans and that of the later, long- 
lived school of mathematics at Alexandria. Plato’s influence on mathematics 
was not due to any mathematical discoveries he made, but rather to his enthusi
astic conviction that the study of mathematics furnished the finest training for 
the mind and, hence, was essential for the cultivation of philosophers and those 
who should govern his ideal state. This explains the renowned motto over the 
door of his Academy: Let no one unversed in geometry enter here. Because of 
its logical element and the pure attitude of mind that he felt its study created,
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Not to be confused with Hippocrates of Cos, the famous Greek physician of antiquity.
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mathematics seemed of utmost importance to Plato; for this reason, it occupied 
a valued place in the curriculum of the Academy. Some see in certain of Plato’s 
dialogues what may be considered the first serious attempt at a philosophy of 
mathematics.

Eudoxus, who studied under both Archytas and Plato, founded a school at 
Cyzicus, in northern Asia Minor. Menaechmus, an associate of Plato and a 
pupil of Eudoxus, invented the conic sections. Dinostratus, brother of Me
naechmus, was an able geometer and a pupil of Plato. Theaetetus, a man of 
unusual natural gifts, to whom we are probably indebted for much of the mate
rial of Euclid’s tenth and thirteenth books, was another Athenian pupil of 
Theodorus. Mention should also be made of Aristotle who, although not a 
professed mathematician, was the systematizer of deductive logic and a writer 
on physical subjects; some parts of his Analytica posterior a show an unusual 
grasp of the mathematical method.
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Some Greek Names of Oassic Times
with accented syllable indicated
Anaxag'oras
An'tiphon
Apollo'nius
Archime'des
Archy'tas
Aristae'us
Aristar'chus
Ar'istotle
Co'non
Democ'ritus
Dinos'tratus
Di'ocles
Diophan'tus
Dosi'theus
Eratos'thenes
Eu'clid
Eude'mus

Eudox'us
Euto'cius
Her'on
Hippar'chus
Hippa'sus
Hip'pias
Hippoc'rates
Hypa'tia
Hyp'sides
Iam'blichus
Menaech'mus
Menela'us
Metrodor'us
Nicom'achus
Nicome'des
Pap'pus
Philola'us

Phi'Ion
Pla'to
Polyc'rates
Pro'clus
Ptol'emy
Pythag'oras
Simpli'cius
Soc'rates
So'lon
Tha'les
Theaete'tus
Theodo'rus
Theodo'sius
The'on
Thymar'idas
Xenoc'rates
Ze'no

PLATO
(David Smith Collection)

4 -2  Lines of Mathematical Development

One can notice three important and distinct lines of development during the 
first 300 years of Greek mathematics. First, we have the development of the 
material that ultimately was organized into the Elements, ably begun by the 
Pythagoreans and then added to by Hippocrates, Eudoxus, Theodorus, 
Theaetetus, and others. We have already considered portions of this develop-
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ARISTOTJLE
(Brown Brothers)

ment and shall return to it in the next chapter. Second, there is the development 
of notions connected with infinitesimals and with limit and summation pro
cesses that did not attain final clarification until after the invention of the 
calculus in modern times. The paradoxes of Zeno, the method of exhaustion of 
Antiphon and Eudoxus, and the atomistic theory associated with the name of 
Democritus belong to this second line of development; these are discussed 
more logically in the early sections of Chapter 11 devoted to the origins of the 
calculus.

Any student or instructor desirous of adhering strictly to chronological 
order can, at this point, turn to Sections 11-2 and 11-3.

The third line of development is that of higher geometry, or the geometry of 
curves other than the circle and straight line, and of surfaces other than the 
sphere and plane. Curiously enough, most of this higher geometry originated in 
continued attempts to solve three now famous construction problems. This 
chapter discusses these three famous problems.

4 -3  The Three Famous Problems
The three famous problems are the following:

1. The duplication o f the cube, or the problem of constructing the edge of 
a cube having twice the volume of a given cube.

2. The trisection o f  an angle, or the problem of dividing a given arbitrary 
angle into three equal parts.
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3. The quadrature o f the circle, or the problem of constructing a square 
having an area equal to that of a given circle.

The importance of these problems lies in the fact that they cannot be 
solved, except by approximation, with straightedge and compasses, although 
these tools successfully serve for the solution of so many other construction 
problems. The energetic search for solutions to these three problems pro
foundly influenced Greek geometry and led to many fruitful discoveries, such 
as that of the conic sections, many cubic and quartic curves, and several 
transcendental curves. A much later outgrowth was the development of por
tions of the theory of equations concerning domains of rationality, algebraic 
numbers, and group theory. The impossibility of the three constructions, under 
the self-imposed limitation that only the straightedge and compasses could be 
used, was not established until the nineteenth century, more than 2000 years 
after the problems were first conceived.

The great stimulation to the development and creation of new mathematics 
furnished by the continued efforts to solve the three famous problems of antiq
uity illustrates the heuristic value of attractive, unsolved problems in mathe
matics.

4 -4  The Euclidean Tools
It is important to be clear as to just what we are permitted to do with the 
straightedge and compasses. With the straightedge, we are permitted to draw a 
straight line o f indefinite length through any two given distinct points. With the 
compasses, we are permitted to draw a circle with any given point as center 
and passing through any given second point. The drawing of constructions 
with straightedge and compasses, viewed as a game played according to these 
two rules, has proved to be one of the most fascinating and absorbing games 
ever devised. One is surprised at the really intricate constructions that can be 
accomplished in this manner; accordingly, it is hard to believe that the seem
ingly simple construction problems presented in Section 4-3 cannot also be so 
accomplished.

Since the postulates of Euclid’s Elements restrict the use of the straight
edge and compasses in accordance with the above rules, these instruments, so 
used, have become known as Euclidean tools. Note that the straightedge is to 
be unmarked. We shall see that with a marked straightedge, it is possible to 
trisect a given angle. Also, we notice that the Euclidean compasses differ from 
our modern compasses, for with the modern compasses we are permitted to 
draw a circle having any point C as center and any segment AB as radius. In 
other words, we are permitted to transfer the distance AB to the center C, using 
the compasses as dividers. The Euclidean compasses, on the other hand, may 
be supposed to collapse if either leg is lifted from the paper. It might seem that 
the modern compasses are somewhat more powerful than the Euclidean, or 
collapsing, compasses. Curiously enough, the two are equivalent tools (see 
Problem Study 4.1).
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4-5  Duplication of the Cube
There is evidence that the problem of duplicating a cube may have originated in 
the words of some mathematically unschooled ancient Greek poet (perhaps 
Euripides) who represented the mythical King Minos as dissatisfied with the 
size of a tomb erected to his son Glaucus. Minos ordered that the tomb be 
doubled in size. The poet then had Minos add, incorrectly, that this could be 
accomplished by doubling each dimension of the tomb. This faulty mathematics 
on the part of the poet led the geometers to take up the problem of finding how 
one can double a given solid while keeping the same shape. No progress seems 
to have been made on the problem until sometime later, when Hippocrates 
discovered his famous reduction, which we give below. Again, still later, it is 
told that the Delians were instructed by their oracle that, to get rid of a certain 
pestilence, they must double the size of Apollo’s cubical altar. The problem 
reputedly was taken to Plato, who submitted it to the geometers. It is this latter 
story that led the duplication problem frequently to be referred to as the Delian 
problem. Whether the story is true or not, the problem was studied in Plato’s 
Academy, and there are higher geometry solutions attributed to Eudoxus, 
Menaechmus, and even (though probably erroneously) to Plato himself.

The first real progress in the duplication problem was, no doubt, the reduc
tion of the problem by Hippocrates (ca. 440 B.C.) to the construction of two 
mean proportionals between two given line segments of lengths s and 2s. If we 
denote the two mean proportionals by x and y, then

s :x  = x :y  = y :2s.

From these proportions, we have x 2 = sy and y 2 = 2sx. Eliminating y, we find 
that jc3 = 2s3; thus x is the edge of a cube having twice the volume of the cube 
on edge s.

After Hippocrates made his reduction, subsequent attempts at duplicating 
the cube took the form of constructing two mean proportionals between two 
given line segments. One of the earliest, and certainly one of the most remark
able, higher geometry solutions in this form was given by Archytas (ca. 400 
B.C.). His solution rests on finding a point of intersection of a right circular 
cylinder, a torus of zero inner diameter, and a right circular cone! The solution 
sheds some light on the unusual extent to which geometry must have been 
developed at this early date. The solution by Eudoxus (ca. 370 B.C.) is lost. 
Menaechmus (ca. 350 B.C.) gave two solutions of the problem and, as far as is 
known, invented the conic sections for the purpose. A later solution, using a 
mechanical contrivance, is credited to Eratosthenes (ca. 230 B.C.), and another 
of about the same time to Nicomedes. A still later solution was offered by 
Apollonius (ca. 225 B.C.). Diodes (ca. 180 B.C.) invented the cissoid curve to 
obtain the desired end. And, of course, many solutions using higher plane 
curves have been devised in more recent times.

A number of the solutions mentioned above may be found in the Problem 
Studies at the end of the chapter. To illustrate the spirit of the attempts, let us
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D

reproduce the one credited to Plato by Eutocius. Since the solution is by 
mechanical means, and since it is known that Plato objected to such methods, it 
is felt that the ascription to Plato is erroneous.

Consider two triangles (see first part of Figure 30), CBA and DAB, right 
angled at B and A, respectively, and lying on the same side of the common leg
AB. Let the hypotenuses AC  and BD of the triangles intersect perpendicularly 
in P. From the similar triangles CPB, BP A, APD, it follows that

P C .P B  = PB.PA  =  :

Thus, PB and PA are the two mean proportionals between PC  and PD. It 
follows that the problem is solved if a figure can be constructed having PD = 
2 (PC).The second part of Figure 30 shows how such a figure can be drawn by 
mechanical means. Draw two perpendicular lines intersecting in P  and mark off 
PC  and PD  on them, with PD -  2(PC). Now place a carpenter’s square, with 
inner edge RST, on the figure so that SR passes through D and the vertex S of 
the right angle lies on CP produced. On ST, slide a right triangle UVW, with leg 
VW on ST, until leg VU passes through C. Now manipulate the apparatus2 until 
V falls on DP  produced.

4 -6  Trisection of an Angle

Of the three famous problems of Greek antiquity, the trisection of an angle is 
pre-eminently the most popular among the mathematically uninitiated in Amer
ica today. Every year the mathematics journals and the members of the mathe
matics teaching profession of the country receive many communications from 
“angle trisectors,” and it is not unusual to read in a newspaper that someone 
has finally “ solved” the elusive problem. The problem is certainly the simplest

2 For an improved form of this apparatus see, for example, Richard Courant and H. E. 
Robbins, What Is Mathematics? p. 147.
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B C

FIGURE 31

one of the three famous problems to comprehend, and since the bisection of an 
angle is so very easy, it is natural to wonder why trisection is not equally easy.

The multisection of a line segment with Euclidean tools is a simple matter, 
and it may be that the ancient Greeks were led to the trisection problem in an 
effort to solve the analogous problem of multisecting an angle. Or perhaps, 
more likely, the problem arose in efforts to construct a regular ninesided poly
gon, where the trisection of a 60° angle is required.

In dealing with the trisection problem, the Greeks seem first to have re
duced it to what they called a verging problem. Any acute angle ABC (see 
Figure 31) may be taken as the angle between a diagonal BA and a side BC of a 
rectangle BCAD. Consider a line through B cutting CA in E and DA produced in 
F, and such that EF = 2(BA). Let G be the midpoint of EF. Then

EG = GF = GA = BA ,

whence

^ABG = 4 AGB = 4 GAF + 4 GFA = l^G FA  = l^G BC,

and BEF trisects angle ABC . Thus, the problem is reduced to that of construct
ing a straight-line segment EF of given length 2(BA) between AC  and the 
prolongation of DA so that FE verges toward B.

If, contrary to Euclidean assumptions, we permit ourselves to mark, on 
our straightedge, a segment E'F' = 2{BA), and then to adjust the straightedge 
so that it passes through B and has the marked points E' and F' on AC  and the 
prolongation of DA, the angle ABC will be trisected. This disallowed use of the 
straightedge may be referred to as an application of the insertion principle. For 
other applications of the principle, see Problem Study 4.6.

Various higher plane curves have been discovered that will solve the verg
ing problem to which the trisection problem may be reduced. One of the oldest 
of these is the conchoid invented by Nicomedes (ca. 240 B.C.). Let c be a 
straight line and O any point not on c. On the prolongation of OP, where P  is 
any point on c, mark off PQ equal to a given fixed length k. Then the locus of Q, 
as P  moves along c, is (one branch of) the conchoid of c for the pole O and the 
constant k . It is not difficult to devise an apparatus that will draw conchoids,3

3 See, for example, T. L. Heath, A Manual o f Greek Mathematics, p. 150.
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FIGURE 32

and with such an apparatus one may easily trisect angles. Thus, let AOB be any 
given acute angle. Draw a line MN  perpendicular to OA, cutting OA and OB in 
D and L, as shown in Figure 32. Now draw the conchoid of MN  for pole O and 
constant 2(OL). At L, draw the parallel to OA to cut the conchoid in C. Then 
OC trisects angle A OB.

A general angle may be trisected with the aid of a conic. The early Greeks 
were not familiar enough with the conics to accomplish this, and the earliest 
proof of this type was given by Pappus (ca. A.D. 300), using the focus and 
directrix property of conics. Two trisections using conics may be found in 
Problem Study 4.8.

There are transcendental (nonalgebraic) curves that will not only trisect a 
given angle but, more generally, multisect it into any number of equal parts. 
Among such curves are the quadratrix, invented by Hippias (ca. 425 B.C.) and 
the spiral o f Archimedes. These two curves will also solve the problem of the 
quadrature of the circle. Applications of the quadratrix to both trisection and 
quadrature occur in Problem Study 4.10.

Over the years, many mechanical contrivances, linkage machines, and 
compound compasses, have been devised to solve the trisection problem.4 An 
interesting and elementary implement of this kind is the so-called tomahawk. 
The inventor of the tomahawk is not known, but the instrument was described 
in a book in 1835. To construct a tomahawk, start with a line segment RU, 
trisected at S and T (see Figure 33). Draw a semicircle on SU  as diameter, and 
draw SV perpendicular to RU. Complete the instrument as indicated in the 
accompanying figure. To trisect an angle ABC with the tomahawk, place the 
implement on the angle so that R falls on BA, SV passes through B, and the 
semicircle touches BC, at D, say. Then, since we may show that triangles RSB, 
TSB, TDB are all congruent, BS and BT trisect the given angle. The tomahawk 
may be constructed with straightedge and compasses on tracing paper and then 
adjusted on the given angle. By this subterfuge, we may trisect an angle with

4 See R. C. Yates, The Trisection Problem.
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FIGURE 33

straightedge and compasses. (With two tomahawks, one may quintisect an 
angle.)

Although an arbitrary angle cannot be trisected exactly with Euclidean 
tools, there are constructions with these tools that give remarkably good ap
proximate trisections. An excellent example is the construction given in 1525 
by the famous etcher and painter, Albrecht Diirer. Take the given angle AOB as 
a central angle of a circle (see Figure 34). Let C be that trisection point of the 
chord AB that is nearer to B. At C, erect the perpendicular to AB to cut the 
circle in D. With B as center and BD as radius, draw an arc to cut AB in E . Let 
F be the trisection point of EC that is nearer to E . Again, with B as center and 
BF as radius, draw an arc to cut the circle in G. Then OG is an approximate 
trisecting line of angle AOB . It can be shown that the error in trisection in
creases with the size of the angle AOBt but is only about 1" for angle AOB = 60° 
and about 18" for angle AOB = 90°.

Problem Study 4.9 describes an approximate trisection, using Euclidean 
tools, that may be made just as close to exact trisection as may be desired.

o

FIGURE 34



4-7  Quadrature of the Grde
Probably no other problem has exercised a greater or a longer attraction than 
that of constructing a square equal in area to a given circle. As far back as 1800 
B.C. the ancient Egyptians “ solved” the problem by taking the side of the 
square equal to 8/9 the diameter of the given circle. Since then, literally thou
sands of people have worked on the problem, and in spite of the present 
existence of a proof that the construction cannot be made with Euclidean 
tools,5 not a year passes without its crop of “circle squarers.”

The first Greek known to be connected with the problem is Anaxagoras 
(ca. 499-ca. 427 B.C.), but what his contribution was is not known. Hippocra
tes of Chios, who was a contemporary of Anaxagoras, succeeded in squaring 
certain special lunes, or moon-shaped figures bounded by two circular arcs, 
probably in the hope that his investigations might lead toward a solution of the 
quadrature problem. Some years later, Hippias of Elis (ca. 425 B.C.) invented 
the curve that became known as the quadratrix. This curve solves both the 
trisection and the quadrature problems, but traditions vary as to who first used 
it in the quadrature role. It may be that Hippias used it for trisecting angles, and 
that Dinostratus (ca. 350 B.C.), or some later geometer, realized its application 
to the quadrature problem. Some of the lunes of Hippocrates are considered in 
Problem Study 4.12; the quadratrix, in its dual role, is considered in Problem 
Study 4.10; and a few approximate quadratures are described in Problem Study 
4.11.

A neat solution of the quadrature problem can be achieved with the spiral 
of Archimedes, and we are told that Archimedes (ca. 225 B.C.) actually used 
his spiral for this purpose. We may define the spiral, in dynamic terms, as the 
locus of a point P moving uniformly along a ray that, in turn, is uniformly 
rotating in a plane about its origin. If we take for the polar frame of reference 
the position OA of the rotating ray when P coincides with the origin O of the 
ray, we have that OP is proportional to angle AOP, and the polar equation of 
the spiral is r = ad, a being the constant of proportionality.

Let us draw the circle with center at O and radius equal to a. Then OP and 
the arc on this circle between the lines OA and OP are equal, since each is given 
by ad (see Figure 35). It follows that if we take OP perpendicular to OA, then 
OP will have a length equal to one fourth the circumference of the circle. Since 
the area K  of the circle is half the product of its radius and its circumference, 
we have
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K = ( | )  (4OP) = (2a)(OP).

The side of the required square is thus the mean proportional between 2a and 
OP, or between the diameter of the circle and the length of that radius vector of 
the spiral that is perpendicular to OA.

5 See, for example, Howard Eves, A Survey o f Geometry, vol. 2, pp. 30-38.
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We may trisect (more generally, multisect) an angle AOB with the spiral of 
Archimedes. Let OB cut the spiral in P and trisect the segment OP by points P\ 
and P2. If the circles with O as center and OPx and OP2 as radii cut the spiral in 
Tx and T2, then OT\ and OT2 trisect the angle AOB.

4 -8  A Chronology of rr6 7

Closely allied to the quadrature problem is the computation of ir, the ratio of 
the circumference of a circle to its diameter. We have seen that in the ancient 
Orient the value of it was frequently taken as 3.7 For the Egyptian quadrature 
of the circle given in the Rhind papyrus, we have it = (4/3)4 = 3.1604. . . . The 
first scientific attempt to compute 7r, however, seems to be that of Archimedes, 
and we shall commence our chronology with his achievement.

ca. 240 B.C. To simplify matters, suppose we choose a circle with unit 
diameter. Now the (length of the) circumference of a circle lies between the 
perimeter of any inscribed regular polygon and that of any circumscribed regu
lar polygon. Since it is a simple matter to compute the perimeters of the regular 
inscribed and circumscribed six-sided polygons, we easily obtain bounds for i t . 

Now there are formulas (see Problem Study 4.13) that tell us how, from the 
perimeters of given regular inscribed and circumscribed polygons, we may 
obtain the perimeters of the regular inscribed and circumscribed polygons hav
ing twice the number of sides. By successive applications of this process, 
starting with the regular inscribed and circumscribed six-sided polygons, we 
can compute the perimeters of the regular inscribed and circumscribed poly

6 For a fuller chronology of rr, containing over 120 entries, see H. C. Schepler, “The chronol
ogy of pi,” Mathematics Magazine (January-February 1950): 165-70; (March-April 1950): 216— 
28; (May-June 1950): 279-83.

7 See the Biblical references: I Kings 7:23; II Chron. 4:2.



gons of twelve, twenty-four, forty-eight, and ninety-six sides, in this way ob
taining ever closer bounds for 7r. This is essentially what Archimedes did, 
finally obtaining the fact that 7r is between 223/71 and 22/7, or that, to two 
decimal places, 7r is given by 3.14. The work is found in Archimedes’ Measure
ment o f a Circle, a treatise containing only three propositions. The treatise, as 
it has come down to us, is not in its original form and may be only a fragment of 
a larger discussion. One inescapable conclusion, in view of the poor numeral 
system in use at the time, is that Archimedes was a very able computer. In the 
work are found some remarkable rational approximations to irrational square 
roots.

The above method of computing 77 by using regular inscribed and circum
scribed polygons is known as the classical method of computing 77.

ca. A .D . 150 The first notable value for 77, after that of Archimedes, was 
given by Claudius Ptolemy of Alexandria in his famous Syntaxis mathematica 
(more popularly known by its Arabian title of the Almagest), the greatest 
ancient Greek work on astronomy. In this work, 77 is given, in sexagesimal 
notation, as 3 8'30", which is 377/120, or 3.1416. Undoubtedly, this value was 
derived from the table of chords, which appears in the treatise. The table gives 
the lengths of the chords of a circle subtended by central angles of each degree 
and half degree. If the length of the chord of the 1° central angle is multiplied by 
360, and the result divided by the length of the diameter of the circle, the above 
value for 77 is obtained.

ca. 480 The early Chinese worker in mechanics, Tsu Ch’ung-chih, gave the 
interesting rational approximation 355/113 = 3.1415929 . . . , which is correct 
to six decimal places. See Problem Study 4.11(c) for an application of this ratio 
to the quadrature problem.

ca. 530 The early Hindu mathematician Aryabhata gave 62,832/20,000 = 
3.1416 as an approximate value for 77. It is not known how this result was 
obtained. It may have come from some earlier Greek source or, perhaps, from 
calculating the perimeter of a regular inscribed polygon of 384 sides.

ca. 1150 The later Hindu mathematician, Bhaskara, gave several approxi
mations for 77. He gave 3927/1250 as an accurate value, 22/7 as an inaccurate 
value, and VTo for ordinary work. The first value may have been taken from 
Aryabhata. Another value, 754/240 = 3.1416, given by Bhaskara, is of uncer
tain origin; it is the same as that given by Ptolemy.

1429 Al-Kashi, astronomer royal to Ulugh Beg of Samarkand, computed 77 

to sixteen decimal places by the classical method.
1579 The eminent French mathematician Francois Viete found 77 correct to 

nine decimal places by the classical method, using polygons having 6(216) = 
393,216 sides. He also discovered the equivalent of the interesting infinite 
product (see Problem Study 4.13)

2 _  V 2 V(2 + V2) V{2 + V(2 + V2)}
t t ~  2 2 2 ------

1585 Adriaen Anthoniszoon rediscovered the ancient Chinese ratio 
355/113. This was apparently a lucky accident, since all he showed was that
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377/120 > 7r >  333/106. He then averaged the numerators and the denominators 
to obtain the “exact” value of 7r. There is evidence that Valentin Otho, a pupil 
of the early table maker Rhaeticus, may have introduced this ratio for 7r into the 
western world at the slightly earlier date of 1573.

1593 Adriaen van Roomen, more commonly referred to as Adrianus Ro- 
manus, of the Netherlands, found 77 correct to fifteen decimal places by the 
classical method, using polygons having 230 sides.

1610 Ludolph van Ceulen of the Netherlands computed 7r to thirty-five 
decimal places by the classical method, using polygons having 262 sides. He 
spent a large part of his life on this task, and his achievement was considered so 
extraordinary that his widow had the number engraved on his tombstone (now 
lost) in St. Peter’s churchyard in Leyden. To this day, the number is sometimes 
referred to as “the Ludolphine number.”

1621 The Dutch physicist Willebrord Snell, best known for his discovery of 
the law of refraction, devised a trigonometric improvement of the classical 
method for computing 7r s o  that from each pair of bounds on 7r given by the 
classical method, he was able to obtain considerably closer bounds. By his 
method, he was able to get van Ceulen’s thirty-five decimal places by using 
polygons having only 230 sides. With such polygons, the classical method yields 
only fifteen places. For polygons of ninety-six sides, the classical method yields 
two decimal places, whereas Snell’s improvement gives seven places. A cor
rect proof of Snell’s refinement was furnished in 1654 by the Dutch mathemati
cian and physicist Christiaan Huygens.

1630 Grienberger, using Snell’s refinement, computed 7r to thirty-nine dec
imal places. This was the last major attempt to compute 7r by the method of 
perimeters.

1650 The English mathematician John Wallis obtained the curious expres
sion

77 2 - 2 * 4 * 4 * 6 - 6 * 8 . . .
2 — 1 - 3 - 3 - 5 - 5 - 7 - 7 . . . '

Lord Brouncker, the first president of the Royal Society, converted Wallis’ 
result into the continued fraction

4 l2

Neither of these expressions, however, has served for an extensive calculation
O f 77.

1671 The Scottish mathematician James Gregory obtained the infinite se
ries

X  ̂  X  ̂  JC7arctan x = x — —  y  + . . . , ( - 1  ^  x g  1).
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Not noted by Gregory is the fact that for x = 1, the series becomes

7r 
4

, 1 1 1
1 _ 3 + 5 _ 7 + " - -

This very slowly converging series was known to Leibniz in 1674. Gregory 
attempted to prove that a Euclidean solution of the quadrature problem is 
impossible.

1699 Abraham Sharp found seventy-one correct decimal places by using 
Gregory’s series with x = VT/3.

1706 John Machin obtained one hundred decimal places by using Greg
ory’s series in connection with the relation (see Problem Study 4.13)

j  = 4 arctan ( | )  -  arctan ( ^ ) .

1719 The French mathematician De Lagny obtained 112 correct places by 
using Gregory’s series with x = VT/3.

1737 The symbol 7r was used by the early English mathematicians William 
Oughtred, Isaac Barrow, and David Gregory to designate the circumference, or 
periphery, of a circle. The first to use the symbol for the ratio of the circumfer
ence to the diameter was the English writer William Jones, in a publication in 
1706. The symbol was not generally used in this sense, however, until Euler 
adopted it in 1737.

1754 Jean Etienne Montucla, an early French historian of mathematics, 
wrote a history of the quadrature problem.

1755 The French Academy of Sciences declined to examine any more 
solutions of the quadrature problem.

1767 Johann Heinrich Lambert showed that tt is irrational.
1777 Comte de Buffon devised his famous needle problem, by which 7r 

may be approximated by probability methods. Suppose a number of parallel 
lines, distance a apart, are ruled on a horizontal plane, and suppose a homoge
neous uniform rod of length / <  a is dropped at random onto the plane. Buffon 
showed that the probability8 that the rod will fall across one of the lines in the 
plane is given by

21

By actually performing this experiment a given large number of times and 
noting the number of successful cases, thus obtaining an empirical value for p,

8 If a given event can happen in h ways and fail to happen in /  ways, and if each of the 
h + f  ways is equally likely to occur, the mathematical probability p  of the event happening is 
p  = hl(h + / ) .
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we may use the above formula to compute an approximation for 7r. The best 
result obtained in this way was given by the Italian, Lazzerini, in 1901. From 
only 3408 tosses of the rod, he found 7r correct to six decimal places! His result 
is so much better than those obtained by other experimenters that it is some
times regarded with suspicion. There are other probability methods for comput
ing 7r. Thus, in 1904, R. Chartres reported an application of the known fact that 
if two positive integers are written down at random, the probability that they 
will be relatively prime is 6/7r2.

1794 Adrien-Marie Legendre showed that 7r2 is irrational.
1841 William Rutherford of England calculated 7r to 208 places, of which 

152 were later found to be correct, by using Gregory’s series in connection with 
the relation

■~ = 4 arctan ^  -  arctan + arctan

1844 Zacharias Dase, the lightning calculator, found 7r correct to 200 
places using Gregory’s series in connection with the relation

7r /1\= arctan + arctan ( | )  + arctan (g).

Dase, who was born in Hamburg in 1824, died at the early age of thirty-seven. 
He was perhaps the most extraordinary mental calculator who ever lived. 
Among his performances were the mental calculation of the product of two 
eight-digit numbers in fifty-four seconds, of two twenty-digit numbers in six 
minutes, of two forty-digit numbers in forty minutes, and of two one-hundred- 
digit numbers in eight hours and forty-five minutes. He mentally computed the 
square root of a hundred-digit number in fifty-two minutes. Dase used his 
powers more worthily when he constructed a seven-place table of natural loga
rithms and a factor table of all numbers between 7,000,000 and 10,000,000.

1853 Rutherford returned to the problem and obtained 400 correct decimal 
places.

1873 William Shanks of England, using Machin’s formula, computed 7r to 
707 places. For a long time, this remained the most fabulous piece of calcula
tion ever performed.

1882 A  number is said to be algebraic if it is a root of some polynomial 
having rational coefficients; otherwise, it is said to be transcendental. F. Linde- 
mann showed that 7r is transcendental. This fact proves (see Section 14-2) that 
the quadrature problem cannot be solved by Euclidean tools.

1906 Among the curiosities connected with 7r are various mnemonics that 
have been devised for the purpose of remembering 7r to a large number of 
decimal places. The following, by A. C. Orr, appeared in the Literary Digest. 
One has merely to replace each word by the number of letters it contains to 
obtain 7r correct to thirty decimal places.



Now I, even I, would celebrate
In rhymes unapt, the great
Immortal Syracusan, rivaled nevermore,
Who in his wondrous lore,
Passed on before,
Left men his guidance 
How to circles mensurate.

A few years later, in 1914, the following similar mnemonic appeared in the 
Scientific American Supplement: “ See, I have a rhyme assisting my feeble 
brain, its tasks ofttimes resisting.” Two other such mnemonics are: “How I 
want a drink, alcoholic of course, after the heavy lectures involving quantum 
mechanics,” and “May I have a large container of coffee?”

1948 In 1946, D. F. Ferguson of England discovered errors, starting with 
the 528th place, in Shanks’ value for 7r, and in January 1947 gave a corrected 
value to 710 places. In the same month, J. W. Wrench, Jr., of America, pub
lished an 808-place value of 7r, but Ferguson soon found an error in the 723rd 
place. In January 1948, Ferguson and Wrench jointly published the corrected 
and checked value of 7r to 808 places. Wrench used Machin’s formula, whereas 
Ferguson used the formula

f  = 3 arctan Q  + arctan ( ^ )  + arctan ( ~ ) .

1949 The electronic computer, the ENIAC, at the Army Ballistic Research 
Laboratories in Aberdeen, Maryland, calculated ir to 2037 decimal places.

1959 Francois Genuys, in Paris, computed ir to 16,167 decimal places, 
using an IBM 704.

1961 Wrench and Daniel Shanks, of Washington, D.C., computed 7r to 
100,265 decimal places, using an IBM 7090.

1965 The ENIAC, now obsolete, was dismembered and moved to the 
Smithsonian Institution as a museum piece.

1966 On February 22, M. Jean Guilloud and his co-workers at the Commis
sariat a l’Energie Atomique in Paris attained an approximation to 7r extending 
to 250,000 decimal places on a STRETCH computer.

1967 Exactly one year later, the above workers found 7r to 500,000 places 
on a CDC 6600.

1973 Guilloud and his co-workers found tt to 1,000,000 places on a CDC 
7600.

1981 The two Japanese mathematicians Kazunori Miyoshi and Kazuhika 
Nakayama of the University of Tsukuba calculated 7r to 2,000,038 significant 
figures in 137.30 hours on a FACOM M-200 computer. They used the formula
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7r = 32 arctan -  4 arctan -  16 arctan

and checked their result with Machin’s formula.
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1986 In January of 1986, D. H. Bailey of the NASA Ames Research Center 
in California ran a Cray-2 supercomputer for 28 hours to get tt to 29,360,000 
digits. His code was based on an algorithm by J. M. and P. D. Borwein of 
Dalhousie University. Bailey checked his code against a slower algorithm, also 
developed by the Borweins, and verified the accuracy of his result. A little 
later, Yasumasa Kanada of the University of Tokyo, using an NEC SX-2 
supercomputer and the Borweins’ algorithm, computed tt to 134,217,700 digits.

We have not placed in the above chronology of tt any items from the vast 
literature supplied by sufferers of morbus cyclometricus, the circle-squaring 
disease. These contributions, often amusing and at times almost unbelievable, 
would require a publication all to themselves. To illustrate their tenor, consider 
the instance in 1892 when a writer announced in the New York Tribune the 
rediscovery of a long-lost secret that leads to 3.2 as the exact value of tt. The 
lively discussion following this announcement won many advocates for the new 
value. Again, since its publication in 1931, a great many college and ppblic 
libraries throughout the United States have received, from the obliging author, 
complimentary copies of a thick book devoted to the demonstration that tt = 3- 
13/81. And then there is House Bill No. 246 of the Indiana State Legislature 
that attempted, in 1897, to determine the value of w by legislation. In Section I 
of the bill, we read: “Be it enacted by the General Assembly of the State of 
Indiana: It has been found that a circular area is to the square on a line equal to 
the quadrant of the circumference, as the area of an equilateral rectangle is to 
the square on one side. . . . ” The bill passed the House but, because of some 
newspaper ridicule, was shelved by the Senate, in spite of the energetic backing 
of the State Superintendent of Public Instruction.9

There is more to the calculation of tt to a large number of decimal places 
than just the challenge involved. Before 1767 (when tt was proven irrational), 
one of the reasons was to see if the digits of tt started to repeat, and, if so, to 
obtain tt as an exact rational number, with perhaps a large denominator. In 
more recent times, a motivation is to secure statistical information concerning 
the “normalcy” of tt. A real number is said to be simply normal if in its decimal 
expansion all ten digits occur with equal frequency; it is said to be normal if all 
blocks of digits of the same length occur with equal frequency.10 It is not known 
if tt (or even V 2, for that matter) is normal or even simply normal. The calcula
tions of tt, starting with that on the ENIAC in 1949, were performed to secure 
statistical information on the matter. From counts on these extensive expan
sions of tt, it would seem that the number is perhaps normal. The erroneous 
707-place calculation of tt made by Shanks in 1873 seemed to indicate that tt 
was not even simply normal.

9 See W. E. Edington, “ House Bill No. 246 Indiana State Legislature, 1897,” Proceedings of 
the Indiana Academy o f Science 45 (1935): 206-10. Also see A. E. Hallerberg, “ Indiana’s squared 
circle,” Mathematics Magazine, 50, no. 3 (May 1977): 136-140.

10 The concept of normalcy of a number is due to Emile Borel (1871-1956), who showed that 
“almost all” numbers are normal.
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There are other reasons for calculating tt to a great number of decimal 
places. First of all, it is valuable in computer science because the designing of a 
program for such an extensive calculation leads to greater programming ability. 
Also, once a program has been successfully used on one computer, it can be 
used as a check to see if a new computer is operating properly.

In many situations, there is a need for a table of random numbers, such as 
in problems involving Markov chains, in applications of Monte Carlo methods 
to problems in mathematical physics, and in the drawing of random samples in 
statistics. The digits of tt are not truly random, because each digit is uniquely 
determined. The digits of tt may be sufficiently “jumbled,” however, to serve 
practically as a random number table; tests (such as the “poker test”) seem to 
indicate this.

In connection with the possible normalcy of t t , it is interesting that the 
sequence 314159 of the first six digits of tt appears six times in the first ten 
million digits of the decimal expansion of t t , and the sequence 0123456789 does 
not appear at all.

The sequence 271828 of the first six digits of e (the base for natural loga
rithms) occurs eight times in the first ten million digits of the decimal expansion 
of e.

Problem Studies

4.1 Euclidean and Modern Compasses

A student reading Euclid’s Elements for the first time might experience 
some surprise at the opening propositions of Book I. The first three proposi
tions are the construction problems

1. To describe an equilateral triangle upon a given finite straight line.
2. From a given point to draw a straight line equal to a given straight line.
3. From the greater of two given straight lines to cut off a part equal to the 

less.
These three constructions are trivial with straightedge and modem  com

passes but require some ingenuity with straightedge and Euclidean compasses.
(a) Solve Proposition 1 of Book I with Euclidean tools.
(b) Solve Proposition 2 of Book I with Euclidean tools.
(c) Solve Proposition 3 of Book I with Euclidean tools.
(d) Show that Proposition 2 of Book I proves that the straightedge and 

Euclidean compasses are equivalent to the straightedge and modern 
compasses.

4.2 Duplication by Archytas and Menaechmus

(a) Archytas (ca. 400 B.C.), the Pythagorean philosopher, mathematician, 
general, and statesman, was one of the most respected and influential 
citizens of Tarentum (now Taranto), Italy. He is said to have been 
elected 7 times as general of the Tarentine forces, and he was noted for 
the concern he showed for the comfort and education of the children of
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Tarentum. He tragically drowned in a shipwreck near Tarentum. Fol
lowing is a description of his remarkable solution of the problem of 
inserting 2 mean proportionals between 2 given line segments.

Let a and b, a >  b, be two given line segments. In a horizontal 
plane, draw a circle on AD = a as diameter and construct chord AB = 
b. Let AB produced meet in point P , the tangent to the circle at D. 
Vertically erect the upper half of a right circular semicylinder on the 
semicircle ABD as base; generate a right circular cone by rotating AP 
about line AD; generate a torus of zero inner radius by rotating, about 
the element of the semicylinder through A, the vertical circle on AD as 
diameter. Denote by K  the point common to the semicylinder, the 
cone, and the torus, and let /  be the foot on the semicircle ABD of the 
element through K  of the semicylinder. Prove that AK  and A l are the 
two mean proportionals between a and b; that is, show that AD :AK  = 
AK :AI = AI :AB.

(b) Menaechmus (ca. 350 B.C.) gave the following 2 solutions to the dupli
cation problem. They utilize certain conic sections that, apparently, 
were invented by Menaechmus for the problem at hand.
1. Draw 2 parabolas having a common vertex, perpendicular axes, and 

such that the latus rectum of one is double that of the other. Denote 
by x the length of the perpendicular dropped from the other intersec
tion of the two parabolas upon the axis of the smaller parabola. Then 
x is the edge of a cube having twice the volume of the cube that has 
the smaller latus rectum for edge. Prove this construction correct by 
using modern analytic geometry.

2. Draw a parabola of latus rectum s, then a rectangular hyperbola with 
transverse axis equal to 4s and having for asymptotes the axis of the 
parabola and the tangent to the parabola at its vertex. Let x be the 
length of the perpendicular dropped from the intersection of the 2 
curves upon the axis of the parabola. Then x 3 = 2s3. Prove this 
construction correct by using modern analytic geometry.

4.3 Duplication by Apollonius and Eratosthenes

Apollonius (ca. 225 B.C.) solved the duplication problem as follows. Draw 
a rectangle OADB, and then a circle concentric with the rectangle cutting OA 
and OB produced in A' and B' such that A', D , B ' are collinear. Actually, it is 
impossible to construct this circle with Euclidean tools, but Apollonius gave a 
mechanical way of describing it.

(a) Show that BBf and AAf are 2 mean proportionals between OA and OB.
(b) If OB = 2(0A), show that (BB')3 = 2(OA)3.
(c) Eratosthenes (ca. 230 B.C.) devised a mechanical “mean-finder” con

sisting of three equal rectangular frames, with a set of corresponding 
diagonals, capable of sliding in grooves so that the second frame can be 
slid under the first one, and the third frame under the second. Suppose 
the frames are slid, as indicated in Figure 36, so that points A', B ’, C’ 
are collinear. Show that BB' and C C  are the 2 mean proportionals 
between AA ' and DD'. A mean finder of this sort is easily made from a
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A ’ 1 2 3

FIGURE 36

set of equal paper rectangles and can be generalized so as to insert n 
means between 2 given segments.11

4.4 The Cissoid of Diodes

Diodes (ca. 180 B.C.) invented the dssoid in order to solve the duplication 
problem. A general cissoid may be defined as follows: Let C\ and C2 be 2 given 
curves, and let O be a fixed point. Let P\ and P2 be the intersections of a 
variable line through O with the given curves. The locus of P on this line such 
that OP = OP2 -  OP\ = P\P2 is called the cissoid o f C\ and C2 for the pole O. If 
Ci is a circle, C2 a tangent to Ci at point A, and O is the point on Ci diametri
cally opposite A, then the cissoid of Ci and C2 for the pole O is the dssoid of 
Diodes.

(a) Taking O as origin and OA as the positive x-axis, show that the Carte
sian equation of the cissoid of Diodes is y2 = x3l(2a -  x), where a is 
the radius of Ci. Show that the corresponding polar equation is r = 
2a sin 0 tan 0.

(b) On the positive y-axis, lay off OD = n(OA). Draw DA to cut the cissoid 
in P. Let OP cut line C2 in Q. Show that (AQ)3 = n(OA)3. When n = 2, 
we have a solution of the duplication problem.

(c) Newton has shown how the cissoid of Diodes may be generated by a 
carpenter’s square. Let the outside edge of the square be ACB, AC 
being the shorter arm. Draw a line MN  and mark a point R at distance 
AC  from MN. Move the square so that A always lies on MN  and BC 
always passes through R. Show that the midpoint P of AC  describes a 
cissoid of Diodes.

(d) What is the cissoid of 2 concentric circles with respect to their common 
center? Of a pair of parallel lines with respect to any point not on either 
line?

(e) If Ci and C2 intersect in P, show that OP is a tangent at O to the cissoid 
of Ci and C2 for the pole O.

11 For a more recent mechanical approach, see George E. Martin, “Duplicating the cube with a 
mira,” The Mathematics Teacher (March 1979): 204-208.
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4.5 Some Seventeenth-Century Duplications

Many eminent seventeenth-century mathematicians, like Huygens, Des
cartes, Gregoire de Saint-Vincent, and Newton, devised constructions for du
plicating a cube. Following are two of these constructions.

(a) Gregoire de Saint-Vincent (1647) gave a construction for finding the 
two mean proportionals between two given line segments, based on the 
following theorem: The hyperbola drawn through a vertex of a rectan
gle and having the two sides opposite this vertex for asymptotes meets 
the circumcircle o f the rectangle in a point whose distances from the 
asymptotes are the mean proportionals between the adjacent sides o f  
the rectangle. Prove this theorem.

(b) Descartes (1659) pointed out that the curves

x 2 = ay , x 2 + y 2 = ay 4- bx

intersect in a point (  jc, y) such that x and y are the two mean proportion
als between a and b. Show this.

4.6 Applications of the Insertion Principle

Let us be given 2 curves m and n, and a point O. Suppose we permit 
ourselves to mark, on a given straightedge, a segment MN, and then to adjust 
the straightedge so that it passes through O and cuts the curves m and n with M 
on m and N  on n. The line drawn along the straightedge is then said to have 
been drawn by the insertion principle. Problems beyond the Euclidean tools can 
often be solved with these tools if we also permit ourselves to use the insertion 
principle. Establish the correctness of the following constructions, each of 
which uses the insertion principle.

(a) Let AB be a given segment. Draw angle ABM = 90° and the angle 
ABN = 120°. Now draw ACD , cutting BM in C and BN  in D such that 
CD = AB. Then (AC)3 = 2(AB)3. Essentially this construction was 
given in publications by Viete (1646) and Newton (1728).

(b) Let AOB be any central angle in a given circle. Through B , draw a line 
BCD, cutting the circle again in C, and AO produced in D , such that 
CD = OA, the radius of the circle. Then angle ADB = i  angle AOB. 
This solution of the trisection problem is implied by a theorem given by 
Archimedes (ca. 240 B.C.).

4.7 The Conchoid of Nicomedes

Little is known about Nicomedes (ca. 240 B.C.) beyond his invention of 
the conchoid, a curve with which one may solve both the trisection and the 
duplication problems. A general conchoid may be defined as follows: Let c be a 
given curve and O a fixed point. On the radius vector OP from O to a point P on 
c, mark off PQ = ±k, where A; is a constant. Then the locus of Q is called the 
conchoid o f c for pole O and constant k. The complete curve consists of two 
branches, one corresponding to PQ = +k and the other to PQ = -k .  If c is a 
straight line and O is any point not on c, we get a conchoid of Nicomedes.
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(a) Taking O as origin and the line through O parallel to the given line c as 
jc-axis, show that the Cartesian equation of the conchoid of Nicomedes 
for constant k is (y -  a)2(x2 + y 2) = k2y 2, where a is the distance of O 
from c.

(b) Show how the conchoid of Nicomedes may be used to solve the dupli
cation problem.

(c) A conchoid of a circle for a fixed point on the circle is called a limagon 
of Pascal (erroneously named after Etienne Pascal (1588-1640), father 
of the famous Blaise Pascal, although the curve had already been given 
by Albrecht Diirer (1471-1528) in the early sixteenth century). If k = a, 
the radius of the given circle, we obtain a special limagon known as the 
trisectrix. Establish the following construction for trisecting an angle 
with the trisectrix. Let AOB be any central angle in a circle with center 
O and radius OA. Draw the trisectrix for the circle with pole at A, and 
let BO produced cut the trisectrix in C. Then angle ACB = i  angle 
AOB.

(d) Show that the 2 branches of the conchoid of curve c for pole O and 
constant k constitute the cissoid of s and c for the pole 0 , where s is the 
circle with center O and radius k (see Problem Study 4.4).

4.8 Trisection by Conics

A general angle is easily trisected by the aid of conics. Establish the follow
ing constructions of this sort.

(a) Let the given angle be AOB. Draw the branch of an equilateral hyper
bola having O as center and OA as an asymptote, cutting OB in P. With 
P as the center and 2(PO) as a radius, draw a circle cutting the hyper
bola in R. Draw PM  parallel to OA and RM  perpendicular to OA, to 
intersect in M. Then angle AOM -  i  angle AOB.

(b) Let angle AOB be taken as a central angle of a circle, and let OC be the 
bisector of angle AOB. Draw the branch of the hyperbola of eccentric
ity 2 having A for focus and OC for corresponding directrix, and let this 
branch cut arc AB in P. Then angle AOP = i  angle AOB. This construc
tion was quoted by Pappus (ca. A.D. 300).

(c) A clever trisection of an arbitrary angle can be accomplished, not with 
a conic section, but with a right circular cone itself. Consider such a 
cone (made out of wood, for example) having its slant height equal to 
three times the radius of its base. On the circumference of the circular 
base of the cone, mark off arc AB of a central angle AOB equal to the 
angle we wish to trisect. Now wrap a sheet of paper around the cone 
and mark on the paper the positions of points A and B and the vertex V 
of the cone. Show that when the paper is flattened out, angle AVB is 
one-third of angle AOB. This novel procedure was described by Aubry 
in 1896.12

12 For a more recent mechanical approach, see Johnny W. Lott and Iris Mack Dayoub, “What 
can be done with a mira?” The Mathematics Teacher (May 1977): 394-99.
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4.9 Asymptotic Euclidean Constructions

A construction using Euclidean tools but requiring an infinite number of 
operations is called an asymptotic Euclidean construction. Establish the follow
ing two constructions of this type for solving the trisection and the quadrature 
problems.13

(a) Let OT\ be the bisector of angle AOB, OT2 that of angle AOT\ , OJ3 that 
of angle T2OT\ , OT4 that of angle J3OJ2, OT5 that of angle T4OT3, and 
so forth. Then lim OT{ = OT, one of the trisectors of angle AOB . (This

f — >00

construction was given by Fialkowski, 1860.)
(b) On the segment ABX produced, mark off BXB2 = ABX, B2B3 = 2(BXB2), 

B3B4 = 2(£2£ 3), and so forth. With B \ , B2, # 3, . . .a s centers, draw the 
circles B X(A), B2(A ), 2?3(A), . . . .  Let M x be the midpoint of the semi
circle on AB2. Draw B2M\ to cut circle B2(A) in M2, £ 3M2 to cut circle 
B3(A) in M3, . . . .  Let Nt be the projection of M, on the common 
tangent of the circles at A. Then lim ANt = quadrant of circle BX(A).

j — >00

4.10 The Quadratrix

Hippias (ca. 425 B.C.) invented a transcendental curve, called the quadra
trix, by means of which one can multisect angles and square the circle. The 
quadratrix may be defined as follows: Let the radius OX of a circle rotate 
uniformly about the center O from OC to OA, at right angles to OC. At the 
same time, let a line MN  parallel to OA move uniformly parallel to itself from 
CB to OA. The locus of the intersection P  of OX and MN  is the quadratrix.

(a) Taking OA = 1 and the positive jc-axis along OA, show that the Car
tesian equation of the quadratrix is y = x tan (7ry/2).

(b) Show how an angle may be multisected with the quadratrix.
(c) Find the jc-intercept of the quadratrix, and show how the curve may be 

used for squaring the circle.

4.11 Approximate Rectification

Many approximate constructions have been given for finding a line seg
ment equal in length to the circumference of a given circle. An approximate 
quadrature of the circle is then easily obtained by constructing the square on 
the mean proportional between the radius of the circle and a segment equal in 
length to half the circumference of the circle.

(a) Show that the circumference of a circle is given approximately by 3 
times the diameter of the circle increased by one-fifth the side of the 
inscribed square. This leads to what approximation for 7r?

(b) Let AOB be a diameter of the given circle. Find C on the tangent at B 
such that angle COB = 30°. Mark off CBD on the tangent equal to 3 
times the radius of the circle. Then 2(AD) is approximately the circum

13 For an asymptotic Euclidean solution of the duplication problem; see T. L. Heath, History 
of Greek Mathematics, vol. 1, pp. 268-270.



ference of the circle. This leads to what approximation for 7r? This 
construction was given in 1685 by the Polish Jesuit Kochanski.

(c) Let AB = 1 be a diameter of the given circle. Draw BC = I, perpendicu
lar to AB at B. Mark off AD = AC  on AB produced. Draw DE = £, 
perpendicular to AD at D y and let F be the foot of the perpendicular 
from D on AE. Draw EG parallel to FB to cut BD in G. Then GB is 
approximately the decimal part of tt. Find the length of GB to seven 
decimal places. This construction was given in 1849 by de Gelder.

4.12 Lunes of Hippocrates

Hippocrates of Chios (ca. 440 B.C.) squared certain lunes, perhaps hoping
that his investigations might throw some light on the quadrature problem.
Following are 2 of Hippocrates’ lune quadratures:14

(a) Let AOB be a quadrant of a circle. On AB as a diameter, draw a 
semicircle lying outside the quadrant. Show that the lune bounded by 
the quadrant and the semicircle has the same area as triangle AOB.

(b) Let ABCD be half of a regular hexagon inscribed in a circle of diameter 
AD. Construct a lune by describing, exterior to the circle, a semicircle 
on AB as a diameter. Show that the area of the trapezoid ABCD is equal 
to three times the area of the lune plus the area of the semicircle on AB.

4.13 Computation of tt

(a) Prove that 7t/4 = 4 tan-1(£) -  tan-1^ ) .  This is the formula utilized by 
Machin in 1706 to compute 7r to 100 decimal places.

(b) Establish Viete’s formula given under the date 1579 in Section 4-8.
(c) Show that

tt/6 = Vv6{l -  l/(3)(3) + l/(32)(5) -  l/(33)(7) + . . . } .

(d) A common approximation in the Middle Ages for a square root was 
\Tn = V a 2 + b = a + b/(2a + 1). By taking n = 10 = 32 + 1, show 
why it may be that VTo was so frequently used for 7r.

(e) Show that the theorem in House Bill No. 246, Indiana State Legisla
ture, 1897 (see Section 4-8) makes the incorrect assumption that a 
circle and a square have equal areas if they have equal perimeters. This 
assumption leads to what value for 7r?

(f) If sic denotes the side of a regular polygon of k sides inscribed in a circle 
of radius R , show that

= {2 R2 -  R(4R2 -  s 2)m}m.

(g) If S/c denotes the side of a regular polygon of k sides circumscribed 
about a circle of radius r, show that
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14 For an acount of modern developments leading to an analysis of quadrable lunes, see Tobias 
Dantzig, The Bequest o f the Greeks, chap. 10.
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Sln 2 r + (4r2 + S„2)1/2‘

(h) If pk and Pk denote, respectively, the perimeters of regular polygons of 
k sides inscribed in and circumscribed about the same circle, show that

Pin =  n2pf p  , Pm =  (PnPmYa.
P n  ' *  n

(It was with these formulas that Archimedes, in his Measurement o f a 
Circle, starting withp6 and P6, successively computed Pn,Pn,  Pta>Pta>
P 48> /?48 > P 96 > P96-)

(i) If ak and Ak denote, respectively, the areas of regular polygons of k 
sides inscribed in and circumscribed about the same circle, show that

«2n = (anA n)m, A2n =
a 2n " r  f i n

4.14 The Snell Refinement

Let angle AOP (see Figure 37) be an acute central angle in a circle of unit 
radius. Produce diameter AOB to point S so that BS = AO. Draw SP to cut, in 
the point T, the tangent to the circle at A. Snell noticed that if angle AOP is 
sufficiently small, the tangential segment AT is approximately equal in length 
to the arc AP.

(a) Find the error in the Snell approximation when angle AOP = 90°.
(b) Designating angle AOP by 6 and angle AST by <j>, show that

AT  = 3 sin 0 
2 + cos 6 3 tan <j>.

(c) Show that <j> <  6/3, whence

sin 6
2 + cos 6<  tan

FIGURE 37
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(d) Show how the Snell approximation may be used for approximately 
multisecting angles.

(e) Show how the Snell approximation may be used for approximately 
dividing a circumference into n equal parts.

(f) Show how the Snell approximation may be used for approximately 
squaring the circle.

4.15 M nemonics for tt

(a) How good is the following English mnemonic for 77?

Sir, I bear a rhyme excelling 
In mystic force and magic spelling 

Celestial sprites elucidate 
All my own striving can’t relate.

( b )  Show that the following French poem yields 77 correct to twenty-six 
decimal places:

Que j ’aime a faire apprendre 
Un nombre utile aux sages 
Immortel Archim^de artiste ingenieur 
Qui de ton jugement peut priser la valeur 
Pour moi ton probleme 
A les pareils avantages!

(c) How good for recalling the decimal expansion of 77 is the following 
pretty Spanish mnemonic?

Sol y Luna y Mundo proclaman al Eterne Autor del Cosmos.

(d) The most successful mnemonic given in the text [under A Chronology 
of 77 (1906)] yields 30 correct decimal places. No one has ever been able 
to make up a sentence mnemonic of this kind giving 77 to more than 31 
correct decimal places. Why is this?

(e) The number 77 can be approximated by rational numbers. For example,

22/7 = 3.14|28,
355/113 = 3.141592|92,

104348/33215 = 3.141592653|92142,
833719/265381 = 3 .14159265358| 108,

which, in turn, give tt correct to 2, 6, 9, and 11 decimal places. Show 
that the following mnemonics may be used for recalling the last two 
fractions:

calculator will get fair accuracy 
but not to 77 exact ’

dividing top lot through (a nightmare) 
by number below, you approach 77
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It has been shown that for one-digit, two-digit, three-digit, five
digit, and six-digit denominators, the best rational approximations of tt 
are, respectively, to 2, 3, 6, 10, and 11 correct decimal places. No 
improvement can be made over 6 correct decimal places using four
digit denominators.

Essay Topics

4/1 Plato’s influence upon mathematics.
4/2 Aristotle’s influence upon mathematics.
4/3 The importance of unsolved problems in mathematics.
4/4 Early steps in the history of the conic sections.
4/5 Euclidean constructions viewed as a game of geometric solitaire. 
4/6 Modern versus Euclidean compasses.
4/7 The study of higher plane curves among the early Greeks.
4/8 Quadrable lunes.
4/9 Normal numbers.
4/10 Mnemonics in elementary mathematics.
4/11 Plato’s educational concept of “transfer of training.’’
4/12 Pseudomaths.
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Cultural Connection

THE OIKOUMENE
The Persian Empire—550-330 B.C.; 
Hellenistic Greece—336-31 B.C.;
The Roman Empire—31 B.C.-A.D. 476 
(to accompany Chapters Five and Six)

C
ometime during the latter half of the third century B.C., Eratosthenes (276- 

196? B.C.), mathematician, scientist, geographer, and curator of the great li
brary in Alexandria, decided to make a new map of the world (see Section 6-3 
for a reproduction of the map). It had been more than two centuries since the 
Greek historian Herodotus had drawn his map of the world, and many new 
places had been discovered in the interim. Eratosthenes knew that the explorer 
Pythias had made two trips into the Atlantic Ocean in approximately 300 B.C., 
visiting the British Isles, Scandinavia, Germany, and even a frigid, mysterious 
land where the sun never set. Pythias believed this frozen place to be the edge 
of the world, and called it Ultima Thule; it may have been Iceland. Hanno, a 
king of Carthage, had sailed south along the west coast of Africa in about 470 
B.C., and Eratosthenes had reports of what he had seen. The librarian had 
accounts of Patrocles’ excursion to the Caspian Sea as well. Daily, traders and 
merchants arrived in Alexandria’s busy marketplace with tales of faraway 
lands. It was certainly time for a new map.

Resolutely, Eratosthenes spread out a fresh roll of papyrus and began to 
sketch. In the center, he placed Alexandria, the largest city in the world with 
500,000 inhabitants. Laying astride several important trade routes, the city was 
the commercial and cultural center of what Eratosthenes and other Greek 
speakers called the oikoumene, or “ inhabited world”—Greece, Egypt, and the 
Middle East. Alexandria’s deep harbor was filled with ships from distant ports, 
guided there safely by its great Pharos lighthouse, one of the seven wonders of 
the ancient world. Alexandrian merchants ranged far overland, and in the city’s 
marketplace, one could buy spices from India and Arabia, wood and ivory from 
Africa, cloth from Tyre, olives and wine from Greece, and salt and slaves from 
Rome. The palace of the king, Ptolemy IV Philopater (ruled 222-205 B.C.) had 
a prominent place in the city; next to it stood the University and its wondrous 
library, with 600,000 rolls of papyrus.

Of course, Eratosthenes well knew the story of Alexandria’s founding. 
One hundred years before, in 338 B.C., as the city-states of Greece lay ex
hausted after nearly a century of fratricidal warfare, Philip II (382-336 B.C.) of 
Macedonia had united all Greece under his rule. When Philip died later that
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year, his new empire was claimed by his son, Alexander the Great (356-323 
B.C.); two years later, in 334 B.C., Alexander led his armies on a daring 
invasion of the mighty Persian Empire, then the largest and most powerful 
nation in the world. Two hundred years before Alexander, in 550 B.C., Persia’s 
first king, Cyrus the Great (died 529 B.C.), had conquered Babylonia, and its 
second king, Cambyses (died 522 B.C.), had annexed Egypt twenty-five years 
after that, creating the world’s first truly polycultural empire. In 330 B.C., after 
six years of compaigning, Alexander’s Macedonians captured the Persian capi
tal, Persepolis, and the old empire fell. Two years prior to the seige of Persepo- 
lis, while in Egypt, Alexander had founded Alexandria as his western capital.

Surrounding Alexandria on his map, Eratosthenes drew in the three em
pires and several lesser states that had emerged in the oikoumene after Persia 
fell. After the conquest, Alexander had set about unifying Persia and Greece 
into a single cosmopolitan empire. He founded Greek colonies on Persian soil, 
created a Greek aristocracy in the Middle East and Egypt, and integrated 
Persian soldiers into the Macedonian army. Together, Greece, Egypt, and the 
Middle East became the oikoumene, considered by Greeks as the civilized 
world. The attempt at unity failed in 323 B.C., when Alexander died at the 
young age of thirty-three, and his empire was divided among his generals.

Egypt, with Alexandria its capital, was one of three principal states to 
emerge in the oikoumene after Alexander’s death. It stretched southerly from 
the Mediterranean Sea along both banks of the Nile River, past the old Egypt
ian cities of Memphis and Thebes, past Syrene, and even past the city of 
Meroe, near modern Khartoum, at the juncture of the White Nile and the Blue 
Nile. Egypt was ruled by the Greek Ptolemaic dynasty, which was founded in 
323 B.C. by Ptolemy I Soter (3677-283 B.C.), who turned Alexandria into a 
cosmopolitan commercial city dominated by a Greek aristocracy.

To the east of Egypt lay the Seleucid kingdom, the largest remnant of 
Alexander’s empire. The Seleucid kingdom sprawled easterly from its capital, 
alabaster Antioch on the Mediterranean Sea, and comprised modern Palestine, 
Syria, Iraq, and Iran. Like Egypt, the Seleucid empire was ruled by a Greek 
upper class, and it boasted more than sixty Greek cities—colonies established 
by the government. The third major power of the oikoumene was Macedonia 
itself, which included most of the old Greek city-states.

Beyond the oikoumene were lands inhabited by people the Greeks consid
ered barbarians. To the east lay mysterious, exotic India, where Alexander the 
Great had fought his last battles. To the west, in Italy and north Africa, two 
non-Greek city-states, Rome and Carthage, were building budding empires, 
although both were still republics. In southern Italy, a few old Greek colonies, 
most notably Syracuse, were still independent, although they were destined to 
be swallowed up shortly by Rome. Beyond these places lived savage hunters or 
illiterate farmers just emerged from the Stone Age. Farthest away was civilized 
China; merchants from the oikoumene carried on a thin trickle of trade with 
China, but China did not appear on Eratosthenes’ map.

The oikoumene was dominated both politically and culturally by Greeks 
and has been called the Hellenistic (Greek-like) world by historians, and the
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period of time from Alexander the Great to the conquest of the city of Alexan
dria by the Romans (336-31 B.C.) has been called the Hellenistic Age. The 
Greeks who came to live in the new cities like Alexandria and Antioch superim
posed a veneer of Greek culture on top of the older, Middle Eastern civiliza
tions already there. They built cities and markets, academies and universities, 
museums and libraries. Now at the center of large political and economic 
empires, Greek scholars had access to information about new people, places, 
and things on an unprecedented scale, which spurred, among other things, the 
creation of the new science of geography by our friend Eratosthenes. Babylo
nian and Egyptian science were absorbed into Greek scholarship, invigorating 
both.

At the beginning of the Hellenistic Age, Greek science emerged as a sepa
rate discipline; it was no longer considered merely a subset of philosophy. 
Although Athenian scholars continued to concentrate on philosophy, history, 
and literature, thinkers at Alexandria emphasized science and mathematics. 
They were encouraged in their research by the Egyptian government. King 
Ptolemy II Philadelphus (3087-246? B.C.) endowed the University heavily, 
erecting a museum, a zoo, and an impressive series of academic buildings. 
Moreover, the kings accorded the scholars privacy and academic freedom and 
did not interfere with their studies.

Greek science reached its pinnacle at Alexandria during the first century 
and a half of the Hellenistic Age, between 300 and 150 B.C. After that came a 
long, slow decline, punctuated in 46 B.C., when much of the University at 
Alexandria, including the library, burned, and completed in A.D. 529, when the 
Academy at Athens closed its doors. The decline was caused by a combination 
of technological, political, economic, and social factors:

Technological Factors. The sciences of astronomy, biology, and geography 
had reached the point where they could not progress much further without 
telescopes, microscopes, and clocks. Theories and hypotheses needed to be 
tested, and the necessary equipment had yet to be invented.

Political Factors. In 149 B.C., Rome, a rising, aggressive power in the 
Mediterranean Sea region, completed its conquest of Carthage and turned its 
attention to the oikoumene. The Romans annexed Macedonia in 148 B.C., 
wealthy Pergamum fifteen years later, and powerful Pontus in 66 B.C. As it 
acquired conquered territory, Roman social and political life began to decay, 
resulting in a series of civil wars. One of these internecine conflicts pitted Julius 
Ceasar (1027-44 B.C.) against Cneius Pompey (106-48 B.C.) and culiminated 
in the latter’s defeat. Pompey fled to Egypt, where Caesar followed him, only 
to find Pompey dead and himself trapped in Alexandria by the navy of Ptolemy 
XIII (died 44 B.C.). The wily Roman extricated himself by setting fire to the 
Egyptian fleet, but sparks from the blaze blew into the city. Much of Alexandria 
burned, including, to Caesar’s dismay, the great library. Caesar made good his 
escape, after first fathering a child by the Egyptian queen, Cleopatra (69-30 
B.C.), only to be assassinated by foes in Rome in 44 B.C., two years later. 
Another civil war ensued that was eventually won by Caesar’s nephew, Augus
tus (63 B.C.-A.D. 14) in 31 B.C. After the war, Augustus declared himself
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dictator, gutted Rome’s remaining republican institutions, and annexed Egypt 
as penalty for harboring one of his rivals. Rome continued to rule most of the 
oikoumene until the empire fell to barbarian invaders in A.D. 476.

Unlike the Egyptian kings, the Roman emperors, most of them profes
sional soldiers, declined to use the public treasury to support scientific en
deavor. The Roman Empire (31 B.C.-A.D. 476) was at its core a military 
dictatorship and, like most military regimes, was unsympathetic to independent 
scholarship. (See the description of Sparta in Cultural Connection III.) Imperial 
Rome was not totally lacking in intellectual achievement; it produced some 
good histories and a fine body of literature, for example, but it proved a rela
tively sterile environment for science.

Economic Factors. The Romans used slave labor to an almost unprece
dented degree, especially after the founding of the Empire by Augustus in 31 
B.C. More than half of the Empire’s inhabitants were slaves. With slaves to do 
most of the backbreaking work, there was little perceived need for labor-saving 
devices, such as the pulleys and levers invented by Archimedes of Syracuse 
(287-212 B.C.); hence, scientists had little incentive to invent them.

Social Factors. Despite its initial successes, science interested Hellenistic 
and Roman scholars far less than philosophy, literature, and religion. The 
Hellenistic Age saw the development of Stoicism and Epicurianism as philo
sophical disciplines, and the Roman Empire witnessed the rise of Christianity 
(as well as several lesser religions and cults, such as Mithraism, that did not 
survive) and its establishment as the state religion by the emperor Constantine I 
(A.D. 2887-337) in A.D. 325. Religious leaders often opposed scientific in
quiry, especially when scientific models appeared to challenge religious dogma. 
Despite the fact that the Christians themselves had been the victims of brutal 
repression before A.D. 325, an extremist minority in the Christian community 
found it difficult to tolerate scientists. The last scientist of Alexandria, Hypatia, 
was murdered savagely by Christian zealots in A.D. 415, and, in A.D. 529, 
Christian leaders in Greece persuaded the Byzantine emperor, Justinian I 
(A.D. 483-565), to close the Academy at Athens, ostensibly owing to the 
Academy’s heretical activities.

Summary
Between 550 B.C. and A.D. 476, the western world was ruled by a series of 
great empires. The Persian Empire lasted until conquered by Alexander the 
Great in 330 B.C.; three Greek empires, Ptolemaic Egypt, the Seleucid king
dom, and Macedonia, shared control between 323 B.C. and 31 B.C.; and the 
Roman Empire dominated from 31 B.C. until A.D. 476. The Greek expansion 
into Asia and Africa after the fall of Persia transported Greek culture and 
science to new parts of the world. In Alexandria, Egypt, the Greek kings built 
and endowed a great university, and scholarship flourished for about 150 years, 
between 300 B.C. and 150 B.C. After that time, scientific endeavor began to 
wane, owing to a number of factors: lack of equipment, decline in government
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support after the Roman conquest of Egypt in 31 B.C., an increase in the use of 
slave labor, a competing interest in philosophy and religion, and opposition 
from some religious leaders. By A.D. 529, the last Greek school, the Academy 
at Athens, had closed, and the grand adventure of Greek science had ended. It 
would be nearly one thousand years before science would again flourish in the 
western world.



Chapter

EUCLID AND HIS ELEMENTS

5 - 1  Alexandria1

The period following the Peloponnesian War was one of political disunity 
among the Greek states; this disunity rendered them easy prey for the now- 
strong kingdom of Macedonia, which lay to the north. King Philip of Macedo
nia was gradually extending his power southward, and Demosthenes thundered 
his unheeded warnings. The Greeks rallied too late for a successful defense 
and, with the Athenian defeat at Chaeronea in 338 B.C., Greece became a part 
of the Macedonian empire.

Two years after the fall of the Greek states, ambitious Alexander the Great 
succeeded his father Philip and set out upon his unparalleled career of con
quest, which added vast portions of the then-civilized world to the growing 
Macedonian domains. Wherever he led his victorious army, he created, at well- 
chosen places, a string of new cities. It was in this way, when Alexander 
entered Egypt, that the city of Alexandria was founded in 332 B.C.

It is said that the choice of the site, the drawing of the ground plan, and the 
process of colonization for Alexandria were directed by Alexander himself and 
that the actual building of the city was assigned to the eminent architect Dino
crates. From its inception, Alexandria showed every sign of fulfilling a remark
able future. In an incredibly short time, largely owing to its very fortunate 
location at a natural intersection of some important trade routes, it grew in 
wealth and became the most magnificent and cosmopolitan center of the world. 
By 300 B.C., it already had 500,000 inhabitants.

After Alexander the Great died in 323 B.C., his empire was partitioned 
among some of his military leaders, resulting in the eventual emergence of 
three empires, under separate rule, but nevertheless united by the bonds of the 
Hellenic civilization that had followed Alexander’s conquests. Egypt fell to the 
lot of Ptolemy. It was not until about 306 B.C. that Ptolemy actually began his 
reign. He selected Alexandria as his capital and, to attract learned men to his 
city, immediately began the erection of the famed University of Alexandria. 
This was the first institution of its kind and, in its scope and setup, soon became 
much like the universities of today. Reputedly, it was highly endowed, and its 
attractive and elaborate plan contained lecture rooms, laboratories, gardens, 
museums, library facilities, and living quarters. The core of the institution was 
the great library, which for a long time was the largest repository of learned

1 See R. E. Langer, “Alexandria— shrine of mathematics,” The American Mathematical 
Monthly 48 (February 1941): 109-25.
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works to be found anywhere in the world, boasting, within forty years of its 
founding, over 600,000 papyrus rolls. It was about 300 B.C. that the university 
opened its doors and Alexandria became, and remained for close to one thou
sand years, the intellectual metropolis of the Greek race.

For recognized scholars to staff the university, Ptolemy turned to Athens 
and invited the distinguished Demetrius Phalereus to take charge of the great 
library. Able and talented men were selected to develop the various fields of 
study. Euclid, who also may have come from Athens, was chosen to head the 
department of mathematics.

5-2 Euclid
Disappointingly little is known about the life and personality of Euclid except 
that he was a professor of mathematics at the University of Alexandria and 
apparently the founder of the illustrious and long-lived Alexandrian School of 
Mathematics. Even his dates and his birthplace are not known, but it seems 
probable that he received his mathematical training in the Platonic school at 
Athens. Many years later, when comparing Euclid with Apollonius, to the 
latter’s discredit, Pappus praised Euclid for his modesty and consideration of 
others. Proclus augmented his Eudemian Summary with the frequently told 
story of Euclid’s reply to Ptolemy’s request for a short cut to geometric knowl
edge that “there is no royal road in geometry.” But the same story has been 
told of Menaechmus when he was serving as instructor to Alexander the Great. 
Stobaeus told another story of a student studying geometry under Euclid who 
questioned what he would get from learning the subject, whereupon Euclid 
ordered a slave to give the fellow a penny, “ since he must make gain from what 
he learns.”

5-3  Eudid’s “Elements”
Although Euclid was the author of at least ten works (fairly complete texts of 
five of these have come down to us), his reputation rests mainly on his Ele
ments. It appears that this remarkable work immediately and completely super
seded all previous Elements; in fact, no trace remains of the earlier efforts. As 
soon as the work appeared, it was accorded the highest respect, and from 
Euclid’s successors on up to modern times, the mere citation of Euclid’s book 
and proposition numbers was regarded as sufficient to identify a particular 
theorem or construction. No work, except the Bible, has been more widely 
used, edited, or studied, and probably no work has exercised a greater influ
ence on scientific thinking. Over one thousand editions of Euclid’s Elements 
have appeared since the first one printed in 1482; for more than two millennia, 
this work has dominated all teaching of geometry.

It is a misfortune that no copy of Euclid’s Elements has been found that 
actually dates from the author’s own time. Modern editions of the work are 
based upon a revision that was prepared by the Greek commentator Theon of
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Title page of Billingsley’s E u clid  (1570).

Alexandria, who lived almost 700 years after the time of Euclid. Theon’s revi
sion was, until the early nineteenth century, the oldest edition of the Elements 
known to us. In 1808, however, when Napolean ordered valuable manuscripts 
to be taken from Italian libraries and sent to Paris, F. Peyrard found, in the 
Vatican library, a tenth-century copy of an edition of Euclid’s Elements that 
predates Theon’s recension. A study of this older edition and a careful sifting of 
citations and remarks made by early commentators indicate that the introduc
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tory material of Euclid’s original treatise undoubtedly underwent some editing 
in the subsequent revisions, but that the propositions and their proofs, except 
for minor additions and deletions, have remained essentially as Euclid wrote 
them.

The first complete Latin translations of the Elements were not made from 
the Greek but from the Arabic. In the eighth century, a number of Byzantine 
manuscripts of Greek works were translated by the Arabians, and in 1120 the 
English scholar, Adelard of Bath, made a Latin translation of the Elements 
from one of these older Arabian translations. Other Latin translations were 
made from the Arabic by Gherardo of Cremona (1114-1187) and, 150 years 
after Adelard, by Johannes Campanus. The first printed edition of the Elements 
was made at Venice in 1482 and contained Campanus’ translation. This very 
rare book was beautifully executed and was the first mathematical book of any 
consequence to be printed. An important Latin translation from the Greek was 
made by Commandino in 1572. This translation served as a basis for many 
subsequent translations, including the very influential work by Robert Simson, 
from which, in turn, so many of the English editions were derived. The first 
complete English translation of the Elements was the monumental Billingsley 
translation issued in 1570.2

It is no reflection upon the brilliance of Euclid’s work that there had been 
other Elements anterior to his own. According to the Eudemian Summary, 
Hippocrates of Chios made the first effort along this line, and the next attempt 
was made by Leon, who in age fell somewhere between Plato and Eudoxus. It 
is said that Leon’s work contained a more careful selection of propositions than 
did that of Hippocrates, and that these propositions were more numerous and 
more serviceable. The textbook of Plato’s Academy was written by Theudius 
of Magnesia and was praised as an admirable collection of elements. The geom
etry of Theudius seems to have been the immediate precursor of Euclid’s work 
and was undoubtedly available to Euclid, especially if he studied in the Platonic 
School. Euclid was also acquainted with the important work of Theaetetus and 
Eudoxus. Thus, it is probable that Euclid’s Elements is, for the most part, a 
highly successful compilation and systematic arrangement of works of earlier 
writers. No doubt Euclid had to supply a number of the proofs and to perfect 
many others, but the chief merit of his work lies in the skillful selection of the 
propositions and in their arrangement into a logical sequence, presumably fol
lowing deductively from a small handful of initial assumptions.

5 -4  Content of the “Dements”
Contrary to widespread impressions, Euclid’s Elements is not devoted to ge
ometry alone, but contains much number theory and elementary (geometric) 
algebra. The work is composed of thirteen books with a total of 465 proposi

2 See R. C. Archibald, “The first translation of Euclid’s Elements into English and its source,” 
The American Mathematical Monthly 57 (August-September 1950): 443-52, and W. F. Shenton, 
“The first English Euclid,” The American Mathematical Monthly 35 (December 1928): 505-12.
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tions. American high-school plane and solid geometry texts contain much of 
the material found in Books I, III, IV, VI, XI, and XII.

Book I commences with the necessary preliminary definitions, postulates, 
and axioms; we shall return to these in Section 5-7. The forty-eight proposi
tions of Book I fall into three groups. The first twenty-six deal mainly with 
properties of triangles and include the three congruence theorems. Propositions 
I 27 through I 32 establish the theory of parallels and prove that the sum of the 
angles of a triangle is equal to two right angles. The remaining propositions of 
the book deal with parallelograms, triangles, and squares, with special refer
ence to area relations. Proposition I 47 is the Pythagorean theorem, with a 
proof universally credited to Euclid himself, and the final proposition, I 48, is 
the converse of the Pythagorean theorem. The material of this book was devel
oped by the early Pythagoreans.

It is worthwhile to comment further on a few propositions of Book I. The 
first three propositions are construction problems that show how, along with a 
straightedge, Euclidean compasses can transfer a line segment from a given 
position to any other desired position (see Problem Study 4.1). It follows that 
one can often shorten a construction by treating the Euclidean compasses as 
modern compasses.

Proposition I 4 establishes the congruence of two triangles having two 
sides and the included angle of one equal to two sides and the included angle of 
the other. The proof is by superposition, wherein it is shown that one triangle 
can be applied to the other by placing the given angle of the one triangle upon 
that of the other triangle, so that corresponding equal sides also coincide. 
Mathematicians later raised objections to proofs by superposition (see Section 
15-1).

Proposition I 5, which proves that the base angles of an isosceles triangle 
are equal, is of interest because it is said that many beginners found the proof so 
confusing that they abandoned further study of geometry. The proposition has 
been dubbed the pons asinorum, or “bridge of fools,” because of the fancied 
resemblance of the figure of the proposition to a simple trestle bridge too steep 
for some novices to pass over. Euclid’s proof involves drawing some prelimi
nary construction lines and is illustrated in the figure on our reproduction of a 
page of Isaac Barrow’s Euclid. In this figure, the equal sides AB and AC  of the 
given isosceles triangle BAC are produced the same lengths to D and F, and CD 
and BF are drawn. It then follows (by Proposition I 4) that triangles AFB and 
ADC are congruent, making BF = DC and angle BDC = angle CFB. It now 
follows (again by Proposition I 4) that triangles BDC and CFB are congruent, 
guaranteeing the equality of angles DBC and FCB and, hence, angles ABC and 
ACB. Actually, the proof can be considerably shortened, as was later noted by 
Pappus (ca. A.D. 300), by applying Proposition I 4 directly to triangles ABC 
and ACB, wherein AB in the one equals AC  in the other, AC  in the one equals 
AB in the other, and angle BAC in the one equals angle CAB in the other.

Proposition I 6 establishes the converse of Proposition I 5. In this in
stance, we are given that in triangle BAC, angle ABC = angle ACB, and we 
wish to show that BA = CA. Euclid proceeds by reductio ad absurdum and
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L iber  7 . n
h m , fu b  a q u ilib u s  re f t i i  line is  co n te n tio n , &  b a -  

Jim B C  baft EF aqualem  b a b e b u n t; e n tq u e  t n -  

a ngulum  B A C  tria n g u lo  E D F  a q u a le  , ac re li- 
q u i a n y t h  B , C  reli q u it  a n y d i i  E , F aquales  

i r u n t ,  uterque u t r i  u e , f u b  quibus a q u a lia ’ la te r a  

fu b te n d u n tu r.

Si pun&um D  pun&o A  applicetur, a 
D E  reftae A B  fuperponatur, cadet pun£>um£ 
in B, q u ia D E a =r A B. Item reda D F  cadet a b f -  

in A C j  quia ang. A  1.z z  D . Quinetiam pun- 
dum  E puntto C  coincidet, quia A C  3 z z  D F .
Ergo re&acEF, BC> ciim eotdem habeant ter*
m inos, b congruent, 8c proinde arquales funt. b 1 4 . « .  M

Quare triangula B A C , E D F ; & anguli B, E;
itemq; anguli C , F etiara congruunt, & a.-
quantur. Q jo d  erat Demonftrandum.

Pr o p . V*.i
Ifo fc e liu m  tria n g u lo ru m  A B C  

q u i a d  b jf im  f u n t  a n gu li A B C ,
A C B  in te r J e  f u n t  equates. E t  

p to d u fti*  aqualtbus rc th s  linets 

A B , A  C  q u i fu b  bafe f u n t  a n -  

g u lt  C B D ,  B C E  in te rfe  * -  

qtsgiei e runt.

> Accipe A F  =  A D ,  & a 3 t.
junge C D ,a c  B F. b 1 . p ff.
Quoniam in triangulisc %  

A C D , ABF,funt A B ‘ =; A C ,&  A F d= : A D , d «>nflr. 

angulusq; A communij^erit a n g .A B F =  A C D ; c 4> *• 
& ang. A F B  e =  A D C , & bas. B F e =  D C ;  
item F C f =: D B . ergd in triangulis B F C ,  f  J <**. 
B D C s e r i t a n g . F C B ,  =  D B C . Q^E D . Item 8  4  
iileo ang. FB C  zz. D C B .  atqui ang. ABF h —
A C D .  ergo ang. A B C  k — ACB . Q _E. D . k 

C orollai tu n u

Hinc, O  nne txiangulum arquilaterum eft 
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3. OK.

Euclid’s proof of Proposition I 5 (The base angles of an isosceles 
triangle are equal) as given in Isaac Barrow’s E u clid .
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assures, for example, that BA >  CA. Then BM = CA can be laid off on BA. By 
Proposition I 4, triangles CBM and BCA are congruent, but this is absurd, 
because the former triangle is a proper part of the latter one. It follows that 
BA >  CA. Similarly, CA >  BA , and it follows that BA = CA. This is the first 
place in the Elements where reductio ad absurdum, or the indirect method, is 
used. The method is frequently employed by Euclid thereafter.

Propositions I 9 through 112 are construction problems, the first two giv
ing the familiar constructions for the bisector of a given angle and the midpoint 
of a given line segment. One purpose of such construction problems is to serve 
as existence proofs; for instance, perhaps the best way to prove the existence 
of the bisector of a given angle is actually to construct that bisector.

Proposition I 47 is the Pythagorean theorem. Euclid’s figure for this propo
sition and a precis of his beautiful proof can be found in Problem Study 5.3(b).

Book II, a short book of only fourteen propositions, deals with the trans
formation of areas and the geometric algebra of the Pythagorean school. It is in 
this book that we find the geometrical equivalents of a number of algebraic 
identities. In Section 3-6, for example, we have shown, how Propositions II 4, 
II 5, and II 6 establish the respective identities

(a + b)2 = a2 + 2 ab + b2,

(a + b)(a -  b) = a2 -  b2,

4ab + (a -  b)2 = (a + b)2.

Of special interest are Propositions II 12 and II 13. These propositions, stated 
together and in more modern language, say: In an obtuse-angled (acute-an
gled) triangle, the square o f the side opposite the obtuse (acute) angle is equal 
to the sum of the squares o f the other two sides increased (decreased) by twice 
the product o f one o f these sides and the projection o f the other on it. Thus, 
these two propositions establish the generalization of the Pythagorean theorem 
that we today refer to as the “law of cosines.”

In spite of a long-held belief, there is at present a lively debate among some 
historians of mathematics as to whether the propositions of Book II are really 
intended to be a geometric form of algebra.

Book III, which consists of thirty-nine propositions, contains many of the 
familiar theorems about circles, chords, secants, tangents, and the measure
ment of associated angles that we find in our high-school geometry texts. Book 
IV, with only sixteen propositions, discusses the construction, with straight
edge and compasses, of regular polygons of three, four, five, six, and fifteen 
sides, and the inscription of these polygons within a given circle and their 
circumscription about a given circle. Since little of the geometry of the circle 
given in Books III and IV is found in Pythagorean work, the material of these 
books was probably furnished by the early Sophists and the researchers on the 
three famous problems discussed in Chapter 4.

Book V is a masterly exposition of Eudoxus’ theory of proportion. It was 
this theory, applicable to incommensurable as well as to commensurable mag
nitudes, that resolved the “logical scandal” created by the Pythagorean discov
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ery of irrational numbers. The Eudoxian definition of proportion, or equality of 
two ratios, is remarkable and worth repeating here. Magnitudes are said to be 
in the same ratio, the first to the second and the third to the fourth, when, if any 
equimultiples whatever be taken o f the first and third, and any equimultiples 
whatever o f the second and fourth, the former equimultiples alike exceed, are 
alike equal to, or are alike less than the latter equimultiples taken in corre
sponding order. In other words, if A, B, C, D are any four unsigned magni
tudes, A and B being of the same kind (both line segments, or angles, or areas, 
or volumes) and C and D being of the same kind, then the ratio of A to B is 
equal to that of C to D when, for arbitrary positive integers m and n, mA = nB 
according as mC % nD. The Eudoxian theory of proportion provided a founda
tion, later developed by Dedekind and Weierstrass, for the real number system 
of mathematical analysis.

Book VI applies the Eudoxian theory of proportion to plane geometry. 
Here we find the fundamental theorems on similar triangles; constructions 
giving third, fourth, and mean proportionals; the geometric solution of qua
dratic equations that we considered in Chapter 3; the proposition that the 
internal bisector of an angle of a triangle divides the opposite side into segments 
proportional to the other two sides; a generalization of the Pythagorean theo
rem in which, instead of squares, three similar and similarly described figures 
are drawn on the three sides of a right triangle; and many other theorems. 
There probably is no theorem in this book that was not known to the early 
Pythagoreans, but the pre-Eudoxian proofs of many of them were at fault, since 
they were based upon the incomplete theory of proportion.

Books VII, VIII, and IX, which contain a total of 102 propositions, deal 
with elementary number theory. Book VII commences with the process, re
ferred to today as the Euclidean algorithm, for finding the greatest common 
integral divisor of two or more integers and uses it as a test for two integers to 
be relatively prime (see Problem Study 5.1). We also find an exposition of the 
numerical, or Pythagorean, theory of proportion. Many basic number proper
ties are established in this book.

Book VIII concerns itself largely with continued proportions and related 
geometric progressions. If we have the continued proportion a:b = b:c = c:d, 
then a, b, c, d form a geometric progression.

A number of significant theorems are found in Book IX. Proposition IX 14 
is equivalent to the important fundamental theorem of arithmetic—namely, 
that any integer greater than 1 can be expressed as a product of primes in one 
and, except for the order o f the factors, only one way. Proposition IX 35 gives a 
geometric derivation of the formula for the sum of the first n terms of a geomet
ric progression, and the last proposition, IX 36, establishes the remarkable 
formula for perfect numbers that was stated in Section 3-3.

Euclid’s proof of IX 20 (the number o f prime numbers is infinite) has been 
universally regarded by mathematicians as a model of mathematical elegance. 
The proof employs the indirect method,3 or reductio ad absurdum, and runs

3 It is easy to formulate the proof so that the indirect method is avoided.
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essentially as follows. Suppose there are only a finite number of prime num
bers, which we shall denote by a, b, . . . , k. Set P = (a)(b) .  . . (k). Then P 4- 1 
is either prime or composite. But since a, b, . . . , k are all the primes, P + 1, 
which is greater than each of a, b, . . . , k, cannot be a prime. If P + 1 is 
composite, however, it must be divisible by some prime p. But p must be a 
member of the set a, b, . . . , k of all primes, which means that p is a divisor of 
P. Consequently, p cannot divide P + 1, since p >  1. Thus, our initial hypothe
sis that the number of primes is finite is untenable, and the theorem is estab
lished.

Book X deals with irrationals—that is, with line segments that are incom
mensurable with respect to some given line segment. Many scholars regard this 
book as perhaps the most remarkable book in the Elements. Much of the 
subject matter of this book is attributed to Theaetetus, but the extraordinary 
completeness, elaborate classification, and finish are usually credited to Euclid. 
It taxes one’s credulity to realize that the results of this book were arrived at by 
abstract reasoning, unassisted by any convenient algebraic notation. The open
ing proposition (X 1) is the basis of the method of exhaustion later employed in 
Book XII—namely, that if from any magnitude there be subtracted a part not 
less than its half from the remainder another part not less than its half ', and so 
on, there will at length remain a magnitude less than any assigned magnitude 
of the same kind. In this book, we also find formulas yielding Pythagorean 
triples of numbers, formulas that the ancient Babylonians may have known 
over one thousand years earlier (see Section 2-6).

The remaining three books, XI, XII, and XIII, concern themselves with 
solid geometry and cover much of the material, with the exception of that on 
spheres, commonly found in high-school texts. The definitions, the theorems 
about lines and planes in space, and theorems concerning parallelepipeds are 
found in Book XI. The method of exhaustion plays an important role in the 
treatment of volumes in Book XII and will be reconsidered in some detail in 
Chapter 11. In Book XIII, constructions are developed for inscribing the five 
regular polyhedra in a sphere.

The frequently stated remark that Euclid’s Elements was really intended to 
serve merely as a drawn-out account of the five regular polyhedra appears to be 
a lopsided evaluation. More likely, it was written as a beginning text in general 
mathematics. Euclid also wrote texts on higher mathematics.

Finally, a word concerning the meaning of the term “elements.” Proclus 
has told us that the early Greeks defined the “elements” of a deductive study 
as the leading, or key, theorems that are of wide and general use in the subject. 
Their function has been compared to that of the letters of the alphabet in 
relation to language; as a matter of fact, letters are called by the same name in 
Greek. Aristotle, in his Metaphysics, speaks of elements in the same sense 
when he says, “Among geometrical propositions we call those ‘elements’ the 
proofs of which are contained in the proofs of all or most of such propositions.” 
The selection of the theorems to be taken as the elements of the subject re
quires the exercise of considerable judgment, and it is in this respect, among 
others, that Euclid’s Elements was so superior to all earlier efforts.

It follows that another frequently stated remark (that Euclid’s Elements
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was meant to contain essentially all the plane and solid geometry known in his 
time) is patently false. Euclid knew a great deal more geometry than appears in 
his Elements.

5-5  The Theory of Proportion
It is interesting to note the differences between the Pythagorean, the Eudoxian, 
and the modern textbook proofs of a simple proposition involving proportions. 
Let us select Proposition VI 1, which states that the areas of triangles having 
the same altitude are to one another as their bases. We shall permit ourselves 
to use Proposition I 38, which says that triangles having equal bases and equal 
altitudes have equal areas, and a consequence of I 38 to the effect that of any 
two triangles having the same altitude, that one has the greater area which has 
the greater base.

Let the triangles be ABC and ADE , the bases BC and DE lying on the same 
straight line MN, as in Figure 38. The Pythagoreans, before the discovery of 
irrational numbers, tacitly assumed that any two line segments are commensu
rable; thus, BC and DE were assumed to have some common unit of measure, 
going, say, p times into BC and q times into DE. Mark off these points of 
division on BC and DE and connect them with vertex A. Then triangles ABC 
and ADE are divided, respectively, into p and q smaller triangles, all having, by 
I 38, the same area. It follows that AABC.AADE = p:q -  BC:DE, and the 
proposition is established. With the later discovery that two line segments need 
not be commensurable, this proof, along with others, became inadequate, and 
the very disturbing “logical scandal” came into existence.

Eudoxus’ theory of proportion cleverly resolved the “ scandal,” as we 
shall now illustrate by reproving VI 1 in the manner found in the Elements. On 
CB produced, mark off, successively from B, m -  1 segments equal to CB and 
connect the points of division, B2, Bi, . . . , Bm, with vertex A, as shown in 
Figure 39. Similarly, on DE produced, mark off, successively from E, n -  1 
segments equal to DE and connect the points of division, E2,E i , . . . , En, with 
vertex A. Then BmC = m(BC), AABmC = m(AABC), DEn = n{DE), AADEn = 
n(AADE). Also, by I 38 and its corollary, AABmC =  AADEn according as 
BmC §  DEn; that is, m(AABC) §  n(AADE) according as m(BC) =  n(DE), 
whence, by the Eudoxian definition of proportion, AABC.AADE = BC.DE, 
and the proposition is established. No mention was made of commensurable

FIGURE 38
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A

and incommensurable quantities, since the Eudoxian definition applies equally 
to both situations.

Until well into the twentieth century, many high-school textbooks advo
cated a proof of this theorem involving two cases, according as BC and DE are 
or are not commensurable. The commensurable case was handled as in the 
Pythagorean solution above, and simple limit notions were used to deal with 
the incommensurable case. Thus, suppose BC and DE are incommensurable. 
Divide BC into n equal parts, BR being one of the parts (see Figure 40). On DE, 
mark off a succession of segments equal to BR , finally arriving at a point F on 
DE such that FE < BR . By the commensurable case, already established, 
AABC.AADF = BC:DF. Now let n —> <». Then DF —> DE and AADF —> 
AADE; hence, in the limit, AABC.AADE = BC:DE. This approach uses the 
fact that any irrational number may be regarded as the limit of a sequence of 
rational numbers, an approach that was rigorously developed in modern times 
by Georg Cantor (1845-1918).

5 - 6  Regular Polygons

We have noted that Euclid, in Book IV of his Elements, discusses the construc
tion, done with straightedge and compasses, of regular polygons of three, four, 
five, six, and fifteen sides. By successive angle, or arc, bisections, we may then
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with Euclidean tools construct regular polygons having 2", 3(2"), 5(2"), or 15(2") 
sides. Not until almost the nineteenth century was it known that any other 
regular polygons could be constructed with these limited tools. In 1796, the 
eminent German mathematician Carl Friedrich Gauss initiated the theory that 
showed that a regular polygon having a prime number of sides can be con
structed with Euclidean tools if and only if that number is of the form f(n ) = 
2r  + 1. For n = 0, 1, 2, 3, 4, we find f(n ) = 3, 5, 17, 257, 65,537, all prime 
numbers. Thus, unknown to the Greeks, regular polygons of 17, 257, and 
65,537 sides can be constructed with straightedge and compasses. For no other 
value of n than those listed above is it known that f (n ) is a prime number.

Many Euclidean constructions of the regular polygon of seventeen sides 
have been given. In 1832, Richelot published an investigation of the regular 
polygon of 257 sides, and a Professor Hermes of Lingen gave up ten years of his 
life to the problem of constructing a regular polygon of 65,537 sides. It has been 
said that it was Gauss’ discovery, at the age of nineteen, that a regular polygon 
of seventeen sides can be constructed with straightedge and compasses that 
decided him to devote his life to mathematics. His pride in this discovery is 
evidenced by his request that a regular polygon of seventeen sides be engraved 
on his tombstone. Although this request was never fulfilled, such a polygon is 
found on the base of a monument to Gauss erected at his birthplace in Bruns
wick.

5 - 7  Formal Aspect of the “ Elements”

Important as are the contents of the Elements, perhaps still more important is 
the formal manner in which those contents are presented. In fact, Euclid’s 
Elements has become the prototype of modern mathematical form.

Certainly one of the greatest achievements of the early Greek mathemati
cians was the creation of the postulational form of thinking. In order to estab
lish a statement in a deductive system, one must show that the statement is a 
necessary logical consequence of some previously established statements. 
These, in their turn, must be established from some still more previously estab
lished statements, and so on. Since the chain cannot be continued backward 
indefinitely, one must, at the start, accept some finite body of statements with
out proof or else commit the unpardonable sin of circularity, by deducing 
statement A from statement B and then later B from A. These initially assumed 
statements are called the postulates, or axioms, of the discourse, and all other 
statements of the discourse must be logically implied by them. When the state
ments of a discourse are so arranged, the discourse is said to be presented in 
postulational form.

So great was the impression made by the formal aspect of Euclid’s Ele
ments on following generations that the work became a model for rigorous 
mathematical demonstration. In spite of a considerable abandonment of the 
Euclidean form during the seventeenth and eighteenth centuries, the postula
tional method has today penetrated into almost every field of mathematics, and
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many mathematicians adhere to the thesis that, not only is mathematical think
ing postulational thinking but, conversely, postulational thinking is mathemati
cal thinking. A relatively modern outcome has been the creation of a field of 
study called axiomatics, devoted to examining the general properties of sets of 
postulates and of postulational thinking. We shall return to this in Section 15-2.

Most of the early Greek mathematicians and philosophers made a distinc
tion between “postulates” and “axioms.” At least three distinctions were 
advocated by various parties.

1. An axiom is a self-evident assumed statement about something, and a 
postulate is a self-evident assumed construction of something; thus, 
axioms and postulates bear a relation to one another much like that 
which exists between theorems and construction problems.

2. An axiom is an assumption common to all sciences, whereas a postulate 
is an assumption peculiar to the particular science being studied.

3. An axiom is an assumption of something that is both obvious and ac
ceptable to the learner; a postulate is an assumption of something that is 
neither necessarily obvious nor necessarily acceptable to the learner. 
(This last is essentially the Aristotelian distinction.) In modern mathe
matics, no distinction is made, nor is the quality of being self-evident or 
obvious considered. There were some early Greeks who approached 
this viewpoint.

It is not certain precisely what statements Euclid assumed for his postu
lates and axioms, nor, for that matter, exactly how many he had, for changes 
and additions were made by subsequent editors. There is fair evidence, how
ever, that he adhered to the second distinction and that he probably assumed 
the equivalents of the following ten statements, five “axioms,” or common 
notions, and five geometric “postulates” :

A1 Things that are equal to the same thing are also equal to one another.
A2 If equals be added to equals, the wholes are equal.
A3 If equals be subtracted from equals, the remainders are equal.
A4 Things that coincide with one another are equal to one another.
A5 The whole is greater than the part.

PI It is possible to draw a straight line from any point to any other point.
P2 It is possible to produce a finite straight line indefinitely in that 

straight line.
P3 It is possible to describe a circle with any point as center and with a 

radius equal to any finite straight line drawn from the center.
P4 All right angles are equal to one another.
P5 If  a straight line intersects two straight lines so as to make the interior 

angles on one side o f it together less than two right angles, these 
straight lines will intersect, if indefinitely produced, on the side on 
which are the angles which are together less than two right angles.

Postulates PI and P2 establish the existence of a line determined by two 
points; postulate P3 establishes the existence of a circle, given its center and 
radius. Because of this (as mentioned earlier in Section 4-4), the unmarked
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straightedge and collapsing compasses became the only tools allowed in Eu
clidean geometry for construction problems.

The Elements purports to derive all its 465 propositions from these ten 
statements! The development is the synthetic one of proceeding from the 
known and simpler to the unknown and more complex. Without a doubt, the 
reverse process, called analysis,4 of reducing the unknown and more complex 
to the known, played a part in the discovery of the proofs of many of the 
theorems, but it plays no part in the exposition of the subject.

5 - 8  Euclid’s Other Works

Euclid wrote several treatises besides the Elements, some of which have sur
vived to the present day. One of the latter, called the Data, is concerned with 
the material of the first six books of the Elements. A datum may be defined as a 
set of parts or relations of a figure such that if all but any one are given, then 
that remaining one is determined. Thus, the parts A, d ,R  of a triangle, where A 
is one angle, a the opposite side, and R the circumradius, constitute a datum; 
given any two of these parts, the third is thereby determined. This is clear 
either geometrically or from the relation a = 2R sin A. It is apparent that a 
collection of data of this sort could be useful in the analysis that precedes the 
discovery of a construction or a proof, and this is undoubtedly the purpose of 
the work.

Another work in geometry by Euclid, which has come down to us through 
an Arabian translation, is the book On Divisions. Here we find construction 
problems requiring the division of a figure by a restricted straight line so that 
the parts will have areas in a prescribed ratio. An example is the problem of 
dividing a given triangle into two equal areas by a line drawn through a given 
point within the triangle. Other examples occur in Problem Study 3.11(b) 
and (c).

Other geometrical works of Euclid that are now lost to us and are known 
only from subsequent commentaries are the Pseudaria, or book of geometrical 
fallacies; Porisms, about which there has been considerable speculation5; Con
ics, a treatise in four books that was later completed and then added to by 
Apollonius; and Surface Loci, about which nothing certain is known.

Euclid’s other works concern applied mathematics, and two of these are 
extant: the Phaenomena, dealing with the spherical geometry required for

4 The words analysis and analytic are used in several senses in mathematics. Thus we have 
analytic geometry, the large branch of mathematics called analysis, analytic functions, and so on.

5 A porism is taken today to be a proposition stating a condition that renders a certain problem 
solvable, and then the problem has infinitely many solutions. For example, if r and R are the radii of 
two circles and d is the distance between their centers, the problem of inscribing a triangle in the 
circle of radius R, which will be circumscribed about the circle of radius r, is solvable if and only if 
R 2 -  d 2 = 2Rr, and then there are infinitely many triangles of the desired sort. We do not know 
precisely Euclid’s meaning of the term.
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observational astronomy, and the Optics, an elementary treatise on perspec
tive. Euclid is supposed also to have written a work on the Elements o f Music.

Problem  Studies

5.1 The Euclidean Algorithm

The Euclidean algorithm, or process, for finding the greatest common integral 
divisor (g.c.d.) of two positive integers is so named because it is found at the 
start of Book VII of Euclid’s Elements, although the process no doubt was 
known considerably earlier. This algorithm is at the foundation of several de
velopments in modern mathematics. Stated in the form of a rule, the process is 
this: Divide the larger o f the two positive integers by the smaller one, then 
divide the divisor by the remainder. Continue this process, of dividing the last 
divisor by the last remainder, until the division is exact. The final divisor is the 
sought g.c.d. o f the two original positive integers.

(a) Find, by the Euclidean algorithm, the g.c.d. of 5913 and 7592.
( b )  Find, by the Euclidean algorithm, the g.c.d. of 1827, 2523, and 3248.
(c) Prove that the Euclidean algorithm does lead to the g.c.d.
(d) Let h be the g.c.d. of the positive integers a and b. Show that there 

exist integers p and q (not necessarily positive) such that pa + qb = h.
(e) Find p and q for the integers of (a).
(f) Prove that a and b are relatively prime if and only if there exist integers 

p and q such that pa + qb = 1.

5.2 Applications of the Euclidean Algorithm

(a) Prove, using Problem Study 5.1(f), that if p is a prime and divides the 
product uv, then either p divides u or p divides v.

( b )  Prove from (a) the fundamental theorem of arithmetic: Every integer 
greater than 1 can be uniquely factored into a product of primes.

(c) Find integers a , b , c such that 65/273 = al3 + b ll  + c/13.

5.3 The Pythagorean Theorem

(a) Euclid’s elegant proof of the Pythagorean theorem depends upon the 
diagram of Figure 41, sometimes referred to as the Franciscan’s cowl 
or as the bride’s chair. A precis of the proof runs as follows: (AC)2 = 
2 A JAB = 2A CAD = ADKL. Similarly, (BC)2 = BEKL, and so on. Fill 
in the details of this proof.

( b )  Show how Figure 42 suggests a dynamical proof of the Pythagorean 
theorem, which might be given on movie film, wherein the square on 
the hypotenuse is continuously transformed into the sum of the squares 
on the legs of the right triangle.

(c) A few of our country’s presidents have been tenuously connected with 
mathematics. George Washington was a noted surveyor, Thomas Jef
ferson did much to encourage the teaching of higher mathematics in the
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FIGURE 41

FIGURE 42

United States, and Abraham Lincoln is credited with learning logic by 
studying Euclid’s Elements. More creative was James Abram Garfield 
(1831-1881), the country’s twentieth president, who in his student days 
developed a keen interest and fair ability in elementary mathematics. It 
was in 1876, while he was a member of the House of Representatives 
and five years before he became President of the United States, that he 
independently discovered a very pretty proof of the Pythagorean theo
rem. He hit upon the proof in a mathematics discussion with some 
other members of Congress, and the proof was subsequently printed in 
the New England Journal o f Education. The proof depends upon calcu
lating the area of the trapezoid of Figure 43 in two different ways—first 
by the formula for the area of a trapezoid, and then as the sum of the 
three right triangles into which the trapezoid can be dissected. Carry 
out this proof in detail.

(d) State and prove the converse of the Pythagorean theorem.
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5.4 Euclid’s Book II

(a) Following is Euclid’s Proposition II 1: If there be two straight lines, 
and one o f them be cut into any number o f segments whatever, the 
rectangle contained by the two straight lines is equal to the rectangles 
contained by the uncut straight line and each of the segments. This is 
the geometrical counterpart of what familiar law of algebra?

(b) Show that Propositions II 12 and II 13 are essentially the law of co
sines.

(c) Show how the Pythagorean theorem may be considered as a special 
case of the law of cosines.

5.5 Applications of the Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic says that, for any given positive integer 
a , there are unique nonnegative integers ax, a2, 03, . . . , only a finite number 
of which are different from zero, such that

a = 2*i3«25«3

where 2, 3, 5, . . . are the consecutive primes. This suggests a useful notation. 
We shall write

a = (fli, a2, . . .  , an),

where an is the last nonzero exponent. Thus, we have 12 = (2,1), 14 = (1,0,0,1), 
27 = (0,3), and 360 = (3,2,1).

Prove the following theorems:
(a) ab = (a{ + bu a2 + b2, . . .).
(b ) b  is a divisor of a if and only if b{ ^  at for each i.
(c) The number of divisors of a is (ax + 1 )(a2 + 1) . . . (an + 1).
(d ) A necessary and sufficient condition for a number n to be a perfect 

square is that the number of divisors of n be odd.
(e) Set gi equal to the smaller of at and bt if at + bt and equal to either at or 

bi if a{ -  bt . Then g = (g\ , g2, . . .) is the g.c.d. of a and b.
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(f) If a and b are relatively prime and b divides ac , then b divides c.
(g) If a and b are relatively prime and if a divides c and b divides c, then ab 

divides c.
(h) Show that V 2 and V3 are irrational.

5.6 The Eudoxian Theory of Proportion

(a) Prove, by the Eudoxian method and by the early twentieth-century 
textbook method, Proposition VI 33: Central angles in the same or 
equal circles are to each other as their intercepted arcs.

(b) Prove, by the Pythagorean method and then complete by the use of 
limits, Proposition VI 2: A line parallel to one side o f a triangle divides 
the other two sides proportionally.

(c) Prove Proposition VI 2 by using Proposition VI 1 (see Section 5-5).

5.7 Regular Polygons

(a) Suppose n = rs, where n, r, s are positive integers. Show that if a 
regular n-gon is constructible with Euclidean tools, then so also are a 
regular r-gon and a regular s-gon.

(b) Show that with Euclidean tools, it is impossible to construct a regular 
27-gon.

(c) Suppose r and s are relatively prime positive integers and that a regular 
r-gon and a regular s-gon are constructible with Euclidean tools. Show 
that a regular rs-gon is also so constructible.

(d) Of the regular polygons having less than 20 sides, one can with Euclid
ean tools construct those having 3, 4, 5, 6, 8, 10, 12, 15, 16, and 17 
sides. Actually construct these polygons, with the exception of the 
regular 17-gon.

(e) Construct a regular 17-gon by the following method (H. W. Richmond, 
“To construct a regular polygon of seventeen sides,” Mathematische 
Annalen 67 (1909): 459).

Let OA and OB be two perpendicular radii of a given circle with 
center O. Find C on OB such that OC = OBI4. Now find D on OA such 
that angle OCD = (angle OCA)/4. Next find E on AO produced such 
that angle DCE = 45°. Draw the circle on AE as diameter, cutting OB in 
F, and then draw the circle D(F), cutting OA and AO produced in G4 
and G6. Erect perpendiculars to OA at G4 and G6, cutting the given 
circle in P4 and P6 • These last points are the fourth and sixth vertices of 
the regular 17-gon whose first vertex is A.

(f) Establish Proposition XIII 10: A side o f a regular pentagon, of a regu
lar hexagon, and o f a regular decagon inscribed in the same circle 
constitute the sides o f a right triangle.

(g) Show that the smaller acute angle in a right triangle with legs 3 and 16 is 
very closely half the central angle subtended by one side of a regular 
17-gon. Using this fact, give an approximate Euclidean construction of 
a regular 17-gon.
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5.8 The Angle-Sum of a Triangle

Assuming the equality of alternate interior angles formed by a transversal 
cutting a pair of parallel lines, prove the following:

(a) The sum of the angles of a triangle is equal to a straight angle.
( b )  The sum of the interior angles of a convex polygon of n sides is equal to 

n — 2 straight angles.

5.9 A Deductive Sequence Concerning Areas

Assuming the area of a rectangle is given by the product of its dimensions, 
establish the following chain of theorems:

(a) The area of a parallelogram is equal to the product of its base and 
altitude.

( b )  The area of a triangle is equal to half the product of any side and the 
altitude on that side.

(c) The area of a right triangle is equal to half the product of its 2 legs.
(d) The area of a triangle is equal to half the product of its perimeter and 

the radius of its inscribed circle.
(e) The area of a trapezoid is equal to the product of its altitude and half 

the sum of its bases.
(f) The area of a regular polygon is equal to half the product of its perime

ter and its apothem.
(g) The area of a circle is equal to half the product of its circumference and 

its radius.

5.10 A Deductive Sequence Concerning Angles

Assume (1) a central angle of a circle is measured by its intercepted arc; (2) the 
sum of the angles of a triangle is equal to a straight angle; (3) the base angles of 
an isosceles triangle are equal; (4) a tangent to a circle is perpendicular to the 
radius drawn to the point of contact. Establish the following chain of theorems:

(a) An exterior angle of a triangle is equal to the sum of the 2 remote 
interior angles.

( b )  An inscribed angle in a circle is measured by one-half its intercepted 
arc.

(c) An angle inscribed in a semicircle is a right angle.
(d) An angle formed by 2 intersecting chords in a circle is measured by 

one-half the sum of the 2 intercepted arcs.
(e) An angle formed by 2 intersecting secants of a circle is measured by 

one-half the difference of the 2 intercepted arcs.
(f) An angle formed by a tangent to a circle and a chord through the point 

of contact is measured by one-half the intercepted arc.
(g) An angle formed by a tangent and an intersecting secant of a circle is 

measured by one-half the difference of the 2 intercepted arcs.
(h) An angle formed by 2 intersecting tangents to a circle is measured by 

one-half the difference of the 2 intercepted arcs.
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5.11 Elements

(a) If you were to choose 2 of the following theorems for “elements” in a 
course in plane geometry, which would you choose?
1. The 3 altitudes of a triangle, produced if necessary, meet in a point.
2. The sum of the 3 angles of a triangle is equal to 2 right angles.
3. An angle inscribed in a circle is measured by one-half its intercepted 

arc.
4. The tangents drawn from any point on the common chord produced 

of 2 intersecting circles are equal in length.
(b) A geometry teacher is planning to present the topic of parallelograms to 

his or her class. After defining parallelogram , what theorems about 
parallelograms should the teacher offer as the “elements” of the sub
ject?

(c) Preparatory to teaching the topic of similar figures, a geometry teacher 
gives a lesson or 2 on the theory of proportion. What theorems should 
the teacher select for the “elements” of the treatment, and in what 
order should she arrange them?

5.12 Data

Let A, B ,C  denote the angles of a triangle; a, b ,c  the opposite sides; ha, hb, hc 
the altitudes on these sides; ma, mb, mc the medians to these sides; ta, h , tc the 
angle bisectors drawn to these sides; R and r the circumradius and inradius; ba 
and ca the projections of sides b and c on side a\ and ra the radius of the circle 
touching side a and sides b and c produced. Show that each of the following 
constitutes a datum for a triangle.

(a) A, B , C (b) alb , blc , d a
(c) b , A, hc (d) b + c, A, hb + hc
(e) b -  c, A, hc -  hb (f) ha, ta, B -  C
(g) ha, ma, ba — ca (h) R, B -  C, ba -  ca
(i)R , ra -  r, a (j) ha, r, ra

5.13 Constructions Employing Data

A datum may be useful in solving a construction problem if any one part of the 
datum can be constructed from the other parts. Construct a triangle given (for 
notation see Problem Study 5.12):

(a) a , A, hb + hc
(b) a -  b, hb + hC9 A
(c) R ,r , ha

5.14 Divisions

(a) Complete the details of the following solution (essentially found in 
Euclid’s work On Divisions) of the problem of constructing a straight 
line GH passing through a given point D within triangle ABC, cutting 
sides BA and BC in G and H , respectively, such that triangles GBH and 
ABC have the same area (see Figure 44).
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FIGURE 44

A

Draw DE parallel to CB to cut AB in E. Denote the lengths of DE 
and EB by h and k, respectively, and that of GB by jc. Then x(BH) = ac. 
But BHIh — x(x -  k). Eliminating BH , we obtain jc2 -  mx + mk = 0, 
where m = a d h , and so on.

(b) Solve the following problem, which is Proposition 28 in Euclid’s work 
On Divisions: In Figure 45, bisect the area ABEC by a straight line 
drawn through the midpoint E of the circular arc BC.

(c) In Euclid’s work On Divisions, the problem occurs of bisecting the area 
of a given trapezoid by a line parallel to the bases of the trapezoid. 
Solve this problem with straightedge and compasses.

Essay Topics

5/1 Origin of the axiomatic method, both evolutionary and revolutionary 
accounts.

5/2 Aristotle and Proclus on the axiomatic method.
5/3 Material axiomatics versus formal axiomatics.
5/4 The life, works, and influence of Euclid.



5/5 Euclid’s sources for his Elements.
5/6 Algebra in Euclid’s Elements.
5/7 Number theory in Euclid’s Elements.
5/8 Applications of the Eudoxian theory of proportion to plane geometry. 
5/9 Is there a royal road in geometry?
5/10 The most famous single utterance in the history of mathematics (Eu

clid’s parallel postulate).
5/11 James Abram Garfield (1831-1881) and mathematics.
5/12 Sir Henry Billingsley.
5/13 Planar generalizations of the Pythagorean theorem.
5/14 De Gua’s theorem.
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Chapter

GREEK MATHEMATICS 
AFTER EUCLID

6 -1  Historical Setting
The city of Alexandria enjoyed many advantages, not the least of which was 
long-lasting peace with the rest of the world. During the reign of the Ptolemies, 
which lasted for almost 300 years, the city, although on occasion beset with 
internal power struggles, remained free from external strife. This was ended by 
a short period of conflict when Egypt became a part of the Roman Empire, after 
which the Pax Romana settled over the land. It is no wonder that Alexandria 
became a haven for scholars and that for well over a half millenium so much of 
ancient scholastic attainment emanated from that city. Almost every mathema
tician of antiquity to be discussed in this chapter was either a professor or a 
student at the University of Alexandria.

The closing period of ancient times was dominated by Rome. In 212 B.C., 
Syracuse yielded to a Roman siege; in 146 B.C., Carthage fell before the power 
of imperial Rome, and in the same year, the last of the Greek cities, Corinth, 
also fell, and Greece became a province of the Roman Empire. Mesopotamia 
was not conquered until 65 B.C., and Egypt remained under the Ptolemies until 
30 B.C. Greek civilization diffused through Roman life, and Christianity began 
to spread, especially among the slaves and the poor. The Roman administrators 
collected heavy taxes, but otherwise did not interfere with the underlying eco
nomic organization of the eastern colonies.

Constantine the Great was the first Roman emperor to embrace Christian
ity, and he pronounced it the official religion. In A.D. 330, Constantine moved 
his capital from Rome to Byzantium, which he renamed Constantinople. In 
A.D. 395, the Roman Empire was divided into the Eastern and the Western 
Empires, with Greece as a part of the eastern division.

The economic structure of both empires was essentially based on agricul
ture, with a spreading use of slave labor. The eventual decline of the slave 
market, with its disastrous effect on Roman economy, found science reduced 
to a mediocre level. The Alexandrian school gradually faded, along with the 
breakup of ancient society. Creative thinking gave way to compilation and 
commentarization. Hectic days followed the fight of Christianity against pagan
ism, and finally, in A.D. 641, Alexandria was taken by the Arabs.

164



6-2 / Archimedes 165

6 -2  Archimedes
One of the greatest mathematicians of all time, and certainly the greatest of 
antiquity, was Archimedes, a native of the Greek city of Syracuse on the island 
of Sicily. He was born about 287 B.C. and died during the Roman pillage of 
Syracuse in 212 B.C. He was the son of an astronomer and was in high favor 
with (perhaps even related to) King Hieron of Syracuse. There is a report that 
he spent time in Egypt, in all likelihood at the University of Alexandria, for he 
numbered among his friends Conon, Dositheus, and Eratosthenes; the first two 
were successors to Euclid, the last was a librarian at the University. Many of 
Archimedes’ mathematical discoveries were communicated to these men.

Roman historians have related many picturesque stories about Archi
medes. Among these are the descriptions of the ingenious contrivances devised 
by Archimedes to aid the defense of Syracuse against the siege directed by the 
Roman general Marcellus. There were catapults with adjustable ranges, mov
able projecting poles for dropping heavy weights on enemy ships that ap
proached too near the city walls, and great grappling cranes that hoisted enemy 
ships from the water. The story that he used large burning glasses to set the 
enemy’s vessels afire is of later origin, but it could be true. There also is the 
story of how he lent credence to his statement, “Give me a place to stand on 
and I will move the earth,” by effortlessly and singlehandedly moving with a 
compound-pulley arrangement a heavily weighted ship that had, with difficulty, 
been drawn up by a large contingent of laborers.

Apparently, Archimedes was capable of strong mental concentration, and 
tales are told of his obliviousness to surroundings when engrossed by a prob
lem. The frequently told story of King Hieron’s crown and the suspected 
goldsmith is typical. It seems that King Hieron had a goldsmith fashion him a

ARCHIMEDES
(Culver Service)
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crown from a given weight of gold. Fearing that the goldsmith may have re
placed some of the gold by hidden silver, and not wanting to cut the crown 
apart to find out, the king referred the matter to Archimedes, who, when in the 
public baths one day, hit upon a solution by discovering the first law of hydro
statics— that, when immersed in a fluid, a body is buoyed up by a force equal to 
the weight of the displaced fluid. In his excitement, forgetting to clothe himself, 
he rose from his bath and ran home through the streets shouting, “Eureka, 
eureka!” (“I have found it, I have found it!”). He placed the crown on one pan 
of a balance and an equal weight of gold on the other, and then set the whole 
thing under water. The pan containing the crown rose, showing that the crown 
contained some spurious material less dense than gold.

Archimedes worked much of his geometry from figures drawn in the ashes 
of the hearth or in the after-bathing oil smeared on his body. In fact, it is said 
that he met his end during the sack of Syracuse, while preoccupied with a 
diagram drawn on a sand tray. According to one version, he ordered a pillaging 
Roman soldier to stand clear of his diagram, whereupon the incensed looter ran 
a spear through the old man.

Because of Archimedes’ defense machines, Syracuse resisted the Roman 
siege for close to three years. The city’s defenses were finally broken only 
when, during a celebration within the city, the overconfident Syracusans re
laxed their watches. Marcellus had built up an immense respect for his inge
nious adversary, and when he finally managed to breach the city walls, he gave 
strict orders that no harm must come to the illustrious mathematician. Marcel
lus’ affliction was very great upon hearing of Archimedes’ death, and with all 
due honor and veneration, he buried the famous scholar in the city cemetery. 
Archimedes, justly proud of one of his great geometrical discoveries (to be 
described later) had expressed a desire that a figure showing a sphere and a 
circumscribed right circular cylinder be engraved upon his tombstone. Marcel
lus saw to it that Archimedes’ request was carried out.

Many years later, in 75 B.C., when Cicero was serving as Roman quaestor 
in Sicily, he inquired as to the whereabouts of Archimedes’ tomb. To his 
surprise, the Syracusans knew nothing of it. With considerable effort, Cicero 
examined all the monuments in the cemetery, of which there were a great 
many. Finally, he noticed a small column, standing out a little above overgrown 
briars and shrubs, with the figure of a sphere and circumscribed cylinder upon 
it; thus, the long-neglected and forgotten tomb of the greatest of all Syracusans 
was found. Cicero had men with scythes clear away the brush, and he left 
orders that the surrounding grounds be thenceforth preserved. How long this 
respect was kept up we do not know, for again the tomb completely vanished. 
Then, in 1965, while excavating for the foundations of a hotel in Syracuse, the 
long-vanished tomb was unexpectedly found once more.

Referring to the death of Archimedes, Sir William Rowan Hamilton once 
remarked, “Who would not rather have the fame of Archimedes than that of his 
conqueror Marcellus?” . In the same vein, Alfred North Whitehead com
mented, “No Roman ever died in contemplation over a geometrical diagram.” 
The twentieth-century English mathematician G. H. Hardy said, “Archimedes



6-2 / Archimedes 167

will be remembered when Aeschylus is forgotten, because languages die and 
mathematical ideas do not.” Voltaire had similarly remarked, “There was 
more imagination in the head of Archimedes than in that of Homer.”

The works of Archimedes are masterpieces of mathematical exposition 
and, to a remarkable extent, resemble modern journal articles. They are written 
with a high finish and an economy of presentation and exhibit great originality, 
computational skill, and rigor in demonstration. About ten treatises have come 
down to us, and there are various traces of lost works. Probably the most 
remarkable contribution made to mathematics in these works is the early devel
opment of some of the methods of the integral calculus. We shall return to this 
in a later chapter.

Three of Archimedes’ extant works are devoted to plane geometry. They 
are Measurement o f a Circle, Quadrature o f the Parabola, and On Spirals. It 
was in the first of these that Archimedes inaugurated the classical method of 
computing 7r, which we have already described in Section 4-8. In the second 
work, which contains twenty-four propositions, it is shown that the area of a 
parabolic segment is four-thirds that of the inscribed triangle having the same 
base and having its opposite vertex at the point where the tangent is parallel to 
the base. The summation of a convergent geometric series is involved. The 
third work contains twenty-eight propositions devoted to properties of the 
curve today known as the spiral of Archimedes, which has r — kd for a polar 
equation. In particular, the area enclosed by the curve and two radii vectors is 
found essentially as it would be today in a calculus exercise. There are allusions 
to many lost works on plane geometry by Archimedes, and there is reason to 
believe that some of the theorems of these works have been preserved in the 
Liber assumptorum, a collection that has reached us through the Arabians (see 
Problem Study 6.4) The Arabian scholar al-Biruni claims that Archimedes was 
the discoverer of the celebrated formula,

K  = V sfs -  aXs -  b)(s — c),

for the area of a triangle in terms of its three sides. This formula had hitherto 
been attributed to Heron of Alexandria.

Two of Archimedes’ extant works are devoted to geometry of three dimen
sions—namely, On the Sphere and Cylinder and On Conoids and Spheroids. In 
the first of these, written in two books and containing fifty-three propositions, 
appear theorems giving the areas of a sphere and of a zone of one base and the 
volumes of a sphere and of a segment of one base (see Problem Study 6.2). It is 
shown, for example, that the surface area of a sphere is exactly two-thirds the 
total surface area of the circumscribed right circular cylinder, and the volume 
of the sphere is exactly two-thirds the volume of the same cylinder. In Book II 
of On the Sphere and Cylinder, the problem appears of dividing a sphere by a 
plane into two segments whose volumes shall be in a given ratio. This problem 
leads to a cubic equation whose solution is not given in the text as it has come 
down to us, but as it was found by Eutocius in an Archimedean fragment. There 
is a discussion concerning the conditions under which the cubic may have a real
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and positive root. Similar considerations do not appear again in European 
mathematics for over a thousand years. The treatise ends with the two interest
ing theorems: (1) I f  V, V' and S, S' are the volumes o f the segments and the 
areas o f the zones into which a sphere is cut by a nondiametral plane, V and S 
pertaining to the greater piece, then

S 3l2:S'm < V : V ' <  S 2:S'2.

(2) Of all spherical segments o f one base having equal zonal areas, the hemi
sphere has the greatest volume. The treatise On Conoids and Spheroids con
tains thirty-two propositions that are concerned chiefly with an investigation of 
the volumes of quadrics of revolution. Pappus has ascribed to Archimedes 
thirteen semiregular polyhedra, but, unfortunately, Archimedes’ own account 
of them is lost.1

Archimedes wrote two related essays on arithmetic, one of which is lost. 
The extant paper, entitled The Sand Reckoner, is addressed to Gelon, son of 
King Hieron, and applies an arithmetic system for the representation of large 
numbers to the finding of an upper limit to the number of grains of sand that 
would fill a sphere with center at the earth and radius reaching to the sun. It is 
here, among related remarks pertaining to astronomy, that we learn that Aris
tarchus (ca. 310-230 B.C.) had put forward the Copernican theory of the solar 
system. In addition to the two arithmetic essays, there is the so-called Cattle 
Problem, which, from a salutation, appears to have been communicated by 
Archimedes to Eratosthenes. It is a difficult indeterminate problem involving 
eight integral unknowns connected by seven linear equations and subjected to 
the two additional conditions that the sum of a certain pair of the unknowns be 
a perfect square, while the sum of another certain pair be a triangular number. 
Without the two additional conditions, the smallest values of the unknowns are 
numbers in the millions, and with the two additional conditions, one of the 
unknowns must be a number of more than 206,500 digits!

There are two extant treatises by Archimedes on applied mathematics: On 
Plane Equilibriums and On Floating Bodies. The first of these is in two books 
containing twenty-five propositions. Here, following a postulational treatment, 
are found the elementary properties of centroids and the determination of the 
centroids of a variety of plane areas, culminating with that of a parabolic 
segment and of an area bounded by a parabola and two parallel chords. The 
work On Floating Bodies is also in two books, containing nineteen proposi
tions, and is the first application of mathematics to hydrostatics. The treatise, 
resting on two postulates, first develops those familiar laws of hydrostatics that 
are encountered in an elementary physics course. It then considers some rather 
difficult problems, concluding with a remarkable investigation of the positions 
of rest and stability of a right segment of a paraboloid of revolution floating in a

1 Construction patterns for the Archimedean solids can be found in Miles C. Hartley, Patterns 
o f Polyhedra. Rev. ed.
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fluid. Archimedes wrote other, now lost, treatises on mathematical physics; 
Pappus mentions a work On Levers, and Theon of Alexandria quotes a theorem 
from another purported work on the properties of mirrors. It may be that there 
was originally a larger work by Archimedes of which the two books of On Plane 
Equilibriums formed only a part. It was not until the sixteenth-century work of 
Simon Stevin that the science of statics and the theory of hydrostatics were 
appreciably advanced beyond the points reached by Archimedes.

One of the most thrilling discoveries of modern times in the history of 
mathematics was that by Heiberg, in Constantinople, as late as 1906, of Archi
medes’ long-lost treatise entitled Method. This work is in the form of a letter 
addressed to Eratosthenes and is important because of the information it fur
nishes concerning a “method” that Archimedes used in discovering many of 
his theorems. Although the “method” can today be made rigorous by the 
modern integration process, Archimedes used the “method” only heuristically 
to discover results that he then rigorously established by the method of exhaus
tion. Since the “method” is so closely connected with the ideas of the integral 
calculus, we reserve a treatment of it until Chapter 11, which is devoted spe
cially to the origin and development of the calculus.

Any student or instructor desirous of adhering strictly to chronological 
order can, at this point, turn to Section 11-4.

Archimedes has also been credited with a lost work On the Calendar and 
another lost work On Sphere Making. In the latter, Archimedes described a 
planetarium that he constructed to show the motions of the sun, the moon, and 
the five known planets of his day. The mechanism probably was operated by 
water. Cicero actually saw the mechanism and gave a description of it. The 
Loculus Archimedius, a teasing puzzle composed of fourteen assorted polygo
nal pieces to be assembled into a square, in all likelihood was not designed by 
Archimedes and probably received its name merely as a way of expressing that 
the puzzle is clever and difficult.

Archimedes’ best known mechanical invention is the water-screw, devised 
by him for irrigating fields, draining marshes, and emptying water from holds of 
ships. The mechanism is still used in Egypt today.

6 -3  Eratosthenes

Eratosthenes was a native of Cyrene, on the south coast of the Mediterranean 
Sea, and was only a few years younger than Archimedes. He spent many years 
of his early life in Athens and, at about the age of forty, was invited by Ptolemy 
III of Egypt to come to Alexandria as tutor to his son and to serve as chief 
librarian at the University there. It is told that in old age, about 194 B.C., he
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Drawing of an Archimedean water-screw.

became almost blind from ophthalmia and committed suicide by voluntary 
starvation.

Eratosthenes was singularly gifted in all the branches of knowledge of his 
time. He was distinguished as a mathematician, an astronomer, a geographer, 
an historian, a philosopher, a poet, and an athlete. It is said that the students at 
the University of Alexandria used to call him Pentathlus, the champion in five 
athletic sports. He was also called Beta, and some speculation has been offered 
as to the possible origin of this nickname. Some believe that it was because his 
broad and brilliant knowledge caused him to be looked upon as a second Plato. 
A less kind explanation is that, although he was gifted in many fields, he always 
failed to top his contemporaries in any one branch; in other words, he was 
always second best. Each of these explanations weakens somewhat when it is 
learned that a certain astronomer Apollonius (very likely Apollonius of Perga) 
was called Epsilon. Because of this, the historian James Gow has suggested 
that perhaps Beta and Epsilon arose simply from the Greek numbers (2 and 5) 
of certain offices or lecture rooms at the University particularly associated with 
the two men. On the other hand, Ptolemy Hephaestio claimed that Apollonius 
was called Epsilon because he studied the moon, of which the letter e was a 
symbol.

Various of Eratosthenes’ works are mentioned by later writers. We have 
already seen, in Problem Study 4.3(c), his mechanical solution of the duplica
tion problem. His most scientific achievement, the measurement of the earth, is 
considered in Problem Study 6.1(c).

In arithmetic, Eratosthenes is noted for a device known as the sieve, which 
is used for finding all the prime numbers less than a given number n. One writes 
down, in order and starting with 3, all the odd numbers less than n. The 
composite numbers in the sequence are then sifted out by crossing off, from 3, 
every third number, then from the next remaining number, 5, every fifth num
ber, then from the next remaining number, 7, every seventh number, from the 
next remaining number, 11, every eleventh number, and so on. In the process
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some numbers will be crossed off more than once. All the remaining numbers, 
along with the number 2, constitute the list of primes less than n.

6 -4  Apollonius

Euclid, Archimedes, and Apollonius are the three mathematical giants of the 
third century B.C. Apollonius, who was younger than Archimedes by about 
twenty-five years, was born about 262 B.C. in Perga, in southern Asia Minor. 
The little that is known about the life of Apollonius is briefly told. As a young 
man he went to Alexandria, studied under the successors of Euclid, and re
mained there for a long time. Later, he visited Pergamum, in western Asia 
Minor, where there was a recently founded university and library patterned 
after that at Alexandria. He returned to Alexandria and died there sometime 
around 190 B.C.

Although Apollonius was an astronomer of note and although he wrote on 
a variety of mathematical subjects, his chief bid to fame rests on his extraordi
nary Conic Sections, a work that earned him the name, among his contempo
raries, of “The Great Geometer.” Apollonius’ Conic Sections, in eight books 
and containing about 400 propositions, is a thorough investigation of these 
curves, and completely superseded the earlier works on the subject by Me
naechmus, Aristaeus, and Euclid. Only the first seven of the eight books have 
come down to us, the first four in Greek and the following three from a ninth- 
century Arabian translation. The first four books, of which I, II, and III are 
presumably founded on Euclid’s previous work, deal with the general elemen
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tary theory of conics, whereas the later books are devoted to more specialized 
investigations.

Prior to Apollonius, the Greeks derived the conic sections from three types 
of cones of revolution, according as the vertex angle of the cone is less than, 
equal to, or greater than a right angle. By cutting each of three such cones with 
a plane perpendicular to an element of the cone, an ellipse, parabola, and 
hyperbola, respectively, result. Only one branch of a hyperbola was consid
ered. Apollonius, however, in Book I of his treatise, obtains all the conic 
sections in the now-familiar way from one right or oblique circular double cone.

The names ellipse, parabola, and hyperbola were supplied by Apollonius 
and were borrowed from the early Pythagorean terminology of application of 
areas. When the Pythagoreans applied a rectangle to a line segment (that is, 
placed the base of the rectangle along the line segment, with one end of the base 
coinciding with one end of the segment), they said they had a case of “ellipsis,” 
“parabole,” or “hyperbole”2 according as the base of the applied rectangle fell 
short of the line segment, exactly coincided with it, or exceeded it. Now let AB 
(see Figure 46) be the principal axis of a conic, P any point on the conic, and Q 
the foot of the perpendicular from P on AB . At A, which is a vertex of the 
conic, draw a perpendicular to AB and mark off on it a distance AR equal to 
what we now call the latus rectum, or parameter p, of the conic. Apply to the 
segment AR a rectangle having AQ  for one side and area equal to (PQ)2. 
According as the application falls short of, coincides with, or exceeds the 
segment AR, Apollonius calls the conic an ellipse, a parabola, or a hyperbola. 
In other words, if we consider the curve referred to a Cartesian coordinate 
system having its x and y axes along AB and AR, respectively, and if we 
designate the coordinates of P by x and y, then the curve is an ellipse, parabola, 
or hyperbola according as y2 % px. Actually, in the cases of the ellipse and 
hyperbola,

where d is the length of the diameter through vertex A. Apollonius derives the 
bulk of the geometry of the conic sections from the geometrical equivalents of 
these Cartesian equations. Facts like these cause some to defend the thesis that 
analytic geometry was an invention of the Greeks.

Book II of Apollonius’ treatise on Conic Sections deals with properties of 
asymptotes and conjugate hyperbolas, and the drawing of tangents. Book III 
contains an assortment of theorems, including some area theorems like: If the 
tangents at any two points A and B o f a conic intersect in C and also intersect 
the diameters through B and A in D and E, then triangles CBD and CAE are 
equal in area. One also finds the harmonic properties of poles and polars (a

2 It is perhaps worth noting that we have corresponding names in English for the three figures 
of speech: ellipsis, parabole, hyperbole.
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subject familiar to those who have had an elementary course in projective 
geometry), and theorems concerning the product of the segments of intersect
ing chords. As an example of the latter, there is the theorem (often today 
referred to as Newton s theorem): If two chords PQ and MN, parallel to two 
given directions, intersect in O, then (PO)(OQ)l(MO)(ON) is a constant inde
pendent o f the position o f O. The well-known focal properties of the central 
conics occur toward the end of Book III. In the entire treatise, there is no 
mention of the focus-directrix property of the conics nor, for that matter, of the 
focus of the parabola. This is curious because, according to Pappus, Euclid was 
aware of these properties. The ancient Greeks had no specific name for “fo
cus;” this term was introduced later by Johann Kepler (1571-1630). Book IV of 
the treatise proves the converses of some of those propositions of Book III 
concerning harmonic properties of poles and polars. There also are some theo
rems about pairs of intersecting conics. Book V is the most remarkable and 
original of the extant books. It treats normals as maximum and minimum line 
segments drawn from a point to the curve and deals with the construction and 
enumeration of normals from a given point. The subject is pushed to the point 
where one can write down the Cartesian equations of the evolutes (envelopes 
of normals) of the three conics! Book VI contains theorems and construction 
problems concerning equal and similar conics; thus, it is shown how, in a given 
right cone, to find a section equal to a given conic. Book VII contains a number 
of theorems involving conjugate diameters, such as the one about the con
stancy of the area of the parallelogram formed by the tangents to a central conic 
at the extremities of a pair of such diameters.

Conic Sections is a great treatise but, because of the extent and elaborate
ness of the exposition and the portentousness of the statements of many com
plicated propositions, is rather trying to read. Even from the above brief sketch 
of contents, we see that the treatise is considerably more complete than the 
usual present-day college course in the subject.

Pappus has given brief indications of the contents of six other works of 
Apollonius. These are On Proportional Sections (181 propositions), On Spatial 
Section (124 propositions), On Determinate Section (83 propositions), Tangen- 
cies (124 propositions), Vergings (125 propositions), and Plane Loci (147 prop-
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ositions). Only the first of these has survived, and this is in Arabic. It deals with 
the following general problem (see Figure 47): Given two lines a and b with the 
fixed points A on a and B on b, to draw through a given point O a line OA'B\ 
cutting a in A' and b in B’ so that AA'IBB' = k, a given constant. The exhaus
tiveness of the treatment is indicated by the fact that Apollonius considers 
seventy-seven separate cases. The second work dealt with a similar problem, 
only here we wish to have (AA')(BB') = k . The third work concerned itself with 
the problem: Given four points A, B , C, D on a line, to find a point P on the line 
such that we have (AP)(CP)I (BP)(DP) = k. The work on Tangencies dealt with 
the problem of constructing a circle tangent to three given circles, where the 
given circles are permitted to degenerate independently into straight lines or 
points. This problem, now known as the problem of Apollonius, has attracted 
many mathematicians, among them Viete, Euler, and Newton. One of the first 
solutions applying the new Cartesian geometry was given by Descartes’ pupil 
Princess Elizabeth, daughter of Frederick V of Bohemia. Probably the most 
elegant solution is that furnished by the French artillery officer and professor of 
mathematics Joseph-Diez Gergonne (1771-1859). The general problem in Verg
ing s was that of inserting a line segment between two given loci, such that the 
line of the segment shall pass through a given point.

The last work, Plane Loci, contained, among many others, the two theo
rems:

1. I f  A and B are fixed points and k a given constant, then the locus o f a 
point P, such that API BP = k, is either a circle {if k =£ 1) or a straight 
line (if k = 1).

2. I f  A, B, . . . are fixed points and a, b, . . . , k are given constants, then 
the locus o f a point P, such that a(AP)2 + b(BP)2 + . . .  = k, is a circle.

The circle of the first theorem is known in modern college geometry texts as a 
circle of Apollonius.

Attempts have been made to restore all six of the above works, the first 
two works by Edmund Halley in 1706, the third by Robert Simson in 1749, the
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fourth by Viete in 1600, the fifth by Ghetaldi in 1607 and 1613, Alexander 
Anderson in 1612, and Samuel Horsley in 1770, and the last by Fermat in 1637 
and, more completely, by Simson in 1746. In addition to these six works, a 
number of other lost works by Apollonius are referred to by ancient writers.

6-5  Hipparchus, Menelaus, Ptolemy, 
and Greek Trigonometry

The origins of trigonometry are obscure. There are some problems in the Rhind 
papyrus that involve the cotangent of the dihedral angles at the base of a 
pyramid, and, as we have seen in Section 2-6, the Babylonian cuneiform tablet 
Plimpton 322 essentially contains a remarkable table of secants. It may be that 
modern investigations into the mathematics of ancient Mesopotamia will reveal 
an appreciable development of practical trigonometry. The Babylonian astron
omers of the fourth and fifth centuries B.C. had accumulated a considerable 
mass of observational data, and it is now known that much of this passed on 
to the Greeks. It was this early astronomy that gave birth to spherical trigo
nometry.

Probably the most eminent astronomer of antiquity was Hipparchus, who 
flourished about 140 B.C. Although there is an observation of the vernal equi
nox recorded by Hipparchus at Alexandria in 146 B.C., his most important 
observations were made at the famous observatory of the commercial center of 
Rhodes. Hipparchus was an extremely careful observer and is credited, in 
astronomy, with such feats as the determination of the length of the mean lunar 
month to within 1" of the present accepted value, an accurate calculation of the 
inclination of the ecliptic, and the discovery and estimation of the annual pre
cession of the equinoxes. He is said also to have computed the lunar parallax, 
to have determined the perigee and mean motion of the moon, and to have 
catalogued 850 fixed stars. It was Hipparchus, or perhaps Hipsicles (ca. 180 
B.C.), who introduced into Greece the division of a circle into 360°, and he is 
known to have advocated location of positions on the earth by latitude and 
longitude. Knowledge of these achievements is secondhand, for almost nothing 
of Hipparchus’ writings has reached us.

More important for us, though, than Hipparchus’ achievements in astron
omy is the part he played in the development of trigonometry. The fourth- 
century commentator, Theon of Alexandria, has credited to Hipparchus a 
twelve-book treatise dealing with the construction of a table of chords. A subse
quent table, given by Claudius Ptolemy and believed to have been adopted from 
Hipparchus’ treatise, gives the lengths of the chords of all central angles of a 
given circle by half-degree intervals from 1/2° to 180°. The radius of the circle is 
divided into sixty equal parts, and the chord lengths then expressed sexagesi
mally in terms of one of these parts as a unit. Thus, using the symbol crd a to 
represent the length of the chord of a central angle a, one finds recordings like

crd 36° = 37p4'55",
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meaning, of course, that the chord of a central angle of 36° is equal to 37/60 (or 
thirty-seven small parts) of the radius, plus 4/60 of one of these small parts, plus 
55/3600 more of one of the small parts. It is seen from Figure 48 that a table of 
chords is equivalent to a table of trigonometric sines, for

_  AM  _  AB _  crd 2a
sm 01 OA diameter of circle 120

Thus, Ptolemy’s table of chords gives, essentially, the sines of angles by 15' 
intervals, from 0° to 90°. The mode of calculating these chord lengths, elegantly 
explained by Ptolemy, in all likelihood was known to Hipparchus. Evidence 
shows that Hipparchus made systematic use of his tables and was aware of the 
equivalents of several formulas now used in the solution of spherical right 
triangles.

Theon has also mentioned a six-book treatise on chords in a circle written 
by Menelaus of Alexandria, a contemporary of Plutarch (ca. A.D. 100). This 
work, along with a variety of others by Menelaus, is lost to us. Fortunately, 
however, Menelaus’ three-book treatise Sphaerica has been preserved in the 
Arabic. This work throws considerable light on the Greek development of 
trigonometry. In Book I, there appears for the first time the definition of a 
spherical triangle. The book is devoted to establishing for spherical triangles 
many of the propositions Euclid established for plane triangles, such as the 
usual congruence theorems, theorems about isosceles triangles, and so on. In 
addition, it establishes the congruence of two spherical triangles having the 
angles of one equal to the angles of the other (for which there is no analogue in 
the plane) and the fact that the sum of the angles of a spherical triangle is 
greater than two right angles. Symmetrical spherical triangles are regarded as 
congruent. Book II contains theorems of interest in astronomy. In Book III is 
developed the spherical trigonometry of the times, largely deduced from the 
spherical case of the powerful proposition known to students of college geome
try as Menelaus’ theorem: I f  a transversal intersects the sides BC, CA, AB o f a 
triangle ABC in the points L, M, N, respectively, then
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In the spherical analogue, we have a great circle transversal intersecting the 
sides BC, CA, AB of a spherical triangle ABC in the points L, M, N, respec
tively. The corresponding conclusion is then equivalent to

The plane case is assumed by Menelaus as well known and is used by him to 
establish the spherical case. A great deal of spherical trigonometry can be 
deduced from this theorem by taking special triangles and special transversals. 
The converses of both the plane and spherical cases of the theorem are also 
true.

The definitive Greek work on astronomy was written by Claudius Ptolemy 
of Alexandria about A.D. 150. This very influential treatise, called the Syntaxis 
mathematica, or “Mathematical Collection,” was based on the writings of 
Hipparchus and is noted for its remarkable compactness and elegance. To 
distinguish it from other lesser works on astronomy, later commentators as
signed to it the superlative magiste, or “greatest.” Still later, the Arabian 
translators prefixed the Arabian article al, and the work has ever since been 
known as the Almagest. The treatise is in thirteen books. Book I contains, 
among some preliminary astronomical material, the table of chords referred to 
above, along with a succinct explanation of its derivation from the fertile geo
metrical proposition now known as Ptolemy’s theorem: In a cyclic quadrilat
eral, the product o f the diagonals is equal to the sum of the products o f the two 
pairs o f opposite sides (see Problem Study 6.9). Book II considers phenomena 
depending on the sphericity of the earth. Books III, IV, and V develop the 
geocentric system of astronomy by epicycles. In Book IV, a solution appears of 
the three-point problem of surveying: To determine the point from which pairs 
of three given points are seen under given angles. This problem has had a long 
history and is sometimes referred to as the “Problem of Snell” (1617) or the 
“Problem of Pothenot” (1692). In Book VI, which gives the theory of eclipses, 
is found the four-place value of it alluded to in Section 4-8. Books VII and VIII 
are devoted to a catalogue of 1028 fixed stars. The remaining books are devoted 
to the planets. The Almagest remained the standard work on astronomy until 
the time of Copernicus and Kepler.

Ptolemy wrote on map projections (see Problem Study 6.10), optics, and 
music. He also attempted a derivation of Euclid’s fifth (or parallel) postulate 
from the other axioms and postulates of the Elements in a vain effort to remove 
the postulate from Euclid’s list of initial assumptions.

6 -6  Heron
Another worker in applied mathematics belonging to this period was Heron of 
Alexandria. There has been much dispute as to the exact time that he lived, 
which has been variously estimated from 150 B.C. to A.D. 250. More recently, 
he has been placed in the second half of the first century A.D. His works on
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mathematical and physical subjects are so numerous and varied that it is cus
tomary to describe him as an encyclopedic writer in these fields. There are 
reasons to suppose he was an Egyptian with Greek training. At any rate, his 
writings, which so often aim at practical utility rather than theoretical com
pleteness, show a curious blend of the Greek and the Oriental. He did much to 
furnish a scientific foundation for engineering and land surveying. Fourteen or 
so treatises by Heron, some evidently considerably edited, have come down to 
us, and there are references to additional lost works.

Heron’s works may be divided into two classes, the geometric and the 
mechanical. The geometric works deal largely with problems on mensuration, 
and the mechanical ones with descriptions of ingenious mechanical devices.

The most important of Heron’s geometrical works is his Metrica, written 
in three books and discovered in Constantinople by R. Schone, as recently as 
1896. Book I deals with the area mensuration of squares, rectangles, triangles, 
trapezoids, various other specialized quadrilaterals, the regular polygons from 
the equilateral triangle to the regular dodecagon, circles and their segments, 
ellipses, parabolic segments, and the surfaces of cylinders, cones, spheres, and 
spherical zones. It is in this book that we find Heron’s clever derivation of the 
famous formula for the area of a triangle in terms of its three sides [see Problem 
Study 6.11(d)]. Of particular interest, also in this book, is Heron’s method of 
approximating the square root of a nonsquare integer. It is a process frequently 
used today by computers—namely, if n -  ab , then \ rn is approximated by 
(<a + b)l2, the approximation improving with the closeness of a to b. The 
method permits successive approximations. Thus, if ax is a first approximation 
to V «, then

a2 =
a i

n+ — ax

2

is a better approximation, and

n

2

is still better, and so on. Book II of the Metrica concerns itself with the volume 
mensuration of cones, cylinders, parallelepipeds, prisms, pyramids, frustums 
of cones and pyramids, spheres, spherical segments, tori (anchorrings), the five 
regular solids, and some prismatoids [see Problem Study 6.11(g)]. Book III 
deals with the division of certain areas and volumes into parts having given 
ratios to one another. We have seen such problems in Problem Study 3.11(b) 
and (c).

In Heron’s Pneumatica appear descriptions of about one hundred ma
chines and toys, such as a siphon, a fire engine, a device for opening temple
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doors by a fire on the altar, and a wind organ. His work Dioptra concerns itself 
with the description and engineering applications of an ancient form of theodo
lite, or surveyor’s transit. In Catoptrica, one finds the elementary properties of 
mirrors and problems concerning the construction of mirrors to satisfy certain 
requirements, such as for a person to see the back of his head or to appear 
upside down, and so on. Heron’s works on mechanics show a fine grasp of the 
important basic principles of the subject.

6-7 Ancient Greek Algebra
In 1842, G. H. F. Nesselmann conveniently characterized three stages in the 
historical development of algebraic notation. First, we have rhetorical algebra, 
in which the solution of a problem is written, without abbreviations or symbols, 
as a pure prose argument. Then comes syncopated algebra, in which abbrevia
tions are adopted for some of the more frequently recurring quantities and 
operations. Finally, as the last stage, we have symbolic algebra, in which solu
tions largely appear in a mathematical shorthand made up of symbols having 
little apparent connection with the entities they represent. It is fairly accurate 
to say that all algebra prior to the time of Diophantus (who will be considered in 
Section 6-8) was rhetorical. One of Diophantus’ outstanding contributions to 
mathematics was the syncopation of Greek algebra. Rhetorical algebra, how
ever, persisted quite generally in the rest of the world, with the exception of 
India, for many hundreds of years. Specifically, in Western Europe, most 
algebra remained rhetorical until the fifteenth century. Symbolic algebra made 
its first appearance in Western Europe in the sixteenth century, but did not 
become prevalent until the middle of the seventeenth century. It is not often 
realized that much of the symbolism of our elementary algebra textbooks is less 
than 400 years old.

One of our best sources of ancient Greek algebra problems is a collection 
known as the Palatine, or Greek, Anthology. This is a group of forty-six num
ber problems, in epigrammatic form, assembled about A.D. 500 by the gram
marian Metrodorus. Although some of the problems may have originated with 
the author, there is every reason to believe that many of them are considerably 
more ancient. The problems, apparently intended for mental recreation, are of 
a type alluded to by Plato and closely resemble some of the problems in the 
Rhind papyrus. Half of them lead to simple linear equations in one unknown, a 
dozen more to easy simultaneous equations in two unknowns, one to three 
equations in three unknowns, and one to four equations in four unknowns. 
There are also two cases of indeterminate equations of the first degree. A 
number of the problems are very much like many found in present-day elemen
tary algebra textbooks. Some examples from the Greek Anthology are given in 
Problem Studies 6.13 and 6.14. Although these problems are easily solved with 
our modern algebraic symbolism, it must be conceded that a rhetorical solution 
would require close mental attention. It has been remarked that many of these 
problems can be readily solved by geometrical algebra, but it is believed that
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they were actually solved arithmetically, perhaps by applying the rule of false 
position (see Section 2-8). Just when Greek algebra changed from a geometri
cal form to an arithmetic one is not known, but this probably occurred as early 
as the time of Euclid.

6 -8  Diophantus
Of tremendous importance to the development of algebra and of great influence 
on later European number theorists was Diophantus of Alexandria. Diophantus 
was another mathematician, like Heron, of uncertain date and nationality. 
Although there is some tenuous evidence that he may have been a contempo
rary, or near contemporary, of Heron, most historians tend to place him in the 
third century of our era. Beyond the fact that he flourished at Alexandria, 
nothing certain is known about him, although there is an epigram in the Greek 
Anthology that purports to give some details of his life [see Problem Study 
6.15(a)].

Diophantus wrote three works: Arithmetica, his most important one, of 
which the first six of thirteen books are extant; On Polygonal Numbers, of 
which only a fragment is extant; and Porisms, which is lost. The Arithmetica 
had many commentators, but it was Regiomontanus who in 1463 called for a 
Latin translation of the extant Greek text. A very meritorious translation, with 
commentary, was made in 1575 by Xylander (the Greek name assumed by 
Wilhelm Holzmann, a professor at the University of Heidelberg). This was 
used in turn by the Frenchman Bachet de Meziriac, who in 1621 published the 
first edition of the Greek text, along with a Latin translation and notes. A 
second, carelessly printed, edition was brought out in 1670, which is histori
cally important because it contained Fermat’s famous marginal notes, which 
stimulated such extensive number theory research. French, German, and 
English translations appeared later.

The Arithmetica is an analytic treatment of algebraic number theory and 
marks the author as a genius in this field. The extant portion of the work is 
devoted to the solution of about 130 problems, of considerable variety, leading 
to equations of the first and second degree. One very special cubic is solved. 
The first book concerns itself with determinate equations in one unknown, and 
the remaining books with indeterminate equations of the second, and some
times higher, degree in two and three unknowns. Striking is the lack of general 
methods and the repeated application of ingenious devices designed for the 
needs of each individual problem. Diophantus recognized only positive rational 
answers and was, in most cases, satisfied with only one answer to a problem.

There are some penetrating number theorems stated in the Arithmetica; 
thus, we find, without proof but with an allusion to the Porisms, that the 
difference o f two rational cubes is also the sum of two rational cubes—a matter 
that was later investigated by Viete, Bachet, and Fermat. There are many 
propositions concerning the representation of numbers as the sum of two, 
three, or four squares, a field of investigation later completed by Fermat, Euler,
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and Lagrange. Perhaps it might be interesting to list a few of the problems 
found in the Arithmetica; they are all alluring, and some of them are challeng
ing. It must be borne in mind that by “number” is meant “positive rational 
number.”

Problem 28,3 Book II: Find two square numbers such that their product 
added to either gives a square number. (Diophantus’ answer: (f)2, (m)2.) 
Problem 6, Book III: Find three numbers such that their sum is a square 
and the sum of any pair is a square. (Diophantus’ answer: 80, 320, 41.) 
Problem 7, Book III: Find three numbers in arithmetic progression such 
that the sum of any pair is a square. (Diophantus’ answer: 1204, 840i, 
15604.)
Problem 13, Book III: Find three numbers such that the product of any two 
added to the third is a square. [See Problem Study 6.16(d).]
Problem 15, Book III: Find three numbers such that the product of any two 
added to the sum of these two is a square. [See Problem Study 6.16(d).] 
Problem 10, Book IV: Find two numbers such that their sum is equal to the 
sum of their cubes. (Diophantus’ answer: f, f.)
Problem 21, Book IV: Find three numbers in geometric progression such 
that the difference of any two is a square number. (Diophantus’ answer:
144 256 \
7 , 7 - )

Problem 1, Book VI: Find a Pythagorean triangle in which the hypotenuse 
minus each of the legs is a cube. (Diophantus’ answer: 40, 96, 104). 
Problem 16, Book VI: Find a Pythagorean triangle in which the length of 
the bisector of one of the acute angles is rational. [See Problem Study 
6.15(c).]

Indeterminate algebraic problems in which one must find only the rational 
solutions have become known as Diophantine problems. In fact, modern usage 
of the terminology often implies the restriction of the solutions to integers. 
Diophantus did not originate problems of this sort, however. Also, he was not, 
as is sometimes stated, the first to work with indeterminate equations, or the 
first to solve quadratic equations nongeometrically. He may have been, how
ever, the first to take steps towards an algebraic notation. These steps were in 
the nature of stenographic abbreviations.

Diophantus had abbreviations for the unknown, powers of the unknown up 
through the sixth, subtraction, equality, and reciprocals. Our word “arith
metic” comes from the Greek word arithmetike, a compound of the words 
arithmos for “number” and techne for “ science.” It has been rather convinc
ingly pointed out by Heath that Diophantus’ symbol for the unknown was 
probably derived by merging the first two Greek letters, a and p, of the word 
arithmos. This came, in time, to look like the Greek final sigma 9. Although 
there is doubt about this, the meaning of the notation for powers of the un

3 The numbering of the problems is that assigned to them in T. L. Heath’s Diophantus o f  
Alexandria. 2d ed.
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known is quite clear; thus, “unknown squared” is denoted by AY, the first two 
letters of the Greek word dunamis (AYNAMI2) for “power.” Again, “un
known cubed” is denoted by KY, the first two letters of the Greek word kubos 
(KYB02) for “cube.” Explanations are easily furnished for the succeeding 
powers of the unknown, AYA (square-square), AKY (square-cube), and KYK 
(cube-cube). Diophantus’ symbol for “minus” looks like an inverted V with the 
angle bisector drawn in. This has been explained as a compound of A and I, 
letters in the Greek word leipis (AEI'PIS) for “lacking.” All negative terms in 
an expression are gathered together and preceded by the minus symbol. Addi
tion is indicated by juxtaposition, and the coefficient of any power of the 
unknown is represented by the alphabetic Greek numeral (see Section 1-6) 
following the power symbol. If there is a constant term, then $1, an abbreviation 
of the Greek word monades (MONAAE2), for “units,” is used, with the appro
priate number coefficient. Thus, jc3 + 13jc2 + 5x and jc3 -  5x2 + Sx -  1 would 
appear as

KYa h y  9e and KYa ^  A A Ye$la ,

which can be read literally as

unknown cubed 1, unknown squared 13, unknown 5

and

(unknown cubed 1, unknown 8) minus (unknown squared 5, units 1). 

It is thus that rhetorical algebra became syncopated algebra.

6-9  Pappus
The immediate successors to Euclid, Archimedes, and Apollonius prolonged 
the great Greek geometric tradition for a time, but then it began steadily to 
languish, and new developments were limited to astronomy, trigonometry, and 
algebra. Then, toward the end of the third century A.D., 500 years after Apollo
nius, there lived the enthusiastic and competent Pappus of Alexandria, who 
strove to rekindle fresh interest in the subject.

Pappus wrote commentaries on Euclid’s Elements and Data and on Ptole
my’s Almagest and Planispherium, but about all we know of these is through 
their influence on the writings of later commentators. Pappus’ really great work 
is his Mathematical Collection, a combined commentary and guidebook of the 
existing geometrical works of his time, with numerous original propositions, 
improvements, extensions, and historical comments. Of the eight books, the 
first and part of the second are lost.

Judging from what remains, Book II of the Mathematical Collection dealt
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with a method developed by Apollonius for writing and working with large 
numbers. Book III is in four sections, the first two dealing with the theory of 
means [see, for example, Problem Study 6.17(a)], with attention given to the 
problem of inserting two mean proportionals between two given line segments, 
the third with some inequalities in a triangle, and the fourth with the inscription 
of the five regular polyhedra in a given sphere.

In Book IV is found Pappus’ extension of the Pythagorean theorem [given 
in Problem Study 6.17(c)], the “ancient proposition” on the arbelos (stated at 
the end of Problem Study 6.4), the description, genesis, and some properties of 
the spiral of Archimedes, the conchoid of Nicomedes, and the quadratrix of 
Dinostratus, with applications to the three famous problems, and a discussion 
of a special spiral drawn on a sphere.

Book V is largely devoted to isoperimetry, or the comparison of the areas 
of figures having equal bounding perimeters, and of volumes of solids having 
equal bounding areas. This book also contains an interesting passage on bees 
and the maximum-minimum properties of the cells of their honey-combs. It is 
in this book that we find Pappus’ reference, mentioned in Section 6-2, to the 
thirteen semiregular polyhedra of Archimedes. Book VI is on astronomy and 
deals with the treatises that were to be studied as an introduction to Ptolemy’s 
Almagest.

Book VII is historically very important, for it gives an account of the 
works constituting The Treasury o f Analysis, a collection that, after Euclid’s 
Elements, purported to contain the material considered as essential equipment 
for the professional mathematician. The twelve treatises discussed are Euclid’s 
Data, Porisms, and Surface Loci; Apollonius’ Conic Sections and the six 
works considered toward the end of Section 6-4; Aristaeus’ Solid Loci, and 
Eratosthenes’ On Means. In this book, we find an anticipation of the centroid 
theorem of P. Guldin (see Problem Study 6.18). Also, a discussion is given of 
the famous “ loci with respect to three or four lines” : If p \, P2, Pi, Pa are the 
lengths o f line segments drawn from a point P to four given lines, making given 
angles with these lines, and if p xp2 = kpf,  or p xp 2 = kpyp*, where k is a 
constant, then the locus o f P is a conic section. This problem, solved by 
Apollonius, is historically important because in attempting to generalize it to n 
lines, Descartes was led in 1637 to formulate the method of coordinates; Pap
pus’ contemporaries had unsuccessfully tried to generalize the problem. The 
linear case of the so-called Stewart’s theorem, appearing in college geometry 
texts, is also found in this book—namely, if A, B, C, D are any four points on a 
linef then

(AD)2(B Q  + (BD)2(CA) + (CD )\AB ) + (BQ(CA)(AB) = 0,

where the segments involved are signed segments. Actually, Robert Simson 
anticipated Stewart in the discovery of the theorem for the more general case 
where D may be outside the line ABC. The anharmonic, or cross, ratio (AB,CD) 
of four collinear points A, B, C, D may be defined as (AC/CB)/(AD/DB), that
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is, as the ratio of the ratios into which C and D divide the segment AB. In Book 
VII of the Mathematical Collection, Pappus proves that if four concurrent rays 
(see Figure 49) are cut by two transversals, giving the corresponding ranges A, 
By Cy D and A ', B ', C , D ', then the two cross ratios (AB,CD) and (A'2?',C'D') 
are equal. In other words, the cross ratio of four collinear points is invariant 
under projection. This is a fundamental theorem of projective geometry. Book 
VII contains a solution of the problem: To inscribe in a given circle a triangle 
whose sides, produced if necessary, shall pass through three given collinear 
points. This has become known as the Castillon-Cramer problem because in the 
eighteenth century the problem was generalized by Cramer to the case where 
the three points need not be collinear, and a solution of this generalization was 
published by Castillon in 1776. Solutions were also given by Lagrange, Euler, 
Lhuilier, Fuss, and Lexell in 1780. A few years later, a gifted Italian lad of 
sixteen, named Giordano, generalized the problem to that of inscribing in a 
circle an n-gon whose sides shall pass through n given points, and he furnished 
an elegant solution. Poncelet extended the problem still further by replacing the 
circle with an arbitrary conic section. In Book VII also occurs the first recorded 
statement of the focus-directrix property of the three conic sections.

Book VIII, like Book VII, contains much that was probably original with 
Pappus. Here we find a solution of the problem of constructing a conic through 
five given points. An interesting proposition, probably due to Pappus and found 
in this book, is given in Problem Study 6.17(e).

Pappus’ Mathematical Collection is a veritable mine of rich geometric 
nuggets. Comparisons, where possible, have shown the historical comments 
contained in the work to be trustworthy. We owe much of our knowledge of 
Greek geometry to this great treatise, which cites from or refers to the works of 
over thirty different mathematicians of antiquity. It may be called the requiem, 
or the swan song, of Greek geometry.
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6-10 The Commentators
After Pappus, Greek mathematics ceased to be a living study, and we find 
merely its memory perpetuated by minor writers and commentators. Among 
these were Theon of Alexandria, his daughter Hypatia, Proclus, Simplicius, 
and Eutocius.

Theon lived in the turbulent closing period of the fourth century A.D. and 
was the author of a commentary, in eleven books, on Ptolemy’s Almagest. 
Also, it will be recalled, the modern editions of Euclid’s Elements are based 
upon Theon’s revision of the original work.

Theon’s daughter, Hypatia, was distinguished in mathematics, medicine, 
and philosophy, and wrote commentaries on Diophantus’ Arithmetica and 
Apollonius’ Conic Sections. She is the first woman mathematician to be men
tioned in the history of mathematics. Her life and barbarous murder by a mob 
of fanatical Christians in March, 415, are reconstructed in Charles Kingsley’s 
novel.4

Hypatia was taught by her father, who held an administrative post at the 
University of Alexandria. She traveled a number of years and then lectured on 
mathematics and philosophy, perhaps at the University or maybe in public in 
Alexandria. Her lectures attracted wide attendance and praise. Among her 
auditors was Synesius of Cyrene (later to become bishop of Ptolemais), who 
became one of her chief friends and admirers. Most of her writings are now 
lost, but a copy of her commentary on Diophantus was discovered in the 
Vatican library in the fifteenth century. She assisted her father in the latter’s 
revision of Euclid’s Elements. She never married, being, as she claimed, “wed
ded to truth.”

As a leader of the neo-Platonic school of philosophy, Hypatia played a 
prominent role in the defense of paganism against Christianity. This aroused 
the ire of a new patriarch, Cyril of Alexandria, who, with frenzied zeal, op
posed and oppressed all “heretics.” The fact that Hypatia was a student of 
several religions particularly roused Cyril’s wrath, and one day, as Hypatia was 
driving home, he had her dragged from her chariot, her hair pulled out, her flesh 
scraped from her bones with oyster shells, and the remnants of her body con
signed to flame. In this way, the creative days of the famed University of 
Alexandria came to an end.

Historians of mathematics are indebted to the neo-Platonic philosopher 
and mathematician Proclus for his Commentary on Euclid, Book /, one of our 
principal sources of information on the early history of elementary geometry. 
Proclus had access to historical and critical works (or commentaries on such 
works) now lost to us, chief of which were Eudemus’ History o f Geometry in 
four books and Geminus’ apparently comprehensive Theory o f the Mathemati
cal Sciences. Proclus’ commentary on Plato’s Republic also contains passages

4 Hypatia, or New Foes with an Old Face. New York: E. P. Dutton, 1907.
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of interest to the historian of mathematics. Proclus studied at Alexandria, 
became head of the Athenian school, and died in Athens in 485 when he was 
about seventy-five years old.

A debt is also owed to Simplicius, the commentator of Aristotle. He has 
given us accounts of Antiphon’s attempt to square the circle, of the lunes of 
Hippocrates, and of a system of concentric spheres invented by Eudoxus to 
explain the apparent motions of the members of the solar system. He also 
wrote a commentary on the first book of Euclid’s Elements, from which Ara
bian extracts were later made. Simplicius lived in the first half of the sixth 
century and studied at both Alexandria and Athens.

Probably contemporary with Simplicius was Eutocius, who wrote com
mentaries on Archimedes’ On the Sphere and Cylinder, Measurement o f a 
Circle, and On Plane Equilibriums, and on Apollonius’ Conic Sections.

The Athenian school struggled on against growing opposition from the 
Christians until the latter finally, in A.D. 529, obtained a decree from Emperor 
Justinian that closed the doors of the school forever. Simplicius and some of 
the other philosophers and scientists fled to Persia, where they were well 
received by King Khosrau I, establishing there what could be called the Athe
nian academy of Persia. The seeds of Greek science then flourished centuries 
later under Muslim patronage.5

The school at Alexandria fared little better at the hands of the Christians 
than did the Athenian school, although it was, at least, partly in existence when 
Alexandria fell to the Arabs in 641. The Arabs then put the torch to what the 
Christians had left. The long and glorious history of Greek mathematics came 
to an end.

Problem Studies

6.1 Measurements by Aristarchus and Eratosthenes

Aristarchus of Samos (ca. 287 B.C.) applied mathematics to astronomy. Since 
he put forward the heliocentric hypothesis of the solar system, he has become 
known as the Copernicus of antiquity.

(a) Using crude instruments, Aristarchus observed that the angular dis
tance between the moon, when at first quadrant, and the sun is f§ of a 
right angle. On the basis of this measurement, he showed (without 
benefit of trigonometry) that the distance from the earth to the sun is 
between 18 and 20 times the distance from the earth to the moon. 
Verify this, using the result of Aristarchus’ observation. (The angle 
concerned is actually about 89° 50'.)

5 See George Sarton, The History o f Science, vol. 1, p. 400.
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(b) Aristarchus, in his tract On Sizes and Distances o f the Sun and Moon, 
used the equivalent of the fact that

sin a a tan a
sin b b tan b ’

where 0 <  b <  a <  tt/2. From a knowledge of the graphs of the 
functions sin x and tan x, show that (sin x)/x decreases and (tan x)/x 
increases as x increases from 0 to 7t/2, and thus establish the above in
equalities. •

(c) Eratosthenes, in 240 B.C., made a famous measurement of the earth. 
He observed at Syene, at noon and at the summer solstice, that a 
vertical stick had no shadow, while at Alexandria (which he believed to 
be on the same meridian with Syene) the sun’s rays were inclined ^  of a 
complete circle to the vertical. He then calculated the circumference of 
the earth from the known distance of 5000 stades between Alexandria 
and Syene. Obtain Eratosthenes’ result of 250,000 stades for the cir
cumference of the earth. There is reason to suppose that an Eratosthen- 
ian stade was equal to about 559 feet. Assuming this, calculate from 
the above result the polar diameter of the earth in miles. (The actual 
polar diameter of the earth to the nearest mile is 7900 miles.)

6.2 On The Sphere and Cylinder

(a) Verify the following two results established by Archimedes in his work 
On the Sphere and Cylinder:
1. The volume of a sphere is § that of the circumscribed cylinder.
2. The area of a sphere is § of the total area of the circumscribed 

cylinder.
(b) Define spherical zone (of one and two bases), spherical segment (of 

one and two bases), and spherical sector.
(c) Assuming the theorem: The area o f a spherical zone is equal to the 

product o f the circumference o f a great circle and the altitude o f the 
zone, obtain the familiar formula for the area of a sphere, and establish 
the theorem: The area o f a spherical zone o f one base is equal to that of  
a circle whose radius is the chord o f the generating arc.

(d) Assuming that the volume of a spherical sector is given by one-third the 
product of the area of its base and the radius of the sphere, obtain the 
following results:

1. The volume of a spherical segment of one base, cut from a sphere of 
radius R, having h as altitude and a as the radius of its base, is given 
by

V = TT/*2 ( * - f ) =  *h
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2. The volume of a spherical segment of two bases, having h as altitude 
and a and b as the radii of its bases, is given by

T7 irh(3a2 + 3 b2 + h2)

3. The spherical segment of the second result is equivalent to the sum 
of a sphere of radius h/2 and two cylinders whose altitudes are each 
h!2 and whose radii are a and b, respectively.

(e) In Book II of On the Sphere and Cylinder, Archimedes considers the 
problem of cutting a given sphere by a plane so that the volumes of the 
two segments formed shall be in a given ratio. Show that, in modern 
notation, this leads to the cubic equation

n(R -  x)\2R  + jc) = m(R + x)2(2R -  jc) ,

where R is the radius of the sphere, x is the distance of the cutting plane 
from the center of the sphere, and m!n <  1 is the given ratio.

(f) Show how, with two parallel planes, to divide the surface area of a 
given sphere into three equal areas.

6.3 The Problem of the Crown

Proposition 7 of the first book of Archimedes’ work, On Floating Bodies, is the 
famous law of hydrostatics: A body immersed in a fluid is buoyed up by a force 
equal to the weight o f the displaced fluid.

(a) Let a crown of weight w pounds be made up of w\ pounds of gold and w2 
pounds of silver. Suppose that w pounds of pure gold loses f  pounds 
when weighed in water, that w pounds of pure silver loses f 2 pounds 
when weighed in water, and that the crown loses /  pounds when 
weighed in water. Show that

Hh = f i  f  
W2 f  ~ f\

(b) Suppose the crown of (a) displaces a volume of v cubic inches when 
immersed in water, and that lumps of pure gold and pure silver that are 
of the same weight as the crown displace, respectively, v\ and v2 cubic 
inches when immersed in water. Show that

W\ _  v 2 — v  

W2 V — V\ '

6.4 The Arbelos and the Salmon

The Liber assumptorum, or Book o f Lemmas, which has been preserved in an 
Arabic version, contains some elegant geometrical theorems credited to Archi
medes. Among them are some properties of the arbelos or “ shoemaker’s
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c

FIGURE 50

knife.” Let A, C, B be three points on a straight line, C lying between A and B . 
Semicircles are drawn on the same side of the line and having AC, CB, AB as 
diameters. The arbelos is the figure bounded by these three semicircles. At C, 
erect a perpendicular to AB to cut the largest semicircle in G. Let the common 
external tangent to the two smaller semicircles touch these curves at T and W. 
Denote AC, CB, AB by 2ru 2r2, 2r. Establish the following elementary proper
ties of the arbelos:

(a) GC and TW are equal and bisect each other.
(b) The area of the arbelos equals the area of the circle on GC as diameter.
(c) The lines GA and GB pass, respectively, through T and W.

The arbelos has many properties not so easily established. For 
example, it is alleged that Archimedes showed that the circles inscribed 
in the curvilinear triangles ACG and BCG are equal, the diameter of 
each being rxr2/r. The smallest circle that is tangent to and circum
scribes these two circles is equal to the circle on GC, and therefore 
equal in area to the arbelos. Consider, in the arbelos, a chain of circles 
Ci, c2, . . . , all tangent to the semicircles on AB and AC, where cx is 
also tangent to the semicircle on BC, c2 to ci, and so on. Then, if rn 
represents the radius of c„, and hn the distance of its center from ACB, 
we have hn = 2nrn. This last proposition is found in Book IV of Pappus’ 
Mathematical Collection and is there referred to as an “ancient propo
sition.”

(d) Proposition 14 of the Liber assumptorum concerns a figure called the 
salinon (“ salt cellar”), which is pictured in Figure 50, wherein semicir
cles are described on the segments AB, AD, DE, and EB as diameters, 
with AD = EB. The proposition asserts that the total area of the salinon 
(which is bounded entirely by semicircular arcs) is equal to the area of 
the circle having for diameter the line FOC of symmetry of the figure. 
Prove this.

6.5 The Theorem of the Broken Chord

The Arabian scholar Abu’l Raihan al-Biruni (973-1048) has attributed to Archi
medes the theorem of the broken chord, which asserts that if, as shown in 
Figure 51, AB and BC make up a broken chord in a circle, where BC >  AB, and
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if M  is the midpoint of arc ABC, the foot F of the perpendicular from M on BC 
is the midpoint of the broken chord ABC.

(a) Prove the theorem of the broken chord.
(b) Setting arc MC = 2x and arc BM = 2y, successively show that MC = 

2 sin jc, BM = 2 sin y, AB = 2 sin(x -  y ) ,  FC = 2 sin x cos y ,  FB = 
2 sin y cos jc. N ow show that the theorem of the broken chord yields the 
identity

sin(jc -  y) = sin jc cos y — sin y cos x.

(c) Using the theorem of the broken chord, obtain the identity

sin(jc + y) = sin jc cos y + sin y cos x.

6.6 The Focus-Directrix Property

(a) Although the Greeks defined the conic sections as sections of cones, it 
is customary in college courses in analytic geometry to define them by 
the focus-directrix property. Establish the following lemma (1) and 
then complete the simple proof in (2) that any section of a right circular 
cone possesses the focus-directrix property.
1. The lengths of any two line segments from a point to a plane are 

inversely proportional to the sines of the angles that the line seg
ments make with the plane.

2. Denote the plane of the section of the right circular cone by p. Let a 
sphere touch the cone along a circle whose plane we shall call q , and 
also touch plane p  at point F (see Figure 52). Let planes p  and q 
intersect in line d. From P, any point on the conic section, drop a 
perpendicular PR on line d. Let the element of the cone through P 
cut plane q in point E . Finally, let a be the angle between planes p 
and q, and /3 the angle an element of the cone makes with plane q. 
Show that PFIPR = PEI PR = (sin a)/(sin fS) = e, a constant. Thus, 
F is a focus, d the corresponding directrix, and e the eccentricity of 
the conic section. [This simple and elegant approach was discovered
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around the first quarter-mark of the nineteenth century by the two 
Belgian mathematicians Adolphe Quetelet (1796-1874) and Germi
nal Dandelin (1794-1847).]

(b) Show that if p cuts every element of one nappe of the cone, then e <  1; 
if p  is parallel to 1 and only 1 element of the cone, then e = 1; if p cuts 
both nappes of the cone, then e >  1.

6.7 Tangencies

In his lost treatise on Tangencies, Apollonius considered the problem of draw
ing a circle tangent to three given circles A, B, C, where each of A, B, C may 
independently assume either of the degenerate forms of point or straight line. 
This problem has become known as the problem of Apollonius.

(a) Show that there are 10 cases of the problem of Apollonius, depending 
on whether each of A, B, C is a point, a line, or a circle. What is the 
number of solutions for each general case?

(b) Solve the problem where A, B, C are 2 points and a line.
(c) Reduce the problem where A, B y C are 2 lines and a point to the case of

(b).
(d) The focus and directrix of a parabola p, and a line m are given. With 

Euclidean tools, find the points of intersection of p and m.

6.8 Problems from Apollonius

(a) Solve the following easy verging problem considered by Apollonius in 
his work Vergings: In a given circle, insert a chord of given length and 
verging to a given point.
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A more difficult verging problem considered by Apollonius is the 
following: Given a rhombus with one side produced, insert a line seg
ment of given length in the exterior angle so that it verges to the oppo
site vertex. Several solutions to this problem were furnished by Huy
gens (1629-1695).

(b) Establish, by analytic geometry, the two problems (1) and (2) stated in 
Section 6-4 in connection with Apollonius’ work Plane Loci.

(c) Establish synthetically the first problem in (b) and also the following 
special case of the second problem in (b): The locus of a point, the sum 
of the squares of whose distances from 2 fixed points is constant, is a 
circle whose center is the midpoint of the segment joining the 2 points.

6.9 Ptolemy’s Table of Chords

(a) Prove Ptolemy’s theorem: In a cyclic quadrilateral, the product o f the 
diagonals is equal to the sum o f the products o f the pairs o f opposite 
sides.

(b) Derive, from Ptolemy’s theorem, the following relations:
1. If a and b are the chords of 2 arcs of a circle of unit radius, then

* = ^ (4 -  b2)'12 + ^ (4 -  a2)112

is the chord of the sum of the 2 arcs.
2. If a and b y a ^  b, are the chords of 2 arcs of a circle of unit radius, 

then

d = |  (4 -  b2r 2 -  \  (4 -  a2)V2

is the chord of the difference of the 2 arcs.
3. If t is the chord of an arc of a circle of unit radius, then

 ̂ = {2 -  (4 -  t2)m}m

is the chord of half the arc.
In a circle of unit radius crd 60° = 1, and one may show that crd 

36° = larger segment of the radius when divided in golden section [see 
Problem Study 3.10(d)] = 0.6180. By (2), crd 24° = crd (60° -  36°) 
= 0.4158. By (3), we may calculate the chords of 12°, 6°, 3°, 90', 
45', obtaining crd 90' = 0.0262 and crd 45' = 0.0131. By Problem Study 
6.1(b), crd 60'/crd 45' <  60/45 = 4/3, or crd 1° <  (4/3)(0.0131) = 0.0175. 
Also, crd 90'/crd 60' <  90/60 = 3/2, or crd 1° >  (2/3)(0.0262) = 0.0175. 
Therefore, crd 1° = 0.0175. By (3), we may find crd (1/2)°. Now one can 
construct a table of chords for (1/2)° intervals. This is the gist of Ptole
my’s method of constructing his table of chords.

(c) Show that the relations of (1), (2), and (3) of (b) are equivalent to the 
trigonometrical formulas for sin (a + (3), sin (a -  /3), and sin {612).
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(d) Establish the following interesting results as consequences of Ptole
my’s theorem: If P lies on the arc AB of the circumcircle of
1. an equilateral triangle ABC, then PC = PA + PB,
2. a square ABCD, then (PA + PC)PC = (PB + PD)PD,
3. a regular pentagon ABCDE, then PC + PE = PA + PB + PD,
4. a regular hexagon ABCDEF, then PD + PE = PA + PB + PC + PF.

6.10 Stereographic Projection

In his Planisphaerium, Ptolemy developed stereographic projection as a map
ping by which the points on a sphere are represented on the plane of its equator 
by projection from the South Pole. Under this mapping (see Figure 53), into 
what do

(a) the circles of latitude go?
(b) the meridian circles?
(c) small circles, on the sphere, passing through the South Pole?
It can be shown that any circle on the sphere, not through the South Pole, 

maps into a circle on the plane. Very important is the property that stereo
graphic projection is a conformal mapping—that is, a mapping that preserves 
angles between curves. Why is this property important in mapping a small part 
of the earth’s surface onto a plane? (An interesting development of spherical 
trigonometry from plane trigonometry by stereographic projection is given in 
J. D. H. Donnay, Spherical Trigonometry after the Cesaro Method. New York: 
Interscience, 1945.)

N

FIGURE 53

6.11 Problems from Heron

(a) A regular heptagon (7-sided polygon) cannot be constructed with Eu
clidean tools. In his work Metrica, Heron takes, for an approximate 
construction, the side of the heptagon equal to the apothem of a regular 
hexagon having the same circumcircle. How good an approximation is 
this?



(b) In Catoptrica, Heron proves, on the assumption that light travels by 
the shortest path, that the angles of incidence and reflection in a mirror 
are equal. Prove this.

(c) A man wishes to go from his house to the bank of a straight river for a 
pail of water, which he will then carry to his barn, on the same side of 
the river as his house. Find the point on the riverbank that will mini
mize the distance the man must travel.

(d) Complete the details of the following indication of Heron’s derivation 
of the formula for the area A of a triangle ABC in terms of its sides
а , b , c.
1. Let the incircle, with center I and radius r, touch the sides BC , CA, 

AB in D, F, F, as in Figure 54. On BC produced, take G such that 
CG = AE. Draw IH  perpendicular to B l to cut BC in J and to meet 
the perpendicular to BC at C in H.

2. If s = {a + b + c)/2, then A = rs = (BG)(ID).
3. B, /, C, H  are concyclic, whence CHB is the supplement of BIC

and hence equal to El A.
4. BCICG = BCIAE = CHIIE = CHlID = CJIJD.
5. BG/CG = CDIJD.
б. (BG)2I(CG){BG) = (CD)(BD)/(JD)(BD) = (CD)(BD)/(ID)2.
7. A = (BG)(ID) = {(BG)(CG)(BD)(CD)}112

= {sfs1 -  a)(s -  b)(s -  c)}m .
(e) Derive the formula of (d) by the following process: Let h be the altitude 

on side c, and let m be the projection of side b on side c. (1) Show that 
m = {b2 + c2 -  a2)llc . (2) Substitute this value for m in h = 
(b2 — m2)m . (3) Substitute this value for h in A = (ch)/2.

(f) Approximate successively, by Heron’s method, V3 and V720.
(g) A prismatoid is a polyhedron all of whose vertices lie in two parallel 

planes. The two faces in these parallel planes are called the bases of the 
prismatoid, the perpendicular distance between the two planes is called
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FIGURE 54
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h

FIGURE 55

the altitude of the prismatoid, and the section parallel to the bases and 
midway between them is called the midsection of the prismatoid. Let us 
denote the volume of the prismatoid by V, the areas of the upper base, 
lower base, and midsection by U, L, M, and the altitude by h, as 
indicated in Figure 55. In books on solid geometry, it is shown that

In Book II of the Metrica, Heron gives, as the volume of a prismatoid 
having similarly oriented rectangular bases with corresponding pairs of 
dimensions a , b and c, d ,

Show that this result is equivalent to that given by the prismatoid 
formula above.

(h) Show that the “greatest Egyptian pyramid” [see Problem Study 
2.13(a)] is a special case of the prismatoid formula of (g).

6.12 Simultaneous Equations

(a) Thymaridas, a lesser mathematician of the fourth century B.C., gave 
the following rule for solving a certain set of n simultaneous linear 
equations connecting n unknowns. The rule became so well known that 
it went by the title of the bloom of Thymaridas: If the sum ofn quanti
ties be given, and also the sum of every pair which contains a particu
lar one o f them, then this particular quantity is equal to l/(n — 2) of the 
difference between the sums of these pairs and the first given sum . 
Prove this rule.

h(U + L + AM)

V =
(a + c)(b + d) (a -  c)(b -  d )  

4 + 12
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(b) In some problems given in the Heronian collections appear the for
mulas

(r + s) ± {(r + s)2 -  8rsj1/2 a, b = ------------------------------------ ,

for the legs a and b of a right triangle of perimeter 2s and inradius r. 
Obtain these formulas.

6.13 Problems from the “Greek Anthology”

(a) How many apples are needed if 4 persons out of 6 receive J, J, i, and J, 
respectively, of the total number, while the fifth receives 10 apples, and 
1 apple remains for the sixth person?

(b) Demochares has lived a fourth of his life as a boy, a fifth as a youth, a 
third as a man, and has spent 13 years in his dotage. How old is he?

(c) After staining the holy chaplet of fair-eyed Justice that I might see thee, 
all-subduing gold, grow so much, I have nothing, for I gave forty tal
ents under evil auspices to my friends in vain, while, O ye varied 
mischances of men, I see my enemies in possession of the half, the 
third, and the eighth of my fortune. (How many talents did the unfortu
nate man once possess?)

(d) The 3 Graces were carrying baskets of apples, and in each was the 
same number. The 9 Muses met them and asked each for apples and 
they gave the same number to each Muse and the 9 and the 3 each had 
the same number. Tell me how many they gave and how they all had 
the same number. (This problem is indeterminate. Find the smallest 
permissible solution.)

6.14 Type Problems from the “Greek Anthology”

Certain standard types of problems that are found in present-day elementary 
algebra texts date back to ancient times. Consider, for example, the following 
“work” problem, “cistern” problem, and “mixture” problem found in the 
Greek Anthology.

(a) Brickmaker, I am in a hurry to erect this house. Today is cloudless, and 
I do not require many more bricks, for I have all I want but 300. Thou 
alone in 1 day couldst make as many, but thy son left off working when 
he had finished 200, and thy son-in-law when he had made 250. Work
ing all together, in how many days can you make these?

(b) I am a brazen lion; my spouts are my 2 eyes, my mouth, and the flat of 
my right foot. My right eye fills ajar in 2 days (1 day = 12 hours), my 
left eye in 3, and my foot in 4. My mouth is capable of filling it in 6 
hours. Tell me how long all 4 together will take to fill it.

(c) Make a crown of gold, copper, tin, and iron weighing 60 minae: gold 
and copper shall be § of it; gold and tin I of it; and gold and iron f of it; 
find the weights of gold, copper, tin, and iron required. [This is a 
numerical illustration of the bloom of Thymaridas. See Problem Study 
6.12(a).]
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6.15 Diophantus

(a) About all we know of Diophantus’ personal life is contained in the 
following summary of an epitaph given in the Greek Anthology: 
“Diophantus passed i  of his life in childhood, T2 in youth, and y more as 
a bachelor. Five years after his marriage was born a son who died 4 
years before his father, at \  his father’s [final] age.” How old was 
Diophantus when he died?

(b) Solve the following problem, which appears in Diophantus’ 
Arithmetica (Problem 17, Book I): Find 4 numbers, the sum of every 
arrangement 3 at a time being given; say, 22, 24, 27, and 20.

(c) Solve the following problem, also found in the Arithmetica (Problem 
16, Book VI): In the right triangle ABC, right angled at C, AD bisects 
angle A. Find the set of smallest integers for AB, AD, AC, BD , DC such 
that DC:CA:AD = 3:4:5.

(d) Augustus De Morgan, who lived in the nineteenth century, proposed 
the conundrum: “ I was jc years old in the year x 2 . ”  When was he born?

6.16 Some Number Theory in the “Arithmetica”

(a) Establish the identities

((a2 -f b2)(c2 + d 2) = (ac ± bd )2 + (ad + be)2

and use them to express 481 = (13)(37) as the sum of 2 squares in 2 
different ways.

These identities were given later, in 1202, by Fibonacci in his Liber 
abaci. They show that the product of 2 numbers, each expressible as 
the sum of 2 squares, is also expressible as the sum of 2 squares. It can 
be shown that these identities include the addition formulas for the sine 
and cosine. The identities later became the germ of the Gaussian theory 
of arithmetical quadratic forms and of certain developments in modern 
algebra.

(b) Express 1105 = (5)(13)(17) as the sum of 2 squares in 4 different ways.
In the following 2 problems, “number” means “positive rational 

number.”
(c) If m and n are numbers differing by 1, and if jc, y, a are numbers such 

that x + a = m2, y  + a = n2, show that xy + a is a square number.
(d) If m is any number and jc = m2, y = (m + l)2, z = 2(x + y + 1), show 

that the 6 numbers jcy + jc + y, yz + y + z, zx + z + jc, xy + z, yz + x, 
zjc + y are all square numbers.

6.17 Problems from Pappus

(a) In Book III of Pappus’ Mathematical Collection, we find the following 
interesting geometrical representation of some means. Take B on seg
ment AC, B not being the midpoint O of AC. Erect the perpendicular to 
AC at B to cut the semicircle on AC in D, and let F be the foot of the 
perpendicular from B on OD. Show that CD, BD, FD represent the
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arithmetic mean, the geometric mean, and the harmonic mean of the 
segments AB and BC , and show that, if AB + BC ,

arithmetic mean >  geometric mean >  harmonic mean.

(b) In Book III of Mathematical Collection, Pappus gives the following 
neat construction for the harmonic mean of the 2 given segments OA 
and OB in Figure 56. On the perpendicular to OB at B , mark off BD = 
BE, and let the perpendicular to OB at A cut OD in F. Draw FE to cut 
OB in C. Then OC is the sought harmonic mean. Prove this.

(c) Prove the following extension of the Pythagorean theorem given by 
Pappus in Book IV of Mathematical Collection. Let ABC (see Figure 
57) be any triangle, and ABDE, ACFG any parallelograms described 
externally on AB and AC. Let DE and FG meet in H and draw BL and 
CM equal and parallel to HA. Then

/ Z J  BCML = /  7  ABDE + /  7  ACFG.

H

FIGURE 57
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(d) Generalize the theorem of (c) to 3-dimensional space, replacing the 
triangle by a tetrahedron, and the parallelograms on the sides of the 
triangle by triangular prisms on the faces of the tetrahedron.

(e) In Book VIII of Mathematical Collection, Pappus establishes the fol
lowing theorem: If D, E, F are points on the sides BC, CA, AB of  
triangle ABC, such that BDIDC = CEIEA = AF/FB, then triangles 
DEF and ABC have a common centroid. Prove this either synthetically 
or analytically.

6.18 The Centroid Theorems

In Book VII of Mathematical Collection, Pappus anticipated one of the cen
troid theorems sometimes credited to P. Guldin (1577-1642). These theorems 
may be stated as follows:

1. If a planar arc be revolved about an axis in its plane, but not cutting the 
arc, the area o f the surface o f revolution so formed is equal to the 
product o f the length o f the arc and the length o f the path traced by the 
centroid o f the arc.

2. If a planar region be revolved about an axis in its plane, but not inter
secting the region, the volume of the solid o f revolution so formed is 
equal to the product o f the area o f the region and the length o f the path 
traced by the centroid o f the region.

Using these theorems, find:
(a) The volume and surface area of the torus formed by revolving a circle 

of radius r about an axis, in the plane of the circle, at distance R >  r 
from the center of the circle.

(b) The centroid of a semicircular arc.
(c) The centroid of a semicircular area.
(It was the second of the above theorems that was anticipated by Pappus, 

making this the most general theorem involving the calculus to be found in 
antiquity.)

6.19 The Trammel Construction of an Ellipse

The following theorem has been ascribed to Proclus: If  a line segment o f fixed 
length moves with its endpoints on 2 intersecting lines, then a fixed point on the 
segment, or on the segment produced, will describe an ellipse.

(a) Choose a pair of rectangular axes Ox and Oy as the 2 lines in Proclus’ 
theorem, and let AB be the segment of fixed length. Choose P on AB 
(produced if necessary) and denote AP by a and BP by b. Show that, as 
A moves on the y-axis and B moves on the jc-axis, P describes the 
ellipse

= 1 .

(b) Design a simple mechanism (an ellipsograph) based on the result of (a) 
for describing an ellipse with given semiaxes a and b.
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6.20 The Theorem of Menelaus

A point lying on a side line of a triangle, but not coinciding with a vertex of the 
triangle, is called a menelaus point of the triangle for this side. Prove the 
following chain of theorems, wherein all segments and angles are directed (or 
sensed) segments and angles:

(a) Menelaus’ theorem: A necessary and sufficient condition for 3 mene
laus points D, E, F  for the sides BC, CA, AB of a triangle ABC to be 
collinear is that

(b) If vertex O of a triangle BOC is joined to a point D (other than B or C) 
on line BC, then

BD _  OB sin BOD 
DC ~ OC sin DOC'

(c) Let D, E, F  be menelaus points for the sides BC, CA, AB of a triangle 
ABC, and let O be a point in space not in the plane of triangle ABC. 
Then the points D, E, F  are collinear if and only if

/ sin BOD\ / sin COE\ / sin AOF\ _
\sin DOC/ Vsin EOAI \sin FOB/ ~ ~ 1'

(d) Let D ', E', F' be 3 menelaus points for the sides B'C', C'A', A'B' of a 
spherical triangle A'B'C'. Then D ', E ', F' lie on a great circle of the 
sphere if and only if

/ sin B'D' \ / sin C'E'\  / sin A7F '\  =
'sin DtC '' Vsin E'A'I vSin F~B’>

(This is the spherical case of the Menelaus theorem that was used by 
Menelaus in his Sphaerica.)

6.21 More on Means

If a and b are 2 real numbers, the following means of a and b have been found 
useful:

1. arithmetic: w = 1
2. geometric: w = Va/b
3. harmonic: w = alb
4. heronian: w = - ( V ab  + b -  2a)l(Vab + a -  2b)
5. contraharmonic: w = bla
6. root-mean-square: w = - ( V a 2 + b2 -  a V 2)/(V a 2 + b2 -  bV 2)
7. centroidal: w = - ( a2 + ab -  2b2)I{b2 + ab -  2a2)
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(a) If a + b, show that

c > r > g > A > h > G > H .

(b) If a2, b2, c2 are in arithmetic progression, then b + c, c + a, a + b are 
in harmonic progression.

(c) If a , b , c are in harmonic progression, so also are al(b + c), bl(c + a), 
cl {a + b).

(d) If between a and b there are inserted 2 arithmetic means A\ and A2, 2 
geometric means G\ and G2, and 2 harmonic means H\ and H2, then 
GiG2:tfitf2 = Ai + A2:7/ i + H2.

(e) Let 0 and b, a >  b, denote the lengths of the lower base and the upper 
base of a trapezoid. Then any line segment parallel to the bases and 
intercepted by the sides of the trapezoid is some mean of the bases a 
and b. Show that:
1. The arithmetic mean bisects the sides of the trapezoid.
2. The geometric mean divides the trapezoid into 2 similar trapezoids.
3. The harmonic mean passes through the intersection of the diago

nals.
4. The heronian mean is h the way from the arithmetic mean to the 

geometric mean.
5. The contraharmonic mean is as far below the arithmetic mean as 

the harmonic mean is above the arithmetic mean.
6. The root-mean-square bisects the area of the trapezoid.
7. The centroidal mean passes through the centroid of area of the 

trapezoid.
(f) Draw a trapezoid with bases a and b and construct the segments of (e). 

Now geometrically verify the inequalities of (a).
(g) The number (a + wb)/( 1 + w), w >  0, is called the weighted mean, for 

weight w, of a and b. Show that the following means of a and b have 
the indicated weights:
1. arithmetic: w = 1
2. geometric: w = \fa fb
3. harmonic: w = alb
4. heronian: w = — (‘\fab  + b -  2a)l(\fab + a -  2b)
5. contraharmonic: w = bla
6. root-mean-square: w = - ( V 02 + b2 -  « V 2 )/(V « 2 + b2 — b 'S l)
7. centroidal: w = - ( a 2 + ab -  2b2)I{b2 + ab -  2a2)

(h) Let PT  and PS be tangents drawn to a given circle from an external 
point P, and let TS cut the diametral secant PBA in C. Show that PC  is 
the harmonic mean of PA and PB .

(i) Let CD and CE be the internal and the external bisector of angle C of a 
triangle ABC. Show that AB is the harmonic mean of AD and AE .

(j) Let s be the side of a square inscribed in a triangle and having one side 
lying along the base of the triangle. Show that s is half the harmonic 
mean of the base of the triangle and the altitude of the triangle on the 
base.
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(k) Let 5 be the side of a square inscribed within a right triangle and having 
1 angle coinciding with the right angle of the triangle. Show that 5 is 
half the harmonic mean of the legs of the triangle.

(l) Let ABC be a triangle having an angle of 120° at B , and let BT be the 
bisector of angle B . Show that BT is half the harmonic mean of BA and 
BC.

(m) Let s, a, b be chords of 7, f, and ? of the circumference of a circle. 
Show that s is half the harmonic mean of a and b.

(n) A car travels at the rate of rx miles per hour from A to B , and then 
returns at the rate of r2 miles per hour from B to A. Show that the 
average rate for the round trip is the harmonic mean of rx and r2.

(o) A common precautionary procedure used with an equal-arm balance, 
when it is suspected that the arms are not quite equal, is known as 
double weighing. Here the unknown is first placed in the left-hand pan 
and balanced by a weight wj, then the unknown is placed in the right- 
hand pan and balanced by a weight w2. Show that the weight of the 
unknown is the geometric mean of wj and w2.

(p) Show that the centroidal mean of a and b is equal to the heronian mean 
of a2 and b2 divided by the arithmetic mean of a and b.

(q) Show that g = (H + 2c)/3 = (2A + c)/3.

Essay Topics

6/1 Why is Archimedes considered the greatest mathematician of antiq
uity?

6/2 The Archimedean solids, with construction patterns.
6/3 The case for Archimedes as the inventor of the integral calculus.
6/4 The case for Menaechmus and Apollonius as inventors of analytic ge

ometry.
6/5 The works of Eratosthenes.
6/6 The mathematical contributions of the Greek astronomers.
6/7 Heron’s influence on the development of applied mathematics.
6/8 The first woman mathematician.
6/9 The Alexandrian school of mathematics.
6/10 Means.
6/11 Mathematics in the Roman civilization.
6/12 The “Greek Anthology.”
6/13 Maps of the world according to Hecataeus, Eratosthenes, and Ptolemy.
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Cultural Connection

THE ASIAN EMPIRES
China Before A .D . 1260;
India Before A .D . 1206;
The Rise o f Islam— A .D . 622 to 1258 
(to accompany Chapter Seven)

In  Cultural Connections III and IV, we examined the early growth and devel
opment of cultural, social, political, and economic life in the Mediterranean Sea 
basin. At the same time that the Greeks and Romans were forging many of the 
basic institutions of western society, eastern civilizations were being born as 
well: in China on the high plains surrounding the Yellow River valley, and in 
India in the shade of banyan trees below the towering peaks of the Himalayas. 
In the seventh century A.D., with the rise of Islam, the Arabs diverged from 
the rest of the western world and charted their own cultural path. It is to these 
three civilizations—China, India, and Arabia—that we now turn.

China
Chinese history may be divided into four general periods: Ancient China (ca. 
2000-600 B.C.), Classical China (ca. 600 B.C.-A.D. 221), Imperial China 
(A.D. 221-1911), and Modern China (A.D. 1911 to the present). According to 
legend, in ancient times the dusty plains of northern China through which the 
Yellow River ran (a region the Chinese called the Middle Kingdom because 
they believed it to be located in the center of the world) were united under the 
semimythical Hsia (before 1500 B.C.), Shang (1500-1027 B.C.), and Chou 
(1027-256 B.C.) Dynasties. Whether or not these early dynasties ever really 
succeeded in establishing strong, centralized governments is unclear, but by 
600 B.C., when China’s Classical Age began, the authority of the Chou mon- 
archs was only nominal, and real power lay in the hands of numerous petty 
lords who ruled small city-states and who engaged one another in countless 
wars, taxed their subjects mercilessly, and were generally unconcerned with 
the plight of the poor.

In response to the social chaos of early Classical China, the philosopher 
Confucius (551-479 B.C.) advocated a political and social restructuring. Confu
cius taught a combination of the golden rule, respect for authority, concern for 
the poor, humility, and the need for ethical governments. Although a few of his 
disciples rose to positions of authority, Confucius himself was largely ignored 
during his lifetime and was unable to convince the aristocracy to mend its
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ways. At about the same time, another Chinese philosopher, Lao-Tzu, is sup
posed to have devised Taoism, although in fact Lao-Tzu may never have ex
isted. Taoism more probably was the invention of Chuang Tzu (399-295 B.C.) 
and other philosophers. Taoism declared that there is a natural order or har
mony to the universe and urged simplicity, peace, and benevolent government. 
Later, the concept of yin-yang was associated with Taoism. This concept held 
that in all things there is a dialectical struggle between opposites and that a 
resolution can be achieved only through accommodating these opposites. Both 
Taoism and Confucianism were, in many respects, reactions against the mis
rule of the petty princes and the misery of their subjects.

In 221 B.C., the city-state of Chin, under the rule of a capable general and 
statesman the Chinese called simply Chin Shih-huang-ti (literally, “ the first 
emperor of the Chin Dynasty”), united the warring city-states into a monolithic 
empire. Fifteen years later, the Chin Dynasty was supplanted by the Han 
Dynasty, which created an empire that would endure, with one minor interrup
tion, until A.D. 221, when China’s Classical Age ended. The Hans greatly 
expanded China, pushing south into the hilly rain forests of southern China and 
northern Vietnam, west into the deserts of central Asia, and northeast into 
Manchuria and Korea. The Han emperors were impressed by the ideas of 
Confucius about statecraft: three centuries after the sage’s death, his philoso
phies attained the status of a state religion, somewhat akin to Christianity’s 
eventual acceptance by the Roman emperors in the west a few hundred years 
later. In approximately A.D. 60, another philosophy, Buddhism, arrived in 
China over the Himalaya Mountains from India. To the Chinese, Buddhism 
resembled Taoism, and the two philosophies tended to merge. Buddhism re
mained a minority sect in China until approximately A.D. 800, when it acquired 
widespread appeal among the peasants. Confucianism retained its popularity 
with the upper classes. We will explore Buddhist philosophy when we look at 
Indian history and culture.

The Han Empire dissolved in A.D. 221, and for over 350 years China was 
again divided into warring factions, until A.D. 618, when Emperor Li Yuan 
united all China under the Tang Dynasty. The Tang emperors, like the emper
ors of the Sung and Yuan Dynasties that followed them, were patrons of art and 
literature, and their reigns mark China’s imperial period, or Golden Age. Under 
these three dynasties, China attained its greatest size and influence, and trade 
was opened between east and west.

It is interesting to compare the Chinese Empire with Rome. Both were 
powerful, large, and long lived; however, Chinese unity persisted far longer 
than that of the Romans. The Roman Empire lasted for only about 500 years (31 
B.C.-A.D. 476); the Chinese Empire, excluding the 397-year interlude between 
the Han and Tang Dynasties, remained in existence for more than 1500 years, 
until the Chinese Revolution in A.D. 1911. The Roman emperors were largely a 
collection of military dictators, often illiterate, whose short reigns usually 
ended in a bloody coup; the Chinese kings were more characteristically abso
lute monarchs with long reigns. The Romans eschewed scholarship; Chinese 
emperors, such as Li Yuan and Kublai Khan (A.D. 1216-1294), provided gov
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ernment support for the arts. Classical and Imperial China produced a rich 
culture and a solid intellectual base. Nevertheless, Chinese scholars were often 
more interested in philosophy, art, and literature than in science; consequently, 
Chinese mathematics and science lagged behind other disciplines.

European contact with China was very limited until after A.D. 1260, when 
three Italian merchants—Mateo, Niccolo, and Marco Polo—visited the fabu
lous court of the Yuan emperor Kublai Khan. Communication became more 
regular, and by 1600, European traders and Christian missionaries visited 
China regularly. At this point, the history of Chinese science and mathematics 
merged with that of Europe. We will return to China briefly in Cultural Connec
tion X: The Atom and the Spinning Wheel.

India

Politically, India was China’s opposite. The original Chinese, farmers of the 
Yellow River valley, went on to create great empires that dominated most of 
eastern Asia. The original Indians were wiped out by nomadic invaders in 
approximately 1500 B.C. For most of its history, China was united into a single 
empire. India was rarely united, but was instead divided into numerous small 
principalities. The Chinese were usually able to turn aside invaders. India was 
beset by conquering armies numerous times, as Aryans, Persians, Greeks, 
Arabs, and Englishmen marched through its forests and over its plains. When 
China did finally fall to its foes (the Mongols), the invaders were quickly assimi
lated into Chinese society. (Small wonder that the Chinese symbol for 
“ strength” is the same as that for “water”—it takes the shape of its container 
but always eventually wears it away.) India’s most successful invaders—the 
Aryans, Arabs, Turks, and British—established themselves as ruling aristocra
cies that remained apart from other peoples of India. Although China usually 
knew internal peace, wars were constant in India. Nevertheless, despite such a 
seemingly hostile environment for scholarship, Indians developed a full, rich 
culture that persevered for centuries.

Between 3000 and 1500 B.C., a city-dwelling, agricultural people lived in 
India in the valley of the Indus River on the edge of the Thar Desert. What 
happened to these people is a mystery. The only evidence we have that they 
ever existed are the archeological remains of some of their cities, the largest of 
which have been unearthed at Mohenjo Daro and at Harappa. They may have 
perished on their own, unable to sustain their urban cultures in a hostile envi
ronment. More probably they were destroyed by the Aryans, a nomadic, cattle- 
herding people who moved into India from central Asia about 1500 B.C.

By 500 B.C., the Aryans were firmly established in India, even though 
other peoples, such as the Tamils of southern India, lived there as well. There 
was little political unity among the Aryans, and they were split into a number of 
small, quarrelling kingdoms. Between 1500 and 500 B.C., the Aryans evolved 
Hinduism, a combination of religion, philosophy, and social structure that 
formed the cornerstone of their civilization. A complex set of beliefs and laws,
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Hinduism was largely based on three principal ideas: the worship of a large 
pantheon of gods behind whom lies a single unity, the idea of transmigration 
(that is, that a person’s soul is eternal and will be born again in different forms), 
and the caste system that rigidly divided Indian society into four distinct social 
classes—the Brahmana (priest class), Kshatriya (warrior class), Vaisya (mer
chant and artisan class), and Sudra (peasant class).

Hinduism grew increasingly formalistic, and by 500 B.C. various reform 
movements emerged, the most famous of which, Buddhism, was proposed by 
the wandering ascetic Gautama Buddha (563-483 B.C.). In a sermon delivered 
in the city of Banaras, Buddha condemned both excessive self-indulgence and 
excessive self-mortification, each of which he believed led inevitably to pain 
and suffering. Instead, Buddha advocated a “ middle path” of moderation, 
knowledge, and tranquility. Such a path, Buddha told his audience, led to 
nirvana, which broke the endless series of reincarnations that doomed the soul 
to everlasting pain. Buddhism stressed the basic unity of the universe, an idea 
not dissimilar to Chinese Taoism; like Taoism and Confucianism, it may have 
been, in part, a response to the chaos and turmoil of the time. Buddhism 
flourished in India for about a thousand years, especially among the poor, until 
approximately A.D. 500, when it began to decline. By that time, however, 
Buddhism had spread to China, Japan, and southeast Asia, where it took firm 
root. Hinduism remains today the most prevalent religion in India.

In 320 B.C., Chandragupta Maurya (reigned ca. 320-ca. 296 B.C.), king of 
a small state in northern India, established suzerainity over his fellow princes 
and founded the Mauryan Empire, which, under his grandson Asoka (272-232 
B.C.), included most of India. By approximately 185 B.C., however, the Mau
ryan Empire had disintegrated, and India was again divided into several war
ring kingdoms, although one, the Andhra Empire, did control much of south- 
central India between approximately 180 B.C. and A.D. 200. Despite the lack 
of political unity, the period after the fall of the Mauryan Empire boasted a rich 
cultural life and a flowering of Indian literature, art, science, and philosophy. In 
A.D. 320, much of India was again united, under Chandragupta I (reigned A.D. 
320-340?) and the Gupta Empire. This new empire endured until A.D. 470, a 
period that is considered India’s classical age and that featured a renaissance of 
Sanskrit literature, art, and medicine.

For centuries, numerous invaders had forced their way into India from the 
west, through passes in the Hindu Kush Mountains. In repeated waves came 
the Aryans, Persians, Hellenistic Greeks, Sakas, Parthians, Kushans, Ephtha- 
lites, and Arabs. The latter introduced Islam to India in the eighth century A.D. 
and conquered parts of western India in the eighth, ninth, and tenth centuries. 
In 1206, the Arab general Kutb ud-Din-Aibak founded the Moslem Sultanate of 
Delhi in northern India, which remained the preeminent Indian kingdom until 
1526, when the Turkish adventurer Babur (1483-1530), also a Moslem, forged 
the larger Mogul Empire. Under both the Sultans of Delhi and the Mogul 
emperors, India was a nation of Hindus ruled by an upper class of Moslems 
(although Islam did become the principal religion in those parts of India that 
now comprise the nations of Pakistan and Bangladesh). After 1206, Indian 
science and mathematics merged into those of Arabia.
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The Rise of Islam

Before A.D. 622, when Mohammed made his famous Hegira from Mecca to 
Medina, Arabia was a disunited country peopled by nomadic herders and tribes 
of fierce warriors. Mostly desert, with only a little arable land, Arabia lay at the 
periphery of Middle Eastern, Egyptian, and Greek civilization. It was consid
ered too poor and rough for conquest and had never been incorporated into any 
of the great western empires—Persia, the Hellenistic Greek empires, or Rome.

Beginning in 622, the Arab people suddenly found a vitality hitherto lack
ing. The warring tribes quickly united and, with missionary fervor, rode out of 
the searing desert to forge a great empire that, at its height, stretched from the 
Atlantic Ocean to India and included most of what the Hellenistic Greeks had 
called the oikoumene— the heartland of western civilization. The force that 
powered the expansion of Arabia was the new religion of Islam.

Islam was founded by the prophet Mohammed (ca. A.D. 570-632), a mer
chant from the town of Mecca on the Red Sea. At the age of forty, Mohammed 
had visions that he believed were messages from God and that he recorded in a 
book called the Koran. These messages revealed that there was only a single 
God (Allah), that Mohammed was His greatest prophet (although the Hebrew 
prophets and Jesus Christ were also considered prophets by Moslems), and 
that those who joined the new religion were members of a common brother
hood. The Koran instructed devout Moslems to care for the poor and to offer 
hospitality to strangers, two traditional Arab values. It also called upon believ
ers to convert others to the faith, peacefully if possible, sometimes by force 
when necessary, although Jews and Christians, as members of related faiths, 
were supposedly exempt from forcible conversion. Holy wars (jehads) could 
be proclaimed against enemies of the religion. The faithful, the Koran told, 
would be rewarded in the afterlife. A combination of traditional values, opti
mism, and united brotherhood, the message of Islam was immensely popular 
among the Arabs. By the time Mohammed died in 632, most of Arabia had been 
converted.

Soon after Mohammed’s death, the now-united Arabs expanded into 
neighboring countries, filling the power vacuum left by the fall of the Roman 
Empire. Palestine and Syria were incorporated into an Arabian Empire in 640, 
the valley of the Tigris and Euphrates Rivers in 641, and Egypt in 642. From 
these places, Arab horsemen thundered across north Africa and Iran, and by 
715 the Arabian Empire included Spain and parts of western India and com
manded most of the Mediterranean Sea basin. Islam as a religion spread even 
further than the Empire. Arab merchants carried the new faith to black Africa, 
central Asia, and Indonesia.

Mohammed’s death also occasioned a power struggle for control of both 
the religion and the Empire. Civil war broke out in 656. The war was eventually 
won by the Ommeyad Dynasty, but it caused a split in the religion between the 
Sunnites (mostly Arabs), who supported the Ommeyads, and the Shiites 
(mostly Iranians), who did not. The Ommeyads ruled the Empire from the city 
of Damascus in Syria until 750, when they were overthrown by the Abbasid 
Dynasty, which moved the capital to Baghdad (now the capital of Iraq), near
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the ancient city of Babylon. The Arabian Empire under the Abbasids lasted five 
hundred years, into the thirteenth century. It never controlled Spain, and 
Egypt became independent in the tenth century. Most of the Arabian Empire 
fell to the Turks in 1258.

The Arabs greatest contributions to civilization were the religion of Islam 
and the versatile Arabic language, in which the Koran was written; however, 
the Arabs were also adept at assimilating the best elements they found in other 
cultures. They carefully preserved much of Greek science and excelled not 
only at mathematics, but at astronomy and medicine as well. Artistically, they 
eschewed human sculpture, which they considered idolatry, and concentrated 
on architecture and fine decorative work. A graceful Arabic literature emerged. 
Some of the best Moslem scientists, artists, and poets, however, were not 
Arabs, but Iranians (Persians) and Spaniards. Mecca, in Arabia, was Islam’s 
religious capital, but the cultural, economic, and political center of the Arabian 
Empire was fabulous, golden Baghdad, with its rich blend of Arab and Iranian 
cultures.

With the rise of Islam, the western world was divided into two cultural 
regions: the Moslem southeast (north Africa, Egypt, the Middle East, and Iran) 
and Christian Europe. Of the two, the Arab world was the more culturally, 
artistically, and scientifically advanced between 622 and 1300, a time when 
Europe struggled through its so-called Dark Ages. We will look at Europe’s 
cultural hiatus and subsequent resurgence in Cultural Connection VI.

Japan and Southeast Asia
Before returning to Europe, we should acknowledge that Asian civilization was 
not confined to China, India, and Arabia. People moved from the Asian main
land to Japan during the Stone Age, and there was a hunter/gatherer culture 
there as early as 4500 B.C. By the beginning of the fourth century A.D., Japan 
was united into a single kingdom, and Buddhism had reached there by the tenth 
century. Japan remained a strong, centralized kingdom well into the seventh 
century, when power began to drift into the hands of a court-based aristocracy. 
In the twelfth century, the aristocracy fell from power, and Japan entered its 
Feudal Age, in which a nominal emperor presided over a land divided into 
numerous baronies, and political and military power were held by a central 
military headquarters called the Shogunate. Southeast Asia, too, developed 
impressive civilizations that were influenced by China and India. Hinduism, 
Buddhism, and Islam all were carried into southeast Asia by missionaries. By 
1600, Buddhism had taken firm root on the mainland (Thailand, Cambodia, and 
Vietnam), and Islam predominated on the offshore islands (Indonesia). The 
maritime Malay peoples, who lived in what is now Malaya and parts of Indone
sia, roamed across the Indian Ocean to Africa (where they settled Madagascar) 
and into the Pacific Ocean.



Chapter

CHINESE, HINDU, AND ARABIAN 
MATHEMATICS

CHINA1

7-1 Sources and Periods
Although the civilizations in ancient China along the Yangtze and Hwang Ho 
rivers are probably not as old as the Egyptian civilization along the Nile and the 
Babylonian civilization between the Tigris and Euphrates, very little of a pri
mary nature has come down to us from those early Chinese civilizations. This 
is because the peoples of the time in all likelihood recorded many of their 
findings on bamboo, which did not last through time. As a further complication, 
there is the infamous burning of the books ordered by the egotistical Emperor 
Shi Huang-ti in 213 B.C. Although, in spite of severe threats and reprisals, the 
emperor’s edict was most certainly not completely carried out, and although 
many books burned were later restored from memory, we are now in doubt as 
to the genuineness of many items claimed to be older than that unfortunate 
date. It follows that much of our knowledge of very early Chinese mathematics 
rests on hearsay and on later renditions of original texts.

Until quite recently, English-speaking scholars unfamiliar with the Chi
nese language were severely handicapped and had to rely primarily on one 
book, The Development o f Mathematics in China and Japan, which was pub
lished in 1913 by the Japanese mathematician Yoshio Mikami, and on a few 
scattered papers written by Europeans during the nineteenth century. With the 
publication in 1959 of the highly scholarly third volume of J. Needham’s Sci
ence and Civilization in China, the situation was considerably improved. There 
are some accounts of Chinese mathematics in German, and recently (1987), 
Shen Kangshi of Hangzhou University published, in Chinese, an excellent 
introduction to the history of Chinese mathematics; it is hoped that this latter 
work will appear in English translation.

It is perhaps wise first to sketch, briefly, the principal periods of Chinese 
history prior to 1644. We start with the Shang period, which arose about 1500 
B.C. The Shang government, which is the first dynasty in the recorded history 
of China, and which held sway over an area whose boundaries varied with the

1 The material of the following sections on China has been largely adapted from D. J. Struik, 
“On ancient Chinese mathematics,” The Mathematics Teacher 56 (1963): 424-432, and from 
scholarly notes kindly furnished by Ouyang Jiang and Zhang Liangjin of Taiwan.
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fortunes of war, collapsed in 1027 B.C. and was succeeded by the feudal Chou 
period, regarded by the Chinese as their classical age. The Chou rule culmi
nated in 256 B.C., after which occurred the short-lived Chin dynasty, which 
lasted from 221 to 206 B.C. The Chin was replaced by a powerful unified empire 
under the Han (206 B.C .-A .D. 221), which was followed by a post-Han period 
of division extending to about A.D. 600. It was in the post-Han period that 
Buddhism became well established in China. Then came the newly unified 
China under the Tang (618-906), during which printing was invented, the Five 
Dynasties of the Independent States (906-960), the Sung (960-1279), the Yuan 
(1279-1368), and the Ming (1368-1644). The last three all ruled over a united 
China. European influence in mathematics, as in other areas, began under the 
Ming with the arrival of the Jesuit missionaries.

Marco Polo (12547-1324?) visited China from 1275 to 1292, and the “bar
barian” Kublai Khan (1216-1294) consolidated China under the Yuan dynasty 
upon completion of his conquest of the country in 1279.
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Pronunciation of Chinese Names
The English transliteration of Chinese ideograms is not uniform. We follow the plan 
adopted by the Royal Geographical Society of London and the United States Board 
of Geographic Names.
a as in father.
e, e as in men. The accent indicates that it does not form part of a dipthong.
i as in pique. When followed by n or a vowel it is short as in pin.
\ following a consonant indicates that the vowel is intoned with the consonant, 
ei like ey in they.
u like in oo in boot. When preceding n, a, or o it is short.
ii like the French u. When preceding n, a, or e it is short, 
ou is a diphthong with the two vowels distinctly intoned, 
u i like ooi contracted into a diphthong.
Initial k, p, t, hs, ts, tz are not so hard as in English. When pronounced as hard as 
possible they are followed by (').
ch like ch in church.
y like y in you.

7-2 From the Shang to the Tang
An account of the history of the mathematics of ancient China starts in the 
Shang period, with some inscriptions on bone and tortoise shell that reveal a 
decimal numeral system closely akin to the traditional Chinese-Japanese multi
plicative system described in Section 1-5. Even at this very early time, then, 
we find in China the seeds of a decimal positional numeral system. By the time
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of the Han, or perhaps earlier, the rod numeral system, which employed ar
rangements of bamboo sticks as described in Problem Study 1.4(c), and in 
which blank spaces appeared for zeros, was established. This instance of a 
decimal positional system was the most advanced system of numeration in the 
world at the time, and it played a very important role in the character of early 
Chinese mathematics, which was centered on calculation. The elementary 
arithmetic operations were carried out with bamboo sticks on counting boards. 
The familiar Chinese abacus, the suan pan, which consists of movable beads on 
parallel rods or wires, is a descendent of this early form of calculating. It is not 
known just when the suan pan was introduced; the earliest extant mention of 
the suan pan is found in a work of 1436, but the instrument could be much 
older.

One of the oldest Chinese works involving mathematics, the I-king, or 
Book of Permutations, also dates back to Shang days, for it is claimed to have 
been written by Won-wang (1182-1135 B.C.). In it appears the Liang /, or “two 
principles” (the male yang, —, and the female yingy - -). From these are formed 
the Pa-kuay or eight figures

These eight symbols had various attributes assigned to them, and they came to 
be used in divination. One cannot help but see in the Pa-kua an adumbration of 
a binary system of numeration. For if we take — as one and - - as zero, the 
successive trigrams shown above, beginning at the right, would represent the 
numbers 0, 1, 2,  3, 4, 5, 6, 7. Also in the I-king is found the oldest known 
example of a magic square (see Problem Study 7.3).

The most important of all ancient Chinese mathematical texts is the K'ui- 
ch'ang Suan-shuy or Arithmetic in Nine Sections, dating from the Han period 
but very likely containing material much older than the Han. It is the epitome of 
ancient Chinese mathematical knowledge, and it established the characteristic 
of the ancient mathematics of China as calculation oriented, with theory and 
practice connected in a sequence of applied problems. The work, which is rich 
in content, is a collection of 246 problems on agriculture, business procedures, 
engineering, surveying, solution of equations, and properties of right triangles. 
Rules of solution are given, but there are no proofs in the Greek sense. In 
Problem 36 of Section I, the area of a circular segment of base b and sagitta 
(height) s is given by the empirical formula s(b + s)/2. This may have been 
arrived at as indicated in Figure 58, where, when the secant lines are drawn so 
as to make the area of the isosceles triangle appear by eye to be equal to that of 
the circular segment, these lines seem to cut the base line prolonged a distance 
of si2 in each direction. For a semicircle, the empirical formula leads to the 
value 3 for tt. There are also problems in the text leading to simultaneous 
systems of linear equations, which are solved by what we today call the matrix 
method. A sample of the problems of the work can be found in Problem Studies
7.1 and 7.2.
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Following is a brief indication of the contents of the individual nine sec
tions of the K'ui-ch'ang Suan-shu:

1. Surveying matters, with correct rules for the areas of a triangle, trape
zoid, and circle, and the circle approximations (f)cP and (A)c2, where it 
is taken as 3.

2. Percentage and proportion.
3. Partnership and the rule of three.
4. Finding sides of figures and including square and cube roots.
5. Volumes.
6. Motion problems and alligation.
7. The rule of false position.
8. Simultaneous linear equations and matrix procedures.
9. Pythagorean right triangles.
Another famous classic, perhaps even older than the Arithmetic in Nine 

Sections, is the Chou-pei, which is only partly mathematical. Its chief interest 
to us is its discussion, based on the diagram of Figure 59 (but with no proof), of 
the Pythagorean theorem.

An interesting event occurred in January 1984, when there was unearthed 
in tombs of the Han dynasty an arithmetic book written on bamboo slips. The 
work was transcribed about the second century B.C. and is a collection of more

FIGURE 59
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than ninety problems involving the four fundamental arithmetic operations on 
both integers and fractions, proportion, area, and volume. It is now the earliest 
Chinese mathematical work actually in existence.

Following the Han period lived the mathematician Sun-tzi’, who wrote a 
book containing much material similar to that of the Arithmetic in Nine Sec
tions. It is in this work that we encounter the first Chinese problem in indeter
minate analysis: “There are things of an unknown number which when divided 
by 3 leave 2, by 5 leave 3, and by 7 leave 2. What is the (smallest) number?” 
Here we find the beginnings of the famous Chinese Remainder Theorem of 
elementary number theory.

In the post-Han period we also find a number of mathematicians devoting 
attention to the computation of tr, the ratio of the circumference to the diameter 
of a circle. A general of the third century, named Wang Fan, has been credited 
with the rational approximation W  for t t , yielding tt = 3.155. A contemporary 
of Wang Fan, named Liu Hui, wrote a short commentary on the Arithmetic in 
Nine Sections called the Sea Island Mathematical Manual. In this, we find 
some new material on mensuration, among which is the relation

3.1410 < tt <  3.1427.

About two centuries later, Tsu Ch’ung-chih (430-501) and his son, whose joint 
book is now lost, found

3.1415926 <  tt <  3.1415927

and the remarkable rational approximation ?ff, which yields 77 correct to six 
decimal places. This rational approximation was not rediscovered in Europe 
until 1585 (see Section 4-8). The precision of 77 achieved by the Tsus seems not 
to have been surpassed until 1425 (?), when the astronomer Jamshid Al-Kashi 
(died ca. 1436) of Samarkand found 77 correct to sixteen decimal places. West
ern mathematicians did not surpass the Tsus’ approximation until around 1600.

7-3 From the Tang through the Ming
During the Tang dynasty, a collection of the most important mathematical 
books available was assembled for official use in the imperial examinations. 
Printing originated in the eighth century, but the first mathematical work to be 
printed of which we are aware did not appear until 1084. In a work of about 625, 
written by one Wang Hs’iao-t’ung, appears the first cubic equation in Chinese 
mathematics more complicated than the x 3 = a of the Arithmetic in Nine 
Sections.

An important printed edition of the Arithmetic in Nine Sections appeared 
during the Sung dynasty in 1115. The latter part of the Sung dynasty through 
the early part of the Yuan dynasty marks the greatest period in ancient Chinese 
mathematics. Many important mathematicians flourished and many worthy



mathematical books appeared. Among the mathematicians were Ch’in Kiu- 
shao (whose book is dated 1247), Li Yeh (with books dated 1248 and 1259), 
Yang Hui (with books dated 1261 and 1275), and, the greatest of all, Chu Shi- 
kie (whose books are dated 1299 and 1303).

Ch’in took up indeterminate equations where Sun Tz! had left off. He also 
was the first Chinese to give a separate symbol, a circle, for zero. He was one 
of the mathematicians who generalized the method of extracting square roots 
(as given in the Arithmetic in Nine Sections) to equations of higher degree, 
leading to the numerical method of solving algebraic equations we today refer 
to as Horner’s method, since it was independently found by the English school
master William George Horner (1786-1837) and published by him in 1819. He 
was completely unaware of the fact that he had rediscovered an ancient Chi
nese computational scheme. Li Yeh is of special interest because he introduced 
a notation for negative numbers by placing a diagonal stroke through the right- 
hand digit when the number is written in the Chinese scientific, or rod, system. 
Thus,— 10724 appears as
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iort=uTi
Yang Hui, whose books are a sort of extension of the Arithmetic in Nine 
Sections, worked deftly with decimal fractions by essentially our present meth
ods. Yang Hui has also given us the earliest extant presentation of the so-called 
Pascal arithmetic triangle (see Section 9-9), which is again found in a later 
book written by Chu Shi-kie in 1303. Chu speaks of the triangle as already 
ancient in his time. It would appear, then, that the binomial theorem was 
known in China for a long time. Chu’s books give the most accomplished 
presentation of Chinese arithmetic-algebraic methods that has come down to 
us. He employs familiar matrix methods of today, and his method of elimina
tion and substitution has been compared with that of J. J. Sylvester (1814— 
1897).

The post-Sung period continued to produce mathematicians, who often 
served as astronomers, but little that is fundamentally new appeared in their 
mathematics. In the earlier Tang period, one can detect a Hindu influence; in 
the later Yuan period, one can find Arabic traces. There is very little in ancient 
Chinese mathematics that is directly traceable to Western (Greek or Latin) 
mathematics. It was only with the mathematics of the Ming era, after the Jesuit 
missionaries had penetrated China, that Western influence is noticeable.

7 -4  Concluding Remarks
After the decline of classical Greek mathematics, the mathematics of China 
became one of the most prosperous in the world. While Western Europe was 
undergoing its period of Dark Ages, Chinese mathematics was thriving, and 
many of its achievements long predated the same achievements made later in 
Europe during and after the Renaissance. To mention a few of these achieve-
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The problem of the broken bamboo, from a work of Yang Hui (1261).

ments, we note that China was the first (1) to create a positional decimal 
numeral system, (2) to acknowledge negative numbers, (3) to obtain precise 
values of 1r, (4) to arrive at Horner’s method for the numerical solution of 
algebraic equations, (5) to present the Pascal arithmetic triangle, (6) to be aware 
of the binomial theorem, (7) to employ matrix methods in the solution of sys
tems of linear equations, (8) to solve systems of simultaneous congruences by 
the so-called Chinese Remainder Theorem, (9) to develop decimal fractions,
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Pascal’s arithmetic triangle as depicted in 1303 by Chu Shi-kie.

(10) to develop the rule of three, (11) to apply the rule of double false position, 
(12) to develop arithmetic series of higher order and their application to interpo
lation, and (13) to develop descriptive geometry.2

2 This occurred in Nian Xi-yao’s Shi Xue, or Perspective Drawing, which was published in 
1729 and revised in 1735. Gaspard Monge’s Descriptive Geometry did not appear until 1799.
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Many of the Chinese findings in mathematics ultimately made their way to 
Europe via India and Arabia. On the other hand, it was not until the Jesuit 
missionaries entered China in the Ming period that western influence in mathe
matics was felt in China. An Italian Matteo Ricci (1552-1610), with the aid of 
Hsii Kuang-ching (1562-1634), in 1601-07 translated the first six books of 
Euclid’s Elements into Chinese; this played a significant role in the subsequent 
development of mathematics in China.

Correspondents Ouyang Jiang and Zhang Liangjin have listed some 
twenty-six Chinese treatises on mathematics (some very comprehensive and 
encyclopedic) written prior to the nineteenth century.

INDIA

7 - 5  General Survey

Because of the lack of authentic records, very little is known of the develop
ment of ancient Hindu3 mathematics. The earliest history is preserved in the 
5000-year-old ruins of a city at Mohenjo Daro, located northeast of present-day 
Karachi in Pakistan. Evidence of wide streets, brick dwellings and apartment 
houses with tiled bathrooms, covered city drains, and community swimming 
pools indicates a civilization as advanced as that found anywhere else in the 
ancient Orient. These early peoples had systems of writing, counting, weigh
ing, and measuring, and they dug canals for irrigation. All this required basic 
mathematics and engineering. It is not known what became of these peoples.

It was about 4000 years ago that wandering bands crossed the Himalaya 
passes into India from the great plains of central Asia. These people were called 
Aryans, from a Sanskrit word meaning “noblemen” or “owners of land.” 
Many of these remained; others wandered into Europe and formed the root of 
the Indo-European stock. The influence of the Aryans gradually extended over 
all India. During their first thousand years, they perfected both written and 
spoken Sanskrit. They are also responsible for the introduction of the caste 
system. In the sixth century B.C., the Persian armies under Darius entered 
India but made no permanent conquests. To this period belong two great early 
Indians, the grammarian Panini and the religious teacher Buddha. This proba
bly is also the approximate time of the Sulvasutras (“the rules of the cord”), 
religious writings of interest in the history of mathematics because they em
body geometric rules for the construction of altars by rope stretching and show 
an acquaintance with Pythagorean triples.

After the temporary conquest of northwest India by Alexander the Great 
in 326 B.C., the Maurya Empire was established and in time spread over all 
India and parts of central Asia. The most famous Maurya ruler was King Asoka

3 Because of confusion between western Indians and eastern Indians, writers frequently use 
the terms “ Hindu” and “(eastern) Indian” interchangeably. Although this interchangeability is not 
strictly correct, it is common and convenient where there is no misunderstanding.
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(272-232 B.C.), some of whose great stone pillars, erected in every important 
city in India of his day, still stand. These pillars are of interest to us because, as 
stated in Section 1-9, some of them contain the earliest preserved specimens of 
our present number symbols.

_______________________ Pronunciation of Hindu Names______________________

Some of the difficulty experienced in pronouncing Hindu names can be circumvented 
by observing the following accepted equivalents.
a  like u in but, a  as in father.
e  as in they.
i as in piny I as in pique. 
o  as in so.
u as in put, u as in rule. 
c  like ch in church. 
s like English sh.
If the penult (next to last syllable) is long, it is accented; if it is short, the antipenult 
(third syllable from end) is accented.

After Asoka, India underwent a series of invasions, that were finally fol
lowed by the Gupta dynasty of native Indian emperors. The Gupta period 
proved to be the golden age of the Sanskrit renaissance, and India became a 
center of learning, art, and medicine. Rich cities grew up and universities were
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founded. The first important astronomical work, the anonymous Surya 
Siddhanta (“knowledge of the sun”), dates from this period, probably about 
the beginning of the fifth century. Hindu mathematics from here on became 
subservient to astronomy rather than religion. The sixth-century work Pane a 
Siddhantika, of the astronomer Varahamihira of Ujjain and based on the earlier 
Surya Siddhanta, contains a good summary of early Hindu trigonometry and a 
table of sines apparently derived from Ptolemy’s table of chords.

The degree of influence of Greek, Babylonian, and Chinese mathematics 
on Hindu mathematics, and vice versa, is still an unsettled matter, but there is 
ample evidence that influence in both directions was appreciable. One of the 
pronounced benefits of the Pax Romana was the diffusion of knowledge be
tween East and West, and from a very early date, India exchanged diplomats 
with both the West and the Far East.

From about A.D. 450 until near the end of the 1400s, India was again 
subjected to numerous foreign invasions. First came the Huns, then the Arabs 
in the eighth century, and the Persians in the eleventh. During this period, there



were several Hindu mathematicians of prominence, including the two Aryabha
tas and Brahmagupta, Mahavlra, and Bhaskara. The elder Aryabhata flour
ished in the sixth century and was born near present-day Patna on the Ganges. 
He wrote a work on astronomy entitled Aryabhatiya, of which the third chapter 
is devoted to mathematics. There is some confusion between the two Aryabha
tas, and it may be that their work is not correctly differentiated. Brahmagupta 
was the most prominent Hindu mathematician of the seventh century. He lived 
and worked in the astronomical center of Ujjain, in central India. In 628, he 
wrote his Brahma-sphuta-sidd’hanta (“the revised system of Brahma”), a 
work on astronomy of twenty-one chapters, of which Chapters 12 and 18 deal 
with mathematics. Mahavlra, who flourished about 850, was from Mysore in 
southern India and wrote on elementary mathematics. Bhaskara lived in 
Varahamihira’s and Brahmagupta’s city of Ujjain. His work, Siddhanta Siro- 
mani (“diadem of an astronomical system”), was written in 1150 and shows 
little advancement over the work of Brahmagupta of more than 500 years 
earlier. The important mathematical parts of Bhaskara’s work are the Lilavati 
(“the beautiful” ) and Vijaganita (“ seed arithmetic”),4 which deal with arith
metic and algebra, respectively. The mathematical parts of Brahmagupta’s and 
Bhaskara’s works were translated into English in 1817 by H. T. Colebrooke. 
The Surya Siddhanta was translated by E. Burgess in 1860, and Mahavlra’s 
work was published in 1912 by M. Rangacarya.

Hindu mathematics after Bhaskara made only spotty progress until mod
ern times. In 1907, the Indian Mathematical Society was founded, and two 
years later the Journal o f the Indian Mathematical Society started in Madras. 
The Indian statistics journal, Sankhya, began publication in 1933.

Perhaps the most spectacular Indian mathematician of modern times was 
the impoverished clerk and untrained genius Srinivasa Ramanujan (1887-1920), 
who possessed amazing ability to see quickly and deeply into intricate number 
relations. He was “discovered” in 1913 by the eminent British number theorist, 
G. H. Hardy (1877-1947), whose efforts brought Ramanujan in the following 
year to England to study at Cambridge University. A most remarkable mathe
matical association resulted between the two men.

It is perhaps worth telling a couple of true anecdotes illustrating Ramanu
jan’s amazing ability. Professor Hardy once visited Ramanujan in a hospital 
and incidentally remarked that he had arrived in a taxi with the dull number 
1729. Without any hesitation, Ramanjan replied that 1729 was, on the contrary, 
very interesting, as it is the smallest integer expressible in two different ways as 
the sum of two cubes: l 3 + 123 = 1729 = 93 4- 103. On another occasion, with no 
calculator other than his brain, Ramanujan remarked that is “very
nearly” an integer: it is actually an integer followed by twelve zeros before 
another digit appears.
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4 It is not certain that the Lilavati and Vijaganita are parts of the Siddhanta Siromani; they 
may be separate works.
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The publication in the 1920s of Ramanujan’s notebooks, and the subse
quent work done on them, has disclosed many facets of the man’s unusual 
genius.

Texts on the history of mathematics show some contradictions and confu
sion when dealing with the Hindus. This is probably due, in no small measure, 
to the obscure and, at times, nearly unintelligible writing of the Hindu authors. 
The history of Hindu mathematics still awaits a more reliable and scholarly 
treatment.

7 - 6  Number Computing

In Section 1-9, we briefly considered the little that is known concerning the 
part played by the Hindus in the development of our present positional numeral 
system. We shall now give some account of Hindu methods of computing with 
this system. The key to an understanding of the algorithms that were elaborated 
lies in a realization of the writing materials that were at the disposal of the 
calculators. According to the German historian H. Hankel, they generally 
wrote either upon a small blackboard with a cane pen dipped in a thin, white 
paint that could easily be rubbed off or with a stick upon a white tablet less than 
a foot square and coated with a sprinkling of red flour. In either case the writing 
space was small and legibility demanded fairly large figures, but erasures and 
corrections were very easily effected. Accordingly, the calculation processes 
were schemed to conserve the writing space by erasing a digit as soon as it had 
served its purpose.

Early Hindu addition was perhaps done from left to right, instead of from 
right to left, as we prefer to do it today. As an example, consider the addition of 
345 and 488. These would probably be written, one under the other, a little 

below the top of the computing tablet, as shown in the accompanying 
8 3 illustration. The computer would say 3 4-4 = 7, and write the 7 at the 
7! 2 3 head of the left column. Next, 4 4 - 8 =1 2 ,  which changes the 7 to an 

8, followed by a 2. The 7 is accordingly rubbed off and 82 written
3 4 5 down. In our illustration, we have instead crossed out the 7 and

written the 8 above it. Then 5 4 - 8 = 1 3 ,  which changes the 2 to a 3,
4 8 8 followed by another 3. Again things are corrected with a quick rub of

the finger, and the final answer, 833, appears at the top of the tablet. 
Now the 345 and 488 can be rubbed off, and we have the rest of the tablet clear 
for further work.

In an undated commentary of Bhaskara’s Lilavati, we find another 
method, by which 345 and 488 would be added thus:

sum of units 5 4 - 8 =  13
sum of tens 4 4 - 8 =  12*
sum of hundreds 3 4-4 = 7 *
sum of sums = 833
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Several methods were used for multiplication. The written work for the 
simple multiplication of, say, 569 by 5 might appear as follows, again working 

from left to right. On the tablet, a little below the top, 
8 4 write 569 followed, on the same line, by the multiplier 5.

Then, since 5 x 5 = 25, 25 is written above the 569, as 
2 5 0 5 shown in the accompanying illustration. Next, 5 x 6  =

30, which changes the 5 in 25 to an 8 followed by a 0.
5 6 9 5 A quick erasure fixes this. In the illustration we have

instead crossed out the 5 and written the 8 above it. Then 
5 x 9 = 45, which changes the 0 to a 4 followed by a 5. The final product, 2845, 
now appears at the top of the computing tablet.

A more complicated multiplication, like 135 x 12, say, might be accom
plished by first finding, as above, 135 x 4 = 540, then 540 x 3 =

6 2 1620, or by adding 135 k 10 = 1350 and 135 x 2 = 270 to get 1620.
According to Hankel, it also might be accomplished as follows. A 

5 X little below the top of the tablet, write the multiplicand 135 and 
the multiplier 12, so that the units digit in the multiplicand falls 

1 2  5 0 beneath the extreme left digit in the multiplier. Now 135 x 1 = 
135, which is written at the top of the tablet. Next, by erasing, 

1 2 shift the multiplicand 135 one place to the right, and multiply by 
the 2 of the 12. In doing this, we find 2 x 1 = 2 ,  which changes the 

X 2 5 3 in our partial product to a 5. Then 2 x 3  = 6, which changes the
two 5s in our new partial product to 61. Finally, 2 x 5 = 10, which 

1 3  5 changes the final 1 in our partial product to 2 followed by a 0. The 
finished product, 1620, now appears at the top of the tablet.

Another method of multiplication, known to the Arabians and probably 
obtained from the Hindus that closely resembles our present process is indi
cated in the accompanying illustration, where we again find the product of 135 
and 12. The lattice diagram is actually drawn, and the additions are performed 
diagonally. Note, because of the way each cell is divided in two by a diagonal, 
no carrying over is required in the multiplication.

The Arabians, who later borrowed some of the Hindu processes, were 
unable to improve on them and accordingly adapted them to “paper” work, 
where erasures were not easily effected, by crossing off undesired digits and

Multiplicand

1 6  2 0 
Product
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writing the new ones above or below the old ones, as we have done in the 
illustrations above.

The development of algorithms for our elementary arithmetic operations 
started in India, perhaps about the tenth or eleventh century, were adopted by 
the Arabians, and later carried to Western Europe, where they were modified 
into their present forms. This work received considerable attention from the 
fifteenth-century European writers on arithmetic.

7 -7  Arithmetic and Algebra

The Hindus were gifted arithmeticians and made significant contributions to 
algebra.

Many of the arithmetical problems were solved by false position. Another 
favorite method of solution was that of inversion, where one works backward 
from a given piece of information. Consider, for example, the following prob
lem, which appears in Bhaskara’s Lilavati: “Beautiful maiden with beaming 
eyes, tell me, as thou understandst the right method of inversion, which is the 
number which multiplied by 3, then increased by f of the product, then divided 
by 7, diminished by h of the quotient, multiplied by itself, diminished by 52, by 
the extraction of the square root, addition of 8, and division by 10 gives the 
number 2?” By the method of inversion we start with the number 2 and work 
backward. Thus, [(2)(10) -  8]2 + 52 = 196, V l96  = 14, (14)(|)(7)(|)/3 = 28, the 
answer. Note that where the problem instructed us to divide by 10, we multiply 
by 10; where we were told to add 8, we subtract 8; where we were told to 
extract a square root, we take the square, and so forth. It is the replacement of 
each operation by its inverse that accounts for the name inversion. It is, of 
course, just what we would do if we were to solve the problem by modern 
methods. Thus, if we let x represent the sought number, we have

4
(§)q)(3*)j2

nr
- 5 2  + 8

=  2.

To solve this we multiply both sides by 10, then subtract 8 from each side, then 
square both sides, and so forth. This problem also illustrates the Hindu practice 
of clothing arithmetical problems in poetic garb. This was because school texts 
were written in verse and because the problems were frequently used for social 
amusement.

The Hindus summed arithmetic and geometric progressions and solved 
commercial problems in simple and compound interest, discount, and partner
ship. They also solved mixture and cistern problems, similar to those found in 
modern texts. Several specimens of Hindu arithmetical problems may be found 
in Problem Studies 7.4, 7.5, and 7.6.

Much of our knowledge of Hindu arithmetic stems from Bhaskara’s Li- 
lavati. A romantic story is told about this work. According to the tale, the stars



foretold dire misfortune if Bhaskara’s only daughter Lilavati should marry 
other than at a certain hour on a certain propitious day. On that day, as the 
anxious bride was watching the sinking water level of the hour cup, a pearl fell 
unknowingly from her headdress and, stopping the hole in the cup, arrested the 
outflow of water, and so the lucky moment passed unnoticed. To console the 
unhappy girl, Bhaskara gave her name to his book.

The Hindus syncopated their algebra. Like Diophantus, addition was usu
ally indicated by juxtaposition. Subtraction was indicated by placing a dot over 
the subtrahend, multiplication by writing bha (the first syllable of the word 
bhavita, “ the product” ) after the factors, division by writing the divisor be
neath the dividend, and square root by writing ka (from the word karana, 
“irrational” ) before the quantity. Brahmagupta indicated the unknown by yd 
(from yavattavat, “ so much as”). Known integers were prefixed by ru (from 
rupay “the absolute number”). Additional unknowns were indicated by the 
initial syllables of words for different colors. Thus, a second unknown might be 
denoted by ka (from kalaka, “black”), and 8xy 4- VTo -  7 might appear as

yd ka 8 bha ka 10 ru 7.

The Hindus admitted negative and irrational numbers, and recognized that 
a quadratic (having real answers) has two formal roots. They unified the alge
braic solution of quadratic equations by the familiar method of completing the 
square. This method is today often referred to as the Hindu method. Bhaskara 
gave the two remarkable identities

V a  ± V/? = ^/(a 4- \ / a 2 -  b)l2 ± V(<z -  V a2 -  b)/2,

which are sometimes employed in our algebra texts for finding the square root 
of a binomial surd. These identities are also found in Book X of Euclid’s 
Elements, but they are presented in an involved language that is difficult to 
comprehend.

The Hindus showed remarkable ability in indeterminate analysis and were 
perhaps the first to devise general methods in this branch of mathematics. 
Unlike Diophantus, who sought any one rational solution to an indeterminate 
equation, the Hindus endeavored to find all possible integral solutions. Ary
abhata and Brahmagupta found the integral solutions of the linear indetermi
nate equation ax 4- by = c, where a, b, c are integers. The indeterminate 
quadratic equation xy = ax 4- by 4- c was solved by a method later reinvented 
by Euler. The work of Brahmagupta and Bhaskara on the so-called Pell equa
tion,5 y2 =  ax2 4- 1, where a is a nonsquare integer, is highly regarded by some. 
They showed how, from one solution x, y, where xy +  0, infinitely many others 
could be found. The complete theory of the Pell equation was finally worked
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5 This is an example of a misnomer that has stuck. The error of assignment is due to Euler, who 
mistakenly assumed that the Englishman John Pell (1611-1685) gave a method of solution of the 
equation that had really been given by Pell’s countryman Lord Brouncker (ca. 1620-1684).
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out by Lagrange in 1766-1769. The Hindu work on indeterminate equations 
reached western Europe too late to exert any beneficial influence.

7 -8  Geometry and Trigonometry
The Hindus were not proficient in geometry. Rigid demonstrations were un
usual, and postulational developments were nonexistent. Their geometry was 
largely empirical and generally connected with mensuration.

The ancient Sulvasutras show that the early Hindus applied geometry to 
the construction of altars and in doing so made use of the Pythagorean relation. 
The rules furnished instructions for finding a square equal to the sum or differ
ence of two given squares and of a square equal to a given rectangle. Solutions 
of the circle-squaring problem appear that are equivalent to taking d = 
(2 + V2)s/3 and s = I3d/15, where d is the diameter of the circle and 5 the side 
of the equal square. There also appears the expression

1 1 1 
+ 3 + (3)(4) (3)(4)(34) ’

which is interesting in that all the fractions are unit fractions and the expression 
is correct to five decimal places.

Both Brahmagupta and Mahavlra not only gave Heron’s formula for the 
area of a triangle in terms of the three sides, but also the remarkable extension,6

K = [(.v -  <z)(.s: -  b){s -  c)(s -  c/)]1/2,

for the area of a cyclic quadrilateral having sides a , b, c, d and semiperimeter s. 
It seems that later commentators failed to realize the limitation on the quadri
lateral. The formula for the general case is

K 2 = {s — a){s — b){s — c)(s — d) — abed cos2

where A and C are a pair of opposite vertex angles of the quadrilateral.
Most remarkable in Hindu geometry, and unique in their excellence, are 

Brahmagupta’s theorems that the diagonals m and n of a cyclic quadrilateral 
having consecutive sides a, b, c, d are given by

. {ab 4- cd){ac 4- bd) 
m ~ ad + be ’

7 {ac + bd){ad 4- be) 
n “  ab + ed ’

6 For a derivation of this formula see, for example, E. W. Hobson, A Treatise on Plane 
Trigonometry. 4th ed., p. 204, or R. A. Johnson, Modern Geometry, p. 81.
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FIGURE 60

and that if a, bf c, A, B, C are positive integers, such that a2 + b2 = c2 and A2 + 
B2 = C2, then the cyclic quadrilateral having consecutive sides of aC, cB, bC, 
cA (called a Brahmagupta trapezium) has rational area and diagonals, and the 
diagonals are perpendicular to each other (see Problem Studies 7.9 and 7.10). 
Brahmagupta knew Ptolemy’s theorem on the cyclic quadrilateral.

Many inaccuracies appear in Hindu mensuration formulas. Thus, Ary
abhata gives the volume of a pyramid as half the product of the base and 
altitude, and the volume of a sphere as tr3/2r3. The Hindus gave some accurate 
values for 7r, but also frequently used tt = 3 and tt = VTO.

Most students of high-school geometry have seen Bhaskara’s dissection 
proof of the Pythagorean theorem, in which the square on the hypotenuse is cut 
up, as indicated in Figure 60, into four triangles, each congruent to the given 
triangle, plus a square with side equal to the difference of the legs of the given 
triangle. The pieces are easily rearranged to give the sum of the squares on the 
two legs. Bhaskara drew the figure and offered no further explanation than the 
word “Behold!” A little algebra, however, supplies a proof; for if c is the 
hypotenuse and a and b are the legs of the triangle,

This dissection proof is found much earlier in China. Bhaskara also gave a 
second demonstration of the Pythagorean theorem by drawing the altitude on 
the hypotenuse. From similar right triangles in Figure 61, we have

c _  b_ 
b m ’ a n

c a

c

FIGURE 61
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or

cm = b2, cn = a2.

Adding, we get

a2 + b2 = c(m + n) = c 2.

This proof was rediscovered by John Wallis in the seventeenth century.
The Hindus, like the Greeks, regarded trigonometry as a tool for their 

astronomy. They used our familiar degree, minute, and second divisions and 
constructed tables of sines. (That is, they constructed tables of half chords, and 
not tables of chords as the Greeks had done.) The Hindus employed the equiva
lents of sines, cosines, and versed sines (versin A = 1 -  cos A). They computed 
the sines of halves of angles by the relation versin 2A = 2 sin2 A. In their 
astronomy, they solved plane and spherical triangles. The astronomy itself is of 
poor quality and shows an ineptness in observing, collecting, and collating 
facts, and inducing laws. Their trigonometry may be described as arithmetic 
rather than geometric.

7 -9  Contrast Between Greek and Hindu 
Mathematics

There are many differences between Greek and Hindu mathematics. In the first 
place, the Hindus who worked in mathematics regarded themselves primarily 
as astronomers; thus, Hindu mathematics remained largely a handmaiden to 
astronomy. With the Greeks, mathematics attained an independent existence 
and was studied for its own sake. Also, as a result of the caste system, mathe
matics in India was cultivated almost entirely by the priests; in Greece, mathe
matics was open to any one who cared to study the subject. Again, the Hindus 
were accomplished computers but mediocre geometers; the Greeks excelled in 
geometry but cared little for computational work. Even Hindu trigonometry, 
which was meritorious, was arithmetic in nature; Greek trigonometry was geo
metric in character. The Hindus wrote in verse and often clothed their works in 
obscure and mystic language; the Greeks strove for clarity and logicality in 
presentation. Hindu mathematics is largely empirical, with proofs or deriva
tions seldom offered; an outstanding characteristic of Greek mathematics is its 
insistence on rigorous demonstration; Hindu mathematics is of very uneven 
quality, good and poor mathematics often appearing side by side; the Greeks 
seemed to have an instinct that led them to distinguish good from poor quality 
and to preserve the former while abandoning the latter. As the Muslim writer 
al-Biruni put it in his well-known book India, in contrast to the uniformly high 
quality of Greek mathematics, Hindu mathematics was “a mixture of pearl 
shells and sour dates . . .  of costly crystal and common pebbles.”

Some of the contrast between Greek and Hindu mathematics is perpetu
ated today in the differences between many of our elementary geometry and



algebra textbooks, because the former are deductive and the latter are often 
collections of rules.
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ARABIA

7-10 The Rise of Moslem Culture
The rise and decline of the Arabian empire is one of the most spectacular 
episodes in history. Within the decade following Mohammed’s flight from 
Mecca to Medina in A.D. 622, the scattered and disunited tribes of the Arabian 
peninsula were consolidated by a strong religious fervor into a powerful nation. 
Within a century, force of arms under the green and gold banner of Islam had 
extended the rule and influence of the Moslem star and crescent over a territory 
reaching from India, through Persia, Mesopotamia, and northern Africa, clear 
into Spain. Opposing contenders for the caliphate caused an east-west split in 
the empire in 755, resulting in one caliph reigning in Baghdad and another in 
Cordoba. Until about the year 1000, the eastern empire enjoyed spiritual su
premacy. At that time, however, much of the eastern territory became overrun 
by the ruthless Seljuk Turks. Between 1100 and 1300, the Christian Crusades 
were launched to dislodge the Moslems from the Holy Land. In 1258, Baghdad 
was taken by the Mongols, the eastern caliph fell from power, and the Arabian 
empire began to decline. In 1492, Spain overthrew the last of its Moorish rulers, 
and the Arabs lost their European foothold.

_________________ Pronunciation of Arabian Names_________________
The following equivalents will help in pronouncing Arabian names, 
a as in ask, a as in father. 
e as in bed.
i as in pin, i as in pique. 
o as in obey. 
u as in put, u as in rule. 
d like th in that, t like th in thin. 
h and kh like ch in the German nach. 
q like c or k in cook.
The accent is on the last syllable containing a long vowel or a vowel followed by two 
consonants. Otherwise the accent falls on the first syllable.

Of considerable importance for the preservation of much of world culture 
was the manner in which the Arabs seized upon Greek and Hindu erudition. 
The Baghdad caliphs governed well, and many became patrons of learning and 
invited distinguished scholars to their courts. Numerous Hindu and Greek
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works in astronomy, medicine, and mathematics were industriously translated 
into the Arabic tongue and thus were saved until later European scholars were 
able to retranslate them into Latin and other languages. But for the work of the 
Arabian scholars, much of Greek and Hindu science would have been irretriev
ably lost over the long period of the Dark Ages.

During the reign of the caliph al-Mansur, Brahmagupta’s works were 
brought to Baghdad (ca. 766) and, under royal patronage, translated into Ara
bic. It has been said that this was the means by which the Hindu numerals were 
brought into Arabic mathematics. The next caliph was Harun al-Rashid (Aaron 
the Just), who reigned from 786 to 808 and is known to us in connection with 
The Arabian Nights. Under his patronage, several Greek classics in science 
were translated into Arabic, among them part of Euclid’s Elements. There was 
also a further influx of Hindu learning into Baghdad during his reign. Harun al- 
Rashid’s son, al-Mamun, who reigned from 809 to 833, also was a patron of 
learning and was himself an astronomer. He built an observatory at Baghdad 
and undertook the measurement of the earth’s meridian. The difficult task of 
obtaining satisfactory translations of Greek classics continued under his or
ders; the Almagest was put into Arabic and the translation of the Elements 
completed. Greek manuscripts were secured, as a condition in a peace treaty, 
from the emperor of the Byzantine Empire and were then translated by Syrian 
Christian scholars invited to al-Mamun’s court. Many scholars wrote on mathe
matics and astronomy during this reign, the most famous being Mohammed ibn 
Musa al-Khowarizmi (Mohammed, the son of Moses of Khwarezm). He wrote 
a treatise on algebra and a book on the Hindu numerals, both of which later 
exerted tremendous influence in Europe when translated into Latin in the 
twelfth century. A somewhat later scholar was Tabit ibn Qorra (826-901), 
famed as a physician, philosopher, linguist, and mathematician. He produced 
the first really satisfying Arabic translation of the Elements. His translations of 
Apollonius, Archimedes, Ptolemy, and Theodosius are said to rank among the 
best made. Especially important are his versions of Books V, VI, and VII of the 
Conics of Apollonius, as only through his versions have these books come to 
us. He also wrote on astronomy, the conics, elementary algebra, magic 
squares, and amicable numbers (see Problem Study 7.11).

Probably the most celebrated Moslem mathematician of the tenth century 
was Abu’l-Wefa (940-998), born in the Persian mountain region of Khorasan. 
He is known for his translation of Diophantus, his introduction of the tangent 
function into trigonometry, and his computation of a table of sines and tangents 
for 15' intervals. To do this, he perfected Ptolemy’s method, obtaining sin 30' 
with nine exact decimal places. He wrote on a number of mathematical topics. 
Abu Kamil and al-Karkhi, who wrote in the tenth and eleventh centuries, 
should be mentioned for their work in algebra. The former wrote a commentary 
on Al-Khowarizmi’s algebra, which was later drawn upon by the European 
mathematician Fibonacci (1202). Al-Karkhi, who was a disciple of Diophantus, 
produced a work called the Fakhri, one of the most scholarly of the Moslem 
works on algebra. But perhaps the deepest and most original algebraic contri
bution was the geometrical solution of cubic equations by Omar Khayyam (ca.
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1100), another native of Khorasan, known to the western world as the author of 
the exquisite Rubaiyat. Khayyam is also noted for his very accurate proposed 
calendar reform.

A considerably later writer was Nasir ed-din (ca. 1250), also of Khorasan. 
He wrote the first work on plane and spherical trigonometry considered inde
pendently of astronomy. Saccheri (1667-1733) started his work on non-Euclid- 
ean geometry through a knowledge of Nasir ed-din’s writings on Euclid’s paral
lel postulate. His was the only attempt to prove this postulate in the period 
from the ancient Greeks up to the Renaissance. These writings were translated 
into Latin by John Wallis in the seventeenth century and used by him in his 
geometrical lectures at Oxford. Finally, there was Ulugh Beg, a fifteenth-cen
tury Persian astronomer of royal blood, who compiled remarkable tables of 
sines and tangents for V intervals correct to eight or more decimal places. In 
his court at Samarkand was Al-Kashi, mentioned in Section 7-2 for his accu
rate approximation of tt. Al-Kashi did important work with decimal fractions 
and was the first Arabic author we know of who dealt with the binomial theo
rem in the “Pascal triangle” form.

7-11 Arithmetic and Algebra
Before Mohammed, the Arabians wrote out all numbers in words. The subse
quent extensive administration of conquered lands was partly responsible for 
the introduction of a short symbolism. Sometimes local numeral systems were 
adopted, and at one time it was rather common practice to use a ciphered 
numeral system, like the Ionic Greek, employing the twenty-eight Arabic let
ters. This notation was, in turn, superseded by the Hindu notation, which was
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first adopted by merchants and writers on arithmetic. Strangely enough, the 
Hindu numerals are excluded from some of the later arithmetics of the eastern 
empire. Thus, Abu’l-Wefa and al-Karkhi, of the tenth and eleventh centuries, 
wrote arithmetics in which all numbers are again written out in words. These 
later Arabian writers departed from Hindu teachings and became influenced by 
Greek methods. No trace of the use of an abacus has been discovered among 
the early Arabs.

The first Arabic arithmetic known to us is that of al-Khowarizmi; it was 
followed by a host of other Arabic arithmetics by later authors. These arith
metics generally explained the rules for computing, modeled after the Hindu 
algorithms. They also gave the process known as casting out 9s, used for 
checking arithmetical computations, and the rules of false position and double 
false position, by which certain algebra problems can be solved nonalge- 
braically (see Problem Studies 7.12 and 7.14). Square and cube roots, fractions, 
and the rule o f three were also frequently explained.

The rule of three, which probably originated in ancient China, reached 
Arabia through India, and was actually called by this name by Brahmagupta 
and Bhaskara. For centuries, the rule was very highly regarded by merchants. 
It was mechanically stated without justification, and its connection with pro
portion was not recognized until the end of the fourteenth century. Here is how 
Brahmagupta stated the rule: In the rule o f three, Argument, Fruit, and Requi
sition are the names o f  the terms. The first and last terms must be similar. 
Requisition multiplied by Fruit, and divided by Argument, is the Produce. For 
clarification, consider the following problem given by Bhaskara: If two and a 
half palas of saffron are purchased for three sevenths of a niska, how many 
palas will be purchased for nine niskas? Here f and 9, which are of the same 
denomination, are the Argument and the Requisition, and f is the Fruit. The 
answer, or Produce, is then given by (9)(f)/(y) = 52i Today we would regard 
the problem as a simple application of proportion,

x : 9 = f : ?.

Much space was devoted to the rule o f three by the early European writers on 
arithmetic, the mechanical nature of the rule being observable in the doggerel 
verse and the schematic diagrams often used to explain it.

Al-Khowarizmi’s algebra shows little originality. The four elementary op
erations are explained and linear and quadratic equations are solved, the latter 
both arithmetically and geometrically. The work contains some geometric men
suration and some problems on inheritance.

The Moslem mathematicians made their best contributions in the field of 
geometric algebra, the peak being reached in Omar Khayyam’s geometric solu
tion of cubic equations. Here cubic equations are systematically classified and a 
root obtained as the abscissa of a point of intersection of a circle and a rectan
gular hyperbola, or of two rectangular hyperbolas (see Problem Study 7.15). 
Khayyam rejected negative roots and frequently failed to discover all the posi
tive ones. Cubic equations arose from the consideration of such problems as



the construction of a regular heptagon and the Archimedean problem of cutting 
a sphere into two segments having a prescribed ratio. Abu’l-Wefa gave geomet
ric solutions to some special quartic equations.

Some of the Moslem mathematicians showed interest in indeterminate 
analysis; thus, a proof (probably defective and now lost) was given to the 
theorem that it is impossible to find two positive integers the sum of whose 
cubes is the cube of a third integer. This is a special case of Fermat’s famous 
last “theorem,” to which we will return in Chapter 10. Mention has already 
been made of Tabit ibn Qorra’s rule for finding amicable numbers. This is said 
to be the first piece of original mathematical work done by an Arabian. Al- 
Kharkhi was the first Arabian writer to give and prove theorems furnishing the 
sums of the squares and cubes of the first n natural numbers.

Arabian algebra, except for that of the later western Arabs, was rhetorical.
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7-12 Geometry and Trigonometry
The important role played by the Arabs in geometry was more one of preserva
tion than one of discovery. The world owes them a large debt for their perse
vering efforts to translate satisfactorily the great Greek classics.

There was a nice geometric study done by Abu’l-Wefa, in which he 
showed how to locate the vertices of the regular polyhedra on their circum
scribed spheres, using compasses of fixed opening. We have already mentioned 
Omar Khayyam’s geometric solution of cubic equations and Nasir ed-din’s 
influential work on the parallel postulate. Nasir ed-dm published, with com
ments and “corrections,” part of an earlier work by Khayyam entitled Discus
sion o f the Difficulties in Euclid. In this part of the earlier work, we find what 
was apparently the first consideration of the three alternatives later named, by 
Saccheri, the hypotheses of the acute, the obtuse, and the right angle (see 
Section 13-6). Nasir ed-din is also credited with an original proof of the Pythag
orean theorem. The proof is essentially the one we have suggested, in the notes 
to Problem Study 6.17(c), for Pappus’ extension of the Pythagorean theorem.

The name al-Haitam, or, more popularly, Alhazen (ca. 965-1039), has 
been preserved in mathematics in connection with the so-called problem of 
Alhazen: To draw, from two given points in the plane of a given circle, lines 
that intersect on the circle and make equal angles with the circle at that point. 
The problem leads to a quartic equation that was solved in Greek fashion by an 
intersecting hyperbola and circle. Alhazen was born in Basra in southern Iraq 
and was perhaps the greatest of the Moslem physicists. The above problem 
arose in connection with his Optics, a treatise that later had great influence in 
Europe.

A pathetic story is told about Alhazen. He unfortunately once boasted that 
he could construct a machine that would control and regulate the annual inun
dation of the Nile River. He was accordingly summoned to Cairo by Caliph 
Hakim to explain and perhaps demonstrate his idea. Aware of the utter imprac- 
ticality of his scheme, and fearing the anger of the Caliph, Alhazen feigned
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A

madness, for the insane were specially protected in those times. With great 
care, Alhazen had to keep up the hoax until Hakim’s death in 1021.

Like the Hindus, the Arabian mathematicians generally regarded them
selves primarily as astronomers and thus showed considerable interest in trigo
nometry. We have already mentioned some of the Moslem accomplishments in 
the construction of trigonometric tables. They may also be credited with using 
all six of the trigonometric functions and with improving upon the derivation of 
the formulas of spherical trigonometry. The law of cosines for an oblique 
spherical triangle,

cos a = cos b cos c 4- sin b sin c cos A , 

was given by al-Battam (Latinized as Albategnius, ca. 920). The formula

cos B = cos b sin A,

for a spherical triangle ABC with a right angle at C (see Figure 62), is sometimes 
called Geber’s theorem, after the western Moslem astronomer Jabir ibn Aflah 
(frequently called Geber, ca. 1130) who flourished at Seville.

7-13 Some Etymology
Many names and words used today may be traced back to the Arabian period; 
thus, anyone interested in observational astronomy probably is aware that a 
large number of star names, particularly those of the fainter stars, are Arabic. 
Well-known examples are Aldebaran, Vega, and Rigel, among the brighter 
stars, and Algol, Alcor, and Mizar, among the fainter ones. Many of the star 
names were originally expressions locating the stars in the constellations. 
These descriptive expressions when transcribed from Ptolemy’s catalogue into 
the Arabic, later degenerated into single words, such as Betelgeuse (armpit of 
the Central One), Fomalhaut (mouth of the Fish), Deneb (tail of the Bird), Rigel 
(leg of the Giant), and so forth. In Section 6-5, we traced the derivation of 
Almagest, the Arabic name by which Ptolemy’s great work is commonly 
known.



236 CHAPTER SEVEN /  CHINESE, H IN D U , AND ARABIAN MATHEMATICS

D

The origin of our word algebra from the title of al-Khowarizmi’s treatise 
on the subject, Hisab al-jabr w’al-muqa-balah, is very interesting. This title 
has been literally translated as “ science of the reunion and the opposition” or, 
more freely, as “ science of transposition and cancellation.”7 The text, which is 
extant, became known in Europe through Latin translations, and made the 
word al-jabr, or algebra, synonymous with the science of equations. Since the 
middle of the nineteenth century, algebra has come, of course, to mean a great 
deal more.

The Arabic word al-jabr, used in a nonmathematical sense, found its way 
into Europe through the Moors of Spain. In Spain, an algebrista was a boneset- 
ter (reuniter of broken bones), and it was usual for a barber of the times to call 
himself an algebrista, for bonesetting and bloodletting were sidelines of the 
medieval barber.

Al-Khowarizmi’s book on the use of the Hindu numerals also introduced a 
word into the vocabulary of mathematics. This book is not extant in the origi
nal, but in 1857 a Latin translation was found that begins, “ Spoken has Al- 
goritmi, . . . .” Here the name al-Khowarizmi had become Algoritmi, from 
which, in turn, was derived our present word algorithm, meaning “the art of 
calculating in any particular way.”

The meanings of the present names of the trigonometric functions, with the 
exception of sine, are clear from their geometrical interpretations when the 
angle is placed at the center of a circle of unit radius. Thus, in Figure 63, if the 
radius of the circle is one unit, the measures of tan 6 and sec 6 are given by the 
lengths of the tangent segment CD and the secant segment OD. Of course, 
cotangent merely means “complement’s tangent,” and so on. The functions 
tangent, cotangent, secant, and cosecant have been known by various other

7 For a deeper analysis, see Solomon Gandz, “The origin of the term ‘algebra’,” The Ameri
can Mathematical Monthly 33 (1926): 437-40.
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names, but these particular names appeared as late as the end of the sixteenth 
century.

The origin of the word sine is curious. Aryabhata called it ardha-jya (“half 
chord”) and also jya-ardha (“chord half”), and then abbreviated the term by 
simply using jya  (“chord”). From jya  the Arabs phonetically derived jiba, 
which, following Arabian practice of omitting vowels, was written as jb . Now 
jiba , aside from its technical significance, is a meaningless word in Arabic. 
Later writers who came across jb  as an abbreviation for the meaningless jiba 
substituted jaib  instead, which contains the same letters and is a good Arabic 
word meaning “cove” or “bay.” Still later, Gherardo of Cremona (ca. 1150), 
when he made his translations from the Arabic, replaced the Arabian jaib  by its 
Latin equivalent, sinus, from whence came our present word sine.

7-14 The Arabian Contribution
Estimates of the Arabian contribution to the development of mathematics are 
by no means in agreement. Some have assigned very high originality and genius 
to the Moslem writers, particularly in their work in algebra and trigonometry. 
Others see these writers as perhaps learned, but scarcely creative, and point 
out that their work is secondary, both in quantity and quality, to that of either 
the Greek or the modern writers. On the one hand, it must be admitted that 
they made at least small advances; on the other hand, it may be that their 
achievements, when viewed against the scientifically sterile backdrop of the 
rest of the world of the time, seem greater than they really were. There is still, 
in the balance in their favor, the outstanding fact that they served admirably as 
custodians of much of the world’s intellectual possessions, which were trans
mitted to the later Europeans after the Dark Ages had passed.

Problem Studies

7.1 Some Problems From the 46Arithmetic in Nine Sections”

Solve the following problems found in the Arithmetic in Nine Sections.
(a) Problem 11, Section IV. “Given afield of width, 1, i, J, ?, 5, e, 7, i, h  

tt, and T2 pu. It is known that the area of the field is 1 mu. What is the 
length of the field?” (A pu is a double pace; 1 mu = 240 square pu; the 
width of the field i s l + 5  + i +  . . . + r s  pu.)

(b) Problem 14, Section IV. “Given a square field of 71,824 square pu. 
What is the side of the square?”

(c) Problem 16, Section I. “Given a field in the form of a segment of a 
circle, the base of which is 785 pu and the sagitta 135 pu. What is the 
area?” (Use the approximation formula A = s(b + s)/2.)

(d) Problem 1, Section VIII. “Three sheafs of good crop, 2 sheafs of 
mediocre crop, and 1 sheaf of bad crop are sold for 39 dou. Two sheafs 
of good, 3 of mediocre, and 1 of bad are sold for 34 dou. One sheaf of



good, 2 of mediocre, and 3 of bad are sold for 26 dou. What is the price 
for a sheaf of good crop, mediocre crop, and bad crop?”

7.2 The Pythagorean Theorem

(a) Problem 11, Section IX, of the Arithmetic in Nine Sections reads: 
“Given a door of which the height is larger than the width by 6 ch’ih 8 
ts’un. The maximum distance between the vertices is 1 chang. What is 
the height and width of the door?” (1 chang = 10 ch’ih, 1 ch’ih = 10 
ts’un.)

(b) Solve the following problem, adapted from one in the Arithmetic in 
Nine Sections: “There grows in the middle of a circular pond 10 feet in 
diameter a reed which projects one foot out of the water. When it is 
drawn down it just reaches the edge of the pond. How deep is the 
water?”

(c) Solve the problem of the broken bamboo (found in the Arithmetic in 
Nine Sections and later in a work of Yang Hui): “There is a bamboo 10 
feet high, the upper end of which being broken reaches the ground 3 
feet from the stem. Find the height of the break.”

(d) Using a generalization of Figure 59, devise a proof of the Pythagorean 
theorem.

(e) Obtain a correct formula for the area of a segment of a circle in terms of 
the base b and sagitta 5 of the segment.

7.3 Magic Squares

No treatment, however brief, of ancient Chinese mathematics should omit 
mention of the so-called lo-shu magic square.

One of the oldest of the Chinese mathematical classics is the I-king, or 
Book on Permutations. In this appears a numerical diagram known as the lo- 
shu, later pictured as in Figure 64. The lo-shu is the oldest known example of a 
magic square, and myth claims that it was first seen by the Emperor Yu, in 
about 2200 B.C., decorating the back of a divine tortoise along a bank of the 
Yellow River. It is a square array of numerals indicated in Figure 64 by knots in 
strings—black knots for even numbers and white knots for odd numbers.

(a) An nth order magic square is a square array of n2 distinct integers so 
arranged that the n numbers along any row, column, or main diagonal 
have the same sum, called the magic constant of the square. The magic 
square is said to be normal if the n2 numbers are the first n2 positive 
integers. Show that the magic constant of an rcth-order normal magic 
square is n{n2 + l) /2 .

(b) De la Loubere, when envoy of Louis XIV to Siam in 1687 through 
1688, learned a simple method for finding a normal magic square of any 
odd order. Let us illustrate the method by constructing one of the fifth 
order. Draw a square and divide it into 25 cells (see Figure 65). Border 
the square with cells along the top and the right edge and shade the 
added cell in the top right corner. Write 1 in the middle top cell of the 
original square. The general rule is then to proceed diagonally upward
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FIGURE 64

to the right with the successive integers. Exceptions to this general rule 
occur when such an operation takes us out of the original square or 
leads us into a cell already occupied. In the former situation, we get 
back into the original square by shifting clear across the square, either 
from top to bottom or from right to left, as the case may be, and 
continue with the general rule. In the second situation, we write the 
number in the cell immediately beneath the one last filled and then 
continue with the general rule. The shaded cell is to be regarded as 
occupied.

In our illustration, then, the general rule would place 2 diagonally 
upward from 1 in the fourth cell bordered along the top. We must 
therefore shift the 2 to the fourth cell in the bottom row of the original 
square. When we come to 4, it first falls in the third cell up bordered

18 25 2 9 i i
17 24 1 8 15 17

23 5 7 14 16 23

4 6 13 20 22 4

10 12 19 21 3 10

11 18 25 2 9

FIGURE 65



along the right edge. It must therefore be written clear ^crdss to the left 
in the third cell up in the first column of the original square. The general 
rule would place 6 in the cell already occupied by 1. It is accordingly 
written in the cell just below that occupied by the last written number,
5. And so on.

Construct a normal magic square of the seventh order.
(c) Show that the central cell of a normal magic square of the third order 

must be occupied by 5.
(d) Show that in a normal magic square of the third order 1 can never occur 

in a corner cell.

7.4 Some Early Hindu Problems

(a) Solve the following problem generalized from one given by Brahma
gupta (ca. 630): “Two ascetics lived at the top of a cliff of height h, 
whose base was distant d from a neighboring village. One descended 
the cliff and walked to the village. The other, being a wizard, flew up a 
height x and then flew in a straight line to the village. The distance 
traversed by each was the same. Find jc. ”  In the original problem, h =  

100 and d = 200.
(b) Solve the following version of the problem o f the broken bamboo [see 

Problem Study 7.2(c)] given by Brahmagupta: “A bamboo 18 cubits 
high was broken by the wind. Its top touched the ground 6 cubits from 
the root. Tell the lengths of the segments of the bamboo.”

(c) An anonymous arithmetic, known as the Bakhshali manuscript,8 was 
unearthed in 1881 at Bakhshali, in northwest India. It consists of 70 
pages of birch bast. Its origin and date have been the subject of much 
conjecture, estimates of the date ranging from the third to the twelfth 
century A.D. Solve the following problem found in this manuscript: “A 
merchant pays duty on certain goods at three different places. At the 
first he gives J of the goods, at the second \  [of the remainder], and at 
the third J [of the remainder]. The total duty is 24. What was the 
original amount of goods?”

7.5 Problems from Mahavlra

The nature of many of the Hindu arithmetical problems may be judged from the
following, adapted from Mahavlra (ca. 850). Solve these problems.

(a) A powerful, unvanquished, excellent black snake that is 80 angulas in 
length enters into a hole at the rate of 1\ angulas in A of a day; in the 
course of \  of a day, its tail grows of an angula. O ornament of 
arithmeticians, tell me by what time this serpent enters fully into the 
hole?

(b) Of a collection of mango fruits, the king took £, the queen i  of the 
remainder, and the three chief princes i, i, and \  of the successive
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remainders, and the youngest child took the remaining 3 mangoes. O 
you who are clever in miscellaneous problems on fractions, give out 
the measure of that collection of mangoes.

(c) The mixed price of 9 citrons and 7 fragrant wood apples is 107; again, 
the mixed price of 7 citrons and 9 fragrant wood apples is 101. O you 
arithmetician, tell me quickly the price of a citron and of a wood apple 
here, having distinctly separated those prices well.

(d) One fourth of a herd of camels was seen in the forest; twice the square 
root of that herd had gone to the mountain slopes ; and 3 times 5 camels 
remained on the riverbank. What is the numerical measure of that herd 
of camels?

7.6 Problems from Bhaskara

Hindu arithmetical problems usually involved quadratics, the Pythagorean the
orem, arithmetic progressions, and permutations. Consider the following prob
lems adapted from Bhaskara (ca. 1150).

(a) The square root of half the number of bees in a swarm has flown out 
upon a jessamine bush, f  of the swarm has remained behind; a female 
bee flies about a male that is buzzing within a lotus flower into which he 
was allured in the night by its sweet odor, but is now imprisoned in it. 
Tell me, most enchanting lady, the number of bees.

(b) A snake’s hole is at the foot of a pillar that is 15 cubits high, and a 
peacock is perched on its summit. Seeing a snake, at a distance of 
thrice the pillar’s height, gliding toward his hole, he pounces obliquely 
upon him. Say quickly at how many cubits from the snake’s hole do 
they meet, both proceeding an equal distance?

(c) In an expedition to seize his enemy’s elephants, a king marched 2 
yojanas the first day. Say, intelligent calculator, with what increasing 
rate of daily march did he proceed, since he reached his foe’s city, a 
distance of 80 yojanas, in a week?

(d) How many are the variations in the form of the god Sambu (Siva) by the 
exchange of his 10 attributes held reciprocally in his several hands: 
namely, the rope, the elephant’s hook, the serpent, the tabor, the skull, 
the trident, the bedstead, the dagger, the arrow, the bow: as those of 
Hari by the exchange of the mace, the discus, the lotus, and the conch?

(e) Arjuna, exasperated in combat, shot a quiver of arrows to slay Carna. 
With half his arrows he parried those of his antagonist; with 4 times the 
square root of the quiverful he killed his horse; with 6 arrows he slew 
Salya (Carna’s charioteer); with 3 he demolished the umbrella, stan
dard, and bow; and with 1 he cut off the head of the foe. How many 
were the arrows which Arjuna let fly?

7.7 Quadratic Surds

A numerical radical in which the radicand is rational but the radical itself is 
irrational is called a surd. A surd is called quadratic, cubic, and so on, according 
as its index is 2, 3, and so on.



(a) Show that a quadratic surd cannot be equal to the sum of a nonzero 
rational number and a quadratic surd.

(b) Show that if a + \ fb  = c + \fd , where \ fb  and \ f d  are surds and a and 
c are rational, then a = c and b = d.

(c) Establish Bhaskara's identities given in Section 7-6, and use 1 of them 
to express V l7  + V240 as the sum of 2 quadratic surds.

7.8 Indeterminate Equations of the First Degree

The Hindus solved the problem of finding all integral solutions of the linear
indeterminate equation ax + by = c, where a, b, c are integers.

(a) If ax + by = c has an integral solution, show that the greatest common 
divisor of a and b is a divisor of c. (This theorem says that there is no 
loss in generality if we consider a and b to be relatively prime.)

(b) If x\ and y\ constitute an integral solution of ax + by = c, where a and b 
are relatively prime, show that all integral solutions are given by x = 
x\ + mb , y = y\ -  ma, where m is an arbitrary integer. [This theorem 
says that all integral solutions are known if just 1 integral solution can 
be found. A simple way of finding 1 integral solution is illustrated in the 
suggestions for Problem Study 7.8(c).]

(c) Solve lx  + 16y = 209 for positive integral solutions.
(d) Solve 23jc + 37y = 3000 for positive integral solutions.
(e) In how many ways can the sum of 5 dollars be paid in dimes and 

quarters?
(f) Find the smallest permissible answer to the following indeterminate 

problem of Mahavlra: “ Into the bright and refreshing outskirts of a 
forest, which were full of numerous trees with their branches bent 
down with the weight of flowers and fruits, trees such as jambu trees, 
lime trees, plantains, areca palms, jack trees, date palms, hintala trees, 
palmyras, punnaga trees, and mango trees—outskirts, the various 
quarters whereof were filled with the many sounds of crowds of parrots 
and cuckoos found near springs containing lotuses with bees roaming 
about them— into such forest outskirts a number of weary travelers 
entered with joy. There were 63 numerically equal heaps of plantain 
fruits put together and combined with 7 more of those same fruits, and 
these were equally distributed among 23 travelers so as to have no 
remainder. You tell me now the numerical measure of a heap of plan
tains.”

7.9 The Diagonals of a Cyclic Quadrilateral

Establish the following chain of theorems:
(a) The product of 2 sides of a triangle is equal to the product of the 

altitude on the third side and the diameter of the circumscribed circle.
(b) Let ABCD be a cyclic quadrilateral of diameter 8. Denote the lengths of 

sides AB, BC, CD, DA, by a, b, c, d, the diagonals BD and AC  by m 
and n, and the angle between either diagonal and the perpendicular 
upon the other by 6. Show that
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mb cos d = ab + cd , nb cos 6 = ad + be.

(c) Show, for the above quadrilateral, that

. (ac + bd)(ab + cd) 
m “  ad + be ’

? (ac + bd)(ad + be)
H ab + cd

(d) If, in the above quadrilateral, the diagonals are perpendicular to each 
other, then

? _  (ad + bc)(ab + cd)
8 ~ ac + bd *

7.10 Brahmagupta’s Quadrilaterals

(a) Brahmagupta gave the formula K 2 = (s -  a)(s -  b)(s -  c)(s -  d) for 
the area K  of a cyclic quadrilateral of sides a, b, c, d and semiperimeter 
s. Show that Heron’s formula for the area of a triangle is a special case 
of this formula.

(b) Using Brahmagupta’s formula of (a), show that the area of a quadrilat
eral possessing both an inscribed and a circumscribed circle is equal to 
the square root of the product of its sides.

(c) Show that a quadrilateral has perpendicular diagonals if and only if the 
sum of the squares of 1 pair of opposite sides is equal to the sum of the 
squares of the other pair of opposite sides.

(d) Brahmagupta showed that if a2 + b2 = c2 and A2 + B2 = C2, then any 
quadrilateral having aC, cB, bC, cA for consecutive sides has perpen
dicular diagonals. Prove this.

(e) Find the sides, diagonals, circumdiameter, and area of the Brahma
gupta trapezium (see Section 7-7) determined by the 2 Pythagorean 
triples (3, 4, 5) and (5, 12, 13).

7.11 Tabit ibn Qorra, Al-Karkhi, and Nasir ed-din

(a) Tabit ibn Qorra (826-901) invented the following rule for finding amica
ble numbers: Ifp  = 3* 2n — 1, q = 3 • 2n~x -  1, r = 9 • 22n_1 -  1 are 3 
odd primes then 2npq  and 2nr are a pair o f amicable numbers. Verify 
this for n = 2 and n = 4 (see Section 3-3).

(b) Establish the following generalization of the Pythagorean theorem, 
given by Tabit ibn Qorra: If triangle ABC is any triangle, and if B ' and 
C  are points on BC, such that 2̂ AB'B = 2$.A C C  -  4_A, then (AB)2 + 
(AC)2 = BC(BB' + C C ).

Show that when angle A is a right angle this theorem becomes the 
Pythagorean theorem.

(c) The Arabians claimed that Archimedes wrote a work On the Heptagon



in a Circle. Such a work by Archimedes has not come down to us, but 
the claim acquired more substance when the following remarkable the* 
orem, handed down to us by Tabit ibn Qorra, became known: If C and 
D are points on a segment AB , such that (AD)(CD) = (DB)2, (CB)(DB) 
= (AC)2, and if H  is found, such that CH = AC, DH  = DB , then //F  is a 
side of a regular heptagon inscribed in the circumcircle of triangle 
AHB; furthermore, if HC and HD produced intersect the circle in F and 
E , respectively, then A, F, E are 3 consecutive vertices of the regular 
heptagon. Establish this theorem.

(d) Al-Karkhi (ca. 1020) wrote a work on algebra called the Fakhri, named 
after his patron Fakhr al-Mulk, the grand vizier of Baghdad at the time. 
Problem 1 of Section 5 of the Fakhri requests one to find 2 rational 
numbers such that the sum of their cubes is the square of a rational 
number. In other words, find rational numbers x, y, z such that

x 3 + y3 = z2.

Al-Karkhi essentially takes

n2
x = t—— 3, y = mx, z = nx,

where m and n are arbitrary rational numbers. Verify this, and find x, y } 
z for m = 2 and n = 3.

(e) Prove the following easy theorem, credited to Nasir ed-din: The sum of 
2 odd squares cannot be a square.
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7.12 Casting Out 9s

(a) Show that when the sum of the digits of a natural number is divided by 
9, one obtains the same remainder as when the number itself is divided 
by 9.

The act of obtaining the remainder when a given natural number is 
divided by an integer n is known as casting out n’s. The above theorem 
shows that it is particularly easy to cast out 9s.

(b) Let us call the remainder obtained when a given natural number is 
divided by 9, the excess for that number. Prove the following 2 theo
rems:
1. The excess for a sum is equal to the excess for the sum of the 

excesses o f the addends.
2. The excess for the product o f 2 numbers is equal to the excess for 

the product o f the excesses o f the 2 numbers.
These two theorems furnish the basis for checking addition and 

multiplication by casting out 9s.
(c) Add and then multiply 478 and 993, and check by casting out 9s.
(d) Show that if the order of the digits of a natural number are permuted in
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any way to form a new number, then the difference between the old and 
the new numbers is divisible by 9.

This furnishes the basis for the bookkeeper’s check: If the sums of 
the debit and credit entries in double entry bookkeeping do not bal
ance, and the difference between the 2 sums is divisible by 9, then it is 
quite likely that the error is due to a transposition in digits made when 
transcribing a debit or a credit into the book.

(e) Explain the following number trick: Someone is asked to think of a 
number; form a new number by reversing the order of the digits; sub
tract the smaller from the larger number; multiply the difference by any 
number whatever; scratch out any nonzero digit in the product; and 
announce what is left. The conjurer finds the scratched-out digit by 
calculating the excess for the announced result and then subtracting 
this excess from 9.

(f) Generalize the theorem of (a) for an arbitrary base b.

7.13 Casting Out 11s

(a) Prove the following 3 theorems concerning casting out 11s:
1. Let s\ be the sum of the digits in the odd places of any natural 

number n, and let s2 be the sum of the digits in the even places. Then 
the excess of 1 Is for n is equal to the excess of 1 Is for the difference 
s\ -  s2, where if S\ <  s2, we increase s\ by adding a multiple of 1 1 .

2. To find the excess of 11s for any natural number, subtract the left- 
hand digit from its neighbor; subtract this difference from the next 
digit to the right, and so on; if at any time the subtrahend is greater 
than the minuend, add 11 to the minuend.

3. In casting out 11s, you may discard any pair of like consecutive 
digits.

(b) Find the excess of 1 Is for 180,927 and for 810,297, using the theorem of
(a) 1. Find the excess of 11s for the same two numbers using the 
theorem of (a) 2. Find the excess of 11s for 148,337.

(c) Prove the following four theorems:
1. The excess o f 11s for a sum is equal to the excess for the sum o f the 

excesses for the addends.
2. The excess o f 11s for the minuend is equal to the excess for the sum 

of the excesses for the difference and subtrahend.
3. The excess o f 11s for the product of 2 numbers is equal to the excess 

for the product o f the excesses for the 2 numbers.
4. The excess o f 11s for the dividend is equal to the excess for the 

product o f the excesses for the divisor and quotient increased by the 
excess for the remainder.

(d) Check the addition 104 + 454 + 1096 + 2195 + 3566 + 4090 -  11,505 
by casting out 1 1 s.

(e) Check the subtraction 23,028 -  8476 = 14,552 by casting out 11s.
(f) Check the multiplication (8205)(536) = 4,397,880 by casting out 11s.
(g) Check the division 62,540/207 = 302 + 26/207 by casting out 11s.
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7.14 Double False Position

(a) One of the oldest methods for approximating the real roots of an equa
tion is the rule known as regula duorum falsorum, often called the rule 
of double false position. This method seems to have originated in 
China, from whence it spread to India and Arabia. In brief, and in 
modern form, the method is this: Let x\ and jc2 be 2 numbers lying close 
to and on each side of a root x of the equation/ ( jc ) = 0. Then the 
intersection with the jc-axis of the chord joining the points (x\, f (x \ )), 
( jc2 , / ( jc2) )  gives an approximation x 3 to the sought root (see Figure 66). 
Show that

=  * 2 / ( * l )  ~  X\ f (x2)
X3 f ( x i ) - f ( x 2)

The process can now be applied with the appropriate pair x \ , x3 or x3, 
* 2 -

(b) Compute, by double false position, to three decimal places, the root of 
jc3 -  36jc + 72 = 0 that lies between 2 and 3.

(c) Compute, by double false position, to three decimal places, the root of 
jc — tan jc = 0 that lies between 4.4 and 4.5.

7.15 Khayyam’s Solution of Cubics

(a) Given line segments of lengths a, b, n, construct a line segment of 
length m = a? I bn.

(b) Omar Khayyam was the first to handle every type of cubic that pos
sesses a positive root. Complete the details in the following sketch of 
Khayyam’s geometrical solution of the cubic

jc3 + b2x + a? = cx2,

where a , b, c, x are thought of as lengths of line segments. Khayyam 
stated this type of cubic rhetorically as “a cube, some sides, and some 
numbers are equal to some squares.”
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FIGURE 67

In Figure 67, construct AB = a3lb2 [by (a)] and BC = c. Draw a 
semicircle on AC  as diameter and let the perpendicular to AC  at B cut it 
in D. On BD, mark off BE = b and through E draw EF parallel to AC. 
Find G on BC, such that (BG)(ED) = (BE)(AB), and complete the 
rectangle DBGH. Through H, draw the rectangular hyperbola having 
EF and ED for asymptotes, and let it cut the semicircle in J. Let the 
parallel to DE through J cut EF in K  and BC in L. Show, successively, 
that
1. (EK)(KJ) = (BG)(ED) = (BE)(AB)
2. (BL)(LJ) = (BE)(AL)
3. (L J f  = (AL)(LC)
4. (BE)2/(BL)2 = (LJ)2/(AL)2 = LC/AL
5. (B E )\A L ) = (B L )\L C )
6. b \B L  + aVb2) = (B L )\c  -  BL)
7. (BL)3 + 62(£L) + a3 = c(BL)2
Thus, i?L is a root of the given cubic equation.

(c) Find geometrically, by Omar Khayyam’s method, the positive roots of 
the cubic equation x 3 + 2x + 8 = 5x2. Extend the method slightly to 
find the negative root.

7.16 A Geometric Solution of Cubics

(a) Show that the incomplete cubic equation

ax3 + bx + c = 0

can be solved geometrically for its real roots on a rectangular Cartesian 
coordinate framework on which the cubic curve y = x 3 has already 
been drawn, by merely drawing the line ay + bx -f c = 0.

(b) Solve, by the method of (a), the cubic equation x3 + 6x -  15 = 0.
(c) Solve the cubic equation 4x3 -  39x + 35 = 0 geometrically.
(d) Show that any complete cubic equation



ax3 + bx2 + cx + d = 0

can be reduced to the incomplete form in the variable z by the substitu
tion x = z — b/3a.

(e) Now solve the cubic equation jc3 + 9x2 + 20x + 1 2  = 0 geometrically. 
It is interesting that any complex imaginary roots possessed by 

either an incomplete or a complete cubic equation can also be found 
geometrically. (See, for example, Arthur Schultze, Graphic Algebra. 
New York: Macmillan Company, 1922, Sections 58, 59, 65.)

7.17 Geometrical Constructions on a Sphere

The Arabians were interested in constructions on a spherical surface. Consider 
the following problems, to be solved with Euclidean tools and appropriate 
plane constructions.

(a) Given a material sphere, find its diameter.
(b) On a given material sphere, locate the vertices of an inscribed cube.
(c) On a given material sphere, locate the vertices of an inscribed regular 

tetrahedron.
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Cultural Connection

SERFS, LORDS, AND POPES
The European Middle Ages—A.D. 476-1492 
(to accompany Chapter Eight)

Bleginning in the fifth century A.D., with the fall of Rome to “barbarian” 
invaders, Europe was transformed from an ancient civilization to a medieval 
one. As we noted in Cultural Connection IV: The Oikoumene, the ancient 
agricultural societies of the west were merged politically, socially, and econom
ically as a consequence of the Persian conquest of Egypt in 525 B.C. To be 
sure, the melding had never been total; Egyptian culture remained distinct from 
Greek, just as the Romans differed from Arabs or Jews. Nevertheless, there 
was a very real unity to western civilization in the thousand years between the 
founding of Persia and the fall of Rome—a unity that manifested itself through 
such things as shared commercial networks, similar economic systems, related 
religions, and often a single political hegemony. People living then sensed this 
sameness and gave voice to it in geographic terms; the Greeks referred to 
Greece, Italy, Egypt, and the Middle East collectively as the oikoumene, or 
“ inhabited/civilized world.”

Not only had the ancient West in many respects formed a single civiliza
tion, it also had been an expanding one. Over the course of a millenium, 
successive empires had carried western civilization to new places. The Persian 
Empire brought Middle Eastern and Egyptian culture to what is now Iran; the 
Greeks colonized the Mediterranean Sea coasts of Cyprus, Libya, Italy, and 
France, and the Black Sea coasts of Turkey and Russia; the Romans extended 
western civilization into the rest of Italy and France, northwestern Africa, 
Spain, and England. By the beginning of the fifth century A.D., western civili
zation extended through a region that ranged from the icy North Sea to the 
searing sands of Egypt, and from Gibraltar to the Persian Gulf.

After the Roman Empire collapsed in A.D. 476, however, western civiliza
tion changed in many respects. The West became divided into two very distinct 
cultural areas: the Arab-Iranian world and Europe. (As the reader will recall, 
we discussed the rise of the religion of Islam and Arab-Iranian culture in Cul
tural Connection V: The Eastern Empires.) Furthermore, a second, although 
less severe, fragmentation sundered Europe into a Germanic-Latin west and a 
Greco-Slavic east, a split still recognizable in the twentieth century. Also, the 
political and cultural center of Europe shifted slowly northward, from the 
Mediterranean Sea basin (Greece and Rome), to lands bordering the North and 
Baltic Seas: France, England, the Netherlands, Germany, Scandinavia, Po
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land, and Russia. The great empires of the ancient world eventually gave way 
to feudal baronies. Slaves and yeomen farmers alike were replaced by serfs. 
Scholars and inventors ceased to be interested by pure science and mathemat
ics and turned their energies more and more to engineering and religion.

Why did the ancient western civilization come to an end? We can suggest 
several causes: the breakdown of the Roman political system, the cataclysmic 
invasion of Germanic and Slavic “barbarians” (who conquered much of the 
Roman Empire in the fifth century A.D. and established feudalism), and the 
increased importance of the Christian church after the collapse of Roman civil 
authority. Nevertheless, we must acknowledge that ancient civilization in the 
West did not perish suddenly in a blazing bier, but instead faded away over 
several centuries, and was even occasionally resurrected by its conquerors. 
The Greco-Roman culture did not vanish completely; instead, it blended with 
other cultures and societies to birth a new civilization that was a synthesis of 
the Greeks, Romans, Germans, Slavs, and other peoples.
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The Breakdown o f the Roman Political System
Through much of its history, the Roman Empire suffered from twin problems: 
it was big, and therefore difficult to govern, and it had a political system that 
produced mediocre leaders. With a few notable exceptions, most Roman em
perors came to power through military coups d'etat and ruled for but a few 
years, only to be overthrown by another general with a better army. Rebellions 
were frequent, and emperors were forced to set aside affairs of state in order to 
quell uprisings led by rivals. The Romans addressed this situation not by devis
ing methods of assuring themselves better emperors, but by reducing the size of 
the territory an emperor was required to govern. In A.D. 305, Emperor Diocle
tian (A.D. 245-313) divided the Empire into two halves. Thereafter, a western 
emperor reigned at Rome, and an eastern emperor sat at a Greek city called 
Byzantium, later renamed Constantinople in honor of eastern Emperor Con
stantine I (A.D. 272-337). The eastern emperor was regarded as senior to the 
western and was theoretically accorded more political authority, a situation 
that further contributed to the decline of leadership in the west. When the 
western half of the Empire was invaded by “ barbarians” in the fifth century 
A.D., the western emperors were unable to meet the challenge.

The “ Barbarian”  Invasions
Late in the fourth century A.D., northern and eastern Europe were invaded by 
Huns, a tribe of fierce warriors from central Asia. As Hun horsemen thundered 
across Europe, they drove before them the Germanic and Slavic hunters who 
lived in the northern and eastern forests. Goths and Alans from the Ukraine, 
Franks and Burgundians from east of the Rhine River in Germany, Vandals 
from Czechoslovakia’s Carpathian Mountains, Slavs from the Pripet Marshes
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in central Russia—all came into Rome, organized in warrior bands made refu
gees by Hun lances.

Once they reached Roman territory, the refugees became conquerors. 
Visigoths fled the Ukraine in approximately A.D. 350 to escape the Huns, 
settled for a time in the Roman province of Moesia (now Romania), and in 376 
beseiged Constantinople. When repulsed, they were led by their chief, Alaric 
(ca. A.D. 370-410), on a rampage through Greece and Italy that ended only 
with Alaric’s death in 410. In approximately 406, Huns drove the Vandals from 
their central European homeland. The Vandals marched through the Roman 
province of Gaul in 407 and 408, leaving such a trough of destruction in their 
wake that the very name “ Vandal” became synonymous with “ looter.” They 
entered Spain in 409, deposed the Roman governor, and established their own 
kingdom, which was later transferred to northern Africa in the 420s and 430s. 
Bands of Franks followed the Vandals into Gaul and settled there. Britain, cut 
off from the rest of the Empire, was invaded and occupied by Angles and 
Saxons. After the Visigoths finished pillaging Italy (they moved on to Spain to 
trouble the Vandals), Ostrogoths came there to live, later followed by Lom
bards.

When the Huns, led by their infamous king Attila (ca. A.D. 406-453), 
invaded Roman Gaul in 451, they were defeated by a combined Roman-Frank- 
ish army under the command of the Roman general Aetius (ca. A.D. 396-454) 
at Chalons. It was a hollow victory. Attila turned his attention to Italy, de
stroyed much of the countryside, and left only when he ran out of food. Attila’s 
march through the Roman heartland followed that of the Visigoths by a scant 
forty-six years. The country was in ruins. In 476, with little effort, the Ostro
goths deposed the last emperor, and the Western Empire fell.

The Greco-Slavic East
Fifty years later, under Emperor Justinian I (A.D. 483-565), the Eastern Ro
man Empire launched a valiant, but doomed, counterattack. Between 530 and 
550, Justinian’s generals, Belisarius (ca. A.D. 505-565) and Narses (ca. A.D. 
478-ca. 573), reconquered Italy and northern Africa from the Ostrogoths and 
Vandals. The easterners soon found themselves stunned by a series of inva
sions from Asia and eastern Europe, however, first from a reconstituted Per
sian (Parthian) Empire, then by the Slavic Bulgarians, and after 640 from the 
powerful new Arabian Empire. By 600, the Eastern Empire was forced to 
abandon Italy to the Lombards, and by 700 northern Africa was lost to the 
Arabs, who also annexed Egypt and Palestine. Stripped of most of its territory, 
the Eastern Roman Empire became essentially just a middle-sized Greek king
dom, although it remained independent until conquered by Turks in 1453.

Although politically the government at Byzantium (as the Eastern Empire 
came to be called) was, after 700, little more than a shadow of Roman imperial 
might, the predominantly Greek city of Constantinople remained an important 
commercial and cultural center, in many ways resembling a latter-day Alexan



dria. Trade was particularly lively with the Slavic peoples who lived in eastern 
Europe and who borrowed many elements of Greek culture from Byzantine 
merchants. The Russian alphabet, for example, is based on the Greek, and the 
Christian religion, in the form of the Greek Orthodox Church, spread through
out most of eastern Europe. Culturally, the Byzantine Greeks’ greatest 
achievements were in theology and law. The legal code promulgated by Jus
tinian is considered a masterpiece, as well as a hallmark in the evolution of 
European jurisprudence. Nevertheless, the Byzantine Greeks were generally 
poor scholars. Their histories were simply panegyrics to living emperors. They 
continued the Roman trend of exalting religion over science, and were unable 
to reconcile the two. It was Justinian himself who, under pressure from reli
gious leaders, ordered the closing of the sole remaining school of ancient west
ern science and philosophy, the Academy at Athens, in 529.
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Western Europe in the Middle Ages
After the fall of the Western Roman Empire, political power in western Europe 
shifted north to Gaul (now France), where the Franks founded a sturdy king
dom. Originally several disparate tribes of Germanic hunters, the Franks were 
united by the warlord Clovis I (ca. A.D. 466-511) in A.D. 481. The Franks 
adopted the Christian religion and the agricultural economy of the native Gallic 
Celts and intermarried with them, forging a society that combined elements of 
Frankish, Latin, and Celtic cultures.

In the 770s, during a dispute between the Lombard king in Italy and the 
Catholic pope, the Franks intervened on the side of the latter, a development 
that led to the Frankish annexation of much of Italy. When the Frankish king 
Charlemagne (A.D. 742-814) restored Pope Leo III (died A.D. 816) to the 
Papal See in 800, the grateful pontiff crowned him emperor of a “new Rome,” 
which was styled the Holy Roman Empire. Charlemagne also carried on long 
wars against other Germanic peoples, the Saxons, Avars, and Wends, and 
forcibly converted them to Christianity. He built a palace at Aachen (Aix-la- 
Chapelle), grand by medieval standards, although modest when compared with 
ancient Roman edifices. Although barely literate himself, Charlemagne patron
ized art and literature. As a cultural center, however, Aachen was overshad
owed by Constantinople, and Charlemagne’s attempts to rejuvenate Latin civi
lization under Frankish auspices did not survive him. After the great monarch’s 
death, his empire was divided among his three sons, and the importance of the 
Frank kingdom declined considerably.

A second Holy Roman Empire coalesced in Germany about 150 years after 
Charlemagne’s death, when a German king, Otto I (912-973), united most of 
central Europe under his rule. This second Holy Roman Empire, which did not 
include France, bore little resemblance to the great monolithic empires of an
cient times. Less a centralized kingdom than a confederation of several dozen 
German principalities, the second Holy Roman Empire was the archetype of 
the medieval state. With the exception of Otto and a few others, its emperors
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were figureheads, elected by the various German lords or barons. Each of these 
lesser lords ruled over his own small barony; collectively, the barons held the 
real power in the Empire. Nevertheless, this Holy Roman Empire established 
Germany as the cultural and commercial center of medieval western Europe, 
and it lasted, at least in name, until broken up by Napoleon in 1806.

Medieval Europe developed a unique social structure called feudalism. 
Most people were poor peasant farmers, or serfs, who were legally bound to 
farm the estates of the lords and pay a portion of their crops as rent. In theory, 
the lords were vassals of a king or of the Holy Roman Emperor, although in fact 
few kings or emperors had much real power. There was a small urban middle 
class of merchants and artisans. Upward mobility was minimal, as entrance 
into the aristocracy was by birth only.

Although individual lords had considerable authority on their own lands, 
they had little control over their neighbors. Ambitious barons therefore sought 
to further their interests at the court of the king or emperor by forming coali
tions and battling one another in interminable dynastic wars. Kings were de
pendent on the nobility to supply them with money and soldiers, and woe unto 
any monarch foolish enough to displease his lords. When one of England’s 
kings, John (11677-1216), sought to streamline the English judicial system 
(placing himself at its center, of course), the English barons joined forces to 
halt him. Following a battle at Runnymede (1215), the barons forced the chas
tened monarch to sign the Magna Charta, or Great Charter, guaranteeing the 
continuance of England’s system of traditional, largely unwritten law (the 
Common Law), which even today forms the basis of both English and Ameri
can jurisprudence.

This mighty nobility, however, was generally an isolated country aristoc
racy, not centered about a large urban court. Most barons and dukes were 
poorly schooled. The best were brave generals and wise administrators, but 
few were learned scholars. Because the kings and emperors had minimal 
powers, no large capital cities grew up around their modest courts. Commerce, 
too, was limited, and medieval Europe was devoid of metropoli. Because its 
largest cities (outside of Rome, which housed the administrative superstructure 
of the Catholic Church) were not much more than oversized country towns, 
urban civilization was generally absent in medieval western Europe.

Alongside this civil social structure, yet also apart from it, stood the Cath
olic Church, which was under the control of a pope officed in the city of Rome 
who was assisted by an integrated bureaucracy. Bishops oversaw Church af
fairs in the principal towns, such as Cologne, Mainz, Venice, and Tours. The 
Church dabbled in secular as well as religious affairs. So powerful was the pope 
that the city of Rome and the surrounding countryside was an independent 
kingdom under his rule. The Church owned substantial estates throughout 
western Europe, and some of its bishops participated in the election of Holy 
Roman Emperors who, significantly, were crowned by the pope until into the 
1500s. Monasteries and convents, homes to men and women engaged in the 
work of the Church, dotted the countryside. The monasteries were the only 
true loci of scholarship in medieval western Europe, and the monks naturally



preferred the study of religion and philosophy to science; like the Byzantines, 
they often considered the two studies incompatible. The Middle Ages produced 
several justly celebrated theologians, among them Saint Benedict (died ca. 
547), who first proposed the communal, monastic life, with its emphasis on 
manual labor, simplicity, and the preservation of knowledge, and Saint Francis 
of Assisi (11827-1226), who advocated gentleness, concern for the poor, and 
respect for animal life. There were, however, few mathematicians and scien
tists.

Medieval people did display skill at engineering. Masons and carpenters 
designed and built immense and elegant cathedrals, replete with intricate and 
beautiful stained glass windows and remarkable flying buttresses. Smiths 
worked out methods for constructing accurate clocks. Millers perfected the 
water wheel. Long canals were dug, stone bridges spanned even the widest 
rivers, and marshes were diked and drained. Medieval engineers, however, 
were not university-trained “pure” scientists; they were poorly schooled arti
sans and mechanics whose work was often ignored by educated scholars. In
deed, the marriage of pure science and technology would not come about until 
the twentieth century.
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The Renaissance

In the 1300s and 1400s, almost a thousand years after the fall of Rome, medie
val European civilization at last began to give way to modern civilization. 
Ironically, the path towards modernity began with a rekindling of interest in 
ancient art and science. Commerce with the Moslems and the Byzantine 
Greeks gave impetus to the growth of several Italian cities after 1300, among 
them Venice, Genoa, and Florence. The aristocracy there became intrigued not 
only with eastern produce, but with eastern scholarship as well. The Arabs and 
Byzantine Greeks had carefully preserved much of ancient Greek and Roman 
art and science, and now transmitted this knowledge to Italian merchants. 
Wealthy Italian aristocratic families, such as the Estes and the Borgias, spon
sored artists and poets who immersed themselves in the works of the ancient 
Greek and Roman masters. These artists also often dabbled in ancient science. 
Among the Italian scholars of the Renaissance were Leonardo Fibonacci (ca. 
1175-1250), Leonardo da Vinci (1452-1519), Michaelangelo (1475-1564), and 
Benvenuto Cellini (1500-1571). This rebirth of ancient western culture soon 
spread to northern Europe, where it led to a new interest in science and art, 
stimulating the work of Polish astronomer Nicholas Copernicus (1473-1543) 
and his Danish successor, Tycho Brahe (1546-1601).

Unfortunately, Renaissance scholars were unable to reconcile easily their 
ideas about science with the Catholic Church’s religious doctrines, and much of 
the scientific work of the period met stiff opposition from the Church. Afraid of 
prosecution for heresy, many Renaissance scholars were reluctant to publish 
their theories, especially in astronomy, a science particularly opposed by the 
Church. As modern Europe slowly developed out of medieval Europe, the
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Catholic Church, once a force for change, found itself growing increasingly 
conservative. Not only did the Church disapprove of many of the discoveries of 
modern European scientists, it also came to stand athwart attempts by political 
reformers to replace feudalism with more democratic forms of government. 
Those stories will be told in Cultural Connection VII: Puritans and Sea Dogs, 
and in Cultural Connection VIII: The Revolt of the Middle Class.



Chapter

EUROPEAN MATHEMATICS, 
500 TO  1600

8 -1  The Dark Ages
The period starting with the fall of the Roman Empire, in the middle of the fifth 
century, and extending into the eleventh century is known as Europe’s Dark 
Ages, for during this period, civilization in western Europe reached a very low 
ebb. Schooling became almost nonexistent, Greek learning all but disappeared, 
and many of the arts and crafts bequeathed by the ancient world were forgot
ten. Only the monks of the Catholic monasteries and a few cultured laymen 
preserved a slender thread of Greek and Latin learning. The period was marked 
by much physical violence and intense religious faith. The old social order gave 
way, and society became feudal and ecclesiastical.

The Romans had never taken to abstract mathematics; instead they con
tented themselves with practical aspects of the subject that were associated 
with commerce and civil engineering. With the fall of the Roman Empire and 
the subsequent cessation of much of east-west trade and the abandonment of 
state engineering projects, even these interests waned, and it is no exaggeration 
to say that very little in mathematics, beyond the development of the Christian 
calendar, was accomplished in the West during the whole of the half millen
nium covered by the Dark Ages.

Of the persons charitably credited with playing a role in the history 
of mathematics during the Dark Ages, we might mention the martyred 
Roman citizen Boethius, the British ecclesiastical scholars Bede and Alcuin, 
and the famous French scholar and churchman Gerbert, who became Pope 
Sylvester II.

The importance of Boethius (ca. 475-524) in the story of mathematics rests 
on the fact that his writings on geometry and arithmetic remained standard 
texts in the monastic schools for many centuries. These very meager works 
came to be considered as the height of mathematical achievement and, thus, 
well illustrate the poverty of the subject in Christian Europe during the Dark 
Ages. Boethius’ Geometry consists of nothing but the statements of the propo
sitions of Book I and a few selected propositions of Books III and IV of 
Euclid’s Elements, along with some applications to elementary mensuration, 
and the Arithmetic is founded on the tiresome and half mystical, but once 
highly reputed, work of Nicomachus of four centuries earlier. (It is contended 
by some that at least part of the Geometry is spurious.) With these works and 
his writings on philosophy, Boethius became the founder of medieval scholasti-
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cism. His high ideals and inflexible integrity led him into political troubles and 
he suffered a cruel end, for which the Church declared him a martyr.

Bede (ca. 673-735), later qualified as Bede the Venerable, was born in 
Northumberland, England, and became one of the greatest of the medieval 
Church scholars. His numerous writings include some on mathematical sub
jects, chief of which are his treatises on the calendar and on finger reckoning. 
Alcuin (735-804), born in Yorkshire, was another English scholar. He was 
called to France to assist Charlemagne in his ambitious educational project. 
Alcuin wrote on a number of mathematical topics and is doubtfully credited 
with a collection of puzzle problems that influenced textbook writers for many 
centuries (see Problem Study 8.1).

Gerbert (ca. 950-1003) was born in Auvergne, France, and early showed 
unusual abilities. He was one of the first Christians to study in the Moslem 
schools of Spain, and there is evidence that he may have brought back the 
Hindu-Arabic numerals, without the zero, to Christian Europe. He is said to 
have constructed abaci, terrestrial and celestial globes, a clock, and perhaps an 
organ. Such accomplishments corroborated the suspicions of some of his con
temporaries that he had traded his soul to the devil. Nevertheless, he steadily 
rose in the Church and was finally elected to the papacy as Sylvester II in 999. 
He was considered a profound scholar and wrote on astrology, arithmetic, and 
geometry [see Problem Study 8.1(f)], although his mathematical work is of no 
special value.

8 -2  The Period o f Transmission
About the time of Gerbert, the Greek classics in science and mathematics 
began to filter into western Europe. A period of transmission followed during 
which the ancient learning preserved by Moslem culture was passed on to the



western Europeans. This took place through Latin translations made by Chris
tian scholars traveling to Moslem centers of learning, through the relations 
between the Norman kingdom of Sicily and the East, and through western 
European commercial relations with the Levant and the Arabic world. The 
translations were mostly from Arabic to Latin, but there were also some from 
Hebrew to Latin and from Arabic to Hebrew and even some from Greek to 
Latin.

The loss of Toledo by the Moors to the Christians in 1085 was followed by 
an influx of Christian scholars to that city to acquire Moslem learning. Other 
Moorish centers in Spain were infiltrated, and the twelfth century became, in 
the history of mathematics, a century of translators. One of the earliest Chris
tian scholars to engage in this pursuit was the English monk Adelard of Bath 
(ca. 1120), who seems to have visited Spain between 1126 and 1129 and trav
eled extensively through Greece, Syria, and Egypt. Adelard is credited with 
Latin translations of Euclid’s Elements and of al-Khowarizmi’s astronomical 
tables. There are thrilling allusions to the physical risks run by Adelard in his 
acquisition of Arabic learning; to obtain the jealously guarded knowledge, he 
disguised himself as a Mohammedan student. Another early translator was the 
Italian, Plato of Tivoli (ca. 1120), who translated the astronomy of al-Battani, 
the Spherics of Theodosius, and various other works. A Jewish mathematician, 
Abraham bar Hiyya, known as Savasorda, is mentioned with Plato. He wrote in 
Hebrew a book titled Practical Geometry, which Plato, probably working with 
him, translated into Latin. It was through this work that the West first learned 
of the complete solution of the quadratic equation, and this had a great impact.
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The most industrious translator of the period was Gherardo of Cremona (1114- 
1187), who translated into Latin over ninety Arabian works, among which were 
Ptolemy's Almagest, Euclid’s Elements, and al-Khowarizmi’s algebra. He cer
tainly did not do all this himself, but also worked with members of the School of 
Translators founded by Archbishop don Raimundo shortly after the fall of 
Toledo. We have already, in Section 7-12, mentioned the part played by 
Gherardo of Cremona in the development of our word sine. Other noted trans
lators of the twelfth century were John of Seville and Robert of Chester.

The location and political history of Sicily made that island a natural meet
ing ground of East and West. Sicily started as a Greek colony, became part of 
the Roman Empire, linked itself with Constantinople after the fall of Rome, was 
held by the Arabs for about fifty years in the ninth century, recaptured by the 
Greeks, and then taken over by the Normans. During the Norman regime, the 
Greek, Arabian, and Latin tongues were used side by side, and diplomats 
frequently traveled to Constantinople and Baghdad. Many Greek and Arabian 
manuscripts in science and mathematics were obtained and translated into 
Latin. This work was greatly encouraged by the two rulers and patrons of 
science Frederick II (1194-1250) and his son Manfred (ca. 1231-1266).

Among the first cities to establish mercantile relations with the Arabic 
world were the Italian commercial centers at Genoa, Pisa, Venice, Milan, and 
Florence. Italian merchants came in contact with much of Eastern civilization, 
picking up useful arithmetical and algebraical information. These merchants 
played an important part in the dissemination of the Hindu-Arabic numeral 
system.

In the period of transmission discussed above, Spain turned out to be the 
most important link between Islam and the Christian world.

8 -3  Fibonacci and the Thirteenth Centuiy
At the threshold of the thirteenth century appeared Leonardo Fibonacci 
(“ Leonardo, son of Bonaccio,” ca. 1175-1250), the most talented mathemati
cian of the Middle Ages. Also known as Leonardo of Pisa (or Leonardo Pi
sano), Fibonacci was born in the commercial center of Pisa, where his father 
was connected with the mercantile business. Many of the large Italian busi
nesses in those days maintained warehouses in various parts of the Mediterra
nean world. It was in this way, when his father was serving as a customs 
manager, that young Leonardo was brought up in Bougie on the north coast of 
Africa. The father’s occupation early roused in the boy an interest in arith
metic, and subsequent extended trips to Egypt, Sicily, Greece, and Syria 
brought him in contact with Eastern and Arabic mathematical practices. Thor
oughly convinced of the practical superiority of the Hindu-Arabic methods of 
calculation, Fibonacci, in 1202, shortly after his return home, published his 
famous work called the Liber abaci.

The Liber abaci is known to us through a second rendition that appeared in 
1228. The work is devoted to arithmetic and elementary algebra and, although
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LEONARDO FIBONACCI
(David Smith Collection)

essentially an independent investigation, shows the influence of the algebras of 
al-Khowarizmi and Abu Kamil. The book profusely illustrates and strongly 
advocates the Hindu-Arabic notation and did much to aid the introduction of 
these numerals into Europe. The fifteen chapters of the work explain the read
ing and writing of the new numerals, methods of calculation with integers and 
fractions, computation of square and cube roots, and the solution of linear and 
quadratic equations both by false position and by algebraic processes. Negative 
and imaginary roots of equations are not recognized, and the algebra is rhetori
cal. Applications are given involving barter, partnership, alligation, and mensu- 
rational geometry. The work contains a large collection of problems that served

Incipit primum capitulum
N ouem  figure indorum he sunt

9 8 7 6 5 4 3 2 1
Cym his itaque nouem  figuris, et cum  hoc signo 0, quod arabice zephirum  

appellatur, scribitur quilibet numerus, ut inferius demonstratur.

[These are the nine figures o f  the Indians

9 8 7 6 5 4 3 2 1
With these nine figures, and with the sign 0 which in Arabic is called 

zephirum , any number can be written, as w ill below  be dem onstrated.]

The opening sentence of Fibonacci’s Liber abaci of 1202.
(C ourtesy o f  W est Virginia U niversity Library.)
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later authors as a storehouse for centuries. In Section 2-10, we mentioned one 
interesting problem from the collection that apparently evolved from a much 
older problem in the Rhind papyrus. Another problem, giving rise to the impor
tant Fibonacci sequence (1, 1, 2, 3, 5, . . . , *, y, x + y, . . .), and some other 
problems from the Liber abaci may be found in Problem Studies 8.2, 8.3, 
and 8.4.

In 1220, Fibonacci’s Practica geometriae appeared, a vast collection of 
material on geometry and trigonometry treated skillfully with Euclidean rigor 
and some originality. About 1225, Fibonacci wrote his Liber quadratorum, a 
brilliant and original work on indeterminate analysis, which has marked him as 
the outstanding mathematician in this field, between Diophantus and Fermat. 
These works were beyond the abilities of most of the contemporary scholars.

Fibonacci’s talents came to the attention of the patron of learning, Em
peror Frederick II, with the result that Fibonacci was invited to court to par
take in a mathematical tournament. Three problems were set by John of Pa
lermo, a member of the emperor’s retinue. The first problem was to find a 
rational number *, such that x2 + 5 and x2 -  5 shall each be squares of rational 
numbers. Fibonacci gave the answer* = 41/12, which is correct, since (41/12)2 
+ 5 = (49/12)2 and (41/12)2 -  5 = (31/12)2. The solution appears in the Liber 
quadratorum. The second problem was to find a solution to the cubic equation 
*3 + 2*2 + 10* = 20. Fibonacci attempted a proof that no root of the equation 
can be expressed by means of irrationalities of the form V a + \ rb , or, in other 
words, that no root can be constructed with straightedge and compasses. He 
then obtained an approximate answer, which, expressed in decimal notation, is 
1.3688081075, and is correct to nine places. The answer appears, without any 
accompanying discussion, in a work by Fibonacci entitled the Flos (“blossom” 
or “flower” ) and has excited some wonder. The third problem, also recorded in 
the Flos, is easier and may be found in Problem Study 8.4.

It is apparent that Fibonacci was an unusually capable mathematician, who 
had no rival during the whole nine hundred years of the Middle Ages. One of 
his better contemporaries was Jordanus Nemorarius, sometimes identified (but 
in all likelihood mistakenly) with the German monk Jordanus Saxus who, in 
1222, was elected the second general of the rapidly expanding Dominican or
der. He wrote several works dealing with arithmetic, algebra, geometry, and 
statistics. These prolix works, some of which enjoyed considerable fame at one 
time, may now seem largely trivial, but his algebra was the first forward treat
ment composed in western Europe. He was perhaps the first one widely to use 
letters to represent general numbers, although his practice had little influence 
on subsequent writers. There is only one instance in which Fibonacci did this. 
In spite of the bleak picture often given of the mathematics of the thirteenth 
century, it was the early part of that century that saw the high point of medieval 
achievement in arithmetic, geometry, and algebra.

Perhaps mention should also be made of Sacrobosco (John of Holywood, 
or John of Halifax), Campanus, and Roger Bacon. The first taught mathematics 
in Paris and wrote a collection of arithmetical rules and a popular compilation 
of extracts from Ptolemy’s Almagest and the works of Arabian astronomers.
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Campanus’ chief bid to fame is his Latin translation of Euclid’s Elements, 
mentioned in Section 5-3. Roger Bacon, original genius that he was, had little 
ability in mathematics, but he was acquainted with many of the Greek works in 
geometry and astronomy, and, as his eulogies attest, fully appreciated the value 
of the subject.

The early part of the thirteenth century saw the rise of the universities at 
Paris, Oxford, Cambridge, Padua, and Naples. Universities later became po
tent factors in the development of mathematics, many mathematicians being 
associated with one or more such institutions.

8 -4  The Fourteenth Century
The fourteenth century was relatively barren, mathematically. It was the cen
tury of the Black Death, which swept away more than a third of the population 
of Europe, and the Hundred Years’ War, with its political and economic up
heavals in northern Europe, got well under way.

The greatest mathematician of the period was Nicole Oresme, who was 
born in Normandy about 1323. He died in 1382 after a career that carried him 
from a college professorship to a bishopric. He wrote five mathematical works 
and translated some of Aristotle. In one of his tracts appears the first known 
use of fractional exponents (not, of course, in modern notation); in another 
tract, he locates points by coordinates, thus foreshadowing modern coordinate 
geometry. A century later, this last tract enjoyed several printings, and it may 
have influenced Renaissance mathematicians and even Descartes. In an unpub
lished manuscript, he also obtained the sum of the series

This makes him one of the forerunners of infinitesimal analysis.
Although European mathematics during the Middle Ages was essentially 

practical, speculative mathematics did not entirely die out. The meditations of 
scholastic philosophers led to subtle theorizing on motion, infinity, and the 
continuum, all of which are fundamental concepts in modern mathematics. The 
centuries of scholastic disputes and quibblings may, to some extent, account 
for the remarkable transformation from ancient to modern mathematical think
ing, and might, as suggested by E. T. Bell, constitute a submathematical analy
sis. From this point of view, Thomas Aquinas (1226-1274), possessing perhaps 
the acutest mind of the thirteenth century, can well be considered as having 
played a part in the development of mathematics. Definitely more of the con
ventional mathematician was Thomas Bradwardine (1290-1349), who died as 
Archbishop of Canterbury. In addition to speculations on the basic concepts of 
the continuous and the discrete and on the infinitely large and the infinitely 
small, Brad warding wrote four mathematical tracts on arithmetic and ge
ometry.
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8 -5  The Fifteenth Century
The fifteenth century witnessed the start of the European Renaissance in art 
and learning. With the collapse of the Byzantine Empire, culminating in the fall 
of Constantinople to the Turks in 1453, refugees flowed into Italy, bringing with 
them treasures of Greek civilization. Many Greek classics, hitherto known only 
through the often inadequate Arabic translations, could now be studied from 
original sources. Also, about the middle of the century, printing was invented 
and revolutionized the book trade, enabling knowledge to be disseminated at an 
unprecedented rate. Toward the end of the century, America was discovered 
and soon the earth was circumnavigated.

Mathematical activity in the fifteenth century was largely centered in the 
Italian cities and in the central European cities of Nuremberg, Vienna, and 
Prague, and was concentrated on arithmetic, algebra, and trigonometry. Thus, 
mathematics flourished principally in the growing mercantile cities under the 
influence of trade, navigation, astronomy, and surveying.

Adhering to chronological order, we first mention Nicholas Cusa, who 
took his name from the city of Cues on the Mosel, where he was born in 1401. 
The son of a poor fisherman, he rose rapidly in the Church, finally becoming a 
cardinal. In 1448, he became governor of Rome. He was only incidentally a 
mathematician but did succeed in writing a few tracts on the subject. He is now 
remembered along these lines chiefly for his work on calendar reform and his 
attempts to square the circle and trisect the general angle (see Problem Study 
8.6). He died in 1464.

A better mathematician was Georg von Peurbach (1423-1461), who num
bered Nicholas Cusa as one of his teachers. After lecturing on mathematics in 
Italy, he settled in Vienna and made the university there the mathematical 
center of his generation. He wrote an arithmetic and some works on astron
omy, and compiled a table of sines. Most of these works were not published 
until after his death. He also had started a Latin translation, from the Greek, of 
Ptolemy’s Almagest.

The ablest and most influential mathematician of the century was Johann 
Muller (1436-1476), more generally known from the Latinized form of his 
birthplace of Konigsberg (“king’s mountain’’) as Regiomontanus. At a young 
age, he studied under Peurbach in Vienna and was later entrusted with the task 
of completing the latter’s translation of the Almagest. He also translated, from 
the Greek, works of Apollonius, Heron, and Archimedes. His treatise De 
triangulis omnimodis, written about 1464 but posthumously published in 1533, 
is his greatest publication and was the first systematic European exposition of 
plane and spherical trigonometry considered independently of astronomy. Re
giomontanus traveled considerably in Italy and Germany, finally settling in 
1471 at Nuremberg, where he set up an observatory, established a printing 
press, and wrote some tracts on astronomy. He is said to have constructed a 
mechanical eagle that flapped its wings and was considered as one of the 
marvels of the age. In 1475, Regiomontanus was invited to Rome by Pope 
Sixtus IV to partake in the reformation of the calendar. Shortly after his arrival,
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REGIOMONTANUS
(David Eugene Smith C ollection,
Rare B ook and Manuscript Library,
Columbia University)

at the age of forty, he suddenly died. Some mystery shrouds his death, for 
although most accounts claim he probably died of a pestilence, it was rumored 
that he was poisoned by an enemy.

Regiomontanus’ De triangulis omnimodis is divided into five books, the 
first two devoted to plane trigonometry and the other three to spherical trigo
nometry. In it he shows much interest in the determination of a triangle satisfy
ing three given conditions. On several occasions, he applies algebra, as in 
Propositions 12 and 23 of Book II: (II 12) Determine a triangle, given a side, the 
altitude on this side, and the ratio of the other two sides; (II 23) Determine a 
triangle, given the difference of two sides, the altitude on the third side, and the 
difference of the segments into which the altitude divides the third side. The 
algebra is rhetorical, an unknown part of the figure being found as a root of a 
quadratic equation. Although his methods were meant to be considered as 
general, he gives specific numerical values to the given parts. The only trigono
metric functions employed in De triangulis omnimodis are the sine and cosine. 
Later, however, Regiomontanus computed a table of tangents. In another 
work, Regiomontanus applied algebra and trigonometry to the problem of con
structing a cyclic quadrilateral, given the four sides.

The most brillant French mathematician of the fifteenth century was Nico
las Chuquet, who was born in Paris but lived and practiced medicine in Lyons. 
In 1484, he wrote an arithmetic known as Triparty en la science des nombres, 
which was not printed until the nineteenth century. The first of the three parts 
of this work concerns itself with computation with rational numbers, the sec
ond with irrational numbers, and the third with the theory of equations. Chu
quet recognized positive and negative integral exponents and syncopated some 
of his algebra. His work was too advanced, for the time, to exert much influ
ence on his contemporaries. He died around 1500. Some problems from Chu
quet may be found in Problem Study 8.9.
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In 1494 appeared the first printed edition of the Summa de arithmetical 
geometrica, proportioni et proportionalita, usually referred to briefly as the 
Suma, of the Franciscan friar Luca Pacioli (ca. 1445-1509). This work, freely 
compiled from many sources, purported to be a summary of the arithmetic, 
algebra, and geometry of the time. It contains little of importance not found in 
Fibonacci’s Liber abaci, but does employ a superior notation.

The arithmetical portion of the Suma begins with algorithms for the funda
mental operations and for extracting square roots. The presentation is rather 
complete, containing, for example, no less than eight plans for the performance 
of a multiplication. Mercantile arithmetic is fully dealt with and illustrated by 
numerous problems; there is an important treatment of double-entry bookkeep
ing. The rule of false position is discussed and applied. In spite of many numeri
cal mistakes, the arithmetical part of the work has become a standard authority 
on the practices of the time. The algebra in the Suma goes through quadratic 
equations and contains many problems that lead to such equations. The algebra 
is syncopated by the use of abbreviations such as p (from piu, “more”) for 
plus, m (from meno, “ less”) for minus, co (from cosa, “thing”) for the un
known x , ce (from censo) for x2, cu (from cuba) for x3, and cece (from censo- 
censo) for x4. Equality is sometimes indicated by ae (from aequalis). Fre
quently appearing bars indicate abbreviations, as in Suma for Summa. The 
work contains little of interest in geometry. As with Regiomontanus, algebra is 
employed in the solution of geometrical problems. After the Suma, algebra, 
which had been neglected for two hundred years, experienced a strong growth 
in Italy and also progressed in Germany, England, and France.

Pacioli traveled extensively, taught in various places, and wrote a number 
of other works, not all of which were printed. In 1509, he published his De 
divina proportione, which contains woodcuts of the regular solids that were 
drawn by Leonardo da Vinci during the time he lived with Pacioli and received 
lessons in mathematics from Pacioli.

The first appearance in print of our present + and -  signs is in an arith
metic published in Leipzig in 1489 by Johann Widman (born ca. 1460 in Bohe
mia). Here the signs are not used as symbols of operation but merely to indicate 
excess and deficiency. Quite likely the plus sign is a contraction of the Latin 
word et, which was frequently used to indicate addition, and it may be that the 
minus sign is contracted from the abbreviation m for minus. Other plausible 
explanations have been offered. The + and -  signs were used as symbols of 
algebraic operation in 1514 by the Dutch mathematician Vander Hoecke, but 
they were probably so used earlier.1

8 -6  The Early Arithmetics
With the interest in education that accompanied the Renaissance, and with the 
tremendous increase in commercial activity at the time, hosts of popular text
books in arithmetic began to appear. Three hundred such books were printed in

1 See J. W. L. Glaisher, “On the early history of the signs + and -  and on the early German 
arithmeticians,” Messenger o f Mathematics 51 (1921-1922): 1-148.
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Europe prior to the seventeenth century. These texts were largely of two 
types—those written in Latin by classical scholars who often were attached to 
the Church schools, and those written in the vernaculars by practical teachers 
interested in preparing boys for commercial careers. These teachers often also 
served as town surveyors, notaries, and gaugers, and included the influential 
Rechenmeisters supported by the Hanseatic League, a powerful protective 
union of commercial towns in the Teutonic countries.

The earliest printed arithmetic is the anonymous and now extremely rare 
Treviso Arithmetic, published in 1478 in the town of Treviso, which was located

per fm veiimn grofft a ozo*

1 fia X 4 fa X 4
x fta *4 €1 4 &
3 fa 2-4 fa a %
4 fa %4 fa 9 &
$ fa 3L4 fa i z o

6 fa X 4 fa 14 4
1 fa X 4 fa t 6$
3 fa 2,4 fa i  9Z
9 fa % 4 fa z i 6
0 fa Z 4 fa 0

per fare xx grolli a 020 pijoli*
i fta 3 * fa 3 z
% fia 3 * fa 6 4
3 fta 3 & fa
4 fm 3 & fa i x 5
5 fa 3 % fa t 6 O
6 fa 3 % fa 1 £ X
*2 fta 3 * fa x z 4
$ fa 3 * fa z 5 £
9 fa 3 ^ fa
0 fa 3 % fa 0

per fare x>iqmrti fcaram’,

§ fta 3 6 fa 3 6
x fm 3 6 fi * z
3 fta 3 6 fa 1 0 S
4 fa 3<S fit ■ 4 4

A page from the Treviso Arithmetic of 1478, showing the 
already well-formed appearance of the Hindu-Arabic numer
als. (By perm ission o f the Houghton Library, Harvard Uni
versity.)
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on the trade route linking Venice with the north. It is largely a commercial 
arithmetic devoted to explaining the writing of numbers, computation with 
them, and applications to partnership and barter. Like the earlier “algorithms” 
of the fourteenth century, it also contains some recreational questions. It is the 
first printed book in the Western world devoted to mathematics.

Far more influential in Italy than the Treviso Arithmetic was the commer
cial arithmetic written by Piero Borghi. This highly useful work was published 
in Venice in 1484 and ran through at least seventeen editions, the last appearing 
in 1557. In 1491, there appeared in Florence a less important arithmetic by 
Filippo Calandri, but interesting to us because it contains the first printed 
example of our modern process of long division and also the first illustrated 
problems published in Italy. We have already considered Pacioli’s Suma, pub
lished in 1494, a large portion of which is devoted to arithmetic. Much informa
tion regarding the Italian commercial customs of the time may be gleaned from 
the problems of this book.

Very influential in Germany was Widman’s arithmetic, published in 1489 at 
Leipzig. Another important German arithmetic was that written by Jacob Ko- 
bel (1470-1533), a Rechenmeister of Heidelberg. The popularity of this arith
metic, published in 1514, is attested by the fact that it ran through at least 
twenty-two editions. But perhaps the most influential of the German commer
cial arithmetics was that of Adam Riese (ca. 1489-1559), published in 1522. So 
reputable was this work that, even today in Germany, the phrase nach Adam 
Riese is used to indicate a correct calculation.

A humorous anecdote is told about Adam Riese. It seems that one day 
Riese and a draftsman entered into a friendly contest to see which of them 
could, with straightedge and compasses, draw more right angles in one minute. 
The draftsman drew a straight line, and then proceeded, by the standard con
struction now taught in high school, to erect perpendiculars to the line. Adam 
Riese drew a semicircle on a straight line, and then in rapid order drew a large 
number of inscribed right angles. He easily won the contest.

England, too, produced some noted early arithmetics. The first published 
work in England devoted exclusively to mathematics was an arithmetic written 
by Cuthbert Tonstall (1474-1559). This book, founded on Pacioli’s Suma, was 
printed in 1552 and was written in Latin. During his eventful life, Tonstall filled 
a number of ecclesiastical and diplomatic posts. The regard of his contempo
raries for his scholarship is indicated by the fact that the first printed edition of 
Euclid’s Elements in Greek (1533) was dedicated to him. But the most influen
tial English textbook writer of the sixteenth century was Robert Recorde (ca. 
1510-1558). Recorde wrote in English, his works appearing as dialogues be
tween master and student. He wrote at least five books, his first being an 
arithmetic fancifully entitled The Grovnd o f Artes and published about 1542. 
This work enjoyed at least twenty-nine printings. Recorde studied at Oxford 
and then took a medical degree at Cambridge. He taught mathematics in private 
classes at both institutions while in residence there and after leaving Cambridge 
served as physician to Edward VI and Queen Mary. In later life, he became 
Comptroller of the Mines and Monies in Ireland. His last years were spent in 
prison, probably for some misdemeanor connected with his work in Ireland.
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8-7  Beginnings of Algebraic Symbolism
Besides his arithmetic, mentioned in the last section, Robert Recorde wrote an 
astronomy, a geometry, an algebra, a book on medicine, and probably some 
other works now lost. The book on astronomy, printed in 1551, is called The 
Castle o f Knowledge and was one of the first works to introduce the Coperni- 
can system to English readers. Recorde’s geometry, The Pathewaie to Knowl
edge, was also printed in 1551 and contains an abridgment of Euclid’s Ele
ments, Of historical interest here is Recorde’s algebra, The Whetstone o f Witte, 
published in 1557, for it was in this book that our modern symbol for equality 
was used for the first time. Recorde justified his adoption of a pair of equal 
parallel line segments for the symbol of equality “bicause noe 2 thynges can be 
moare equalle.”

Another of our modern algebraic symbols, the familiar radical sign 
(adopted perhaps because it resembles a small r, for radix), was introduced in 
1525 by Christoff Rudolff in his book on algebra entitled Die Coss. This book 
was very influential in Germany, and an improved edition of the work was 
brought out by Michael Stifel (1486-1567) in 1553. Stifel has been described as 
the greatest German algebraist of the sixteenth century. His best known mathe
matical work is his Arithmetica integra, published in 1544. It is divided into 
three parts devoted, respectively, to rational numbers, irrational numbers, and 
algebra. In the first part, Stifel points out the advantages of associating an 
arithmetic progression with a geometric one, thus foreshadowing the invention 
of logarithms nearly a century later. He also gives, in this part, the binomial 
coefficients up to the seventeenth order. The second part of the book is essen
tially an algebraic presentation of Euclid’s Book X, and the third part deals 
with equations. Negative roots of an equation are discarded, but the signs +, 

V  are used, and often the unknown is represented by a letter.
Stifel was one of the oddest personalities in the history of mathematics. He 

was originally a monk, was converted by Martin Luther, and became a fanatical 
reformer. His erratic mind led him to indulge in number mysticism. From an 
analysis of Biblical writings, he prophesied the end of the world on October 3, 
1533 and was forced to take refuge in a prison after ruining the lives of many 
believing peasants who had abandoned work and property to accompany him to 
heaven. An extreme example of Stifel’s mystical reasoning is his proof, by 
arithmography, that Pope Leo X was the “beast” mentioned in the Book of 
Revelation.2 From LEO DECIMVS he retained the letters, L, D, C, I, M, V, 
since these have significance in the Roman numeral system. He then added X , 
for Leo X  and because Leo decimus contains ten letters, and omitted the M, 
because it stands for mysterium . A rearrangement of the letters gave DCLXVI, 
or 666, the “number of the beast” in the Book o f Revelation. This discovery 
gave Stifel such extreme comfort that he believed his interpretation must have 
resulted from an inspiration from God.

2 “Let him that hath understanding count the number of the beast: for it is the number of a 
man; and his number is six hundred three score and six.” See W. F. White, A Scrap-Book of 
Elementary Mathematics, pp. 180-82.
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Some years later, Napier, the inventor of logarithms, showed that 666 
stands for the Pope of Rome, and his Jesuit contemporary, Father Bongus, 
declared that it stands for Martin Luther. Father Bongus’ reasoning ran as 
follows. If from A to I represents 1 to 9, from K to S represents 10 to 90 (by 
tens), and T to Z represents 100 to 500 (by hundreds),3 we obtain

M A R T I N  L V T E R A  
30 1 80 100 9 40 20 200 100 5 80 1

which gives, as a sum, 666.
During World War I, arithmography was used to show that 666 must be 

interpreted as Kaiser Wilhelm, and later it was shown to represent Hitler. It has 
been shown that 666 spells Nero, when expressed in the letter symbols of the 
Aramaic language in which the Book o f Revelation was originally written.
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8 -8  Cubic and Quartic Equations
Probably the most spectacular mathematical achievement of the sixteenth cen
tury was the discovery, by Italian mathematicians, of the algebraic solution of 
cubic and quartic equations. The story of this discovery, when told in its most 
colorful version, rivals any page ever written by Benvenuto Cellini. Briefly 
told, the facts seem to be these. About 1515, Scipione del Ferro (1465-1526), a 
professor of mathematics at the University of Bologna, solved algebraically the 
cubic equation x3 + mx = n, probably basing his work on earlier Arabic 
sources. He did not publish his result but revealed the secret to his pupil 
Antonio Fior. Now about 1535, Nicolo Fontana of Brescia, commonly referred 
to as Tartaglia4 (the stammerer) because of a childhood injury that affected his 
speech, claimed to have discovered an algebraic solution of the cubic equation 
x3 + px2 = n. Believing this claim was a bluff, Fior challenged Tartaglia to a 
public contest of solving cubic equations, whereupon the latter exerted himself 
and only a few days before the contest found an algebraic solution for cubics 
lacking a quadratic term. Entering the contest equipped to solve two types of 
cubic equations, whereas Fior could solve but one type, Tartaglia triumphed 
completely. Later Girolamo Cardano,5 an unprincipled genius who taught 
mathematics and practiced medicine in Milan, upon giving a solemn pledge of 
secrecy, wheedled the key to the cubic from Tartaglia. In 1545, Cardano pub
lished his Ars magna, a great Latin treatise on algebra, at Neuremberg, Ger
many, and in it appeared Tartaglia’s solution of the cubic. Tartaglia’s vehement 
protests were met by Ludovico Ferrari, Cardano’s most capable pupil, who 
argued that Cardano had received his information from del Ferro through a

3 The Latin alphabet is like the English, except that it lacks j and w. Moreover, in the upper
case letters, a U appears as a V.

4 The g is silent. The name also appears as Tartalea.
5 The name also appears as Hieronymus Cardanus, Geronimo Cardano, and Jerome Cardan.
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third party and accused Tartaglia of plagiarism from the same source. There 
ensued an acrimonious dispute from which Tartaglia was perhaps lucky to 
escape alive.

Since the actors in the above drama seem not always to have had the 
highest regard for truth, one finds a number of variations in the details of the 
plot.

The solution of the cubic equation x3 + mx = n given by Cardano in his Ars 
magna is essentially the following. Consider the identity

(a -  b f  + 3ab(a -  b) = a3 -  b3.

If we choose a and b so that

3 ab — m, a3 — b3 — n,

then x is given by a -  b. Solving the last two equations simultaneously for a 
and b we find that

a = i/(n/2) + V(n/2)2 + (ml3)3, 

b = ^ —(nl2) + V(/j/2)2 + (ml3)3, 

and x is thus determined.
It was not long after the cubic had been solved that an algebraic solution 

was discovered for the general quartic (or biquadratic) equation. In 1540, the 
Italian mathematician Zuanne de Tonini da Coi proposed a problem to Cardano 
that led to a quartic equation (see Problem Study 8.15). Although Cardano was 
unable to solve the equation, his pupil Ferrari succeeded, and Cardano had the 
pleasure of publishing this solution also in his Ars magna.

Ferrari’s method of solving quartics, summarized in modern notation, is as 
follows. A simple transformation [see Problem Study 8.14(a)] reduces the com
plete quartic to one of the form

x4 + px2 + qx + r = 0.

From this we obtain

x4 + 2px2 + p 2 -  px2 -  qx -  r + p2

or

(x2 + p)2 = px2 — qx + p 2 — r,

whence, for arbitrary y,

( jc 2 + p +  y ) 2 =  px2 — qx +  p 2 — r +  2y{x2 +  p) +  y 2
= (p + 2y)x2 -  qx + (p2 — r + 2py + y 2).



Now let us choose y so that the right member of the above equation is a square. 
This is the case when6

4(p + 2y)(p2 -  r + 2py + y2) -  g2 = 0.

But this is a cubic in y, and may be solved by previous methods. Such a value of 
y reduces the original problem to nothing but extraction of square roots.

Other algebraic solutions of the general cubic and quartic equations have 
been given. In the next section, we shall consider the methods devised by the 
sixteenth-century French mathematician Francois Viete. A solution of quartics 
given by Descartes in 1637 may be found in many of the standard college 
textbooks on the theory of equations [see Problem Study 10.4(e)].

Since the solution of the general quartic equation is made to depend on the 
solution of an associated cubic equation, Euler, about 1750, attempted similarly 
to reduce the solution of the general quintic equation to that of an associated 
quartic equation. He failed in this attempt, as did Lagrange about thirty years 
later. An Italian physician, Paola Ruffini (1765-1822), in 1803, 1805, and 1813 
supplied an incomplete proof of what is now known to be a fact, that the roots 
of a general fifth, or higher, degree equation cannot be expressed by means of 
radicals in terms of the coefficients of the equation. This remarkable fact was 
independently and conclusively established later, in 1824, by the famous Nor
wegian mathematician Niels Henrik Abel (1802-1829). In 1858, Charles Her- 
mite (1822-1901) gave a solution of the general quintic equation by means of 
elliptic functions. Hermite’s success with the quintic equation later led to the 
fact that a root of the general equation of degree n can be represented in terms 
of the coefficients by means of Fuchsian functions. Modern developments in 
the theory of equations are very fascinating, but too advanced to be considered 
here, and involve such names as Bring, Jerrard, Tschirnhausen, Galois, Jor
dan, and many others.

Girolamo Cardano is one of the most extraordinary characters in the his
tory of mathematics. He was born in Pavia in 1501 as the illegitimate son of a 
jurist and developed into a man of passionate contrasts. He commenced his 
turbulent professional life as a doctor, studying, teaching, and writing mathe
matics while practicing his profession. He once traveled as far as Scotland, 
and, upon his return to Italy, he successively held important chairs at the 
Universities of Pavia and Bologna. He was imprisoned for a time for heresy 
because he published a horoscope of Christ’s life. Resigning his chair in Bolo
gna he moved to Rome and became a distinguished astrologer, receiving a 
pension as astrologer to the papal court. He died in Rome in 1576, by his own 
hand, one story says, so as to fulfill his earlier astrological prediction of the date 
of his death. Many stories are told of his wickedness, as when in a fit of rage he 
cut off the ears of his younger son. Some of the stories could be exaggerations
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6 A necessary and sufficient condition for the quadratic Ax2 A Bx A C to be the square of a 
linear function is that the discriminant, B2 -  4AC, vanish.



of his enemies, and it may be that he has been maligned. His autobiography, of 
course, supports this viewpoint.

One of the most gifted and versatile men of his time, Cardano wrote a 
number of works on arithmetic, astronomy, physics, medicine and other sub
jects. His greatest work is his Ars magna, the first great Latin treatise devoted 
solely to algebra. Here notice is taken of negative roots of an equation and 
some attention is paid to computations with imaginary numbers. There also 
occurs a crude method for obtaining an approximate value of a root of an 
equation of any degree. There is evidence that he was familiar with Descartes’ 
rule of signs, explained in Problem Study 10.3. As an inveterate gambler, 
Cardano wrote a gambler’s manual in which some interesting questions on 
probability are considered.

Tartaglia had a hard childhood. He was born about 1499 at Brescia to poor 
parents and was present at the taking of Brescia by the French in 1512. During 
the brutalities that accompanied this event, Tartaglia and his father (who was a 
postal messenger at Brescia) fled with many others into the cathedral for sanc
tuary, but the soldiers pursued and a massacre took place. The father was 
killed, and the boy, with a split skull and a severe saber cut that cleft his jaws 
and palate, was left for dead. When the boy’s mother later reached the cathe
dral to look for her family, she found her son still alive and managed to carry 
him off. Lacking resources for medical assistance, she recalled that a wounded 
dog always licks the injured spot, and Tartaglia later attributed his recovery to 
this remedy. The injury to his palate caused a lifelong imperfection in his 
speech, from which he received his nickname of “ the stammerer.” His mother 
gathered together sufficient money to send him to school for fifteen days, and 
he made the best of the opportunity by stealing a copybook from which he
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subsequently taught himself how to read and write. It is said that lacking the 
means to buy paper, he was obliged to use the tombstones in the cemetery as 
slates. He later earned his livelihood teaching science and mathematics in 
various Italian cities. He died in Venice in 1557.

Tartaglia was a gifted mathematician. We have already reported his work 
on the cubic equation. He is also credited with being the first to apply mathe
matics to the science of artillery fire. He wrote what is generally considered the 
best Italian arithmetic of the sixteenth century, a two-volume treatise contain
ing full discussion of the numerical operations and commercial customs of the 
time. He also published editions of Euclid and Archimedes.

In 1572, a few years before Cardano died, Rafael Bombelli published an 
algebra that was a noteworthy contribution to the solution of the cubic equa
tion. It is shown in textbooks on the theory of equations that if (n/2)2 + (ml3)3 is 
negative, then the cubic equation jc3 + mx = n has three real roots. But in this 
case, in the Cardano-Tartaglia formula, these roots are expressed by the differ
ence of two cube roots of complex imaginary numbers. This seeming anomaly 
is known as the irreducible case in cubics and considerably bothered the early 
algebraists. Bombelli pointed out the reality of the apparently imaginary roots 
in the irreducible case. Bombelli also improved current algebraic notation. 
Consider, for instance, his use of a bracket symbol. Thus, the compound ex
pression V 7 + V i4  would have been written by Pacioli as RV  7 p R 14, where 
R V, the radix universalis, indicates that the square root is to be taken of all that
follows; Bombelli would have written this as Rl__7 p R 14__ I. Bombelli distin-
guished square and cube roots by writing R q and R c, and indicated V - l l  by 
di m R q 11.
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8 -9  Francois Viete

The greatest French mathematician of the sixteenth century was Francois 
Viete, frequently called by his semi-Latin name of Vieta, a lawyer and member 
of parliament who devoted most of his leisure time to mathematics. He was 
born in 1540 at Fontenay and died in 1603 in Paris.

Some entertaining anecdotes are told about Viete. There is a story about 
an ambassador from the Low Countries who boasted to King Henry IV that 
France had no mathematician capable of solving a problem proposed in 1593 by 
his countryman Adrianus Romanus (1561-1615), which required the solution of 
a forty-fifth degree equation. Viete was summoned and shown the equation. 
Recognizing an underlying trigonometric connection, he was able, in a few 
minutes, to give two roots and later gave twenty-one more. The negative roots 
escaped him. In return, Viete challenged Romanus to solve the problem of 
Apollonius (see Section 6-4), but Romanus was unable to obtain a solution 
using Euclidean tools. When he was shown the proposer’s elegant solution, he 
traveled to Fontenay to meet Viete, and a warm friendship developed. There is 
also a story of how Viete successfully deciphered a Spanish code containing 
several hundred characters, and for two years France profited thereby in its 
war against Spain. So certain was King Philip II that the code was undecipher
able that he complained to the Pope that the French were employing magic 
against his country, “contrary to the practice of the Christian faith.” It is said 
that when absorbed with mathematics, Viete would closet himself in his study 
for days.

Viete wrote a number of works on trigonometry, algebra, and geometry, 
chief of which are the Canon mathematicus seu ad triangula (1579), the In

FRANCOIS VIETE
(Brown Brothers)
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artem analyticam isagoge (1591), the Supplementum geometriae (1593), De 
numerosa potestatum resolutione (1600), and De aequationum recognitione et 
emendatione (published posthumously in 1615). These works, except the last, 
were printed and distributed at Viete’s own expense.

The Canon mathematicus seu ad triangula contains some notable contri
butions to trigonometry. It is perhaps the first book in western Europe to 
develop, systematically, methods for solving plane and spherical triangles with 
the aid of all six trigonometric functions. Considerable attention is paid to 
analytical trigonometry (see Problem Study 8.17). Viete obtained expressions 
for cos nO as a function of cos 0 for n = 1, 2, . . . , 9, and later suggested a 
trigonometric solution of the irreducible case in cubics.

Viete’s most famous work is his In artem , which did much for the develop
ment of symbolic algebra. In this text, Viete introduced the practice of using 
the vowels to represent unknown quantities and the consonants to represent 
known ones. Our present custom of using the later letters of the alphabet for 
unknowns and the early letters for knowns was introduced by Descartes in 
1637. Prior to Viete, it was common practice to use different letters or symbols 
for the various powers of a quantity. Viete used the same letter, properly 
qualified; thus, our x, x2, x3 were written by Viete as A, A quadratum, A 
cubum, and by later writers more briefly as A ,A q ,A  c. Viete also qualified the 
coefficients of a polynomial equation so as to render the equation homoge
neous, and he used our present + and -  signs, but he had no symbol for 
equality. Thus, he would have written

5BA2 -  2CA + A 3 = D

as

B 5 in A quad -  C piano 2 in A + A cub aequatur D solido.

Note how the coefficients C and D are qualified so as to make each term of the 
equation three dimensional. Viete used the symbol = between two quantities, 
not to indicate the equality of the quantities, but rather the difference between 
them.

In De numerosa, Viete gives a systematic process, which was in general 
use until about 1680, for successively approximating to a root of an equation. 
The method becomes so laborious for equations of high degree that one seven
teenth-century mathematician described it as “work unfit for a Christian.’’ 
Applied to the quadratic equation

x2 + mx = n

the method is as follows. Suppose x\ is a known approximate value of a root of 
the equation, so that the sought root may be written as x\ + x2. Substitution in 
the given equation yields
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Oi + x2)2 + m(x i + x2) = n,

or

X\2 + 2x\x2 + x22 + mx i + mx2 = ft.

Assuming x2 so small that x22 may be neglected, we obtain

n — x 2 — mx i 
2xi + m

Now from the improved approximation x\ + x2, we calculate in the same way a 
still better approximation xx + x2 + x3, and so on. Viete used this method to 
approximate a root of the sextic equation

Viete’s posthumously published treatise contains much of interest in the 
theory of equations. In this treatise, we find the familiar transformations for 
either increasing or multiplying the roots of an equation by a constant. Viete 
was aware of the expressions for the coefficients of polynomials, up through 
the fifth degree, as symmetric functions of the roots, and he knew the transfor
mation that rids the general polynomial of its next to the highest-degree term. 
In this treatise is found the following elegant solution of the cubic equation x3 + 
3ax = 2b, a form to which any cubic can be reduced. Setting

a quadratic in y3. We thus find y3, and then y, and then x. Viete’s solution of the 
quartic is similar to Ferrari’s. Consider the general depressed quartic

jc6 + 6000* = 191,246,976.

a

the given equation becomes

y6 + 2by3 = a3,

x4 + ax2 + bx = c,

which may be written as

x4 = c — ax2 — bx.

Adding x2y 2 + y4/4 to both sides yields



Now we choose y so that the right member is a perfect square. The condition 
for this is
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y 6 — ayA + 4 cy2 = 4 ac + b2,

a cubic in y2. Such a y may be found and the problem completed by extracting 
square roots.

Viete was an outstanding algebraist, so it is no surprise to learn that he 
applied algebra and trigonometry to his geometry. He contributed to the three 
famous problems of antiquity by showing that both the trisection and the dupli
cation problems depend upon the solution of cubic equations. In Section 4-8, 
we have mentioned Viete’s calculation of 7r and his interesting infinite product 
converging to 21 tt. In Section 6-4, we mentioned his attempted restoration of 
Apollonius’ lost work on Tangencies.

In 1594, Viete acquired some unfortunate notoriety by conducting an an
gry controversy with Clavius on the Gregorian reform of the calendar. Viete’s 
attitude in the matter was wholly unscientific.

8 -1 0  Other Mathematicians of the 
Sixteenth Century

Our account of the mathematics of the sixteenth century would not be complete 
without at least a brief mention of some of the other contributors. Of these are 
the mathematicians, Clavius, Cataldi, and Stevin, and the mathematical astron
omers Copernicus, Rhaeticus, and Pitiscus.

Christopher Clavius was bom in Bamberg, Germany, in 1537 and died in 
Rome in 1612. He added little of his own to mathematics, but probably did more 
than any other German scholar of the century to promote a knowledge of the 
subject. He was a gifted teacher and wrote highly esteemed textbooks on 
arithmetic (1583) and algebra (1608). In 1574, he published an edition of Eu
clid’s Elements that is valuable for its extensive scholia. He also wrote on 
trigonometry and astronomy and played an important part in the Gregorian 
reform of the calendar. As a Jesuit, he brought honor to his order.

Pietro Antonio Cataldi was born in Bologna in 1548, taught mathematics 
and astronomy in Florence, Perugia, and Bologna, and died in the city of his 
birth in 1626. He wrote a number of mathematical works, among which are an 
arithmetic, a treatise on perfect numbers, an edition of the first six books on the 
Elements, and a brief treatise on algebra. He is credited with taking the first 
steps in the theory of continued fractions.

The most influential mathematician of the Low Countries in the sixteenth 
century was Simon Stevin (1548-1620). He became quartermaster general for 
the Dutch army and directed many public works. In the history of mathematics, 
Stevin is best known as one of the earliest expositors of the theory of decimal 
fractions. In the history of physics, he is best known for his contribution to 
statics and hydrostatics. To the savants of his time, he was best known for his
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CHRISTOPHER CLAVIUS
(David Smith Collection)

works on fortifications and military engineering. To the general populace of his 
time, he was best known for his invention of a carriage that was propelled by 
sails and that ran along the seashore carrying twenty-eight people, easily out
stripping a galloping horse.

Astronomy has long contributed to mathematics; in fact, at one time, the 
name mathematician meant an astronomer. Prominent among the astronomers 
who stimulated mathematics was Nicolas Copernicus (1473-1543) of Poland.

NICOLAS COPERNICUS
(American Museum)



He was educated at the University of Cracow and studied law, medicine, and 
astronomy at Padua and Bologna. His theory of the universe was completed in 
1530 but was not published until the year of his death in 1543. Copernicus’ work 
necessitated the improvement of trigonometry, and Copernicus himself con
tributed a treatise on the subject.

The leading Teutonic mathematical astronomer of the sixteenth century, 
and a disciple of Copernicus, was Georg Joachim Rhaeticus (1514-1576). He 
spent twelve years with hired computers, forming two remarkable and still 
useful trigonometric tables. One was a ten-place table of all six of the trigono
metric functions for every 10" of arc; the other was a fifteen-place table for 
sines for every 10" of arc, along with first, second, and third differences. 
Rhaeticus was the first to define the trigonometric functions as ratios of the 
sides of a right triangle. It was because of the importunities of Rhaeticus that 
Copernicus’ great work was dramatically published just before the author died.

Rhaeticus’ table of sines was edited and perfected in 1593 by Bartholomaus 
Pitiscus (1561-1613), a German clergyman with a preference for mathematics. 
His very satisfactory treatise on trigonometry was the first work on the subject 
to bear this title.

In summarizing the mathematical achievements of the sixteenth century, 
we can say that symbolic algebra was well started, computation with the 
Hindu-Arabic numerals became standardized, decimal fractions were devel
oped, the cubic and quartic equations were solved and the theory of equations 
generally advanced, negative numbers were becoming accepted, trigonometry 
was perfected and systematized, and some excellent tables were computed. 
The stage was set for the remarkable strides of the next century.

It is interesting to note here that the first work on mathematics printed in 
the New World appeared in 1556 at Mexico City; it was a small commercial 
compendium by Juan Diez.
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Problem Studies

8.1 Problems from the Dark Ages

Alcuin of York (ca. 775) may have been the compiler of the Latin collection 
entitled Problems for the Quickening o f the Mind. Solve the following five 
problems from this collection.

(a) If 100 bushels of corn be distributed among 100 people in such a manner 
that each man receives 3 bushels, each woman 2, and each child \  of a 
bushel, how many men, women, and children were there?

(b) Thirty flasks— 10 full, 10 half-empty, and 10 entirely empty—are to be 
divided among 3 sons so that flasks and contents should be shared 
equally. How may this be done?

(c) A dog chasing a rabbit, which has a start of 150 feet, jumps 9 feet every 
time the rabbit jumps 7. In how many leaps does the dog overtake the 
rabbit?
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(d) A wolf, a goat, and a cabbage must be moved across a river in a boat 
holding only one besides the ferryman. How must he carry them across 
so that the goat shall not eat the cabbage, nor the wolf the goat?

(e) A dying man wills that if his wife, being with child, gives birth to a son, 
the son shall inherit I and the widow \  of the property, but if a daughter 
is born, she shall inherit T2 and the widow T2 of the property. How is the 
property to be divided if both a son and a daughter are born? (This 
problem is of Roman origin. The solution given in Alcuin’s collection is 
not acceptable.)

(f) In his Geometry, Gerbert solved the problem, considered very difficult 
at the time, of determining the legs of a right triangle whose hypotenuse 
and area are given. Solve this problem.

(g) Gerbert expressed the area of an equilateral triangle of side a as 
(ia/2)(a -  a ll). Show that this is equivalent to taking V3 = 1.714.

8.2 The Fibonacci Sequence

(a) Show that the following problem, found in the Liber abaci, gives rise to 
the Fibonacci sequence: 1, 1, 2, 3, 5, 8, . . . , x, y, x + y, . . . .

How many pairs of rabbits can be produced from a single pair in a 
year if every month each pair begets a new pair, which, from the 
second month on, becomes productive?

( b )  If un represents the nth term of the Fibonacci sequence, show that
1. U n+1 U „ - 1 = M„2 + (-1)", f l § 2 .

2. u„ = [(1 + V 5)n -  (1 -  V5)"]/2"V5.

3. lim (unlun+1) = (V5 -  l)/2.
n — *ac

4. un and un+\ are relatively prime.
There is an extensive literature concerning the Fibonacci se

quence. For some of the more esoteric applications to dissection puz
zles, art, phyllotaxis, and the logarithmic spiral, see, for example,
E. P. Northrop, Riddles in Mathematics.

8.3 Problems from the Liber abaci

Solve the following problems found in the Liber abaci (1202). The first was 
posed to Fibonacci by a magister in Constantinople; the second was designed to 
illustrate the rule of three; the third is an example of an inheritance problem 
that reappeared in later works by Chuquet and Euler.

(a) If A gets from B 7 denarii, then A’s sum is fivefold B's ; if B gets from A 
5 denarii, then B's sum is sevenfold A ’s. How much has each?

( b )  A certain king sent 30 men into his orchard to plant trees. If they could 
set out 1000 trees in 9 days, in how many days would 36 men set out 
4400 trees?

(c) A man left to his oldest son 1 bezant and j  of what was left; then, from 
the remainder, to his next son he left 2 bezants and j  of what was left; 
then, from the new remainder, to his third son he left 3 bezants and j  of



what was left. He continued this way, giving each son 1 bezant more 
than the previous son and j  of what remained. By this division, it 
developed that the last son received all that was left and all the sons 
shared equally. How many sons were there and how large was the 
man’s estate?

8.4 Further Problems from Fibonacci

(a) Show that the squares of the numbers a2 -  lab  -  b2, a2 + b2, a2 + lab  
-  b2 are in arithmetic progression. If a = 5 and b = 4, the common 
difference is 720, and the first and third squares are 412 -  720 = 312 and 
412 + 720 = 492. Dividing by 122, we obtain Fibonacci’s solution to the 
first of the tournament problems—namely, find a rational number x 
such that x 2 + 5 and x 2 -  5 are each squares of rational numbers (see 
Section 8-3). The problem is insolvable if the 5 is replaced by 1, 2, 3, or
4. Fibonacci showed that if x and h are integers, such that x 2 + h and 
x 2 — h are perfect squares, then h must be divisible by 24. As examples 
we have 52 + 24 = 72, 52 -  24 = l2 and 102 + 96 = 142, 102 -  96 = 22.

( b )  Find a solution to the following problem, which is the third of the 
tournament problems solved by Fibonacci: Three men possess a pile of 
money, their shares being J, J, J. Each man takes some money from the 
pile until nothing is left. The first man then returns i  of what he took, 
the second i, and the third J. When the total so returned is divided 
equally among the men, it is found that each then possesses what he is 
entitled to. How much money was in the original pile, and how much 
did each man take from the pile?

(c) Solve the following problem given by Fibonacci in the Liber abaci. This 
problem reappeared in a remarkable number of variations. It contains 
the essence of the idea of an annuity.

A man entered an orchard through 7 gates, and there took a certain 
number of apples. When he left the orchard, he gave the first guard half 
the apples that he had and 1 apple more. To the second guard, he gave 
half his remaining apples and 1 apple more. He did the same to each of 
the remaining five guards, and left the orchard with 1 apple. How many 
apples did he gather in the orchard?

8.5 Star-Polygons

A regular star-polygon is the figure formed by connecting with straight lines 
every ath point, starting with some given one, of the n points that divide a 
circumference into n equal parts, where a and n are relatively prime and n >  2. 
Such a star-polygon is represented by the symbol {n/a}, and is sometimes called 
a regular n-gram. When a = 1, we have a regular polygon. Star-polygons made 
their appearance in the ancient Pythagorean school, where the {§} star-polygon, 
or pentagram, was used as a badge of recognition. Star-polygons also occur in 
the geometry of Boethius and the translations of Euclid from the Arabic by 
Adelard and Campanus. Bradwardine developed some of their geometric prop
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erties. They were considered also by Regiomontanus, Charles de Bouelles 
(1470-1533), and Johann Kepler (1571-1630).

(a) Construct, with the aid of a protractor, the star-polygons {f}, {!}, {5}, {§},m, m .
(b) Let (f>(n)9 called the Euler function, denote the number of numbers 

less than n and prime to it. Show that there are [</>(»]/2 regular n- 
grams.

(c) Show that if n is prime there are (n -  l)/2 regular tt-grams.
(d) Show that the sum of the angles at the “points” of the regular {n/a} 

star-polygon is given by (n -  2^)180°. (This result was given by 
Bradwardine.)

8.6 Jordanus and Cusa

(a) At the end of Book IV of his translation of Euclid’s Elements, Cam
panus describes an angle trisection that is exactly the same as that 
given by Jordanus in his De triangulis, a geometric work in four books 
containing 72 standard propositions, along with some others on such 
topics as the centroid of a triangle, curved surfaces, and similar arcs. 
The trisection, which employes the insertion principle (see Problem 
Study 4.6), runs as follows: Let 2̂ AOB, given as a central angle in a 
circle, be the angle we wish to trisect; through A, draw chord AD, 
cutting the diameter perpendicular to OB in E , such that ED = OA; 
then the line OF parallel to DA trisects 4 AOB. Prove the correctness of 
this construction.

(b) In his Tractatus de numeris dads, Jordanus has problems in which a 
given number is to be divided in some stated fashion. Thus, one of the 
early problems in the work is: Separate a given number into 2 parts, 
such that the sum of the squares of the parts shall be another given 
number. Solve this problem when the 2 given numbers are 10 and 58, 
respectively.

(c) Cusa gave a number of ways of approximating the circumference of a 
given circle. His best attempt is the following: Let M  be the center of an 
equilateral triangle ABC, and let D be the midpoint of side AB; let E be 
the midpoint of DB; then (f)ME, Cusa claimed, is the radius of a circle 
having a circumference equal to the perimeter of the equilateral trian
gle. Now draw a right triangle with legs RS = (f)ME and RT = (|)A£, 
and construct an angle a “of brass or wood” equal to angle RST. To 
rectify the circumference of a given circle, draw 2 pependicular diame
ters UOV and XOY; place the angle a with vertex at U and with 1 side 
along UOV; then the other side of the angle cuts XOY  produced in Z, 
such that OZ is half the sought circumference of the circle. Show that 
Cusa’s method approximates tt by (ft) V 2 l = 3.142337. . . .

8.7 Diirer and Magic Squares of Doubly Even Order

In Albrecht Diirer’s famous engraving Melancholia appears the fourth-order 
magic square pictured in Figure 68, wherein the date, 1514, in which the en-
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16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

FIGURE 68

Albrecht Diirer’s M elancholia .
(The British Museum)
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16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

FIGURE 69

graving was made, appears in the 2 middle cells of the bottom row. In addition 
to the usual “magic” properties, show that:

(a) The sum of the squares of the numbers in the top 2 rows is equal to the 
sum of the squares of the numbers in the bottom 2 rows.

(b) The sum of the squares of the numbers in the first and third rows is 
equal to the sum of the squares of the numbers in the second and fourth 
rows.

(c) The sum of the numbers in the diagonals is equal to the sum of the 
numbers not in the diagonals.

(d) The sum of the squares of the numbers in the diagonals is equal to the 
sum of the squares of the numbers not in the diagonals.

(e) The sum of the cubes of the numbers in the diagonals is equal to the 
sum of the cubes of the numbers not in the diagonals.

There is an easy way to construct magic squares of doubly even 
order—that is, magic squares whose orders are a multiple of 4. Con
sider, first of all, a square of order 4, and visualize the diagonals as 
drawn (see Figure 69). Beginning in the upper left corner, count across 
the rows from left to right in descending succession, recording only the

64 2 3 61 60 6 7 57

9 55 54 12 13 51 50 16

17 47 46 20 21 43 42 24

40 26 27 37 36 30 31 33

32 34 35 29 28 38 39 25

41 23 22 44 45 19 18 48

49 15 14 52 53 11 10 56

8 58 59 5 4 62 63 1

FIGURE 70



numbers in cells not cut by a diagonal. Now, beginning at the lower 
right corner, count across the rows from right to left in ascending 
succession, recording only the numbers in cells that are cut by a diago
nal. The resulting magic square is little different from Diirer’s square. 
The same rule applies to any magic square of order 4n if we visualize, 
as drawn in, the diagonals of all the n2 principal 4 x 4  sub-blocks. 
Figure 70 shows the construction of an 8 x 8 magic square by this rule.

(f) Construct a magic square of order 12.

8.8 Problems from Regiomontanus

Solve the following 3 problems, the first 2 of which are found in Regiomon
tanus’ De triangulis omnimodis (1464):

(a) Determine a triangle given the difference of 2 sides, the altitude on the 
third side, and the difference of the segments into which the altitude 
divides the third side. (The numerical values given by Regiomontanus 
are 3, 10, and 12.)

(b) Determine a triangle given a side, the altitude on this side, and the ratio 
of the other 2 sides. (The numerical values given by Regiomontanus are 
20, 5, and f.)

(c) Construct a cyclic quadrilateral, given the 4 sides.

8.9 Problems from Chuquet

Solve the following problems adopted from Chuquet’s Triparty en la science 
des nombres (1484):

(a) A merchant visited 3 fairs. At the first, he doubled his money and spent 
$30; at the second he tripled his money and spent $54; at the third, he 
quadrupled his money and spent $72, and then had $48 left. How much 
money had he at the start?

(b) A carpenter agrees to work under the conditions that he is to be paid 
$5.50 every day he works, but must pay $6.60 every day he does not 
work. At the end of 30 days, he finds he has paid out as much as he has 
received. How many days did he work?

(c) Two wine merchants enter Paris, one of them with 64 casks of wine, 
the other with 20. Since they have not enough money to pay the cus
toms duties, the first pays 5 casks of wine and 40 francs, and the second 
pays 2 casks of wine and receives 40 francs in change. What is the price 
of each cask of wine and the duty on it?

(d) Chuquet gave the regie des nombres moyens, which says that if a , b , c, 
d are positive numbers, then (a + b)l(c + d) lies between ale and bid. 
Prove this.

8.10 Problems from Pacioli

Solve the following 2 problems found in Pacioli’s Suma (1494). The second 
problem is an elaboration of the popular “frog-in-the-well problem” and has 
had many variants.
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(a) The radius of the inscribed circle of a triangle is 4, and the segments 
into which one side is divided by the point of contact are 6 and 8. 
Determine the other two sides.

(b) A mouse is at the top of a poplar tree that is 60 feet high, and a cat is on 
the ground at its foot. The mouse descends \  of a foot each day, and at 
night it turns back i  of a foot. The cat climbs 1 foot a day and slips back 
i  of a foot each night. The tree grows i  of a foot between the cat and the 
mouse each day and shrinks i  of a foot every night. How long will it 
take the cat to reach the mouse?

8.11 Early Commercial Problems

Solve the following problems found in early European arithmetics.
(a) This problem, from Buteo’s arithmetic of 1559, is based upon difficul

ties of the early Roman navigators.
Two ships that were 20,000 stadia apart weighed anchor to sail 

straight toward each other. It happened that the first one set sail at 
daybreak with the north wind blowing. Toward evening, when it had 
gone 1200 stadia, the north wind fell and the southwest wind rose. At 
this time, the other ship set sail and sailed 1400 stadia during the night. 
The first ship, however, was driven back 700 stadia by the contrary 
wind, but with the morning north wind it was driven ahead in the usual 
manner of outward sailing, while the other went back 600 stadia. Thus, 
alternately, night and day, the ships were carried along by a favorable 
wind and then driven back by an unfavorable one. I ask how many 
stadia the ships sailed in all and when they met.

(b) Here is a problem given by Tartaglia to illustrate the important matter 
of exchange.

If 100 lire of Modon money amounts to 115 lire in Venice, and if 
180 lire in Venice comes to 150 in Corfu, and if 240 lire Corfu money is 
worth as much as 360 lire in Negroponte, what is the value in Modon 
coinage of 666 lire Negroponte money?

(c) The early arithmetics gave many problems involving custom duties. 
Following is a problem of this sort adapted from Clavius’ arithmetic of 
1583.

A merchant bought 50,000 pounds of pepper in Portugal for 10,000 
scudi, paying a tax of 500 scudi. He carried it to Italy at a cost of 300 
scudi and there paid another duty of 200 scudi. The transportation from 
the coast to Florence cost 100 scudi, and he was obliged to pay an 
impost of 100 scudi to that city. Lastly, the government demanded a 
tax from each merchant of 1000 scudi. Now he is perplexed to know 
what price to charge per pound so that, after all these expenses, he may 
make a profit of A of a scudi a pound.

(d) In a practical manual for merchants written by the Florentine Ghaligai 
in 1521 occurs the following problem concerning profit and loss.

A man bought a number of bales of wool in London, each bale 
weighed 200 pounds, English measure, and each bale cost him 24 fl. He



sent the wool to Florence and paid carriage duties, and other expenses, 
amounting to 10 fl. a bale. He wishes to sell the wool in Florence at 
such a price as to make 20 percent on his investment. How much 
should he charge a hundredweight if 100 London pounds are equivalent 
to 133 Florentine pounds?

(e) Interest problems were very common. Here is one from Fibonacci’s 
Liber abaci of 1202.

A certain man puts 1 denarius at interest at such a rate that in 5 
years he has 2 denarii, and in 5 years thereafter the money doubles. I 
ask how many denarii he would gain from this 1 denarius in 100 years.

(f) The following problem is from Humphrey Baker’s The Well Spring of 
Sciences (1568) and concerns itself with partnership.

Two marchauntes haue companied together, the first hath layde in 
the first of Januarie, 640 li. The seconde can lay in nothing vntill the 
firste of April. I demaund how much he shall lay in, to the end that he 
may take halfe the gaynes. (Assume that the partnership is to last for 1 
year from the date of the first man’s investment.)

(g) Here is essentially an annuity problem from Tartaglia’s General trat- 
tato o f  1556. It should be borne in mind that this problem was proposed 
before the invention of logarithms.

A merchant gave a university 2814 ducats on the understanding 
that he was to be paid back 618 ducats a year for 9 years, at the end of 
which the 2814 ducats should be considered as paid. What compound 
interest was he getting on his money?

8.12 The Gelosia and Galley Algorithms

(a) The arithmetics of the fifteenth and sixteenth centuries contain descrip
tions of algorithms for the fundamental operations. Of the many 
schemes devised for performing a long multiplication, the so-called 
gelosia, or “grating,” method was perhaps the most popular. The 
method, which is illustrated in Figure 71 by the multiplication of 9876 
and 6789 to yield 67,048,164, is very old. It was probably first devel
oped in India (see Section 7-5), for it appears in a commentary on the 
Lilavati and in other Hindu works. From India, it made its way into 
Chinese, Arabian, and Persian works. It was long a favorite method 
among the Arabs, from whom it passed over to the Western Europe
ans. Because of its simplicity to apply, it could well be that the method 
would still be in use, but for the difficulty of printing, or even drawing, 
the needed net of lines. The pattern resembles the grating, or lattice, 
used in some windows. These were known as “gelosia,” eventually 
becoming “jalousie” (meaning “blind,” in French). Find the product 
of 80,342 and 7318 by the gelosia method.

(b) By far the most common algorithm for long division in use before 1600 
was the so-called galley, or scratch, method, which in all likelihood was 
of Hindu origin. To clarify the method, consider the following steps in 
the division of 9413 by 37.
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1. Write the divisor 37 below the divi
dend as shown. Obtain the first quo- 9413 | 
tient digit, 2, in the usual manner, and 37 
write it to the right of the dividend.

2. Think: 2x3 = 6, 9 - 6  = 3. Scratch 9 2
and 3 and write 3 above the 9. Think: 30
2 x 7 = 14, 34 -  14 = 20. Scratch 7, 3, 9413 |
4 and write 2 above the 3 and 0 above 27
the 4.

3. Write the divisor 37 one place to the
right, diagonally. The resultant divi- 1 
dend after Step 2 is 2013. Obtain the 23 
next quotient digit, 5. Think: 5x3=  206
15, 20 -  15 = 5. Scratch 3, 2, 0 and MX3 |
write 5 above the 0. Think: 5 x 7 = 35, 277
51 -  35 = 16. Scratch 7, 5, 1 and write 2 
1 above the 5 and 6 above the 1.

4. Write the divisor 37 one more place to
the right, diagonally. The resultant XI 
dividend after Step 3 is 163. Obtain the Z54 
next quotient digit, 4. Think: 4 x 3 = 2065
12, 16 -  12 = 4. Scratch 3, 1, 6 and MX2
write 4 above the 6. Think: 4 x 7 = 28, 2777
43 — 28 = 15. Scratch 7, 4, 3 and write 22
1 above the 4 and 5 above the 3.

5. The quotient is 254, with remainder 
15.

2

2

25

254 —



After a little practice, the galley method is found to be not nearly 
as difficult as it at first appears. Its popularity was due to the ease with 
which it can be used on a sand abacus, where the scratching is actually 
a simple erasing followed by a possible replacement. The name galley 
referred to a boat, which the outline of the finished problem was 
thought to resemble. The resemblance follows either by viewing the 
work from the bottom of the page, when the quotient appears as a 
bowsprit, or by viewing the work from the left side of the page, when 
the quotient appears as a mast. In this second viewpoint, the remainder 
was frequently written (as indicated above) like a flag on the top of the 
mast.

Divide 65,284 by 594, using the galley method. (This problem, 
solved in this way, appears in the Treviso Arithmetic of 1478.)

8.13 Gematria or Arithmography

Since many of the ancient numeral systems were alphabetical systems, it was 
natural to substitute the number values for the letters in a name. This led to a 
mystic pseudo-science known as gematria, or arithmography, which was very 
popular among the ancient Hebrews and others, and was revived during the 
Middle Ages.

(a) The word amen when written in Greek is ayjr\v. On this basis, explain 
why, in certain Christian manuscripts, the number 99 appears at the 
end of a prayer.

(b) Using gematria, “prove,” by English key, that of the 3 men, 
Roosevelt, Churchill, and Stalin, Roosevelt was the greatest political 
figure.

(c) “Beast” the following (all but the last in Roman, the last in Greek): 
LUDOVICUS (presumably Louis XIV), SILVESTER SECUNDUS 
(Gerbert, who reigned as Pope Sylvester II), PAULO V. VICE-DEO, 
VICARIUS FILII DEI, DOCTOR ET REX LATINUS, VICARIUS 
GENERALIS DEI IN TERRIS, DUX CLERI, GLADSTONE.

(d) Verify the following, found in De Morgan’s A Budget of Paradoxes:
1. “A Mr. James Dunlop was popping at the Papists with a 666-rifled 

gun, when Dr. Chalmers quietly said, ‘Why, Dunlop, you bear it 
yourself,’ and handed him a paper on which the numerals in 
IACOBVS DVNLOPVS were added up.”

2. “Mr. Davis Thom found a young gentleman of the name of St. 
Claire busy at the Beast number: he forthwith added the letters in err 
Kkoups and found 666.”

(e) John F. Bobalek submitted the following to English key: HOWARD W. 
EVES, A PROFESSOR OF MATHEMATICS AND DOCTOR OF 
PHILOSOPHY. Find Bobalek’s frightening discovery.

8.14 Cubic Equations

(a) Show that the transformation x = z — af na0 converts the n-ic equa
tion
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aoXn + a\xn 1 + a2xn 2 + . . . + an = 0

into an equation in z that lacks the (n -  l)st degree term.
(b) By (a), the transformation x = z — b!3a converts the cubic equation 

ax3 + bx2 + cx + d = 0 into one of the form z3 + 3Hz + G = 0. Find H  
and G in terms of a , b, c, d.

(c) Derive the Cardano-Tartaglia formula,

X = V („/2) + V(n/2)2 + (m/3? -  V - ( „ / 2) + V(«/2)2 + (mH?

for solving the cubic equation x3 + mx = n (see Section 8-8).
(d) Solve Jt3 + 63jc = 316, for 1 root, by both the Cardano-Tartaglia formula 

and Viete’s method.
(e) As an example of the irreducible case in cubics, solve x3 -  63x =162  

by the Cardano-Tartaglia formula. Then show that ( -3  + 2 V ^ 3)3 = 81 
+ 30 and ( -3  -  2 \ r-3 )3 = 81 -  30 V - 3 ,  whence the root given 
by the formula is - 6  in disguise.

8.15 Quartic Equations

(a) Cardano solved the particular quartic 13jc2 = x4 + 2jc3 + 2x + 1 by 
adding 3x2 to both sides. Do this and solve the equation for all 4 roots.

(b) Da Coi in 1540 proposed the following problem to Cardano: “Divide 10 
into 3 parts, such that they shall be in continued proportion and that the 
product of the first 2 shall be 6.” If the 3 parts be denoted by a , b, c, we 
have

a + b + c = 10, ac = b2, ab = 6.

Show that when a and c are eliminated we obtain the quartic equation

b4 + 6 b2 + 36 = 60b.

It was in trying to solve this quartic that Cardano’s pupil Ferrari dis
covered his general method.

(c) Obtain, by both Ferrari’s and Viete’s methods, the cubic equations 
associated with the quartic of (b).

8.16 Sixteenth-Century Notation

(a) Write, in Bombelli’s notation, the expression

VPVV68 + 2 -  ^V 68 -  2 ]•

(b) Write, in modern notation, the following expression that occurs in 
Bombelli’s work:

R c\ 4 p di m R q 11 |p R c\ 4 m di m R q 11 |
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(c) Write, in Viete’s notation,

A3 -  3BA2 + 4CA = 2D.

8.17 Problems from Viete

(a) Establish the following identities given by Viete in his Canon mathe- 
maticus seu ad triangula (1579):

sin a = sin (60° + a) -  sin (60° -  a),

a
esc a  + cot a = cot  ̂> 

a
esc a -  cot a = tan  ̂•

(b) Express cos 56 as a function of cos 6.
(c) Starting with x\ = 200, approximate, by Viete’s method, a root of x 2 + 

lx  = 60,750.
(d) Find the x2, of Viete’s method of successive approximations, for the 

cubic equation x3 + px2 + qx = r (see Section 8-9).
(e) Viete derived the formula

 ̂ . x + y x -  y 
sin x + sin y = 2 sin —^— cos —2—

from the diagram of Figure 72, wherein the angles x = DOA and y = 
COD appear as central angles of a unit circle. Fill in the details of the 
following sketch of Viete’s proof:

sin x + sin y = AB + CD = AE -  AC  cos x -  y
2

= 2 sin x + y 
~ 2 ~ cos x  -  y

2 '

FIGURE 72
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8.18 Problems from Clavius

Solve the following recreational problems in Clavius’ algebra of 1608.
(a) In order to encourage his son in the study of arithmetic, a father agrees 

to pay his boy 8 cents for every problem correctly solved and to fine 
him 5 cents for each incorrect solution. At the end of 26 problems, 
neither owes anything to the other. How many problems did the boy 
solve correctly?

(b) If I were to give 7 cents to each of the beggars at my door, I would have 
24 cents left. I lack 32 cents of being able to give them 9 cents apiece. 
How many beggars are there, and how much money have I?

(c) A servant is promised $100 and a cloak as his wages for a year. After 7 
months, he leaves this service and receives the cloak and $20 as his 
due. How much is the cloak worth?

8.19 Some Geometry

(a) Books IV and VI of Bombelli’s Algebra contain some geometry prob
lems that are solved algebraically. In one problem, Bombelli asks for 
the side of a square inscribed in a triangle ABC, in which AB = 13, 
BC = 14, CA = 15, such that 1 side of the square lies along BC. Solve 
this problem.

(b) Johannes Werner (1468-1528) wrote a Latin work, in 22 books, on the 
Elements o f Conics, printed at Nuremberg in 1522. In this work, 
Werner gives the following method of plotting points, with compass 
and straightedge, of a parabola having a given vertex V, axis VW, and 
latus rectum p. On WV produced, mark off VA = p. Draw any circle of 
radius greater than p! 2, with center on AW, and passing through A. Let 
this circle cut AW  in B and the perpendicular to AW at V in C and C . 
Mark off on the perpendicular to AW at B the distances BP = BP' = 
VC. Then P and P' are points of the parabola. By drawing a sufficient 
number of circles, one can obtain as many points of the parabola as one 
pleases. Establish Werner’s construction.

(c) Albrecht Durer gave the following approximate construction of a regu
lar nonagon inscribed in a given circle of center O. Draw the concentric 
circle of radius 3 times that of the given circle and let AC'BA'CB' be a 
regular hexagon inscribed in this latter circle. With B' and C  as centers 
and with radii equal to OA, describe arcs connecting O and A and 
cutting the original circle in F and G. Then FG is very nearly equal to a 
side of the sought regular nonagon. It can be shown that angle FOG 
differs from 40° by less than 1°. Approximately inscribe a regular nona
gon in a given circle by Durer’s method.

For Durer’s approximate trisection of an arbitrary angle, see the 
penultimate paragraph of Section 4-6.

(d) Campanus, at the end of Book IV of his translation of Euclid’s Ele
ments, gives the following method of trisecting a given angle. Let the 
given angle AOB be placed with its vertex at the center of a circle 
of any chosen radius OA = OB. From O draw a radius OC perpendicu
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lar to OB. Through A, place a straight line AED such that ED = 
OA. Finally, draw a radius OF parallel to DEA. Then angle FOB = 
J (angle AOB). Establish the correctness of the construction, granting 
the use of the insertion principle (see Problem Study 4.6).

Essay Topics

8/1 Reasons for the low state of mathematics in Europe during most of the 
Middle Ages.

8/2 Mathematical recreations in the Middle Ages.
8/3 The number game Rithmomachia.
8/4 The effect of the loss of Toledo by the Moors in 1085 on European 

mathematics.
8/5 Gerbert and his influence on mathematics.
8/6 The transmission of ancient Greek and Hindu learning to Western Eu

rope after the Dark Ages.
8/7 The ubiquitous Fibonacci sequence.
8/8 The patrons of science Frederick II and his son Manfred.
8/9 Important factors in the development of Renaissance mathematics. 
8/10 Luca Pacioli (ca. 1445-1476).
8/11 Leonardo da Vinci and mathematics.
8/12 Regiomontanus (1436-1476).
8/13 Albrecht Durer and mathematics.
8/14 Copernicus (1473-1543).
8/15 The importance of the solution of cubic equations in the development of 

imaginary numbers.
8/16 The life and works of Robert Recorde.
8/17 Matteo Ricci (1552-1610).
8/18 Viete as the first really modern mathematician.
8/19 The history of decimal fractions.
8/20 The leading printed mathematical works of the fifteenth century.
8/21 Reasons for the prominence of commercial arithmetics in the latter half 

of the fifteenth century.
8/22 The Rechenmeisters.
8/23 Gematria.
8/24 Algorithms for long multiplication.
8/25 Algorithms for long division.
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Cultural Connection

PURITANS AND SEADOGS
The Expansion of Europe— 1492 to 1700 
(to accompany Chapters Nine, Ten, and 
Eleven)

Amm  starry, silver dusk settled over the great stone city of Tenochtitlan, capital 
of the Aztec Empire. It was a hot night, in the middle of June, 1520. An angry 
mob had gathered in a street outside a building used as a temporary headquar
ters by a small band of Spanish adventurers led by Hernan Cortes (1485-1547). 
A few days before, Cortes’ troops, with the acquiesence of the Aztec emperor, 
Moctezuma (14807-1520), had murdered two hundred Aztec nobles. Now, 
Moctezuma, in a desperate effort to calm the mob, emerged from the building 
onto a balcony. His furious subjects pelted him with stones, one of which 
struck his head as he staggered back inside. Three days later, Moctezuma died 
from his wounds, and Cortes’ army frantically prepared to battle an enraged 
empire.

We can only speculate as to what Moctezuma thought as he gulped the 
warm, dry night air and prepared to address his subjects for a final time. We do 
not know what he planned to say, or whether he expected to be killed by or 
protected by Cortes, whom Moctezuma probably considered the reincarnation 
of the magical god, Quetzalcoatl. Almost certainly, perhaps the moment the 
stone struck his head, he must have wondered “why?”

It would have been a poignant question. In the summer of 1520, white 
strangers, Cortes’ conquistadores, arrived on large boats from the eastern sea. 
They rode atop strange beasts, spoke an alien tongue, and sported mysterious 
weapons that spewed thunder and smoke and killed from great distances. They 
marched into Tenochtitlan, already having convinced many of the peasants in 
the countryside that they were gods; by the end of the summer, these strangers 
would conquer the most powerful empire in the Americas, tear down the great 
city of Tenochtitlan, and proclaim themselves rulers of all of Mexico. For 
centuries, the sandy land on Mexico’s high plateau had been ruled by a series of 
native empires that governed with a mixture of splendor and savagery, their 
sprawling stone cities monuments to the vitality of their civilization. For Mexi
cans, Cortes’ conquest marked the end of an era of native cultural brilliance 
that had brought irrigated agriculture, the domestication of animals, the emer
gence of variegated social classes, and the evolution of sophisticated govern
ments to Central America. To the Europeans who conquered it, however, the 
fall of the Aztec Empire was but one of many chapters, albeit bloodier than
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most, in the story of the Age of Exploration, the expansion of European inter
ests from the continent of Europe to every corner of the world.

The Age of Exploration began with commercial voyages. European mer
chants had begun to trade with Asia, through Moslem intermediaries, in the 
1300s and 1400s, a commerce that, as we saw in Cultural Connection VI, 
sparked the Renaissance. Italian cities, such as Venice, Genoa, Florence, and 
Naples, were well-positioned geographically for this new commerce, in which 
eastern goods, like spices and cloth, were brought across the Mediterranean 
Sea by ship. Less well-positioned were European merchants in cities on the 
Atlantic Ocean. These merchants, often with official backing from their govern
ments, sought out alternate trade routes. In the mid-1400s, shippers in Lisbon, 
Portugal, their voyages sponsored by the king’s brother, Prince Henry the 
Navigator (1394-1460), commenced a search for a water route to India around 
Africa. This search culminated in Vasco da Gama’s (ca. 1469-1524) successful 
expedition in 1497 to 1499. A chancier water route to Asia was postulated by 
the Italian Christopher Columbus (14517-1506), who in 1492 to 1493, spon
sored by the Spanish government, tried to reach India by sailing due west 
across the Atlantic Ocean. Instead of India, he reached America.

The race was on. Spanish, English, and French merchants, like Columbus, 
explored the Atlantic coast of North and South America, looking for a passage
way to China and India. Dutch traders, who were more realistic, followed the 
Portugese around Africa. Russians poked into Siberia, hunting for an overland 
trail to China.

Whereas the first stage of the Age of Exploration was characterized by 
commerce, the next phase was marked by conquest and annexation. Spanish 
conquistadores like Hernan Cortes violently established hegemony over native 
empires—the Aztecs in Mexico (1520), the Incas in Peru (1530-1535), the 
Chibchas in Colombia (1536)—and over disunited tribal communities in the 
West Indies (1492-1511), Argentina (1530s), Chile (1540s), and the Philippines 
(1560s). The Portuguese erected fortresses on foreign soil in India (1510), the 
East Indies (1511), an island in the Persian Gulf (1515), and China (1557). By 
1600, the Portuguese also controlled vast stretches of the African coast, several 
towns in India, the island of Timor in the East Indies, and most of Brazil. 
Between 1608 and 1703, the French built a string of forts in North America in 
the St. Lawrence and Mississippi River valleys, at the same time as the English 
were doing the same on the eastern seaboard of what would later become the 
United States. The Dutch constructed forts in Africa, India, the East Indies, 
and Taiwan between 1602 and 1700, including major enclaves at Batavia (1619), 
now Djakarta, on the island of Java, and at Cape Town (1652) at the southern 
tip of Africa. After 1462, Russia expanded eastward into Siberia, most of which 
was annexed by 1689.

Most of the lands conquered or otherwise annexed by European countries 
in the Age of Exploration were neither militarily powerful nor politically or 
technologically advanced. The Aztec and Inca Empires had just emerged from 
the first stages of their agricultural revolution and, although densely populated, 
lacked weaponry as advanced as Spanish cannon and firearms. Coastal Africa,



Siberia, and most of the Americas were populated by tribal peoples, had rela
tively low population densities (the more densely populated states of inland 
Africa remained independent until the nineteenth century), and were also with
out guns. More powerful non-European countries, such as the various Moslem 
states, China, and Japan, remained independent. European expansion during 
the Age of Exploration came largely at the cost of the weak.

The third stage of the Age of Exploration was colonization, the actual 
migration of Europeans to other continents. European colonies in America, 
Africa, and Asia were of several kinds. Some colonies were centered around 
the extraction of raw materials, like the Spanish silver-mining colonies in Peru 
and the British fishing colony of Newfoundland; others were commercial out
posts, like the English and French fur-trading “factories” in Canada. Some 
colonies were military garrisons that guarded vital waterways, like the Dutch 
Cape Colony; others were agricultural colonies, such as English Virginia, 
Spanish Cuba, and Portuguese Brazil. Still other colonies served as havens for 
religious and political minorities, like the English settlements in Pennsylvania 
and New England. Most colonies served several of these functions. New 
England colonists, for example, caught cod and other fish, cut timber, traded 
for furs with the Indians, and farmed—all this in addition to their more cele
brated goal of establishing model religious communities that they hoped would 
“be as a beacon unto the world.” In most cases, native peoples were over
whelmed by the newcomers, either outnumbered or outgunned, and assumed 
the status of a lower class, which was the fate of blacks in Cape Colony and 
Indians in Peru. Natives either toiled in mines or as field hands, or were forc
ibly evicted and pushed further into the wilderness. Black Africans were often 
enslaved, either to work as menial laborers in the African colonies or to be 
shipped to colonies in the Americas, where there was a labor shortage. Every 
major European colonial power except Russia enslaved black Africans in large 
numbers, and the Spanish also enslaved Indians.

Europeans also fought with one another in the race for overseas riches. 
English raiders, called “ sea dogs,” preyed upon Spanish shipping. French 
settlements in Florida and Brazil were sacked by Spanish and Portuguese ar
mies, and Frenchmen and Englishmen skirmished in the oak and pine forests of 
North America. Outposts often changed hands. The English were particularly 
adept at the game of flag changing; they acquired the Dutch outposts of Cape 
Town and New Amsterdam (New York), and several of the West Indies islands 
from Spain.

We have described the form and substance of European expansion over
seas between 1492 and 1700. Now let us return to Moctezuma’s “why?” Euro
peans had been aware of the general pattern of world geography for centuries. 
Eratosthenes, the third-century B.C. Alexandrian mathematician and geogra
pher whom we met in Cultural Connection IV, knew that the world was spheri
cal, was aware of its approximate circumference, and understood the general 
shapes of Europe, Africa, and Asia. Scandinavians had encountered North 
America in approximately A.D. 1000, and even planted unsuccessful settle
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ments in Greenland and Newfoundland. Irish, English, French, and Basque 
fishermen almost certainly visited North America regularly before 1492, to take 
cod in the offshore waters; however, these activities never led to widespread 
commerce with overseas lands, nor to permanent conquest and colonization. 
Why, then, in the 1500s and 1600s, did European civilization so suddenly 
expand and change so dramatically the way of life of people living in America, 
Africa, and Asia?

We first must understand the Age of Exploration as a natural outgrowth of 
the European Renaissance of the 1300s and 1400s. Trade with the Moslem 
world stimulated a growing demand among wealthy Europeans for Asian con
sumer goods, such as spices and fine cloth. The demand quickly became too 
large to be met by the relatively small amount of such goods Europeans could 
obtain from their Moslem neighbors. As a consequence, European merchants 
began to look about for other suppliers.

The emergence of nation-states in Europe during the Late Middle Ages 
provided the necessary capital to finance the explorations, conquests, and 
colonies. As we saw in Cultural Connection VI, medieval Europe lacked large 
states with strong central governments. Instead, weak kings had little power, 
and authority was vested in a country nobility. By 1500, however, monarchs in 
France, Spain, England, and Portugal had wrested some power from their 
barons and had centralized political and economic control into themselves. 
Through taxes, these autocrats were able to acquire the huge amounts of capi
tal required to finance overseas expeditions. Much as today, when only super
powers like the United States and the Soviet Union can afford to explore space, 
the Age of Exploration had to wait for the emergence of centralized nation
states in Europe.

Spain and Portugal took the lead in overseas expansion because the mon
archs were more powerful in those countries, and because they were aggressive 
military powers that had already been expanding. Remember that most of the 
Iberian Peninsula, the region that comprises Spain and Portugal, had been 
annexed by the Arabian Empire at the beginning of the Middle Ages. Small 
Christian principalities remained independent in the northern part of the penin
sula, however, and, over the course of several centuries in a long series of 
wars, these small states reclaimed much lost territory, eventually coalescing 
into the nation-states of Spain and Portugal. This process, called the Recon- 
quista, was completed in 1492, when the last Moslem state on the peninsula, 
the Kingdom of Granada, fell to the armies of Ferdinand and Isabella. Put 
somewhat simplistically, the Spanish and Portuguese essentially just kept on 
going after that, expanding into Africa and America, propelled by a military 
tradition that was centuries old.

The 1400s also saw several technological advances crucial to European 
expansion. Navigation equipment and ship design were improved. More impor
tantly, European weaponry, in the form of guns and cannon, had become far 
more sophisticated than anywhere else in the world, making large-scale con
quest possible.



The Protestant Reformation of the 1500s also would seem to have had an 
impact on the expansion of Europe, although it is a difficult one to measure. 
The Reformation challenged the primacy of the Catholic Church in the western- 
European Christian community. Protestants called for Biblical fundamental
ism, a restoration of faith, and local control of churches. Protestantism was 
strong only in northern Europe, however, and there was little unity among its 
several different sects, which ranged from the radical Puritans and other Cal
vinists, who believed only an elect few were destined for heaven, to the more 
moderate Lutherans and Dutch Reformed, to small egalitarian churches like 
the Quakers. The impact of the Reformation in the secular world was manifold: 
It stimulated the development of nation-states in England, the Netherlands, 
and Scandinavia by providing monarchs with an avenue to escape papal inter
vention in affairs of state and to seize and nationalize church lands. Still, highly 
Protestant Germany did not develop modern nation-states (Prussia was the first 
to emerge there) until the nineteenth century, and nation-states came into being 
in heavily Catholic Spain, Portugal, and France. The Reformation did weaken 
the influence of the Catholic Church in northern Europe, making its opposition 
to scientific inquiry less effective, and the Protestant churches were generally 
more receptive to science. Open debate of religious topics probably touched off 
discussions of secular matters as well, including science. Finally, antagonism 
between different Protestant sects in England led to the emigration of members 
of the more radical movements, Puritans and Quakers, to North America as 
colonists between 1620 and 1700.

Also, we must recognize that, once started, the expansion of Europe was a 
process that fed upon itself. The more gold and silver discovered in South and 
Central America, the more fortunes that were made from the sale of spices and 
silks imported from Asia, and the more good farmland found on new conti
nents, the more did Europeans seek out additional riches. Two of the most 
lucrative commercial ventures of the Age of Exploration, the fur trade and the 
slave trade, developed as a consequence of European expansion. The first 
explorations had been conducted on a modest scale, but the movements of 
peoples and armies assumed vaster proportions with time. What began in 1520 
as small trading posts on distant shores had become, by 1700, bustling colonial 
towns surrounded by hinterlands of farmers, trappers, and traders.

The Age of Exploration had a tremendous impact on Europe. There was a 
sudden influx of capital into the continent, especially into Spain (which quickly 
bypassed trade for the opportunity of looting gold and silver from America), 
although fortunes were also made in France, Portugal, England, and the Neth
erlands. European port cities, which on the Atlantic coast before 1500 had been 
little more than oversized towns, grew rapidly. Cadiz, Spain; Lisbon, Portugal; 
LaRochelle, France; Bristol, England; and Amsterdam, the Netherlands be
came important commercial centers with busy marketplaces. Also, much of the 
new wealth found its way into the capital cities, like London, Paris, and Ma
drid, to royal courts. As had been the case in ancient Alexandria, explorers 
brought back new information about new places, which constituted a veritable 
explosion of scientific data. Artists were influenced by Asian motifs. Artists,
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scientists, and philosophers, some with royal patronage, others hired by the 
growing new merchant middle class, found employment in the capitals and port 
towns. The Age of Exploration touched off a cultural and scientific revolution 
in Europe that was marked by an interest in new ideas and places, a flowering 
of the arts, and a perceived need for new technologies, especially in navigation. 
Europe stood at the dawn of the modern era.



Chapter

THE DAWN OF MODERN 
MATHEMATICS

9 -1  The Seventeenth Century
The seventeenth century is outstandingly conspicuous in the history of mathe
matics. Early in the century, Napier revealed his invention of logarithms, Har
riot and Oughtred contributed to the notation and codification of algebra, Gali
leo founded the science of dynamics, and Kepler announced his laws of 
planetary motion. Later in the century, Desargues and Pascal opened a new 
field of pure geometry, Descartes launched modern analytic geometry, Fermat 
laid the foundations of modem number theory, and Huygens made distin
guished contributions to the theory of probability and other fields. Then, to
ward the end of the century, after a host of seventeenth-century mathemati
cians had prepared the way, the epoch-making creation of the calculus was 
made by Newton and Leibniz. We can see that many new and vast fields were 
opened up for mathematical investigation during the seventeenth century.

The great impetus given to mathematics in the seventeenth century was 
shared by all intellectual pursuits and was largely due, no doubt, to the politi
cal, economic, and social advances of the time. The century witnessed strong 
gains in the struggle for human rights, saw machines well advanced from the 
amusing toys of Heron’s day to objects of increasing economic importance, and 
observed a growing spirit of intellectual internationalism and scientific skepti
cism. The more favorable political atmosphere of northern Europe and the 
general conquering of the cold and darkness of the long winter months by 
advances in heating and lighting probably largely account for the northward 
shift of mathematical activity in the seventeenth century from Italy to France 
and England.

It is only fair to note here two facts that will contribute to the somewhat 
unbalanced presentation of the history of the mathematics in the second part of 
this book. The first of these is that mathematical activity began to grow at so 
great a rate that henceforth many names must be omitted that might have been 
considered in a less productive period. The second fact is that, with the unfold
ing of the seventeenth century, an increasing amount of mathematical research 
occurred that cannot be appreciated by a general reader, for it has been right
fully claimed that the history of a subject cannot be properly understood with
out a knowledge of the subject itself.

In this chapter and the following one, we shall consider developments of 
the seventeenth century that can be appreciated without a knowledge of the
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calculus. Chapter 11 contains a sketch of the developments of the calculus from 
their beginnings in Greek antiquity up to the remarkable contributions made by 
Newton and Leibniz and their immediate precursors in the second half of the 
seventeenth century. The final chapters of the book describe the transition to 
the twentieth century; these last chapters must of necessity be very sketchy, 
for most of the mathematics of this period can be understood only by the 
expert.

9-2  Napier
Many of the fields in which numerical calculations are important, such as 
astronomy, navigation, trade, engineering, and war, made ever-increasing de
mands that these computations be performed more quickly and accurately. 
These increasing demands were met successively by four remarkable inven
tions: the Hindu-Arabic notation, decimal fractions, logarithms, and the mod
ern computing machines. It is now time to consider the third of these great 
labor-saving devices, the invention of logarithms by John Napier in the early 
seventeenth century. The fourth invention will be considered later in Section 
15-9.

John Napier (1550-1617), who was born when his father was only sixteen 
years of age, lived most of his life at the imposing family estate of Merchiston 
Castle, near Edinburgh, Scotland, and expended much of his energies in the 
political and religious controversies of his day. He was violently anti-Catholic 
and championed the causes of John Knox and James I. In 1593, he published a 
bitter and widely read attack on the Church of Rome entitled A Plaine Dis- 
couery o f the Whole Reuelation o f Saint Iohn, in which he endeavored to prove

JOHN NAPIER
(Culver Service)



that the Pope was the Antichrist and that the Creator proposed to end the world 
in the years between 1688 and 1700. The book ran through twenty-one editions, 
at least ten of them during the author’s lifetime, and Napier sincerely believed 
that his reputation with posterity would rest upon this book.

Napier also wrote prophetically of various infernal war engines, accompa
nying his writings with plans and diagrams. He predicted the future would 
develop a piece of artillery that could “clear a field of four miles circumference 
of all living creatures exceeding a foot of height,” that it would produce “de
vices for sayling under water,” and that it would create a chariot with “a living 
mouth of mettle” that would “ scatter destruction on all sides.” In World War 
I, these were realized as the machine gun, the submarine, and the army tank, 
respectively.

It is no wonder that Napier’s remarkable ingenuity and imagination led 
some to believe he was mentally unbalanced and others to regard him as a 
dealer in the black art. Many stories, probably unfounded, are told in support of 
these views. Once he announced that his coal-black rooster would identify for 
him which of his servants was stealing from him. The servants were sent one by 
one into a darkened room with instructions to pat the rooster on the back. 
Unknown to the servants, Napier had coated the bird’s back with lampblack, 
and the guilty servant, fearing to touch the rooster, returned with clean hands. 
There was also the occasion when Napier became annoyed by his neighbor’s 
pigeons eating his grain. He threatened to impound the birds if his neighbor did 
not restrict their flight. The neighbor, believing the capture of his pigeons to be 
virtually impossible, told Napier that he was welcome to the birds if he could 
catch them. The next day, the surprised neighbor observed his pigeons stagger
ing on Napier’s lawn with Napier calmly collecting them into a large sack. 
Napier had rendered the birds drunk by scattering some brandy-soaked peas 
about his lawn.

As relaxation from his political and religious polemics, Napier amused 
himself with the study of mathematics and science, with the result that four 
products of his genius are now recorded in the history of mathematics. These 
are (1) the invention of logarithms; (2) a clever mnemonic, known as the rule of 
circular parts, for reproducing the formulas used in solving right spherical 
triangles; (3) at least two trigonometric formulas of a group of four known as 
Napier's analogies, useful in the solution of oblique spherical triangles; and (4) 
the invention of a device, called Napier's rods, or Napier's bones, used for 
mechanically multiplying, dividing, and taking square roots of numbers. We 
turn now to the first, and most remarkable, of these four contributions; for a 
discussion of the other three, see Problem Studies 9.2 and 9.3.

9 -3  Logarithms
As we know today, the power of logarithms as a computing device lies in the 
fact that by them multiplication and division are reduced to the simpler opera
tions of addition and subtraction. A forerunner of this idea is apparent in the 
trigonometric identity
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2 cos A cos B = cos(A + B) + cos(A -  B),

which was well known in Napier’s time. Here the product of the two numbers 
2 cos A and cos B is replaced by the sum of the two numbers cos(A + B) and 
cos(A -  B). The formula is easily extended to convert the product of any two 
numbers to the sum of two other numbers. Suppose, for example, one desires 
the product of 437.64 and 27.327. From a table of cosines, find, using interpola
tion if necessary, angles A and B , where

cos A = (0.43764)/2 = 0.21882 and cos B = 0.27327.

Then, again using the cosine table, with interpolation if necessary, find 
cos(A + B) and cos(A -  B), and add these two numbers. One now has the 
product of 0.43764 and 0.27327. Finally, by properly adjusting the decimal 
point in the answer, one obtains the sought product of 437.64 and 27.327. The 
problem of finding the product (437.54)(27.327) has been cleverly reduced to a 
simple problem in addition.

Allied to the preceding trigonometric identity are the three following iden
tities:

2 sin A cos B = sin(A + B) + sin(A -  B),
2 cos A sin B = sin(A + B) -  sin(A -  B),
2 sin A sin B = cos(A -  B) -  cos(A + B).

The four identities are sometimes called Werner’s formulas because the Ger
man Johannes Werner (1468-1528) seems to have used them to simplify lengthy 
calculations arising in astronomy. The formulas became widely used by mathe
maticians and astronomers in the late sixteenth century as a method of convert
ing products into sums and differences. The method became known as pros- 
thaphaeresis, from a Greek word meaning “addition and subtraction.” A long 
division may be similarly treated. Thus, again utilizing the first of Werner’s 
formulas, we have

\ c° s = 2 cos A sec B = 2 cos A cos(90° -  B) cos B
= cos[A + (90° -  B)] + cos[A -  (90° -  B)].

We know Napier was aware of the method of prosthaphaeresis, and it 
could be that he was influenced by it, since otherwise it is difficult to account 
for his initial restriction of logarithms to those of sines of angles. But Napier’s 
approach to eliminating the bugbear of long multiplications and divisions dif
fered considerably from prosthaphaeresis, and lay in the fact that if one associ
ates with the terms of a geometric progression

b , b \  b \  b \  . . . , bm, . . . , b \  . . .
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those of the arithmetic progression

1, 2, 3, 4, . . . , m, . . . , n, . . . ,

then to the product bmbn = bm+n of two terms of the former progression is 
associated the sum m + n of the two corresponding terms of the latter progres
sion. To keep the terms of the geometric progression sufficiently close together 
so that interpolation can be used to fill in the gaps between the terms in the 
preceding association, the number b must be chosen very close to 1. Napier 
accordingly chose 1 -  1/107 = 0.9999999 for b. To avoid decimals, he multiplied 
each power by 107. Then, if

N  = 107(1 -  1/107)L,

he called L the “ logarithm” of the number N. It follows that Napier’s logarithm 
of 107 is 0 and that of 107(1 -  1/107) = 9999999 is 1. If one should divide both N  
and L by 107, one would virtually obtain a system of logarithms to the base lie , 
for

(1 -  1/107)'°7 = lim (1 + Mnf = Me.

Of course, one must keep in mind that Napier had no concept of a base for a 
system of logarithms.

Napier labored at least twenty years upon his theory, and finally explained 
the principles of his work in geometrical terms as follows. Consider a line 
segment AB and an infinite ray DE, as shown in Figure 73. Let points C and F 
start moving simultaneously from A and D, respectively, along these lines with 
the same initial rate. Suppose C moves with a velocity always numerically 
equal to the distance CB, and that F moves with a uniform velocity. Then 
Napier defined DF to be the logarithm of CB. That is, setting DF = x and 
CB = y,

x = Nap log y.

In order to avoid the nuisance of fractions, Napier took the length of AB as 107, 
for the best tables of sines available to him extended to seven places. From 
Napier’s definition and through the use of knowledge not available to Napier, it

A C y B
I-----------1-----------------------1

E
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develops that1 * * * * *

Nap log y = 107 logl/(, ( j^ ) ,

so that the frequently made statement that Napierian logarithms are natural 
logarithms is actually not true. One observes that the Napierian logarithm 
decreases as the number increases, contrary to what happens with natural 
logarithms.

It further develops that, over a succession of equal periods of time, y 
decreases in geometric progression while x increases in arithmetic progression. 
Thus, we have the fundamental principle of a system of logarithms, the associa
tion of a geometric and an arithmetic progression. It now follows, for example, 
that if alb = d d ,  then

Nap log a -  Nap log b = Nap log c -  Nap log d ,

which is one of the many results established by Napier.
Napier published his discussion of logarithms in 1614 in a brochure entitled 

Mirifici logarithmorum canonis descriptio (A Description of the Wonderful 
Law of Logarithms). The work contains a table giving the logarithms of the 
sines of angles for successive minutes of arc. The Descriptio aroused immedi
ate and widespread interest, and in the year following its publication, Henry 
Briggs (1561-1631), professor of geometry at Gresham College in London, and 
later professor at Oxford, traveled to Edinburgh to pay his respects to the great 
inventor of logarithms. It was upon this visit that both Napier and Briggs 
agreed that the tables would be more useful if they were altered so that the 
logarithm of 1 would be 0 and the logarithm of 10 would be an appropriate 
power of 10, thereby creating the so-called Briggsian, or common, logarithms of

1 The result is easily shown with the aid of a little calculus. Thus we have AC = 107 -  y, 
whence

velocity of C = - d y l d t  = y.

That is, d y /y  = - d t , or integrating, In y  = - t  + C. Evaluating the constant of integration by 
substituting t = 0, we find that C =  In 107, whence

In y  = - t  + In 107.

Now

velocity of F = dxldt = 107,

so that x = 107/. Therefore

Nap log y = x = 107/ = 107 (In 107 -  In y)
= 107 In (107/y) = 107 log1/f. (y/107).



today. Logarithms of this sort, which are essentially logarithms to the base 10, 
owe their superior utility in numerical computations to the fact that our number 
system also is based on 10. For a number system having some other base b, it 
would, of course, be most convenient for computational purposes to have 
tables of logarithms also to the base b.

Briggs devoted all his energies toward the construction of a table upon the 
new plan, and in 1624 published his Arithmetica logarithmica, which contained 
a fourteen-place table of common logarithms of the numbers from 1 to 20,000 
and from 90,000 to 100,000. The gap from 20,000 to 90,000 was later filled in, 
with help, by Adriaen Vlacq (1600-1666), a Dutch bookseller and publisher. In 
1620, Edmund Gunter (1581-1626), one of Briggs’ colleagues, published a 
seven-place table of the common logarithms of the sines and tangents of angles 
for intervals of a minute of arc. It was Gunter who invented the words cosine 
and cotangent; he is known to engineers for his “Gunter’s chain.” Briggs and 
Vlacq published four fundamental tables of logarithms, which have only re
cently been superseded when, between 1924 and 1949, extensive twenty-place 
tables were calculated in England in partial celebration of the tercentenary of 
the discovery of logarithms.

The word logarithm means “ratio number” and was adopted by Napier after 
first using the expression artificial number. Briggs introduced the word man
tissa, which is a late Latin term of Etruscan origin, originally meaning an 
“addition” or “makeweight,” and which, in the sixteenth century, came to 
mean “appendix.” The term characteristic was also suggested by Briggs and 
was used by Vlacq. It is curious that it was customary in early tables of com
mon logarithms to print the characteristic as well as the mantissa; it was not 
until the eighteenth century that the present custom of printing only the mantis
sas was established.

Napier’s wonderful invention was enthusiastically adopted throughout Eu
rope. In astronomy, in particular, the time was overripe for such a discovery; 
as Laplace asserted, the invention of logarithms “by shortening the labors 
doubled the life of the astronomer.” Bonaventura Cavalieri, about whom we 
shall have more to say in Chapter 11, did much to bring logarithms into vogue in 
Italy. A similar service was rendered by Johann Kepler in Germany and Ed
mund Wingate in France. Kepler will be considered more fully in Section 9-7; 
Wingate, who spent many years in France, became the most prominent seven
teenth-century British textbook writer on elementary arithmetic.

Napier’s only rival for priority in the invention of logarithms was the Swiss 
instrument maker Jobst Biirgi (1552-1632). Biirgi conceived and constructed a 
table of logarithms independently of Napier, publishing his results in 1620, six 
years after Napier had announced his discovery to the world. Although both 
men had conceived the idea of logarithms long before publishing, it is generally 
believed that Napier had the idea first. Whereas Napier’s approach was geo
metrical, Biirgi’s was algebraic. Nowadays, a logarithm is universally regarded 
as an exponent; thus, if n = bx, we say x is the logarithm of n to the base b. 
From this definition, the laws of logarithms follow immediately from the laws of
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exponents. One of the anomalies in the history of mathematics is the fact that 
logarithms were discovered before exponents were in use.

In 1971, Nicaragua issued a series of postage stamps paying homage to the 
world’s “ ten most important mathematical formulas.” Each stamp features a 
particular formula accompanied by an illustration and carries on its reverse side 
a brief statement in Spanish concerning the importance of the formula. One of 
the stamps is devoted to Napier’s invention of logarithms. It must be pleasing 
to scientists and mathematicians to see their formulas so honored, for these 
formulas have certainly contributed far more to human development than the 
exploits of the kings and generals who are so often featured on postage stamps.2

For years, computation by logarithms has been taught in the late high- 
school or the early college mathematics courses; also, for years the logarithmic 
slide rule, hanging from the belt in a handsome leather case, was the badge of 
recognition of the engineering students of a university campus. Today, how
ever, with the advent of the amazing and increasingly inexpensive little pocket 
calculators, no one in his right mind would use a table of logarithms or a slide 
rule for calculation purposes. The teaching of logarithms as a computing device 
is vanishing from the schools, the famous makers of precision slide rules are 
discontinuing their production, and noted handbooks of mathematical tables 
are considering the abandonment of the logarithm tables. The products of 
Napier’s great invention have become museum pieces.

The logarithmic function, however, will never die, for the simple reason 
that logarithmic and exponential variations are a vital part of nature and of 
analysis. Accordingly, a study of the properties of the logarithmic function and 
of its inverse, the exponential function, will always remain an important part of 
mathematical instruction.

9 -4  The Savilian and Lucasian Professorships
Because so many distinguished British mathematicians have held either a 
Savilian professorship at Oxford or a Lucasian professorship at Cambridge, a 
brief reference to these professorships is desirable.

Sir Henry Savile was at one time warden of Merton College at Oxford, 
later provost of Eton, and a lecturer on Euclid at Oxford. In 1619, he founded 
two professorial chairs at Oxford, one in geometry and one in astronomy. 
Henry Briggs was the first occupant of the Savilian chair of geometry at Ox
ford. The earliest professorship of mathematics established in Great Britain

2 The other formulas featured on the stamps are the fundamental counting formula 1 + 1 = 2 ,  
the Pythagorean relation a2 + b2 = c2, the Archimedean law of the lever wxd\ = w2d2, Isaac 
Newton’s universal law of gravitation, J. C. Maxwell’s four famous equations of electricity and 
magnetism, Ludwig Boltzmann’s gas equation, Konstantin Tsiolkovskii’s rocket equation, Albert 
Einstein’s famous mass-energy equation E = me2, and Louis de Broglie’s revolutionary matter- 
wave equation.



was a chair in geometry founded by Sir Thomas Gresham in 1596 at Gresham 
College in London. Briggs also had the honor of being the first to occupy this 
chair. John Wallis, Edmund Halley, and Sir Christopher Wren are other seven
teenth-century incumbents of Savilian professorships.

Henry Lucas, who represented Cambridge in parliament in 1639 to 1640, 
willed resources to the university for the founding in 1663 of the professorship 
that bears his name. Isaac Barrow was elected the first occupant of this chair in 
1664 and six years later was succeeded by Isaac Newton.
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9 -5  Harriot and Oughtred
Thomas Harriot (1560-1621) was another mathematician who lived the longer 
part of his life in the sixteenth century but whose outstanding publication 
appeared in the seventeenth century. He is of special interest to Americans, 
because in 1585 he was sent by Sir Walter Raleigh as a surveyor with Sir 
Richard Grenville’s expedition to the New World to map what was then called 
Virginia but is now North Carolina. As a mathematician, Harriot is usually 
considered the founder of the English school of algebraists. His great work in 
this field, the Artis analyticae praxis, was not published until ten years after his 
death and deals largely with the theory of equations. This work did much 
toward setting the present standards for a textbook on the subject. It includes a 
treatment of equations of the first, second, third, and fourth degrees; the forma
tion of equations having given roots; the relations between the roots and the 
coefficients of an equation; the familiar transformations of an equation into 
another having roots bearing some specific relation to the roots of the original 
equation; and the numerical solution of equations. Much of this material is 
found, of course, in the works of Viete, but Harriot’s is a more complete and 
better systematized treatment. Harriot followed Viete’s plan of using vowels 
for unknowns and consonants for constants, but he adopted the lower-case 
rather than the upper-case letters. He improved on Viete’s notation for powers 
by representing a2 by aa , a3 by aaa, and so forth. He was also the first to use 
the signs >  and <  for “ is greater than” and “ is less than,” respectively, but 
these symbols were not immediately accepted by other writers.

Harriot has been erroneously credited with several other mathematical 
innovations and discoveries, such as a well-formed analytic geometry (before 
Descartes’ publication of 1637), the statement that any polynomial of degree n 
has n roots, and “ Descartes’ rule of signs.” Some of these errors of author
ship seem due to insertions, made by later writers, among some of Harriot’s 
preserved manuscripts. There are eight volumes of Harriot’s manuscripts in the 
British Museum, but the part dealing with analytic geometry has been shown by 
D. E. Smith to be an interpolation by a later hand.

Harriot was also prominent as an astronomer, having discovered sunspots 
and having observed the satellites of Jupiter, independently of Galileo and at 
about the same time. He died in 1621 of a cancerous ulcer in his left nostril; the 
ulcer was brought on by inhalation of tobacco smoke, a practice taught to him
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by the local Indians when he was in America in 1586, thus rendering him as 
perhaps the first tobacco fatality to be recorded.

In the same year (1631) that Harriot’s posthumous work on algebra ap
peared, there also appeared the first edition of William Oughtred’s popular 
Clavis mathematicae, a work on arithmetic and algebra that did much toward 
spreading mathematical knowledge in England. William Oughtred (1574-1660)

WILLIAM OUGHTRED
(David Smith Collection)



was one of the most influential of the seventeenth-century English writers on 
mathematics. Although by profession a clergyman (of the parish of Bletch- 
ingdon), he gave free private lessons to pupils interested in mathematics. 
Among such pupils were John Wallis, Christopher Wren, and Seth Ward, later 
popularly famous, respectively, as a mathematician, an architect, and an as
tronomer.

Oughtred seems to have ignored the usual rules of good health and proba
bly continued to ignore them throughout his long life. When he finally died, it is 
said that he did so in a transport of joy at receiving the news of the restoration 
of Charles II. To this, Augustus De Morgan once remarked, “It should be 
added, by way of excuse, that he was eighty-six years old.”

In his writings, Oughtred placed emphasis on mathematical symbols, giv
ing over 150 of them. Of these, only three have come down to present times: 
the cross (x ) for multiplication, the four dots (::) used in a proportion, and our 
frequently used symbol for difference between (~). The cross as a symbol for 
multiplication, however, was not readily adopted because, as Leibniz objected, 
it too closely resembles x. Although Harriot on occasion used the dot (•) for 
multiplication, this symbol was not prominently used until Leibniz adopted it. 
Leibniz also used the cap symbol (D) for multiplication, a symbol that is used 
today to indicate intersection in the theory of sets. The Anglo-American sym
bol for division (+) is also of seventeenth-century origin, having first appeared 
in print in 1659 in an algebra by the Swiss Johann Heinrich Rahn (1622-1676). 
The symbol became known in England some years later when this work was 
translated. This symbol for division has long been used in continental Europe to 
indicate subtraction. Our familiar signs in geometry—(~) for similar and (—) 
for congruent—are due to Leibniz.

Besides the Clavis mathematicae, Oughtred published The Circles of Pro
portion (1632) and Trigonometrie (1657). The second work is of some historical 
importance because of its early attempt to introduce abbreviations for the 
names of the trigonometric functions. The first work describes a circular slide 
rule. Oughtred, however, was not the first to describe in print a slide rule of the 
circular type, and an argument of priority of invention rests between him and 
Richard Delamain, one of his pupils. Oughtred does seem unquestionably to 
have invented, about 1622, the straight logarithmic slide rule. In 1620, Gunter 
constructed a logarithmic scale, or a line of numbers on which the distances are 
proportional to the logarithms of the numbers indicated (see Figure 74), and 
mechanically performed multiplications and divisions by adding and subtract
ing segments of this scale with the aid of a pair of dividers. The idea of carrying 
out these additions and subtractions by having two like logarithmic scales, one 
sliding along the other as shown in Figure 75, is due to Oughtred. Although 
Oughtred invented such a simple slide rule as early as 1622, he did not describe 
it in print until 1632. A runner for the slide rule was suggested by Isaac Newton 
in 1675, but was not actually constructed until nearly a century later. Several 
slide rules for special purposes, such as for commercial transactions, for 
measuring timber, and so forth, were devised in the seventeenth century. The
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log log scale was invented in 1815, and it was in 1850 that the French army 
officer Amedee Mannheim (1831-1906) standardized the modern slide rule.

It is believed that Oughtred was the author of the remarkable anonymous 
sixteen-page Appendix to the 1618 English edition by Edward Wright of Na
pier’s Descriptio. Here appears the first use of the cross for multiplication, the 
first invention of the radix method of calculating logarithms [see Problem Study 
9.1(c)], and the first table of natural logarithms. Oughtred also wrote a work on 
gauging (the science of computing the capacities of casks and barrels), and he 
translated and edited a French work on mathematical recreations.

9 - 6  Galileo

Two outstanding astronomers contributed notably to mathematics in the early 
part of the seventeenth century: the Italian, Galileo Galilei, and the German, 
Johann Kepler.
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Galileo, the son of an impoverished Florentine nobleman, was born in Pisa 
in 1564 on the day that Michelangelo died. At the age of seventeen, he was sent 
by his parents to the University of Pisa to study medicine. One day, while 
attending a service in the cathedral at Pisa, his mind was distracted by the great 
bronze lamp suspended from the high ceiling. The lamp had been drawn aside 
in order to light it more easily, and when released it oscillated to and fro with 
gradually decreasing amplitude. Using the beat of his pulse to keep time, he 
was surprised to find that the period of an oscillation of the lamp was indepen
dent of the size of the arc of oscillation.3 Later, by experiments, he showed that 
the period of a swinging pendulum is also independent of the weight of the 
pendulum’s bob and thus depends solely on the length of the pendulum. It is 
reported that Galileo’s interest in science and mathematics was roused by this 
problem and then further stimulated by the chance attendance at a lecture on 
geometry at the university. The result was that he asked for, and secured, 
parental permission to abandon medicine and to devote himself to science and 
mathematics instead, fields in which he possessed strong natural talent.

When twenty-five, Galileo was appointed professor of mathematics at the 
University of Pisa, and while holding this appointment is said to have per
formed public experiments with falling bodies. According to the story, before a 
crowd of students, faculty, and priests, he dropped two pieces of metal, one ten 
times the weight of the other, from the top of the leaning tower of Pisa. The two 
pieces of metal struck the ground at practically the same moment, thus contra
dicting Aristotle, who said that a heavier body falls faster than a lighter one. 
Galileo arrived at the law that the distance a body falls is proportional to the 
square of the time of falling, in accordance with the familiar formula 5 = gt2/2. 
Even the visual evidence of Galileo’s experiments, however, did not shake the 
faith of the other professors at the university in the teaching of Aristotle. The 
authorities at the university were so shocked at Galileo’s sacrilegious insolence 
in contradicting Aristotle that they made life unpleasant for him there, with the 
result that he resigned his professorship in 1591. The following year, he ac
cepted a professorship at the University of Padua, where there was an at
mosphere more friendly to scientific pursuits. Here, for nearly eighteen years, 
Galileo continued his experiments and his teaching and won widespread fame.

About 1607, an apprentice to the spectacle maker Hans Lippershey of 
Holland, while playing with some of his master’s spectacle lenses, discovered 
that if he held two of the lenses at an appropriate distance apart, objects seen 
through the pair of lenses became enlarged. The apprentice brought his discov
ery to the attention of his master, who placed two lenses in a tube and displayed 
the device as a toy in his shop window. The toy was seen by a government 
official, who bought it and presented it to Prince Maurice of Nassau. As com
mander of the armed forces of the United Netherlands, Prince Maurice saw the 
possibilities of the toy as a spyglass for military use.

3 This is only approximately true, the approximation being very close in the case of small 
amplitudes of oscillation.
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By 1609, the news of the invention of the spyglass reached Galileo, who 
soon made a spyglass greatly superior to the one made by Lippershey. Upon 
request, he demonstrated his instrument in Venice, where, from the top of the 
highest church in the city, Venetian senators were able to see the sails of an 
approaching ship a full two hours before they were visible by naked eye. 
Galileo presented his model to the Doge of Venice, who, like Prince Maurice, 
recognized the immense possibilities of the instrument in naval and military 
operations, and Galileo was given a sizably increased stipend.

Galileo went on and made four more telescopes, as his instruments were 
named (from the Greek tele, “far,” skopos, “watching”), each more powerful 
than the last. With the fifth telescope, which had a power of thirty diameters, 
Galileo noticed, on the night of January 7, 1610, two small stars to the east of 
the planet Jupiter and one to the west. The following night, to his surprise, all 
three stars were to the west of the planet, and three nights later he found there 
was still another small star revolving about Jupiter. He had discovered Jupi
ter’s four bright satellites and observed a striking confirmation of the Coperni- 
can theory of smaller bodies revolving about larger ones. With his telescope, 
Galileo observed sunspots, the mountains on the moon, the phases of Venus, 
and Saturn’s rings. But these discoveries only aroused once more the bigoted 
opposition of many churchmen, who accepted the authority of Aristotle; Aris
totle had asserted that the sun is without blemish and that the earth, and hence 
man, is the center of the universe. One churchman even accused Galileo of 
placing the four satellites of Jupiter inside his telescope.

Finally, in 1633, one year after his publication of a book that supported the 
Copernican theory, Galileo was summoned to appear before the Inquisition, 
and there, an ill and an old man, forced, under the threat of torture, to recant
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his scientific findings. His book was placed on the Index of prohibited works 
and remained there for two hundred years. Having perjured his conscience, the 
old scholar’s life was broken. He was permitted to continue innocuous scien
tific work, but became blind and died in January, 1642, still under the supervi
sion of the Inquisition and a virtual prisoner in his own home.4

There is a legend that, as Galileo rose to his feet after his forced recanta
tion and denial of the earth’s motion, he muttered softly under his breath to 
himself, “The earth does move all the same.’’ Whatever the basis of this story, 
it has come to be a sort of proverb to the effect that truth shall prevail despite all 
attempts at suppression. And so it came to pass, for the year 1642, which saw 
the death of Galileo in captivity, also saw the birth of Isaac Newton.

To Galileo, we owe the modern spirit of science as a harmony between 
experiment and theory. He founded the mechanics of freely falling bodies and 
laid the foundation of dynamics in general, a foundation upon which Isaac 
Newton was able later to build the science. He was the first to realize the 
parabolic nature of the path of a projectile in a vacuum and speculated on laws 
involving momentum. He invented the first modern-type microscope and the 
once very popular sector compasses (see Problem Study 9.6). Historically 
interesting are statements made by Galileo showing that he grasped the idea of 
equivalence of infinite classes (see Problem Study 9.7), a fundamental point in 
Cantor’s nineteenth-century theory of sets, which has been so influential in the 
development of modern analysis. These statements, and the bulk of Galileo’s 
ideas in dynamics, can be found in his Discorsi e dimonstrazioni matematiche 
intorno a due nuove scienze, published in Leyden in 1638. Galileo has been 
quoted as saying: “In questions of sciences, the authority of a thousand is not 
worth the humble reasoning of a single individual.’’

It would seem that Galileo was jealous of his famous contemporary, Jo
hann Kepler, for although Kepler had announced all three of his important laws 
of planetary motion by 1619, these laws were completely ignored by Galileo.

All his life, Galileo was a religious man and a devout Catholic. Accord
ingly, it distressed him to find the views to which he was irresistibly led by his 
observations and reasonings as a scientist condemned as contradicting the 
scriptures of the Church, of which he considered himself a loyal member. He 
therefore felt compelled to reason for himself the relation between science and 
scripture. Many scientists have, from time to time, found themselves in this 
position. It occurred, for example, in the middle of the nineteenth century, 
when difficulties were felt in reconciling Darwin’s theory of evolution with the 
Biblical account of the creation of living things.

Galileo’s conclusion was that the Bible is not, and never was intended to 
be, a textbook on astronomy, or biology, or any other science. In short, Galileo 
maintained, it was not intended as a book to teach us scientific truths that we

4 In 1980, 347 years after being condemned by the Church for using telescopes to prove the 
earth revolves around the sun, the Vatican, under a call issued by Pope John Paul II, began to 
review Galileo’s conviction of heresy.
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can discover for ourselves. Rather, it was intended as a book to reveal spiritual 
truths that we could not have found out for ourselves. Now the conflict be
tween science and scripture lies in the fact that these spiritual truths are ex
pressed in the Bible in ways natural to the people to whom, and through whom, 
they were originally revealed. But this is clearly just an accident of time and 
should therefore be overlooked. A scientist should not be upset to find the Bible 
picturing the world in a way natural to the early Hebrews, and a churchman 
should not be upset to find a scientist picturing the world in a way contrary to 
the description in the Bible. The way in which the world is described is entirely 
incidental to the real aim of the Bible and in no way is inconsistent with the 
spiritual teachings of the Bible.

9 -7  Kepler

Johann Kepler was born near Stuttgart in 1571 and educated at the University 
of Tubingen, with the original intention of becoming a Lutheran minister. His 
deep interest in astronomy led him to change his plans, and in 1594, when in his 
early twenties, he accepted a lectureship at the University of Gratz in Austria. 
In 1599, he became assistant to the famous but quarrelsome Danish-Swedish 
astronomer Tycho Brahe, who had moved to Prague as court astronomer to 
Kaiser Rudolph II. Shortly after, in 1601, Brahe suddenly died, and Kepler 
inherited both his master’s position and his vast and very accurate collection of 
astronomical data on the motion of the planets.

It has often been said that almost any problem can be solved if one continu
ously worries over it and works at it a sufficiently long time. As Thomas Edison 
said of invention being one percent inspiration and ninety-nine percent perspi-

JOHANN KEPLER
(David Smith Collection)
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ration, problem solving is one percent imagination and ninety-nine percent 
perseverance. Perhaps nowhere in the history of science is this more clearly 
demonstrated than in Kepler’s incredible pertinacity in solving the problem of 
the motion of the planets about the sun. Thoroughly convinced of the Coperni- 
can theory that the planets revolve in orbits about the central sun, Kepler 
strenuously sought to determine the nature and position of those orbits and the 
manner in which the planets travel in their orbits. After many highly imagina
tive attempts, made when he had little data to aid in verification, Kepler inher
ited Tycho Brahe’s enormous mass of very accurate observations on the mo
tion of the planets. The problem then became this: to obtain a pattern of motion 
of the planets that would exactly jibe with Brahe’s great set of observations. So 
dependable were Brahe’s recordings, that any solution differing from Brahe’s 
observed positions by even so little as a quarter of the moon’s apparent diame
ter must be discarded as incorrect. Kepler needed, then, first to guess with his 
imagination some plausible solution, and then with painful perseverance to 
endure mountains of tedious calculation to confirm or reject his guess. He made 
hundreds of fruitless attempts and performed reams and reams of calculations, 
laboring with undiminished zeal and patience for twenty-one years. Finally, in 
1609, he was able to formuate his first two laws, and then ten years later, in 
1619, his third law, of planetary motion.

These laws of planetary motion are landmarks in the history of astronomy 
and mathematics, for in the effort to justify them Isaac Newton was led to 
create modern celestial mechanics. The three laws are:

I. The planets move about the sun in elliptical orbits with the sun at one 
focus.

II. The radius vector joining a planet to the sun sweeps over equal areas 
in equal intervals o f time.

III. The square o f the time o f one complete revolution o f a planet about its 
orbit is proportional to the cube o f the orbit's semimajor axis.

The empirical discovery of these laws from Brahe’s mass of data constitutes 
one of the most remarkable inductions ever made in science.

One never knows when a piece of pure mathematics may receive an unex
pected application. As William Whewell once said, “If the Greeks had not 
cultivated the conic sections, Kepler could not have superseded Ptolemy.” It is 
very interesting that 1800 years after the Greeks had developed the properties 
of the conics merely to satisfy their intellectual cravings, there should occur 
such an illuminating practical application of them. With justifiable pride, 
Kepler prefaced his Harmony of the Worlds of 1619 with the following out
burst:

I am writing a book for my contemporaries or—it does not matter— 
for posterity. It may be that my book will wait for a hundred years 
for a reader. Has not God waited for 6000 years for an observer?

Kepler was one of the precursors of the calculus. In order to compute the 
areas involved in his second law of planetary motion, he had to resort to a 
crude form of the integral calculus. He also, in his Stereometria doliorum



vinorum (Solid Geometry of Wine Barrels, 1615), applied crude integration 
procedures to the finding of the volumes of ninety-three solids obtained by 
rotating segments of conic sections about an axis in their plane. Among these 
solids were the torus and two solids that he called the apple and the lemon, the 
last two solids being those obtained by revolving a major and a minor arc, 
respectively, of a circle about the arc’s chord as an axis. Kepler became inter
ested in this matter upon observing some of the poor methods in use by the 
wine gaugers of his time. It is quite possible that Cavalieri was influenced by 
this work of Kepler when he later carried the refinement of the infinitesimal 
calculus a stage further with his method o f indivisibles. We shall return to a 
discussion of all this in Chapter 11.

Notable contributions were made by Kepler to the subject of polyhedra. 
He seems to have been the first to recognize an antiprism (obtained from a 
prism by rotating the top base in its own plane so as to make its vertices 
correspond to the sides of the lower base, and then joining, in zigzag fashion, 
the vertices of the two bases). He also discovered the cuboctahedron, rhombic 
dodecahedron, and rhombic triakontahedron.5 The second of these polyhedra 
occurs in nature as a garnet crystal. Of the four possible regular star-polyhedra, 
two were discovered by Kepler and the other two in 1809 by Louis Poinsot 
(1777-1859), a pioneer worker in geometrical mechanics. The Kepler-Poinsot 
star-polyhedra are space analogues of the regular star-polygons in the plane 
(see Problem Study 8.5). Kepler also interested himself in the problem of filling 
the plane with regular polygons (not necessarily all alike) and filling space with 
regular polyhedra (see Problem Study 9.9).

Kepler solved the problem of determining the type of conic determined by 
a given vertex, the axis through this vertex, and an arbitrary tangent with its 
point of contact, and he introduced the word focus into the geometry of conics. 
He approximated the perimeter of an ellipse of semiaxes a and b by the use of 
the formula 7r(a + b). He also laid down a so-called principle of continuity, 
which essentially postulates the existence at infinity, in a plane, of certain ideal 
points and an ideal line, having many of the properties of ordinary points and 
lines. He explained that a line can be considered as closed at infinity, that two 
parallel lines should be regarded as intersecting at infinity, and that a parabola 
may be regarded as a limiting case of either an ellipse or a hyperbola in which 
one of the foci has retreated to infinity. This concept was greatly extended in 
1822 by the French geometer Poncelet when he made an effort to find in 
geometry a “real” justification for imaginaries that occur elsewhere in mathe
matics.

Kepler’s work is often a blend of mystical and highly fanciful speculation, 
combined with a truly deep grasp of scientific truths. It is sad that his personal 
life was made almost unendurable by a succession of worldly misfortunes. An 
infection from smallpox when he was but four years old left his eyesight much
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5 Construction patterns for these solids can be found in Miles C. Hartley, Patterns o f Polyhe
drons. Rev. ed.
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impaired. In addition to his general lifelong weakness, he spent a joyless youth; 
his marriage was a constant source of unhappiness; his favorite child died of 
smallpox; his wife went mad and died; he was expelled from his lectureship at 
the University of Gratz when that city fell to the Catholics; his mother was 
charged and imprisoned for witchcraft, and, for almost a year, he desperately 
tried to save her from the torture chamber; he himself very narrowly escaped 
condemnation of heterodoxy; and his stipend was always in arrears. One report 
says that his second marriage was even less fortunate than the first, although he 
took the precaution to analyze carefully the merits and demerits of eleven girls 
before choosing the wrong one. He was forced to augment his income by 
casting horoscopes, and in 1630 he died of a fever while on a journey to obtain 
some of his long overdue salary.

9-8  Desargues
In 1639, nine years after Kepler’s death, there appeared in Paris a remarkably 
original but little-heeded treatise on the conic sections.6 It was written by 
Gerard Desargues, an engineer, architect, and one-time French army officer, 
who was born in Lyons in 1591 and who died in the same city about 1662. The 
work was so generally neglected by other mathematicians that it was soon 
forgotten, and all copies of the publication disappeared. Two centuries later, 
when the French geometer Michel Chasles (1793-1880) wrote his still-valuable 
history of geometry, there was no means of estimating the value of Desargues’ 
work. Six years later, however, in 1845, Chasles happened upon a manuscript 
copy of the treatise, made by Desargues’ pupil, Philippe de la Hire (1640- 
1718); since that time, the work has been regarded as one of the classics in the 
early development of synthetic projective geometry.

Several reasons can be advanced to account for the initial neglect of De
sargues’ little volume. It was overshadowed by the more supple analytic geom
etry introduced by Descartes two years earlier. Geometers were generally 
expending their energies either developing this new powerful tool or trying to 
apply infinitesimals to geometry. Also, Desargues adopted an unfortunate and 
eccentric style of writing. He introduced some seventy new terms, many of a 
recondite botanical origin, of which only one, involution, has survived. Curi
ously enough, involution was preserved because it was the one piece of De
sargues’ technical jargon that was singled out for the sharpest criticism and 
ridicule by his reviewer.

Desargues wrote other books besides the one on conic sections, one of 
them being a treatise on how to teach children to sing well. But it is the little 
book on conic sections that marks him as the most original contributor to 
synthetic geometry in the seventeenth century. Starting with Kepler’s doctrine

6 Brouillon projet d ’une atteinte aux evenemerits des rencontres d ’un cone avec un plan. 
{Proposed Draft o f an Attempt to Deal with the Events o f the Meeting o f a Cone with a Plane.)
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of continuity, the work develops many of the fundamental theorems on involu
tion, harmonic ranges, homology, poles and polars, and perspective—topics 
familiar to those who have taken one of our present-day courses in projective 
geometry.7 One interesting concept is that the notion of poles and polars may 
be extended to spheres and to certain other surfaces of the second degree. It is 
likely that Desargues was aware of only a few of the surfaces of second degree, 
many of these surfaces probably remaining unknown until their complete enu
meration by Euler in 1748. Elsewhere we find Desargues’ fundamental two- 
triangle theorem: I f  two triangles, in the same plane or notf are so situated that 
lines joining pairs o f  corresponding vertices are concurrent, then the points o f  
intersection o f pairs o f corresponding sides are collinearf and conversely (see 
Figure 76).

Desargues, when he was in his thirties and living in Paris, made a consider
able impression on his contemporaries through a series of gratuitous lectures. 
His work was appreciated by Descartes, and Blaise Pascal once credited De
sargues as being the source of much of his inspiration. La Hire, with consider
able labor, tried to show that all the theorems of Apollonius’ Conic Sections 
can be derived from the circle by Desargues’ method of central projection. In 
spite of all this, however, the new geometry took little hold in the seventeenth 
century, and the subject lay practically dormant until the early part of the 
nineteenth century, when enormous interest in the subject developed and great 
advances were made by such men as Gergonne, Poncelet, Brianchon, Dupin, 
Chasles, and Steiner. Whereas Desargues may have been motivated by the 
need of a theory of perspective for architects and draftsmen, these later writers 
developed the subject for its own intrinsic charm.

7 That some of these concepts were known to the ancient Greeks has been pointed out in 
Chapter 6.
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9-9  Pascal
One of the few contemporaries of Desargues who showed a real appreciation of 
his work was Blaise Pascal, a mathematical genius of high order. Pascal was 
born in the French province of Auvergne in 1623 and very early showed phe
nomenal ability in mathematics. Several stories of his youthful accomplish
ments have been told by his sister Gilberta, who became Madame Perier. 
Because of his delicate constitution, the boy was kept at home to ensure his not 
being overworked. His father decided that the youngster’s education should be 
at first restricted to the study of languages and should not include any mathe
matics. The exclusion of mathematics from his studies aroused curiosity in the 
boy, and he inquired of his tutor as to the nature of geometry. The tutor 
informed him that it was the study of exact figures and the properties of their 
different parts. Stimulated by his tutor’s description of the subject and by his 
father’s injunction against it, he gave up his playtime and clandestinely, in a 
few weeks, discovered for himself many properties of geometric figures, in 
particular the fact that the sum of the angles of a triangle is equal to a straight 
angle. This latter was accomplished by some process of folding a paper trian
gle, perhaps by folding the vertices over to the center of the inscribed circle, as 
indicated in Figure 77, or by folding the vertices over to the foot of an altitude, 
as indicated in Figure 78. When his father came upon him one day during his 
geometric activities, he was so struck by the boy’s ability that he gave his son a 
copy of Euclid’s Elements, which the youngster read with avidity and quickly 
mastered.

At the age of fourteen, Pascal participated in the weekly gatherings of a 
group of French mathematicians from which the French Academy ultimately 
formed in 1666. When he was sixteen, he wrote an essay on conic sections that 
Descartes could not believe was the work of the boy, assuming it must be that 
of his father instead. At eighteen or nineteen, he invented the first calculating 
machine, which he devised to assist his father in the auditing of government 
accounts at Rouen. Pascal was to manufacture over fifty calculating machines, 
some of which are still preserved in the Conservatoire des Arts et Metiers at 
Paris. At twenty-one, he became interested in Torricelli’s work on atmospheric

FIGURE 77
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pressure and began to apply his unusual talents to physics, with the result that 
Pascal’s principle o f  hydrodynamics is today known to every student of high 
school physics. A few years later, in 1648, he wrote a comprehensive, unpub
lished manuscript on conic sections.

This astonishing and precocious activity suddenly came to an end in 1650, 
when, suffering from frail health, Pascal decided to abandon his researches in 
mathematics and science and to devote himself to religious contemplation. 
Three years later, however, he returned briefly to mathematics. At this time, he 
wrote his Traite du triangle arithmetique, conducted several experiments on 
fluid pressure, and, in correspondence with Fermat, assisted in laying the foun
dations of the mathematical theory of probability. But late in 1654 he received 
what he regarded as a strong intimation that these renewed activities were not 
pleasing to God. The divine hint occurred when his runaway horses dashed

BLAISE PASCAL
(Brown Brothers)
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over the parapet of the bridge at Neuiliy, and he himself was saved only by the 
miraculous breaking of the traces. Fortified with a reference to the accident 
written on a small piece of parchment henceforth carried next to his heart, he 
dutifully went back to his religious meditations.

Only once again, in 1658, did Pascal return to mathematics. While suffer
ing with toothache, some geometrical ideas occurred to him, and his teeth 
suddenly ceased to ache. Regarding this as a sign of divine will, he obediently 
applied himself assiduously for eight days toward developing his ideas, produc
ing in this time a fairly full account of the geometry of the cycloid curve and 
solving some problems that subsequently, when issued as challenge problems, 
baffled other mathematicians. His famous Provincial Letters and his Pensees, 
which are read today as models of early French literature, were written toward 
the close of his brief life. He died in Paris in 1662. Desargues and Pascal died in 
the same year; Desargues was sixty-nine, but Pascal was only thirty-nine.

We might add here that Pascal’s father, Etienne Pascal (1588-1640), was 
also an able mathematician; it is for the father that the limagon o f Pascal has 
been erroneously named [see Problem Study 4.7(c)].

Pascal has been described as the greatest “might have been” in the history 
of mathematics. With such unusual talents and such deep geometrical intuition, 
he might have produced, under more favorable conditions, a great deal more. 
But his health was such that much of his life was spent coping with physical 
discomfort, and from early manhood, he felt compelled to participate in the 
religious controversies of his time.

Pascal’s manuscript on conic sections was founded on the work of De
sargues and is now lost, but it was seen by Descartes and Leibniz. Here oc
curred Pascal’s famous mystic hexagram theorem of projective geometry: If a 
hexagon be inscribed in a conic, then the points o f intersection o f the three 
pairs o f opposite sides are collinear, and conversely (see Figure 79). He proba
bly established the theorem, in Desargues’ fashion, by first proving it true for a 
circle and then passing by projection to any conic section. Although the theo
rem is one of the richest in the whole of projective geometry (see Problem 
Study 9.12), we probably should take lightly the often-told tale that Pascal 
himself deduced over 400 corollaries from it. The manuscript was never pub-

FIGURE 79



lished, and probably never completed, but in 1640 Pascal did print a one-page 
broadside entitled Essay pour les coniques, which announced some of his 
findings. Only two copies of this famous leaflet are known to be still in exis
tence, one at Hanover among the papers of Leibniz, and the other in the 
Bibliotheque Nationale at Paris. Pascal’s mystic hexagram theorem is involved 
in the second lemma of the leaflet.

Pascal’s Traite du triangle arithmetique was written in 1653 but was not 
printed until 1665. He constructed his “arithmetic triangle” as indicated in 
Figure 80. Any element (in the second or a following row) is obtained as the 
sum of all those elements of the preceding row lying just above or to the left of 
the desired element. Thus, in the fourth row,

35 = 15 + 10 + 6 + 3 + 1.

The triangle, which may be of any order, is obtained by drawing a diagonal, as 
indicated in the figure. The student of college algebra will recognize that the 
numbers along such a diagonal are the successive coefficients in a binomial 
expansion. For example, the numbers along the fifth diagonal, namely 1,4,6,  4, 
1, are the successive coefficients in the expansion of {a + b)4. The finding of 
binomial coefficients was one of the uses to which Pascal put his triangle. He 
also used it, particularly in his discussions on probability, for finding the num
ber of combinations of n things taken r at a time [see Problem Study 9.13(g)], 
which he correctly stated to be
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n\
r\(n -  r)V

where n\ is our present-day notation8 for the product

n{n -  1 )(n -  2) . . . (3)(2)(1).

There are many relations involving the numbers of the arithmetic triangle, 
several of which were developed by Pascal (see Problem Study 9.13). Pascal 
was not the first to exhibit the arithmetic triangle, for such an array had been 
anticipated several centuries earlier by Chinese writers (see Section 7-3). Be
cause Pascal was for so long (until 1935) the first known discoverer of the 
triangle in the western world, and because of his development and application 
of many of the triangle’s properties, the array became known as Pascal’s trian
gle. One of the earliest acceptable statements of the method of mathematical 
induction appears in Pascal’s treatise on the triangle.

8 The symbol n !, called factorial n, was introduced in 1808 by Christian Kramp (1760-1826) of 
Strasbourg, who chose this symbol so as to circumvent printing difficulties incurred by a previously 
used symbol. For convenience one defines 0! = 1.
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Although the Greek philosophers of antiquity discussed necessity and con
tingency at length, it is perhaps correct to say that there was no mathematical 
treatment of probability until the latter part of the fifteenth century and the 
early part of the sixteenth century, when some of the Italian mathematicians 
attempted to evaluate the chances in certain gambling games, like that of dice. 
Cardano, as was noted in Section 8-8, wrote a brief gambler’s guidebook that 
involved some of the aspects of mathematical probability. But it is generally 
agreed that the one problem to which can be credited the origin of the science of 
probability is the so-called problem of the points. This problem requires the 
determination of the division of the stakes of an interrupted game of chance 
between two players of supposedly equal skills, knowing the scores of the 
players at the time of interruption and the number of points needed to win the 
game. Pacioli, in his Suma, of 1494, was one of the first writers to introduce the 
problem of the points into a work on mathematics. The problem was also 
discussed by Cardano and Tartaglia, but a real advance was not made until the 
problem was proposed, in 1654, to Pascal by the Chevalier de Mere, an able and 
experienced gambler whose theoretical reasoning on the problem did not agree 
with his observations. Pascal became interested in the problem and communi
cated it to Fermat. There ensued a remarkable correspondence between the 
two men,9 in which the problem was correctly but differently solved by each. 
Pascal solved the general case, obtaining many results through a use of the 
arithmetic triangle. In their correspondence, then, Pascal and Fermat laid the 
foundations of the science of probability.10

Pascal’s last mathematical work was that on the cycloid, the curve traced 
by a point on the circumference of a circle as the circle rolls along a straight line 
(see Figure 81). This curve, which is very rich in mathematical and physical

9 The correspondence appears in D. E. Smith, A Source Book in Mathematics.
10 The methods of Pascal and Fermat for solving the problem of the points are described at the 

end of Section 10-3.
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properties, played an important role in the early development of the methods of 
the calculus. Galileo was one of the first to call attention to the curve and once 
recommended that it be used for the arches of bridges. Shortly after, the area 
under one arch of the curve was found, and methods of drawing tangents to the 
curve were discovered. These discoveries led mathematicians to consider 
questions concerned with the surface and volume of revolution obtained by 
rotating a cycloidal arch about various lines. Such problems, as well as others 
concerned with the centroids of the figures formed, were solved by Pascal, and 
some of the results were issued by him as challenge problems to other mathe
maticians. Pascal’s solutions were effected by the precalculus method of indi
visibles and were equivalent to the evaluation of a number of definite integrals 
encountered in present-day calculus classes. The cycloid has so many attrac
tive properties and has engendered so many quarrels that it has been called 
“the Helen of geometry” and “the apple of discord.”

It is interesting that Pascal has been credited with the invention of the one
wheeled wheelbarrow as we know it today. Also, at the age of thirty-five, he 
conceived the omnibus—an idea that was soon put into practice at five sous a 
ride. Pascal sometimes wrote under the nom de plume of Lovis de Montalte, or 
its anagram, Amos Dettonville.

Problem Studies * 1 2 3 4

9.1 Logarithms

(a) Using the familiar laws of exponents, establish the following useful 
properties of logarithms:
1. loga mn = loga m + loga n.
2. loga {min) = loga m -  log« n.
3. loga (mr) = r loga m.
4. loga Vm = (loga m)ls.

(b) Show that
1. log*, N  = loga A/Vloga b (with this formula we may compute loga

rithms to a base b when we have available a table of logarithms to 
some base a).

2. loĝ v b = \l\ogb N.
3. \ogN b = \ogl/N (1 lb).

(c) By extracting the square root of 10, then the square root of the result 
thus obtained, and so on, the following table can be constructed:
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101/2 = 
1 0 1/4 =  
1 0 18 =  

1 0 1/16 =  
10̂ 32 =
10,/64 = 

1Q1/128 =

3.16228
1.77828
1.33352
1.15478
1.07461
1.03663
1.01815

101/256 =

1 0 1512 =  

lQl/1024 — 
101/2048 — 
1Q1/4096 = 
1Q1/8192 _

1.00904
1.00451
1.00225
1.00112
1.00056
1.00028

With this table, we may compute the common logarithm of any number 
between 1 and 10, and hence, by adjusting the characteristic, of any 
positive number whatever. Thus, let N  be any number between 1 and
10. Divide N  by the largest number in the table that does not exceed N. 
Suppose the divisor is 101/pi and that the quotient is N \ . Then N  = 
101/pi N j. Treat N\ in the same fashion, and continue the process, 
obtaining

N  = \0 Vp' lO1̂  . . . 10l,P*Nn.

Let us stop when N n differs from unity only in the sixth decimal place. 
Then, to 5 places,

N  = 101/pi 101/p2 . . . 101/p«

and

i 1 1  1log N  = — + — + • • • + — .
Pi Pi Pn

This procedure is known as the radix method of computing logarithms. 
Compute, in this manner, log 4.26 and log 5.00.

9.2 Napier and Spherical Trigonometry

(a) There are 10 formulas that are useful for solving right spherical trian
gles. There is no need to memorize these formulas, for it is easy to 
reproduce them by means of 2 rules devised by Napier. In Figure 82, a 
right spherical triangle is pictured, lettered in conventional manner. To 
the right of the triangle appears a circle divided into 5 parts, containing 
the same letters as the triangle, except C, arranged in the same order. 
The bars on c, B , A mean the complement of (thus B means 90° -  B). 
The angular quantities a, b, c, A, B are called the circular parts. In the 
circle, there are 2 circular parts contiguous to any given part, and 2 
parts not contiguous to it. Let us call the given part the middle part, the 
2 contiguous parts the adjacent parts, and the 2 noncontiguous parts the 
opposite parts. Napier’s rules may be stated as follows:
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1. The sine of any middle part is equal to the product of the cosines of 
the 2 opposite parts.

2. The sine of any middle part is equal to the product of the tangents of 
the 2 adjacent parts.

By applying each of these rules to each of the circular parts, obtain 
the 10 formulas for solving right spherical triangles.

(b) The formula connecting sides a, b, c of a right spherical triangle is 
called the Pythagorean relation for the triangle. Find the Pythagorean 
relation for a right spherical triangle.

(c) The following formulas are known as Napier’s analogies (the word anal
ogy being used in its archaic sense of “proportion”):

sin j(A  ~ B) 
sin 4- B )

cos -  B)
cos \{A  4- B) 

sin h(a -  b) 
sin K a + b) 
cos K a -  b) 
cos i(a  4- b)

tan — b) 
tan \c  ’ 

tan j(g + b) 
tan \c

tan i(A -  B) 
cot \C  

tan i(A 4- B) 
cot \C

These formulas, which are analogous to the law of tangents in plane 
trigonometry, may be used to solve oblique spherical triangles for 
which the given parts are 2 sides and the included angle, or 2 angles and 
the included side.
1. Find A, C, b for a spherical triangle in which a = 125° 38', c = 73° 

24', B = 102° 16'.
2. Find A, B, c for a spherical triangle in which a = 93° 8', b = 46° 4', 

C = 71° 6'.

B

FIGURE 82
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9.3 Napier’s Rods

The difficulty that was so widely experienced in the multiplication of large 
numbers led to mechanical ways of carrying out the process. Famous in its time 
was Napier’s invention, known as Napier’s rods, or Napier’s bones, which he 
described in his work Rabdologiae, which was published in 1617. In principle, 
the invention is the same as the Arabian lattice, or grating, method that we 
described in Section 7-5; in the invention, however, the process is carried out 
with the aid of rectangular strips of bone, metal, wood, or cardboard, prepared 
beforehand. For each of the 10 digits, one should have some strips, like the one 
shown to the left in Figure 83 for 6, bearing the various multiples of that digit. 
To illustrate the use of these strips in multiplication, let us select the example 
chosen by Napier in the Rabdologiae, the multiplication of 1615 by 365. Put 
strips headed 1,6,  1,5 side by side, as shown to the right in Figure 83. The 
results of multiplying 1615 by the 5, the 6, and the 3 of 365 are then easily read 
off as 8075, 9690, and 4845, some simple diagonal additions of 2 digits being 
necessary to obtain these results. The final product is then obtained by an 
addition, as illustrated in the figure.

(a) Make a set of Napier’s rods and perform some multiplications.
(b) Explain how Napier’s rods may be used to perform divisions.

8075
9690

4845
589475 Ans.

3 (1615) = 4845

5(1615) = 8075 

6 (1615) = 9690

FIGURE 83

9.4 The Slide Rule

(a) Construct, with the aid of tables, a logarithmic scale, to be designated 
as the D scale, about 10 inches long. Use the scale, along with a pair of 
dividers, to perform some multiplications and divisions.
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( b )  Construct 2 logarithmic scales, to be called C and D scales, of the same 
size. By sliding C along D, perform some multiplications and divisions. 
[Refer to the laws of logarithms (Problem Study 9.1) for a suggestion.]

(c) Construct a logarithmic scale half as long as the preceding D scale, and 
designate, by A, 2 of these short scales placed end to end. Show how 
the A and D scales may be used for extracting square roots.

(d) How would one design a scale to be used with the D scale for extracting 
cube roots?

(e) Construct a scale just like the C and D scales, only running in the 
reverse direction, and call it the Cl (C inverted) scale. Show how the 
Cl and D scales may be used for performing multiplications. What is 
the advantage of the Cl and D scales over the C and D scales for this 
purpose?

9.5 Freely Falling Bodies

Assuming that all bodies fall with the same constant acceleration g , Galileo 
showed that the distance d a body falls is proportional to the square of the time 
t of falling. Establish the following stages of Galileo’s argument.

(a) If v is the velocity at the end of time t , then v = gt.
( b )  If v and t refer to one falling body and V and T to a second falling body, 

then v/V = t!T, whence the right triangle having legs of numerical 
lengths v and t is similar to the right triangle having legs of numerical 
lengths V and T.

(c) Since the increase in velocity is uniform, the average velocity of fall is 
v!2, whence d = vtl2 = area of right triangle with legs v and t .

(d) d!D = t2/T2. Show also that d = g t2!2.
Galileo illustrated the truth of this final law by observing the times 

of descent of balls rolling down inclined planes.

9.6 Sector Compasses

About 1597, Galileo perfected the sector compasses, an instrument that enjoyed 
considerable popularity for more than two centuries. The instrument consists 
of 2 arms fastened together at one end by a pivot joint, as shown in Figure 84. 
On each arm, there is a simple scale radiating from the pivot and having the 0 of 
the scale at the pivot. In addition to these simple scales, other scales have often 
been used, some of which will be described below. Many problems can readily 
be solved using the simple scales of the compasses, the only theory required 
being that of similar triangles.

(a) Show how the sector compasses may be used to divide a given line 
segment into 5 equal parts.

( b )  Show how the sector compasses may be used to change the scale of a 
drawing.

(c) Show how the sector compasses may be used to find the fourth propor
tional x to 3 given quantities a , b , c (that is, to find x where a :b  = c : x), 
and thus applied to problems in foreign exchange.
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FIGURE 84

(d) Galileo illustrated the use of his sector compasses by finding the 
amount of money that should have been invested 5 years ago at 6 
percent, compounded annually, to amount to 150 scudi today. Try to 
solve this problem with the sector compasses.

Among the additional scales frequently found on the arms of sector com
passes was one (the line o f areas) marked according to the squares of the 
numbers involved and used for finding squares and square roots of numbers. 
Another scale (the line o f volumes) was marked according to the cubes of the 
numbers involved. Another gave the chords of arcs of specified numbers of 
degrees for a circle of unit radius and served engineers as a protractor. Still 
another (called the line o f metals) contained the medieval symbols for gold, 
silver, iron, copper, and so forth, spaced according to the densities of these 
metals, and was used to solve such problems as finding the diameter of an iron 
sphere having its weight equal to that of a given copper sphere.

The sector compasses are neither as accurate nor as easy to manipulate as 
the slide rule.

9.7 Some Simple Paradoxes from Galileo’s “Discorsi”

Explain the following 2 geometrical paradoxes considered by Galileo in his 
Discorsi of 1638.

(a) Suppose the large circle of Figure 85 has made one revolution in rolling 
along the straight line from A to B, so that AB is equal to the circumfer
ence of the large circle. Then the small circle, fixed to the large one, has 
also made 1 revolution, so that CD is equal to the circumference of the 
small circle. It follows that the 2 circles have equal circumferences!
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FIG U R E 85

D E C

FIG U R E 86

This paradox had been earlier described by Aristotle and is there
fore sometimes referred to as A ristotle’s wheel.

(b) Let ABCD be a square and HE any line parallel to BC , cutting the 
diagonal BD in G, as shown in Figure 86. Let circle B(C) cut HE in F , 
and draw the 3 circles H{G), H{F), H{E). First show that the area of 
circle H(G) is equal to the area of the ring between circles H(F) and 
H(E). Then let H  approach B so that, in the limit, circle H{G) becomes 
the point B , and the ring becomes the circumference B{C). We now 
conclude that the single point B is equal to the whole circumference 
B(C)\

(c) Explain the remark in the Discorsi that “neither is the number of 
squares less than the totality of all numbers, nor the latter greater than 
the former.”

9.8 Kepler’s Laws

(a) Where is a planet in its orbit when its speed is greatest?
(b) Check, approximately, Kepler’s third law using the following modern 

figures. (A. U. is an abbreviation for astronomical unit, the length of the 
semimajor axis of the earth’s orbit.)
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Planet
Tim e in 
Years

Semimajor
Axis

Mercury 0.241 0.387 A.U.
Venus 0.615 0.723 A.U.
Earth 1.000 1.000 A.U.
Mars 1.881 1.524 A.U.
Jupiter 11.862 5.202 A.U.
Saturn 29.457 9.539 A.U.

(c) What would be the period of a planet having a semimajor axis of 
100 A.U.?

(d) What would be the semimajor axis of a planet having a period of 125 
years?

(e) Two hypothetical planets are moving about the sun in elliptical orbits 
having equal semimajor axes. The semiminor axis of one, however, is 
half that of the other. How do the periods of the planets compare?

(f) The moon revolves about the earth in 27.3 days in an elliptical orbit 
whose semimajor axis is 60 times the earth’s radius. What would be the 
period of a hypothetical satellite revolving very close to the earth’s 
surface?

9.9 Mosaics

A very interesting problem of mosaics is to fill the plane with congruent regular 
polygons. Let n be the number of sides of each polygon. Then the interior angle 
at each vertex of such a polygon is (n -  2)180°ln. Prove this statement.

(a) If we do not permit a vertex of 1 polygon to lie on a side of another, 
show that the number of polygons at each vertex is given by 2 + 
4l(n -  2), and, hence, that we must have n = 3, 4, or 6. Construct 
illustrative mosaics.

(b) If we insist that a vertex of 1 polygon lie on a side of another, show that 
the number of polygons clustered at such a vertex is given by 1 + 
2/(n -  2), whence we must have n = 3 or 4. Construct illustrative 
mosaics.

(c) Construct mosaics containing (1) 2 sizes of equilateral triangles, the 
larger having a side twice that of the smaller, such that sides of triangles 
of the same size do not overlap; (2) 2 sizes of squares, the larger having 
a side twice that of the smaller, such that sides of smaller squares do 
not overlap; (3) congruent equilateral triangles and congruent regular 
dodecagons; (4) congruent equilateral triangles and congruent regular 
hexagons; (5) congruent squares and congruent regular octagons.

(d) Suppose we have a mosaic composed of regular polygons of 3 different 
kinds of each vertex. If the 3 kinds of polygons have p, q, r sides, 
respectively, show that

1 1 1 1--- 1------1--- — -r.
P q r 2



One integral solution of this equation is p = 4, q = 6, r = 12. Construct 
a mosaic of the type under consideration and composed of congruent 
squares, congruent regular hexagons, and congruent regular dodeca
gons.

9.10 Proving Theorems by Projection

(a) If / is a given line in a given plane 7r, and O is a given center of 
projection (not on 7r), show how to find a plane 7r' such that the projec
tion of / onto 77' will be the line at infinity on 77'. (The operation of 
selecting a suitable center of projection O and plane of projection 77' so 
that a given line on a given plane shall project into the line at infinity on 
77' is called the operation of “projecting a given line to infinity.” )

(b) Show that under the projection of (a), the line at infinity in 77 will 
project into the intersection of 77' with the plane through O parallel
to 77.

(c) Let UP, UQ, UR be three concurrent coplanar lines, cut by two lines 
OX and OY in P \ , Q \, R\ and P2, Q i, R2 , respectively (see Figure 87). 
Prove that the intersections of Q\R2 and Q2R \ , R\P2 and R2P \, P\Q2 and 
P2Q\ are collinear.

(d) Prove that if A\B\C\ and A2B2C2 are two coplanar triangles such that 
BXC\ and B2C2 meet in L , C\A\ and C2A2 meet in M, A\B\ and A2B2 meet 
in N, where L , M, N  are collinear, then A\A2, B\B2, C\C2 are concur
rent. (This is the converse part of the statement of Desargues’ two- 
triangle theorem as given in Section 9-8.)

(e) Show that by parallel projection (a projection where the center of pro
jection is at infinity) an ellipse may always be projected into a circle.

(f) In 1678, the Italian Giovanni Ceva (1648-1734) published a work con
taining the following theorem (see Figure 88), which is now known by
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A

his name: The 3 lines that join 3 points L , M, N  on the sides BC, CA, 
AB of a triangle ABC to the opposite vertices are concurrent if and only
if

This is a companion theorem to Menelaus’ theorem, which was stated 
in Section 6-5. Using Ceva’s theorem, prove that the lines joining the 
vertices of a triangle to the opposite points of contact of the inscribed 
circle are concurrent. Then, by means of (e), prove that the lines join
ing the vertices of a triangle to the opposite points of contact of an 
inscribed ellipse are concurrent.

(g) La Hire invented the following interesting mapping of the plane onto 
itself (see Figure 89): Draw any 2 parallel lines a and b and select a 
point P in their plane. Through any second point M  of the plane, draw a 
line cutting a in A and b in B. Then the map M' of M  will be taken as the 
intersection with MP of the parallel to AP through B.

FIGURE 89



1. Show that M' is independent of the particular line MAB through M 
used in determining it.

2. Generalize La Hire’s mapping to the situation where a and b need 
not be parallel.

9.11 Pascal’s Youthful Empirical “Proof”

Fill in the details of the empirical “proofs” indicated by Figures 77 and 78.

9.12 Pascal’s Theorem

The consequences of Pascal’s mystic hexagram theorem are very numerous 
and attractive, and an almost unbelievable amount of research has been ex
pended on the configuration. There are 60 possible ways of forming a hexagon 
from 6 points on a conic and, by Pascal’s theorem, to each hexagon corre
sponds a Pascal line. These 60 Pascal lines pass 3 by 3 through 20 points, called 
Steiner points, which in turn lie 4 by 4 on 15 lines, called Plucker lines. The 
Pascal lines also concur 3 by 3 in another set of points, called Kirkman points, 
of which there are 60. Corresponding to each Steiner point, there are 3 Kirk
man points such that all 4 lie upon a line, called a Cayley line. There are 20 of 
these Cayley lines, and they pass 4 by 4 through 15 points, called Salmon 
points. There are many further extensions and properties of the configuration, 
and the number of different proofs that have been supplied for the mystic 
hexagram theorem itself is now legion. In this Problem Study we shall consider 
a few of the many corollaries of the mystic hexagram theorem that can be 
obtained by making some of the 6 points coincide with one another. For sim
plicity, we shall number the points 1, 2, 3, 4, 5, 6. Then Pascal’s theorem says 
that the intersections of the pairs of lines 12, 45; 23, 56; 34, 61 are collinear if 
and only if the 6 points lie on a conic.

(a) If a pentagon 12345 is inscribed in a conic, show that the pairs of lines 
12, 45; 23, 51; 34 and the tangent at 1, intersect in 3 collinear points.

(b) Given 5 points, draw at any 1 of them the tangent to the conic deter
mined by the 5 points.

(c) Given 4 points of a conic and the tangent at any 1 of them, construct 
further points on the conic.

(d) Show that the pairs of opposite sides of a quadrangle inscribed in a 
conic, together with the pairs of tangents at opposite vertices, intersect 
in 4 collinear points.

(e) Show that if a triangle is inscribed in a conic, then the tangents at the 
vertices intersect the opposite sides in 3 collinear points.

(f) Given 3 points on a conic and the tangents at 2 of them, construct the 
tangent at the third.

9.13 Pascal’s Triangle

Establish the following relations, all of which were developed by Pascal, in
volving the numbers of the arithmetic triangle.
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(a) Any element (not in the first row or the first column) of the arithmetic 
triangle is equal to the sum of the element just above it and the element 
just to the left of it.

( b )  Any given element of the arithmetic triangle, decreased by 1, is equal 
to the sum of all the elements above the row and to the left of the 
column containing the given element.

(c) The rath element in the nth row is (ra + n -  2)!/(ra -  1) !(az -  1)!, 
where, by definition, 0! = 1.

( d )  The element in the rath row and nth column is equal to the element in 
the nth row and rath column.

(e) The sum of the elements along any diagonal is twice the sum of the 
elements along the preceding diagonal.

(f) The sum of the elements along the nth diagonal is 2n~l .
(g) Let us be given a group of n objects. Any set of r of these objects, 

considered without regard to order, is called a combination of the n 
objects taken r at a time, or, more briefly, as an r-combination of the n 
objects. We shall use the symbol C(n,r) to denote the number of such 
combinations. Thus, the 2-combinations of the 4 letters a, b, c, d are

ab , ac , ad , be , bd, cd ,

whence C(4,2) = 6. It is shown in textbooks on college algebra that

C(n,r) =
n\

r\{n -  r)\'

Show that C(n,r) appears at the intersection of the (n + l)st diagonal 
and the (r + l)st column of the arithmetic triangle.

Essay Topics

9/1 Reasons for the upsurge of mathematics in the seventeenth century. 
9/2 Napier as the science-fiction writer of his day.
9/3 The use of Napier’s rods and Galileo’s sector compasses.
9/4 The Nicaraguan science-formula stamps of 1971.
9/5 Reasons for the base e for logarithms and for radian measure for angles. 
9/6 Harriot as the father of the modern theory of equations.
9/7 Harriot in America.
9/8 Oughtred’s mathematical symbols.
9/9 Pernicious effects of the Inquisition.
9/10 Can science and religion be reconciled?
9/11 Kepler and the principle of continuity.
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9/12 Art as a motivation for the development of projective geometry. 
9/13 Pascal’s triangle before Pascal.
9/14 A history of the cycloid curve.
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Chapter

ANALYTIC GEOMETRY AND 
OTHER PRECALCULUS 
DEVELOPMENTS

10 -1  Analytic Geometry
While Desargues and Pascal were opening the new field of projective geometry, 
Descartes and Fermat were conceiving ideas of modern analytic geometry. 
There is a fundamental distinction between the two studies, for the former is a 
branch of geometry whereas the latter is a method of geometry. Few academic 
experiences can be more thrilling to the student of elementary college mathe
matics than his or her introduction to this new and powerful method of attack
ing geometric problems. The essence of the idea, as applied to the plane, it will 
be recalled, is the establishment of a correspondence between points in the 
plane and ordered pairs of real numbers, thereby making possible a correspon
dence between curves in the plane and equations in two variables, so that for 
each curve in the plane there is a definite equation f ( x , y) = 0, and for each 
such equation there is a definite curve, or set of points, in the plane. A corre
spondence is similarly established between the algebraic and analytic proper
ties of the equation/(jc, y) = 0 and the geometric properties of the associated 
curve. The task of proving a theorem in geometry is cleverly shifted to that of 
proving a corresponding theorem in algebra and analysis.

There are differences of opinion as to who invented analytic geometry, 
even as to what age should be credited with the invention, and the matter 
certainly cannot be settled without an agreement as to just what constitutes 
analytic geometry. We have seen that the ancient Greeks indulged in a good 
deal of geometric algebra, and it is well known that the idea of coordinates was 
used in the ancient world by the Egyptians and the Romans in surveying and by 
the Greeks in map making. Particularly strong in the favor of the Greeks is the 
fact that Apollonius derived the bulk of his geometry of the conic sections from 
the geometric equivalents of certain Cartesian equations of these curves, an 
idea that seems to have originated with Menaechmus. We also noted, in Sec
tion 8-4, that in the fourteenth century Nicole Oresme anticipated another 
aspect of analytic geometry when he represented certain laws by graphing the 
dependent variable (latitudo) against the independent one ((longitudo), as the 
latter variable was permitted to take on small increments. Proponents favoring 
Oresme as the inventor of analytic geometry see in his work such achievements 
as the first explicit introduction of the equation of a straight line and the exten
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sion of some of the notions of the subject to higher-dimensional spaces. A 
century after Oresme’s text was written, it underwent several printings; in this 
way, it may have influenced later mathematicians.

The preceding views of analytic geometry seem to confuse the subject with 
one or more of its features. The real essence of the subject lies in the transfer
ence of a geometric investigation into a corresponding algebraic investigation. 
Before analytic geometry could assume this ability, it had to await the develop
ment of algebraic processes and symbolism. It would therefore seem more 
correct to agree with the majority of historians, who regard the decisive contri
butions made in the seventeenth century by the two French mathematicians 
Rene Descartes and Pierre de Fermat as the essential origin of the subject. 
Certainly not until after the stimulation given to the subject by these two men 
do we find analytic geometry in a form with which we are familiar.

1 0 -2  Descartes

Rene Descartes was born near Tours in 1596. At the age of eight, he was sent to 
the Jesuit school at La Fleche. It was there that he developed (at first because 
of delicate health) his lifelong habit of lying in bed till late in the morning. These 
meditative hours of morning rest were later regarded by Descartes as his most 
productive periods. In 1612, Descartes left school and shortly after went to 
Paris, where, with Mersenne and Mydorge (see Section 10-6), he devoted 
some time to the study of mathematics. In 1617, he commenced several years 
of soldiering by joining the army of Prince Maurice of Orange. Upon quitting 
military life, he spent four or five years traveling through Germany, Denmark, 
Holland, Switzerland, and Italy. After resettling for a couple of years in Paris, 
where he continued his mathematical studies and his philosophical contempla
tions and where for a while he took up the construction of optical instruments, 
he decided to move to Holland, than at the height of its power. There he lived 
for twenty years, devoting his time to philosophy, mathematics, and science. In 
1649, he reluctantly went to Sweden at the invitation of Queen Christina. A few 
months later, he contracted inflammation of the lungs and died in Stockholm 
early in 1650. The great philosopher-mathematician was entombed in Sweden, 
and efforts to have his remains transported to France failed. Then, seventeen 
years after Descartes’ death, his bones, except for those of his right hand, were 
returned to France and reinterred in Paris. The bones of the right hand were 
secured, as a souvenir, by the French Treasurer-General who had arranged the 
transportation of the bones.

It was during his stay of twenty years in Holland that Descartes accom
plished his writing. He spent the first four years writing Le m onde , a physical 
account of the universe, but this was prudently abandoned and left incomplete 
when Descartes heard of Galileo’s condemnation by the Church. He turned to 
the writing of a philosophical treatise on universal science under the title of 
Discours de la m ethode pour bien conduire sa raison et chercher la verite dans 
les sciences (A Discourse on the Method of Rightly Conducting the Reason and
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Seeking Truth in the Sciences); this was accompanied by three appendices 
entitled La dioptrique , Les m eteores, and La geometrie. The Discours, with 
the appendices, was published in 1637; it is in the last of the three appendices 
that Descartes’ contributions to analytic geometry appear. In 1641, Descartes 
published a work called M editationes, which was devoted to a lengthy explana
tion of the philosophic views sketched in the Discours. In 1644, he issued his 
Principia philosophiae, which contains some inaccurate laws of nature and an 
inconsistent cosmological theory of vortices.

La geom etrie , the famous third appendix of the Discours, occupies about 
one hundred pages of the complete work and is itself divided into three parts. It 
is the only mathematical writing published by Descartes. The first part contains 
an explanation of some of the principles of algebraic geometry and shows a real 
advance over the Greeks. To the Greeks, a variable corresponded to the length 
of some line segment, the product of two variables to the area of some rectan
gle, and the product of three variables to the volume of some rectangular 
parallelepiped. Beyond this the Greeks could not go. To Descartes, on the 
other hand, x 2 did not suggest an area, but rather the fourth term in the propor
tion 1 :x  = x : x 2, and as such is representable by an appropriate line length that 
can easily be constructed when x  is known. Using a unit segment, we can, in 
this way, represent any power of a variable, or the product of any number of 
variables, by a line length, and actually construct the line length with Euclidean 
tools when the values of the variables are assigned. With this arithmetization of 
geometry, Descartes, in the first part of La geom etrie , marked off x  on a given 
axis and then a length y  at a fixed angle to this axis and endeavored to construct 
points whose jc’s and y’s satisfy a given relation (see Figure 90). If we have the 
relation y  = x 2, for example, then for each value of x  we are able to construct 
the corresponding y  as the fourth term of the above proportion. Descartes 
showed special interest in obtaining such relations for curves that are defined 
kinematically. As an application of his method, he discussed the problem: If p \ , 
. . . , p m, Pm+i , • • • , Pm+n are the lengths of m + n line segments drawn from a 
point p  to m  + n given lines, making given angles with these lines, and if

P\Pl * * ’ Pm kPm+\Pm + 2 * ’ ’ Pm+n,

where A; is a constant, find the locus of P. The ancient Greeks solved this 
problem for the cases where m  and n do not exceed 2 (see Section 6-9), but the

FIGURE 90
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RENE DESCARTES
(David Smith Collection)

general problem had remained a baffling one. Descartes easily showed that 
higher cases of the problem lead to loci of degrees greater than two. In certain 
cases, he was actually able to construct with Euclidean tools points of the loci 
[see Problem Study 10.2(a)]. That Descartes’ analytic geometry can cope with 
the general problem is a fine tribute to the power of the new method. It is said 
that it was Descartes’ attempt to solve this problem that inspired his invention 
of analytic geometry.

The second part of La geometrie deals, among other things, with a now- 
obsolete classification of curves and with an interesting method of constructing 
tangents to curves. The method of drawing tangents is as follows (see Figure 
91). Let the equation of the given curve be f ( x , y) = 0, and let (x1? y x) be the 
coordinates of the point P  of the curve at which we wish to construct a tangent.

FIGURE 91
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Let Q, having coordinates (x2, 0), be a point on the x-axis. Then the equation of 
the circle with Q as center and passing through P is

(x ~ x2)2 + y2 = Ui -  x2)2 + y i2.

If we eliminate y between this equation and the equation / (x , y ) = 0, we obtain 
an equation in x leading to the abscissas of the points where the circle cuts the 
given curve. We now determine x2 so that this equation in x will have a pair of 
roots equal to x \ . This condition fixes Q as the intersection of the x-axis and the 
normal to the curve at P, since the circle is now tangent to the given curve at P. 
Once this circle is drawn, we may easily construct the required tangent. As an 
example of the method, consider the construction of the tangent to the parabola 
y2 = 4x at the point (1, 2). Here we have

(x -  x2)2 + y2 = (1 -  x2)2 + 4.

The elimination of y gives

(x — x2)2 + 4x = (1 -  x2)2 + 4,

or

x 2 + 2x(2 -  x2) + (2x2 -  5) = 0.

The condition that this quadratic equation have two equal roots is that its 
discriminant vanish— that is, that

(2 -  x2)2 -  (2x2 -  5) = 0,

or

x2 = 3.

The circle with center (3, 0) and passing through the point (1, 2) of the curve 
may now be drawn and the required tangent finally constructed. This method of 
constructing tangents was applied by Descartes to a number of different curves, 
including one of the quartic ovals named after him.1 Here we have a general 
process that tells us exactly what to do to solve our problem, but it must be 
confessed that in the more complicated cases, the required algebra may be 
quite forbidding. This is a well-recognized fault with elementary analytic geom
etry— we often know what to do but lack the technical ability to do it. There

1 A Cartesian oval is the locus of a point whose distances, rx and r2, from two fixed points 
satisfy the relation rx + mr2 = a , where m and a are constants. The central conics will be recognized 
as special cases.
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L ivre S econd. 3**

Apre'scelaprenantvnpointadifcretion dans la courbe, 
comme C, furlequel ie fuppofe que l’inftrument qui fere 
a la deferire eft appliqud', ie tire de ce point C la b g n c  
C  B parallele a G A, & poureeque C B & B A font deux 
quantites indeterminees & inconnues , ie les nomme 
1‘vne^ & l'autre x. mais affin de trouuer le rapport de 
r v n e i l ’autre; ieconfidere aufly les quan tity  connues 
qui determinent la defeription de ccte ligne courbe, 
comme G A que ie nomme a, K L  que ie nomme b , & 
N  L parallele'a G A que ie nomme c. puis ie dis, comme 
N L eft& L K ,our& £ ,a in fiC B ,ou^ , e f t kBK,  qui eft

parconfequen t;^ : & B L e f t 4  y  — b, & A L eftar-f-

L y  — b. de plus comme C B eft k L  B, ou^ k ~y~b, ainfi

a,ou G A, eft i  L  A, ou x  -+- ~ y  -  b. de fagon que mul-
S f  tipliant

A page from Descartes’ La geometrie (1637).
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are, of course, much better methods than the above for finding tangents to 
curves.

The third part of La geometrie concerns itself with the solution of equa
tions of degree greater than two. Use is made of what we now call Descartes9 
rule of signs, a rule for determining limits to the number of positive and the 
number of negative roots possessed by a polynomial (see Problem Study 10.3). 
In La geometrie, Descartes fixed the custom of employing the first letters of the 
alphabet to denote known quantities, and the last letters to denote unknown 
ones. He also introduced our present system of indices (such as a3, a4, and so 
forth), which is a great improvement over Viete’s way of designating powers, 
and he realized that a letter might represent any quantity, positive or negative. 
Here we also find the first use of the method of undetermined coefficients. In 
the example of the last paragraph, then, we used the vanishing of the discrimi
nant to determine the value of x2 so that the quadratic equation

jt2 4- 2jc(2 -  x2) + (2x2 -  5) = 0

should have both roots equal to 1. As an illustration of the method of undeter
mined coefficients, we might accomplish this by saying that we want

x 2 + 2(2 -  x2)x 4- (2jc2 -  5) =  (* -  l)2 = x 2 -  2x 4- 1, 

whence we must have, by equating coefficients of like powers of *,

2(2 — *2) — —2 and 2*2 — 5 = 1 .

Either of these leads to x2 = 3.
La geometrie is not in any sense a systematic development of the method 

of analytics, and the reader must pretty much construct the method for himself 
from certain isolated statements. There are thirty-two figures in the text, but in 
none do we find the coordinate axes explicitly set forth. The work was written 
with intentional obscurity and as a result was too difficult to be widely read. In 
1649, a Latin translation appeared with explanatory notes by F. de Beaune, 
edited with commentary by Frans van Schooten the Younger. This, and the 
revised 1659-1661 edition, had a wide circulation. One hundred years or more 
later, the subject achieved the familiar form found in our present-day college 
textbooks. The words coordinates, abscissa, and ordinate, as now technically 
used in analytic geometry, were contributed by Leibniz in 1692.

There are a couple of legends describing the initial flash that led Descartes 
to the contemplation of analytic geometry. According to one story, it came to 
him in a dream. On St. Martin’s Eve, November 10, 1616, while encamped in 
the army’s winter quarters on the banks of the Danube, Descartes experienced 
three singularly vivid and coherent dreams that, he claimed, changed the whole 
course of his life. The dreams, he said, clarified his purpose in life and deter
mined his future endeavors by revealing to him “a marvelous science” and “a 
wonderful discovery.” Descartes never explicitly disclosed just what were the
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marvelous science and the wonderful discovery, but some believe them to have 
been analytic geometry, or the application of algebra to geometry, and then the 
reduction of all science to geometry. It was eighteen years later that he ex
pounded some of his ideas in his Discours.

Another story, perhaps on a par with the story of Isaac Newton and the 
falling apple, says that the initial flash of analytic geometry came to Descartes 
when watching a fly crawling about on the ceiling near a corner of his room. It 
struck him that the path of the fly on the ceiling could be described if only one 
knew the relation connecting the fly’s distances from two adjacent walls. Even 
though this second story may be apocryphal, it has good pedagogic value.

Of the other two appendices to the Discours, one is devoted to optics and 
the other to an explanation of numerous meteorologic, or atmospheric, phe
nomena, including the rainbow.

Among other mathematical items credited to Descartes is the near discov
ery of the relation v -  e + / =  2, connecting the numbers of vertices v, edges e , 
and faces / of a convex polyhedron (see Problem Study 3.12). He was the first 
to discuss the so-called folium of Descartes, a nodal cubic curve found today in 
many of our calculus texts, but he did not completely picture the curve. In 
correspondence he considered parabolas of higher order (yn = px, n >  2) and 
gave a remarkably neat construction of a tangent to the cycloid.

10-3 Fermat
At the same time that Descartes was formulating the basis of modern analytic 
geometry, the subject was also occupying the attention of another French 
mathematical genius, Pierre de Fermat. Fermat’s claim to priority rests on a 
letter written to Roberval in September, 1636, in which it is stated that the ideas 
of the writer were even then seven years old. The details of the work appear in 
the posthumously published paper Isogoge ad locus pianos et solidos. Here we 
find the equation of a general straight line and of a circle, and a discussion of 
hyperbolas, ellipses, and parabolas. In a work on tangents and quadratures, 
completed before 1637, Fermat defined many new curves analytically. Where 
Descartes suggested a few new curves, generated by mechanical motion, Fer
mat proposed many new ones, defined by algebraic equations. The curves 
x myn = a, yn = axm, and rn = ad are still known as hyperbolas, parabolas, and 
spirals of Fermat. Fermat also proposed, in connection with work on quadra
tures, the cubic curve later called the witch of Agnesi, after the distinguished 
eighteenth-century mathematician, linguist, and philosopher Maria Gaetana 
Agnesi (see Section 12-7). Thus, where to a large extent Descartes began with 
a locus and then found its equation, Fermat started with the equation and then 
studied the locus. These are the two inverse aspects of the fundamental princi
ple of analytic geometry. Fermat’s work is written in Viete’s notation and thus 
has an archaic look when compared with Descartes’ more modern symbolism.

There is a seemingly reliable report that Fermat was born at Beaumont de 
Lomagne, near Toulouse, on August 17, 1601. It is known that he died at



Castres or Toulouse on January 12, 1665. His tombstone, originally in the 
church of the Augustines in Toulouse and later moved to the local museum, 
gives the preceding date of death and Fermat’s age at death as fifty-seven 
years. Because of this conflicting data, Fermat’s dates are usually listed as 
(16017-1665). Indeed, for various reasons, Fermat’s birth year, as given by 
different writers, ranges from 1590 to 1608.

Fermat was the son of a leather merchant and received his early education 
at home. At the age of thirty, he obtained the post of councilor for the local 
parliament at Toulouse and there discharged his duties with modesty and punc
tiliousness. Working as a humble and retiring lawyer, he devoted the bulk of his 
leisure time to the study of mathematics. Although he published very little 
during his lifetime, he was in scientific correspondence with many leading 
mathematicians of his day and, in this way, considerably influenced his con
temporaries. He enriched so many branches of mathematics with so many 
important contributions that he has been called the greatest French mathemati
cian of the seventeenth century.

Of Fermat’s varied contributions to mathematics, the most outstanding is 
the founding of the modern theory of numbers. In this field, Fermat possessed 
extraordinary intuition and ability. It was probably the Latin translation of 
Diophantus’ Arithmetica, made by Bachet de Meziriac in 1621, that first di
rected Fermat’s attention to number theory. Many of Fermat’s contributions to 
the field occur as marginal statements made in his copy of Bachet’s work. In 
1670, five years after his death, these notes were incorporated in a new, but 
unfortunately carelessly printed, edition of the Arithmetica, brought out by his 
son Clement-Samuel. Many of the unproved theorems announced by Fermat 
have later been shown to be correct. The following examples illustrate the tenor 
of Fermat’s investigations.
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1. If p is a prime and a is prime to p, then ap~x — 1 is divisible by p. For 
example, ifp = 5 and a = 2, then aP~x — 1 = 15 = (5)(3). This theorem, 
known as the little Fermat theorem, was given by Fermat without 
proof in a letter to Frenicle de Bessy, dated October 18, 1640. The first 
published proof of it was given by Euler in 1736 (see Problem Study 
10.5).

2. Every odd prime can be expressed as the difference o f two squares in 
one and only one way. Fermat gave a simple proof of this. If p is an 
odd prime, then one easily verifies that

On the other hand, if p -  x 2 -  y2, then p -  (x + y)(x -  y). But since p 
is prime, its only factors arep and 1; hence, x + y = p and x -  y = 1, or 
x = (p + l)/2 and y = (p — l)/2.

3. A prime o f the form 4n + 1 can be represented as the sum of two 
squares. For example, 5 = 4 + 1, 13 = 9 + 4, 17 = 16 + 1, 29 = 25 + 4. 
This theorem was first stated by Fermat in a letter to Mersenne, dated 
December 25, 1640. The first published proof was given by Euler in 
1754, who, moreover, succeeded in showing that the representation is 
unique.

4. A prime o f the form 4 n + 1 is only once the hypotenuse o f an integral
sided right triangle; its square is twice; its cube is three times; and so 
forth. For example, consider 5 = 4(1) + 1. Now 52 = 32 + 42; 252 = 
152 + 202 = 72 + 242; 1252 = 752 + 1002 = 352 + 1202 = 442 + 1172.

5. Every non-negative integer can be represented as the sum o f four or 
fewer squares. This difficult theorem was established by Lagrange in 
1770.

6. The area o f an integral-sided right triangle cannot be a square num
ber. This also was established later by Lagrange.

7. There is only one solution in integers o f x2 + 2 = y3, and only two of  
x2 + 4 = y3. This problem was issued as a challenge problem to English 
mathematicians. The solutions are jc = 5, y = 3, for the first equation, 
and x = 2, y = 2 and x = 11, y = 5, for the second equation.

8. There do not exist positive integers x , y, z such that x4 + y4 = z2.
9. There do not exist positive integers x , y, z, n such that xn + yn = zn, 

when n >  2. This famous conjecture is known as Fermat’s last “theo
rem,” It was stated by Fermat in the margin of his copy of Bachet’s 
translation of Diophantus, at the side of Problem 8 of Book II: “To 
divide a given square number into two squares.” Fermat’s marginal 
note reads, “To divide a cube into two cubes, a fourth power, or in 
general any power whatever into two powers of the same denomina
tion above the second is impossible, and I have assuredly found an 
admirable proof of this, but the margin is too narrow to contain it.” 
Whether Fermat really possessed a sound demonstration of this prob
lem will probably forever remain an engima. Many of the most promi
nent mathematicians since his time have tried their skill on the prob
lem, but the general conjecture still remains open. There is a proof
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given elsewhere by Fermat for the case n -  4, and Euler supplied a 
proof (later perfected by others) for n = 3. About 1825, independent 
proofs for the case n = 5 were given by Legendre and Dirichlet; in 
1839, Lame proved the theorem for n = 7. Very significant advances in 
the study of the problem were made by the German mathematician E. 
Kummer (1810-1893). In 1843, Kummer submitted a purported proof 
to Dirichlet, who pointed out an error in the reasoning. Kummer then 
returned to the problem with renewed vigor, and a few years later, 
after developing an important allied subject in higher algebra called the 
theory o f ideals, derived very general conditions for the insolubility of 
the Fermat relation. Almost all important subsequent progress on the 
problem has been based on Rummer’s investigations. It is now known 
that Fermat’s last “theorem” is certainly true for all n <  125,000,2 and 
for many other special values of n. In 1908, the German mathematician 
Paul Wolfskehl bequeathed 100,000 marks to the Academy of Science 
at Gottingen as a prize for the first complete proof of the “theorem.” 
The result was a deluge of alleged proofs by glory- and money-seeking 
laymen; ever since then, the problem has haunted amateurs, as does 
the trisection of an arbitrary angle and the squaring of the circle. 
Fermat’s last “theorem” has the peculiar distinction of being the 
mathematical problem for which the greatest number of incorrect 
proofs have been published.

10. Fermat conjectured that f(n )  = 22" + 1 is prime for any non-negative 
integral n. The conjecture proved to be incorrect when Euler showed 
that/(5) is a composite number. It is known that f(n )  is composite for 
5 ^ n ^  16 and at least forty-seven other values of n} perhaps the 
largest being n = 1945. The prime factors o f/(5 ),/(6 ), and/(8) have 
been found, and one prime factor of /(9) has been found.

In 1879, a paper was found in the library at Leyden, among the manu
scripts of Christiaan Huygens, in which Fermat describes a general method by 
which he may have made many of his discoveries. The method is known as 
Fermat’s method of infinite descent and is particularly useful in establishing 
negative results. In brief, the method is this. To prove that a certain relation 
connecting positive integers is impossible, assume, on the contrary, that the 
relation can be satisfied by some particular set of positive integers. From this 
assumption, show that the same relation then holds for another set of smaller 
positive integers. Then, by a reapplication, the relation must hold for another 
set of still smaller positive integers, and so on ad infinitum. Since the positive 
integers cannot be decreased in magnitude indefinitely, it follows that the as
sumption at the start is untenable and, therefore, that the original relation is 
impossible. Fermat used this method to establish result 8 above. To make the 
method clear, let us apply it by proving anew that V2 is irrational. Suppose 
V2 = a lb , where a and b are positive integers. Now

V2 + 1 = 1
V 2 -  r

2 This was accomplished in recent years with the aid of electronic computers.
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whence

and

a = 1 = b
b + -  — 1 a — b'

b

b _  1 = 2b -  a 
a — b a -  b

a±
b\'

say.

But, since 1 <  V2 < 2, after replacing V2 by alb and then multiplying through 
by by we have b < a < 2b. Now, since a < 2b, it follows that 0 <  2b — a = a \ . 
And since b < a, it follows that a\ = 2b -  a <  a. Thus, a\ is a positive integer 
less than a. By a reapplication of our procedure, we find V2 = a2/b2, where a2 
is a positive integer less than a\. The process may be repeated indefinitely. 
Since the positive integers cannot be decreased in magnitude indefinitely, it 
follows that V2 cannot be rational.

We have already mentioned, in Section 9-9, the Pascal-Fermat correspon
dence that laid the foundations of the science of probability. It will be recalled 
that it was the so-called problem of the points that started the matter: “Deter
mine the division of the stakes of an interrupted game of chance between two 
supposedly equally skilled players, knowing the scores of the players at the 
time of interruption and the number of points needed to win the game.” Fermat 
discussed the case in which one player A needs two points to win, and the other 
player B needs three points. Here is Fermat’s solution for this particular case. 
Since it is clear that four more trials will decide the game, let a indicate a trial 
where A wins and b a trial where B wins, and consider the sixteen permutations 
of the two letters a and b taken four at a time:

aaaa aaab abba bbab 
baaa bbaa abab babb 
abaa baba aabb abbb 
aaba baab bbba bbbb

The cases in which a appears two or more times are favorable to A; there are 
eleven of them. The cases where b appears three or more times are favorable to 
B; there are five of them. Therefore, the stakes should be divided in the ratio 
11:5. For the general case, where A needs m points to win and B needs n, one 
writes down the 2m+n~l possible permutations of the two letters a and b taken 
m + n — 1 at a time. One then finds the number a of cases where a appears m or 
more times and the number /3 of cases where b appears n or more times. The 
stakes are then to be divided in the ratio a : /3.

Pascal solved the problem of the points by utilizing his “arithmetic trian
gle,” described in Section 9-9. Letting C(n, r) represent the number of combi
nations of n objects taken r at a time [see Problem Study 9.13(g)], one can easily
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show that the numbers along the fifth diagonal of the “arithmetic triangle” are, 
respectively,

C(4, 4) = 1, C(4, 3) = 4, C(4, 2) = 6, C(4, 1) = 4, C(4, 0) = 1.

Since, returning to the special problem of the points considered above, C(4, 4) 
is the number of ways to obtain 4 a s ,  C( 4, 3) is the number of ways to obtain 3 
a’s, and so forth, it follows that the solution of the problem is given by

[C(4, 4) + C(4, 3) + C(4, 2)]: [C(4, 1) + C(4, 0)] = (1 + 4 + 6): (4 + 1)
= 11:5.

In the general case, where A needs m points to win and B needs n, one chooses 
the (m + n)th diagonal of Pascal’s arithmetic array. One then finds the sum a of 
the first n numbers of this diagonal and the sum (3 of the last m numbers. The 
stakes are then to be divided in the ratio a : /3.

Pascal and Fermat, in their historic correspondence of 1654, reflected upon 
other problems related to the problem of the points, such as the division of 
stakes when there are more than two players, or when there are two unevenly 
skilled players. It was this work by Pascal and Fermat that launched the mathe
matical theory of probability. In 1657, Christiaan Huygens (1629-1695) wrote 
the first formal treatise on probability, basing his work on the Pascal-Fermat 
correspondence. This was the best account of the subject until the posthumous 
appearance, in 1713, of the Ars conjectandi of Jakob Bernoulli (1694-1705), 
which contained a reprint of the earlier treatise by Huygens. After these pio
neering efforts, we find the subject carried forward by such men as Abraham 
De Moivre (1667-1754), Daniel Bernoulli (1700-1782), Leonhard Euler (1707- 
1783), Joseph Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-1827), 
and a host of other contributors.

It is impressive, and somewhat surprising, that mathematicians have been 
able to develop a science (namely, the mathematical theory of probability) that 
establishes rational laws that can be applied to situations of pure chance. This 
science is far from being impractical, as evinced by experiments performed in 
great laboratories, by the existence of highly respected insurance companies, 
and by the logistics of big business and of war.

We shall return to Fermat in the next chapter (Section 11-7), where we 
will consider his use of infinitesimals in geometry—particularly his application 
of them to questions of maxima and minima—marking him an important fore
runner of the differential calculus.

10-4 Roberval and Torricelli
We devote this section to Gilles Persone de Roberval and Evangelista Torri
celli, a Frenchman and an Italian, respectively, who were contemporaries, 
were both accomplished geometers and physicists, possessed similar mathe
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matical tastes and talents, and became embroiled with one another in priority 
disputes.

Gilles Persone, a contentious individual, was born in Roberval, near 
Beauvais, in 1602, and died in Paris in 1675. He assumed the seignioral name of 
de Roberval, to which he was not entitled. His extensive correspondence 
served as a medium for the intercommunication of mathematical ideas in those 
prejournal days. He became well known for his method of drawing tangents 
and his discoveries in the field of higher plane curves. He endeavored to con
sider a curve as generated by a point whose motion is compounded from two 
known motions. Then the resultant of the velocity vectors of the two known 
motions gives the tangent line to the curve. For example, in the case of a 
parabola, we may consider the two motions as away from the focus and away 
from the directrix. Since the distances of the moving point from the focus and 
the directrix are always equal to each other, the velocity vectors of the two 
motions must also be of equal magnitude. It follows that the tangent at a point 
of the parabola bisects the angle between the focal radius to the point and the 
perpendicular through the point to the directrix (see Figure 92).

The preceding idea of tangents was also held by Torricelli, and an argu
ment of priority ensued. Roberval also claimed to be the inventor of Cavalieri’s 
precalculus method of indivisibles (discussed in Section 11-6) and to have 
squared the cycloid before Torricelli. These matters of priority are difficult to 
settle, for Roberval was consistently tardy in disclosing his discoveries. This 
tardiness has been explained by the fact that for forty years, starting in 1634, 
Roberval held a professorial chair at the College Royale. This chair automati
cally became vacant every three years, to be filled by open competition in 
mathematical contests in which the questions were set by the incumbent. To 
retain his position, Roberval saved his discoveries to formulate contest ques
tions that he would be able to answer but that his competitors would probably 
find troublesome. In any event, Roberval successfully employed the method of 
indivisibles to the finding of a number of areas, volumes, and centroids. In spite 
of his geometric successes, his chief interest lay in physics.

Evangelista Torricelli, a sensitive soul, was born in or near Faenza, Italy, 
in 1608, and died in Florence in 1647. He was, for a very brief time, a student of 
Galileo, during the latter’s final year of life. Although he was forty-four years

d

FIGURE 92
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Galileo’s junior, he survived the master by only five years, dying at the age of 
thirty-nine, as Pascal was to do fifteen years later. A perhaps overly romantic 
account claims that Torricelli died from dismay and chagrin at being accused of 
plagiarism by Roberval.

We have noted that Galileo valued the cycloid for the graceful form it 
would give to arches in architecture. In 1599, he also attempted to ascertain the 
area under one arch of the curve by balancing a cycloidal template against 
circular templates of the size of the generating circle. He incorrectly concluded 
that the area under an arch was very nearly, but not exactly, three times the 
area of the circle. The first published mathematical demonstration that the area 
is exactly three times that of the generating circle was furnished in 1644, by his 
pupil Torricelli, using early infinitesimal methods. Torricelli at the same time 
published a construction of the tangent to the cycloid at any given point on the 
curve. He made no reference to the fact that Roberval had earlier arrived at 
both the area and the tangent, so in 1646 the irritated Roberval wrote a letter 
accusing Torricelli of plagiarism. It is now clear that priority of discovery goes 
to Roberval, but priority of publication belongs to Torricelli, who probably 
independently rediscovered the two results.

For finding the tangent, both men employed the method of composition of 
motions, described before in connection with drawing a tangent to the parab
ola. In the case of the cycloid, a point P on the curve can be thought of as 
subject to two equal motions, one a translation and one a rotation. As the 
generating circle rolls along the horizontal base line AB (see Figure 93), point P 
is carried horizontally while at the same time rotating about O, the center of the 
circle. One therefore draws through P a horizontal vector PR, for the transla
tion component, and a vector PS tangent to the generating circle, for the rotary 
component. Inasmuch as the two vectors have equal magnitudes, the required 
tangent to the cycloid lies along the bisector PT of the angle RPS formed by the 
two vectors.

Fermat proposed to Torricelli the problem of determining a point in the 
plane of a triangle such that the sum of its distances from the three vertices be a 
minimum. Torricelli’s solution was published in 1659 by his pupil Viviani. This 
point, now known as the isogonic center of the triangle, was the first notable 
point of the triangle discovered since the period of ancient Greek mathematics. 
An elegantly simple analysis of the problem was later furnished by Jacob 
Steiner.3 In 1640, Torricelli found the length of an arc of the logarithmic spiral. 
This curve had also been rectified two years earlier by Descartes and was the 
first curve after the circle to be rectified.

In 1641, Torricelli noted that an infinite area, when revolved about an axis 
in its plane, can sometimes yield a finite volume for the solid of revolution. For 
example, the area bounded by the hyperbola xy = k2, the ordinate x = b (b >  0), 
and the x-axis is infinite, whereas the volume of the solid obtained by revolving

3 See, for example, R. A. Johnson, Modern Geometry, pp. 218-25, and Richard Courant and 
H. E. Robbins, What Is Mathematics? pp. 354-61.
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EVANGELISTA TORRICELLI
(David Smith Collection)

FIGURE 93

the area about the Jt-axis is finite. Torricelli, however, was not the first to note 
this seeming anomaly.

Torricelli is much better known for his contributions to physics, where he 
developed the theory of the barometer and worked on such questions as the 
value of the acceleration due to gravity, the theory of projectiles, and the 
motion of fluids.

10-5 Huygens
The great Dutch genius, Christiaan Huygens, lived an uneventful but remark
ably productive life. He was born at The Hague in 1629 and studied at Leyden 
under Frans van Schooten the Younger. In 1651, when he was twenty-two, he 
published a paper pointing out fallacies committed by Saint-Vincent in his work 
on the quadrature of the circle. This was followed by a number of tracts dealing 
with the quadrature of the conics and with Snell’s trigonometric improvement 
of the classical method of computing tt (see Section 4-8). In 1654, he and his
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brother devised a new and better way of grinding and polishing lenses; conse
quently, Huygens was able to settle a number of questions in observational 
astronomy, such as the nature of Saturn’s appendages. Huygen’s work in as
tronomy led him, a couple of years later, to invent the pendulum clock, so that 
he might have more exact means of measuring time.

As remarked in Section 10-3, it was in 1657 that Huygens wrote the first 
formal treatise on probability, basing his work on the Pascal-Fermat correspon
dence. Many interesting and challenging problems were solved by Huygens, 
and he introduced the important concept of “mathematical expectation” : If p 
denotes the probability that a person will win a certain sum 5, then sp is called 
his mathematical expectation. Huygens showed, among other things, that if p is 
the probability of a person winning a sum a , and q that of winning a sum b , then 
he may expect to win the sum ap + bq.

Pascal, in his Pensees, or Thoughts on Religion and Other Subjects, pub
lished eight years after his death, made a specious application of the notion of 
mathematical expectation. He argued that, since the value of eternal happiness 
must be infinite, then, even if the probability that a religious life would ensure 
happiness were very small, still the expectancy (which is measured by the 
product of the two) must be sufficient to render it worthwhile to be religious.

In 1665, Huygens moved to Paris in order to benefit from a pension offered 
to him by Louis XIV. While there, in 1668, he communicated to the Royal 
Society of London a paper in which he demonstrated experimentally that the 
combined momentum of two bodies in a given direction is the same before and 
after a collision.

In 1673, in Paris, Huygen’s greatest publication, Horologium oscillato- 
rium, appeared. This work is in five parts, or chapters. The first part concerns

CHRISTIAAN HUYGENS
(David Smith Collection)
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itself with the pendulum clock that the author had invented in 1656. The second 
part is devoted to a discussion of bodies falling freely in a vacuum, sliding on a 
smooth inclined plane, or sliding along a smooth curve. Shown here is the 
isochronous property of an inverted cycloid—that a heavy particle will reach 
the bottom of an inverted cycloidal arch in the same length of time, no matter 
from what point on the arch it begins its descent. The third part includes a 
treatment of evolutes and involutes. The evolute of a plane curve is the enve
lope of the normals to the curve, and any curve having a given curve for its 
evolute is called an involute of that given curve. As applications of his general 
theory, Huygens finds the evolute of a parabola and of a cycloid. In the former 
case, he obtains a semicubical parabola; in the latter, he obtains another cy
cloid of the same size. A treatment of the compound pendulum with a proof 
that the center of oscillation and the point of suspension are interchangeable is 
found in the fourth part of the Horologium. The last part of the work concerns 
itself with the theory of clocks. Here we find a description of the cycloidal 
pendulum (see Problem Study 10.7), in which the period of oscillation is the 
same no matter how great or how small the amplitude of the oscillation, some
thing that is only approximately true of the period of oscillation of a 
simple pendulum. This last part closes with thirteen theorems related to 
centrifugal force in circular motion, proving, among other things, the now fa
miliar fact that for uniform circular motion, the magnitude of the centrifugal 
force is directly proportional to the square of the linear speed and inversely 
proportional to the radius of the circle. In 1675, under Huygens’ directions, 
the first watch regulated by a balance spring was made; it was presented to 
Louis XIV.

Huygens returned to Holland in 1681, constructed some lenses of very 
large focal lengths, and invented the achromatic eyepiece for telescopes. In 
1689, he visited England and made the acquaintance of Isaac Newton, whose 
work he greatly admired. Shortly after his return to Holland in the following 
year, he published a treatise expounding the wave theory of light. On the basis 
of this theory, he was able to deduce geometrically the laws of reflection and 
refraction and to explain the phenomenon of double refraction. Newton, how
ever, supported the emission theory of light, and his greater eminence caused 
contemporary scientists to favor that theory to the wave theory.

Huygens also wrote a number of minor tracts. He rectified the cissoid of 
Diodes; investigated the geometry of the catenary (the curve assumed by a 
perfectly flexible inextensible chain of uniform linear density, hanging from two 
supports not in the same vertical line); wrote on the logarithmic curve; gave, in 
modern form, for polynomials, Fermat’s rule for maxima and minima; and 
made numerous applications of mathematics to physics.

Like many of the demonstrations given by Newton, Huygens’ proofs are 
almost entirely accomplished, with great rigor, by the methods of Greek geom
etry. Reading his works, one would not realize that he was acquainted with the 
powerful new methods of analytic geometry and the calculus. Huygens died in 
the city of his birth in 1695.
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10-6 Some Seventeenth-Century
Mathematicians of France and Italy

The works of some lesser mathematicians of the seventeenth century should be 
mentioned here, even if only briefly. We devote the present and the following 
two sections to this purpose, treating the men by geographic areas.

An early noteworthy European Diophantist was the Frenchman Claude- 
Gaspar Bachet, Sieur de Meziriac (1581-1638), commonly referred to as Ba- 
chet de Meziriac. He was a broad scholar—a mathematician, philosopher, 
theologian, poet, and writer. His charming and classic Problemes plaisants et 
delectables, which appeared in 1612 and again, enlarged, in 1624, contains 
many arithmetic tricks and questions that have reappeared in practically all 
subsequent collections of mathematical puzzles and recreations. In 1621, he 
published an edition of the Greek text of Diophantus’ Arithmetica, along with a 
Latin translation and notes. It was in a copy of this work that Fermat made his 
famous marginal notes.

Another French number theorist, and a voluminous writer in many fields, 
was the Minimite friar Marin Mersenne (1588-1648). He maintained a constant 
correspondence with the greatest mathematicians of his day and served admira
bly, in those prejournal times, as a clearinghouse for mathematical ideas. He 
edited the works of many of the Greek mathematicians and wrote on a variety 
of subjects. He is especially known today in connection with the so-called 
Mersenne primes, or prime numbers of the form 2P -  1, which he discussed in a 
couple of places in his work Cogitata physico-mathematica of 1644. The con
nection between Mersenne primes and perfect numbers was pointed out in 
Section 3-3. The Mersenne prime for p = 4253 is the first known prime number 
to possess more than 1000 digits in its decimal expansion, and the Mersenne 
prime for p = 216091 was the largest prime known in 1986. With the remarkable 
improvement in modern computing machinery, it is probably pointless to con
tinue recording further updatings of this sort.

Claude Mydorge (1585-1647), born in Paris and a Parisian by predilection, 
was a close friend of Descartes. He was a geometer and a physicist. He pub
lished some works on optics and a synthetic treatment of the conic sections in 
which he simplified many of Apollonius’ prolix proofs. He left an interesting 
manuscript containing the statements and solutions of over a thousand geomet
ric problems and edited the popular Recreations mathematiques of Leurechon.

We have, in Section 9-8, already said something of the work of the French
man Phillipe de la Hire (1640-1718). He has been described as a man of varied 
genius, having been a painter, an architect, an astronomer, and a mathemati
cian. In addition to his work on conic sections described earlier, he wrote on 
graphical methods, various types of higher plane curves, and magic squares. 
He constructed maps of the earth by globular projection, where the center of 
projection is not a pole of the sphere, as in Ptolemy’s stereographic projection 
(see Problem Study 6.10), but on the radius produced through a pole to a 
distance of r sin 45° outside the sphere.

Among the lesser Italian mathematicians to be mentioned here is Vicenzo
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Viviani (1622-1703), another of Galileo’s disciples, who interested himself in 
both physics and geometry. He was highly honored during his lifetime. Among 
his geometric accomplishments was determining the tangent to the cycloid; 
however, several had solved this problem previously. In 1692, he proposed the 
following problem, which attracted wide attention: A hemispheric dome has 
four equal windows of such size that the rest of the surface can be exactly 
squared; show how this is possible. Correct solutions were furnished by a 
number of eminent contemporary mathematicians. Viviani solved the trisection 
of an angle by using an equilateral hyperbola.

Mention should be made of the remarkable Italian-French Cassini family, 
several members of which contributed notably to astronomy and made skillful 
applications of mathematics in this field. The Cassini scientific dynasty started 
with Giovanni Domenico Cassini, who was born at Perinaldo, Italy, in 1625, 
and who died in Paris in 1712. The Cassinian curve, which is the locus of a point 
the product of whose distances from two fixed points is a constant, was studied 
by Giovanni Cassini in 1680 in connection with work on the relative motions of 
the earth and sun. In a family of confocal Cassinian curves is found the figure- 
eight-shaped lemniscate of Bernoulli, a fact not noted until the end of the 
eighteenth century. The Cassinian curves can be found as the intersections of a 
torus by planes parallel to the axis of the torus. Giovanni Cassini served as a 
professor of astronomy at Bologna, but in 1669 was invited by Louis XIV to 
come to Paris, where, in 1671, he became the first astronomer royal of France. 
Since he became naturalized in France and his second son, Jacques Cassini 
(1677-1756), was born there, this branch of the Cassini line ceased to be Italian. 
In 1712, Jacques succeeded his father as astronomer royal, and Cesar-Fran^ois 
Cassini, the son of Jacques, succeeded his father as astronomer royal in 1756, 
and was in turn succeeded by one of his sons, Jacques Dominique Cassini 
(1748-1845). All these men upheld the family tradition of making contributions 
to science.

10-7 Some Seventeenth-Century 
Mathematidans of Germany 
and the Low Countries

The auspicious progress made in mathematics by Germany during the sixteenth 
century did not continue in the seventeenth century. The Thirty Years’ War 
(1618-1648) and the subsequent unrest in the Teutonic countries made that 
century inhospitable to intellectual progress. Kepler and Leibniz stand out as 
the only first-class German mathematicians of the period, and the only minor 
German mathematician whom we shall mention here is Ehrenfried Walther von 
Tschirnhausen (1651-1708). Tschirnhausen devoted much time to mathematics 
and physics, leaving his mark on the study of curves and the theory of equa
tions. In 1682, he introduced and studied catacaustic curves, such a curve being 
the envelope of light rays, emitted from a point source, after reflection from 
a given curve. The special sinusoidal spiral, a = r cos3 (0/3), is known as
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Tschirnhausen’s cubic. The general sinusoidal spiral, rn -  a cos nO, where n is 
rational, was studied by Colin Maclaurin in 1718 (see Problem Study 10.8). In 
the theory of equations, Tschirnhausen is particularly known for a transforma
tion that converts an nth degree polynomial equation in t into an nth degree 
polynomial equation in y in which the coefficients of yn~x and yn"2 are both 
zero. Later, in 1834, G. B. Jerrard found a Tschirnhausen transformation that 
converts an nth degree polynomial equation in x into an nth degree polynomial 
equation in y in which the coefficients of yn~l , yn~2, y"-3 are all zero. This 
transformation, as applied to a quintic polynomial, had been given earlier, in 
1786, by E. S. Bring and is of importance in the transcendental solution of the 
quintic equation by means of elliptic functions.

In spite of disturbed times, the geographic region now known as the Low 
Countries produced a number of lesser mathematicians in the seventeenth 
century. Willebrord Snell (1580 or 1581-1626) has already been mentioned in 
connection with his work on the mensuration of the circle. He was an infant 
prodigy, and it is said that by the age of twelve he had acquainted himself with 
the standard mathematical works of his time. The name loxodrome, for a path 
on a sphere that makes a constant angle with the meridians, is due to Snell, and 
he was an early investigator of the properties of polar spherical triangles. The 
latter were first discussed by Viete.

Albert Girard (1595-1632), who seems to have lived chiefly in Holland, 
also interested himself in spherical geometry and trigonometry. In 1626, he 
published a treatise on trigonometry that contains the earliest use of our abbre
viations sin, tan, and sec for sine, tangent, and secant. He gave the expression 
for the area of a spherical triangle in terms of its spherical excess. Girard was 
also an algebraist of considerable power. He edited the works of Simon Stevin.

Gregoire de Saint-Vincent (1584-1667) was a prominent circle squarer of 
the seventeenth century. He applied precalculus methods to various quadra
ture problems.

Frans van Schooten the Younger (1615-1660 or 1661), a professor of math
ematics who edited two Latin editions of Descartes’ La geometrie, taught 
mathematics to Huygens, Hudde, and Sluze. He wrote on perspective and 
edited Viete’s works. His father, Frans van Schooten the Elder, and his half 
brother, Petrus van Schooten, also were professors of mathematics.

Johann Hudde (1633-1704) was a burgomaster of Amsterdam. He wrote 
on maxima and minima and the theory of equations. In the latter subject, he 
gave an ingenious rule for finding multiple roots of a polynomial that is equiva
lent to our present method, in which we find the roots of the highest common 
factor of the polynomial and its derivative.

Rene Francois Walter de Sluze (1622-1685), a canon in the Church, wrote 
numerous tracts on mathematics. He discussed spirals, points of inflection, and 
the finding of geometric means. The family of curves, yn = k(a -  x)pxm, where 
the exponents are positive integers, are called pearls o f Sluze.

We conclude with Nicolaus Mercator (ca. 1620-1687), who was born in 
Holstein, then a part of Denmark, but who spent most of his life in England. He
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edited Euclid’s Elements and wrote on trigonometry, astronomy, the computa
tion of logarithms, and cosmography. The series

Y  2 y  ̂  y  ̂^l n ( l + x ) = X - y  + y -  — +

which was independently discovered by Saint-Vincent, is sometimes referred 
to as Mercator’s series. It converges for - 1  < x ^  1 and can be used very 
satisfactorily for computing logarithms (see Problem Study 10.11). The familiar 
map of a sphere known as Mercator’s projection, in which loxodromes appear 
as straight lines, is not due to Nicolaus Mercator, but to Gerhardus Mercator 
(1512-1594).

10-8 Some Seventeenth-Century 
British Mathematicians

Great Britain had its share of lesser mathematicians in the seventeenth century. 
We have already mentioned William, Viscount Brouncker (1620-1684), else
where. He was one of the founders and the first president of the Royal Society 
of London and maintained relations with Wallis, Fermat, and other leading 
mathematicians. He wrote on the rectification of the parabola and the cycloid 
and had no qualms in using infinite series to express quantities that he could not 
determine otherwise. Thus, he proved that the area bounded by the rectangular 
hyperbola xy = 1, the x-axis, and the ordinates x = 1 and x = 2 is equal to

and to

(1)(2) + (3)(4) + (5)(6)

Brouncker was the first British writer to investigate and use properties of 
continued fractions. We have given, in Section 4-8, his interesting continued 
fraction development of 4/tt.

The Scottish mathematician James Gregory (1638-1675) has also been 
mentioned elsewhere (Section 4-8). He became successively, in 1668 and 1674, 
professor of mathematics at St. Andrews and at Edinburgh. He was equally 
interested in physics and published a work on optics in which he described the 
reflecting telescope now known by his name. In mathematics, he expanded in 
infinite series arc tan x, tan x, and arc sec x (1667) and was one of the first to 
distinguish between convergent and divergent series. He gave an ingenious but 
unsatisfactory proof that the Euclidean quadrature of the circle is impossible.
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The series

which has played so great a part in calculations of 7r, is known by his name. He 
died at an early age, shortly after going blind from the eyestrain induced by his 
astronomical observations. It is interesting that his nephew, David Gregory 
(1661-1708), also served as professor of mathematics at Edinburgh, from 1684 
to 1691, after which he was appointed Savilian professor of astronomy at Ox
ford. He, too, was interested in optics, writing on that subject as well as on 
geometry and the Newtonian theory.

It has been said that, but for London’s Great Fire of 1666, Sir Christopher 
Wren (1632-1723) would have become popularly known as a mathematician 
instead of an architect. He was Savilian professor of astronomy and taught 
geometry at Oxford from 1661 to 1673. He was also a founder of the Royal 
Society and, for a time, president of the Society. He wrote on the laws of 
collision of bodies, on subjects connected with optics, the resistance of fluids, 
and other topics in mathematical physics and celestial mechanics. He is cred
ited with the discovery, in 1669, of the two systems of rulings on a hyperboloid 
of one sheet. He independently showed, in 1658, that an arch of the cycloid is 
equal in length to eight times the radius of the generating circle. After the great 
fire, however, Wren took such a prominent part in rebuilding St. Paul’s cathe
dral and some fifty or more other churches and public buildings that his fame as 
an architect came to overshadow his reputation as a mathematician. When 
Wren died, he was buried in St. Paul’s with the fitting epitaph, Si monumentum 
requiris, circumspice (If you seek a monument, look about you).4

Mention should perhaps also be made of Robert Hooke (1635-1703) and 
Edmund Halley (1656-1742), although these men achieved fame in allied fields 
rather than in mathematics itself. For almost forty years, Hooke served as 
professor of geometry at Gresham College. He is known to every student of 
elementary physics by his law relating the stress and strain of a stretched 
elastic string. He invented the conical pendulum and attempted to find the law 
of force (later shown by Newton to be the inverse square law) under which the 
planets revolve about the sun. He and Huygens both designed watches regu
lated by a balance spring. Halley succeeded Wallis as Savilian professor of 
geometry and later became astronomer royal. He restored the lost Book VIII of 
Apollonius’ Conic Sections by inference and edited various works of the an
cient Greeks, translating some of these from the Arabic even though he did not 
know a single word of the language. He also compiled a set of mortality tables

4 It is of interest to Americans that at the College of William and Mary in Williamsburg, 
Virginia, is the Wren Building, dating from 1695 and attributed in design to Sir Christopher Wren. 
This is the oldest academic building still in use in America. There is also a large portrait of Wren in 
a stained glass panel in the William and Mary Law School.
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SIR CHRISTOPHER WREN
(David Smith Collection)

of the sort now basic in the life-insurance business. His major original contribu
tions, however, were chiefly in astronomy, and of excellent quality. He was as 
kind and generous in his dealings with other scholars as Hooke was jealous and 
irritable. Much of his work was done in the eighteenth century.

Problem  Studies

10.1 Geometric Algebra

(a) Given a unit segment and a segment of length x ,  construct with straight
edge and compasses segments of lengths x 2, x 3, x 4, . . . .

(b) Given a unit segment and segments of lengths x ,  y ,  z ,  construct seg
ments of lengths x y  and x yz -

(c) Given a unit segment, show that, iff ( x )  and g(x) are polynomials in x  
having coefficients represented by given line segments, we may con
struct a segment of length y  = f ( x ) l g ( x ) corresponding to any line 
segment chosen for x .

(d) Given a quadratic equation x 2 -  g x  + h = 0, g  > 0, h > 0. On a line 
segment of length g  as diameter, draw a semicircle C, and then draw a 
line parallel to the diameter of C at a distance \ f h  from it, cutting C in a 
point P .  From P ,  drop a perpendicular upon the diameter of C, dividing 
the diameter into parts r  and s .  Show that r  and s  represent the roots of 
the given quadratic equation. Solve x 2 -  l x  + 12 = 0 by this method.

(e) Given a quadratic equation x 2 + g x  -  h = 0, g  > 0, h > 0. On a segment 
of length g  as diameter, draw a circle C, and then draw a tangent to C,
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and mark off on it from the point of contact a length equal to V7i. From 
the other extremity of this tangent segment, draw a secant passing 
through the center of C. Denoting the whole secant by r and its external 
segment by s, show that —r and s represent the roots of the given 
quadratic equation. Solve x2 + 4x -  21 = 0 by this method.

10.2 Descartes’ “La G eom etrie”

(a) Five lines are given, L\, . . . , L5, arranged as in Figure 94. Let p{ 
denote the distance of a point P from line Lz. Taking L5 and L4 as jc and 
y axes, find the equation of the locus of a point P moving such that

P\PiP-b = apAps.

(The locus is a cubic that Newton called a Cartesian parabola and that 
has also sometimes been called a trident; it appears frequently in La
geometrie.)

(b) Show that with Euclidean tools we may construct as many points as we 
wish on the locus in (a).

(c) Given any 4 lines L \ , L2, L3, L4, let pt denote the distance of a point P 
from line Lz. Show that the locus of P such that p xp2 = kpgpA is a conic.

(d) Carry through Descartes’ method of drawing a tangent at a general 
point (x\ , y\) of the parabola y2 = 2mx, and show that it leads to the fact 
that the subnormal (the projection upon the axis of the parabola of the 
segment of the normal lying between the curve and the axis) is of 
constant length, equal to half the latus rectum of the parabola.

L a L 2 L 3

____ c 3 , 3 r 3 ro(

FIGURE 94

10.3 D escartes’ Rule o f Signs

(a) If c \ , c2, . . . ,cm are any m nonzero real numbers, and if 2 consecutive 
terms of this sequence have opposite signs, we say that these 2 terms 
present a variation of sign. With this concept, we may state Descartes’ 
rule o f signs, a proof of which may be found in any textbook on the 
theory of equations, as follows: Let f(x) = 0 be a polynomial equation
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w ith  r e a l  co e f f ic ie n ts  a n d  a r r a n g e d  in d e s c e n d in g  p o w e r s  o f  x .  The  
n u m b e r  o f  p o s i t i v e  r o o t s  o f  th e  e q u a t io n  is e i th e r  e q u a l  to  th e  n u m b e r  
o f  v a r ia t io n s  o f  s ig n s  p r e s e n t e d  b y  th e  c o e f f ic ie n ts  o f  f ( x ), o r  le s s  th an  
th is  n u m b e r  o f  v a r ia t io n s  b y  a p o s i t i v e  e v e n  n u m b e r .  The n u m b e r  o f  
n e g a t i v e  r o o t s  is e i th e r  e q u a l  to  th e  n u m b e r  o f  v a r ia t io n s  o f  s ig n s  
p r e s e n t e d  b y  th e  co e f f ic ie n ts  o f  / ( —x), o r  le s s  th an  th is  n u m b e r  o f  
v a r ia t io n s  b y  a p o s i t i v e  e v e n  n u m b e r .  A  r o o t  o f  m u l t ip l ic i ty  m  is 
c o u n t e d  a s  m  r o o t s .  Investigate the nature of the roots of the following 
equations by means of Descartes’ rule of signs:
1. x9 + 3x8 -  5x3 + 4x  + 6 = 0,
2. 2 x 7 -  3 x 4 — jc3 -  5 = 0,
3. 3 x 4 + 10x2 + 5x -  4 = 0.

( b ) Show that x n -  1 = 0 has exactly 2 real roots if n is even, and only 1 
real root if n is odd.

(c) Show that x5 + x 2 + 1 = 0 has 4 imaginary roots.
(d) Prove that if p  and q are real and q  + 0, the equation x3 + p x  + q  = 0 

has 2 imaginary roots when p is positive.
(e) Prove that if the roots of a polynomial equation are all positive, the 

signs of the coefficients are alternately positive and negative.

10.4 Problems from Descartes

(a) Draw the graph of the folium of Descartes,

x3 + y3 = 3 a x y .

The line x + y + 0 = Oisan asymptote.
( b ) Find the corresponding polar equation of the folium of Descartes.
(c) Set y  = tx  and obtain a parametric representation of the folium of 

Descartes in terms of t as parameter. Find the ranges for t leading to the 
loop, the lower arm, and the upper arm.

(d) Find the Cartesian equation of the folium of Descartes when the node is 
taken as the origin and the line of symmetry of the curve as the x-axis.

(e) Descartes’ solution of a depressed quartic equation employs the 
method of undetermined coefficients. As an example consider the quar
tic equation

x4 -  2x2 + 8x -  3 = 0.

Set the left member of the equation equal to the product of 2 quadratic 
factors of the forms x2 + kx + h and x2 -  kx + m. Obtain 3 relations 
connecting k, h, m by equating corresponding coefficients on the 2 
sides of the equation. Eliminate h and m from the 3 relations, obtaining 
a sextic equation in k that can be regarded as a cubic equation in k2. 
Thus, the solution of the original quartic equation is reduced to the 
solution of an associated cubic equation. Knowing that 1 root of the 
cubic in k2 is k2 = 4, obtain the 4 roots of the original quartic equation.
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10.5 Fermat’s Theorems

About 1760, Euler proposed and solved the problem of determining the number 
of positive integers less than a given positive integer n and prime to n. This 
number is now usually denoted by cp(n) and is called Euler’s ^-function of n 
(also sometimes called the indicator, or totient, of n). Thus, if n = 42, it is found 
that the 12 integers 1,5, 11, 13, 17, 19, 23, 25, 29, 31, 37, and 41 are the only 
positive integers less than and prime to 42. Therefore $(42) = 12.

(a) Find cp(n) for n = 2, 3, . . . , 12. A table giving the values cp(n) for all 
n ^  10,000 has been computed by J. W. L. Glaisher (1848-1928).

( b ) If p is a prime show that cp(p) = p -  1 and cp(p“) = pa( 1 -  1 Ip).
(c) It can be shown that if n = ab, where a and b are relatively prime, then 

cp(n) = cp(a)<f)(b). Using this fact, calculate $(42) from the results of (a), 
and also show that if n = p\a'p2ai . . . pr°r, where p \ , p2, . . . , pr are 
primes, then

$(") = n(l -  l/p,)(l -  1 lp2) . . .  (1 -  1 lpr).

Use this last formula to calculate c/>(360).
(d) Euler showed that if a is any positive integer relatively prime to n, then 

a<t>(n) _ i js divisible by n. Show that the little Fermat theorem is a 
special case of this.

(e) Show that to establish Fermat’s last “ theorem,” it is sufficient to con
sider only prime exponents p > 2.

(f) Assuming Fermat’s last “ theorem,” show that the curve xn + yn = 1, 
where n is a positive integer greater than 2, contains no points with 
rational coordinates except those points where the curve crosses a 
coordinate axis.

(g) Assuming item (6) of Section 10-3 (that the area of an integral-sided 
right triangle cannot be a square number), show that the equation x4 -  
y4 = z2 has no solution in positive integers x, y, z, and then prove 
Fermat’s last “ theorem” for the case n = 4.

(h) Using Fermat’s method of infinite descent, prove that V3 is irrational.

10.6 The Problem o f the Points

Find the division of the stakes in a game of chance between 2 equally skilled 
players A and B where

(a) A needs 1 more point to win, and B needs 4 more points to win, using 
Fermat’s method.

( b )  A needs 3 more points to win, and B needs 4 more points to win, using 
Pascal’s method.

10.7 Problems from Huygens

(a) A gambler is to win $300 if a 6 is thrown with a single die. What is his 
mathematical expectation?

( b ) Suppose a gambler is to win $300 if he throws a 6 with a single die, but 
$600 if he throws a 5. What is his mathematical expectation?
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Following are some examples of probability problems solved by 
Huygens:
1. A and B cast alternately with a pair of ordinary dice. A wins if he 

throws 6 before B throws 7, and B wins if he throws 7 before A 
throws 6. If A begins, then his chance of winning is to B 's chance of 
winning as 30:31.

2. A and B each take 12 counters and play with 3 dice as follows: if 11 
is thrown, A gives a counter to B ; if 14 is thrown, B gives a counter 
to A; and he wins the game who first obtains all the counters. Then 
A’s chance is to B 's as 244,140,625:282,429,536,481.

3. A and B play with 2 dice; if 7 is thrown, A wins; if 10 is thrown, B 
wins; if any other number is thrown, the game is drawn. Then A’s 
chance of winning is to B 's as 13:11.

(c) Using the isochronous property of the cycloid and the fact that the 
evolute of a cycloid is another cycloid of the same size, show that a 
pendulum constrained to swing between two successive arches of an 
inverted cycloid (see Figure 95) must oscillate with a constant period.

(d) A ball swings uniformly in a circle at the end of a string, making 1 
revolution per minute. If the length of the string is doubled and the 
period of revolution halved, how does the centrifugal force compare 
with that of the first situation?

10.8 Higher Plane Curves

(a) Taking the foci of a Cassinian curve at the points (-0 ,0 ) and (0,0) on a 
rectangular Cartesian frame of reference and denoting the constant 
product of distances by /c2, find the Cartesian equation of the curve.

(b) Show that the corresponding polar equation of the curve is

r4 -  2r202 cos 26 + a4 = k4.

Note that if k = 0 , the curve becomes the lemniscate of Bernoulli,5

r2 = 202 cos 26.

5 So named (from a Greek word meaning “ribbon”) by Jakob Bernoulli (1654-1705) in 1694. Its 
principal properties were found in 1750 by the Italian Count G. C. Fagnano (1682-1766), who also 
showed that its rectification leads to elliptic integrals.
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(c) Show that the lemniscate of Bernoulli is the cissoid (see Problem Study 
4.4) of a circle of radius a ll, and itself, for a pole O distant a \f l l2  units 
from its center.

(d) Plot carefully a rectangular hyperbola xy = k2 and draw several mem
bers of the family of circles with centers on the hyperbola and passing 
through the origin. The envelope of this family of circles is a lemniscate 
of Bernoulli.

(e) Using the fact that the normal at a point of the lemniscate of Bernoulli 
in (b) makes an angle 20 with the radius vector to the point, show how 
we may construct tangents to the lemniscate.

(f) Show that we have the following special cases of the sinusoidal spiral, 
rn = a cos nO, where n is a rational number.

n Curve
-2 Rectangular hyperbola
-1 Straight line

1
2 Parabola
1
3 Tschirnhausen cubic
1
2 Cardioid
1 Circle
2 Lemniscate of Bernoulli

(g) An epicycloid is the path traced by a point on a circle rolling externally 
upon a fixed base circle. The catacaustic of a circle for a light source at 
infinity is an epicycloid of two cusps whose base circle is concentric 
with the given circle and whose radius is half the radius of the given 
circle. An epicycloid of two cusps is called a nephroid. The catacaustic 
of a circle for a light source on the circumference of the circle is an 
epicycloid of one cusp whose base circle is concentric with the given 
circle and whose radius is one-third the radius of the given circle. An 
epicycloid of one cusp is a cardioid. Jakob Bernoulli showed, in 1692, 
that the catacaustic of a cardioid, when the light source is at the cusp of 
the cardioid, is a nephroid. Catacaustics of a circle can be seen as the 
bright curves on the surface of coffee in a cup or upon the table inside a 
circular napkin ring. Observe some catacaustics of a circle using a cup 
of liquid and a movable light source.

10.9 Recreational Problems from Bachet

Following are some arithmetic recreations found in Bachet’s Problemes 
plaisants et delectables. They, and other problems from Bachet, can also be 
found in Ball-Coxeter, Mathematical Recreations and Essays.

(a) (1) Ask a person to choose secretly a number, and then to treble it. (2) 
Inquire if the product is even or odd. If it is even, ask him to take half of 
it; if it is odd, ask him to add 1 and then take half of it. (3) Tell him to 
multiply the result in (2) by 3 and to tell you how many times, say n, 9 
will divide integrally into the product. (4) Then the number originally
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chosen was In or In + 1, according as the result in step (1) was even or 
odd. Prove this.

(b) Ask a person to choose secretly a number less than 60, and to an
nounce the remainders, say a , b , c, when the number is divided by 3, 
by 4, and by 5. Then the number originally chosen can be found as the 
remainder obtained by dividing 40a + 45b + 36c* by 60. Prove this.

(c) Tell A to choose secretly any number, greater than 5, of counters, and 
B to take 3 times as many. Ask A to give 5 counters to B , and then ask B 
to transfer to A 3 times as many counters as A has left. You may now 
tell B that he has 20 counters. Explain why this is so and generalize to 
the case where the 3 and 5 are replaced by p and q.

(d) A secretly selects either a pair of numbers, 1 of which is odd and the 
other even, and the other number is given to B. Ask A to double his 
number, and B to triple his. Request the sum of the 2 products. If the 
sum is even, then A selected the odd number; otherwise, A selected the 
even number. Explain this.

(e) Ask someone to think of an hour, say m , and then to touch on a watch 
the number that marks some other hour, say n. If, beginning with the 
number touched, he taps successively in the counterclockwise direc
tion the numbers on the watch, meanwhile mentally counting the taps 
as m, m + 1, and so on, until he reaches the number n + 12, then the 
last number tapped will be that of the hour he originally thought of. 
Prove this.

10.10 Some Geometry

(a) Show, by Roberval’s method, that the tangent and normal at a point on 
a central conic bisect the angles between the 2 focal radii drawn to the 
point.

(b) A spherical degree is defined to be any spherical area that is equivalent 
to (l/720)th of the entire surface of the sphere. Show that the area of a 
lune whose angle is n° is equal to In spherical degrees.

(c) Show that the area of a spherical triangle, in spherical degrees, is equal 
to the spherical excess of the triangle.

(d) Show that the area A of a spherical triangle of spherical excess E is 
given by

irr2E 
A -  18QO ,

where r is the radius of the sphere.
(e) Find the area of a trirectangular triangle on a sphere whose diameter is 

28 inches.
(f) Show (by the integral calculus) that the area bounded by the hyperbola 

xy = 6, the ordinate x = 2, and the x-axis is infinite. On the other hand, 
show that the volume obtained by revolving the area about the x-axis is 
finite.
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This problem gives rise to the following paint paradox. Since the 
above area is infinite, an infinite amount of paint is needed to paint the 
area. Because the above volume is finite, however, it requires only a 
finite amount of paint to fill the volume. But the volume contains the 
concerned area within itself. Explain this paradox.

10.11 Computation of Logarithms by Series

The Mercator series

y*2 y*3 y*4. z . v •'V A  AIn (1 + x) = x — ~  + —------— +

converges for — 1 <  x ^ 1. Replacing x by - x ,  it follows that the series

x̂  x̂
ln( l  -  x) = - x - j - j

X 4

4

must converge for — 1 ^  x <  1. Since a series whose terms are the differences of 
the corresponding terms of 2 given series certainly converges for all values of x 
for which both of the given series converge, it follows that, for -1  <  x <  1,

In ( \ r ~ )  = 1° 0  + *) — In (1 _  x)

= 2

If we set x = 1/(2N  + 1), we observe that -1  <  x <  1 for all positive N, and 
(1 + x)/(l -  x) = (N  + \)/N.  Substituting in the last equation, we find

In (N  + 1) = In N  + 2 1 + 1 + 1
L2N + 1 3(2 N  + l)3 5(2 N  + 1) +

the series converging, and rather rapidly, for all positive N.
(a) By setting N = 1, compute In 2 to 4 decimal places.
(b) Compute In 3 to 4 decimal places.
(c) Compute In 4 to 4 decimal places.

Essay Topics

10/1 The transform-solve-invert technique.
10/2 Analytic geometry as the example par excellence of the transform- 

solve-invert technique.
10/3 Analytic geometry as a method of discovery.
10/4 Who invented analytic geometry?
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10/5 The greatest French mathematician of the seventeenth century.
10/6 The five most important French mathematicians of the seventeenth 

century.
10/7 Fermat’s method of infinite descent.
10/8 The origin of mathematical probability.
10/9 The anomaly of an infinite area generating a finite volume of revolu

tion.
10/10 The Roberval-Torricelli method of drawing tangents.
10/11 Huygens’ perfect seconds pendulum.
10/12 The isogonic center of a triangle.
10/13 Theorems of Ceva and Commandino.
10/14 The first two higher plane curves to receive practical application. 
10/15 The remarkable Cassini family.
10/16 Modern electronic computers and new findings in number theory.
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Chapter

THE CALCULUS AND RELATED 
CONCEPTS

11 -1  Introduction
We have seen that many new and extensive fields of mathematical investigation 
were opened up in the seventeenth century, making that era outstandingly 
productive in the development of mathematics. Unquestionably, the most re
markable mathematical achievement of the period was the invention of the 
calculus, toward the end of the century, by Isaac Newton and Gottfried 
Wilhelm Leibniz. With this invention, creative mathematics passed to an ad
vanced level, and the history of elementary mathematics essentially termi
nated. This chapter is devoted to a brief account of the origins and development 
of the important concepts of the calculus, concepts that are so far reaching and 
that have exercised such an impact on the modern world that it is perhaps 
correct to say that without some knowledge of them a person today can 
scarcely claim to be well educated.

It is interesting that, contrary to the customary order of presentation found 
in our beginning college courses, where we start with differentiation and later 
consider integration, the ideas of the integral calculus developed historically 
before those of the differential calculus. The idea of integration first arose in its 
role of a summation process in connection with the finding of certain areas, 
volumes, and arc lengths. Some time later, differentiation was created in con
nection with problems on tangents to curves and with questions about maxima 
and minima of functions. And still later it was observed that integration and 
differentiation are related to each other as inverse operations.

Although the major part of our story lies in the seventeenth century, we 
must, for the beginning, go back to ancient Greece and the fifth century B.C.

1 1 -2  Zeno’s Paradoxes
Should we assume that a magnitude is infinitely divisible or that it is made up of 
a very large number of small indivisible atomic parts? The first assumption 
appears the more reasonable to most of us, but the utility of the second assump
tion in the making of discoveries causes it to lose some of its seeming absurdity. 
There is evidence that, in Greek antiquity, schools of mathematic reasoning 
developed that employed each of the above two assumptions.

Some of the logical difficulties encountered in either assumption were 
strikingly brought out in the fifth century B.C. by some paradoxes devised by

379
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the Eleatic philosopher Zeno (ca. 450 B.C.). These paradoxes, which have had 
a profound influence on mathematics, assert that motion is impossible whether 
we assume a magnitude to be infinitely divisible or to be made up of a large 
number of atomic parts. We illustrate the nature of the paradoxes by the follow
ing two.

The Dichotomy: If a straight line segment is infinitely divisible, then mo
tion is impossible, for in order to traverse the line segment it is necessary first 
to reach the midpoint, and to do this one must first reach the one-quarter point, 
and to do this one must first reach the one-eighth point, and so on, ad infinitum. 
It follows that the motion can never even begin.

The Arrow: If time is made up of indivisible atomic instants, then a moving 
arrow is always at rest, for at any instant the arrow is in a fixed position. Since 
this is true of every instant, it follows that the arrow never moves.

Many explanations of Zeno’s paradoxes have been given, and it is not 
difficult to show that they challenge the common intuitive beliefs that the sum 
of an infinite number of positive quantities is infinitely large, even if each 
quantity is extremely small (2f=i e, = °°), and that the sum of either a finite or an 
infinite number of quantities of dimension zero is zero (n x 0 = 0 and oo x 0 = 
0). Whatever might have been the intended motive of the paradoxes, their 
effect was to exclude infinitesimals from Greek demonstrative geometry.1

1 1 -3  Eudoxus’ Method of Exhaustion
The first problems occurring in the history of the calculus were concerned with 
the computation of areas, volumes, and lengths of arcs. In their treatment, one 
finds evidence of the two assumptions about the divisibility of magnitudes that 
we considered above.

One of the earliest important contributions to the problem of squaring the 
circle was that of Antiphon the Sophist (ca. 430 B.C.), a comtemporary of 
Socrates. Antiphon, we are told, advanced the idea that by successively dou
bling the number of sides of a regular polygon inscribed in a circle, the differ
ence in area between the circle and the polygon would at last be exhausted. 
Because a square can be constructed equal in area to any given polygon, it will 
then be possible to construct a square equal to the circle. This argument met 
immediate criticism on the grounds that it violated the principle that magni
tudes are divisible without limit, and that, accordingly, Antiphon’s process 
could never use up the whole area of the circle. Nevertheless, Antiphon’s bold 
pronouncement contained the germ of the famous Greek method of exhaustion.

The method of exhaustion is usually credited to Eudoxus (ca. 370 B.C.) 
and can perhaps be considered as the Platonic school’s answer to the para
doxes of Zeno. The method assumes the infinite divisibility of magnitudes and

1 For an excellent informative historical treatment of Zeno’s paradoxes, see Florian Cajori, 
“ History of Zeno’s Arguments on Motion,’’ The American Mathematical Monthly 22 (1915): 1-6, 
39-47, 77-82, 109-115, 145-149, 179-186, 215-220, 253-258, 292-297.
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has, as a basis, the proposition: If from any magnitude there he subtracted a 
part not less than its half, from the remainder another part not less than its 
half, and so on, there will at length remain a magnitude less than any preas
signed magnitude o f the same kind. Let us employ the method of exhaustion to 
prove that if A\ and A2 are the areas of two circles having diameters d\ and d2, 
then

A,:A2 = d x2\df .

We first show, with the aid of the basic proposition, that the difference in 
area between a circle and an inscribed regular polygon can be made as small as 
desired. Let AB , in Figure 96, be a side of a regular inscribed polygon, and let 
M be the midpoint of the arc AB. Since the area of triangle AMB is half that of 
the rectangle ARSB, and hence greater than half the area of the circular seg
ment AMB, it follows that by doubling the number of sides of the inscribed 
regular polygon, we increase the area of the polygon by more than half the 
difference in area between the polygon and the circle. Consequently, by dou
bling the number of sides sufficiently often, we can make the difference in area 
between the polygon and the circle less than any assigned area, however small.

We now return to our theorem. Suppose that instead of equality we have

A\\A2 >  d\2: d f .

Then we can inscribe in the first circle a regular polygon whose area P\ differs 
so little from A\ that

P\\A2 >  d 2:d2 .

Let P2 be a regular polygon similar to P \ , but inscribed in the second circle. 
Then, from a known theorem about similar regular polygons,

P X\P2 = d x2:d22.

FIGURE 96
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It follows that P\\A2 >  Px'Pi* or P2 > A2, an absurdity, because the area of a 
regular polygon cannot exceed the area of its circumcircle. In a similar way, we 
can show that we cannot have

A x:A2 <  d\2:d22.

Consequently, by this double reductio ad absurdum process, our theorem is 
established. Thus, if A is the area and d the diameter of a circle, A = kd2, where 
k is a constant (actually 7t/4), which is the same for all circles.

Archimedes claimed that Democritus (ca. 410 B.C.) stated that the volume 
of a pyramid on any polygonal base is one-third that of a prism with the same 
base and altitude. Very little is known of Democritus, but he could hardly have 
given a rigorous demonstration of this theorem. Since a prism can be dissected 
into a sum of prisms all having triangular bases, and, in turn, a prism of this 
latter sort can be dissected into three triangular pyramids having, in pairs, 
equivalent bases and equal altitudes, it follows that the crux of Democritus’ 
problem is to show that two pyramids of the same height and equivalent bases 
have equal volumes. A demonstration of that was later furnished by Eudoxus, 
using the method of exhaustion.

How, then, might Democritus have arrived at this last result? A clue is 
furnished by Plutarch, who quotes a dilemma encountered by Democritus on an 
occasion when he considered a cone as made up of infinitely many plane cross 
sections parallel to the base. If two “adjacent” sections are of the same size, 
the solid would be a cylinder and not a cone. On the other hand, if two “adja
cent” sections are different in area, the surface of the solid would be broken 
into a series of small steps, which certainly is not the case. Here we have an 
assumption concerning the divisibility of magnitudes that is somewhat interme
diate to the two assumptions already considered, for here we assume the vol
ume of the cone is infinitely divisible (namely, into an infinite number of plane 
atomic sections), but that these sections are countable in the sense that, given 
one of them, there is one next to it. Now Democritus may have argued that if 
two pyramids with equivalent bases and equal heights are cut by planes parallel 
to the bases and dividing the heights in the same ratio, then the corresponding 
sections formed are equivalent. Therefore, the pyramids contain the same infi
nite number of equivalent plane sections and hence, must be equal in volume. 
This would be an early instance of Cavalieri’s method of indivisibles, consid
ered below in Section 11-6.

Of the ancients, it was Archimedes who made the most elegant applica
tions of the method of exhaustion and who came the nearest to actual integra
tion. As one of his earliest examples, consider his quadrature of a parabolic 
segment. Let C, Z), E be points on the arc of the parabolic segment (see Figure 
97) obtained by drawing LC, AZZ), NE parallel to the axis of the parabola 
through the midpoints L, M, N  of AB , CA , CB. From the geometry of the 
parabola, Archimedes shows that

ACZM + A CEB =
A ACB

4
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By repeated applications of this idea, it follows that the area of the parabolic 
segment is given by

. 4 AABC AABC AABC
A  ABC + — —  + - ~ +  - 4 5 -  +  • ' '

= AABC ( l + \  + J2 + ^3 + ' ' ')

= |  A ABC.

Here we have shortened the work by taking the limit of the sum of a geometric 
progression; Archimedes employs the double reductio ad absurdum apparatus 
of the method of exhaustion.

In his treatment of certain areas and volumes, Archimedes arrived at 
equivalents of a number of definite integrals found in our elementary calculus 
textbooks.

11-4 Archimedes’ Method of Equilibrium
The method of exhaustion is a rigorous but sterile method. In other words, 
once a formula is known, the method of exhaustion may furnish an elegant tool 
for establishing it, but the method does not lend itself to the initial discovery of 
the result. The method of exhaustion is, in this respect, very much like the 
process of mathematical induction. How, then, did Archimedes discover the 
formulas that he so neatly established by the method of exhaustion?

This question was finally answered in 1906, with the discovery by Heiberg, 
in Constantinople, of a copy of Archimedes’ long-lost treatise Method, ad
dressed to Eratosthenes. The manuscript was found on a palimpsest (see Sec
tion 1- 8); that is, it had been written in the tenth century on parchment, and 
then later, in the thirteenth century, washed off and the parchment reused for a 
religious text. Fortunately, most of the first text was able to be restored from 
beneath the later writing.



384 CHAPTER ELEVEN /  THE CALCULUS AND RELATED CONCEPTS

The fundamental idea of Archimedes’ method is this. To find a required 
area or volume, cut it up into a very large number of thin parallel plane strips, 
or thin parallel layers, and (mentally) hang these pieces at one end of a given 
lever in such a way as to be in equilibrium with a figure whose content and 
centroid are known. Let us illustrate the method by using it to discover the 
formula for the volume of a sphere.

Let r be the radius of the sphere. Place the sphere with its polar diameter 
along a horizontal T-axis with the north pole N  at the origin (see Figure 98). 
Construct the cylinder and the cone of revolution obtained by rotating the 
rectangle NABS and the triangle NCS about the T-axis. Now cut from the three 
solids thin vertical slices (assuming that they are flat cylinders) at distance x 
from N  and of thickness A t . The volumes of these slices are, approximately,

sphere: irx(2r — x) A jc 

cylinder: rrr2 At 

cone: ttx2 A jc.

Let us hang at T the slices from the sphere and the cone, where TN = 2r. Their 
combined moment2 about N  is

[7rx(2r t ) A t  +  t t x 2 Ar]2r  =  47j t 2t  A t .

This, we observe, is four times the moment of the slice cut from the cylinder 
when that slice is left where it is. Adding a large number of these slices to
gether, we find

2r[volume of sphere + volume of cone] = 4r[volume of cylinder],

or

2r ^volume of sphere + —  j = forr*. 

or

volume of sphere =

This, we are told in the Method, was Archimedes’ way of discovering the 
formula for the volume of a sphere. His mathematical conscience would not 
permit him to accept such a method as a proof, however, and he accordingly

2 The moment of a volume about a point is the product of the volume and the distance from the 
point to the centroid of the volume.
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c

supplied a rigorous demonstration by means of the method of exhaustion. In 
the method of equilibrium, we see the fertility of the loosely founded idea of 
regarding a magnitude as composed of a large number of atomic pieces. Need
less to say, with the modern method of limits, Archimedes’ method of equilib
rium can be made perfectly rigorous and becomes essentially the same as 
present-day integration.

11-5 The Beginnings of Integration 
in Western Europe

The theory of integration received very little stimulus after Archimedes’ re
markable achievements until relatively modern times. It was about 1450 that 
Archimedes’ works reached western Europe through a translation of a ninth- 
century copy of his manuscripts found at Constantinople. This translation was 
revised by Regiomontanus and was printed in 1540. A few years later, a second 
translation appeared. It was not until about the beginning of the seventeenth 
century, however, that we find Archimedes’ ideas receiving further develop
ment.

Two early writers of modern times who used methods comparable to those 
of Archimedes were the Flemish engineer Simon Stevin (1548-1620) and the 
Italian mathematician Luca Valerio (ca. 1552-1618). Each of these men tried to



avoid the double reductio ad absurdum of the method of exhaustion by making 
a direct passage to the limit, much as we did toward the end of Section 11-3 in 
our treatment of the area of a parabolic segment. Stevin used such a method in 
his work on hydrostatics, where he found the force due to fluid pressure against 
a vertical rectangular dam by dividing the dam into thin horizontal strips and 
then rotating these strips about their upper and lower edges until they became 
parallel to a horizontal plane. This is fundamentally the method we use today in 
our elementary textbooks on calculus.

Of the early modern Europeans who developed ideas of infinitesimals in 
connection with integration, particular mention must be made of Johann Kep
ler. We have already remarked (in Section 9-7) that Kepler had to resort to an 
integration procedure in order to compute the areas involved in his second law 
of planetary motion and also the volumes dealt with in his treatise on capacities 
of wine barrels. But Kepler, like others of the time, had little patience with the 
careful rigor of the method of exhaustion and, under the temptation to save 
time and trouble, freely adopted processes that Archimedes considered as 
merely heuristic. Thus, Kepler regarded the circumference of a circle as a 
regular polygon possessing an infinite number of sides. If each of these sides is 
taken as the base of a triangle whose vertex is at the center of the circle, then 
the area of the circle is divided into an infinite number of thin triangles, all 
having an altitude equal to the radius of the circle. Since the area of each thin 
triangle is equal to half the product of its base and altitude, it turns out that the 
area of a circle is equal to half the product of its circumference and radius. 
Similarly, the volume of a sphere was regarded as composed of an infinite 
number of thin pyramids having a common vertex at the center of the sphere. It 
follows that the volume of a sphere is one-third the product of its surface area 
and radius. Objectionable as such methods are from the standpoint of mathe
matical rigor, they produce correct results in a very simple manner. Even well 
into the twentieth century, such “atomic” methods were used quite regularly 
by physicists and engineers for setting up a mathematical problem, leaving the 
rigorous “ limit” treatment to the professional mathematician.3 Geometers fre
quently resorted to the convenient concept of “consecutive” points and “con
secutive” curves and surfaces in a one-parameter family of such entities.4
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11-6 Cavalieri’s Method of Indivisibles
Bonaventura Cavalieri was born in Milan in 1598, became a Jesuat (not a Jesuit, 
as is frequently incorrectly stated] at the age of fifteen, studied under Galileo,

3 “Thus, so far as first differentials are concerned, a small part of a curve may be treated as 
straight and a part of a surface near a point as plane; during a short time dt, a particle may be 
considered as moving with constant speed and a physical process as occurring at a constant rate.” 
H. B. Phillips, Differential Equations, 3rd ed., p. 28.

4 “ In other words, the characteristic o f a surface [of a one-parameter family of surfaces] is the 
curve in which a consecutive surface intersects it.“ E. P. Lane, Metric Differential Geometry of 
Curves and Surfaces, p. 81.
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BONAVENTURA CAVALIERI
(David Smith Collection)

and served as a professor of mathematics at the University of Bologna from 
1629 until his death in 1647 at the age of forty-nine. He was one of the most 
influential mathematicians of his time and wrote a number of works on mathe
matics, optics, and astronomy. He was largely responsible for the early intro
duction of logarithms into Italy. But his greatest contribution to mathematics 
was a treatise, Geometria indivisibilibusf published in its first form in 1635, 
devoted to the precalculus method of indivisibles. Although the method can be 
traced back to Democritus (ca. 410 B.C.) and Archimedes (ca. 287-212 B.C.), 
very likely it was Kepler’s attempts to find certain areas and volumes that 
directly motivated Cavalieri.

Cavalieri’s treatise is verbose and not clearly written, and it is difficult to 
know precisely what is to be understood by an “ indivisible.” It seems that an 
indivisible of a given planar piece is a chord of that piece, and an indivisible of a 
given solid is a plane section of that solid. A planar piece is considered as made 
up of an infinite set of parallel chords and a solid as made up of an infinite set of 
parallel plane sections. Now, Cavalieri argued, if we slide each member of the 
set of parallel chords of some given planar piece along its own axis, so that the 
end points of the chords still trace a continuous boundary, then the area of the 
new planar piece so formed is the same as that of the original planar piece, 
inasmuch as the two pieces are made up of the same chords. A similar sliding of 
the members of a set of parallel planar sections of a given solid will yield 
another solid having the same volume as the original one. (This last result can 
be strikingly illustrated by taking a vertical stack of cards and then pushing the 
sides of the stack into curved surfaces; the volume of the disarranged stack is 
the same as that of the original stack.) These results, slightly generalized, give 
the so-called Cavalieri principles:
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1. If two planar pieces are included between a pair o f parallel lines, and if 
the lengths o f the two segments cut by them on any line parallel to the 
including lines are always in a given ratio, then the areas o f the two 
planar pieces are also in this ratio.

2. If two solids are included between a pair o f parallel planes, and if the 
areas o f the two sections cut by them on any plane parallel to the 
including planes are always in a given ratio, then the volumes o f the 
two solids are also in this ratio.

Cavalieri’s principles constitute a valuable tool in the computation of areas 
and volumes, and their intuitive bases can easily be made rigorous with the 
modern integral calculus. Accepting these principles as intuitively apparent, 
one can solve many problems in mensuration that normally require the more 
advanced techniques of the calculus.

Let us illustrate the use of Cavalieri’s principles, first employing the planar 
case to find the area of an ellipse of semiaxes a and b, and then the solid case to 
find the volume of a sphere of radius r.

Consider the ellipse and circle

1, a >  b, and x 2 + y 2 = a2,a2 bl

plotted on the same rectangular coordinate frame of reference, as shown in 
Figure 99. Solving each of the equations above for y, we find, respectively,

y = ~ (a2 — x 2)112, y = (a2 -  x 2)1/2.

It follows that corresponding ordinates of the ellipse and the circle are in the 
ratio bl a. It then follows that corresponding vertical chords of the ellipse and 
the circle are also in this ratio and, by Cavalieri’s first principle, so are the areas 
of the ellipse and the circle. We conclude that

area of ellipse = -  (area of circle)

= — {it a2) = irab. a

This is basically the procedure Kepler employed in finding the area of an ellipse 
of semiaxes a and b.

Now let us find the familiar formula for the volume of a sphere of radius r. 
In Figure 100, we have a hemisphere of radius r on the left, and on the right a 
circular cylinder of radius r and altitude r with a cone removed whose base is 
the upper base of the cylinder and whose vertex is the center of the lower base 
of the cylinder. The hemisphere and the gouged-out cylinder are resting on a 
common plane. We now cut both solids by a plane parallel to the base plane and
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FIGURE 99

at distance h from it. This plane cuts the one solid in a circular section and the 
other in an annular, or ring-shaped, section. By elementary geometry, we 
easily show that each of the two sections has an area equal to 7r(r2 -  /i2). It 
follows, by Cavalieri’s principle, that the two solids have equal volumes. 
Therefore, the volume V of a sphere is given by

The assumption and then consistent use of Cavalieri’s second principle can 
greatly simplify the derivation of many of the volume formulas encountered in a 
beginning treatment of solid geometry. This procedure has been adopted by a 
number of textbook writers and has been advocated on pedagogic grounds. In 
deriving the familiar formula for the volume of a tetrahedron (V = Bh/3), for 
example, the sticky part is first to show that any two tetrahedra having equiva
lent bases and equal altitudes on those bases have equal volumes. The inherent 
difficulty here is reflected in all treatments of solid geometry from Euclid’s 
Elements on. With Cavalieri’s second principle, however, the difficulty simply 
disappears.

V = 2(volume of cylinder -  volume of cone)

FIGURE 100



Cavalieri’s hazy conception of indivisibles, as sort of atomic parts of a 
figure, led to much discussion and serious criticism by some students of the 
subject, particularly by the Swiss goldsmith and mathematician Paul Guldin 
(1577-1642). Cavalieri recast his treatment in the vain hope of meeting these 
objections. The French mathematician Roberval ably handled the method and 
claimed to be an independent inventor of the conception. The method of indi
visibles, or some process very similar to it, was effectively used by Torricelli, 
Fermat, Pascal, Saint-Vincent, Barrow, and others. In the course of the work 
of these men, results were reached that are equivalent to the integration of 
expressions such as x", sin 0, sin2 0, and 0 sin 0.
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11-7 The Beginning of Differentiation
Differentiation may be said to have originated in the problem of drawing tan
gents to curves and in finding maximum and minimum values of functions. 
Although such considerations go back to the ancient Greeks, it seems fair to 
assert that the first really marked anticipation of the method of differentiation 
stems from ideas set forth by Fermat in 1629.

Kepler had observed that the increment of a function becomes vanishingly 
small in the neighborhood of an ordinary maximum or minimum value. Fermat 
translated this fact into a process for determining such a maximum or mini
mum. The method will be considered in brief. Iff ( x ) has an ordinary maximum 
or minimum at jc, and if e is very small, then the value off(x  -  e) is almost equal 
to that off(x). Therefore, we tentatively set f(x  -  e) = f(x)  and then make the 
equality correct by letting e assume the value zero. The roots of the resulting 
equation then give those values of t for which f ( x ) is a maximum or a mini
mum.

Let us illustrate the above procedure by considering Fermat’s first exam
ple—to divide a quantity into two parts such that their product is a maximum. 
Fermat used Viete’s notation, where constants are designated by upper case 
consonants and variables by upper case vowels. Following this notation, 
let B be the given quantity and denote the desired parts by A and B -  A. 
Forming

(A -  E)[B -  (A -  E)] 

and equating it to A(B -  A), we have

A(B -  A) = (A -  E)(B -  A + E)

or

2A£ -  BE -  E2 = 0.
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After dividing by E, one obtains

2A -  B -  E = 0.

Now setting E = 0, we obtain 2A = B and thus find the required division.
Although the logic of Fermat’s exposition leaves much to be desired, it is 

seen that his method is equivalent to setting

that is, to setting the derivative of f\x) equal to zero. This is the customary 
method for finding ordinary maxima and minima of a function /(x ) , and it is 
sometimes referred to in our elementary textbooks as Fermat’s method. Fer
mat, however, did not know that the vanishing of the derivative off ( x ) is only a 
necessary, but not a sufficient, condition for an ordinary maximum or mini
mum. Also, Fermat’s method does not distinguish between a maximum and a 
minimum value.

Fermat also devised a general procedure for finding the tangent at a point 
of a curve whose Cartesian equation is given. His idea is to find the subtangent 
for the point— that is, the segment on the x-axis between the foot of the ordi
nate drawn to the point of contact and the intersection of the tangent line with 
the x-axis. The method employs the idea of a tangent as the limiting position of 
a secant when two of its points of intersection with the curve tend to coincide. 
Using modern notation, the method is as follows. Let the equation of the curve 
(see Figure 101) be/(x,y) = 0, and let us seek the subtangent a of the curve for 
the point (x,y). By similar triangles, we easily find the coordinates of a near 
point on the tangent to be [x + e,y( 1 + el a)}. This point is tentatively treated as 
if it were also on the curve, giving us

f (x  + h) - f ( x )  =

FIGURE 101
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The equality is then made correct by letting e  assume the value zero. We then 
solve the resulting equation for the subtangent a  in terms of the coordinates x  

and y  of the point of contact. This, of course, is equivalent to setting

§ f
d y

dX

a general formula that appeared later in the work of Sluze. Fermat, in this way, 
found tangents to the ellipse, cycloid, cissoid, conchoid, quadratrix, and folium 
of Descartes. Let us illustrate the method by finding the subtangent at a general 
point on the folium of Descartes:

Jt3 +  y 3 =  n x y .

Here we have

( x  +  e)* +  y 3 1̂ +  -  n y ( x  +  e) 1̂ +  =  0 ,

Now, dividing by e  and then setting e  =  0, we find

____ 3 y 3 — n x y

a ~ ~ 3jc2 -  n y  '

Fermat did pioneering work not only in connection with differentiation, 
but also, as intimated at the end of Section 11-6, in connection with integration. 
Fermat was a singularly brilliant and versatile mathematician.

11-8 Wallis and Barrow
Isaac Newton’s immediate predecessors in England were John Wallis and Isaac 
Barrow.

John Wallis, who was born in 1616, was one of the ablest and most original 
mathematicians of his day. He was a voluminous and erudite writer in a number 
of fields and is said to have been one of the first to devise a system for teaching 
deaf mutes. He was a student of Oughtred, and in 1649 he was appointed 
Savilian professor of geometry at Oxford, a position he held for fifty-four years 
until his death in 1703. He introduced series systematically in analysis, and his
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JOHN WALLIS
(Library of Congress)

work in this field did much to prepare the way for his great contemporary, Isaac 
Newton.

Wallis was one of the first to discuss conics as curves of second degree 
rather than as sections of a cone. In 1655 appeared his Arithmetica infinitorum 
(dedicated to Oughtred)—a book that, in spite of some logical blemishes, re
mained a standard treatise for many years. In this book, the methods of Des
cartes and Cavalieri are systematized and extended and a number of remark
able results are induced from particular cases. Thus, the formula that we would 
now write as

where m is a positive integer, is claimed to hold even when m is fractional or 
negative but different from — 1. Wallis was the first to explain with any com
pleteness the significance of zero, negative, and fractional exponents, and he 
introduced our present symbol (o°) for infinity.

Wallis endeavored to determine it by finding an expression for the area, 
7t/4, of a quadrant of the circle x2 + y 2 = 1. This is equivalent to evaluating 
Jo(l -  x2)m dx9 which Wallis was unable to do directly since he was not 
acquainted with the general binomial theorem. He accordingly evaluated Jo(l — 
x2)0 dx9 Jo(l -  x2)1 dx, Jo(l -  x2)2 dx9 and so forth, obtaining the sequence 1, §, 
^5, M, . . . .  He then considered the problem of finding the law that for n = 0, 1, 
2, 3, . . . would yield the preceding sequence. It was the interpolated value of 
this law for n = i  that Wallis was seeking. By a long and complicated process, 
he finally arrived at his infinite product expression for 7t/2, given in Section 4-8.



Mathematicians of his day frequently resorted to interpolation processes in 
order to calculate quantities that they could not evaluate directly.

Wallis accomplished other things in mathematics. He was the mathemati
cian who came nearest to solving Pascal’s challenge questions on the cycloid 
(see Section 9-9). It can be argued fairly that he obtained an equivalent of the 
formula
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for the length of an element of arc of a curve. His De algebra tract at us; 
historicus & practicus, written in 1673 but published in English in 1685 and in 
Latin in 1693, is considered as the first serious attempt at a history of mathe
matics in England. It is in this work that we find the first recorded effort to give 
a graphic interpretation of the complex roots of a real quadratic equation. 
Wallis edited parts of the works of a number of the great Greek mathematicians 
and wrote on a wide variety of physical subjects. He was one of the founders of 
the Royal Society, and for years he assisted the government as a cryptologist.

Whereas Wallis’ chief contributions to the development of the calculus lay 
in the theory of integration, Isaac Barrow’s most important contributions were 
perhaps those connected with the theory of differentiation.

Isaac Barrow was born in London in 1630. A story is told that in his early 
school days he was so troublesome that his father was heard to pray that should 
God decide to take one of his children he could best spare Isaac. Barrow 
completed his education at Cambridge and won renown as one of the best 
Greek scholars of his day. He was a man of high academic caliber who

ISAAC BARROW
(David Smith Collection)
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achieved recognition in mathematics, physics, astronomy, and theology. En
tertaining stories are told of his physical strength, bravery, ready wit, and 
scrupulous conscientiousness. After serving for two years as professor of ge
ometry at Gresham College, London, he became, in 1664, the first to occupy 
the Lucasian chair at Cambridge. In 1669, he resigned from his position at 
Cambridge to accept a call as chaplain to Charles II. The vacated Lucasian 
chair was then, at Barrow’s suggestion, given to his young colleague Isaac 
Newton, whose remarkable abilities he was one of the first to recognize and 
acknowledge. He died in Cambridge in 1677.

Barrow’s most important mathematical work is his Lectiones opticae et 
geometricae, which appeared in the year he resigned his chair at Cambridge. 
The preface of the treatise acknowledges indebtedness to Newton for some of 
the material of the book, probably the parts dealing with optics. It is in this 
book that we find a very near approach to the modern process of differentia
tion, utilizing the so-called differential triangle that we find in our present-day 
textbooks. Let it be required to find the tangent at a point P on the given curve 
represented in Figure 102. Let Q be a neighboring point on the curve. Then 
triangles PTM and PQR are very nearly similar to one another, and, Barrow 
argued, as the little triangle becomes indefinitely small, we have

RP = MP
Q R ~  TM'

Let us set QR = e and RP = a. Then if the coordinates of P are x and y, those of 
Q are x — e and y -  a. Substituting these values into the equation of the curve 
and neglecting squares and higher powers of both e and a , we find the ratio ate.

FIGURE 102
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We then have

OT = OM -  TM = OM -  MP ( ^ )  = x -  y Q ,

and the tangent line is determined. Barrow applied this method of constructing 
tangents to the curves: (a) x2(x2 + y 2) = r2y 2 (the kappa curve), (b) t3 + y3 = r3 
(a special Lame curve), (c) x3 + y 3 = rxy (the folium of Descartes, but called la 
galande by Barrow), (d) y = (r -  x) tan irxllr (the quadratrix), (e) y = r tan ttx! 
2r (a tangent curve). As an illustration, let us apply the method to curve (b). 
Here we have

(x -  e)3 + (y -  a)3 = r3,

or

x3 — 3x2e + 3xe2 — e3 + y 3 — 3y2a + 3ya2 — a3 — r3.

Neglecting the square and higher powers of e and a , and using the fact that x3 + 
y3 = r3, this reduces to

3x2e + 3 y 2a = 0,

from which we obtain

e y 2'

The ratio ale is, of course, our modern dyldx , and Barrow’s questionable 
procedure can easily be made rigorous by the use of the theory of limits.

In spite of tenuous evidence pointing elsewhere, Barrow is generally cred
ited as the first to realize in full generality that differentiation and integration 
are inverse operations. This important discovery is the so-called fundamental 
theorem of the calculus and appears to be stated and proved in Barrow’s Lec- 
tiones.

Although Barrow devoted most of the latter part of his life to theology, he 
did, in 1675, publish an edition (with commentary) of the first four books of 
Apollonius’ Conic Sections and of the extant works of Archimedes and 
Theodosius.

At this stage of the development of differential and integral calculus, many 
integrations had been performed; many cubatures, quadratures, and rectifica
tions effected; a process of differentiation had been evolved and tangents to 
many curves constructed; the idea of limits had been conceived; and the funda
mental theorem recognized. What more remained to be done? There still re
mained the creation of a general symbolism with a systematic set of formal 
analytical rules and also a consistent and rigorous redevelopment of the funda-
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mentals of the subject. It is precisely the first of these, the creation of a suitable 
and workable calculus, that was furnished by Newton and Leibniz, who were 
working independently of each other. Thus, although Newton and Leibniz 
were preceded by a number of precursors of the calculus, it is generally con
ceded that they are the subject’s essential inventors. The redevelopment of the 
fundamental concepts on an acceptably rigorous basis had to outwait the period 
of energetic application of the subject, and was the work of the great French 
analyst Augustin-Louis Cauchy (1789-1857) and his nineteenth-century suc
cessors. This story will be told in a later chapter.

11-9 Newton
Isaac Newton was born in Woolsthorpe hamlet on Christmas Day, 1642, the 
year in which Galileo died. His father, who died before Isaac was bom, was a 
farmer, and it was at first planned that the son also should devote his life to 
farming. The youngster, however, showed great skill and delight in devising 
clever mechanical models and in conducting experiments. Thus, he made a toy 
gristmill that ground wheat to flour, with a mouse serving as motive power, and 
a wooden clock that worked by water. The result was that his schooling was 
extended. When eighteen years of age, he was allowed to enter Trinity College, 
Cambridge. It was not until this stage in his schooling that his attention came to 
be directed to mathematics, by a book on astrology picked up at the 
Stourbridge Fair. As a consequence, he first read Euclid’s Elements, which he 
found too obvious, and then Descartes’ La geometrie, which he found some
what difficult. He also read Oughtred’s Clavis, works of Kepler and Viete, and 
the Arithmetica infinitorum by Wallis. From reading mathematics, he turned to

ISAAC NEWTON
(David Smith Collection)



creating it, early discovering the generalized binomial theorem and creating his 
method of fluxions, as he called what today is known as differential calculus. 
From late summer of 1665 until late summer of 1667, except for a brief tempo
rary reopening from mid-March to mid-June of 1666, Cambridge University 
essentially closed down because of the rampant bubonic plague. It has been 
generally reported that it was in 1665, during the first year of this closing of the 
university and while living at home in Woolsthorpe, that Newton developed his 
calculus (to the point where he could find the tangent and radius of curvature at 
an arbitrary point of a curve), became interested in various physical questions, 
performed his first experiments in optics, and formulated the basic principles of 
his theory of gravitation. Recent research, however, has shown that this ac
count is a myth, later promulgated by Newton himself to help assure him of 
primacy in the discovery of the calculus, and that these discoveries were actu
ally not made until he was at Cambridge in 1666 during the university’s brief, 
temporary reopening.

Newton returned to Cambridge in 1667 and for two years occupied himself 
with optical researches. In 1669, Barrow resigned the Lucasian professorship, 
to be succeeded by Newton, who began his eighteen years of university lectur
ing. His first lectures, which were on optics, were later communicated in a 
paper to the Royal Society and aroused considerable interest and discussion. 
His theory of colors and certain deductions from his optical experiments were 
vehemently attacked by some scientists. Newton found the ensuing argument 
so distasteful that he vowed never to publish anything on science again. His 
tremendous dislike of controversy, which seems to have bordered on the path
ological, had an important bearing on the history of mathematics, for the result 
was that most all of his findings remained unpublished until many years after 
their discovery. This postponement of publication later led to the undignified 
dispute with Leibniz concerning priority of discovery of the calculus. It was 
owing to this controversy that the English mathematicians, backing Isaac New
ton as their leader, cut themselves off from continental developments, and 
mathematical progress in England was retarded for practically one hundred 
years.

Newton continued his work in optics and, in 1675, communicated his work 
on the emission, or corpuscular, theory of light to the Royal Society. His 
reputation and his ingenious handling of the theory led to its general adoption, 
and it was not until many years later that the wave theory was shown to be a 
better hypothesis for research. Newton’s university lectures from 1673 to 1683 
were devoted to algebra and the theory of equations. It was in this period, in 
1679, that he verified his law of gravitation5 by using a new measurement of the 
earth’s radius in conjunction with a study of the motion of the moon. He also 
established the compatibility of his law of gravitation with Kepler’s laws of

398 CHAPTER ELEVEN /  THE CALCULUS AND RELATED CONCEPTS

5 Any two particles in the universe attract one another with a force that is directly proportional 
to the product of their masses and inversely proportional to the square of the distance between 
them.
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planetary motion, on the assumption that the sun and the planets may be 
regarded as heavy particles. But these important findings were not communi
cated to anyone until five years later, in 1684, when Halley visited Newton at 
Cambridge to discuss the law of force that causes the planets to move in 
elliptical orbits about the sun. With his interest in celestial mechanics rearoused 
in this way, Newton proceeded to work out many of the propositions later to 
become fundamental in the first book of his Principia. When Halley, sometime 
after, saw Newton’s manuscript, he realized its tremendous importance and 
secured the author’s promise to send the results to the Royal Society, which 
Newton did. At about the same time, he finally solved a problem that had been 
bothering him for some years—namely, that a spherical body whose density at 
any point depends only on its distance from the center of the sphere attracts an 
external particle as if its whole mass were concentrated at the center. This 
theorem completed his justification of Kepler’s laws of planetary motion, for 
the slight departure of the sun and the planets from true sphericity is here 
negligible. Newton now worked in earnest on his theory and, by a gigantic 
intellectual effort, wrote the first book of the Principia by the summer of 1685. 
A year later, the second book was completed and a third begun. Jealous accusa
tions by Hooke, and the resulting unpleasantness of the matter to Newton, 
almost led to the abandonment of the third book, but Halley finally persuaded 
Newton to finish the task. The complete treatise, entitled Philosophiae natu- 
ralis principia mathematica, was published, at Halley’s expense, in the middle 
of 1687 and immediately made an enormous impression throughout Europe.

In 1689, Newton represented the university in parliament. In 1692, he 
suffered a curious illness that lasted about two years and that involved some 
form of mental derangement. Most of his later life was devoted to chemistry, 
alchemy, and theology. As a matter of fact, even during the earlier part of his 
life, he probably spent about as much time on these pursuits as he did on 
mathematics and natural philosophy. Although his creative work in mathemat
ics practically ceased, he did not lose his remarkable powers, for he masterfully 
solved numerous challenge problems that were submitted to him and that were 
quite beyond the powers of the other mathematicians in England. In 1696, he 
was appointed Warden of the Mint; in 1699, he was promoted to Master of the 
Mint. In 1703, he was elected president of the Royal Society, a position to 
which he was annually reelected until his death; in 1705, he was knighted. The 
last part of his life was made unhappy by the unfortunate controversy with 
Leibniz. He died in 1727 when eighty-four years old after a lingering and painful 
illness, and was buried in Westminister Abbey.

All of Newton’s important published works, except the Principia, ap
peared years after the author had discovered their contents, and almost all of 
them finally appeared only because of pressure from friends. The dates of these 
works, in order of publication, are as follows: Principia, 1687; Opticks, with 
two appendices on Cubic Curves and Quadrature and Rectification o f Curves 
by the Use o f Infinite Series, 1704; Arithmetica universalis, 1707; Analysis per 
Series, Fluxiones, etc., and Methodus differential, 1711; Lectiones opticae, 
1729; and The Method of Fluxions and Infinite Series, translated from New



ton’s Latin by J. Colson, 1736. One should also mention two important letters 
written in 1676 to H. Oldenburg, secretary of the Royal Society, in which 
Newton describes some of his mathematical methods.

It is in the letters to Oldenburg that Newton described his early induction 
of the generalized binomial theorem, which he enunciated in the form

(P + PQ)mln = Pm,n + ^ A Q  + m ~n n BQ + m ~n2n C Q +  . . .  ,

where A represents the first term (namely, Pmln), B represents the second term 
[namely, (mln)AQ], C represents the third term, and so forth. The correctness, 
under proper restrictions, of the binomial expansion for all complex values of 
the exponent was established over 150 years later by the Norwegian mathema
tician N. H. Abel (1802-1829).

A more important mathematical discovery made by Newton at about the 
same time was his method of fluxions, the essentials of which he communicated 
to Barrow in 1669. His Method o f Fluxions was written in 1671 but was not 
published until 1736. In this work, Newton considered a curve as generated by 
the continuous motion of a point. Under this conception, the abscissa and the 
ordinate of the generating point are, in general, changing quantities. A changing 
quantity is called a fluent (a flowing quantity), and its rate of change is called 
the fluxion of the fluent. If a fluent, such as the ordinate of the point generating 
a curve, be represented by y, then the fluxion of this fluent is represented by y. 
In modern notation, we see that this is equivalent to dy/dt, where t represents 
time. In spite of this introduction of time into geometry, the idea of time can be 
evaded by supposing that some quantity, say the abscissa of the moving point, 
increases constantly. This constant rate of increase of some fluent is called the 
principal fluxion, and the fluxion of any other fluent can be compared with this 
principal fluxion. The fluxion of y is denoted by y, and so on for higher ordered 
fluxions. On the other hand, the fluent of y is denoted by the symbol y with a 
small square drawn about it, or sometimes by y. Newton also introduces an
other concept, which he calls the moment of a fluent; it is the infinitely small 
amount by which a fluent such as x increases in an infinitely small interval of 
time o. Thus, the moment of the fluent x is given by the product xo. Newton 
remarks that we may, in any problem, neglect all terms that are multiplied by 
the second or higher power of o and thus obtain an equation between the 
coordinates x and y of the generating point of a curve and their fluxions x and y. 
As an example, he considers the cubic curve x3 -  ax2 + axy -  y3 = 0. Replac
ing x by x + xo and y by y + yo, we get

x3 4- 3x2(xo) + 3x(xo)2 + (xo)3
— ax2 — 2ax(xo) — a(xo)2
+ axy + ay(xo) + a(xo)(yo) + ax(yo)
-  y3 -  3y2(yo) -  3y(yo)2 -  (yo)3 = 0.
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Now, using the fact that x 3 -  ax2 + axy -  y 3 = 0, dividing the remaining terms 
by o, and then rejecting all terms containing the second or higher power of o, 
we find

3x2x — 2axx + ayx + axy — 3 y 2y = 0.

Newton considers two types of problems. In the first type, we are given a 
relation connecting some fluents, and we are asked to find a relation connecting 
these fluents and their fluxions, which is what we did above; this is, of course, 
equivalent to differentiation. In the second type, we are given a relation con
necting some fluents and their fluxions, and we are asked to find a relation 
connecting the fluents alone. This is the inverse problem and is equivalent to 
solving a differential equation. The idea of discarding terms containing the 
second and higher powers of o was later justified by Newton by the use of 
primitive limit notions. Newton made numerous and remarkable applications of 
his method of fluxions. He determined maxima and minima, tangents to curves, 
curvature of curves, points of inflection, and convexity and concavity of 
curves, and he applied his theory to numerous quadratures and to the rectifica
tion of curves. In the integration of some differential equations, he showed 
extraordinary ability. Also included in this work is a method (a modification of 
which is now known by Newton’s name) for approximating the values of the 
real roots of either an algebraic or a transcendental numerical equation.

The Arithmetica universalis contains the substance of Newton’s lectures 
of 1673 to 1683. In it are found many important results in the theory of equa
tions, such as the fact that imaginary roots of a real polynomial must occur in 
conjugate pairs, rules for finding an upper bound to the roots of a real polyno
mial, his formulas expressing the sum of nth powers of the roots of a polyno
mial in terms of the coefficients of the polynomial, an extension of Descartes’ 
rule of signs to give limits to the number of imaginary roots of a real polyno
mial, and many other things.

Cubic Curves, which appeared as an appendix to the work on Opticks, 
investigates the properties of cubic curves by analytic geometry. In his classifi
cation of cubic curves, Newton enumerates seventy-two out of the possible 
seventy-eight forms that a cubic may assume. Many of his theorems are stated 
without proof. The most attractive of these, as well as the most baffling, was his 
assertion that just as all conics can be obtained as central projections of a circle, 
so all cubics can be obtained as central projections of the curves

y 2 = ax3 + bx2 + cx + d.

This theorem remained a puzzle until a proof was discovered in 1731.
Of course, Newton’s greatest work is his Principia, in which there appears 

for the first time a complete system of dynamics and a complete mathematical 
formulation of the principal terrestrial and celestial phenomena of motion. It 
proved to be the most influential and most admired work in the history of



science. It is interesting that the theorems, although perhaps some may have 
been discovered by fluxional methods, are all masterfully established by classi
cal Greek geometry aided, here and there, with some simple notions of limits. 
Until the development of the theory of relativity, all physics and astronomy 
rested on the assumption, made by Newton in this work, of a privileged frame 
of reference. In the Principia are found many results concerning higher plane 
curves and proofs of such attractive geometric theorems as the two following:

1. The locus of the centers of all conics tangent to the sides of a quadrilat
eral is the line (Newton’s line) through the midpoints of its diagonals.

2. If a point P moving along a straight line is joined to two fixed points O 
and O ', and if lines OQ and O'Q make fixed angles with OP and O'P, 
then the locus of Q is a conic.

Newton was never beaten by any of the various challenge problems that 
circulated among the mathematicians of his time. In one of these, proposed by 
Leibniz, he solved the problem of finding the orthogonal trajectories of a family 
of curves.

Newton was a skilled experimentalist and a superb analyst. As a mathema
tician, he is ranked almost universally as the greatest the world has yet pro
duced. His insight into physical problems and his ability to treat them mathe
matically has probably never been excelled. One can find many testimonials by 
competent judges as to his greatness, such as the noble tribute paid by Leibniz, 
who said, “Taking mathematics from the beginning of the world to the time 
when Newton lived, what he did was much the better half.” And there is the 
remark by Lagrange to the effect that Newton was the greatest genius that ever 
lived, and the most fortunate, for we can find only once a system of the uni
verse to be established. His accomplishments were poetically expressed by 
Alexander Pope in the lines,

Nature and Nature’s laws lay hid in night;
God said, ‘Let Newton be,’ and all was light.

In contrast to these eulogies is Newton’s own modest estimate of his work: 
“I do not know what I may appear to the world; but to myself I seem to have 
been only like a boy playing on the seashore, and diverting myself in now and 
then finding a smoother pebble or a prettier shell than ordinary, whilst the great 
ocean of truth lay all undiscovered before me.” In generosity to his predeces
sors he once explained that if he had seen farther than other men, it was only 
because he had stood on the shoulders of giants.

It has been reported that Newton often spent eighteen or nineteen hours a 
day in writing, and that he possessed remarkable powers of concentration. 
Amusing tales, perhaps apocryphal, are told in testimony to his absent-minded
ness when engaged in thought.

There is the story that, when giving a dinner to some friends, Newton left 
the table for a bottle of wine and, becoming mentally engaged, forgot his er
rand, went to his room, donned his surplice, and ended up in chapel.

On another occasion, Newton’s friend Dr. Stukeley called on him for a
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chicken dinner. Newton was out, but the table was already laid with the cooked 
fowl in a dish under a cover. Forgetful of his dinner engagement, Newton 
overstayed his time, and Dr. Stukeley finally lifted the cover, removed and ate 
the chicken, and then replaced the bones in the covered dish. When Newton 
later appeared, he greeted his friend and sitting down he, too, lifted the cover, 
only to discover the remains. “Dear me,” he said, “ I had forgotten that we had 
already dined.”

And then there was the occasion when, riding home one day from Gran
tham, Newton dismounted from his horse to walk the animal up Spittlegate 
Hill, just beyond the town. Unknown to Newton, the horse slipped away on the 
way up the hill, leaving only the empty bridle in his master’s hands, a fact that 
Newton discovered only when, at the top of the hill, he endeavored to vault 
into the saddle.

11-10 Leibniz
Gottfried Wilhelm Leibniz, the great universal genius of the seventeenth cen
tury and Newton’s rival in the invention of the calculus, was born in Leipzig in 
1646. Having taught himself to read Latin and Greek when he was a mere child, 
he had, before he was twenty, mastered the ordinary textbook knowledge of 
mathematics, philosophy, theology, and law. At this young age, he began to 
develop the first ideas of his characteristica generalis, which involved a univer
sal mathematics that later blossomed into the symbolic logic of George Boole 
(1815-1864) and, still later, in 1910, into the great Principia mathematica of 
Whitehead and Russell. When, ostensibly because of his youth, he was refused 
the degree of doctor of laws at the University of Leipzig, he moved to Nurem-

GOTTFRIED WILHELM LEIBNIZ
(David Smith Collection)



berg. There he wrote a brilliant essay on teaching law by the historical method 
and dedicated it to the Elector of Mainz. This led to his appointment by the 
Elector to a commission for the recodification of some statutes. The rest of 
Leibniz’ life from this point on was spent in diplomatic service, first for the 
Elector of Mainz and then, from about 1676 until his death, for the estate of the 
Duke of Brunswick at Hanover.

In 1672, while in Paris on a diplomatic mission, Leibniz met Huygens, who 
was then residing there, and the young diplomat prevailed upon the scientist to 
give him lessons in mathematics. The following year, Leibniz was sent on a 
political mission to London, where he made the acquaintance of Oldenburg and 
others and where he exhibited a calculating machine to the Royal Society. 
Before he left Paris to take up his lucrative post as librarian for the Duke of 
Brunswick, Leibniz had already discovered the fundamental theorem of the 
calculus, developed much of his notation in this subject, and worked out a 
number of the elementary formulas of differentiation.

Leibniz’ appointment in the Hanoverian service gave him leisure time to 
pursue his favorite studies, with the result that he left behind him a mountain of 
papers on all sorts of subjects. He was a particularly gifted linguist, winning 
some fame as a Sanskrit scholar, and his writings on philosophy have ranked 
him high in that field. He entertained various grand projects that came to 
nought, such as that of reuniting the Protestant and Catholic churches, and then 
later, just the two Protestant sects of his day. In 1682, he and Otto Mencke 
founded a journal called the Acta eruditorum, of which he became editor-in- 
chief. Most of his mathematical papers, which were largely written in the ten- 
year period from 1682 to 1692, appeared in this journal. The journal had a wide 
circulation in continental Europe. In 1700, Leibniz founded the Berlin Acad
emy of Science and endeavored to create similar academies in Dresden, Vi
enna, and St. Petersburg.

The closing seven years of Leibniz’ life were embittered by the contro
versy that others had brought upon him and Newton concerning whether he 
had discovered the calculus independently of Newton. In 1714, his employer 
became the first German King of England, and Leibniz was left, neglected, at 
Hanover. It is said that when he died two years later, in 1716, his funeral was 
attended only by his faithful secretary.

Leibniz’ search for his characteristica generalis led to plans for a theory of 
mathematical logic and a symbolic method with formal rules that would obviate 
the necessity of thinking. Although this dream has only today reached a notice
able stage of realization, Leibniz had, in current terminology, stated the princi
pal properties of logical addition, multiplication, and negation, had considered 
the null class and class inclusion, and had noted the similarity between some 
properties of the inclusion of classes and the implication of propositions (see 
Problem Study 11.10).

Leibniz invented his calculus sometime between 1673 and 1676. It was on 
October 29, 1675, that he first used the modern integral sign, as a long letter S 
derived from the first letter of the Latin word summa (sum), to indicate the sum
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of Cavalieri’s indivisibles. A few weeks later, he was writing differentials and 
derivatives as we do today, as well as integrals like J y dy and J y dx. His first 
published paper on differential calculus did not appear until 1684. In this paper, 
he introduces dx as an arbitrary finite interval and then defines dy by the 
proportion

dy:dx = y:subtangent.

Many of the elementary rules for differentiation, which a student learns early in 
a beginning course in the calculus, were derived by Leibniz. The rule for finding 
the flth derivative of the product of two functions (see Problem Study 11.6) is 
still referred to as Leibniz9 rule.

Leibniz had a remarkable feeling for mathematical form and was very 
sensitive to the potentialities of a well-devised symbolism. His notation in the 
calculus proved to be very fortunate and is unquestionably more convenient 
and flexible than the fluxional notation of Newton. The English mathemati
cians, though, clung to the notation of their leader. As late as the nineteenth 
century, the Analytical Society, as it was named by one of its founders, Charles 
Babbage, was formed at Cambridge. It was formed for the purpose of advocat
ing “the principles of pure d-ism as opposed to the dot-age of the university. It 
should be recalled that the rationalistic philosophy deism was in vogue among 
many of the intelligentsia of the time.

The theory of determinants is usually said to have originated with Leibniz, 
in 1693, when he considered these forms with reference to systems of simulta
neous linear equations, although a similar consideration had been made ten 
years earlier in Japan by Seki Kowa. The generalization of the binomial theo
rem into the multinomial theorem, which concerns itself with the expansion of

(a + / ? + . . .  + n)r,

is due to Leibniz. He also did much to lay the foundation of the theory of 
envelopes, and he defined the osculating circle and showed its importance in 
the study of curves.

We shall not enter here into a discussion of the unfortunate Newton- 
Leibniz controversy. The universal opinion today is that each discovered the 
calculus independently of the other. Although Newton’s discovery was made 
first, Leibniz was the earlier in publishing results. If Leibniz was not as pene
trating a mathematician as Newton, he was perhaps a broader one, and al
though inferior to his English rival as an analyst and mathematical physicist, he 
probably had a keener mathematical imagination and a superior instinct for 
mathematical form. The controversy, which was brought upon the two princi
pals by machinations of other parties, led to a long British neglect of European 
developments, much to the detriment of English mathematics.

For some time after Newton and Leibniz, the foundations of the calculus 
remained obscure and little heeded, for it was the remarkable applicability of
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the subject that attracted the early researchers. By 1700, most of our under
graduate college calculus had been founded, along with sections of more ad
vanced fields, such as the calculus of variations. The first textbook of the 
subject appeared in 1696, written by the Marquis de l’Hospital (1661-1704), 
when, under an odd agreement, he published the lectures of his teacher, Johann 
Bernoulli. In this book is found the so-called VHospital’s rule for finding the 
limiting value of a fraction whose numerator and denominator tend simulta
neously to zero.

Leibniz was an inveterate optimist. Not only did he hope to reunite the 
conflicting religious sects of his time into a single universal church, but he felt 
he might have a way of Christianizing all of China by what he believed to be the 
image of creation in the binary arithmetic. Since God may be represented by 
unity, and nothing by zero, he imagined that God created everything from 
nothing just as in the binary arithmetic all numbers are expressed by means of 
unity and zero. This idea so pleased Leibniz that he communicated it to the 
Jesuit Grimaldi, President of the Mathematical Board of China, with the hope 
that it might convert the reigning Chinese emperor (who was particularly at
tached to science), and thence all of China, to Christianity. As another instance 
of Leibniz’ theological simulacrums, we have his remark that imaginary num
bers are like the Holy Ghost of Christian scriptures—a sort of amphibian, 
midway between existence and nonexistence.

We conclude our account of Leibniz with a closing paean to his unique 
talent. There are two broad and antithetical domains of mathematical thought, 
the continuous and the discrete; Leibniz is the one man in the history of 
mathematics who possessed both of these qualities of thought to a superlative 
degree.
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Problem Studies

11.1 The Method of Exhaustion

(a) Assuming the so-called axiom of Archimedes: If we are given two mag
nitudes o f the same kind, then we can find a multiple o f the smaller that 
exceeds the larger, establish the basic proposition of the method of 
exhaustion: If from any magnitude there be subtracted a part not less 
than its half, from the remainder another part not less than its half, and 
so on, there will at length remain a magnitude less than any preas
signed magnitude o f the same kind. (The axiom of Archimedes is im
plied in the fourth definition of Book V of Euclid’s Elements, and the 
basic proposition of the method of exhaustion is found as Proposition 1 
of Book X of the Elements.)

(b) Show, with the aid of the basic proposition of the method of exhaus
tion, that the difference in area between a circle and a circumscribed 
regular polygon can be made as small as desired.

11.2 The Method of Equilibrium

Figure 103 represents a parabolic segment having AC  as chord. CF is tangent to 
the parabola at C, and AF is parallel to the axis of the parabola. OPM is also 
parallel to the axis of the parabola. K  is the midpoint of FA and HK  = KC. Take 
HC as a lever, or balance bar, with fulcrum at K. Place OP with its center at H , 
and leave OM where it is.

(a) Using the geometrical fact that OMIOP = AC/AO , show, by Archi
medes’ method of equilibrium, that the area of the parabolic segment is 
i  the area of triangle AFC.

FIGURE 103



(b) Deduce, from (a), that the area of a parabolic segment is § the area of 
the triangle bounded by the chord of the segment and the 2 tangents to 
the parabola at the endpoints of the chord.

11.3 Some Archimedean Problems

Archimedes devoted a number of tracts to solving volume and area problems.
He established his results by the “method of exhaustion.” By modern meth
ods, solve the following Archimedean problems.

(a) Find the area of a spherical zone of height h and radius r.
(b) Find the centroid of a spherical segment.
(c) Find the volume of a cylindrical wedge or hoof, cut from a right circular 

cylinder by a plane passing through a diameter of the base of the cyl
inder.

(d) Find the volume common to 2 right circular cylinders of equal radii and 
having their axes intersecting perpendicularly.

11.4 The Method of Indivisibles

(a) (1) Show that any triangular prism can be dissected into 3 triangular 
pyramids having, in pairs, equivalent bases and equal altitudes. (2) 
Show, by Cavalieri’s second principle, that 2 triangular pyramids hav
ing equivalent bases and equal altitudes have equal volumes. (3) Now 
show that the volume of a triangular pyramid is equal to i the product 
of the area of the base of the pyramid and the altitude of the pyramid.

(b) Establish Cavalieri’s principles by modern integration.
(c) Find, by Cavalieri’s second principle, the volume of a cylindrical 

wedge, or hoof [see Problem Study 11.3(c)], in terms of the radius r of 
the associated cylinder and the altitude h of the hoof. (Divide the hoof 
into 2 equal parts by a plane p through the axis of the cylinder, and let A 
be the area of the resulting triangular cross section of the hoof. Con
struct a right prism having as its base a square of area A, the base lying 
in the plane p, and having an altitude equal to r. Cut from the prism a 
pyramid whose base is the base of the prism not lying in p and whose 
vertex is a point in the other base of the prism. This gouged-out prism 
may serve as a comparison solid for 1 of the halves of the hoof.)

(d) Find, by Cavalieri’s second principle, the volume of the spherical ring 
obtained by removing from a solid sphere a cylindrical boring that is 
coaxial with the polar axis of the sphere. (Use for a comparison solid a 
sphere with diameter equal to the altitude h of the ring.)

(e) Show that all spherical rings of the same altitude have the same vol
ume, irrespective of the radii of the spheres of the rings.

(f) Devise a polyhedron that can be used as a comparison solid for obtain
ing the volume of a sphere of radius r by means of Cavalieri’s second 
principle. [Let AB and CD be 2 line segments in space such that (1) 
AB = CD = 2r V 77, (2) AB and CD are each perpendicular to the line 
joining their midpoints, (3) the segment joining these midpoints has
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length 2r, (4) AB is perpendicular to CD. The tetrahedron ABCD may 
serve as the comparison polyhedron.]

(g) Find, by Cavalieri’s second principle, the volume of a torus, or anchor 
ring, formed by revolving a circle of radius r about a line in the plane of 
the circle at distance c ^  r from the center of the circle. (Place the torus 
on a plane p perpendicular to the axis of the torus. Take for a compari
son solid a right circular cylinder of radius r and altitude 2ttc, and place 
it lengthwise on the plane p .]

(h) Find, by Cavalieri’s first principle, the area enclosed by the curve

b2y 2 = (b + x)2(a2 -  x2),

where b ^  a >  0.
(i) Show that there cannot exist a polygon that can be used as a compari

son area for obtaining the area of a given circle by means of Cavalieri’s 
first principle.

11.5 The Prismoidal Formula

A prismatoid is a polyhedron all of whose vertices lie in 2 parallel planes. The 
faces in these 2 parallel planes are called the bases of the prismatoid. If the 2 
bases have the same number of sides, the prismatoid is called a prismoid. A 
generalized prismoid is any solid having 2 parallel base planes and having the 
areas of its sections parallel to the bases given by a quadratic function of their 
distances from 1 base.

(a) Show that the volumes of a prism, a wedge (a right triangular prism 
turned so as to rest on one of its lateral faces as a base), and a pyramid 
are given by the prismoidal formula:

_ h(U + 4M + L)
V ~ 6

where h is the altitude, and U, L, and M  are the areas of the upper and 
lower bases and midsection, respectively.

(b) Show that the volume of any convex prismatoid is given by the pris
moidal formula.

(c) Show, by Cavalieri’s principle, that the volume of any generalized 
prismoid is given by the prismoidal formula.

(d) Establish (c) by integral calculus.
(e) Show by integral calculus that the prismoidal formula gives the volume 

of any solid having two parallel base planes and having the areas of its 
sections parallel to the bases given by a cubic function of their dis
tances from one base.

(f) Using the prismoidal formula, find the volumes of (1) a sphere, (2) 
an ellipsoid, (3) a cylindrical wedge, (4) the solid in Problem Study
11.3 (d).
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11.6 Differentiation

(a) Find the slope of the tangent at the point (3,4) on the circle x2 + y 2 = 25 
by:
1. Fermat’s method.
2. Barrow’s method.
3. Newton’s method of fluxions.
4. The modern method.

(b) If y = uv, where u and v are functions of jc, show that the nth derivative 
of y with respect to x is given by

(̂n) = uv(n) + nu’v(n ]) + —— u"vin~2)

+  — ---- j p ---- — mV " -3* + . . . + UM V.

This is known as Leibniz9 rule.

11.7 The Binomial Theorem

(a) Show that Newton’s enunciation of the binomial theorem as given in 
Section 11-9 is equivalent to the familiar expansion

(a + b)r = ar + var xb +
r(r -  1)------------  n r

2 !
ar~2b2

+ ~  y  ~ 2> c r v

(b) Show by the binomial theorem that if (a + ib)k = p + iq, where a, b, p, 
q are real, k is a positive integer, and i = V -T , then (a -  ib)k = p -  iq.

(c) Show by using (b) that imaginary roots of a polynomial with real coeffi
cients occur in conjugate pairs. (This result was given by Newton.)

11.8 An Upper Bound for the Roots of a Polynomial Equation

(a) By using the binomial theorem, or otherwise, show that if f(x)  is a 
polynomial of degree n, then

f i y  + h) = /(A ) + f'(h)y + f'(ti) ^  + . . • + f  nm

(b) Show that any number that makes a real polynomial f(x ), and all of its 
derivatives f ' ( x ) , f ’(x), . . . , f (n>(x), positive, is an upper bound for the 
real roots o f f(x ) = 0. (This result was given by Newton.)

(c) Show that if for x = a we have f <n~k}(x), f in~k+X)(x), . . . , f <n)(x) all 
positive, then these functions will also all be positive for any number 
x >  a.
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(d) Results (b) and (c) may be used to find a close upper bound for the real 
roots of a real polynomial equation. The general procedure is as fol
lows: Take the smallest integer that will make f {n~x\x )  positive. Substi
tute this integer in f {n~2\x ). If we obtain a negative result, increase the 
integer successively by units until an integer is found that makes this 
function positive. Now proceed with the new integer as before. Con
tinue in this way until an integer is found that makes all o f the functions 
/ ( jc) , /'(* ), . . . , f n~l)(x) positive. Find, by this procedure, an upper 
bound for the real roots of

jc4 -  3 jc3 -  4x2 -  2x + 9  =  0 .

11.9 Approximate Solution of Equations

(a) Newton devised a method for approximating the values of the real 
roots of a numerical equation that applies equally well to either an 
algebraic or a transcendental equation. The modification of this 
method, now known as Newton’s method, says: Iff(x) = 0 has only 1 
root in the interval [a , b\, and if neither f i x )  nor f i x )  vanishes in this 
interval, and if  x0 be chosen as that 1 o f the 2 numbers a and b for 
which f(x 0) and f i x 0) have the same sign, then

X\ =  Xq -
fix q) 
f i x  o)

is nearer to the root than is jc0 . Establish this result.
(b) Solve by Newton’s method the cubic jc3 -  2x -  5 = 0 for the root lying 

between 2 and 3.
(c) Solve by Newton’s method the equation jc = tan jc for the root lying 

between 4.4 and 4.5.
(d) Find by Newton’s method V l2  correct to 3 decimal places.
(e) By means of the hyperbola xy = k, k >  0, show that if xx is an approxi

mation to V k, then x2 = Ui + klxx)l2 is a better approximation, and so 
on. (This is Heron’s method of approximating a square root. See Sec
tion 6-6.)

(f) Obtain the procedure of (e) from Newton’s method applied to/(jc) = 
x2 — k.

(g) By Newton’s method applied to/(jc) = jc"  -  k, n a positive integer, 
show that if jci is an approximation to ^tfk, then

*2  =

{n -  l )x ,  +

n

is a better approximation, and so on.
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(h) In a text on the theory of equations, look up the so-called Fourier’s 
theorem , which states a guarantee under which the Newton method is 
bound to succeed.

[In 1690, Joseph Raphson (1648-1715), a fellow of the Royal Society of 
London, published a tract, Analysis aequationum universalis, that describes 
essentially the Newton method for approximating the real roots of a numerical 
equation. For this reason, the method is today often referred to as the Newton- 
Raphson m ethod. Newton had described his method, illustrating it on the cubic 
of (b), in his Method o f Fluxions, which, though written in 1671, was not 
published until 1736. The earliest printed account of Newton’s method ap
peared in Wallis’ Algebra of 1685.]6

11.10 Algebra o f Classes

The concept of a “class of objects’’ is fundamental in logic. Leibniz developed 
some of the elementary algebra of classes. Using modern notation, if A and B 
are classes of objects, then A D B (called the intersection, or product, of A and 
B) represents the class of all objects belonging to both A and B , and A U B 
(called the union, or sum, of A and B) represents the class of all objects belong
ing to either A or B.

The algebra of classes can be illustrated graphically by means of so-called 
Venn diagrams,7 where a class A is represented by a given region. Thus, if we 
represent classes A and B by the interiors of the 2 circles A and B , as indicated 
in Figure 104, the set A H B is represented by the region common to these 2 
circles, and the set A U B is represented by the region made up of all the points 
in either 1 or the other of the 2 circles. If we represent all our classes inside a 
surrounding rectangle, then by A', called the complement of A, we mean the 
region inside the rectangle but outside the region that represents A.

(a) On a Venn diagram, shade each of the following regions: A fl (Br U C), 
(A' n  B) U (A n C'), (A U B') U C'.

6 S ee  F . Cajori, “ H istorical N o tes on the N ew ton-R aphson M ethod o f  A pproxim ation,’’ The 
American Mathematical Monthly 18 (1911): 29 -3 3 .

7 N am ed after John V enn (1834-1923), an English logician, w ho em ployed the dev ice in 1876 in 
a paper on B o o le ’s logical system , and again in 1894 in his excellent book Symbolic Logic.
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(b) By shading the appropriate regions on a Venn diagram, verify the fol
lowing equations in the algebra of classes: A n (B Pi C) = (A Pi B) n C, 
a  n (B u c) = (A n B) u (A n c), (A u By = A' n B'.

(c) By shading the appropriate regions on a Venn diagram, determine 
which of the following equations are valid: (A' U BY = A n B', 
A' U £' = (A U B y , A U (J? n cy = (A U £') Pi C \

Essay Topics

11/1 The relation of Zeno’s paradoxes to the calculus.
11/2 The Greek contribution to the development of the integral calculus.
11/3 Modern forerunners of Newton and Leibniz in the development of the 

calculus.
11/4 The use of Cavalieri’s second principle in a beginning course in solid 

geometry.
11/5 The greatest mathematical discovery of the seventeenth century.
11/6 Leibniz’ conception of the differential.
11/7 Barrow and the fundamental theorem of the calculus.
11/8 The Newton-Leibniz controversy.
11/9  The four greatest mathematical books of the seventeenth century.
11/10 The five most important British mathematicians of the seventeenth 

century.
11/11 Men who were prominent in both mathematics and physics in the 

seventeenth century.
11/12 The six leading mathematical countries of the seventeenth century, 

arranged in order of importance.
11/13 The Japanese Newton.
11/14 The history of continued fractions.
11/15 Determinants in seventeenth-century Japanese mathematics.
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Bibliography

ANTHONY, H. D. Sir Isaac Newton. New York: Abelard-Schuman, 1960. 
BARON, M. E. The Origins o f the Infinitesimal Calculus. New York: Dover Publica

tions, 1987.
BELL, E. T. Men o f Mathematics. New York: Simon and Schuster, 1937.
BOYER, C. B. The History o f the Calculus and Its Conceptual Development. New 

York: Dover Publications, 1959.
BREWSTER, SIR DAVID Life o f Newton. London: John Murray, 1831. 
BRODETSKY, SELIG Sir Isaac Newton: A Brief Account o f His Life and Work. 

London: Methuen & Co., 1927.



414 CHAPTER ELEVEN /  THE CALCULUS AND RELATED CONCEPTS

CAJORI, FLORIAN A History o f the Conceptions o f Limits and Fluxions in Great 
Britain, From Newton to Woodhouse. Chicago: Open Court, 1919.

--------  A History o f Mathematical Notations. 2 vols. Chicago: Open Court, 1928—
1929.

--------  Sir Isaac Newton’s Mathematical Principles o f Natural Philosophy and His
System o f the World. Revision of the translation of 1729 by Andrew Motte. Berke
ley, Calif.: University of California Press, 1934.

CHILD, J. M. The Early Mathematical Manuscripts o f Leibniz. Chicago: Open 
Court, 1920.

--------  The Geometrical Lectures o f Isaac Barrow. Chicago: Open Court, 1916.
CHRISTIANSON, G. E. In the Presence o f the Creator: Isaac Newton and His 

Times. New York: The Free Press, 1984.
COOLIDGE, J. L. Geometry o f the Complex Domain. New York: Oxford University 

Press, 1924.
--------  A History o f Geometrical Methods. New York: Oxford University Press, 1940.
--------  The Mathematics o f Great Amateurs. New York: Oxford University Press,

1949.
DE MORGAN, AUGUSTUS Essays on the Life and Work o f Newton. Chicago: Open 

Court, 1914.
EDWARDS, C. H., Jr. The Historical Development o f the Calculus. New York: 

Springer-Verlag, 1980.
GROWING, RONALD Roger Cotes: Natural Philosopher. Cambridge: Cambridge 

University Press, 1983.
HALL, A. R., and M. B. HALL, eds. Unpublished Scientific Papers o f Isaac New

ton. New York: Cambridge University Press, 1962.
--------  Philosophers at War: The Quarrel Between Newton and Leibniz. New York:

Cambridge University Press, 1980.
HEATH, T. L. History o f Greek Mathematics. Vol. 2. New York: Oxford University 

Press, 1921. Reprinted by Dover Publications, New York, 1981.
--------  A Manual o f Greek Mathematics. New York: Oxford University Press,

1931.
--------  The Method o f Archimedes Recently Discovered by Heiberg. New York: Cam

bridge University Press, 1912. Contained in The Works o f Archimedes. Reprinted 
by Dover Publications, New York.

--------  The Works o f Archimedes. New York: Cambridge University Press, 1897.
Reprinted by Dover Publications, New York.

HERIVEL, JOHN The Background to Newton’s Principia. Oxford: Oxford Univer
sity Press, 1965.

HOFFMAN, J. E. Leibniz in Paris, 1672-1676. Cambridge: Cambridge University 
Press, 1964.

KERN, W. F., and J. R. BLAND Solid Mensuration: With Proofs. 2d ed. New York: 
John Wiley, 1938.

LANE, E. P. Metric Differential Geometry o f Curves and Surfaces. Chicago: Univer
sity of Chicago Press, 1940.

LEE, H. D. P., ed. Zeno o f Elea. Cambridge: Cambridge University Press, 1936.
LOVITT, W. V. Elementary Theory o f Equations. Englewood Cliffs, N.J.: Prentice- 

Hall, 1939.
MACFARLANE, ALEXANDER Lectures on Ten British Mathematicians o f the 

Nineteenth Century. Mathematical Monographs, No. 17. New York: John Wiley, 
1916.



Bibliography 415

MANHEIM, J. H. The Genesis o f Point Set Topology. New York: Macmillan, 1964.
MANUEL, F. E. A Portrait o f Isaac Newton. Cambridge, Mass.: Harvard University 

Press, 1968.
MELLONE, S. H. The Dawn o f Modern Thought—Descartes, Spinoza, and Newton. 

London: Oxford University Press, 1930.
MERZ, JOHN Leibniz. New York: Hecker Press, 1948.
MESCHKOWSKI, HERBERT Ways o f Thought o f Great Mathematicians. San 

Francisco: Holden-Day, 1964.
MEYER, R. W. Leibniz and the Seventeenth Century Revolution. Translated by J. P. 

Stern. Cambridge: Bowes and Bowes, 1952.
MORE, L. T. Isaac Newton, a Biography. New York: Dover Publications, 1962.
MUIR, JANE Of Men and Numbers, The Story o f the Great Mathematicians. New 

York: Dodd, Mead, 1961.
MUIR, THOMAS The Theory o f Determinants in the Historical Order o f Develop

ment. 4 vols. New York: Dover Publications, 1960.
NEUGEBAUER, OTTO The Exact Sciences in Antiquity. 2d ed. New York: Harper 

& Row, 1962.
NEWTON, SIR ISAAC Mathematical Principles o f Natural Philosophy. Translated 

by Andrew Motte. Edited by Florian Cajori. Berkeley, Calif.: University of Califor
nia Press, 1934.

--------  Mathematical Works. 2 vols. Edited by D. T. Whiteside. New York: Johnson
Reprint, 1964-1967.

--------  Mathematical Papers. 1 vols. Edited by D. T. Whiteside. New York: Cam
bridge University Press, 1967.

PHILLIPS, H. B. Differential Equations. 3d ed. New York: John Wiley, 1934.
PRIESTLEY, W. M. Calculus: An Historical Approach. New York: Springer-Verlag, 

1979.
ROSENTHAL, A. “ The History of Calculus,” The American Mathematical Monthly 

58 (1951): 75-86.
ROYAL SOCIETY OF LONDON Newton Tercentenary Celebrations, 15-19 July, 

1946. New York: Macmillan, 1947.
SABRA, A. I. Theories o f Light, from Descartes to Newton. London: Oldburne Book 

Company, 1957.
SCOTT, J. T. The Mathematical Work o f John Wallis (1616-1703). London: Taylor 

and Francis, 1938.
SMITH, D. E. History o f Modern Mathematics. 4th ed. New York: John Wiley, 1906.
--------  A Source Book in Mathematics. New York: McGraw-Hill, 1929.
SULLIVAN, J. W. N. The History o f Mathematics in Europe, From the Fall o f Greek 

Science to the Rise o f the Conception o f Mathematical Rigour. New York: Oxford 
University Press, 1925.

--------  Isaac Newton 1642-1727. New York: Macmillan, 1938.
TAYLOR, E. G. R. The Mathematical Practitioners o f Tudor and Stuart England. 

Cambridge: Cambridge University Press, 1954.
THOMSON, THOMAS History o f the Royal Society from Its Institution to the End o f 

the 18th Century. Ann Arbor, Mich.: University Microfilms, 1967.
TOEPLITZ, OTTO The Calculus, a Genetic Approach. Chicago: University of Chi

cago, Press, 1963.
TURNBULL, H. W. Mathematical Discoveries o f Newton. Glasgow: Blackie & 

Sons, 1945.
--------  The Great Mathematicians. New York: New York University Press, 1961.



416 CHAPTER ELEVEN /  THE CALCULUS AND RELATED CONCEPTS

-------- , ed. Correspondence o f Isaac Newton. 1 vols. Cambridge: Cambridge Univer
sity Press, 1959-1977.

WALKER, EVELYN A Study o f the Traite des Indivisibles o f Gilles Persone de 
Roberval. New York: Teachers College, Columbia University, 1932.

WELD, CHARLES A History o f the Royal Society. Reprint ed. New Yok: Arno 
Press, 1975.

WESTFALL RICHARD Never at Rest: A Biography o f Isaac Newton. Cambridge: 
Cambridge University Press, 1980.



Cultural Connection

THE REVOLT OF THE 
MIDDLE CLASS
The Eighteenth Century in Europe and 
America
(to accompany Chapter Twelve)

he eighteenth century was a time of turbulence and revolution in Europe 
and America. A newly emerged middle class, the bourgeoisie, overthrew the 
old aristocratic order in England, France, and America. Feudal political, so
cial, and economic ideas, rooted in subsistence agriculture, were replaced by a 
philosophy of Classical Liberalism, a system that emphasized limited democ
racy, equality of opportunity, and the sanctity of private property, and conse
quently advanced the Industrial Revolution of the nineteenth century.

In 1690, in a book entitled Two Treatises o f Government, the English 
philosopher John Locke (1632-1704) proposed the idea of Classical Liberalism 
as a social, political, and economic framework. Socially, Locke believed that 
all human beings, whether they be poor or well born, male or female, peasant or 
lord, were naturally equal or, as he put it, free “to order their possessions and 
persons, as they think fit, within the bounds of the law of nature.” Locke 
especially argued for religious toleration. In politics, this gaunt Englishman 
espoused a revolutionary rhetoric. Leaders, he maintained, governed only by 
the consent of their subjects, who had a moral right to depose unjust rulers. 
Economically, Locke believed property should be owned privately, so long as 
it was managed usefully and on a small scale. “As much land as a man tills, 
plants, improves, cultivates, and can use the product of,” he wrote, “ so much 
is his property.” Such were the tenets of eighteenth-century Liberalism: pri
vate ownership of modest amounts of property, government by the consent of 
the governed, and equality under the law.

Locke’s ideas were echoed by others, like the French philosopher Jean 
Jacques Rousseau (1712-1778). “In the great family [of society],” wrote Rous
seau in 1755, “all the members . . . are naturally equal.” Unlike Locke, how
ever, Rousseau did not mean that all people are equal; he believed that women 
were inferior to men, and he opposed equal rights for women. Other Liberal 
thinkers excluded black slaves and some religious minorities, like Jews, from 
their rubric of equality.

By 1776 Liberalism had become a revolutionary credo. Thomas Jefferson 
(1743-1826), providing the theoretical underpinning for the American Revolu
tion, echoed Locke when he penned his renowned Declaration o f Indepen-
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dence: “We hold these truths to be self-evident, that all men are created equal, 
that they are endowed by their Creator with certain unalienable Rights, that 
among these are Life, Liberty and the pursuit of Happiness. That to secure 
these rights, Governments are instituted among Men, deriving their just powers 
from the consent of the governed. That whenever any Form of Government 
becomes destructive of these ends it is the Right of the People to alter or to 
abolish it . . . .”

Classical Liberalism embodied the perspectives of a newly emerged prop
erty-owning social class that we call the middle class and the French term the 
bourgeoisie. This class (consisting of well-to-do farmers, merchants, bankers, 
prosperous artisans, lawyers, doctors, civil servants, and others) had become 
increasingly prominent in Europe in the 1400s, 1500s, and 1600s. During the 
Middle Ages, about ninety percent of the European population had been peas
ant farmers, many of whom were non-landowning serfs. The peasants wielded 
little political or economic power, most of which was instead concentrated into 
a relatively tiny class, the aristocracy, that comprised only about two percent 
of the population. The remaining eight percent (artisans, merchants, lawyers, 
and beggars) lived in the cities.

The bourgeoisie began to grow in numbers and power when European 
cities began to grow larger during the late Middle Ages and during the Age of 
Exploration. Urban growth was fueled both by overpopulation in the country
side, which drove many rural people into the cities looking for work, and by the 
greatly expanded commerce of the Age of Exploration, which we discussed in 
Cultural Connection VII. As workers and capital poured into European cities 
like London, Paris, Frankfurt, Antwerp, Milan, and Seville, many merchants 
and artisans expanded their businesses. In a few cases, they became wealthy 
enough that they no longer had to work, but instead sold their businesses and 
invested their money in land or loaned it at interest to the aristocracy. Even in 
the Middle Ages, European cities had stood apart from the mainstream of 
feudal society, which was dominated by the hereditary aristocracy. Cities had 
their own governments, and urban residents enjoyed special privileges denied 
to rural peasants, such as freedom from forced labor on the aristocrats’ estates. 
A saying of the Middle Ages proclaimed that “city air is free air.’’ Such free
dom, however, was relative. The urban poor who worked as laborers in the 
shops and small factories had little say in civic affairs, and city hall was usually 
dominated by the wealthier merchants and bankers.

As the bourgeoisie came into prominence between 1400 and 1700, its mem
bers grew resentful of the old aristocracy. Wealthy merchants and rentiers (a 
French word meaning, roughly, investment capitalists) had good education, 
understood affairs of state, and stood at the heart of both worldwide trading 
networks and government finance. Yet they were denied positions in the gov
ernment reserved for aristocrats, were required to pay taxes from which aristo
crats were exempt, and could not engage in certain businesses that the govern
ment granted to favored aristocrats as royal monopolies. Even more galling, 
the aristocrats, partially because of their jealousy of the new urban fortunes, 
treated the earnest rentiers like upstarts and ignored them socially. As the
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middle class grew, the aristocracy, anxious to maintain its position of control 
over European society, strove to exclude the bourgeoisie from positions of 
authority and power. The bourgeoisie, for its part, began to think about revo
lution.

Locke’s Liberalism provided the bourgeoisie with a theoretical base for 
political and economic change. In the economic sphere, Scotsman Adam Smith 
(1723-1790), in his 1776 book Wealth o f Nations, built upon Locke’s ideas 
about the primacy of private property to advocate capitalism as an economic 
system. In England, Locke himself was involved in the Glorious Revolution of 
1688, which limited the power of the monarchy, and his ideas in part served as 
justification for the change in English government from an absolute monarchy 
to a constitutional one. In the American Revolution (1776-1783), the French 
Revolution (1789-1799), and the Latin American revolutions (1800-1825), the 
old governments were condemned because aristocratic privilege flew in the 
face of ideas about equality and the right of people to control their governments 
was invoked.

Between 1688 and 1825, the bourgeois class seized power, either peace
fully or violently, in England, France, and most parts of the Americas. The 
bourgeoisie did not fight these revolutions by itself. Like the middle class, the 
rural peasants and the urban poor were also unhappy with the old structure of 
European society. Despite the grumbling of the middle class, the peasants paid 
most of the taxes. Years of overpopulation and consequent overfarming had 
resulted in declining productivity and widespread rural poverty. Peasants had 
always resented the aristocracy, and, in the Middle Ages, had frequently re
belled. Still, in much of Europe, peasants also disliked the bourgeoisie. As they 
grew poorer, peasants sometimes borrowed money from the rentiers to see 
them through bad harvests and droughts. Rarely could a peasant repay such a 
loan, and farms were frequently forfeited to rentiers as collateral, forcing the 
peasant to become a tenant of either the rentier or the local aristocrat. Only in 
America, then, did the farmers, who were independent yeomen with compara
tively larger farms and fewer debts, really join the bourgeoisie in revolution 
against the old order, and even here farmers often mistrusted the urban middle 
class. More important to the bourgeoisie as allies against the aristocracy were 
the urban poor. Threatened by spiraling food prices set artificially high by 
government monopolies and high agricultural taxes, the urban poor played an 
active role in revolution, especially in Paris, Boston, and Caracas. Neverthe
less, with the exception of the United States, where many revolutionary lead
ers were wealthy farmers, leadership of the eighteenth-century revolts against 
the aristocracy was largely in the hands of the urban bourgeoisie.

Let’s look briefly at this course of revolution.
England had been in political turmoil since 1603, when its great queen, 

Elizabeth I (reigned 1558-1603), died. Elizabeth was succeeded by a new dy
nasty, the Stuarts, who angered many Englishmen by their sympathy to Cathol
icism (most of the English were Protestants), their alien nationality (the Stuarts 
were Scots), and by their advocacy of the idea that kings had a divine and 
absolute right to rule as they saw fit (the Divine Right of Kings). The attempt of



the Stuart kings to further their power led them into conflict with the London 
bourgeoisie, who resented royal meddling in their city’s internal affairs. An 
association of Londoners, their economic allies, and Protestant Puritans led by 
Oliver Cromwell (1599-1658) challenged Stuart authority, and, in the English 
Civil War (1641-1649), deposed the Stuart king. Although the Stuarts regained 
the English throne in 1660, antagonisms engendered by the Civil War lingered 
and smouldered. When a Stuart king attempted forcibly to reconvert England 
to Catholicism in the 1680s, the army removed him in a bloodless coup known 
as the Glorious Revolution (1688). Parliament installed the more tractable Mary 
II (reigned 1689-1694) and her husband William III (reigned 1689-1702) as 
queen and king, provided they agreed to proclaim the English Bill of Rights 
(1689), which abolished the absolute monarchy and replaced it with a constitu
tional monarchy in which Parliament’s House of Commons, controlled by the 
bourgeoisie, held real power. Before anywhere else, the bourgeoisie came to 
power in England.

The English Civil War and the Glorious Revolution had repercussions in 
England’s American colonies, where the colonial bourgeoisie of merchants, 
well-to-do farmers, and land investors were to enjoy considerable local author
ity. This autonomy was eroded in the 1760s when, following a costly war with 
France, the home government enacted a series of taxes in the colonies, over the 
objections of the colonial assemblies. Disputes over taxes, civil liberties, trade 
restrictions, and the closing of the frontier by imperial edict sparked the Ameri
can Revolution, which resulted in American independence. Unlike middle- 
class revolutions elsewhere, the American Revolution was waged by an alli
ance of urban bourgeoisie, wealthy planters, and yeoman farmers. A significant 
portion of the revolutionary leadership, like Thomas Jefferson and George 
Washington (1732-1799), were rural, but others, like merchant John Hancock 
(1737-1793) and lawyer John Adams (1735-1826), both of Boston, publisher 
Benjamin Franklin (1705-1790) of Philadelphia, and bon vivant Alexander 
Hamilton (1755-1804) of New York were urban bourgeoisie. Conflict between 
these two groups for power in the new republic continued well into the next 
century.

The middle class allied with the urban poor of Paris in 1789 to depose the 
French king, a movement set off by high bread prices in Paris, but also the 
result of decades of antagonism between the French bourgeoisie and the aris
tocracy. In France, the middle class lost control of the revolution in the 1790s 
to the Paris mob, which executed many bourgeois leaders. The bourgeoisie 
retaliated by supporting Napoleon (1769-1821), who seized power as dictator 
(later as emperor) in 1799. Napoleon enacted the kinds of economic reforms 
advocated by the bourgeoisie, although he squelched civil liberties.

Following his 1799 coup, Napoleon launched a campaign to conquer most 
of Europe and incorporate it into a French Empire. His annexation of Spain in 
1800 weakened Spanish power in America, where bourgeoisie-led revolts broke 
out in the Spanish colonial cities of Mexico City, Caracas, and Buenos Aires. 
By 1825, republican governments under the control of the middle class had 
been established in most of Latin America. Further, Napoleon installed puppet

420 CULTURAL CONNECTION VIII /  THE REVOLT OF THE M IDDLE CLASS



Cultural Connection VIII / The Revolt o f the Middle Class 421

governments, republican in form if not in fact, in conquered Germany, Italy, 
and Poland. Many people in those places hoped that this might lead to the 
establishment of true republics or constitutional monarchies—hopes that were 
never completely abandoned.

Between 1688 and 1825, therefore, middle-class revolutions were staged 
against the old aristocratic order throughout Europe and America. In England 
and the United States, the newly emerged bourgeoisie assumed political 
power. Even where revolts ultimately failed, as in France, the middle class was 
accorded a greater voice in affairs of state and finance. Throughout the West, 
by 1825 the bourgeoisie was well on its way toward supplanting the old medie
val aristocracy as the new ruling class.

Napoleon’s defeat in 1815 by the English/Prussian/Russian/Austrian alli
ance ended the French Empire and restored aristocratic rule in France, Ger
many, Italy, and Poland. These new aristocratic governments were shaky, 
however, and, in the nineteenth century, would face opposition from bourgeois 
republicans, nationalists, and socialists. Society in nineteenth-century Europe 
would face even more such political ferment; it would also encounter the Indus
trial Revolution. That, however, is a tale for Cultural Connection IX.



Chapter

THE EIGHTEENTH CENTURY 
AND THE EXPLOITATION 
OF THE CALCULUS

1 2 -1  Introduction and Apology
The arithmetic, beginning algebra, geometry, and trigonometry ordinarily 
taught in the schools today, along with college algebra, analytic geometry, and 
beginning calculus usually taught during the freshman or sophomore year in 
college, constitute what is generally called “elementary mathematics.” At this 
point of our book, then, we have virtually concluded the historic treatment of 
elementary mathematics in the form that we have it today. It is interesting to 
note, without carrying the generalization too far, that the sequence of mathe
matics courses taught in the classroom closely follows the evolutionary devel
opment of the subject.

It is rightfully claimed that one cannot properly study the history of a 
subject without a knowledge of the subject itself. It follows that for one who 
would study, with genuine understanding, what has happened in mathematics 
during the eighteenth, nineteenth, and twentieth centuries, an extensive study 
of advanced courses beyond the calculus is requisite. When the student pos
sesses such a background, the excellent books, The Development o f Mathe
matics by E. T. Bell, A History o f Mathematics by C. B. Boyer, and Mathe
matical Thought from Ancient to Modern Times by Morris Kline, are 
recommended. Nevertheless, it seems advisable to add the present chapter, 
and the following three concluding chapters, in an attempt to provide some of 
the highlights of the mathematics of the eighteenth, nineteenth, and twentieth 
centuries that are within the purview of our intended reader, and that briefly 
show the more recent trend of mathematical development from the elementary 
basis. The field of elementary mathematics will then appear in its proper set
ting, as a prelude to the more remarkable achievements of modern times.

One cannot point out too strongly the increasing sketchiness and incom
pleteness of what follows. Moritz Cantor’s great history of mathematics, which 
terminates with the end of the eighteenth century, consists of four large vol
umes averaging almost a thousand pages each. It has been conservatively 
estimated that if the history of mathematics of the nineteenth century should be 
written with the same detail it would require at least fourteen more such vol
umes! No one has yet hazarded an estimate of the number of such volumes 
needed for a similar treatment of the history of the mathematics of the twenti
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eth century, which is by far the most active era of all. And, as indicated above, 
little of this additional material could be properly appreciated by the ordinary 
undergraduate; indeed, an understanding of much of the material would require 
the deep background of a mathematical expert.

The almost explosive growth of mathematical research in modern times is 
further illustrated by the fact that prior to 1700 there were only, by one count, 
seventeen periodicals containing mathematical articles. In the eighteenth cen
tury, there were 210 such periodicals, and in the nineteenth century, 950 of 
them. The number has increased enormously during the twentieth century, 
reaching, by one count, some 2600. Furthermore, it was not until the nine
teenth century that journals appeared devoted either primarily or exclusively to 
mathematics. It has been remarked, probably quite properly, that the articles in 
these research journals constitute the true history of modern mathematics, and 
it must be confessed that very few of the present-day articles can be read by 
anyone but the specialist.

As still one further piece of statistics, pointing up the intense mathematical 
activity of the present century, one might mention that it has been estimated 
that more than fifty percent of all known mathematics was created during the 
past fifty years, and that fifty percent of all mathematicians who have ever lived 
are alive today.

The calculus, aided by analytic geometry, was the greatest mathematical 
tool discovered in the seventeenth century. It proved to be remarkably power
ful and capable of attacking problems quite unassailable in earlier days. It was 
the wide and astonishing applicability of the discipline that attracted the bulk of 
the mathematical researchers of the day, with the result that papers were 
turned out in great profusion with little concern for the very unsatisfactory 
foundations of the subject. The processes employed were justified largely on 
the ground that they worked, and it was not until the eighteenth century had 
almost elapsed, after a number of absurdities and contradictions had crept into 
mathematics, that mathematicians felt it was essential that the basis of their 
work be logically examined and rigorously established. The painstaking effort 
to place analysis on a logically rigorous foundation was a natural reaction to the 
pell-mell employment of intuition and formalism of the previous century. The 
task proved to be a difficult one, its various ramifications occupying the better 
part of the next hundred years. A result of this careful work in the foundations 
of analysis was that it led to equally careful work in the foundations of all 
branches of mathematics and to the refinement of many important concepts. 
Thus, the function idea itself had to be clarified, and such notions as limit, 
continuity, differentiability, and integrability had to be very carefully and 
clearly defined. This task of refining the basic concepts of mathematics led, in 
turn, to intricate generalizations. Such concepts as space, dimension, conver
gence, and integrability, to name only a few, underwent remarkable generaliza
tion and abstraction. A good part of the mathematics of the twentieth century 
has been devoted to this sort of thing, until generalization and abstraction have 
now become striking features of present-day mathematics. But some of these 
developments brought about, in turn, a fresh batch of paradoxical situations.
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The generalization to transfinite numbers, for example, and the abstract study 
of sets have widened and deepened many branches of mathematics; at the same 
time, however, they have revealed some very disturbing paradoxes that appear 
to lie in the innermost depths of mathematics. Here is where we seem to be 
today, and it may be that the final years of the twentieth century will witness 
the resolution of some of these critical problems.

In summarizing the last paragraph, we may say, with a fair element of 
truth, that the eighteenth century was largely spent in exploiting the new and 
powerful methods of the calculus, that the nineteenth century was largely 
devoted to the effort of establishing on a firm, logical foundation the enormous 
but shaky superstructure erected in the preceding century, that the twentieth 
century has, in large part, been spent in generalizing as far as possible the gains 
already made, and that at present many mathematicians are becoming con
cerned with even deeper foundational problems. This general picture is compli
cated by the various sociological factors that affect the development of any 
science. Such matters as the growth of life insurance, the construction of the 
large navies of the eighteenth century, the economic and technological prob
lems brought about in the nineteenth century by the industrialization of western 
Europe and America, the twentieth-century world-wide war atmosphere, the 
advance of the remarkable modern electronic computers, and today’s concen
trated effort to conquer outer space have led to many practical developments in 
the field of mathematics. A division of mathematics into “pure” and “applied” 
has come about, research in the former being carried on to a great extent by 
those specialists who have become interested in the subject for its own sake, 
and in the latter, by those who remain attached to immediately practical uses.

We now, in the remainder of the book, fill in some of the details of the 
general picture just sketched.

1 2 -2  The Bernoulli Family
The principal contributions to mathematics in the eighteenth century were 
made by members of the Bernoulli family, Abraham De Moivre, Brook Taylor, 
Colin Maclaurin, Leonhard Euler, Alexis Claude Clairaut, Jean-le-Rond 
d’Alembert, Johann Heinrich Lambert, Joseph Louis Lagrange, Pierre-Simon 
Laplace, Adrien-Marie Legendre, Gaspard Monge, and Lazare Carnot. It will 
be observed that the bulk of the mathematics of these men found its genesis and 
its goal in the applications of the calculus to the fields of mechanics and astron
omy. It was not until well into the nineteenth century that mathematical re
search generally emancipated itself from this viewpoint. This section describes 
the remarkable Bernoulli family.

One of the most distinguished families in the history of mathematics and 
science is the Bernoulli family of Switzerland, which, from the late seventeenth 
century on, produced an unusual number of capable mathematicians and scien
tists. The family record starts with the two brothers, Jakob Bernoulli (1654— 
1705) and Johann Bernoulli (1667-1748), some of whose mathematical accom
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plishments have already been mentioned in this book. These two men gave up 
earlier vocational interests and became mathematicians when Leibniz’ papers 
began to appear in the Acta eruditorum. They were among the first mathemati
cians to realize the surprising power of the calculus and to apply the tool to a 
great diversity of problems. From 1687 until his death, Jakob occupied the 
mathematics chair at Basel University. Johann, in 1697, became a professor at 
Groningen University, and then, on Jakob’s death in 1705, succeeded his 
brother in the chair at Basel University, to remain there for the rest of his life. 
The two brothers, often bitter rivals, maintained an almost constant exchange 
of ideas with Leibniz and with each other.

Among Jakob Bernoulli’s contributions to mathematics are the early use of 
polar coordinates (see Section 14-5), the derivation in both rectangular and 
polar coordinates of the formula for the radius of curvature of a plane curve, 
the study of the catenary curve with extensions to strings of variable density 
and strings under the action of a central force, the study of a number of other 
higher plane curves, the discovery of the so-called isochrone—or curve along 
which a body will fall with uniform vertical velocity (it turned out to be a 
semicubical parabola with a vertical cusptangent), the determination of the 
form taken by an elastic rod fixed at one end and carrying a weight at the other, 
the form assumed by a flexible rectangular sheet having two opposite edges 
held horizontally fixed at the same height and loaded with a heavy liquid, and 
the shape of a rectangular sail filled with wind. He also proposed and discussed 
the problem of isoperimetric figures (planar closed paths of given species and 
fixed perimeter that include a maximum area), and was thus one of the first 
mathematicians to work in the calculus of variations. He was also (as was 
pointed out in Section 10-3) one of the early students of mathematical probabil-

JAKOB BERNOULLI
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ity; his book in this field, the Ars conjectandi, was posthumously published in 
1713. Several things in mathematics now bear Jakob Bernoulli’s name. Among 
these are the Bernoulli distribution and Bernoulli theorem of statistics and 
probability theory; the Bernoulli equation, met by every student of a first 
course in differential equations; the Bernoulli numbers and Bernoulli polynomi
als of number-theory interest; and the lemniscate o f Bernoulli, encountered in 
any first course in the calculus. In Jakob Bernoulli’s solution to the problem of 
the isochrone curve, which was published in the Acta eruditorum in 1690, we 
meet for the first time the word integral in a calculus sense. Leibniz had called 
the integral calculus calculus summatorius; in 1696, Leibniz and Johann Ber
noulli agreed to call it calculus integralis. Jakob Bernoulli was struck by the 
way the equiangular spiral reproduces itself under a variety of transformations 
and asked, in imitation of Archimedes, that such a spiral be engraved on his 
tombstone, along with the inscription “Eadem mutata resurgo” (“Though 
changed, I arise again the same.”).

Johann Bernoulli was an even more prolific contributor to mathematics 
than was his brother Jakob. Though he was a jealous and cantankerous man, he 
was one of the most successful teachers of his time. He greatly enriched the 
calculus and was very influential in making the power of the new subject 
appreciated in continental Europe. As we have seen (in Section 11-10), it was 
his material that the Marquis de l’Hospital (1661-1704), under a curious finan
cial agreement with Johann, assembled in 1696 into the first calculus textbook. 
In this way, the familiar method of evaluating the indeterminate form 0/0 be
came incorrectly known, in later calculus texts, as rHospital’s rule. Johann 
Bernoulli wrote on a wide variety of topics, including optical phenomena con
nected with reflection and refraction, the determination of the orthogonal tra
jectories of families of curves, rectification of curves and quadrature of areas 
by series, analytical trigonometry, the exponential calculus, and other subjects. 
One of his more noted pieces of work is his contribution to the problem of the 
brachistochrone— the determination of the curve of quickest descent of a 
weighted particle moving between two given points in a gravitational field; the 
curve turned out to be an arc of an appropriate cycloid curve. This problem was 
also discussed by Jakob Bernoulli. The cycloid curve is also the solution to the 
problem of the tautochrone—the determination of the curve along which a 
weighted particle will arrive at a given point of the curve in the same time 
interval no matter from what initial point of the curve it starts. This latter 
problem, which was more generally discussed by Johann Bernoulli, Euler, and 
Lagrange, had earlier been solved by Huygens (1673) and Newton (1687), and 
applied by Huygens in the construction of pendulum clocks [see Problem Study 
10.7(c)].

Johann Bernoulli had three sons, Nicolaus (1695-1726), Daniel (1700- 
1782), and Johann II (1710-1790), all of whom won renown as eighteenth- 
century mathematicians and scientists. Nicolaus, who showed great promise in 
the field of mathematics, was called to the St. Petersburg Academy, where he 
unfortunately died by drowning, only eight months later. He wrote on curves, 
differential equations, and probability. A problem in probability, which he pro-
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posed from St. Petersburg, later became known as the Petersburg paradox. The 
problem is: If A receives a penny when a head appears on the first toss of a 
coin, two pennies if a head does not appear until the second toss, four pennies if 
a head does not appear until the third toss, and so on, what is A’s expectation? 
Mathematical theory shows that A’s expectation is infinite, which seems a 
paradoxical result. The problem was investigated by Nicolaus’ brother Daniel, 
who succeeded Nicolaus at St. Petersburg. Daniel returned to Basel seven 
years later. He was the most famous of Johann’s three sons, and devoted most 
of his energies to probability, astronomy, physics, and hydrodynamics. In 
probability he devised the concept of moral expectation, and in his Hydro- 
dynamica, of 1738, appears the principle of hydrodynamics that bears his name 
in all present-day elementary physics texts. He wrote on tides, established the 
kinetic theory of gases, studied the vibrating string, and pioneered in partial 
differential equations. Johann II, the youngest of the three sons, studied law 
but spent his later years as a professor of mathematics at the University of 
Basel. He was particularly interested in the mathematical theory of heat and 
light.

There was another eighteenth-century Nicolaus Bernoulli (1687-1759), a 
nephew of Jakob and Johann, who achieved some fame in mathematics. This 
Nicolaus held, for a time, the chair of mathematics at Padua once filled by 
Galileo. He wrote extensively on geometry and differential equations. Later in 
life, he taught logic and law.

Johann Bernoulli II had a son Johann III (1744-1807) who, like his father, 
studied law but then turned to mathematics. When barely nineteen years old, 
he was called as a professor of mathematics to the Berlin Academy. He wrote 
on astronomy, the doctrine of chance, recurring decimals, and indeterminate 
equations.
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Nicolaus Bernoulli

Jakob (1) Nicolaus Johann (2)

Nicolaus (3) Nicolaus (4) Daniel (5) Johann II (6)

Johann III (7) Daniel II Jakob II (8)

Christoph

Johann Gustav
FIGURE 105

Lesser Bernoulli descendants are Daniel II (1751-1834) and Jakob II 
(1759-1789), two other sons of Johann II, Christoph (1782-1863), a son of 
Daniel II, and Johann Gustav (1811-1863), a son of Christoph.

Figure 105 shows the Bernoulli genealogical table.

1 2 -3  De Moivre and Probability
In the eighteenth century, the pioneering ideas of Fermat, Pascal, and Huygens 
in probability theory were considerably elaborated, and the theory made rapid 
advances, with the result that the Ars conjectandi of Jakob Bernoulli was 
followed by further treatments of the subject. Important among those contrib
uting to probability theory was Abraham De Moivre (1667-1754), a French 
Hugenot who moved to the more congenial political climate of London after the 
revocation of the Edict of Nantes in 1685. He earned his living in England by 
private tutoring, and he became an intimate friend of Isaac Newton.

De Moivre is particularly noted for his work Annuities upon Lives, which 
played an important role in the history of actuarial mathematics, his Doctrine of 
Chances, which contained much new material on the theory of probability, and 
his Miscellanea analytica, which contributed to recurrent series, probability, 
and analytic trigonometry. De Moivre is credited with the first treatment of the 
probability integral,

and of (essentially) the normal frequency curve

y = ce c and h constants,
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so important in the study of statistics. The misnamed Stirling’s formula, which 
says that for very large n

n\ ~  (27m )V2e nnn,

is due to De Moivre and is highly useful for approximating factorials of large 
numbers. The familiar formula

(cos x + i sin x)n = cos nx + i sin nx, i = V -T ,

known by De Moivre’s name and found in every theory of equations textbook, 
was familiar to De Moivre for the case where n is a positive integer. This 
formula has become the keystone of analytic trigonometry.

An interesting fable is often told of De Moivre’s death. According to the 
story, De Moivre noticed that each day he required a quarter of an hour more 
sleep than on the preceding day. When this arithmetic progression reached 24 
hours, De Moivre passed away.

The insurance business made great strides in the eighteenth century, and a 
number of mathematicians were attracted to the underlying probability theory. 
As a consequence, interest developed in efforts to apply probability theory to 
new fields. Along these lines, Georges Louis Leclerc, Comte de Buffon (1707- 
1788), who was director of the Paris Jardin du Roi and noted for his delightful 
thirty-six volume work on natural history, gave in 1777 the first example of a 
geometrical probability, his famous “needle problem” for experimentally ap
proximating the value of tt (see Section 4-8 and Problem Study 12.13). Efforts 
also were made to apply probability theory to situations of human judgment, 
such as computing the chance a tribunal will arrive at a true verdict if to each of 
the jurymen a number can be assigned that measures the chance he will speak 
or understand the truth. This probability des jugements, with its overtones of 
the Enlightenment philosophy, was prominent in the work of Antoine-Nicolas 
Caritat, Marquis de Condorcet (1743-1794), who, though an advocate of the 
French Revolution, was one of the unfortunate victims among the intelligentsia 
of the excesses following the Revolution. One of Condorcet’s conclusions was 
that capital punishment should be abolished because, however great the proba
bility of the correctness of a single decision, there will be a large probability 
that in the course of many decisions, some innocent person will be wrongfully 
condemned.

12-4 Taylor and Maclaurin
Every student of the calculus is familiar with the name of the Englishman 
Brook Taylor (1685-1731) and the name of the Scotsman Colin Maclaurin 
(1698-1746), through the very useful Taylor’s expansion and Maclaurin’s ex
pansion of a function. It was in 1715 that Taylor published (with no consider
ation of convergence) his well-known expansion theorem,
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f(a  + h) = f(a) + hf\a) + | y/"(«) + . . . .

In 1717, Taylor applied his series to the solution of numerical equations as 
follows: Let a be an approximation to a root off(x )  = 0; set f(a) = k , f ( a )  = k', 
f"(a) = k", and jc = a + h\ expand 0 = f(a  + /*) by the series; discard all powers 
of h above the second; substitute the values of /c, k', k", and then solve for /i. By 
successive applications of this process, closer and closer approximations can 
be obtained. Some work done by Taylor in the theory of perspective has found 
a modern application in the mathematical treatment of photogrammetry, the 
science of surveying by means of photographs taken from an airplane.

Recognition of the full importance of Taylor’s series awaited until 1755, 
when Euler applied them in his differential calculus, and still later, when La
grange used the series with a remainder as the foundation of his theory of 
functions.

Taylor was educated at St. John’s College of Cambridge University and 
early showed great promise in mathematics. He was admitted to the Royal 
Society and became its secretary, only to resign at the age of thirty-four so that 
he might devote his time to writing.

Maclaurin was one of the ablest mathematicians of the eighteenth century. 
The so-called Maclaurin expansion is nothing but the case where a = 0 in the 
Taylor expansion above and was actually explicitly given by Taylor and also by 
James Stirling (1692-1770) some years before Maclaurin used it, with acknowl
edgment, in his Treatise o f  Fluxions (two volumes, 1742). Maclaurin did very 
notable work in geometry, particularly in the study of higher plane curves, and 
he showed great power in applying classical geometry to physical problems.

BROOK TAYLOR
(David Smith Collection)
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Among his many papers in applied mathematics is a prizewinning memoir on 
the mathematical theory of tides. In his Treatise o f Fluxions appears his investi
gation of the mutual attraction of two ellipsoids of revolution.

Maclaurin probably knew as early as 1729 the rule for solving systems of 
simultaneous linear equations by determinants that today is called Cramer's 
rule. The rule first appeared in print in 1748 in Maclaurin’s posthumous Trea
tise o f Algebra. The Swiss mathematician Gabriel Cramer (1704-1752) inde
pendently published the rule in 1750 in his Introduction a Vanalyse des lignes 
courbes algebriques, and it is probably his superior notation that led the general 
mathematical world to learn the rule from him rather than from Maclaurin.

Maclaurin was a mathematical prodigy. He matriculated at the University 
of Glasgow at the age of eleven. At fifteen, he took his master’s degree and 
gave a remarkable public defense of his thesis on the power of gravity. At 
nineteen, he was elected to the chair of mathematics at the Marischal College in 
Aberdeen; at twenty-one, he published his first important work, Geometria 
organica. At twenty-seven, he became deputy, or assistant, to the professor of 
mathematics at the University of Edinburgh. There was some difficulty in 
obtaining a salary to cover his assistantship, and Newton offered to bear the 
cost personally so that the university could secure the services of so outstand
ing a young man. In time, Maclaurin succeeded the man he assisted. His 
treatise on fluxions appeared when he was forty-four, only four years before he 
died; this was the first logical and systematic exposition of Newton’s method of 
fluxions and was written by Maclaurin as a reply to Bishop Berkeley’s attack 
on the principles of the calculus (see Problem Study 14.24).

Having considered Taylor and Maclaurin, two men whose names are met 
by students of beginning calculus, we might mention here a third man whose 
name is similarly encountered. This third, and somewhat earlier, man is Michel

COLIN MACLAURIN
(David Smith Collection)



Rolle, who was born at Ambert, Auvergne, in 1652 and died in Paris in 1719. He 
was connected with the French war department and wrote on both geometry 
and algebra. He is known to all calculus students for the theorem of beginning 
calculus that bears his name and says that f '(x ) = 0 has at least one real root 
lying between two successive real roots off (x ) = 0. It is from this theorem that 
textbooks usually derive the highly useful “theorem of mean value” of the 
calculus course. Few calculus students, however, know that Rolle was one of 
the most vocal critics of the calculus and that he strove to demonstrate that the 
subject gave erroneous results and was based upon unsound reasoning. He 
once characterized calculus as “a collection of ingenious fallacies” . So vigor
ous were his quarrels with the calculus that on several occasions the Academie 
des Sciences felt obliged to intervene. Later in life, he moderated his attitude 
and came to see calculus as being useful.
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12-5 Euler
The name Leonhard Euler has already been referred to many times in this 
book. Euler was born in Basel, Switzerland, in 1707. After an essay into the 
field of theology, Euler found his true vocation in mathematics. Here his father, 
a Calvinist pastor with an interest in mathematics, helped his son by teaching 
him the basics of the subject. The father had studied mathematics under Jakob 
Bernoulli, and it was arranged for his son to study under Johann Bernoulli.

In 1727, when Euler was only twenty years old, his two friends Daniel and 
Nicolaus Bernoulli, who were connected with the new St. Petersburg Academy 
formed by Peter the Great, secured a position for Euler at the Russian acad
emy. Daniel left Russia soon after to occupy the chair of mathematics at Basel, 
and Euler became the Academy’s chief mathematician.

LEONHARD EULER
(Library of Congress)
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After gracing the St. Petersburg Academy for fourteen years, Euler ac
cepted an invitation from Frederick the Great to go to Berlin to head the 
Prussian Academy. Euler remained at the Prussian Academy for twenty-five 
years, but his unsophisticated character did not harmonize with the more scin
tillating type admired by Frederick, and he suffered many years of petty un
pleasantnesses. The Russians had held Euler in high respect, and even after he 
left for Prussia continued to advance him some salary.

The warmth of the Russian feeling toward him, as contrasted with the 
coolness of the court of Frederick the Great, led Euler in 1766 to accept an 
invitation from Catherine the Great to return to the St. Petersburg Academy. 
There he stayed for the remaining seventeen years of his life. He died very 
suddenly in 1783 when he was seventy-six years old. It is interesting that 
throughout his varied career, Euler never held a teaching post.

Euler was a voluminous writer on mathematics, indeed, far and away the 
most prolific writer in the history of the subject; his name is attached to every 
branch of the study. It is of interest that his amazing productivity was not in the 
least impaired when, shortly after his return to the St. Petersburg Academy, he 
had the misfortune to become totally blind. He had already, since 1735, been 
blind in his right eye, accounting for the poses assumed in his portraits. Blind
ness would seem to be an insurmountable barrier to a mathematician, but, like 
Beethoven’s loss of hearing, Euler’s loss of sight in no way impaired his amaz
ing productivity. Aided by a phenomenal memory and an ability to concentrate 
even amidst loud disturbances, he continued his creative work by dictating to a 
secretary and by writing formulas in chalk on a large slate for his secretary to 
copy down. Euler published 530 books and papers during his lifetime, and at his 
death left enough manuscripts to enrich the Proceedings o f the St. Petersburg 
Academy for another forty-seven years. A monumental edition of Euler’s com
plete works, containing 886 books and papers, was initiated in 1909 by the 
Swiss Society of Natural Science and is planned to run to over one hundred 
large quarto volumes.

Euler’s contributions to mathematics are too numerous to expound com
pletely here, but we may note some of his contributions to the elementary field. 
First of all, we owe to Euler the conventionalization of the following notations:

/ ( jc) for functional notation,
e for the base of natural logarithms, 

a, b, c for the sides of triangle ABC,
s for the semiperimeter of triangle ABC, 
r for the inradius of triangle ABC,

R for the circumradius of triangle ABC,
2  for the summation sign, 
i for the imaginary unit, V —T.

To Euler is also due the very remarkable formula

eu = cos x + i sin x ,
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which, for x = tt, becomes

ei7r + 1 = 0 ,

a relation connecting five of the most important numbers in mathematics. By 
purely formal processes, Euler arrived at an enormous number of curious 
relations, like

il = 6>~W2,

and he succeeded in showing that any nonzero real number r has an infinite 
number of logarithms (for a given base), all imaginary if r <  0 and all imaginary 
but one if r >  0. In college geometry, we find the Euler line of a triangle (see 
Problem Study 14.1); in college courses in the theory of equations, the student 
sometimes encounters Euler’s method for solving quartic equations; and in 
even the most elementary course in number theory, one meets Euler’s theorem 
and the Euler </>-function (see Problem Study 10.5). The beta and gamma func
tions of advanced calculus are credited to Euler, although they were adum
brated by Wallis. Euler employed the idea of an integrating factor in the solu
tion of differential equations, gave us our systematic method of solving linear 
differential equations with constant coefficients, and made the distinction be
tween linear homogeneous and nonhomogeneous differential equations. The 
differential equation

xny (n) +  a\Xn~xy {n~x) +  . . . +  any (0) = / ( x ) ,

where exponents in parentheses indicate orders of differentiation, is today 
known as an Euler differential equation. Euler showed that the substitution x = 
el reduces the equation to a linear differential equation with constant coeffi
cients. The theorem, “Iff(x ,y)  is homogeneous of order n, then xfx + yfy = nf,” 
is today known as Euler’s theorem on homogeneous functions. Euler was one of 
the first to develop a theory of continued fractions. He contributed notably to 
the fields of differential geometry, the calculus of finite differences, and the 
calculus of variations, and he greatly enriched number theory. In one of his 
smaller papers occurs the relation

v -  e + f = 2

connecting the number of vertices u, edges e , and fa ce s /o f  any simple closed 
polyhedron. In another paper, he investigates orbiform curves, or curves that, 
like the circle, are convex ovals of constant width. Several of his papers are 
devoted to mathematical recreations, such as unicursal and multicursal graphs 
(inspired by the seven bridges of Konigsberg), the re-entrant knight’s path on a 
chess board, and Graeco-Latin squares. Of course, his chief field of publication 
was in areas of applied mathematics, particularly lunar theory, tides, the three- 
body problem of celestial mechanics, the attraction of ellipsoids, hydraulics,
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ship building, artillery, and a theory of music. The device of Euler diagrams, 
used to test the validity of deductive arguments, was given by Euler in one of 
his letters to Princess Phillipine von Schwedt, niece of Frederick the Great. 
During the Seven Years’ War (1756-1763), the entire Berlin court sojourned in 
Magdeburg, and Euler tutored the Princess by letters written from his home in 
Berlin.

Euler was a masterful writer of textbooks, in which he presented his mate
rial with great clarity, detail, and completeness. Among these texts are his 
prestigious two-volume Introductio in analysin infinitorum of 1748, his exceed
ingly rich Institutiones calculi differentialis of 1755, and the allied three-volume 
Institutiones calculi integratis of 1768-74. These books, along with others on 
mechanics and algebra, served more than any other writings as models in style, 
scope, and notation for many of the college textbooks of today. Euler’s texts 
enjoyed a marked and a long popularity and, to this day, make very interesting 
and profitable reading. One cannot but be surprised at Euler’s enormous fertil
ity of ideas, and it is no wonder that so many of the great mathematicians 
coming after him have admitted their indebtedness to him.

It is perhaps only fair to point out that some of Euler’s works represent 
outstanding examples of eighteenth-century formalism, or the manipulation, 
without proper attention to matters of convergence and mathematical exis
tence, of formulas involving infinite processes. He was incautious in his use of 
infinite series, often applying to them laws valid only for finite sums. Regarding 
power series as polynomials of infinite degree, he heedlessly extended to them 
well-known properties of finite polynomials. Frequently, by such careless ap
proaches, he luckily obtained truly profound results (see Problem Study 12.6 
for an example).

Euler’s knowledge and interest were by no means confined to just mathe
matics and physics. He was an excellent scholar, with extensive knowledge of 
astronomy, medicine, botany, chemistry, theology, and oriental languages. He 
attentively read the eminent Roman writers, was well informed on both the 
civil and the literary history of all ages and nations, and showed a wide ac
quaintance with languages and with many branches of literature. Undoubtedly, 
he was greatly aided in these diverse fields by his uncommon memory.

Many glowing tributes have been paid to Euler, such as the following two 
made by the physicist and astronomer Francois Arago (1786-1853): “Euler 
could have been called, almost without metaphor, and certainly without hyper
bole, analysis incarnate.” “Euler calculated without any apparent effort, just 
as men breathe and as eagles sustain themselves in the air.”

Euler had thirteen children. His first son, Johann Albrecht Euler (1734— 
1800), attained some fame in the field of physics.

12-6 Clairaut, d'Alembert, and Lambert
Alexis Claude Clairaut was born in Paris in 1713 and died there in 1765. He was 
a youthful mathematical prodigy, composing in his eleventh year a treatise on 
curves of the third order. This early paper, and a singularly elegant subsequent
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one on the differential geometry of twisted curves in space, won him a seat in 
the French Academy of Sciences at the illegal age of eighteen. In 1736, he 
accompanied Pierre Louis Moreau de Maupertuis (1698-1759) on an expedition 
to Lapland to measure the length of a degree of one of the earth’s meridians. 
The expedition was undertaken to settle a dispute as to the shape of the earth. 
Newton and Huygens had concluded, from mathematical theory, that the earth 
is flattened at the poles. But about 1712, the Italian astronomer and mathemati
cian Giovanni Domenico Cassini (1625-1712), and his French-born son Jacques 
Cassini (1677-1756), measured an arc of longitude extending from Dunkirk to 
Perpignan, and obtained a result that seemed to support the Cartesian conten
tion that the earth is elongated at the poles. The measurement made in Lapland 
unquestionably confirmed the Newton-Huygens belief and earned Maupertuis 
the title of “earth flattener.” In 1743, after his return to France, Clairaut 
published his definitive work, Theorie de la figure de la Terre. In 1752, he won a 
prize from the St. Petersburg Academy for his paper Theorie de la Luney a 
mathematical study of lunar motion that cleared up some unanswered ques
tions. He applied the process of differentiation to the differential equation

y = px + f ( p ) ,  =  ĵr,

now known in elementary textbooks on differential equations as Clairaut’s 
equation, and he found the singular solution, but this process had been used 
earlier by Brook Taylor. In 1759, he calculated, with an error of about a month, 
the 1759 return of Halley’s comet.
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Clairaut had a brother, three years his junior and known in the history of 
mathematics only as “ le cadet Clairaut” (1716-1732), who tragically died of 
smallpox when only sixteen, but who at fourteen read a paper on geometry 
before the French Academy and at fifteen published a work on geometry. The 
father of the Clairaut children, Jean Baptiste Clairaut (died soon after 1765), 
was a teacher of mathematics, a correspondent of the Berlin Academy, and a 
writer on geometry; he had twenty children of whom only one survived him.

This is perhaps the place to mention another differential equation that is 
met today by any college student of a first course in differential equations and, 
at the same time, another celebrated mathematical family. The equation is the 
so-called Riccati equation,

y' = p(x)y2 + q(x)y + r(x),

named after Giacomo Riccati (1676-1754), a man of independent wealth who 
studied at Padua when Nicolaus Bernoulli (the nephew of Jakob and Johann) 
was teaching there. In addition to an extensive study of the above equation, 
Giacomo Riccati wrote on physics, mensuration, and philosophy and did much 
to make Newton’s work known in Italy. Special cases of the Riccati equation 
had been studied by Jakob Bernoulli and others, and it was Euler who first 
pointed out that if a particular solution v = f(x) of the equation is known, then 
the substitution y = v + l/z  converts the equation into a linear differential 
equation in z. Giacomo Riccati’s second son, Vincenzo Riccati (1707-1775), 
became a Jesuit professor of mathematics and worked on differential equa
tions, infinite series, quadratures, and hyperbolic functions. Giacomo’s third 
son, Giordano Riccati (1709-1790), wrote on Newton’s work, geometry, cubic 
equations, and physical problems. The fifth son, Francesco Riccati (1718— 
1791), wrote on applications of geometry to architecture.

Jean-le-Rond d’Alembert (1717-1783), like Alexis Clairaut was born in 
Paris and died in Paris. As a newborn, he was abandoned near the church of 
Saint Jean-le-Rond and was discovered there by a gendarme who had him 
hurriedly christened with the name of the place where he was found. Later, for 
reasons not known, the name d’Alembert was added.

A scientific rivalry, often unfriendly, existed between d’Alembert and 
Clairaut. At the age of twenty-four, d’Alembert was admitted to the French 
Academy. In 1743, he published his Traite de dynamique, based upon the great- 
principle of kinetics that now bears his name. It says that the internal actions 
and reactions of a system of rigid bodies in motion are in equilibrium. In 1714, 
he applied his principle in a treatise on the equilibrium and motion of fluids, 
and, in 1746, in a treatise on the causes of winds. In each of these works, and 
also in one of 1747 devoted to vibrating strings, he was led to partial differential 
equations, and he became a pioneer in the study of such equations. The prob
lem of vibrating strings led him to the partial differential equation

d2U _ d2U

~dt2 ~ l t i 2'



for which, in 1747, he gave the solution

u = f(x  + t) + g(x -  t),

where/and g are arbitrary functions. With the aid of his principle, he was able 
to obtain a complete solution to the baffling problem of the precession of the 
equinoxes. D ’Alembert showed interest in the foundations of analysis. In 1754, 
he made the important suggestion that a sound theory of limits was needed to 
put analysis on a firm foundation, but most of his contemporaries paid little 
heed to his suggestion. D ’Alembert worked so diligently in an effort to prove 
the fundamental theorem of algebra (that every polynomial equation/ ( jc)  = 0 
having complex coefficients and of degree n ^  1 has at least one complex root) 
that the theorem is today known in France as d’Alembert’s theorem. It was 
d’Alembert who gave the name Riccati equation to the differential equation 
considered above.

D ’Alembert, like Euler, was broadly educated, with especial knowledge in 
law, medicine, mathematics, and science. Sharing many common interests, the 
two men corresponded with one another on a number of matters. D’Alembert 
was puzzled, as were other mathematicians of the time, as to the nature 
of logarithms of negative numbers—feeling that one must have log(-x) = 
log(x), on the grounds that ( - jc)2 = (jc)2, whence log(-jc)2 = log(jc)2, thence 
2 log(-x) = 2 log(jc), and finally log(-jc) = log(jc). In 1747, Euler was able to 
write to d’Alembert explaining the correct status of logarithms of negative 
numbers. When, toward the close of Euler’s residency in Berlin, Frederick the 
Great invited d’Alembert to head the Prussian Academy, d’Alembert declined, 
claiming that it would not be appropriate to place any contemporary in a posi
tion of academic superiority over the great Euler. D’Alembert was also invited 
by Catherine the Great to serve in Russia, but, in spite of the offer of a hand
some stipend, he declined that invitation too. In 1754, d’Alembert became 
permanent secretary of the French Academy. During his later years, he worked 
on the great French Encyclopedic, which had been begun by Denis Diderot and 
himself. D’Alembert died in 1783, the same year in which Euler died.

A famous and oft-quoted remark made by d’Alembert (and well worth 
citing on occasion in an elementary algebra class) is: “Algebra is generous; she 
often gives more than is asked of her.” He also once aptly remarked: “Geomet
rical truths are in a way asymptotic to physical truths; that is to say, the latter 
approach the former indefinitely near without ever reaching them exactly.” 
Perhaps the most perceptive of d’Alembert’s comments on mathematics is the 
following: “I have no doubt that if men lived separate from each other, and 
could in such a situation occupy themselves about anything but self-preserva
tion, they would prefer the study of the exact sciences to the cultivation of the 
agreeable arts. It is chiefly on account of others that a man aims at excellence in 
the latter; it is on his own account that he devotes himself to the former. In a 
desert island, accordingly, I should think that a poet could scarcely be vain, 
whereas a mathematician might still enjoy the pride of discovery.”

A little younger than Clairaut and d’Alembert was Johann Heinrich Lam-
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JEAN-LE-ROND D’ALEMBERT
(Library of Congress)

bert (1728-1777), born in Mulhouse (Alsace), then part of Swiss territory. 
Lambert was a mathematician of high quality. As the son of a poor tailor, he 
was largely self-taught. He possessed a fine imagination, and he established his 
results with great attention to rigor. In fact, Lambert was the first to prove 
rigorously that the number tt is irrational. He showed that if x is rational, but 
not zero, then tan x cannot be rational; since tan tt! 4  = 1 , it follows that 7t / 4 ,  or 
77, cannot be rational. We also owe to Lambert the first systematic development

JOHANN HEINRICH LAMBERT
(David Smith Collection)



of the theory of hyperbolic functions and, indeed, our present notation for 
these functions. Lambert was a many-sided scholar who made noteworthy 
contributions to the mathematics of numerous other topics, such as descriptive 
geometry, the determination of comet orbits, and the theory of projections 
employed in the making of maps (a much-used one of these projections is now 
named after him). At one time, he considered plans for a mathematical logic of 
the sort once outlined by Leibniz. In 1766, he wrote his posthumously pub
lished investigation of Euclid’s parallel postulate entitled Die Theorie der 
Parallellinien, a work that places him among the forerunners of the discovery 
of non-Euclidean geometry (see Section 13-7).

For a short time, Lambert was an associate of Euler in the Prussian Acad
emy. It has been said that when Frederick the Great once inquired of Lambert 
in which science he was most competent, Lambert curtly replied, “All.” Lam
bert died in 1777, the year in which Carl Freidrich Gauss was bom.
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12-7 Agnesi and du ChStelet
Noted in mathematics and, indeed, in a number of other areas, is the gifted and 
erudite Maria Gaetana Agnesi (pronounced an ya' ze). She was bom in Milan in 
1718, the first of her father’s twenty-one children from three marriages. At an 
early age, she mastered Latin, Greek, Hebrew, French, Spanish, German, and 
a number of other foreign languages. When she was only nine years old, her 
Latin discourse defending higher education for women was published. During 
her childhood, her father, a professor of mathematics at the University of 
Bologna, hosted gatherings of the intelligentsia at which Maria would converse 
with learned professors on any topics of their choice in their native languages. 
Later, when she was twenty, there appeared her Propositiones philosophicae, 
a series of 190 essays that in addition to mathematics, dealt with logic, mechan-
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ics, hydromechanics, elasticity, gravitation, celestial mechanics, chemistry, 
botany, zoology, and mineralogy. These essays arose from discussions at her 
father’s gatherings.

In 1748, at the age of thirty, Agnesi published a two-volume work entitled 
Instituzioni Analitiche, written by her primarily for the education of one of her 
younger brothers who showed interest and ability in mathematics. The work 
represents a course in elementary and advanced mathematics specially geared 
for young minds. The first volume deals with arithmetic, algebra, trigonometry, 
analytic geometry, and, principally, calculus, and is the first calculus text writ
ten primarily for young people. The second volume deals with infinite series
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and differential equations. The 1070 pages constitute a remarkable contribution 
to mathematical education. So that young people could read the work, she 
shunned the customary Latin and wrote in Italian. Later, in 1801, an English 
translation appeared, stemming from an earlier unpublished translation made 
by John Colson, who at one time occupied the Lucasian chair at Cambridge. 
The name of the English translation is Analytical Institutions.

In 1749, Pope Benedict XIV appointed Agnesi an honorary member of the 
University of Bologna, but (contrary to inaccurately told stories) she never 
lectured there.

Agnesi greatly disliked publicity and endeavored at different times to lead 
a secluded life. She finally succeeded when her father died in 1752, devoting the 
remainder of her life to charitable works and religious study. In 1771, she was 
appointed director of a beneficient institution in Milan, and it was there that she 
died in 1799. She had a younger sister, Maria Teresa Agnesi (1724-1780), who 
became an accomplished musician and composer.

During her lifetime, Maria Gaetano Agnesi achieved fame not only as a 
mathematician, linguist, and philosopher, but as a somnambulist. On several 
occasions, she proceeded, while in a somnambulistic state, to her study, lighted 
a lamp, and solved some problem that she had left incomplete when awake. In 
the morning, she would be surprised to find the solution carefully and com
pletely worked out on paper on her desk.

Pierre de Fermat at one time interested himself in the cubic curve, which, 
in present-day notation, would be indicated by the Cartesian equation
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y(x2 + a2) = a3.

Fermat did not name the curve, but it was later studied by Guido Grandi (1672— 
1742), who named it versoria. This is a Latin word for a rope that guides a sail. 
It is not clear why Grandi assigned this name to the cubic curve. There is a 
similar obsolete Italian word, versorio, which means “free to move in every 
direction,” and the doubly asymptotic nature of the cubic suggests that perhaps 
Grandi meant to associate this word with the curve. At any rate, when Agnesi 
wrote her Instituzioni analitiche, she confused Grandi’s versoria or versorio 
with versiera, which, in Latin, means “devil’s grandmother” or “female gob
lin.” Later, when John Colson translated Agnesi’s text into English, he ren
dered versiera as “witch.” The curve has ever since in English been called the 
“witch of Agnesi,” although in other languages it is generally more simply 
referred to as the “curve of Agnesi.” The witch of Agnesi possesses a number 
of pretty properties, some of which can be found in Problem Study 12.11.

Contemporary with Agnesi was another woman mathematician, the Mar
quise du Chatelet (Gabrielle Emilie Tonnelier de Breteuil), who can be consid
ered more an expositor than a creator of mathematics. She was born in Paris in 
1706 and died there in 1749 at the young age of forty-three. She was a mathema
tician, physicist, and linguist, and a musician who performed skillfully on the 
clavicembalo (an early form of the piano). She was popularly known for her 
long entente cordiale with Voltaire. In 1740, she wrote Institutions de physique, 
a work diffused with the views of Leibniz. Her most important contribution to



A sample page (reduced in size) from Volume 1 of 
Maria Gaetana Agnesi’s In stitu zion i A n alitich e  
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(Courtesy of the Trustees of the Boston Public Li
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mathematics was the first French translation of Newton’s Principia, which was 
posthumously published in 1756 with a preface by Voltaire and under the direc
tion of A. C. Clairaut. She also wrote a number of posthumously published 
treatises on philosophy and religion, and she did much to free French thought 
from subservience to Cartesianism.

MADAME DU CHATELET
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1 2 -8  Lagrange
The two greatest mathematicians of the eighteenth century were Euler and 
Joseph Louis Lagrange (1736-1813), and which of the two was the greater is a 
matter of debate that often reflects the differing mathematical sensitivities of 
the debaters. Lagrange was born in Turin, Italy, into a formerly prosperous 
family of French and Italian backgrounds; he was the youngest of eleven chil
dren and the only one to survive beyond infancy. He was educated in Turin 
and, as a young man, served as professor of mathematics at the military acad
emy there. In 1766, when Euler left Berlin, Frederick the Great wrote to La
grange that “the greatest king in Europe” wished to have at his court “the 
greatest mathematician of Europe.” Lagrange accepted the invitation and for 
twenty years held the post vacated by Euler. A few years after leaving Berlin, 
in spite of the chaotic political situation in France, Lagrange accepted a profes
sorship at the newly established Ecole Normale, and then at the Ecole Poly
technique. The first of these schools was short-lived, but the second one be
came famous in the history of mathematics, inasmuch as many of the great 
mathematicians of modern France were trained there and many held professor
ships there. Lagrange did much to develop the high degree of scholarship in 
mathematics that has become associated with the Ecole Poly technique.

Lagrange was revolted by the cruelties of the Terror that followed the 
French Revolution. When the great chemist Lavoisier went to the guillotine, 
Lagrange expressed his indignation at the stupidity of the execution: “It took 
the mob only a moment to remove his head; a century will not suffice to 
reproduce it.”

Later in life, Lagrange was subject to great fits of loneliness and despon
dency. He was rescued from these, when he was fifty-six, by a young girl
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nearly forty years his junior. She was the daughter of his friend, the astronomer 
Lemonnier. She was so touched by Lagrange’s unhappiness that she insisted 
on marrying him. Lagrange submitted, and the marriage turned out ideal. She 
proved to be a very devoted and competent companion, and succeeded in 
drawing her husband out and reawakening his desire to live. Of all his prizes in 
the world, Lagrange claimed, with honesty and simplicity, the one he most 
valued was his tender and devoted young wife.

Lagrange’s work had a very deep influence on later mathematical re
search, for he was the earliest first-rank mathematician to recognize the thor
oughly unsatisfactory state of the foundations of analysis and accordingly to 
attempt a rigorization of the calculus. The attempt, which was far from success
ful, was made in 1797 in his great publication Theorie des fonctions analytiques 
contenant les principes du calcul differentiel. The cardinal idea here was the 
representation of a function/(x) by a Taylor’s series. The derivatives/'(* ) ,  
/"(*), . . . were then defined as the coefficients of h, h2/2\, . . .  in the Taylor 
expansion of f(x  + h) in terms of h. The notation /'(* ) , /"(*), • • • , very 
commonly used today, is due to Lagrange. Lagrange felt that his approach had 
side-stepped the use of limits, but, since he neglected to give sufficient atten
tion to matters of convergence and divergence, and since these concepts de
pend upon the limit idea, his approach failed in its aim. Nevertheless, we have 
here the first “ theory of functions of a real variable.” Two other great works of 
Lagrange are his Traite de resolution des equations numeriques de tous degres 
(1767) and his monumental Mecanique analytique (1788); the former gives a 
method of approximating the real roots of an equation by means of continued 
fractions, the latter (which Sir William Rowan Hamilton described as a “ scien
tific poem”) contains the general equations of motion of a dynamical system 
known today as Lagrange's equations. His work in differential equations (for 
example, the method of variation of parameters), and particularly in partial 
differential equations, is very notable, and his contributions to the calculus of 
variations did much for the development of that subject. Lagrange had a pench
ant for number theory and wrote important papers in this field also, such as the 
first published proof of the theorem that every positive integer can be expressed 
as the sum of not more than four squares. Some of his early work on the theory 
of equations later led Galois to his theory of groups. In fact, the important 
theorem of group theory that states that the order of a subgroup of a finite group 
G is a factor of the order of G is called Lagrange’s theorem. Lagrange has been 
mentioned a number of times in earlier parts of our book.

Whereas Euler wrote with a profusion of detail and a free employment of 
intuition, Lagrange wrote concisely and with attempted rigor. A formal manip
ulator in mathematics often experiences the discomforting feeling that his pen
cil surpasses him in intelligence; this was a feeling that Euler confessed he often 
could not lose. Lagrange seemed to have a greater mathematical conscience; he 
was “modern” in style and can be characterized as the first true analyst. All 
great musicians can be classified as either accomplished performers or com
posers, and a few have been both. Similarly, all great mathematicians can be 
classified as either expert formal operators or expert creators of theory, and a



few have been both. Euler was primarily a great formal operator, Lagrange a 
great theorist, and Gauss was pre-eminently accomplished as both. Thus, Euler 
was like a Heifetz, Lagrange a Beethoven, and Gauss a Johann Sebastian Bach.

Lagrange once remarked that a mathematician has not thoroughly under
stood a piece of his own work until he has so clarified it that he can effectively 
explain it to the first man he meets in the street. Though this ideal often appears 
impossible, time frequently renders it attainable. Newton’s law of universal 
gravitation, which at first was incomprehensible to even highly educated per
sons, has today become common knowledge. Einstein’s relativistic theory of 
gravitation is now undergoing a similar transmutation.

Napoleon Bonaparte, who hobnobbed with a number of the great mathe
maticians of France, summed up his estimate of Lagrange by saying, “La
grange is the lofty pyramid of the mathematical sciences.”
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1 2 -9  Laplace and Legendre
Laplace and Legendre were contemporaries of Lagrange, although they pub
lished their principal works in the nineteenth century. Pierre-Simon Laplace 
was born of poor parents in 1749. His mathematical ability early won him good 
teaching posts; as a political opportunist, he ingratiated himself with whichever 
party happened to be in power during the uncertain days of the French Revolu
tion. His most outstanding work was done in the fields of celestial mechanics, 
probability, differential equations, and geodesy. He published two monumental 
works, Traite de mecanique celeste (five volumes, 1799-1825) and Theorie 
analytique des probabilites (1812), each of which was preceded by an extensive 
nontechnical exposition. The five-volume Traite de mecanique celeste, which
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earned him the title of “the Newton of France,” embraced all previous discov
eries in this field along with Laplace’s own contributions, and marked the 
author as the unrivaled master in the subject. It may be of interest to repeat a 
couple of anecdotes often told in connection with this work. When Napoleon 
teasingly remarked that God was not mentioned in his treatise, Laplace replied, 
“Sire, I did not need that hypothesis.” The American astronomer, Nathaniel 
Bowditch, when he translated Laplace’s treatise into English, remarked, “ I 
never come across one of Laplace’s Thus it plainly appears’ without feeling 
sure that I have hours of hard work before me to fill up the chasm and find out 
and show how it plainly appears.” Laplace’s name is connected with the nebu
lar hypothesis of cosmogony and with the so-called Laplace equation of poten
tial theory (though neither of these contributions originated with Laplace), with 
the so-called Laplace transform that later became the key to the operational 
calculus of Heaviside, and with the Laplace expansion of a determinant. La
place died in 1827, exactly one hundred years after the death of Isaac Newton. 
According to one report, his last words were: “What we know is slight; what 
we don’t know is immense.”

The following story about Laplace is of interest and offers a valuable 
suggestion to one applying for a position. When Laplace arrived as a young 
man in Paris seeking a professorship of mathematics, he submitted his recom
mendations by prominent people to d’Alembert, but he was not received. Re
turning to his lodgings, Laplace wrote d’Alembert a brilliant letter on the gen
eral principles of mechanics. This opened the door, and d’Alembert replied: 
“ Sir, you notice that I paid little attention to your recommendations. You don’t 
need any; you have introduced yourself better.” A few days later, Laplace was 
appointed professor of mathematics at the Military School of Paris.

Lagrange and Laplace have often been contrasted with one another. First 
of all, there is a marked contrast in their styles, summed up as follows by 
W. W. Rouse Ball. “ Lagrange is perfect both in form and matter, he is careful 
to explain his procedure, and though his arguments are general they are easy to 
follow. Laplace on the other hand explains nothing, is indifferent to style, and, 
if satisfied that his results are correct, is content to leave them either with no 
proof or with a faulty one.” There is also a marked contrast in the viewpoints of 
mathematics held by the two men. For Laplace, mathematics was merely a kit 
of tools used to explain nature. To Lagrange, mathematics was a sublime art 
and was its own excuse for being.

Laplace was very generous to beginners in mathematical research. He 
called these beginners his stepchildren, and there are several instances in which 
he withheld publication of a discovery to allow a beginner the opportunity to 
publish first. Sadly, such generosity is rare in mathematics.

We close our brief account of Laplace with two quotations due to him. 
“All the effects of nature are only mathematical consequences of a small num
ber of immutable laws.” “In the final analysis, the theory of probability is only 
common sense expressed in numbers.”

Adrien-Marie Legendre (1752-1833) is known in the history of elementary 
mathematics principally for his very popular Elements de geometrie, in which



he attempted a pedagogical improvement of Euclid’s Elements by considerably 
rearranging and simplifying many of the propositions. This work was very 
favorably received in America and became the prototype of the geometry text
books in this country. In fact, the first English translation of Legendre’s geome
try was made in 1819 by John Farrar of Harvard University. Three years later 
another English translation was made, by the famous Scottish litterateur 
Thomas Carlyle, who early in life was a teacher of mathematics. Carlyle’s 
translation, as later revised by Charles Davies, and later still by J. H. Van 
Amringe, ran through thirty-three American editions. In later editions of his 
geometry, Legendre attempted to prove the parallel postulate (see Section
13-7). Legendre’s chief work in higher mathematics centered about number 
theory, elliptic functions, the method of least squares, and integrals; this work 
is too advanced to be discussed here. He was also an assiduous computer of 
mathematical tables. Legendre’s name is today connected with the second- 
order differential equation

(1 -  jc2)y" -  2jcy' + n(n + 1 )y = 0,

which is of considerable importance in applied mathematics. Functions satisfy
ing this differential equation are called Legendre functions (of order n). When n 
is a nonnegative integer, the equation has polynomial solutions of special inter
est called Legendre polynomials. Legendre’s name is also associated with the 
symbol (c\p) of number theory. The Legendre symbol (c\p) is equal to ±1 
according as the integer c, which is prime to p, is or is not a quadratic residue of 
the odd prime p. [For example, (6| 19) = 1 since the congruence x2 =  6 (mod 19) 
has a solution, and (39147) = — 1 since the congruence jc2 =  39 (mod 47) has no 
solution.]
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In addition to his Elements de geometrie, which appeared in 1794, Legen
dre published a two-volume 859-page work, Essai sur la theorie des nombres 
(1797-1798), which was the first treatise devoted exclusively to number theory. 
He later wrote a three-volume treatise, Exercises du calcul integral (1811— 
1819), which, for comprehensiveness and authoritativeness, rivaled the similar 
work of Euler. Legendre later expanded parts of this work into another three- 
volume treatise, Traite des fonctions elliptiques et des integrals euleriennes 
(1825-1832). Here Legendre introduced the term Eulerian integrals for the beta 
and gamma functions. In geodesy, Legendre achieved considerable fame for 
his triangulation of France.

12 -1 0  Monge and Carnot
The last two outstanding mathematicians whom we shall consider in this chap
ter are the two geometers Gaspard Monge (1746-1818) and Lazare Carnot 
(1753-1823). Unlike the three L’s (Lagrange, Laplace, and Legendre), who 
remained aloof from the French Revolution, Monge and Carnot supported it 
and played active roles in revolutionary matters.

Monge was educated at the college of the Oratorians in Beaunne, the town 
of his birth, and at their college in Lyons, where at the age of sixteen he became 
an instructor in physics. A skillfully constructed large-scale map of his home 
town led to his acceptance at the military school in Mezieres as a draftsman. 
Asked to work out from supplied data the gun emplacements of a proposed 
fortress, Monge circumvented the long and tedious arithmetic procedure of the 
time by a rapid geometric one. His method, which was one of cleverly repre
senting three-dimensional objects by appropriate projections on the two-dimen-
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sional plane, was adopted by the military and classified as top-secret. It later 
became widely taught as descriptive geometry. In 1768, Monge became a pro
fessor of mathematics, and in 1771, a professor of physics, at Mezieres. In 
1780, he was appointed to a chair of hydraulics at the Lyceum in Paris.

Monge served as Minister of Marine and engaged in the manufacture of 
arms and gunpowder for the army. He was the principal force, under the 
Directory, in the founding of the Ecole Poly technique in 1795, and was a 
professor of mathematics there. He gained the close friendship and admiration 
of Napoleon and accompanied the latter, along with the mathematician Joseph 
Fourier (1768-1831), on the ill-fated Egyptian expedition of 1798. Upon return
ing to France, Monge resumed his position at the Ecole Poly technique, where 
he proved to be a singularly gifted teacher. His lectures there inspired a large 
following of able geometers, among whom were Charles Dupin (1784-1873) and 
Jean Victor Poncelet (1788-1867), the former a contributor to the field of differ
ential geometry, and the latter to that of projective geometry.

In addition to creating descriptive geometry, Monge is considered as the 
father of differential geometry. His work entitled Application de Vanalyse a la 
geometrie ran through five editions and was one of the most important of the 
early treatments of the differential geometry of surfaces. It is here that Monge 
introduced, among other things, the concept of lines of curvature of a surface in 
three-space. Monge’s contributions to differential geometry are devoted princi
pally to the extrinsic geometry of surfaces (see Section 14-7).

It was with Monge’s lectures at the Ecole Polytechnique that solid analytic 
geometry came into its own. The material of these lectures was written up by 
Monge and Jean-Nicolas-Pierre Hachette (1769-1834) in 1802 in an extensive 
memoir on Application d ’algebre a la geometrie that appeared in the Journal 
de I'Ecole Polytechnique. The opening theorem of the work is the well known 
eighteenth-century generalization of the Pythagorean theorem: The sum of the 
squares o f the orthogonal projections o f a planar area upon three mutually 
perpendicular planes is equal to the square o f the planar area. Farther in 
the work we find much of the material of present-day texts devoted to solid 
analytic geometry, such as the formulas for the translation and rotation 
of axes, the customary treatment of lines and planes in space, and the deter
mination of the principal planes of a coriicoid. It is shown that the plane 
through a given point ( jc' ,  y \  z') orthogonal to the intersection of two given 
planes
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ax + by + cz + d = 0 and ex + fy + gz + h = 0

is given by

A(x -  jc' )  + B(y -  y ’) + C(z ~ z') = 0,

where

A = bg — fc, B = ce — ga , C = a f — eb.
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Formulas are given for the distance between a point and a line in space and for 
the shortest distance between two skew lines in space. Among new results 
given by Monge we find.

1. The six planes through the midpoints o f the edges o f a tetrahedron and 
perpendicular to the respectively opposite edges are concurrent in a 
point that is the reflection o f the circumcenter o f the tetrahedron in the 
centroid o f the tetrahedron. (This point is now called the Monge point 
of the tetrahedron.)

2. The locus o f the vertex o f the trirectangular angle whose faces are 
tangent to a given central conicoid is a sphere concentric with the 
conicoid. (This sphere is now called the Monge sphere, or director 
sphere, of the conicoid. The analogous locus in two dimensions is today 
called the Monge circle of the associated central conic, though this 
locus had been found a century earlier by La Hire using synthetic 
methods.)

Later, in 1809, Monge gave several proofs of the fact that the lines joining 
the midpoints of opposite edges of a tetrahedron concur at the centroid of the 
tetrahedron.

Monge had two brothers who also were professors of mathematics.
Lazare Nicolas Marguerite Carnot (1753-1823), following the custom of 

many of the sons of well-to-do French families, prepared himself for the army 
and was thus led to the military school of Mezieres, where he studied under 
Monge, becoming a captain in the engineers in 1783. In 1784, he wrote his first 
mathematical work, on mechanics, which contains the earliest proof that ki
netic energy is lost in the collision of imperfectly elastic bodies. With the 
advent of the French Revolution, he threw himself into politics and embraced 
the Revolution with enthusiasm and dedication. He succeeded to a number of 
important political posts and, in 1793, voted for the execution of Louis XVI as a 
traitor. Also in 1793, when a united Europe launched a million-man army 
against France, Carnot undertook the seemingly impossible task of organizing 
fourteen armies to successfully oppose the enemy, winning for himself the 
name “the Organizer of Victory.” In 1796, he opposed Napoleon’s coup d’etat, 
and had to flee to Geneva, where he wrote a semiphilosophical work on the 
metaphysics of the calculus. His two important contributions to geometry, 
Geometrie de position and Essai sur la theorie des transversals, were published 
in 1803 and 1806. As an “ irreconcilable enemy of kings” he offered, in 1814, 
after the Russian campaign, to fight for France but not for the empire. With the 
restoration, he was exiled, dying in Madgeburg in straitened circumstances in 
1823.

It is in Carnot’s Geometrie de position that sensed magnitudes were first 
systematically employed in synthetic geometry. By means of sensed magni
tudes, several separate statements or relations can often be combined into a 
single inclusive statement or relation, and a single proof can frequently be 
formulated that would otherwise require the treatment of a number of different 
cases (see Problem Study 12.17). The idea of sensed magnitudes was further 
exploited by Augustus Ferdinand Mobius (1790-1868) in his Der barycentische 
Calcul of 1827.
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The theorem of Menelaus (see Section 6-5) is basic in Carnot’s Essai sur la 
theorie des transversals. Here Carnot extends the theorem of Menelaus to the 
situation where the transversal in that theorem is replaced by an arbitrary 
algebraic curve of degree n. As an illustration, we have, for the case n = 2 (see 
Figure 106): If the sides BC, CA, AB o f a triangle ABC cut a conic in the (real or 
imaginary) points A\ and A2, Bx and B2, C\, and C2, respectively, then

{ACX){AC2){BAX){BA2){CBX){CB2) = (ABX)(AB2)(BCX)(BC2)(CAX)(CA2),

where all segments are sensed segments. The theorem can be further general
ized by replacing the triangle by an arbitrary polygon.

Carnot also found the volume of a tetrahedron in terms of its six edges, and 
he obtained a formula (containing 130 terms) expressing any one of the ten 
segments joining five random points in terms of the other nine.

Carnot had a son, Hippolyte, who became minister of public instruction in 
1848; another son, Sadi, who became a celebrated physicist; a grandson, also
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named Sadi and son of Hippolyte, who became the fourth president of the third 
French Republic; and a second grandson, Adolphe, the son of Hippolyte, who 
became an eminent chemist.

Monge and Carnot were both ardent Revolutionists, but surely Carnot was 
the intellectually more honest and consistent of the two. Both voted for the 
death of Louis XVI, but Carnot, although he was willing to serve under Napo
leon as a soldier and as an administrator, was the only Tribune with the courage 
and conviction to vote against naming Napoleon emperor, and he went into 
exile for his stand. Monge, on the other hand, slavishy supported his idol all the 
way from the early idealistic and revolutionary corporal to the selfish and 
despotic emperor, and it was Monge who willingly accepted the detestable task 
of determining which art treasures should be brought back from Italy to Paris as 
war booty.

12 -11  The Metric System
Measurements of length, area, volume, and weight play an important part in the 
practical applications of mathematics. Basic among the units of these measure
ments is that of length, for given a unit of length, units for the other quantities 
can easily be devised. One of the important accomplishments of the eighteenth 
century was the construction of the metric system, designed to replace the 
world’s vast welter of chaotic and unscientific systems of weights and measures 
by one that is orderly, uniform, scientific, exact, and simple.

The development of our present metric system was not the first attempt to 
initiate a scientific system of measurement. In 1670, the French mathematician 
and vicar of the church of St. Paul at Lyons, Abbe Gabriel Mouton, suggested 
one minute of the earth’s circumference as a unit of length, and he divided and 
multiplied this unit decimally, assigning appropriate Latin terminology to the 
various divisions and multiples. About the same time, Sir Christopher Wren, in 
England, proposed taking the length of a pendulum beating half seconds as the 
unit of length; this would have approximated one-half of the length commonly 
assigned to the ancient cubit (the distance from a man’s elbow to the tip of his 
extended middle finger). In 1671, the French astronomer Jean Picard, and in 
1673, the Dutch physicist Christiaan Huygens, advocated the length of a sec
onds pendulum at sea level at 45° of latitude; this would have been only about 6 
millimeters shorter than the present-day meter. In 1747, La Condamine sug
gested the seconds pendulum at the equator. In 1775, Messier very carefully 
determined the length of a seconds pendulum at 45° of latitude and unsuccess
fully endeavored to have this adopted as the standard unit.

Motivated by the widespread agitation for a new system of measures, in 
1789 the French Academie des Sciences appointed a committee to work out an 
acceptable plan. In the following year, Sir John Miller proposed, in the House 
of Commons, a uniform system of measurement for Great Britain. About the 
same time, Thomas Jefferson proposed a uniform system for the United States, 
suggesting the length of a seconds pendulum at 38° latitude, this being the mean 
latitude for the United States of his day.
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In its work, the committee of the Academie des Sciences agreed on a 
decimal system and considered two alternatives for the unit of length of the 
system. One was the length of a seconds pendulum. Since the pendulum equa
tion is T = iT rV U g, this would make the standard length, or meter, ghr2. 
Inasmuch as g varies with both latitude and elevation, and in view of the 
accuracy with which Legendre and others had measured the length of a terres
trial meridian, the committee finally agreed to take the meter to be the ten- 
millionth part of the meridional distance from the North Pole to the equator. In 
1793, due to political forces, the Academie des Sciences was suppressed, but 
the Committee on Weights and Measures was retained, purged of some of its 
members, such as Lavoisier, and enlarged by others, in time including La
grange, Laplace, Legendre, and Monge. By 1799, the work of the Committee 
was completed, and our present-day metric system became a reality.

It was in June, 1799, that the Republic of France adopted the metric 
system of weights and measures; in 1837, its use was made compulsory. Today 
the system has been adopted by all the civilized nations of the world except the 
United States, which has been making preparations to join. Of course, the 
metric system has long been employed in the United States for scientific and 
other purposes.

An International Bureau of Weights and Measures has been set up on a 
piece of international territory at Sevres, France, close to Paris. It was estab
lished by representatives from all over the world, and there the international 
standards for the kilogram and the meter are preserved. The standard for the 
kilogram is made of a special alloy of platinum and iridium, and an exact 
duplicate of this standard is kept by each of the represented nations. The one in 
the United States was received by President Benjamin Harrison on January 2, 
1890, and is housed at the Bureau of Standards in Washington, D.C. Prior to 
1960, the standard for the meter was a platinum-iridium bar, but today the 
standard meter is more accurately defined as 1,650,763.73 wavelengths of the 
orange-red light from the isotope krypton-86, measured in a vacuum.

1 2 -1 2  Summary
We conclude our brief survey of eighteenth-century mathematics by noting 
that, though the century witnessed considerable further development in such 
subjects as trigonometry, analytic geometry, calculus, theory of numbers, the
ory of equations, probability, differential equations, and analytic mechanics, it 
also witnessed the creation of a number of new fields, such as actuarial science, 
the calculus of variations, higher functions, partial differential equations, de
scriptive geometry, and differential geometry. Much of the mathematical re
search of the century found its source and inspiration in mechanics and astron
omy. But in d’Alembert’s concern over the shaky basis of analysis, Lambert’s 
work on the parallel postulate, Lagrange’s effort to rigorize the calculus, and 
the philosophical thoughts of Carnot, we have intimations of the coming libera
tion of geometry and algebra and the deep concern over the foundations of 
mathematics that took place in the nineteenth century. Moreover, mathemati-
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dans \yith specialization in restricted fields, like Monge in geometry, began to 
emerge. Also, on June 22, 1799, following the French Revolution, the Republic 
of France adopted the metric system of weights and measures.

Another important event that took place in the eighteenth century was the 
serious entrance by women into the fields of mathematics and the exact sci
ences. Such pursuits by women had been socially frowned upon, and opportu
nities for them were virtually nonexistent. The first significant break was made 
by the Marquise du Chatelet (1706-1749) and Maria Gaetana Agnesi (1718— 
1799), who made worthy impressions in the area of mathematics. In our next 
chapter, we shall see how further liberation occurred in the early nineteenth 
century, with the work of Sophie Germain (1776-1831) and Mary Fairfax 
Somerville (1780-1872).

Problem Studies

12.1 Bernoulli Numbers

The formulas

b
l + 2  + 3 +  -* - + (A:— 1) = y  — 2 ’

i( 2 i(
l2 + 22 + 32 + • • • + (* -  l)2 = j  -  j  +

k4 k- k2
J3  +  2 3 +  ^  +  • • • +  ( *  -  1 ) 3  =  ^  |  +  J ,

which express the sums

Sn(k) =  r  + 2n + 3" + . . . + (k -  l)n

for n = 1, 2, 3 as polynomials in k, have been known since remote times. Jakob 
Bernoulli became interested in the coefficients B\, B2, B2, . . . when S„(k) is 
expressed as a polynomial in k of a form

L n + 1 bn b n - 1 b n - 3
Sn(k) = r -  T  + B\C(n,\) - T -  -  B2C(n,3) - j -  + n + 1 z L 4

where C(n,r) = n(n -  1) r + 1 )/r\. These coefficients, which are now
known as Bernoulli numbers, play an important role in analysis and possess 
some remarkable arithmetic properties.

(a) If n = 2r + 1, it can be shown that

BxC(n, 2) -  B2C(n,4) + B2C(n, 6) -  • • • + ( -1  y~'BrC(n,2r) = r -  1/2.

Using this formula, compute B\ through B$.
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(b) A prime p is said to be regular if it divides none of the numerators of B \ , 
B2, . . .  , B(P- 3)/2 when these numbers are written in their lowest terms. 
Otherwise p is said to be irregular. Knowing that

7709321041217

show that 37 is irregular.
In 1850, E. Kummer proved that Fermat’s last “theorem” is true 

for every exponent that is a regular prime, and the only irregular primes 
below 100 are 37, 59, 67.

(c) K. C. G. von Staudt established the remarkable theorem: Br = G + 
{ - \ ) r(\la + Mb + 1/c + . . .), where G is an integer and a, b, c, . . . are 
all the primes p such that 2rl{p -  1) is an integer. Verify Staudt’s 
theorem for B4 = m and Bg =

12.2 De Moivre’s Formula

(a) Establish De Moivre’s formula:

(cos x + i sin x)n = cos nx + / sin nx,

where i = V ^T and n is a positive integer.
(b) Using the formula of (a), express cos 4x and sin 4x in terms of sin x and 

cos x.
(c) Using De Moivre’s formula, show that ( -1  -  /)15 = -128 + 128/.
(d) Prove that in = cos(mr/2) + / sin(wr/2).
(e) Using De Moivre’s formula, find the eight eighth roots of 1.

12.3 Distributions

(a) Six coins were simultaneously tossed 1000 times. Of these 1000 tosses, 
there were 9 in which no heads appeared, 99 in which 1 head appeared, 
241 in which 2 heads appeared, 313 in which 3 heads appeared, 233 in 
which 4 heads appeared, 95 in which 5 heads appeared, and 10 in which 
6 heads appeared. Display this frequency distribution by drawing a 
frequency curve.

(b) Plot the normal frequency curve y = \0e~xl.
(c) Calculate the arithmetic mean of the collection of heads per toss in the 

experiment of (a).
(d) The median of a collection of numerical values is the middle term after 

the values have been arranged in ascending or descending order of 
magnitude. What is the median of the collection of heads per toss in the 
experiment of (a)?

(e) If, in a collection of numerical values, 1 number occurs more often than 
any other, it is called the mode of the collection. What is the mode of 
the collection of heads per toss in the experiment of (a)?
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(f) Consider the situation where a millionaire joins the population of a 
small community of low-income people. What is the effect on the mean 
income, the median income, and the modal income of the community?

(g) Is a shoe merchant most interested in the arithmetic mean, the median, 
or the mode of the shoe sizes of the people in his community?

(h) What can one say about the arithmetic mean, the median, and the mode 
of a normal frequency distribution?

(i) Approximate 1000! by Stirling’s formula.

12.4 Formal Manipulation of Series

(a) Develop the Maclaurin expansions for sin z, cos z, and ez .
(b) Show that the Maclaurin expansion for cos z can be obtained by differ

entiating, term by term, the Maclaurin expansion for sin z.
(c) Show formally, using the expansions of (a), that

cos x + i sin x = eu .

(d) Using the Maclaurin expansion for sin z, show that

(e) Using the Taylor’s expansions about x = a for /(x ) and g(x) show, 
when f(a) = f ' ( a ) = • • • = f {k\a ) = 0, g(a) = g \a )  = • • • = g {k\a ) = 0, 
g ik+l\a ) 41 0, that

/(x ) ^ / (*+1)(a)
™ g(x) g(k+l)(a)'

12.5 A Conjecture and a Paradox

(a) Euler conjectured that for n >  2 at least n nth powers are required to 
provide a sum that is itself an nth power. In 1966, L. J. Lander and 
T. R. Parkin, using high-speed computers, discovered that

275 + 845 + 1105 + 1335 = 1445.

Check the truth of this counterexample.
(b) Explain the following paradox that bothered mathematicians of Euler’s 

time: Since ( -x ) 2 = (x)2, we have log(-x)2 = log(x)2, whence 2 log(-x) 
= 2 log(x), and thence log(-x) = log(x).

12.6 Euler and an Infinite Series

(a) Oldenburg, in a letter to Leibniz in 1673, asked for the sum of the 
infinite series

l / l 2 + 1/22 + 1/32 + 1/42 + • • • •
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Leibniz was unable to find an answer, and, in 1689, Jakob Bernoulli 
admitted that he could not find an answer. Carry out the details of the 
following formal procedure used by Euler for solving this problem. 

Start with the Maclaurin series

sin z = z ~ z 3l3! + z5l5! -  z1!7! + • • • •

Then sin z = 0 can (after dividing through by z) be considered as the 
infinite polynomial

1 -  z2l3! + z4/5! -  z6/7! + • • • = 0,

or, replacing z 2 by w, as the equation

1 -  w/3\ + w2/5! -  wV7! + • • • = 0.

By the theory of equations, the sum of the reciprocals of the roots of 
this equation is the negative of the coefficient of the linear term— 
namely, J. Since the roots of the polynomial in z are t t , I tt, 3 t t , . . . , it 
follows that the roots of the polynomial in w  are t t 2 , ( 2 t t ) 2 , ( 3 t t ) 2 , . . . .  

Therefore

i  = llrr2 + 1/(27r)2 + 1/(3tt)2 + • • ■ , 

or

t t 2 / 6  =  l / l 2 +  1 / 2 2 +  1 / 3 2 + ---------

( b )  Apply Euler’s procedure of (a) to the Maclaurin expansion of cos z to 
find

tt2/8 = l / l 2 + 1/32 + 1/52 + • • • •

(c) Using (a) and (b), formally show that

tt712 = l / l 2 -  1/22 + 1/32 -  1/42 + ------

In his Introductio of 1748, Euler gave the sum of 

1/1" + 1/2" + 1/3" + • • •

for even values of n from n — 2 through n = 26. The cases in which n is 
odd are still intractable today, and it is not even known if the sum of the 
reciprocals of the cubes of the positive integers is a rational multiple of 
t t 3 . Euler arrived at many results, now known to be true, by employing 
a carefree application to infinite polynomials (power series) rules valid 
for finite polynomials.
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12.7 Orbiform Curves

An orbiform curve, or curve of constant width, is a planar convex oval charac
terized by the property that the distance between 2 parallel tangents to the 
curve is constant.

(a) Show that the Reuleaux triangle, defined by 3 circular arcs with centers 
at the vertices of an equilateral triangle and with radii equal to a side of 
the triangle, is an orbiform curve. (Drills based on the shape of a 
Reuleaux triangle have been devised for drilling square holes.)

(b) Show how, starting from any triangle, one can construct an orbiform 
curve composed of 6 circular arcs.

(c) Starting from a pentagon whose diagonals are all equal, construct an 
orbiform curve composed of 5 circular arcs.

(d) Show how, starting from any convex pentagon, one can construct an 
orbiform curve composed of 10 circular arcs.

(e) Construct an orbiform curve containing no circular arcs.
(f) A point P on an orbiform curve is said to be an ordinary point if the 

curve has a continuously turning tangent at point P. Opposite extremi
ties of a maximum chord of an orbiform curve are known as opposite 
points of the curve. Try to establish the following theorems about orbi
form curves.
1. No part of an orbiform curve is straight.
2. If Pi and P2 are a pair of ordinary opposite points of an orbiform 

curve, then P\P2 is normal to the curve at P x and P2.
3. If ri and r2 are the radii of curvature at a pair of ordinary opposite 

points P\ and P2 of an orbiform curve of constant width d , then rx +
r2 = d.

4. Barbier’s theorem: The circumference of an orbiform curve of con
stant width d is 7id.

(g) Show that if a Reuleaux triangle is rotated about an axis of symmetry, 
one obtains a solid of constant width. (Much less is known about solids 
of constant width than about curves of constant width. Though there is 
no direct analog of Barbier’s theorem, Minkowski has pointed out that 
the shadows, formed by orthogonal projection, of a solid of constant 
width are of constant circumference.)

12.8 Unicursal and Multicursal Graphs

In 1736, Euler resolved a question then under discussion as to whether it was 
possible to take a walk in the town of Konigsberg in such a way that every 
bridge in the town would be crossed once and only once and the walker return 
to his starting point. The town was located close to the mouth of the Pregel 
River, had 7 bridges, and included an island, as pictured in Figure 107. Euler 
reduced the problem to that of tracing the associated graph of Figure 108 in 
such a way that each line of the graph is traced once and only once, and the 
tracing point ends up at its starting point

In considering the general problem, the following definitions are useful. A 
node is a point of a graph from which lines radiate. A branch is a line of a graph
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D

FIGURE 107

FIGURE 108

FIGURE 109

connecting 2 consecutive nodes. The order of a node is the number of branches 
radiating from it. A node is said to be even or odd according as its order is even 
or odd. A route consists of a number of branches that can be traced consecu
tively without traversing any branch twice. A graph that can be traced in 1 
route is said to be unicursal; otherwise, it is said to be multicursal. About these 
concepts, Euler succeeded in establishing the following propositions:
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1. In any graph the number o f odd nodes is even.
2. A graph with no odd nodes can be traversed unicursally in a reentrant 

route that terminates at its starting point.
3. A graph with exactly 2 odd nodes can be traversed unicur sally by start

ing at one o f the odd nodes and then terminating at the other.
4. A graph with more than 2 odd nodes is multicursal.
(a) Using Euler’s theorems, answer the Konigsberg bridge question in the 

negative.
(b) Show that the graph of Figure 109 is unicursal, whereas that of Figure 

110 is multicursal.
(c) Figure 111 represents a house with rooms and doors as marked. Is it 

possible to walk in succession through each door once and only once?
(d) Try to prove Euler’s theorems stated above.
(e) Try to prove Listing’s corollary to Euler’s fourth theorem: A graph 

with exactly 2n odd nodes can be traversed completely in n separate 
routes. Verify this corollary for the graph in Figure 110.

--- 1 1--
I  '
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O h i T , I------- 1 i
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FIGURE 111

12.9 Some Differential Equations

(a) The differential equation

y n~l(dyldx) + a(x)yn = f(x)

is known as Bernoulli’s equation. Show that the transformation v = y n 
converts Bernoulli’s equation into a linear differential equation.
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(b) The differential equation

y  = P *  + f ( p ) ,

where p = dyldx , is known as Clairaut’s equation. Show that the solu
tion of Clairaut’s equation is

y = cx  + /(c).

(c) The differential equation

x ny(n) + a\xn~ly (n~l) + • • • + any i0) = f(x ) ,

where the exponents in parentheses indicate orders of differentiation, 
is known as Euler’s equation. Show that the substitution x = e* reduces 
the Euler equation to a linear differential equation with constant coeffi
cients.

(d) The differential equation

dyldx = p(x)y2 + q(x)y + r(x)

is known as Riccati’s equation. Show that if v = f(x)  is a particular 
solution of the equation, then the substitution y = v + l/z  converts the 
equation into a linear differential equation in z.

12.10 Hyperbolic Functions

(a) The hyperbolic sine and hyperbolic cosine functions may be defined by

gU _  e~u eu _|_ e~u
sinh u = -----------, cosh u = ----- ------,

and then the hyperbolic tangent, hyperbolic cotangent, hyperbolic se
cant, and hyperbolic cosecant functions by tanh u = sinh w/cosh u, 
coth u = 1/tanh u, sech u = 1/cosh u, csch u — 1/sinh u. Show that
1. cosh2 u -  sinh2 u = 1.
2. tanh u = (eu -  e~u)/(eu + e~u).
3. coth2 u -  csch2 u = 1.
4. tanh2 u + sech2 u = 1.
5. csch2 u -  sech2 u = csch2 u sech2 u.
6. sinh(w ± v) = sinh u cosh v ± cosh u sinh v.
7. cosh(w ± v) = cosh u cosh v ± sinh u sinh v.
8. d(cosh u)/du = sinh u, d(sinh u)!du = cosh u.

( b )  Consider a unit circle x2 + y 2 = 1 and a unit equilateral hyperbola 
x2 -  y 2 = 1, as pictured in Figure 112. Represent the sector area OPAP' 
by u. Show that, for the circle, x = cos u, y = sin w, and for the 
hyperbola, x = cosh u, y = sinh u, where (x,y) are the coordinates of P.
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FIGURE 112

12.11 The Witch of Agnesi

The witch of Agnesi may be neatly described as the locus of a point P as 
follows. Consider a circle of radius a and having a diameter OK lying along the 
positive y-axis, where O is the origin of coordinates. Let a variable secant OA 
through O cut the circle again in Q and cut the tangent at K  to the circle in A. 
The curve is then the locus of the point P of intersection of the lines QP and 
AP , parallel and perpendicular, respectively, to the x-axis.

(a) Show that the equation of the above witch is y(x2 + a2) = a3.
(b) Show that the above witch is symmetric in the y-axis and has the x-axis 

as an asymptote.
(c) Show that the area between the witch and its asymptote is ira2—that is, 

exactly four times the area of the associated circle.
(d) Show that the centroid of the area in (c) lies at the point (0,<z/4)—that 

is, one-fourth the way from O to K.
(e) Show that the volume generated by rotating the witch about its asymp

tote is 7r2a 3/ 2 .
(f) Show that the points of inflection of the witch occur where OQ makes 

angles of 60° with the asymptote.
An associated curve called the pseudo-witch is obtained by dou

bling the ordinates of the above witch. This curve was studied by James 
Gregory in 1658 and was used by Leibniz in 1674 in deriving his famous 
expression *

TT

4
* l l l
1 ~ 3  + 5 ~ 7  +
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12.12 Lagrange and Analytic Geometry

Lagrange gave (essentially) the formulas

X\
A = (1/2) *2

y  i

*3 ?3

1
1
1

and V -  (1/6)

X\ y \ Z\ l
*2 y i Z2 l
*3 J3 Zl l
*4 J4 Z4 l

for the area A of the triangle whose vertices are the points (Tj,yi),
( jc3 , y 3)  and the volume V of the tetrahedron whose vertices are the points 

(X2 ,y2 ,zi), (x3,y3,zi), (xA,yA,ZA)- He also gave the formula

p  _  ap + bq + cr — d 
V<z2 + b2 + c2

for the distance D of the point (p,q,r) from the plane ax + by + cz = d.
(a) Establish the formula for the area of a triangle.
(b) Establish the formula for the distance of a point from a plane.

12.13 Buffon’s Needle Problem

A problem proposed and solved by Comte de Buffon in 1777 is as follows: Let a 
homogeneous uniform needle of length / be tossed at random onto a horizontal 
plane ruled with parallel lines spaced at a distance a >  l apart. What is the 
probability that the needle will intersect 1 of the lines?

Let us assume that “at random” here means that all points of the center of 
the needle and all orientations of the needle are equally probable and that these 
2 variables are independent. Let jc denote the distance of the center of the 
needle from the nearest of the parallel lines, and let </> denote the needle’s 
orientation referred to the direction of the parallel lines.

(a) Show, from Figure 113(1), that the needle will intersect a line if and 
only if jc <  (1/2)/ sin </>.

(b) In a plane with rectangular Cartesian coordinates t and </>, consider 
[see Figure 113(2)] the rectangle OA, whose interior points satisfy the 
inequalities

0 <  x <  a l l , 0 <  cj) <  77.

To each point in this rectangle corresponds 1 and only 1 position (t) 
and orientation (</>) of the needle; to each point in the shaded area of 
Figure 113(2) corresponds 1 and only 1 position (x) and orientation (</>) 
of the needle such that the needle intersects 1 of the parallel lines. 
Show that the probability we seek is the ratio of the shaded area to the 
total area of the rectangle OA.
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(c) Now show that the desired probability is given by

21
7ra '

(d) Laplace, in his Theorie analytique des probabilities of 1812, extended 
Buffon’s result by showing that if we have 2 orthogonal sets of equidis
tant parallel lines, the distance being a for one set and b for the other, 
then the probability p that a randomly tossed needle of length l <  a,b 
will fall on one of the lines is

P  =
2l(a + b) -  l2 

7rab

Obtain Buffon’s result by letting b —> °° in Laplace’s result.
Under the date 1777 in the chronology of t t  given in Section 4-8, 

we pointed out how experimenters have approximated t t  by using Buf
fon’s result.

12.14 Random Chord in a Circle

This problem study illustrates the difficulty frequently encountered in deciding, 
in a geometrical probability problem, what set of equally likely cases is most 
desirable. Consider the following problem: What is the probability that a ran
dom chord drawn in a given circle is longer than a side of an inscribed equilat
eral triangle?

(a) Choose any point A on the given circle and draw the random chord 
through A. Assuming that all chords through A are equally likely, show 
that the sought probability is 3.

(b) Choose any direction d  and draw the random chord parallel to d. As
suming that all chords parallel to d are equally likely, show that the 
sought probability is £.
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(c) Choose any point inside the given circle for the midpoint of the random 
chord, and draw the chord. Assuming that all points inside the given 
circle are equally likely as midpoints, show that the sought probability 
is ?.

12.15 The Method of Least Squares

As a simple case of a basic problem in the method of least squares, suppose 
observations have led to n >  2 approximate linear equations

a{x + bty + Ci = 0, i = 1, 2, . . . , n,

satisfied by the two variables jc and y. Then, by arguments based on the theory 
of probability, it has been shown that the “best” values to adopt for jc and y are 
those given by the simultaneous solution of the two equations

(2a/2)x + (Zaibdy + 2a/c, = 0,

(2 btadx + (2b/2)y + 2  ft/c, = 0.

(a) Using the method of least squares, find the “best” values of jc and y 
satisfying the system

x — y + 1 = 0,

3jc — 2y -  2 = 0,
2x + 3y -  2 = 0,

2x — y = 0.

(b) In determining the coefficient c of linear expansion of a certain bar of 
metal, the length of the bar was measured at different temperatures, 
yielding the following table:

Temperature 
(degrees centigrade)

Observed Length 
(millimeters)

20 1000.22
40 1000.65
50 1000.90
60 1001.05

Letting L0 denote the length of the bar at 0°C and L the length at any 
temperature J, we have

U + T c -  L.

Find, by the method of least squares, the “best” value of c furnished 
by the given measurements.
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(c) Show that if, in the formulas introduced at the start of this Problem 
Study, we should take n = 2, then the “best” values for x and y are 
given by the simultaneous solution of the 2 equations

a\x + b\y + cj = 0, a2x + b2y + c2 = 0.

12.16 Some Mongean Geometry

The interested student is invited to try to establish, either synthetically or 
analytically, the following theorems:

(a) The sum of the squares of the orthogonal projections of a planar area 
upon 3 mutually perpendicular planes is equal to the square of the 
planar area.

(b) Monge’s theorem on the tetrahedron, as stated in Section 12-9.
(c) Mannheim’s theorem. The 4 planes determined by the 4 altitudes of a 

tetrahedron and the orthocenters of the corresponding faces concur in 
the Monge point of the tetrahedron.

(d) The Monge point of a tetrahedron is equidistant from any altitude of the 
tetrahedron and the perpendicular to the corresponding face at its or
thocenter.

(e) The center of the sphere determined by the midpoints of the medians of 
a tetrahedron lies on the Euler line of the tetrahedron. (The line con
taining the circumcenter, the centroid, and the Monge point has be
come known as the Euler line of the tetrahedron.)

(f) The Monge point and centroid of a tetrahedron coincide if and only if 
the tetrahedron is isosceles. (A tetrahedron is isosceles when and only 
when each edge of the tetrahedron is equal to its opposite edge.)

(g) The 5 lines joining each of 5 given cospherical points with the Monge 
point of the tetrahedron determined by the remaining 4 given points are 
concurrent.

12.17 Sensed Magnitudes

Carnot introduced the systematic use of sensed magnitudes in his Geometrie de 
position of 1803. Under this concept, we choose on each line, for example, 1 
direction as the positive direction and the other as the negative direction. A 
segment AB on the line is then considered positive or negative according as the 
direction along the line from point A to point B is the positive or the negative 
direction of the line. Using sensed line segments, we then have AB = —BA and 
AB + BA = 0. Establish the following theorems wherein all segments are 
sensed segments.

(a) For any 3 collinear points A, B , C, AB + BC + CA = 0.
(b) Let O be any point on the line of the segment AB. Then AB = OB -  

OA.
(c) Euler’s theorem (1747). If A, B> C, D are any 4 collinear points, then 

CAD)(BC) + (BD)(CA) + (CD)(AB) = 0.
(d) If A, B, P  are collinear and M  is the midpoint of AB , then PM  = 

(PA + PB)/2.
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(e) If O, A, B, C are collinear and OA + OB + OC = 0, and if P is any point 
on the line AB, then PA + PB + PC = 3 PO.

(f) If on the same line we have OA + OB + OC = 0 and O'A' + O’B’ + 
O'C' = 0, then AA ’ + BB' + CC’ = 3 OOf.

(g) If A, B, C, are collinear and P, Q, R are the midpoints of BC, CA, AB, 
respectively, then the midpoints of CR and PQ coincide.

(h) If 2 lines through a point P cut a circle in points A and B and in points C 
and D, respectively, then (PA)(PB) = (PC)(PD).

12.18 Carnot’s Theorem

(a) State Carnot’s theorem (see Section 12-9) for a triangle intersected by 
an n-ic (an algebraic curve of degree n).

(b) State the generalization of Carnot’s theorem wherein the triangle is 
replaced by an arbitrary polygon.

(c) Through any point O, not on a given n-ic, 2 lines are drawn in fixed 
directions cutting the n-ic in P \ , P2, . . . , Pn and Q \, Q2, . . . , Qn, 
respectively. Show, by employing an oblique Cartesian coordinate sys
tem with axes parallel to the 2 given directions, that

{OPx){OP2) . . . {OPn)l{OQx){OQ2) . . . (OQn) 

is independent of the position of O.
(d) Using (c), prove the generalization of Carnot’s theorem given in (b).

Essay Topics

12/1 Famous mathematical families.
12/2 Inscriptions found on mathematicians’ tombstones.
12/3 L’Hospital and his rule.
12/4 How the logarithmic (or equiangular) spiral reproduces itself.
12/5 Bishop George Berkeley (1685-1753).
12/6 Colin Maclaurin (1698-1746).
12/7 The little-known William Whiston (1667-1752).
12/8 James Stirling (1692-1770) and his formula.
12/9 The Euler-Diderot anecdote.
12/10 Euler diagrams versus Venn diagrams.
12/11 Euler as a writer of great textbooks.
12/12 Who was the most eminent mathematician of the eighteenth century? 
12/13 Napoleon Bonaparte and mathematics.
12/14 The story of d’Alembert’s christening.
12/15 The St. Petersburg and Berlin Academies.
12/16 Legendre’s influence on the teaching of geometry in America.
12/17 Thomas Carlyle and mathematics.
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12/18 Guido Grandi (1671-1742) and his rosaces curves.
12/19 Nicholas Saunderson (1682-1739), the blind mathematician of Cam

bridge.
12/20 Pierre Louis Moreaux de Maupertuis (1698-1759), the “earth flat

tened ”
12/21 Gabriel Cramer (1704-1752).
12/22 Thomas Simpson (1716-1761), the weaver mathematician.
12/23 John Wilson (1741-1793) and his single mathematical accomplish

ment.
12/24 Jean Etienne Montucla (1725-1799), an early historian of mathe

matics.
12/25 Alexandre Theophile Vandermonde (1735-1796).
12/26 Jean-Baptiste Joseph Delambre (1749-1822).
12/27 Sylvestre Francois Lacroix (1765-1845).
12/28 Three outstanding French mathematicians who supported the Revolu

tion.
12/29 Weights and measures before the metric system.
12/30 Definitions of are, stere, liter, gram, carat.
12/31 Pierre Mechain’s tragic error.
12/32 History of the dollar mark.
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Cultural Connection

THE INDUSTRIAL REVOLUTION
The Nineteenth Century
(to accompany Chapters Thirteen
and Fourteen)

here have been two great global revolutions in world history (global in the 
sense that they profoundly altered human culture and society across the entire 
world)—the Agricultural Revolution of the third century B.C. and the Indus
trial Revolution of the nineteenth century A.D.

In Cultural Connection II, we explored the Agricultural Revolution that 
began around 3000 B.C. in Egypt, China, and the Middle East. Before that, 
people had lived as hunters and gatherers, scattered in small bands across vast, 
grassy savannas, constantly moving from place to place in search of food. Pre- 
agricultural people could not read or write, and scientific knowledge was mini
mal. After 3000 B.C., people started to become sedentary farmers. They in
vented writing, machines, and complex political systems. Human civilization 
was irrevocably changed, and humankind lived primarily as agriculturalists for 
almost 5000 years. To be sure, not everyone was a farmer; there were also 
soldiers, artisans, poets, kings, merchants, scientists, and philosophers. Yet, 
most people cultivated the soil for a living, and agriculture remained the princi
pal focus of human endeavor.

The Industrial Revolution of the nineteenth century changed the world. It 
signaled a thorough-going reorganization of human civilization. No longer 
would farmers constitute the majority of the population; no longer would agri
culture remain the bedrock of human economies. Instead, the age of plants, 
draught animals, and fields was supplanted by the epoch of the machine. Indus
trial workers became the largest segment of the labor force, and industry as
sumed the status of economic bulwark.

The Industrial Revolution brought far-reaching social changes in its 
wake—among them industrial capitalism; increased urbanization; the factory 
system; mammoth corporations; the emergence of a new social class, the prole
tariat, or industrial workers; global imperialism on an unprecedented scale; 
impressive technological breakthroughs; a more mechanistic world view; and, 
in an attempt to reclaim some of the old, preindustrial values, romanticism. 
Let’s briefly examine the Industrial Revolution in terms of its causes, the 
process whereby it came about, and its effects on human civilization.
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The Causes of the Industrial Revolution

According to economic historians, in order for industrialization to occur natu
rally, several factors must be present: an appropriate technology, accumulated 
investment capital, markets for industrial products, a large pool of workers, an 
efficient means of transporting raw materials and finished goods in bulk, and a 
social climate conducive to entrepreneurial activity. Some of these things had 
existed in Europe for several centuries. Historian Jean Gimpel, in his book The 
Medieval Machine (1976), notes that European technology was primed 
for industrialization as early as 1300. The development of centralized nation
states in Europe after 1400 provided potential national markets, although 
in some countries, like France, a bewildering array of internal customs 
and taxes on transported merchandise hindered the formation of national 
markets. Investment capital accumulated among wealthy urban elites after 
1500. Canals, relatively efficient and inexpensive means of transporta
tion, existed in Europe even in the Middle Ages. Missing were two things: a 
large available work force, and bourgeois control of European national econ
omies.

The rapid growth of European cities after 1500, with concentrated popula
tions of urban poor, provided a potential work force of substantial size after 
1750. The small factories that had existed in such cities since the Middle Ages 
now had plenty of cheap labor, and many factory owners expanded their busi
nesses. Workers were paid very low wages and worked as many as eighty 
hours each week. Women and children were hired, as they could do the same 
work in a factory as men, but were paid much less. Working conditions were 
dismal and serious accidents were common. Workers lived in unsanitary, dirty 
ghettoes, often in large families crowded into tiny, unheated tenements. Ger
man philosopher Friedrich Engels (1820-1895) was shocked after his visit to 
workers’ homes in the English city of Manchester. He described a scene of 
abject poverty—rat infested buildings, open sewers in the streets, dank work
places, all hidden in back alleys, out of the sight of the middle-class residents of 
the city.

Besides a ready work force, industrialization required an entrepreneurial 
class with access to investment capital, entrenched in positions of authority. At 
the close of the eighteenth century, the bourgeoisie (a French word meaning, 
roughly, urban middle class) emerged as just such a class. The old feudal 
aristocracy had been hostile to commercial enterprise. Their landed estates 
were not easily converted into cash for investment, and the aristocracy profited 
from the heavy taxes, internal customs, and government monopolies that 
discouraged industrialization. After the aristocracy was overthrown in the 
eighteenth century (discussed in Cultural Connection VIII), the bourgeoisie 
in Europe and America assumed control of the financial and (sometimes) 
political institutions in their countries. Once in power, the bourgeoisie 
established a political and economic climate favorable to industrial capi
talism.
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The Course of the Industrial Revolution
Like the Agricultural Revolution, the Industrial Revolution was a historical 
process that took place over the course of many years and that has not yet 
happened in all corners of the globe. Not surprisingly, the Industrial Revolution 
began in England, in about 1750. This was not because England was more 
“advanced” culturally or technologically than other countries. Instead, the 
process started in the island kingdom because, by accident of history, the 
bourgeoisie came to power in England before anywhere else, in the so-called 
Glorious Revolution. From its origins in England, the Industrial Revolution 
diffused into other parts of Europe and America. By 1900, an industrialized 
“core region” comprised parts of England, Scotland, France, Belgium, the 
Netherlands, and Germany. In addition, sections of Italy, the United States, 
and Japan were becoming industrialized.

The Effects of the Industrial Revolution
Mentioned above were some of the effects of the Industrial Revolution: the 
factory system, giant industrial corporations, new socio-economic classes, the 
creation of new fortunes and the crumbling of old ones, even more rapid urban
ization, and a more mechanistic world view. There were more—in fact, we 
could devote many pages just to listing all of the repercussions of industrializa
tion. Some are obvious, like new technologies; others less so, such as global 
imperialism and romanticism. Let us discuss a few of the more important 
effects of the Industrial Revolution.

Global Imperialism. The nineteenth-century industrial nations quickly ran 
short of raw materials for their factories. The textile industries in Belgium and 
England found it necessary to import cotton from the United States and India. 
Iron and steel foundries sought ore and coal abroad. Tin, rubber, and other vital 
materials were either rare or nonexistent in Europe. As a result of such short
ages, factory owners in industrial countries pressured their governments into 
establishing colonies in other parts of the world richer in natural resources. The 
Dutch turned the East Indies into a rubber plantation. England established 
India as a cotton colony, and metal ores were mined in England’s several 
African colonies. The industrial nations were also interested in hewing out 
foreign markets for surplus goods. When countries such as China resisted 
trade, European, American, and Japanese armies arrived to supervise forced 
commerce, the most heinous of which was the opium trade. Furthermore, 
international trade necessitated that the industrial countries establish coaling 
stations around the globe to refuel their merchant ships. During the nineteenth 
century, England, France, Belgium, the Netherlands, Italy, Germany, the 
United States, and Japan all either enlarged existing empires or established new 
ones, mostly in Africa, Asia, and the Pacific islands. In Africa, only Ethiopia 
remained independent; in east Asia, only China, Thailand, and industrializing 
Japan. All of the Pacific islands were colonized.



Increased Industrial Production. Industrial production increased astro
nomically during the nineteenth century. For example, there were just 30,000 
tons of iron made in England in 1770; two million tons were smelted in 1850. 
Although England mined ten million tons of coal in 1800, it produced fifty 
million tons in 1850. Similar rapid increases in industrial production occurred in 
other industrial countries.

The Factory System and Social Change. The factory system became the 
most common method of producing goods. It was efficient and could turn out 
products in great quantity. At the same time, however, it impoverished many 
workers and led to widespread discontent, manifested in drives to win voting 
rights for industrial workers, the establishment of labor unions, and socialism. 
In 1848, Engels and Karl Marx (1818-1883), in the Communist Manifesto, 
advocated the eventual elimination of industrial capitalism, believing that any 
system responsible for such misery was immoral.

Technological Progress. The Industrial Revolution created a need for new 
technologies, a need met by nineteenth century inventors. The textile industry, 
for example, saw the invention of the flying shuttle (1733), the spinning jenny 
(1764), the water frame (1771), the steam loom (1789), and the cotton gin (1793), 
all before 1800. During the nineteenth century, the steam engine was perfected 
and the gasoline engine invented, railroad transportation developed, steel pro
duction improved, and steamships became common. The airplane was invented 
in 1903, just after the close of the century. There was little, however, to link 
technology to pure science. Most technological breakthroughs were the accom
plishments, not of scientists, but of artisans and tinkerers. Not until the twenti
eth century would pure science and technology merge.

Romanticism. The Age of the Machine did not please everybody. Concur
rent with the beginning of the Industrial Revolution in the mid-eighteenth cen
tury was the Romantic Movement among poets, artists, and other scholars, 
which idealized the past. Romantics considered the Middle Ages to have been 
an age of dashing knights and fair maidens, and spun stories about Robin Hood 
and King Arthur. Among the more influential Romantics were Scots novelist 
Sir Walter Scott (1771-1823), the French writers Rene de Chateaubriand 
(1768-1848) and Victor Hugo (1802-1885), the German author Johann 
Wolfgang von Goethe (1749-1832), and the English poets John Keats (1795— 
1821), Percy Bysshe Shelly (1792-1822), and William Wordsworth (1770- 
1850). In contrast to the emotionless machine, Romantic literature was glori
ously sentimental, and its music dark, brooding, and forceful.
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Summary

The Industrial Revolution that birthed modern society began in the 1700s in 
England. During the nineteenth century, it spread to the European mainland 
and America. As great factories and sprawling cities were built, the structure of 
society changed radically. Among these changes, rapid technological progress 
touched off an era of unprecedented scientific inquiry, especially in mechanics



Cultural Connection IX / The Industrial Revolution 475

and chemistry. Although at first most discoveries were made by artisans and 
tinkerers, by the twentieth century the needs of industry demanded university- 
educated mathematicians and scientists. Not everyone was pleased with the 
Industrial Revolution. Socialists, although not opposed to industrialization, 
decried the unequal division of wealth that characterized the nineteenth cen
tury. Romantics, for their part, advocated a return to past ideals.



Chapter

THE EARLY NINETEENTH 
CENTURY AND THE LIBERATION 
OF GEOMETRY AND ALGEBRA

13-1 The Prince of Mathematicians
A man of awesome mathematical stature and talent, Carl Friedrich Gauss 
straddled the eighteenth and nineteenth centuries like a mathematical Colossus 
of Rhodes. He is universally regarded as the greatest mathematician of the 
nineteenth century and, along with Archimedes and Isaac Newton, as one of 
the three greatest mathematicians of all time.

Carl was born in Brunswick, Germany, in 1777. His father was a hard
working laborer with stubborn and unappreciative views of education. His 
mother, however, though uneducated herself, encouraged the boy in his studies 
and maintained a lifelong pride in her son’s achievements.

Carl was one of those remarkable infant prodigies who appear from time to 
time. It is said that at the age of three he detected an arithmetic error in his 
fathers bookkeeping. There is a story that when Carl was ten years old and in 
the public schools, his teacher, to keep the class occupied, set the pupils to 
adding the numbers 1 through 100. Almost immediately, Carl placed his slate 
on the annoyed teacher’s desk. When all the slates were finally turned in, the 
amazed teacher found that Carl alone had the correct answer, 5050, but with no 
accompanying calculation. Carl had mentally summed the arithmetic progres
sion 1 + 2 + 3 + . .  . + 98 + 99 + 100 by noting that 100 + 1 = 101, 99 + 2 = 
101, 98 + 3 = 101, and so on for fifty such pairs, whence the answer is 50 x 101, 
or 5050. Later in life, Gauss used to claim jocularly that he could figure before 
he could talk.

Gauss’ precocity came to the attention of the Duke of Brunswick, who, as 
a kindly and understanding patron, saw the boy enter the college in Brunswick 
at the age of fifteen, and then Gottingen University at the age of eighteen. 
Vacillating between becoming a philologist or a mathematician (although he 
had already devised the method of least squares a decade before Legendre 
independently published it), his mind was dramatically made up in favor of 
mathematics on March 30, 1796, when he was still a month short of his nine
teenth birthday. The event was his surprising contribution to the theory of the 
Euclidean construction of regular polygons and, in particular, the discovery 
that a regular polygon of seventeen sides can be so constructed. We have 
already told this story in Section 5-6.
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On the same day that Gauss made his discovery concerning regular poly
gons, he commenced his famous mathematical diary, to which he confided in 
cryptic fashion many of his greatest mathematical achievements. Because 
Gauss, like Newton, was both slow and reluctant to publish, this diary, which 
was not found until 1898, had settled a number of disputes on priority. The 
diary contains 146 brief entries, the last dated July 9, 1814. As an illustration of 
the cryptic nature of the entries in the diary consider that for July 10, 1796, 
which reads

EYPHKA! num = A + A + A,

and records Gauss’ discovery of a proof of the fact that every positive integer is 
the sum of three triangular numbers. All the entries of the diary except two 
have, for the most part, been deciphered. The entry for March 19, 1797, shows 
that Gauss had already at that time discovered the double periodicity of certain 
elliptic functions (he was not yet twenty years old), and a later entry shows that 
he had recognized the double periodicity for the general case. This discovery 
alone, had Gauss published it, would have earned him mathematical fame. But 
Gauss never published it!

In his doctoral dissertation, at the University of Helmstadt and written at 
the age of twenty, Gauss gave the first wholly satisfactory proof of the funda
mental theorem of algebra (that a polynomial equation with complex coeffi
cients and of degree n >  0 has at least one complex root). Unsuccessful at
tempts to prove this theorem had been made by Newton, Euler, d’Alembert, 
and Lagrange. The idea behind Gauss’ proof is the replacement of z in a general 
polynomial equation f(z) =  0 by jc +  iy. Then the separation of the real and 
imaginary parts of the resulting equation yields two real equations g(x,y) = 0 
and h(x,y) =  0 in the real variables jc and y. Gauss showed that the Cartesian 
graphs of g(x,y) = 0 and h(x,y) = 0 always have at least one real point of 
intersection (a,b)- It follows that f(z) = 0 has the complex root a + ib. The 
proof involves geometrical considerations. Almost twenty years later, in 1816, 
Gauss published two new proofs, and still later, in 1850, a fourth proof, in an 
effort to find an entirely algebraic proof.1

Gauss’ greatest single publication is his Disquisitiones arithmeticae, a 
work of fundamental importance in the modern theory of numbers. Gauss’ 
findings on the construction of regular polygons appear in this work, as does his 
facile notation for congruence (see Problem Study 13.2), and a proof of the 
beautiful quadratic reciprocity law, which says, in terms of the Legendre sym
bol defined toward the end of Section 12-9, that if p = 2P + 1 and q = 2Q + 1 
are unequal odd primes, then

(p \ M p ) =  ( - D ^ .

1 For an English translation o f  the second proof, see David Eugene Sm ith, A Source Book in 
Mathematics (1958), pp. 292-306 . Today it is believed that a proof o f  the fundamental theorem  o f  
algebra must involve topological considerations.



Gauss made notable contributions to astronomy, geodesy, and electricity. 
In 1801, he calculated, by a new procedure and from meager data, the orbit of 
the then recently discovered planetoid Ceres and, in the following year, that of 
the planetoid Pallas. In 1807, he became professor of mathematics and director 
of the observatory at Gottingen, a post that he held until his death. In 1821, he 
carried out a triangulation of Hanover, measured a meridional arc, and in
vented the heliotrope (or heliograph). In 1831, he commenced collaboration 
with his colleague Wilhelm Weber (1804-1891) in basic research in electricity 
and magnetism; in 1833, the two scientists devised the electromagnetic tele
graph.

In 1812, in a paper on hypergeometric series, Gauss made the first system
atic investigation of the convergence of a series. Gauss’ masterpiece on surface 
theory, his Disquisitiones generates circa superficies curvas, appeared in 1827, 
and inaugurated the study of the intrinsic geometry of surfaces in space (see 
Section 14-7). His anticipation of non-Euclidean geometry will be discussed in 
Section 13-7.

Famous is Gauss’ assertion that “ mathematics is the queen of the sci
ences, and the theory of numbers is the queen of mathematics.” Gauss has 
been described as “ the mathematical giant who from his lofty heights embraces 
in one view the stars and the abysses.” In his scientific writing, Gauss was a 
perfectionist. Claiming that a cathedral is not a cathedral until the last piece of 
scaffolding is removed, he strove to make each of his works complete, concise, 
polished, and convincing, with every trace of the analysis by which he reached 
his results removed. He accordingly adopted as his seal a tree bearing only a 
few fruits and carrying the motto: Pauca sed matura {Few, but ripe). Gauss 
chose for his second motto the following lines from King Lear:
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(Library of Congress)
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Thou, nature, art my goddess; to thy laws 
My services are bound.

Gauss believed that mathematics, for inspiration, must touch the real world. As 
Wordsworth put it, “Wisdom oft is nearer when we stoop than when we soar.” 

Gauss died in his home at the Gottingen Observatory on February 23, 
1855, and right after, the King of Hanover ordered that a commemorative 
medal be prepared in honor of Gauss. This seventy-millimeter medal was in 
time (1877) completed by the well-known sculptor and medalist, Friedrich 
Brehmer, of Hanover. On it appears the inscription:

Georgius V. rex Hannoverge 
Mathematicorum principi 

(George V. King of Hanover 
to the Prince of Mathematicians)

Ever since, Gauss has been known as “the Prince of Mathematicians.”
Caspar Wessel (1745-1818), Jean Robert Argand (1768-1822), and Gauss 

were the earliest authors to note the now familiar association of the complex 
numbers with the real points of a plane.2 Wessel and Argand were not profes
sional mathematicians; Wessel was a surveyor, born in Josrud, Norway, and 
Argand was a bookkeeper, born in Geneva, Switzerland.

There is little doubt that priority for the idea is to be credited to Wessel, 
from a paper he presented to the Royal Danish Academy of Sciences in 1797 
and published in that Academy’s Transactions in 1799. Argand’s contribution 
lies in a paper published in 1806 and later, in 1814, reported on in Gergonne’s 
Annales de Mathematiques. But Wessel’s paper lay buried from the general 
mathematical world until it was unearthed by an antiquary some ninety-eight 
years after it was written. It was then republished on the hundredth anniversary 
of its first appearance. This delay in the general recognition of Wessel’s accom
plishment is why the plane of complex numbers came to be called the Argand 
plane, rather than the Wessel plane.

Gauss’ contribution is found in a memoir presented to the Royal Society of 
Gottingen in 1831, and later reproduced in his Collected Works. Gauss pointed 
out that the basic idea of the representation can be found in his doctoral disser
tation of 1799. The claim seems to be well taken and explains why the plane of 
complex numbers is frequently referred to as the Gauss plane.

The simple idea of considering the real and imaginary parts of a complex 
number a + hi as the rectangular coordinates of a point in a plane made 
mathematicians feel much more at ease with imaginary numbers, for these 
numbers could now actually be visualized, in the sense that to each complex 
number there corresponds a point in the plane, and vice versa. Seeing is believ
ing, and former ideas about the nonexistence or fictitiousness of imaginary 
numbers were generally abandoned.

2 The idea, how ever, is latent in a suggestion made by John W allis (1616-1703) as early as 
1673, that pure imaginary numbers should be represented by a line perpendicular to the axis o f  real 
numbers. See F. Cajori, “ H istorical notes on the graphic representation o f  imaginaries before the 
time o f  W esse l,” The American Mathematical Monthly 19 (1912): 167.



Dm

£>i?ect tpnen£  a n a l i> t i f f e  33e f e gn t t t$ ,

et $ Ot f0 a,

# » H n H  f o t n c m m e I i <i 

til

^etpgonecs £>pfegning.

m

€  ft f  P ft r SB e f f e f ,

4 i  attPm aal t  x .

Mishtnham i798.
£rt;f* §i>§ 3o|«it turtle*

Title page of Caspar Wessel’s paper “Om DIrectlonens analytlske Betregning” (“On the 
Analytical Representation of Vectors”) presented at the Royal Danish Academy of 
Sciences in 1797 and published in that Academy’s Transactions in 1799. The article 
presented for the first time the association of the complex numbers with the real points of 
a plane.
(Courtesy of the Department of Rare Books and Special Collections, The University of 
Michigan Library.)

480



13-2 / Germain and Somerville 481

1 3 - 2  Germain and Somerville

We now briefly consider two other mathematicians who, like Gauss, were born 
in the last quarter of the eighteenth century but did their important work in the 
early nineteenth century. These two mathematicians, Sophie Germain and 
Mary Fairfax Somerville, each in her own way helped to further the emancipa
tion of women in mathematics.

Sophie Germain was born in Paris in 1776 and developed a deep interest in 
mathematics. As a woman, she was barred from enrolling at the Ecole Poly
technique. Nevertheless, she procured the lecture notes of various professors 
there, and, from written comments submitted under the male pseudonym M. 
Leblanc, won high praise from Lagrange. In 1816, she was awarded a prize by 
the French Academy for a paper on the mathematics of elasticity. In the mid- 
1820s, she proved that for each odd prime p <  100, the Fermat equation xp + 
yp = zp has no solution in integers not divisible by p. In 1831, she introduced 
into differential geometry the fruitful notion of the mean curvature of a surface 
at a point of the surface (see Section 14-7). Though a much abler mathemati
cian, she is frequently called the Hypatia of the nineteenth century.

Germain corresponded with Gauss under her psuedonym of M. Leblanc 
and was exuberantly commended and complimented by Gauss. It was not until 
some time later that Gauss learned M. Leblanc was a woman. It is sad that 
Gauss and Germain never met, and equally sad that Germain died (in 1831) 
before the University of Gottingen was able to award her the honorary doctor
ate recommended by Gauss.

It is said that Sophie Germain resolved to study mathematics when, during 
the violent days following the fall of the Bastille, she read with fascination the 
life and death of Archimedes during the similarly violent days following the 
siege of Syracuse. In her memoir on elasticity, she remarked: “Algebra is but 
written geometry and geometry is but figured algebra.”

SOPHIE GERMAIN
(David Eugene Smith Collection, 
Rare Book and Manuscript Li
brary, Columbia University)



Mary Fairfax Somerville (1780-1872) was a remarkable self-taught Scots
woman who, on her own, had studied Laplace’s Traite de mecanique celeste 
and was induced by The Society for the Diffusion of Useful Knowledge to write 
a popular exposition of the great work. Though she was almost fifty years old 
and lacked formal training, she produced such a meritorious exposition (com
pleted in 1830 and titled The Mechanisms o f the Heavens) that it ran through 
many printings and became for close to a century required reading for students 
of mathematics and astronomy in the British universities. The work contains 
full mathematical explanations and diagrams to render Laplace’s difficult work 
comprehensible. This necessary mathematical background was later (in 1832) 
issued separately under the title A Preliminary Dissertation on the Mechanisms 
of the Heavens.

To point up the absurd difficulties suffered by women during the nine
teenth century, there is the story that as a young woman Mary Somerville 
wanted a copy of Euclid’s Elements but had to get a male friend to purchase it 
at a bookstore, Euclid being considered improper reading for a young lady. She 
married at 24 to a man with little interest in intellectual pursuits by women. 
Fortunately for mathematics, her husband died after three years of marriage, 
leaving her a substantial sum of money that afforded her the opportunity to buy 
mathematics books. She married again, but this time to a man sympathetic to 
her intellectual activities.

Somerville was eventually granted a governmental pension, and the Royal 
Society of London placed her bust in its Great Hall. The astronomer John 
Couch Adams said that it was a reference in Somerville’s The Mechanisms of 
the Heavens that caused him to consider looking for a new planet (Neptune) to 
explain the observed perturbations of Uranus. Somerville continued to work 
until the day she died, at the age of 92. Somerville College, one of the five 
women’s colleges at Oxford, is named after her.
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13-3 Fourier and Poisson
As we enter the nineteenth century, the number of competent and productive 
mathematicians becomes almost legion, and we are forced to select for discus
sion only a few of the brighter stars in the dazzling mathematical firmament. 
Two of these stars, if not of the first magnitude then certainly of the second, are 
Jean Baptiste Joseph Fourier and Simeon Denis Poisson. Close contempo
raries, these men were both born in France, both worked in applied mathemat
ics, and both held teaching posts at the Ecole Polytechnique.

Fourier was born in Auxerre in 1768 and died in Paris in 1830. The son of a 
tailor, he was orphaned at the age of eight and educated in a military school 
conducted by the Benedictines, where he was given a lectureship in mathemat
ics. He assisted in the promotion of the French Revolution and was rewarded 
by a chair at the Ecole Polytechnique. He resigned from this position so that 
he, along with Monge, could accompany Napoleon on the Egyptian expedition. 
In 1798, he was appointed governor of Lower Egypt. Following the British 
victories and the capitulation of the French in 1801, Fourier returned to France 
and was made prefect of Grenoble. It was while at Grenoble that he started his 
experiments on heat.

In 1807, Fourier presented a paper before the French Academy of Sciences 
that initiated a new and highly fruitful chapter in the history of mathematics. 
The paper dealt with the practical problem of the flow of heat in metallic rods, 
plates, and solid bodies. In the course of the presentation of the paper, Fourier 
made the startling claim that any function, defined in a finite closed interval by 
an arbitrarily drawn graph, can be resolved into a sum of sine and cosine 
functions. To be more explicit, he claimed that any function whatever, no 
matter how capriciously it is defined in the interval (-7r,7r), can be represented 
in that interval by

«o
2 + 2n — I

(an cos nx + bn sin nx),

where the a’s and the b’s are suitable real numbers. Such a series is known as a 
trigonometric series, and was not new to the mathematicians of the time. In
deed, a number of more or less well behaved functions had been shown to be 
representable by such a series. But Fourier claimed that any function defined in 
(-7r,7r) can be so represented. The savants at the Academy were very skeptical 
of Fourier’s claim, and the paper, which was judged by Lagrange, Laplace, and 
Legendre, was rejected. However, to encourage Fourier to develop his ideas 
more carefully, the French Academy made the problem of heat propagation the 
subject of a grand prize to be awarded in 1812. Fourier submitted a revised 
paper in 1811, which was judged by a group containing, among others, the 
former three judges, and the paper won the prize, though it was criticized for 
lack of rigor and so was not recommended for publication in the Academy’s 
Me moires.
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Resentful, Fourier continued his researches on heat, and, in 1822, after a 
move to Paris in 1816, he published one of the great classics of mathematics, his 
Theorie analytique de la chaleur (The Analytical Theory of Heat). Two years 
after the publication of his great work, Fourier became secretary of the French 
Academy, and, in that capacity, was able to have his 1811 paper published in its 
original form in the Academy’s Me moires.

Although it has been shown that Fourier’s claim that any function can be 
represented by a trigonometric series (or Fourier series, as they are commonly 
called today) is too extravagant, the class of functions so representable is very 
broad indeed. The Fourier series have proved to be highly valuable in such 
fields of study as acoustics, optics, electrodynamics, thermodynamics, and 
many others, and they play a cardinal role in harmonic analysis, beam and 
bridge problems, and in the solution of differential equations. In fact, it was the 
Fourier series that motivated the modern method in mathematical physics in
volving the integration of partial differential equations subject to boundary 
conditions. In Section 15-3, we shall see the important role played by the 
Fourier series in the evolution of the function concept.

In an unpublished work that was edited and posthumously published in 
1831, we find, among other original matters, Fourier’s work on the position of 
the roots of a polynomial equation (considered in present-day texts on the 
theory of equations). This subject had interested him off and on since 1789. 
Fourier’s contemporary, Sadi Carnot (1796-1832), son of the eminent geometer 
discussed in Section 12-10, also interested himself in the mathematical theory 
of feat? which initiated the modern theory of thermodynamics.

Lord Kelvin (William Thomson, 1824-1907) claimed that his whole career 
in mathematical physics was influenced by Fourier’s work on heat, and Clerk
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Maxwell (1831-1879) pronounced Fourier’s treatise “a great mathematical 
poem.”

An amusing story is told about Fourier and his interest in heat. It seems 
that from his experience in Egypt, and maybe his work on heat, he became 
convinced that desert heat is the ideal condition for good health. He accord
ingly clothed himself in many layers of garments and lived in rooms of unbear
ably high temperature. It has been said by some that this obsession with heat 
hastened his death, by heart disease, so that he died, thoroughly cooked, in his 
sixty-third year.

Perhaps Fourier’s most quoted sentence (it appeared in his early work on 
the mathematical theory of heat) is: “The deep study of nature is the most 
fruitful source of mathematical discovery.”

Poisson was born in Pithiviers in 1781 and died in Paris in 1840. He was 
educated by his father, a private soldier who on retirement received a small 
administrative post in his village and, when the French Revolution broke out, 
assumed the governing of the place. Relatives wished to press the young Pois
son, much against his own wishes, into medicine. The education was under
taken by an uncle, who started the boy off with pricking veins in cabbage leaves 
with a lancet. When he had perfected himself in this, he was graduated to 
putting on blisters. But in almost the first case in which he did this by himself, 
his patient died within a few hours. Although the doctors assured him that 
“The event was a very common one,” he vowed to have nothing more to do 
with the profession.

Strong mathematical interests led Poisson in 1798 to enter the Ecole Poly
technique to study the subject, where his abilities impressed Lagrange and 
Laplace. Upon graduation, he was made a lecturer at the Ecole Polytechnique.

SIMEON POISSON
(David Smith Collection)



The rest of his life was spent in various government posts and professorships. 
Somewhat of a socialist, he remained a staunch republican until 1815, when he 
joined the legitimists.

Poisson’s mathematical publications were numerous, numbering between 
300 and 400. His chief treatises are his two-volume Traite de mecanique, pub
lished in 1811 and 1833, his Theorie nouvelle de Taction capillaire of 1831, his 
Theorie mathematique de la chaleur of 1835, and his Recherches sur la proba
bility des jugements of 1837. In his papers, he considered such matters as the 
mathematical theory of electricity and magnetism, physical astronomy, the 
attraction of ellipsoids, definite integrals, series, and the theory of elasticity. 
The student encounters Poisson's brackets (in differential equations), Pois
son's constant (in electricity), the Poisson ratio (in elasticity), Poisson's inte
gral and Poisson's equation (in potential theory), and Poisson's law (in proba
bility theory).

A droll story links Poisson to one of his professional interests. When a 
boy, he was put in the care of a nurse. One day, when his father came to see 
him, the nurse had gone out and left the youngster suspended by his straps to a 
nail in the wall—to protect the boy, the nurse said, from the disease and dirt of 
the floor. Poisson said that his gymnastic efforts when thus suspended caused 
him to swing back and forth, and it was in this way that he early became 
familiar with the pendulum, the study of which occupied much of his later life.

Poisson once remarked: “ Life is good for only two things, discovering 
mathematics and teaching mathematics.” He excelled in both pursuits.
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13-4 Bolzano
Bernhard Bolzano was born in 1781 in Prague, Czechoslovakia, where he died 
in 1848. He became a priest, but was unfrocked for heresy and dismissed from 
his teaching post as professor of religion at the University of Prague. He had a 
leaning toward logic and mathematics, especially analysis, and can be consid
ered a forerunner of the “arithmetization of analysis” (see Section 14-9). In 
fact, by 1817 he was so fully aware of the need for rigorization in analysis that 
Felix Klein later referred to him as “The Father of Arithmetization” .

Unfortunately, Bolzano’s mathematical work was largely ignored by his 
contemporaries, and many of his results awaited later rediscovery. In 1843, for 
example, he produced a function continuous in an interval, but surprisingly, 
having no derivative at any point of the interval. His function didn’t become 
known, and it is Weierstrass, about forty years later, who is usually credited for 
the first example of this kind. There is in analysis a famous theorem that bears 
both of these mathematicians’ names, the Bolzano-Weierstrass theorem, which 
says that every bounded infinite set of points contains at least one accumulation 
point. The theorem was first proved by Weierstrass in his Berlin lectures of the 
1860s and is basic in the foundations of set theory. The highly useful intermedi
ate-value theorem of the calculus is often referred to as Bolzano’s theorem. 
This theorem says that if / ( jc)  is a real-valued continuous function in an open
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interval R , and takes on the values a and at a and b in R, then /  takes on any 
value y  lying between a and /3 at at least one point c in R between a and b.

Bolzano discussed a number of examples analogous to Galileo’s paradox 
concerning the one-to-one correspondence between the positive integers and 
their squares (see Problem Study 9.7(c)), and he seems to have recognized that 
the infinity of the set of all real numbers is of a type different from the infinity of 
the set of all integers. In a posthumous work of 1850, Paradoxien des Unendli- 
chen (Paradoxes o f  the Infinite), Bolzano exhibited many important properties 
of infinite sets.

There is an amusing story told about Bolzano when he once was suffering 
from an illness manifested by bodily aches and chills. To take his mind off his 
troubles, he picked up Euclid’s Elements and for the first time read the mas
terly exposition of the Eudoxian doctrine of ratio and proportion set out in 
Book V. Lo and behold, his pains vanished. It has been said that after that, 
when anyone became similarly discomforted, Bolzano would recommend that 
the ill one read Euclid’s Book V.

13-5 Cauchy
With Lagrange and Gauss, the nineteenth-century rigorization of analysis got 
under way. This work was considerably furthered and strengthened by the 
great French mathematician Augustin-Louis Cauchy, the most outstanding an
alyst of the first half of the nineteenth century.

Cauchy was born in Paris in 1789 and received his early education from his 
father. Later, at the Ecole Centrale du Pantheon, he excelled in ancient classi
cal studies. In 1805, he entered the Ecole Poly technique and won the admira-

AUGUSTIN-LOUIS CAUCHY
(David Smith Collection)



tion of Lagrange and Laplace. Two years later, he enrolled at the Ecole des 
Ponts et Chaussees, where he prepared himself to be a civil engineer. Under 
the persuasion of Lagrange and Laplace, he decided to give up civil engineering 
in favor of pure science and accepted a teaching post at the Ecole Polytech
nique.

Cauchy wrote extensively and profoundly in both pure and applied mathe
matics, and he can probably be ranked next to Euler in volume of output. His 
collected works contain, in addition to several books, 789 papers, some of 
which are very extensive works, and fill twenty-four large quarto volumes. This 
work is of uneven quality; consequently, Cauchy (quite unlike the case of 
Gauss) has been criticized for overproduction and over-hasty composition. A 
story is told in connection with Cauchy’s prodigious productivity. In 1835, the 
Academy of Sciences began publishing its Comptes rendus. So rapidly did 
Cauchy supply this journal with articles that the Academy became alarmed 
over the mounting printing bill and accordingly passed a rule, still in force 
today, limiting all published papers to a maximum length of four pages. Cauchy 
had to seek other outlets for his longer papers, some of which exceeded a 
hundred pages.

Cauchy’s numerous contributions to advanced mathematics include re
searches in convergence and divergence of infinite series, real and complex 
function theory, differential equations, determinants, probability, and mathe
matical physics. His name is met by the student of calculus in the so-called 
Cauchy root test and Cauchy ratio test for convergence or divergence of a 
series of positive terms, and in the Cauchy product of two given series. Even in 
a first course in complex function theory, one encounters the Cauchy inequal
ity, Cauchy's integral formula, Cauchy's integral theorem, and the basic 
Cauchy-Riemann differential equations.

Much of the treatment in our present-day college calculus texts, such as 
the basic concepts of limit and continuity, is due to Cauchy. Cauchy defined the 
derivative, with respect to jc, of y = / ( jc) as the limit, when At —» 0, of the 
difference quotient
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Ay = f (x  + At ) -  f(x)
At At

Although he was well aware of the operational facility of differentials, he rele
gated them to a secondary role. If dx is a finite quantity, he defined dy of y = 
/ ( t ) simply to be f'(x)dx. Whereas during the eighteenth century integration 
was generally treated as the inverse of differentiation, Cauchy preferred to 
define the definite integral as the limit of the sum of an infinitely increasing set 
of vanishingly small parts, much as we do today. The relation between an 
integral and an antiderivative was then established by the theorem of mean 
value.

Cauchy’s contributions to determinant theory, starting with a large eighty- 
four page memoir in 1812, mark him as the most prolific contributor in this field. 
It was in his 1812 paper that Cauchy gave the first proof of the important and
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useful theorem that if A and B are both n x n matrices, then \AB\ = |A||Z?|. 
Incidentally, it was Cauchy who, in 1840, introduced the word “characteristic” 
into matrix theory, by calling the equation |v4 — X/| = 0 the characteristic 
equation of matrix A.

Cauchy’s work exhibits great attention to rigor, and as such was largely 
responsible for inspiring other mathematicians to attempt the banishment of 
blind formal manipulation and of intuitive proofs from analysis.

Cauchy was an ardent partisan of the Bourbons and, after the revolution of 
1830, was forced to give up his professorship at the Ecole Polytechnique and 
was excluded from public employment for eighteen years. Part of this time he 
spent in exile in Turin and Prague, and part in teaching in some church schools 
in Paris. In 1848, he was allowed to return to a professorship at the Ecole 
Polytechnique without having to take the oath of allegiance to the new govern
ment. In religion, he was bigoted; he spent much of his time trying to convert 
others to his particular belief. Throughout his life, he was an indefatigable 
worker, and it is regrettable that he possessed a narrow conceit and often 
ignored the meritorious efforts of younger men. Nevertheless, on the other side 
of the coin, it should be pointed out that in 1843 Cauchy published, in the form 
of an open letter, a magnificent defense of freedom of conscience and thought. 
This letter helped to bring home to the government the stupidity of academic 
repression, and when Louis Philippe was ousted, one of the first acts of the 
succeeding Provisional Government was to abolish the detestable oath of alle
giance.

Cauchy died suddenly on May 23, 1857, when he was sixty-eight years old. 
He had gone to the country to rest and to cure a bronchial trouble, only to be 
smitten by a fatal fever. Just before his death, he was talking with the Arch
bishop of Paris. His last words, addressed to the Archbishop, were: “ Men pass 
away, but their deeds abide.”

13-6 Abel and Galois
It is natural, for one reason or another, to associate certain men in the history 
of mathematics in pairs. Such was the case with Harriot and Oughtred (two 
contemporary English algebraists), Wallis and Barrow (two immediate prede
cessors of Isaac Newton in the field of the calculus), Taylor and Maclaurin (two 
contemporary British mathematicians chiefly known for their contributions to 
infinite series expansions), Monge and Carnot (two contemporary French ge
ometers), and Fourier and Poisson (two contemporary researchers in mathe
matical physics). Another such pair was Niels Henrik Abel and Evariste Ga
lois. These two men, though contemporaries, are not related by nationality or 
similar mathematical interest; each, like a streaking meteor in the mathematical 
heavens, flashed to an early brilliance and then was suddenly and pathetically 
extinguished by premature death, leaving remarkable material for future mathe
maticians to work upon. Abel died of tuberculosis and malnutrition in his 
twenty-sixth year, and Galois died in a foolish duel in his twenty-first year; 
neither man was properly appreciated during his lifetime for his genius.



Abel, born in 1820 at Findo in Norway, was the son of a country minister. 
When a student in Christiania, he thought he had discovered how to solve the 
general quintic equation algebraically, but soon corrected himself in a famous 
pamphlet published in 1824. In this early paper, Abel established the impossi
bility of solving the general quintic equation by means of radicals, thus finally 
laying to rest a difficult problem that had puzzled mathematicians from Bom- 
belli to Viete (see Section 8-8). As a result of this paper, Abel obtained a small 
stipend that permitted him to travel in Germany, Italy, and France. During 
these travels, he wrote a number of papers in various areas of mathematics, 
such as on the convergence of infinite series, on the so-called Abelian integrals, 
and on elliptic functions.

Abel’s researches on elliptic functions arose in exciting and friendly com
petition with Jacobi. The older Legendre, who had done pioneer work on 
elliptic functions, was deeply impressed with Abel’s discoveries. Luckily Abel 
secured an outlet for his papers in the newly founded Journal fiir die reine und 
angewandte Mathematik (more popularly known as Crelle’s Journal); in fact, 
the first volume of the journal (1826) contained no less than five of Abel’s 
papers, and the second volume (1827) contained Abel’s work that gave birth to 
the theory of doubly periodic functions.

Every student of analysis encounters Abel's integral equation and Abel's 
theorem on the sum of integrals of algebraic functions that leads to Abelian 
functions. In infinite series work, there is Abel's convergence test and Abel's 
theorem on power series. In abstract algebra, commutative groups are today 
called Abelian groups.

Plagued by poverty all his life and suffering from a pulmonary condition, 
Abel was unable to obtain a teaching position. He died tragically at Froland in
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Norway in 1829. Two days after his death, a delayed letter was delivered in 
which Abel was belatedly offered a teaching post at the University of Berlin.

Although Abel received little recognition from his government when alive, 
he now appears on some of his country’s smaller-denominational postage 
stamps.3 But the mathematicians, in their characteristic manner, have erected 
far more lasting monuments to Abel, for today Abel’s name is perpetuated in an 
abundance of theorems and theories. Of Abel, Hermite once said, “ He has left 
mathematicians something to keep them busy for five hundred years.” Abel’s 
close friend, Mathias Keilhau, conceived the idea of erecting a more conven
tional monument to Abel, at the site of his friend’s last resting place. The visitor 
of today pilgrimaging to Froland Church can see there Kielhau’s monument to 
his friend.

When asked his formula for so rapidly forging ahead to the first ranks of his 
discipline, Abel replied, “ By studying the masters and not their pupils.”

Evariste Galois had an even shorter and more tragic life than did Abel. 
Born near Paris in 1811 as the son of a small-town mayor, he began to exhibit an 
extraordinary mathematical talent shortly after his fifteenth birthday. He tried 
twice to enter the Ecole Polytechnique, but both times was refused admission 
because of his inability to meet the formal requirements of his examiners, who 
completely failed to recognize his genius. Then came another blow; his father, 
feeling himself persecuted by the clerics, committed suicide. Persevering, Ga
lois finally entered the Ecole Normale in 1829 to prepare himself to teach, but, 
drawn by democratic sympathy into the turmoils of the Revolution of 1830, he 
was expelled from school and spent several months in prison. Shortly after his 
release, in 1832, when not yet twenty-one years old, he was manipulated into a 
pistol duel over a love affair and was slain.

Galois mastered the mathematical textbooks of his time with the ease of 
reading novels, went on to the important papers of Legendre, Jacobi, and Abel, 
and then turned to creating mathematics of his own. In his seventeenth year, he 
reached results of great importance, but two memoirs that he sent to the French 
Academy were mislaid and lost, adding to his frustration. A short paper of his 
on equations was published in 1830 and gave results apparently based on a very 
general theory. The night before his duel, fully realizing he would in all proba
bility be killed, he wrote his scientific testament in the form of a letter to one of 
his friends. This testament referred to some of his unpublished discoveries, the

1 Among other mathematicians appearing on postage stamps are Archimedes, Aristotle, 
Farkas Bolyai, Janos Bolyai, Boscovich, Brahe, Buffon, L. N. M. Carnot, N. L. S. Carnot, Ch’ang 
Hong, Ch’unh Chih, Chaplygin, Copernicus, Cristescu, Cusanus, d’Alembert, da Vinci, Descartes, 
de Witt, Durer, Einstein, Euler, Galileo, Gauss, Gerbert, Hamilton, Helmholtz, Hipparchus, Huy
gens, Kepler, Kovalevsky, Krylov, Lagrange. Laplace, Leibniz, Liapunov, Lobachevsky, 
Lorentz, Mercator, Monge, Nasir-ed din, Newton, Ostrogradsky, Pascal, Poincare, Popov, Pytha
goras, Ramanujan, Riese, Stevin, Teixeira, Titeica, and Torricelli. Russia and France have been 
the most generous in representing mathematicians on postage stamps; England has only recently 
done so, and the United States only twice. Da Vinci, Galileo, Copernicus, and Einstein have each 
been represented by four or more different countries.
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later unraveling of which required the talents of some great mathematicians, 
and that turned out to contain the theory of groups and the so-called Galois 
theory of equations. The Galois theory of equations, based upon concepts of 
group theory, supplies criteria for the possibility of solving a geometrical con
struction with Euclidean tools and for the possibility of solving an algebraic 
equation by radicals.

Several of Galois’ memoirs and manuscripts found among his papers after 
his death were published by Joseph Liouville (1809-1882) in 1846 in his Journal 
de mathematique. Full appreciation of Galois’ accomplishments, however, had 
to await until 1870, when Camille Jordan (1838-1922) expounded them in his 
Traite des substitutions, and still later when Felix Klein (1840-1925) and 
Sophus Lie (1842-1899) brilliantly applied them to geometry.4

Galois essentially created the study of groups; he was the first (in 1830) to 
use the word “group” in its technical sense. Researches in the theory of groups 
were then carried on by Augustin-Louis Cauchy (1789-1857) and his succes
sors under the particular guise of substitution groups. With the subsequent 
magnificent work of Arthur Cayley (1821-1895), Ludwig Sylow (1832-1918), 
Sophus Lie, Georg Frobenius (1848-1917), Felix Klein, Henri Poincare (1854- 
1912), Otto Holder (1859-1937), and others, the study of groups assumed its 
independent abstract form and developed at a rapid pace. The notion of group 
came to play a great codification role in geometry (see Section 14-8), and in

4 For a discussion of myths about Galois and his work, see Tony Rothman, “Genius and 
biographers: The fictionalization of Evariste Galois,” The American Mathematical Monthly 89
(1982): 84-106.
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algebra it served as an atomic structure of cohesion that became an important 
factor in the twentieth-century rise of abstract algebra. The theory of groups is 
still, well into the last half of the twentieth century, a very active field of 
mathematical research.

1 3 -7  Jacobi and Dhridilet

The French Revolution, with its ideological break from the past and its many 
sweeping changes, created highly favorable conditions for the growth of mathe
matics. Thus, in the nineteenth century, mathematics underwent a great for
ward surge, first in France and then later, as the motivating forces spread over 
northern Europe, in Germany, and still later in Britain. The new mathematics 
began to free itself from its ties to mechanics and astronomy, and a purer 
outlook evolved. Two notable German mathematicians who played an early 
part in the shift of the center of mathematical activity from France to Germany 
were Carl Gustav Jacob Jacobi (1804-1851) and Peter Gustav Lejeune Dirichlet 
(1805-1859).

Jacobi was bom of Jewish parents in Potsdam in 1804 and was educated at 
the University of Berlin, where he obtained his doctorate in 1825. Two years 
later, he was appointed Extraordinary Professor of Mathematics at Konigs- 
berg, and two years after that was promoted to Ordinary Professor of Mathe
matics there. In 1842, under a pension from the Prussian government, he relin
quished his chair at Konigsberg and moved to Berlin, where he resided until his 
early death in 1851.

Rarely is an outstanding researcher in mathematics also an outstanding 
teacher of mathematics. Jacobi was one of the exceptions and was unquestion-
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ably the greatest university mathematics teacher of his generation, stimulating 
and influencing an unprecedented number of able students. His most celebrated 
researches in mathematics are those concerning elliptic functions. He and Abel 
independently and simultaneously established the theory of these functions, 
and Jacobi introduced what is essentially our present-day notation for them. 
Jacobi, next to Cauchy, was perhaps the most prolific contributor to determi
nant theory. It was with him that the word determinant received final accep
tance. He early used the functional determinant that Sylvester later called the 
Jacobian, and that is encountered by all students of function theory. He also 
contributed to the theory of numbers, the theory of both ordinary and partial 
differential equations, the calculus of variations, the three-body problem, and 
other dynamical problems.

Most students feel that before doing research they should first master what 
has already been accomplished. To offset this notion, and to stimulate early 
interest in independent work, Jacobi would deliver the parable: “ Your father 
would never have married, and you would not be born, if he had insisted on 
knowing all the girls in the world before marrying one." In defending pure 
research against applied research, he remarked, “The real end of science is the 
honor of the human mind.” In imitation of Plato, who said, “God ever geome- 
trizes,’’ Jacobi said, “God ever arithmetizes.’’

Jacobi was always generous in his statements about his great contempo
raries in the field of mathematics. Of one of Abel’s masterpieces he said, “ It is 
above my praise as it is above my own work.”

Dirichlet was born at Diiren in 1805, and successively held professorships 
at Breslau and Berlin. At Gauss’ death in 1855 he was appointed Gauss’ succes
sor at Gottingen, a fitting honor for so talented a mathematician who was a 
former student of Gauss and a lifelong admirer of his mentor. While at Got
tingen, he had hoped to finish Gauss’ incomplete works, but his early death in 
1859 prevented this.

Fluent in both German and French, Dirichlet served admirably as a liaison 
between the mathematics and the mathematicians of the two nationalities. 
Perhaps his most celebrated mathematical accomplishment was his penetrating 
analysis of the convergence of Fourier series, an undertaking that led him to 
generalize the function concept (see Section 15-3). He did much to facilitate 
the comprehension of some of Gauss’ more abstruse methods, and he himself 
contributed notably to number theory; his beautiful Vorlesungen iiber Zahlen- 
theorie still constitutes one of the most lucid introductions to Gauss’ number 
theory investigations. We are indebted to him for applying infinitesimal meth
ods in this branch of mathematics. Dirichlet was a close friend, expositor, 
and admirer, of Jacobi. His name is met by college mathematics majors in 
connection with Dirichlet's series, the Dirichlet function, and the Dirichlet 
principle.

A touching story is told of Dirichlet and his great teacher, Gauss. On July 
16, 1849, exactly fifty years after the awarding to Gauss of his doctorate, Gauss 
enjoyed the celebration at Gottingen of his golden jubilee. As part of the 
“ show,” Gauss, at one point of the proceedings, was to light his pipe with a 
piece of the original manuscript of his Disquisitiones arithmeticae. Dirichlet,
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LEJEUNE DIRICHLET
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who was present at the celebration, was appalled at what seemed to him a 
sacrilege. At the last moment, he boldly rescued the paper from Gauss’ hands 
and treasured the memento the rest of his life; it was found by his editors 
among his papers after he died.

Dirichlet has been described as possessing a noble, sincere, human, and 
modest disposition, but, unlike Jacobi, he seemed unable to communicate with 
young minds. When a schoolmate expressed envy because Dirichlet’s son 
could always receive help from his gifted father, the son gave this lamentable 
but memorable reply: “Oh! My father doesn’t know the little things anymore.” 
Dirichlet’s waggish nephew, Sebastian Hensel, wrote in his memoirs that the 
mathematics instruction he received in his sixth and seventh years at the gym
nasium from his uncle was the most dreadful experience of his life.

Dirichlet was very lax in maintaining family correspondence. When his 
first child arrived, he failed to write of the event to his father-in-law, who was 
living in London at the time. The father-in-law, when he finally found out, 
commented that he thought Dirichlet “ should have at least been able to write 
2 + 1  = 3.” This witty father-in-law was none other than Abraham Mendels
sohn, a son of the philosopher Moses Mendelssohn, and father of the composer 
Felix Mendelssohn.

Dirichlet’s brain, and also that of Gauss, are preserved in the department 
of physiology at Gottingen University.

13-8 Non-Euclidean Geometry
Two very remarkable and revolutionary mathematical developments occurred 
in the first half of the nineteenth century. The first one was the discovery, about 
1829, of a self-consistent geometry different from the customary geometry of



Euclid; the second one was the discovery, in 1843, of an algebra different from 
the familiar algebra of the real number system. We now turn to a consideration 
of these two developments, first discussing the one in the field of geometry.

There is evidence that a logical development of the theory of parallels gave 
the early Greeks considerable trouble. Euclid met the difficulties by defining 
parallel lines as coplanar straight lines that do not meet one another however 
far they may be produced in either direction, and by adopting as an assumption 
his now famous parallel postulate. This postulate (see Section 5-7 for its state
ment) lacks the terseness and simple comprehensibility of the others and in no 
sense possesses the characteristic of being “ self-evident.” Actually, it is the 
converse of Proposition 1 17, and to the early Greeks, it seemed more like a 
proposition than a postulate. Moreover, Euclid made no use of the parallel 
postulate until he reached Proposition 1 29. It was natural to wonder if the 
postulate was really needed at all and to think that perhaps it could be derived 
as a theorem from the remaining nine “axioms” and “postulates,” or, at least, 
that it could be replaced by a more acceptable equivalent.

Of the many substitutes that have been derived to replace Euclid’s parallel 
postulate, the one most commonly used is that made well known in modern 
times by the Scottish physicist and mathematician John Playfair (1748-1819), 
although this particular alternative had been used by others and had even been 
stated as early as the fifth century by Proclus. It is the substitute most fre
quently encountered in present-day high-school geometry texts: Through a 
given point not on a given line can be drawn only one line parallel to the given 
line.5 Some other proposed alternatives for the parallel postulate are (1) There 
exists at least one triangle having the sum o f its three angles equal to two right 
angles. (2) There exists a pair o f similar noncongruent triangles. (3) There 
exists a pair o f straight lines everywhere equally distant from one another. (4) 
A circle can be passed through any three noncollinear points. (5) Through any 
point within an angle less than 60° there can always be drawn a straight line 
intersecting both sides o f the angle.

The attempts to derive the parallel postulate as a theorem from the remain
ing nine “axioms” and “ postulates” occupied geometers for over 2000 years 
and culminated in some of the most far-reaching developments of modern 
mathematics. Many “ proofs” of the postulate were offered, but each was 
sooner or later shown to rest upon a tacit assumption equivalent to the postu
late itself.

The first really scientific investigation of the parallel postulate was not 
printed until 1773, by the Italian Jesuit priest Girolamo Saccheri (1667-1733).

Little is known of Saccheri’s life. He was born in San Remo, showed 
marked precocity as a youngster, completed his novitiate for the Jesuit Order at 
the age of twenty-three, and then spent the rest of his life filling a succession of 
university teaching posts. While instructing rhetoric, philosophy, and theology 
at a Jesuit College in Milan, Saccheri read Euclid’s Elements and became
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enamored with the powerful method of reductio ad absurdum. Later, while 
teaching philosophy at Turin, Saccheri published his Logica demonstrativa, in 
which the chief innovation is the application of the method of reductio ad 
absurdum to the treatment of formal logic. Some years after, while a professor 
of mathematics at the University of Pavia, it occurred to Saccheri to apply his 
favorite method of reductio ad absurdum to a study of Euclid’s parallel postu
late, and he received permission to print a little book entitled Euclides ab omni 
naevo vindicatus (Euclid Freed of Every Flaw), which appeared in Milan in 
1733, only a few months before his death.

In his work on the parallel postulate, Saccheri accepts the first twenty- 
eight propositions of Euclid’s Elements, which, as we noted above, do not 
require the parallel postulate for their proof. With the aid of these theorems, he 
then proceeds to study a quadrilateral ABCD (see Figure 114) in which angles A 
and B are right angles and sides AD and BC are equal. By drawing the diagonals 
AC and BD and then using simple congruence theorems (which are found 
among Euclid’s first twenty-eight propositions), Saccheri easily shows, as can 
any high-school geometry student, that angles D and C are equal. There are, 
then, three possibilities: angles D and C are equal acute angles, equal right 
angles, or equal obtuse angles. These three possibilities are referred to by 
Saccheri as the hypothesis of the acute angle, the hypothesis of the right angle, 
and the hypothesis of the obtuse angle. The plan of the work is to show that the 
assumption of either the hypothesis of the acute angle or the hypothesis of the 
obtuse angle leads to a contradiction; then, by reductio ad absurdum, the 
hypothesis of the right angle must hold. This hypothesis, Saccheri shows, 
implies the parallel postulate. Tacitly assuming the infinitude of the straight 
line, Saccheri readily eliminates the hypothesis of the obtuse angle, but the case 
of the hypothesis of the acute angle proves to be much more difficult. After 
obtaining many of the now classical theorems of so-called non-Euclidean geom
etry, Saccheri lamely forces into his development an unconvincing contradic
tion involving hazy notions about infinite elements. Had he not been so eager to 
exhibit a contradiction here, but rather had admitted his inability to find one, 
Saccheri would today unquestionably be credited with the discovery of non- 
Euclidean geometry. His work was little regarded by his contemporaries and 
was soon forgotten,6 and it was not until 1889 that it was resurrected by his 
countryman, Eugenio Beltrami (1835-1900).

Thirty-three years after Saccheri’s publication, Johann Heinrich Lambert 
(1728-1777) of Switzerland wrote a similar investigation entitled Die Theorie 
der Parallellinien, which, however, was not published until after his death. 
Lambert chose a quadrilateral containing three right angles (half of a Saccheri 
quadrilateral) as his fundamental figure and considered three hypotheses ac
cording as the fourth angle is acute, right, or obtuse. He went considerably

6 There is an alternative explanation, involving an unpleasant insinuation o f  suppression, that 
has been offered to account for the long neglect o f  Saccheri’s m asterpiece. See , for exam ple, E. T. 
Bell, The Magic o f  Numbers, Chapter 25.
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beyond Saccheri in deducing propositions under the hypotheses of the acute 
and obtuse angles. Thus, with Saccheri, he showed that in the three hypotheses 
the sum of the angles of a triangle is less than, equal to, or greater than two right 
angles, respectively, and then, in addition, that the deficiency below two right 
angles in the hypothesis of the acute angle, or the excess above two right angles 
in the hypothesis of the obtuse angle, is proportional to the area of the triangle. 
He observed the resemblance of the geometry following from the hypothesis of 
the obtuse angle to spherical geometry, where the area of a triangle is propor
tional to its spherical excess, and conjectured that the geometry following from 
the hypothesis of the acute angle could perhaps be verified on a sphere of 
imaginary radius. The hypothesis of the obtuse angle was eliminated by making 
the same tacit assumption as had Saccheri, but his conclusions with regard to 
the hypothesis of the acute angle were indefinite and unsatisfactory.

Adrien-Marie Legendre (1752-1833), the eminent eighteenth-century 
French analyst, began anew and considered three hypotheses according as the 
sum of the angles of a triangle is less than, equal to, or greater than two right 
angles. Tacitly assuming the infinitude of a straight line, he was able to elimi
nate the third hypothesis, but, although he made several attempts, he could not 
dispose of the first hypothesis. These various endeavors appeared in the suc
cessive editions of his widely adopted Elements de geometrie, and in this way, 
he did much to popularize the parallel-postulate problem.

It is no wonder that no contradiction was found under the hypothesis of the 
acute angle, for it is now known that the geometry developed from a collection 
of axioms comprising a basic set plus the acute angle hypothesis is as consistent 
as the Euclidean geometry developed from the same basic set plus the hypothe
sis of the right angle; that is, the parallel postulate is independent of the remain
ing postulates and therefore cannot be deduced from them. The first to suspect 
this fact were Gauss of Germany, Janos Bolyai (1802-1860) of Hungary, and 
Nicolai Ivanovitch Lobachevsky (1793-1856) of^Russia. These men ap
proached the subject through the Playfair form of the parallel postulate by 
considering the three possibilities: Through a given point can be drawn more 
than one, or just one, or no line parallel to a given line. These situations are 
equivalent, respectively, to the hypotheses of the acute, the right, and the 
obtuse angle. Again, assuming the infinitude of a straight line, the third case 
was easily eliminated. Suspecting, in time, a consistent geometry under the first
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possibility, each of these three mathematicians independently carried out ex
tensive geometric and trigonometric developments of the hypothesis of the 
acute angle.

It is likely that Gauss was the first to reach penetrating conclusions con
cerning the hypothesis of the acute angle, but since throughout his life he failed 
to publish anything on the matter, the honor of discovering this particular non- 
Euclidean geometry must be shared with Bolyai and Lobachevsky. Bolyai 
published his findings in 1832 in an appendix to a mathematical work of his 
father. Later it was learned that Lobachevsky had published similar findings as 
early as 1829-1830, but, because of language barriers and the slowness with 
which information of new discoveries traveled in those days, Lobachevsky’s 
work did not become known in western Europe for some years. There seems 
little point in discussing here the intricate, and probably unfounded, theories 
explaining how various of these men might have obtained and appropriated 
information of the findings of some other. There was considerable suspicion 
and incrimination of plagiarism at the time.

Janos (or Johann) Bolyai was a Hungarian officer in the Austrian army, 
and the son of Farkas (or Wolfgang) Bolyai, a provincial mathematics teacher 
and long-time personal friend of Gauss. The younger Bolyai undoubtedly re
ceived considerable stimulus for his study of the parallel postulate from his 
father, who had earlier shown an interest in the problem. As early as 1823, 
Janos Bolyai began to understand the real nature of the problem that faced him, 
and a letter written during that year to his father shows the enthusiasm he held 
for his work. In this letter, he discloses a resolution to publish a tract on the 
theory of parallels as soon as he can find the time and opportunity to put the 
material in order, and exclaims, “Out of nothing I have created a strange new 
universe.” The father urged that the proposed tract be published as an appen
dix to his own large two-volume semiphilosophical work on elementary mathe-
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matics. The expansion and arrangement of ideas proceeded more slowly than 
Janos had anticipated, but finally, in 1829, he submitted the finished manuscript 
to his father, and three years later, in 1832, the tract appeared as a twenty-six 
page appendix to the first volume of his father’s work.7 Janos Bolyai never 
published anything further, although he did leave behind a great pile of manu
script pages. His chief interest was in what he called “ the absolute science of 
space,” by which he meant the collection of those propositions that are inde
pendent of the parallel postulate and that consequently hold in both the Euclid
ean geometry and the new geometry.

Nicolai Ivanovitch Lobachevsky spent the greater part of his life at the 
University of Kasan, first as a student, later as a professor of mathematics, and 
finally as rector. His earliest paper on non-Euclidean geometry was published 
in 1829 and 1830 in the Kasan Bulletin, two to three years before Bolyai’s work 
appeared in print. This memoir attracted only slight attention in Russia, and, 
because it was written in Russian, practically no attention elsewhere. Loba
chevsky followed this initial effort with other presentations. For example, in 
the hope of reaching a wider group of readers, he published, in 1840, a little 
book written in German entitled Geometrische Untersuchungen zur Theorie 
der Parallellinien (Geometrical Researches on the Theory of Parallels),8 and 
then still later, in 1855, a year before his death and after he had become blind, 
he published in French a final and more condensed treatment entitled Pan- 
geometrie (Pangeometry).9 So slowly did information of new discoveries 
spread in those days that Gauss probably did not hear of Lobachevsky’s work 
until the appearance of the German publication in 1840, and Janos Bolyai was 
unaware of it until 1848. Lobachevsky himself did not live to see his work 
accorded any wide recognition, but the non-Euclidean geometry that he devel
oped is nowadays frequently referred to as Lobachevskian geometry.

The actual independence of the parallel postulate from the other postulates 
of Euclidean geometry was not unquestionably established until consistency 
proofs of the hypothesis of the acute angle were furnished. These were not long 
in coming and were supplied by Beltrami, Arthur Cayley, Felix Klein, Henri 
Poincare, and others. The method was to set up a model in Euclidean geometry 
so that the abstract development of the hypothesis of the acute angle could be 
given a concrete interpretation in a part of Euclidean space. Then any inconsis
tency in the non-Euclidean geometry would imply a corresponding inconsis
tency in Euclidean geometry (see Problem Study 13.11).

In 1854, Georg Friedrich Bernhard Riemann (1826-1866) showed that if 
the infinitude of a straight line be discarded and merely its boundlessness be
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7 For a translation of this appendix, see R. Bonola, Non-Euclidean Geometry, or D. E. Smith, 
A Source Book in Mathematics, pp. 375-388. Both texts are listed in the Bibliography at the end of 
this chapter.

8 For a translation, see R. Bonola, Non-Euclidean Geometry, which is listed in the Bibliogra
phy at the end of the chapter.

9 For a translation, see D. E. Smith, A Source Book in Mathematics, pp. 360-374, which is 
listed in the Bibliography at the end of the chapter.



13-9 / The Liberation o f Geometry 501

assumed, then, with some other slight adjustments of the remaining postulates, 
another consistent non-Euclidean geometry can be developed from the hypoth
esis of the obtuse angle. The three geometries, that of Bolyai and Lobachevsky, 
that of Euclid, and that of Riemann were given, by Klein in 1871, the names 
hyperbolic geometry, parabolic geometry, and elliptic geometry.

1 3 -9  The Liberation of Geometry10

The immediate consequence of the discovery of an internally consistent 
non-Euclidean geometry was, of course, the final settlement of the ages-old 
problem of the parallel postulate. The parallel postulate was shown to be inde
pendent of the other assumptions of Euclidean geometry and, therefore, could 
not be deduced as a theorem from those other assumptions.

A much more far-reaching consequence than the settlement of the parallel 
postulate problem was the liberation of geometry from its traditional mold. A 
deep-rooted and centuries-old conviction that there could be only the one 
possible geometry was shattered, and the way was opened for the creation of 
many different systems of geometry. The postulates of geometry became, for 
the mathematician, mere hypotheses whose physical truth or falsity need not 
concern him; the mathematician may take his postulates to suit his pleasure, 
just so long as they are consistent with one another. A postulate, as employed 
by the mathematician, was seen to have nothing to do with the characteristics 
of “ self-evidence” or “ truth” that had been assigned to postulates since the 
days of the ancient Greeks. With the possibility of inventing purely “artificial” 
geometries, it became apparent that physical space must be viewed as an em
pirical concept derived from our external experiences and that the postulates of 
a geometry designed to describe physical space are simply expressions of this 
experience, like the laws of a physical science. Euclid’s parallel postulate, for 
example, insofar as it tries to interpret actual space, appears to have the same 
type of validity as Galileo’s law of falling bodies; that is, they are both laws of 
observation that are capable of verification within the limits of experimental 
error.

This point of view, that geometry, when applied to actual space, is an 
experimental science, is in striking contrast to Emmanuel Kant’s (1724-1804) 
theory of space, which dominated philosophical thinking at the time of the 
discovery of the Lobachevskian geometry. The Kantian theory claimed that 
space is a framework already existing in the human mind, and that the postu
lates of Euclidean geometry are a priori judgments imposed on the human 
mind, and that without these postulates, no consistent reasoning about space 
can be possible. That this viewpoint is untenable was incontestably demon

10 The material of this section has been adapted from the fuller treatment given in Chapter 3 of 
Howard Eves and C. V. Newsom, An Introduction to the Foundations and Fundamental Concepts 
o f Mathematics. Revised edition. New York: Holt, Rinehart and Winston, 1965.



502 CHAPTER THIRTEEN /  LIBERATION OF GEOMETRY AND ALGEBRA

strated by the creation of the Lobachevskian geometry. The Kantian theory 
was so prevalent at the time that to entertain a contrary viewpoint labeled one 
something of a crackpot. It was a desire to avoid the carping of “the Boeo
tians” that withheld Gauss from publishing his advanced views of non-Euclid
ean geometry.

The creation of the Lobachevskian geometry not only liberated geometry 
but had a similar effect on mathematics as a whole. Mathematics emerged as an 
arbitrary creation of the human mind and not as something essentially dictated 
to us of necessity by the world in which we live. The matter is very neatly put in 
the following words of E. T. Bell:

In precisely the same way that a novelist invents characters, dialogues, 
and situations of which he is both author and master, the mathematician 
devises at will the postulates upon which he bases his mathematical sys
tems. Both the novelist and the mathematician may be conditioned by 
their environments in the choice and treatment of their material; but 
neither is compelled by an extrahuman, eternal necessity to create certain 
characters or invent certain systems.11

The creation of the non-Euclidean geometry, by puncturing a traditional belief 
and breaking a centuries-long habit of thought, dealt a severe blow to the 
absolute truth viewpoint of mathematics. In the words of Georg Cantor, “ the 
essence of mathematics lies in its freedom.”

13-10 The Emergence of Algebraic Structure
Ordinary addition and multiplication performed on the set of positive integers 
are binary operations; to each ordered pair of positive integers a and b are 
assigned unique positive integers c and d, called, respectively, the sum of a and 
b and the product of a and b , and denoted by the symbols

c = a 4- b, d = a x b.

These two binary operations of addition and multiplication performed on the 
set of positive integers possess certain basic properties. For example, if a, b, c 
denote arbitrary positive integers, we have

1. a + b = b + a, the so-called commutative law o f addition.
2. a x b = b x a, the commutative law o f multiplication.
3. {a 4- b) + c = a 4- (b + c), the associative law o f addition.
4. (a x b) x c = a x (b x c), the associative law o f multiplication.
5. a x (b 4- c) = (a x b) 4- (a x c), the distributive law o f multiplication 

over addition.

n E. T. Bell, The Development o f Mathematics, p. 330.
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In the early nineteenth century, algebra was considered simply symbolized 
arithmetic.12 In other words, instead of working with specific numbers, as we 
do in arithmetic, in algebra we employ letters that represent these numbers. 
The above five properties, then, are statements that always hold in the algebra 
of positive integers. But since the statements are symbolic, it is conceivable 
that they might be applicable to some set of elements other than the positive 
integers, provided we supply appropriate definitions for the two binary opera
tions involved. This is indeed the case (see, for instance, the examples given in 
Problem Study 13.13).

It follows that the five basic properties of positive integers just listed may 
also be regarded as properties of other entirely different systems of elements. 
The consequences of the preceding five properties constitute an algebra appli
cable to the positive integers, but it is also evident that the consequences of the 
five properties constitute an algebra applicable to other systems—that is, there 
is a common algebraic structure (the five basic properties and their conse
quences) attached to many different systems. The five basic properties may be 
regarded as postulates for a particular type of algebraic structure, and any 
theorem formally implied by these postulates would be applicable to any inter
pretation satisfying the five basic properties. Considered from this view, then, 
algebra is severed from its tie to arithmetic, and an algebra becomes a purely 
formal hypothetico-deductive study.

The earliest glimmerings of this modern view of algebra appeared about 
1830 in England, with the work of George Peacock (1791-1858), a Cambridge 
graduate and teacher, and later Dean of Ely. Peacock was one of the first to 
study seriously the fundamental principles of algebra, and in 1830 he published 
his Treatise on Algebra, in which he attempted to give algebra a logical treat
ment comparable to that of Euclid’s Elements, thus winning for himself the title 
of “ the Euclid of algebra.” He made a distinction between what he called 
“arithmetic algebra” and “ symbolic algebra.” The former was regarded by 
Peacock as the study that results from the use of symbols to denote ordinary 
positive decimal numbers, together with signs for operations, like addition and 
subtraction, to which these numbers may be subjected. Now, in “arithmetic 
algebra,” certain operations are limited by their applicability. In a subtraction, 
a -  b, for example, we must have a >  b. Peacock’s “ symbolic algebra,” on the 
other hand, adopts the operations of “arithmetic algebra” but ignores their 
restrictions. Thus, subtraction in “ symbolic algebra” differs from the same 
operation in “arithmetic algebra” in that it is to be regarded as always applica
ble. The justification of this extension of the rules of “arithmetic algebra” to 
“ symbolic algebra” was called, by Peacock, the principle of the permanence of 
equivalent forms. Peacock’s “ symbolic algebra” is a universal “arithmetic 
algebra” whose operations are determined by those of “arithmetic algebra,” so

12 This is still the view  o f algebra as taught in the high schools and frequently in the freshman  
year at college.



far as the two algebras proceed in common, and by the principle of the perma
nence of equivalent forms in all other cases.

The principle of permanence of equivalent forms was regarded as a power
ful concept in mathematics, and it played an historical role in such matters as 
the early development of the arithmetic of the complex number system and the 
extension of the laws of exponents from positive integral exponents to expo
nents of a more general kind. In the theory of exponents, for example, if a is a 
positive rational number and n is a positive integer, then an is, by definition, the 
product of n a's. From this definition, it readily follows that, for any two 
positive integers m and n, a ma n = a m+n. By the principle of permanence of 
equivalent forms, Peacock affirmed that in “ symbolic algebra,” a ma n = a m+n, 
no matter what might be the nature of the base a or of the exponents m and n. 
The hazy principle of permanence of equivalent forms has today been 
scrapped, but we are still often guided, when attempting to extend a definition, 
to formulate the more general definition in such a way that some property of the 
old definition will be preserved.

British contemporaries of Peacock advanced his studies and pushed the 
notion of algebra closer to the modern concept of the subject. Thus, Duncan 
Farquharson Gregory (1813-1844) published a paper in 1840 in which the com
mutative and distributive laws in algebra were clearly brought out. Further 
advances in an understanding of the foundations of algebra were made by 
Augustus De Morgan (1806-1871), another member of the British school of 
algebraists. In the somewhat groping work of the British school, one can trace 
the emergence of the idea of algebraic structure and the preparation for the 
postulational program in the development of algebra. Soon the ideas of the 
British school spread to continental Europe, where in 1867 they were consid
ered with great thoroughness by the German historian of mathematics Her
mann Hankel (1839-1873). Even before HankeFs treatment appeared, how
ever, the Irish mathematician William Rowan Hamilton (1805-1865) and the 
German mathematician Hermann Gunther Grassmann (1809-1877) had pub
lished results that were of a far-reaching character, results that led to the 
liberation of algebra in much the same way that the discoveries of Lobachevsky 
and Bolyai led to the liberation of geometry, and that opened the floodgates of 
modern abstract algebra. This remarkable work of Hamilton and Grassmann 
will be considered in the next section.
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13-11 The Liberation of Algebra
Geometry, we have seen, remained shackled to Euclid’s version of the subject 
until Lobachevsky and Bolyai, in 1829 and 1832, liberated it from its bonds by 
creating an equally consistent geometry in which one of Euclid’s postulates 
fails to hold. With this accomplishment, the former conviction that there could 
be only the one possible geometry was shattered, and the way was opened for 
the creation of many new geometries.

The same sort of story can be told of algebra. It seemed inconceivable, in 
the early nineteenth century, that there could exist an algebra different from the
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common algebra of arithmetic. To attempt, for example, the construction of a 
consistent algebra in which the commutative law of multiplication fails to hold, 
not only probably did not occur to anyone of the time, but had it occurred 
would surely have been dismissed as a purely ridiculous idea; after all, how 
could one possibly have a logical algebra in which a x b is not equal to b x a l  
Such was the feeling about algebra when, in 1843, William Rowan Hamilton 
was forced, by physical considerations, to invent an algebra in which the com
mutative law of multiplication does not hold. The radical step of abandoning 
the commutative law did not come easily to Hamilton; it dawned on him only 
after years of cogitation on a particular problem.

It would take us too far afield to go into the physical motivation that lay 
behind Hamilton’s creation. Perhaps the best approach, for our purposes, is 
through Hamilton’s elegant treatment of complex numbers as real number 
pairs.13 The mathematicians of his time, like most college freshman mathemat
ics students of today, regarded a complex number as a strange hybrid of the 
form a + /?/, where a and b are real numbers and i is some kind of a nonreal 
number such that i2 = —1, and where addition and multiplication of these 
numbers are to be accomplished by treating each complex number as a linear 
polynomial in i, replacing /2, wherever it might occur, by -1 .  In this way, one 
finds, for addition,

(a + hi) + (c + di) = (a 4- c) + (b + d)i, 

and, for multiplication,

(a + bi)(c + di) = ac + adi + bci + bdi2 = (ac — bd) + (ad 4- bc)i.

If these results should be taken as definitions for the addition and multiplication 
of pairs of complex numbers, it is not difficult to show that addition and multi
plication are commutative and associative, and that multiplication is distribu
tive over addition.

Now, since a complex number a + hi is completely determined by the two 
real numbers a and b , it occurred to Hamilton to represent the complex number 
simply and nonmystically by the ordered real number pair (a,b). He defined 
two such number pairs (a,b) and (c,d) to be equal if and only if a = c and b = d. 
Addition and multiplication of such number pairs he defined (to agree with the 
above results) to be

(a,b) + (c,d) = (a + c,b + d) and (a,b)(c,d) = (ac -  bd,ad 4- be).

With these definitions, it is easy to show that addition and multiplication of the 
ordered real number pairs are commutative and associative, and that multipli
cation is distributive over addition, if one assumes, of course, that these laws 
hold for the ordinary addition and multiplication of real numbers.

n Com m unicated by H am ilton, in 1833, to the Royal Irish A cadem y.



It is to be noted that the real number system is embedded in the complex 
number system. By this statement is meant that if each real number r is identi
fied with the corresponding number pair (r,0), then the correspondence is pre
served under addition and multiplication of complex numbers, for we have

(a,0) + (*,0) = (a + *, 0) and (tf,0)(*,0) = (ab, 0).

In practice, a complex number of the form (r,0) can be replaced by its corre
sponding real number r.

To obtain the older form of a complex number from Hamilton’s form, we 
note that any complex number (a,b) can be written as

(a,b) = (£i,0) + (0,*) = (£i,0) + (*,0)(0,1) = a + bi,

where (0,1) is represented by the symbol /, and (a,0) and (*,0) are identified 
with the real numbers a and b. Finally, we see that

i2 = (0,1)(0,1) -  (-1 ,0 ) -  -1 .

The former mystical aura surrounding complex numbers has been removed, for 
there is nothing mystical about an ordered pair of real numbers. This was a 
great achievement on the part of Hamilton.

The complex number system is a very convenient number system for the 
study of vectors and rotations in the plane.14 Hamilton attempted to devise an 
analogous system of numbers for the study of vectors and rotations in three- 
dimensional space. In his researches, he was led to the consideration, not of 
ordered real number pairs (a,b ) having the real numbers embedded within 
them, but of ordered real number quadruples (a,b,c,d) having both the real and 
the complex numbers embedded within them. In other words, defining two 
such quadruples (a,b,c,d) and (e,f,g,h) to be equal if and only if a = e, b = / ,  
c = g, d = h. Hamilton found it necessary to define an addition and a multipli
cation of ordered real number quadruples such that, among other restrictions, 
he would have
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(£i,0,0,0) + (*,0,0,0) = (a + *,0,0,0), 

(£I,0,0,0)(*,0,0,0) = (ab, 0,0,0),

(a, *,0,0) + (c,£/,0,0) = (a + c,b + t/,0,0), 

(a,*,0,0)(c,£/,0,0) = (ac — bd,ad + *c,0,0).

14 This conven ien ce results from the fact that when a com plex number z = a + bi is considered  
as representing the point Z  having rectangular Cartesian coordinates (a,b ), then the com plex  
number z may also be regarded as representing the vector OZ, where O is the origin o f  coordinates.



Calling such ordered real number quadruples, (real) quaternions, Hamilton 
found that, for his various purposes, he had to formulate the following defini
tions for addition and multiplication of his quaternions:

(a,byt\d) + (e,fg,h) = (a + ey b + / ,  c + g, d + h),
(ia,b,c,d)(e,f,g,h) = (ae — bf — eg — dh, a f  4- be 4- ch — dg,

ag + ce + d f — bh, ah + bg + de — c f ).

It can be shown, with these definitions, that the real numbers and the complex 
numbers are embedded among the quaternions, and that if we identify the 
quaternion (m,0,0,0) with the real number m, then

m(a,b,c,d) — (a,b,c,d)m = (ma,mb,mc,md).

It can also be shown that addition of quaternions is commutative and associa
tive, and that multiplication of quaternions is associative and distributive over 
addition. But the commutative law for multiplication fails to hold. To see this, 
consider, in particular, the two quaternions (0,1,0,0) and (0,0,1,0). One finds 
that
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(0 , 1,0 ,0)(0 ,0 , 1,0) =  (0 ,0 ,0 , 1),

while

(0 ,0,1,0)(0 ,1,0,0) -  (0,0 ,0, - 1) = - ( 0,0 ,0 ,1);

that is, the commutative law for multiplication is broken. In fact, if we repre
sent by the symbols 1, /, j, k, respectively, the quaternionic units (1,0,0,0), 
(0,1,0,0), (0,0,1,0), (0,0,0,1), we can verify that the following multiplication 
table prevails; that is, the desired product is found in the box common to the 
row headed by the first factor and the column headed by the second factor:

X 1 i j k

1 1 i j k

i i - i k ~ j

j j - k -1 i

k k j —/

Hamilton told the story that the idea of abandoning the commutative law of 
multiplication came to him in a flash, after fifteen years of fruitless meditation, 
while he was walking with his wife along the Royal Canal near Dublin just
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;
Here a» he walked by

oh the 16th of October 1843
Sir William Rowan Hamilton ’ 

in a flash of genius discovered 
the fundamental formula for 1 

quaternion multiplication
i V = k 2=ijk = - l

& cut it in a stone of this bridge

before dusk. He was so struck by the unorthodoxy of the idea that he took out 
his penknife and scratched the gist of the above multiplication table into one of 
the stones of Broughm Bridge. Today a tablet embedded in the stone of the 
bridge tells the story (see accompanying figure). Thus, one of the great mo
ments in mathematics is commemorated for us.

We can write the quaternion (atb tc td) in the form a + bi + cj + dk. When 
two quaternions are written in this form, they may be multiplied like polynomi
als in i, j , k, and then the resulting product put into the same form by means of 
the above multiplication table.

In the year 1844, Hermann Gunther Grassmann published the first edition 
of his remarkable Ausdehnungslehre, in which were developed classes of alge
bras of much greater generality than Hamilton’s quaternion algebra. Instead of 
considering just ordered sets of quadruples of real numbers, Grassmann con
sidered ordered sets of n real numbers. To each such set (jci , jc2, • • • , xn) 
Grassmann associated a hypercomplex number of the form xxe\ + jc2̂ 2 + * * * 
+ xnen, where e x, e2, . . . , en are the fundamental units of his algebra. Two 
such hypercomplex numbers are added and multiplied like polynomials in ex, 
e2, . . . , en. The addition of two such numbers yields, then, a number of the 
same kind. To make the product of two such numbers a number of the same 
kind requires the construction of a multiplication table for the units ex, . . . , en 
similar to Hamilton’s multiplication table for his units 1, i, j , k. Here one has 
considerable freedom, and different algebras can be created by making differ
ent multiplication tables. The multiplication table is governed by the applica
tion of the algebra to be made and by the laws of algebra that one wishes to 
preserve.

Before closing this section, let us consider one more noncommutative 
algebra—the matric algebra devised by the English mathematician Arthur Cay
ley (1821-1895) in 1857. Matrices arose with Cayley in connection with linear 
transformations of the type

x' = ax + 6y, 

y' = cx + dy,
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where a , b , c, d  are real numbers, and which may be thought of as mapping the 
point (x,y) onto the point (jc',y'). Clearly, the preceding transformation is com
pletely determined by the four coefficients a , b , c, d , so the transformation can 
be symbolized by the square array

which we shall call a (square) matrix (of order 2). Because two transformations 
of the kind under consideration are identical if and only if they possess the 
same coefficients, we define two matrices

to be equal if and only if a = e, b = f  c = g, d  = h. If the transformation given 
above is followed by the transformation

the result can be shown, by elementary algebra, to be the transformation

This leads to the following definition for the product of two matrices:

a b 
c d

x" = ex9 + f y \  

y" = g x 1 + h y ',

x" = (ea + fc)x  + (eb + fd )y , 

y" = (ga + hc)x + (gfc +

a b _  ea + fc  eb + fd  
c d ga + he gb + hd

Addition of matrices is defined by

a + e b + f  
c + g d  + h_ ’

and, if m is any real number, we define

In the resulting algebra of matrices, it may be shown that addition is both 
commutative and associative and that multiplication is associative and distribu



tive over addition. But multiplication is not commutative, as is shown by the 
simple example:
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By developing algebras satisfying structural laws different from those 
obeyed by common algebra, Hamilton, Grassmann, and Cayley opened the 
floodgates of modern abstract algebra. Indeed, by weakening or deleting vari
ous postulates of common algebra, or by replacing one or more of the postu
lates by others, which are consistent with the remaining postulates, an enor
mous variety of systems can be studied. These systems include groupoids, 
quasigroups, loops, semigroups, monoids, groups, rings, integral domains, lat
tices, division rings, Boolean rings, Boolean algebras, fields, vector spaces, 
Jordan algebras, and Lie algebras, the last two being examples of nonassocia- 
tive algebras. It is probably correct to say that mathematicians have, to date, 
studied well over 200 such algebraic structures. Most of this work belongs to 
the twentieth century and reflects the spirit of generalization and abstraction so 
prevalent in mathematics today. Abstract algebra has become the vocabulary 
of much of present-day mathematics and has been dubbed “the skeleton key of 
mathematics.”

13 -1 2  Hamilton, Grassmann, Boole, 
and De Morgan

William Rowan Hamilton, by all odds Ireland’s greatest claim to fame in the 
field of mathematics, was born in Dublin in 1805 and, except for short visits 
elsewhere, spent his whole life there. He was early orphaned, but even before 
that, when only a year old, his upbringing was entrusted to an uncle who gave 
the boy a strenuous but lopsided education with a strong emphasis on lan
guages. William proved to be a prodigy, and when he reached the age of 
thirteen, he was fluently acquainted with as many foreign languages as he was 
years old. He developed a fondness for the classics and, with no real success, 
indulged in what was to become a lifelong desire—the writing of poetry. He 
became an intimate friend and mutual admirer of the great poet William 
Wordsworth.

It was not until Hamilton was fifteen that his interests changed and he 
became excited about mathematics. The change was brought about by his 
meeting Zerah Colburn, the American lightning calculator, who, though only a 
youngster himself, gave a demonstration of his powers at an exhibition in 
Dublin. Shortly after, Hamilton chanced upon a copy of Newton’s Arithmetica 
universalis. This he avidly read and then mastered analytic geometry and calcu
lus. Next he read the four volumes of the Principia and proceeded to the great 
mathematical works of the continent. Reading Laplace’s Mecanique celeste, he 
uncovered a mathematical error and in 1823 wrote a paper on it that attracted 
considerable attention. The following year, he entered Trinity College, Dublin.
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WILLIAM ROWAN HAMILTON
(Granger Collection)

Hamilton’s career at the university was unique, for in 1828, when he was 
only twenty-two years old and still an undergraduate, the electors unanimously 
appointed him Royal Astronomer of Ireland, Director of the Dunsink Observa
tory, and Professor of Astronomy at the University. Shortly after, on mathe
matical theory alone, he predicted conical refraction in biaxial crystals, which 
was then dramatically confirmed experimentally by physicists. In 1833, he 
presented to the Irish Academy his significant paper in which the algebra of 
complex numbers appears as an algebra of ordered pairs of real numbers (see 
Section 13-10). He was knighted in 1835.

Following his 1833 paper, Hamilton thought off and on for a long period of 
years on algebras of ordered triples and quadruples of real numbers, but was 
always stymied on the matter of how to define multiplication so as to preserve 
the familiar laws of that operation while at the same time making the operation 
fit his physical investigations. Finally, in a flash of intuition in 1843 (as de
scribed in Section 13-10), it occurred to Hamilton that he was demanding too 
much and that he had to sacrifice the commutative law, and the algebra of 
quaternions, the first noncommutative algebra, was suddenly born.

During the remaining twenty-some years of his life, Hamilton expended 
most of his time and energy in developing his quaternions, which he felt would 
be of revolutionary significance in mathematical physics. His great work, Trea
tise on Quaternions, appeared in 1853, after which he devoted himself to pre
paring an enlarged Elements o f Quaternions, but he died in Dublin in 1865, 
essentially from alcoholism and a generally rundown condition brought on by a 
very unhappy married life, before the work was quite completed. The subject of 
quaternions won a number of staunch supporters, such as Peter Guthrie Tait 
(1831-1901) of the University of Edinburgh, Alexander Macfarlane (1851— 
1913), also of the University of Edinburgh but later of the University of Texas



and Lehigh University, and Charles Jasper Joly (1864-1906), Hamilton’s suc
cessor at the Dunsink Observatory. But in time, the more supple vector analy
sis of the American physicist and mathematician, Josiah Willard Gibbs (1839— 
1903) of Yale University, and the more general treatment of ordered ^-tuples of 
Hermann Gunther Grassmann, tended to relegate the theory of quaternions to 
little more than a highly interesting museum piece. It is true quaternions were 
somewhat revived in 1927 as the “ spin variables” in Wolfgang Pauli’s (1900- 
1958) quantum theory, and it could be that the future may give quaternions a 
new lease on life. No matter what, the great importance of quaternions in the 
history of mathematics lies in the fact that their creation by Hamilton in 1843 
liberated algebra from its traditional ties to the arithmetic of real numbers, and 
accordingly opened the floodgates of modern abstract algebra.

In addition to his work on quaternions, Hamilton wrote on optics, dy
namics, the solution of equations of the fifth degree, fluctuating functions, the 
hodograph curve of a moving particle,15 and the numerical solution of differen
tial equations.

Hamilton’s name is encountered by students of physics in the so-called 
Hamiltonian function and in the Hamilton-Jacobi differential equations of dy
namics. In matrix theory, there is the Hamilton-Cayley theorem , equation, and 
polynomial; in mathematical recreations, one encounters the Hamiltonian 
game played on a regular dodecahedron (see Problem Study 13.24).

It is perhaps pleasing to Americans to recall that in the sad final years of 
Hamilton’s illness and marital strife, the newly founded National Academy of 
Sciences of the United States elected him as its first foreign associate. Another 
rare honor and compliment accorded Hamilton occurred when, in 1845, he 
attended the second Cambridge meeting of the British Association; he was 
lodged for a week in the sacred rooms of Trinity College in which tradition 
asserts that Isaac Newton composed his Principia.

Sir William Rowan Hamilton is not to be confused with his contemporary, 
Sir William Hamilton (1788-1856), the noted philosopher of Edinburgh. The 
latter inherited his title; the former earned his.

Grassmann was born in Stettin, Germany, in 1809, and died there in 1877. 
He was a man of very broad intellectual interests. He was not only a teacher of 
mathematics, but of religion, physics, chemistry, German, Latin, history, and 
geography. He wrote on physics and composed school texts for the study of 
German, Latin, and mathematics. He was a copublisher of a political weekly in 
the stormy years of 1848 and 1849. He was interested in music, and in the 
1860s, he was an opera critic for a daily newspaper. He prepared a philological 
treatise on German plants, edited a missionary paper, investigated phonetic 
laws, wrote a dictionary to the Rig-Veda and translated the Rig-Veda in verse, 
harmonized folk songs in three voices, composed his great treatise Aus- 
dehnungslehre, and raised nine of his eleven children.

512 CHAPTER THIRTEEN /  LIBERATION OF GEOMETRY AND ALGEBRA

15 The extremity of the vector drawn from a fixed point and equal to the velocity vector of a 
moving point traces a curve called the hodograph of the moving point.
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HERMAN GUNTHER GRASS
MANN
(David Eugene Smith Collection,
Rare Book and Manuscript Li
brary, Columbia University)

It was in the year 1844 that Grassmann published the first edition of his 
remarkable Ausdehnungslehre (Calculus of Extension). Unfortunately, the 
poor exposition and the obscure presentation caused the work to remain practi
cally unknown to his contemporaries. A second reformulation, put out in 1862, 
proved scarcely more successful. Discouraged with the reception given his 
work, Grassmann gave up mathematics for the study of Sanskrit language and 
literature, a field in which he contributed a number of brilliant papers.

Grassmann spent his entire life in his native city of Stettin, except for the 
years from 1834 and 1836, when he taught mathematics in an industrial school 
in Berlin, having succeeded Jacob Steiner to the post. His teaching was entirely 
at the secondary level, though he had hoped to secure a university position. His 
father was a teacher of mathematics and physics in the gymnasium at Stettin. 
His son Hermann Grassmann (born 1859) also became a mathematician. His 
father wrote two books on mathematics, and the son wrote a treatise on projec
tive geometry.

The Ausdehnungslehre has very broad application, with (as was discussed 
in Section 13-10) no limit to the number of dimensions. In more recent times 
the wonderful richness and generality of Grassmann’s work has become appre
ciated, and Grassmann’s methods have generally been followed, especially on 
the European continent and in America, in preference to Hamilton’s.

We now make brief mention of the two British mathematicians George 
Boole and Augustus De Morgan, who, among other things, continued the scien
tific treatment of the fundamental principles of algebra initiated by Hamilton 
and Grassmann.



George Boole was born in Lincoln, England, in 1815. His father was a 
struggling lower-class tradesman, so Boole had only a common school educa
tion, but he managed to teach himself Greek and Latin. Later, while working as 
an elementary-school teacher, he learned mathematics by reading the works of 
Laplace and Lagrange, studied foreign languages, and, through his friend De 
Morgan, became interested in formal logic. In 1847, Boole published a pam
phlet entitled The Mathematical Analysis o f Logic, which De Morgan praised 
as epoch making. In his work, Boole maintained that the essential character of 
mathematics lies in its form rather than in its content; mathematics is not (as 
some dictionaries today still assert) merely “ the science of measurement and 
number,” but, more broadly, any study consisting of symbols along with pre
cise rules of operation upon those symbols, the rules being subject only to the 
requirement of inner consistency. Two years later, Boole was appointed pro
fessor of mathematics at the newly founded Queen’s College in Cork, Ireland. 
In 1854, Boole expanded and clarified his earlier work of 1847 into a book 
entitled Investigation o f the Laws o f Thought, in which he established both 
formal logic and a new algebra—the algebra of sets known today as Boolean 
algebra. In more recent times, Boolean algebra has found a number of applica
tions, such as to the theory of electric switching circuits. In 1859 Boole pub
lished his Treatise on Differential Equations, and then, in 1860, his Treatise on 
the Calculus o f Finite Differences. The latter book has remained a standard 
work in its subject right into present times. Boole died in Cork in 1864.

Augustus De Morgan, whose name appears in several places elsewhere in 
our book, was born (blind in one eye) in 1806 in Madras, where his father was
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AUGUSTUS DE MORGAN
(David Eugene Smith Collection, 
Rare Book and Manuscript Library, 
Columbia University)
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associated with the East India Company. He was educated at Trinity College, 
Cambridge, graduating as fourth wrangler, and in 1828 became a professor at 
the then newly established University of London (later renamed University 
College), where, through his works and his students, he exercised a wide 
influence in English mathematics. He was well read in the philosophy and the 
history of mathematics, and wrote works on the foundations of algebra, differ
ential calculus, logic, and the theory of probability. He was a highly lucid 
expositor. His witty and amusing book, A Budget o f Paradoxes, still makes 
entertaining reading. He continued Boole’s work on the algebra of sets, enunci
ating the principle of duality of set theory, of which the so-called De Morgan 
laws are an illustration: If A and B are subsets of a universal set, then the 
complement of the union of A and B is the intersection of the complements of A 
and B, and the complement of the intersection of A and B is the union of 
complements of A and B (in symbols: (A U B)' = A' H B ’ and (A n B)' = 
A' U B ', where prime denotes complement). Like Boole, De Morgan regarded 
mathematics as an abstract study of symbols subjected to sets of symbolic 
operations. De Morgan was an outspoken champion of academic freedom and 
of religious tolerance. He performed beautifully on the flute and was always 
jovial company, and he was a confirmed lover of big-city life. He had a fondness 
for puzzles and conundrums, and when asked either his age or his year of birth 
would reply, “I was x years old in the year x2.” He died in London in 1871.

13 -13  Cayley, Sylvester, and Hermite
The major part of this section is devoted to two brilliant English mathemati
cians, Arthur Cayley and James Joseph Sylvester, who greatly stimulated one 
another, frequently researched on the same mathematical problems, created 
much new mathematics, and, yet, were opposites in temperament, style, and 
outlook.

Arthur Cayley was born in 1821 at Richmond, in Surrey, and was educated 
at Trinity College, Cambridge, graduating in 1842 as senior wrangler in the 
mathematical tripos and in the same year placing first in the even more difficult 
test for the Smith’s prize. For a period of several years, he studied and prac
ticed law, always being careful not to let his legal practice prevent him from 
working on mathematics. While a student of the bar, he went to Dublin and 
attended Hamilton’s lectures on quaternions. When the Sadlerian professor
ship was established at Cambridge in 1863, Cayley was offered the chair, which 
he accepted, thus giving up a lucrative future in the legal profession for the 
modest provision of an academic life. But then he could devote all of his time to 
mathematics.

Cayley ranks as the third most prolific writer of mathematics in the history 
of the subject, being surpassed only by Euler and Cauchy. He began publishing 
while still an undergraduate student at Cambridge, put out between 200 and 300 
papers during his years of legal practice, and continued his prolific publication 
the rest of his long life. The massive Collected Mathematical Papers of Cayley
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ARTHUR CAYLEY
(Library of Congress)

contains 966 papers and fills thirteen large quarto volumes averaging about 600 
pages per volume. There is scarcely an area in pure mathematics that has not 
been touched and enriched by the genius of Cayley. We have already, in Sec
tion 13-10, considered his work in matric algebra. He made pioneering contri
butions to analytic geometry, transformation theory, the theory of determi
nants, higher-dimensional geometry, partition theory, the theory of curves and 
surfaces, the study of binary and ternary forms, and the theory of Abelian, 
theta, and elliptic functions. But perhaps his most important work was his 
creation and development of invariant theory. Germs of this theory can be 
found in the writing of Lagrange, Gauss, and, in particular, of Boole. The basic 
problem of invariant theory is to find those functions of the coefficients of a 
given algebraic equation that, when the variables of the equation are subjected 
to a general linear transformation, remain unchanged except for a factor involv
ing only the coefficients of the transformation. Sylvester became interested in 
the same field of study, and the two men, both living in London at the time, 
poured out new discoveries in rapid succession.

Cayley’s mathematical style reflects his legal training, for his papers are 
severe, direct, methodical, and clear. He possessed a phenomenal memory and 
seemed never to forget anything he had once seen or read. He also possessed a 
singularly serene, even, and gentle temperament. He has been called “the 
mathematicians’ mathematician.”

Cayley developed an unusual avidity for novel reading. He read novels 
while traveling, while waiting for meetings to start, and at any odd moments 
that presented themselves. During his life, he read thousands of novels, not 
only in English, but also in Greek, French, German, and Italian. He took great 
delight in painting, especially in water colors, and he exhibited a marked talent
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as a water colorist. He was also an ardent student of botany and nature in 
general.

Cayley was, in the true British tradition, an amateur mountain climber, 
and he made frequent trips to the Continent for long walks and mountain 
scaling. A story is told that he claimed the reason he undertook mountain 
climbing was that, although he found the ascent arduous and tiring, the grand 
feeling of exhilaration he attained when he conquered the peak was like that he 
experienced when he solved a difficult mathematics problem or completed an 
intricate mathematical theory, and it was easier for him to attain the desired 
feeling by climbing the mountain.

Cayley died in 1895. Writing in the Comptes rendus shortly after, Charles 
Hermite said: “The mathematical talent of Cayley was characterized by clear
ness and extreme elegance of analytical form; it was reinforced by an incom
parable capacity for work which has caused the distinguished scholar to be 
compared with Cauchy.”

James Joseph Sylvester was born in London in 1814 as the youngest of 
several children. The surname of the family was originally Joseph, but the 
eldest son migrated to America where, for some reason not now known, he 
assumed the new surname Sylvester, which was then adopted by the rest of the 
family. The American brother was an actuary, and suggested to the Directors 
of the Lotteries Contractors of the United States that they submit a difficult 
problem in arrangements that was bothering them to his younger brother 
James, then only sixteen years old. James’ complete and satisfying solution of 
the problem caused the Directors to award the young mathematician a prize of 
$500.

JAMES JOSEPH SYLVESTER
(David Eugene Smith Collection, 
Rare Book and Manuscript Library, 
Columbia University)



In 1831, James entered St. John’s College, Cambridge, and six years later 
emerged as second wrangler. From 1838 to 1840, he served as professor of 
natural philosophy at the University of London, and then, in 1841, accepted a 
professorship in mathematics at the University of Virginia in America, a posi
tion from which he resigned after only a few months because of a quarrel he got 
into with two of his students. Returning to England, he worked as an actuary 
and was called to the bar in 1850. It was in 1846 that he became associated with 
Arthur Cayley.

From 1855 to 1870, Sylvester was a professor of mathematics at the Royal 
Military Academy at Woolwich. In 1876 he returned to America, as a professor 
of mathematics at the Johns Hopkins University in Baltimore, and there spent 
seven very happy and highly productive years, becoming the founding editor of 
the American Journal o f Mathematics in 1878. During his tenure at Johns 
Hopkins, he invited Cayley to the university for a series of lectures on Abelian 
functions; Sylvester himself attended the lectures. In 1884, Sylvester accepted 
the Savilian chair in geometry at Oxford University. He died in London in 
1897, when he was eighty-three years old.

Sylvester’s earliest mathematical papers were on Fresnel’s optical theory 
and Sturm’s theorem. Then, stimulated by Cayley, he began making important 
contributions to modern algebra. He wrote papers on elimination theory, trans
formation theory, canonical forms, determinants, the calculus of forms, parti
tion theory, the theory of invariants, Tchebycheff’s method concerning the 
number of primes within certain limits, latent roots of matrices, the theory of 
equations, multiple algebra, the theory of numbers, linkage machines, probabil
ity theory, and reciprocants. He contributed extensively to mathematical ter
minology, coining so many new names that he has become known as “the 
Adam of mathematics.’’

As remarked earlier, Cayley and Sylvester were antitheses of one another 
in temperament, style, and outlook. Whereas Cayley was always serene and 
unruffled, Sylvester was often irritable and prone to show his temper. Cayley’s 
teaching was methodical and prepared; Sylvester’s teaching was rambling and 
off-the-cuff. Cayley wrote severely and to the point; Sylvester wrote discur
sively with occasional rapturous outbursts. Cayley’s lectures were finished 
pieces; Sylvester often created mathematics in the lecture room. Cayley had a 
phenomenal memory; Sylvester often could not even recall some of his own 
findings. Cayley read the mathematical accomplishments of others; Sylvester 
found it boring to read what others had done. Cayley admired Euclid’s Ele
ments; Sylvester despised the work. Cayley, although tough and wiry, was 
slight of build; Sylvester was stocky, muscular, and broad shouldered.

Sylvester had a lifelong interest in poetry and amused himself by writing 
verses. One evening, at the Peabody Institute in Baltimore, he read his Rosa
lind poem, which consists of 400 lines all rhyming with the heroine’s name 
“Rosalind.” So as not to interrupt the poem, he first spent an hour and a half 
reading his explanatory footnotes, many of which led to further extemporane
ous elaborations. Then, to the remnant of his audience that was left, he read the
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poem itself. In 1870, he published a curious little booklet entitled The Laws o f  
Verse, of which he had a high regard.

Sylvester also had an interest in music and was an amateur singer with a 
fine voice, having at one time taken singing lessons from the famous French 
composer Charles Francois Gounod. On occasion he entertained at working
men’s gatherings with his songs, and it was said that he was prouder of his high 
C in singing than he was of his contributions to invariant theory in mathemat
ics. In a footnote to his paper, “On Newton’s rule for the discovery of imagi
nary roots,’’ he exclaims: “May not Music be described as the Mathematic of 
sense, Mathematic as Music of the reason? the soul of each the same! Thus the 
musician feels Mathematic, the mathematician thinks Music.”

It may be interesting to point out that the most distinguished of the private 
pupils who studied mathematics under Sylvester in the hard days of his early 
life was a young woman named Florence Nightingale, later to become world 
famous as a reformer of hospital nursing.

Many of the beautiful discoveries of Cayley and Sylvester appear in the 
admirable treatises of George Salmon (1819-1904), provost of Trinity College, 
Dublin, and one of the finest writers of advanced mathematics texts of his time.

Much of the work of Cayley and Sylvester was continued and expanded by 
the talented French mathematician Charles Hermite, who made outstanding 
contributions in both algebra and analysis. Hermite was born at Dieuze in 
Lorraine in 1822, and after a fitful education, first at the Louis-le-Grand lycee 
and then briefly at the Ecole Poly technique, secured, in 1848, the position of

CHARLES HERMITE
(David Eugene Smith Collection, 
Rare Book and Manuscript Library, 
Columbia University)



admission’s examiner and quiz master at the Ecole Polytechnique. He later 
served as a professor at the Ecole Poly technique and the Sorbonne, remaining 
at the latter institution until his retirement in 1897. He died in Paris in 1901.

Although not a prolific writer, most of Hermite’s papers deal with ques
tions of great importance, and his methods exhibit high originality and broad 
applicability. Even while at Louis-le-Grand, Hermite had two papers, one of 
quite exceptional quality, accepted by the Nouvelles annales de mathema- 
tiques, a journal founded in 1842 and devoted to the interests of students in the 
higher schools. His mentor, Professor Louis Paul Emile Richard, felt com
pelled to confide to Hermite’s father that Charles was “a young Lagrange.” 
Hermite’s researches were confined to algebra and analysis. He wrote on the 
theory of numbers, matrices, algebraic continued fractions, invariants and co
variants, quantics, evectants, definite integrals, the theory of equations, elliptic 
functions, Abelian functions, and the theory of functions. In the last field, he 
was the foremost French writer of his day. Hermite’s collected works, edited 
by Emile Picard, occupy four volumes.

The two fundamental mathematical results due to Hermite that are of most 
popular interest are his solution in 1858 of the general quintic equation by 
means of elliptic functions, and his proof in 1873 of the transcendence of the 
number e. Hermite’s success with the quintic equation later led to the fact that 
a root of the general equation of degree n can be represented in terms of the 
coefficients of the equation by means of Fuchsian functions, and the method he 
employed to prove that e is transcendental was employed by Lindemann in 
1882 to prove that t t  also is transcendental.

Hermite was born with a deformity of his right leg and was lame all his life, 
requiring a cane to get about. One benefit of this infirmity was that it success
fully barred Hermite from any kind of military service. One disadvantage was 
that after one year at the Ecole Poly technique, he was dropped from further 
study because the authorities claimed that his lame leg rendered him unfit for 
any of the positions open to successful students of the school. Despite his 
lameness and early difficulties in securing a suitable position, Hermite uni
formly maintained the sweetest of dispositions, causing him to be loved by all 
who knew him. A number of mathematicians have exhibited great generosity to 
younger men struggling for recognition; Hermite is regarded as unquestionably 
the finest character of this sort in the entire history of mathematics. In 1856, 
following a severe illness, he was converted by Cauchy from a tolerant agnostic 
to a Roman Catholic.

The question of mathematical existence is a highly controversial issue. For 
example, do mathematical entities and their properties already exist in a sort of 
timeless twilight land of their own, and we, wandering about in that land, 
accidentally discover them? In this twilight land, the medians of a triangle are, 
and always have been, concurrent in a point trisecting each median, and some
one, probably in ancient times, wandering about in his mind in the twilight land, 
came upon this already existing property of the medians of a triangle. In the 
twilight land, many other remarkable properties of geometrical figures have 
always existed, but no one has yet stumbled upon them, and may not for years,
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if ever. In the twilight land, the natural numbers and their host of pretty proper
ties already exist, and always have, but these properties will become existent in 
the real land of man only when someone wandering about in the twilight land 
comes upon them.

Pythagoras entertained this idea of mathematical existence, as have many 
mathematicians after him. Hermite was a confirmed believer in the twilight land 
of mathematical existence. To him, numbers and all their beautiful properties 
have always had an existence of their own, and occasionally some mathemati
cal Columbus chances upon one of these already existing properties and then 
announces his discovery to the world.

13 -14  Academies, Societies, and Periodicals
The great increase that occurred in scientific and mathematical activity at a 
time when no periodicals existed led to the formation of a number of discussion 
circles with regular times of meeting. Some of these groups finally crystallized 
into academies, the first of which was established in Naples in 1560, followed 
by the Accademia dei lincei in Rome in 1603. Then, following the northward 
swing of mathematical activity in the seventeenth century, the Royal Society 
was founded in London in 1662 and the French Academy in Paris in 1666. 
These academies constituted centers where scholarly papers could be pre
sented and discussed.

The need for periodicals for the prompt dissemination of new scientific and 
mathematical findings was increasingly felt, until today the extent of such 
literature has become enormous. One count claims that prior to 1700 there were 
only seventeen periodicals containing mathematical articles, the first of these 
having appeared in 1665. In the eighteenth century, 210 such periodicals ap
peared, and in the nineteenth century, the number of new journals of this sort 
reached 950. Many of these, however, often contained little relating to pure 
mathematics. Perhaps the oldest of the current journals devoted chiefly or 
entirely to advanced mathematics is the French Journal de VEcole Polytech- 
nique, launched in 1794. A number of more elementary mathematics journals 
were started earlier, but many of these aimed to entertain the subscriber with 
puzzles and problems, rather than to advance mathematical knowledge. Some 
of our current high-grade mathematical periodicals were started during the first 
half of the nineteenth century. Foremost among these are the German journal 
entitled Journal fur die reine und angewandte Mathematik, first published in 
1826 by A. L. Crelle, and the French journal entitled Journal de mathema- 
tiques pures et appliquees, which appeared in 1836 under the editorship of J. 
Liouville. These two journals are frequently called Crelle's Journal and 
Liouville’s Journal, after the names of their founders. In England, the Cam
bridge Mathematical Journal was founded in 1839, became the Cambridge and 
Dublin Mathematical Journal from 1846 to 1854, and in 1855 took the title of 
Quarterly Journal o f Pure and Applied Mathematics. The American Journal o f  
Mathematics was established in 1878 under the editorship of J. J. Sylvester.



The earliest permanent periodicals devoted to the interests of teachers of math
ematics, rather than to mathematical research, are the Archiv der Mathematik 
und Physik, founded in 1841, and the Nouvelles annales de mathematiques, 
founded a year later.

In the second half of the nineteenth century, there was a powerful develop
ment that increased the number of the high-quality mathematics journals. This 
was the formation of a number of large mathematical societies having regular 
periodicals as their official organs. The earliest of these societies was the Lon
don Mathematical Society, organized in 1865, which immediately began to 
publish its Proceedings. This society has become the national mathematical 
society of England. Seven years later, the Societe Mathematique de France 
was established in Paris, and its official journal is known as its Bulletin. In Italy, 
in 1884, the mathematical society Circolo Matematico di Palermo was orga
nized, and three years later it began to publish its Rendiconti. About this time, 
the Edinburgh Mathematical Society was founded in Scotland, and has since 
maintained its Proceedings. The American Mathematical Society was orga
nized, under a different name, in 1888, and began to issue its Bulletin, then 
later, in 1900, its Transactions, and more recently, in 1950, its Proceedings. 
Germany was the last of the leading mathematical countries to organize a 
national mathematical society, but in 1890 the Deutsche Mathematiker-Vereini- 
gung was organized, which, in 1892, began the publication of its Jahresbericht. 
This last journal carried a number of extensive reports on modern develop
ments in different fields of mathematics, such a report sometimes running into 
many hundreds of pages. These reports may be regarded as forerunners of the 
later large encyclopedias of mathematics. The excellent mathematics journals 
of the Soviet Union, although of later origin, are not to be ignored.

Today almost every country has its mathematical society, and many have 
additional associations devoted to various levels of mathematical instruction. 
These societies and associations have become potent factors in the organiza
tion and development of research activity in mathematics and in the improve
ment of methods of teaching the subject. In general, each of these societies and 
associations sponsors the publication of at least one periodical.

With the great increase in mathematical specialization in the twentieth 
century, a large number of new mathematics journals have appeared that are 
devoted to highly limited areas of the subject. Very valuable to researchers is 
the journal Mathematical Reviews, organized by a number of mathematical 
groups located both in the United States and abroad. This journal appeared in 
1940 and contains abstracts and reviews of the current mathematical literature 
of the world.

Problem Studies
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13.1 The Fundamental Theorem of Algebra

Employing the procedure Gauss used in his first proof of the fundamental 
theorem of algebra, show that



(a) z 2 — 4/ =  0 has a complex root.
(b) z2 +  2iz + i = 0 has a complex root.
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13.2 Basic Properties of Congruence

In the first chapter of Disquisitiones arithmeticae, Gauss gives the following 
definition and notation (here somewhat condensed): Two integers a and b are 
said to be congruent modulo n (where n is a positive integer), symbolized by

a =  b (mod n),

if and only if n divides the difference a -  b. Gauss then goes on to develop the 
algebra of the congruence relation, which has much in common with the algebra 
of the ordinary equality relation, but also has many important differences. If n 
is a fixed positive integer and a , b, c, d are arbitrary integers, show that:

(a) a =  a (mod n) (the reflexive property).
(b) If a =  b (mod n), then b =  a (mod n) (the symmetric property).
(c) If a =  b (mod n) and b =  c (mod n), then a =  c (mod n) (the transitive

property).
(d) If a =  b (mod n) and c = d (mod n), then a + c =  b + d (mod n) and 

ac =  bd (mod n).
(e) If a =  b (mod n), then a + c =  b + c (mod n) and ac =  be (mod n).
(f) If a =  b (mod n), then ak =  bk (mod n) for any positive integer k.
(g) If ca =  cb (mod n), then a =  b (mod nld), where d is the greatest 

common divisor of c and n.
(h) If ca =  cb (mod n) and c and n are relatively prime, then a =  b (mod n).
(i) If ca =  cb (mod p), where p is a prime number that does not divide c, 

then a =  b (mod p).
(j) If ab =  0 (mod n), and if a and b are relatively prime, then either a =  0 

(mod n) or b =  0 (mod n).
(k) If a is prime to n , then the linear congruence ax =  b (mod n) has only 

one positive solution x not exceeding n.

13.3 Gauss and Numbers

(a) Using essentially the method of the schoolboy Gauss, find the sum of n 
terms of an arithmetic progression of initial term a and final term /.

(b) Taking 0 as the first triangular number, express each of the natural 
numbers from 1 to 100 as a sum of 3 triangular numbers.

(c) Show, from the quadratic reciprocity law, that if p and q are distinct 
odd primes, then (q\p) = ~{p\q) if p =  q =  3 (mod 4).

13.4 Fourier Series

It can be shown, assuming that the trigonometric series of Section 13-2 can be 
integrated term by term from —tt to 7r, that if a function f{x) can be represented 
by such a series, then the coefficients in the series are given by
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1 f*
bn — — f ix ) sin nx dx.

(a) Show that j sin nx dx = I cos nx dx = 0 when n + 0.

(b) Show that the Fourier series for the function/(jc) defined by

f{x) = 2, ~7T <  x <  0,

f(x) = 1, 0 <  X  <  7T,

IS

sin x + j  sin 3x + j  sin

(c) Setting x = t t / 2  in the Fourier series of (b), obtain the relation

(d) Show that the function of (b) can be expressed over the given range by 
the single equation

13.5 Cauchy and Infinite Series

(a) Establish the convergence or divergence of the following series, using 
the Cauchy ratio test.
1. 1 + 1/2! + 1/3! + ------
2. 1/5 -  2/52 + 3/53 - ------
3. 1 + 22/2! + 33/3! + ------

(b) Establish the convergence or divergence of the following series, using 
the Cauchy root test.
1. |sin a\!2 + |sin 2a|/22 + |sin 3a|/23 + • • • •
2. 2|sin a| + 22|sin 2a\ + 23|sin 3a| + • • • •

(c) Establish the convergence or divergence of the following series, using 
the Cauchy integral test.
1. Me + 2le2 + 3/e3 + ------
2. 1/(2 In 2) + 1/(3 In 3) + 1/(4 In 4) + ------
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13.6 Group Theory

A group is a nonempty set G of elements over which a binary operation * is 
defined satisfying the following postulates:

Gl: For all a, ft, c in G, (a * b) * c -  a * (ft * c).
G2: There exists an element i of G such that, for all a in G, a * / = a. (The 

element i is called an identity element of the group.)
G3: For each element a of G there exists an element a~x of G such that 

a * a~l = i. (The element a~x is called an inverse element of a.)
Establish the following theorems about a group.
(a) If a , ft, c are in G and a * c = b * c, then a = b.
( b )  For all a in G, i * a = a * /.
(c) A group has a unique identity element.
(d) For each a of G, a~{ * a = a * a~l.
(e) If a, ft, c are in G and c * a = c * ft, then a = b.
(f) Each element of a group has a unique inverse element.
(g) If a is in G, then = a .
(h) If a and ft are in G, then there exist elements x and y of G such that 

a * x = b and y * a = ft.
13.7 Examples of Groups

Show that each of the following systems is a group.
(a) The set of all integers under ordinary addition.
( b )  The set of all nonzero rational numbers under ordinary multiplication.
(c) The set of all translations

T x f = x + ft,
y' = y  + *,

where h and k are real numbers, of the Cartesian plane, with T2 * T\ 
denoting the result of performing first translation T\ and then transla
tion r2.

(d) The 4 numbers 1, - 1 ,  /, - /  (where i2 = -1 )  under ordinary multiplica
tion.

(e) The 4 integers, 1, 2, 3, 4 under multiplication modulo 5.
(f) The 6 expressions

r, Mr, 1 -  r, 1/(1 -  r), (r -  1 )/r, rl(r -  1),

with a * ft denoting the result of substituting the expression ft in place of 
r in the expression a . (This group is known as the cross ratio group.)

13.8 Abelian Groups

A group satisfying the further postulate
G4: If a and ft are in G, then a * ft = ft * a 

is called a commutative, or an Abelian, group. Which of the groups in Problem 
Study 13.7 are Abelian?
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13.9 Saccheri Quadrilaterals

A Saccheri quadrilateral is a quadrilateral ABCD in which the sides AD and BC 
are equal and the angles at A and B are right angles. Side AB is known as the 
base, the opposite side, DC, as the summit, and the angles at D and C as the 
summit angles. Prove, by simple congruence theorems (which do not require 
the parallel postulate), the following relations:

(a) The summit angles of a Saccheri quadrilateral are equal.
(b) The line joining the midpoints of the base and summit of a Saccheri 

quadrilateral is perpendicular to both of them.
(c) If perpendiculars are drawn from the extremities of the base of a trian

gle upon the line passing through the midpoints of the 2 sides, a Sac
cheri quadrilateral is formed.

(d) The line joining the midpoints of the equal sides of a Saccheri quadrilat
eral is perpendicular to the line joining the midpoints of the base and 
summit.

13.10 The Hypothesis of the Acute Angle

The hypothesis o f the acute angle assumes that the equal summit angles of a 
Saccheri quadrilateral are acute, or that the fourth angle of a Lambert quadri
lateral is acute. In the following, we shall assume the hypothesis of the acute 
angle.

(a) Let ABC be any right triangle and let M  be the midpoint of the hypote
nuse AB. At A, construct angle BAD = angle ABC. From M, draw MP 
perpendicular to CB. On AD, mark off AQ = PB and draw MQ. Prove 
triangles AQM  and BPM congruent, thus showing that angle AQM  is a 
right angle and points Q, M, P are collinear. Then ACPQ is a Lambert 
quadrilateral with acute angle at A. Now show that, under the hypothe
sis o f the acute angle, the sum of the angles o f any right triangle is less 
than two right angles.

(b) Let angle A of triangle ABC be not smaller than either angle B or angle 
C. Draw the altitude through A and show, by (a), that, under the hy
pothesis o f the acute angle, the sum o f the angles o f any triangle is less 
than two right angles. The difference between 2 right angles and the 
sum of the angles of a triangle is known as the defect of the triangle.

(c) Consider 2 triangles, ABC and A ’B ’C ’, in which corresponding angles 
are equal. If A ’B ’ = AB, then these triangles are congruent. Suppose 
A 'B f <  AB. On AB, mark off AD = A fB f, and on AC mark off AE = 
A fC f. Then triangles ADE and A ’B ’C' are congruent. Show that E 
cannot fall on C, since then angle BCA would be greater than angle 
DEA. Show also that E cannot fall on AC produced, since then DE 
would cut BC in a point F and the sum of the angles of triangle FCE 
would exceed 2 right angles. Therefore, E lies between A and C, and 
BCED is a convex quadrilateral. Show that the sum of the angles of this 
quadrilateral is equal to 4 right angles. But this is impossible under the 
hypothesis of the acute angle. It thus follows that we cannot have
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A'B' <  AB and that, under the hypothesis o f the acute angle, two 
triangles are congruent if the three angles o f one are equal to the three 
angles o f the other. In other words, in hyperbolic geometry, similar 
figures of different sizes do not exist.

(d) A line segment joining a vertex of a triangle to a point on the opposite 
side is called a transversal. A transversal divides a triangle into 2 sub
triangles, each of which may be similarly subdivided, and so on. Show 
that if a triangle is partitioned by transversals into a finite number of 
subtriangles, the defect of the original triangle is equal to the sum of the 
defects of the triangles in the partition.

13.11 A Euclidean Model for Hyperbolic Geometry

Take a fixed circle, 2 , in the Euclidean plane and interpret the hyperbolic plane 
as the interior of 2 , a “point” of the hyperbolic plane as a Euclidean point 
within 2 , and a “ line” of the hyperbolic plane as that part of a Euclidean line 
which is contained within 2. Verify, in this model, the following statements:

(a) Two “points” determine 1 and only 1 “line.”
(b) Two distinct “ lines” intersect in at most one “point.”
(c) Given a “ line” / and a “point” P not on /. Through P can be passed 

indefinitely many “lines” not meeting “line” /.
(d) Let the Euclidean line determined by the 2 “points” P and Q intersect 

2 in 5 and T, in the order S, P, Q, T. Then we interpret the hyperbolic 
“distance” from P to Q as log [(QS)(PT)I(PS)(QT)]. If P, Q, R are 3 
“points” on a “line,” show that

“distance” PQ + “distance” QR = “distance” PR.

(e) Let “point” P be fixed and let “point” Q move along a fixed “ line” 
through P toward T. Show that “distance” PQ —» oo.

This model was devised by Felix Klein. With the above interpretations, 
along with a suitable interpretation of “angle” between 2 “lines,” it can be 
shown that all of the postulates for Euclidean plane geometry, except the 
parallel postulate, are true statements in the geometry of the model. We have 
seen, in (c), that the Euclidean parallel postulate is not such a statement, but 
that the Lobachevskian parallel postulate holds instead. The model thus proves 
that the Euclidean parallel postulate cannot be deduced from the other postu
lates of Euclidean geometry, for if it were implied by the other postulates, it 
would have to be a true statement in the geometry of the model.

13.12 Non-Euclidean Geometry and Physical Space

Because of the apparently inextricable entanglement of space and matter, it 
may be impossible to determine by astronomical methods whether physical 
space is Euclidean or non-Euclidean. Since all measurements involve both 
physical and geometrical assumptions, an observed result can be explained in



many different ways by merely making suitable compensatory changes in our 
assumed qualities of space and matter. For example, it is quite possible that a 
discrepancy observed in the angle-sum of a triangle could be explained by 
preserving the assumptions of Euclidean geometry but at the same time modi
fying some physical law, such as some law of optics. And again, the absence of 
any such discrepancy might be compatible with the assumptions of a non- 
Euclidean geometry, together with some suitable adjustments in our assump
tions about matter. On these grounds, Henri Poincare maintained the impropri
ety of asking which geometry is the true one. To clarify this viewpoint, 
Poincare devised an imaginary universe 2  occupying the interior of a sphere of 
radius R in which he assumed the following physical laws to hold:

1. At any point P of 2 , the absolute temperature T is given by T = 
k(R2 -  r2), where r is the distance of P from the center of 2  and k is a 
constant.

2. The linear dimensions of a material body vary directly with the absolute 
temperature of the body’s locality.

3. All material bodies in 2  immediately assume the temperatures of their 
localities.

(a) Show that it is possible for an inhabitant of 2  to be quite unaware of the 
preceding 3 physical laws holding in his universe.

( b )  Show that an inhabitant of 2  would feel that his universe is infinite in 
extent on the grounds that he would never reach a boundary after 
taking a finite number N  of steps, no matter how large N  may be 
chosen.

(c) Show that geodesics in 2  are curves bending toward the center of 2. As 
a matter of fact, it can be shown that the geodesic through 2 points A 
and B of 2  is the arc of a circle through A and B that cuts the bounding 
sphere orthogonally.

( d )  Let us impose 1 further physical law on the universe 2  by supposing 
that light travels along the geodesics of 2. This condition can be physi
cally realized by filling 2  with a gas having the proper index of refrac
tion at each point of 2. Show, now, that the geodesics of 2  will “look 
straight” to an inhabitant of 2.

(e) Show that in the geometry of geodesics in 2, the Lobachevskian paral
lel postulate holds, so that an inhabitant of 2  would believe that he lives 
in a non-Euclidean world. Here we have a piece of ordinary, and sup
posedly Euclidean, space, that because of different physical laws, ap
pears to be non-Euclidean.

13.13 Systems with a Common Algebraic Structure

Show that each of the following sets with accompanying definitions of + and x 
satisfies the 5 basic properties given at the start of Section 13-9.

(a) The set of all even positive integers, with + and x denoting usual 
addition and multiplication.
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( b )  The set of all rational numbers, with + and x denoting usual addition 
and multiplication.

(c) The set of all real numbers, with + and x denoting usual addition and 
multiplication.

(d) The set of all real numbers of the form m + r i\f l, where m and n are 
integers, with + and x denoting usual addition and multiplication.

(e) The set of Gaussian integers (complex numbers m + in, where m and n 
are ordinary integers and i = V -T ), with + and x denoting usual 
addition and multiplication.

(f) The set of all ordered pairs of integers, where (a,b) + (c ,d ) = 
(a + c,b + d) and (a,b) x (c ,d ) = (ac,bd).

(g) The set of all ordered pairs of integers, where (a,b) + (c ,d ) = 
{ad + bc,bd) and (a,b) x (c ,d ) = {ac,bd).

(h) The set of all ordered pairs of integers, where (a,b) + (c ,d ) = 
{a + c,b + d) and (a,b) x (c ,d ) = {ac -  bd,ad + be).

(i) The set of all real polynomials in the real variable x, with + and x 
denoting the ordinary addition and multiplication of polynomials.

(j) The set of all real-valued continuous functions of the variable x defined 
on the closed interval 0 ^ x ^  1, with + and x denoting ordinary 
addition and multiplication of such functions.

(k) The set consisting of just 2 elements m and n, where we define

m + m = m, m x m = m,

m + n = n + m = n, m X n  = n X m  = m, 

n + n = m, n x n = n.

(1) The set of all point sets of the plane, with a + b denoting the union of 
sets a and b , and a x b denoting the intersection of sets a and b. As a 
special point set of the plane, we introduce an ideal set, the null set, 
which has no points in it.

13.14 Algebraic Laws

Reduce the left member of each of the following equalities to the right member 
by using successively an associative, commutative, or distributive law. Follow
ing custom, multiplication is here sometimes indicated by a raised dot (•) and 
sometimes by mere juxtaposition of the factors.

(a) 5(6 + 3) = 3 • 5 + 5 • 6.
( b )  5(6 • 3) = (3 • 5)6.
(c) 4 • 6 + 5 • 4 = 4(5 + 6).
(d) a[b + (c + d)] = {ab + ac) + ad.
(e) a[b{cd)] = {bc){ad).
(f) a[b{cd)] = {cd){ab).
(g) {ad + ca) + ab = a[{b + c) + d].
(h) a + [b + (c + d)] = [{a + b) + c] + d.
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13.15 More on Algebraic Laws

Determine whether the following binary operations * and |, defined for positive 
integers, obey the commutative and associative laws, and whether the opera
tion | is distributive over the operation *.

(a) a * b = a + lb , a \ b = lab.
(b) a * b = a + b2, a \ b = ab2.
(c) a * b = a2 + b2, a | b = a2b2.
(d) a * b = ab, a \ b = b.

13.16 Complex Numbers as Ordered Pairs of Real Numbers

In Hamilton’s treatment of complex numbers as ordered pairs of real numbers, 
show that

(a) Addition is commutative and associative.
(b) Multiplication is commutative and associative.
(c) Multiplication is distributive over addition.
(d) (a,0) + (b,0) = (a + b,0).
(e) (a,0)(b,0) = (ab,0).
(f) (0,b) = (M X 0,1).
(g) (0,1X0,1) = (-1 ,0).

13.17 Quaternions

(a) Add the 2 quaternions (1,0,-2,3) and (1,1,2,-2).
(b) Multiply, in both orders, the 2 quaternions (1,0,-2,3) and (1,1,2,-2).
(c) Show that addition of quaternions is commutative and associative.
(d) Show that multiplication of quaternions is associative and distributive 

over addition.
(e) Show that the real numbers are embedded within the quaternions.
(f) Show that the complex numbers are embedded within the quaternions.
(g) Multiply the 2 quaternions a + bi + cj + dk and e + fi + gi + hk like 

polynomials in i , j , k, and, by means of the multiplication table for the 
quaternionic units, check into the defined product of the 2 quaternions.

13.18 Matrices

(a) If

x f = ax + by, x" = ex’ + fy ' ,

y' = cs + dy, y" = gx' + hy'

show that

x" = (ea + fc)x + (eb + fd )y , 

y" = (ga + hc)x + (gb + hd)y.

(b) Given the matrices
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2 - 3
4 1 ’

B =
- 2  2 

0 3J ’

calculate A + B, AB, BA, and A2.
(c) Show that addition of matrices is commutative and associative.
(d) Show that multiplication of matrices is associative and distributive over 

addition.

(e) Show that in matric algebra the matrix
1 0 
0 1

and the matrix
0
0

0
0

plays the role of zero.

(f) Show that

plays the role of unity,

and that

"0 f '1 o ' 0 o'

.0 1. _0 0 . .0 0 .

1 o ' 0 f '1 o' '0 f
_0 0_ _0 1. .0 0 . .1 0 .

What 2 familiar laws or ordinary algebra are broken here?
0 r

(g) Show that the matrix

(h) Show that for any rea
0 0 
number k,

has no square root.

k 1 + k 2 '1 o'
\ - k - k .0 1.

has an infinite number of square roots, 

complex numbers as matrices of the form

a b 
_-b  a y

where a and b are real, subject to the usual definitions of addition and 
multiplication of matrices.

(j) Show that we may define real quaternions as matrices of the form

a + bi c + di 
— c + di a — biJ ’

where a, b, c, d are real and i2 = -1 ,  subject to the usual definitions of 
addition and multiplication of matrices.

whence the matrix
1 0

_0 1.

(i) Show that we may define



13.19 Jordan and Lie Algebras

A (special) Jordan algebra, which is used in quantum mechanics, has square 
matrices for elements, with equality and addition defined as in Cayley’s matric 
algebra, but with the product of 2 matrices A and B defined by A * B = 
(AB + BA)/2, where AB stands for Cayley’s product of the 2 matrices A and B. 
Although multiplication in this algebra is nonassociative, it is obviously com
mutative. A Lie algebra differs from the above Jordan algebra in that the prod
uct of 2 matrices A and B is defined by A ° B = AB -  BA, where again AB 
denotes the Cayley product of the matrices A and B. In this algebra, multiplica
tion is neither associative nor commutative.

(a) Taking
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1 O' i r i r
A =

-1  0 , B =
. - i  i

, c  = 0 1

as elements of a Jordan algebra, calculate A + B, A * B, B * A, 
A* (B * C), and (A * B) * C.

( b )  Taking A, B, C of (a) as elements of a Lie algebra, calculate A +  B, 
A ° B, B ° A, A ° (B ° C), and (A ° B) ° C.

(c) Show that the following relations hold in a Jordan algebra.
Jl: A * B = B * A,
J2: (kA) * B = A * (kB) = k(A * B), k an arbitrary number,
J3: A * (B + C) = (A * B) + (A * C),
J4: (B + C) * A = (B * A) + (C * A),
J5: A * (B * A2) = (A * B) * A2, where A2 = A * A = AA.

The name Jordan algebra was introduced by A. A. Albert in 1946, inas
much as the study of these algebras was initiated in 1933 by the physicist 
Pascual Jordan, one of the founders of modern quantum mechanics. Relation J5 
is a special associative law of Jordan algebras.

(d) Show that the following relations hold in a Lie algebra.
LI: A ° B = ~(Bo A),
L2: (kA) ° B = B ° (kA) = k(A ° B), k an arbitrary number,
L3: A ° (B + C) = (A ° B) + (A ° C),
L4: (B + C) ° A = (B ° A) + (C ° A),
L5: A ° (B ° C) + B ° (C ° A) + C ° (A ° B) = O.

Lie algebras are named after the Norwegian mathematician Marius Sophus 
Lie (1842-1899), who did inaugural work in the study of continuous groups. 
Relation L5 is known as the Jacobi identity of Lie algebras.

(e) Show that

A ° (B * B) = 2[(A ° B) * B],

A o (B o C )  = 4[(A * B) * C -  (A * C) * B],

AB = (A * B) + (A o B)/ 2.
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(f) The transpose A' of a square matrix A is the matrix whose successive 
rows are the successive columns of A. A matrix A is said to be skew- 
symmetric if A = -A '. Show that
L6: If A and B are skew-symmetric, then A ° B is skew-symmetric.

A beautiful theorem about skew-symmetric matrices was established by 
Jacobi in 1827. He showed that the determinant of a skew-symmetric matrix of 
odd order equals zero.

13.20 Vectors

Hamilton’s quaternions and, to some extent, Grassmann’s calculus of exten
sion were devised by their creators as mathematical tools for the exploration of 
physical space. These tools proved to be too complicated for quick mastery and 
easy application, but from them emerged the much more easily learned and 
more easily applied subject of vector analysis. This work was due principally to 
the American physicist Josiah Willard Gibbs (1839-1903) and is encountered by 
every student of elementary physics. In elementary physics, a vector is graphi
cally regarded as a directed line segment, or arrow, and the following defini
tions of equality, addition, and multiplication of these vectors are made:

1. Two vectors a and b are equal if and only if they have the same length 
and the same direction.

2. Let a and b be any 2 vectors. Through a point in space, draw vectors a' 
and b ' equal, respectively, to vectors a and b, and complete the paral
lelogram determined by a' and b'. Then the sum , a + b, of vectors a and 
b is a vector whose length and direction are those of the diagonal 
running from the common origin of a' and b ' to the fourth vertex of the 
parallelogram.

3. Let a arid b be any 2 vectors. By the vector product, a x b, of these 2 
vectors is meant a vector whose length is numerically equal to the area 
of the parallelogram in definition (2), and whose direction is that of the 
progress of an ordinary screw when placed perpendicular to both a ' and 
b ' and twisted through the angle of not more than 180° that will carry 
vector a ' into vector b '.

(a) Show that vector addition is commutative and associative.
(b) Show that vector multiplication is noncommutative and nonassocia- 

tive.
(c) Show that vector multiplication is distributive over vector addition.
As a native of New Haven, Gibbs studied mathematics and physics at Yale

University, receiving a doctor’s degree in physics in 1863. He then studied 
mathematics and physics further at Paris, Berlin, and Heidelberg. In 1871, he 
was appointed professor of mathematical physics at Yale. As a highly original 
physicist, he contributed notably to mathematical physics. His Vector Analysis 
appeared in 1881 and again in 1884. In 1902, he published his Elementary 
Principles o f Statistical Mechanics. Every student of harmonic analysis en
counters the curious Gibb's phenomenon of Fourier series.
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13.21 An Interesting Algebra

Consider the set of all ordered real number pairs and define the following:
1. (a,b) = (c ,d ) if and only if a = c and b = d.
2. (a,b) + (c ,d ) = (a + c, b + d).
3. (a,b)(c,d) = (0,ac).
4. k(a,b) = (ka,kb).
(a) Show that multiplication is commutative, associative, and distributive 

over addition.
( b )  Show that the product of 3 or more factors is always equal to (0,0).
(c) Construct a multiplication table for the units u = (1,0) and v = (0,1).

13.22 A Point Algebra

Let capital letters P, Q, R, . . . denote points of the plane. Define addition of 
points P and Q by P + Q = R, where triangle PQR is a counterclockwise 
equilateral triangle.

(a) Show that the addition of points of the plane is noncommutative and 
nonassociative.

( b )  Show that if P + Q = R, then Q + R = P.
(c) Establish the following identities:

1. (P + (P + (P + (P + (P + (P + g)))))) = Q.
2. P + (P + (P + Q )) = (Q + P) + (P + Q ).
3. (P + Q) + R = (P + (Q + R)) + Q.

13.23 An Infinite Non-Abelian Group

(a) Show that the set of all 2 by 2 matrices

a b 
c d ’

where a, b ,c ,d  are rational numbers such that ad 
a group under Cayley matrix multiplication.

\2
( b )  Calculate the inverse A 1 of matrix A =

|_3
the product AA~X is the identity matrix.

13.24 The Hamiltonian Game

The Hamiltonian Game consists of determining a route alone the edges of a 
regular dodecahedron that will pass once and only once through each vertex of 
the dodecahedron. The game was invented by Sir William Rowan Hamilton, 
who denoted the vertices of the dodecahedron by letters standing for various 
towns. Hamilton proposed a number of problems connected with his game.

1. The first problem is to go “all round the world” ; that is, starting from 
some given town, visit every other town once and only once and return 
to the initial town, where the order of the first n ^  5 towns may be

-  be + 0, constitutes 

, and show that
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prescribed. Hamilton presented a solution of this problem at the 1857 
meeting of the British Association at Dublin.

2. Another problem suggested by Hamilton is that of starting at some first 
given town, visiting certain specific towns in assigned order, then going 
on to every other town once and only once and ending the journey at 
some second given town.

The student is invited to read up on the theory of the Hamiltonian game in, 
say, Mathematical Recreations and Essays, by W. W. Rouse Ball and revised 
by H. S. M. Coxeter.
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Chapter

THE LATER NINETEENTH 
CENTURY AND THE 
ARITHMETIZATION OF ANALYSIS

14-1 Sequel to Euclid
Until modern times, it had been thought that the Greeks had pretty well ex
hausted the elementary synthetic geometry of the triangle and the circle. Such 
proved to be far from the case, for the nineteenth century witnessed an aston
ishing reopening of this study. It now seems that this field of investigation must 
be unlimited, for an enormous number of papers have appeared, and are contin
uing to appear, concerned with the synthetic examination of the triangle and 
associated points, lines, and circles. Much of the material has been extended to 
the tetrahedron and its associated points, planes, lines, and spheres. It would 
be too great a task here to enter into any sort of a detailed history of this rich 
and extensive subject. Many of the special points, lines, circles, planes, and 
spheres have been named after original or subsequent investigators. Among 
these names are Gergonne, Nagel, Feuerbach, Hart, Casey, Brocard, Le- 
moine, Tucker, Neuberg, Simson, McCay, Euler, Gauss, Bodenmiller, Fuhr- 
mann, Schoute, Spieker, Taylor, Droz-Farny, Morley, Miquel, Hagge, 
Peaucellier, Steiner, Tarry, and many others.

Beyond a few isolated earlier discoveries, such as Commandino’s theorem 
of 1565 (see Problem Study 14.2) and Ceva’s theorem of 1678 (see Problem 
Study 9.10), little that was new and significant was discovered in the synthetic 
geometry of the triangle and the tetrahedron until the nineteenth century. It is 
true that Euler discovered the Euler line of a triangle (see Problem Study 14.1) 
in 1765, but this proof was analytic; the first synthetic proof was given by L. N.
M. Carnot in his Geometrie de position of 1803. A number of the important 
associated elements of a triangle, such as the nine-point circle and the miscredi- 
ted Brocard points, were discovered in the first half of the nineteenth century, 
but it was in the second half of the nineteenth century that the subject really 
blossomed and grew in a prodigious manner. Most of these discoveries ema
nated from France, Germany, and England. Today contributions to the field 
continue, coming now from almost all parts of the world.

Large portions of the above material have been summarized and organized 
in numerous recent texts bearing the title modern, or college, geometry. It is 
not too much to say that a course in this material is very desirable for every 
prospective teacher of high-school geometry. The material is definitely elemen
tary, but not easy, and is extremely fascinating.
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14-2 Impossibility of Solving the Three
Famous Problems with Euclidean Tools

It was not until the nineteenth century that the three famous problems of 
antiquity were finally shown to be impossible of solution with Euclidean tools. 
Proofs of this fact can now be found in many of the present-day textbooks 
dealing with the theory of equations, where it is shown that needed criteria for 
constructibility are essentially algebraic in nature. In particular, the following 
two theorems are established:1

1. The magnitude o f any length constructible with Euclidean tools from a 
given unit length is an algebraic number.

2. From a given unit length it is impossible to construct with Euclidean 
tools a segment the magnitude o f whose length is a root of a cubic 
equation with rational coefficients but with no rational root.

The quadrature problem is disposed of by the first theorem. For if we take 
the radius of the given circle as our unit of length, the side of the sought 
equivalent square is V 7r. Thus, if the problem were possible with Euclidean 
tools, we could construct from the unit segment another segment of length V 7r. 
This is impossible, however, since 7r, and hence Vjr, was shown by Lindemann 
in 1882 to be nonalgebraic.

The second theorem disposes of the other two problems. Thus, in the 
duplication problem, take for our unit of length the edge of the given cube and 
let x denote the edge of the sought cube. Then we must have jc3 = 2. If the 
problem is solvable with Euclidean tools, we could construct from the unit 
segment another segment of length x. But this is impossible, since jc3 = 2 is a 
cubic equation with rational coefficients but without any rational root.2

We may prove that the general angle cannot be trisected with Euclidean 
tools by showing that some particular angle cannot be so trisected. Now, from 
trigonometry, we have the identity
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Taking $ = 60° and setting x = cos (0/3), this becomes

8x3 -  6x -  1 = 0.

1 See, for example, Howard Eves, A Survey of Geometry, vol. 2, pp. 30-38.
2 It will be recalled that if a polynomial equation

a0x n + a\Xn~l +  • • • +  an = 0,

with integral coefficients a0, a\ , . . . , an, has a reduced root alb, then a is a factor of an and b is a 
factor of a0. Thus, any rational roots of jc3 -  2 = 0 are among 1, -1,2, -2. Since by direct testing 
none of these numbers satisfies the equation, the equation has no rational roots.
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Let OA be a given unit segment. Describe the circle with center O and radius 
OA, and with A as center and AO as radius draw an arc to cut the circle in B 
(see Figure 115). Then angle BOA = 60°. Let trisector OC, which makes angle 
CO A = 20°, cut the circle in C, and let D be the foot of the perpendicular from C 
on OA. Then OD = cos 20° = jc. It follows that if a 60° angle can be trisected 
with Euclidean tools, in other words if OC can be drawn with these tools, we 
can construct from a unit segment OA another segment of length jc. This is 
impossible, however, by the second theorem, since the above cubic equation 
has rational coefficients but no rational root.

It should be noted that we have not proved that no angle can be trisected 
with Euclidean tools, but only that not all angles can be so trisected. The truth 
of the matter is that 90° and an infinite number of other angles can be trisected 
by the use of Euclidean tools.

1 4 -3  Compasses or Straightedge Alone3

The eighteenth-century Italian geometer and poet, Lorenzo Mascheroni (1750— 
1800) made the surprising discovery that all Euclidean constructions, insofar as 
the given and required elements are points, can be made with the compasses 
alone, and that the straightedge is thus a redundant tool. Of course, straight 
lines cannot be drawn with the compasses, but any straight line arrived at in a 
Euclidean construction can be determined by the compasses alone by finding 
two points of the line. This discovery appeared in 1797 in Mascheroni’s Geome- 
tria del compasso.

Since in a Euclidean construction new points are found from old points by
(1) finding an intersection of two circles, (2) finding an intersection of a straight 
line and a circle, or (3) finding the intersection of two straight lines, all Mas
cheroni had to do was to show how, with compasses alone, problems (2) and (3) 
can be solved, where for a straight line we are given two points of the line.

3 For a fuller treatment of the material of this section, along with proofs, see, for example, 
Howard Eves, A Survey o f Geometry, vol. 1, Chapter 4.



Shortly before 1928, a student of the Danish mathematician J. Hjelmslev 
(1873-1950), while browsing in a bookstore in Copenhagen, came across a copy 
of an old book, Euclides danicus, published in 1672 by an obscure writer named 
Georg Mohr (1640-1697). Upon examining the book, Hjelmslev was surprised 
to find that it contained Mascheroni’s discovery, with a proof, arrived at 125 
years before Mascheroni’s publication. In 1890, the Viennese geometer, Au
gust Adler (1863-1923), published a new proof of Mascheroni’s results, using 
the inversion transformation.

Inspired by Mascheroni’s discovery, the French mathematician Jean Vic
tor Poncelet (1788-1867) considered constructions with straightedge alone. 
Now not all Euclidean constructions can be achieved with only the straight
edge, but, curiously enough, in the presence of one circle and its center drawn 
on the plane of construction, all Euclidean constructions can be carried out 
with straightedge alone. This remarkable theorem was conceived by Poncelet 
in 1822 and then later, in 1833, fully developed by the Swiss-German geometry 
genius Jacob Steiner (1796-1863). Here it is necessary to show that, in the 
presence of a circle and its center, constructions (1) and (2) can be solved with 
straightedge alone, where now a circle is considered as given by its center and a 
point on its circumference.

It was about 980 that the Arabian mathematician Abu’l-Wefa (940-998) 
proposed using the straightedge along with rusty compasses—that is, with com
passes of a fixed opening. In view of the Poncelet-Steiner theorem, we need, in 
fact, use the compasses only once, after which the compasses may be dis
carded. In 1904, the Italian Francesco Severi went still further, and showed 
that all that is needed is an arc, no matter how small, of one circle, and its 
center, in order to accomplish all Euclidean constructions with straightedge 
alone. It has also been shown, by Adler and others, that any Euclidean con
struction can be carried out with a two-edged straightedge, whether the edges 
are parallel or not. There are many intriguing construction theorems of this 
sort, the proofs of which require considerable ingenuity.

Recently,4 it was shown that the Georg Mohr mentioned above was the 
author of an anonymously published booklet entitled Compendium Euclidis 
curiosi, which appeared in 1673 and which in effect shows that all the construc
tions of Euclid’s Elements are possible with straightedge and rusty compasses.

Lorenzo Mascheroni was born at Castagneta, Italy, in 1750. He began the 
study of mathematics late in life, having first been interested in the humanities. 
He taught Greek and poetry at the school in his native town and then at Pavia. 
He took holy orders and became an abbot. After teaching the humanities, 
Mascheroni became interested in geometry, and was elected professor of math
ematics at Pavia. He wrote on physics, calculus, and the proposed metric 
system, and published annotations to Euler’s Integral Calculus. As a friend of
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4 See A. E. Hallerberg, “The geometry of the fixed-compass,” The Mathematics Teacher 
(April) 1959: 230-244, and A. E. Hallerberg, “Georg Mohr and Euclidis c u r io s iT h e  Mathematics 
Teacher (February) 1960: 127-132.



Napoleon, who admired mathematics and was himself an amateur geometer, he 
interested the general in compass constructions (see Problem Study 14.8(d)). 
Mascheroni died in Paris in 1800.

Biographical data on Poncelet and Steiner appear in Section 14-4.
The problem of finding the “best” Euclidean solution to a required con

struction has also been considered, and a science of geometrography was 
developed by Emile Lemoine (1840-1912) for quantitatively comparing one 
construction with another. To this end, Lemoine considered the following five 
operations:

S\\ To make the straightedge pass through one given point.
S2: To rule a straight line.
Ci: To make one compass leg coincide with a given point.
C2: To make one compass leg coincide with any point of a given locus.
C3: To describe a circle.

If the preceding operations are performed mi, ra2, nx, n2, times in a con
struction, then mxS\ + m2S2 A nxCx A n2C2 + w3C3 is regarded as the symbol of 
the construction. The total number of operations, mx + m2 + nx + n2 + n3, is 
called the simplicity of the construction, and the total number of coincidences, 
mx + nx + n2, is called the exactitude of the construction. The total number of 
loci drawn is m2 + n3, the difference between the simplicity and the exactitude 
of the construction. The symbol for drawing the straight line through points A 
and B is 251 + S2, and that for drawing the circle with center C and radius AB is 
3Ci + C3.

Emile Lemoine served as editor of VIntermediare des mathematiciens. He 
presented his geometrographical proposals (1888-1889, 1892, 1893) at the Inter
national Mathematical Congress held in connection with the Chicago World
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Fair of 1893. His name appears in geometry also in connection with the so- 
called Lemoine (or symmedian) point of a triangle (see Problem Study 14.5), 
and the Lemoine line, Lemoine circle, and second Lemoine (or cosine) circle of 
a triangle. In three space, there is a Lemoine tetrahedron, and the Lemoine 
point and Lemoine plane of a tetrahedron.

1 4 -4  Projective Geometry

Quite apart from the discovery of non-Euclidean geometry, the field of geome
try made enormous strides in the nineteenth century. There was, as has already 
been pointed out, an extensive development of the surprisingly rich material 
constituting a sequel to Euclid. In the present section, it will be seen that 
projective geometry also made very impressive and highly fruitful gains. Sec
tion 14-5 is devoted to the remarkable nineteenth-century expansion of the 
methods of analytic geometry, and Section 14-7 to an examination of the 
extraordinary growth of differential geometry in that century.

Although Desargues, Monge, and Carnot had initiated the study of projec
tive geometry, its truly independent development was launched in the nine
teenth century by Jean Victor Poncelet. Poncelet was born at Metz in 1788, 
attended the lycee there, and then from 1807 to 1810, enrolled at the Ecole 
Poly technique, where he studied under Monge. In 1812, following a stint as a 
student at the military academy at Metz, he entered the army as a lieutenant of 
engineers, and served in Napoleon’s fateful Russian campaign. Left for dead on 
the battlefield of Krasnoi during the French retreat from Moscow, Poncelet was 
taken prisoner of war and, after a forced march of nearly five months, was 
placed in confinement at Saratoff on the Volga River. There, with no books at 
hand, he planned his great Traite des proprietes projectives des figures, which, 
subsequent to his release and return to Metz late in 1814, he put into form and 
published in Paris in 1822. Poncelet’s later life was devoted to military duties 
interspersed with writing on mechanics, hydraulics, infinite series, and geome
try. He published a treatise on applied mechanics (1826), an interesting memoir 
on water mills (also 1826), a report on the English machinery and tools dis
played at the London International Exhibition of 1851, a two-volume expansion 
of his earlier work of 1822 (1862, 1865), and numerous geometry articles in the 
pages of Crelie's Journal. Of rugged health all his long life, Poncelet was 
always conscientious, efficient, and dependable in his military assignments, 
and he retained his creative abilities in mathematics almost to the time of his 
death. He died in Paris in 1867 at the age of seventy-nine.

Poncelet’s Traite des proprietes projectives des figures is a geometric mile
stone. It gave tremendous impetus to the study of projective geometry and 
inaugurated the so-called “great period” in the history of the subject. There 
followed into the field a host of mathematicians, among whom were Gergonne, 
Brianchon, Chasles, Pliicker, Steiner, Staudt, Reye, and Cremona—great 
names in the history of geometry, and in the history of projective geometry in 
particular.
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(Culver Service)

We shall here restrict ourselves to the consideration of only two of the 
mathematical tools utilized by Poncelet in his development of projective geom
etry—the principle o f duality and the principle o f continuity.

In plane projective geometry, there is a remarkable symmetry between 
points and lines, when the ideal elements at infinity are utilized, such that if in a 
true proposition about “points” and “ lines” we should interchange the roles 
played by these words, and perhaps smooth out the language, we obtain an
other true proposition about “ lines” and “points.” As a simple example, con
sider the following two propositions related in this way:

Any two distinct points determine one and only one line on 
which they both lie.

Any two distinct lines determine one and only one point 
through which they both pass.

This symmetry, which results in the pairing of the propositions of plane projec
tive geometry, is a far-reaching principle known as the principle of duality. 
Once the principle of duality is established, then the proof of one proposition of 
a dual pair carries with it the proof of the other. Let us dualize Pascal’s theo
rem. We first restate Pascal’s theorem in a form that is perhaps more easily 
dualized.

The six vertices o f a hexagon lie on a conic if  and only if the 
points o f intersection o f the three pairs o f opposite sides lie on a 
line.

Dualizing this we obtain:
The six sides o f a hexagon are tangent to a conic if  and only 

if the lines joining the three pairs o f opposite vertices intersect in 
a point.



This theorem was first published by Charles Julien Brianchon (1785-1864), 
when a student at the Ecole Poly technique in Paris, in 1806, nearly 200 years 
after Pascal had stated his theorem.

There are several ways in which the principle of duality may be estab
lished. It is possible to give a set of postulates for projective geometry that are 
themselves arranged in dual pairs. It follows that the dual of any theorem 
derived from such a set of postulates may be authenticated by simply dualizing 
the steps in the proof of the original theorem. The principle may also be estab
lished analytically once the concepts of “coordinates” of a line and “equation” 
of a point are formulated (see Section 14-5). Finally the student who is familiar 
with the elementary notion of poles and polars with respect to some base conic 
will realize that, under the correspondence between poles and polars so set up, 
to each figure consisting of lines and points is associated a dual figure consisting 
of points and lines. It was in this last way that the principle of duality was first 
elaborated by Gergonne and Poncelet. The term pole had been introduced in 
1810 by the French mathematician F. J. Servois (1767-1847), and the corre
sponding term polar by Gergonne (1771-1859) three years later.

It is interesting to point out that principles of duality have been established 
in several other branches of mathematics, such as solid projective geometry, 
Boolean algebra, the theory of trigonometric identities, spherical geometry, 
partially ordered sets, and the calculus of propositions.

Poncelet’s other mathematical tool, the principle of continuity, may be 
explained by the following example. Consider the situation of two circles inter
secting in the real points A and B. A student of elementary geometry can easily 
prove that the locus of a point P having equal powers with respect to the two 
circles is the line AB. This property, having been established, must be provable 
by the method of analytic geometry. But the method of analytic geometry 
would take no cognizance of whether the points A and B of intersection of the 
two circles are real or imaginary. Hence, the chain of equations that proves the 
proposition in the case in which A and B are real at the same time proves the 
proposition when A and B are imaginary. It follows that when our two circles 
do not intersect, the locus of a point P having equal powers with respect to the 
two circles still is a straight line. This method of reasoning, where from a proof 
of a theorem for a real situation one obtains the theorem for an imaginary 
situation, was called by Poncelet the principle of continuity of geometry. In 
projective geometry, there are many instances in which a proposition that can 
be established for the case of a real projection can be extended by the principle 
of continuity to the case of an imaginary projection.

Poncelet’s principle of continuity met resistance from a number of geome
ters, and many of Poncelet’s articles in Crelle’s Journal are devoted to defend
ing and illustrating the principle.

Many of Poncelet’s ideas in projective geometry were further developed 
by the Swiss geometer Jacob Steiner, one of the greatest synthetic geometers 
the world has ever known. Steiner was born at Utzensdorf in 1796 and did not 
learn to write until he was fourteen. At seventeen, he became a pupil of Johann 
Heinrich Pestalozzi (1746-1827), the famous Swiss educator, who instilled in
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the boy a love for mathematics. Later, in 1818, Steiner matriculated at Heidel
berg, where he quickly exhibited his ability in mathematics. In 1821, he started 
giving private lessons in mathematics in Berlin, and soon was appointed a 
teacher in the Gewerbeakademi. His name became well known through his 
articles published in the newly founded Crelle’s Journal; he and Abel were 
leading contributors to the journal. In 1834, through the influence of Jacobi, 
Crelle, and von Humbolt, a chair was founded for him at the University of 
Berlin, where he remained for the rest of his teaching career. His final years 
were spent in poor health in Switzerland. He died at Bern in 1863.

Described as “the greatest geometrician since the time of Apollonius,” 
Steiner possessed incredible power in the synthetic treatment of geometry. He 
became a prolific contributor in the field and wrote a number of treatises of the 
highest rank. It is said that he loathed the analytical method in geometry, 
regarding it as a crutch for the geometrically feeble-minded. He created new 
geometry at such a prodigious rate that often he had no time to record his 
proofs, with the result that many of his findings remained for years as riddles to 
those seeking demonstrations. His Systematische Entwicklungen, published in 
1832, immediately made his reputation. This work contains a complete discus
sion of reciprocation, the principle of duality, homothetic ranges and pencils, 
harmonic division, and the projective geometry of the conic sections based 
upon the highly fruitful definition of a conic as the locus of the points of 
intersection of corresponding lines of two homographic pencils with distinct 
vertices. He contributed to the study of the n-gon in space, the theory of curves 
and surfaces, pedal curves, roulettes, and the twenty-seven straight lines on a 
surface of the third order. He attacked by synthetic geometry problems in 
maxima and minima that in the hands of others required the paraphernalia of 
the calculus of variations. His name is met in many places in geometry, as in

JACOB STEINER
(David Smith Collection)



the Steiner solution and generalization of the Malfatti problem, Steiner chains, 
Steiner’s porism, and the Steiner points of the mystic hexagram configuration.

In the treatments of projective geometry by Poncelet and Steiner, many 
projective concepts are based upon metrical properties. Projective geometry 
was finally completely freed of any metrical basis by Karl Georg Christian von 
Staudt in his Geometrie der Lage of 1847. Staudt was born at Rothenburg in 
1798, held the chair of mathematics at Erlangen, and died at Erlangen in 1867.

The analytical side of projective geometry made spectacular gains in the 
work of Augustus Ferdinand Mobius (1790-1868), Michel Chasles (1793-1880), 
and, particularly, Julius Pliicker (1801-1868). Pliicker became as famous a 
champion of analytic geometry as Steiner did of synthetic geometry. This work 
will be considered in more detail in Section 14-5. Michel Chasles was also an 
outstanding synthetic geometer, and his Apergu historique sur Vorigine et le 
developpement des methodes en geometrie (1837) is still a standard work on the 
history of geometry. Chasles became professor of geometry and mathematics 
at the Ecole Poly technique in 1841 and professor of geometry in the faculty of 
sciences in 1846. He received the Copley medal of the Royal Society for his 
Traite des sections coniques, which was published in Paris in 1865.

Later it was shown how, by the adoption of a suitable projective definition 
of a metric, we can study metric geometry in the framework of projective 
geometry, and how, by the adjunction of an invariant conic to a projective 
geometry in the plane, we can obtain the classical non-Euclidean geometries. 
In the late nineteenth and early twentieth centuries, projective geometry re
ceived a number of postulational treatments, and finite projective geometries 
were discovered. It was shown that, by gradually adding and altering postu
lates, one can move from projective geometry to Euclidean geometry, encoun
tering a number of other important geometries on the way.
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14-5 Analytic Geometry
There are plane coordinate systems other than the rectangular and oblique 
Cartesian systems. As a matter of fact, one can invent coordinate systems 
rather easily. All one needs is an appropriate frame of reference along with 
some accompanying rules telling us how to locate a point in the plane by means 
of an ordered set of numbers referred to the frame of reference. Thus, for the 
rectangular Cartesian system, the frame of reference consists of two perpendic
ular axes, each carrying a scale, and we are all familiar with the rules telling us 
how to locate a point with respect to this frame by the ordered pair of real 
numbers representing the signed distances of the point from the two axes. The 
Cartesian systems are much the commonest systems in use and have been 
developed enormously. Much terminology, like our classification of curves into 
linear, quadratic, cubic, and so forth, stems from our use of this system. Some 
curves, however, such as many spirals, have intractable equations when re
ferred to a Cartesian frame, whereas they enjoy relatively simple equations 
when referred to some other skillfully designed coordinate system. Particularly



14-5 / Analytic Geometry 549

FIGURE 116

useful in the case of spirals is the polar coordinate system, where, it will be 
recalled, the frame of reference is an infinite ray and where a point is located by 
a pair of real numbers, one of which represents a distance and the other an 
angle. The idea of polar coordinates seems to have been introduced in 1691 by 
Jakob Bernoulli (1654-1705).5 Further coordinate systems were little investi
gated until toward the close of the eighteenth century, when geometers were 
led to break away from the Cartesian systems in situations in which the peculiar 
necessities of a problem indicated some other algebraic apparatus as more 
suitable. After all, coordinates were made for geometry and not geometry for 
coordinates.

An interesting development in coordinate systems was inaugurated by the 
Prussian geometer Julius Pliicker in 1829, when he noted that our fundamental 
element need not be the point, but can be any geometric entity. Thus, if we 
choose the straight line as our fundamental element, we might locate any 
straight line not passing through the origin of a given rectangular Cartesian 
frame of reference by recording, say, the x and y intercepts of the given line. 
Pliicker actually chose the negative reciprocals of these intercepts as the loca
tion numbers of the line and considerably exploited the analytic geometry of 
these so-called line coordinates. A point now, instead of having coordinates, 
possesses a linear equation namely, the equation satisfied by the coordinates of 
all the lines passing through the point (see Problem Study 14.15). The double 
interpretation of a pair of coordinates as either point coordinates or line coordi
nates and of a linear equation as either the equation of a line or the equation of a 
point furnishes the basis of Pliicker’s analytical proof of the principle of duality 
of projective geometry. A curve may be regarded either as the locus of its 
points or as the envelope of its tangents (see Figure 116). If, instead of points or 
straight lines, we should choose circles as fundamental elements, then we 
would require an ordered triple of numbers to determine one of our elements

5 See, however, C. B. Boyer, “ Newton as an originator of polar coordinates,” The American 
Mathematical Monthly (February) 1949: 73-78.



completely. On a rectangular Cartesian frame of reference, for example, we 
might take the two Cartesian coordinates of the circle’s center along with the 
circle’s radius. Ideas such as these led to considerable generalization and the 
development of a dimension theory. The dimensionality of a manifold of funda
mental elements was considered as the number of independent coordinates 
needed to locate each fundamental element. According to this concept, the 
plane is two dimensional in points, and also in lines, but is three dimensional in 
circles. It can be shown that the plane is five dimensional if the totality of all 
conic sections in the plane should be chosen as the manifold of fundamental 
elements. Dimension theory has, of course, developed far beyond this elemen
tary concept and is today a subject of considerable extent and depth.

Although Descartes had mentioned solid analytic geometry, he did not 
elaborate it. Others, like the younger Frans van Schooten, La Hire, and Johann 
Bernoulli, suggested our familiar solid analytic geometry, but it was not until 
1700 that the subject was first systematically developed, by Antoine Parent 
(1666-1716) in a paper presented to the French Academy. A. C. Clairaut, in 
1731, was the first to write analytically on nonplanar curves in space. Euler 
later advanced the whole subject well beyond its elementary stages. These 
initial workers chose the point as fundamental element. Although space is three 
dimensional in points, it may be shown that it is four dimensional in lines and 
also in spheres. It is three dimensional, however, in planes (see Problem Study 
14.16).

While synthetic geometers were making easy and spectacular gains, the 
analytic geometers were bogged down in a morass of algebraic calculations. If 
analytic geometry was to compete successfully with synthetic geometry, it had 
to develop new and improved procedures. With great zeal, some of the protag
onists of coordinate methods entered the lists in defense of analytic geometry, 
and the subject commenced its golden period. Foremost among the contribu
tors of improved procedures in analytic geometry was Julius Pliicker, who, in a 
sequence of articles and texts, devised methods that showed that analytic 
geometry, when properly employed, need concede nothing in elegance and 
simplicity to synthetic geometry.

Pliicker was born at Elberfeld in 1801 and was educated at Bonn, Berlin, 
and Heidelberg, with a short period of study in Paris, where he attended lec
tures of Monge and his pupils. Between 1826 and 1836, he held teaching posi
tions successively at Bonn, Berlin, and Halle. In 1836, he returned to the 
University of Bonn as a professor of mathematics, a position that in 1847 he 
exchanged for a professorship in physics there. He died at Bonn in 1868.

Pliicker’s two-volume Analytisch-geometrische Entwicklungen was pub
lished in 1828 and 1831. In the first volume of this work, the method of abridged 
notation, though employed earlier by Gabriel Lame and Etienne Bobillier is 
given its first extensive treatment. The idea of abridged notation lies in repre
senting long expressions by single letters and in the fundamental principle: If 
a(x,y) = 0 and /3(x,y) = 0 are two curves, then ua + vf3 = 0, where u and v are 
any constants or functions of jc and y, is a curve passing through the points of 
intersection of the curves a = 0 and = 0. Such seemingly algebraically
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FIGURE 117

complex theorems as Desargues’ two-triangle theorem and Pascal’s mystic 
hexagram theorem can be given remarkably neat and brief proofs with the aid 
of abridged notation. Consider, for example, Pascal’s mystic hexagram theo
rem: If the six points 1, 2, 3, 4, 5, 6 lie on a conic, then the three points P, Q , R 
of intersection o f the three pairs o f lines 56 and 23, 16 and 34, 12 and 45 are 
collinear.

Let a = 0, ft = 0, y = 0, a' = 0, f3f = 0, y ' = 0 be equations (see Figure 117) 
of the lines 12, 34, 56, 45, 61, 23. Consider the cubic curve

a(3y + ka'P'y' = 0.

Regardless of the value of k , this cubic passes through the nine points 1, 2, 3, 4, 
5, 6, P , Q, R. Take another point 7 on the conic and determine k so that the 
cubic will also pass through point 7. Now a cubic and a conic can intersect in at 
most (3)(2) = 6 points, unless the conic is a part of the cubic, the rest of which is 
some straight line. This, then, must be the case, and the remaining three points 
P, Q, R must lie on a straight line.

In the second volume of Analytisch-geometrische Entwicklungen, occurs a 
presentation of homogeneous coordinates of points in the plane. Here (Carte
sian) homogeneous coordinates of a point P having Cartesian coordinates 
(.X,Y ) are defined as any ordered triple (x,y,t) such that X = xIt and Y = y/t. It 
follows that the triples (x,y,t) and (kx,ky,kt) represent the same point. The 
name homogeneous arises from the fact that when one converts the equation 
f(X , Y) = 0 of an algebraic curve in Cartesian coordinates to the form f(x lt, y/t) 
= 0, all the terms in the new equation become of the same degree in the new 
variables. But, more important, in homogeneous coordinates a triple (jt,y,0), 
which has no counterpart in the Cartesian system, represents a “point at infin
ity,’’ and the ideal points at infinity of Kepler, Desargues, and Poncelet now 
receive representation in a coordinate system. The equation t — 0 is then the 
equation of the ideal line at infinity. It follows that homogeneous coordinates
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furnish a perfect tool for the analytical exploration of projective geometry, 
which requires both the finite and the infinite points of the plane.

Pliicker’s book System der analytischen Geometrie of 1835 contains a 
complete classification of cubic curves based upon the nature of their points at 
infinity, and his Theorie der algebraischen Curven of 1839 gives an enumera
tion of curves of the fourth order and his famous four equations connecting the 
singularities of algebraic curves. These equations are

m = n(n — 1) — 28 — 3k, n — m(m — 1) — 2 r — 3i,

l — 3 n(n — 2) — 68 — 8 k , k  =  3 m (m  — 2) — 6r  — 8i ,

where m is the class of the curve (the degree of the equation of the curve when 
expressed in line coordinates), n the order of the curve (the degree of the 
equation of the curve when expressed in point coordinates), 8 the number of 
nodes, k  the number of cusps, i the number of points of inflection, and r the 
number of bitangents.

For about twenty years following his appointment as professor of physics, 
Pliicker largely devoted himself to researches in spectrum analysis, magnetism, 
and the Fresnel wave surface. Later in life, he returned to his first love, mathe
matics, and developed the four-dimensional geometry of lines in space, along 
with his theory of “complexes” and “congruences” of lines in space.

In a more detailed treatment of the remarkable growth of analytic geome
try in the nineteenth century, more than just passing notice would be given to



14-6 / N-dimensional Geometry 553

Joseph Diaz Gergonne (1771-1859, artillery officer, editor, and professor of 
mathematics), Augustus Ferdinand Mobius (1790-1868, professor at Leipzig), 
Gabriel Lame (1795-1870, engineer and professor of mathematics), Etienne 
Bobillier (1798-1840, professor of mechanics), Ludwig Otto Hesse (1811-1874, 
professor at Konigsberg), Rudolph Friedrich Alfred Clebsch (1833-1872, pro
fessor at Konigsberg and later at Gottingen), George-Henri Halphen (1844- 
1889, of Rouen and examinateur at the Ecole Poly technique in Paris), and 
others.

A discussion of the application of analytic geometry to the study of a 
hyperspace which is ^-dimensional (n >  3) in points is reserved for the follow
ing section.

14-6 Af-Dimensional Geometry
The first nebulous notions of a hyperspace that is n dimensional (n >  3) in 
points are lost in the dimness of the past and were confused by metaphysical 
considerations. The first published paper dealing explicitly with higher-dimen
sional point geometry was written by Arthur Cayley (1821-1895) in 1843, fol
lowing which the subject received the attention of the three British mathemati
cians Cayley, J. J. Sylvester (1814-1897), and W. K. Clifford (1845-1879). The 
simultaneous pioneering work in higher-dimensional geometry done by H. G. 
Grassmann (1809-1877) and Ludwig Schlafli (1814-1895) on the continent 
failed for some time to attract any attention. In fact, the bulk of Schlafli’s work 
was not published until several years after his death, and by that time Victor 
Schlegel (1843-1905) and others in Germany had made the subject well known. 
Higher-dimensional projective geometry was developed almost entirely by the 
Italian school of geometers, although it was Clifford who inaugurated this study 
in 1878.

Quite independently of the work described above regarding the beginning 
of higher-dimensional point geometry, we find the arithmetic aspect of the 
subject gradually emerging from applications of analysis where an analytical 
treatment can easily be extended from two or three variables to arbitrarily 
many variables. Thus, George Green (1793-1841), in 1833, reduced the prob
lem of the mutual attraction of two ellipsoidal masses to analysis and then 
solved the problem for any number of variables, saying, “ It is no longer con
fined as it were to the three dimensions of space.” Other writers made similar 
generalizations to arbitrarily many variables, and it was but a step further to 
apply the terminology of geometry to many of the forms and processes of 
algebra and analysis. This procedure was clearly stated by Cauchy, in 1847, in a 
paper on analytical loci when he said, “We shall call a set of n variables an 
analytical point, an equation or system of equations an analytical locus,” and 
so on. Beyond any doubt, the most important early expression of this analytical 
viewpoint of higher-dimensional geometry is found in Riemann’s great proba
tionary lecture of 1854, but it was not published until 1866. It was in this lecture 
that Riemann built up his notion of ^-dimensional manifolds and their measure
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relations, and throughout the discussion, he held geometrical conceptions and 
imagery before the mind.

The number of papers and works devoted to higher-dimensional geometry 
increased greatly after 1870. In 1911, D. M. Y. Sommerville published his 
Bibliography on Non-Euclidean Geometry, Including the Theory of Parallels, 
the Foundations o f Geometry, and Space of n Dimensions. In this bibliogra
phy, there appear 1832 references to ^-dimensional geometry, of which about 
one-third are Italian, one-third German, and the rest mostly French, English, 
and Dutch.

One studies ^-dimensional geometry analytically by introducing appropri
ate concepts into arithmetic space of n dimensions. Arithmetic space of n 
dimensions is the set of all ordered ^-tuples x = (x{, jt2, . . . , xn) of real num
bers, and each such ^-tuple is called a point of the space. Relations among 
these points are defined by formulas analogous to the formulas holding for the 
corresponding relations among points in, say, Cartesian point spaces of two 
and three dimensions. Thus, since the distance between the two points (x\ ,jc2) 
and (y\ ,y2) in a two-dimensional rectangular Cartesian system is given by

[(*i - y \ ) 2 + (*2 -  y2)2]l/2,

and the distance between the two points (jti ,x2 ,x3) and (yi,y2,y3) in a three- 
dimensional rectangular Cartesian system is given by

[(*i -  y d 2 + (*2 - J2)2 + (*3 - .y3)2]l/2,

we define the distance between the two points x = (x\ , . . . , xn) and y = 
(y 1 , . . . , yn) in arithmetic ^-dimensional space to be

[(*1 -  y i)2 + ••■  + ( * „ -  y«)2]1/2.

Similarly, we define an n-dimensional sphere of radius r and with center at the 
point (a\, , an) to be the collection of all points x = (x\ , . . . , xn) such that

(X\ -  fli)2 + • • • + ( * „ -  an)2 = r2.

We define a pair of points to be a line segment, and we define any ordered 
H-tuple of numbers of the form

(K yi ~ *0, . . . , k(y„ -  xn)), k + 0,

to be direction numbers of the line segment xy determined by the points x and y. 
The cosine of the angle 6 between the two line segments xy and uv is defined as

cos 0 = (y 1 ~ *i)(ui -  ux) + - • • + (yn -  xn)(vn -  un) 
d(x,y) d(u,v)
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where d{x,y) is the distance between the points x and y, and d(u,v) is the 
distance between the points u and v. The two segments are said to be perpen
dicular if and only if the cosine of the angle between them is zero. A transfor
mation of the form

y, = di + xi9 n,

mapping the point x onto the point y, is called a translation. Other point trans
formations of the space onto itself can be similarly defined. It is easy to formu
late a definition of an n-dimensional conicoid and then to study the pole, polar, 
and other properties of these conicoids. An ^-dimensional geometry of this sort 
can be regarded as a purely algebraic study that employs geometric termi
nology.

Higher-dimensional geometries do not lack application in other areas of 
study. Indeed, it was actually certain needs of physicists and statisticians that 
largely accounted for much of the expansion and development of the subject. 
For example, it is quite generally known today, even among laymen, that 
relativity theory uses the idea of a four-dimensional space. But an easier exam
ple may be described here, by showing how the mathematical treatment of the 
kinetic theory of gases has come to employ higher-dimensional geometry. Con
sider a closed vessel containing a gas, and suppose the gas is composed of m 
molecules. These molecules are moving about within the vessel, and any par
ticular one of them is, at a given instant, at a point (jt,y,z) of ordinary space, and 
has, at that instant, certain velocity components u,v,w along the coordinate 
axes. Only if we know all six numbers x,y,z,u,v,w  do we know where the 
molecule is at the given instant, and the direction and rate of its movement. The 
m molecules of gas in the vessel thus depend upon 6m coordinates. At any 
instant, these 6m coordinates have definite values that define the state of the 
gas at that instant. Now these 6m values determine a point in a point space of 
6m dimensions, and there is a one-to-one correspondence between such points 
and possible states of the gas. As the state of the gas varies, owing to the 
motion of the molecules, the corresponding point generates a path, or locus, in 
the space of 6m dimensions. It follows that the behavior, or history, of the gas 
is geometrically represented by this locus.

14-7 Differential Geometry
Differential geometry is the study of properties of curves and surfaces, and 
their generalizations, by means of the calculus. For the most part, differential 
geometry investigates curves and surfaces in the immediate neighborhoods of 
any of their points. This aspect of differential geometry is known as local 
differential geometry, or differential geometry in the small. However, some
times properties of the total structure of a geometrical figure are implied by 
certain local properties of the figure that hold at every point of the figure. This



leads to what is known as integral geometry, or global differential geometry, or 
differential geometry in the large.

Although one can find geometrical theorems deduced from a study of 
evanescent figures in Archimedes’ determination of areas and volumes, Apollo
nius’ treatment of normals to conic sections, and later in Cavalieri’s method of 
indivisibles and Huygens’ beautiful work on curvature and evolutes, it is proba
bly quite correct to say that differential geometry, at least in its modern form, 
started in the early part of the eighteenth century with applications of the 
differential and integral calculus to analytic geometry. The first real stimulus to 
the subject, however, beyond planar situations, was furnished by Gaspard 
Monge (1746-1818), who can be considered as the father of the differential 
geometry of curves and surfaces of space.

Monge was an outstanding teacher, and his lectures at the Ecole Polytech
nique of Paris inspired a host of younger men to enter the field of differential 
geometry. Among these were J. B. Meusnier (1754-1793), E. L. Malus (1775— 
1812), C. Dupin (1784-1873), and O. Rodrigues (1794-1851), all of whom have 
important theorems in differential geometry named after them. For example, a 
theorem of Meusnier states the following: If PT is a tangent line to a given 
surface S at a given point P on S, then the circle o f curvature at P of a variable 
section o f S through PT is the circle in which the plane of the section cuts the 
sphere with center Cn and radius rn, where Cn and rn are the center and radius 
o f the circle o f curvature at P o f the normal section o f S through the tangent 
PT. One of Dupin’s theorems states that: The sum of the normal curvatures, at 
a point P on a surface S, in any two perpendicular directions is constant. Dupin 
is also responsible for the Dupin indicatrix, a device that furnishes much infor
mation about the nature of a surface S at a point P of S.

Monge and his students formed the start of the great French school of 
differential geometers, which later included such names as Augustin Louis 
Cauchy (1789-1857); B. de Saint-Venant (1796-1886), who, among other 
things, in 1845 supplied the name binormal in connection with the local trihe
dron of a point of a space curve; F. Frenet (1816-1888) and J. A. Serret (1819— 
1885), who were responsible for the Frenet-Serret formulas, which are so im
portant and central in an analytical study of space curves; V. Puiseux 
(1820-1883); and J. Bertrand (1822-1900), whose name is attached to pairs of 
space curves for which the principal normals of each are principal normals of 
the other.

Cauchy’s work in differential geometry marks the close of the first period 
in the history of the subject. The second period was inaugurated by Carl Frie
drich Gauss (1777-1855), who introduced the singularly fruitful method of 
studying the differential geometry of curves and surfaces by means of paramet
ric representations of these objects. We now encounter the names of 
G. Mainardi (1800-1879) and D. Codazzi (1824-1875), after whom important 
equations in the subject are named, the blind Belgian physicist J. Plateau (1801— 
1883); C. G. J. Jacobi (1804-1851); O. Bonnet (1819-1892); E. B. Christoffel 
(1829-1901); E. Beltrami (1835-1900); J. D. Darboux (1842-1917), after whom 
a special vector associated with each point of a space curve has been named,
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and who, among other things, completed work done by Dupin in connection 
with triply orthogonal families of surfaces, wherein each family is orthogonal to 
the other two families; and the names of many others who contributed to the 
classical theory of curves and surfaces in space.

The third great period in the history of differential geometry was initiated 
by George Bernhard Riemann (1826-1866). Here we find an assertion of that 
tendency of mathematics of modern times to strive for the greatest possible 
generalization. Ordinary familiar three space is left far behind, and the study 
concentrates on such things as ra-dimensional manifolds immersed in ^-dimen
sional space. Two things were found necessary for this further development: an 
improved notation and a procedure dependent on the nature of the manifold 
and not the particular coordinate system employed. The tensor calculus was 
accordingly devised, and this general subject was developed by such mathema
ticians as G. Ricci-Curbastro (1853-1925), T. Levi-Civita (1873-1941), and 
A. Einstein (1879-1955). Generalized differential geometries, known as 
Riemannian geometries, were explored intensively, and these in turn led to 
non-Riemannian (and other) geometries. Present-day research in differential 
geometry bears little resemblance to the classical study with its strong ties to 
the concrete.

A surface can be looked at in two ways: as the boundary of a solid body or 
as a detached two-dimensional film. The former is the way a construction 
engineer might regard the surface, and the latter the way a surveyor might 
regard it. The first viewpoint leads one to search out the properties of the 
surface that relate it to its surrounding space, and the second viewpoint leads 
one to search out the properties of the surface that are independent of its 
surrounding space. Properties of the first kind are called relative properties of 
the surface, and their study is called the extrinsic geometry of the surface; 
properties of the second kind are called absolute properties of the surface, and 
their study is called the intrinsic geometry of the surface. It is interesting that 
the two great early contributors to the differential geometry of surfaces, Monge 
and Gauss, respectively, saw a surface primarily as the boundary of a solid and 
primarily as a detached two-dimensional film. Monge is noted, among other 
things, for his work as a construction engineer of military fortifications, and 
Gauss is noted, among other things, for his work in geodesy and geodetic 
surveying.

It was Gauss who, in his great work Disquisitiones generates circa superfi
cies curvas of 1827, introduced the important concept of curvature of a surface 
S at a point P on S. Consider the sections of S made by planes containing the 
normal to S at a point P on S. Of these sections, there is one having a maximum 
curvature k at P , and one having a minimum curvature k' at P. These two 
sections are generally at right angles to one another, and their curvatures at P 
are called the principal curvatures of S at P. The product K  = kkf is called the 
Gaussian, or total, curvature of the surface S at P. If the two principal curva
tures are of the same sense, then K  is positive; if the two principal curvatures 
are of opposite sense, then K  is negative; if at least one principal curvature is 
zero, then K  is zero. Gauss discovered the remarkable fact that if a surface is



558 CHAPTER FOURTEEN /  ARITHMETIZATION OF ANALYSIS

bent (without stretching, creasing, or tearing), the total curvature of the surface 
at each point remains unaltered. Two surfaces that can be bent so as to coin
cide are said to be applicable to each other, and have the same intrinsic geome
try; thus, a plane and a circular cylinder have the same intrinsic geometry, but 
they certainly do not look alike in space. It should be kept in mind that we are 
here concerned with local differential geometry and not global differential ge
ometry. A plane and a circular cylinder have the same local intrinsic geometry, 
but obviously not the same global intrinsic geometry.

One of Gauss’ most remarkable discoveries about surfaces is that the total 
curvature K  is an absolute property of the surface. This, at first encounter, 
seems incredible, for the total curvature of a surface at a point on the surface is 
equal to the product of the two principal normal curvatures of the surface at the 
point. But the normal curvatures at a point are relative properties of the sur
face! The statement that the total curvature A' of a surface is an absolute 
property of the surface is known as Gauss9 therema egregium.

Gauss also showed that if we have on a surface a triangle bounded by 
geodesics (that is, curves of shortest length joining pairs of points on the sur
face), and if the angles of the triangle are a \ , a2, <23, then

where A is the area of the triangle. If the surface has constant total curvature A, 
then

and the difference between the sum of the angles of the triangle and rr is 
positive, zero, or negative according as K  >  0, = 0, or <  0, and the excess 
when K  >  0, or the deficiency when K <  0, is proportional to the area of the 
triangle. It follows that the intrinsic geometry of the geodesics of a surface of 
constant nonzero total curvature is non-Euclidean, whereas that of a surface of 
constant zero total curvature is Euclidean.

It was in 1831 that Sophie Germain (1776-1831) introduced the concept of 
mean curvature M  = (k 4- k')l2 of a surface at a point P of the surface. Of 
particular interest are surfaces for which M  is everywhere equal to zero; such 
surfaces are called minimal surfaces. It follows that at any point of a minimal 
surface, the two principal normal curvatures are equal in magnitude but oppo
site in sign. Minimal surfaces derive their name from the fact that they can be 
characterized as the surfaces of least area among all surfaces bounded by a 
given closed space curve. They are illustrated by the shapes assumed by the 
soap films that result when closed loops of wire of any shape are dipped into a 
soap solution; the surface tension of the films minimizes the surface areas of the 
films. The problem of determining the minimal surface through a given closed- 
space curve was first proposed by Lagrange, but became known as the problem 
of Plateau, since the blind physicist Joseph Plateau was the first to conceive the 
soap-film method of “ seeing” these surfaces. It is interesting that we can

a 1 + a2 + <23 ~ 77 — KA,
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characterize minimal surfaces either by a property in the small or by a property 
in the large. A complete mathematical solution of the problem of Plateau was 
given in 1931 by the American mathematician Jesse Douglas (1897-1965), when 
he was only thirty-four years of age, for which he received the Bocher prize and 
one of the two first awarded (1936) Fields medals.

14-8 Felix Klein and the Erlanger Programm
In 1872, upon appointment, at the young age of twenty-three, to a full profes
sorship on the Philosophical Faculty and Senate of the University of Erlangen, 
Felix Klein (1849-1925) presented, according to custom, both an oral speech 
introducing himself to his new faculty associates and a written paper exhibiting 
research interests in his field of mathematics. The speech was aimed at a wide 
university audience and expressed Klein’s pedagogical view of the unity of all 
knowledge and the ideal that a complete education should not be neglected 
because of special studies. The written work, which was passed out at the time 
of the speech, was designed for his departmental colleagues. Thus, the two 
parts of Klein’s inauguration exhibit both his deep interest in pedagogical mat
ters and his serious commitment to mathematical research.

The written paper, based upon work by himself and Sophus Lie (1842— 
1899) in group theory, set forth a remarkable definition of “a geometry” that 
served to codify essentially all the existing geometries of the time and pointed 
the way to new and fruitful avenues of geometrical research. It has become 
known as the Erlanger Programm, and it appeared right at the time when group 
theory was invading almost every domain of mathematics, and some mathema
ticians were beginning to feel that all mathematics is nothing but some aspect of 
group theory. This programm can be regarded as perhaps Klein’s single most 
important mathematical accomplishment.

Klein’s application of groups to geometry depends upon the concept of a 
transformation of a set S onto itself, by which is simply meant a correspondence 
under which each element of S corresponds to a unique element of 5, and each 
element of S is the correspondent of a unique element of S. By the product, 
T2T\, of two transformations T\ and T2 of a set S of elements onto itself, we 
mean the resultant transformation obtained by first performing transformation 
T\ and then transformation T2. If T is a transformation of a set S onto itself, 
which carries each element a of S into a corresponding element b of S, then the 
transformation that reverses transformation T, by carrying each element b of S 
back into its original element a of S, is called the inverse transformation of 
transformation T and is denoted by T~l . The transformation that carries each 
element of S into itself is called the identity transformation on set 5, and is 
denoted by /. The following can now easily be established: A set T of transfor
mations o f a set S onto itself constitutes a group (in the technical sense of 
abstract algebra— see Problem Study 13.6) under multiplication o f transforma
tions if( 1) the product o f any two transformations of the set T is in the set T, (2) 
the inverse o f any transformation o f the set T is in the set T. Such a group of 
transformations is briefly referred to as a transformation group.
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We are now really to give Felix Klein’s famous definition of a geometry: A 
geometry is the study o f those properties o f a set S that remain invariant when 
the elements o f set S are subjected to the transformations of some transforma
tion group T. The geometry may be conveniently denoted by the symbol 
G(S,T).

To illustrate Klein’s definition of a geometry, let S be the set of all points of 
an ordinary plane, and consider the set T of all transformations of S com
pounded from translations, rotations, and reflections in lines. Since the product 
of any two such transformations and the inverse of any such transformation are 
also such transformations, it follows that T is a transformation group. The 
resulting geometry is ordinary plane Euclidean metric geometry. Since such 
properties as length, area, congruence, parallelism, perpendicularity, similarity 
of figures, collinearity of points, and concurrency of lines are invariant under 
the group T, these properties are studied in plane Euclidean metric geometry. 
If, now, T is Enlarged by including, together with the translations, rotations, 
and reflections in lines, the homothety transformations (in which each point P 
is carried into a point P' such that AP = k • A P r, where A is some fixed point, k 
is some fixed positive constant, and A, P, P r are collinear), we obtain plane 
similarity, or plane equiform, geometry. Under this enlarged group, such prop
erties as length, area, and congruence no longer remain invariant and hence are 
no longer subjects of study, but parallelism, perpendicularity, similarity of 
figures, collinearity of points, and concurrency of lines are still invariant prop
erties, and hence do constitute subject matter for study in this geometry. Con
sidered from Klein’s point of view, plane projective geometry is the study of 
those properties of the points of a projective plane that remain invariant when 
the points are subjected to the group of so-called projective transformations. Of 
the previously mentioned properties, only collinearity of points and concur
rency of lines still remain invariant. An important invariant under this group of 
transformations is the ci^oss ratio of four collinear points; this invariant plays an 
important role in the study of projective geometry. The plane non-Euclidean 
metric geometries, considered in earlier chapters, can be thought of as the 
study of those properties of the points of a non-Euclidean plane that remain 
invariant under the group of transformations compounded from translations, 
rotations, and reflections in lines.

In all of the above geometries, the fundamental elements upon which the 
transformations of some transformation group are made to act are points; 
hence the above geometries are all examples of so-called point geometries. 
There are, as was pointed out in Section 14-5, geometries in which entities 
other than points are chosen for fundamental elements. Thus geometers have 
studied line geometries, circle geometries, sphere geometries, and various 
other geometries. In building up a geometry one is at liberty to choose, first of 
all, the fundamental element of the geometry (point, line, circle, etc.); next, the 
manifold or space of these elements (plane of points, ordinary space of points, 
spherical surface of points, plane of lines, pencil of circles, etc.); and finally, 
the group of transformations to which the fundamental elements are to be
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subjected. The construction of a new geometry becomes, in this way, a rather 
simple matter.

Another interesting feature is the way in which some geometries embrace 
others. Thus, since the transformation group of plane Euclidean metric geome
try is a subgroup of the transformation group of plane equiform geometry, it 
follows that any theorem holding in the latter geometry must hold in the former. 
From this point of view, it can be shown that projective geometry lies within 
each of the former, and we have a sort of sequence of nesting geometries. Until 
recent times, the transformation group of projective geometry contained as 
subgroups the transformation groups of practically all other geometries that 
had been studied. This is essentially what Cayley meant when he remarked that 
“projective geometry contains all geometry.” Actually, so far as the theorems 
of the geometries are concerned, it is the other way around—the theorems of 
projective geometry are contained among the theorems of each of the other 
geometries.

For almost fifty years, the Klein synthesis and codification of geometries 
remained essentially valid. But shortly after the turn of the century, bodies of 
mathematical propositions, which mathematicians felt should be called geome
tries, came to light; these bodies of propositions could not be fitted into this 
codification, and a new point of view upon the matter was developed, based 
upon the idea of abstract space with a superimposed structure that may or may 
not be definable in terms of some transformation group. We shall examine this 
new point of view in Section 15-3, merely remarking here that some of these 
new geometries have found application in the modern theory of physical space 
that is incorporated in Einstein’s general theory of relativity. The Kleinian 
concept is still highly useful where it applies, and we may call a geometry that 
fits Klein’s definition as given above, a Kleinian geometry. Partially successful 
efforts were made in the twentieth century, particularly by Oswald Veblen 
(1880-1960) and Elie Cartan (1869-1951), to extend and generalize Klein’s 
definition so as to include geometries that lie outside Klein’s original Pro
gramm.

Felix Klein was born in Diisseldorf in 1849. He studied at Bonn, Got
tingen, and Berlin, and served as assistant to Julius Pliicker at Bonn. His first 
professorial position was at the University of Erlangen (1872-1875), where his 
inaugural paper set forth the geometric program described above. He then 
taught at Munich, Leipzig University (1880-1886), and Gottingen University 
(1886-1913), officiating as department head at the latter institution. He was 
editor of the Mathematische Annalen and founder of the great mathematical 
Encyklopadie. He was a lucid expositor, an inspiring teacher, and a gifted 
lecturer. He died at Gottingen in 1925.

During Klein’s tenure as department head at Gottingen University, that 
institution became a mecca for mathematics students from all over the world. A 
remarkable number of top-flight mathematicians studied at the university or 
served there as worthy successors to Gauss, Dirichlet, and Riemann, making 
the Gottingen school of mathematics one of the most famous of modern times.
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Among these mathematicians were David Hilbert (1862-1943, the greatest 
mathematician of recent times), Edmund Landau (1877-1938, a famous number 
theorist), Hermann Minkowski (1864-1909, born in Russia and creator of geo
metric number theory), Wilhelm Ackermann (1896-1962, co-worker with 
Hilbert in mathematical logic), Constantin Caratheodory (1873-1950, a Greek 
mathematician who achieved fame in function theory), Ernst Zermelo (1871- 
1953, of Zermelo’s postulate fame), Carl Runge (1856-1927, known to students 
of differential equations through the Runge-Kutta method), Emmy Noether 
(1882-1935, renowned algebraist), Richard Dedekind (1831-1916, of Dedekind- 
cut fame), Max Dehn (1878-1952, the first mathematician to solve one of 
Hilbert’s twenty-three Paris problems), Hermann Weyl (1885-1955, specially 
known for his work in the foundations and philosophy of mathematics), and 
many, many others.

Among the many students who studied under Felix Klein at Gottingen was 
the Englishwoman Grace Emily Chisholm, who became Klein’s “favorite pu
pil.” At that time, women were not admitted into graduate schools in England, 
and Miss Chisholm went to Gottingen for her graduate work in mathematics. In 
1895, she became the first female to receive a German doctorate through the 
regular examination process, and the following year she married the English 
mathematician William Henry Young.

The first comprehensive textbook on set theory and its applications to 
function theory, The Theory o f Sets o f Points, appeared in England in 1906 and 
was written by William Henry Young (1863-1942) and his wife Grace Chisholm 
Young (1868-1944). The Youngs published two other mathematics books and 
over 200 papers. Their son Laurence C. Young became a noted mathematician.

The great Gottingen school remained a potent force in world mathematics 
until it was all but destroyed by Adolph Hitler (1889-1945) and the rising Nazi



14-9 / The Arithmetization of Analysis 563

tide. The totalitarian government and racial oppression caused a migration of 
eminent scholars to other parts of the world, of which the United States was 
perhaps the foremost beneficiary. There resulted a marked growth of mathe
matical accomplishment in America during the first half of the twentieth cen
tury. Similar, if lesser, migrations of scholars occurred in earlier times, as when 
Pythagoras went to Crotona and when scholars fled from the ancient University 
of Alexandria during its latter hectic days.

14-9 The Arithmetization of Analysis
A third profoundly significant mathematical event took place in the nineteenth 
century, in addition to the liberation of geometry and the liberation of algebra. 
This third event occurred in the field of analysis, was slow in materializing, and 
became known as the arithmetization o f analysis.

When the theory of a mathematical operation is only poorly understood, 
there is the danger that the operation will be applied in a blindly formal and 
perhaps illogical manner. The performer, not aware of possible limitations 
upon the operation, is likely to use the operation in instances in which it does 
not necessarily apply. Instructors of mathematics see mistakes of this sort 
made by their students almost every day. Thus, one student of elementary 
algebra, firmly convinced that a0 = 1 for all real numbers a, will set 0° = 1, 
whereas another such student will assume that the equation ax = b always has 
exactly one real solution for each pair of given real values a and b. Again, a 
student of trigonometry may think that the formula

V 1 — sin2 x = cos x

holds for all real x. A student of the calculus, not aware of improper integrals, 
may get an incorrect result by apparently correctly applying the rules of formal 
integration, or he or she may arrive at a paradoxical result by applying to a 
certain convergent infinite series some rule that holds only for absolutely con
vergent infinite series. This is essentially what happened in analysis during the 
century following the invention of the calculus. Attracted by the powerful 
applicability of the subject, and lacking a real understanding of the foundations 
upon which the subject must rest, mathematicians manipulated analytical pro
cesses in an almost blind manner, often being guided only by a native intuition 
of what was felt must be valid. A gradual accumulation of absurdities was 
bound to result, until, as a natural reaction to the pell-mell employment of 
intuitionism and formalism,6 some conscientious mathematicians felt bound 
to attempt the difficult task of establishing a rigorous foundation under the 
subject.

6 The terms formalism and intuitionism in this section should not be confused with the special 
meanings given to these terms in present-day discussions of the philosophies of mathematics. We 
shall encounter these philosophical connotations in the final chapter of the book.



The first suggestion of a real remedy for the unsatisfactory state of the 
foundations of analysis came from Jean-le-Rond d’Alembert (1717-1783), who 
very correctly observed in 1754 that a theory of limits was needed, although a 
sound development of this theory was not forthcoming until 1821. The earliest 
mathematician of the first rank actually to attempt a rigorization of the calculus 
was the Italian-French mathematician Joseph Louis Lagrange (1736-1813). 
The attempt, based upon representing a function by a Taylor’s series expan
sion, was far from successful, for it ignored necessary matters of convergence 
and divergence. It was published in 1797 in Lagrange’s monumental work, 
Theorie des fonctions analytiques. Lagrange was perhaps the leading mathema
tician of the eighteenth century, and his work had a deep influence on later 
mathematical research; with Lagrange’s work, the long and difficult task of 
banishing intuitionism and formalism from analysis had begun.

In the nineteenth century, the superstructure of analysis continued to rise, 
but on ever-deepening foundations. A debt is undoubtedly owed to Carl Frie
drich Gauss, for Gauss, more than any other mathematician of his time, broke 
from intuitive ideas and set new high standards of mathematical rigor. Also, in 
a treatment of hypergeometric series made by Gauss in 1812, we encounter 
what is generally regarded as the first really adequate consideration of the 
convergence of an infinite series.

A great stride was made in 1821, when the French mathematician Augus- 
tin-Louis Cauchy (1789-1857) successfully executed d’Alembert’s suggestion 
by developing an acceptable theory of limits and then defining continuity, dif
ferentiability, and the definite integral in terms of the limit concept. It is essen
tially these definitions that we find in the more carefully written of today’s 
elementary textbooks on the calculus. The limit concept is certainly indispen
sable for the development of analysis, for convergence and divergence of infi
nite series also depend upon this concept. Cauchy’s rigor inspired other mathe
maticians to join the effort to rid analysis of formalism and intuitionism.

The demand for an even deeper understanding of the foundations of analy
sis was strikingly brought out in 1874 with the publicizing of an example, due to 
the German mathematician Karl Weierstrass, of a continuous function having 
no derivative, or, what is the same thing, a continuous curve possessing no 
tangent at any of its points. Georg Bernhard Riemann produced a function that 
is continuous for all irrational values of the variable but discontinuous for all 
rational values. Examples such as these seemed to contradict human intuition 
and made it increasingly apparent that Cauchy had not struck the true bottom 
of the difficulties in the way of a sound foundation of analysis. The theory of 
limits had been built upon a simple intuitive notion of the real number system. 
Indeed, the real number system was taken more or less for granted, as it still is 
in most of our elementary calculus texts. It became clear that the theory of 
limits, continuity, and differentiability depend upon more recondite properties 
of the real number system than had been supposed. Accordingly, Weierstrass 
advocated a program wherein the real number system itself should first be 
rigorized, then all the basic concepts of analysis should be derived from this 
number system. This remarkable program, known as the arithmetization of
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analysis, proved to be difficult and intricate, but was ultimately realized by 
Weierstrass and his followers, so that today all of analysis can be logically 
derived from a postulate set characterizing the real number system.

Mathematicians have gone considerably beyond the establishment of the 
real number system as the foundation of analysis. Euclidean geometry, through 
its analytical interpretation, can also be made to rest upon the real number 
system, and mathematicians have shown that most branches of geometry are 
consistent if Euclidean geometry is consistent. Again, since the real number 
system, or some part of it, can serve for interpreting so many branches of 
algebra, it appears that the consistency of a good deal of algebra can also be 
made to depend upon that of the real number system. In fact, today it can be 
stated that essentially all of existing mathematics is consistent if the real num
ber system is consistent. Herein lies the tremendous importance of the real 
number system for the foundations of mathematics.

Since the great bulk of existing mathematics can be made to rest on the real 
number system, one naturally wonders if the foundations can be pushed even 
deeper. In the late nineteenth century, with the work of Richard Dedekind 
(1831-1916), Georg Cantor (1845-1918), and Giuseppe Peano (1858-1932), 
these foundations were established in the much simpler and more basic system 
of natural numbers. That is, these men showed how the real number system, 
and thence the great bulk of mathematics, can be derived from a postulate set 
for the natural number system. Then, in the early twentieth century, it was 
shown that the natural numbers can be defined in terms of concepts of set 
theory, and thus that the great bulk of mathematics can be made to rest on a 
platform in set theory. Logicians, led by Bertrand Russell (1872-1970) and 
Alfred North Whitehead (1861-1947), have endeavored to push the foundations 
even deeper, by deriving the theory of sets from a foundation in the calculus of 
propositions of logic, though not all mathematicians feel this step has been 
successfully executed.

14-10 Weierstrass and Riemann
It is generally thought that a potential mathematician of the first rank, in order 
to succeed in his field, must start serious mathematical studies at an early age 
and must not be dulled by an inordinate amount of elementary teaching. Karl 
Theodor Wilhelm Weierstrass, who was born in Ostenfelde in 1815, is an out
standing exception to these two general rules. A misdirected youth spent in 
studying the law and finance gave Weierstrass a late start in mathematics, and it 
was not until he was forty that he finally emancipated himself from secondary 
teaching by obtaining an instructorship at the University of Berlin, and another 
eight years passed before, in 1864, he was awarded a full professorship at the 
university and could finally devote all his time to advanced mathematics. 
Weierstrass never regretted the years he spent in elementary teaching, and he 
later carried over his remarkable pedagogical abilities into his university work, 
becoming probably the greatest teacher of advanced mathematics that the 
world has yet known.
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Weierstrass wrote a number of early papers on hyperelliptic integrals, 
Abelian functions, and algebraic differential equations, but his widest known 
contribution to mathematics is his construction of the theory of complex func
tions by means of power series. This, in a sense, was an extension to the 
complex plane of the idea earlier attempted by Lagrange, but Weierstrass car
ried it through with absolute rigor. Weierstrass showed particular interest in 
entire functions and in functions defined by infinite products. He discovered 
uniform convergence and, as we have seen above, started the so-called 
arithmetization of analysis, or the reduction of the principles of analysis to real 
number concepts. A large number of his mathematical findings became posses
sions of the mathematical world, not through publication by him, but through 
notes taken of his lectures. He was very generous in allowing students and 
others to carry out, and receive credit for, investigations of many of his mathe
matical gems. As an illustration, somewhat in point, it was in his lectures of 
1861 that he first discussed his example of a continuous nondifferentiable func
tion, which was finally published in 1874 by Paul du Bois-Reymond (1831— 
1889). As stated earlier, Bolzano had already given such a function.

In algebra, Weierstrass was perhaps the first to give a so-called postula- 
tional definition of a determinant. He defined the determinant of a square 
matrix A as a polynomial in the elements of A, which is homogeneous and 
linear in the elements of each row of A, which merely changes sign when two 
rows of A are permuted, and which reduces to 1 when A is the corresponding 
identity matrix. He also contributed to the theory of bilinear and quadratic 
forms, and, along with J. J. Sylvester (1814-1897) and H. J. S. Smith (1826- 
1883), created the theory of ^lei^itgr^ divisors of X matrices.

Weierstrass was a very infiueritial teacher, and his metfcmously prepared 
lectures established an ideal for many future mathematicians; “Weierstrassian



rigor” became synonymous with “extremely careful reasoning.” Weierstrass 
was “the mathematical conscience par excellence,” and he became known as 
“the father of modern analysis.” He died in Berlin in 1897, just one hundred 
years after the first publication, in 1797 by Lagrange, of an attempt to rigorize 
the calculus.

Along with this rigorization of mathematics, there appeared a tendency 
toward abstract generalization, a process that has become very pronounced in 
present-day mathematics. Perhaps the German mathematician Georg Friedrich 
Bernhard Riemann influenced this feature of modern mathematics more than 
any other nineteenth-century mathematician. He certainly wielded a profound 
influence on a number of branches of mathematics, particularly geometry and 
function theory, and few mathematicians have bequeathed to their successors a 
richer legacy of ideas for further development.

Riemann was born in 1826 in a small village in Hanover, the son of a 
Lutheran pastor. In manner, he was always shy; in health, he was always frail. 
In spite of the very modest circumstances of his father, Riemann managed to 
secure a good education, first at the University of Berlin and then at the Uni
versity of Gottingen. He took his doctoral degree at the latter institution with a 
brilliant thesis in the field of complex-function theory. In this thesis, one finds 
the so-called Cauchy-Riemann differential equations (known, however, before 
Riemann’s time) that guarantee the analyticity of a function of a complex 
variable, and the highly fruitful concept of a Riemann surface, which intro
duced topological considerations into analysis. Riemann clarified the concept 
of integrability by the definition of what we now know as the Riemann integral, 
which led, in the twentieth century, to the more general Lebesgue integral, and 
thence to further generalizations of the integral.
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In 1854, Riemann became Privatdocent (official but unpaid lecturer) at 
Gottingen, and for this privilege presented his famous probationary lecture on 
the hypotheses that lie at the foundations of geometry. This has been consid
ered the richest paper of comparable size ever presented in the history of 
mathematics; in it appears a broad generalization of space and geometry. 
Riemann’s point of departure was the formula for the distance between two 
infinitesimally close points. In Euclidean geometry, this metric is given by

ds2 = dx2 + dy2 + dz2.

Riemann pointed out that many other distance formulas can be used, each such 
metric determining the properties of the resulting space and geometry. A space 
with a metric of the form

ds2 = gudx2 4- gndx dy 4- g ndx dz
+ g2ldy dx + g22dy2 + g23dy dz 
+ g3tdz dx + g32dz dy + g33dz2,

where the g ’s are constants or functions of x, y, and z, is now known as a 
Riemannian space, and the geometry of such a space is called a Riemannian 
geometry. Euclidean space is the very special case in which g n = g22 = g33 = 1 
and all the other g 's are zero. Later, Albert Einstein and others found 
Riemann’s broad concept of space and geometry the mathematical milieu 
needed for general relativity theory. Riemann himself contributed in a number 
of directions to theoretical physics; he was the first, for example, to give a 
mathematical treatment of shock waves.

Famous in mathematical literature are the so-called Riemann zeta function 
and associated Riemann hypothesis. The latter is a celebrated unproved conjec
ture that is to classical analysis what Fermat's last “theorem” is to number 
theory. Euler had pointed out connections between the theory of prime num
bers and the series

1/1v + \!2S 4- 1/3* 4- • • • 4- 1 lns 4- • • •,

where s is an integer. Riemann studied the same series for 5 a complex number 
ct 4- it. The sum of the series defines a function £($), which has come to be 
known as Riemann’s zeta function. Riemann, around 1859, conjectured that all 
the imaginary zeros of the zeta function have their real part a  = 1/2. In 1914, 
the English number theorist Sir Godfrey Harold Hardy (1877-1947) succeeded 
in showing that £(s) has an infinity of zeros with a  = 111. Even though it is now 
over a century old, the original Riemann conjecture is still unresolved. Hilbert 
selected the resolution of the Riemann hypothesis as one of his famous twenty- 
three Paris problems.

In 1857, Riemann was appointed assistant professor at Gottingen, and 
then, in 1859, full professor, succeeding Dirichlet in the chair once occupied by



Gauss. Riemann died of tuberculosis in 1866, when only forty years of age, in 
northern Italy, where he had gone to seek an improvement in his health.
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14-11 Cantor, Kronecker, and Poincare
This section will be devoted to a brief consideration of Georg Cantor and Henri 
Poincare, two mathematicians with life spans astride the nineteenth and twenti
eth centuries, and who exerted a considerable influence on much of the mathe
matics of present times. It is also natural to insert a few words about Leopold 
Kronecker, the harsh and relentless critic of Cantor’s mathematics of the in
finite.

Georg Ferdinand Ludwig Philip Cantor was born of Danish parents in St. 
Petersburg, Russia, in 1845, and moved with his parents to Frankfurt, Ger
many, in 1856. Cantor’s father was a Jew converted to Protestantism and his 
mother had been born a Catholic. The son took a deep interest in medieval 
theology and its intricate arguments on the continuous and the infinite. As a 
consequence, he gave up his father’s suggestion of preparing for a career in 
engineering for concentrating on philosophy, physics, and mathematics. He 
studied at Zurich, Gottingen, and Berlin (where he came under the influence of 
Weierstrass and where he took his doctorate in 1867). He then spent a long 
teaching career at the University of Halle from 1869 until 1905. He died in a 
mental hospital in Halle in 1918.

Cantor’s early interests were in number theory, indeterminate equations, 
and trigonometric series. The subtle theory of trigonometric series seems to 
have inspired him to look into the foundations of analysis. He produced his 
beautiful treatment of irrational numbers, which utilizes convergent sequences
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of rational numbers and differs radically from the geometrically inspired treat
ment of Dedekind, and commenced in 1874 his revolutionary work on set 
theory and the theory of the infinite. With this latter work, Cantor created a 
whole new field of mathematical research. In his papers, he developed a theory 
of transfinite numbers, based on a mathematical treatment of the actual infinite, 
and created an arithmetic of transfinite numbers analogous to the arithmetic of 
finite numbers. Some of this matter is amplified in Section 15-4.

Cantor was deeply religious, and his work which in a sense is a continua
tion of the arguments connected with the paradoxes of Zeno, reflects his sym
pathetic respect for medieval scholastic speculation on the nature of the infi
nite. His views met considerable opposition, chiefly from Leopold Kronecker 
of the University of Berlin, and it was Kronecker who steadfastly opposed 
Cantor’s efforts toward securing a teaching post at the University of Berlin. 
Today, Cantor’s set theory has penetrated into almost every branch of mathe
matics, and it has proved to be of particular importance in topology and in the 
foundations of real function theory. There are logical difficulties, and para
doxes have appeared. The twentieth-century controversy between the formal
ists led by Hilbert, and the intuitionists, led by Brouwer, is essentially a contin
uation of the controversy between Cantor and Kronecker. We look deeper into 
these matters in the next chapter.

Kronecker was born at Liegnitz, near Breslau, in 1823, and had Kummer 
as a teacher at the gymnasium of his native town. He next studied at the 
University of Berlin under Jacobi, Steiner, and Dirichlet, and then at the Uni
versity of Bonn, again under Kummer. Following his studies, he engaged in 
business for the eleven years from 1844 to 1855, and as a gifted financier 
amassed considerable personal wealth. In 1855, he moved to Berlin and began
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teaching at the University there in 1861. Kummer had also moved to Berlin, 
and Kummer, Weierstrass, and Kronecker constituted a strong mathematical 
trio there. Kronecker specialized in the theory of equations, elliptic functions, 
and algebraic number theory. As a finitist, he condemned the work of Cantor, 
regarding it as theology and not as mathematics. Believing that all of mathemat
ics must be based by finite methods upon the whole numbers, he was a nine
teenth-century Pythagorean. He once made the toast, “Die ganze Zahlen hat 
Gott gemacht, alles andere ist Menschenwerk” (God made the whole numbers, 
all the rest is the work of man). He died in Berlin in 1891.

Jules Henri Poincare, generally acknowledged to be the outstanding math
ematician of his age, was born in Nancy, France, in 1854. He was a first cousin 
of Raymond Poincare, the eminent statesman and president of the French 
republic during World War I. After graduating from the Ecole Polytechnique in 
1875, Henri took a degree in mining engineering at the Ecole des Mines in 1879, 
and in that same year also earned a doctorate in science from the University of 
Paris. Upon graduating from the Ecole des Mines, he was appointed to a 
teaching post at Caen University, but two years later moved to the University 
of Paris, where he held several professorships in mathematics and science until 
his death in 1912.

Poincare has been described as the last of the universalists in the field of 
mathematics. It is certainly true that he commanded and enriched an astonish
ing range of subjects. At the Sorbonne, he brilliantly lectured each year on a 
different topic in pure or applied mathematics, many of these lectures shortly 
after appearing in print. He was a prolific writer, producing more than thirty 
books and 500 technical papers. He was also one of the ablest popularizers of 
mathematics and science. His inexpensive paperback expositions were avidly 
bought and widely read by people in all walks of life; they are masterpieces 
that, for lucidity of communication and engaging style, have never been ex
celled, and they have been translated into many foreign languages. In fact, so
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great was the literary excellence of Poincare’s popular writing that he was 
awarded the highest honor that can be conferred on a French writer—he was 
elected a member of the literary section of the French Institut.

Poincare never cared to remain in one field for very long, but preferred to 
jump nimbly from area to area. He was described by one of his contemporaries 
as “a conqueror, not a colonist.” His doctoral dissertation on differential equa
tions concerned itself with existence theorems. This work led him to develop 
the theory of automorphic functions, and, in particular, the so-called zeta- 
Fuchsian fijnctions, which Poincare showed can be used to solve second-order 
linear differential equations with algebraic coefficients. Like Laplace, Poincare 
contributed notably to the subject of probability. He also anticipated the twenti
eth-century interest in topology, and his name is found today in the Poincare 
groups of combinatorial topology. We have already, in Section 13-7 and Prob
lem Study 13.12, seen Poincare’s interest in non-Euclidean geometry. In ap
plied mathematics, this versatile genius contributed to such diverse subjects as 
optics, electricity, telegraphy, capillarity, elasticity, thermodynamics, poten
tial theory, quantum theory, theory of relativity, and cosmogony.

All his life, Poincare was physically awkward, nearsighted, and absent- 
minded, but he possessed almost complete retention and instant recall of any
thing he had ever read. He worked his mathematics in his head while restlessly 
pacing about, and when it was completely thought through, he committed it to 
paper rapidly and with essentially no rewriting or erasures. In contrast to his 
hasty and extensive production, one recalls the meticulously prepared produc
tions of Gauss, and Gauss’ motto: “Few, but ripe.”

There are stories of Poincare’s lack of manual dexterity. It was said of him 
that he was ambidextrous—that is, he could perform equally badly with either 
hand. He had no ability whatever in drawing, and he earned a flat zero in the 
subject in school. At the end of the school year, his classmates jokingly orga
nized a public exhibition of his artistic masterpieces. They carefully labeled 
each item in Greek— “This is a house,” “This is a horse,” and so on.

It may well be that Poincare will be the last person of whom it can in a 
reasonable sense be claimed that all of mathematics was his province. Mathe
matics has grown at such an incredible rate in modern times that it is believed 
quite impossible for anyone ever again to achieve such a distinction.

14-12 Sonja Kovalevsky, Emmy Noether, 
and Charlotte Scott

Sophia Korvin-Krukovsky, later known as Sonja Kovalevsky, was born into a 
family of Russian nobility in Moscow in 1850. When she was seventeen, she 
went to St. Petersberg and studied calculus with a teacher of the naval school 
there. Barred, because of her sex, from pursuing advanced studies in a Russian 
university, she contracted a nominal marriage with the sympathetic Vladimir 
Kovalevsky (later to become a noted paleontologist) to be free of parental 
objections to studying abroad. The marriage took place in 1868, and in the 
following spring, the pair went to Heidelberg.



At Heidelberg, Kovalevsky attended the mathematics lectures of Leo 
Konigsberger (1837-1921) and du Bois-Reymond (1831-1889) and the physics 
lectures of Kirchhoff (1824-1887) and Helmholz (1821-1894). Konigsberger had 
earlier studied under Karl Weierstrass of the University of Berlin, and his 
enthusiastic reports of his mentor instilled in Kovalevsky a desire to study 
under the great teacher. She arrived in Berlin in 1870, but found the University 
adamant in its exclusion of women students. She accordingly approached 
Weierstrass directly, who, upon receiving a strong recommendation from 
Konigsberger, accepted her as a private student. Kovalevsky soon became 
Weierstrass’ favorite pupil, and he repeated his university lectures to her. She 
won Weierstrass’ admiration and studied under the master for four years 
(1870-1874), during which time she not only covered the university course in 
mathematics, but also wrote three important papers, pne on the theory of 
partial differential equations, one on the reduction of Abelian integrals of the 
third kind, and one supplementing Laplace’s research on the form of Saturn’s 
rings.

In 1874, Sonja Kovalevsky was awarded, in absentia, the degree of Doctor 
of Philosophy by Gottingen University and, because of the outstanding quality 
of a submitted paper on partial differential equations, was excused from taking 
the oral examination. In 1888, when thirty-eight years old, she achieved her 
greatest success when the French Academy awarded her the prestigious Prix 
Bordin for her memoir “On the Problem of the Rotation of a Solid Body about a 
Fixed Point.” Of the fifteen papers submitted for the prize, Kovalevsky’s was 
judged the best; it was considered so exceptional that the prize was raised from 
3000 francs to 5000 francs.
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From 1884 until her death in 1891, Kovalevsky served as a professor of 
higher mathematics at Stockholm University. Her motto was: “ Say what you 
know, do what you must, come what may.”

There is an oft-told story about an early influence, other than her mathe
matically inclined father and uncle, that attracted Kovalevsky to mathematics 
when she was only a child. It seems that one of the children’s rooms of her 
home was temporarily papered with sheets of calculus lecture notes dating 
from her father’s student days. These sheets fascinated her, and she spent 
hours trying to decipher them and to put them in proper order.

Amalie Emmy Noether, one of the most outstanding mathematicians in the 
field of abstract algebra, was born in Erlangen, Germany, in 1882. Although she 
was born in the late nineteenth century, she did her work in the first half of the 
twentieth century. Her father, Max Noether (1844-1921), was a distinguished 
mathematician at the University of Erlangen. Max Noether was an algebraist, 
as was Paul Gordan (1837-1912), who also was associated with the university 
and was a close friend of the Noether family. It is no wonder that Emmy 
Noether, who studied at the University, also became an algebraist. She wrote 
her doctoral thesis, “On Complete Systems of Invariants for Ternary Biqua
dratic Forms,” under Gordan in 1907. When Gordan retired in 1910, he was 
followed one year later by Ernst Fischer (1875-1959), another algebraist with 
particular interests in the theory of elimination and the theory of invariants. His 
influence on Noether was great, and under his direction, her preoccupation
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passed from the algorithmic aspect of Gordan’s work to the abstract axiomatic 
approach of Hilbert.

After leaving Erlangen, Emmy Noether studied at Gottingen, where she 
passed her habilitation examination in 1919, after overcoming objections of 
some of the faculty who were opposed to women lecturers. “What will our 
soldiers think” they queried, “when they return to the University and find that 
they are expected to learn at the feet of a woman?” David Hilbert was very 
annoyed at the question, and responded, “Meine Herren, I do not see that the 
sex of the candidate is an argument against her admission as a Privatdozent. 
After all, the Senate is not a bathhouse.” In 1922, she became extraordinary 
professor at Gottingen, a position she held until 1933, when, under the excesses 
of the German national revolution, she, as well as many others, was prohibited 
from academic participation. She thereupon left Germany to accept a profes
sorship at Bryn Mawr College in Pennsylvania and to become a member of the 
Institute for Advanced Study at Princeton. Her short time in America was 
perhaps her happiest and most productive period. She died in 1935, at the age 
of fifty-three and at the height of her creative powers.

Although Noether was a poor lecturer and lacked pedagogical skill, she 
managed to inspire a surprising number of students who also left marks in the 
field of abstract algebra. Her studies on abstract rings and ideal theory have 
been particularly important in the development of modern algebra.

In the ceremonies following her death, Emmy Noether received a glowing 
tribute from Albert Einstein. Someone once described her as the daughter of 
Max Noether. To this Edmund Landau replied: “Max Noether was the father 
of Emmy Noether. Emmy is the origin of coordinates in the Noether family.” 
Hermann Weyl characterized her as “warm, like a loaf of bread.” A centenary 
celebration of Emmy Noether’s birth was held at Bryn Mawr College in 1982.

It is natural when considering Emmy Noether to recall her eminent prede
cessor at Bryn Mawr College, Charlotte Angas Scott (1858-1931). Charlotte 
Scott became, in 1885, the first British woman to receive a doctorate (in any 
field): it was a D.Sc. in mathematics, granted by the University of London, and 
for which she passed the qualifying examinations at First-Class Level. She had 
spent nine years at Cambridge University, but that university did not grant 
degrees to women until 1948.

In addition to being a research mathematician (she published over twenty 
articles in the research journals of her day), Scott was a superb teacher who 
insisted on the highest academic standards. Her research study lay chiefly in 
the geometry of curves. She wrote three books, of which her An Introductory 
Account o f Certain Modern Ideas and Methods in Plane Analytic Geometry, 
published in 1894, was an inspiring masterpiece.7

From 1899 until 1926, Scott served as coeditor of the American Journal o f  
Mathematics that had been founded by J. J. Sylvester (1814-1897) in 1878 when

7 Reprinted by Chelsea in 1961. See the Bibliography at the end of the chapter.
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he was department head at Johns Hopkins. Scott also played an active role in 
the founding of the New York Mathematical Society, which, in 1894, was 
reorganized into the American Mathematical Society.8

The seven mythical daughters of Atlas have become enshrined in the 
northern sky as the seven principal stars in the Pleiades cluster. In imitation, 
the seven mathematicians (Hypatia, Maria Gaetana Agnesi, Sophie Germain, 
Mary Fairfax Somerville, Sonja Kovalevsky, Grace Chisholm Young, and 
Amalie Emmy Noether) have become known as The Mathematical Pleiades, or 
The Seven Daughters of Mathesis. Not only were these women competent 
mathematicians, but they have inspired and enabled other women to enter 
mathematics. The sex barrier in mathematics of the nineteenth and early twen
tieth centuries was broken, and universities became open to the attendance and 
academic recognition of women and to the acceptance of women on their 
faculties.

There was formed in America in 1971 the Association for Women in Math
ematics (open to both female and male members), founded to put male and 
female mathematicians on an equal footing. The male population has no inher
ent superiority in mathematical thinking or creativity, and there is today a rapid 
increase in the number of women among the topflight practitioners and creators 
of mathematics.

8 For an excellent account of Charlotte Scott, see Patricia C. Kenschaft, “Charlotte Angas 
Scott, 1858-1931,” The College Mathematics Journal (March) 1987, 98-110.
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14-13 The Prime Numbers
The prime numbers have enjoyed a long history, running from the days of the 
ancient Greeks up into the present. Since some of the most important discov
eries about the primes were made in the nineteenth century, this seems a fitting 
place to discuss these interesting numbers.

The fundamental theorem of arithmetic says that the prime numbers are 
building bricks from which all other integers are multiplicatively made. Accord
ingly, the prime numbers have received much study, and considerable efforts 
have been spent trying to determine the nature of their distribution in the 
sequence of positive integers. The chief results obtained in antiquity are Eu
clid’s proof of the infinitude of the primes and Eratosthenes’ sieve for finding all 
primes below a given integer n.

From the sieve of Eratosthenes can be obtained a cumbersome formula 
that will determine the number of primes below n when the primes below Vn  
are known. This formula was considerably improved in 1870 by Ernst Meissel, 
who succeeded in showing that the number of primes below 108 is 5,761,455. 
The Danish mathematician Bertelsen continued these computations and an
nounced, in 1893, that the number of primes below 109 is 50,847,478. In 1959, 
the American mathematician D. H. Lehmer showed that this last result is 
incorrect and that it should read 50,847,534; he also showed that the number of 
primes below 1010 is 455,052,511.

No practicable procedure is yet known for testing large numbers for pri- 
mality, and the effort spent on testing certain special numbers has been enor
mous. For more than seventy-five years, the largest number actually verified as 
a prime was the thirty-nine-digit number

2127 -  1 = 170,141,183,460,469,231,731,687,303,715,884,105,727,

given by the French mathematician Anatole Lucas (1842-1891) in 1876. In 
1952, the EDSAC machine, in Cambridge, England, established primality of the 
much larger (seventy-nine-digit) number

180(2127 -  l)2 + 1.

Since then other digital computers have shown the primality of the enormous 
numbers 2" -  1 for n = 521,607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 
11213, 19937, 21701, 23209, 86243, 132049, and 216091.

A dream of number theorists is the finding of a function f(n )  that, for 
positive integral n, will yield only prime numbers, the sequence of primes so 
obtained containing infinitely many different primes. Thus

f(n ) = n2 -  n + 41

yields primes for all such n <  41, but/(41) = (41)2, a composite number. The 
quadratic polynomial f{n ) = n2 -  19n + 1601 yields primes for all n <  80.



Polynomial functions can be obtained that will successively yield as many 
primes as desired, but no such functions can be found that will always yield 
primes. It was about 1640 that Pierre de Fermat conjectured that f(n ) = l?n + 1 
is prime for all non-negative integral n, but this, as we have pointed out in 
Section 10-3, is incorrect. An interesting recent result along these lines is the 
proof, by W. H. Mills in 1947, of the existence of a real number A, such that the 
largest integer not exceeding A3” is a prime for every positive integer n. Noth
ing was shown about the actual value, nor even the rough magnitude, of the real 
number A.

A remarkable generalization of Euclid’s theorem on the infinitude of the 
primes was established by Lejeune-Dirichlet (1805-1859), who succeeded in 
showing that every arithmetic sequence,

a, a + d, a + 2d, a + 3d, . . . ,

in which a and d are relatively prime, contains an infinitude of primes. The 
proof of this result is far from simple.

Perhaps the most amazing result yet found concerning the distribution of 
the primes is the so-called prime number theorem. Suppose we let An denote 
the number of primes below n. The prime number theorem then says that 
(An logen)/n approaches 1 as n becomes larger and larger. In other words, A Jn, 
called the density of the primes among the first n integers, is approximated by 
1/logen, the approximation improving as n increases. This theorem was conjec
tured by Gauss from an examination of a large table of primes and was inde
pendently proved in 1896 by the French and Belgian mathematicians J. Hada- 
mard and C. J. de la Vallee Poussin.

Extensive factor tables are valuable in researches on prime numbers. Such 
a table for all numbers up to 24,000 was published by J. H. Rahn (1622-1676) in 
1659, as an appendix to a book on algebra. In 1668, John Pell (1611-1685) of 
England extended this table up to 100,000. As a result of appeals by the German 
mathematician J. H. Lambert (1728-1777), an extensive and ill-fated table was 
computed by a Viennese schoolmaster named Anton Felkel (born 1740). The 
first volume of Felkel’s computations, giving factors of numbers up to 408,000, 
was published in 1776 at the expense of the Austrian imperial treasury. There 
were very few subscribers to the volume, however, so the treasury recalled 
almost the entire edition and converted the paper into cartridges to be used in a 
war for killing Turks! In the nineteenth century, the combined efforts of 
Chernac, Burckhardt, Crelle, Glaisher, and the lightning calculator Dase led to 
a table covering all numbers up to 10,000,000 and published in ten volumes. The 
greatest achievement of this sort, however, is the table calculated by J. P. Kulik 
(1773-1863), of the University of Prague. His as yet unpublished manuscript is 
the result of a twenty-year hobby, and covers all numbers up to 100,000,000. 
The best available factor table is that of the American mathematician D. N. 
Lehmer9 (1867-1938). It is a cleverly prepared one-volume table covering num
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9 Father of D. H. Lehmer. D. N. Lehmer has pointed out that Kulik’s table contains errors.
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bers up to 10,000,000. With the advent of the modern electronic computers, 
testing for primality and constructing tables of special primes have been greatly 
enhanced. For example, in the November 1980 issue of Crux mathematicorum 
appears a table of all 93 five-digit and all 668 seven-digit palindromic primes (a 
palindromic number is a number that reads the same in both directions, as the 
palindromic prime 3417143). The calculation was done on a PDP-11/45 at the 
University of Waterloo, and the computer time was slightly more than one 
minute. A particularly attractive nine-digit palindromic prime is the number 
345676543, given by Leo Sauve, editor of the above journal, who stated that 
there are 5172 nine-digit palindromic primes.

There are many unproved conjectures regarding prime numbers. One of 
these is to the effect that there are infinitely many pairs of twin primes, or 
primes of the form p  and p + 2, like 3 and 5,11 and 13, and 29 and 31. Another 
is the conjecture made by Christian Goldbach (1690-1764) in 1742 in a letter to 
Euler. Goldbach had observed that every even integer, except 2, seemed repre
sentable as the sum of two primes. Thus, 4 = 2 + 2 , 6 = 3 + 3 , 8 = 5 + 3 , .  . . , 
16 = 13 + 3, 18 = 11 + 7, . . . , 48 = 29 + 19, . . . , 100 = 97 + 3, and so forth. 
Progress on this problem was not made until 1931, when the Russian mathema
tician L. G. Schnirelmann (1905-1935) showed that every positive integer can 
be represented as the sum of not more than 300,000 primes! Somewhat later the 
Russian mathematician I. M. Vinogradoff (born 1891) showed that there exists 
a positive integer N  such that any integer n >  N  can be expressed as the sum of 
at most four primes, but the proof in no way permits us to appraise the size of
N. The Goldbach conjecture has been verified for numbers up through 100 
million.

The following questions (in which n represents a positive integer) about 
primes have never been answered: Are there infinitely many primes of the form 
n2 + 1? Is there always a prime between n2 and (n + l)2? Is any n from some 
point onwards either a square or the sum of a prime and a square? Are there 
infinitely many Fermat primes (primes of the form 22” + 1)?

Problem Studies

14.1 The Feuerbach Configuration

Prominent in the modern elementary geometry of the triangle is the nine-point 
circle. In a given triangle A iA2A3 , of circumcenter O and orthocenter (intersec
tion of the three altitudes) H, let Ox, 0 2, 0 3 be the midpoints of the sides, H \ , 
H2, H3 the feet of the 3 altitudes, and C \ , C2, C3 the midpoints of the segments 
H A \, HA2, HA3. Then the 9 points, 0 \ , 0 2, 0 3, H \ , H2, H3, C \ , C2, C3, lie on a 
circle, known as the nine-point circle of the given triangle. This circle, due to 
later misplaced credit for earliest discovery, is sometimes referred to as Euler’s 
circle. In Germany, it is called Feuerbach’s circle, because Karl Wilhelm Feuer
bach (1800-1834) published a pamphlet in which he not only arrived at the nine- 
point circle, but also proved that it is tangent to the inscribed and the 3 escribed 
circles of the given triangle. This last fact is known as Feuerbach’s theorem and



is justly regarded as one of the more elegant theorems in the modern geometry 
of the triangle. The 4 points of contact of the nine-point circle with the inscribed 
and escribed circles are known as the Feuerbach points of the triangle and have 
received considerable study. The center, F,  of the nine-point circle is at the 
midpoint of OH. The centroid (intersection of the 3 medians of the triangle), G, 
also lies on OH such that HG = 2(GO). The line of collinearity of O, F,  G, H  is 
known as the Euler line of the given triangle. Let H2H2, H3FIX, H XH2 intersect 
the opposite sides A2A 3 , A 3A 1 , A iA2 , in P x, P 2 , P 3 . Then P \ , P 2, P 3 lie on a line 
known as the polar axis of triangle A iA2A3 , and the polar axis is perpendicular 
to the Euler line. If the nine-point circle and the circumcircle intersect, then the 
polar axis is the line of the common chord of these 2 circles, and the circle on 
HG as diameter, the so-called orthocentroidal circle of the given triangle, also 
passes through the same points of intersection.

Draw a large and carefully constructed figure of an obtuse triangle with its 
centroid, orthocenter, circumcenter, incenter, 3 excenters, Euler line, polar 
axis, nine-point circle, Feuerbach points, circumcircle, and orthocentroidal 
circle.

14.2 Commandino’s Theorem

Federigo Commandino (1509-1575) published in 1565 one of the first theorems, 
after the time of the Greeks, in the geometry of the tetrahedron. The theorem 
concerns the medians of the tetrahedron, in which a median is defined as the 
line segment joining a vertex of the tetrahedron to the centroid of the opposite 
face. Commandino’s theorem states: The 4 medians of a tetrahedron are con
current in a point that quadrisects each median.

(a) Prove Commandino’s theorem analytically.
(b) Prove Commandino’s theorem synthetically.
(c) Prove that the plane determined by the centroids of 3 faces of a tetrahe

dron is parallel to the fourth face of the tetrahedron.
The tetrahedron formed by the planes passing through the vertices of a 

given tetrahedron and parallel to the respective opposite faces is called the 
anticomplementary tetrahedron of the given tetrahedron.

(d) Prove that the vertices of a tetrahedron are the centroids of the faces of 
the anticomplementary tetrahedron.

(e) Prove that an edge of the anticomplementary tetrahedron is trisected 
by the 2 faces of the given tetrahedron that meet that edge.

14.3 The Altitudes of a Tetrahedron

The 3 altitudes of a triangle are concurrent. Are the 4 altitudes of a tetrahedron 
concurrent?

14.4 Space Analogs

State theorems in three space that are analogs of the following theorems in the 
plane.

(a) The bisectors of the angles of a triangle are concurrent at the center of 
the inscribed circle of the triangle.
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( b )  The area of a circle is equal to the area of a triangle the base of which 
has the same length as the circumference of the circle and the altitude 
of which is equal to the radius of the circle.

(c) The foot of the altitude of an isosceles triangle is the midpoint of the 
base.

14.5 Isogonal Elements

Two lines through the vertex of an angle and symmetrical with respect to the 
bisector of the angle are called isogonal conjugate lines of the angle. There is an 
attractive theorem about triangles that states that if 3 lines through the vertices 
of a triangle are concurrent, then the 3 isogonal conjugate lines through the 
vertices of the triangle are also concurrent. The 2 points of concurrency are 
called a pair of isogonal conjugate points of the triangle. The 6 feet of the 
perpendiculars dropped from a pair of isogonal conjugate points on the sides of 
a triangle lie on a circle whose center is the midpoint of the line segment joining 
the pair of isogonal conjugate points.

(a) Draw a figure illustrating the above facts.
( b )  Prove that the orthocenter and the circumcenter of a triangle constitute 

a pair of isogonal conjugate points.
(c) Try to find 3-space analogs of the definitions and theorems stated at the 

start of this Problem Study.
The isogonal conjugate point of the centroid of a triangle is called the 

symmedian point, or Lemoine point, of the triangle. This point was first given 
by Emile Lemoine (1840-1912) in 1873, in a paper read before the Association 
Frangaise pour l’Avancement des Sciences and that can be claimed to have 
seriously started the modern study of the geometry of the triangle.

14.6 Impossible Constructions

(a) Establish the identity: cos 0 = 4 cos3(0/3) -  3 cos (0/3).
( b )  Show that it is impossible with Euclidean tools to construct a regular 

polygon of 9 sides.
(c) Show that it is impossible with Euclidean tools to construct an angle 

of 1°.
(d) Show that it is impossible with Euclidean tools to construct a regular 

polygon of 7 sides.
(e) Show that it is impossible with Euclidean tools to trisect an angle 

whose cosine is 2/3.
(f) Given a segment 5, show that it is impossible with Euclidean tools to 

construct segments m and n such that s : m = m : n = n:2s.
(g) Show that it is impossible with Euclidean tools to construct the radius 

of a sphere whose volume is the sum of the volumes of 2 arbitrary 
spheres whose radii are given.

(h) Show that it is impossible with Euclidean tools to construct a line 
segment whose length equals the circumference of a given circle.

(i) Given an angle AOB and a point P within the angle. The line through P 
cutting OA and OB in C and D so that CE = PD , where E is the foot of
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the perpendicular from O on CD, is known as Philon’s line for angle 
AOB and point P. It can be shown that Philon’s line is the minimum 
chord CD that can be drawn through P. Show that in general it is 
impossible to construct with Euclidean tools Philon’s line for a given 
angle and a given point.

14.7 Some Approximate Constructions

(a) For an approximate construction of a regular heptagon inscribed in a 
given circle, take for a side of the heptagon the apothem of the regular 
inscribed hexagon. How good an approximation is this?

(b) To trisect a given central angle of a circle, someone suggests trisecting 
the chord of the arc cut off by the angle and then connecting these 
trisection points with the center of the circle. Show that this leads to a 
poor approximation for large obtuse angles.

(c) Study the accuracy of the following procedure for approximately tri
secting an angle; it was given by Kopf in 1919 and then later improved 
by O. Perron and M. d’Ocagne. Let the given angle AOB be taken as a 
central angle in a circle of diameter BOC. Find D, the midpoint of OC, 
then P on OC produced such that CP = OC. At D, erect a perpendicu
lar to cut the circle in E, then mark off between C and D the point F 
such that DF = (DE)/3. With F as center and FB as radius, describe an 
arc to cut CA produced in A'. Then angle A'PB is approximately equal 
to 1/3 of angle AOB.

(d) Study the accuracy of the following procedure for approximately tri
secting an angle; it was given by M. d’Ocagne in 1934 and is surpris
ingly accurate for small angles. Let the given angle AOB be taken as a 
central angle of a circle of diameter BOC. Let D be the midpoint of OC 
and M  the midpoint of arc AB. Then angle MDB is approximately equal 
to 1/3 of angle AOB.

14.8 Mascheroni Construction Theorem

Let us designate the circle with center at point C and passing through the point 
A by the symbol C(A), and the circle with center at point C and with radius 
equal to the segment AB by the symbol C(AB). Prove the following chain of 
constructions and show that they establish the Mascheroni construction theo
rem: Any Euclidean construction, insofar as the given and required elements 
are points, may be accomplished with the Euclidean compasses alone. The 
constructions are recorded in a tabular form in which the upper line indicates 
what is to be drawn, while the lower line indicates the new points that are thus 
constructed.

(a) To construct with Euclidean compasses the circle C(AB).

C (A ),A (C ) M(B), N (B j cm
hA, N X
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{Note: This construction shows that the Euclidean and modern com
passes are equivalent tools.)

(b) To construct with modern compasses the intersection of C{D) with the 
line determined by points A and B.
CASE 1 C not on AB.

A (C I,B (C ) C(D), Q (C D )

Q K Y

CASE 2 C on AB.

A (D ),C (D ) C(DDy), D (C ) c m  D ](C ) m i  F\(D) F(CM ), C (D )

0 ,

F, fo u rth  

v e r te x  o f

F fo u rth  

v e rte x  o f
M

p a r a lle lo g r a m

CDyDF
p a r a lle lo g r a m

C D D ,F

(c) To construct with modern compasses the point of intersection of the 
lines determined by the pairs of points A, B and C, D.

A(C),
B(C)

A (D ),
B(DI

C(DD,)t
D i(C D )

Q (G ),
G(D\)

QIC),
G (C E)

c m
G (C F )

Q D ,
G, c o llin e a r  

w ith  C , Ci

E, e ith e r 

interse ction

F, c o ll in e a r  

w ith  C i,  E
X

(d) On page 268 of Cajori’s A History o f Mathematics we read: “Napoleon 
proposed to the French mathematicians the problem, to divide the 
circumference of a circle into 4 equal parts by the compasses only. 
Mascheroni does this by applying the radius 3 times to the circumfer
ence; he obtains the arcs AB, BC, CD; then AD is a diameter; the rest is 
obvious.” Complete the “obvious” part of the construction.

14.9 Constructions with Straightedge and Rusty Compasses

Solve, with straightedge and rusty compasses, the following first 14 construc
tions found in Mohr’s Compendium Euclidis curiosi:

1. To divide a given line segment into 2 equal parts.
2. To erect a perpendicular to a line from a given point in the line.
3. To construct an equilateral triangle on a given side.
4. To erect a perpendicular to a line from a given point off the line.
5. Through a given point to draw a line parallel to a given line.
6. To add 2 given line segments.
7. To subtract a shorter segment from a given segment.
8. Upon the end of a given line segment to place a given segment perpen

dicularly.
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9. To divide a line segment into any number of equal parts.
10. Given 2 line segments, to find the third proportional.
11. Given 3 line segments, to find the fourth proportional.
12. To find the mean proportional of 2 given segments.
13. To change a given rectangle into a square.
14. To draw a triangle, given the 3 sides.

14.10 Lemoine’s Geometrography

Find the symbol, simplicity, and exactitude for the following familiar construc
tions of a line through a given point A and parallel to a given line MN.

(a) Through A draw any line to cut MN  in B. With any radius r, draw the 
circle B(r) to cut MB in C and AB in D. Draw circle A(r) to cut AB in E. 
Draw circle E(CD) to cut circle A(r) in X. Draw AX, obtaining the 
required parallel.

( b )  With any suitable point D as center, draw circle D(A) to cut MN  in B 
and C. Draw circle C(AB) to cut circle D(A) in X. Draw AX.

(c) With any suitable radius r, draw the circle A(r) to cut MN in B. Draw 
circle B(r) to cut MN  in C. Draw circle C(r) to cut circle A(r) in X. 
Draw AX.

Find the symbol, simplicity, and exactitude for the following constructions 
of a perpendicular to a given line m at a given point P on m.

( d )  With P as center and with any convenient radius, draw a circle to cut m 
in A and B. With A and B as centers and with any suitable radius, draw 
arcs to intersect in Q. Draw PQ, the required perpendicular.

(e) With any convenient point not on m as center, draw the circle through 
P to cut m again in Q, and draw diameter QR of this circle. Draw PR, 
the required perpendicular.

14.11 Principle of Duality

(a) Dualize 9.12 (a). (See Problem Study 9.12.)
( b )  Given 5 lines, find on any 1 of them the point of contact of the conic 

touching the 5 lines.
(c) Given 4 tangents to a conic and the point of contact of any 1 of them, 

construct further tangents to the conic.
( d )  Dualize 9.12 (d).
(e) Dualize 9.12 (e).
(f) Given 3 tangents to a conic and the points of contact of 2 of them, 

construct the point of contact of the third.
(g) Dualize Desargues’ 2-triangle theorem.

14.12 A Self-Dual Postulate set for Projective Geometry

(a) Show that the following postulate set for projective geometry, given by 
Karl Menger in 1945, is self-dual.

PI: There is 1 and only 1 line on every 2 distinct points, and 1 and 
only 1 point on every two distinct lines.
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P2: There exist 2 points and 2 lines such that each o f the points is 
on just 1 o f the lines and each of the lines is on just 1 of the points.

P3: There exist 2 points and 2 lines, the points not on the lines, 
such that the point on the two lines is on the line on the 2 points.

( b )  Verify the 3 postulates of (a) for the 7 “points,” designated by the 
letters A, B, C, D, E, F, G, and the 7 “ lines,” denoted by the trios 
CAFB), (.BDC), (CEA), (AGD), (BGE), (CGF), (DEF). This example 
establishes the existence of finite projective geometries (that is, projec
tive geometries containing only a finite number of points and lines).

14.13 Principle of Duality of Trigonometry

If, in a trigonometric equation, each trigonometric function that appears is 
replaced by its cofunction, the new equation obtained is called the dual of the 
original equation. Establish the following principle of duality of trigonometry: If 
a trigonometric equation involving a single angle is an identity, then its dual is 
also an identity.

14.14 Coordinate Systems

Let us designate as a bipolar coordinate system, one for which the frame of 
reference is a horizontal line segment AB of length a , with respect to which a 
point P of the plane is located by recording as coordinates the counterclock
wise angle a = 4 BAP and the clockwise angle (3 = 4 ABP (see Figure 118).

(a) Find the bipolar equation of (1) the perpendicular bisector of AB, and
(2) an arc of a circle having AB as chord.

( b )  Find the equations of transformation connecting the bipolar coordinate 
system with the rectangular Cartesian coordinate system having x-axis 
along AB and origin at the midpoint of AB.

(c) Identify the curves (1) cot a cot (3 = k, (2) cot a lcot (3 = k, and
(3) cot a + cot f3 = k, where k is a constant.

( d )  Find rectangular Cartesian equations of the following curves given by 
polar equations: (1) lemniscate of Bernoulli, r2 = a2 cos 26, (2) cardi- 
oid, r = a( 1 -  cos 6), (3) spiral of Archimedes, r = ad, (4) equiangu
lar spiral, r = ea6, (5) hyperbolic spiral, rO = a, (6) 4-leaved rose, r = 
a sin 20.

P ( 0 t .  0)

FIGURE 118



(e) Describe the latitude and longitude coordinate system on a spherical 
surface.

(f) A natural extension to space of the polar coordinate system of the 
plane consists in fixing an origin O and then taking as coordinates of a 
point P the length r of the radius vector OP and the latitude <£> and 
longitude 6 of P for the sphere having center O and radius OP. These 
coordinates are known as spherical coordinates. Find equations con
necting the spherical coordinates (r,<£,0) of a point P and rectangular 
Cartesian coordinates (x,y,z) of the point. Essentially such relations 
are found in the works of Lagrange (1736-1813).

(g) Design a coordinate system to locate points on (1) a circular cylindrical 
surface, and (2) a torus.

14.15 Line Coordinates

(a) Show that on a rectangular Cartesian frame of reference we can use the 
slope and the y-intercept of a line as its coordinates, or the length of the 
perpendicular upon the line from the origin and the angle which that 
perpendicular makes with the x-axis.

(b) The negative reciprocals, u and v , of the x- and y-intercepts of a line are 
known as the line’s Pliicker coordinates. Find the Pliicker coordinates 
of the lines whose Cartesian equations are 5x + 3y — 6 = 0 and ax + 
by -1-1 = 0. Write the Cartesian equation of the line having Pliicker 
coordinates (1,3).

(c) Show that the Pliicker coordinates, u, u, of all lines passing through the 
point with Cartesian coordinates (2,3), satisfy the linear equation 2u + 
3v + 1 = 0. This equation is taken as the Pliicker equation of the point 
(2,3). What are the Cartesian coordinates of the points whose Pliicker 
equations are 5u + 3v -  6 = 0 and au + bv + 1 = 0? Write the Pliicker 
equation of the point having Cartesian coordinates (1,3).

14.16 Dimensionality

(a) Show that the plane is 4-dimensional in directed line segments.
(b) What is the dimensionality of the plane in directed line segments of a 

given length?
(c) Show that space is 4-dimensional in lines.
(d) Show that space is 3-dimensional in planes.
(e) Show that space is 4-dimensional in spheres.

What is the dimensionality of the manifold of
(f) Lines cutting across 2 skew lines?
(g) Lines through a point in space?
(h) Planes through a point in space?
(i) Circles in space through a fixed point?
(j) Spheres in space through a fixed point?
(k) All circles on a given sphere?
(l) All circles in space?

(m) All circles whose planes pass through a fixed line of space?
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(n) All lines tangent to a given sphere?
(o) All planes tangent to a given sphere?

14.17 Abridged Notation

Establish the following theorems.
(a) If a = 0 and (3 = 0 are the normal (perpendicular) equations of 2 distinct 

straight lines not passing through the origin, and if ma + n(3 = 0, where 
m and n are constants, is a line through their point of intersection, then 
min is minus the ratio of the signed distance of a point on the line ma + 
n(3 = 0 from line f3 = 0 to its signed distance from line a = 0.

( b )  If a = 0 and /3 = 0 are the normal equations of 2 given nonparallel 
straight lines not passing through the origin, then a -  (3 = 0 and a + 
(3 = 0 are the bisectors of the angles formed by the 2 given lines, the 
first being the bisector of the angle that contains the origin.

(c) If a = 0 and (3 = 0 are normal equations of 2 nonparallel lines not 
passing through the origin, then ma + nf3 = 0 and na + mf3 = 0, where 
m and n are constants, are isogonal lines for the angles formed by the 2 
original lines.

(d) Let a = 0, /3 = 0, y = 0 be equations of the sides of a triangle. Then the 
3 cevians m(3 -  ny = 0, ry  -  sa = 0, and ua -  v(3 = 0 are concurrent if 
and only if mm = nsv.

(e) If a = 0, (3 = 0, y = 0 are equations of the sides of a triangle, any 3 
concurrent cevians can be written as r(3 — sy  = 0, sy  -  ta = 0, ta — rf3 
= 0.

(f) The bisectors of the angles of a triangle are concurrent.
(g) The altitudes of a triangle are concurrent.
(h) The medians of a triangle are concurrent.
(i) If 3 cevians of a triangle are concurrent, then so also are their 3 isogo

nal cevians.
(j) The locus of a point that moves so that the product of its distances from

1 pair of opposite sides of a quadrilateral is proportional to the product 
of its distances from the other pair of opposite sides is a conic passing 
through the vertices of the quadrilateral.

(k) The locus of a point that moves so that the product of its distances from
2 lines is proportional to the square of its distance from a third line is a 
conic tangent to the first 2 lines at the points where they are cut by the 
third line.

14.18 Homogeneous Coordinates

(a) Write the corresponding homogeneous Cartesian coordinates of the 
points (2,3), (-1 ,0 ), (0,7).

( b )  Write homogeneous Cartesian coordinates of the points at infinity on 
the lines jc = y, 3x + 2y — 7 = 0, ax + by + c = 0.

(c) Write the corresponding nonhomogeneous Cartesian coordinates of the 
points (7 ,3 ,-4), (1,1,1), (0,-2,2).
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(d) Write a nonhomogeneous Cartesian equation of a line passing through 
the ideal point (1,—2,0).

(e) Write a corresponding homogeneous Cartesian equation of the circle

x 2 + y 2 4- 2fy  + 2gx + c = 0.

(f) Show that every circle passes through the 2 imaginary ideal points 
( l ,- / ,0 )  and (l,/,0). These points are called the circular points at in
finity.

(g) Show that any real conic passing through the 2 circular points at infinity 
is a circle.

14.19 Pliicker’s Numbers

Using Pliicker’s equations connecting the singular points of an algebraic curve,
show that:

(a) Every conic is of class 2.
( b )  The cubic curve y =  jc3 is of class 3 and has a cusp at infinity.
(c) The cubic curve y 2 =  jc3 is of class 6 and has an inflection at infinity.
(d) l — k  = 3 (m — n).

14.20 N-Dimensional Geometry

(a) How might one define, analytically, the straight line in hyperspace 
determined by the 2 points (x\, . . . , xn) and (yi , . . . , yn)2

(b) How might one define direction cosines of the straight line in (a)?
(c) How might one define a point to lie between the 2 points in (a)?
(d) How might one define the midpoint of the line segment determined by 

the 2 points of (a)?
(e) Justify the definition given in Section 14-6 of the cosine of the angle 

between 2 line segments in hyperspace; that is, show that 0 ^
| cos 6 1 ^ 1.

(f) If jc, y, z are any 3 points in hyperspace, and if d(x,y) denotes the 
distance between points jc and y, show that

1. d(x,y) ^  0,
2. d(x,y) = 0 if and only if jc = y,
3. d(x,y) = d(y,x),
4. d(x,z) ^  d(x,y) + d(y,z).

14.21 Gaussian Curvature

(a) Is there a quadric surface whose total curvature is everywhere posi
tive? Everywhere negative? Everywhere zero? In some places positive 
and in others negative?

( b )  Show that a pair of applicable surfaces have their points in 1-to-l 
correspondence such that at pairs of corresponding points the total 
curvatures of the 2 surfaces are equal.

(c) Show that when 1 surface is bent into another surface, the geodesics of 
the first surface go into geodesics of the second surface.
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(d) Show that a sphere of radius r has constant positive total curvature 
equal to 1/r2.

(e) Show that a plane has constant zero total curvature.
(f) Show that a cylindrical surface has constant zero total curvature. Is a 

cylindrical surface applicable to a plane?
(g) Show that if a surface is applicable upon itself in all positions, its total 

curvature must be constant.
(h) Show that the only surfaces upon which free mobility of figures is 

possible are those of constant total curvature.
(i) Show that a sphere is not applicable to a plane. (This is why, in terres

trial map-making, some sort of distortion in the map is necessary.)

14.22 The Tractoid

The graph of y = k cosh (x!k) is the catenary, the form assumed by a perfectly 
flexible inextensible chain of uniform density hanging from 2 supports not in the 
same vertical line. Let this catenary (see Figure 119) cut the y-axis in A; let P be 
any point on the curve, and let F be the foot of the ordinate through P\ let the 
tangent to the curve at P cut the jc-axis in T, and let Q be the foot of the 
perpendicular from F on PT.

(a) With simple calculus, show that QF is constant and equal to k.
(b) With the aid of integral calculus, show that QP is equal to the length of 

the arc AP.
(c) Show that if a string AP is unwound from the catenary, the tracing end 

A will describe a curve AQ  having the property that the length of the 
tangent QF is constant and equal to k. In other words, the locus of Q, 
which is an involute of the catenary, is a tractrix.

(d) It can be shown that for a surface of revolution the principal curvatures 
(see Section 14-7, p. 557) at a point Q on the surface are the curvature 
of the meridian through Q and the curvature of the section through Q 
that is normal to the meridian through Q . If the normal to the surface at 
Q meets the axis of revolution of the surface in T, then the latter

v

FIGURE 119



curvature is known to be equal to IIQT. Show that the principal curva
tures at Q of the tractoid obtained by revolving the tractrix of (c) about 
the x-axis are given by 1IQP and IIQT.

(e) Show that the curvature (see Problem Study 14.21) of the tractoid of (d) 
is constant, and everywhere equal to -  Ilk2.

14.23 The Erlanger Programm

(a) Show that the set of all projective transformations of the projective 
plane onto itself that carry a fixed line of the plane (call it the line at 
infinity) onto itself constitutes a transformation group. (The geometry 
associated with this group is known as plane affine geometry.)

(b) Show that the set of all projective transformations of the projective 
plane onto itself that carry a fixed line of the plane onto itself and a 
fixed point of the plane not on the fixed line into itself constitutes a 
transformation group. (The geometry associated with this group is 
known as plane centro-affine geometry.)

(c) Show that we have the following nesting of geometries:

{Euclidean metric, equiform, centro-affine, affine, projective},

wherein the transformation group of any one of the geometries is a 
subgroup of the transformation group of any one of the following geom
etries of the sequence.

(d) Show that the set of all projective transformations of the projective 
plane onto itself that carry a given circle S of the plane onto itself and 
the interior of S onto itself constitutes a transformation group. (With 
appropriate definitions of distance and angular measurement, it can be 
shown that the geometry associated with this transformation group is 
equivalent to plane Lobachevskian metric geometry.)

14.24 Mysticism and Absurdity in the Early Calculus

(a) One of the ablest criticisms of the faulty foundation of the early calcu
lus came from the eminent metaphysician Bishop George Berkeley 
(1685-1753), who insisted that the development of the calculus by 
Newton involved the logical fallacy of a shift in the hypothesis. Point 
out the shift in the hypothesis in Newton’s following determination of 
the derivative (or fluxion, as he called it) of x 3. We here paraphrase 
Newton’s treatment as given in his Quadrature o f Curves of 1704:

In the same time that x, by growing, becomes x + o, the power x 3 
becomes (x + o)3, or
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x 3 + 3x2o + 3xo2 + o 3, 

and the growths, or increments,

o and 3x2o + 3xo2 + o 3



Problem Studies 591

are to each other as

1 to 3x2 + 3xo + o 2.

Now let the increments vanish, and their last proportion will be 1 to 
3jc2, whence the rate of change of x 3 with respect to jc is 3jc2.

(b) Explain Bishop Berkeley’s sarcastic description of derivatives as 
“ghosts of departed quantities.’’

(c) Discuss the following postulate made by Johann Bernoulli to sanction 
operations like that illustrated in (a) above: “A quantity which is in
creased or decreased by an infinitely small quantity is neither increased 
nor decreased.’’

14.25 Early Difficulties with Infinite Series

Seventeenth-century and eighteenth-century mathematicians had little under
standing of infinite series. They often applied, to such series, operations that 
hold for finite series but apply to infinite series only under certain restrictions. 
Not being aware of the restrictions, the result was that paradoxes arose in work 
with infinite series.

(a) A bothersome series in the early days of the calculus was the alternat
ing series

1 — 1 + 1 — 1 + 1 — 1 + -- - ,

and much discussion arose as to the sum S that should be assigned to 
this series. Show that the grouping

(1 -  1) + (1 -  1) + (1 -  1) + • • •

leads to S = 0, and that the grouping

1 -  (1 -  1) -  (1 -  1) -  (1 -  1) -------

leads to S = 1. Some argued that since the sums 0 and 1 are equally 
probable, the correct sum of the series is the average value 1/2. Show 
that this value, too, can be obtained in a purely formal manner by the 
grouping

1 -  (1 -  1 + 1 -  1 + 1 -  1 + • • •)•

(b) The binomial expansion

(a + b)n = a n + C(n9l)a n~lb + C(ny2)an~2b2 + C(n,3)an~3b3 + • • • , 

where

C(n,r)
n(n — 1 ){n — 2) • • • (n -  r + 1)

(1)(2)(3) • • * (r)
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holds only under certain restrictions. That is, the series on the right 
converges to the expression on the left only under certain restrictions 
on a, b, and n. Not knowing these restrictions, and applying the expan
sion as though universally true, can lead to paradoxes. Obtain such a 
paradox (as did Euler) by formally applying the binomial expansion to 
0  -  2)-'.

(c) By dividing 1 -  x into x and x -  1 into x, and then adding the results, 
obtain the ridiculous result found by Euler:

1 1 ,• • • -I— 5 H---- h l + r  + r 2 + , , , - 0
XL X

for all x different from 0 and 1.
(d) Explain the following paradox. Let S denote the sum of the convergent 

series

1 1 1
+ -T-r- + rm-  +

Then

(1)(3) (3)(5) (5)(7)

M i- iM H M H h
, 2 2 3 3 4
1 _ 3 + 3 ~ 5 + 5 ~ 7 + = 1,

since all terms after the first cancel out. Again

( H )  ( H )  ( H )
s  = +

= i _ i 1 _ j_ J__ i_ = i
" 2 6 + 6 10 + 10 14 + ’ ‘ ‘ 2 ’

since all terms after the first cancel out. It follows that 1 = 1/2.

14.26 Some Paradoxes in Elementary Algebra

When the theory of a mathematical operation is only poorly understood, there 
is the danger that the operation will be applied in a blindly formal and perhaps 
illogical manner. The performer, not aware of possible limitations upon the 
operation, is likely to use the operation in instances in which it does not neces
sarily apply. This is essentially what happened in analysis during the century 
following the invention of the calculus, with the result that a gradual accumula
tion of absurdities resulted. The present Problem Study illustrates how such
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absurdities can arise in elementary algebra when certain algebraic operations 
are performed without realization of limitations upon those operations.

(a) Explain the following paradox:
Certainly

3 >  2.

Multiplying both sides by log (1/2), we find

3 log (1) >  2 log ( !)  

or

log ( ! ) ’ >  *  ( ! ) ! ,

whence

(b) Explain the following paradox:
Clearly ( -1 )2 = (+1)2. Taking the logarithm of each side, we have 
log ( -1 )2 = log (l)2. Therefore, 2 log (-1 )  = 2 log 1, or -1  = 1.

(c) Most students of elementary algebra will agree to the following theo
rem: If 2 fractions are equal and have equal numerators, then they also 
have equal denominators. Now consider the following problem. We 
wish to solve the equation

jc +  5  _  4 jc -  4 0

jc -  7  “  5 “  13 -  jc *

Combining the terms on the left side, we find

(jc +  5 )  -  5 (jc -  7 )  _  4 jc -  4 0  

x -  1 13 -  x

or

4 jc -  4 0  _  4 jc -  4 0  

1 -  x 13 -  x ’

By the above theorem, it follows that 1 -  x = 13 -  jc, or, upon adding jc 
to both sides, that 7 = 13. What is wrong?



(d) Find the fallacy in the following proof by mathematical induction: 
P(n): All numbers in a set o f n numbers are equal to one another.

1. P (l) is obviously true.
2. Suppose k is a natural number for which P(k) is true. Let a \ , a2, 

. . . , ak, ak+1 be any set of k + 1 numbers. Then, by the suppo
sition, a\ = a2 = • • * = ak and a2 = • • • = ak = ak+\. Therefore 
a\ — a2 = • • * = ak = ak+1, and P{k + 1) is true.

It follows that P(n) is true for all natural numbers n.
(e) Find the fallacy in the following proof by mathematical induction: 

P(n): If a and b are any two natural numbers such that max(a,b) = n, 
then a = b. [Note: By max(a,b), when a + b, is meant the larger of the 
2 numbers a and b. By max(a,a) is meant the number a. Thus, max(5,7) 
= 7, max(8,2) = 8, max(4,4) = 4.]

1. P (l) is obviously true.
2. Suppose A: is a natural number for which P(k) is true. Let a and 

b be any 2 natural numbers such that max(a,b) = k + 1, and 
consider a = a -  \ , /3 = b -  1. Then max(a,/3) = A, whence, by 
the supposition, a = (3. Therefore, a = b and P(k + 1) is true.

It follows that P(n) is true for all natural numbers n.
(f) Explain the concluding 3 paradoxes involving square-root radicals:

1. Since \ fa  \ fb  = \fa b , we have

V m  V h  = V ( - i ) ( - i )  = VT = l.

But, by definition, V^-T V —T = -1 . Hence -1  = + 1.
2. We have, successively,
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V^T = V =T ,

VT _ V^T 
V^T VT ’ 

vT vT = V^T V^T,
l =  - l .

3. Consider the following identity, which holds for all values of jc and
y-

V x  -  y = iV y -  x.

Setting x = a, y -  b, where a f  b, we find

V <2 -  b = i \ /b  — a.
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Now setting x = b, y = a, we find

V/? -  a = iV a  -  b.

Multiplying the last 2 equations, member by member, we get

Vfl -  b V/? -  a = i2\ /b  -  a V a  -  b.

Dividing both sides by V a  -  b V/? -  a , we finally get

= i*2, or 1 = -1 .

14.27 Some Paradoxes in Calculus

(a) By standard procedure we find

i
i dx = -1  -1  = -2 .

The function y = 1/x2 is never negative, however; hence, the above 
“evaluation” cannot be correct.

(b) Let e denote the eccentricity of the ellipse x 2/a 2 + y 2/b2 = 1. It is well 
known that the length r of the radius vector drawn from the left-hand 
focus of the ellipse to any point P(jc,y) on the curve is given by r = a + 
ex. Now dr/dx =  e. Since there are no values of jc for which dr/dx 
vanishes, it follows that r has no maximum or minimum. But the only 
closed curve for which the radius vector has no maximum or minimum 
is a circle. It follows that every ellipse is a circle.

(c) Consider the isosceles triangle ABC of Figure 120, in which base AB = 
12 and altitude CD = 3. Surely there is a point P on CD such that

is a minimum. Let us try to locate this point P. Denote DP by x. Then 
PC  = 3 -  jc and PA = PB = ( jc2 + 36)1/2. Therefore

S = PC + PA + PB

S = 3 -  jc +  2 (jc2 + 36)1/2,

c

FIGURE 120
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and

^  = -1  + 2x(x2 + 36)-1/2.

Setting dS/dx = 0, we find x = 2V3 > 3, and P lies outside the triangle 
on DC produced. Hence, there is no point on the segment CD for which 
S is a minimum.

(d) Consider the integral

I = sin jc cos jc dx.

Then we have

/  = J sin jc( c o s  jc dx )  =  J sin jc d ( sin jc)  =
sin2 jc 

2

Also

/ = J cos jc(sin jc dx )  = — J cos jc d ( c o s  x )  =  —

Therefore

sin2 jc = -c o s 2 jc,

or

sin2 jc + cos2 jc = 0.

But, for any jc,

sin2 x + cos2 x = 1.
(e) Since

we have log x  = log ( - jc) or x  =  - x ,  whence 1 = -1 .

14.28 A Continuous Curve Having No Tangents

It is well known that a continuous curve can be defined geometrically as the 
limit of a sequence of polygonal curves, and this process has been used by a 
number of mathematicians to produce a continuous curve that has no tangent
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E

or half tangent at any of its points. We here consider such a curve created by 
the Swedish mathematician Helge von Koch (1870-1924).

Divide the horizontal line segment AB (see Figure 121) into 3 equal parts 
by the points C and D\ on the middle part, CD , construct an equilateral triangle 
CED on the left side of the directed segment AB , and then efface the open 
segment CD. Now effect the same construction on each of the directed seg
ments AC, CE, ED, DB. Repeat the construction indefinitely. The limit ap
proached by the figure is the Koch curve.

(a) Considering a tangent to a curve at a point P of the curve as the limiting 
position, if such exists, of a secant line through P and a neighboring 
point Q of the curve as Q moves along the curve into coincidence 
with P , show that the Koch curve of Figure 121 has no tangent at the 
point C.

(b) Show that the Koch curve is infinite in length.
(c) On each side of an equilateral triangle construct, exterior to the trian

gle, a Koch curve. The resulting closed curve is sometimes called the 
snowflake curve. Show that the snowflake curve is a simple closed 
continuous curve of infinite length bounding a finite area.

(d) Let T\ be a horizontal planar equilateral triangular region. Divide T\ 
into 4 congruent parts by joining the midpoints of the sides of T\ . On 
the central piece, construct a regular tetrahedron lying above the plane 
of Tx; efface the central piece of T\; denote the resulting surface by T2. 
Describe a continuation of this process that will yield a continuous 
tangentless surface in 3-space.

14.29 Algebraic and Transcendental Numbers

A complex number is said to be algebraic if it is a root of some polynomial 
having rational coefficients; otherwise, it is said to be transcendental. It was F. 
Lindemann (1852-1939) who first proved, in 1882, that rr is transcendental.

(a) Show that every rational number is an algebraic number and hence that 
every real transcendental number is irrational.

(b) Is every irrational number a transcendental number?
(c) Is the imaginary unit i algebraic or transcendental?
(d) Using Lindemann’s result, show that ttH is transcendental.
(e) Using Lindemann’s result, show that tt + 1 is transcendental.
(f) Using Lindemann’s result, show that V 7r is transcendental.



(g) Generalize (d), (e), and (f).
(h) Show that an algebraic number is a root of a polynomial having integral 

coefficients.

14.30 Bounds

A real number a is called an upper bound of a nonempty set M  of real numbers 
if for each number m of M  we have m ^ a ,  and a is called a least upper bound of 
M if a <  b whenever b is any other upper bound of M. A basic and important 
property of the real number system asserts that if a nonempty set o f real 
numbers has an upper bound, then it has a least upper bound.

(a) Give a definition of a lower bound and of a greatest lower bound of a 
nonempty set of real numbers.

(b) Prove that a nonempty set of real numbers can have at most one least 
upper bound and at most one greatest lower bound.

(c) Give an example of a nonempty set M  of real numbers that has the 
following:

1. Both an upper and a lower bound.
2. An upper bound but no lower bound.
3. A lower bound but no upper bound.
4. Neither an upper nor a lower bound.
5. A least upper bound that is in the set M.
6. A least upper bound that is not in the set M.

(d) Prove that if a nonempty set M  of real numbers has a lower bound, then 
it has a greatest lower bound.

(e) Let M  be a nonempty set of real numbers, and let t be any fixed positive 
real number. Let N  be the set of numbers of the form tx, where x is in
M. Show that if b is the least upper bound of M, then tb is the least 
upper bound of N.

(f) Let M  and N  be two nonempty sets of real numbers having a and b9 
respectively, as least upper bounds. Let P be the set of all numbers of 
the form jc + y, where jc is in M  and y is in N. Show that a + b is the 
least upper bound of P.

(g) Let M  be the set of real numbers

jc„  =  (-1)"(2 -  4/2"), / i  =  1 , 2, . . .  .

Find the least upper bound and greatest lower bound of M. Do the same 
for the set of numbers

yn = ( - 1)" + 1 In, n = 1,2,  . . .  .

(h) If we are restricted to just the rational numbers, does the existence of 
an upper bound of a nonempty set M  necessarily imply the existence of 
a least upper bound of M?

(i) If we are restricted to only the nonzero real numbers, does the exis
tence of an upper bound of a nonempty set M  necessarily imply the 
existence of a least upper bound of M?
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14.31 Prime Numbers

(a) Find, by the sieve of Eratosthenes, all the primes below 500.
(b) Prove that a positive integer p  is prime if it has no prime factor not 

exceeding the greatest integer whose square does not exceed p. This 
theorem says that, in the elimination process of the sieve of Eratos
thenes, we may stop as soon as we reach a prime p > \ f n ,  for the 
cancellation of every p th number from p will merely be a repetition of 
cancellations already effected. Thus, in finding the primes less than 
500, we may stop after crossing off every nineteenth number from 19, 
since the next prime, 23, is greater than V500.

(c) Compute (An loge n)ln  for n = 500, 108, and 109.
(d) Prove that there can always be found n consecutive composite inte

gers, however great n may be.
(e) How many pairs of twin primes are there less than 100?
(f) Express each even positive integer less than 100, other than 2, as the 

sum of 2 primes.
(g) Show that the formulas 2 + sin2(n7r/2), 3(cos 2nir), and 3(/i°) yield 

prime numbers for all positive integral values of n.
(h) Show that n 2 + n + 11 is prime for all integral n from 1 to 16 and that 

I n 2 + 29 is prime for all integral n from 1 to 28.
(i) Show that 11 is the only palindromic prime containing an even number 

of digits.
(j) Find all 15 three-digit palindromic primes.

(It is not known if there are infinitely many palindromic primes.)

Essay Topics

14/1 Peaucellier’s cell and Hart’s contraparallelogram.
14/2 Linkages.
14/3 Augustus Ferdinand Mobius (1790-1868).
14/4 Karl Feuerbach (1800-1834).
14/5 William Kingdon Clifford (1845-1879).
14/6 Charles Lutwidge Dodgson (1832-1898).
14/7 Giuseppe Peano (1858-1932).
14/8 Pole-polar theory and the principle of duality.
14/9 A self-dual postulate set for plane projective geometry.
14/10 A principle of duality in the study of spherical triangles.
14/11 The Malfatti problem.
14/12 The tesseract, or hypercube.
14/13 The intrinsic versus the extrinsic geometry of surfaces.
14/14 Klein’s years as chairman of the mathematics department at Got

tingen.
14/15 Geometry as the theory of invariants and algebra as the theory of 

structure.
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14/16 Riemann’s probationary lecture of 1854.
14/17 Poincare as a popular writer.
14/18 An analytic geometry without coordinates or a frame of reference. 
14/19 The importance of existence theorems.
14/20 Developments in analysis in the nineteenth century motivated by inter

nal factors in mathematics.
14/21 Some nineteenth-century mathematicians who were outstanding in 

both research and teaching.
14/22 Jacob Steiner and Julius Pliicker contrasted.
14/23 The Cantor-Kronecker dispute.
14/24 Why there have been so few eminent women in mathematics.
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Cultural Connection

THE ATOM AND THE 
SPINNING WHEEL
The Twentieth Century
(to accompany Chapter Fifteen)

c
JPpecial problems confront anyone writing twentieth-century history. The 
twentieth century, unlike past epochs, is not yet over; consequently, we cannot 
know with certainty how it will look when complete. In the nine preceeding 
Cultural Connections, we have endeavored to identify each of the considered 
historical periods with a central theme. In prehistoric times, people lived as 
nomadic hunters and gatherers. We saw the Agricultural Revolution begin in 
ancient China, Egypt, and the Middle East at the dawn of recorded history. 
Democracy developed in Classical Greece, and grand empires arose in Rome 
and China. India and Arabia witnessed the birth of dynamic new religions that 
shaped the character of civilization there. With the Middle Ages came the fall 
of the Roman Empire and the emergence of a new, feudal, European culture. 
After A.D. 1500, European society expanded into other continents in the Age 
of Exploration. The eighteenth century witnessed the rise of the middle class, 
and in the nineteenth century, that middle class engineered the Industrial Revo
lution.

It is not possible to identify the twentieth century with such a single theme. 
If we look at history as a vast tapestry, we would see that the part depicting 
the present era has been only partially woven, and we could not yet identify the 
picture that will eventually take shape there. We can, however, examine the 
threads from which the tapestry is woven, and from these threads, and from 
the part of the panorama that is complete, guess what the finished picture will 
look like.

We can see much in the portion of the tapestry already woven. The great 
imperial powers of the nineteenth century fought a bloody “war to end all 
wars,” World War I (1914-1918), which did not end all wars, but left the old 
industrial empires spent and broken. The Russian Revolution (1917) overthrew 
a centuries-old monarchy, replacing it with the world’s first socialist state. 
Nationalists, meanwhile, established new regimes in Poland, Yugoslavia, 
Czechoslovakia, and Hungary in 1920. Fascists, self-righteous ultranationalist 
zealots, seized control of Germany, Spain, Italy, and Japan during a Great 
Depression in the 1930s. In the Holocaust, a vicious program of genocide 
against innocent people, European fascists imprisoned and brutally murdered 
millions of Jewish, homosexual, and other minority citizens. The German,
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Italian, and Japanese fascists, giddy with power, embarked on a frenzy of 
conquests and wars that led to their ultimate defeat in World War II (1939— 
1945) at the hands of Great Britain, the Soviet Union, the United States (along 
with other nations), and underground bands of antifascist rebel partisans. The 
aftermath of World War II left the United States and the Soviet Union as the 
dominant world powers, their respective spheres of influence dividing the globe 
into western and eastern blocs.

The end of World War II also marked the beginning of the gradual disinte
gration of the old nineteenth-century colonial and economic empires. Dozens 
of newly independent nations came into being in Africa, Asia, the Pacific, and 
elsewhere, ranging in size from gigantic India and Indonesia (the former Dutch 
East Indies) to tiny Nauru and Grenada. These former colonies suffered from 
great disadvantages. Their former imperial masters had viewed them only as 
sources of raw materials and had been uninterested in promoting industrializa
tion there. Poor, overpopulated, unindustrialized, and undereducated, these 
“Third-World” countries struggled against illiteracy, famine, and disease. 
They often went into debt, and their poverty made them ripe for revolutionary 
violence. Still, some Third-World nations made remarkable progress in improv
ing the living standards of their peoples and achieving political stability. We can 
cite Saudi Arabia, Egypt, and China as relatively successful counterpoints to 
more turbulent places like Vietnam, Zaire, Nigeria, and Uganda, although we 
must acknowledge that, at least in the case of Vietnam, instability was in part 
imposed from without. Due to their numbers, Third-World nations have, as a 
bloc, been influential at the United Nations, a global assembly formed in the 
wake of World War II.

Thus we glimpse at part of the incomplete picture of the tapestry of the 
twentieth century. If we look at the threads that make up the weave of the 
tapestry, crisscrossing each other in vertical and horizontal contrasts, we can 
pick out two competing tendencies: the mechanistic and the organic. As histo
rian and philosopher Carolyn Merchant has suggested in her book The Death of  
Nature (1980), there are two essential ways of looking at the world, both of 
which date back to Classical Greece. One view, the mechanistic, holds that 
nature and civilization work like machines, made up of component parts over 
which humankind has control and with which we must continually tinker. The 
other view, the organic, understands the world as a living whole, of which 
humankind is only a part, and that lies in a delicate, natural balance. Both 
world views are ancient; both are compatible with science; both are with us 
still.

In the twentieth century, for many, the atom came to symbolize the mech
anistic world view. Harnessed to both destructive and constructive ends, 
atomic power represented both humanity’s ultimate domination of nature and 
its potential for self-destruction. For Third-World countries, the atom was a 
constant reminder of the primacy of the superpowers, the United States and the 
Soviet Union, and of the Third World’s secondary status. Atomic power was 
the result of the twentieth-century merger of pure science with technology, a 
merger that created an unprecedented demand for the fruits of science within
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government and business, and, consequently, thousands of jobs for scientists. 
Whether the atom will lead us to a mechanistic utopia, to atomic war, or to a 
hopelessly polluted environment we cannot yet say.

In the Third World, Indian leader Mohandas Gandhi (1869-1948) proposed 
the spinning wheel as the symbol of the organic philosophy. A simple machine, 
the spinning wheel is powered by human hands, not electricity, and to Gandhi 
represented a harmony between humanity and nature. Its round shape re
minded Gandhi of the spherical earth; its symmetry bespoke the symbolic unity 
of humankind. Although the atom appears to have dominated the twentieth 
century, we can distinguish the influence of the spinning wheel as well: the 
break-up of the nineteenth century colonial empires; the civil rights movements 
in the United States and Africa since 1955; the environmental and women’s 
movements in Europe, America, and Asia; the antinuclear crusade and the call 
for “appropriate technology” ; the religious fundamentalism in the United 
States and Iran—all tend to see the world in nonmechanistic terms.

Neither can we completely separate the two ideas into easily identifiable 
opposing camps. No one represented the mutual interdependence of the atom 
and the spinning wheel better than the twentieth century’s greatest scientist, 
Albert Einstein (1879-1955). Einstein worked in mechanics, yet was a compas
sionate humanist. He recognized the mechanical nature of the universe, but 
also, in his theory of relativity, understood it as a glorious interlocking whole. 
He helped harness the power of the atom but was also wise enough to warn the 
world of the perils of its misuse.

The twentieth century still has several years to go before it is over, and it 
will be years after that before we can evaluate it objectively. In describing a 
hero of an earlier time, English poet Alfred, Lord Tennyson, wrote, “much is 
taken, much abides.” Future generations, when considering the twentieth cen
tury, will decide what to take, what will remain, and whether or not those of us 
alive today have lived up to the proud words found in the Charter of the United 
Nations: “ to promote social progress and better standards of life in larger 
freedom, and for those ends to practice tolerance and live together in peace 
with one another as good neighbors. . . . ”



Chapter

INTO THE TW ENTIETH CENTURY

15-1 Logical Shortcomings of 
Euclid’s “Elements”

Much of the mathematical work of the twentieth century has been devoted to 
examining the logical foundations and structure of the subject. This in turn led 
to the creation of axiomatics, or the study of postulate sets and their properties. 
Many of the basic concepts of mathematics underwent remarkable evolution 
and generalization, and such deeply fundamental subjects as set theory, ab
stract algebra, and topology were extensively developed. General set theory 
led to some profound and disturbing paradoxes that required urgent treatment. 
Logic itself, as the apparatus used in mathematics to obtain conclusions from 
accepted hypotheses, was carefully scrutinized, and mathematical logic came 
into being. The ties between logic and philosophy led to various important 
present-day schools of philosophy of mathematics. The computer revolution of 
the twentieth century also deeply affected a number of the branches of mathe
matics. All in all, the old view of “the tree of mathematics” became obsolete. 
Curiously enough, like so much of mathematics, most of these modern consid
erations trace their origins back to the work of the ancient Greeks and, in 
particular, to the great Elements of Euclid.

It would be very remarkable indeed if Euclid’s Elements, being such an 
early and colossal attempt at the postulational method of presentation, should 
be free of logical blemishes. The searchlight of subsequent criticism has re
vealed many defects in the logical structure of the work. Perhaps the gravest of 
these defects are numerous tacit assumptions made by Euclid, assumptions not 
granted by his postulates. Thus, although Postulate P2 asserts that a straight 
line may be produced indefinitely,1 it does not necessarily imply that a straight 
line is infinite, but merely that it is endless, or boundless. The arc of a great 
circle joining two points on a sphere may be produced indefinitely along the 
great circle, making the prolonged arc endless, but certainly not infinite. The 
great German mathematician Riemann, in his famous probationary lecture 
Uber die Hypothesen welche der Geometrie zu Grunde liegen, of 1854, distin
guished between the boundlessness and the infinitude of straight lines. There 
are numerous occasions, for instance in the proof of Proposition I 16, where 
Euclid unconsciously assumed the infinitude of straight lines. Again, Euclid 
tacitly assumed, in his proof of Proposition I 21 for example, that if a straight

1 See Section 5-7 for statements of Euclid’s axioms and postulates.
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line enters a triangle at a vertex it must, if sufficiently produced, intersect the 
opposite side. Moritz Pasch (1843-1930) recognized the necessity of a postulate 
to take care of this situation. Another oversight of Euclid’s geometry is the 
assumption of the existence of points of intersection of certain lines and circles. 
Thus, in Proposition I 1, it is assumed that circles with centers at the ends of a 
line segment and having the line segment as a common radius intersect, and do 
not, somehow or other, slip through each other with no common point. Some 
sort of continuity postulate, such as one later furnished by R. Dedekind, is 
needed to assure us of the existence of such a point of intersection. Also, 
Postulate PI guarantees the existence of at least one straight line joining two 
points A and B , but does not assure us that there cannot be more than one such 
joining line. Euclid frequently assumed there is a unique line joining two dis
tinct points. Objections can also be raised to the principle of superposition, 
used by Euclid, with apparent reluctance, to establish some of his early congru
ence theorems, although these objections can partially be met by Axiom A4.

Not only is Euclid’s work marred by numerous tacit assumptions, but 
some of his preliminary definitions are also open to criticism. Euclid made an 
attempt to define all the technical terms of his discourse. Now, actually, it is as 
impossible to define explicitly all of the technical terms of a discourse as it is to 
prove all of the statements of the discourse, for a technical term must be 
defined by means of other technical terms, and these other terms by means of 
still others, and so on. In order to get started, and to avoid circularity of 
definition, one is forced to set down at the very start of the discourse a collec
tion of primitive, or basic, technical terms whose meanings are not to be ques
tioned. All subsequent technical terms of the discourse must be defined, ulti
mately, by means of these initial primitive ones. The postulates of the discourse 
are, then, in final analysis, assumed statements about the primitive terms. 
From this point of view, the primitive terms may be regarded as defined implic
itly, in the sense that they are any things or concepts that satisfy the postulates, 
and this implicit definition is the only kind of definition that the primitive terms 
can receive.

In Euclid’s development of geometry, the terms point and line, for exam
ple, could well have been included in a set of primitive terms for the discourse. 
At any rate, Euclid’s definition of a point as “that which has no part” and a line 
as “length without breadth” are easily seen to be circular and therefore, from a 
logical viewpoint, woefully inadequate. One distinction between the Greek 
conception and the modern conception of the axiomatic method lies in this 
matter of primitive terms; in the Greek conception, there is no listing of the 
primitive terms. The excuse for the Greeks is that to them geometry was not 
just an abstract study, but an attempted logical analysis of idealized physical 
space. Points and lines were, to the Greeks, idealizations of very small particles 
and very thin threads. It is this idealization that Euclid attempted to express in 
some of his initial definitions. There are still other differences between the 
Greek and the modern views of the axiomatic method.

It was not until the end of the nineteenth century and the early part of the 
twentieth century, after the foundations of geometry had been subjected to an
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intensive study, that satisfactory postulate sets were supplied for Euclidean 
plane and solid geometry. Prominent among such sets are those of M. Pasch, 
G. Peano, M. Pieri, D. Hilbert, O. Veblen, E. V. Huntington, G. D. Birkhoff, 
and L. M. Blumenthal. Hilbert’s set contains twenty-one postulates and has 
point, straight line, plane, on, congruent, and between as primitive terms; 
Pieri’s set contains twenty postulates and has point and motion as primitive 
terms; Veblen’s set contains sixteen postulates and has point and order as 
primitive terms; Huntington’s set contains twenty-three postulates and has 
sphere and inclusion as primitive terms.

Since about the middle of the twentieth century, a number of authors and 
writing groups have attempted the task of producing textual materials for the 
high school geometry class wherein geometry is developed rigorously from a 
postulational base. In these attempts, usually either the Hilbert postulate set or 
the Birkhoff postulate set (often somewhat altered and/or augmented) is 
adopted.

15-2 Axiomatics2
It was largely the modern search for a logically acceptable postulate set of 
Euclidean geometry and the revelation furnished by the discovery of equally 
consistent non-Euclidean geometries that led to the development of axiomat
ics, or the study of postulate sets and their properties.

One of the pitfalls of working with a deductive system is too great a 
familiarity with the subject matter of the system. It is this pitfall that accounts 
for most of the blemishes in Euclid’s Elements. In order to escape this pitfall, it 
is advisable to replace the primitive or undefined terms of the discourse by 
symbols, like jc, y, z, and so forth. Then the postulates of the discourse become 
statements about these symbols and are thus devoid of concrete meaning; 
conclusions, therefore, are obtained upon a strictly logical basis without the 
intrusion of intuitive factors. The study of axiomatics considers properties of 
such sets of postulates.

Clearly, we cannot take as a postulate set any set of statements about the 
primitive terms. There are certain required and certain desired properties that a 
postulate set should possess. It is essential, for example, that the postulates be 
consistent—that is, that no contradictions can be deduced from the set.

The most successful method so far invented for establishing consistency of 
a postulate set is the method of models. A model of a postulate set is obtained if 
we can assign meanings to the primitive terms of the set that convert the 
postulates into true statements about the assigned concepts. There are two 
types of models— concrete models and ideal models. A model is said to be 
concrete if the meanings assigned to the primitive terms are objects and rela

2 For a fuller treatment of axiomatics see, for example, Chapter 6 of Howard Eves and C. V. 
Newsom, An Introduction to the Foundations and Fundamental Concepts o f Mathematics. Re
vised edition. New York: Holt, Rinehart and Winston, 1965.
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tions adapted from the real world, whereas a model is said to be ideal if the 
meanings assigned to the primitive terms are objects and relations adapted from 
some other postulational development.

When a concrete model has been exhibited, we feel that we have estab
lished the absolute consistency of our postulate system, for if contradictory 
theorems are implied by our postulates, then corresponding contradictory 
statements would hold in our concrete model. But contradictions in the real 
world we believe are impossible.

It is not always possible to set up a concrete model of a given postulate set. 
Thus, if the postulate set contains an infinite number of primitive elements, a 
concrete model would certainly be impossible, for the real world does not 
contain an infinite number of objects. In such instances, we attempt to set up an 
ideal model by assigning to the primitive terms of the postulate system A, say, 
concepts of some other postulate system B , in such a manner that the interpre
tations of the postulates of system A are logical consequences of the postulate 
system B. But now our test of consistency of the postulate set A can no longer 
claim to be an absolute test, but only a relative test. All we can say is that 
postulate set A is consistent if postulate set B is consistent, and we have 
reduced the consistency of system A to that of another system B.

Whether a postulate set might be consistent without our being able to 
establish the fact is one of the interesting open questions of axiomatics. Studies 
upon consistency have led to several disturbing and controversial results for 
those concerned with the foundations of mathematical knowledge. Proof of 
consistency by the method of models is an indirect process. It is conceivable 
that absolute consistency may be established by a direct procedure that en
deavors to show that by following the rules of deductive inference no two 
theorems can be arrived at, from a given postulate set, that will contradict each 
other. In recent years, Hilbert considered, with only partial success, such a 
direct method.

A set of postulates is said to be independent if no postulate of the set is 
implied by the other postulates of the set. To show that any particular postulate 
of the set is independent, one must devise an interpretation of the primitive 
terms that falsifies the concerned postulate but that verifies each of the remain
ing postulates. It we are successful in finding such an interpretation, then the 
concerned postulate cannot be a logical consequence of the other postulates, 
for if it were a logical consequence of the other postulates, then the interpreta
tion that converts all the other postulates into true propositions would also 
have to convert it into a true proposition. A test, along these lines, of the 
independence of an entire set of postulates can apparently be a lengthy busi
ness, for if there are n postulates in the set, n separate tests (one for each 
postulate) will have to be formulated. It was the matter of independence that 
was so important in connection with the non-Euclidean geometry.

A given body of material may be deducible from more than one postulate 
set. All that is required of two postulate sets P (1) and P {2\  in order that they lead 
to the same development, is that the primitive terms in each be definable by 
means of the primitive terms of the other, and the postulates of each be deduci-
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ble from the postulates of the other. Two such postulate sets are said to be 
equivalent. The notion of equivalent postulate sets arose in trying to find substi
tutes for Euclid’s parallel postulate.

There are other properties of postulate sets studied in axiomatics besides 
those of consistency, independence, and equivalence. The subject is closely 
connected with symbolic logic and with the philosophy of mathematics. There 
have been, and are at present, many contributors to this field. Prominent among 
such contributors are Hilbert, Peano, Pieri, Veblen, Huntington, Russell, 
Whitehead, Godel, and many others.

15-3 The Evolution of Some Basic Concepts
Following the development of the theory of sets by Georg Cantor toward the 
end of the nineteenth century, interest in that theory developed rapidly until 
today virtually every field of mathematics has felt its impact. Notions of space 
and the geometry of a space, for example, have been completely revolutionized 
by the theory of sets. Also, the basic concepts in analysis, such as those of 
limit, function, continuity, derivative, and integral, are now most aptly de
scribed in terms of set-theory ideas. Most important, however, has been the 
opportunity for new mathematical developments undreamed of fifty years ago. 
Thus, in companionship with the new appreciation of postulational procedures 
in mathematics, abstract spaces have been born, general theories of dimension 
and measure have been created, and the branch of mathematics called topology 
has undergone a spectacular growth. In short, under the influence of set theory, 
a considerable unification of traditional mathematics has occurred, and new 
mathematics has been created at an explosive rate.

To illustrate the historical evolution of basic mathematical concepts, let us 
first consider notions of space and the geometry of a space. These concepts 
have undergone marked changes since the days of the ancient Greeks. For the 
Greeks there was only one space and one geometry; these were absolute con
cepts. The space was not thought of as a collection of points, but rather as a 
realm, or locus, in which objects could be freely moved about and compared 
with one another. From this point of view, the basic relation in geometry was 
that of congruence or superposability.

With the advent of analytic geometry in the seventeenth century, space 
came to be regarded as a collection of points, and with the creation of the 
classical non-Euclidean geometries in the nineteenth century, mathematicians 
accepted the situation that there is more than one geometry. But space was still 
regarded as a locus in which figures can be compared with one another. The 
central idea became that of a group of congruent transformations of space onto 
itself, and a geometry came to be regarded as the study of those properties of 
configurations of points that remain unchanged when the enclosing space is 
subjected to these transformations. We have seen in Section 14-8 how this 
point of view was expanded by Felix Klein in his Erlanger Programm of 1872. 
In the Erlanger Programm , a geometry was defined as the invariant theory of a
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transformation group. This concept synthesized and generalized all earlier con
cepts of geometry and supplied a singularly neat classification of a large number 
of important geometries.

At the end of the nineteenth century, with the development of the idea of a 
branch of mathematics as an abstract body of theorems deduced from a set of 
postulates, each geometry became, from this point of view, a particular branch 
of mathematics. Postulate sets for a large variety of geometries were studied, 
but the Erlanger Programm was in no way upset, for a geometry could be 
regarded as a branch of mathematics that is the invariant theory of a transfor
mation group.

In 1906, however, Maurice Frechet (1878-1973) inaugurated the study of 
abstract spaces (see Problem Study 15.15), and very general geometries came 
into being that no longer necessarily fit into the neat Kleinian classification. A 
space became merely a set of objects, usually called points, together with a set 
of relations in which these points are involved, and a geometry became simply 
the theory of such a space. The set of relations to which the points are sub
jected is called the structure of the space, and this structure may or may not be 
explainable in terms of the invariant theory of a transformation group. Thus, 
through set theory, geometry received a further generalization. Although ab
stract spaces were first formally introduced in 1906, the idea of a geometry as 
the study of a set of points with some superimposed structure was really al
ready contained in remarks made by Riemann in his great lecture of 1854. It is 
interesting that some of these new geometries have found valuable application 
in the Einstein theory of relativity, and in other developments of modern 
physics.

The concept of function, like the notions of space and geometry, has 
undergone a marked evolution, and a student of mathematics encounters vari
ous refinements of this evolution as his studies progress from the elementary 
courses of high school into the more advanced and sophisticated courses of the 
college postgraduate level.

The history of the term function furnishes another interesting example of 
the tendency of mathematicians to generalize and extend their concepts. The 
word function, in its Latin equivalent, seems to have been introduced by Leib
niz in 1694, at first as a term to denote any quantity connected with a curve, 
such as the coordinates of a point on the curve, the slope of the curve, the 
radius of curvature of the curve, and so on. Johann Bernoulli, by 1718, had 
come to regard a function as any expression made up of a variable and some 
constants, and Euler, somewhat later, regarded a function as any equation or 
formula involving variables and constants. This latter idea is the notion of a 
function formed by most students of elementary mathematics courses. The 
Euler concept remained unchanged until Joseph Fourier (1768-1830) was led, 
in his investigations of heat flow, to consider so-called trigonometric series. 
These series involve a more general type of relationship between variables than 
had previously been studied, and, in an attempt to furnish a definition of func
tion broad enough to encompass such relationships, Lejeune Dirichlet (1805- 
1859) arrived at the following formulation: A variable is a symbol that repre
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sents any one of a set of numbers; if two variables x and y are so related that 
whenever a value is assigned to x there is automatically assigned, by some rule 
or correspondence, a value to y, then we say y is a (single-valued) function of jc. 
The variable x, to which values are assigned at will, is called the independent 
variable, and the variable y, whose values depend upon those of x, is called the 
dependent variable. The permissible values that jc may assume constitute the 
domain of definition of the function, and the values taken on by y constitute the 
range of values of the function.

The student of mathematics used to meet the Dirichlet definition of func
tion in his introductory course in calculus. The definition is a very broad one 
and does not imply anything regarding the possibility of expressing the relation
ship between x and y by some kind of analytic expression; it stresses the basic 
idea of a relationship between two sets of numbers.

Set theory has extended the concept of function to embrace relationships 
between any two sets of elements, be the elements numbers or anything else. 
Thus, in set theory, a function / i s  defined to be any set of ordered pairs of 
elements such that if (a t ,b i) E / ,  (a2,b2) E / ,  and a\ = a2, then b\ = b2. The set 
A of all first elements of the ordered pairs is called the domain (of definition) of 
the function, and the set B of all second elements of the ordered pairs is called 
the range (of values) of the function. A functional relationship is thus nothing 
but a special kind of subset of the Cartesian product set A x B. A one-to-one 
correspondence is, in its turn, a special kind of function, namely, a function/ 
such that if (a\ ,b\) E /, (a2,b2) E / ,  and b\ = b2, then a\ = a2. If, for a functional 
relationship/, (a,b) E / ,  we write b = f(a).

The notion of function pervades much of mathematics, and since the early 
part of the present century, various influential mathematicians have advocated 
the employment of this concept as the unifying and central principle in the 
organization of elementary mathematics courses. The concept seems to form a 
natural and effective guide for the selection and development of textual mate
rial. There is no doubt of the value of a mathematics student’s early acquain
tance with the function concept.

15-4 Transfinite Numbers
The modern mathematical theory of sets is one of the most remarkable crea
tions of the human mind. Because of the unusual boldness of some of the ideas 
found in its study, and because of some of the singular methods of proof to 
which it has given rise, the theory of sets is indescribably fascinating. Above 
this, the theory has assumed tremendous importance for almost the whole of 
mathematics. It has enormously enriched, clarified, extended, and generalized 
many domains of mathematics, and its role in the study of the foundations of 
mathematics is very basic. It also forms one of the connecting links between 
mathematics on the one hand and philosophy and logic on the other.

Two sets are said to be equivalent if and only if they can be placed in one- 
to-one correspondence. Two sets that are equivalent are said to have the same
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cardinal number. The cardinal numbers of finite sets may be identified with the 
natural numbers. The cardinal numbers of infinite sets are known as transfinite 
numbers, and their theory was first developed by Georg Cantor in a remarkable 
series of articles beginning in 1874, and published, for the most part, in the 
German mathematics journals Mathematische Annalen and Journal fur Mathe- 
matik. Prior to Cantor’s study mathematicians accepted only one infinity, de
noted by some symbol like o°, and this symbol was employed indiscriminately 
to indicate the “number” of elements in such sets as the set of all natural 
numbers and the set of all real numbers. With Cantor’s work, a whole new 
outlook was introduced, and a scale and arithmetic of infinities was achieved.

The basic principle that equivalent sets are to bear the same cardinal 
number presents us with many interesting and intriguing situations when the 
sets under consideration are infinite sets. Galileo Galilei observed as early as 
the latter part of the sixteenth century that, by the correspondence n <-> 2n, the 
set of all positive integers can be placed in one-to-one correspondence with the 
set of all even positive integers. Hence, the same cardinal number should be 
assigned to each of these sets, and, from this point of view, we must say that 
there are as many even positive integers as there are positive integers in all. It is 
observed at once that the Euclidean postulate that states that the whole is 
greater than a part cannot be tolerated when cardinal numbers of infinite sets 
are under consideration. In fact, Dedekind, in about 1888, actually defined an 
infinite set to be one that is equivalent to some proper subset of itself.

We shall designate the cardinal number of the set of all natural numbers by 
d and describe any set having this cardinal number as being denumerable.3 It 
follows that a set S is denumerable if and only if its elements can be written as 
an unending sequence {s\, S2 , s ,̂ . . .}. Since it is easily shown that any infinite 
set contains a denumerable subset, it follows that d is the “ smallest” transfinite 
number.

Cantor, in one of his earliest papers on set theory, proved the denumerabil
ity of two important sets that scarcely seem at first glance to possess this 
property.

The first set is the set of all rational numbers. This set has the important 
property of being dense. By this is meant that between any two distinct rational 
numbers there exists another rational number—in fact, infinitely many other 
rational numbers. For example, between 0 and 1 lie the rational numbers

1/2, 2/3, 3/4, 4/5, 5/6, . . . , nl(n + 1), . . . ; 

between 0 and 1/2 lie the rational numbers

1/3, 2/5, 3/7, 4/9, 5/11, . . .  , n/(2n + 1), . . . ;

3 Cantor designated the cardinal number by the Hebrew letter aleph with the subscript zero, 
that is, by K0.
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between 0 and 1/4 lie the rational numbers

1/5, 2/9, 3/13, 4/17, 5/21, . . . , n/(4n + 1), . . . ;

and so on. Because of this property, one might well expect the transfinite 
number of the set of all rational numbers to be greater than d 4 Cantor showed 
that this is not the case, and that, on the contrary, the set of all rational 
numbers is denumerable. His proof is interesting and runs as follows.

THEOREM 1: The set o f all rational numbers is denumerable.
Consider the array

1 —  2 3 —  4
/ / /

1/2 2/2 3/2 4/2
1 / /

1/3 2/3
/

3/3 4/3

1/4
1

2/4 3/4 4/4

in which the first row contains, in order of magnitude, all the natural numbers 
(that is, all positive fractions with denominator 1), the second row contains, in 
order of magnitude, all the positive fractions with denominator 2, the third row 
contains, in order of magnitude, all the positive fractions with denominator 3, 
etc. Obviously, every positive rational number appears in this array, and if we 
list the numbers in the order of succession indicated by the arrows, omitting 
numbers that have already appeared, we obtain an unending sequence

1, 2, 1/2, 1/3, 3, 4, 3/2, 2/3, 1/4, . . .

in which each positive rational number appears once and only once. Denote 
this sequence by {rx, r2, r3, . . .}. Then the sequence {0, - r x, rx, -r2, r2, . . .} 
contains the set of all rational numbers, and the denumerability of this set is 
established.

The second set considered by Cantor is a seemingly much more extensive 
set of numbers than the set of rational numbers. We first make the following 
definition.

DEFINITION 1: A complex number is said to be algebraic if it is a root of 
some polynomial

f(x) = aoXn + axxn 1 + • • • 4- an- Xx + an,

4 The cardinal number of a set A is said to be greater than the cardinal number of a set B if and 
only if B is equivalent to a proper subset of A, but A is equivalent to no proper subset of B.
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where a0 + 0 and all the ak s are integers. A complex number that is not 
algebraic is said to be transcendental.

It is quite clear that the algebraic numbers include, among others, all 
rational numbers and all roots of such numbers. Accordingly, the following 
theorem is somewhat astonishing:

THEOREM 2: The set o f all algebraic numbers is denumerable.
L et / ( jc)  be a polynomial of the kind described in Definition 1, where, 

without loss of generality, we may suppose a0 >  0. Consider the so-called 
height of the polynomial, defined by

h = n + ao + \a\\ + I02I + * * * + |0n-i| + |0n|.

Obviously h is an integer ^ 1, and there are plainly only a finite number of 
polynomials of a given height h, and therefore only a finite number of algebraic 
numbers arising from polynomials of a given height h. We may now list (theo
retically speaking) all the algebraic numbers, refraining from repeating any 
number already listed, by first taking those arising from polynomials of height 
1, then those arising from polynomials of height 2, then those arising from 
polynomials of height 3, and so on. We thus see that the set of all algebraic 
numbers can be listed in an unending sequence, whence the set is denumerable.

In view of the preceding two theorems, there remains the possibility that 
all infinite sets are denumerable. That this is not so was shown by Cantor in a 
striking proof of the following significant theorem:

THEOREM 3: The set o f all real numbers in the interval 0 <  x <  1 is 
nondenumerable.

The proof is indirect and employs an unusual method known as the Cantor 
diagonal process. Let us, then, assume the set to be denumerable. Then we may 
list the numbers of the set in a sequence {/?i, Pi, Pi, • • •}• Each of these 
numbers p t can be written uniquely as a nonterminating decimal fraction; in this 
connection, it is useful to recall that every rational number may be written as a 
“repeating decimal” ; a number such as 0.3, for example, can be written as
0.29999. . . . We can then display the sequence in the following array,

P \  =  0 . t f n t f i 2 t f l 3  • • * 

P l  =  0 . 021^ 22^23 * * * 

P3 =  0 .031032033  ' ’ '

where each symbol represents some one of the digits 0, 1,2, 3, 4, 5, 6, 7, 8, 9. 
Now, in spite of any care that has been taken to list all the real numbers 
between 0 and 1, there is a number that could not have been listed. Such a 
number is Q.bibib^ . . . , where, say, bk = 1 if akk f  1 and bk = 3 if akk = 7, for 
k = 1,2,3,  n, . . .  . This number clearly lies between 0 and 1, and it must
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differ from each number /?,, for it differs from p\ in at least the first decimal 
place, from p2 in at least the second decimal place, from p3 in at least the third 
decimal place, and so on. Thus, the original assumption that all the real num
bers between 0 and 1 can be listed in a sequence is untenable, and the set must 
therefore be nondenumerable.

Cantor deduced the following remarkable consequence of Theorems 2 
and 3:

THEOREM 4: Transcendental numbers exist.
Since, by Theorem 3, the set of all real numbers between 0 and 1 is 

nondenumerable, it is easily demonstrated that the set of all complex numbers 
is also nondenumerable. By Theorem 2, however, the set of all algebraic num
bers is denumerable. It follows that there must exist complex numbers that are 
not algebraic, and the theorem is established.

Not all mathematicians are willing to accept the above proof of Theorem 4. 
The acceptability or nonacceptability of the proof hinges on what one believes 
mathematical existence to be, and there are some mathematicians who feel that 
mathematical existence is established only when one of the objects whose 
existence is in question is actually constructed and exhibited. Now the above 
proof does not establish the existence of transcendental numbers by producing 
a specific example of such a number. There are many existence proofs in 
mathematics of this nonconstructive sort, where existence is presumably estab
lished by merely showing that the assumption of nonexistence leads to a con
tradiction. Most proofs of the Fundamental Theorem of Algebra, for example, 
are formulated along such lines.

Because of the dissatisfaction of some mathematicians with nonconstruc
tive existence proofs, a good deal of effort has been made to replace such 
proofs by those that actually yield one of the objects concerned.

The proof of the existence of transcendental numbers and the proof that 
some particular number is transcendental are two quite different matters, the 
latter often being a very difficult problem. It was Hermite who, in 1873, proved 
that the number e , the base for natural logarithms, is transcendental, and Lin
demann, in 1882, who first established the transcendentality of the number tt. 
Unfortunately, it is inconvenient for us to prove these interesting facts here. 
The difficulty of identifying a particular given number as algebraic or transcen
dental is illustrated by the fact that it is not yet known whether the number ir” is 
algebraic or transcendental. A recent gain along these lines was the establish
ment of the transcendental character of any number of the form ab, where a is 
an algebraic number different from 0 or 1, and b is any irrational algebraic 
number. This result, achieved in 1934 by Alexsander Osipovich Gelfond (1906- 
1968), and now known as Gelfond’s theorem, was a culmination of an almost 
thirty-year effort to prove that the so-called Hilbert number, 2 ^ , is transcen
dental.

Since the set of all real numbers in the interval 0 <  x <  1 is nondenumera
ble, the transfinite number of this set is greater than d. We shall denote it by c,
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and shall refer to it as the cardinal number of the continuum. It is generally 
believed that c is the next transfinite number after d—that is, that there is no set 
having a cardinal number greater than d but less than c. This belief is known as 
the continuum hypothesis, but, in spite of strenuous efforts, no proof has been 
found to establish it. Many consequences of the hypothesis have been deduced. 
In about 1940, the Austrian logician Kurt Godel (1906-1978) succeeded in 
showing that the continuum hypothesis is consistent with a famous postulate 
set of set theory provided these postulates themselves are consistent. Godel 
conjectured that the denial of the continuum hypothesis is also consistent with 
the postulates of set theory. This conjecture was established, in 1963, by Paul J. 
Cohen (born 1934) of Stanford University, thus proving that the continuum 
hypothesis is independent of the postulates of set theory, and hence can never 
be deduced from those postulates. The situation is analogous to that of the 
parallel postulate in Euclidean geometry.

It has been shown that the set of all single-valued functions/ ( jc)  defined 
over the interval 0 <  x <  1 has a cardinal number greater than c, but whether 
this cardinal number is the next after c is not known. Cantor’s theory provides 
for an infinite sequence of transfinite numbers, and there are demonstrations 
that purport to show that an unlimited number of cardinal numbers greater than 
that of the continuum actually exist.

15-5 Topology
Topology started as a branch of geometry, but during the second quarter of the 
twentieth century it underwent such generalization and became involved with 
so many other branches of mathematics that it is now perhaps more properly 
considered, along with geometry, algebra, and analysis, as a fundamental divi
sion of mathematics. Today, topology may be roughly defined as the mathemat
ical study of continuity. In this section we shall restrict ourselves to some of 
those aspects of the subject that reflect its geometric origin. From this point of 
view, topology may be regarded as the study of those properties of geometric 
figures that remain invariant under so-called topological transformations; that 
is, under single-valued continuous mappings possessing single-valued continu
ous inverses. By a geometric figure, we mean a point set in three-dimensional 
(or higher-dimensional) space; a single-valued continuous mapping is one that, 
given a Cartesian coordinate system in the space, can be represented by single
valued continuous functions of the coordinates.

Since the set of all topological transformations of a geometric figure consti
tute a transformation group, topology can, from our viewpoint, be considered 
as a Kleinian geometry, and hence codified within Klein’s Erlanger Programm, 
Those properties of a geometric figure that remain invariant under topological 
transformations of the figure are called topological properties of the figure, and 
two figures that can be topologically transformed into one another are said to be 
homeomorphic, or topologically equivalent.

The mapping functions of a topological transformation need not be defined 
over the whole of the space in which the geometric figure is imbedded, but may
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be defined over just the point set making up the geometric figure. We can, then, 
regard the intrinsic topological properties of the figure as those that remain 
invariant under all topological transformations of the figure, and the extrinsic 
topological properties of the figure as those that remain invariant only under 
topological transformations of the whole space that contains the figure. The 
intrinsic topological properties of the figure are those that are independent of 
the imbedding space, whereas the extrinsic topological properties are those 
that depend upon the imbedding space, and we are reminded of the similar 
situation in Section 14-7 in connection with the differential geometry of sur
faces in three-space.

Topology, as a self-connected study, scarcely predates the mid-nineteenth 
century, but one can find some earlier isolated topological investigations. To
ward the end of the seventeenth century, Leibniz used the term geometria situs 
to describe a sort of qualitative mathematics that today would be thought of as 
topology, and he predicted important studies in this field, but his prediction was 
slow in materializing. An early discovered topological property of a simple 
closed polyhedral surface is the relation v — e + f =  2, where v, e, /denote the 
number of vertices, edges, and faces, respectively, of the polyhedral surface. 
This relation was adumbrated by Descartes in 1640, and the first proof of the 
formula was given by Euler in 1752. Euler had earlier, in 1736, considered some 
topology of linear graphs in his treatment of the Konigsberg bridge problem 
(see Problem Study 12.8). Gauss made several contributions to topology. Of the 
several proofs that he furnished of the fundamental theorem of algebra, two are 
explicitly topological. His first proof of this theorem employs topological tech
niques and was given in his doctoral dissertation in 1799 when he was twenty- 
two years old. Later, Gauss briefly considered the theory of knots, which today 
is an important subject in topology. About 1850, Francis Guthrie conjectured 
the four-color problem,5 which was later taken up by Augustus De Morgan, 
Arthur Cayley, and others. At this time, the subject of topology was known as 
analysis situs. The term topology was introduced by J. B. Listing (1808-1882), 
one of Gauss’ students, in 1847, in the title, Vorstudien zur Topologie, of the 
first book devoted to the subject. The German word Topologie was later angli
cized to topology by Professor Solomon Lefschetz (1884-1972) of Princeton 
University. G. R. Kirchhoff (1824-1887), another of Gauss’ students, in 1847 
employed the topology of linear graphs in his study of electrical networks. Of 
all of Gauss’ students, however, the one who contributed by far the most to 
topology was Bernhard Riemann, who, in his doctoral thesis of 1851, intro
duced topological concepts into the study of complex-function theory. The 
chief stimulus to topology furnished by Riemann was his notion of Riemann 
surface, a topological device for rendering multiple-valued complex functions 
into single-valued functions. Also of importance in topology is Riemann’s pro
bationary lecture of 1854 concerning the hypotheses that lie at the foundations 
of geometry. This lecture furnished the breakthrough to higher dimensions, and

5 That any map on a plane or a sphere can be colored with at most four colors.
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the term and concept of manifold were introduced here. About 1865, A. F. 
Mobius (1790-1868) wrote a paper in which a polyhedral surface was viewed 
simply as a collection of joined polygons. This introduced the concept of two 
complexes into topology. In his systematic development of two complexes, 
Mobius was led to the one-sided and one-edged surface now referred to as a 
Mobius strip. In 1873, J. C. Maxwell (1831-1879) used the topological theory of 
connectivity in his study of electromagnetic fields. Others, such as H. 
Helmholtz (1821-1894) and Lord Kelvin (William Thomson, 1824-1907), can be 
added to the list of physicists who applied topological ideas with success. Henri 
Poincare (1854-1912) ranks high among the early contributors to topology. A 
paper of his, written in 1895 and entitled Analysis situs, is the first significant 
paper devoted wholly to topology. It was in that paper that the important 
homology theory of n dimensions was introduced. It was also Poincare who 
introduced the Betti groups into topology. With Poincare’s work, the subject of 
topology was well under way, and an increasing number of mathematicians 
entered the field. Especially important names in topology since Poincare are O. 
Veblen (1880-1960), J. W. Alexander (1888-1971), S. Lefschetz (1884-1972), 
L. E. J. Brouwer (1881-1966), and M. Frechet (1878-1973).

The notion of a geometric figure as made up of a finite set of joined funda
mental pieces, emphasized by Mobius, Riemann, and Poincare, gradually gave 
way to the Cantorian concept of an arbitrary set of points, and it then was 
recognized that any collection of things—be it a set of numbers, algebraic 
entities, functions, or nonmathematical objects—can constitute a topological 
space in some sense or other. This latter, and very general, viewpoint of topol
ogy has become known as set topology, whereas studies more intimately con
nected with the earlier viewpoint have become known as combinatorial, or 
algebraic topology. The classical formulation of set topology was given by Felix 
Hausdorff (1868-1942) in his Grundzuge der Mengenlehre of 1914. Here we 
find a systematic exposition of the subject, in which the nature of the funda
mental elements is of no consequence. In the latter part of the work we find a 
development of the topological spaces today known as Hausdorff spaces (see 
Problem Study 15.27).

15-6 Mathematical Logic
A mathematical theory results from the interplay of two factors, a set of postu
lates and a logic. The set of postulates constitutes the basis from which the 
theory starts, and a logic constitutes the rules by which such a basis may be 
expanded into a body of theorems. Clearly both factors are important, and 
accordingly each factor has been carefully examined and studied. The study of 
the first factor forms the subject of axiomatics, which we have already consid
ered in Section 15-2; in this section we look into the second of the two factors.

Although the ancient Greeks considerably developed formal logic, and 
Aristotle (384-322 B.C.) systematized the material, this early work was all 
carried out with the use of ordinary language. Mathematicians of today have
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found it a well nigh hopeless task to discuss modern considerations of logic in a 
similar way. A symbolic language has become necessary in order to achieve the 
required exact scientific treatment of the subject. Because of the presence of 
such symbolism, the resulting treatment is known as symbolic, or mathemati
cal, logic. In symbolic logic, the various relations among propositions, classes, 
and so forth, are represented by formulas whose meanings are free from the 
ambiguities so common to ordinary language. It becomes possible to develop 
the subject from a set of initial formulas in accordance with certain clearly 
prescribed rules of formal transformation, much like the development of a 
piece of common algebra. Also, and again as in the development of a piece of 
common algebra, the advantages of the symbolic language over ordinary lan
guage, insofar as compactness and ease of comprehension are concerned, are 
very great.

Leibniz is regarded as the first to consider seriously the desirability of a 
symbolic logic. One of his earliest works was an essay, De arte combinatoria, 
published in 1666, in which he indicated his belief in the possibility of a univer
sal scientific language, expressed in an economical and workable symbolism for 
guidance in the reasoning process. Returning to these ideas between the years 
1679 and 1690, Leibniz made considerable headway toward the creation of a 
symbolic logic, and he formulated a number of the concepts that are so impor
tant in modern studies.

An important renewal of interest in symbolic logic took place in 1847 when 
George Boole (1815-1864) published his little pamphlet entitled The Mathemat
ical Analysis of Logic, Being an Essay towards a Calculus of Deductive Rea
soning. Another paper followed in 1848, and finally, in 1854, Boole gave a 
notable exposition of his ideas in the work, An Investigation into the Laws of 
Thought, on Which Are Founded the Mathematical Theories of Logic and 
Probability.

Augustus De Morgan (1806-1871) was a contemporary of Boole, and his 
treatise on Formal Logic; or, the Calculus of Inference, Necessary and Proba
ble, published in 1847, in some ways went considerably beyond Boole. Later 
De Morgan also made extended studies of the hitherto neglected logic of rela
tions.

In the United States, outstanding work in the field was contributed by 
Charles Sanders Peirce (1839-1914), son of the distinguished Harvard mathe
matician, Benjamin Peirce (1809-1880). Peirce rediscovered some of the princi
ples enunciated by his predecessors. It is unfortunate that his work appeared 
somewhat out of the stream of normal development; only in comparatively 
recent times has the merit of much of Peirce’s thought been properly appre
ciated.

The notions of Boole were given a remarkable completeness in the massive 
treatise by Ernst Schroder (1841-1902) entitled Vorlesungen uber die Algebra 
der Logic, published during the period between 1890 and 1895. In fact, modern 
logicians are inclined to characterize symbolic logic in the Boolean tradition by 
the term Boole-Schroder algebra. Considerable work is still being done in Bool-
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ean algebra, and many papers upon the subject are to be found in present-day 
research journals.

A still more modern approach to symbolic logic originated with the work of 
the German logician Gottlob Frege (1848-1925) during the period between 1879 
and 1903, and with studies of Giuseppe Peano (1858-1932). Peano’s work was 
motivated by a desire to express all mathematics in terms of a logical calculus, 
and Frege’s work stemmed from the need of a sounder foundation for mathe
matics. Frege’s Begriffsschrift appeared in 1879, and his historically important 
Grundgesetze der Arithmetik in the period between 1893 and 1903; the Formu- 
laire de mathematiques of Peano and his co-workers began its appearance in 
1894. The work started by Frege and Peano led directly to the very influential 
and monumental Principia mathematica (1910-1913) of Alfred North White- 
head (1861-1947) and Bertand Russell (1872-1970). The basic idea of this work 
is the identification of much of mathematics with logic by the deduction of the 
natural number system, and hence of the great bulk of existing mathematics, 
from a set of premises or postulates for logic itself. In the period between 1934 
and 1939 appeared the comprehensive Grundlagen der Mathematik of David 
Hilbert (1862-1943) and Paul Bernays (1888-1977). This work, based upon a 
series of papers and university lectures given by Hilbert, attempts to build up 
mathematics by the use of symbolic logic in a new way that renders possible the 
establishment of the consistency of mathematics.

At the present time, elaborate studies in the field of symbolic logic are 
being pursued by many mathematicians, chiefly as a result of the impetus given 
to the work by the publication of the Principia mathematica. A periodical, 
known as the Journal of Symbolic Logic, was established in 1935 to publicize 
the writings of this group.

An interesting analogy (if it is not pushed too far) exists between the 
parallelogram law of forces and the axiomatic method. By the parallelogram 
law, two component forces are combined into a single resultant force. Different 
resultant forces are obtained by varying one or both of the component forces, 
although it is possible to obtain the same resultant force by taking different 
pairs of initial component forces. Now, just as the resultant force is determined 
by the two initial component forces, so (see Figure 122) is a mathematical 
theory determined by a set of postulates and a logic; that is, the set of state
ments constituting a mathematical theory results from the interplay of an initial

FIGURE 122
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set of statements, called the postulates, and another initial set of statements, 
called the logic or the rules of procedure. For some time, mathematicians have 
been aware of the variability of the first set of initial statements (namely, the 
postulates) but until recent times the second set of initial statements (namely, 
the logic) was universally thought to be fixed, absolute, and immutable. Indeed, 
this is still the prevailing view among most people, for it seems quite inconceiv
able, except to the very few students of the subject, that there can be any 
alternative to the laws of logic stated by Aristotle in the fourth century B.C. 
The general feeling is that these laws are in some way attributes of the structure 
of the universe and that they are inherent in the very nature of human reason
ing. As with many other absolutes of the past, this one, too, has toppled, but 
only as late as 1921. The modern viewpoint can hardly be more neatly put than 
in the following words of the outstanding American logician, Alonzo Church.

We do not attach any character of uniqueness or absolute truth to any 
particular system of logic. The entities of formal logic are abstractions, 
invented because of their use in describing and systematizing facts of 
experience or observation, and their properties, determined in rough 
outline by this intended use, depend for their exact character on the 
arbitrary choice of the inventor. We may draw the analogy of a three 
dimensional geometry used in describing physical space, a case for 
which we believe, the presence of such a situation is more commonly 
recognized. The entities of the geometry are clearly of abstract charac
ter, numbering as they do planes without thickness and points which 
cover no area in the plane, point sets containing an infinitude of points, 
lines of infinite length, and other things which cannot be reproduced in 
any physical experiment. Nevertheless the geometry can be applied to 
physical space in such a way that an extremely useful correspondence 
is set up between the theorems of the geometry and observable facts 
about material bodies in space. In building the geometry, the proposed 
application to physical space serves as a rough guide in determining 
what properties the abstract entities shall have, but does not assign 
these properties completely. Consequently there may be, and actually 
are, more than one geometry whose use is feasible in describing physi
cal space. Similarly, there exist, undoubtedly, more than one formal 
system whose use as a logic is feasible, and of these systems one may 
be more pleasing or more convenient than another, but it cannot be 
said that one is right and the other wrong.

It will be recalled that new geometries first came about through the denial 
of Euclid’s parallel postulate and that new algebras first came about through the 
denial of the commutative law of multiplication. In similar fashion, the new so- 
called “many-valued logics’’ first came about by denying Aristotle’s law of the 
excluded middle. According to this law, the disjunctive proposition “p or 
not-p” is a tautology, and a proposition p in Aristolelian logic is always either 
true or false. Because a proposition may possess any of the two possible truth
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values—namely, truth or falsity—this logic is known as a two-valued logic. In 
1921, in a short two-page paper, J. Lukasiewicz considered a three-valued 
logic, or a logic in which a proposition p may possess any one of three possible 
truth values. Very shortly after, and independently of Lukasiewicz’ work, 
E. L. Post considered m-valued logics, in which a proposition p may possess 
any one of m possible truth values, where m is any integer greater than 1. If m 
exceeds 2, the logic is said to be many-valued. Another study of m-valued 
logics was given in 1930 by Lukasiewicz and A. Tarski. Then, in 1932, the m- 
valued truth systems were extended by H. Reichenbach to an infinite-valued 
logic, in which a proposition p may assume any one of infinitely many possible 
values.6

Not all new logics are of the type just discussed. Thus, A. Heyting has 
developed a symbolic two-valued logic to serve the intuitionist school of math
ematicians; it differs from Aristotelian logic in that it does not universally 
accept the law of the excluded middle or the law of double negation. Like the 
many-valued logics, then, this special-purpose logic exhibits differences from 
Aristotelian laws. Such logics are known as non-Aristotelian logics.

Like the non-Euclidean geometries, the non-Aristotelian logics have 
proved not to be barren of application. Reichenbach actually devised his infi
nite-valued logic to serve as a basis for the mathematical theory of probability. 
In 1933, F. Zwicky observed that many-valued logics can be applied to the 
quantum theory of modern physics. Many of the details of such an application 
have been supplied by Garrett Birkhoff, J. von Neumann, and H. Reichenbach. 
The part that non-Aristotelian logics may play in the future development of 
mathematics is uncertain but intriguing to contemplate; the application of Hey
ting’s symbolic logic to intuitionistic mathematics indicates that the new logics 
may be mathematically valuable. In the next section, we point out a possible 
use of these logics in the resolution of a modern crisis in the foundations of 
mathematics.

From the above discussion there emerges a remarkable principle of discov
ery and advancement— namely, the constructive doubting of a traditional be
lief. When Einstein was asked how he came to invent the theory of relativity he 
replied, “By challenging an axiom.’’ Lobachevsky and Bolyai challenged Eu
clid’s axiom of parallels; Hamilton and Cayley challenged the axiom that multi
plication is commutative; Lukasiewicz and Post challenged Aristotle’s axiom 
of the excluded middle. Similarly, in the field of science, Copernicus challenged 
the axiom that the earth is the center of the solar system; Galileo challenged the 
axiom that the heavier body falls the faster; Einstein challenged the axiom that 
of two distinct instants one must precede the other. This constructive challeng

e s  a matter of historical interest, in 1936 K. Michalski discovered that the three-valued logics 
had actually been anticipated as early as the fourteenth century by the medieval schoolman, 
William of Occam. The possibility of a three-valued logic had also been considered by the philoso
pher Hegel and, in 1896, by Hugh MacColl. These speculations, however, had little effect on 
subsequent thought and so cannot be considered as decisive contributions.
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ing of axioms has become one of the commoner ways of making advances in 
mathematics, and it undoubtedly lies at the heart of Georg Cantor’s famous 
aphorism: “The essence of mathematics lies in its freedom.”

15-7 Antinomies of Set Theory
A study of the history of mathematics from Greek antiquity to the present 
reveals that the foundations of mathematics have undergone three profoundly 
disturbing crises wherein, in each instance, some sizable portion of mathemat
ics that had been thought established became suspect and in urgent need of 
revision.

The first crisis in the foundations of mathematics arose in the fifth century 
B.C.; indeed, such a crisis could not have occurred much earlier, for, as we 
have seen, mathematics as a deductive study originated not earlier than the 
sixth century B.C., perhaps with Thales, Pythagoras, and their pupils. The 
crisis was precipitated by the unexpected discovery that not all geometrical 
magnitudes of the same kind are commensurable with one another; it was 
shown, for example, that the diagonal and side of a square contain no common 
unit of measure. Since the Pythagorean development of magnitudes was built 
upon the firm intuitive belief that all like magnitudes are commensurable, the 
discovery that like magnitudes may be incommensurable proved to be highly 
devastating. For instance, the entire Pythagorean theory of proportion with all 
of its consequences had to be scrapped as unsound. The resolution of this first 
crisis in the foundations of mathematics was neither easily nor quickly realized. 
It was finally achieved about 370 B.C. by the brilliant Eudoxus, whose revised 
theory of magnitude and proportion is one of the great mathematical master
pieces of all time. Eudoxus’ remarkable treatment of incommensurables may 
be found in the fifth book of Euclid’s Elements; it coincides essentially with the 
modern exposition of irrational numbers that was given by Richard Dedekind in 
1872. We considered this first crisis in the foundations of mathematics in Sec
tion 3-5, and its resolution by Eudoxus in Section 5-5. It is quite possible that 
this crisis is largely responsible for the subsequent formulation and adoption of 
the axiomatic method in mathematics.

The second crisis in the foundations of mathematics followed the invention 
of the calculus by Newton and Leibniz in the late seventeenth century.7 We 
have seen how the successors of these men, intoxicated by the power and 
applicability of the new tool, failed to consider sufficiently the solidity of the 
base upon which the subject was founded, so that instead of having demonstra
tions justify results, results were used to justify demonstrations. With the pas
sage of time, contradictions and paradoxes arose in increasing numbers, and a 
serious crisis in the foundations of mathematics became evident. It was real
ized more and more that the edifice of analysis was being built upon sand, and

7 Forewarnings of this crisis can be seen in the renowned paradoxes of Zeno of about 450 B.C.
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finally, in the early nineteenth century, Cauchy took the first steps toward 
resolving the crisis by replacing the hazy method of infinitesimals by the precise 
method of limits. With the subsequent so-called arithmetization of analysis by 
Weierstrass and his followers, it was felt that the second crisis in the founda
tions of mathematics had been overcome, and that the whole structure of 
mathematics had been redeemed and placed upon an unimpeachable base. The 
origin and resolution of this second crisis in the foundations of mathematics 
constituted the subject matter of Section 14-9.

The third crisis in the foundations of mathematics materialized with shock
ing suddenness in 1897, and, though now well over three-quarters of a century 
old, is still not resolved to the satisfaction of all concerned. The crisis was 
brought about by the discovery of paradoxes or antinomies in the fringe of 
Cantor’s general theory of sets. Since so much of mathematics is permeated 
with set concepts and, for that matter, can actually be made to rest upon set 
theory as a foundation, the discovery of paradoxes in set theory naturally cast 
into doubt the validity of the whole foundational structure of mathematics.

In 1897, the Italian mathematician Burali-Forti brought to light the first 
publicized paradox of set theory. As originally conceived and stated by Burali- 
Forti, the paradox involves technical terms and ideas that, in our limited treat
ment, we lack space to develop. The essence of the paradox can be given, 
however, by a nontechnical description of a very similar paradox found by 
Cantor two years later. In his theory of sets, Cantor had succeeded in proving 
that for any given transfinite number there is always a greater transfinite num
ber, so that just as there is no greatest natural number, there also is no greatest 
transfinite number. Now consider the set whose members are all possible sets. 
Surely no set can have more members than this set of all sets. But if this is the 
case, how can there be a transfinite number greater than the transfinite number 
of this set?

Whereas the Burali-Forti and Cantor paradoxes involve results of set the
ory, Bertrand Russell discovered in 1902 a paradox depending on nothing more 
than just the concept of set itself. Before describing the Russell paradox, we 
note that sets either are members of themselves or are not members of them
selves. Thus, the set of all abstract ideas is itself an abstract idea, but the set of 
all men is not a man. Again, the set of all sets is itself a set, but the set of all 
stars is not a star. Let us represent the set of all sets that are members of 
themselves by M, and the set of all sets that are not members of themselves by
N. We now ask ourselves whether set N  is or is not a member of itself. If N  is a 
member of itself, then N  is a member of M and not of N, and N  is not a member 
of itself. On the other hand, if N  is not a member of itself, then N  is a member of 
N  and not of M, and N  is a member of itself. The paradox lies in the fact that in 
either case we are led to a contradiction.

A more compact and less wordy presentation of the Russell paradox may 
be given as follows. Let X  denote any set. Then, by the definition of N,

( Z G i V ) e ( I ?  X).
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Now take X  to be N, and we have the contradiction

( i V E i V ) e ( i V f  N).

This paradox was communicated by Russell to Frege just after the latter 
had completed the last volume of his great two-volume treatise on the founda
tions of arithmetic. Frege acknowledged the communication at the end of his 
treatise by the following pathetic and remarkably restrained sentences. “A 
scientist can hardly meet with anything more undesirable than to have the 
foundation give way just as the work is finished. In this position I was put by a 
letter from Mr. Bertrand Russell as the work was nearly through the press.” 
Thus terminated the labor of a dozen or more years.

The Russell paradox has been popularized in many forms. One of the best 
known of these forms was given by Russell himself in 1919 and concerns the 
plight of the barber of a certain village who has enunciated the principle that he 
shaves all those persons and only those persons of the village who do not shave 
themselves. The paradoxical nature of this situation is realized when we try to 
answer the question, “Does the barber shave himself?” If he does shave him
self, then he shouldn’t according to his principle; if he doesn’t shave himself, 
then he should according to his principle.

Since the discovery of the above contradictions within Cantor’s theory of 
sets, additional paradoxes have been produced in abundance. These modern 
paradoxes of set theory are related to several ancient paradoxes of logic. For 
example, Eubulides, of the fourth century B.C., is credited with making the 
remark, “This statement I am now making is false.” If Eubulides’ statement is 
true, then, by what it says, the statement must be false. On the other hand, if 
Eubulides’ statement is false, then it follows that his statement must be true. 
Thus, Eubulides’ statement can be neither true nor false without entailing a 
contradiction. Still older than the Eubulides paradox may be the unauthenti
cated Epimenides paradox. Epimenides, who himself was a Cretan philosopher 
of the sixth century B.C., is claimed to have made the remark, “Cretans are 
always liars.” A simple analysis of this remark easily reveals that it, too, is self
contradictory.

The existence of paradoxes in set theory, like those described above, 
clearly indicates that something is wrong. Since their discovery, a great deal of 
literature on the subject has appeared, and numerous attempts at a solution 
have been offered.

So far as mathematics is concerned, there seems to be an easy way out. 
One has merely to reconstruct set theory on an axiomatic basis sufficiently 
restrictive to exclude the known antinomies. The first such attempt was made 
by Zermelo in 1908, and subsequent refinements have been made by Fraenkel 
(1922, 1925), Skolem (1922, 1929), von Neumann (1924, 1928), Bernays (1937- 
1948), and others. But such a procedure has been criticized as merely avoiding 
the paradoxes; certainly it does not explain them. Moreover, this procedure 
carries no guarantee that other kinds of paradoxes will not crop up in the 
future.
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There is another procedure that apparently both explains and avoids the 
known paradoxes. If examined carefully, it will be seen that each of the para
doxes considered above involves a set 5 and a member m of 5 whose definition 
depends upon S. Such a definition is said to be impredicative, and impredicative 
definitions are, in a sense, circular. Consider, for instance, Russell’s barber 
paradox. Let us designate the barber by m and the set of all members of the 
barber’s village by S. Then m is defined impredicatively as “ that member of S 
who shaves all those members and only those members of S who do not shave 
themselves.” The circular nature of this definition is evident—the definition of 
the barber involves the members of the village and the barber himself is a 
member of the village.

Poincare considered the cause of the antinomies to lie in impredicative 
definitions, and Russell expressed the same view in his Vicious Circle Princi
ple: No set S is allowed to contain members m definable only in terms of S, or 
members m involving or presupposing S. This principle amounts to a restriction 
on the concept of set. Cantor had attempted to give the concept of set a very 
general meaning by stating: By a set S we are to understand any collection into 
a whole of definite and separate objects m of our intuition or our thought; these 
objects m are called the elements o f S. The theory of sets constructed on 
Cantor’s general concept of set leads, as we have seen, to contradictions, but if 
the notion of set is restricted by the Vicious Circle Principle, the resulting 
theory avoids the known antinomies. The outlawing of impredicative defini
tions would appear, then, to be a solution to the known paradoxes of set 
theory. There is, however, one serious objection to this solution; namely, there 
are parts of mathematics that mathematicians are very reluctant to discard that 
contain impredicative definitions.

An example of an impredicative definition in mathematics is that of the 
least upper bound of a given nonempty set of real numbers—the least upper 
bound of the given set is the smallest member of the set of all upper bounds of 
the given set. There are many similar instances of impredicative definitions in 
mathematics, though many of them can be circumvented. In 1918, Hermann 
Weyl undertook to find out how much of analysis can be constructed geneti
cally from the natural number system without the use of impredicative defini
tions. Although he succeeded in obtaining a considerable part of analysis, he 
was unable to derive the important theorem that every nonempty set of real 
numbers having an upper bound has a least upper bound.

Other attempts to solve the paradoxes of set theory look for the trouble in 
logic, and it must be admitted that the discovery of the paradoxes in the general 
theory of sets has brought about a thorough investigation of the foundations of 
logic. Very intriguing is the suggestion that the way out of the difficulties of the 
paradoxes may be through the use of a three-valued logic. For example, in the 
Russell paradox given above, we saw that the statement, ‘ W is a member of 
itself,” can be neither true nor false. Here a third possibility would be helpful. 
Denoting truth quality of a proposition by 7, false quality by F, and a third 
quality, which is neither T nor F, by ? (meaning, perhaps, undecidable), the 
situation would be saved if we could simply classify the statement as ?.
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There have arisen three main philosophies, or schools of thought, concern
ing the foundations of mathematics—the so-called logistic, intuitionist, and 
formalist schools. Naturally, any modern philosophy of the foundations of 
mathematics must, somehow or other, cope with the present crisis in the foun
dations of mathematics. In the next section, we very briefly consider these 
three schools of thought and point out how each proposes to deal with the 
antinomies of general set theory.

15-8 Philosophies of Mathematics
A philosophy may be regarded as an explanation that attempts to make some 
kind of sense out of the natural disorder of a set of experiences. From this point 
of view, it is possible to have a philosophy of almost anything—a philosophy of 
art, of life, of religion, of education, of society, of history, of science, of 
mathematics, even of philosophy itself. A philosophy amounts to a process of 
refining and ordering experiences and values; it seeks relations among things 
that are normally felt to be disparate and finds important differences between 
things normally considered as the same; it is the description of a theory con
cerning the nature of something. In particular, a philosophy of mathematics 
essentially amounts to an attempted reconstruction in which the chaotic mass 
of mathematical knowledge accumulated over the ages is given a certain sense 
or order. Clearly, a philosophy is a function of time, and a particular philoso
phy may become outdated or have to be altered in the light of additional 
experiences. We are here concerned with only contemporary philosophies of 
mathematics— philosophies that take account of the recent advances in mathe
matics and of the current crisis in the subject.

There are three principal present-day philosophies of mathematics, each of 
which has attracted a sizable group of adherents and developed a large body of 
associated literature. These are referred to as the logistic school, of which 
Russell and Whitehead are the chief expositors; the intuitionist school, led by 
Brouwer; and the formalist school, developed principally by Hilbert. There are, 
of course, present-day philosophies of mathematics other than these three. 
There are some independent philosophies and some that constitute various 
mixtures of the principal three, but these other points of view have not been so 
widely cultivated, or do not comprise a reconstruction of mathematics of simi
lar extent.

LOGICISM: The logistic thesis is that mathematics is a branch of logic. 
Rather than being just a tool of mathematics, logic becomes the progenitor of 
mathematics. All mathematical concepts are to be formulated in terms of logi
cal concepts, and all theorems of mathematics are to be developed as theorems 
of logic; the distinction between mathematics and logic becomes merely one of 
practical convenience.

The notion of logic as a science containing the principles and ideas under
lying all other sciences dates back at least as far as Leibniz (1666). The actual 
reduction of mathematical concepts to logical concepts was engaged in by
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Dedekind (1888) and Frege (1884-1903), and the statement of mathematical 
theorems by means of a logical symbolism was undertaken by Peano (1889- 
1908). These men, then, are forerunners of the logistic school, which received 
its definitive expression in the m onum ^al Principia mathematica of White- 
head and Russell (1910-1913). This grehi and complex work purports to be a 
detailed reduction of the whole of mathematics to logic. Subsequent modifica
tions and refinements of the program have been supplied by Wittgenstein 
(1922), Chwistek (1924-1925), Ramsey (1926), Langford (1927), Carnap (1931), 
Quine (1940), and others.

The logistic thesis arises naturally from the effort to push back the founda
tions of mathematics to as deep a level as possible. We have seen how these 
foundations were established in the real number system and then how they 
were pushed back from the real number system to the natural number system, 
and thence into set theory. Since the theory of classes is an essential part of 
logic, the idea of reducing mathematics to logic certainly suggests itself. The 
logistic thesis is thus an attempted synthesization suggested by an important 
trend in the history of the application of the axiomatic method.

The Principia mathematica starts with “primitive ideas” and “primitive 
propositions,” corresponding to the “undefined terms” and “postulates” of a 
formal abstract development. These primitive ideas and propositions are not to 
be subjected to interpretation but are restricted to intuitive concepts of logic; 
they are to be regarded as, or at least are to be accepted as, plausible descrip
tions and hypotheses concerning the real world. In short, a concrete rather than 
an abstract point of view prevails, and consequently no attempt is made to 
prove the consistency of the primitive propositions. The aim of Principia 
mathematica is to develop mathematical concepts and theorems from these 
primitive ideas and propositions, starting with a calculus of propositions, pro
ceeding up through the theory of classes and relations to the establishment of 
the natural number system, and thence to all mathematics derivable from the 
natural number system. In this development, the natural numbers emerge with 
the unique meanings that we ordinarily assign to them and are not nonuniquely 
defined as any things that satisfy a certain set of abstract postulates.

To avoid the contradictions of set theory, Principia mathematica employs 
a “theory of types.” Somewhat oversimply described, such a theory sets up a 
hierarchy of levels of elements. The primary elements constitute those of type 
0; classes of elements of type 0 constitute those of type 1; classes of elements of 
type 1 constitute those of type 2; and so on. In applying the theory of types, one 
follows the rule that all the elements of any class must be of the same type. 
Adherence to this rule precludes impredicative definitions and thus avoids the 
paradoxes of set theory. As originally presented in Principia mathematica, 
hierarchies within hierarchies appeared, leading to the so-called “ramified” 
theory of types. In order to obtain the impredicative definitions needed to 
establish analysis, an “axiom of reducibility” had to be introduced. The non
primitive and arbitrary character of this axiom drew forth severe criticism, and 
much of the subsequent refinement of the logistic program lies in attempts to 
devise some method of avoiding the disliked axiom of reducibility.
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Whether or not the logistic thesis has been established seems to be a matter 
of opinion. Although some accept the program as satisfactory, others have 
found many objections to it. For one thing, the logistic thesis can be questioned 
on the ground that the systematic development of logic (as of any organized 
study) presupposes mathematical ideas in its formulation, such as the funda
mental idea of iteration that must be used, for example, in describing the theory 
of types or the idea of deduction from given premises.

Alfred North Whitehead was born at Ramsgate, England, in 1861, and was 
educated at Sherborne School and Trinity College, Cambridge. He lectured on 
mathematics at Trinity College from 1885 to 1911, and then on applied mathe
matics and mechanics at University College of the University of London. He 
was a professor of mathematics at the Imperial College of Science and Technol
ogy at the University of London from 1914 to 1924, after which he went to the 
United States as a professor of philosophy at Harvard University, a post that 
he held until his retirement in 1936. He died at Cambridge, Massachusetts in 
1947. Like his most distinguished student, Bertrand Russell, Whitehead viewed 
philosophy from the standpoint of mathematics, and together the two men 
wrote their epochal Principia mathematica in the years 1910 to 1913. White- 
head published a number of notably lucid works on mathematics and phi
losophy.

Bertrand Arthur William Russell, descendant of an aristocratic family, was 
born near Trelleck, Wales, in 1872. The winner of an open scholarship at 
Trinity College, Cambridge, he took high honors in mathematics and philoso
phy, and studied under Whitehead. In addition to lecturing, largely at universi
ties in the United States, he wrote over forty books on mathematics, logic, 
philosophy, sociology, and education. He received many awards, such as both

BERTRAND RUSSELL
(New York Public Library 
Collection)
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the Sylvester and de Morgan medals of the Royal Society (1934), the Order of 
Merit (1940), and the Nobel Prize for Literature (1950). His outspoken views 
often embroiled him in controversies. During World War I, he was dismissed 
from Cambridge University and imprisoned for four months because of his 
pacifist views and his opposition to conscription. In the early 1960s, he led 
pacifist moves to ban nuclear weapons and was again briefly imprisoned. A man 
of remarkable mind and ability, he died in 1970, mentally alert to the end, at the 
advanced age of ninety-eight.

INTUITIONISM: The intuitionist thesis is that mathematics is to be built 
solely by finite constructive methods on the intuitively given sequence of natu
ral numbers. According to this view, then, at the very base of mathematics lies 
a primitive intuition, allied, no doubt, to our temporal sense of before and after, 
that allows us to conceive a single object, then one more, then one more, and so 
on endlessly. In this way, we obtain unending sequences, the best known of 
which is the sequence of natural numbers. From this intuitive base of the 
sequence of natural numbers, any other mathematical object must be built in a 
purely constructive manner, employing a finite number of steps or operations. 
In the intuitionist thesis, we have the genetical development of mathematics 
pushed to its extreme.

The intuitionist school (as a school) originated about 1908 with the Dutch 
mathematician L. E. J. Brouwer, although one finds some of the intuitionist 
ideas uttered earlier by such men as Kronecker (in the 1880s) and Poincare 
(1902-1906). The school has gradually strengthened with the passage of time, 
has won over some eminent present-day mathematicians, and has exerted a 
tremendous influence on all thinking concerning the foundations of mathe
matics.

Some of the consequences of the intuitionist thesis are little short of revo
lutionary; thus, the insistence on constructive methods leads to a conception of 
mathematical existence not shared by all practicing mathematicians. For the 
intuitionists, an entity whose existence is to be proved must be shown to be 
constructible in a finite number of steps; it is not sufficient to show that the 
assumption of the entity’s nonexistence leads to a contradiction. This means 
that many existence proofs found in current mathematics are not acceptable to 
the intuitionists.

An important instance of the intuitionists’ insistence upon constructive 
procedures is in the theory of sets. For the intuitionists, a set cannot be thought 
of as a ready-made collection, but must be considered as a law by means of 
which the elements of the set can be constructed in a step-by-step fashion. This 
concept of set rules out the possibility of such contradictory sets as “the set of 
all sets.’’

There is another remarkable consequence of the intuitionists’ insistence 
upon finite constructibility, and this is the denial of the universal acceptance of 
the law of the excluded middle. Consider, for example, the number x, which is 
defined to be (—1)*, where k is the number of the first decimal place in the 
decimal expansion of tt where the sequence of consecutive digits 123456789 
begins, and, if no such k exists, x = 0. Now, although the number x is well-
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defined, we cannot at the moment, under the intuitionists’ restrictions, say that 
the proposition “jc = 0” is either true or false. This proposition can be said to 
be true only when a proof of it has been constructed in a finite number of steps, 
and it can be said to be false only when a proof of this situation has been 
constructed in a finite number of steps. Until one or the other of these proofs is 
constructed, the proposition is neither true nor false, and the law of the ex
cluded middle is inapplicable. If, however, k is further restricted to be less than 
a billion, say, then it is perfectly correct to say that the proposition is now 
either true or false, for, with k less than a billion, the truth or falseness can 
certainly be established in a finite number of steps.

Thus, for the intuitionists, the law of the excluded middle holds for finite 
sets but should not be employed when dealing with infinite sets. This state of 
affairs is blamed by Brouwer on the sociological development of logic. The 
laws of logic emerged at a time in man’s evolution when he had a good language 
for dealing with finite sets of phenomena; he then later made the mistake of 
applying these laws to the infinite sets of mathematics, with the result that 
antinomies arose.

In the Principia mathematica, the law of the excluded middle and the law 
of contradiction are equivalent. For the intuitionists, this situation no longer 
prevails, and it is an interesting problem to try, if possible, to set up the logical 
apparatus to which intuitionist ideas lead us. This was done in 1930 by A. 
Heyting, who succeeded in developing an intuitionist symbolic logic. Intuition
ist mathematics thus produces its own type of logic, and mathematical logic, as 
a consequence, is a branch of mathematics.

There is the final important question: How much of existing mathematics 
can be built within the intuitionistic restrictions? If all of it can be so rebuilt, 
without too great an increase in the labor required, then the present problem of 
the foundations of mathematics would appear to be solved. Now the intuition
ists have succeeded in rebuilding large parts of present-day mathematics, in
cluding a theory of the continuum and a set theory, but there is a great deal that 
is still wanting. So far, intuitionist mathematics has turned out to be consider
ably less powerful than classical mathematics, and in many ways it is much 
more complicated to develop. This is the fault found with the intuitionist ap
proach—too much that is dear to most mathematicians is sacrificed. This situa
tion may not exist forever, because there remains the possibility of an intuition
ist reconstruction of classical mathematics carried out in a different and more 
successful way. Meanwhile, in spite of present objections raised against the 
intuitionist thesis, it is generally conceded that its methods do not lead to 
contradictions.

Besides being the leader and untiring advocate of the intuitionist view of 
mathematics, Brouwer left his mark in other areas of the subject. He is re
garded as one of the founders of modern topology, and is particularly known 
for his invariance theorem and his fixed-point theorem. The former asserts that 
the dimensionality of a Cartesian ^-dimensional number-manifold is a topologi
cal invariant, and the latter that every continuous mapping of an ^-dimensional 
sphere onto itself has at least one fixed point.
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Brouwer was born in 1881, spent the major part of his professional life at 
the University of Amsterdam, and died in 1966. He was a ruthless fighter for his 
beliefs. As the editor of the Mathematische Annalen in charge of acceptance or 
rejection of submitted papers, he opened his attack on the free use of reductio 
ad absurdum by refusing all papers that applied the law of the excluded middle 
to propositions whose truth or falsity could not be decided in a finite number of 
steps. The editorial board of the journal met the crisis by resigning and then re
electing themselves, minus Brouwer. The Dutch government was so indignant 
over this snub of their leading mathematician that they created a rival mathe
matics journal, with Brouwer in charge.

The intuitionists’ ranks were greatly strengthened when Hermann Weyl 
joined the group. Weyl was born in 1885 near Hamburg. He entered Gottingen 
University when he was eighteen, became one of Hilbert’s most gifted stu
dents, and remained there (except for one year at Munich) until he was called to 
Zurich in 1913, where he met Einstein. In 1930, he was invited to Gottingen as 
Hilbert’s successor. He remained at Gottingen for only three years, after which 
he resigned because of the dismissal of so many of his colleagues by the Nazis. 
In 1933, he accepted an offer of permanent membership at the newly founded 
Institute for Advanced Study at Princeton. During his last years, he spent half 
of each year at Princeton and the other half at Zurich. He died suddenly in 
1955.

FORMALISM: The formalist thesis is that mathematics is concerned with 
formal symbolic systems. In fact, mathematics is regarded as a collection of 
such abstract developments, in which the terms are mere symbols and the 
statements are formulas involving these symbols; the ultimate base of mathe
matics does not lie in logic but only in a collection of prelogical marks or 
symbols and in a set of operations with these marks. Since, from this point of 
view, mathematics is devoid of concrete content and contains only ideal sym
bolic elements, the establishment of the consistency of the various branches of 
mathematics becomes an important and necessary part of the formalist pro
gram. Without such an accompanying consistency proof, the whole study is 
essentially senseless. In the formalist thesis, we have the axiomatic develop
ment of mathematics pushed to its extreme.

The formalist school was founded by David Hilbert after completing his 
postulational study of geometry. In his Grundlagen der Geometrie (1899), 
Hilbert had sharpened the mathematical method from the material axiomatics 
of Euclid to the formal axiomatics of the present day. The formalist point of 
view was developed later by Hilbert to meet the crisis caused by the paradoxes 
of set theory and the challenge to classical mathematics caused by intuitionistic 
criticism. Although Hilbert talked in formalistic terms as early as 1904, not until 
after 1920 did he and his collaborators, Bernays, Ackermann, von Neumann, 
and others, seriously start work on what is now known as the formalist pro
gram.

The success or failure of Hilbert’s program to save classical mathematics 
hinges upon the solution of the consistency problem. Freedom from contradic
tion is guaranteed only by consistency proofs, and the older consistency proofs



based upon interpretations and models usually merely shift the question of 
consistency from one domain of mathematics to another. In other words, a 
consistency proof by the method of models is only relative. Hilbert, therefore, 
conceived a new direct approach to the consistency problem. Much as one may 
prove, by the rules of a game, that certain situations cannot occur within the 
game, Hilbert hoped to prove, by a suitable set of rules of procedure for 
obtaining acceptable formulas from the basic symbols, that a contradictory 
formula can never occur. In logical notation, a contradictory formula is any 
formula of the type “F  and not-F,” where F  is some accepted formula of the 
system. If one can show that no such contradictory formula is possible, then 
one has established the consistency of the system.

The development of the preceding ideas of a direct test for consistency in 
mathematics is called, by Hilbert, the proof theory. Hilbert and Bernays 
planned to give a detailed exposition (and application to all classical mathemat
ics) of the proof theory in their great Grundlagen der Mathematik, which may 
be considered as the “Principia mathematica” of the formalist school. The 
Grundlagen der Mathematik was finally published in two volumes, Volume 1 in 
1934 and Volume II in 1939, but, as the work was being written, unforeseen 
difficulties arose, and it was not possible to complete the proof theory. For 
certain elementary systems, proofs of consistency were carried out, which 
illustrated what Hilbert would like to have done for all classical mathematics, 
but, for the system in toto, the problem of consistency remained refractory.

As a matter of fact, the Hilbert program, at least in the form originally 
envisioned by Hilbert, appears to be doomed to failure; this truth was brought 
out by Kurt Godel in 1931, actually before the publication of the Grundlagen 
had taken place. Godel showed, by unimpeachable methods acceptable to the
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followers of any one of the three principal schools of the philosophy of mathe
matics, that it is impossible for a sufficiently rich formalized deductive system, 
such as Hilbert’s system for all classical mathematics, to prove consistency of 
the system by methods belonging to the system. This remarkable result is a 
consequence of an even more fundamental one; Godel proved the incomplete
ness of Hilbert’s system—that is, he established the existence within the sys
tem of “undecidable” problems, of which consistency of the system is one. 
These theorems of Godel are too difficult to consider in their technical details 
here. They are certainly among the most remarkable in all mathematics, and 
they reveal an unforeseen limitation in the methods of formal mathematics. 
They show “that the formal systems known to be adequate for the derivation of 
mathematics are unsafe in the sense that their consistency cannot be demon
strated by finitary methods formalized within the system, whereas any system 
known to be safe in this sense is inadequate.” 8

David Hilbert was born in Konigsberg in 1862 and received his Ph.D. from 
the university there in 1885. He taught at the University of Konigsberg, first as 
Privatdozent (1886-1892) and then as professor (1893-1894). In 1895, he be
came a professor at Gottingen, a post that he held to his retirement in 1930. He 
died in Gottingen in 1943.

Hilbert was a broad mathematician and made highly important contribu
tions in many areas, usually neatly completing each area before passing on to 
the next. These areas include the theory of algebraic invariants (1885-1892); 
the theory of algebraic numbers (1893-1899); the foundations of geometry, 
which initiated his work in axiomatics (1898-1899); the Dirichlet problem and 
the calculus of variations (1900-1905); integral equations, including spectral 
theory and the concept of Hilbert space (to 1912); followed by contributions in 
mathematical physics to the kinetic theory of gases and the theory of relativity; 
and, finally, his critical studies of the foundations of mathematics and mathe
matical logic. His stimulating lectures attracted students from all parts of the 
world. He was a powerhouse at the University of Gottingen, and, with a galaxy 
of great colleagues, he made Gottingen a Mecca for mathematicians until the 
destructive political events of the 1930s. Hilbert received many honors and 
became editor of Mathematische Annalen in 1902. At the International Mathe
matical Congress in Paris in 1900, he proposed twenty-three significant un
solved mathematical problems, subsequent work upon which has greatly en
riched mathematics.

8 F. De Sua, “Consistency and completeness: A resume,” The American Mathematical 
Monthly 63 (1956): 295-305. Here we also find the following interesting remark: “ Suppose we 
loosely define a religion as any discipline whose foundations rest on an element of faith, irrespec
tive of any element of reason which may be present. Quantum mechanics for example would be a 
religion under this definition. But mathematics would hold the unique position of being the only 
branch of theology possessing a rigorous demonstration of the fact that it should be so classified.” 
See also, Howard Eves and C. V. Newsom, An Introduction to the Foundations and Fundamental 
Concepts o f Mathematics. Revised edition. (Appendix, Section A.7) New York: Holt, Rinehart 
and Winston, 1965.
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15-9 Computers
A very important twentieth-century achievement in the area of mathematics 
was the development of the simple mechanical calculating aids of earlier days 
into the remarkable and amazing large-scale electronic computing devices of 
today. Particularly revolutionary was the concept of incorporating into the 
machines a program of instruction as well as a set of operating data. We devote 
this section to a brief history of the calculating aids that culminated in these 
latest marvels.

Beyond the computational aid given to man by nature in the form of his ten 
fingers (still used in school classrooms) and the highly efficient and inexpensive 
abacus of ancient origin (still used in many parts of the world), the invention of 
the first calculating machine is attributed to Blaise Pascal, who, in 1642, de
vised an adding machine to assist his father in the auditing of the government 
accounts at Rouen. The instrument was able to handle numbers not exceeding 
six digits. It contained a sequence of engaging dials, each marked from 0 to 9, 
so designed that when one dial of the sequence turned from 9 to 0 the preceding 
dial of the sequence automatically turned one unit. Thus the “carrying” 
process of addition was mechanically accomplished. Pascal manufactured over 
fifty machines, some of which are still preserved in the Conservatoire des Arts 
et Metiers at Paris. It is interesting that Pascal has also been credited with the 
invention of the one-wheeled wheelbarrow as we know it today.

Later in the century, Leibniz (1671) in Germany and Sir Samuel Morland 
(1673) in England invented machines that multiplied. Similar attempts were 
made by a number of others, but most of these machines proved to be slow and 
impractical. In 1820, Thomas de Colmar, although not familiar with Leibniz’ 
work, transformed a Leibniz type of machine into one that could perform 
subtractions and divisions. This machine proved to be the prototype of almost 
all commercial machines built before 1875, and of many developed since that 
time. In 1875, the American Frank Stephen Baldwin was granted a patent for 
the first practical calculating machine that could perform the four fundamental

One of Pascal’s arithmetic machines, devised by him in 1642.
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Part of Babbage’s difference engine.

operations of arithmetic without any resetting of the machine. In 1878, Willgodt 
Theophile Odhner, a Swede, was granted a United States patent on a machine 
very similar in design to that of Baldwin. The electrically operated desk calcu
lators, such as those of Friden, Marchant, and Monroe, of the first half of the 
twentieth century, have essentially the same basic construction as the Baldwin 
machine.

About 1812, the English mathematician Charles Babbage (1792-1871) be
gan to consider the construction of a machine to aid in the calculation of 
mathematical tables. He resigned the Lucasian professorship at Cambridge in 
order to devote all his energies to the construction of his machine. In 1823, after 
investing and losing his own personal fortune in the venture, he secured finan



cial aid from the British government and set to work to make a difference 
engine capable of employing twenty-six significant figures and of computing 
and printing successive differences out to the sixth order. But Babbage’s work 
did not progress satisfactorily, and ten years later the governmental aid was 
withdrawn. Babbage thereupon abandoned his difference engine and com
menced work on a more ambitious machine which he called his analytic engine, 
which was intended to execute completely automatically a whole series of 
arithmetic operations assigned to it at the start by the operator. This machine, 
also, was never completed, largely because the necessary precision tools were 
not as yet made.

The first direct descendant of the Babbage analytic engine is the great IBM 
Automatic Sequence Controlled Calculator (the ASCC), completed at Harvard 
University in 1944 as a joint enterprise by the University and the International 
Business Machines Corporation under contract for the Navy Department. The 
machine is fifty-one feet long, eight feet high, with two panels six feet long, and 
weighs about five tons. An improved second model of the ASCC was made for 
use, beginning in 1948, at the Naval Proving Ground, Dahlgren, Virginia. An
other descendent of Babbage’s effort is the Electronic Numerical Integrator 
and Computer (the ENIAC), a multipurpose electronic computer completed in 
1945 at the University of Pennsylvania under contract with the Ballistic Re
search Laboratory of the Army’s Aberdeen Proving Ground. This machine 
requires a thirty-by-fifty foot room, contains 19,000 vacuum tubes, and weighs 
about thirty tons; it may now be found in the Smithsonian Institution in Wash
ington, D.C. These amazing high-speed computing machines, along with simi
lar projects, like the Selective Sequence Electronic Calculator (SSEC) of the 
International Business Machines Corporation, the Electronic Discrete Variable 
Calculator (EDVAC) of the University of Pennsylvania, the MANIAC of the
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Institute for Advanced Study at Princeton, the Universal Automatic Computer 
(UNIVAC) of the Bureau of Standards, and the various differential analyzers, 
presaged machines of even more fantastic accomplishment. Every few years, a 
new generation of machines seems to eclipse in speed, reliability, and memory 
those of the preceding generation. The following table of comparisons of calcu
lations of 77 performed on electronic computers illustrates the rapid increase in 
computational speed that took place in the short span of years from 1949 to 
1961.

Decimal
Author Machine Date Places Tim e

Reitwiesner ENIAC 1949 2037 70 hours
Nicholson and Jeenel NORC 1954 3089 13 minutes
Felton Pegasus 1958 10000 33 hours
Genuys IBM 704 1958 10000 100 minutes
Genuys IBM 704 1959 16167 4.3 hours
Shanks and Wrench IBM 7090 1961 100265 8.7 hours

The increase in computational speed in more recent times has been aston
ishing, as witness the calculation by D. H. Bailey on a Cray-2 supercomputer in 
1986 of 77 to 29,360,000 decimal places in 28 hours. In addition to increase in 
speed, computers have successively become lighter and more compact. These 
latter features are largely due to the progression over the years from vacuum 
tubes to transistors to microchips.

Most of the early computers were designed to solve military problems, but 
today they are also being designed for business, engineering, government, and 
other purposes. From luxury tools they have become vital and necessary in
struments of modern development. Because of this, numerical analysis has 
received a tremendous stimulus in recent times and has become a subject of 
ever-growing importance. It is becoming common for secondary schools to 
offer introductory courses in computer science with their own minicomputers. 
University and college Departments of Mathematics are increasingly becoming 
Departments of Mathematics and Computer Science. Babbage’s dream has 
come true!

Unfortunately, there is a developing feeling, not only among the general 
public but also among young students of mathematics, that from now on any 
mathematical problem will be resolved by a sufficiently sophisticated electronic 
machine, and that all mathematics of today is computer oriented. Teachers of 
mathematics must combat this disease of “computeritis,” and should point out 
that the machines are merely extraordinarily fast and efficient calculators, and 
are invaluable in mathematics only in those problems where extensive comput
ing or enumeration can be utilized.

Nonetheless, in their areas of applicability, the machines have secured 
some remarkable mathematical victories. For example, the recent accomplish
ments described in Section 3-3 concerning amicable and perfect numbers, and 
in Section 14-13 concerning prime numbers, would have been virtually impos
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sible without the assistance of a computer. These machines have proved valu
able not only in certain parts of number theory, but in other mathematical 
studies, such as group theory, finite geometries, and recreational mathematics. 
In the last field, for example, in 1958 Dana S. Scott instructed the MANIAC 
digital computer to search out all solutions to the problem of putting all twelve 
pentominos9 together to form an eight-by-eight square with a two-by-two hole 
in the middle. After operating for about 3i hours, the machine produced a 
complete list of sixty-five distinct solutions, wherein no solution can be ob
tained from another by rotations and reflections. Similarly, the enumeration 
and construction of all 880 distinct normal magic squares of order four were 
achieved with a computer, and it is not difficult to program the corresponding 
problem for normal magic squares of order five, or higher.

A very spectacular mathematical triumph of the computer was the resolu
tion, in 1976, of the famous four-color conjecture of topology; this conjecture 
asserts that any map on a plane or a sphere needs at most four colors to color it 
so that no two countries sharing a common boundary will have the same color. 
The conjecture emerged about 1850, and an enormous amount of effort has 
since been spent trying to establish or disestablish it, yielding many partial or 
allied results but always leaving the conjecture itself unsettled. Then, in the 
summer of 1976, Kenneth Appel and Wolfgang Haken of the University of 
Illinois, established the conjecture by an immensely intricate computer-based 
analysis. The proof contains several hundred pages of complex detail and sub
sumes over a thousand hours of computer calculation. The method of proof 
involves an examination of 1936 reducible configurations, each requiring a 
search of up to half a million logical options to verify reducibility. This last 
phase of the work occupied six months and was finally completed in June, 1976. 
Final checking took most of the month of July, and the results were communi
cated to the Bulletin o f the American Mathematical Society on July 26, 1976.

The Appel-Haken solution is unquestionably an astounding accomplish
ment, but a solution based on computerized analyses of close to 2000 cases with 
a total of something like a billion logical options seems, to many mathemati
cians, far indeed from elegant mathematics. Certainly on at least an equal 
footing with a solution to a problem is the elegance of the solution itself. 
Although a second, and considerably less complex, computer proof of the four- 
color conjecture was given in the following year, 1977, by F. Allaire, the 
existence and possible necessity of such treatments of mathematical problems 
have raised philosophical questions as to just what should be allowed to consti
tute a proof of a mathematical proposition.

Very useful to students, businessmen, and engineers are the pocket-size 
calculators now available for less than $10 and becoming more sophisticated 
each year. It was in 1971 that Bowmar Instrument Corporation introduced the 
first of these calculators into the consumer market; it was a three-by-five inch 
model selling for $249. Within a year and a half, nearly a dozen firms were 
selling pocket calculators in the stores. The fierce competition drove the low

A pentomino is a planar arrangement of five unit squares joined along their edges.
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est-priced machines to below $100, and another year later the price was under 
$50. As early as 1974, annual sales of pocket calculators topped $10,000,000. 
With increasing cheapness and new battery designs, the calculators slimmed 
down roughly to the size and thickness of a credit card, and today they are 
among the largest selling consumer products with an annual sale in the billions 
of dollars. These little machines can handle numbers of about eight digits, 
possess a memory, and instantly perform any arithmetic operation, and also, in 
some models, trigonometric calculations. They are becoming widely used in 
the schools and colleges, and specially designed calculator-coordinated courses 
and textbooks (in such subjects as trigonometry and calculus) are becoming 
common in the colleges. At the centennial convention of the American Mathe
matical Society in 1988, the HP 28 S (with original list price of $235) was 
introduced. It graphs functions, does differentiation of functions and both defi
nite and indefinite integration, manipulates algebraic functions, solves equa
tions and systems of linear equations, operates with complex numbers and 
vectors as well as real numbers, and does fairly sophisticated programming 
with a 16K memory.

Any discussion of modern computers would not be complete without at 
least a brief mention of the great Hungarian mathematician John von Neumann, 
for it was he who was most responsible for initiating the first fully electronic 
calculator and for the concept of a stored program digital computer. His studies 
of the human brain and of logic proved useful in his researches on the develop
ment of the computer.

Von Neumann was born in Budapest in 1903 and was soon recognized as a 
scientific prodigy. He took his doctorate in Budapest in 1926, migrated to 
America in 1930, and in 1933 became a permanent member of the Institute for 
Advanced Study at Princeton. He already had an international reputation for 
his contributions to operator theory, quantum theory, and game theory. He did 
much to determine the direction of a great deal of twentieth-century mathemat
ics. His work was remarkably bold and original. During World War II he 
engaged in scientific and administrative work related to the hydrogen and 
atomic bombs and to long-range weather forecasting. He died of cancer in 1957.

15-10 The New Math and Bourhaki
Two characteristics of twentieth-century mathematics are an emphasis on ab
straction an*i an increasing concern with the analysis of brdact underlying struc
tures and pattern's. By mid-century, these characterizing features were noted 
by those interested in the instruction of school mathematics, and it was felt by 
some that the features should be incorporated into the teaching of mathematics 
in the schools. Accordingly, competent and enthusiastic writing groups were 
formed to revamp and “modernize” the school offerings in mathematics, and 
the so-called new math came into being.

Since abstract ideas of mathematics can often most neatly and concisely be 
expressed in terms of set concepts and set notation, and since set theory had
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become recognized as a foundation of mathematics, the new math starjs with 
an elementary introduction to set theory, and then continues with a persistent 
use of set ideas and set notation. The new math also stresses, as does twenti
eth-century mathematics, the underlying structures of the subject. Thus, in 
elementary algebra, much more attention is given than formerly to the basic 
structures and laws of algebra, such as the commutative, associative, distribu
tive, and other laws. As often happens with new ideas, there was a tendency on 
the part of some enthusiasts to go overboard and to apply tlje tenets of the new 
approach even to situations where they did not lead to clarification or simplifi
cation, and some pedagogues expressed a concern that in the endeavor to 
stress the why in mathematics, the how was becoming short-changed. There 
seems little doubt, however, that a saner application of the basic ideas of the 
new math is probably here to stay.

Since 1939, a comprehensive set of volumes in mathematics, purposely 
reflecting, at the more advanced level, the tendencies of twentieth-century 
mathematics, has been appearing in France under the alleged authorship of a 
Nicolas Bourbaki. Bourbaki first appeared in connection with some notes, 
reviews, and other papers published in the Comptes rendus of the French 
Academy of Sciences, and elsewhere. Then began the piecemeal construction 
of Bourbaki’s major treatise. The purpose of the major treatise was explained 
in a paper that appeared translated into English and published in 1950 in The 
American Mathematical Monthly under the title “The architecture of mathe
matics.” A footnote to this paper reads: “Professor N. Bourbaki, formerly of 
the Royal.Moldavian Academy, now residing in Nancy, France, is the author of 
a dorfiprehensive treatise of modern mathematics, in course of publication 
under the title Elements de Mathematique (Herman et Cie, Paris, 1939-), of 
which ten volumes have appeared so far.” More than thirty volumes appeared 
by 1970.

Nicolas Bourbaki’s name is Greek, his nationality is French, and he must 
be ranked as one of the most influential mathematicians of our century. His 
works are much read and quoted. He has enthusiastic supporters and scathing 
critics, and, most curious of all, he does not exist. ; . . ,

Nicolas Bourbaki is a collective pseudonym employed by an informal 
group of mathematicians. Though the members of the organization have taken 
no oath of secrecy, it has amused most of them to be somewhat cryptic about 
themselves. Nevertheless, their names are largely an open secret to most math
ematicians. It is believed that among the original members were C. Chevalley, 
J. Delsarte, J. Dieudonne, and A. Weil. The membership has varied over the 
years, sometimes involving as many as twenty mathematicians. The only rule 
of the group is to have no rules except compulsory retirement from member
ship at the age of fifty. The work of the group is based upon the unprovable 
metaphysical belief that for each mathematical question there is, among the 
many possible ways of dealing with it, a best, or optimal, way. Although the 
founders of the Bourbaki group have purposely shrouded the origin of the name 
Nicolas Bourbaki in mystery, there are a couple of legends that endeavor to 
explain the choice.
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A colorful officer, General Charles Denis Sauter Bourbaki, achieved some 
fame in the Franco-Prussian War. In 1862, when he was forty-six, he was 
offered the throne of Greece, which he declined. In a disastrous military cam
paign in 1871, he was forced to retreat into Switzerland, where he was interned 
and tried to shoot himself. Apparently his attempt at suicide failed, for he lived 
to the good age of eighty-three. There is said to be a statue of him in Nancy, 
France, and this might be the connection between him and the later group of 
mathematicians, for several of the group were at one time or another associated 
with the University of Nancy. This explanation still leaves the derivation of the 
“Nicolas” part of the name unresolved.

Another legend concerning the origin of the name Bourbaki is based upon a 
story that, around 1930, entering students at the Ecole Norgiale Superieure,^ 
where so many French mathematicians received their training, were exposed to
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a lecture by a distinguished visitor named Nicolas Bourbaki, who in reality was 
merely a disguised amateur actor or perhaps an upperclassman, Skilled in seem
ingly plausible mathematical double talk.

The Bourbaki conception of present-day mathematics, or at least Jean 
Dieudonne’s conception, is that mathematics today is like a ball of many tan
gled strands of yarn (see Figure 123), where those strands in the center of the 
ball react tightly upon one another in a nearly unpredictable manner. In this 
tangle of yarn, there are strands, and ends of strands, that issue outward in 
various directions and that have po intimate connection with anything within. 
The Bourbaki method is to shi]3 off these free strands and to concentrate only 
on the tight core of the ball from which all the rest unravels. The tight core 
contains the basic structures and the fundamental processes or tools of mathe
matics—those parts of mathematics that have graduated from strategems to 
methods, and have attained a considerable degree of fixedness. It is only this 
part of mathematics that Bourbaki attempts to arrange logically and to shape 
into a coherent and easily applied theory. It follows that much of mathematics 
is purposely left outside the province of the Bourbaki group.

15-11 The Tree of Mathematics
It became popular^some years ago to picture mathematics in the form of a tree, 
usually a great ̂ dak tree. The roots of the tree were labeled with such titles as 
algebra, plane geometry, trigonometry, analytic geometry, and irrational num-

FIGURE 123



bers. From these roots rose the powerful trunk of the tree,,, on which was 
printed calculus. Then, from the top of the trunk, numerous branches issued 
and subdivided into smaller branches. These branches bore such titles as com
plex variables, real variables, calculus o f variations, probability, and so on, 
through the various “branches” of higher mathematics.

The purpose of the tree of mathematics was to point out to the student not 
only how mathemafiqs,. had historically grown, but also the trail the student 
should follow ig pursuing a study of the subject. Thus, in the schools and 
perhaps the freshman year at college, students should occupy themselves with 
the fundamental subjects forming the roots of the tree. Then, early in the 
college career, through a specially heavy program, the calculus should be thor
oughly mastered. After this is accomplished, the student can then ascend those 
advanced branches of the subject that he or she may wish to pursue.

The pedagogical principle advocated by the tree of mathematics is proba
bly a sound one, for it is based on the famous law pithily stated by biologists in 
the form: “Ontogeny recapitulates phylogeny,” which simply means that, in 
general, “The individual repeats the development of the group.” That is, at 
least in rough outline, a student learns a subject pretty much in the order in 
which the subject developed over the ages. As a specific example, consider 
geometry. The earliest geometry may be called subconscious geometry, which 
originated in simple observations stemming from human ability to recognize 
physical form and to compare shapes and sizes. Geometry then became scien
tific, or experimental, geometry, and this phase of the subject arose when 
human intelligence was able to extract from a set of concrete geometrical 
relationships a general abstract relationship (a geometrical law) containing the 
former as particular cases. In early chapters of this book, we have noted how 
the bulk of pre-Hellenic geometry was of this experimental kind. Later, actu
ally in the Greek period, geometry advanced to a higher stage and became 
demonstrative geometry. The basic pedagogical principle here under consider
ation claims, then, that geometry should first be presented to young children in 
its subconscious form, probably through simple art work and simple observa
tions of nature. Then, somewhat later, this subconscious basis is evolved into 
scientific geometry, wherein the pupils induce a considerable array of geomet
ric facts through experimentation with compasses and straightedge, with ruler 
and protractor, and with scissors and paste. Still later, when the student has 
become sufficiently sophisticated, geometry can be presented in its demonstra
tive, or deductive, form, and the advantages and disadvantages of the earlier 
inductive processes can be pointed out.

So we have no quarrel with the pedagogical principle advocated by the tree 
of mathematics. But what about the tree itself? Does it still present a reasona
bly true picture of modern mathematics? We think not. A tree of mathematics 
is clearly a function of time. The oak tree described above certainly could not, 
for example, have been the tree of mathematics during the great Alexandrian 
period. The oak tree does represent fairly well the situation in mathematics in 
the eighteenth century and a good part of the nineteenth century, for in those 
years the chief mathematical endeavors were the development, extension, and
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application of the calculus. But with the enormous growth of mathematics in 
the twentieth century, the general picture of mathematics as given by the oak 
tree no longer holds. It is perhaps quite correct to say that today the larger part 
of mathematics has no, or very little, connection with the calculus and its 
extensions. Consider, for example, the vast areas covered by abstract algebra, 
finite mathematics, set theory, combinatorics, mathematical logic, axiomatics, 
nonanalytical number theory, postulational studies of geometry, finite geome
tries, and on and on.

We must redraw the tree of mathematics if it is to represent the mathemat
ics of today. Fortunately, there is an ideal tree for this new representation—the 
banyan tree. A banyan tree is a many-trunked tree, ever growing newer and 
newer trunks. Thus, from a branch of a banyan tree, a threadlike growth ex
tends itself downward until it reaches the ground. There is takes root, and over 
the succeeding years, the thread becomes thicker and stronger, and, in time, 
itself becomes a trunk with many branches, each dropping its threadlike 
growths to the ground.

There are some banyan trees in the world having many scores of trunks, 
which together cover city blocks in area. Like the great oak tree, these trees are 
both beautiful and long lived; it is claimed that the banyan tree in India, against 
which Budda rested while meditating, is still living and growing. In the banyan 
tree, then, we have a worthy and more accurate tree of mathematics for today. 
Over future years, newer trunks will emerge, and some of the older trunks may 
atrophy and die away. Different students can select different trunks of the tree 
to ascend, each student first studying the foundations covered by the roots of 
his chosen trunk. All these trunks, of course, are connected overhead by the 
intricate branch system of the tree. The calculus trunk is still alive and doing 
well, but there is also, for example, a linear algebra trunk, a mathematical logic 
trunk, and others.

Mathematics has become so extensive that today one can be a very pro
ductive and creative mathematician and yet have scarcely any knowledge of 
the calculus and its extensions. We who teach mathematics in the colleges 
today are probably doing a disservice to some of our mathematics students by 
insisting that all students must first ascend the calculus trunk of the tree of 
mathematics. In spite of the great fascination and beauty of calculus, not all 
students of mathematics find it their 4‘cup of tea.” By forcing all students up 
the calculus trunk, we may well be killing off some potentially able mathemati
cians of the noncalculus fields. In short, it is perhaps time to adjust our mathe
matical pedagogy to fit a tree of mathematics that better reflects the recent 
historical development of the subject.

15-12 What’s Ahead?
There is no crystal ball that reveals the future lines of mathematical develop
ment, nor, in view of failures of past efforts, does there seem to be much 
wisdom in attempting to predict those lines of development. History has shown
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that areas of mathematics that were particularly alive have suddenly died off, 
and areas that seemed exhausted have suddenly revived and become highly 
productive again. Mathematicians have too often witnessed the creation of 
brand new and completely unanticipated developments in their subject, such 
as, for example, the recent concepts of category theory, fractals, and catastro
phe theory, undreamed of only a few years ago. Who, in the early 1900s, could 
have foreseen the present fantastic development of the electronic calculators 
and computers?

Nevertheless, there do seem to be a few points upon which it appears safe 
to prognosticate, namely:

1. The tremendous and incredible twentieth-century development of com
puters will for some time continue into the future, leading to a speed of 
calculation and to applications that at present are scarcely imaginable.

2. Having finally won emancipation in the field of mathematics, women in 
mathematics will become increasingly more prevalent and important.10

3. The cleavage between pure and practical mathematics will continue to 
become ever more blurred. On the one hand, as G. H. Hardy once 
pointed out, pure mathematics is the really practical mathematics, be
cause what is useful above all in mathematics is technique, and tech
nique is acquired in pure mathematics. On the other hand, as illustrated 
by the ultimate application of the ancient Greek study of conic sections 
to modern celestial mechanics, all mathematics is practical mathemat
ics—application is sometimes merely a matter of time.

What do mathematicians themselves feel about the future of their subject? 
Most feel that the well of mathematics is infinitely deep and that they will be 
able to continue indefinitely to draw from it. They point out that the sustaining 
life of mathematics lies in its current supply of unsolved problems. Mathemati
cians will never give up attempts to solve such problems, and it is in these 
attempts that new developments in their subject arise. As Julian Lowell 
Coolidge once remarked, a nice thing about mathematics is that it never solves 
a problem without creating new ones.

On the other hand, not all mathematicians have shared, or do now share, 
the optimistic view; a number have expressed fear that the well of mathematics 
is drying up. No less a creative mathematician than Lagrange imparted to 
d’Alembert his feelings that “mathematics is beginning to decline,” and more 
than a few present-day mathematicians have expressed a similar fear that the 
modern drive in mathematics toward more and ever more abstraction is sound
ing the death knell of the subject.

There is an even gloomier concern about the possible future of mathemat
ics. Some feel that mathematics is becoming a Frankenstein monster that will 
ultimately kill itself. Mathematics plays a cardinal role in our nuclear age. It is 
largely mathematics that has been responsible for the development of the 
atomic bomb and other globally destructive weapons, and it seems axiomatic

10 This prognostication is well buttressed by Edna E. Kramer in the final chapter of her elegant 
book The Nature and Growth o f Modern Mathematics.
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that any mathematics that can be used for destructive purposes will be used for 
those purposes. In connection with this deeper concern about mathematics, 
witness Norbert Wiener’s famous letter, written after the fateful dropping of 
the bombs on Hiroshima and Nagasaki in 1945, in which he decried the custom 
of mathematicians freely sharing their knowledge and findings, and witness the 
pangs of conscience suffered by Albert Einstein and others over the part their 
mathematics played in certain aspects of the nuclear age. More recently, at the 
joint meeting of the American Mathematical Society and the Mathematical 
Association of America held in San Antonio in January 1987, a group of mathe
maticians called upon their colleagues to refrain from participation in the
S. D. I. (Strategic Defense Initiative) “ star wars” program.

A growing number of mathematicians feel that we now have two contrast
ing areas of mathematics, a safe area and an unsafe one, and these mathemati
cians, on conscientious grounds, try in their research to stay clear of the unsafe 
area. These mathematicians are bothered by such questions as the following: 
Can we in the future expect massive migrations of mathematicians, like that in 
ancient times from the University of Alexandria during the hectic days of the 
dissolution of the Egyptian empire, and that in modern times from Germany 
during the repressive days of the Nazi upsurge? Is the world heading toward 
another Dark Ages, but this time one of perhaps global extent, brought on by a 
nuclear war or by nuclear pollution? Is the present relationship between mathe
matics and the military morally defensible?

Let us hope that a sane outcome will prevail, that the grand subject of 
mathematics will continue to flourish indefinitely, and, paraphrasing words of 
Carl Gustav Jacobi, that it will continue to ennoble the human mind and spirit.

Problem Studies

15.1 Tacit Assumptions Made By Euclid

Look up (in T. L. Heath’s The Thirteen Books o f Euclid's Elements, for exam
ple) the statements and proofs of Propositions 1 1 ,1 16, and 121, and show that:

(a) In Proposition 1 1 Euclid tacitly assumed that 2 circles having centers at 
the ends of a line segment and having the line segment as a common 
radius intersect one another.

(b) In Proposition I 16 Euclid tacitly assumed the infinitude of straight 
lines.

(c) In Proposition 1 21 Euclid tacitly assumed that if a straight line enters a 
triangle at a vertex it must, if sufficiently produced, intersect the oppo
site side.

15.2 Three Geometrical Paradoxes

If an assumption tacitly made in a deductive development should involve a 
misconception, its introduction may lead not only to a proposition that does not 
follow from the postulates of the deductive system, but to one that may actually
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contradict some previously established proposition of the system. From this 
point of view, criticize the following 3 geometrical paradoxes:

(a) To prove that any triangle is isosceles.
Let ABC be any triangle (see Figure 124). Draw the bisector of <C  

and the perpendicular bisector of side AB. From their point of intersec
tion E, drop perpendiculars EF and EG on AC and BC, respectively, 
and draw EA and EB. Now right triangles CFE and CGE are congruent, 
since each has CE as hypotenuse and since <FCE = <GCE; therefore, 
CF = CG. Again, right triangles EFA and EGB are congruent, since leg 
EF of one equals leg EG of the other (any point E on the bisector of an 
angle C is equidistant from the sides of the angle) and since hypotenuse 
EA of one equals hypotenuse EB of the other (any point E on the 
perpendicular bisector of a line segment AB is equidistant from the 
extremities of that line segment); therefore, FA -  GB. It now follows 
that CF + FA = CG + GB, or CA = CB, and the triangle is isosceles.

(b) To prove that a right angle is equal to an obtuse angle.
Let ABCD be any rectangle (see Figure 125). Draw BE outside the 

rectangle and equal in length to BC, and hence to AD. Draw the perpen
dicular bisectors of DE and AB; since they are perpendicular to nonpar
allel lines, they must intersect in a point P. Draw AP, BP, DP, EP. 
Then PA = PB and PD = PE (any point on the perpendicular bisector 
of a line segment is equidistant from the extremities of the line seg
ment). Also, by construction, AD = BE. Therefore, triangles APD and 
BPE are congruent, since the 3 sides of one are equal to the three sides 
of the other. Hence, <DAP = <EBP. But <BAP = <ABP, since these 
angles are base angles of the isosceles triangle APB. By subtraction it 
now follows that right angle DAG = obtuse angle EBA.

(c) To prove that there are two perpendiculars from a point to a line.
Let any 2 circles intersect in A and B (see Figure 126). Draw the 

diameters AC and AD, and let the join of C and D cut the respective

c

FIGURE 124
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circles in M  and N. Then angles AMC and AND are right angles, since 
each is inscribed in a semicircle. Hence, AM  and AN  are 2 perpendicu
lars to CD.

15.3 Dedekind’s Continuity Postulate

To guarantee the existence of certain points of intersection (of line with circle 
and circle with circle) Richard Dedekind (1831-1916) introduced into geometry 
the following continuity postulate: If all points o f a straight line fall into two 
classes, such that every point o f the first class lies to the left o f every point of  
the second class, then there exists one and only one point which produces this 
division o f all points into two classes, that is, this severing o f the straight line 
into two portions.

(a) Complete the details of the following indicated proof of the theorem: 
The straight line segment joining a point A inside a circle to a point B 
outside the circle has a point in common with the circle.

Let O be the center and r the radius of the given circle (see Figure 
127), and let C be the foot of the perpendicular from O on the line 
determined by A and B. The points of the segment AB can be divided 
into 2 classes: those points P for which OP <  r and those points Q for

FIGURE 126
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which OQ ^  r. It can be shown that, in every case, CP <  CQ; hence, by 
Dedekind’s Postulate, there exists a point R of AB such that all points 
that precede it belong to 1 class and all that follow it belong to the other 
class. Now OR r, for otherwise we could choose S on AB, between R
and B , such that RS <  r -  OR. But, since OS <  OR + RS, this would 
imply the absurdity that OS <  r. Similarly, it can be shown that OR r.
Hence, we must have OR — r, and the theorem is established.

(b) How might Dedekind’s Postulate be extended to cover angles?
(c) How might Dedekind’s Postulate be extended to cover circular arcs?

15.4 A Coordinate Interpretation of Euclid’s Postulates

Let us, for convenience, restate Euclid’s first 3 postulates in the following 
equivalent forms:

1. Any two distinct points determine a straight line.
2. A straight line is unbounded.
3. There exists a circle having any given point as center and passing 

through any second given point.
Show that Euclid’s postulates, partially restated above, hold if the points 

of the plane are restricted to those whose rectangular Cartesian coordinates for 
some fixed frame of reference are rational numbers. Show, however, that under 
this restriction a circle and a line through its center need not intersect each 
other.

15.5 A Spherical Interpretation of Euclid’s Postulates

Show that Euclid’s postulates (as partially restated in Problem Study 15.4) hold 
if we interpret the plane as the surface of a sphere, straight lines as great circles 
on the sphere, and the points as points on the sphere. Show, however, that in 
this interpretation the following are true:

(a) Parallel lines do not exist.
(b) All perpendiculars to a given line erected on 1 side of the line intersect 

in a point.
(c) It is possible to have 2 distinct lines joining the same 2 points.
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(d) The sum of the angles of a triangle exceeds 2 right angles.
(e) There exist triangles having all 3 angles right angles.
( f )  An exterior angle of a triangle is not always greater than either of the 2 

remote interior angles.
(g) The sum of 2 sides of a triangle can be less than the third side.
(h) A triangle with a pair of equal angles may have the sides opposite them 

unequal.
( i )  The greatest side of a triangle does not necessarily lie opposite the 

greatest angle of the triangle.

15.6 Pasch’s Postulate

In 1882, Moritz Pasch formulated the following postulate: Let A, B, C, be three 
points not lying in the same straight line, and let m be a straight line lying in the 
plane of  ABC and not passing through any of the points A, B, C. Then, if the 
line m passes through a point o f segment AB, it will also pass through a point 
of the segment BC or a point of the segment AC. This postulate is 1 of those 
assumptions classified by modern geometers as a postulate o f order, and it 
assists in bringing out the idea of “betweenness.”

(a) Prove, as a consequence of Pasch’s Postulate, that if a line enters a 
triangle at a vertex, it must cut the opposite side.

(b) Show that Pasch’s Postulate does not always hold for a spherical trian
gle cut by a great circle.

15.7 An Abstract Mathematical System

Consider a set K  of undefined elements, which we shall denote by lower case 
letters, and let R denote an undefined dyadic relation that may or may not hold 
between a given pair of elements of K. If element a of K  is related to element b 
of K  by the R relation we shall write R{a,b). We now assume the following 4 
postulates concerning the elements of K  and the dyadic relation R.

PI: If a and b are any 2 distinct elements o fK , then we have either R{a,b) 
or R(b,a).

P2: If a and b are any 2 elements of K  such that we have R(a,b), then a 
and b are distinct elements.

P3: I fa 9b9 c are any 3 elements o fK  such that we have R(a,b) and R(b,c), 
then we have R(a,c). (In other words, the R relation is transitive.)

P4: K consists of exactly 4 distinct elements.
Deduce the following 7 theorems from the preceding 4 postulates:
Tl: If we have R{a,b) then we do not have R(b,a). (In other words, the R 

relation is not symmetric.)
T2: If we have R(a,b) and if c is in K , then we have either R(a,c) or 

R(c9b).
T3: There is at least 1 element o f K  not R-related to any element of K. 

(This is an existence theorem.)
T4: There is at most 1 element of K  not R-related to any element of K. 

(This is a uniqueness theorem.)
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Definition 1: If we have R{b,a), then we shall say we have D(a,b).
T5: If we have D(a,b) and D{b,c), then we have D(a,c).
Definition 2: If we have R (a,b) and there is no element c such that we also 

have R{a,c) and R(c,b), then we shall say we have F(a,b).
T6: If we have F(a,c) and F{b,c), then a is identical with b.
T7: If we have F(a,b) and F(b,c), then we do not have F(a,c).
Definition 3: If we have F(a,b) and F(b,c), then we shall say we have

G(a,c).

15.8 Axiomatics

(a) Establish the consistency of the postulate set of Problem Study 15.7 by 
means of each of the following interpretations:

1. Let K  consist of a man, his father, his father’s father, and his 
father’s father’s father, and let R(a,b) mean “a is an ancestor of
b r

2. Let K  consist of 4 distinct points on a horizontal line, and let 
R(a,b) mean “a is to the left of b .”

3. Let K  consist of the 4 integers 1, 2, 3, 4, and let R{a,b) mean 
“a <  b."

The postulates of this set are those for sequential relation among 
four elements. Any R that interprets the postulates is called a sequen
tial relation, and the elements of K  are said to form a sequence. The 
interpretations suggested above furnish 3 applications of the abstract 
branch of mathematics developed in Problem Study 15.7.

(b) Write out the statements of the theorems and definitions in Problem 
Study 15.7 for each of the interpretations of (a).

(c) Establish the independence of the postulate set of Problem Study 15.7 
by means of the following 4 partial interpretations:

1. Let K  consist of 2 brothers, their father, and their father’s 
father, and let R{a,b) mean “a is an ancestor of b y  This estab
lishes the independence of Postulate PI.

2. Let K  consist of the 4 integers 1, 2, 3, 4, and let R{a,b) mean 
“a ^  b." This establishes the independence of Postulate P2.

3. Let K  consist of the 4 integers 1, 2, 3, 4, and let R(a,b) mean 
“a F b." This establishes the independence of Postulate P3.

4. Let K  consist of the 5 integers 1, 2, 3, 4, 5, and let R(a,b) mean 
“a <  b y  This establishes the independence of Postulate P4.

(d) Show that PI, T1, P3, P4 constitute a postulate set equivalent to PI, P2, 
P3, P4.

15.9 Associated Hypothetical Propositions

(a) Prove the proposition: If a triangle is isosceles, then the bisectors o f its 
base angles are equal.

(b) State the converse of the proposition of (a). (This converse, which is 
somewhat troublesome to establish, has become known as the Steiner- 
Lehmus problem.)
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(c) State the opposite (or inverse) of the proposition of (a).
(d) If a proposition of the form If A then B is true, does it necessarily 

follow that its converse is true? Its opposite?
(e) Show that if a proposition of the form If A then B, and its opposite, are 

both true, then the converse is also true.
(f) State the propositions that must be true if A is a necessary condition for 

B; a sufficient condition for B; a necessary and sufficient condition for 
B. (If A is both necessary and sufficient for B} then A is called a 
criterion for B.)

15.10 Intuition versus Proof

Answer the following questions intuitively, and then check your answers by 
calculation:

(a) A car travels from P to Q at the rate of 40 miles per hour and then 
returns from Q to P at the rate of 60 miles per hour. What is the 
average rate for the round trip?

(b) A can do a job in 4 days, and B can do it in 6 days. How long will it take 
A and B together to do the job?

(c) A man sells half of his apples at 3 for 17 cents and then sells the other 
half at 5 for 17 cents. At what rate should he sell all of his apples in 
order to make the same income?

(d) If a ball of yarn 4 inches in diameter costs 20 cents, how much should 
you pay for a ball of yarn 6 inches in diameter?

(e) Two jobs have the same starting salary of $6000 per year and the same 
maximum salary of $12,000 per year. One job offers an annual raise of 
$800 and the other offers a semiannual raise of $200. Which is the 
better-paying job?

(f) Each bacterium in a certain culture divides into 2 bacteria once a 
minute. If there are 20 million bacteria present at the end of 1 hour, 
when were there exactly 10 million bacteria present?

(g) Is a salary of 1 cent for the first half month, 2 cents for the second half 
month, 4 cents for the third half month, 8 cents for the fourth half 
month, and so on until the year is used up, a good or poor total salary 
for the year?

(h) A clock strikes six in 5 seconds. How long will it take to strike twelve?
(i) A bottle and a cork together cost $1.10. If the bottle costs a dollar more 

than the cork, how much does the cork cost?
(j) Suppose that in 1 glass there is a certain quantity of a liquid A, and in a 

second glass an equal quantity of another liquid B. A spoonful of liquid 
A is taken from the first glass and put into the second glass, then a 
spoonful of the mixture from the second glass is put back into the first 
glass. Is there now more or less liquid A in the second glass than there 
is liquid B in the first glass?

(k) Suppose that a large sheet of paper one one-thousandth of an inch 
thick is torn in half and the 2 pieces put together, 1 on top of the other. 
These are then torn in half, and the 4 pieces put together in a pile. If
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this process of tearing in half and piling is done 50 times, will the final 
pile of paper be more or less than a mile high?

(1) Is a discount of 15 percent on the selling price of an article the same as 
a discount of 10 percent on the selling price followed by a discount of 5 
percent on the reduced price?

(m) Four-fourths exceeds three-fourths by what fractional part?
(n) A boy wants the arithmetical average of his 8 grades. He averages the 

first 4 grades, then the last 4 grades, and then finds the average of these 
averages. Is this correct?

15.11 A Miniature Mathematical System

Consider the following postulate set:
PI: Every abba is a collection o f dabbas.
P2: There exist at least two dabbas.
P3: I fp  and q are two dabbas, then there exists one and only one abba 

containing both p and q.
P4: If L is an abba, then there exists a dabba not in L.
P5: If L is an abba, and p is a dabba not in L, then there exists one and 

only one abba containing p and not containing any dabba that is in L.
(a) What are the primitive terms in this postulate set?
(b) Show that the postulate set is absolutely consistent.
(c) Establish the independence of Postulates P3 and P5.
(d) Deduce the following theorems from the following postulate set:

1. Every dabba is contained in at least 2 abbas.
2. Every abba contains at least 2 dabbas.
3. There exist at least 4 distinct dabbas.
4. There exist at least 6 distinct abbas.

15.12 A Set of Inconsistent Statements

If p, q, r represent propositions, show that the following set of 4 statements is 
inconsistent:

1. If q is true, then r is false.
2. If q is false, then p is true.
3. r is true.
4. p is false.

15.13 A Postulate Set Related to Relativity Theory

Let S be a set of elements and F a dyadic relation satisfying the following 
postulates:

PI: If a and b are elements o fS  and ifb  F a, then ajtfb. (Here b F a means 
that element b is F-related to element a.)

P2: If a is an element ofS, then there is at least 1 element b ofS  such that 
b F a.

P3: If a is an element o f S, then there is at least 1 element b ofS  such that 
a F b.

P4: If a, b, c are elements o fS  such that b F a and c F b, then c F a.
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P5: If a and b are elements o f S such that b F a, then there is at least one 
element c o f S such that c F a and b F c.

(a) Show that the statement, “If a is an element of S, then there is at least 1 
element b of S, distinct from a , such that b f a  and a fib ,” is consistent 
with the above postulates. (This set of postulates, augmented by the 
above statement, has been used in relativity theory, where the elements 
of S are interpreted as instants o f time and F as meaning “follows.” )

(b) Rewrite the above postulates and the statement of (a) in terms of the 
interpretation mentioned in (a).

15.14 Bees and Hives

Consider the following postulate set, in which bee and hive are primitive terms: 
PI: Every hive is a collection of bees.
P2: Any 2 distinct hives have 1 and only 1 bee in common.
P3: Every bee belongs to 2 and only 2 hives.
P4: There are exactly 4 hives.
(a) Show that this set of postulates is absolutely consistent.
(b) Show that Postulates P2, P3, and P4 are independent.
(c) Deduce the following theorems from the given postulate set:
Tl: There are exactly 6 bees.
T2: There are exactly three bees in each hive.
T3: For each bee, there is exactly one other bee not in the same hive with 

it.

15.15 Metric Space

In 1906, Maurice Frechet introduced the concept of a metric space. A metric 
space is a set M  of elements, called points, together with a real number d(x,y), 
called the distance function or metric of the space, associated with each ordered 
pair of points x and y of M, satisfying the following 4 postulates:

Ml: d(x9y) ^  0.
M2: d(x,y) = 0 if and only if x = y.
M3: d(x,y) = d{y,x).
M4: d(x,y) ^ d{x,z) + d(z,y), where x, y, z are any 3, not necessarily 

distinct, points o f M. (This is referred to as the triangle inequality.)
(a) Show that the set M  of all real numbers x, along with d(x i ,jc2) = 

|jcj — x2\, is a metric space.
(b) Show that the set M  of all ordered pairs p = (x,y) of real numbers, 

along with

d (p \,p 2) = [(*i -  x2)2 + (yi -  y2)2] l/2,

where p\ = (x\ ,y i) and p 2 = f e ,y 2)? is a metric space.
(c) Show that the set M  of all ordered pairs p = (x,y) of real numbers, 

along with

d ( P i P 2)  =  |*2 -  *i| +  |j2 -  y i| ,
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wherep\ = (x\ ,y j) andp2 = (x2,y2), is a metric space. (By plotting on a 
Cartesian plane, one readily sees why this metric space is sometimes 
referred to as taxicab space.)

(d) Show that the set M  of all ordered pairs p = (jc,y) of real numbers, 
along with

d(Pi,Pz) = max (\x2 -  x,|, \y2 ~ j i |) ,

where p x = (*i,yi) and p2 = (.x2,y2), is a metric space.
(e) Show that Postulates M l, M3, and M4 of a metric space may be re

placed by the single postulate M l': d(x,y) ^  d(y,z) + d(z,x), where x, 
y, z are any 3 , not necessarily distinct, points o f M.

(f) Show that any set M  of elements can be made into a metric space by 
setting d(x,y) = 1 if x y, and d(x,y) = 0 if x = y.

(g) Show that if d(x,y) is a metric for a set M, then we may also use as a 
metric for M:

1. k d(x,y), where k is a positive real number.
2. [d(x,y)V/2.
3. d(x,y)/[l + d(x,y)\. Show that here all distances are less than 1.

(h) Let c be a point of a metric space and let r be a positive real number. 
Define the set of all points x o f M  such that d(c,x) = r is a circle, with 
center c and radius r, in the metric space. Describe the appearance of a 
circle in the Cartesian representations of the metric spaces of (a), (b),
(c), and (d).

15.16 Equivalent Segments

(a) Whether an endpoint A (or B) of a line segment AB is to be considered 
as belonging or not belonging to the segment will be indicated by using 
a bracket or a parenthesis, respectively, about the letter A (or B). Using 
this notation, show that the segments [AB], (AB], [AB), (AB), consid
ered as sets of points, are equivalent to one another.

(b) Show that the set of points composing any finite segment and the set 
composing any infinite segment are equivalent to each other.

15.17 Some Denumerable and Nondenumerable Sets

(a) Prove that the union of a finite number of denumerable sets is a denu
merable set.

(b) Prove that the union of a denumerable number of denumerable sets is a 
denumerable set.

(c) Show that the set of all irrational numbers is nondenumerable.
(d) Show that the set of all transcendental numbers is nondenumerable.

15.18 Polynomials of Heights 1, 2, 3, 4, and 5

(a) Show that 1 is the only polynomial of height 1.
(b) Show that x and 2 are the only polynomials of height 2.
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(c) Show that x 2, 2x, x + 1, x -  1, and 3 are the only polynomials of height 
3, and they yield the distinct algebraic numbers 0, 1, -1 .

(d) Form all possible polynomials of height 4 and show that the only new 
real algebraic numbers contributed are - 2 ,  -1 /2 , 1/2, 2.

(3) Show that polynomials of height 5 contribute 12 more real algebraic 
numbers.

15.19 The Measure of a Denumerable Set of Points

(a) Complete the details of the following proof that the set of all points on a 
line segment AB is nondenumerable:

Take the length of AB to be one unit, and assume that the points on 
AB constitute a denumerable set. The points on AB can then be ar
ranged in a sequence {P\ ,P2 ,F3, .  . .}. Enclose point Pi in an interval of 
length 1/10, point P2 in an interval of length 1/102, point P3 in an interval 
of length 1/103, and so on. It follows that the unit interval AB is entirely 
covered by an infinite sequence of possibly overlapping subintervals of 
lengths 1/10, 1/102, 1/103, . . . .  But the sum of the lengths of these 
subintervals is

1/10 + 1/102 + 1/103 + • • • = 1/9 <  1.

(b) By choosing the subintervals in (a) to be of lengths e/10, e/102, e/103,
. . . , where e is an arbitrarily small positive number, show that a 
denumerable set of points can be covered by a set of intervals the sum 
of whose lengths can be made as small as we please. (Using the termi
nology of measure theory, we say that a denumerable set of points has 
zero measure.)

15.20 Transfinite Numbers and Dimension Theory

Let E\ denote the set of all points on the segment (0,1], and let E2 denote the set 
of all points in the unit square 0 <  x,y ^ 1. A point Z of Ex may be designated by 
an unending decimal z = 0.ziz2z3 . . . lying between 0 and 1, and a point P  of E2 
may be designated by an ordered pair of unending decimals

{x = 0.xix2x3 . . . , y = 0.yiy2y3 • • .),

each decimal lying between 0 and 1. Suppose we let each z,, y, in these 
representations denote either a nonzero digit or a nonzero digit preceded by a 
possible block of zeroes. For example, if z = 0.73028007 . . . , then z\ = 1 ,Zi = 
3, z3 = 02, za = 8, z5 = 007, . . . .  Show that a 1-to-l correspondence may be set 
up between the points of E\ and t^iose of E2 by associating with the point 0.ziz2z3 
. . .  of Ej the point

(O.Z1Z3Z5 . . . , 0.Z2Z4Z6 • . .)
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of E i , and with the point

(O.X1X2X3 . . . , 0 .yiy2y3 . . .)

of E2 the point O.JCiyix2y2̂ 3y3 • • -o iE \. Thus, show that the set of all points in a 
unit square has the transfinite number c. (This shows that the dimension of a 
manifold cannot be distinguished by the transfinite number of the manifold.)

15.21 Circles and Lines

(a) Show that if a circle has a center with at least 1 irrational coordinate, 
then there are at most 2 points on the circle with rational coordinates.

(b) Show that if a circle has a center with at least 1 transcendental coordi
nate, then there are at most 2 points on the circle with algebraic coordi
nates.

(c) Is it possible for a straight line or a circle in the Cartesian plane to 
contain only points having rational coordinates? Algebraic coordi
nates?

(d) Show that any infinite set of mutually external closed intervals on a 
straight line is denumerable.

(e) Show that any infinite set of mutually external circles lying in a plane is 
denumerable.

15.22 Homeomorphic Surfaces

Two surfaces are homeomorphic, or topologically equivalent, if we can pass 
from one to the other by a process of stretching, shrinking, and bending (with
out tearing or welding), and with cutting, if desired, as long as we ultimately 
rejoin the 2 lips of each cut in the same fashion in which they were joined before 
cutting.

(a) Arrange the surfaces formed by the 26 letters of alphabet soup into 
topologically equivalent classes.

(b) Show that a regular tetrahedron with its edges replaced by material 
wires yields a surface that is homeomorphic to the surface of a sphere 
with 3 tea cup handles attached to it.

(c) Explain the facetious remark: “A topologist can’t tell the difference 
between a doughnut and his coffee cup.”

15.23 Sides and Edges

(a) The surface formed by a band of paper twisted through 180° and then 
whose ends are glued together is called a Mobius strip. Show that a 
Mobius strip is 1-sided and has 1 unknotted edge.

(b) Construct a surface that is 1-sided and has 1 knotted edge.
(c) Construct a surface that is 2-sided and has 1 knotted edge.
(d) Construct a surface that is 2-sided and has 1 unknotted edge.
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15.24 Paradromic Rings

Discuss the procedure of the witch doctor who gave advice to couples wonder
ing if they should get married. If he wished to prophesy a future breakup in the 
proposed marriage, he would split an untwisted band; if he wished to prophesy 
that the couple would quarrel but still stay together, he would split a band 
having a full twist; if he wished to prophesy a perfect marriage, he would split a 
Mobius strip.

15.25 Polyhedral Surfaces

(a) Calculate v -  e + / for each of the regular polyhedral surfaces. (It can 
be shown that v — e + f  = 2 for all polyhedral surfaces homeomorphic 
to a sphere.)

(b) Give examples of simple closed polyhedral surfaces with 6 edges and 
with 8 edges, and show that there is none with 7 edges.

(c) Show, from the relation v -  e + / =  2, that there cannot be more than 5 
regular polyhedra.

15.26 Faces and Vertices of Polyhedral Surfaces

Consider a simple closed polyhedral surface P of v vertices, e edges, and /  
faces. Let /„ denote the number of faces having n edges, and let vn denote the 
number of vertices from which n edges issue.

(a) Show that
L /  = h  + f* + * ’ * ,
2. v =  u3 + v4 + • • • ,
3. 2e = 3/ 3 + 4/4 + 5/5 + • • • ,
4. 2e = 3̂ 3 + 4̂ 4 + 5^ + * * * .

Now show, from the relation v -  e + /  = 2, that
5. 2(̂ 3 + v4 + • • •) = 4 + / 3 + 2/4 + 3/5 + 4/6 + • • • .

Similarly show that
6. 2(/3 + /4+*,,)~4 + U3 + 2i>4 + 3us + 4v& + • • • .

Doubling (6) and adding (5) obtain
7. 3/3 + 2/4 + f 5 = 12 + 2u4 + 4v5 + • • • + f i  + 2/ 8 + • • • .

(b) From (7) of (a) deduce the following:
1. There is no P each of whose faces has more than 5 edges.
2. If P has no triangular or quadrilateral faces, then at least 12 

faces of P are pentagonal.
3. If P has no triangular or pentagonal faces, then at least 6 faces 

of P are quadrilateral.
4. If P has no quadrilateral or pentagonal faces, then at least 4 

faces of P are triangular.
(c) P is said to be trihedral if precisely 3 edges issue from each vertex. 

Show that:
1. If P is trihedral and has only pentagonal and hexagonal faces, 

then the number of pentagonal faces is 12.
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2. If P is trihedral and has only quadrilateral and hexagonal faces, 
then the number of quadrilateral faces is 6.

3. If P is trihedral and has only triangular and hexagonal faces, 
then the number of triangular faces is 4.

15.27 Hausdorff Space

In 1914, Felix Hausdorff developed an abstract topological space that has since 
become known as a Hausdorff space. Such a space is a set H  of elements, called 
points, together with subsets of / / ,  called neighborhoods, satisfying the follow
ing 4 postulates:

HI: For each point x o f H there exists at least one neighborhood Nx 
containing x.

H2: For any two neighborhoods Nx and N x of x, there exists a third 
neighborhood N ” contained in both Nx and N x.

H3: If y is a point o f Nx, there is a neighborhood Ny of y such that Ny is 
contained in Nx.

H4: I fx  and y are distant points of H, there exists an Nx and an Ny that 
have no point in common.

(a) Show that the set of all points on a straight line can be made into a 
Hausdorff space by selecting for neighborhoods of a point x the open 
segments having x as midpoint. (The arithmetic counterpart of this 
Hausdorff space is important in the study of analysis.)

(b) Show that the set of all points in the plane can be made into a Hausdorff 
space by selecting for neighborhoods of a point P the interiors of circles 
having P as center.

(c) Show that the set of all points in the plane can be made into a Hausdorff 
space by selecting for neighborhoods of a point P the interiors of 
squares centered at P and having sides parallel to 2 given perpendicular 
lines of the plane.

(d) Show that any set of points can be made into a Hausdorff space if we 
select for neighborhoods the points themselves.

(e) Show that any metric space can be made into a Hausdorff space if we 
select for neighborhoods the interiors of “circles.” (See Problem Study 
15.15.)

Definition: A point x of a Hausdorff space H  is called a limit point 
of a subset S of / / ,  provided every neighborhood of t contains at least 
one point of S distinct from x.

(f) Prove that any neighborhood Nx of a limit point x of a subset S of a 
Hausdorff space H  contains an infinite number of points of S.

15.28 Allied Propositions

Related to the proposition “ If p, then q ” are the following three propositions:
1. The converse, “If q , then /?.”
2. The inverse, “ If not-/?, then not-g.”
3. The contrapositive, “ If not-g, then not-/?.”
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Show that:
(a) The converse of a true implication is not necessarily true.
(b) The inverse of a true implication is not necessarily true.
(c) The contrapositive of a true implication is true.
(d) The contrapositive of an implication is the converse of the inverse of 

the implication.
(e) Is the inverse of the converse of an implication the same as the con

verse of the inverse of the implication?

15.29 Three-Valued Logics

(a) Show that there are 256 different ways of developing a truth table for 
conjunction in a 3-valued logic, where we assume “p and q ” is true 
when and only when both p and q are true.

(b) Show that there are 12 different ways of developing a truth table for 
negation in a 3-valued logic, where we assume that when p is true, not- 
p must fail to be true, and when p is false, not-p must fail to be false.

(c) Assuming, as is the case in the customary 2-valued logic, that all the 
other logical connectives can be formed by defining these other connec
tives in terms of conjunction and negation, show that there are alto
gether 3072 possible 3-valued logics.

(d) How many possible m-valued logics are there analogous to the 3072 
possible 3-valued logics?

15.30 The Russell Paradox

Consider the following popularizations of the Russell paradox:
(a) Every municipality of a certain country must have a mayor, and no 2 

municipalities may have the same mayor. Some mayors do not reside in 
the municipalities they govern. A law is passed compelling nonresident 
mayors to reside by themselves in a certain special area A. There are so 
many nonresident mayors that A is proclaimed a municipality. Where 
shall the mayor of A reside?

(b) An adjective in the English language is said to be autological if it applies 
to itself; otherwise, the adjective is said to be heterological. Thus, the 
adjectives “ short,” “ English,” and “polysyllabic” all apply to them
selves and hence are autological, whereas the adjectives “ long,” 
“ French,” and “monosyllabic” do not apply to themselves and hence 
are heterological. Now is the adjective “heterological” autological or 
heterological?

(c) Suppose a librarian compiles, for inclusion in his library, a bibliography 
of all those bibliographies in his library that do not list themselves.

15.31 A Paradox

Examine the following paradox. Every natural number can be expressed in
simple English, without the use of numerical symbols; thus, 5 can be expressed
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as “five,” or as “half of ten,” or as “the second odd prime,” or as “the 
positive square root of twenty-five,” and so on. Now consider the expression, 
“the least natural number not expressible in fewer than twenty-three sylla
bles.” This expression expresses in twenty-two syllables a natural number that 
cannot be expressed in fewer than twenty-three syllables.

15.32 Some Dilemmas and Some Questions

(a) A crocodile, which has stolen a child, promises the child’s father to 
return the child provided the father guesses whether the child will be 
returned or not. What should the crocodile do if the father guesses that 
the child will not be returned?

(b) An explorer has been captured by cannibals who offer the explorer the 
opportunity to make a statement under the condition that if it is true he 
will be boiled and if it is false he will be roasted. What should the 
cannibals do if the explorer states, “I will be roasted.” ?

(c) Is the statement, “Every general statement has its exceptions,” self 
contradictory?

(d) What would happen if an irresistible force should collide with an im
movable body?

(e) If Zeus can do anything, can he make a stone that he cannot lift?

15.33 Recreational Mathematics

(a) Construct all 12 pentominos and empirically find at least 1 of the 65 
ways of putting them together to form an 8 x 8 square with a 2 x 2 hole 
in the middle.

(b) Place 8 queens on a chessboard so that no queen can take any other. 
(This problem was originally proposed by Franz Nauck in 1850. There 
are 12 fundamental solutions, that is, such that no 2 can be obtained 
from one another by rotations or reflections.)

Essay Topics

15/1 Bertrand Russell (1872-1970).
15/2 Stories and anecdotes about David Hilbert. 
15/3 Hermann Minkowski (1864-1909).
15/4 Hardy and Little wood.
15/5 Albert Einstein (1879-1955).
15/6 Anna Johnson Pell Wheeler (1883-1966).
15/7 Srinivasa Ramanujan (1887-1920).
15/8 Norbert Wiener (1894-1964).
15/9 Properties of axiom systems.
15/10 A postulate set for Boolean algebra.
15/11 The principle of duality of Boolean algebra. 
15/12 Recreational aspects of the Mobius strip.
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15/13 Homeomorphic surfaces.
15/14 Impredicative definitions.
15/15 Godel’s theorems.
15/16 Computerized art.
15/17 Computer stamps from the Netherlands.
15/18 The fourth dimension in landscape planning.
15/19 The Polish school of mathematics.
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15/22 Esthetics of mathematics and mathematics of esthetics.
15/23 Moral obligations of the mathematician.
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A  CHRONOLOGICAL TABLE1

It has been estimated that the sun originated about 5 trillion years ago, 
the earth about 5 billion years ago, and man about 2 million years ago.

-50000 Evidence of counting.
-25000 Primitive geometric art.

-6000 Approximate date of the Ishango bone.
-4700 Possible beginning of Babylonian calendar.
-4228 Hypothetical origin of Egyptian calendar.
-3500 Writing in use; potter’s wheel.
-3100 Approximate date of a royal Egyptian mace in a museum at Ox

ford.
-3000 Discovery of bronze; wheeled vehicles in use.
-2900 Great pyramid of Gizeh erected.
-2400 Babylonian tablets of Ur; positional notation in Mesopotamia.
-2200 Date of many mathematical tablets found at Nippur; mythical date 

of the lo-shu, the oldest known example of a magic square.
-1850 Moscow, or Golenishev, papyrus (twenty-five numerical problems, 

“greatest Egyptian pyramid’’); oldest extant astronomical instru
ment.

-1750 Rule of Hammurabi; Plimpton 322 dates somewhere from -1900 to 
-1600.

-1700 Stonehenge in England (?).
-1650 Rhind, or Ahmes, papyrus (85 numerical problems).
-1600 Approximate date of many of the Babylonian tablets in the Yale 

collection.
-1500 Largest existing obelisk; oldest extant Egyptian sundial.
-1350 Phoenician alphabet; iron discovered; water clocks; date of later 

mathematical tablets found at Nippur; Rollin papyrus (elaborate 
bread problems).

-1200 Trojan War.
-1167 Harris papyrus (list of temple wealth).

1 A minus sign before a date indicates that the date is B.C. Many of the dates are approximate.
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-1105 Possible date of the Chou-pei, oldest Chinese mathematical work. 
-776 First Olympiad.
-753 Rome founded.
-740 Works of Homer (?).
-650  Papyrus introduced into Greece by this date.
-600 Thales (beginning of demonstrative geometry).
-540 Pythagoras (geometry, arithmetic, music).
-516  Inscription executed on the Behistun rock at the command of 

Darius the Great.
-500 Possible date of the Sulvasutras (religious writings showing ac

quaintance with Pythagorean numbers and with geometric con
structions); appearance of Chinese rod numerals.

-480 Battle of Thermopylae.
-461 Beginning of Age of Pericles.
-460  Parmenides (sphericity of the earth).
-450  Zeno (paradoxes of motion).
-440  Hippocrates of Chios (reduction of the duplication problem, lunes, 

arrangement of the propositions of geometry in a scientific fash
ion); Anaxagoras (geometry).

-430  Antiphon (method of exhaustion).
-429 Plague at Athens.
-425 Hippias of Elis (trisection with quadratrix); Theodorus of Cyrene 

(irrational numbers); Socrates.
-410  Democritus (atomistic theory).
-404 Athens finally defeated by Sparta.
-400 Archytas (leader of Pythagorean school at Tarentum, applications 

of mathematics to mechanics).
-399 Death of Socrates.
-380 Plato (mathematics in the training of the mind, Plato’s Academy). 
-375 Theaetetus (incommensurables, regular solids).
-370 Eudoxus (incommensurables, method of exhaustion, astronomy). 
-350 Menaechmus (conics); Dinostratus (quadrature with quadratrix, 

brother of Menaechmus); Xenocrates (history of geometry); Thy- 
maridas (solution of systems of simple equations).

-340  Aristotle (systematizer of deductive logic).
-336  Alexander the Great began his reign.
-335 Eudemus (history of mathematics).
-332 Alexandria founded.
-323 Alexander the Great died.
-320  Aristaeus (conics, regular solids).
-306  Ptolemy I (Soter) of Egypt.
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-300 Euclid (Elements, perfect numbers, optics, data).
-280 Aristarchus (Copernican system).
-260 Conon (astronomy, spiral of Archimedes); Dositheus (recipient of 

several papers by Archimedes).
-250 Stone columns erected by King Asoka containing earliest pre

served examples of our present number symbols.
-240 Nicomedes (trisection with conchoid).
-230 Eratosthenes (prime number sieve, size of the earth).
-225 Apollonius (conic sections, plane loci, tangencies, circle of Apollo

nius); Archimedes (greatest mathematician of antiquity, measure
ment of the circle and the sphere, computation of 77, area of a par
abolic segment, spiral of Archimedes, infinite series, method of 
equilibrium, mechanics, hydrostatics).

-213 Burning of the books in China.
-210 Great Chinese Wall begun.
-196 Rosetta Stone engraved.
-180 Hypsicles (astronomy, number theory); Diodes (duplication with 

cissoid).
-140 Hipparchus (trigonometry, astronomy, star catalogue).
-100 Probable date of carvings on the walls of a cave near Poona.

-7 5  Cicero found the tomb of Archimedes.
-5 0  Sun-tzi (indeterminate equations).
-4 4  Death of Julius Caesar.

75 Possible date of Heron (machines, plane and solid mensuration, 
root extraction, surveying).

100 Nicomachus (number theory); Menelaus (spherical trigonometry); 
Theodosius (geometry, astronomy); Arithmetic in Nine Sections; 
Plutarch.

150 Ptolemy (trigonometry, table of chords, planetary theory, star cata
logue, geodesy, Almagest).

200 Probable date of inscriptions carved in the caves at Nasik.
250 Probable date of Diophantus (number theory, syncopation of 

algebra).
265 Wang Fan (astronomy, 77 = 142/45); Liu Hui (commentary on the 

Arithmetic in Nine Sections).
300 Pappus (Mathematical Collection, commentaries, isoperimetry, 

projective invariance of cross ratio, Castillon-Cramer problem, 
arbelos theorem, generalization of Pythagorean theorem, centroid 
theorems, Pappus’ theorem).

320 Iamblichus (number theory).
390 Theon of Alexandria (commentator, edited Euclid’s Ele

ments).



410 Hypatia of Alexandria (commentator, first woman mentioned in the 
history of mathematics, daughter of Theon of Alexandria).

460 Proclus (commentator).
476 Birth of Aryabhata; fall of Rome.
480 Tsu Ch’ung-chih’s approximation of tt as 355/113.
500 Metrodorus and the Greek Anthology.
505 Varahamihira (Hindu astronomy).
510 Boethius (writings on geometry and arithmetic became standard 

texts in the monastic schools); Aryabhata the Elder (astronomy 
and arithmetic).

529 School at Athens closed.
530 Simplicius (commentator).
560 Eutocius (commentator).
622 Flight of Mohammed from Mecca.
625 Wang Hs’iao-t’ung (cubic equations).
628 Brahmagupta (algebra, cyclic quadrilaterals).
641 Last library at Alexandria burned.
710 Bede (calendar, finger reckoning).
711 Saracens invade Spain.
766 Brahmagupta’s works brought to Baghdad.
775 Alcuin called to the court of Charlemagne; Hindu works translated 

into Arabic.
790 Harun al-Rashid (caliph patron of learning).
820 Mohammed ibn Musa al-Khowarizmi (wrote influential treatise on 

algebra and a book on the Hindu numerals, astronomy, “algebra,” 
“algorithm”); al-Mamun (caliph patron of learning).

850 Mahavira (arithmetic, algebra).
870 Tabit ibn Qorra (translator of Greek works, conics, algebra, magic 

squares, amicable numbers).
871 Alfred the Great began his reign.
900 Abu Kamil (algebra).
920 Al-Battani, or Albategnius (astronomy).
950 Bakhshall manuscript (date very uncertain).
980 Abu’l-Wefa (geometric constructions with compasses of fixed 

opening, trigonometric tables).
1000 Alhazen (optics, geometric algebra); Gerbert, or Pope Sylvester II 

(arithmetic, globes).
1020 Al-Karkhi (algebra).
1042 Edward the Confessor became king.
1048 Death of al-Biruni.
1066 Norman Conquest.
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1095
1100
1115
1120

1130
1140

1146
1150

1170
1202

1215
1225
1250

1260

1271
1296
1303

1325
1349
1360
1431
1435
1450

1453
1460
1470
1478
1482
1484
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First Crusade.
Omar Khayyam (geometric solution of cubic equations, calendar). 
Important edition of the Arithmetic in Nine Sections printed.
Plato of Tivoli (translator from the Arabic); Adelard of Bath (trans
lator from the Arabic).
Jabir ibn Allah, or Gerber (trigonometry).
Johannes Hispalensis (translator from the Arabic); Robert of Ches
ter (translator from the Arabic).
Second Crusade.
Gherardo of Cremona (translator from the Arabic); Bhaskara (alge
bra, indeterminate equations).
Murder of Thomas a Becket.
Fibonacci (arithmetic, algebra, geometry, Fibonacci sequence, Li
ber abaci).
Magna Carta.
Jordanus Nemorarius (algebra).
Sacrobosco (Hindu-Arabic numerals, sphere); Nasir ed-din (trigo
nometry, parallel postulate); Roger Bacon (eulogized mathematics); 
Ch’in Kiu-shao (indeterminate equations, symbol for zero, Horn
er’s method); Li Yeh (notation for negative numbers); rise of Euro
pean universities.
Campanus (translation of Euclid’s Elements, geometry); Yang Hui 
(decimal fractions, earliest extant presentation of Pascal’s arith
metic triangle); reign of Kublai Kahn began.
Marco Polo began his travels.
Invention of eyeglasses (approximately).
Chu Shi-kie (algebra, numerical solution of equations, Pascal’s 
arithmetic triangle).
Thomas Bradwardine (arithmetic, geometry, star polygons).
Black Death destroyed a large part of the European population. 
Nicole Oresme (coordinates, fractional exponents).
Joan of Arc burned.
Ulugh Beg (trigonometric tables).
Nicholas Cusa (geometry, calendar reform); printing from movable 
type.
Fall of Constantinople.
Georg von Peurbach (arithmetic, astronomy, table of sines). 
Regiomontanus, or Johann Muller (trigonometry).
First printed arithmetic, in Treviso, Italy.
First printed edition of Euclid’s Elements.
Nicolas Chuquet (arithmetic, algebra); Borghi’s arithmetic.
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1489
1491
1492
1494
1498
1500
1506

1510

1514
1517
1518
1521
1522
1525
1530

1544
1545

1550

1556
1557
1558
1564
1570
1572
1573
1575
1580

1583
1584
1588
1590

1593
1595

A CHRONOLOGICAL TABLE

Johann Widman (arithmetic, algebra, + and -  signs).
Calandri’s arithmetic.
Columbus discovered America.
Pacioli (Suma, arithmetic, algebra, double entry bookkeeping). 
Execution of Savonarola.
Leonardo da Vinci (optics, geometry).
Scipione del Ferro (cubic equation); Antonio Maria Fior (cubic 
equation).
Albrecht Durer (curves, perspective, approximate trisection, pat
terns for folding the regular polyhedra).
Jakon Kobel (arithmetic).
Protestant Reformation.
Adam Riese (arithmetic).
Luther excommunicated.
Tonstall’s arithmetic.
Rudolff (algebra, decimals); Buteo (arithmetic).
Da Coi (cubic equation); Copernicus (trigonometry, planetary 
theory).
Stifel: Arithmetica Integra.
Ferrari (quartic equation); Tartaglia (cubic equation, arithmetic, 
science of artillery); Cardano (algebra: Ars magna).
Rhaeticus (tables of trigonometric functions); Scheubel (algebra); 
Commandino (translator, geometry).
First work on mathematics printed in the New World.
Robert Recorde (arithmetic, algebra, geometry, = sign).
Elizabeth became Queen of England.
Birth of Shakespeare; death of Michelangelo.
Billingsley and Dee (first English translation of the Elements). 
Bombelli (algebra, irreducible case of cubic equations).
Valentin Otho found early Chinese value of 7r, namely 355/113. 
Xylander, or Wilhelm Holzmann (translator).
Frangois Viete, or Vieta (algebra, geometry, trigonometry, nota
tion, numerical solution of equations, theory of equations, infinite 
product converging to 2/7r).
Clavius (arithmetic, algebra, geometry, calendar).
Assassination of William of Orange.
Drake defeated the Spanish Armada.
Cataldi (continued fractions); Stevin (decimal fractions, compound 
interest table, statics, hydrostatics).
Adrianus Romanus (value of 7r, problem of Apollonius).
Pitiscus (trigonometry).



A Chronological Table 681

1598 Edict of Nantes.
1600 Thomas Harriot (algebra, symbolism); Jobst Biirgi (logarithms); 

Galileo (falling bodies, pendulum, projectiles, astronomy, tele
scopes, cycloid); Shakespeare.

1603 Accademia dei Lincei founded (Rome).
1608 Telescope invented.
1610 Kepler (laws of planetary motion, volumes, star polyhedra, princi

ple of continuity); Ludolf van Ceulen (computation of it).
1612 Bachet de Meziriac (mathematical recreations, edited Diophantus’ 

Arithmetica).
1614 Napier (logarithms, rule of circular parts, computing rods).
1619 Savilian professorships at Oxford established.
1620 Gunter (logarithmic scale, Gunter’s chain in surveying); Paul 

Guldin (centroid theorems of Pappus); Snell (geometry, trigonome
try, refinement of classical method of computing 7r, loxodromes); 
landing of the Pilgrims.

1624 Henry Briggs (common logarithms, tables).
1630 Mersenne (number theory, Mersenne numbers, clearinghouse for 

mathematical ideas); Oughtred (algebra, symbolism, slide rule, first 
table of natural logarithms); Mydorge (optics, geometry); Albert 
Girard (algebra, spherical geometry).

1635 Fermat (number theory, maxima and minima, probability, analytic 
geometry, Fermat’s last “theorem”); Cavalieri (method of indi
visibles).

1636 Harvard College founded.
1637 Descartes (analytic geometry, folium, ovals, rule of signs).
1640 Desargues (projective geometry); de Beaune (Cartesian geometry); 

Torricelli (physics, geometry, isogonic center); Frenicle de Bessy 
(geometry); Roberval (geometry, tangents, indivisibles); de la 
Loubere (curves, magic squares).

1643 Louix XIV crowned.
1649 Charles I executed.
1650 Blaise Pascal (conics, cycloid, probability, Pascal triangle, calculat

ing machines); John Wallis (algebra, imaginary numbers, arc 
length, exponents, symbol for infinity, infinite product converging 
to 7t/2, early integration); Frans van Schooten (edited Descartes 
and Viete); Gregoire de Saint-Vincent (circle squarer, other quad
ratures); Wingate (arithmetic); Nicolaus Mercator (trigonometry, 
astronomy, series computation of logarithms); John Pell (algebra, 
incorrectly credited with the so-called Pell equation).

1660 Sluze (spirals, points of inflection); Viviani (geometry); Brouncker 
(first president of Royal Society, rectification of parabola and cy
cloid, infinite series, continued fractions); the Restoration.



1662 Royal Society founded (London).
1663 Lucasian professorships at Cambridge established.
1666 French Academy founded (Paris).
1670 Barrow (tangents, fundamental theorem of the calculus); James 

Gregory (optics, binomial theorem, expansion of functions into 
series, astronomy); Huygens (circle quadrature, probability, evo
lutes, pendulum clocks, optics); Sir Christopher Wren (architec
ture, astronomy, physics, rulings on hyperboloid of one sheet, arc 
length of cycloid).

1671 Giovanni Domenico Cassini (astronomy, Cassinian curves).
1672 Mohr (geometric constructions with limited tools).
1675 Greenwich observatory founded.
1680 Sir Isaac Newton (fluxions, dynamics, hydrostatics, hydrodynam

ics, gravitation, cubic curves, series, numerical solution of equa
tions, challenge problems); Johann Hudde (theory of equations); 
Robert Hooke (physics, spring-balance watches); Seki Kowa (de
terminants, calculus).

1682 Leibniz (calculus, determinants, multinomial theorem, symbolic 
logic, notation, calculating machines); Acta eruditorum founded.

1685 Kochanski (approximate rectification of circle).
1690 Marquis de l’Hospital (applied calculus, indeterminate forms); Hal

ley (astronomy, mortality tables and life insurance, translator); 
Jakob (James, Jacques) Bernoulli (isochronous curves, clothoid, 
logarithmic spiral, probability); de la Hire (curves, magic squares, 
maps); Tschirnhausen (optics, curves, theory of equations).

1691 Rolle’s theorem in the calculus.
1700 Johann (John, Jean) Bernoulli (applied calculus); Giovanni Ceva 

(geometry); David Gregory (optics, geometry); Parent (solid ana
lytic geometry).

1706 William Jones (first use of tt for circle ratio).
1715 Taylor (expansion in series, geometry).
1720 De Moivre (actuarial mathematics, probability, complex numbers, 

Stirling’s formula).
1731 Alexis Clairaut (solid analytic geometry).
1733 Saccheri (forerunner of non-Euclidean geometry).
1734 Bishop Berkeley (attack on the calculus).
1740 Marquise du Chatelet (French translation of Newton’s Principia); 

Frederick the Great became King of Prussia.
1743 Maclaurin (higher plane curves, physics).
1748 Agnesi (analytic geometry, witch of Agnesi).
1750 Euler (notation, ei7T = — 1, Euler line, v — e + f  = 2, quartic equa

tion, (^-function, beta and gamma functions, applied mathematics); 
Cramer’s rule.

682 A CHRONOLOGICAL TABLE



A Chronological Table 683

1770 Lambert (non-Euclidean geometry, hyperbolic functions, map pro
jection, irrationality of it).

1776 United States’ independence.
M il  Comte du Buffon (calculation of tt by probability).
1780 Lagrange [calculus of variations, differential equations, mechanics, 

numerical solution of equations, attempted rigorization of calculus 
(1797), theory of numbers].

1789 French Revolution.
1790 Meusnier (surfaces).
1794 Ecole Polytechnique and Ecole Normale founded; Monge (descrip

tive geometry, differential geometry of surfaces).
1797 Mascheroni (geometry of compasses); Wessel (geometric represen

tation of complex numbers).
1799 Republic of France adopted the metric system of weights and mea

sures; Rosetta Stone unearthed.
1800 Gauss (polygon construction, number theory, differential geometry, 

non-Euclidean geometry, fundamental theorem of algebra, astron
omy, geodesy).

1803 Carnot (modern geometry).
1804 Napoleon made emperor.
1805 Laplace (celestial mechanics, probability, differential equations); 

Legendre [Elements de geometrie (1794), theory of numbers, ellip
tic functions, method of least squares, integrals].

1806 Argand (geometrical representation of complex numbers).
1810 Gergonne (geometry, editor of Annales).
1815 “The Analytical Society’’ at Cambridge; Battle of Waterloo.
1816 Germain (theory of elasticity, mean curvature).
1819 Horner (numerical solution of equations).
1820 Poinsot (geometry).
1822 Fourier (mathematical theory of heat, Fourier series); Poncelet 

(projective geometry, ruler constructions); Feuerbach’s theorem.
1824 Thomas Carlyle (English translation of Legendre’s Geometrie).
1826 Crelle’s Journal; principle of duality (Poncelet, Pliicker,

Gergonne); elliptic functions (Abel, Gauss, Jacobi).
1827 Cauchy (rigorization of analysis, functions of a complex variable, 

infinite series, determinants); Abel (algebra, analysis).
1828 Green (mathematical physics).
1829 Lobachevsky (non-Euclidean geometry); Pliicker (higher analytic 

geometry).
1830 Poisson (mathematical physics, probability); Peacock (algebra); 

Bolzanno (series); Babbage (computing machines); Jacobi (elliptic 
functions, determinants).
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1831
1832

1834
1836
1837
1839

1841
1842
1843
1844
1846
1847
1849
1850
1852
1854

1855
1857
1865

1872

1873

1874

1877
1878
1881
1882

1884
1887
1888

1889
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Somerville (exposition of Laplace’s Mecanique celeste).
Bolyai (non-Euclidean geometry); Galois (groups, theory of equa
tions).
Steiner (higher synthetic geometry).
Liouville’s Journal.
Trisection of an angle and duplication of cube proved impossible. 
Cambridge Mathematical Journal, which in 1855 became Quarterly 
Journal o f Pure and Applied Mathematics.
Archiv der Mathematik und Physik.
Nouvelles annales de mathematiques.
Hamilton (quaternions).
Grassmann (calculus of extension).
Rawlinson deciphered the Behistun rock.
Staudt (freed projective geometry of metrical basis).
Dirichlet (number theory, series).
Mannheim (standardized the modern slide rule).
Chasles (higher geometry, history of geometry).
Riemann (analysis, non-Euclidean geometry, Riemannian geome
try); Boole (logic).
Zacharias Dase (lightning calculator).
Cayley (matrices, algebra, higher-dimensional geometry).
London Mathematical Society founded; Proceedings o f the London 
Mathematical Society.
Societe Mathematique de France founded; Klein’s Erlanger Pro
gramm; Dedekind (irrational numbers).
Hermite proved e transcendental; Brocard (geometry of the tri
angle).
Georg Cantor (set theory, irrational numbers, transcendental num
bers, transfinite numbers).
Sylvester (algebra, invariant theory).
American Journal o f Mathematics.
Gibbs (vector analysis).
Lindemann (transcendence of 7r, squaring of circle proved impos
sible).
Circolo Matematico di Palermo founded.
Rendiconti.
Lemoine (geometry of the triangle, geometrography); American 
Mathematical Society founded (at first under a different name; 
Bulletin o f the American Mathematical Society); Kovalevsky (par
tial differential equations, Abelian integrals, Prix Bordin).
Peano (axioms for the natural numbers).
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1892
1894
1895
1896

1899
1900
1903
1906

1907
1909
1914
1915
1916
1917

1922
1923
1927
1931
1933

1934
1939
1941
1944
1945

1948

1963

1971

1976
1985
1987
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Weierstrass (arithmetization of analysis); Deutsche Mathematiker- 
Vereinigung organized.
Jahresbericht.
Scott (geometry of curves); The American Mathematical Monthly. 
Poincare (Analysis situs).
Prime number theorem proved by Hadamard and de la Vallee 
Poussin.
Hilbert (Grundlagen der Geometrie, formalism).
Transactions o f American Mathematical Society.
Lebesgue integration.
Grace Young (first woman to receive a German doctorate through 
the regular examination process, set theory); Frechet (functional 
analysis, abstract spaces).
Brouwer (intuitionism).
Russell and Whitehead (Principia mathematica, logicism).
Start of World War I.
Mathematical Association of America founded.
Einstein (general theory of relativity).
Hardy and Ramanujan (analytical number theory); Russian Revolu
tion.
E. Noether (abstract algebra, rings, ideal theory).
Banach spaces.
Lindberg flew across the Atlantic.
Godel’s theorem.
Hitler became chancellor of Germany ; Institute for Advanced 
Study founded at Princeton.
Gelfond’s theorem.
Bourbaki’s works commenced.
Pearl Harbor bombed.
IBM Automatic Sequence Controlled Calculator (ASCC). 
Electronic Numerical Integrator and Computer (ENIAC); Hiro
shima bombed.
Improved ASCC installed at Naval Proving Ground, Dahlgren, 
Virginia.
P. J. Cohen on the continuum hypothesis; President Kennedy as
sassinated.
First pocket calculator offered for sale in the consumer market; 
Association for Women in Mathematics founded.
Four-color conjecture established by K. Appel and W. Haken. 
Supercomputers in use.
Bieberbach conjecture established.
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ANSWERS AND SUGGESTIONS 
FOR THE SOLUTION OF THE 
PROBLEM STUDIES

1.1 (a) “one man” = 20 (10 fingers plus 10 toes), etc.
(b ) If one counts on the fingers of the open hand by folding the fingers down 

one by one, when 5 is reached all fingers are folded down and the hand has 
“come to an end,” or “died.”

(c) The peak-finger is the middle finger, which would denote 3 when counting 
on one’s fingers, starting with the little finger as 1.

(d) Here we have number names that originated from gestures formerly used 
to express the numbers.

(e) A husband and wife sleep on the same mattress.
(f) This refers to the 9 months of pregnancy.

1.3 (a) 27, 3, 2.
(b ) 5780 = e'i//7r, 72,803 = £M/3'coy, 450,082 = 3,257,888 =

TMKMeM£'co7n7.
1.4 (d) 360 = 2(53) + 4(52) + 2(5) = (())))**,

252 = 2(5)3) + 2(1) = ((//,
78 = 3(52) + 3(1) = )))///,
33 = 1(52) + 1(5) + 3(1) = )*///.

(e) 360 = *(* # , 252 = * # # * , 78 = )#), 33 = II).
1.5 (a) Note that ab = [(a -  5) + (b -  5)] 10 + (10 -  a)(10 -  b).
1.6 (b )  Multiply the decimal fraction by b, then the decimal part of this product

by bf and so forth.
(c) (.3012)4 = 99/128 = .7734375.

1.8 (a) First express to base 10, and then to base 8.
(b ) 9, 8, 7.
(c) no, yes, yes, no.
(d) In the first case, we have 79 = b2 + 4b + 2.
(e) Denoting the digits by a, b, c we have 49a + lb  + c = 81c + 9b + a, 

where at by c are less than 7.
(f) We must have 3b2 + 1 = t2, t and b positive integers, b >  3.

1.9 (a) Express w in the binary scale.
1.10 (a) Let t be the tens digit and u the units digit. Following instructions we have

2(51 + 7) + u = (10* + u) + 14 

as the announced final result. The trick is now obvious.
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6 8 8  ANSWERS TO THE PROBLEM STUDIES

2.1 (a) Suppose * is regular. Then

*
0o 60
*o60r + a\60r 1 + • • • + ar 

6(K

60'’ say.

It follows that mn = 60r and * can have no prime factors other than those 
of 60.

(e) 3.
2.2 (a) We have (1.2)* = 2, whence x = (log 2)/(log 1.2).
2.4 (a) We have x1 + y 2 = 1000, y = 2jc/3 -  10.

(d) 20, 12.
(e) altitude of trapezoid = 24.
(f) 0;18.
(g) Yes.

2.5 (c) 31;15.
(d) Denoting the right members of the given equations by a and b, respec

tively, one finds that jc8 + a2x4 = b2.
2.6 (b )  Set x = 2y.

(c) Eliminate x and y, obtaining a cubic equation in z.
(d) Take the cubic in x with unit leading coefficient and subject it to a linear 

transformation of the type x = y + m. Determine m so that the resulting 
cubic in y lacks the linear term.

2.8 (b )  Express, in the binary scale, the factor that is successively halved.
2.9 (c) Take p = 1, 3, 9 in turn.

(e) If n = 3a, the other unit fraction is \/2a.
(f) If* = 5a, the other unit fraction is 1/3*.
(h) Apply the relation given in (d).

2.10 (a) 2/7 = 1/4 + 1/28.
(b ) 2/97 = 1/49 + 1/4753.
(c) Denote the given fraction by alb, where a < b, and let

bla = x + r/fl, r < a.

Then

alb =  1 / ( jc +  rla), 0 <  rla <  1.

But

\lx > \/(x + rla) > M(x + 1).

2.11 (b )  Yes.
(c) 5J.
(d) (35)2/13 cubits.
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2.12

2.13

2.14

2.15

2.16

3.2

3.3

(a) By fraction, Ahmes means unit fraction. Only the denominators of unit 
fractions were written.

(c) Let x be the largest share and d the common difference in the arithmetic 
progression. Then we find 5x -  1 Od -  100 and 1 Ijc — 46d = 0.

(a) 256/81, or approximately 3.16.
(c) Consider the right triangle Tx with legs a and b, and any other triangle T2 

with sides a and b. Place T2 on T\ so that one pair of equal sides coincide. 
Or use the formula K = (1/2)ab sin C.

(d) Draw the diagonal DB and use (c).
(e) (a + c)(b + d)/4 = [(ad + be)/2 + (ab + cd)/2]/2. Now use (d).
(f) The corollary is not correct.
(b) Start with Vra -  Vn ^  0.
(c) Complete the pyramid of which the frustum is a part, and express the 

volume of the frustum as the difference between the volumes of the com
pleted and added pyramids.

(a) 3, 4.
(b) 4, 10.

The 4 right triangles having legs of lengths 3 and 4, along with the small unit 
square, form a square whose area is 25. It follows that the hypotenuse of a right 
triangle having legs 3 and 4 is 5. Since a triangle is determined by its 3 sides, it 
now follows that a 3, 4, 5 triangle is a right triangle.

(a) Show that 2mn -  1 contains the factor 2m -  1.
(b) 8128.
(c) If au a2, . . . , an represent all the divisors of N, then N/a\, N/a2, . . . , 

N/an also represent all the divisors of N.
(d) The sum of the proper divisors of pn is (pn -  1 )/(p -  1).
(h) (1) For n = 1 we have 26(27 -  1) = 213 -  26 * 213. Log 213 = 13 log 2 = 

4+. Therefore the answer is 4.
(i) The five-link sociable chain is 12496, 14288, 15472, 14536, 14264.
(j) The divisors of 120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120.
(k) Yes.
(a) 1, 6, 15, 28.
(b) An oblong number is of the form a(a + 1).
(d) See Figure 129.
(g) 2n~l(2n -  1) = 2n(2n -  l)/2.
(h) a — (m — 2)12, b = (4 -  m)/2.
(i) a = 5/2, b = -3/2.

• •

• •

• •

• •

FIGURE 129
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3.4

3.6

3.7

(a) Use the fact that (a — b)2 ^  0.
(c) Multiply the first equation by b and the second by a, and then eliminate 

abln.
(e) A cube has 8 vertices, 12 edges, and 6 faces.
( f )  Set m = a/(b + c), n = cl (a + b). Using the fact that b = 2 ca/(c + a), 

show that 2mnl(m + n) = b/(c + a).
(c) If there were an isosceles right triangle with integral sides, then V2 would 

be rational.
(d) If there are positive integers a, b,c(a±  1) such that a1 + b2 = c2 and b2 = 

ac, then a, b, c cannot be relatively prime. But if there is a Pythagorean 
triple in which one integer is a mean proportional between the other two, 
there must be a primitive Pythagorean triple of this sort.

(g) Show that (3a + 2c + l)2 + (3a + 2c + 2)2 = (4a + 3c + 2)2 if a2 + 
(a + l)2 = c2.

(h) Use (g).
(i) In the parametric representation of primitive Pythagorean triples, given in 

Section 2-6, either u or v must be even, whence leg a is a multiple of 4. If 
u or v is a multiple of 3, then leg a is a multiple of 3. If neither u nor v is a 
multiple of 3, then u is of the form 3m ± 1 and v is of the form 3n ± 1, and 
it follows that u2 -  v2 is a multiple of 3, and therefore leg b is a multiple of 
3. If u or v is a multiple of 5, then leg a is a multiple of 5. If neither u nor v 
is a multiple of 5, then u is of the form 5m ± 1 or 5m ± 2 and v is of the 
form 5n ± 1 or 5n ± 2. If u = 5m ± 1 and v = 5n ± 1, or if w = 5ra ± 2 and 
v = 5n ± 2, then u2 -  v2 is a multiple of 5. If u = 5m ± 1 and v = 5n ± 2, or 
if u -  5m ± 2 and v = 5n ± 1, then u2 + v2 is a multiple of 5. It follows that 
either leg b is a multiple of 5 or hypotenuse c is a multiple of 5.

(j) If n is odd and >2, (n, (n2 — l)/2, (n2 + l)/2) is a Pythagorean triple. If n is 
even and >2, (n, n2/4 -  1, n2/4 + 1) is a Pythagorean triple.

(k) Since a2 = (c -  b)(c + b) it follows that b + c is a factor of a2. Therefore 
b < a2 and c < a2, and the number of combinations of such natural 
numbers b and c is finite.

(a) If the line should pass through the point (a,b) of the coordinate lattice, we 
would have V2 = bla, a rational number.

(c) Assume Vp = alb, where a and b are relatively prime.
(d) Assume logi0 2 = alb, where a and b are integers. Then we must have 

10" = 2b, which is impossible.
( f )  Let (see Figure 130) AC and BC be commensurable with respect to AP.

FIGURE 130
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Show that then DE and DB are also commensurable with respect to AP, 
and so on.

3.9 (b) ab is the fourth proportional to 1, a, b.
(c) alb is the fourth proportional to b, 1, a.
(d) V a  is a mean proportional between 1 and a.
(g) Construct the mean proportional between a and na.
(h) Use the fact that a3 + b3 = (a + b)(a2 + b2 -  ab).
(i) Use the fact that

a( 1 + V2 + V3) l/2 = [a(a + a V i  + a V3)]1/2.

(j) Use the fact that ( abed)1/4 = [(ab)m{cd)'n\m.
(k) 60°.

3.10 (a) Obtain Vl2 as in 3.9(d).
(c) Denote the parts by jc and a -  x. Then x 2 — (a -  jc) 2 = x(a -  jc) ,  or jc2 + 

ax — a2 = 0 .
(e) Show that OM + ON = g and (OM)(ON) = h.
(g) Let A  be the point (0,2) and let RS  cut the jc-axis in L  and the tangent to the 

circle at A  in T. We have the following equations:

circle: jc2 + y(y -  2) = 0,
line AR: 2x + r(y -  2) = 0, 
line AS: lx  + s(y -  2) = 0.

Therefore (line A/?)(line AS) -  4(circle) = 0 yields

(y ~ 2)[2x(r + s) + rs(y -  2) -  4y] = 0,i

a pair of lines on the intersections of the circle with the lines AR  and AS. 
It follows that the second factor set equal to 0 represents the line RS. 
Setting y = 0, we find OL = rs/(r + s) = h/g; setting y = 2, we find AT  = 
4 l(r + s) = 4/g.

3.11 (b) First trisect the diagonal BD by points E  and F. Then the broken lines
AEC and AFC divide the figure into three equivalent parts. Transform 
these parts so as to fulfull the conditions by drawing parallels to AC 
through E  and F.

(d) Through B draw BD parallel to M N  to cut AC  in D. Then, if the required 
triangle is AB'C', A C ' is a mean proportional between AC and AD.

(e) Let ABC be the given triangle. Draw A B ’ making the given vertex angle 
with AC  and let it cut the parallel to AC  through B in B '. Now use (d).

3.12 (a) A convex polyhedral angle must contain at least 3 faces, and the sum of its
face angles must be less than 360°.

(b) V = e3V2/3, A  = 2e2V3.
3.13 This Problem Study would make a good junior research project for the better 

prepared student, who might care to consult the mensuration formulas for regu
lar polyhedra as given, for example, in the CRC Standard Mathematical Tables.

(a) Denote the longer segment by y and the shorter one by x. Then 
jc + y : y = y : jc, or jc2 + xy — y2 = 0, or (jcly)2 + jcly -  1 = 0, or x/y = 
(V5 -  l)/2.

3.14
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D C

FIGURE 131

(b) In Figure 131, isosceles triangles DAC and DGC are similar. Therefore, 
AD .D G  = D C : GC, whence DB.DG  = DG.GB.

(c) AG: AH  = AG:GB = A B : AG = AB -  AG:AG -  AH  = GB:HG  = 
AH:HG.

(d) Let HG in Figure 131 be the given side. Draw a right triangle PQR with 
legs PR and QR equal to HG and HG!2, respectively. On PQ produced 
mark off QT = QR. Then PT = GB = GC = HC, and so on.

(e) Let DB in Figure 131 be the given diagonal. Draw a right triangle PQR 
with legs PR and QR equal to DB/2 and DB, respectively. On PQ mark off 
PT = PR. Then TQ = DG = DC, and so on.

3.16 See The Mathematical Gardner (Prindle, Weber & Schmidt, 1980), pp. 276, 277.
4.1 (b) Let A be the given point and BC the given line segment. Construct by

Proposition 1 an equilateral triangle ABD. Draw circle B{C) and let DB 
produced cut this circle in G. Now draw circle D(G) to cut DA produced 
in L. Then AL  is the sought segment.

(c) Use Proposition 2 of Book I.
4.2 (a) See T. L. Heath, A Manual of Greek Mathematics, pp. 155-57.

(b) (1) The equations of the parabolas may be taken as x 2 = sy and y2 = 2sx, 
where 5 and Is are the latera recta of the parabolas. (2) The equations of 
the parabola and hyperbola may be taken as x 1 = sy and xy = Is2.

4.3 (a) Let M  be the midpoint of OA and let E be the center of the rectangle
OADB. Then, by Proposition 6, Book II (see Section 3-6), {OA'){AA') + 
{MA)2 = {MA')2. Adding {ME)2 to both sides we find

(GA')(AA') + {EA)2 = {EA')2.

Similarly, {OB'){BB') + {EB)2 = {EB')2. Therefore

{OA'){AA') = {OB'){BB').

4.4 (a) We have r = P\Pi = AP\ tan 6 = 2a sin 6 tan 6 . It follows that r =
2a{y/r){y/x), or r2x = 2ay2.

(b) Denote the coordinates of P by (Jt,y). Then (A03/(GA)3 = y3/jt3 = 
y/{2a -  x) = RP/RA = OD/OA = n , where R is the foot of the perpendic
ular from P on OA.

(c) Let S be the foot of the perpendicular from R on MN, and let T be the
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midpoint of RS. Draw the circle S(T) to cut TP in U. Then SCPU is a 
parallelogram. Let TP cut MN in V and the tangent to S(T) at the point Q 
diametrically opposite to T in W. Triangles SUV and APV are congruent, 
and UV = VP. It is now easy to show that TP = UW. Thus P lies on the 
cissoid of S(T) and QW for the pole T.

4.5 (a) The equation of the hyperbola, referred to its asymptotes as coordinate
axes, is xy = ab, where (b/2,a/2) is the center of the rectangle. The 
equation of the circumcircle of the rectangle is x2 + y2 -  ay -  bx = 0. The 
point of intersection of the hyperbola and circle, other than the point 
(b,a), is (^/a2b, ab2). But ^/a2b and ab2 are the mean proportionals 
between a and b.

4.6 (a) Denote AB by a, AC by b, BC by c, angle ADB by 0. Then, by the law of
sines, applied first to triangle BCD and then to triangle ABD, sin 30°/sin 6 
= ale, sin 0/sin 120° = a/(b + a). Consequently 1/V3 = tan 30° = 
a2/c(b + a). Squaring both sides and recalling that c2 = b2 -  a2, we find 
2a\2a + b) = b3(2a + b), or b3 = 2a3.

(b) Draw CO and use the fact that an exterior angle of a triangle is equal to the 
sum of the 2 remote interior angles.

4.7 (a) Let R be the foot of the perpendicular from Q on the jc-axis and let RQ cut
c in S. Then OQ/RQ = PQ/SQ.

(b) See 4.6(a).
(c) See 4.6(b).
(d) See 4.4.

4.8 (a) Let Q and N be the feet of the perpendiculars from P and M on OA,
and let QP cut OM in S. Since P and R are on the hyperbola, we have 
(OQ)(QP) = (ON)(NR), or NR = (<OQ)(NM)ION. Hence SP = RM. But, 
from similar triangles OQS and ONM, QS = (OQ)(NM)/ON. It follows 
that SRMP is a rectangle. If T is the center of this rectangle, OP = PT = 
TM.

(b) Take radius OA = 1 and denote angle AOB by 36. Take P on arc AB such 
that angle AOP = 1/3 angle AOB, and let Q be the foot of the perpendicu
lar from P on OC. Then AP = 2 sin 0/2 = 2 PQ.

4.9 (a) Use the fact that the sum of the infinite geometric series 1/2 -  1/4 + 1/8 -
1/16 + • • • is 1/3. For another asymptotic Euclidean solution of the trisec
tion problem, see Problem 4134, The American Mathematical Monthly 
(December) 1945: 587-589.

4.10 (a) We have angle AOP = kirl2 when OM =  k(OA) =  k. Therefore, if we
denote the coordinates of P by (x,y), y = k = jc tan (kir/l) = x tan (iry!2).

(c) Let the quadratrix cut OA in Q. Then

OQ = lim
>̂ ° tan

2
7T*

by l’Hospital’s rule in calculus. It is now easy to show that

AC:OA = OA: OQ.

4.11 (a) 3.1414.
(b) 3.14153.
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(c) GBIBA = EF/FA = (DE)2/(DA)2 = (DE)2I[(BA)2 + (BC)2]. Therefore,
GB = 42/(72 + 82) = 16/113 = 0.1415929 ___ This leads to 355/113 as an
approximation of it.

4.13 (a) Let a  =  tan 1 (1 /5) and fi = tan_,(l/239). Then show that 4a -  [3 = tt/4 by
showing that tan (4a — j3) = 1.

(b) Consider a circle of unit radius. Then the side of an inscribed square is 
given by sec 0, where 0 = 45°. The sum of 2 sides of a regular inscribed 
8-gon is given by sec 0 sec 0/2; the sum of 4 sides of a regular inscribed 
16-gon is given by sec 6 sec 6/2 sec 6/4; and so on. It follows that

n 6 6 itsec 6 sec  ̂sec  ̂ • • • —» ,

the length of a quadrant of the circle. Therefore,

2 . 6 6 
—  =  COS 6 COS x  COS 7  • • • •it 2 4

Now use the fact that cos 6 = V2/2 and cos 6/2 = [(1 + cos 0)/2)1/2, 
cos 0/4 = [(1 + cos 0/2)/2]1/2, and so on.

(c) Set x = VT/3 in Gregory’s series.
(f) Let 0 denote Tr/ln. Then sin 0 = s2n/2R, cos 0 = sn/2s2n • Now use the fact 

that sin20 + cos20 = 1.
(g) Let 0 denote tt/2n. Then tan 20 = Sn/2r, tan 0 = S2J2r. Now use the fact 

that tan 20 = (2 tan 0)/(l -  tan20).
(h) First show that pn = 2nP sin (7r/n), = 2nR tan (rr/n).
(i) First show that an = n/?2sin(7r/n)cos(7r/«), An = nR2tan(7r/n).

4.14 (a) arc AR = tt/2, AT = 3/2.
(b) Let M be the foot of the perpendicular from P on OA. Then PM = sin 0, 

OM = cos 0, whence tan </> = sin 0/(2 + cos 0).
(c) Let PS cut the circle again in N. Then, since ON < SN, angle SON = </> + 

e, where e > 0. Therefore angle ONP = 2</> + £, and 0 = 3</> + e.
4.15 (a) The 32nd decimal place in the expansion of tt is occupied by 0.
5.1 (c) Suppose a > b. Then the algorithm may be summarized as follows:

a = q\b + r\ 0 < rx < b
b = q2r\ + r2 0 < r2 < r\
r\ = q^r2 + r3 0 < r3 < r2

rn- 2 = qnrn-1 + rn 0 < rn < rn. x
r n - 1 =  < ln + lr n

Now, from the last step, rn divides rn- X. From next to the last step rn 
divides r„_2, since it divides both terms on the right. Similarly rn divides 
rn-3. Successively, rn divides each rit and finally a and b.

On the other hand, from the first step, any common divisor c of a and 
b divides rx. From the second step, c then divides r2. Successively, c 
divides each r,. Thus c divides rn.
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5.2

5.5

5.6

5.7

(d)

(a)

(b)

(c)

(c)
(f)

(h)

(c)

(c)

(f)

From the next to the last step in the algorithm, we can express rn in terms 
of rn-\ and r„_2. From the preceding step, we can then express rn in terms 
of rn- 2 and r„_3. Continuing this way, we finally obtain rn in terms of a 
and b.
If p does not divide u, then integers P and Q exist such that Pp + Qu = 1, 
or Ppv + Quv = v.
Suppose there are two prime factorizations of the integer n. If p is one of 
the prime factors in the first factorization it must, by (a), divide one of the 
factors in the second factorization, that is, coincide with one of the 
factors.
We note that 273 = (13)(21). Find [see 5.1(e)] integers p and q such that 
13/? + 21 q = 1. Dividing by 273, we then have pi21 + q! 13 = 1/273. 
Similarly find integers r and s such that 1/21 = r/3 + s/1.
For each b( in (b) may have at + 1 values.
Since b divides ac, we have bt ^  at + ct . Also, since a and b are relatively 
prime, we have at = 0 or bt = 0. In either case bt ^  c, .
Suppose V2 = alb, where a and b are positive integers. Then, since a1 = 
2b1, we have (2ax, 2a2, . . .) = (1 + 2bx, 2b2, . . .), whence 2ax = 1 + 2b\, 
which is impossible.
Let ABC be the given triangle and let XY, parallel to BC, cut AB in X and 
AC in Y. Draw BY and CX. Show that ABXY : AAXY = ACXY: AAAT. 
But, by VI 1, £SBXY: AAXY = BX:XA and ACAT: AAAT = CY: YA. 
For [see 5.1(f)] there exist positive integers p and q such that pr — qs = 
± 1. Then the difference between the angle subtended at the center of the 
s-gon by p of its sides and the angle subtended at the center of the r-gon by 
q of its sides is

= (pr -  qs) 360°
rs

±360°
rs

To see how Euclid established this proposition, consult Heath, The Thir
teen Books of Euclid’s Elements. A pretty trigonometric proof can be 
formulated along the following lines. Let u = 18°. Then sin 4u = cos u and 
cos 4u = sin u. Show that these, respectively, imply

-8 sin4« + 4 sin2w = sin u
and

8 sin4« -  8 sin2w + 1 = sin u,

from which we obtain

-16 sin4« + 12 sin2w = 1.

Now, if p and d represent the sides of a regular pentagon and a regular 
decagon inscribed in a unit circle, show that p = 2 sin 2u and d = 2 sin u, 
whence

p2 -  d2 = -16 sin4w + 12 sin2« = 1,

which establishes the proposition.
(g) Show that tan (180717) is approximately equal to 3/16.
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5.12 (c )  hc = b sin A.
(f) ha = ta cos \{B -  C)/2].
(g) 4/i„2 + (ba -  ca)~ = 4ma2.
(h) ba — ca = 2R sin (B — C).
(i) 4R(ra — r) = (ra -  r )2 + a2. If M  and N  are the midpoints of side BC and 

arc BC, then MN = (ra -  r)/2; clearly any 2 of R, a, MN  determine the 
third.

(j) ha = 2rral(ra -  r).
5.13 (b) See Problem 3336, The American Mathematical Monthly, August 1929.

(c ) See Problem E  1447, The American Mathematical Monthly, September
1961. The solution given in this reference is a singularly fine application of 
the method of data.

5.14 (b) Let M  be the midpoint of BC. The broken line EMA bisects the area.
Through M  draw MN  parallel to AE  to cut a side of triangle ABC in N. 
Then EN  is the sought line.

(c ) Let a, b ,h  denote the bases and altitude of the given trapezoid, let c be the 
sought parallel line, let p  be the altitude of the trapezoid with bases a and 
c, and let q be the altitude of the trapezoid with bases c and b. Then we 
have (a + c)p = (c + b)q, p + q = h, {a + c)2p = (a + b)h. Eliminating p 
and q and solving for c we find c = [(a2 + b2)/2]1/2, the root-mean-square 
of a and b.

6.1 (a) sec [(29/30)90°] = sec 87° =19.11.
6.2 (d-1) The volume of the segment is equal to the volume of a spherical sector

minus the volume of a cone. Also, a2 = h(2R -  h).
(d-2) The segment is the difference of 2 segments, each of 1 base, and having, 

say, altitudes u and v. Then

V = ttR(u2 -  v2)2 _ „2X _ ~ ^

= 73"/* [(/?« + Rv) ~ ~2 +  UV +  V2'

But u2 + uv + v2 = h2 + 3uv and also (2R -  u)u = a2 and (2R -  v)v = b2. 
Therefore

6.4
6.5

6.7

V = 7rh 

= rrh

a2 + b2

â2 + b2

u2 + V2 h 2 \
2 3 UV)

h 2 h 2 \
~2 + uv — —̂ uv J and so on.

(f) Pass the planes perpendicularly through the trisection points of a diameter 
of the sphere.

(a) (GC)2 + (7W)2 = 4r,r2.
(a) Produce CB to E so that BE = BA. Prove triangles MBA and MBE are 

congruent. For a singularly elegant alternative proof, see Solution I of 
Problem 466 in Crux Mathematic or um (June-July) 1980: 189.

(b) Let A and B be points, and C a straight line. Produce AB to cut line C in S. 
Now find T on line C such that (ST)2 = (SA)(SB). In general, there are 2 
solutions.
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6.8

6.9

6.11

6.12

6.13

6.14

6.15

(c) Reflect the given point in a bisector of the angle determined by the 2 given 
lines.

(d) Reflect the focus F in the line ra, obtaining a point F '. Now, by (b), find 
the centers of the circles passing through F and F* and touching the given 
directrix.

(b) For problem (1) take A and B on the jc-axis and reflections of one another 
in the origin.

(c) 1. Let the interior and exterior bisectors of angle APB cut AB in M and N. 
Then M and N  are on the required locus and angle MPN is a right angle. 
2. Let A and B be the fixed points, P the moving point, and O the midpoint 
of AB. Add the expressions for (PA)2 and (PB)2 as given by the law of 
cosines applied to triangles PAO and PBO.

(a) Let ABCD be the cyclic quadrilateral. Find E on diagonal AC such that
ABE = 4  DBC. From similar triangles ABE and DBC, obtain (AB)(DC) 

= (AE)(BD). From similar triangles ABD and EBC, obtain (AD)(BC) = 
(EC)(BD).

(b-1) In (a) take AC as a diameter, BC = a, and CD = b.
(b-2) In (a) take AB as a diameter, BD = a, and BC = b.
(b-3) In (a) take AC as a diameter, BD = t and perpendicular to AC.
(d-1) Taking the side of the triangle as 1 unit, apply Ptolemy’s theorem to

quadrilateral PACB.
(d-2) Taking the side of the square as 1 unit, apply Ptolemy’s theorem to quadri

laterals PBCD and PCD A.
(d-3) Taking the side of the pentagon as 1 unit, apply Ptolemy’s theorem to 

quadrilaterals PCDE, PCDA, PBCD.
(d-4) Taking the side of the hexagon as 1 unit, apply Ptolemy’s theorem to 

quadrilaterals PBCD, PEFA, PBCF, PCFA.
(b) Let a ray of light emanating from a point A hit the mirror at point M and 

reflect toward a point B. If B' is the image of B in the mirrow, then BB' is 
perpendicularly bisected by the plane of the mirror, and we must have 
AMB' a straight line.

(c) Apply (b).
(b) Show, from a figure, that ab = 2rs and a + b = r + s, and then solve 

simultaneously.
(a) 120 apples.
(b) 60 years old.
(c) 960 talents.
(d) Each Grace had 4n apples, gave away 3n, and had n left.
(a) 2/5 of a day.
(b) 144/37 hours.
(c) 30.5 minae of gold, 9.5 minae of copper, 14.5 minae of tin, and 5.5 minae 

of iron.
(a) 84 years old.
(b) 7, 4, 11,9.
(c) Set CD -  3 jc, AC = 4 jc, AD = 5 jc, CB = 3y. Then, since ABIDB = 

ACICD, we find AB =  4(y -  jc) . By the Pythagorean theorem, we are led 
to ly = 3 2 jc. We finally get AB = 100, AD = 35, AC = 28, BD = 75, 
DC = 21.

(d) 1806.
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6.16

6.17

6.18

6.19

6.20 
6.21

7.1
7.2

7.3

(a) 481 = 202 + 92 = 162 + 152.
(b) We have 5 = 22 + l2, 13 = 32 + 22, 17 = 42 + l2. By using the identities of

(a) we find

(5)(13) = 82 + l2 = 72 + 42,
(5)(17) = 92 + 22 = 72 + 62,

(13)(17) = 142 + 52 = ll2 + 102.

Again, by the identities of (a), we find

1105 = 332 + 42 = 322 + 92 = 312 + 122 = 242 + 232.

(a) From the similar triangles DFB and DBO, FD/DB = DB/OD. Therefore 
FD = (DBfIOD = 2(AB)(BC)/(AB + BC).

(b) From similar right triangles, OAIOB = AF/BD = AF/BE = AC/CB = 
(OC -  OA)/(OB -  OC). Now solve for OC.

(c) Let HA cut BC in R and LM in S, and let LB cut DH in U and MC cut FH
in V. Then /  7 ABDE = I 1ABIJH = l  7 BRSL, and /HJACFG
= n z jA c v H  = n u R C M s.

(e) An analytic solution is easy if we recall that the coordinates of a point 
dividing the segment joining points (a,b) and (c,d) in the ratio min are 
(na + mc)/(m + n) and (nb + md)/(m + n) and that the coordinates of the 
centroid of the triangle determined by (a,b), (c,d), (ef) are

(a + c + e)/3 and (b + d + /)/3.

A synthetic solution is not so easy. One, due to Fuhrmann, is given in 
R. A. Johnson, Modern Geometry, Section 276, p. 175.

(a) V = 2tr2r2R, S = 4tr2rR.
(b) The centroid of the semicircular arc lies on the bisecting radius of the 

semicircle and at the distance 2rhr, where r is the radius of the semicircle, 
from the diameter of the semicircle.

(c) The centroid of the semicircular area lies on the bisecting radius of the 
semicircle and at the distance 4r/37r, where r is the radius of the semicir
cle, from the diameter of the semicircle.

(a) Let P be the point (x,y). Then, from similar triangles, x2/a2 = (OB)2/(AB)2 
and y2/b2 = (OA)2/(AB)2, whence x21 a2 + y2/b2 = 1.

(b) Keuffel and Esser Company has manufactured an ellipsograph based on 
the trammel construction.

See Howard Eves, A Survey of Geometry, vol. 1, Section 2-3.
This Problem Study, along with Problem Studies 2.14, 3.4, 4.13(h) and (i), and
6.17(a) and (b), constitutes a good junior research project of average difficulty.

(d) 37/4 dou, 17/4 dou, 11/4 dou.
(a) height = 9.6 ch’ih, width = 2.8 ch’ih.
(b) 12 feet.
(a) The magic constant = (1+2 + 3+ - + n2)ln.
(c) Denote the numbers in the magic square by letters and then add together 

the letters of the middle row, the middle column, and the 2 diagonals.
(d) Use (c) and an indirect argument.
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7.4 (a)
(b)
(c)

7.5 (a)
(b)
(c)
(d)

7.6 (a)
(b)
(c)
(d)
(e)

7.7 (a)
(b)

7.8 (b)

(c)

<d)

(e)

(f)

x = hd/(2 h + d).
8 cubits and 10 cubits.
40.
8 days.
18 mangoes.
8 for a citron and 5 for a wood apple.
36 camels.
72 bees.
20 cubits.
22/7 yojanas.
10!, 4!.
100 arrows.
Suppose Vtf = b + Vc. Then Vc = (a — b2 — c)/2 b.
If a + V b  = c + V5, then \ fb  = (c -  a) + VS. Now use (a).
It is easily shown that jc = x\ + mb and y = y\ — ma constitute a solution. 
Conversely, assume x and y form a solution. Then a(x -  jtO = b(y\ — y), 
or x — X] = mb and yi — y = ma.
Dividing by 7, we find

x + 2y + | y  = 29 + 

Therefore there exists an integer z such that

or

2y + lz  = 6 .

This can be solved by inspection to give z\ = 0, y\ = 3. Then jci = 23. The 
general solution of the original equation is then, by (b),

x = 23 + 16m, y = 3 — 7m.

Since, by requirement, x > 0, y > 0, we must have m ^  -1  and m ^  0. 
The only permissible values for m are 0 and -1 . We thus get two solutions

x = 23, y = 3 and x = 7, y = 10.

Or find, as in 5.1(f), p  and q such that Ip  + 16# = 1. Then we may 
take Xi = 2Q9p and y\ = 209q.
There are the 4 solutions: x = 124, y = 4; x = 87, y = 27; jc = 50, y = 50; 
jc = 13, y = 73.
Let x represent the number of dimes and y the number of quarters. Then 
we must have 10jc + 25y = 500.
Let jc denote the number of fruits in a pile and y the number of fruits each 
traveler receives. Then we have 63jc + 7 = 23y. The smallest permissible 
value for jc is 5.
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7.9

7.10

7.11
7.12

(a) Draw the circumdiameter through the vertex through which the altitude 
passes, and use similar triangles.

(b) Apply (a) to triangles DAB and DCB.
(c) Use the result of (b) along with Ptolemy’s relation, mn = ac + bd.
(d) Here 0 = 0° and cos 0=1.  Now use (b) and (c).
(b) Since the quadrilateral has an incircle we have a + c = b + d = s. 

Therefore, s - a  = c , s - b  = d, s -  c = a, s -  d = b.
(c ) In Figure 132, we have

a2 + c2 = r2 + s 2 + m2 + n2 — 2(rn + sm) cos 0,
b2 + d 2 = r2 + s 2 + m 2 + n2 + 2(sn + rm) cos 0.

Therefore a2 + c2 = b2 + d 2 if and only if cos 0 = 0, 6 = 90°.
(d) Use (c).
(e) The consecutive sides of the quadrilateral are 39, 60, 52, 25; the diagonals 

are 56 and 63; the circumdiameter is 65; the area is 1764.

FIGURE 132

(c) See T. L. Heath, A Manual of Greek Mathematics, pp. 340-42.
(a) We shall indicate a proof of the theorem for the 4-digit number N having 

a, b, c, d for its thousands, hundreds, tens, and units digits; the proof is 
easily generalized. Now

N = 1000a + 1006 + 10c + d.

Let S = a + b + c + d. Then

N = 999a + 996 + 9c + S = 9(111 a + 116 + c) + S, 

and so on.
(b) Let M and N be any two numbers with excesses e and/. Then there exist 

integers m and n such that

M = 9m + c, N = 9n + /.

Now

M + N = 9 (m + n) + (e + /),
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and

M N  = 9(9 mn + ne + mf) + ef,

and so on.
(d) Let M be the given number and N that obtained by some permutation of 

the digits of M. Then, since M and N consist of the same digits, they have 
[by (a)] the same excess e. Thus, we have

M = 9m + e, N = 9n + e. 

and

M — N = 9{m -  n).

(e) By (d) the final product must be divisible by 9, whence, by (a), the excess 
for the sum of the digits in the product must be 0.

(f) Replace 9 by (b -  1).
7.14 (b) jc = 2.3696.

(c) jc = 4.4934.
7.15 ( a )  Find z such that b/a = a/z, then m such that n/z = aim.

(c) The positive roots are 2 and 4; the negative root is -1.
7.16 (a) The real roots are given by the abscissas of the points of intersection of

the line ay + bx + c = 0 with the cubic curve y = jc3.
(b) jc = 1.7+.
(c) jc = -3.5, 1, 2.5.
(e) x = —6, -2 ,-1 .

7.17 (a) Draw any circle 2 on the sphere and mark any 3 points A, B, C on its
circumference. On a plane, construct a triangle congruent to triangle 
ABC, find its circumcircle, and thus obtain the radius of 2. Construct a 
right triangle having the radius of 2 as 1 leg and the polar chord of 2 as 
hypotenuse. It is now easy to find the diameter of the given sphere.

(b) If d is the diameter of the sphere and e the edge of the inscribed cube, then 
e = (c/V3)/3, whence e is one-third the altitude of an equilateral triangle of 
side 2d.

(c) If d is the diameter of the sphere and e the edge of the inscribed regular 
tetrahedron, then e = (c/V6)/3, whence e is the hypotenuse of a right 
isosceles triangle with leg equal to the edge of the inscribed cube. See (b).

8.1 (a) Let jc, y, z denote the number of men, women, and children. Then we
must have

6 jc + 4y + z = 200 and jc + y + z = 100,

or 5 jc +  3y = 100. It follows that y must be a multiple of 5 , say, 5n. Then 
jc = 20  — 3n and z = 80  — 2n. One easily finds that the only permissible 
values for n are 1, 2, 3, 4, 5, 6. The solution given in Alcuin’s collection 
corresponds to n = 3—namely, 11 men, 15 women, 74 children.

(b) It is easily shown that each son must receive the same number of entirely 
empty flasks as full ones. There are many solutions.
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(c) Let jc denote the required number of leaps. Then 9 jc -  7jc = 150.
(d) Find 2 solutions. For other problems of this sort see Maurice Kraitchik, 

Mathematical Recreations, pp. 214-22.
(e) How about 5/27 to the mother, 15/27 to the son, and 7/27 to the daughter?
(f) Let the legs, hypotenuse, and area of the triangle be a, b, c, K, a ^  b. 

Then

a2 + b2 = c2, ab = 2 K.

Solving for a and b we find

V c2 + 4AT + V c2 -  4K , V c2 + 4K -  V c2 -  AK

8.2 (b-1) Use mathematical induction. Assume the relation true for n = k. Then

Uk+lUk = (uk+1 + Uk)Uk 
= = Uk2
= Uk+lUk + Uk+lUk- 1 -  ( - 1)*
= + Mjt-l) + (~1)*+1
= «2+, + (-l)*+>,

and so on. Or use the expression for un given in (b-2).
(b-2) Set vn = [(1 + V5)n -  (1 -  V5)n]/2'IV5. Show that vn + vn+\ = vn+2 and 

that V\ = v2 — 1. Then vn - u n.
(b-3) Use the expression for un given in (b-2).
(b-4) Use the relation given in (b-1).

8.3 (a) A has 121/17 denarii and B has 167/17 denarii.
(b) 33 days. This may be solved as a problem in variation.
(c) Let jc represent the value of the estate and y the amount received by each 

son. Then the first son receives 1 + ( jc -  l)/7, and the second receives

2+  ?------------.

Equating these we find x = 36, y = 6, and the number of sons was 36/6 = 6.
8.4 (b) The following is essentially Fibonacci’s solution to the problem. Let s 

denote the original sum and 3jc the total sum returned. Before each man 
received a third of the sum returned, the 3 men possessed s/2 -  jc, s/3 -  jc, 
si6 -  jc. Since these are the sums possessed after putting back 1/2, 1/3, 1/6 
of what they had first taken, the amounts first taken were 2(s/2 -  jc), 
(3/2)(s/3 -  jc) , (6/5)(s/6 -  jc) ,  and these amounts added together equal s . 
Therefore Is = 41 x, and the problem is indeterminate. Fibonacci took 5 = 
47 and x = 7. Then the sums taken by the men from the original pile are 33, 
13, 1.

(c) 382 apples.
(a) Denote the given angle by y and angle AOF by jc. Since OF is equal and 

parallel to DE, OFED is a parallelogram. It follows that FE = OD = FO
8.6
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and triangle OFE is isosceles. Now angle OFE = angle ODE = angle 
OAE = jc. Therefore, summing the 3 angles of triangle OFE, 2(90 -  y + x) 
+ x = 180, or x — 2y/3.

(b) Calling the 2 parts x and y, we have x + y = 10, jc2 + y2 =  58. Therefore, 
we take jc = 7, y = 3.

8.8 (a) Following is esentially the solution given by Regiomontanus. We are given
(see Figure 133) p = b -  c, h, q = m -  n. Now b2 -  m2 = h2 = c2 -  n2, or 
b2 -  c2 = m2 — n2, or b + c = qalp. Therefore

qa + p2
b  —  — z ------2P and m = a + q 

2 *

Substituting these expressions in the relation b2 -  m2 = h2, we obtain a 
quadratic in the unknown a.

(b) Following is essentially the solution given by Regiomontanus. Here we 
are given (see Figure 133) a, h, k = c/b. Set 2x = m -  n. Then

4n2 = (a -  2x)2, 4c2 -  4h2 + (a — 2x)2,
4 m2 = (a + 2jc)2, 4 b2 = 4/i2 + (a + 2jc)2.

Then

8.9

fc2[4/i2 + (a  +  2 jc)2] = 4h2 + (a — 2 jc)2.

Solving this quadratic, we obtain jc, and then b and c.
The triangle is easily constructed by using a circle of Apollonius. See 

Problem Study 6.8(b).
(c) On AD produced (see Figure 134) take DE = be I a, the fourth proportional 

to the given segments a, b,c. Then triangles DCE and BAC are similar and 
CA/CE = ale. Thus c is located as the intersection of 2 loci, a circle of 
Apollonius and a circle with center D and radius c.

FIGURE 133
(a) $29.
(b) 180/11 days.
(c) The price of each cask is 120 francs and the duty on a cask is 10 francs.
(d) Suppose a/c < bid. Then ad < be, ac + ad < ac + be, a(c + d) < 

c(a + b), ale < (a + b)l(c + d), and so on.
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8.10 (a) Using standard notation we have

(rs)2 = s(s -  a)(s -  b)(s -  c), 

or
16s2 = s(s -  14)(6)(8),

and s = 21. The required sides are then 21 -  6 = 15 and 21 -  8 = 13. This 
is not Pacioli’s method of solving the problem; his solution is needlessly 
involved.

8.11 (b) 463 7/23.
(f) Profits are proportional to the time the money is in the service of the 

company as well as to the amount.
(g) Over 16 percent.

8.14 (b) H = (3ac -  b2)l9a2, G = (2b3 -  9abc + 21a2d)l21a\
(d) x = 4. The other 2 roots are imaginary.

8.15 (a) (3 ± V5)/2, (-5 ± V2l)/2.
(c) y3 + 15;y2 + 36y = 450, y6 -  6y4 -  144y2 = 2736.

8.16 (a) ./? <7 I_7? c I__R q 68 p 2 __\m R c\_R q 68 m 2 __I _I.
(b) ^4 + (— 11),/2 + ^ 4  -  ( - l l ) l/2.
(c) A cub -  B 3 in A quad + C piano 4 in A aequatur D solido 2.

8.17 (b) cos 50 = 16 cos5 0 - 2 0  cos3 0 + 5 cos 0.
(c) x = 243.
(d) X2 = (r — qx — px2 — x3)l(3x2 + 2px + q).

8.18 (a) 10.
(b) 28 beggars, $2.20.
(c) $92.

8.19 (a) Bombelli’s solution runs as follows. Denote the sought square by DEFG,
where D is on AB and G is on AC. Let the altitude AM of triangle ABC cut 
DG in N. By Heron’s formula, the area of triangle ABC is 84, whence 
AM -  12. Let DG = \4x. Then AN = \2x. It follows that 12jc + 14jc = 
12, or jc = 6/13. The side of the square is then (14)(6/13) = 84/13.

(b) (BP)2 = (VC)2 = (AV)(VB). Placing a rectangular coordinate framework 
with origin at V and positive jc-axis along VW, and representing the coor
dinates of P by (;c,y), we then have y2 = px.

9.1 (a) See almost any text on college algebra or trigonometry.
(b) 1. Set y = \ogb N, z = loga N, w = loga b. Then by = N, az = N, aw = b,

whence a = bVyv, or az = bzlw = by. Thus, y = z/w.
2. Sety = log*, N and z = log  ̂b. Then by = N, Nz = b, whence N = bVz =

by. Thus, y = l/z.
3. Set y = logNb and z = logi/AKl/fr). Then Ny = b, (1 IN)Z = 1 lb, whence

N = \yMz = b\/y Thus y = Z.
(c) log 4.26 = 1/2 + 1/8 + 1/256 + • • • = 0.6294 ___

9.2 (b) cos c = cos a cos b.
(c) (1) A = 122°39', C = 83°5', b = 109°22\ (2) A = 105°36', b = 44°0', c = 

78°46'.
9.3 Popsicle sticks or tongue depressors make excellent rods.
9.5 (a) Acceleration is the increase in velocity during a unit period of time.
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o

9.6 (a) Open the compasses so that the given segment AA' stretches between the
100 marks on the 2 simple scales of the compasses (see Figure 135). Then 
the distance between the two 20 marks is 1/5 of the given segment. How 
does one solve this problem if the given segment is too long to fit between 
the legs of the instrument?

(b) Open the compasses so that AA'IOA is the desired ratio of scale. Then 
BB' is the new length to be associated with the old length OB.

(c) Connect a on one arm to b on the other. Through c on the first arm draw a 
parallel to the line just drawn, to cut the other arm in the sought fourth 
proportional.

(d) Open the compasses so that the distance between the 106 marks is equal 
to 150. Then the distance between the 100 marks represents the amount of 
the investment a year ago. Perform this operation 5 times to find the 
required amount.

9.7 (b) Show that (HG)2 = (HB)2 = (BF)2 -  (HF)2 = (HE)2 -  (HF)2, and so on.
(c) Two classes that can be placed in one-to-one correspondence are said to 

be equivalent or to have the same cardinality. That is, it is possible to 
ascertain at a party of boys and girls, for example, that the count of boys is 
the same as that of the girls if each boy has one and only one partner 
among the girls, and vice versa. The difference between a finite and an 
infinite class is that an infinite class is equivalent to a part of itself.

9.8 (c) 1000 years.
(d) 25 A.U.
(f) 1 hour and 24 minutes.

9.10 (a) Choose for tt' a plane parallel to the plane determined by point O and
line /.

(c) Project line OU to infinity.
(d) Project line LMN to infinity and use the elementary fact that the joins of 

corresponding vertices of 2 similar and similarly situated triangles are 
concurrent.

(e) Choose a plane tt' parallel to the minor axis of the ellipse, such that the 
angle 6  between tt ' and the plane of the given ellipse is such that cos 6  = 
blaf where a and b are the semimajor and semiminor axes of the ellipse. 
Now project the ellipse orthogonally onto tt' .

(g) Let c be any line through the intersection of a and b (see Figure 136). Let 
PA cut c in Q and QB cut MP in M ' .
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9.12

9.13

10.1

10.2

FIGURE 136

(a) Let points 1 and 6 coincide so that the line 16 becomes the tangent to the 
conic at point 1.

(b) Use (a).
(c) Let 1, 2, 3, 4 be the four points and 45 the tangent at 4 = 5, and let 12 cut 

45 in P. Through 1 draw any line 16 cutting 34 in R, and then draw the 
Pascal line PR to cut 23 in Q. Then 5Q cuts 16 in a point 6 on the conic.

(d) Take 1 = 6 and 3 = 4, and then take 2 = 3 and 5 = 6.
(e) Take 1 = 2, 3 = 4, 5 = 6.
( f )  Use (e).
(a) This follows from the definition of the arithmetic triangle as given in 

Section 9-9.
(b) By successive applications of (a).
(c) Use mathematical induction and (a).
(d) By (c).
(e) By (a).
(f) By (e).
(g) By (c).
(a) See Figure 137.
(c) By (a) and (b), and 3.9(c).
(d) We have r + s = g and rs = h.
(e) We have — r + s = — g and —rs = —h.

(a) jc3 — lax2 — a2x + 2a3 = axy.
(b) See 10.1(c).
(c) Consider the equations of L\, L2, L3, L4 in normal, or perpendicular, 

form. We then easily see that the equation of the locus is quadratic.
(d) We find x2 -  x\ = m.
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10.4 (b) r = (3a sin 0 cos 0)/(sin3 0 + cos3 0).
(c) x = 3atl(l + t3), y = 3at2/(l + t3); loop (0,o°), lower arm (-<», -1), upper 

arm (-1,0).

(d) / 3 -x V 2
y = ±x VwfTl-

(e) We find h + m -  k2 = —2, k{m — h) = 8, mh = -3 . Eliminating m and h, 
by solving the first 2 relations for h and m in terms of k and then substitut
ing in the third relation, we get

k6 -  4k4 + 16k2 -  64 = 0,

a cubic in k 2.
10.5 (a) for n = 2, . . . , 12, is 1, 2, 2, 4, 2, 6 , 4, 6 , 4, 10, 4.

(b) The only positive integers not exceeding p a and not prime to p a are the 
p a~x multiples of p,

P, 2p, . . . , p a~l p.

( e )  Let n  =  Then, if x n + y n =  zn, we have + (ya)b — (za)b.
(f) Suppose the point (<albycld), where b, c, d are integers, is on the curve. 

Then (ad)n + (bc)n = (bd)n.
(g) Consider the right triangle whose sides are given by

a = 2mn, b = m2 — n2, c = m2 + n2.

The area of this triangle is

A = (1/2) ab = mn(m2 — n2).

Taking m = x2 and n = y2, and setting jc4 -  y 4 = z2, we find

A = jt2y2(jt4 — y4) = x 2y2z2.

Therefore, if x4 -  y4 = z2 has a solution in positive integers, x, y, z, there 
exists an integral-sided right triangle whose area is a square number. 

Finally, if jc4 + v4 = z4, then z4 -  v4 = (jc2)2.
(h) Suppose V3 = alb, where « and b are positive integers. Now

V3 + 1 = 2/(V3 -  1).

Replacing the V3 on the right side by alby we find 

V3 = (3b -  a)l(a -  b).

Since 3/2 <  alb < 2, it follows that 3b -  a and a -  b are positive integers 
with 3b -  a < a and a -  b < b.

10.6 (a ) 1 5 :1 .
(b) 2 1 : 1 1 .



10.8 (c) For, by the definition of a cissoid (see Problem Study 4.4),

r= OP = AB.

By the law of sines applied to triangle OBC (see Figure 138),

sin a _ sin 6
a V l  ~ 2

2 2

whence

r = AB = a cos a = aV 1 -  2 sin2 6,
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and

r2 = a2 cos 20.

FIGURE 138

10.9 (b) Let the number chosen be x. Then
x = 3a' + a = 4b' + b = 5c' + c,

whence

40a + 45b + 36c _ 2{x - 3 a’) 3(jc -  4b') 3(x -  5c')
60 “ 3 4 5

— 2x — (2a' + 3 b' +.3 c') + 77:.oU (c)

(c) In the general case, B ends up with q(p + 1) counters.
10.10 (a) In the case of the ellipse, consider a point on the curve as moving away

from one focus and toward the other; in the case of the hyperbola, con
sider a point on the curve as moving either away from or toward both foci. 
Now in the first case, the sum of the focal radii of the moving point is 
constant, and in the second case, the difference of the focal radii is con
stant.
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(b) A lune is a portion of the surface of a sphere bounded by 2 semicircumfer
ences of great circles; the angle of the lune is the angle between the two 
semicircumferences.

(c) Produce the sides of the given triangle ABC to complete the great circles; 
let A', B', C  be the points antipodal to A, B, C respectively. Triangles 
A'BC and AB’C' are symmetrical, and therefore equivalent. It follows 
that

AABC + AAB'C' = lune ABAfC.

Also

AABC + AAB'C = lune BAB'C,
AABC + AABC' = lune CACB.

Now

ABC + AB'C' + AB'C + ABC' = 360 spherical degrees 

and

ABA'C + BAB'C + CACB = 2(A + B + C) spherical degrees. 

Therefore

2 ABC + 360 spherical degrees = 2(A + B + C) spherical degrees.

(d) Let S be the area of the sphere. Then A :S = E : 720. But S = 47rr2.
(e) 98 tt square inches.

10.10 (a) In 2 = 0.69315.
(b) In 3 = 1.09861.
(c) In 4 = 2 In 2 = 1.3863.

11.1 (a) Let M denote the given magnitude and m, taken less than Af, any assigned
magnitude of the same kind. By the axiom of Archimedes, there exists an

D

FIGURE 139
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integer n ^  2 such that nm > M. Since 2, it follows that n/2 ^ n -  1. 
Let M\ be what remains after we subtract from M a part not less than its 
half. Then

, ,  ^ M  nmM\ = — < —  ^ (n -  1 )m.

Continuing this process we finally get Mn- X < m.
(b) In Figure 139, HA = HB < HD. Therefore A HBD > A HBA, or A HKD > 

(1/2 )(ABCD).
11.2 (a) We have (OM)(AO) = (OP)(AC). Summing we then find

(area of segm ent)^) = {AAFC)KCI3.

11.3 (a) 2rrrh.
(b) Consult a calculus text.
(c) V = 2r2h/3, r = radius of cylinder and h = altitude of wedge.
(d) V = 16r3/3.

11.4 (a) (1) Consider the triangular prism ABC-A'B'C'. Dissect the prism by the
planes B'AC and B'A'C.

(c) V = 2r2h/3.
(d) V = tt/z3/6.
(e) See (d).
(g) V = 2tt2ct2.
(h) A = tt a2.
(i) Equally spaced chords between 2 sides of a polygon change length uni

formly, whereas equally spaced chords in a circle do not.
11.5 (b) Let O be any point in the midsection and remove from the prismatoid the

pyramids Pv and PL having O as vertex and having the upper and lower 
bases, respectively, as bases. Then the volumes of Pv and PL are given by 
hU/6 and hLI6. Now draw face diagonals, if necessary, so that all lateral 
faces of the prismatoid are triangles, and pass planes through O and the 
lateral edges, dividing the remaining piece of the prismatoid into a set of 
pyramids each having O as a vertex and a lateral triangular face of the 
prismatoid for opposite base. Show that the volume of one of these pyra
mids is 4/z5/6, where S is the area of the midsection of the prismatoid 
included in the pyramid.

(c) Any section, being a quadratic function of the distance from one base, is 
equal to the algebraic sum of a constant section area of a prism, a section 
area (proportional to the distance from the base) of a wedge, and a section 
area (proportional to the square of the distance from the base) of a pyra
mid. Thus the prismatoid is equal to the algebraic sum of the volumes of a 
parallelepiped, a wedge, and a pyramid. Now apply (a).

(d) Let A(jc) = ax2 + bx + c. Show that

y = j* A(x)dx = |  [a(0) + 4a ( |)  + A(h)].

11.6 (b) Use mathematical induction.
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11.8 (b) Set x = y 4- h. Then, by (a),

m  -  n y  + h) + f (h ) y  + ■■■ +r"Hh)

If h is such that f(h),f'(h), . . . , f (n)(h) are all positive, then the equation 
f(y  + h) = 0 in y cannot have a positive root. That is,/(jc) = 0 has no root 
greater than h, and h is an upper bound for the roots of / ( jc) .

(c) We have

f(n~Q(a 4- h) = f in~k)(a) 4- f^n~k+l)(a)h 4- • • • + / (n)(«) jjry,

which shows that iff in~k)(a), f (n~k+l)(a), • • • , / (n)(«) are all positive, and h 
is also positive, then f (n~k)(a 4- h) must be positive. Similarly, the other 
functions are also positive for jc = a + h.

(d) The greatest root lies between 3 and 4.
11.9 (a) Consider the four cases illustrated in Figure 140.

(b) 2.0945514, correct to 7 places.
(c) 4.4934.
(h) See, for example, W. V. Lovitt, Elementary Theory of Equations, p. 144.

FIGURE 140

12.1 (a) B\ = 1/6, B2 = 1/30, B3 = 1/42, B4 = 1/30, B5 = 5/66.
(b) 7709321041217 = 37(208360028141).
(c) B4 = -1  4- 1/2 4- 1/3 4- 1/5; Bs = 6 + 1/2 4- 1/3 4- 1/5 4- 1/17.

12.2 (a) Use mathematical induction.
(b) cos 4 jc = 8 cos4* — 8 cos2x + 1,

sin 4x = 4 sin x cos x  — 8 sin3* cos x.
(c) (-1  - i ) 15 = 2l5/2(cos 225° + i sin 225°)15

= 2l5/2(cos 3375° + i sin 3375°)
= 215/2(cos 135° + i sin 135°)
= 27(—1 + i).

(d) cos (mrl2) + i sin(nir/2) = [c o s (7t/2) + i sin(7r/2)J'' = i".
(e) ± l, ±(V2 + iV2)/2, ±i, ±(V2 -  iV2)l2.
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12.3 (c) 2.996 heads per toss.
(d) 2 heads per toss.
(e) 3 heads per toss.
(f) The mean rises greatly; the median may rise a little; the mode remains the 

same.
(g) The mode.
(h) They are all the same.

12.4 (a) sin z = z — z3/3! + z5/5\ -  z1H\ + . . . ,
cos z = 1 ~ z2!2! + z4/4! -  z6/6! + . . . ,

ez = 1 + z + z2!21 + z3/3! + z4/4! + . . . .
12.7 See, for example, Cad well, Topics in Recreational Mathematics, Chapter 15.
12.8 See, for example, Ball, Mathematical Recreations and Essays, 11th ed., 

pp. 242-54.
12.10 (b) We have du = x dy — y dx. For the circle this becomes

dx
du =  JC d( 1 -  x2y12 -  (1 -  x2)m  dx = -  ^  2  x2yi2’

whence

fx —dx
« = J, (1 -  *2)1/2 = COS"1 X.

For the hyperbola we have

du = x d(x2 -  1)1/2 -  (x2 -  \)m dx = (x2

whence

« = (jc2 ^^f/2 = ln^  + (X2 ~ 1)1/2]-

12.16 For synthetic treatments of (b), (c), (d), (f) see, respectively, Sections 228, 232, 
233, 299 of Altshiller-Court, Modern Pure Solid Geometry, 2d ed. New York: 
Chelsea, 1964. An analytical treatment of the parts of this Problem Study consti
tutes a good junior research project in solid analytic geometry.

12.17 (a) Consider the three cases: (1) C between A and B, (2) B between A and C,
(3) A between C and B.

(b) Use (a).
(c) By (b) we have, for the left member,

AD {DC -  DB) + BD{DA -  DC) + CD(DB -  DA).

(d) Start with AM = MB, and then insert an origin at P.
(e) Insert an origin at P.
(f) Set AA' = OA' -  OA = (O'A' -  O'O) -  OA, etc.
(g) Insert an origin O and let M and N denote the midpoints of CR and PQ. 

Then 4OM = 2OR + 20C = OA + OB + 20C = OB + OC + 2OQ =
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2OP 4- 2OQ = 4ON. Or, M and N clearly coincide if A, B, C are not 
collinear; now let C approach collinearity with A and B.

12.18 (a) If the sides BC, CA, AB of a triangle ABC meet an n-i c in PX,P2, . . . , Pn;
Gi, Qi, . . .  , Gn; ^ 1, ^ 2, • • • , tfn, then

(A/^XA/y • • • (ARn)(BPi)(BP2) • • • (BPn)(CQx)(CQ2) • • • (CG„)
= (AGi)(AG2) * * ‘ (AQn)(BRi)(BR2) * * * CBRn)(CPx)(CP2]) • • • (CPn).

(b) If the sides AB, BC, CD, . . .  of a polygon intersect a conic in Ax and A2, 
Bx and B2, Cx and C2, . . . , then

CAAOCAAjXBBiKBBzKCCiXCCz) • • *
= (BAiXBAJCCBiXCBjXDCjXDCj)

(c) Show that under a translation wherein the origin is shifted to the point 
(*o»yo)> the coefficients of the terms of highest degree of a polynomial 
f(x,y) are left unaltered, and the constant term becomes /(x0,yo)-

(d) Through any point O in the plane of the polygon draw lines parallel to the 
sides of the polygon. Now apply (c) to each pair of adjacent sides of the 
polygon.

13.1 (a) We have the 2 lines x ± y = 0 and the hyperbola xy = 2.
(b) We have the 2 hyperbolas x1 -  y2 -  2y = 0 and 2xy + 2x 4- 1 = 0.

13.2 See, for example, D. M. Burton, Elementary Number Theory, revised edition, 
Chapter 4.

13.3 (a) n(a 4- /)/2.
(c) Let p = 4m 4- 3, q = An 4- 3. Then P = (p -  l)/2 and Q = (q -  l)/2 are 

both odd, whence (- \ ) PQ = -1.
13.5 (a) (1) convergent, (2) absolutely convergent, (3) divergent.

(b) (1) convergent, (2) divergent.
(c) (1) convergent, (2) divergent.

13.6 (a) By G3 there exists c-1. From a * c = b * c, we then have (a * c) * c~l =
(b * c) * c-1, or, by Gl, a * (c * c~l) = b * (c * c~l). Employing G3, we 
now have a * i = b * i, whence finally, by G2, a = b.

(b) By G3 there exists a~l. Hence, applying Gl, G3, G2, G3 in turn, we have 
(i * a) * a~l = i * (a * a~l) = i * i = i = a * a~l. By (a) we then have i*a = 
a. But, by G2, we have a * i = a. It now follows that i * a = a * i.

(c) Let i and j  be 2 identity elements for the group. Then, by G2 applied to the 
identity element j, i* j = /. Also, by (b), i* j =j* i. But, by G2 applied to 
the identity element i, j  * i = j. It now follows that i = j.

(d) By Gl, G3, and (b), applied in turn, (a~l * a) * a~x = a~l * (a * a~l) = 
a~l * i = i* a~l. Therefore, by (a), a~l * a = i. But, by G3, a * a-1 = /. It 
now follows that a~l * a = a * a~l.

13.8 Those of (a), (b), (c), (d), (e).
13.9 (a) Let M be the midpoint of the base AB. Draw DM and CM.

(c) Drop a perpendicular from the vertex of the triangle upon the line joining 
the midpoints of the 2 sides of the triangle.

13.15 (a) * is neither commutative nor associative; | is both commutative and asso
ciative; the distributive law holds.

(b) None of the laws holds.
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13.18

13.19
13.20

14.2

14.3

14.5

14.6

14.7
14.8
14.9

14.10

14.11
14.14

14.16
14.17

(c) Only the 2 commutative laws hold.
(d) | is associative and the distributive law holds.
(f) There are no divisors of 0; the left cancellation law for multiplication.

Show that |̂ q qJ = implies:(l) b(a + d) = 1, (2) c(a + d) =
0, (3) a2 + be = 0, (4) cb + d2 = 0. From (1) it follows that a + d f  0. 
Therefore, from (2), c = 0. Hence, from (3) and (4), a = d = 0. This 
contradicts the conclusion that a + d 4 0.

See, for example, H. Eves, Elementary Matrix Theory, Sections 1.7A and 6.7. 
(c) This may be shown in several ways, but each is tricky. Look up the proof 

as given in some textbook on vector analysis.
(b) See for example, Altshiller-Court, Modern Pure Solid Geometry. 2d ed. 

Section 170, p. 57.
(c) See loc. cit., Section 172, p. 58.
(d) See loc. cit., Section 176.1, p. 59.

Only if each edge of the tetrahedron is orthogonal to its opposite edge. (Such a 
tetrahedron is called an orthocentric tetrahedron.)

(c) Instead of isogonal conjugate lines of a plane angle, consider isogonal 
conjugate planes of a dihedral angle.

(a) cos 6 = cos(20/3 + 613).
(b) The central angle of a regular polygon of nine sides is 40° = (2/3) 60°.
(d) Let 16 = 360°. Then cos 36 = cos 40, or, setting x = cos 0, 8jc3 + 4jc2 -  

4jc -  1 = 0.
(f) m? = 2s3.
(h) Let c be the circumference of a circle with unit radius. Then c = 2tt.
(i) Take AOB = 90° and let M and N be the feet of the perpendiculars from P 

on OA and OB. Let R be the center of the rectangle OMPN. Now if CD is 
Philon’s line for angle AOB and point P, show that RE = RP, and hence 
that RD = RC. We now have Apollonius’ solution of the duplication 
problem (see Problem Study 4.3).

(c), (d) See R. C. Yates, The Trisection Problem.
See Howard Eves, A Survey of Geometry, vol. 1, Section 4-4.
See A. E. Hallerberg, “The geometry of the fixed-compass,’’ The Mathematics 
Teacher (April) 1959: 230-244 and A. E. Hallerberg, “Georg Mohr and Euclidis 
Curiosi,’’ The Mathematics Teacher (February) 1960: 127-132.

(a) Simplicity 13, exactitude 8.
(b) Simplicity 9, exactitude 6.
(c) Simplicity 9, exactitude 5.
(d) Simplicity 9, exactitude 5.
(e) Simplicity 8, exactitude 5.
(g) The theorem is self-dual.
(a) (1) a = j3, (2) a + 0 = k.
(b) x = a(cot a -  cot /3)/2(cot a + cot yS), y = a/(cot a + cot /3), a = 

cot-1[(a + 2jt)/2y], /3 = cot_1[(a -  2x)/2y], where a = AB.
(c) (1) An ellipse, (2) a vertical straight line, (3) a straight line.
(d) (1) ( jc2 + y 2)2 = a2(x2 -  y2), (2) jc2 + y 2 + ax = a V x 2 + y2.
(f) jc = r cos </> cos 0, y = r cos <fr sin 0, z = r sin </>.
(f) 2; (g) 2; (h) 2; (i) 4; (j) 3; (k) 3, (1) 6; (m) 4, (n) 3; (o) 2.

See, for example, H. Eves, A Survey of Geometry, vol. 2, Section 9-2.
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14.20

14.18

14.22

14.26

14.27

14.28
14.29

14.30

14.31

(b) (b ,-a ,0).
(d) 2 jc + y + k = 0.

(e) x2 + y 2 + 2fyz + 2gxz + cz2 = 0.
(g) See, for example, H. Eves, A Survey of Geometry, vol. 2, Theorem 10.3.9 

(p. 83).
(a) The set of all points z such that

H = (1 -  t)Xi + tyi9 

where t is an arbitrary real number.
(b) The ordered set of numbers (y, — jc,)/c/, i = 1, . . . , n, where d is the 

distance between the two given points.
(c) In (a) limit t so that 0 < t < 1.
(d) The point z such that z,- = (x, + y,)/2.
(f) (1), (2), and (3) are obvious. To prove (4), first show that the distance 

between 2 points is invariant under a translation. The validity of (4) will 
therefore be unaltered if the points x, y, z are transformed by a translation 
that carries y onto the origin. Then (4) reduces to the inequality

[X(xi -  Zi)2]m tk ax?Y '2 + Gzi2)112,

which may be established by simple algebra.
(a) Use the relations of Problem Study 12.10.
(c) This is an immediate consequence of (a) and (b).
(e) K = ~(l/QP)(l/QT) = -1  /(QF)2 = - l /k 2.
(a) log(l/2) <  0.
(c) If two fractions are equal and have equal nonzero numerators, they also 

have equal denominators.
(d) Examine step 2 for k = 2.
(e) Examine step 2 for a = 1 or b = 1.
(a) The integral is improper, since the integrand is discontinuous at x = 0.
(b) Examine for endpoint maxima and minima.
(c) Examine for endpoint maxima and minima.
(d) Do not forget the constant of integration.

See, for example, Howard Eves, A Survey of Geometry, vol. 2, Section 13.4.
(b) No. For example, V2 is algebraic, since it is a root of x2 -  2 = 0.
(c) Algebraic. It is a root of x 2 + 1 = 0.
(d) If 7t/2  is a root of the polynomial equation / ( jc) = 0, then 7T is a root of the 

polynomial equation / ( jc/2 )  = 0.
(e) If 7r 4- 1 is a root of the polynomial equation / ( jc) = 0, then tt is a root of 

the polynomial equation/ ( jc + 1) = 0.
(f) If V 7t is a root of the polynomial equation/(jc) = 0, then tt is a root of the 

equation / ( V jc) = 0, and so on.
(d) Consider the set N  of all numbers of the form - jc, where jc is in M.
(g) l.u.b. = 2, g.l.b. = -2 ; l.u.b. = 3/2, g.l.b. = -1 .
(h) No.
(i) No.
(b) If p is composite, then p = ab, where a ^  b and, consequently, a2 ^  p.
(c) For n = 109 we have (An log* n)/n = 1.053 . . . .
(d) Consider (n + 1) ! + 2, (n + 1) ! + 3, . . . , (n -I- 1) ! + (n + 1).
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15.4 Verification of the first 4 postulates presents little difficulty. To verify the fifth 
postulate, it suffices to show that 2 ordinarily intersecting straight lines, each 
determined by a pair of restricted points, intersect in a restricted point. This 
may be accomplished by showing that the equation of a straight line determined 
by 2 points having rational coordinates has rational coefficients, and that 2 such 
lines, if they intersect, must intersect in a point having rational coordinates. For 
the last part of the problem, consider the unit circle with center at the origin, and 
the line through the origin having slope one.

15.6 (a) Let the line enter the triangle through vertex A. Take any point U on the
line and lying inside the triangle. Let V be any point on the segment AC, 
and draw line UV. By Pasch’s postulate, UV will (1) cut AB, or (2) cut BC, 
or (3) pass through B. If UV cuts AB, denote the point of intersection by W 
and draw WC; now apply Pasch’s postulate, in turn, to triangles VWC and 
BWC. If UV cuts BC, denote the point of intersection by R; now apply 
Pasch’s postulate to triangle VRC. If UV passes through B, apply Pasch’s 
postulate to triangle VBC.

15.7 T1 Suppose we have both R(a,b) and R(b,a). Then, by P3, we have R(a,a).
But this is impossible by P2. Hence, the theorem by reductio ad 
absurdum.

T2 Since c 4- a we have, by PI, either R(a,c) or R(cya). If we have R(c,a), 
since we also have R(a,b), we have, by P3, R(c,b). Hence the theorem.

T3 Suppose the theorem is false, and let a be any element of K. Then there 
exists an element b of K such that we have R(a,b). By P2, a 4 b. Thus a 
and b are distinct elements of K.

By our supposition, there exists an element c of K such that we have 
R(b,c). By P2, b ± c. By P3, we also have R(a,c). By P2, a =£ c. Thus, a, 
b, c are distinct elements of K.

By our supposition, there exists an element d of K such that we have 
R(c,d). By P2, c ± d. By P3, we also have R(b,d) and R(a,d). By P2, 
b ± d, a ± d. Thus, a, b, c, d are distinct elements of K.

By our supposition, there exists an element e of K such that we have 
R(d,e). By P2, d ± e. By P3, we also have R(cye), R(b,e)y R(a,e). By P2, 
c ± e, b ± e, a ± e. Thus, a, b, c, d, e are distinct elements of K.

We now have a contradiction of P4. Hence, the theorem by reductio 
ad absurdum.

T4 By T3 there is at least one such element, say a. Let b ± a be any other 
element of K. By PI, we have either R(a,b) or R(bya). But, by hypothesis, 
we do not have R(a,b). Therefore, we must have R(bya)y and the theorem 
is proved.

T5 By Definition 1, we have R(b,a) and R(c,b). By P3, we then have R(c,a), 
or, by Definition 1, we have D(a,c).

T6 Suppose a =£ b. Then, by PI, we have either R(a,b) or R{b,a). Suppose we 
have R(a,b). Since we have F(byc) we also have, by Definition 2, R{b,c). 
This is impossible since we are given that we have F(a,c). Suppose we 
have R(b,a). Since we have F{a,c) we also have, by Definition 2, R(ayc). 
This is impossible since we are given that we have F(b,c). Thus, in either 
case we are led to a contradiction of our hypothesis. Hence the theorem 
by reductio ad absurdum.

T7 For, by Definition 2, we have R(a,b) and R(byc). Hence, by Definition 2, 
we cannot have F(a,c).
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15.8

15.9

15.10

15.13

15.14

(b )  Tl: If a is an ancestor of b, then b is not an ancestor of a.
T2: If a is an ancestor of b and if c is some third member of K distinct 

from a and b, then either a is an ancestor of c or c is an ancestor of b. 
13: There is some man in K who is not an ancestor of anyone in K.
T4: There is only one man in K who is not an ancestor of anyone in K. 
Definition 1: If b is an ancestor of a, we say that a is a descendant of b. 
T5: If a is a descendant of b, and b is a descendant of c, then a is a 

descendant of c.
Definition 2: If a is an ancestor of b and there is no individual c of K such 

that a is an ancestor of c and c is an ancestor of b, then we 
say that a is a father of b.

T6: A man in K has at most one father in K.
T7: If a is the father of b and b is the father of c, then a is not the father 

of c.
Definition 3: If a is the father of b and b is the father of c, we say that a is 

a grandfather of c.
(d) Since Tl has been deduced from PI, P2, P3, P4, all that remains is to 

deduce P2 from PI, Tl, P3, P4.
(b ) The converse of “If A then B” is “If B then A.”
(c) The opposite of “If A then B ” is “If not-A then not-H.”
(a) 48 miles per hour.
(b ) 2.4 days.
(d ) 67J cents.
(e) The second one.
(f) At the end of 59 seconds.
(g) A very good salary.
(h) 11 seconds.
(i) Five cents.
o) Neither; the amounts are equal.
(k) The final pile will be over 17,000,000 miles high.
(l) No.

(m) One-third.
(n) Yes.
(a) Interpret the elements of S as a set of all rectangular Cartesian frames of 

reference that are parallel to one another but with no axis of one frame 
coincident with an axis of another frame, and let bFa mean that the origin 
of frame b is in the first quadrant of frame a. Or, interpret the elements of 
S as the set of all ordered pairs of real numbers (m,n), and let (m,n)F(u,v) 
mean m > u and n > v.

(a) Interpret the bees as 6 people, A, B, C, D, E, F, and the 4 hives as the 4 
committees (A, B, C), (A, D, E), (B, F, E), and (C, F, D). Or, interpret 
the bees and the hives as 6 trees and 4 rows of trees, respectively, forming 
the vertices and sides of a complete quadrilateral.

(b ) To show independence of P2, interpret the bees and the hives as 4 trees 
and 4 rows of trees forming the vertices and sides of a square. To show 
independence of P3, interpret the bees as 4 trees located at the vertices 
and the foot of an altitude of an equilateral triangle, and the hives as the 4 
rows of trees along the sides and the altitude of the triangle. To show 
independence of P4, interpret the bees and the hives as 3 trees and 3 rows 
forming the vertices and sides of a triangle.
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a b c d

a 2 3

b 4 5

c 2 4 6

d  3 5 6

FIGURE 141

(c) Denote the 4 hives by a, b, c, J and denote the bees by natural numbers 1, 
2, 3, . . .  . The postulates lead, of necessity, to the schema of Figure 141, 
wherein the natural number in any box indicates the unique bee common 
to the 2 hives given by the headings of the row and column containing the 
box. All three theorems are now apparent from the schema.

(e) By Ml' we have d(x,y) ^  d(y,z) + d(z,x) and, by interchanging x and y, 
d(y,x) ^  d(x,z) + d(z,y). Setting z = x in the first of these inequalities, 
and z = y in the second one, we find (recalling M2), d(x,y) ^  d(y,x) ^ 
d(x,y). It follows that d(x,y) = d(y,x).

In d(x,z) ^  d(z,y) + d(y,x) set z = jc. Then, since 0 = d(x,x) by M2, 
0 ^  d(x,y) + d(y,x) = 2d(x,y), by the above. Hence d(x,y) ^ 0, and so on. 

(g-3) It is only the verification of the triangle inequality that presents any diffi
culty. Denote d(y,z), d(z,x), d(x,y) by a, b, c, respectively. Then we have

b _ 1 ^  1____ c + a

(h) For (c), a circle is a square with center at c and having its diagonals equal 
to 2r in length and lying parallel to the coordinate axes.

(a) Let Mi be the midpoint of AB, M2 the midpoint of MXB, M3 the midpoint of 
M2B, and so on. Denote by E the set of all points on [AB] with the 
exception of points A, B, Mx, M2, M3, . . . . Then we have

It is now apparent how we may put the points of any one of the 4 segments 
in one-to-one correspondence with the points of any other one of the 4 
segments.

(b) Start with Figure 142.

+ 1 1 + c + a

[AB] = E, A, 2?, Mu M2, M3, . . . , 
(AB] = E, B, Mx, M2, M3, . . . , 
[AB) = £, A, M,, M2, M3, . . . , 
(AB) = B, Mj, M2, M3, -----
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FIGURE 142

15.17

15.21

15.23

(b ) Use the idea employed in the proof of Theorem 1 of Section 15-4.
(c) Use an indirect argument along with (a) and Theorem 1 of Section 15-4.
(d ) Use an indirect argument along with (a) and Theorem 2 of Section 15-4.
(a) See Problem E832, The American Mathematical Monthly 56 (1949): 407.
(c) No, for there are c points on a straight line or a circle, and there are only d 

rational numbers and d algebraic numbers.
(d ) Take a number axis on the given straight line. In each interval, choose a 

point with rational coordinates. These points are all distinct, and therefore 
in one-to-one correspondence with the intervals, and they constitute an 
infinite subset of the denumerable set of all rational numbers.

(b ) The surface formed by a band of paper twisted through 540° and then 
whose ends are glued together.

(c) See Figure 143. This surface was discovered by F. Frankl and L. S. 
Pontryagin in 1930.

(d ) A circular disc.

FIGURE 143

15.25 (b )  A tetrahedron has six edges, and a pyramid with a square base has eight
edges. Suppose there exists a seven-edged simple closed polyhedron. 
Concentrate on any particular face of the polyhedron and suppose that 
face has n edges. Since at least three edges issue from each vertex of this 
face, we see that 2n ^  7, or n < 4. It follows that all faces of the polyhe
dron must be triangles, whence 3 f = 2 e =  14. But this is impossible, since 
/  is an integer.

15.26 (a) Relations (1) and (2) are obvious. Relations (3) and (4) follow since each
edge belongs to precisely two faces, and each edge issues from precisely 
two vertices. To obtain (5) note that v — e + /  = 2, or 2v + 2/ = 4 + 2e.
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Substituting (1), (2), (3) we then find

2(̂ 3 + i>4 + • • •) + 2(/3 4- /4 + . . . ) -  4 4- 3/3 4- 4/4 4- 5/5 4- . . .  ,

or

2(u3 + h4 + . . . ) -  4 + /3 + 2/4 + 3/5 + 4/6 + . . .  .

To obtain (6) we similarly substitute (1), (2), (3) in 2u + 2/ = 4 4- 2e. 
Doubling (6) and adding (5) yields

4( /3 4- / 4 + . . .) 4- 2(i;3 4- u4 + . . . ) -  8
+ (2u3 4- 4- 6v5 4- 8i;6 + . . . )  + 4 + ( /3 + 2/4 + 3f 5 4- 4/6 4- . . .)

or

3/3 + 2/4 4- /5 — 12 4- (2i>4 4- 4v5 4- 6v6 4- . . .) 4- (/7 4- 2/8 + 3/9 + . . .),

which is (7).
(b) These are easy consequences of relation (7) of (a).
(c) For (1), relation (7) of (a) reduces to/5 = 12; for (2), it reduces to 2/4 = 12, 

or/4 = 6; for (3), it reduces to 3/3 = 12, or/3 = 4.
15.27 (e) We omit the obvious verification of HI and H2.

To verify H3, let d(x,y) < r and set R = r -  d(x,y) > 0. The triangle 
inequality states that d(x,y ') ^  d(x,y) + d(y,y') = (r — R) + d(y,y') < r, 
if d(y,y') < R. Denoting the interior of the circle with center c and radius r 
by S(c,r), we now have S(y,/?) is contained in S(jt,r).

To verify H4, let x be distinct from y and set r = d(x,y) > 0. Then it is 
easy to show that S(x,rl3) and S(y,r/3) have no common point.

(f) Since jc is a limit point of S, any neighborhood N x of jc contains a point y { 
of S, where yj +  x. By H4, there then exist disjoint neighborhoods N yx and 
N'x of yi and jc. Again, by H2, there exists a neighborhood N x of jc con
tained in both N x and N'x . It follows that y 1 is not in N x . But, since jc is a 
limit point of S, N x , and hence N x, contains a point y2 of S, where y2 is 
distinct from both jc and y 1. Continuing in this way, we find that N x 
contains an infinite sequence of distinct points yi, y2, . . . of S, and the 
theorem is established.

q

A T ? F
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FIGURE 144 FIGURE 145
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15.29

15.33

(a) Denote the 3 possible truth values of a proposition by T (true), F (false), ? 
(otherwise). We may construct the truth table for conjunction as indicated 
in Figure 144, where, by our agreement concerning the meaning of “p and 
q the top left box in the table must contain a T, and no other box in the 
table is allowed to contain a T. Since there are 8 remaining boxes and each 
may be filled in either of 2 possible ways, (namely with either an F or al) 
there are altogether 28 = 256 possible ways of filling in the 8 boxes.

(b) The truth table for negation may be constructed as in Figure 145, in which 
there are 2 ways of filling in the top box under not-p (namely, with F or ?), 
3 ways of filling in the middle box under not-p (namely with T, F, or ?), 
and 2 ways of filling in the bottom box under not-p (namely with T or ?).

(c) (256)(12) = 3072.
(d) mm~\m — l)m2+1.
(a) See, for example, Howard Eves, Mathematical Circles Squared, Boston: 

Prindle, Weber & Schmidt, 1972, pp. 53-55.
(b) See, for example, Ball-Coxeter, Mathematical Recreations and Essays. 

New York: Macmillan, 1939, pp. 165-170.
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Albategnius (see Al-Battani)
Al-Battani (ca. 850-929), 235, 260 
Albert, A. A. (1946), 532 

Jordan algebra, 532 
Al-Biruni (973-1048), 167, 189 

India, 229
Alcuin of York (735-804), 29, 77, 258 

Problems for the Quickening o f the Mind, 
282

Aleph null, 613n
Alexander, J. W. (1888-1971), 619 

topology, 619 „
Alexander the Great (356-323 B.C.), 140, 

141, 219
Alexandria, 140-141, 164, 171, 175, 180 

University of, 140, 141, 164, 165, 169, 170 
Alexandrian School, 106, 141, 164, 186 
Algebra, abstract, 504, 510, 574-575 

Arabian, 233 
arithmetic, 503
as symbolized arithmetic, 503 
Babylonian, 42-44 
Boolean, 510, 514, 546, 620-621 
Boole-Schroder, 620 
Egyptian, 54-55, 62 
etymology, 236
fundamental theorem of, 438, 477, Alin, 

522-523
geometric, 99, 147, 180, 369-370
Greek, 179-180
Hindu, 226-227
Jordan, 510, 532
liberation of, 504-510
Lie, 510

723
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Algebra (continued) 
matric, 508-510, 516, 520, 530-531 
nonassociative, 510 
noncommutative, 507-510, 532 
paradoxes, 592-595 
point, 534
quatemionic, 506-508, 511-512 
rhetorical, 179, 182 
symbolic, 179
syncopated, 179, 181-182, 226, 267 

Algebra (Bombelli), 295 
Algebra (Wallis), 412
Algebra of classes (see Calculus of classes) 
Algebraic geometry, 58-59, 348 
Algebraic identities, 85-87, 98, 147 
Algebraic laws, 502, 507-508, 529, 530, 622, 

642
Algebraic notation, 293 

Bombelli’s, 276 
Viete’s, 278

Algebraic numbers, 110, 121, 597 
definition of, 614 
denumerability of, 615 

Algebraic paradoxes, 592-595 
Algebraic structure, 502-503, 528-529 

associative law of addition, 502 
associative law of multiplication, 502 
commutative law of addition, 502 
commutative law of multiplication, 502 
distributive law of multiplication over 

addition, 502 
Algebraic topology, 619 
Algebrista, 236 
Algorists, 24
Algorithm(s), etymology, 236 

Euclidean, 148, 155 
galley, 290-292 
gelosia, 290-291 
origin of, 225 
scratch, 290-292 
square root, 267 

Al-Haitam {see Alhazen)
Alhazen (ca. 965-1039), 234 

Optics, 234 
problem of, 234 

Aliquot part, 76n
Al-Karkhi (ca. 1092), 231, 233, 234 

Fakhri, 231, 244
Al-Kashi (d. ca. 1436), approximation of tt, 

118, 215, 232 
binomial theorem, 232 

Al-Khowarizmi (ca. 825), 23-24, 231, 233, 
236, 260, 262 

arithmetic, 233
Hisab al-jabr w ’al-muqa-balah, 236 

Allaire, F. (1977), 640
Almagest (Ptolemy), 118, 177, 182, 235, 263 

commentary by Theon, 185 
Cusa-Peurbach translation, 265 
etymology, 177, 235 
translated into Arabic, 231 
translation by Gherado of Cremona, 261

Al-Mamun, Caliph (ca. 820), 231 
Al-Mansur, Caliph (712-744 or 745), 231 
Alphabetic ciphered numeral system, 18 
Alphabetic Greek numeral system, 18-19 
Amen, 292
American Journal o f Mathematics, 518, 521, 

575
American Mathematical Society, 522, 576 
Amicable (or friendly) numbers, 76-77, 231, 

243
Paganini’s pair, 93 
Tabit ibn Qorra, 234 

Amos Dettonville (pseudonym of Blaise 
Pascal), 332 

Analysis, 154 
foundations of, 423
fundamental division of mathematics, 617 

Analysis aequationum universalis 
(Raphson), 412

Analysis per Series, Fluxiones, etc.
(Newton), 399 

Analysis situs, 618 
Analysis situs (Poincare), 619 
Analytic engine (Babbage), 638 
Analytic geometry, 423, 548-553 

area of triangle, 464 
Descartes, 348, 353 
essential idea of, 346 
Fermat, 353
fundamental principle of, 353 
golden period, 550 
invention of, 346-347 
solid, 450-451, 550 
volume of tetrahedron, 464 

Analytic a posterior a (Aristotle), 107 
Analytical Institutions (Agnesi-Colson), 442 
Analytical Society, 405 
Analytical trigonometry, 426, 428, 429 
Analytisch-geometrische Entwicklungen 

(Pliicker), 550
Anaxagoras (ca. 500-ca. 488 B.C.), 106 

quadrature of the circle, 116 
Anchor ring, 409 
Ancient Orient, 38-39, 219 
Anderson, A. (1582-ca. 1620), 175 

restoration of a work of Apollonius, 175 
Angular measurement, 42 
Anharmonic ratio {see Cross ratio)
Annales de Mathematiques (Gergonne),

479
Annuities upon Lives (De Moivre), 428 
Anthoniszoon, A. (ca. 1543-1620), 118-119 

value of 77, 118-119 
Anticomplementary tetrahedron, 580 
Antinomies of set theory, 624-628 
Antiphon the Sophist (ca. 430 B.C.), 186, 380 

method of exhaustion, 109, 380 
quadrature of the circle, 186, 380 

Antiprism, 324
Aperqu historique sur Vorigine et le devel- 

oppement des methodes en geometrie 
(Chasles), 548
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Apollonius of Perga (ca. 262-ca. 190 B.C.), 
141, 154, 171-175, 182, 265, 364 

analytic geometry, 173, 346 
circle of, 174
Conic Sections, 171-173, 183, 326, 368, 

396
commentary by Eutocius, 186 
commentary by Hapatia, 185 
translated into Arabic, 231 

duplication of the cube, 111, 125 
evanescent figures, 556 
“Great Geometer, The,” 171 
loci with respect to three or four lines, 

183
method of writing large numbers, 183 
nickname, 170
On Determinate Section, 173 
On Proportional Sections, 173 
On Spatial Section, 173 
Plane Loci, 173-174, 192 
problem of, 174, 191, 277 
problems from, 191-192 
Tangencies, 173, 174, 191, 280 
Vergings, 173, 191 

Apollo’s altar, 111 
Appel, K. (1976), 640 
Appendix to Wright’s edition of Napier’s 

Descriptio (Oughtred), 318 
Apple, the, 324 
Apple of discord, 332 
Applicable surfaces, 558 
Application d ’algebre a la geometrie 

(Monge and Hachette), 450 
Application de 1’analyse a la geometrie 

(Monge), 450 
Application of areas, 87ff 
“Applied’’ mathematics, 424 
Approximate solution of equations, 

Cardano, 275 
Homer’s method, 216 
Lagrange, 430, 445 
Newton-Raphson, 411-412 
Vi&te, 278-279 

Aquinas, T. (1226-1274), 264 
Arabian names, pronunciation of, 230 
Arabian Nights, The, 231 
Arabian trigonometry, 232, 235 
Arago, F. (1786-1853), 330 

tributes to Euler, 435 
Arbelos, 183, 188-189 

properties of, 189 
Arbitrary bases, 25-27 
Archbishop don Raimundo (ca. 1085), 261 
Archibald, R. C. (1950), 144n 
Archimedean polyhedra, 168 
Archimedes (287-212 B.C.), 43, 165-169, 

171, 182, 188, 189, 231, 234, 265, 276, 
382, 385, 396, 426, 476 

arbelos, 183, 188-189 
area of a parabolic segment, 382-383 
area of a triangle in terms of sides, 167 
axiom of, 407

Archimedes (287-212 B.C.) (continued)
Cattle Problem, 168
classical method of computing tt, 117-118 

167
cubic equation, 167 
death of, 166
Euler-Descartes formula, 100 
evanescent figures, 556 
inspiration for Germain, 481 
integration, 382, 383 
law of the lever, 313 
Liber assumptorum, 167, 189 
Loculus Archimedius, 169 
Measurement o f a Circle, 118, 131, 167, 

186
Method, 169, 383, 384
method of equilibrium, 383-385, 407
method of exhaustion, 382-383
On the Calendar, 169
On Conoids and Spheroids, 167-168
On Floating Bodies, 168, 188
On the Heptagon in a Circle, 243-244
On Levers, 169
On Plane Equilibriums, 168-169, 186 
On the Sphere and Cylinder, 167, 186,

187, 188
On Sphere Making, 169 
On Spirals, 167 
TT, 117-118 
planetarium, 169 
portrait, 165
problem of the crown, 165-166, 188 
quadrature of the circle, 116 
Quadrature o f the Parabola, 167 
quadrature of a parabolic segment, 167, 

383-383, 407-408 
quotes on, 166-167 
salinon, 189
Sand Reckoner, The, 168 
semiregular polyhedra, 168, 183 
spiral of, 114, 116, 117, 167, 183, 585 
theorem of the broken chord, 189 
tomb of, 166
trisection of an angle, 117, 127 
volume of a sphere, 384 
water-screw, 169, 170 

Archiv der Mathematik und Physik, 522 
Archytas (428-347 B.C.), 85, 94, 106, 107 

duplication of the cube, 111, 124-125 
Area, circle, 55, 63, 386 

circular segment, 213 
cyclic quadrilateral, 227 
cycloidal arch, 332, 360 
ellipse, 388
parabolic segment, 167, 382-383, 407-408 
quadrilateral, 55, 63 
sphere, 187
spherical triangle, 366, 375 
spherical zone, 187 
spiral of Archimedes, 167 
triangle in terms of sides, 167, 178, 194, 

227, 243
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Area (continued)
triangle in terms of the coordinates of its 

vertices, 464 
zone, 168, 187 

Argand plane, 479 
Aristaeus (ca. 320 B.C.), 171 

Solid Loci, 183
Aristarchus of Samos (ca. 310-230 B.C.), 

168
“Copernicus of antiquity,” 186 
heliocentric hypothesis, 186 
On Sizes and Distances o f the Sun and 

Moon, 187
Aristotelian logic, 619-620, 621-622, 622- 

623
Aristotle (384-322 B.C.), 84, 93, 153, 186, 

264, 319
Analytic a posterior a, 107 
Metaphysics, 149 
portrait, 109 
wheel, 338

Arithmetic, Arabian, 232-233 
Babylonian, 41 
Egyptian, 52-54 
Hindu, 223-225, 225-226 
Italian Renaissance, 267-269 
Pythagorean, 76-80 
symbolized, 503 

Arithmetic (Boethius), 258 
Arithmetic in Nine Sections, 213-214, 215, 

216
area of circular segment, 213 
contents of, 214
problem of the broken bamboo, 238 
problems from, 237-238 
Pythagorean theorem, 238 

Arithmetic mean, 63, 94-95, 198, 200-202 
Arithmetic progression (or series), 54, 80, 

181, 200, 201, 225, 241, 270, 311, 429 
sum of, 80n, 225, 523 

Arithmetic space of ^-dimensions, 554 
point of, 554

Arithmetic triangle of Pascal, 232, 328, 393 
in China, 216, 218 
problem of the points, 331 
relations in, 330, 342-343 

Arithmetic vesus number theory, 76 
Arithmetica (Diophantus), 180-181, 197, 354 

commentary by Hypatia, 185 
problems from, 181, 197 
syncopation of algebra, 181-182 
Xylander-M6ziriac translation, 364 

Arithmetica infinitorum (Wallis), 393, 397 
Arithmetica integra (Stifel), 270 
Arithmetica logarithmica (Briggs), 312 
Arithmetica universalis (Newton), 399, 401, 

510
Arithmetics, early, 267-269 
Arithmetization of analysis, 486, 563, 564- 

565, 625
Arithmetization of geometry, 348

Arithmography, 271-272, 292 
Arrow, The, 380
Ars conjectandi (Jakob Bernoulli), 358, 426, 

428
Ars magna (Cardano), 273, 275 
Artificial numbers, 312 
Artis analyticae praxis (Harriot), 314 
Aryabhata the Elder (ca. 475-ca. 550), 222, 

226
Aryabhatiya, 222 
etymology of sine, 237 
value of 7T, 118 
volume of pyramid, 228 
volume of sphere, 228 

Aryabhatas, the, 222 
Aryabhatiya (Aryabhata the Elder), 222 
Aryans, 219 
ASCC, 638
ASoka, King (ca. 250 B.C.), 23, 219-220 

pillars, 220
Association for Women in Mathematics, 576 
Association Fran^aise pour l’Avancement 

des Sciences, 581 
Associative laws, 502 
Astronomical instrument, oldest extant, 50 
Astronomical unit, 338 
Asymptotic Euclidean constructions, 129 
Athenian academy of Persia, 186 
Athenian school, 186 
Atomic bomb, 646-647 
Atomistic theory, 109, 379-380, 382, 386 
Attic Greek numerals, 16 
Aubry (1896), 128
Ausdehnungslehre (Grassmann), 508, 512— 

513
Autological adjective, 661 
Automorphic functions, 572 
Averages of two numbers (see Means) 
Axiom of Archimedes, 407 
Axiom of reducibility, 629 
Axiomatic method, 607 

analogue in the parallelogram law of 
forces, 621-622

Axiomatics, 153, 606, 608-610, 624, 633, 652 
formal, 633 
material, 633 

Axioms (153)
Euclid’s, 153 
group theory, 525 
Hausdorff space, 660 
metric space, 655 

Axioms and postulates, 152 
difference between, 153

Babbage, C. (1792-1871), 405, 637-638 
analytic engine, 638 
Analytical Society, 405 
difference engine, 638 
dream that came true, 639 
portrait, 638



Index 727

Babylonian algebra, 42-44 
Babylonian circular numerals, 28 
Babylonian cuneiform numerals, 15-16 
Babylonian numeral system, 20 
Babylonian mathematics, commercial and 

agrarian, 41 
geometry, 41-42 
Plimpton 322, 44-47 
sources, 39-41 

Babylonian tablets, 39f f  
Babylonian time-mile, 42 
Bach, J. S. (1685-1750), 446 
Bachet de M6ziriac (1581-1638), 180 

Diophantus’ Arithmetica, 354, 364 
Problfcmes plaisants et dSlectables, 364,

374
problems from, 374-375 

Bacon, R. (1214-1294), 263 
Bailey, D. H. (1986), calculation of 7r, 123, 

639
Baker, The Well Spring o f Science, 290 
Bakhshali manuscript, 240 
Balance spring watch, 363, 368 
Baldwin, F. S. (1838-1925), 636 

calculating machine, 626 
Ball, W. W. R. (1850-1925), quoted, 447 
Ball-Coxeter, Mathematical Recreations and 

Essays, 374, 535
Ballistic Research Laboratory, 638 
Banyan tree as the tree of mathematics, 645 
Barber paradox (Russell), 626, 627 
Barbier’s theorem, 459 
Barrow, I. (1630-1677), 120, 394-396, 400 

differential triangle, 395 
differentiation, 395-396, 410 
Euclid, 145
first Lucasian professor, 314 
fundamental theorem of the calculus, 396 
Lectiones opticae et geometricae, 395 
method of indivisibles, 390 
paired with Wallis, 489 
portrait, 394 
resignation, 398 
tangents to curves, 396 

Bases, arbitrary, 25-27 
number, 12—13 

Beasting, 270, 270n, 272, 292 
Beaune, F. de (1601-1652), 352 
Bede the Venerable (ca. 673-735), 258, 259 

finger reckoning, 259 
treatise on the calender, 259 

Bees and hives, 655
Beethoven, L. von (1770-1827), 433, 446 
Begriffsschrift (Frege), 621 
Behistun bas relief, 40 
Bell, E. T. (1883-1960), 55, 264 

The Development o f Mathematics, 422,
502n

The Magic o f Numbers, 497n 
quoted, 502

Beltrami, E. (1835-1900), 497

Beltrami, E. (1835-1900) (continued) 
differential geometry, 556 
independence of the parallel postulate, 500 

Benedict XIV, Pope (1675-1758), 442 
Bequest o f the Greeks, The (Dantzig), 130n 
Berkeley, Bishop George (1685-1753), 431, 

590
attack on the calculus, 431, 590-591 

Berlin, or Prussian, Academy of Science, 
404, 427, 437, 438, 440 

Bemays, P. (1888-1979), 621 
formalism, 633 
restricted set theory, 626 

Bemays and Hilbert, Grundlagen der 
Mathematik, 621, 634 

Bernoulli, Christoph (1782-1863), 428 
Bernoulli, Daniel (1700-1782), 426, 432 

Hydrodynamic a, A ll 
moral expectation, 427 
partial differential equations, 427 
principle of hydrodynamics, 427 
probability, 358 
vibrating strings, 427 

Bernoulli, Daniel II (1751-1834), 428 
Bernoulli, Jakob (1654-1705), 373n, 424- 

426, 427, 432
Ars conjectandi, 358, 426, 428 
calculus of variations, 425 
catenary curve, 425 
differential equation, 426, 461 
distribution, 426 
isochrone, 425 
isoperimetric figures, 425 
lemniscate, 365, 426 
mathematical probability, 425-426 
nephroid, the catacaustic of a cardioid,

374
numbers, 426, 455-456 
polar coordinates, 425, 549 
polynomials, 426 
portrait, 425 
radius of curvature, 425 
Riccati equation, 437 
sum of infinite series, 458 
theorem of statistics, 426 
tombstone, 426

Bernoulli, Jakob II (1759-1789), 428 
Bernoulli, Johann (1667-1748), 424-425,

426, 427, 432, 550 
analytic trigonometry, 426 
arrangement with l’Hospital, 406 
brachistochrone problem, 426 
calculus, 426 
calculus integralis, 426 
concept of a function, 611 
orthogonal trajectories, 426 
portrait, 427 
postulate, 591 
quoted, 591

Bernoulli, Johann II (1710-1790), 426, 427 
Bernoulli, Johann III (1744-1807), 427
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Bernoulli, Johann III (1744-1807) (<continued) 
doctrine of chance, 427 
indetermine equations, 427 
recurring decimals, 427 

Bernoulli, Johann Gustav (1811-1868), 428 
Bernoulli, Nicolaus (1687-1759), 427 
Bernoulli, Nicolaus (1695-1726), 426, 432 

Petersburg paradox, 427 
Bernoulli, Nicolaus (nephew of Jacob and 

Johann), 437
Bernoulli family, 424-428 
Bernoulli genealogical table, 428 
Bertelsen, N. P. (1893), 577 
Bertrand, J. (1822-1900), curves, 556 
BESK, perfect numbers, 77 
Bessy (see Fr6nicle de Bessy, B.)
Beta (nickname of Eratosthenes), 170 
Beta functions, 434, 449 
Betti groups, 619 
Bhaskara (1114-ca. 1185), 222 

identities, 226, 242
Lildvati, 222, 222n, 223, 225, 225-226, 290 
problems from, 241 
Pythagorean theorem, 228-229 
rule of three, 233 
Siddhanta Siromani, 222, 222n 
values of 77, 118 
Vijaganita, 222, 222n 

Bible, 27, 141, 312 
Book o f  Revelation, 270, 21On, 272 

Bibliography o f  Non-Euclidean Geometry, 
Including the Theory o f  Parallels, the 
Foundations o f Geometry, and Space o f  
n Dimensions (Sommerville), 554 

Bibliotheque Nationale, 330 
Billingsley, Sir H. (d. 1606), 144 

Euclid, 143, 144 
Binary scale, 30-31
Binomial coefficients, Pascal’s arithmetic 

triangle, 330 
Stifel, 270 

Binomial surds, 226 
Binomial theorem, 232 

generalized, 398 
in China, 217 
Newton, 400, 410 

Binormal of a space curve, 556 
Bipolar coordinates, 585 
Biquadratic equation (see Quartic equation) 
Birkhoff, Garret (b. 1911), 623 
Birkhoff, G. D. (1884-1944), 608 

postulates for Euclidean geometry, 608 
Bitangents, 552 
Black Death, 264 
Bloom of Thymaridas, 195, 196 
Blumenthal, L. M., postulates for Euclidean 

geometry, 608 
Bobalek, J. F. (1975), 292 
Bobillier, 6 . (1798-1840), 550 

analytic geometry, 553 
Bocher prize, 559

Bodenmiller, sequel to Euclid, 539 
Boethius (ca. 475-524), 258-259 

Arithmetic, 258 
Geometry, 258 
star polygons, 284

Bois-Reymond, P. du (1831-1889), 566, 573 
Boltzmann, L. (1844-1906), 313n 

gas equation, 313n
Bolyai, Janos or Johann (1802-1860), 49Sff 

challenged the parallel postulate, 623 
liberation of geometry, 504 
non-Euclidean geometry, 498-499 
quoted, 499

Bolzano, B. (1781-1848), 486-487, 566 
continuous nondifferentiable function,

486
“The Father of Arithmetization,’’ 486 
Paradoxien des Unendlichen, 487 
prescription for an illness, 487 
theorem, 486-487 

Bolzano-Weierstrass theorem, 486 
Bombelli, R. (ca. 1526-1573), 276 

Algebra, 295
algebraic notation, 276, 293 
irreducible case in cubics, 276 
quintic equation, 490 

Bones, or rods (Napier), 308, 335 
Bonnet, O. (1819-1892), differential geome

try, 556
Bonola, Non-Euclidean Geometry, 500ai 
Book o f Lemmas (see Liber assumptorum) 
Book on Permutations, or I-King, 213 
Book o f Revelation, 270, 272 
Bookkeeper’s check, 245 
Bookkeeping, double entry, 267 
Boole, G. (1815-1864), 403, 515-514 

germs of invariant theory, 516 
An Investigation into the Laws o f

Thought, on Which Are Founded the 
Mathematical Theories o f Logic and 
Probability, 514, 620 

logic, 620-621
The Mathematical Analysis o f Logic,

Being an Essay towards a Calculus o f  
Deductive Reasoning, 514, 620 

Treatise on the Calculus o f Finite Differ
ences, 514

Treatise on Differential Equations, 514 
Boolean algebra, 510, 514, 620-621 

principle of duality, 546 
Boolean rings, 510 
Boole-Schroder algebra, 620 
Borel, E. (1871-1956), 123n 
Borghi, P. (ca. 1484), 269 
Borrowing from, 23 
Borwein, J. M. and P. D. (1986), 123 

algorithm, 123
Bouelles, C. de (1470-1533), 285 

star polygons, 285
Boundlessness vs. infinitude of straight 

lines, 500, 606
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Bounds for roots of polynomial equations, 
410-411

Bounds of sets of numbers, 598 
upper and least upper, 598 

Bourbaki, General C. D. S. (1816-1897), 643 
Bourbaki, N. (fictional), 642-643 

conception of present-day mathematics, 
643

Elements de Mathematique, 642 
members, 642

Bowditch, N. (1773-1838), 447 
quoted, 447
translation of Laplace’s Traite de mecani- 

que, 447
Bowmar Instrument Corporation, 640 
Boyer, C. B. (b. 1906), 422, 549n 

A History o f Mathematics, 422 
Brachistochrone, 426 
Bradwardine, T. (1290-1349), 264 

star polygons, 284-285 
Brahe, T. (1546-1601), 322-323 
Brahmagupta (ca. 628), 222, 226, 231 

area of cyclic quadrilateral, 227 
Brahma-sphuta-sidd'hanta, 222 
problems from, 240 
quadrilaterals, 227-228, 243 
rule of three, 233 
trapezium, 228
works brought to Baghdad, 231 

Brahma-sphuta-sidd'hanta (Brahmagupta), 
222

Branch of a graph, 459 
Brehmer, F. (1877), 479 
Brianchon, C. J. (1785-1864), 326, 546 

projective geometry, 326, 544 
theorem on conics, 546 

Bride’s chair, 155 
Briggs, H. (1561-1631), 311-312 

Arithmetica logarithmica, 312 
first Savilian professor, 313 
term “characteristic,” 312 
term “mantissa,” 312 

Briggsian logarithms, 311-312 
Bring, E. S. (1736-1798), 274 

quintic equations, 366 
British Association, 512, 535 
Brocard, H. (1845-1922), sequel to Euclid, 

539
points, 539

Broglie, R. R. L. V. de (b. 1892), 313n 
matter-wave equation, 313m 

Brouillon projet (Desargues), 325n 
Brouncker, Lord W. (1620-1684), 367 

continued fractions, 367 
expression for 7r, 367 
Pell equation, 226n 
rectification of the cycloid, 367 
rectification of the parabola, 367 

Brouwer, L. E. J. (1881-1966), 631 
biography, 633 
fixed-point theorem, 632

Brouwer, L. E. J. (1881-1966) (<continued) 
intuitionism, 570 
invariance theorem, 632 
topology, 619

Buddha (568-488 B.C.), 219, 645 
Budget o f Paradoxes, A (De Morgan), 292, 

515
Buffon, Comte de (1707-1788), 120, 429 

needle problem, 120, 429, 464-465 
Bulletin de la Societe Mathematique de 

France, 522
Bulletin o f the American Mathematical 

Society, 522, 640 
Burali-Forti, C. (1861-1931), 625 

paradox in set theory, 625 
Burckhardt, J. C. (1773-1825), 578 

table of primes, 578
Bureau of Standards in Washington, D.C., 

454
Burgess, E. (1860), 222 
Burgi, J. (1552-1632), 312 

invention of logarithms, 311-312 
Burning of the books in China, 211 
Buteo, J. (ca. 1489-ca. 1566), 289 

problem from, 289

Cairo mathematical papyrus, 65-66 
Cajori, F. (1859-1930), 380n, 412n, 479n 

A History o f Mathematics, 583 
Calandri, F. (1491), 269 
Calculating machines (see Computing ma

chines)
Calculus, 423, 424-425, 426, 429, 431,

457
Berkeley’s attack, 431, 590-591 
differential (see Differential calculus) 
differentiation formulas, 404, 405 
early mysticism, 590-591 
first textbook, 426 
fundamental theorem, 396, 404 
integral {see Integral calculus)
Leibniz, 406-407
paradoxes, 591-592, 595-596, 624 
rigorization of by Lagrange, 445 

Calculus of classes, 404 
Calculus of extension, 513, 533 
Calculus of finite differences, 514 

Euler, 434
Calculus integralis, 426 
Calculus of propositions, as a foundation of 

mathematics, 565, 629 
principle of duality, 546 

Calculus summatorius, 426 
Calculus of variations, 406, 425, 434, 454, 

494, 547, 635 
Lagrange, 445 

Calendar, Babylonian, 41 
Christian, 258 
reform, 232, 265, 280 

Caliph Hakim (985-1021), 234
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Cambridge and Dublin Mathematical Jour
nal, 521

Cambridge Mathematical Journal, 521 
Campanus, J. (ca. 1260), 144, 263-264 

star polygons, 284
translation of Euclid’s Elements, 144, 264, 

295-296
trisection of an angle, 285 

Canon mathematicus seu ad triangula 
(Vifcte), 277-278, 294 

Cantor, G. (1845-1918), 151, 569-570 
aphorism, 624 
definition of set, 627 
denumerability of set of all algebraic 

numbers, 615
denumerability of set of all rational num

bers, 614
diagonal process, 615 
foundations of mathematics, 565 
general theory of sets, 625 
irrational numbers, 569-570 
nondenumerability of set of all real num

bers, 615-616
Journal fur Mathematik, 613 
Mathematische Annalen, 613 
paradox in set theory, 625 
portrait, 569 
set theory, 570, 610 
transfinite numbers, 570, 612-617, 625 
trigonometric series, 569 
quoted, 502

Cantor, M. (1829-1920), 56, 422 
Carath6odory, C. (1873-1950), 562 
Cardano, G. (1501-1576), 272-273, 274-275, 

276, 293, 331 
alternate names, 272n 
Ars magna, 273, 275 
portrait, 275 
probability, 331 
problem of the points, 331 
quartic equation, 293 
solution of cubics, 273 

Cardan-Tartaglia formula, 272-273, 276, 293 
Cardinal number(s), 612-613 

comparison of, 614n 
of continuum, 617 
of set of algebraic numbers, 615 
of set of natural numbers, 613 
of set of rational numbers, 614 

Cardioid, 374, 585
Caritat, A.-N. (see Condorcet, Marquis de) 
Carlyle, T. (1795-1881), 99, 448 

geometric solution of quadratics, 99 
translation of Legendre’s Elements de 

geometrie, 448
Carnap, R. (1931), logicism, 629 
Carnot, Adolphe [son of L. Hippolyte 

Carnot], 453
Carnot, H. (1848), 452-453 
Carnot, L. Hippolyte [second son of L. N. 

M. Carnot] (1801-1888), 452-453

Carnot, L. N. M. (1753-1823), 424, 449, 
451-453, 454

an initiator of projective geometry, 544 
Essai sur la theorie des transversals, 451, 

452
Geometrie de position, 451, 467, 539 
“Organizer of Victory,” 451 
paired with Monge, 489 
portrait, 452 
theorem, 452, 468
volume of tetrahedron in terms of edges, 

452
Carnot, M. F. Sadi [son of L. Hippolyte 

Carnot] (1837-1894), 453 
Carnot, N. L. Sadi [first son of L. N. M. 

Carnot] (1796-1832), 452 
mathematical theory of heat, 484 

Carrying over, 23 
Cartan, E. (1869-1951), 561 
Cartesian oval, 350n 
Cartesian parabolas, 353 
Cartesian parabola (Newton), 370 
Casey, J. (1820-1891), sequel to Euclid, 539 
Cassini, C.-F. (1756), 365 
Cassini, G. D. (1625-1712), 365, 436 
Cassini, J. (1677-1756), 365, 436 
Cassini, J. D. (1748-1845), 365 
Cassinian curve, 365, 373 
Castillon (b. 1704), 184 
Castillon-Cramer problem, 184 
Casting out 11’s, 245 
Casting out n’s, 244 
Casting out 9’s, 233, 244-245 
Castle o f  Knowledge, The (Recorde), 270 
Catacaustic curves, 365 

of a cardioid, 374 
of a circle, 374

Cataldi, P. A. (1548-1626), 280 
perfect numbers, 280 

Catenary, 363, 425, 589 
Catherine the Great (1729-1796), 433, 438 
Catoptric a (Heron), 179, 194 
Cattle Problem (Archimedes), 168 
Cauchy, A. L. (1789-1857), 397, 487-489 

characteristic equation of a matrix, 489 
contrasted with Gauss, 488 
conversion of Hermite, 520 
defense of freedom of conscience and 

thought, 489
definition of derivative, 488, 564 
determinants, 488-489, 494 
differential geometry, 556 
inequality of complex function theory, 488 
integral formula of complex function 

theory, 488 
integral test, 524
integral theorem of complex function 

theory, 488 
method of limits, 625 
portrait, 487
product of two series, 488



Index 731

Cauchy, A. L. (1789-1857) (continued) 
quoted, 489, 553 
ratio test, 488, 524 
rigorization of the calculus, 564 
root test, 488
second most prolific writer of mathemat

ics, 515
Cauchy-Riemann differential equations, 488, 

567
Cavalieri, B. (1598-1647), 312, 386-390, 393 

Geometria indivisibilibus, 387-388 
indivisibles, 405
method of indivisibles, 324, 359, 382, 386- 

390, 393, 408-409, 556 
portrait, 387
principles, 387-390, 408-409 

Cayley, A. (1821-1895), 508-510, 515-519 
challenged the commutative law of multi

plication, 623
Collected Mathematical Papers, 515-516 
contrasted with Sylvester, 518 
four-color problem, 618 
groups, 492
higher-dimensional geometry, 516, 553 
independence of the parallel postulate, 500 
invariant theory, 516 
line, 342
“the mathematicians’ mathematician,”

516
matric algebra, 508-510, 516 
origin of abstract algebra, 510 
portrait, 516
product of matrices, 509, 532 
“projective geometry contains all geome

try,” 561
Sadlerian professor, 515 
third most prolific writer of mathematics, 

515
CDC 6600, 122 
CDC 7600, 122
Celestial mechanics, 323, 368, 399, 434, 446 
Cellini, Benvenuto (1500-1571), 272 
Central projection, 326, 340-341, 401 
Centro-affine geometry, 590 
Centroid theorems of Guldin, 199 
Centroidal mean, 200-202 
Ceres (planetoid), 478 
Ceva, G. (1648-1734), 340 

theorem of, 340-341, 539 
Challenge problems, 329, 332, 355, 394, 399, 

402
Champollion, J. F. (1790-1832), 52 
Characteristic equation of a matrix, 489 
Characteristic of a logarithm, 312 
Characteristic of a surface, 386n 
Characteristica generalis (Leibniz), 403, 404 
Charlemagne (742-814), 259 
Charles II (1630-1685), 316, 395 
Chartres, R. (1904), 121 
Chasles, M. (1793-1880), 325, 548 

Apergu historique sur Vorigine et le deve-

loppement des methodes en geome
trie, 548

projective geometry, 326, 544 
Traite des sections coniques, 548 

Chemac, L. (ca. 1811), 578 
table of primes, 578 

Chevalier de Mer6 (1645), 331 
Chevalley, C. (contemporary), Bourbaki 

member, 642
Chicago World Fair, 543-544 
Chin period (221-206 B.C.), 212 
Chinese mathematics, sources and periods, 

211-212
Chinese names, pronunciation of, 212 
Chinese periods, 211-212 

Shang (ca. 1500-1027 B.C.)
Chou (1027-256 B.C.)
Chin (221-206 B.C.)
Han (206 B.C.-A.D . 222)
Post Han (222-ca. 600)
Tang (618-906)
Five Dynasties of the Independent States 

(907-960)
Sung (960-1279)
Yuan (1279-1368)
Ming (1368-1644)

Chinese Remainder Theorem, 215, 217 
Chinese rings, 30
Chinese scientific (or rod) numeral system, 

28, 213, 216
Chinese-Japanese numerals, 17-18, 212 
Ch’in Kiu-shao (ca. 1247), 216 

Horner’s method, 216 
indeterminate equations, 216 
zero symbol, 216

Chisholm, G. E. (see Young, Grace 
Chisholm)

Chou period (1027-256 B.C.), 212 
Chou-pei, 65, 214 
Christofell, E. B. (1829-1901), 556 

differential geometry, 556 
Chronology of tt (see 7r, chronology of) 
Chuquet, N. (14457-1500?), 266, 283 

problems from, 288 
regie des nombres moyens, 288 
Triparty en la science des nombres, 266, 

288
Church, A., quoted, 622 
Chu Shi’-ki6 (ca. 1303), 216 

matrix methods, 216 
Pascal’s arithmetic triangle, 216 

Chwistek, E. (1924), 629 
logicism, 629

Cicero (106-43 B.C.), 166, 169 
Cipher, etymology of, 25 
Ciphered numeral system, 18-19 

Greek Ionic, or alphabetic, 18-19, 232 
Circle of Apollonius, 174 
Circle(s), cosine, 544 

Euler, 579 
Feuerbach, 579
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Circle(s) (continued)
Lemoine, 544 
Monge, 451
nine-point, 539, 579-580 
orthocentroidal, 580 
osculating, 310

Circles o f Proportion, The (Oughtred), 316 
Circolo Matematico di Palermo, 522 
Circular parts, 333 
Circular points at infinity, 588 
Circular slide rule, 316 
Cissoid, general, 126 

of Diodes, 111, 126 
rectification by Huygens, 363 
tangents to, 392

Clairaut, A. C. (1713-1765), 424, 435-437, 
550

differential equation, 436, 462 
du Chatelet’s translation of Newton’s 

Principia, 443 
portrait, 436
Theorie de la figure de la Terre, 436 
Theorie de la Lune, 436 

Clairaut, J. B. (d. soon after 1765), 437 
Clairaut, le cadet (1716-1732), 437 
Classical method of computing 7r, 118 
Clavis mathematicae (Oughtred), 315-317, 

397
Clavius, C. (1537-1612), 280 

calendar reform, 280 
Euclid’s Elements, 280 
portrait, 281
problems from, 289, 295 

Clebsch, R. F. A. (1833-1872), 553 
Clifford, W. K. (1845-1879), higher dimen

sional geometry, 553
Codazzi, D. (1824-1875), differential geome

try, 556
Cogitata physico-mathematicae (Mersenne), 

364
Cohen, P. J. (b. 1934), continuum hypothe

sis, 617
Colburn, Z. (1804-1840), 510 
Colebrooke, H. T. (1765-1837), 222 
Collapsing compasses, 110 
Collected Mathematical Papers (Cayley), 

515-516
Collected Works (Gauss), 479 
College geometry, 174, 176, 183, 539 
Colmar, T. de (1820), calculating machine, 

636
Colossi of Rameses II, 52 
Colson, J. (d. 1760), 400, 442 
Combinatorial topology, 619 
Commandino, F. (1509-1575), theorem, 539, 

580
Commentary on Euclid, Book I (Proclus),

74, 185
Commercial mathematics, 41, 57, 269 

Babylonian, 41 
early problems, 289-290

Commissariat a l’Energie Atomique, 122 
Committee on Weights and Measures, 454 
Common, or Briggsian, logarithms, 311-312 
Commutative laws, 502 
Compasses, compound, 114 

Euclidean, or collapsing, 110 
modern, 110 
rusty, 234, 542

Compass constructions, 541-542, 582-583 
Compendium Euclidis curiosi (Mohr), 542, 

583
Complement of a set, 412 
Complex numbers, graphical representation 

of, 479
embedded among the quaternions, 507 
Hamilton’s treatment, 505-506, 511, 530 

Complex-function theory, 618 
Compound compasses, 114 
Compound interest, 41, 57, 225 
Compound pendulum, 363 
Comptes rendus, 488, 517, 642 
Computeritis, 639
Computing, early methods of, 21-23, 223- 

225
Computing machines, 424, 636-641 

abacus, 22-23, 233, 259, 636 
ASCC, 638 
Baldwin’s, 636 
BESK, 77 
CDC 6600, 122 
CDC 7600, 122 
Colmar’s, 636
Cray-2 supercomputer, 123, 639 
difference engine (Babbage), 637, 638 
differential analyzers, 639 
EDS AC, 577 
ED VAC, 638
Electronic Discrete Variable Calculator, 

638
Electronic Integrator and Computer, 638 
ENIAC, 122, 123, 638, 639 
FACOM M-200, 122 
Friden desk calculator, 637 
IBM Automatic Sequence Controlled 

Calculator, 638 
IBM 704, 122, 639 
IBM 7090, 77, 122, 639 
Leibniz’, 404, 636 
MANIAC, 638, 640 
Marchant desk calculator, 637 
Monroe desk calculator, 637 
Morland’s, 636
Napier’s rods, or bones, 308, 335
NEC SX-2 supercomputer, 123
NORC, 639
Odhner’s, 637
Pascal’s, 327, 636
PDP-11/45, 579
Pegasus, 639
pocketsize calculators, 640-641 
sector compasses of Galileo, 336-337
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Computing machines (continued)
Selective Sequence Electronic Calculator, 

638
slide rules (see Slide rule)
SSEC, 638 
STRETCH, 122 
SWAC, 77 
UNIVAC, 639
Universal Automatic Computer, 639 

Conchoid, general, 127 
ofNicomedes, 113, 127, 183 
tangents to, 392 

Concrete model, 608 
Condorcet, Marquis de (1743-1794), 429 
Conformal mapping, 193 
Congruence in number theory, 477, 523 
Congruent by addition, 95 
Congruent by subtraction, 95 
Conic sections, derived from cones of revo

lution, 172
duplication of the cube, 125 
focus-directrix property, 173, 184, 190- 

191
invention of, 111 
Newton’s theorem, 173 
Pascal, 329-330, 342 
poles and polars, 172-173, 326, 546 
Steiner’s definition of, 547 
their names, 172 
trisection of an angle, 116 

Conic Sections (Apollonius), 171-173, 183, 
326, 368

Barrow’s edition, 396 
commentary by Eutocius, 186 
commentary by Hypatia, 185 
translated into Arabic, 231 

Conical pendulum, 368 
Conical refraction, 511 
Conicoids, ^-dimensional, 555 
Conics (Euclid), 154 
Conon (ca. 260 B.C.), 165 
Conservatoire des Arts et Metiers, 327,

636
Consistency of mathematics, 565, 621, 633- 

635
Consistency of a postulate set, 609 

absolute, 609 
relative, 609

Constantine the Great (272-337), 164 
Constructions (see Euclidean constructions) 
Constructions on a sphere, 248 
Continued fractions, 280, 367, 445, 520 

Euler, 434
expression for 7r, 119 

Continued proportion, 148 
Continuity, principle of, 423, 488 
Continuity postulate of Dedekind, 649-650 
Continuous nondifferentiable function, 

Bolzano, 486 
Weierstrass, 486 

Continuum hypothesis, 617

Continuum hypothesis, 617 
Cohen’s theorem, 617 
Godel’s conjecture, 617 

Contraharmonic mean, 200-201 
Contrapositive proposition, 660 
Converse proposition, 660 
Coolidge, J. L. (1873-1954), 646 
Coordinate systems, bipolar, 585 

Cartesian, 548 
homogeneous, 551, 587-588 
latitude and longitude, 586 
Pliicker line, 549, 586 
polar, 425, 549, 585, 586 
spherical, 586 

Coordinates, 352
Copemican theory, 168, 270, 320, 323 
Copernicus, N. (1473-1543), 177, 281-282, 

623
challenged the geocentric theory, 623 
portrait, 281
theory of the solar system (see Copemi

can theory) 
trigonometry, 282 

“ Copernicus of antiquity,” 186 
Copley medal, 548 
Cosecant, origin of name, 236 
Cosine, origin of name, 236, 312 
Cosine circle, 544
Cotangent, origin of name, 236, 312 
Courant and Robbins, What Is Mathemat

ics?, Win, 360n 
Cramer, G. (1704-1752), 184 

Introduction a l’analyse des lignes 
courbes algebriques, 431 

rule, 431
Cray-2 supercomputer, 123, 639 
Cray X-MP supercomputer, perfect num

bers, 77
Crelle, A. L. (1780-1855), 512, 547 

table of primes, 578
Crelle9s Journal, 490, 521, 544, 546-547 
Cremona, L. (1830-1903), projective geome

try, 544
Crises in the foundations of mathematics, 

150, 583-584, 624-625 
first crisis, 150, 624 
second crisis, 624-625 
third crisis, 625 

Cross ratio, 183-184, 560 
Cross ratio group, 525 
Crotona School (see Pythagorean School) 
Crowd, 94
Crux mathematicorum, 579 
Cubic Curves (Newton), 399, 401 
Cubic equation, 59-60, 233-234, 272-273, 

292-293
Archimedes, 167 
Cardano’s solution, 273 
geometrical solution, 231, 234 
in ancient Babylonia, 43, 59-60 
in ancient China, 215
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Cubic equation (continued) 
irreducible case, 276 
Khayyam’s solution, 231-232, 233, 234, 

246-248
Vi&te’s solution, 274, 279-280, 293 

Cubic surds, 241 
Cubit, 453
Cuboctahedron, 100, 324 
Cuneiform numerals, 15-16, 20 
Curvature, Gaussian, or total, 588-589 

Germanian, or mean, 481 
of a curve, 401, 556 
principal, 588

Curve(s), apple of discord, 332 
brachystochrone, 426 
cardioid, 374, 585 
Cartesian ovals, 350n 
Cartesian parabola (Newton), 370 
Cassinian, 365, 373 
catacaustic, 365 
catacaustic of a cardioid, 374 
catacaustic of a circle, 374 
catenary, 363, 425, 589 
cissoid of Diodes, 111, 126, 363 
conchoid ofNicom edes, 113, 127, 183, 

392
conic sections (see Conic sections) 
constant width, 434, 459 
cycloid (see Cycloid), 329 
Descartes’ classification, 349 
Descartes’ method of tangents, 349-352 
envelopes, 173, 363, 365, 405 
epicycloid, 374 

of one cusp, 374 
of two cusps, 374 

equiangular spiral, 426, 585 
evolutes, 363, 556
folium of Descartes, 353, 371, 392, 396
four-leaved rose, 585
general cissoid, 126, 392
general conchoid, 127
Helen of geometry, 332
hyperbola of Fermat, 353
hyperbolic spiral, 585
involutes, 363
isochrone, 425
kappa, 396
Koch, 597
la galande, 396
Lame, 396
lemniscate of Bernoulli, 365, 373-374, 

426, 585
limaqon of Pascal, 128, 329 
logarithmic, 363 
logarithmic spiral, 283, 360 
loxodrome, 366 
nephroid, 374
normal frequency, 428, 456 
orbiform (see Orbiform curves) 
orthogonal trajectory, 426 
osculating circle, 405

Curve(s) (continued) 
parabola of Fermat, 353 
parabolas of higher order, 353 
pearls of Sluze, 366 
pedal, 547 
pseudo-witch, 463 
quadratrix, 114, 392, 396 
quadratrix of Hippias and Dinostratus, 

116, 183
Reuleaux triangle, 459 
roulettes, 547
semicubical parabola, 363, 425 
sinusoidal spiral, 365-366, 374 
snowflake, 597
spiral of Archimedes, 114, 116, 167, 183, 

585
spirals of Fermat, 353 
tangent, 396 
tautochrone, 426 
tractrix, 589-590 
trident, 370
Tschimhausen cubic, 366, 374 
twisted, or skew, 436, 550 
unicursal and multicursal (see Unicursal 

and multicursal curves) 
witch of Agnesi, 353, 442, 463 

Cusa, N. (1401-1464), 265 
approximate rectification of a circle, 285 

Cyclic quadrilaterals, 242-243 
area of, 227
Brahmagupta’s theorems, 227 
Brahmagupta’s trapezium, 228 
construction of, 266 
Ptolemy’s theorem, 177, 192-193, 227 

Cycloid, 331-332, 329, 353, 368, 392, 426 
apple of discord, 332 
area of arch, 332, 359, 360 
associated surfaces and volumes of revo

lution, 332
brachystochrone, 426 
evolute of, 363, 373 
Galileo, 332, 360 
Helen of geometry, 332 
isochronous property, 363 
rectification by Brouncker, 367 
rectification by Wren, 368 
trangents to, 332, 353, 360, 365, 392 

Cycloidal pendulum, 363, 373, 426 
Cylindrical wedge, or hoof, 408 
Cyril of Alexandria (ca. 400), 185 
Cyzicus School, 107

Da Coi, Zuanne de Tonini (1540), 273, 293 
D’Alembert, Jean-le-Rond (1717-1783), 

424, 437-438, 454 
French Encyclopedie, 438 
logarithms of negative numbers, 438 
partial differential equation, 437-438 
portrait, 439
precession of the equinoxes, 438
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D’Alembert, Jean-le-Rond (1717-1783)
(<continued) 
principle, 437 
quoted, 438, 447

theorem (fundamental theorem of arith
metic), 438, A ll 

theory of limits, 438, 564 
Traite de dynamique, 437 

Dandelin, G. (1794-1847), 191 
Dantzig, The Bequest o f the Greeks, 130n 
Darboux, J. D. (1842-1917), differential 

geometry, 556
Darius the Great (ruled 522-486 B.C.), 40, 

105, 219
Dark Ages, The, 216, 258 

problems from, 282-283 
Darwin, C. R. (1809-1882), theory of evolu

tion, 321
Dase, Z. (1824-1861), calculation of 7r, 121 

table of primes, 578 
Data, datum, 154, 160 
Data (Euclid), 154, 182, 183 
Davies, C. (1798-1879), 448 
Dayoub, I. M. (1977), 128n 
De aequationum recognitione et emenda- 

tione (Vi£te), 278, 279
De algebra tractatus; historicus & practicus 

(Wallis), 394
De arte combinatoria (Leibniz), 620 
Decimal fractions, 29, 280, 307 

in China, 216, 217 
Dedekind, R. (1831-1916), 85, 562 

continuity postulate, 607, 649-650 
cut, 562
definition of infinite set, 613 
forerunner of logicism, 629 
foundations of mathematics, 565 
irrational numbers, 148, 570, 624 

De divina proportione (Pacioli), 267 
Defect of a triangle, 526 
Deficient numbers, 77, 93 
Definitions, explicit vs. implicit, 607 

impredicative, 627
De Gelder (1849), approximate rectification 

of a circle, 130
Dehn, M. (1878-1952), 97, 652 
Deism, 405
De Lagny, T. F. (1660-1734), computation 

of tt, 120
De la LoubSre, S. (1687), 238, 

magic squares, 238-240 
Delamain, R. (ca. 1630), 316 

circular slide rule, 316
Delian problem (see Duplication of the cube) 
Delsarte, J. (comtemporary), Bourbaki 

member, 642
Demetrius Phalereus (ca. 300 B.C.), 141 
Democritus (ca. 410 B.C.), atomistic theory, 

109, 382
forerunner of method of indivisibles, 387 
volume of a pyramid, 382

De Moivre, A. (1667-1754), 424, 428-429 
Annuities upon Lives, 428 
death, 429
Doctrine o f Chances, 428 
formula, 429, 456 
Miscellanea analytica, 428 
normal frequency curve, 428 
probability, 358, 428-429 
probability integral, 428 
Stirling’s formula, 429 

Demonstrative geometry, 644 
De Morgan, A. (1806-1871), 316, 504, 514- 

515
A Budget o f Paradoxes, 292, 515 
conundrum, 197, 515 
Formal Logic; or, the Calculus o f Infer

ence, Necessary and Probable, 620 
four-color problem, 618 
laws, 515 
portrait, 514 

De Morgan medal, 631 
Demosthenes (384-322 B.C.), 140 
Demotic Egyptian numerals, 14 
Dense set of numbers, 613 
Denumerable set(s), 613, 656 
De numerosa potestatum resolutione 

(Viete), 278-279 
Dependent variable, 612 
Der barycentrische Calcul (Mobius), 451 
Desargues, G. (1591-ca. 1662), 306, 325- 

326, 327, 329
an initiator of projective geometry, 544 
Brouillon projet, 325n 
central projection, 326 
points at infinity, 551 
projective geometry, 325-326, 346 
two-triangle theorem, 326, 340, 551, 584 

Descartes, R. (1596-1650), 174, 264, 306, 
314, 325ff, 347-353, 393 

algebraic notation, 278 
amicable numbers, 77 
analytic geometry, 346ff, 353 
classification of curves, 349 
Discours de la methode pour bien con- 

duire sa raison et chercher la verite 
dans les sciences, 347-348, 353 

dreams, 352-353 
duplication of the cube, 127 
Euler-Descartes formula v — e + /  = 2, 

434, 353, 618
folium of, 353, 371, 392, 396 
La dioptrique, 348
La geometrie, 348-352, 366, 370, 397 
Le monde, 342 
Les meteores, 348
loci with respect to three or four lines, 

183
Meditationes, 348
method of tangents, 349-350, 370
portrait, 349
Principia philosophiae, 348
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Descartes, R. (1596-1650) (continued) 
problems from, 371 
rectification of logarithmic spiral, 360 
rule of signs, 275, 314, 352, 370-371, 401 
shape of the earth, 436 
solid analytic geometry, 550 
solution of quartic equation, 274, 371 
symbolism for powers, 352 

De scrip tio (Napier), (see Mirifici lo- 
garithmorum canonis descrip tio) 

Descriptive geometry, 449, 450 
in China, 218

Descriptive Geometry (Monge), 218n 
De Sua, F. (1956), quoted, 635n 
Determinant(s), 494, 516, 518 

Cauchy’s contributions, 488 
Jacobi’s contributions, 494, 533 
Laplace expansion, 447 
Leibniz and Seki Kowa, 405 
postulational definition, 566 
theorem of Jacobi, 533 

De triangulis (Jordanus), 285 
De triangulis omnimodis (Regiomontanous), 

265-266, 288
Deutsche Mathematiker-Vereinigung, 522 
Development o f Mathematics, The (Bell), 

422, 502n
Development o f Mathematics in China and 

Japan, The (Mikami), 211 
Diagonal process of Cantor, 615 
Dichotomy, The, 380 
Diderot, D. (1713-1784), 438 
Die Coss (Rudolff), 270 
Die Theorie der Parallellinien (Lambert), 

440, 497
Dieudonn6, J. (contemporary), Bourbaki 

member, 642
Diez, J. (1556), first work on mathematics 

printed in the New World, 282 
Difference engine (Babbage), 638 
Differential analyzers, 639 
Differential equation(s), 446, 484 

Bernoulli’s, 426, 461 
Cauchy-Riemann, 567 
Clairaut’s, 436, 462 
Euler’s, 462 
Hamilton-Jacobi, 512 
integrating factor, 434 
Lagrange, 445 
Legendre, 448
linear with constant coefficients, 434 
partial (see Partial differential equation) 
Riccati’s, 437, 462 
Runge-Kutta method, 562 
variation of parameters, 445 

Differential Equations (Phillips), 386n 
Differential geometry, 544, 555-559 

absolute properties of a surface, 557 
applicable surfaces, 558 
binormal of a space curve, 556 
curvature of a surface, 557

Differential geometry (continued)
Dupin’s theorem, 556
Euler, 434
extrinsic, 450, 557
first period, 556
Frenet-Serret formulas, 556
Gauss’ therema egregium, 558
Gaussian, or total, curvature, 557
Germainian, or mean, curvature, 481, 558
global, 556
in the large, 556
in the small, 555
intrinsic, 478, 557
lines of curvature, 450
local, 555
Meusnier’s theorem, 556 
minimal surfaces, 558 
principal curvatures of a surface, 557 
relative properties of a surface, 557 
second period, 556 
third period, 557
triply orthogonal families of surfaces, 557 
twisted curves, 436 

Differential triangle, 395 
Differentials, 405, 488 
Differentiation, 379, 390-392, 410, 423 

Barrow, 395-396 
Fermat, 391 
Leibniz, 404 
Leibniz’ rule, 410 
Newton, 401 
rules, 405 

Digit(s), 13, 19 
Dilemmas, 662
Dimension theory, 423, 549, 610, 632, 657- 

658
Dimensionality of a manifold, 550, 586-587 
Dinocrates (ca. 325 B.C.), 140 
Dinostratus (ca. 350 B.C.), 107 

quadratrix, 114, 116, 129, 183 
quadrature of the circle, 116 

Diodes (ca. 180 B.C.), cissoid, 111, 126, 
363, 392

duplication of the cube, 111, 126 
Diophantine problem, 181 
Diophantus (ca. 250?), 180-182, 226, 231, 

263, 355
Arithmetica, 180-181, 197, 354, 364 
Arithmetica, commentary by Hypatia, 185 
On Polygonal Numbers, 180 
personal life, 197 
Poris ms, 180 
problems, 181, 197 
syncopation of algebra, 179, 181-182 
translations of, 180, 231 

Diophantus o f Alexandria (Heath), 18 In 
Dioptra (Heron), 179 
Direction numbers, 554 
Director sphere, 451
Directors of the Lotteries Contractors of the 

United States, 517
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Dirichlet, P. G. L. (1805-1859), 356, 494- 
495, 561, 568, 570 

contrasted with Jacobi, 495 
definition of function, 494, 612 
Fermat’s last “ theorem,” 356 
Fourier series, 494 
function, 494 
portrait, 495 
principle, 494 
problem, 635 
series, 494
son-in-law of Abraham Mendelssohn, 495 
theorem on primes, 578 
Vorlesungen iiber Zahlentheorie, 494 

Discorsi e dimonstrazioni matematiche 
intorno a due nuove scienze (Galileo), 
321, 337-338

Discussion o f the Difficulties in Euclid 
(Khayyam), 234

Disquisitiones arithmeticae (Gauss), 477,
494, 423

Disquisitiones generates circa superficies 
curvas (Gauss), 478, 557 

Distance formula, 554 
Distance function, 568, 655 
Distributions, 456-457 
Distributive law, 502, 504, 642 
Division rings, 510 
“Do thus and so” instruction, 39 
D’Ocagne, M. (1862-1938), 582 
Doctrine of chance, 427 
Doctrine o f Chances (De Moivre), 428 
Domain of definition, 612 
Domains of rationality, 110 
Donnay, J. D. H. (1945), Spherical Trigo

nometry after the Cesaro Method, 193 
Dositheus (ca. 260 B.C.), 165 
Double entry bookkeeping, 267 
Double false position, 233, 246 

in China, 218 
Double refraction, 363 
Double weighing, 202 
Douglas, J. (1897-1965), 559 

problem of Plateau, 559 
Drilling square holes, 459 
Droz-Famy, A. (ca. 1894), sequel to Euclid, 

539
Duality, principle of (see Principle of dual

ity)
Du Chatelet, Marquise [Gabrielle Emilie 

Tonnelier de Breteuil] (1706-1749), 442- 
443, 455

Institutions de physique, 442 
portrait, 443
translation of Newton’s Principia, 44 

Dudeney, H. E. (1857-1930), 95 
Duodecimal scale, 12
Dupin, C. (1784-1873), differential geome

try, 450, 556 
indicatrix, 556 
projective geometry, 326

Dupin, C. (1784-1873) (continued) 
theorem, 556
triply orthogonal families of surfaces, 557 

Duplation and mediation, 60-61 
Duplication of the cube, 109, 111-112 

Apollonius, 111, 125 
Archytas, 111, 124-125 
Descartes, 127 
Diodes, 111
Eratosthenes, 111, 125-126 
Eudoxus, 111
Hippocrates reduction, 111 
Huygens, 127
impossibility with Euclidean tools, 540
Menaechmus, 111, 125
Newton, 127
Nicomedes, 111
Plato, 112
Saint-Vincent, 127
Viete, 127
with cissoid of diodes, 126 
Diirer, A. (1471-1528), 128 
approximate construction of regular nona- 

gon, 295
approximate trisection of an angle, 115 
magic square, 286-288 
Melancholia, 285-288 

Dynamics, 321

“ Eadem mutata resurgo,” 426
Early computing, 21-23
“ Earth flattener,” 426
Edict of Nantes, 428
Edinburgh Mathematical Society, 522
Edington, W. E. (1935), 123n
Edison, T. A. (1847-1931), 322-323
EDS AC, 577
EDVAC, 638
Edward VI (1537-1553), 269 
Egyptian algebra, 52-55, 62 
Egyptian area of a circle, 55, 63 
Egyptian area of a quadrilateral, 55, 63 
Egyptian arithmetic, 52-55, 60-61 
Egyptian geometry, 55, 63 
Egyptian quadrature of the circle, 55, 116, 

117
Egyptian mathematics, sources and dates, 

47-52
Egyptian multiplication and division, 52-53 
Egyptian numerals and numeral system, 15 
Egyptian plumb line and sight rod, 49-50 
Egyptian plus and minus, 55 
Egyptian royal mace, 49 
Egyptian sundial (oldest extant), 49, 52 
Eight-queens problem, 662 
Einstein, A. (1879-1955), 633 

challenged an axiom of physics, 623 
conscience, 657
general theory of relativity, 561, 568 
mass-energy equation, E = me2, 313n
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Einstein, A. (1879-1955) (<continued) 
tensor calculus, 557 
theory of relativity, 402, 446, 555, 572,

611, 623, 635, 654-655 
tribute to Noether, 575 

Eleatic school, 106 
Electromagnetic telegraph, 478 
Electronic Discrete Variable Calculator 

(EDVAC), 638
Electronic Numerical Integrator and Com

puter (ENIAC), 638 
Elementary divisors, 566 
Elementary Principles o f Statistical Mechan

ics (Gibbs), 533 
Elements (Euclid), 105, 108 

Adelard’s translation, 260 
algebraic identities, 59, 85-87, 98 
axiom of Archimedes, 407 
Bhaskara identities, 226 
Campanus’ Latin translation, 264, 295-296 
Cayley’s and Sylvester’s appraisals, 518 
Clavius’ edition, 280 
commentary by Pappus, 182 
commentary by Simplicius, 186 
compared with Peacock’s Treatise on 

Algebra, 503
construction of regular polygons, 151 
constructions, 110, 542 
contents, 144-150
equivalence of Euclidean and modem 

compasses, 124 
Euclidean algorithm, 155 
Eudoxian theory of proportion, 487, 624 
first printed edition in Greek (1533), 269 
first three propositions of Book I, 124 
formal aspects of, 152-154 
geometric solution of quadratic equations, 

88-90
Gherardo’s translation, 261
greatness of, 74
history of, 141-144
in Boethius’ Geometry, 258
in The Treasury o f Analysis, 183
infinitude of primes, 148-149, 577, 578
Legendre’s revision, 447-448, 498
logical shortcomings of, 606-608
Mercator’s edition, 367
method of exhaustion, 407
origin of Books X and XIII, 107
parallel postulate (see Parallel postulate)
Pascal, B., 327
perfect numbers, 77
postulate sets for, 608
primitive terms, 607
Proclus’ Commentary on Euclid, Book I, 

74, 185
purchased by Somerville, 482 
read by Newton, 397 
Recorde’s abridgment, 270 
regular polyhedra, 91-92 
sequel to, 539, 544

Elements (Euclid) (continued) 
solid geometry, 389 
Stifel on Book X, 270 
studied by Abraham Lincoln, 156 
tacit assumptions made by Euclid, 606- 

607, 647
Theon’s recension, 185 
transformation of areas, 90 
translated into Arabic, 231 
translated into Chinese, 219 
treatment of incommensurables, 85 
volume of a tetrahedron, 389 

Elements (meaning of), 149, 160 
Elements de geometrie (Legendre), 447-448, 

449, 498
Elements de Mathematique (Bourbaki), 642 
Elements o f Conics (Werner), 295 
Elements o f Geometry (Leslie), 99 
Elements o f Music (Euclid), 155 
Elements o f Quaternions (Hamilton), 511 
Elimination theory, 518 
Elizabeth, Princess of Bohemia, problem of 

Apollonius, 174
Ellipse, Kepler’s approximation of perime

ter, 324
origin of name, 172 

Ellipsograph, 199
Elliptic functions, 366, 494, 516, 520, 571 

Abel, 490
double periodicity of, 477 
Legendre, 448 

Elliptic geometry, 501 
Emission theory of light, 363, 398 
Empedoclean primal elements, 92 
Encyclopedias of mathematics, 522 
Encyclopedic, 438, 561 
ENIAC, 123, 638, 639 

tt to 2035 places, 122 
placed in the Smithsonian Institution,

122
Enlightenment philosophy, 429 
Entire functions, 566 
Envelopes, 173, 363, 365, 405 
Epicycloid, 374 

of one cusp, 374 
of two cusps, 374

Epimenides (5th century B.C.), paradox, 626 
Epsilon (nickname for Apollonius), 170 
Equation(s), biquadratic (see Quartic equa

tion)
cubic (see Cubic equation) 
differential (see Differential equation(s)) 
Hamilton-Cayley, 512 
indeterminate, 427 
indeterminate of first degree, 242 
Lagrange’s method of approximating 

roots, 445 
Laplace, 446 
linear simultaneous, 195 
Newton’s method of approximating roots, 

401
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Equation(s) (continued)
Pell’s, 226-227 
Pliicker’s, 552
quadratic (see Quadratic equations) 
quartic (see Quartic equation) 
simultaneous, 42, 55, 58, 59, 179, 195— 

196, 213, 405
Taylor’s method of approximating roots, 

430
theory of (see Theory of equations) 
Vidte’s method of approximating roots, 

278, 294
Equiangular spiral, 426, 585 
Equivalent postulate sets, 609-610 
Equivalent segments, 656 
Equivalent sets, 612
Eratosthenes (ca. 230 B.C.), 165, 168, 169— 

171
duplication of the cube, 111, 125-126, 170 
map of the world, 171 
mean finder, 125
measurement of the earth, 170, 187 
nicknames, 170 
On Means, 183 
sieve, 170-171, 577, 599 

Eratosthenian stade, 187 
Erlanger Programm (Klein), 559-561, 590, 

617
definition of geometry, 610-611 
nesting of geometries, 590 

Essai sur la theorie des nombres (Legen
dre), 449

Essai sur la theorie des transversals 
(Carnot), 451, 452

Essay pour les coniques (Pascal), 330 
Etymology, algebra, 236 

algebrista, 236 
algorithm, 236 
Almagest, 236 
characteristic, 312 
cipher, 25
ellipse, parabola, hyperbola, 172
logarithm, 312
mantissa, 312
sine, 237
star names, 235
telescope, 320
trigonometric functions, 236 
zero, 25

Eubulides (4th century B.C.), paradox, 626 
Euclid, 92, 171, 173, 182, 276 

biography, 141 
Conic Sections, 154, 171 
Data, 154, 183
Elements (see Elements (Euclid))
Elements o f Music, 155
formula for perfect numbers, 77, 93, 148
Greek algebra, 180
infinitude of primes, 148, 577, 578
On Division, 154, 160-161
Optics, 155

Euclid (continued) 
other works, 154-155 
parallel postulate, 440 
Phaenomena, 154 
Porisms, 154, 183
postulates, coordinate interpretation, 650 
postulates, spherical interpretation, 650- 

651
Pseudaria, 154 
sequel to, 539, 544 
Surface Loci, 154, 183 

Euclid (Barrow), 145, 146 
Euclid (Billingsley), 143, 144 
“Euclid of algebra,” 503 
Euclidean algorithm, 148, 155 

applications, 155
Euclidean, or collapsing, compasses, 110, 

124
Euclidean constructions, approximate, 129— 

130, 582 
asymptotic, 129
compasses alone, 541-542, 582-583
cyclic quadrilateral, 266
exactitude, 543
geometrography, 543
impossible, 540-541, 581-582
rusty compasses, 234, 542, 583-584
simplicity, 543
straightedge alone, 542
straightedge and rusty compass, 583-584
symbol of, 543

Euclidean geometry, 548, 565, 568 
Euclidean metric geometry, 560 
Euclidean space, 568 
Euclidean tools, 110, 124, 348, 540 
Euclidean vs. modern compasses, 124 
Euclides ab omni naevo vindicatus (Sac

cheri), 497
Euclides danicus (Mohr), 542 
Eudemian Summary (Proclus), 74-75, 81, 

141, 144
Eudemus of Rhodes (ca. 335 B.C.), 75 

History o f Geometry, 185 
Eudoxus (408-ca. 355 B.C.), 84, 107 

duplication of the cube, 111 
method of exhaustion, 380-383 
theory of proportion, 85, 147-148, 150, 

158, 487, 624
Euler, J. A. (1734-1800), 435 
Euler, L. (1707-1783), 180, 283, 424, 432- 

435, 440, 444, 488, 579 
adopts symbol, tt, 120 
algebra, 274, 283 
amicable numbers, 77 
applications of Taylor’s series, 430 
applied mathematics, 434-435 
beta and gamma functions, 434 
blindness, 433
calculus of finite differences, 434 
Castillon-Cramer problem, 184 
circle, 579
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Euler, L. (1707-1783) («continued) 
concept of a function, 611 
conjecture, 457 
continued fractions, 434 
contrasted with Lagrange, 445-446 
diagrams, 435
differential equations, 434, 437, 462 
differential geometry, 434 
diophantine equation xy = ax + by + c, 

226
Euler-Descartes formula v -  e + f  = 2, 

100-101, 353, 434, 618, 659 
Fermat primes, 356 
Fermat’s last “ theorem,” 356 
formalism of, 435 
formula, 433-434
fundamental theorem of algebra, 477 
geometry, 539 
Graeco-Latin squares, 434 
graph theorems, 461 
infinite series, 457-458 
Institutiones calculi differentialis, 435 
Institutiones calculi integralis, 435, 542 
Integral Calculus, 542 
integrating factor, 434 
Introductio in analysin infinitorum, 435, 

458
Konigsberg bridges problem, 434, 459- 

460, 618
line of a tetrahedron, 467 
line of a triangle, 434, 539, 580 
little Fermat theorem, 355 
logarithms of negative numbers, 434, 438, 

457
most prolific writer of mathematics, 433, 

515
nonmathematical interests, 435 
notation, 433
number theory, 77, 180, 355, 434 
oribform curves, 434, 459 
paradox, 457
paradoxes in infinite series, 591-592 
(f> function, 285, 372, 434 
77, 120
polyhedral relation v -  e + /  = 2, 434 
portrait, 432 
probability, 358 
problem of Apollonius, 174 
quintic equation, 274 
re-entrant knight’s path, 434 
Riccati equation, 437 
sequel to Euclid, 539 
solution of quartic equations, 434 
sum of an infinite series, 458 
surfaces of second degree, 326 
tautochrone, 426 
Taylor’s series, 430 
theorem on 4 collinear points, 467 
theorem on homogeneous functions, 434 
theorems on unicursal and multicursal 

graphs, 461 
tributes to, 435

Eulerian integrals, 449 
Euripides (ca. 480-406 B.C.), 111 
Eutocius (ca. 560), 112, 167, 185, 186 
Evectants, 520
Eves, A Survey o f Geometry, 116n, 540n, 

541 n
Eves and Newsom, An Introduction to the 

Foundations and Fundamental Con
cepts o f Mathematics, 501 az, 608n, 635n 

Evolutes, 363, 556
Exactitude of a Euclidean construction, 543 
Exercises du calcul integral (Legendre), 449 
Existence theorems, 572 
Experimental geometry, 644 
Explicit vs. implicit definitions, 607 
Exponents, Descartes, 352 

Wallis, 393
Extensions of the Pythagorean theorem,

147, 183, 198, 234, 243, 334, 450 
Extreme and mean ratio (see Golden sec

tion)
Extrinsic geometry, 450, 557 
Extrinsic topological properties, 618

FACOM M-200, 122 
Factor tables, 578 
Factorial n, 330n
Fagnano, G. C. (1682-1766), rectification of 

lemniscate of Bernoulli, 373/z 
Fakhr al-Mulk (ca. 1020), 244 
Fakhri (Al-Karkhi), 231, 244 
Falling bodies, law of, 319, 321, 336 
False position, 54, 180, 225, 233, 262, 267 
Farrar, J. (1779-1853), 448 

translation of Legendre’s Elements de 
geometrie, 448

Father Bongus (ca. 1580), 272 
“ Father of Arithmetization,” 486 
Father of differential geometry, 556 
“ Father of modern analysis,” 566 
Felkel, A. (b. 1740), 578 

factor table, 578
Felton (1958), calculation of 77, 639 
Ferguson, D. F. (1948), 122 

calculation of 77, 122 
formula, 122

Fermat, C.-S. (ca. 1660), 354 
Fermat, P. (16017-1665), 180, 263, 306, 353- 

358, 367
amicable numbers, 76 
analytic geometry, 346, 353 
as inventor of analytic geometry, 347 
differentiator 390-391, 410 
famous marginal note, 355, 364 
hyperbolas of, 353
Isogoge ad locus pianos et solidos, 353 
isogonic center, 360
last “theorem,” 234, 355-356, 372, 456, 

481, 568
little theorem, 355, 372
maxima and minima, 358, 363, 390-391
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Fermat, P. (16017-1665) (continued) 
method of indivisibles, 390 
method of infinite descent, 356-357, 372 
parabolas of, 353 
portrait, 354 
primes, 356, 578, 579 
probability, 328, 331, 357-358, 362, 428 
problem of the points, 331, 331 n, 357, 358, 

372
restoration of a work of Apollonius, 175 
rule for maxima and minima, 363 
spirals of, 353 
subtangents, 391-392 
tangents, 391-392 
theory of numbers, 306, 354-356 
uncertainty of dates, 353-354 
witch of Agnesi, 353, 442 

Ferrari, L. (1522-1565), 279 
solution of quartic equations, 273-274,

282, 293
Ferro, S. del (1465-1526), 272 
Feuerbach, K. W. (1800-1834), 539, 579 

circle, 579
configuration, 579-580 
points, 580 
theorem, 579

“Few, but ripe” (Gauss’ motto), 478, 572 
Fialkowski (1860), 129 
Fibonacci, L. (ca. 1175-1250), 56, 231, 261- 

263
Flos, 263
Liber abaci, 56, 197, 261-263, 267, 283, 

284, 290
Liber quadratorum, 263 
portrait, 262
Practica geometricae, 263 
problems from, 283-284, 290 
sequence, 263, 283 
tournament problems, 263, 284 

Fields, 510 
Fields medal, 559 
Figurate numbers, 78, 94 
Finger numbers and finger reckoning, 13-14, 

28-29, 259
Finite projective geometry, 548, 585, 640,

645
Finite mathematics, 645 
Fior, A. M. (ca. 1506), 272 
Fischer, E. (1875-1959), 574 
Five Dynasties of the Independent States 

(907-960), 212
Fixed-point theorem of Brouwer, 632 
Flos (Fibonacci), 263 
Fluent, 400 

moment of, 400 
Fluid pressure, 386 
Fluid motion, 361 
Fluxion, 398, 400, 431 

principal, 400 
Focus, 324
Focus-directrix property, 173, 184, 190-191 
Folium of Descartes, 353, 371, 392, 396

Fontana, N. (see Tartaglia)
Formal axiomatics, 633 
Formal Logic; or, the Calculus o f Inference, 

Necessary and Probable (De Morgan), 
620

Formalism, 633-635 
Formalism, eighteenth century, 435 
Formalist school, 570, 628, 633 
Formulaire de mathematiques (Peano), 621 
Foundations of analysis, 405, 423, 445, 563, 

565, 569
Foundations of geometry, 565, 607, 618, 635 
Foundations of logic, 628 
Foundations of mathematics, 423, 424, 454, 

563, 606, 609, 612, 632 
crises in, 624-625 
in the calculus of propositions, 565 
in the natural number system, 565, 629,

631
in the real number system, 565, 629 
in set theory, 565, 629, 641-642 

Four-color conjecture, 618, 618n 
resolved by Appel and Haken, 640 
solution by Allaire, 640 

Fourier, J. (1768-1830), 450, 483-485, 611 
paired with Poisson, 489 
portrait, 484 
quoted, 485
roots of a polynomial equation, 484 
series, 483-484, 494, 523-524, 533, 611 
theorem, 412, 484
Theorie analytique de la chaleur, 484 

Four-leaved rose, 585 
Fractions, radix, 29 

decimal (see Decimal fractions) 
unit (see Unit fractions)

Fraenkel, A. A. (1891-1965), restricted set 
theory, 626 

Franciscan’s cow, 155 
Frank, E. (b. 1883), 74n 
Frechet, M. (1878-1973), 611, 619 

abstract spaces, 611 
metric space, 655 
topology, 619

Frederick II (1194-1250), 261, 263 
Frederick V of Bohemia (1596-1632), 174 
Frederick the Great (1712-1786), 433, 435, 

438, 444
Frege, G. (1848-1925), 626, 629 

Begriffsschrift, 621 
forerunner of logicism, 629 
Grundgesetze der Arithmetik, 621 
quoted, 626 
symbolic logic, 621

French Acad6mie des Sciences (see French 
Academy of Sciences)

French Academy of Sciences, 327, 436, 437, 
438, 483-484, 488, 491, 521, 550, 573, 
642

declines to examine any more solutions of 
the quadrature problem, 120 

metric system, 453-454
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French Encyclopedic, 438, 561 
French Revolution, 429, 444, 446, 449, 451, 

454, 483, 485, 491, 493 
Frenet, F. (1816-1888), 556 

Frenet-Serret formulas, 556 
Fr6nicle de Bessy, B. (ca. 1602-1675), 355 
Fresnel, A. J. (1788-1827), optical theory, 

518
wave surface, 552 

Friberg, J. (1981), 44n 
Friden desk calculators, 637 
Friendly numbers (see Amicable numbers) 
Frobenius, G. (1848-1917), groups, 492 
Frog in the well problem, 288-289 
Fuchsian functions, 274, 520, 572 
Fuhrmann, W. (1833-1904), sequel to Eu

clid, 539
Function, Hamiltonian, 512 

Legendre, 448 
Function concept, 423, 484 

Bernoulli’s, 611 
dependent variable, 612 
Dirichlet’s definition, 494, 612 
domain of definition, 612 
Euler’s, 611
historical evolution of, 611-612 
independent variable, 612 
one-to-one correspondence, 612 
range of values, 612 
set theory definition, 612 

Functional notation, 433 
Functions of a complex variable, 566 

Cauchy-Riemann equations, 488 
Cauchy’s formula, 488 
Cauchy’s inequality, 488 
Cauchy’s theorem, 488 

Fundamental theorem of algebra, 438, 477, 
522-523, 616, 618 

Gauss, 477
Fundamental theorem of arithmetic, 148, 577 

applications, 157
Fundamental theorem of the calculus, 396 

Leibniz, 404
Fundamental theorem of projective geome

try, 184
Fuss, N. (ca. 1780), Castillon-Cramer prob

lem, 184

Galileo Galilei (1564-1643), 306, 318-322, 
359-360, 397, 427 

area of cycloidal arch, 360 
challenged Aristotle’s law of falling 

bodies, 623
condemnation by the Church, 247 
cycloid, 332
Discorsi e dimonstrazioni matematiche 

intorno a due nuove scienze, 321, 
337-338 

dynamics, 321 
falling bodies, 319, 321, 336

Galileo Galilei (1564-1643) (<continued) 
infinite classes, 321, 613 
Inquisition, 320-321, 347 
law of falling bodies, 501 
microscope, 321 
paradoxes, 337-338, 487 
path of a projectile, 321 
period of a pendulum, 319, 319n 
portrait, 320 
quoted, 321 
religion, 321-322 
sector compasses, 321, 336-337 
telescope, 320

Galley algorithm for long division, 290-292 
Galois, E. (1811-1832), 274, 491-492, 492n 

paired with Abel, 489 
portrait, 492
scientific testament, 491-492 
theory of equations, 492 
theory of groups, 445, 492-493 

Game theory, 641 
Gamma functions, 434, 449 
Gandz, S. (1926), 236n 
Garfield, Abram (1831-1881), 156 

proof of Pythagorean theorem, 156 
Gas equation (Boltzmann), 313n 
Gauging, 318
Gauss, C. F. (1777-1855), 440, 446, 476- 

479, 481, 561, 569 
arithmetical quadratic forms, 197 
Collected Works, 479 
complex numbers, 479 
congruence theory, 477 
contrasted with Cauchy, 488 
curvature theorem, 588-589 
differential geometry, 556, 557, 588-589 
Disquisitiones arithmeticae, A ll , 494, 523 
Disquisitiones generates circa superficies 

curvas, 478, 557
double periodicity of elliptic functions,

A ll
early unawareness of Lobachevsky’s 

work, 500
electromagnetic telegraph, 478 
fundamental theorem of algebra, 477, 522- 

523, 618
germs of invariant theory, 516 
heliotrope or heliograph, 478 
hypergeometric series, 478, 564 
mathematical diary, A ll 
medal, 479
method of least squares, 476 
mottoes, 478-479, 572 
non-Euclidean geometry, 478, 498-499,

502
number theory, A ll 
orbit of Cere, 478 
plane, 479 
portrait, 478
prime number theorem, 578 
Prince of Mathematicians, A ll
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Gauss, C. F. (1777-1855) (<continued) 
prodigy, 476 
quadratic forms, 197 
quadratic reciprocity law, 477 
quoted, 478
regular polygons, 152, 476, 477 
rigorization of analysis, 487 
sequel to Euclid, 539 
story about Dirichlet, 494-495 
theory of knots, 618 
therema egregium, 558 

Gaussian, or total, curvature, 557, 588-589 
Gaussian integers, 529 
Geber (ca. 1130), 235 

theorem, 235
Gelfond, A. O. (1906-1968), theorem, 616 
Gelon (son of King Hieron), 168 
Gelosia algorithm for long multiplication, 

290-291
Gematria (see Arithmography)
Geminus of Rhodes (ca. 77 B.C.), 185 

Theory o f the Mathematical Sciences, 185 
General conchoid, 127 
General theory of relativity, 568 
General trattato (Tartaglia), 290 
Generalized prismoid, 409 
Genuys, F. (1958, 1959), calculation of 7r, 

122, 639 
Geodesy, 446
Geometria del compasso (Mascheroni), 541 
Geometria indivisibilibus (Cavalieri), 387- 

388
Geometria organica (Maclaurin), 431 
Geometria situs, 618
Geometric algebra, 99, 147, 180, 369-370 
Geometric fallacies, 154 
Geometric mean, 63, 94, 198, 200-202 
Geometric number theory, 78-80, 562 
Geometric probability, 120-121, 429, 465- 

466
Geometric progressions, 54, 148, 167, 225, 

270, 383
Geometric solution of cubics (Khayyam), 

234
Geometrical harmony, 95 
G6om6trie de position (Carnot), 451, 467, 

539
Geometrie der Lage (Staudt), 548 
Geometrische Untersuchungen zur Theorie 

der Parallellinien (Lobachevsky), 500 
Geometrography, 543, 584 
Geometry, affine, 590 

analytic (see Analytic geometry)
Arabian, 234
Babylonian, 41-42, 58-59 
circle, 560
college, 174, 176, 183, 539 
definition of (Klein), 560 
demonstrative, 644
descriptive (see Descriptive geometry) 
differential (see Differential geometry)

Geometry (<continued) 
dimensionality, 423, 549, 550, 586-587,

610, 632, 657-658 
early history of, 185-186 
Egyptian, 55, 62, 63-66, 116, 117 
elliptic, 501
Erlanger Programm, 559-561, 590, 610-

611, 617
Euclidean, 548, 565, 568
Euclidean metric, 560
experimental, 644
extrinsic, 450, 557
finite, 548, 585, 640, 645
foundations of, 565, 607, 618, 635
Hindu, 227-229
hyperbolic, 501, 527
integral, 556
intrinsic, 557
Kleinian, 561, 617
liberation of, 501-502, 504
line, 560
Lobachevskian, 500, 501-502 
modem (see Geometry, college) 
^-dimensional (see N-dimensional geome

try)
non-Euclidean (see Non-Euclidean geome

try)
non-Riemannian, 557 
parabolic, 501 
paradoxes, 647-649 
plane affine, 590 
plane centro-affine, 590 
plane equiform, 560 
plane Euclidean metric, 560 
plane projective, 560 
plane similarity, 560 
point, 560
projective (see Projective geometry) 
Riemannian, 557, 568 
scientific, or experimental, 644 
solid, 149
solid analytic, 450-451, 550 
spherical (see Spherical geometry) 
subconscious, 644 
topology (see Topology)

Geometry (Boethius), 258 
Geometry (Gerbert), 283 
George V, King of Hanover, 479 
Gerbert (ca. 950-1003), 258 

Geometry, 283
Gergonne, J.-D. (1771-1859) 509, 544, 546 

analytic geometry, 553 
Annales de Mathematiques, 479 
problem of Apollonius, 174 
projective geometry, 326 
proof of the principle of duality, 546 

Germain, S. (1776-1831), 455, 481 
Fermat’s last “ theorem,” 481 
Hypatia of the nineteenth century, 481 
Mathematical Pleiades, 576 
mathematical theory of elasticity, 481
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Germain, S. (1776-1831) (continued) 
mean curvature, 481, 558 
portrait, 481 
quoted, 481

Ghaligai, F. (d. 1536), 289 
problem from, 289-290 

Gherardo of Cremona (1114-1187), 261 
etymology of sine, 237 
translation of al-Khowarizmi’s algebra,

261
translation of Euclid’s Elements, 261 
translation of Ptolemy’s Almagest, 261 

Ghetaldi, M. (1566-1626 or 1627), 175 
restoration of a work of Apollonius, 175 

Gibbs, J. W. (1839-1903), 512, 533 
Elementary Principles o f Statistical Me

chanics, 533 
phenomenon, 533 
vector analysis, 512 
Vector Analysis, 533 

Gilberta (sister of Blaise Pascal), 327 
Gillings, R. J. (1953), 44n 
Giordano (ca. 1785), generalization of the 

Castillon-Cramer problem, 184 
Girard, A. (1595-1632), 366 

abbreviations sin, tan, 366 
area of spherical triangle, 366 

Glaisher, J. W. L. (1848-1928), 261n 
table of primes, 578 

Glaucus, son of King Minos, 111 
Globular projection, 364 
Godel, K. (1906-1978), axiomatics, 610 

continuum hypothesis, 617 
theorems, 634-635 

Goldbach, C. (1690-1764), 579 
conjecture, 579, 599 

Golden ratio, 101
Golden period of analytic geometry, 550 
Golden section, 99, 101-102, 192 
Golenischev papyrus (see Moscow papyrus) 
Gordan, P. (1837-1912), 574 
Gounod, C. F. (1818-1893), 519 
Gow, J. (ca. 1884), 170 
Graeco-Latin squares, 434 
Grandi, G. (1672-1742), 442 
Graphic Algebra (Schultze), 248 
Graphs, branch, 459 

Euler’s theorems, 461 
multicursal, 460-461 
node, 459 
route, 459 
unicursal, 459-461

Grassmann, H. [son of H. G. Grassmann] 
(b. 1859), 513

Grassmann, H. G. (1809-1877), 512-513 
Ausdehnungslehre, 508, 512-513 
calculus, 533
calculus of extension, 513 
higher-dimensional geometry, 553 
hypercomplex numbers, 508 
liberation of algebra, 504

Grassmann, H. G. (1809-1877) (continued) 
origin of abstract algebra, 510 
portrait, 513
view of quaternions, 512 

Grating algorithm for long multiplication, 
290-291

Great Fire of London, 368
“Great Geometer, The,’’ 171
“Great period’’ of projective geometry,

544
Great pyramid of Cheops, or Gizeh, 49-50, 

62
Great Sphinx, 52
“Greatest Egyptian pyramid,’’ 55, 63-65, 

195
“Greatest geometrician since Apollonius,’’ 

547
“Greatest might have been’’ in mathemat

ics, 329
Greek Anthology, 179-180, 197 

problems from, 196 
Greek names, pronunciation of, 108 
Greek numerals, alphabetic (or Ionic), 18- 

19, 232
Attic (or Herodianic), 16 

Greek trigonometry, 175-176, 229 
Green, G. (1793-1841), 553 

quoted, 553
Gregory D. (1661-1708), 120, 368 

Savilian professor, 368 
Gregory, D. F. (1813-1844), 504 
Gregory, J. (1638-1675), 367-368 

quadrature of the circle, 367 
series, 119-120, 121, 367 

Grenville, Sir R. (1542-1591), 314 
Gresham, Sir T. (1519-1579), 314 
Grienberger (1630), computation of tt, 119 
Grimaldi, President of the Mathematical 

Board of China, communicated by 
Leibniz, 406

Grotefend, G. F. (1775-1853), 40 
Groupoids, 510
Group(s), 110, 492-493, 510, 525 

Abelian, 490, 525 
axioms, or postulates, 525 
Betti, 619 
continuous, 532 
cross ratio, 525 
definition, 525 
examples of, 525 
identity element, 525 
inverse element, 525 
Lagrange’s theorem, 445 
non-Abelian, 534 
Poincare, 572 
substitution, 492 
theorems, 525 
transformation, 559f f  

Ground o f Artes, The (Recorde), 269 
Grundgesetze der Arithmetik (Frege), 621 
Grundlagen der Geometrie (Hilbert), 633
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Grundlagen der Mathematik (Hilbert and 
Bemays), 621, 634

Grundziige der Mengenlehre (Hausdorff), 
619

Guilloud, M. J. (1966, 1967, 1973), 122 
computation of tt to 250,000 places, 122 
computation of tt to 500,000 places, 122 
computation of tt to 1,000,000 places, 122 

Guldin, P. (1577-1642), 183, 390 
centroid theorems, 183, 199 

Gunter, E. (1581-1626), 312 
chain, 312
christener of “cosine” and “cotangent,” 

312
logarithmic scale, 316 

Gupta dynasty, 220 
map of, 220

Guthrie, F. (ca. 1850), 618 
four-color problem, 618

Hachette, J.-N.-P. (1769-1834), 450 
Application d'algebre a la geometrie, 450 

Hadamard, J. (1865-1963), 578 
prime number theorem, 578 

Hagge (ca. 1908), sequel to Euclid, 539 
Haken, W. (1976), four-color conjecture, 640 
Hakim, Caliph (985-1021), 235-236 
Hallerberg, A. E. (1977), 123n, 542n 
Halley, E. (1656-1742), comet, 436 

mortality tables, 368 
Newton’s Principia, 399 
restoration of Book VIII of Apollonius’ 

Conic Sections, 368
restoration of works of Apollonius, 174 
Savillian professor, 314, 368 

Halphen, G.-H. (1844-1889), analytic geom
etry, 553

Hamilton, Sir. W. R. (1788-1856), 445, 505, 
508, 510-512, 515

challenged the commutative law of multi
plication, 623

complex numbers, 505-506, 511, 530
conical refraction, 511
Director of the Dunsink Observatory, 511
Elements o f Quaternions, 511
liberation of algebra, 504
origin of abstract algebra, 510
portrait, 511
quaternions, 506-508, 511-512, 533 
quoted, 106
Royal Astronomer of Ireland, 511 
Treatise on Quaternions, 511 

Hamilton-Cayley equation, 512 
Hamilton-Cayley polynomial, 512 
Hamilton-Cayley theorem, 512 
Hamiltonian function, 512 
Hamiltonian game, 512, 534-535 
Hamilton-Jacobi differential equations, 512 
Hammurabi, King (fl, ca. 2100 B.C.), 41, 81 
Han period (206 B.C.-A.D . 222), 212

Hankel, H. (1839-1873), 223, 224, 504 
Hanseatic League, 268 
Hardy, G. H. (1877-1947), 222 

pure vs. applied mathematics, 646 
quoted, 166-167 
Riemann hypothesis, 568 

Harmonic analysis, 484 
Harmonic mean, 198, 200-202 

Pythagorean definition, 94 
Harmonic progression, 201 
Harmonic ranges, 326, 547 
Harmony o f the Worlds (Kepler), 323 
Harriot, T. (1560-1621), 306, 314-316 

Artis analyticae praxis, 314 
inequality signs, 314 
paired with Oughtred, 489 
portrait, 315 
theory of equations, 314 

Harris papyrus, 52 
Harrison, Benjamin (1726-1791), 454 
Hart, H. (1848-1920), sequel to Euclid, 539 
Hartley, M. C., Patterns o f Polyhedrons, 

lOlw, 168n, 324n
Harun al-Rashid, Caliph (7637-809), 231 
Hausdorff, F. (1868-1942), 660 

Grundziige der Mengenlehre, 619 
Hausdorff space, 619, 660 

limit point, 660 
neighborhoods, 660 
postulates, 660

Heath, T. L. (1861-1940), 74/i, 93 
Diophantus o f Alexandria, 181n 
History o f Greek Mathematics, 129n 
Manual o f Greek Mathematics, A, 113n 
Thirteen Books o f Euclid's Elements, The, 

647
Heaviside, O. (1850-1925), operational 

calculus, 447
Hegel, G. W. F. (1770-1831), 623n 
Heiberg, J. L. (1854-1928), 74/i, 169, 383 
Heifetz, J. (b. 1901), 446 
Height of a polynomial, 615, 656-657 
Helen of geometry, 332 
Heliotrope or heliograph, 478 
Helmholz, H. (1821-1894), 573, 619 
Henry IV, King (1553-1610), 277 
Hensel, S., (nephew of Dirichlet), 495 
Heptadecagon, 152, 158, 476 
Heptagon, 193, 234, 243-244, 582 
Hermes, Professor (ca. 1894), 152 
Hermite, C. (1822-1901), 519-522 

portrait, 519 
quoted, 491, 517
solution of quintic equation with elliptic 

functions, 274, 520 
transcendence of e, 520, 616 

Herodianic Greek numerals, 16 
Heron (ca. 757), 177-179, 180, 196, 265, 306 

approximate construction of a regular 
heptagon, 193

approximation of square roots, 178, 411
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Heron (ca. 75?) (continued) 
area of triangle in terms of sides, 167, 178, 

194, 227, 243 
Catoptrica, 179, 194 
Dioptra, 179 
Metrica, 178, 193, 195 
Pneumatica, 178-179 
problems from, 193-195 
translations of, 265 

Heronian mean, 63, 200-201 
Hesse, L. O. (1811-1874), analytic geome

try, 553
Heterological adjective, 661 
Heyting, A. (ca. 1930), 623 

intuitionist symbolic logic, 632 
Hieratic Egyptian numerals, 14 
Hieroglyphic Egyptian numerals, 14-15 
Hieron, King (3077-216 B.C.), 165, 168 

crown of, 165-166 
Hieronymus (331-420), 93 
Higher-dimensional geometry (see rc-dimen- 

sional geometry)
Hilbert, D. (1862-1943), 562, 575, 621 

axiomatics, 610 
biography, 635 
calculus of variations, 635 
consistency of mathematics, 609, 633-634 
formalism, 570, 633 
Grundlagen der Geometrie, 633 
number (2^), 616 
Paris problems, 97, 562, 568, 635 
portrait, 634
postulate set for Euclidean geometry, 608
predecessor of Weyl, 633
proof theory, 634
quoted, 74, 575
space, 635

Hilbert and Bemays, Grundlagen der 
Mathematik, 621, 634 

Hindu algebra, 226-227 
Hindu arithmetic, 223-225, 225-226 
Hindu geometry, 227-229 
Hindu method of solving quadratics, 226 
Hindu names, pronunciation of, 220 
Hindu trigonometry, 221, 229 
“ Hindu” vs. “ (eastern) Indian,” 219n 
Hindu vs. Greek mathematics, 229-230 
Hindu-Arabic numeral system, 19, 23-25, 

223, 231, 259, 262, 282, 307 
Hipparchus (ca. 180-ca. 125 B.C.), 175-176 

astronomy, 175-176 
table of chords, 175-176 
trigonometry, 175-176 

Hippasus (ca. 470 B.C.), 84, 94 
Hippias of Elis (b. ca. 460 B.C.), quadratrix, 

114, 116, 129
quadrature of the circle, 116 
trisection of an angle, 116 

Hippocrates of Chios (ca. 440 B.C.), 106, 
109, 144

duplication of the cube, 111

Hippocrates of Chios (ca. 440 B.C.) 
(continued)

lunes, 116, 130, 130«, 186 
reduction, 111

Hippocrates of Cos (406-357 B.C.), 106n 
Hipsicles (ca. 180 B.C.), 175 
Hisab al-jabr w ’al-muqa-balah (al Kho- 

warismi), 236
History o f Geometry (Eudemus), 185 
History o f Greek Mathematics (Heath), 129n 
History o f Mathematics, A (Boyer), 422 
History o f Mathematics, A (Cajori), 583 
History of mathematics (Wallis), 394 
History o f Science, The (Sarton), 186n 
Hitler, A. (1889-1945), 272, 562 
Hjelmslev, J. (1873-1950), 542 
Hobson, E. W. (1856-1933), A Treatise on 

Plane Trigonometry, 221n 
Hodograph, 512, S\2n 
Holder, O. (1859-1937), groups, 492 
Holzmann, W. (1532-1576), 180 
Homeomorphic figures, 617, 658 
Homer (fl. 850? B.C.), 167 
Homogeneous coordinates, 551, 587-588 
Homology, 326 
Homology theory, 619 
Homothetic ranges and pencils, 547 
Hoof, or wedge, 408 
Hooke, R. (1635-1703), 368-369, 399 

conical pendulum, 368 
law of gravitation, 368 
law of stress and strain, 368 
watches, 368

Homer, W. G. (1786-1837), 216 
Homer’s method, 216 

in China, 216, 217
Horologium oscillatorium (Huygens), 362- 

363
Horseley, S. (1733-1806), restoration of a 

work of Apollonius, 175 
House Bill No. 246 of the Indiana State 

Legislature, 123, 123w, 130 HP 28 S,
641

Hsu Kuang-ching (1562-1634), 219 
Hudde, J. (1633-1704), multiple roots of a 

polynomial, 366
Hundred Years’ War (1337-1453), 264 
Huntington, E. V. (1874-1952), 608 

axiomatics, 610
postulates for Euclidean geometry, 608 

Huygens, C. (1629-1695), 306, 356, 361-363 
366, 404

achromatic eyepiece, 363 
centrifugal force in circular motion, 363 
curvature, 556 
cycloidal pendulum, 363 
double refraction, 363 
duplication of the cube, 127 
evolutes and involutes, 363, 556 
forerunner of metric system, 453 
Horologium oscillatorium, 362-363
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Huygens, C. (1629-1695) (<continued) 
isochronous property of cycloid, 363 
mathematical expectation, 362, 372 
pendulum clock, 362-363 
portrait, 362
probability theory, 306, 358, 428 
problems from, 372-373 
proof of Snell’s refinement, 119, 361 
rectification of cissoid of Diodes, 363 
shape of the earth, 436 
spring-balance watch, 363, 368 
tautochrome, 426 
wave theory of light, 363 

Hydrodynamica (Daniel Bernoulli), 427 
Hydrodynamics, Bernoulli’s principle of,

427
Pascal’s principle, 328 

Hydrostatics, 166, 168, 188, 280 
Hypatia (d. 415), 185 

death of, 185
Mathematical Pleides, 576 

Hypatia of the nineteenth century, 481 
Hypatia, or New Foes with an Old Face 

(Kingsley), 185 n 
Hyperbola (origin of name), 172 
Hyperbolas of Fermat, 353 
Hyperbolic functions, 440, 462-463 
Hyperbolic geometry, 501 

Euclidean model of, 527 
Hyperbolic spiral, 585 
Hyperboloid of one sheet, rulings on, 368 
Hypercomplex numbers, 508 
Hyperelliptic integrals, 566 
Hypergeometric series, 478, 564 
Hyperspace, 553
Hypothesis of the acute angle, 234, 497-498, 

526-527
Hypothesis of the obtuse angle, 234, 497- 

498
Hypothesis of the right angle, 234, 497-498 
Hypothetico-deductive study, 503

Iamblichus (d. ca. 330), 76
IBM Automatic Sequence Controlled Calcu

lator (ACC), 638
IBM 704, calculation of tt to 16,167 places, 

122, 639
IBM 7090, calculation of tt to 100,265 

places, 122, 639 
perfect numbers, 77

Ideal model, 608
Ideal points and lines at infinity, 324, 545, 

551
Ideal theory, 356, 551
Identity transformation, 559
I-King, or Book on Permutations, 213
Imaginary unit, 433
Impossible Euclidean constructions, 540- 

541, 581-582
Impredicative definition, 627, 629

In artem analyticam isagoge (Viete), 277- 
278

Incommensurable line segments, 83-84, 624 
Independence of a postulate, 609 
Independence of a postulate set, 609 
Independent variable, 612 
Indeterminate analysis or equations, 263, 

427, 569
in ancient China, 215 
in ancient India, 226, 234 
in Archimedes, 168 
in Greek Anthology, 179 
of first degree, 242 

Indeterminate form 0/0, 425 
Index of prohibited works, 321 
India (Al-Biruni), 229 
Indian Mathematical Society, 222 
Indicator, 372
Indirect method (see Reductio ad absurdum) 
Indivisibles, 386-390, 405 
Industrial revolution, 424 
Infinite classes, 321
Infinite descent, method of, 356-357, 372 
Infinite products, 118, 566 
Infinite series, 437, 490, 544, 564 

Cauchy integral test, 524 
Cauchy ratio test, 488, 524 
Cauchy root test, 488, 524 
Dirichlet, 494
early difficulties with, 591-592 
Euler, 457-458
Fourier, 483-484, 494, 523-524, 533, 569, 

611
Gregory, 119-120, 121, 367 
hypergeometric, 478, 564 
Maclaurin, 430, 457, 458 
Mercator, 367, 376 
paradoxes, 591-592 
power, 566
Taylor, 430, 445, 457, 564 
trigonometric (see Fourier series) 
uniform convergence, 566 

Infinite set, Dedekind’s definition of, 613 
Infinite-valued logics, 623 
Infinitesimals, 386
Infinitude of primes, 148-149, 577, 578 
Infinity symbol, 393, 613 
Inflection points, 366, 401, 552 
Inquisition, 320-321, 347 
Insertion principle, 113, 127, 296 
Institute for Advanced Study at Princeton, 

575, 633, 641
Institutiones calculi differentialis (Euler),

435
Institutiones calculi integralis (Euler), 435, 

542
Institutions de physiques (du Chatelet),

442
Instituzioni Analitiche (Agnesi), 441
Insurance business, 429
Integral, first appearance of word, 426
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Integral calculus, 167, 323, 379, 382-383, 
385-386, 390, 393, 404, 423, 488, 567 

Integral Calculus (Euler), 542 
Integral domains, 510 
Integral geometry, 556 
Integral sign, 404 
Integrating factor, 434 
Integration (see Integral calculus) 
Intermediate-value theorem, 486-487 
International Bureau of Weights and Mea

sures, 454
International Business Machines Corpora

tion, 638
International Mathematical Congresses, 543, 

635
International territory at Sevres, France, 454 
Interpolation process, 394-395 
Intersection of sets, 412 
Intrinsic geometry, 557 
Intrinsic topological properties, 618 
Introductio in analysin infinitorum (Euler), 

435, 458
Introduction a Vanalyse des lignes courbes 

algebriques (Cramer), 431 
Introduction to the Foundations and Funda

mental Concepts o f Mathematics (Eves 
and Newsom), 501 n, 608w, 635n 

Introductory Account o f Certain Modern 
Ideas and Methods in Plane Analytic 
Geometry, An (Scott), 575 

Intuition versus proof, 653-654 
Intuitionism, 631-633 
Intuitionist school, 570, 623, 628, 631-633 
Invariance theorem of Brouwer, 632 
Invariants and covariants, 516, 518, 520,

574, 635
basic problem of, 516 

Inverse proposition, 660 
Inverse transformation, 559 
Inversion, Hindu method of, 225 
Investigation into the Laws o f Thought, on 

Which Are Founded the Mathematical 
Theories o f Logic and Probability, An 
(Boole), 514, 620 

Involutes, 363 
Involution, 325 
Ionian school, 105, 106 
Ionic Greek numeral system, 18-19 
Irrational numbers, 98, 226 

Cantor’s treatment, 569-570 
definition of, 82 
V 2, 82-84, 356-357 
treatment in the Elements, 149 

Irreducible case in cubics, 276, 278 
Irregular primes, 456 
Ishango bone, 10 
Isochrone, 425
Isogoge ad locus pianos et solidos (Fermat), 

353
Isogonal conjugate points and lines, 581 
Isogonic center, 360

Isoperimetry, 183, 425 
Isosceles tetrahedron, 467

Jabir ibn Aflah (see Geber)
Jacobi, C. G. J. (1804-1851), 491, 493-494, 

547, 570
contrasted with Dirichlet, 495 
determinants, 494, 533 
differential geometry, 556 
elliptic functions, 490, 494 
identity, 532 
master teacher, 493-494 
portrait, 493 
quoted, 494, 647 

Jacobean, 494 
Jahresbericht, 522 
James I, King (1566-1625), 307 
Jardin du Roi, 429 
Jeenel (1954), calculation of 7r, 639 
Jefferson, Thomas (1743-1826), 155 

forerunner of metric system, 453 
Jerrard, G. B. (d. 1863), 274 

Tschimhausen transformation, 366 
John of Halifax (see Sacrobosco)
John of Holywood (see Sacrobosco)
John of Palermo (ca. 1230), 263 
John of Seville (ca. 1140), 261 
John Paul, Pope (1950), 321 n 
Johnson, Modern Geometry, 221 n, 360n 
Joly, C. J. (1864-1906), 512 
Jones, W. (1675-1749), 120 
Jordan, C. (1838-1922), 274, 492 

Traite des substitutions, 492 
Jordan, P. (1933), 532 
Jordan algebras, 510, 532 
Jordanus Nemorarius (ca. 1225), 263 

De triangulis, 285 
Tractatus de numeris datis, 285 
trisection of an angle, 285 

Jordanus Saxus (d. 1237), 263 
Journal de V Ecole Poly technique, 450, 521 
Journal de mathematiques pure et appli- 

quees, 492, 521
Journal fur die reine und angewandte 

Mathematik, 490, 521 
Journal fur Mathematik, 613 
Journal o f the Indian Mathematical Society 

222
Journal o f Symbolic Logic, 621 
Journals and periodicals, 521-522 
Justinian, Emperor (483-565), 186 
Juvenal (557-125?), 29

Kaiser, Rudolph II (1552-1612), 322 
Kaiser, Wilhelm (1859-1941), 272 
Kamayura tribe of South America, 27 
Kant, E. (1724-1804), 501-502 
Kappa curve, 396 
Karachi in Pakistan, 219
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Kasan Bulletin, 500
Kazuhika Nakayama (1981), calculation of tt 

to 2 ,0 0 0 ,0 0 0  places, 1 1 2  
Kazunori Miyoshi (1981), calculation of tt to 

2 ,0 0 0 ,0 0 0  places, 1 2 2  
Keilhau, M. (1829), 491 
Kelvin, Lord [Sir William Thomson] (1824- 

1907), 484, 619 
Kennedy, J. G. (1981), 21 n 
Kenschaft, P. C. (1987), 516n 
Kepler, J. (1571-1630), 173, 177, 306, 312, 

318, 322-325, 365, 397 
approximate perimeter of ellipse, 324 
area of ellipse, 388 
areas and volumes, 386 
calculus, 323-324, 386 
doctrine of continuity, 325-326 
Harmony o f the Worlds, 323 
ideal points at infinity, 324, 551 
laws of planetary motion, 321, 323, 338— 

339, 398-399 
maxima and minima, 390 
polyhedra, 92, 101, 324 
portrait, 322
principle of continuity, 324
quoted, 323
star polygons, 285
Stereometria doliorum vinorum, 323-324 

Kepler-Poinsot solids, 324 
Khayyam, Omar (1050-1123), 231-232 

calendar reform, 232 
Discussion o f the Difficulties in Euclid,

324
geometric solution of cubics, 231, 233,

234, 246-247 
Rubaiyat, 232

Khosrau I, King (d. 579), 186 
Kinetic theory of gases, 555 
King Lear (Shakespeare), 478-479 
Kingsley, C. (1819-1875), 185 

Hypatia, or New Foes with an Old Face, 
185 n

Kirchoff, G. R. (1824-1887), 573, 618 
Kirkman points, 324 
Klein, F. (1849-1925), 486, 559-562 

application of groups to geometry, 492 
definition of geometry, 559-560, 610-611 
Erlanger Programm, 559-561, 590, 610- 

611, 617
independence of the parallel postulate, 500 
model of hyperbolic geometry, 527 
portrait, 562

Kleinian geometry, 561, 617 
Kline, Mathematical Thought from Ancient 

to Modern Times, 422 
Knox, J. (15157-1572), 307 
Kobel, J. (1470-1533), 269 
Koch, Helge von (1870-1924), 597 

curve, 597
Kochanski, A. A. (1685), 130 
Konigsberg bridges problem, 434, 461, 618

Konigsberger, L. (1837-1921), 573 
Kopf (1919), 582
Korvin-Krukovsky, S. (see Kovalevsky, S.) 
Kovalevsky, S. (1850-1891), 572-574 

Mathematical Pleiades, 576 
motto, 574 
portrait, 573
recipient of the Prix Bordin, 573 
Weierstrass’ favorite pupil, 573 

Kovalevsky, V. O. (1868), 572 
Kowa, Seki (see Seki Kowa)
Kramer, The Nature and Growth o f Modern 

Mathematics, 646«
Kramp, C. (1760-1826), 330n 
Kronecker, L. (1823-1891), 569, 570-571 

forerunner of intuitionism, 631 
portrait, 570 
toast, 571

fc-tuply perfect numbers, 78 
Kublai Khan (1216-1294), 212 
K'ui-ch’ang Suan-shu (see Arithmetic in 

Nine Sections)
Kulik, J. P. (1773-1863), 578 

table of primes, 578 
Kummer, E. E. (1810-1893), 570 

Fermat’s last “ theorem,” 356, 456 
theory of ideals, 356

Kutta, W. M. (1901), Runge-Kutta method, 
562

La Condamine, C. M. de (1701-1774), 
forerunner of metric system, 453 

La dioptrique (Descartes), 348 
La galande, 396
La geometrie (Descartes), 348-352, 366, 370 

read by Newton, 397
Lagrange, J. L. (1736-1813), 181, 424, 444- 

446, 454, 483, 485, 488 
analytic geometry, 464 
application of Taylor’s series, 430 
approximate solution of equations, 445 
attempted rigorization of the calculus,

564, 567
calculus of variations, 445 
Castillon-Cramer problem, 184 
contrasted with Euler, 445-446 
contrasted with Laplace, 447 
equations, 445
fundamental theorem of algebra, 477
germs of invariant theory, 516
Mecanique analytique, 445
minimal surfaces, 558
number theory, 355, 445
Pell equation, 227
portrait, 444
probability, 358
prognostication, 646
quintic equation, 274
quoted, 444
rigorization of analysis, 487
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Lagrange, J. L. (1736-1813) (continued) 
Sophie Germain, 481 
spherical coordinates, 586 
Taylor’s series with remainder, 430, 564 
tautochrone, 426 
theorem in group theory, 445 
Theorie des fonctions analytiques conte- 

nant les principes du calcul differen
ce l, 445, 564

Traite de la resolution des equations 
numeriques de tous degres, 445 

tribute to Newton, 402 
variation of parameters, 445 

La Hire, P. de (1640-1718), 325, 326, 341, 
550

conic sections, 364 
globular projection, 364 
magic squares, 364

Lambert, J. H. (1728-1777), 424, 438-440, 
454, 497-498, 578

Die Theorie der Parallellinien, 440, 497 
hyperbolic functions, 440 
hypotheses of the acute, right, and obtuse 

angles, 497-498 
irrationality of 7r, 120, 439 
map projection, 440 
mathematical logic, 440 
non-Euclidean geometry, 497-498 
portrait, 439 
quadrilateral, 497, 526 

Lam6 , G. (1795-1870), 550 
abridged notation, 550 
analytic geometry, 553 
curve, 396
Fermat’s last “ theorem,” 356 

Landau, E. (1877-1938), 562 
quoted, 575

Lander, L. J. (1966), 457 
Lane, Metric Differential Geometry o f  

Curves and Surfaces, 386n 
Langer, R. E. (1941), 140n 
Langford, C. H. (1927), logicism, 629 
Laplace, P.-S. (1749-1827), 424, 446-447, 

483, 485, 488
Committee on Weights and Measures, 454 
contrasted with Lagrange, 447 
equation, 447
expansion of a determinant, 447 
extension of Buffon’s needle problem, 465 
nebular hypothesis, 447 
portrait, 446 
probability, 358, 572 
quoted, 312, 447 
research on Saturn’s rings, 573 
“the Newton of France,” 447 
Theorie analytique des probabilites, 446, 

465
Traite de mecanique celeste, 446-447,

482, 510 
transform, 447 

Latitude and longitude, 586

Latitudo, 346 
Lattice algorithm, 224 
Lattices, 510
Lavoisier, A. L. (1743-1794), 444, 454 
Law of collision, 368 
Law of contradiction, 632 
Law of cosines, 147, 157 

for spherical triangles, 235 
Law of double negation, 623 
Law of the excluded middle, 622, 623, 631— 

632
Law of falling bodies (Galileo’s), 336, 501 
Law of gravitation, 313n, 368, 398n, 446 
Law of hydrostatics, 166, 168, 188 
Law of the lever, 313n 
Law of stress and strain, 368 
Laws of De Morgan, 515 
Laws of planetary motion, 321, 323, 338— 

339, 386, 398-399
Laws of reflection and refraction, 363, 426 
Laws o f Verse, The (Sylvester), 519 
Lazzerini (1901), 121 
Least upper bound, 598 
Lebesgue, H. (1875-1941), integral, 567 
Leblanc, M. (pseudonym assumed by 

Sophie Germain), 481 
Le cadet Clairaut (1716-1732), 437 
Leclerc, G. L. (see Buffon, Comte de) 
Lectiones opticae (Newton), 399 
Lectiones opticae et geometricae (Barrow), 

395
Lefschetz, S. (1884-1972), 618 

topology, 619
Legendre, A.-M. (1752-1833), 424, 446, 

447-449, 483, 491
Committee on Weights and Measures,

545
differential equation, 448
Elements de geometrie, 447-448, 449, 498
elliptic functions, 448, 490
Essai sur la theorie des nombres, 449
Eulerian integrals, 449
Exercises du calcul integral, 449
Fermat’s last “theorem,” 356
functions, 448
irrationality of 7r2, 121
mathematical tables, 448
measurement of terrestrial meridian, 454
method of least squares, 448, 476
non-Euclidean geometry, 498
number theory, 448
parallel postulate, 448
polynomials, 448
portrait, 448
symbol, 448, 477
Traite des fonctions elliptiques et des 

integrals eulerienne, 449 
triangulation of France, 449 

Lehmer, D. H. (b. 1905), 577, 578n 
Lehmer, D. N. (1867-1938), 578, 51Sn 

table of primes, 578
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Leibniz, G. W. (1646-1716), 306, 307, 316, 
329, 365, 379, 403-406, 425, 443 

Acta eruditorum, 404, 425 
calculating machine, 404, 636 
calculus of classes, 404 
calculus formulas, 397, 405 
calculus integralis, 426 
calculus summatorius, 426 
characteristic generalis, 403, 404 
De arte combinatoria, 621 
determinants, 405 
forerunner of logicism, 628 
fundamental theorem of the calculus, 404 
geometria situs, 618 
invention of calculus, 624 
mathematical logic, 440 
modem integral sign, 404 
multinomial theorem, 405 
orthogonal trajectories, 402 
osculating circle, 405 
philosophy, 404 
portrait, 403 
quoted, 402 
rule, 405, 410 
Sanskrit, 404 
series, 120, 458 
the term function, 611 
words coordinates, abscissa, ordinate, 352 

Lemniscate of Bernoulli, 365, 373-374, 426, 
585

Lemoine, t .  (1840-1912), 593, 581 
circles, 544 
geometrography, 543 
plane, 544 
point, 544, 581 
tetrahedron, 544 

Lemon, The, 324 
Le monde (Descartes), 342 
Lemonnier, P. C. (1715-1799), 445 
Leo X, Pope (1475-1521), 270 
Leon (4th century B.C.), 144 
Leonardo da Vinci (1452-1519), 95 

illustrator of Pacioli’s Siima, 267 
Leonardo of Pisa (see Fibonacci)
Leonardo Pisano (see Fibonacci)
Leslie, Sir John (1766-1832), 99 

Elements o f Geometry, 99 
Les meteores (Descartes), 348 
Leuerchon, Recreations mathematiques,

364
Levi-Civita, T. (1873-1941), tensor calculus, 

557
Lexell (1780), Castillon-Cramer problem,

184
L’Hospital, G. F. A. de (1661-1704), 406 

first calculus textbook, 426 
portrait, 406 
rule, 406, 426

Lhuilier, S. A. J. (1750-1840), Castillon- 
Cramer problem, 184 

Liang I or two principles, 213

Liber abaci (Fibonacci), 56, 197, 261-263, 
267, 283, 284

problems from, 283-284, 290 
Liber assumptorum (Archimedes?), 167,

188, 189
Liber quadratorum (Fibonacci), 263 
Liberation of algebra, 454, 504-510, 563 
Liberation of geometry, 501-502, 504, 563 
Lie, M. S. (1842-1899), 492, 532, 559 

algebras, 510, 532-533 
application of groups to geometry, 492 

Life insurance, 369, 424 
Lilavati [daughter o f Bhaskara] (ca. 1150), 

226
Lilavati (Bhaskara), 222, 222n, 223, 225- 

226, 290
Lima^on of Pascal, 128, 329 
Limit concept (see Theory of limits) 
Lincoln, Abraham (1809-1865), 156 
Lindemann, C. L. F. (1852-1939), transcen

dence of tt, 121, 520, 540, 597, 616 
Line(s), at infinity, 545, 552, 590 

Cayley, 342 
coordinates, 549 
Euler, of a tetrahedron, 467 
Euler, of a triangle, 434, 580 
geometries, 560 
isogonal conjugate, 581 
Lemoine, 544 
Newton, 402 
of areas, 337 
of curvature, 450 
of metals, 337 
of volumes, 337 
Pascal, 342 
Philon, 582 
Pliicker, 342 

Linear graphs, 618 
Linear transformation, 508-509 
Linkages, 518
L*Internediare des mathematiques, 543 
Liouville, J. (1809-1882), 521 

Journal de mathematique, 492, 521 
Lippershey, H. (ca. 1607), 319-320 
Listing, J. B. (1808-1882), corollary, 461 

Vorstudien zur Topologie, 618 
Literary Digest, 121 
Little Fermat theorem, 355, 372 
Liu Hui (3rd century), 215 

Sea Island Mathematical Manual, 215 
Li Yeh (1192-1279), notation for negative 

numbers, 216
Lobachevskian geometry, 500, 501-502 
Lobachevsky, N. I. (1793-1856), 500 

challenged the parallel postulate, 623 
Geometrische Untersuchungen zur Theo

rie der Parallellinien, 500 
liberation of geometry, 504 
non-Euclidean geometry, 498-499 
Pangeometrie, 500 
portrait, 499
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Loci with respect to three or four lines, 183 
Loculus Archimedius, 169 
Logarithmic curve, 363 
Logarithmic scale, 316, 335-336 
Logarithmic spiral, 283, 360 
Logarithms, 270, 308-313, 332-333, 387 

characteristic, 312 
common, or Briggsian, 311-312 
computation by radix method, 318, 332— 

333
computation by series, 367, 376 
etymology, 312 
Laplace quote, 312 
mantissa, 312 
Napierian, 310-311 
of negative numbers, 434, 438 
paradox, 457 
properties of, 332

Logic, Aristotelian, 619-620, 622-623 
infinite-valued, 623 
law of contradiction, 632 
law of double negation, 623 
law of the excluded middle, 622, 623, 631— 

632
many-valued, 622-623 
mathematical, or symbolic (see Mathemat

ical or symbolic logic) 
m-valued, 623 
non-Aristotelian, 623 
of relations, 620
paradoxes of Eubulides and Epimenides, 

626
three-valued, 623, 623/*, 627, 661 
two-valued, 623

Logica demonstrativa (Saccheri), 497 
Logicism, 628-631 
Logistic, 76 
Logistic school, 628 
London International Exhibition, 544 
London Mathematical Society, 522 
London’s Great Fire of 1666, 368 
Longitude and latitude, 386 
Longitudo, 346
Loomis, E. S. (1940), The Pythagorean 

Proposition, 81 
Loops, 510
Lord Kelvin (William Thompson, 1824— 

1907), 484, 619 
Lo-shu, 238
Lott, J. W. (1977), 128/2 
Louis Phillipe (1773-1850), 489 
Louis XIV (1638-1715), 238, 362-363, 365 
Louis XVI (1754-1793), 451, 453 
Lovis de Montalte (pseudonym assumed by 

Blaise Pascal), 332 
Loxodrome, 366
Lucas, F. E. A. (1842-1891), 577 
Lucas, H. (d. 1663), 314 
Lucasian Professorships, 313, 395, 398, 442, 

637
Ludolphine number, 119

Lukasiewicz, J. (1921, 1930), 623 
challenged the law of the excluded mid

dle, 623
Lunes of Hippocrates, 116, 130, 186 

quadrable, 130 n
Luther, M. (1480-1546), 270, 272

MacColl, H. (1896), 623n 
Macfarlane, A. (1851-1913), 511 
Machin, J. (1680-1751), formula, 120, 121, 

122, 130
Maclaurin, C. (1698-1746), 424, 429, 430- 

431
Cramer’s rule, 431 
expansion, 429, 430, 457-458 
Geometria organica, 431 
mathematical prodigy, 431 
paired with Taylor, 489 
portrait, 431 
sinusoidal spiral, 366 
theory of tides, 431 
Treatise on Algebra, 431 
Treatise on Fluxions, 430 

Magic o f Numbers, The (Bell), 497n 
Magic squares, 231, 238-240 

de la Hire, 364
de la Loubere’s construction, 238-240 
double even order, 287-288 
Diirer’s, 286-288 
in China, 213, 238 
lo-shu, 238, 239 
magic constant, 238 
normal, 238, 640 
nth order, 238 

Mahavlra (ca. 850), 222 
area of a cyclic quadrilateral, 227 
problems from, 240-241, 242 

Mainardi, G. (1800-1879), differential geom
etry, 556

Malfatti problem, 548 
Malinke tribe of West Sudan, 27 
Malus, E. L. (1775-1812), differential geom

etry, 556
Mandingo tribe of West Africa, 27 
Manfred (ca. 1231-1266), 261 
MANIAC, 638, 640 
Manifold, 557, 560, 619 
Mannheim, A. (1831-1906), slide rule, 318 

theorem, 467 
Mantissa, 312
Manual o f Greek Mathematics, A. (Heath), 

113 n
Many-valued logics, 622-623 
Map of the world (Eratosthenes), 171 
Map projections, 177, 193, 440 
Marcellus, M. C. (266-208 B.C.), 165, 166 
Marchant desk calculators, 637 
Marco Polo (12547-1324?), 212 
Markov chains, 124 
Martin, G. E. (1979), 126n
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Mary, Queen of Scots (1542-1587), 269 
Mascheroni, L. (1750-1800), 541 

construction theorem, 541-542, 582-583 
Geometria del compasso, 541 
portrait, 543

Mass-energy equation E = m e2 (Einstein), 
313

Material axiomatics, 633 
Mathematical Analysis o f  Logic, Being an 

Essay towards a Calculus o f Deductive 
Reasoning, The (Boole), 514, 620 

Mathematical Board of China, 406 
Mathematical Collection (Pappus), 182-184, 

189, 197-199
Mathematical Collection [Ptolemy] (see 

Almagest)
Mathematical existence, 520-521, 616, 631 
Mathematical expectation, 362, 372 
Mathematical induction, 330, 383 

paradoxes, 594
Mathematical or symbolic logic, 403, 404, 

440, 514, 515, 562, 606, 610, 619-624, 
635, 645

intuitionist school, 632 
Mathematical periods, 6 8 6 , inside covers of 

book
Mathematical Pleides, The, 576 
Mathematical probability, 120n, 328, 331, 

425-426, 623
Mathematical Recreations and Essays (Ball- 

Coxeter), 374, 535 
Mathematical Reviews, 522 
Mathematical tables (see Tables) 
Mathematical theory of elasticity, 481 
Mathematical Thought from Ancient to 

Modern Times (Kline), 422 
“Mathematicians’ mathematician,” 516 
Mathematicians on postage stamps, 491 n 
Mathematics, beginning of, 9 
Mathematische Annalen, 158, 561, 613, 633, 

635
Matric algebra, 508-510, 516, 520, 530- 

531
Cayley product, 509, 532 
Jordan product, 532 
Lie product, 532 
skew symmetric, 533 
transpose, 533

Matrix theory, 213, 489, 508-510, 512, 516, 
518, 520

Matrix methods in China, 216, 217 
Matter-wave equation (Broglie’s), 313 
Maupertuis, P. L. M. de (1698-1759), 436 

“earth flattener,” 436
Maurice of Nassau, Prince of Orange (1567— 

1625), 319-320, 347 
Maurya Empire, 219 

map of, 2 2 0
Maxima and minima, 358, 363, 366, 379,

390, 401, 547 
Fermat’s method, 391

Maxwell, J. C. (1831-1879), 313n, 484-485, 
619

equations of electricity and magnetism,
313 n

quoted, 484-485 
Mayan numeral system, 20-21 
McCay, W. S. (ca. 1850), sequel to Euclid, 

539
Mean, or average, 95 
Mean curvature, 481, 558 
Means, arithmetic, 63, 94-95, 198, 200-202 

centroidal, 2 0 0 - 2 0 2  
contraharmonic, 2 0 0 - 2 0 1  
geometric, 63, 94-95, 198, 200-202 
harmonic, 63, 94-95, 198, 200-202 
heronian, 63, 2 0 0 - 2 0 1  
Pythagorean, 95 
root-mean-square, 2 0 0 - 2 0 1  
subcontrary, 94 
weighted, 2 0 1  

Measure theory, 610, 657 
Measurement o f a Circle (Archimedes), 118, 

131, 136, 167
Mecanique analytique (Lagrange), 445 
Mecanique celeste (Laplace), 510 
Mechanisms o f the Heavens, The (Somer

ville), 482
Median of a collection of numbers, 456 
Median of a tetrahedron, 580 
Medieval scholasticism, 258-259 
Meditationes (Descartes), 348 
Meissel, E. (1826-1895), 577 
Melancholia (Diirer), 285-288 
MSmoires (French Academy of Sciences), 

483-484
Menaechmus (ca. 350 B.C.), 107, 141, 171 

conic sections, 111, 171, 346 
duplication of the cube, 111, 125 
inventor of analytic geometry?, 346 

Mencke, O. (ca. 1682), 404 
Mendelssohn, Abraham (son of Moses 

Mendelssohn, father of Felix Mendels
sohn, father-in-law of Dirichlet), 495 

Mendelssohn, Felix (1809-1847), 495 
Mendelssohn, Moses (1728-1786), 495 
Menelaus of Alexandria (ca. 100), point, 200 

Sphaerica, 176, 200 
theorem, 176-177, 200, 341, 452 
treatise on chords, 176-177 

Menger, K. (b. 1902), 584 
Mercator, G. (1512-1594), 367 

projection, 367
Mercator, N. (ca. 1620-1687), 366-367 

series, 367, 376
M6 re, Chevalier de (ca. 1645), 331 
Mersenne, M. (1588-1648), 347, 355, 364 

Cogitata physico-mathematica, 364 
primes, 364

Messier, C. (1730-1817), 453 
Metaphysics (Aristotle), 149 
Method (Archimedes), 169, 383, 384
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Method of abridged notation, 550, 587 
Method of application of areas, 87f f  
Method of equilibrium (Archimedes), 383— 

385, 407-408 
illustrated, 384-385

Method of exhaustion, 109, 149, 380-383, 
385, 407

basic proposition of, 149, 380-381 
illustration, 381-382 

Method of fluxions, 398, 431 
Method o f Fluxions and Infinite Series, The 

(Newton), 399, 400, 412 
Method of indivisibles, 324, 408-409, 556 

Cavalieri, 359, 382, 387 
Roberval, 359

Method of infinite descent, 356-357, 372 
Method of least squares, 466-467 

Legendre, 448, 466-467, 476 
Method of limits (see Theory of limits) 
Method of models, 500, 608-609 
Method of proportion, 87 
Method of tangents, Descartes, 349-350 

Roberval, 359, 360, 375 
Torricelli, 359, 360

Method of undetermined coefficients, 352, 
37J

Methodus differentialis (Newton), 399 
Metric Differential Geometry o f Curves and 

Surfaces (Lane), 386n 
Metric, or distance function, of a space,

568, 655
Metric space, 655-656 

circle, 656
metric or distance function, 655 
properties, 655 
triangle inequality, 655 

Metric system, 453-454 
adopted by Republic of France in 1799, 

454
Metrica (Heron), 178, 193, 195 
Metrodorus (ca. 500), 179 
Meusnier, J. B. (1754-1793), differential 

geometry, 556 
theorem, 556 

m-gonal numbers, 94 
Michalski, K. (1936), 623ai 
Microscope, 321
Midonick, The Treasury o f Mathematics, 

240ai
Migrations of mathematicians, 647 
Mikami, The Development o f Mathematics 

in China and Japan, 211 
Miller, Sir J. (1790), forerunner of metric 

system, 453
Mills, W. H. (1947), 578 
Ming period (1368-1644), 212, 215 
Minicomputers, 639 
Minimal surfaces, 558 
Minkowski, H. (1864-1909), 562 

geometric number theory, 562 
solid of constant width, 459

Minos, legendary king of Crete, 111 
Miquel, A. (ca. 1838), sequel to Euclid, 539 
Mirifici logarithmorum canonis descriptio 

(Napier), 311, 318 
Oughtred’s Appendix, 318 
Wright’s English edition, 318 

Miscellanea analytic a (De Moivre), 428 
Mnemonics, tt, 121-122, 132 

rule of circular parts, 308 
Mobius, A. F. (1790-1868), 548 

analytic geometry, 552 
Der Barycentrische Calcul, 451 
strip, 619, 658 
two-complexes, 619 

Mode of a collection of numbers, 456 
Model of a postulate set, concrete, 608 

ideal, 608
Modem compasses, 110, 124 
Modem geometry, 174, 176, 183, 539 
Modern Geometry (Johnson), 227n, 360n 
Modem theory of proportion, 150-151, 158 
Mohammed, 230, 232 
Mohenjo Daro, 219 
Mohr, G. (1640-1697), 542 

Compendium Euclidis curiosi, 542, 583 
Euclides danicus, 542 

Moment of a fluent, 400 
Moment of a volume, 384ai 
Monge, G. (1746-1818), 424, 449-451, 453, 

455, 483, 550
an initiator of projective geometry, 544 
Application d ’algebre a la geometrie, 450 
circle, 451
conicoid theorem, 451 
Committee on Weights and Measure, 454 
descriptive geometry, 449, 450 
Descriptive Geometry, 218/1 
differential geometry, 450, 556, 557 
director sphere, 451
father of differential geometry, 450, 556 
lines of curvature, 450 
paired with Camot, 489 
point, 451, 467 
portrait, 449 
Revolutionist, 453 
sphere, 451 
theorems, 451, 467 

Monoids, 510
Monroe desk calculators, 637 
Montalte, Lovis de (see Lovis de Montalte) 
Monte Carlo methods, 124 
Montucla, J. E. (1725-1799), 120 
Moral expectation, 427 
Morbus cyclometricus, the circle-squaring 

disease, 123
Morland, Sir S. (1625-1695), calculating 

machine, 636
Morley, F. (1860-1937), sequel to Euclid, 

539
Mortality tables, 368-369 
Mosaics, 339-340
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Moscow papyrus, 50, 52, 54, 55, 63, 64 
Problem Number 14, 63 
problems from, 65

Mouton, G. (1670), forerunner of metric 
system, 453

Muller, J. (see Regiomontanus)
Multicursal graphs, 460-461 
Multinomial theorem, 405 
Multiplication, Egyptian method, 52-53 

gelosia method, 290-291 
grating method, 290-291 
Hindu method, 224 
lattice method, 224

Multiplicative grouping systems, 17-18 
traditional Chinese-Japanese, 17-18 

Multisection of an angle, approximation with 
Snell’s refinement, 132 

with spiral of Archimedes, 114, 117 
Musical proportion, 95 
Musical scales, 80 
m-valued logics, 623 
Mydorge, C. (1585-1647), 347, 364 
Myriad, 16, 28
“Mystic hexagram” theorem, 329-330, 342, 

545, 548, 551

“Nach Adam Riese,” 269 
Nagel, C. H. (1803-1882), sequel to Euclid, 

539
Napier, J. (1550-1617), 306, 307-308 

analogies, 308, 334 
beasting, 272
logarithms, 272, 307, 308-312 
Mirifici logarithmorum canonis descriptio, 

311, 318
A Plaine Discouery o f the Whole Reuela- 

tion o f Saint Iohn, 307 
portrait, 307 
Rabdologiae, 335 
rods, or bones, 308, 335 
rule of circular parts, 308, 333-334 
science fiction writer, 308 
spherical trigonometry, 333-334 

Napierian logarithms, 310-311 
Napoleon Bonaparte (1796-1861), 52, 143, 

451, 453, 543 
Egyptian campaign, 483 
amateur geometer, 543 
and Laplace, 447
friendship with Monge and Fourier, 450 
problem, 583 
quoted, 446 
Russian campaign, 544 

Nasir ed-din (1201-1274), parallel postulate, 
232, 234

Pythagorean theorem, 234 
theorem, 244

National Academy of Sciences, 512 
Natural logarithms, 310-311

Natural number system as a foundation of 
mathematics, 565

Nauck, F. (1850), eight queens problem, 662 
Naval Proving Grounds, 638 
Navies of the eighteenth century, 424 
Nazis, 633
//-dimensional conicoid, 555 
//-dimensional geometry, 516, 553-555, 588 

arithmetic space of n dimensions, 554 
cosine of angle, 554 
direction numbers, 554 
distance between two points, 554 
line segment, 554 
perpendicularity, 555 
sphere, 554 
translation, 555 

//-dimensional manifolds, 553 
//-dimensional space, 554, 557 
//-dimensional sphere, 554 
Nebuchadnezzar (605-562 B.C.), 41 
Nebular hypothesis, 447 
NEC SX-2 supercomputer, 123 
Needham, Science and Civilization in 

China, 211
Needle problem of Buffon, 120, 429, 464- 

465
Nemorarius, Jordanus (see Jordanus Ne- 

morarius)
Nephroid, 374

catacaustic of a cardioid, 374 
Nero (37-68), 272 
Nesselmann, G. H. F. (1842), 179 
Nesting of geometries, 590 
Neuberg, J. (1840-1926), sequel to Euclid, 

539
Neugebauer, O. (b. 1899), 41, 43, 44, 60,

72/i
New England Journal o f Education, 156 
New math, 641-642 
New York Mathematical Society, 576 
New York Times, 123 
Newsom and Eves, An Introduction to the 

Foundations and Fundamental Con
cepts o f Mathematics, 608n, 635// 

Newton, I. (1642-1727), 306, 307, 321, 363, 
379, 392, 397-403, 428, 437, 447, 476 

Analysis per Series, Fluxions, etc., 399 
Arithmetica universalis, 399, 401, 510 
binomial theorem, 410 
calculus, 306, 307, 379, 397, 405, 624 
challenge problems, 399, 402 
classification of cubics, 401 
construction of cissoid of Diodes, 126 
Cubic Curves, 399, 401 
dislike of controversy, 398 
duplication of the cube, 127 
emission theory of light, 363 
falling apple story, 353 
fluent, 400
fluxion, 398, 400, 431 
fluxional notation, 405
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Newton, I. (1642-1727) (continued) 
fundamental theorem of algebra, 477 
general binomial theorem, 400 
generalized binomial theorem, 398, 400 
invention of calculus, 624 
law of gravitation, 313/i, 368, 398, 446 
Lectiones opticae, 399 
limit notions, 401 
line, 402
Lucasian professorship, 314, 398 
Master of the Mint, 399 
method of approximating roots of an 

equation, 401, 411-412 
method of differentiation, 410 
method of fluxions, 398 
The Method o f Fluxions and Infinite 

Series, 399, 400, 412 
Methodus differentiate, 399 
moment of a fluent, 400 
Oldenberg letters, 399 
Opticks, 399, 401 
orthogonal trajectories, 402 
Philosophiae naturalis principia mathe

matica, 399, 401-402, 443, 510, 512 
portrait, 397 
principal fluxion, 400 
problem of Apollonius, 174 
Quadrature o f Curves, 590 
Quadrature and Rectification o f Curves by 

the Use o f Infinite Series, 399, 590 
quoted, 402
runner for slide rule, 316
recommendation of Maclaurin, 431
shape of the earth, 436
successor of Barrow, 395
tautochrone, 426
theorems on conics, 173, 402
theory of colors, 398
theory of equations, 398, 401
theory of gravitation, 398
theory of light, 398
theory of limits, 401, 402
translation of Principia by du Chatelet,

443
tributes to, 402 
trisection of an angle, 127 
upper bounds of roots of a polynomial 

equation, 410 
Warden of the Mint, 399 

“Newton of France,” 447 
Newton-Leibniz controversy, 398, 399, 404, 

405
Newton-Raphson method, 412 
«-gram, 284
Nicaraguan postage stamps, 313 
Nicholson (1954), calculation of tt, 639 
Nicolo of Brescia (see Tartaglia)
Nicomachus (ca. 100), 258 
Nicomedes (ca. 240 B.C.), conchoid, 113, 

127-128
duplication of the cube, 111, 127 
trisection of an angle, 114

Nightingale, F. (1820-1910), 519 
Nim, 30
Nine-point circle, 539, 579-580 
Noah’s ark, 77
Nobel Prize for Literature (Russell), 631 
Node of a graph, 459 
Noether, A. E. (1882-1935), 562, 574-575 

abstract algebra, 574-575 
centenary celebration in 1982, 575 
Mathematical Pleiades, 576 
portrait, 574

Noether, Max (1844-1921), 574 
Non-Albeliam group, 534 
Nonagon (Diirer’s approximate construc

tion), 295
Non-Aristotelian logics, 623 
Nonassociative algebras, 510 
Noncommutative algebras, 507, 508-509 
Nondenumerable sets, 656 

real numbers, 615
Non-Euclidean geometry, 478, 495-501, 

501-502, 544
and physical space, 527-528 
angle sum of a triangle, 526-527 
Bolyai’s investigation, 499 
consistency of, 500 
defect of a triangle, 526 
Gauss’ investigation, 498 
independence of the parallel postulate, 

500, 609
Lambert quadrilateral, 526 
Legendre’s investigation, 498 
Lobachevski’s investigation, 500 
model of, 527
on a surface of constant non-zero total 

curvature, 558
Poincare’s contributions, 527-528, 572 
Riemann’s investigation, 500-501 
Saccheri’s quadrilateral, 526 

Non-Euclidean Geometry (Bonola), 500ai 
Non-Riemannian geometry, 557 
NORC, 639
Normal frequency curve, 428, 456 
Normal magic square, 238, 640 
Normal number, 123 
Northrop, Riddles in Mathematics, 283 
Nouvelles annales de mathematiques, 520, 

522
Null class, 404 
Null set, 529 
Number bases, 12-13 

arbitrary, 25-27 
Number names, etymology, 12 
Number of the beast, 270, 270ai, 272 
Numbers, abundant, 77, 93-94 

algebraic (see Algebraic numbers) 
amicable, or friendly (see Amicable num

bers)
Bernoulli, 426, 455-456 
cardinal (see Cardinal numbers) 
complex (see Complex numbers) 
composite, 77
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Numbers (continued) 
crowd, 94 
deficient, 77, 93 
figurate, 78, 94 
finger, 13-14, 28-29 
Gaussian integers, 529 
Hilbert’s (2vr), 616 
hypercomplex, 508 
irrational (see Irrational numbers)
&-tuply perfect, 78 
Mersenne primes, 364 
ra-gonal, 94 
normal, 123 
oblong, 94 
palindromic, 579 
pentagonal, 78-80, 94 
perfect, 77-78, 93-94 
tt (see tt ) 
practical, 78
prime (see Prime numbers) 
quasiperfect, 78 
rational, 82 
real, 506, 564-565 
regular, 57
regular sexagesimal, 46 
relatively prime, 83n 
semiperfect, 78 
simply normal, 123
6 6 6  (the number of the beast), 270, 270ai, 

272
sociable chain, 94 
square, 78-80 
superabundant, 78, 94 
transcendental (see Transcendental num

bers)
transfinite (see Transfinite numbers) 
triangular, 78-80, 94, 477, 523 
triply perfect, 94 
weird, 78 

Number scale, 12 
Number theory, 76 

Dirichlet’s theorem, 578 
Euclidean algorithm, 148, 155 
Euler, 434
Fermat’s last “ theorem,” 234, 355-356, 

372, 456, 481, 568 
Fermat’s little theorem, 355, 372 
geometric, 562
infinitude of primes, 148-149, 577, 578 
Lagrange, 445 
Legendre, 448 
prime number theorem, 578 
quadratic reciprocity law, 477 

Number tricks, 31, 245, 374-375 
Numeral, 14
Numeral systems, Babylonian circular,

28
Babylonian cuneiform, 15-16 
Chinese scientific, or rod, 28, 213, 216 
ciphered, 18-19, 232 
Egyptian, 15
Greek alphabetic, 18-19, 232

Numeral systems (continued) 
Hindu-Arabic, 19, 23-25, 223, 231, 259, 

262, 282, 307 
Mayan, 20-21
multiplicative grouping, 17-18 
positional, 19-21 
Roman, 16-17 
simple grouping, 14-17 
traditional Chinese-Japanese, 17-18, 2 1 2  

Numerical analysis, 639

Obelisk, largest extant Egyptian, 61 
Oblong numbers, 94 
Occam, William of (12707-1549?), 623n 
Odhner, W. T. (1878), calculating machine, 

637
Oldenburg, H. (ca. 1615-1677), 400, 404 

sum of an infinite series, 457 
Omar Khayyam (see Khayyam, Omar)
Om Directionens analytiske Betregning 

(Wessel), 480 
Omnibus, 332
On the Calendar (Archimedes), 169 
On Conoids and Spheroids (Archimedes), 

167-168
On Determinate Section (Apollonius), 173 
On Divisions (Euclid), 154, 160-161 
On Floating Bodies (Archimedes), 168, 188 
On the Heptagon in a Circle (Archimedes), 

243-244
On Levers (Archimedes), 169 
On Means (Eratosthenes), 183 
On Plane Equilibriums (Archimedes), 168— 

169
commentary by Eutocius, 186 

On Polygonal Numbers (Diophantus), 180 
On Proportional Section (Apollonius), 173 
On Sizes and Distances o f the Sun and 

Moon (Aristarchus), 187 
On Spatial Section (Apollonius), 173 
On the Sphere and Cylinder (Archimedes), 

167, 187, 188
commentary by Eutocius, 186 

On Sphere Making (Archimedes), 169 
On Spirals (Archimedes), 167 
One-to-one correspondence, 9, 612 
“Ontogeny recapitulates phylogeny,” 644 
Operational calculus of Heaviside, 447 
Opticks (Newton), 399, 401 
Optics (Alhazen), 234 
Optics (Euclid), 155 
Orbiform curves, or curves of constant 

width, 434, 459 
Barbier’s theorem, 459 
opposite point, 459 
ordinary point, 459 
Reuleaux triangle, 459 

Order of Merit, 631 
Ordinate, 352
Oresme, N. (ca. 1323-1382), 264 

coordinate geometry, 264
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Oresme, N. (ca. 1323-1382) (continued) 
fractional exponents, 264 
inventor of analytic geometry?, 346-347 

“Organizer of Victory,” 451 
Orr, A. C. (1906), 121 
Orthocentroidal circle, 580 
Orthogonal trajectory, 402, 426 
Osculating circle, 405 
Otho, V. (ca. 1550-1605), 119 
Oughtred, W. (1574-1660), 120, 306, 315- 

318, 392-393
algebraic symbolism, 316-317 
Appendix to Napier’s Descriptio, 318 
Circles o f  Proportion, 316 
Clavis mathematicae, 315-317, 397 
gauging, 318 
paired with Harriot, 489 
portrait, 315 
slide rules, 316 
Trigonometric, 316 

Ouyang Jiang (1989), 21 In, 219

Pacioli L. (ca. 1445-1509), 267, 276 
De divina proportione, 267 
problems from, 288-289 
Suma, 267, 269, 288, 331 
syncopation of algebra, 267 

Paganini, N. (1782-1840), noted Italian 
violinist, l ln

Paganini, N. (1866), amicable numbers, 77, 
93

Paint paradox, 375-376 
Pa-kua, 213
Palatine Anthology (see Greek Anthology)
Palimpsests, 22, 383
Palindromic number, 599
Palindromic primes, 599
Pallas (planetoid), 478
Pahca Siddhantika (Varahamihira), 221
Pangeometrie (Lobachevsky), 500
Panini (ca. 500 B.C.), 219
Paper, 21-22
Pappus (ca. 300), 141, 168, 169, 173, 182- 

184, 185, 199 
arbelos, 183
centroid theorems, 183, 199 
cross ratio, 183-184 
extension of the Pythagorean theorem, 

183, 234
isoperimetry, 183
loci with respect to three or four lines, 

183
Mathematical Collection, 182-184, 189, 

197-199
on means, 197-198 
problems from, 197-199 
Stewart’s theorem, 183 
Treasury o f  Analysis, The, 183 
trisection of an angle, 114, 128 

Papu reed, 22

Papuan tribe of New Guinea, 27 
Papyrus, 22 

Cairo, 65-66 
Harris, 52
Golenischev (see Moscow papyrus) 
Kahun, 54
Moscow (see Moscow papyrus)
Rhind, or Ahmes (see Rhind papyrus) 
Rollin, 52

Parabola (origin of name), 172 
Parabolas of Fermat, 353 
Parabolas of higher order, 353 
Parabolic geometry, 501 
Paradox(es), Aristotle’s Wheel, 338 

barber (Russell’s), 625-626, 627 
Burali-Forti’s in set theory, 625 
calculus, 595-596, 624 
Cantor’s in set theory, 625 
Dichotomy, The, 380 
elementary algebra, 592-595 
Epimenides, 626 
Eubulides, 626 
Galileo, 337-338, 487 
geometrical, 647-649 
infinite series, 591-592 
logarithms, 457 
logic, 626
mathematical induction, 594 
paint, 375-376 
Petersburg, 427 
Russell, 661
set theory, 570, 606, 625-627, 629, 631, 

632, 633
Zeno, 109, 379-380, 570, 624n 

Paradoxien des Unendlichen (Bolzana), 487 
Paradromic rings, 659 
Parallel postulate, 177, 448, 501 

alternatives, 496
Bolyai’s investigation, 498, 499, 623 
Euclid, 153, 495-501 
independence of, 500, 609 
Lambert’s investigation, 440, 497-498 
Legendre’s investigation, 448, 498 
Lobachevskian, 528 
Lobachevsky’s investigation, 498-499,

500
Nasir ed-din’s investigation, 232, 234 
Playfair form, 496, 498 
Ptolemy’s investigation, 177 
Saccheri’s investigation, 496-497 

Parchment, 22
Parent, A. (1666-1716), solid analytic geom

etry, 550
Paris problems of Hilbert, 97, 562, 568, 635 
Parkin, T. R. (1966), 457 
Parmenides of Elea (ca. 450 B.C.), 105, 106 
Partial differential equations, 427, 437, 445, 

4 5 4 , 484, 494, 573
Partially ordered sets, principal of duality, 

546
Partition theory, 516, 518
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Pascal, Blaise (1623-1662), 128, 306, 326, 
327-332

adding machine, 327, 636
arithmetic triangle, 232, 330-331, 342-343
arithmetic triangle in China, 216, 217, 218
challenge problems, 394
conic sections, 328, 329-330
cycloid, 329, 331-332, 394
Essay pour les coniques, 330
greatest “might have been,” 329
line, 342
mathematical expectation, 362 
mathematical induction, 330 
method of indivisibles, 390 
“mystic hexagram” theorem, 329-330, 

342, 545, 548 
omnibus, 332 
Pensees, 329, 362 
portrait, 328
principle of hydrodynamics, 328 
probability, 328, 331, 357-358, 362, 428 
problem of the points, 331, 33l/i, 357-358, 

372
projective geometry, 306, 346 
Provincial Letters, 329 
pseudonyms, 332
Traite du triangle arithmetique, 328, 330 
triangle {see Pascal, arithmetic triangle) 
wheelbarrow, 332 
youthful empirical proofs, 327, 342 

Pascal, £ . (1588-1640), 128, 329 
lima$on, 128, 329

Pascal-Fermat correspondence, 328, 331,
331 n, 357, 358, 362

Pasch, M. (1843-1930), postulate, 607, 651 
postulate set for Euclidean geometry, 608 

Pathewaie to Knowledge, The (Recorde),
270

Patterns o f Polyhedrons (Hartley), 1 0 1 /1,
168n, 324n

Pauca sed matura (Gauss’ motto), 478 
Pauli W. (1900-1958), spin variables, 512 
PDP-11/45, 579
Peacock, G. (1791-1858), 503, 504 

“Euclid of algebra, the,” 503 
principle of the permanence of equivalent 

forms, 503-504 
Treatise on Algebra, 503 

Peano, G. (1858-1932), axiomatics, 610 
forerunner of logicism, 629 
Formulaire de mathematiques, 621 
foundations of mathematics, 565 
postulate set for Euclidean geometry, 608 
symbolic logic, 621 

Pearls of Sluze, 366
Peaucellier, A. (1832-1913), sequel to Eu

clid, 539
Pedal curves, 547 
Pegasus, 639
Peirce, B. (1809-1880), 620 
Peirce, C. S. (1839-1914), logic, 620

Pell, J. (1611-1685), equation, 226-227, 226n 
table of primes, 578 

Peloponnesian War, 16 
Pendulum, 319, 486 

clocks, 362, 426 
compound, 363 
conical, 368 
cycloidal, 363 
period of, 319, 319/2 

Pensees (Pascal), 329, 362 
Pentagonal numbers, 78-80, 94 
Pentagram, 101
Pentathlus (nickname for Eratosthenes), 170 
Pentominos, 640, 640ai, 662 
Perfect numbers, 77-78, 93-94 

Cataldi’s treatise on, 280 
Euclid’s formula, 77, 93, 148 

Pericles (4907-429 B.C.), 106 
Perier, Madame {see Gilberta)
Perigal, H. (1873), 95 
Period of transmission, 259-261 
Periodicals and Journals, 423, 521-522 
Permutations, 241 
Perron, O. (ca. 1929), 582 
Perspective, 326, 430 
Pestalozzi, J. H. (1746-1827), 546 
Peter the Great (1672-1725), 432 
Petersburg paradox, 427 
Peurbach, G. von (1423-1461), 265 
Peyrard, F. (1808), 143 
Phaenomena (Euclid), 154 
</) function of Euler, 285, 372, 434 
Philip, King of Macedonia (382-336 B.C.), 

140
Phillip II, King (1527-1598), 277 
Phillips, Differential Equations, 386ai 
Philolaus (ca. 425 B.C.), 95 
Philon’s line, 582
Philosophiae naturalis principia mathe

matica (Newton), 399, 401-402, 510,
512

translation by du Chatelet, 443 
Philosophy of mathematics, 107, 562, 610, 

628-635
schools of, 606, 628, 629, 631, 633, 634 

Photogrammetry, 430 
Phyllotaxis, 283 
7r, Al-Kashi’s value, 118 

ancient Chinese ratio 355/113, 118, 119, 
215

ancient Egyptian value, 117 
Anthonizoon’s value, 118-119 
Archimedes’ computation of, 117-118 
Aryabhata’s value, 118 
Babylonian values, 42, 59 
Bailey’s calculation, 123, 639 
Bhaskara’s values, 118 
Biblical value, Win 
Brouncker’s expression, 119 
Buffon’s needle problem, 120, 429, 464- 

465
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tt (continued) 
chronology of, 117-123 
classical method of computing, 118, 167 
Cray-2 supercomputer calculation, 639 
Dase’s calculation, 121 
De Lagny’s computation, 120 
ENIAC calculation, 122, 639 
Felton’s calculation, 639 
Ferguson’s calculation, 122 
Genuy’s calculation, 122, 639 
Gregory’s series, 119-120, 368 
Grienberger’s computation, 119 
Guilloud’s computations, 122 
Hindu approximations, 118, 228 
House Bill No. 246, 123, 123ai, 130 
IBM 704 calculation, 122, 639 
IBM 7090 calculation, 122, 639 
irrationality of, 120, 439 
irrationality of 7r2, 121  
Japanese formula, 122 
Kazunori Miyoshi and Kazuhika Naka- 

yama’s calculation, 1 2 2  
legislated value, 123, 123/2, 130 
Ludolphine number, 119 
Machin’s formula, 120, 121, 122, 130 
mnemonics for, 121-122, 132 
Nicholson and Jeenel’s calculation, 639 
NORC calculation, 639 
normality or nonnormality of, 123 
Pegasus calculation, 639 
probability methods of approximating,

120, 429, 464-465 
Ptolemy’s value, 118
reasons for extensive calculations of, 1 2 2 — 

123
Romanus’ value, 119
Rutherford’s formula, 121
Shanks’ calculation, 121
Shanks and Wrench calculation, 639
Sharp’s computation, 120
Snell’s refinement, 119, 131-132, 361
symbol, 1 2 0
transcendence of, 121, 520, 540, 597, 616 
Tsu Ch’ung-chih’s value, 118, 215 
van Ceulen’s computation, 119 
Vifcte’s infinite product expression, 118, 

130, 280
Wallis’ expression, 119, 393 
Wrench’s computation, 122 
Wrench-Shanks computation, 122 
Yasumasa Kanada’s computation, 123 

Picard, E. (1856-1941), 520 
Picard, J. (1620-1682), forerunner of metric 

system, 453
Pieri, M. (1860-1904), axiomatics, 610 

postulate set for Euclidean geometry,
608

Pillars of King Asoka, 219 
Pitiscus, B. (1561-1613), 282 

trigonometry, 282
Plaine Discourey o f the Whole Reuelation o f  

Saint Iohn, A (Napier), 307

Plane, Lemoine, 544 
Plane affine geometry, 590 
Plane centro-affine geometry, 590 
Plane equiform geometry, 560 
Plane Euclidean metric geometry, 560 
Plane Loci (Apollonius), 173-174, 192 
Plane projective geometry, 560 
Plane similarity geometry, 560 
Planetarium of Archimedes, 169 
Planetary motion, laws of, 321, 323, 338— 

339, 386, 398-399
Planisphaerium or Planispherium (Ptolemy), 

182, 193
Plateau, J. (1801-1883), 556 

minimal surfaces, 556 
problem of, 558

Plato (427-347 B.C.), 84, 106-107, 144, 179, 
494

duplication of the cube, 1 1 1 , 1 1 2  
existence of mathematics, 9 
portrait, 108 
Pythagorean triples, 82 
Republic (commentary by Proclus), 185— 

186
Timaeus, 92

Plato of Tivoli (ca. 1120), 260 
Platonic Academy, 106-107, 111, 141, 144, 

380
motto, 106

Platonic solids (see Regular solids)
Playfair, J. (1748-1819), 496 

parallel postulate, 496, 498 
Pleiades, 576 

Mathematical, 576 
Plimpton, G. A. (1855-1936), 44 
Plimpton 322, 44-47, 81, 175 
Pliicker, J. (1801-1868), 550-552, 561 

abridged notation, 550 
analytic geometry, 548 
Analytisch-geometrische Entwicklungen, 

550
equations, 552, 588 
line coordinates, 549, 586 
lines, 342 
numbers, 588 
portrait, 552
projective geometry, 544 
proof of principle of duality, 549 
System der analytischen Geometrie, 552 
Theorie der algebraischen Curven, 552 

Plutarch (467-120?), 93, 173, 382 
Pneumatica (Heron), 178-179 
Pocketsize calculators, 640-641 

HP 28 S, 641
Poincare, H. (1854-1912), 569, 571-572 

Analysis situs, 619 
antinomies of set theory, 627 
forerunner of intuitionism, 631 
groups, 492, 572
independence of the parallel postulate, 500 
last of the universalists, 571, 572 
non-Euclidean geometry, 500, 527, 572
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Poincare, H. (1854-1912) (continued) 
populizer of mathematics, 571 
portrait, 571 
topology, 619

PoincarS, R. (1860-1934), 571 
Poinsot, L. (1777-1859), 324 
Point(s), algebra, 534 

at infinity, 324, 545, 551 
Brocard, 539 
circular, at infinity, 588 
equation, 546 
Feuerbach, 580 
geometric, 560 
inflection, 366, 401 
isogonal conjugate, 581 
Kirkman, 342 
Lamoine, 544, 581 
limit, 660 
Monge, 451, 467 
Salmon, 342 
Steiner, 342 
symmedian, 544, 581

Poisson, S. D. (1781-1840), 483, 485-486 
brackets (in differential equations), 486 
constant (in electricity), 486 
equation (in potential theory), 486 
integral (in potential theory), 486 
laws (in probability theory), 486 
paired with Fourier, 489 
portrait, 485 
quoted, 486
ratio (in elasticity), 486 
Recherches sur la probability des juge- 

ments, 486
Theorie mathematique de la chaleur, 486 
Theorie nouvelle de Taction capillaire, 486 
Traite de mecanique, 486 

Polar axis, 580
Polar coordinates, 425, 549, 585 
Polar spherical triangles, 366 
Poles and polars, 172, 326, 546, 555 
Polycrates (d. 522 B.C.), 75 
Polygons, regular, 130, 147, 151-152, 158, 

159, 178, 284-285, 381 
Polygons, heptadecagon (17-gon), 152, 158, 

476
heptagon, 193, 234, 243-244, 582 
nonagon, 295
regular, 130, 147, 151-152, 158, 159, 178, 

284-285, 381 
star, 284-285 

Polyhedra, 659-660 
cuboctahedron, 1 0 0
Euler-Descartes formula, 100-101, 353, 

434, 618, 659 
Kepler-Poinsot, 324 
regular, 91-92, 100, 101, 149, 178, 183, 

267, 512
semiregular or Archimedean, 168, 183 
trihedral, 659

Poncelet, J. V. (1788-1867), 25, 324, 326, 
450, 542, 552

Poncelet, J. V. (1788-1867) (continued) 
extension of the Castillon-Cramer prob

lem, 184
points at infinity, 551 
portrait, 545
principle of continuity, 324, 545, 546 
principle of duality, 545-546 
proof of principle of duality, 546 
projective geometry, 326, 450, 544 
Traite des proprietes projectives des 

figures, 544
Poncelet-Steiner construction theorem, 542 
Pons asinorum, 145 
Pope, A. (1688-1744), on Newton, 402 
Porism, \54n
Porisms (Diophantus), 180 
Porisms (Euclid), 154, 183 
Portraits, Abel, 490 

Agnesi, 440 
Archimedes, 165 
Aristotle, 109 
Babbage, 638 
Barrow, 394 
Bernoulli, Jakob, 425 
Bernoulli, Johann, 427 
Cantor, 569 
Cardano, 275 
Carnot, 452 
Cauchy, 487 
Cavalieri, 387 
Cayley, 516 
Clairaut, 456 
Clavius, 281 
Copernicus, 281 
D’Alembert, 439 
De Morgan, 514 
Descartes, 349 
Dirichlet, 495 
Du Chatelet, 443 
Euler, 432 
Fermat, 354 
Fibonacci, 262 
Fourier, 484 
Galileo, 320 
Galois, 492 
Gauss, 478 
Germain, 481 
Grassmann, 513 
Hamilton, 511 
Harriot, 315 
Hermite, 519 
Hilbert, 634 
Huygens, 362 
Jacobi, 493 
Kepler, 322 
Klein, 562 
Kovalevsky, 573 
Kronecker, 570 
Lagrange, 444 
Lambert, 439 
Laplace, 446 
Legendre, 448
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Portraits (continued)
Leibniz, 403 
L’Hospital, 406 
Lobachevsky, 499 
Maclaurin, 431 
Mascheroni, 543 
Monge, 449 
Napier, 307 
Newton, 397 
Noether, 574 
Oughtred, 315 
Pascal, 328 
Plato, 108 
Pliicker, 552 
Poincar6 , 571 
Poisson, 485 
Poncelet, 545 
Pythagoras, 75 
Regiomontanus, 266 
Riemann, 567 
Russell, 630 
Scott, 576 
Somerville, 482 
Steiner, 547 
Sylvester, 517 
Tartaglia, 276 
Taylor, 430 
Torricelli, 361 
Vifcte, 277 
Wallis, 393 
Weierstrass, 566 
Wren, 369

Positional numeral systems, 19-21 
Hindu-Arabic, 19 
Babylonian cuneiform, 20 
Hindu-Arabic, 19 
Mayan, 20-21 

Post, E. L. (ca. 1925), 623 
challenged the law of the excluded mid

dle, 623
Post Han period (222-ca. 600), 212, 215 
Post Sung period (after 1279), 216 
Postulate set(s), consistency of, 608-609 

equivalent, 609-610 
independence of, 609 
model of, 608
self-dual for plane projective geometry, 

584-585
Postulate(s), 152 

abbas and dabbas, 654 
bees and hives, 655 
Birkhoff’s, 608
Dedekind’s continuity, 649-650 
difference between axioms and postulates, 

152, 153
Euclid’s, 152-154, 504, 607, 613, 650-651 
group, 525
Hausdorff space, 660 
Hilbert’s, 608 
Huntington’s, 608 
metric space, 655

Postulate(s) (continued) 
parallel (.see Parallel postulate)
Pasch’s, 608, 651 
Pieri’s, 608
sequential relation, 652 
theory of relativity, 654-655 
Veblen’s, 608 
Zermelo’s, 562

Postulational, or mathematical, method, 92, 
152

Potential theory, 447, 486, 572 
Pothenot (d. 1733), problem, 177 
Poulet, P., sociable chain of numbers, 94 
Power series, 566
Practica geometrica (Fibonacci), 263 
Practical Geometry (Abraham bar Hiyya), 

260
Practical numbers, 78 
Precession of the equinoxes, 438 
Preliminary Dissertation on the Mechanisms 

o f the Heavens (Somerville), 482 
Prime numbers, 568, 577-579, 599, 639 

definition of, 11 n 
density of, 578 
Dirichlet’s theorem, 578 
factor tables, 578 
Fermat, 356, 578, 579 
infinitude of, 148-149, 577 
irregular, 456 
large, 577 
Mersenne, 364
number of them below n, 577 
palindromic, 579, 599 
regular, 456
sieve of Eratosthenes, 170, 577, 599 
twin, 579, 599 
unproved conjectures, 579 

Prime number theorem, 578, 599 
Prime-yielding formulas, 577-578, 599 
Primitive counting, 9-11 
Primitive Pythagorean triples, 46, 97-98 
Primitive terms of a discourse, 607, 608-609 
Prince of Mathematicians, 479 
Principal curvatures of a surface, 557 
Principal fluxion, 400 
Principia (Newton) [see Philosophiae na- 

turalis principia mathematica (Newton)] 
Principia mathematica (Whitehead and 

Russell), 403, 621, 629, 630, 632 
Principia philosophiae (Descartes), 348 
Principle of continuity, 324, 325-326, 545, 

546
Principle of discovery, 623-624 
Principle of duality, Boolean algebra, 546 

calculus of propositions, 546 
partially ordered sets, 546 
plane projective geometry, 545-546, 549, 

584
Pliicker’s proof of, 549 
set theory, 515
solid projective geometry, 546
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Principle of duality (continued) 
spherical geometry, 546 
trigonometric identities, 546, 585 

Principle of hydrodynamics, 427 
Principle of permanence of equivalent 

forms, 503-504 
Principle of superposition, 607 
Printing, in China, 215 

invention of, in Western Europe, 265 
Prismatoid, 194-195, 409 

volume of, 194 
Prismoid, 409 

generalized, 409 
Prismoidal formula, 409 
Prix Bordin, 573 
Probability des jugements, 429 
Probability, 428-429, 446, 518, 572 

Bernoulli, Daniel, 358 
definition of, 1 2 0 n 
De Moivre, 358 
Euler, 358
geometrical, 120-121, 465-466 
Huygens, 358 
integral, 428 
Lagrange, 358 
Laplace, 358
mathematical, 120n, 328, 331, 425-426, 

623
mathematical expectation, 362 
mathematical theory of, 358 
moral expectation, 427 
Pascal-Fermat correspondence, 357-358, 

362
Petersburg paradox, 426-427 

Problem of, Alhazen, 234 
Apollonius, 174, 191, 277 
the broken bamboo, 238, 240 
the crown, 188 
the frog in the well, 288-289 
Malfatti, 548 
Napoleon, 583 
Plateau, 558
the points, 331, 357-358, 372 
Pothenot, 177 
Snell, 177

Problemes plaisants et delectable (Bachet 
de Meziriac), 364, 374 

Problem(s), Castillon-Cramer, 184 
challenge, 329, 332 
cubic equations, 292-293 
Delian (see Duplication of the cube) 
Diophantine, 181 
Dirichlet’s, 635 
early commercial, 289-290 
early Hindu, 240 
eight-queens, 662 
four-color, 618, 618n, 640 
Hilbert’s Paris, 562 
Konigsberg bridges, 434, 461, 618 
needle, 100, 429, 464-465 
quartic equations, 293

Problem(s) (continued) 
regular solids, 1 0 0 - 1 0 1  
Steiner-Lehmus, 652 
Thales, 93 
three-point, 177 
verging, 113, 191

Problems for the Quickening o f the Mind 
(Alcuin), 282

Problems from, Apollonius, 191-192 
Archimedes, 188
Arithmetic in Nine Sections, 214, 237-238
Arithmetica (Diophantus), 197
Bachet, 374-375
Baker, 290
Bhaskara, 241
Brahmagupta, 240
Buteo, 289
Chuquet, 288
Clavius, 289, 295
Dark Ages, 282-283
Descartes, 371
Diophantus, 181, 197
Fibonacci, 283-284, 290
Ghaligai, 289-290
Greek Anthology, 196
Heron, 193-195
Huygens, 372-373
Liber abaci, 283-284
Mahavlra, 240-241, 242
Moscow papyrus, 63, 65
Pacioli, 288-289
Pappus, 197-199
Regiomontanus, 288
Rhind papyrus, 55-56, 61, 62, 63, 263
Tartaglia, 289, 290
Thales, 93
Treviso Arithmetic, 292 
Viete, 294

Proceedings o f the American Mathematical 
Society, 522

Proceedings o f the Edinburgh Mathematical 
Society, 522

Proceedings o f the London Mathematical 
Society, 522

Proceedings o f the St. Petersburg Academy, 
433

Proclus (410-485), 74, 149, 185, 199 
Commentary on Euclid, Book I, 74, 185 
Eudemian Summary, 74-75, 81, 141, 144 
parallel postulate, 496

Product of sets, 412
Product of transformations, 559
Professorships, Lucasian, 313, 395, 398, 442, 

637
Sadlerian, 515 
Savilian, 313, 368, 518

Prognostications, 645-647
Progressions, arithmetic {see Arithmetic 

progressions)
geometric {see Geometric progressions) 
harmonic, 2 0 1
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Projectile, path of, 321 
Projectiles, theory of, 361 
Projecting a line to infinity, 340 
Projection, central, 326, 340, 401 

globular, 364 
Lambert’s, 440 
Mercator’s, 367 
stereographic, 193, 364 

Projective geometry, 329, 346, 544-548 
analytical, 548
central projection, 326, 340, 401 
cross, or anharmonic, ratio, 184, 560 
Desargues, 325-326 
finite, 548, 585 
fundamental theorem of, 184 
“great period,’’ 544 
harmonic ranges, 326, 547 
higher-dimensional, 553, 555 
homology, 326
homothetic ranges and pencils, 547 
involution, 325
“mystic hexagram’’ theorem of Pascal, 

329-330, 342, 545, 548, 551 
perspective, 326, 430 
poles and polars, 172, 326, 546, 555 
principle of duality (see Principle of dual

ity of plane projective geometry) 
proving theorems by projection, 340-342 
reciprocation, 547 
self-dual postulate set, 584-585 

Pronunciation, of Arabic names, 230 
of Chinese names, 212 
of Greek names, 108 
of Hindu names, 220 

Proof theory of Hilbert, 634 
Proper divisors, 16n 
Proportion (see Theory of proportion) 
Propositiones philosophicae (Agnesi), 440 
Prosthapheresis, 309 
Provincial Letters (Pascal), 329 
Prussian Academy (see Berlin Academy of 

Science)
Pseudaria (Euclid), 154 
Pseudo-witch, 463
Ptolemy, C. (ca. 85-ca. 165), 175, 177, 231, 

323
Almagest, 118, 182, 235, 263 

commentary by Theon, 185 
translated into Arabic, 231 

map projections, 177, 193, 364 
parallel postulate, 177 
Planisphaerium or Planispherium, 182, 

193
stereographic projection, 193, 364 
Syntaxis mathematica (see Almagest) 
table of chords, 175, 192-193, 221 
theorem, 177, 192-193, 228 
three-point problem, 177 
translations of the Almagest, 231 
value of 77, 118, 177 

Ptolemy Hephaestio, 170

Ptolemy Soter (d. 283 B.C.), 140-141 
Ptolemy III (d. 222 B.C.), 169 
Puiseux, V. (1820-1883), differential geome

try, 556
“Pure’’ mathematics, 424 
Pyramid of Cheops (Gizeh), The Great, 49- 

50, 62
Pythagoras (ca. 585-ca. 500), 75-76, 105, 

145, 521, 571, 624 
mathematical existence, 521 
portrait, 75

Pythagorean application of areas, Slff, 172 
Pythagorean arithmetic, 76-80 
Pythagorean brotherhood, 109 

discovery of incommensurable magni
tudes, 82, 84 

figurate numbers, 78 
geometrical algebra, 85 
musical intervals, 80 
pentagram symbol, 1 0 1  
regular solids, 92

Pythagorean geometric solution of quadrat
ics, 87-90

Pythagorean means, 95 
Pythagorean philosophy, 76 
Pythagorean Proposition, The (Loomis), 81 
Pythagorean School, 75, 284 

at Crotona, 105 
at Tarentum, 106

Pythagorean theorem, 42, 65, 145, 147, 155— 
156, 227, 238, 241 

ancient Chinese “proof,’’ 214 
Bhaskara’s proofs, 228-229 
dissection proofs, 95-97 
dynamical proof, 155 
Euclid’s proof, 145, 155 
extensions of, 147, 183, 198, 234, 243,

334, 450
Garfield’s proof, 156
Leonardo da Vinci’s proof, 95
Nasir ed-din’s proof, 234
on Nicaraguan postage stamps, 313, 313n
Pappus’s generalization, 183, 198, 234
Pythagoras’ proof (?), 80-81
special case of law of cosines, 157
spherical right triangle, 334
Tabit ibn Qorra’s generalization, 243
Wallis’ proof, 229

Pythagorean theory of proportion, 84, 148, 
150, 624

Pythagorean triple, 45, 81-82, 97-98, 149, 
181, 219

Pythagorean triples, primitive, 46, 97-98

Quadratic equations, 181, 241, 267 
Arabian treatment, 233 
Babylonian solution, 57-58 
Carlyle’s geometric solution, 99 
Hindu method, 226
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Quadratic equations (continued) 
Pythagorean geometric solution, 87-90, 

99, 100
Staudt’s geometric solution, 99-100 

Quadratic forms, 197, 566 
Quadratic reciprocity law, 477, 523 
Quadratic surds, 241
Quadratrix of Hippias and Dinostratus, 114, 

116, 129, 183, 396 
tangents to, 392

Quadrature and Rectification o f Curves by 
the Use o f Infinite Series (Newton), 
399, 590

Quadrature of the circle, 110, 116, 356 
Anaxagoras, 116 
Antiphon’s attempt, 186, 380 
approximation with Snell’s refinement, 

132
asymptotic solution, 129 
by rectification of the circumference,

129
Cusa’s attempt, 265 
Egyptian approximation, 55, 116, 117 
Hindu approximation, 227 
Hippias of Elis, 116
impossibility with Euclidean tools, 120, 

367, 540
morbus cyclometricus, 123 
Saint-Vincent, 361, 366 
with quadratrix, 114, 116 
with spiral of Archimedes, 114, 116 

Quadrature o f the Parabola (Archimedes), 
167

Quadrilaterals, 227-228 
Brahmagupta, 243 
cyclic (see Cyclic quadrilateral)
Lambert, 497, 526 
Saccheri, 497-498, 526 

Quadrivium, 76
Quantum theory, 532, 572, 623, 641 
Quarterly Journal o f Pure and Applied 

Mathematics, 521
Quartic equations, 43, 234, 273-274, 293 

Abu’l-Wefa, 234 
Descartes’ solution, 274, 371 
Euler’s solution, 434 
Ferrari’s solution, 273, 279, 293 
problems, 293
V ote’s solution, 274, 279, 293 

Quasigroups, 510 
Quasiperfect numbers, 78 
Quatemionic algebra, 506-508, 511-512 
Quatemionic multiplication table, 507, 508 
Quatemionic units, 507 
Queen Mary (1516-1558), 269 
Quetelet, L. A. J. (1796-1874), 191 
Quinary scale, 12
Quine, W. V. (1940), logicism, 629 
Quintic equation, 366, 512, 520 

Abel, 274, 490
Euler’s attempted solution, 274

Quintic equation (continued)
Hermite’s solution with elliptic functions, 

274, 520
Lagrange’s attempted solution, 274 
Ruffini’s finding, 274 

Quintisection of an angle, 115 
Quipu (Peruvian Indian), 10

Rabdologiae (Napier), 335 
Radiolaria, 92 
Radius of curvature, 425 
Radix, 12, 270 
Radix fractions, 29
Radix method of calculating logarithms, 318, 

332-333
Radix universalis, 276 
Rahn, J. H. (1622-1676), 316 

table of primes, 578 
Raleigh, Sir W. (1552-1618), 314 
Ramanujan, Srinivasa (1887-1920), 222-223 
Rameses II, III, IV (uncertain dates), 52 
Ramified theory of types, 629 
Ramsey, F. P. (1926), logicism, 629 
Rangacarya, M. (1912), 222 
Range of values, 612 
Raphson, J. (1648-1715), 412 

Analysis aequationum universalis, 412 
Rational numbers, definition of, 82 
Rawlinson, Sir H. C. (1810-1895), 40 
Real number system, as a foundation of 

mathematics, 565
embedded in the complex number system, 

506
Rechenmeisters, 268, 269 
Recherches sur la probability des jugements 

(Poisson), 486 
Reciprocant, 518 
Reciprocation, 547
Recorde, R. (ca. 1510-1558), 269-270 

The Castle o f Knowledge, 270 
equals sign, 270-271 
The Grovnd o f Artes, 269 
The Pathewaie to Knowledge, 270 
The Whetstone o f Witte, 270-271 

Recreational mathematics, 30-31, 245, 374- 
375, 640, 662

Recreations mathematiques (Leurechon), 
364

Rectification, circle (approximate), 129-130 
Cusa’s, 285 
cycloid, 367-368 
de Gelder’s, 130 
Kochanski’s, 129-130 
lemniscate, 373n 
parabola, 367 

Recurring decimals, 427 
Reductio ad absurdum, 145-147, 148, 382, 

383, 386, 633
in connection with non-Euclidean geome

try, 496-497
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Re-entrant knight’s path, 434 
Reflection, 363, 426 
Refraction, 363, 426 

double, 363
Regiomontanus (1436-1476), 180, 267, 385 

De triangulis omnimodis, 265-266, 288 
portrait, 266 
problems from, 288 
star polygons, 285 
table of tangents, 266 

Regie des nombres moyens, 288 
Regula duorum falsorum (see Rule of double 

false position)
Regular nonagon, Durer’s approximate 

construction, 295 
Regular numbers, 46, 57 
Regular polygons {see Polygons, regular) 
Regular polyhedra {see Polyhedra, regular) 
Regular primes, 456 
Regular sexagesimal numbers, 46 
Regular solids {see Polyhedra, regular) 
Reichenbach (1932), infinite-valued logic,

623
Reitweisner, G. W. (1949), calculation of 7r, 

639
Relative consistency, 609 
Relative properties of a surface, 557 
Relatively prime numbers, 83n 
Relativity theory {see Theory of relativity) 
Rendiconti, 522
Republic (Plato), commentary by Proclus, 

185-186
Reuleaux triangle, 459 
Reye, K. T. (1837-1919), projective geome

try, 544
Rhaeticus, G. J. (1514-1576), 119, 280, 282 

trigonometric tables, 282 
Rhetorical algebra, 179, 182, 234, 266 
Rhind, A. H. (1833-1863), 50 
Rhind, or Ahmes, papyrus, 50-51, 52ff, 61ff  

area of a circle, 55, 63 
Problem Number 56, 62 
Problem Number 57, 62 
Problem Number 79, 55-56, 263 
problems from, 61-62 
unit fractions, 61 

Rhombic dodecahedron, 324 
Rhombic trikontahedron, 324 
Riccati, F. (1718-1791), 437 
Riccati, Giacomo (1676-1754), 437 

differential equation, 437, 438, 462 
Riccati, Giordano (1709-1790), 437 
Riccati, V. (1707-1775), 437 
Ricci-Curbastro, G. (1853-1925), tensor 

calculus, 557
Ricci, Matteo (1552-1610), translated Euclid 

into Chinese, 219
Richard, L. P. E. (1795-1849), 520 
Richelot, F. J. (1808-1875), regular polygon 

of 257 sides, 152
Richmond, H. W. (1909), construction of a 

regular 17-gon, 158

Riddles in Mathematics (Northrop), 283 
Riemann, G. F. B. (1826-1866), 561, 567- 

569
abnormal function, 564 
Cauchy-Riemann differential equations, 

567
differential geometry, 557 
doctoral thesis, 618 
hypothesis, 568 
integral, 567
non-Euclidean geometry, 500-501 
portrait, 567 
surface, 567, 618 
topological concepts, 618 
Uber die Hypothesen welche der Geome

trie zu Grunde lie gen, probationary 
lecture of 1854, 553, 568, 606, 611, 
618

zeta function, 568 
Riemannian geometry, 557, 568 
Riemannian space, metric of, 568 
Riese, A. (ca. 1489-1559), 269 
Rigorization of analysis, 445, 487 
Rig-Veda, 512 
Rings, 510, 575
Robbins and Courant, What Is Mathemat

ics?, 112n, 360n
Robert of Chester (ca. 1140), 261 
Roberval, G. P. de (1602-1675), 353, 358- 

360
area of cycloidal arch, 359 
method of indivisibles, 359, 390 
method of tangents, 359, 360, 375 

Rodrigues, O. (1794-1851), differential 
geometry, 556

Rods, or bones, of Napier, 308, 335 
Rolle, M. (1652-1719), 431-432 

critic of the calculus, 432 
theorem, 432 

Rollin papyrus, 52 
Roman numerals, 16-17 
Romanus, A. (1561-1615), 277 

value of 77, 119 
Rome, A. (b. 1889), 14n 
Root-mean-square, 200-201 
Rosetta Stone, 51, 52 
Rothman, T. (1982), 492n 
Roulettes, 547 
Route of a graph, 460 
Royal Danish Academy of Sciences, 479 
Royal Geographical Society of London, 212 
Royal Irish Academy, 505 
Royal Society of Gottingen, 479 
Royal Society of London, 362, 367, 368, 

394, 398, 399, 400, 404, 430, 482, 521, 
548, 631

Rubaiyat (Omar Khayyam), 232 
Rudolff, C. (ca. 1500-ca. 1545), 270 

Die Coss, 270
Rudolph II, Kaiser (1552-1612), 322 
Ruffini, P. (1765-1822), 274 

quintic equation, 274
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Rule of circular parts (Napier), 308, 333-334 
Rule of double false position, 233, 246 

in China, 218
Rule of false position, 54, 180, 233, 262, 267 
Rule of signs (Descartes), 275, 314, 352, 

370-371, 401 
Rule of three, 233 
Rules of the cord, 219 
Runge, C. (1856-1927), 562 

Runge-Kutta method, 562 
Russell, B. (1872-1970), 621, 630-631 

axiomatics, 610 
barber paradox, 626, 627 
foundations of mathematics in logic, 565 
logistic school, 628
paradox in set theory, 625-626, 627, 661 
portrait, 630
Vicious Circle Principle, 627 

Russell and Whitehead, Principia mathe
matica, 403, 621, 629, 630, 632 

Russian Academy (.see St. Petersburg Acad
emy)

Rusty compasses, 234, 542
Rutherford, W. (1841, 1853), calculation of

7r, 121

Saccheri, G. (1667-1733), 232, 234, 496-498 
Euclides ab omni naevo vindicatus, 497 
hypotheses of the acute, right, and obtuse 

angles, 234, 497 
Logica demonstrativa, 497 
non-Euclidean geometry, 496-497 
quadrilateral, 497, 526 

Sachs, A. J. (b. 1914), 44 
Sacrobosco (ca. 1200-ca. 1256), 263 
Sadlerian professorship, 515 
St. Petersburg, or Russian, Academy, 426- 

427, 432, 433, 436
Saint-Venant, B. de (1796-1886), binormal, 

556
Saint-Vincent, G. de (1584-1667), 366 

duplication of the cube, 127 
method of indivisibles, 390 
quadrature of the circle, 361, 366 

Salmon of Archimedes, 189 
Salmon, G. (1819-1904), 519 

points, 342
Sait cellar (see Salinon)
Sand Reckoner, The (Archimedes), 168 
Sand trays, 22 
Sankhya, 222 
Sanskrit, 505, 515 

renaissance, 2 2 0
Sarton, The History o f Science, 186n
Sauv6 , L. (1980), 579
Savasorda {see Abraham bar Hiyya)
Saville, Sir. H. (1549-1622), 313 
Savilian professorships, 313, 368, 392, 518 
Scale, binary, 30-31 

duodecimal, 12  
number, 12

Scale (<continued) 
quinary, 12  
sexagesimal, 13 
vigesimal, 12

Schepler, H. C. (1950), Win 
Schlafli, L. (1814-1895), higher-dimensional 

geometry, 553
Schlegel, V. (1843-1905), higher-dimensional 

geometry, 553
Schnirelmann, L. G. (1905-1935), 579
Schone, R. (1896), 178
School at Cyzicus, 107
School of Translators, 261
Schooten, F. van, the Elder (1581-1646),

366
Schooten, F. van, the Younger (1615-1660 

or 1661), 352, 361, 550 
editor of Descartes’ La geometrie, 366 

Schooten, P. van (1643-1679), 366 
Schoute, P. H. (1846-1913), 539 
Schroder, E. (1841-1902), Boole-Schroder 

algebra, 620
Vorlesungen uber die Algebra der Logic, 

620
Schultze, Graphic Algebra, 248 
Schwedt, Princess P. von (ca. 1760), 435 
Science and Civilization in China 

(Needham), 211 
Science of artillery fire, 276 
Scientific American Supplement, 122 
Scientific geometry, 644 
Scott, C. A. (1858-1931), 575-576 

An Introductory Account o f Certain Mod
ern Ideas and Methods in Plane 
Analytic Geometry, 575 

portrait, 576 
Scott, D. S. (1958), 640 
Scrap-Book o f Elementary Mathematics, A 

(White), 270n
Scratch algorithm for long division, 290-292 
Sea Island Mathematical Manual, 215 
Secant (trigonometric function), 236 
Sector compasses, 321, 336-337 

line of areas, 337 
line of metals, 337 
line of volumes, 337 

Seidenberg, A. (1962), 38n 
Seki Kowa (1642-1708), 405 
Selective Sequence Electronic Calculator 

(SSEC), 638 
Seljuk Turks, 230 
Semicubical parabola, 363, 425 
Semigroups, 510 
Semiperfect numbers, 78 
Semiregular, or Archimedean, polyhedra, 

168, 183
Sensed magnitudes, 451, 467-468 
Seqt of a pyramid, 62 
Sequel to Euclid, 539, 544 
Serret, J. A. (1819-1885), differential geom

etry, 556
Servois, F. J. (1767-1847), 546
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Set(s), bounds, 598 
cardinal number of, 612-613 
dense, 613
denumerable, 613, 656 
equivalent, 612 
infinite, 613
in the “new math,’’ 641-642 
nondenumerable, 615, 656 
null, 529
partially ordered, 546

Set theory, 321, 412-413, 424, 515, 570, 610, 
611, 612

antinomies, or paradoxes, of, 570, 606, 
624-628, 629, 631, 632, 633 

as a foundation of mathematics, 565, 629, 
641-642

Burali-Forti paradox, 625 
Cantor’s general, 625 
Cantor’s paradox, 625 
restricted, 626
Russell’s paradox, 625-626, 627 

Set topology, 619 
Seven Daughters of Mathesis, 576 
Seven Wonders of the Ancient World, 50« 
Seven Years’ War (1756-1763), 435 
Severi, F. (1904), straightedge constructions, 

542
Sexagesimal scale, 13 
Shakespeare, King Lear, 478-479 
Shang period (ca. 1500-1027 B.C.), 211-212 
Shanks, D. (1961, 1962), computation of 7r, 

121, 122, 639
Solved and Unsolved Problems in Num

ber Theory, 81«
Shanks, W. (1812-1882), calculation of tt, 

121, 122, 123
Shape of the earth, Descartes, 436 

Huygens, 436 
Newton, 436

Sharp, A. (1651-1742), calculation of n, 120 
Shen Kangshi (1987), history of Chinese 

mathematics, 2 1 1  
Shenton, W. F. (1928), 144n 
Shift in the hypothesis, 590-591 
Shi Huang-ti, Emperor (ca. 213 B.C.), 211 
Shi-Xue, or Perspective Drawing (Xi-yao), 

218 n
Shock waves, 568 
Shoemaker’s knife {see Arbelos)
Siddhanta Siromani (Bhaskara), 222, 222n 
Sieve of Eratosthenes, 170-171, 577, 599 
Simple grouping systems, 14-17 

Babylonian cuneiform, 15-16 
Egyptian hieroglyphics, 14-15 
Greek Attic, or Herodianic, 16 
Roman, 16-17

Simplicity of a Euclidean construction, 543 
Simplicius (ca. 530), 185, 186 
Simply normal number, 123 
Simson, R. (1687-1768), 183, 539 

edition of Euclid’s Elements, 144

Simson, R. (1687-1768) (continued) 
restoration of a work of Apollonius, 174, 

175
Simultaneous equations, 42, 55, 58, 59, 179, 

195-196, 213, 405 
Sine, etymology, 237 

tables, 2 1 1
Sinusoidal spiral, 365-366 

special cases, 374
6 6 6 , the number of the beast, 270, 270«, 272, 

292
Sixtus IV, Pope (1414-1484), 265 
Skeleton key of mathematics, 510 
Skew-symmetric matrix, 533 
Skolem, T. (b. 1887), restricted set theory, 

626
Slide rule, 335-336 

circular, 316 
modern, 318 
runner, 316 
straight, 316

Sluze, R. F. W. de (1622-1685), 366, 392 
pearls of, 366

Smith, D. E. (1860-1944), 314 
A Source Book in Mathematics, 331 n,

A lin , 500n
Smith, E. (d. 1906), American Egyptologist, 

50
Smith, H. J. S. (1826-1883), 566 
Smith’s prize, 515 
Smithsonian Institution, 122, 638 
Snell, W. (1580 or 1581-1626), loxodrome, 

366
problem of, 177 
refinement, 119, 131-132, 361 

Snowflake curve, 597 
Sociable chain of numbers, 94 

crowd, 94
Societe Mathematique de France, 522 
Societies, mathematical, 521-522 
Society for the Diffusion of Useful Knowl

edge, 482
Socrates (469-399 B.C.), 106, 380 
Solid analytic geometry, 450-451, 550 
Solid geometry, 149, 450, 550 
Solid Loci (Aristaeus), 183 
Solid of constant width, 459 
Solon (ca. 638-ca. 559 B.C.), 73-74 
Solved and Unsolved Problems in Number 

Theory (Shanks), 81/z
Somerville, M. F. (1780-1872), 455, 481, 482 

Mathematical Pleiades, 576 
The Mechanisms o f the Heavens, 482 
A Preliminary Dissertation on the Mecha

nisms o f the Heavens, 482 
portrait, 482

Sommerville, Bibliography on Non-Euclid
ean Geometry, Including the Theory o f  
Parallels, the Foundations o f Geometry, 
and Space o f n-Dimensions, 554 

Sophists, 147
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Source Book in Mathematica, A (Smith), 
311 n, A lin , 500«

Space, 423
abstract, 561, 610, 611 
analogs, 580-581
concept, historical evolution of, 610-611 
curves, 436, 550 
Euclidean, 568
Hausdorff (see Hausdorff space)
Hilbert, 635
metric (see Metric space)
Riemannian, 568 
structure of, 611 
taxicab, 656 
topological, 619 
vector, 510 

Spectral theory, 635 
Spectrum analysis, 552 
Sphaerica (Menelaus), 176, 200 
Sphere, director, 451 

Monge, 451 
geometries, 560 

Spherical coordinates, 586 
Spherical degree, 375 
Spherical excess, 366, 375 
Spherical geometry, 154 

principle of duality, 546 
Spherical ring, 408 
Spherical segment, 187-188 
Spherical triangle, 176, 278, 308, 333-334 

area of, 366, 375
Spherical trigonometry, 176, 177, 232, 235, 

265, 308, 333-334, 366 
Napier’s analogies, 334 
Pythagorean relation, 334 

Spherical Trigonometry after the Cesaro 
Method (Donnay), 193 

Spherical zone, 187 
Spherics (Theodosius), 260 
Spieker (ca. 1870), sequel to Euclid, 539 
Spin variables, 512
Spiral of Archimedes, 116, 167, 183, 585 

trisection of an angle, 114 
Spirals of Fermat, 353 
Spring-balance watch, 363, 368 
Square numbers, 78-80, 94 
Square roots, 43-44, 60, 178, 233, 262, 267 

Heron’s method of approximating, 411 
Squaring the circle (see Quadrature of the 

circle)
SSEC, 638
Standard kilogram, 454 
Star polygons, 284-285 
Star polyhedra, 324 
Star wars, 647 
Statistics, 429 

Bernoulli’s theorem, 426 
median, 456 
mode, 456
normal frequency curve, 428, 456 

Staudt, K. G. C. von (1798-1867), 548

Staudt, K. G. C. von (1798-1867) (continued) 
geometric solution of quadratic equations, 

99-100
Geometrie der Lage, 548 
projective geometry, 544 
theorem, 456

Steiner, J. (1796-1863), 539, 542, 546-548, 
570

chains, 548
“greatest geometrician since Apollonius,’’ 

547
isogonic center, 360 
points, 342
Poncelet-Steiner construction theorem,

542
porism, 548 
portrait, 547
projective geometry, 326, 544 
Systematische Entwickelungen, 547 

Steiner-Lehmus problem, 652 
Stereographic projection, 193, 364 
Stereometria doliorum vinorum (Kepler), 

323-324
Stevin, S. (1548-1620), 169, 280-281, 366 

decimal fractions, 280 
fluid pressure, 386 
primitive integration, 386 
statics and hydrostatics, 280 

Stewart, M. (1717-1785), theorem, 183 
Stifel, M. (1486-1567), 270 

Arithmetica integra, 270 
beasting, 270

Stirling, J. (1692-1770), 430 
formula, 429, 457 

Stabaeus, J. (5th century), 141 
Straightedge constructions, 542 
Strategic Defense Initiative (S.D.I.), 647 
STRETCH, 122 
Struik, D. J. (1963), 211 n 
Stukeley, W. (1687-1765), 402-403 
Sturm, J. C. F. (1803-1855), theorem, 518 
Suan pan, 213
Subconscious geometry, 644 
Subcontrary, 94 
Submathematical analysis, 264 
Subnormal, 370 
Substitution groups, 492 
Subtangent, 391-392 
Subtraction symbol, Babylonian, 15 

Egyptian, 55 
modem, 267 

Sulvasutras, 219 
Pythagorean relation, 227 

Sum of sets, 412 
Suma (Pacioli), 267, 269, 288 

problem of the points, 331 
Summation sign, 433 
Sundial, oldest extant, 49, 52 
Sung Dynasty (960-1279), 28, 212, 215 
Sun-tzi (3rd century), 215 

problem from, 215



770 INDEX

Superabundant numbers, 78, 94 
Superposition, 607
Supplementum geometriae (Viete), 278 
Surds, 241-242
Surface Loci (Euclid), 154, 183 
Surfaces of second degree, 326 
Survey o f  Geometry, A (Eves), 116n, 540«, 

541m
Surya Siddhanta, 221 

translated by E. Burgess (1860), 222 
Susa tablets, 59 
SWAC, perfect numbers, 77 
Swiss Society of Natural Science, 433 
Sylow, L. (1822-1918), groups, 472 
Sylvester, J. J. (1814-1897), 216, 515, 517- 

519
“Adam of mathematics,’’ 518 
contrasted with Cayley, 518 
elementary divisors of \  matrices, 566 
founder of American Journal o f Mathe

matics, 521, 575
higher-dimensional geometry, 553 
invariant theory, 516 
Jacobian determinant, 494 
The Laws o f Verse, 519 
portrait, 517 
quoted, 519
Rosalind poem, 518-519 
Savilian professorship, 518 
unit fractions, 61-62 

Sylvester II, Pope (see Gerbert)
Sylvester medal, 631 
Sylvester process, 61-62 
Symbol of a Euclidean construction, 543 
Symbolic algebra, 179, 267, 276, 353 

Bombelli, 276, 293 
Descartes, 278 
Harriot, 314 
Oughtred, 316, 317 
Pacioli, 276 
Recorde, 270 
Rudolff, 270 
Vifcte, 278, 294

Symbolic logic (see Mathematical, or sym
bolic, logic)

Symbolic Logic (Venn), 412n 
Symbolism, algebraic, 316 
Symbolized arithmetic, 503, 503«
Symbols, Babylonian subtraction, 15 

base of natural logarithms (e), 433 
calculus, 400-401, 404-405, 445 
circumradius of a triangle (R), 433 
complement of a set ('), 412 
congruent (» ), 316
derivative of y with respect to jc (dy/dx), 

405
difference (~), 316 
differential of x (dx), 405 
division (-s-), 316
Egyptian addition and subtraction, 55 
equals (=), 270-271

Symbols (continued) 
equals, in a proportion (::), 316 
exponents, 352 
factorial n (nl), 330n 
fluent of y (y), 400 
fluxion of y (y), 400 
fluxion of y, (y), 400 
functional notation, [ / ( jc) ] ,  433 
greater than (>), 314 
hyperbolic functions (sinh, etc.), 440 
imaginary unit (/), 433 
infinity (°°), 393 
inradius of a triangle (r), 433 
intersection of sets (D), 316, 412 
Legendre’s [(c|p)], 448, 477 
less than (<), 314 
minus ( - ) ,  267
modem integral sign ( /  ), 404 
multiplication (x ), 316, 318 
multiplication (•), 316 
multiplication (D), 316 
number of combinations of n things taken 

r at a time [C(n,r)], 343 
plus (4-), 267
product of sets (fl), 316, 412 
radical (V), 270
semiperimeter of a triangle (5), 433 
sides of a triangle («a,b,c), 433 
similar (~), 316 
subtraction (-^), 316, 317 
sum of sets (U), 412 
summation sign (2 ), 433 
union of sets (U), 412 
zero in Chinese mathematics, 216 

Symmedian point, 544, 581 
Syncopated algebra, 179, 181-182, 226, 267 
Synesius of Cyrene (ca. 400), 185 
Syntaxis mathematica (see Almagest) 
Synthetic development, 154 
System der analytischen Geometrie 

(Pliicker), 552
Systematische Entwickelungen (Steiner), 547

Tabit ibn Qorra (826-901), 95n, 231 
amicable numbers, 77, 234, 243 
extension of Pythagorean theorem, 243 
regular heptagon, 244 
translations by, 231 

Tables, chords, 175-176, 192-193, 221 
factor, 578 
Legendre, 448 
logarithm, 312 
mortality, 368-369 
<l>(n), 372
prime number, 578 
trigonometric, 221, 229, 231, 232 

H indu,235 
by Rhaeticus, 282 

Tait, P. G. (1831-1901), 511 
Tang period (618-906), 212, 215
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Tangencies (Apollonius), 173, 174, 191, 280 
Tangent, curve, 396 

origin of name, 236 
Tannery, P. (1843-1904), 21, 74n 
Tarentum school, 106
Tarry, G. (1843-1913), sequel to Euclid, 539 
Tarski, A. (1902-1983), 623 
Tartaglia (ca. 1499-1557), 272-273, 275-276 

General trattato, 290 
portrait, 276
problem of the points, 331 
problems from, 289, 290 

Tartalea, 272n 
Tautochrone, 426 
Taxicab space, 656
Taylor, B. (1685-1731), 424, 429-430, 431, 

436
approximate solution of equations, 430 
expansion, or series, 429-430, 445, 457, 

564
paired with Maclaurin, 489 
portrait, 430 
theory of perspective 

Taylor, H. M. (1842-1927), sequel to Eu
clid, 539

Telescope, 319-320 
etymology, 320

Temple of Amon-Re at Kamak, 52 
Tensor calculus, 557 
Tetrahedron, Lemoine, 544 

volume in terms of edges, 452 
Thales (ca. 546 B.C.), father of demonstra

tive geometry, 9, 72-74, 75, 92, 105 
problems of, 93

Theaetetus (ca. 415-ca. 369 B.C.), 92, 107, 
109, 144

ThSbault, V. (1882-1960), 65n 
Theodorus of Cyrene (b. ca. 470 B.C.), 106, 

107, 109, 231 
construction of V h, 1 0 2  
irrational numbers, 84 

Theodosius of Tripoli (ca. 100), 231, 260,
396

Spherics, 260
Theon of Alexandria (ca. 390), 142-143, 169, 

175, 176, 185
Theon’s recension, 141-143, 185 
Theorem, Newton’s, 173 

Ptolemy’s, 177
Theorem of the broken chord, 189-190 
Theorem of Ceva, 340-341 
Theorem of mean value, 432 
Theorem of Menelaus, 176-177, 200, 341 

Carnot’s extension, 452 
Theorie analytique de la chaleur (Fourier), 

484
Theorie analytique des probability  (La

place), 446, 465
Thiorie de la figure de la Terre (Clairaut), 

436
Thiorie de la Lune (Clairaut), 436

Theorie der algebraischen Curven (Pliicker), 
552

Theorie des fonctions analytiques contenant 
les principes du calcul differentiel (La
grange), 445, 564

Theorie mathematique de la chaleur (Pois
son), 486

Theorie nouvelle de Faction capillaire (Pois
son), 486

Theory of classes, 629 
Theory of colors (Newton), 398 
Theory of equations, 266, 314, 434, 484 

cubics (see Cubic equations)
Descartes’ rule of signs, 275, 314, 352, 

370-371, 401 
Fourier’s theorem, 412 
Galois, 492
Homer’s method, 216, 217 
imaginary roots, 401, 410 
Lagrange’s method, 445 
multiple roots, 366 
Newton’s method, 401, 411-412 
quadratics (see Quadratic equations) 
quartics (see Quartic equations) 
quintics (see Quintic equations) 
symmetric functions of roots, 279 
Taylor’s method, 430 
Tschimhausen transformation, 366 
upper bound for roots, 401, 410-411 
Viete’s method, 279 

Theory of evolution, 321 
Theory of gravitation, 398 
Theory of groups (see Groups)
Theory of heat conduction, 427, 483-485,486 
Theory of ideals, 356 
Theory of invariants (see Invariants and 

covariants)
Theory of knots, 618
Theory of light, 363, 398, 427
Theory of limits, 383, 385, 396, 401, 402,

423, 445, 488, 564, 625 
as a foundation for analysis, 438 
Newton, 401

Theory o f the Mathematical Sciences 
(Geminus), 185 

Theory of measure, 610, 657 
Theory of numbers (see Number theory) 
Theory of perspective, 326, 430 
Theory of probability (see Probability) 
Theory of projectiles, 321, 361 
Theory of proportion, 84, 150-151, 158 

Eudoxian, 84-85, 147, 148, 150-151, 158, 
624

modern, 150-151, 158 
Pythagorean, 84, 150

Theory of relativity, 402, 446, 555, 572, 611, 
623, 635

postulates for, 654-655 
Theory of sets (see Set theory)
Theory o f Sets o f Points, The (Young and 

Young), 562
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Theory of tides, 431 
Theory of types, 629 

ramified, 629
Therema egregium of Gauss, 558 
Thermodynamics, 484, 572 
Theta functions, 516
Theudius of Magnesia (ca. 360 B.C.), 144 
Thirteen Books o f Euclid’s Elements, The 

(Heath), 647
Thirty Years’ War (1618-1648), 365 
Thomson, Sir W. (see Lord Kelvin)
3,4,5 triangle, 65 
Three L’s, The, 449 
Three-point problem, 177 
Three-valued logics, 623, 623n, 627, 661 
Thureau-Dangin, F. (1872-1944), 41 
Thymaridas (ca. 350 B.C.), bloom of, 195, 

196
Timaeus (Plato), 92 
Timaeus of Locri (?), 92 
Tomahawk, 114 
Tonstall, C. (1474-1559), 269 
Topological equivalence, 617 
Topological properties, 617 

extrinsic, 618 
intrinsic, 618 

Topological space, 619 
Topological transformations, 617 
Topologically equivalent figures, 658 
Topology, 570, 572, 606, 610, 617-619, 632, 

640
algebraic, 619
analysis situs, 619
Betti groups, 619
combinatorial, 572, 619
Euler-Descartes formula, 618
four-color problem, 618-619, 640
fundamental division of mathematics, 617
fundamental theorem of algebra, 618
homology theory, 619
a Kleinian geometry, 617
origin of name, 618
set, 619
theory of knots, 618 
two-complexes, 619

Torricelli, E. (1608-1647), 358, 359-361 
area of cycloidal arch, 359, 360 
atmospheric pressure, 327-328, 361 
contributions to physics, 361 
isogonic center, 360 
method of indivisibles, 390 
method of tangents, 359, 360 
portrait, 361
rectification of logarithmic spiral, 360 

Toral sections, 365 
Torus, 324, 409 
Total curvature, 551 
Totient, 372
Tractatus de numeris datis (Jordanus), 285 
Tractoid, 589-590 
Tractrix, 589-590

Traditional Chinese-Japanese numerals, 17- 
18

Traite de dynamique (d’Alembert), 437 
Traite de la resolution des equations nu- 

merique de tous deg res (Langrange),
445

Traite de mecanique (Poisson), 486 
Traite de mecanique celeste (Laplace), 446- 

447, 482
Traite des fonctions elliptiques et des inte

grals euleriennes (Legendre), 449 
Traite des proprietes projectives des figures 

(Poncelet), 544
Traite des sections coniques (Chasles), 548 
Traite des substitutions (Jordan), 492 
Traite du triangle arithmetique (Pascal), 328, 

330
Trammel construction of an ellipse, 199 
Transactions o f the American Mathematical 

Society, 522
Transactions o f the Royal Danish Academy 

o f Sciences, 479 
Transcendental curves, 114, 129 
Transcendental numbers, 121, 597, 615 

e, 520, 616 
existence of, 616
Gelfond’s theorem, 616 4
Hilbert’s number (2^ ), 616 
7r, 121, 520, 540, 597, 616 

Transfinite numbers, 424, 570, 612-617, 657 
definition, 613 
smallest, 613

Transformation of areas, 90-91, 100, 147 
Transformation(s), group, 559ff, 617 

identity, 559 
inverse, 559 
linear, 508-509 
of a set onto itself, 559 
product of, 559 
topological, 617

Transformation theory, 516, 518, 559 
Transpose of a matrix, 533 
Transversal, 527
Treasury o f Analysis, The (pappus), 183 
Treasury o f Mathematics, The (Midonick), 

240n
Treatise o f Algebra (Maclaurin), 431 
Treatise o f Fluxions (Maclaurin), 430, 431 
Treatise on Algebra (Peacock), 503 
Treatise on the Calculus o f Finite Differ

ences (Boole), 514
Treatise on Differential Equations (Boole), 

514
Treatise on Plane Trigonometry, A (Hob

son), 227n
Treatise on Quaternions (Hamilton), 511 
Tree of mathematics, 606, 643-645 
Treviso Arithmetic, 268-269 

problems from, 292 
Triangle inequality, 655 
Triangular numbers, 78-80, 94, 477, 523
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Trident, 370
Trigonometric functions, abbreviations for 

names of, 316, 366 
as ratios in a right triangle, 282 
etymology, 236

Trigonometric identities, principle of duality, 
546

Trigonometric series, 483, 569, 611 
Trigonometric tables (see Tables, trigono

metric)
Trigonometrie (Oughtred), 316 
Trigonometry, 190, 192, 263, 265, 282, 366, 

454
analytic, 426, 428, 429 
Arabian, 231, 232, 235 
Clavius, 280 
Copernicus, 282 
Greek, 175-177, 229 
Hindu, 221, 229 
Pitiscus, 282 
Regiomontanus, 266 
Rhaeticus, 282
spherical (see Spherical trigonometry) 
tables (see Tables, trigonometric)
Vi&te, 277, 278, 280 

Trihedral polyhedral surface, 659 
Triparty en la science des nombres 

(Chuquet), 266, 288
Triply orthogonal families of surfaces, 557 
Triply perfect number, 94 
Trisection of an angle, 109, 112-115, 356, 

582
approximation with Snell’s refinement,

132
Archimedes, 117, 127 
asymptotic solution, 129 
Campanus, 285 
Cusa, 265 
d’Ocagne, 582 
Diirer, 115 
Hippias of Elis, 116
impossibility with Euclidean tools, 540- 

541
Jordanus, 285 
Kopf, 582 
Nicomedes, 114 
Pappus, 114, 128 
Perron, 582
reduction to a verging problem, 113
using the insertion principle, 113
Viviani, 365
with conchoid, 114
with cone, 114, 128
with conics, 128, 365
with quadratrix, 129
with Snell refinement, 119, 131-132
with spiral of Archimedes, 117
with tomahawk, 114
with trisectrix, 128

Trisection Problem , The (Yates), 114n 
Trisectrix, 128

Trivium, 76
Tschimhausen, E. W. von (1651-1708), 274, 

365
catacaustic curves, 365 
cubic, 366, 374 
transformation, 366

Tsiolkovskii, K. E. (1857-1935), rocket 
equation, 313n

Tsu Ch’ung-chih (430-501), 215 
decimal approximation of tt, 215 
rational approximation 355/113 of 7r, 118, 

215
Tucker, R. (1832-1905), sequel to Euclid, 

539
Twin primes, 579, 599 
Twisted, skew, or space curves, 436 
Two-complexes, 619 
Two-triangle theorem of Desargues, 326, 

551, 584
Two-valued logic, 623

Uber die Hypothesen welche der Geometrie 
zu Grunde lie gen (Riemann’s probation
ary lecture of 1854), 553, 568, 606, 611, 
618

Ulugh Beg (1393-1449), 118 
table of tangents, 232

Unicursal and multicursal graphs, 434, 459- 
461

branch, 459
Euler’s theorems, 459-460 
Konigsberg bridges problem, 434, 459-460 
Listing’s corollary, 461 
node, 459
order of a node, 460 
route, 460

Uniform convergence, 566
Union of sets, 412
Unit fractions, 53-54, 61-62 

in Egyptian mathematics, 61 
Sylvester’s process, 61-62

United States Board of Geographic Names, 
212

Universal Automatic Computer (UNIVAC), 
639

University of Alexandria, 140, 141, 164, 165, 
169-170, 185

Upper bound for roots of a polynomial 
equation, 410-411

Valerio, L. (ca. 1552-1618), 385 
Vallee Poussin, C. J. de la (1866-1962), 578 

prime number theorem, 578 
Van Amringe, J. H. (1835-1915), 448 
Van Ceulen, L. (1540-1610), 119 

calculation of 7r, 119 
Vander Hoecke, G. (1514), 267 
Van Roomen, A. (see Romanus, A.)
Van Schooten, F. (see Schooten, F. van)
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Van Schooten, P. (see Schooten, P. van) 
Varahamihira (6th century), 221, 222 

Pahca Siddhantika, 221 
Variable, dependent, 612 

independent, 612 
Variation of parameters, 445 
Veblen, O. (1880-1960), 561 

axiomatics, 610
postulate set for Euclidean geometry, 608 
topology, 619 

Vector analysis, 512, 533 
Vector Analysis (Gibbs), 533 
Vector product, 533 
Vector space, 510 
Vectors, 533 
Vellum, 22
Venn, J. (1834-1923), diagrams, 412-413 

Symbolic Logic, 412n 
Verging problems, 113, 191-192 
Vergings (Apollonius), 173, 191 
Versed sine, 229 
Vibrating strings, 424, 427, 437 
Vicious Circle Principle (Russell), 627 
Vieta, F. (see Viete, F.)
Vi£te, F. (1540-1603), 180, 277-280, 293, 

314, 397
algebraic notation, 278, 294, 352, 353, 390 
approximate solution of equations, 278- 

279, 294
Canon mathematicus seu ad triangula,

277- 278, 294
De aequationum recognitione et emenda- 

done, 278, 279
De numerosa potestatum resolutione,

278- 279
duplication of the cube, 127 
In artem analytic am isogoge, 277-278 
infinite product for 7r, 118, 130, 280 
polar spherical triangles, 366 
portrait, 277
problem of Apollonius, 174 
problems from, 294 
quintic equation, 490 
restoration of a work of Apollonius, 175 
solution of cubics, 274, 279-280 
solution of quartics, 274, 279, 293 
Supplementum geometriae, 278 
theory of equations, 279 

Vigesimal scale, 12 
Vijaganita (Bhaskara), 222, 222n 
Vinogradoff, I. M. (b. 1891), 579 
Viviani, V. (1622-1703), isogonic center, 360 

tangent to a cycloid, 365 
trisection of an angle, 365 

Vldcq, A. (1600-1666), 312 
Voltaire [Frangois Marie Arouet] (1694- 

1778), 442-443 
quoted, 167

Volume of, anchor, ring, 409 
cylindrical wedge, or hoof, 408 
prismatoid, 195

Volume of (continued) 
pyramid, 228 
quadric of revolution, 168 
sphere, 168, 187, 228, 384-385, 388-389 
spherical ring, 408 
spherical sector, 187
spherical segment of one base, 167, 187— 

188
spherical segment of two bases, 188 
tetrahedron, 389

in terms of the coordinates of its verti
ces, 464

in terms of its edges, 452 
torus, 409
truncated pyramid, 55, 63-65 

Von Humbolt, A. (1769-1859), 547 
Von Neumann, J. (1903-1957), 623, 641 

formalism, 633 
game theory, 641 
restricted set theory, 626 

Vorlesungen uber die Algebra der Logic 
(Schroder), 620

Vorlesungen uber Zahlentheorie (Dirichlet), 
494

Vorstudien zur Topologie (Listing), 618

Wallis, J. (1616-1703), 232, 316, 367, 392- 
394, 479az

Arithmetica infinitorum, 393, 397 
beta and gamma functions, 434 
De algebra tractatus; historicus & practi- 

cus, 394, 412
element of arc of a curve, 394 
exponents, 393 
expression for 7r, 119 
history of mathematics, 394 
interpolation process, 394-395 
interpretation of complex roots, 394 
paired with Barrow, 489 
portrait, 393
proof of Pythagorean theorem, 227 
Savillian professor, 314 
symbol for infinity, 393 

Wang Fan (3rd century), value of 77, 215 
Wang Hs’iao-t’ung (ca. 625), 215 
War atmosphere of the twentieth century, 

424
Ward, S. (ca. 1650), 316 
Washington, George (1732-1799), 155 
Water-screw (Archimedes), 169, 170 
Wave theory of light, 363, 398 
Waxed boards, 22
Weber, W. (1804-1891), electric telegraph, 

478
Weierstrass, K. T. W. (1815-1897), 148, 

565-567, 569, 571 
and Kovalevsky, 573 
arithmetization of analysis, 564-565, 566, 

625
complex function theory, 566
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Weierstrass, K. T. W. (1815-1897) («continued) 
continuous nowhere differentiable func

tion, 486, 564, 566
elementary divisors of A matrices, 566 
father of modem analysis, 566 
portrait, 566
postulational definition of a determinant,

566
uniform convergence, 566 
“Weierstrassian rigor,” 566, 567 

Weighted mean, 201 
Weil, A., Bourbaki member, 642 
Weird numbers, 78
Well Spring o f Sciences, The (Baker), 290 
Wemer, J. (1468-1528), Elements o f Conics, 

295
formulas, 309

Wessel, C. (1745-1818), 479, 480 
Om Directionens analytiske Betregning,

480
plane, 479

Weyl, H. (1885-1955), 562, 633 
circumvention of impredicative defini

tions, 627 
quoted, 575

What Is Mathematics? (Cdirant and Rob
bins), Win, 360n 
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1. Rome 8. Athens 15. Miletus
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3. Elea 10. Abdera 17. Rhodes
4. Crotona 11. Delos 18. Cnidus
5. Tarentum 12. Chios 19. Perga
6. Elis 13. Samos 20. Alexandria
7. Cyrene 14. Pergamum 21. Syene
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