

Data Modeling
Essentials

Simsion-Witt_FM 12/14/04 11:32 PM Page i

This page intentionally left blank

Data Modeling
Essentials

Third Edition

Graeme C. Simsion and Graham C. Witt

A N I M P R I N T O F E L S E V I E R
A M S T E R D A M B O S T O N L O N D O N N E W Y O R K

O X F O R D P A R I S S A N D I E G O S A N F R A N C I S C O

S I N G A P O R E S Y D N E Y T O K Y O

Simsion-Witt_FM 12/14/04 11:32 PM Page iii

Publishing Director Diane Cerra
Senior Editor Lothlórien Homet
Publishing Services Manager Simon Crump
Project Manager Kyle Sarofeen
Editorial Coordinator Corina Derman
Cover Design Dick Hannus, Hannus Design Associates
Cover Image Creatas
Composition Cepha Imaging Pvt. Ltd.
Copyeditor Broccoli Information Management
Proofreader Jacqui Brownstein
Indexer Broccoli Information Management
Interior printer Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a
claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding trade-
marks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—
without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions
@elsevier.com.uk. You may also complete your request online via the Elsevier homepage
(http://elsevier.com) by selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

ISBN: 0-12-644551-6

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America

05 06 07 08 09 5 4 3 2 1

Simsion-Witt_FM 12/14/04 11:32 PM Page iv

This new edition of Data Modeling Essentials is dedicated

to the memory of our friend and colleague, Robin Wade,

who put the first words on paper for the original edition, and

whose cartoons have illustrated many of our presentations.

Simsion-Witt_FM 12/14/04 11:32 PM Page v

This page intentionally left blank

Contents

Preface xxiii

Part I
The Basics 1

Chapter 1
What Is Data Modeling? 3

1.1 Introduction 3

1.2 A Data-Centered Perspective 3

1.3 A Simple Example 4

1.4 Design, Choice, and Creativity 6

1.5 Why Is the Data Model Important? 8
1.5.1 Leverage 8
1.5.2 Conciseness 9
1.5.3 Data Quality 10
1.5.4 Summary 10

1.6 What Makes a Good Data Model? 10
1.6.1 Completeness 10
1.6.2 NonRedundancy 11
1.6.3 Enforcement of Business Rules 11
1.6.4 Data Reusability 11
1.6.5 Stability and Flexibility 12
1.6.6 Elegance 13
1.6.7 Communication 14
1.6.8 Integration 14
1.6.9 Conflicting Objectives 15

1.7 Performance 15

1.8 Database Design Stages and Deliverables 16
1.8.1 Conceptual, Logical, and Physical Data Models 16
1.8.2 The Three-Schema Architecture and Terminology 17

Simsion-Witt_FM 12/14/04 11:32 PM Page vii

1.9 Where Do Data Models Fit In? 20
1.9.1 Process-Driven Approaches 20
1.9.2 Data-Driven Approaches 20
1.9.3 Parallel (Blended) Approaches 22
1.9.4 Object-Oriented Approaches 22
1.9.5 Prototyping Approaches 23
1.9.6 Agile Methods 23

1.10 Who Should Be Involved in Data Modeling? 23

1.11 Is Data Modeling Still Relevant? 24
1.11.1 Costs and Benefits of Data Modeling 25
1.11.2 Data Modeling and Packaged Software 26
1.11.3 Data Integration 27
1.11.4 Data Warehouses 27
1.11.5 Personal Computing and User-Developed Systems 28
1.11.6 Data Modeling and XML 28
1.11.7 Summary 28

1.12 Alternative Approaches to Data Modeling 29

1.13 Terminology 30

1.14 Where to from Here?—An Overview of Part I 31

1.15 Summary 32

Chapter 2
Basics of Sound Structure 33

2.1 Introduction 33

2.2 An Informal Example of Normalization 34

2.3 Relational Notation 36

2.4 A More Complex Example 37

2.5 Determining Columns 40
2.5.1 One Fact per Column 40
2.5.2 Hidden Data 41
2.5.3 Derivable Data 41
2.5.4 Determining the Primary Key 41

2.6 Repeating Groups and First Normal Form 43
2.6.1 Limit on Maximum Number of Occurrences 43
2.6.2 Data Reusability and Program Complexity 43
2.6.3 Recognizing Repeating Groups 44
2.6.4 Removing Repeating Groups 45

viii ■ Contents

Simsion-Witt_FM 12/14/04 11:32 PM Page viii

2.6.5 Determining the Primary Key of the New Table 46
2.6.6 First Normal Form 47

2.7 Second and Third Normal Forms 47
2.7.1 Problems with Tables in First Normal Form 47
2.7.2 Eliminating Redundancy 48
2.7.3 Determinants 48
2.7.4 Third Normal Form 51

2.8 Definitions and a Few Refinements 53
2.8.1 Determinants and Functional Dependency 53
2.8.2 Primary Keys 54
2.8.3 Candidate Keys 54
2.8.4 A More Formal Definition of Third Normal Form 55
2.8.5 Foreign Keys 55
2.8.6 Referential Integrity 56
2.8.7 Update Anomalies 57
2.8.8 Denormalization and Unnormalization 58
2.8.9 Column and Table Names 59

2.9 Choice, Creativity, and Normalization 60

2.10 Terminology 62

2.11 Summary 63

Chapter 3
The Entity-Relationship Approach 65

3.1 Introduction 65

3.2 A Diagrammatic Representation 65
3.2.1 The Basic Symbols: Boxes and Arrows 66
3.2.2 Diagrammatic Representation of Foreign Keys 67
3.2.3 Interpreting the Diagram 68
3.2.4 Optionality 69
3.2.5 Verifying the Model 70
3.2.6 Redundant Arrows 71

3.3 The Top-Down Approach: Entity-Relationship
Modeling 72
3.3.1 Developing the Diagram Top Down 74
3.3.2 Terminology 75

3.4 Entity Classes 76
3.4.1 Entity Diagramming Convention 77
3.4.2 Entity Class Naming 78
3.4.3 Entity Class Definitions 80

Contents ■ ix

Simsion-Witt_FM 12/14/04 11:32 PM Page ix

3.5 Relationships 82
3.5.1 Relationship Diagramming Conventions 82
3.5.2 Many-to-Many Relationships 87
3.5.3 One-to-One Relationships 92
3.5.4 Self-Referencing Relationships 93
3.5.5 Relationships Involving Three or More Entity Classes 96
3.5.6 Transferability 98
3.5.7 Dependent and Independent Entity Classes 102
3.5.8 Relationship Names 103

3.6 Attributes 104
3.6.1 Attribute Identification and Definition 104
3.6.2 Primary Keys and the Conceptual Model 105

3.7 Myths and Folklore 105
3.7.1 Entity Classes without Relationships 106
3.7.2 Allowed Combinations of Cardinality and Optionality 106

3.8 Creativity and E-R Modeling 106

3.9 Summary 109

Chapter 4
Subtypes and Supertypes 111

4.1 Introduction 111

4.2 Different Levels of Generalization 111

4.3 Rules versus Stability 113

4.4 Using Subtypes and Supertypes 115

4.5 Subtypes and Supertypes as Entity Classes 116
4.5.1 Naming Subtypes 117

4.6 Diagramming Conventions 117
4.6.1 Boxes in Boxes 117
4.6.2 UML Conventions 118
4.6.3 Using Tools That Do Not Support Subtyping 119

4.7 Definitions 119

4.8 Attributes of Supertypes and Subtypes 119

4.9 Nonoverlapping and Exhaustive 120

x ■ Contents

Simsion-Witt_FM 12/14/04 11:32 PM Page x

4.10 Overlapping Subtypes and Roles 123
4.10.1 Ignoring Real-World Overlaps 123
4.10.2 Modeling Only the Supertype 124
4.10.3 Modeling the Roles as Participation in Relationships 124
4.10.4 Using Role Entity Classes and One-to-One Relationships 125
4.10.5 Multiple Partitions 126

4.11 Hierarchy of Subtypes 127

4.12 Benefits of Using Subtypes and Supertypes 128
4.12.1 Creativity 129
4.12.2 Presentation: Level of Detail 129
4.12.3 Communication 130
4.12.4 Input to the Design of Views 132
4.12.5 Classifying Common Patterns 132
4.12.6 Divide and Conquer 133

4.13 When Do We Stop Supertyping and Subtyping? 134
4.13.1 Differences in Identifiers 134
4.13.2 Different Attribute Groups 135
4.13.3 Different Relationships 135
4.13.4 Different Processes 136
4.13.5 Migration from One Subtype to Another 136
4.13.6 Communication 136
4.13.7 Capturing Meaning and Rules 137
4.13.8 Summary 137

4.14 Generalization of Relationships 138
4.14.1 Generalizing Several One-to-Many Relationships to a Single Many-to-

Many Relationship 138
4.14.2 Generalizing Several One-to-Many Relationships

to a Single One-to-Many Relationship 139
4.14.3 Generalizing One-to-Many and Many-to-Many Relationships 141

4.15 Theoretical Background 142

4.16 Summary 143

Chapter 5
Attributes and Columns 145

5.1 Introduction 145

5.2 Attribute Definition 146

Contents ■ xi

Simsion-Witt_FM 12/14/04 11:32 PM Page xi

5.3 Attribute Disaggregation: One Fact per Attribute 147
5.3.1 Simple Aggregation 148
5.3.2 Conflated Codes 150
5.3.3 Meaningful Ranges 151
5.3.4 Inappropriate Generalization 151

5.4 Types of Attributes 152
5.4.1 DBMS Datatypes 152
5.4.2 The Attribute Taxonomy in Detail 154
5.4.3 Attribute Domains 158
5.4.4 Column Datatype and Length Requirements 162
5.4.5 Conversion Between External and Internal Representations 166

5.5 Attribute Names 166
5.5.1 Objectives of Standardizing Attribute Names 166
5.5.2 Some Guidelines for Attribute Naming 168

5.6 Attribute Generalization 171
5.6.1 Options and Trade-Offs 171
5.6.2 Attribute Generalization Resulting from Entity Generalization 172
5.6.3 Attribute Generalization within Entity Classes 173
5.6.4 “First Among Equals” 177
5.6.5 Limits to Attribute Generalization 178

5.7 Summary 180

Chapter 6
Primary Keys and Identity 183

6.1 Basic Requirements and Trade-Offs 183

6.2 Basic Technical Criteria 185
6.2.1 Applicability 185
6.2.2 Uniqueness 186
6.2.3 Minimality 188
6.2.4 Stability 189

6.3 Surrogate Keys 191
6.3.1 Performance and Programming Issues 191
6.3.2 Matching Real-World Identifiers 191
6.3.3 Should Surrogate Keys Be Visible? 192
6.3.4 Subtypes and Surrogate Keys 193

6.4 Structured Keys 194
6.4.1 When to Use Structured Keys 196
6.4.2 Programming and Structured Keys 197
6.4.3 Performance Issues with Structured Keys 198
6.4.4 Running Out of Numbers 199

xii ■ Contents

Simsion-Witt_FM 12/14/04 11:32 PM Page xii

6.5 Multiple Candidate Keys 201
6.5.1 Choosing a Primary Key 201
6.5.2 Normalization Issues 201

6.6 Guidelines for Choosing Keys 202
6.6.1 Tables Implementing Independent Entity Classes 202
6.6.2 Tables Implementing Dependent Entity Classes and Many-to-Many

Relationships 203

6.7 Partially-Null Keys 204

6.8 Summary 206

Chapter 7
Extensions and Alternatives 207

7.1 Introduction 207

7.2 Extensions to the Basic E-R Approach 209
7.2.1 Introduction 209
7.2.2 Advanced Attribute Concepts 210

7.3 The Chen E-R Approach 216
7.3.1 The Basic Conventions 216
7.3.2 Relationships with Attributes 217
7.3.3 Relationships Involving Three or More Entity Classes 217
7.3.4 Roles 218
7.3.5 The Weak Entity Concept 219
7.3.6 Chen Conventions in Practice 220

7.4 Using UML Object Class Diagrams 220
7.4.1 A Conceptual Data Model in UML 221
7.4.2 Advantages of UML 222

7.5 Object Role Modeling 227

7.6 Summary 228

Part II
Putting It Together 229

Chapter 8
Organizing the Data Modeling Task 231

8.1 Data Modeling in the Real World 231

8.2 Key Issues in Project Organization 233
8.2.1 Recognition of Data Modeling 233
8.2.2 Clear Use of the Data Model 234

Contents ■ xiii

Simsion-Witt_FM 12/14/04 11:32 PM Page xiii

8.2.3 Access to Users and Other Business Stakeholders 234
8.2.4 Conceptual, Logical, and Physical Models 235
8.2.5 Cross-Checking with the Process Model 236
8.2.6 Appropriate Tools 237

8.3 Roles and Responsibilities 238

8.4 Partitioning Large Projects 240

8.5 Maintaining the Model 242
8.5.1 Examples of Complex Changes 242
8.5.2 Managing Change in the Modeling Process 247

8.6 Packaging It Up 248

8.7 Summary 249

Chapter 9
The Business Requirements 251

9.1 Purpose of the Requirements Phase 251

9.2 The Business Case 253

9.3 Interviews and Workshops 254
9.3.1 Should You Model in Interviews and Workshops? 255
9.3.2 Interviews with Senior Managers 256
9.3.3 Interviews with Subject Matter Experts 257
9.3.4 Facilitated Workshops 257

9.4 Riding the Trucks 258

9.5 Existing Systems and Reverse
Engineering 259

9.6 Process Models 261

9.7 Object Class Hierarchies 261
9.7.1 Classifying Object Classes 263
9.7.2 A Typical Set of Top-Level Object Classes 265
9.7.3 Developing an Object Class Hierarchy 267
9.7.4 Potential Issues 270
9.7.5 Advantages of the Object Class Hierarchy Technique 270

9.8 Summary 270

xiv ■ Contents

Simsion-Witt_FM 12/14/04 11:32 PM Page xiv

Chapter 10.
Conceptual Data Modeling 273

10.1 Designing Real Models 273

10.2 Learning from Designers in Other Disciplines 275

10.3 Starting the Modeling 276

10.4 Patterns and Generic Models 277
10.4.1 Using Patterns 277
10.4.2 Using a Generic Model 278
10.4.3 Adapting Generic Models from Other Applications 279
10.4.4 Developing a Generic Model 282
10.4.5 When There Is Not a Generic Model 284

10.5 Bottom-Up Modeling 285

10.6 Top-Down Modeling 288

10.7 When the Problem Is Too Complex 288

10.8 Hierarchies, Networks, and Chains 290
10.8.1 Hierarchies 291
10.8.2 Networks (Many-to-Many Relationships) 293
10.8.3 Chains (One-to-One Relationships) 295

10.9 One-to-One Relationships 295
10.9.1 Distinct Real-World Concepts 296
10.9.2 Separating Attribute Groups 297
10.9.3 Transferable One-to-One Relationships 298
10.9.4 Self-Referencing One-to-One Relationships 299
10.9.5 Support for Creativity 299

10.10 Developing Entity Class Definitions 300

10.11 Handling Exceptions 301

10.12 The Right Attitude 302
10.12.1 Being Aware 303
10.12.2 Being Creative 303
10.12.3 Analyzing or Designing 303
10.12.4. Being Brave 304
10.12.5 Being Understanding and Understood 304

10.13 Evaluating the Model 305

10.14 Direct Review of Data Model Diagrams 306

Contents ■ xv

Simsion-Witt_FM 12/14/04 11:32 PM Page xv

10.15 Comparison with the Process Model 308

10.16 Testing the Model with Sample Data 308

10.17 Prototypes 309

10.18 The Assertions Approach 309
10.18.1 Naming Conventions 310
10.18.2 Rules for Generating Assertions 311

10.19 Summary 319

Chapter 11
Logical Database Design 321

11.1 Introduction 321

11.2 Overview of the Transformations
Required 322

11.3 Table Specification 325
11.3.1 The Standard Transformation 325
11.3.2 Exclusion of Entity Classes from the Database 325
11.3.3 Classification Entity Classes 325
11.3.4 Many-to-Many Relationship Implementation 326
11.3.5 Relationships Involving More Than Two Entity Classes 328
11.3.6 Supertype/Subtype Implementation 328

11.4 Basic Column Definition 334
11.4.1 Attribute Implementation: The Standard Transformation 334
11.4.2 Category Attribute Implementation 335
11.4.3 Derivable Attributes 336
11.4.4 Attributes of Relationships 336
11.4.5 Complex Attributes 337
11.4.6 Multivalued Attribute Implementation 337
11.4.7 Additional Columns 339
11.4.8 Column Datatypes 340
11.4.9 Column Nullability 340

11.5 Primary Key Specification 341

11.6 Foreign Key Specification 342
11.6.1 One-to-Many Relationship Implementation 343
11.6.2 One-to-One Relationship Implementation 346
11.6.3 Derivable Relationships 347
11.6.4 Optional Relationships 348

xvi ■ Contents

Simsion-Witt_FM 12/14/04 11:32 PM Page xvi

11.6.5 Overlapping Foreign Keys 350
11.6.6 Split Foreign Keys 352

11.7 Table and Column Names 354

11.8 Logical Data Model Notations 355

11.9 Summary 357

Chapter 12
Physical Database Design 359

12.1 Introduction 359

12.2 Inputs to Database Design 361

12.3 Options Available to the Database Designer 362

12.4 Design Decisions Which Do Not Affect Program Logic 363
12.4.1 Indexes 363
12.4.2 Data Storage 370
12.4.3 Memory Usage 372

12.5 Crafting Queries to Run Faster 372
12.5.1 Locking 373

12.6 Logical Schema Decisions 374
12.6.1 Alternative Implementation of Relationships 374
12.6.2 Table Splitting 374
12.6.3 Table Merging 376
12.6.4 Duplication 377
12.6.5 Denormalization 378
12.6.6 Ranges 379
12.6.7 Hierarchies 380
12.6.8 Integer Storage of Dates and Times 382
12.6.9 Additional Tables 383

12.7 Views 384
12.7.1 Views of Supertypes and Subtypes 385
12.7.2 Inclusion of Derived Attributes in Views 385
12.7.3 Denormalization and Views 385
12.7.4 Views of Split and Merged Tables 386

12.8 Summary 386

Contents ■ xvii

Simsion-Witt_FM 12/14/04 11:32 PM Page xvii

Part III
Advanced Topics 389

Chapter 13
Advanced Normalization 391

13.1 Introduction 391

13.2 Introduction to the Higher Normal Forms 392
13.2.1 Common Misconceptions 392

13.3 Boyce-Codd Normal Form 394
13.3.1 Example of Structure in 3NF but not in BCNF 394
13.3.2 Definition of BCNF 396
13.3.3 Enforcement of Rules versus BCNF 397
13.3.4 A Note on Domain Key Normal Form 398

13.4 Fourth Normal Form (4NF) and
Fifth Normal Form (5NF) 398
13.4.1 Data in BCNF but not in 4NF 399
13.4.2 Fifth Normal Form (5NF) 401
13.4.3 Recognizing 4NF and 5NF Situations 404
13.4.4 Checking for 4NF and 5NF with the

Business Specialist 405

13.5 Beyond 5NF: Splitting Tables Based on
Candidate Keys 407

13.6 Other Normalization Issues 408
13.6.1 Normalization and Redundancy 408
13.6.2 Reference Tables Produced by Normalization 410
13.6.3 Selecting the Primary Key after Removing Repeating Groups 411
13.6.4 Sequence of Normalization and

Cross-Table Anomalies 414

13.7 Advanced Normalization in Perspective 415

13.8 Summary 416

Chapter 14
Modeling Business Rules 417

14.1 Introduction 417

14.2 Types of Business Rules 418
14.2.1 Data Rules 418
14.2.2 Process Rules 420

xviii ■ Contents

Simsion-Witt_FM 12/14/04 11:32 PM Page xviii

14.2.3 What Rules are Relevant to the Data Modeler? 420

14.3 Discovery and Verification of Business Rules 420
14.3.1 Cardinality Rules 420
14.3.2 Other Data Validation Rules 421
14.3.3 Data Derivation Rules 421

14.4 Documentation of Business Rules 422
14.4.1 Documentation in an E-R Diagram 422
14.4.2 Documenting Other Rules 422
14.4.3 Use of Subtypes to Document Rules 424

14.5 Implementing Business Rules 427
14.5.1 Where to Implement Particular Rules 428
14.5.2 Implementation Options: A Detailed Example 433
14.5.3 Implementing Mandatory Relationships 436
14.5.4 Referential Integrity 438
14.5.5 Restricting an Attribute to a Discrete Set of Values 439
14.5.6 Rules Involving Multiple Attributes 442
14.5.7 Recording Data That Supports Rules 442
14.5.8 Rules That May Be Broken 443
14.5.9 Enforcement of Rules Through Primary Key Selection 445

14.6 Rules on Recursive Relationships 446
14.6.1 Types of Rules on Recursive Relationships 447
14.6.2 Documenting Rules on Recursive Relationships 449
14.6.3 Implementing Constraints on Recursive Relationships 449
14.6.4 Analogous Rules in Many-to-Many Relationships 450

14.7 Summary 450

Chapter 15
Time-Dependent Data 451

15.1 The Problem 451

15.2 When Do We Add the Time Dimension? 452

15.3 Audit Trails and Snapshots 452
15.3.1 The Basic Audit Trail Approach 453
15.3.2 Handling Nonnumeric Data 458
15.3.3 The Basic Snapshot Approach 458

15.4 Sequences and Versions 462

15.5 Handling Deletions 463

15.6 Archiving 463

Contents ■ xix

Simsion-Witt_FM 12/14/04 11:32 PM Page xix

15.7 Modeling Time-Dependent Relationships 464
15.7.1 One-to-Many Relationships 464
15.7.2 Many-to-Many Relationships 466
15.7.3 Self-Referencing Relationships 468

15.8 Date Tables 469

15.9 Temporal Business Rules 469

15.10 Changes to the Data Structure 473

15.11 Putting It into Practice 473

15.12 Summary 474

Chapter 16
Modeling for Data Warehouses and
Data Marts 475

16.1 Introduction 475

16.2 Characteristics of Data Warehouses and Data Marts 478
16.2.1 Data Integration: Working with Existing Databases 478
16.2.2 Loads Rather Than Updates 478
16.2.3 Less Predictable Database “Hits” 479
16.2.4 Complex Queries—Simple Interface 479
16.2.5 History 480
16.2.6 Summarization 480

16.3 Quality Criteria for Warehouse and Mart Models 480
16.3.1 Completeness 480
16.3.2 Nonredundancy 481
16.3.3 Enforcement of Business Rules 482
16.3.4 Data Reusability 482
16.3.5 Stability and Flexibility 482
16.3.6 Simplicity and Elegance 483
16.3.7 Communication Effectiveness 483
16.3.8 Performance 483

16.4 The Basic Design Principle 483

16.5 Modeling for the Data Warehouse 484
16.5.1 An Initial Model 484
16.5.2 Understanding Existing Data 485
16.5.3 Determining Requirements 485
16.5.4 Determining Sources and Dealing with Differences 485
16.5.5 Shaping Data for Data Marts 487

xx ■ Contents

Simsion-Witt_FM 12/14/04 11:32 PM Page xx

16.6 Modeling for the Data Mart 488
16.6.1 The Basic Challenge 488
16.6.2 Multidimensional Databases, Stars and Snowflakes 488
16.6.3 Modeling Time-Dependent Data 494

16.7 Summary 496

Chapter 17
Enterprise Data Models and Data Management 499

17.1 Introduction 499

17.2 Data Management 500
17.2.1 Problems of Data Mismanagement 500
17.2.2 Managing Data as a Shared Resource 501
17.2.3 The Evolution of Data Management 501

17.3 Classification of Existing Data 503

17.4 A Target for Planning 504

17.5 A Context for Specifying New Databases 506
17.5.1 Determining Scope and Interfaces 506
17.5.2 Incorporating the Enterprise Data Model in the Development

Life Cycle 506

17.6 Guidance for Database Design 508

17.7 Input to Business Planning 508

17.8 Specification of an Enterprise Database 509

17.9 Characteristics of Enterprise Data Models 511

17.10 Developing an Enterprise Data Model 512
17.10.1 The Development Cycle 512
17.10.2 Partitioning the Task 513
17.10.3 Inputs to the Task 514
17.10.4 Expertise Requirements 515
17.10.5 External Standards 515

17.11 Choice, Creativity, and Enterprise Data Models 516

17.12 Summary 517

Further Reading 519

Index 525

Contents ■ xxi

Simsion-Witt_FM 12/14/04 11:32 PM Page xxi

This page intentionally left blank

xxiii

Preface

Early in the first edition of this book, I wrote “data modeling is not optional;
no database was ever built without at least an implicit model, just as no
house was ever built without a plan.” This would seem to be a self-evident
truth, but I spelled it out explicitly because I had so often been asked by
systems developers “what is the value of data modeling?” or “why should
we do data modeling at all?”.

From time to time, I see that a researcher or practitioner has referenced
Data Modeling Essentials, and more often than not it is this phrase that they
have quoted. In writing the book, I took strong positions on a number of
controversial issues, and at the time would probably have preferred that
attention was focused on these. But ten years later, the biggest issue in data
modeling remains the basic one of recognizing it as a fundamental activity—
arguably the single most important activity — in information systems design,
and a basic competency for all information systems professionals.

The goal of this book, then, is to help information systems professionals
(and for that matter, casual builders of information systems) to acquire that
competency in data modeling. It differs from others on the topic in several
ways.

First, it is written by and for practitioners: it is intended as a practical
guide for both specialist data modelers and generalists involved in the
design of commercial information systems. The language and diagramming
conventions reflect industry practice, as supported by leading modeling
tools and database management systems, and the advice takes into account
the realities of developing systems in a business setting. It is gratifying to
see that this practical focus has not stopped a number of universities and
colleges from adopting the book as an undergraduate and postgraduate
text: a teaching pack for this edition is available from Morgan Kaufmann at
www.mkp.com/companions/0126445516.

Second, it recognizes that data modeling is a design activity, with oppor-
tunities for choice and creativity. For a given problem there will usually
be many possible models that satisfy the business requirements and conform
to the rules of sound design. To select the best model, we need to consider
a variety of criteria, which will vary in importance from case to case.
Throughout the book, the emphasis is on understanding the merits of differ-
ent solutions, rather than prescribing a single “correct” answer.

Simsion-Witt_FM 12/14/04 11:32 PM Page xxiii

xxiv ■ Preface

Third, it examines the process by which data models are developed. Too
often, authors assume that once we know the language and basic rules of
data modeling, producing a data model will be straightforward. This is like
suggesting that if we understand architectural drawing conventions, we can
design buildings. In practice, data modelers draw on past experience,
adapting models from other applications. They also use rules of thumb,
standard patterns, and creative techniques to propose candidate models.
These are the skills that distinguish the expert from the novice.

This is the third edition of Data Modeling Essentials. Much has changed
since the first edition was published: the Internet, object-oriented tech-
niques, data warehouses, business process reengineering, knowledge
management, extended relational database management systems, XML,
business rules, data quality — all of these were unknown or of little interest
to most practitioners in 1992. We have also seen a strong shift toward
buying rather than building large applications, and devolution of much of
the systems development which remains.

Some of the ideas that were controversial when the first edition was pub-
lished are now widely accepted, in particular the importance of patterns in
data modeling. Others have continued to be contentious: an article in
Database Programming and Design1 in which I restated a central premise
of this book — that data modeling is a design discipline — attracted record
correspondence.

In 1999, I asked my then colleague Graham Witt to work with me on a
second edition. Together we reviewed the book, made a number of changes,
and developed some new material. We both had a sense, however, that the
book really deserved a total reorganization and revision and a change of
publisher has provided us with an opportunity to do that. This third edition,
then, incorporates a substantial amount of new material, particularly in
Part II where the stages of data model development from project planning
through requirements analysis to conceptual, logical and physical modeling
are addressed in detail.

Moreover, it is a genuine joint effort in which Graham and I have debated
every topic — sometimes at great length. Our backgrounds, experiences, and
personalities are quite different, so what appears in print has done so only
after close scrutiny and vigorous challenges.

Organization

The book is in three parts.
Part I covers the basics of data modeling. It introduces the concepts of data
modeling in a sequence that Graham and I have found effective in teach-
ing data modeling to practitioners and students over many years.

1Simsion, G.C.: “Data Modeling — Testing the Foundations,” Database Programming and
Design, (February 1996.)

Simsion-Witt_FM 12/14/04 11:32 PM Page xxiv

Preface ■ xxv

Part II is new to this edition. It covers the key steps in developing a com-
plete data model, in the sequence in which they would normally be
performed.

Part III covers some more advanced topics. The sequence is designed to
minimize the need for “forward references.” If you decide to read it out of
sequence, you may need to refer to earlier chapters from time to time. We
conclude with some suggestions for further reading.

We know that earlier editions have been used by a range of practitioners,
teachers, and students with diverse backgrounds. The revised organization
should make it easier for these different audiences to locate the material
they need.

Every information systems professional — analyst, programmer, technical
specialist — should be familiar with the material in Part I. Data is the raw
material of information systems and anyone working in the field needs to
understand the basic rules for representing and organizing it. Similarly,
these early chapters can be used as the basis of an undergraduate course
in data modeling or to support a broader course in database design. In
fact, we have found that there is sufficient material in Part I to support a
postgraduate course in data modeling, particularly if the aim is for the
students to develop some facility in the techniques rather than merely learn
the rules. Selected chapters from Part II (in particular Chapter 10 on
Conceptual Modeling and Chapter 12 on Physical Design) and from Part III
can serve as the basis of additional lectures or exercises.

Business analysts and systems analysts actually involved in a data mod-
eling exercise will find most of what they need in Part I, but may wish to
delve into Part II to gain a deeper appreciation of the process.

Specialist data modelers, database designers, and database administrators
will want to read Parts I and II in their entirety, and at least refer to Part III
as necessary. Nonspecialists who find themselves in charge of the data
modeling component of a project will need to do the same; even “simple”
data models for commercial applications need to be developed in a disci-
plined way, and can be expected to generate their share of tricky problems.

Finally, the nonprofessional systems developer — the businessperson or
private individual developing a spreadsheet or personal database — will
benefit from reading at least the first three chapters. Poor representation
(coding) and organization of data is probably the single most common and
expensive mistake in such systems. Our advice to the “accidental” systems
developer would be: “Once you have a basic understanding of your tool,
learn the principles of data modeling.”

Acknowledgements

Once Graham and I had agreed on the content and shape of the draft man-
uscript, it received further scrutiny from six reviewers, all recognized

Simsion-Witt_FM 12/14/04 11:32 PM Page xxv

authorities in their own right. We are very grateful for the general and
specialist input provided by Peter Aiken, James Bean, Chris Date, Rhonda
Delmater, Karen Lopez, and Simon Milton. Their criticisms and suggestions
made a substantial difference to the final product. Of course, we did not
accept every suggestion (indeed, as we would expect, the reviewers did not
agree on every point), and accordingly the final responsibility for any
errors, omissions or just plain contentious views is ours.

Over the past twelve years, a very large number of other people have
contributed to the content and survival of Data Modeling Essentials.
Changes in the publishing industry have seen the book pass from Van
Nostrand Reinhold to International Thompson to Coriolis (who published
the second edition) to the present publishers, Morgan Kaufmann. This edi-
tion would not have been written without the support and encouragement
of Lothlórien Homet and her colleagues at Morgan Kaufmann — in partic-
ular Corina Derman, Rick Adams and Kyle Sarofeen.

Despite the substantial changes which we have made, the influence of
those who contributed to the first and second editions is still apparent.
Chief among these was our colleague Hu Schroor, who reviewed each
chapter as it was produced. We also received valuable input from a number
of experienced academics and practitioners, in particular Clare Atkins,
Geoff Bowles, Mike Barrett, Glenn Cogar, John Giles, Bill Haebich, Sue
Huckstepp, Daryl Joyce, Mark Kortink, David Lawson, Daniel Moody, Steve
Naughton, Jon Patrick, Geoff Rasmussen, Graeme Shanks, Edward Stow,
Paul Taylor, Chris Waddell, and Hugh Williams.

Others contributed in an indirect but equally important way. Peter
Fancke introduced me to formal data modeling in the late 1970s, when
I was employed as a database administrator at Colonial Mutual Insurance,
and provided an environment in which formal methods and innovation
were valued. In 1984, I was fortunate enough to work in London with
Richard Barker, later author of the excellent CASE Method Entity-
Relationship Modelling (Addison Wesley). His extensive practical knowl-
edge highlighted to me the missing element in most books on data
modeling, and encouraged me to write my own. Graham’s most significant
mentor, apart from many of those already mentioned, was Harry Ellis, who
designed the first CASE tool that Graham used in the mid 1980s (ICL’s
Analyst Workbench), and who continues to be an innovator in the infor-
mation modeling world.

Our clients have been a constant source of stimulation, experience, and
hard questions; without them we could not have written a genuinely prac-
tical book. DAMA (The international Data Managers’ Association) has
provided us with many opportunities to discuss data modeling with other
practitioners through presentations and workshops at conferences and for
individual chapters. We would particularly acknowledge the support of
Davida Berger, Deborah Henderson, Tony Shaw of Wilshire Conferences,
and Jeremy Hall of IRM UK.

xxvi ■ Preface

Simsion-Witt_FM 12/14/04 11:32 PM Page xxvi

Fiona Tomlinson produced diagrams and camera-ready copy and Sue
Coburn organized the text for the first edition. Cathie Lange performed both
jobs for the second edition. Ted Gannan and Rochelle Ratnayake of
Thomas Nelson Australia, Dianne Littwin, Chris Grisonich, and Risa Cohen
of Van Nostrand Reinhold, and Charlotte Carpentier of Coriolis provided
encouragement and advice with earlier editions.

Graeme Simsion, May 2004

Preface ■ xxvii

Simsion-Witt_FM 12/14/04 11:32 PM Page xxvii

This page intentionally left blank

Part I
The Basics

Simsion-Witt_01 10/12/04 12:09 AM Page 1

This page intentionally left blank

Chapter 1
What Is Data Modeling?

“Ask not what you do, but what you do it to.”
–Bertrand Meyer

1.1 Introduction

This book is about one of the most critical stages in the development of a
computerized information system—the design of the data structures and the
documentation of that design in a set of data models.

In this chapter, we address some fundamental questions:

■ What is a data model?
■ Why is data modeling so important?
■ What makes a good data model?
■ Where does data modeling fit in systems development?
■ What are the key design stages and deliverables?
■ How does data modeling relate to database performance design?
■ Who is involved in data modeling?
■ What is the impact of new technologies and techniques on data modeling?

This chapter is the first of seven covering the basics of data modeling and
forming Part I of the book. After introducing the key concepts and termi-
nology of data modeling, we conclude with an overview of the remaining
six chapters.

1.2 A Data-Centered Perspective

We can usefully think of an information system as consisting of a database
(containing stored data) together with programs that capture, store, manip-
ulate, and retrieve the data (Figure 1.1).

These programs are designed to implement a process model (or func-
tional specification), specifying the business processes that the system is

3

Simsion-Witt_01 10/12/04 12:09 AM Page 3

to perform. In the same way, the database is specified by a data model,
describing what sort of data will be held and how it will be organized.

1.3 A Simple Example

Before going any further, let’s look at a simple data model.1 Figure 1.2
shows some of the data needed to support an insurance system.

We can see a few things straightaway:

■ The data is organized into simple tables. This is exactly how data is
organized in a relational database, and we could give this model to a
database administrator as a specification of what to build, just as an
architect gives a plan to a builder. We have shown a few rows of data for
illustration; in practice the database might contain thousands or millions
of rows in the same format.

4 ■ Chapter 1 What Is Data Modeling?

Figure 1.1 An information system.

Report

Program

DATABASE Program

data

Report

Program

data

data

ProgramProgram

data
data

1Data models can be presented in many different ways. In this case we have taken the unusual
step of including some sample data to illustrate how the resulting database would look. In fact,
you can think of this model as a small part of a database.

Simsion-Witt_01 10/12/04 12:09 AM Page 4

■ The data is divided into two tables: one for policy data and one for cus-
tomer data. Typical data models may specify anything from one to sev-
eral hundred tables. (Our “simple” method of presentation will quickly
become overwhelmingly complex and will need to be supported by a
graphical representation that enables readers to find their way around.)

■ There is nothing technical about the model. You do not need to be a
database expert or programmer to understand or contribute to the
design.

A closer look at the model might suggest some questions:

■ What exactly is a “customer”? Is a customer the person insured or the
beneficiary of the policy—or, perhaps, the person who pays the premi-
ums? Could a customer be more than one person, for example, a
couple? If so, how would we interpret Age, Gender, and Birth Date?

■ Do we really need to record customers’ ages? Would it not be easier to
calculate them from Birth Date whenever we needed them?

■ Is the Commission Rate always the same for a given Policy Type? For exam-
ple, do policies of type E20 always earn 12% commission? If so, we will
end up recording the same rate many times. And how would we record
the Commission Rate for a new type of policy if we have not yet sold any
policies of that type?

■ Customer Number appears to consist of an abbreviated surname, initial,
and a two-digit “tie-breaker” to distinguish customers who would oth-
erwise have the same numbers. Is this a good choice?

■ Would it be better to hold customers’ initials in a separate column from
their family names?

■ “Road” and “Street” have not been abbreviated consistently in the
Address column. Should we impose a standard?

1.3 A Simple Example ■ 5

Figure 1.2 A simple data model.

Policy Number Date Issued Customer Number Commission
Rate

Policy
Type Maturity Date

V213748 02/29/1989 E20 HAYES01 12% 02/29/2009
N065987 04/04/1984 E20 WALSH01 12% 04/04/2004
W345798 12/18/1987 WOL ODEAJ13 8% 06/12/2047
W678649 09/12/1967 WOL RICHB76 8% 09/12/2006
V986377 11/07/1977 SUI RICHB76 14% 09/12/2006

Customer Number Name Address Postal Code Gender Age Birth Date
HAYES01 S Hayes 3/1 Collins St 3000 F 25 06/23/1975
WALSH01 H Walsh 2 Allen Road 3065 M 53 04/16/1947
ODEAJ13 J O’Dea 69 Black Street 3145 M 33 06/12/1967
RICHB76 B Rich 181 Kemp Rd 3507 M 59 09/12/1941

CUSTOMER TABLE

POLICY TABLE

Simsion-Witt_01 10/12/04 12:09 AM Page 5

Answering questions of this kind is what data modeling is about.
In some cases, there is a single, correct approach. Far more often, there will
be several options. Asking the right questions (and coming up with the best
answers) requires a detailed understanding of the relevant business area, as
well as knowledge of data modeling principles and techniques.
Professional data modelers therefore work closely with business stake-
holders, including the prospective users of the information system, in much
the same way that architects work with the owners and prospective inhab-
itants of the buildings they are designing.

1.4 Design, Choice, and Creativity

The analogy with architecture is particularly appropriate because architects
are designers and data modeling is also a design activity. In design, we do
not expect to find a single correct answer, although we will certainly be able
to identify many that are patently incorrect. Two data modelers (or architects)
given the same set of requirements may produce quite different solutions.

Data modeling is not just a simple process of “documenting requirements”
though it is sometimes portrayed as such. Several factors contribute to the
possibility of there being more than one workable model for most practi-
cal situations.

First, we have a choice of what symbols or codes we use to represent
real-world facts in the database. A person’s age could be represented by
Birth Date, Age at Date of Policy Issue, or even by a code corresponding to a
range (“H” could mean “born between 1961 and 1970”).

Second, there is usually more than one way to organize (classify) data
into tables and columns. In our insurance model, we might, for example,
specify separate tables for personal customers and corporate customers, or
for accident insurance policies and life insurance policies.

Third, the requirements from which we work in practice are usually
incomplete, or at least loose enough to accommodate a variety of different
solutions. Again, we have the analogy with architecture. Rather than the
client specifying the exact size of each room, which would give the architect
little choice, the client provides some broad objectives, and then evaluates
the architect’s suggestions in terms of how well those suggestions meet the
objectives, and in terms of what else they offer.

Fourth, in designing an information system, we have some choice as to
which part of the system will handle each business requirement. For exam-
ple, we might decide to write the rule that policies of type E20 have a com-
mission rate of 12% into the relevant programs rather than holding it as data
in the database. Another option is to leave such a rule out of the comput-
erized component of the system altogether and require the user to deter-
mine the appropriate value according to some externally specified (manual)
procedure. Either of these decisions would affect the data model by altering
what data needed to be included in the database.

6 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 6

Finally, and perhaps most importantly, new information systems seldom
deliver value simply by automating the current way of doing things. For most
organizations, the days of such “easy wins” have long passed. To exploit infor-
mation technology fully, we generally need to change our business processes
and the data required to support them. (There is no evidence to support the
oft-stated view that data structures are intrinsically stable in the face of busi-
ness change).2 The data modeler becomes a player in helping to design the
new way of doing business, rather than merely reflecting the old.

Unfortunately, data modeling is not always recognized as being a design
activity. The widespread use of the term “data analysis” as a synonym for
data modeling has perhaps contributed to the confusion. The difference
between analysis and design is sometimes characterized as one of description
versus prescription.3 We tend to think of analysts as being engaged in a
search for truth rather than in the generation and evaluation of alternatives.
No matter how inventive or creative they may need to be in carrying out
the search, the ultimate aim is to arrive at the single correct answer. A classic
example is the chemical analyst using a variety of techniques to determine
the make-up of a compound.

In simple textbook examples of data modeling, it may well seem that
there is only one workable answer (although the experienced modeler will
find it an interesting exercise to look for alternatives). In practice, data
modelers have a wealth of options available to them and, like architects,
cannot rely on simple recipes to produce the best design.

While data modeling is a design discipline, a data model must meet a
set of business requirements. Simplistically, we could think of the overall
data modeling task as consisting of analysis (of business requirements)
followed by design (in response to those requirements). In reality, design
usually starts well before we have a complete understanding of require-
ments, and the evolving data model becomes the focus of the dialogue
between business specialist and modeler.

The distinction between analysis and design is particularly pertinent
when we discuss creativity. In analysis, creativity suggests interference with
the facts. No honest accountant wants to be called “creative.” On the other
hand, creativity in design is valued highly. In this book, we try to empha-
size the choices available at each stage of the data modeling process.

1.4 Design, Choice, and Creativity ■ 7

2Marche, S. (1993): Measuring the stability of data models, European Journal of Information
Systems, 2(1) 37–47.
3Olle, Hagelstein, MacDonald, Rolland, Sol, Van Assche, and Verrijn-Stuart, Information
Systems Methodologies—A Framework for Understanding, Addison Wesley (1991). This is a
rather idealized view; the terms “analysis” and “design” are used inconsistently and sometimes
interchangeably in the information systems literature and in practice, and in job titles.
“Analysis” is often used to characterize the earlier stages of systems development while
“design” refers to the later technology-focused stages. This distinction probably originated in
the days in which the objective was to understand and then automate an existing business
process rather than to redesign the business process to exploit the technology.

Simsion-Witt_01 10/12/04 12:09 AM Page 7

We want you to learn not only to produce sound, workable models (build-
ings that will not fall down) but to be able to develop and compare differ-
ent options, and occasionally experience the “aha!” feeling as a flash of
insight produces an innovative solution to a problem.

In recognizing the importance of choice and creativity in data modeling,
we are not “throwing away the rule book” or suggesting that “anything
goes,” any more than we would suggest that architects or engineers work
without rules or ignore their clients’ requirements. On the contrary,
creativity in data modeling requires a deep understanding of the client’s
business, familiarity with a full range of modeling techniques, and rigorous
evaluation of candidate models against a variety of criteria.

1.5 Why Is the Data Model Important?

At this point, you may be wondering about the wisdom of devoting a lot
of effort to developing the best possible data model. Why should the data
model deserve more attention than other system components? When
designing programs or report layouts (for example), we generally settle for
a design that “does the job” even though we recognize that with more time
and effort we might be able to develop a more elegant solution.

There are several reasons for devoting additional effort to data model-
ing. Together, they constitute a strong argument for treating the data model
as the single most important component of an information systems design.

1.5.1 Leverage

The key reason for giving special attention to data organization is leverage
in the sense that a small change to a data model may have a major impact
on the system as a whole. For most commercial information systems, the
programs are far more complex and take much longer to specify and
construct than the database. But their content and structure are heavily
influenced by the database design. Look at Figure 1.1 again. Most of the
programs will be dealing with data in the database—storing, updating,
deleting, manipulating, printing, and displaying it. Their structure will
therefore need to reflect the way the data is organized . . . in other words,
the data model.

The impact of data organization on program design has important prac-
tical consequences.

First, a well-designed data model can make programming simpler and
cheaper. Even a small change to the model may lead to significant savings
in total programming cost.

8 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 8

Second, poor data organization can be expensive—sometimes prohibi-
tively expensive—to fix. In the insurance example, imagine that we need to
change the rule that each customer can have only one address. The change
to the data model may well be reasonably straightforward. Perhaps we will
need to add a further two or three address columns to the Policy table. With
modern database management software, the database can probably be reor-
ganized to reflect the new model without much difficulty. But the real impact
is on the rest of the system. Report formats will need to be redesigned to allow
for the extra addresses; screens will need to allow input and display of more
than one address per customer; programs will need loops to handle a variable
number of addresses; and so on. Changing the shape of the database may in
itself be straightforward, but the costs come from altering each program that
uses the affected part. In contrast, fixing a single incorrect program, even to
the point of a complete rewrite, is a (relatively) simple, contained exercise.

Problems with data organization arise not only from failing to meet the
initial business requirements but from changes to the business after the
database has been built. A telephone billing database that allows only one
customer to be recorded against each call may be correct initially, but be
rendered unworkable by changes in billing policy, product range, or
telecommunications technology.

The cost of making changes of this kind has often resulted in an entire
system being scrapped, or in the business being unable to adopt a planned
product or strategy. In other cases, attempts to “work around” the problem
have rendered the system clumsy and difficult to maintain, and hastened its
obsolescence.

1.5.2 Conciseness

A data model is a very powerful tool for expressing information systems
requirements and capabilities. Its value lies partly in its conciseness. It
implicitly defines a whole set of screens, reports, and processes needed to
capture, update, retrieve, and delete the specified data. The time required
to review a data model is considerably less than that needed to wade
through a functional specification amounting to many hundreds of pages.
The data modeling process can similarly take us more directly to the heart
of the business requirements. In their book Object Oriented Analysis,4 Coad
and Yourdon describe the analysis phase of a typical project:

Over time, the DFD (data flow diagramming or process modeling) team
continued to struggle with basic problem domain understanding. In con-
trast, the Data Base Team gained a strong, in-depth understanding.

1.5 Why Is the Data Model Important? ■ 9

4Coad, P., and Yourdon, E., Object Oriented Analysis, Second Edition, Prentice-Hall (1990).

Simsion-Witt_01 10/12/04 12:09 AM Page 9

1.5.3 Data Quality

The data held in a database is usually a valuable business asset built up
over a long period. Inaccurate data (poor data quality) reduces the value
of the asset and can be expensive or impossible to correct.

Frequently, problems with data quality can be traced to a lack of con-
sistency in (a) defining and interpreting data, and (b) implementing mech-
anisms to enforce the definitions. In our insurance example, is Birth Date
in U.S. or European date format (mm/dd/yyyy or dd/mm/yyyy)?
Inconsistent assumptions here by people involved in data capture and
retrieval could render a large proportion of the data unreliable. More
broadly, we could define integrity constraints on Birth Date. For example,
it must be a date in a certain format and within a particular range.

The data model thus plays a key role in achieving good data quality by
establishing a common understanding of what is to be held in each table
and column, and how it is to be interpreted.

1.5.4 Summary

The data model is a relatively small part of the total systems specification
but has a high impact on the quality and useful life of the system. Time
spent producing the best possible design is very likely to be repaid many
times over in the future.

1.6 What Makes a Good Data Model?

If we are to evaluate alternative data models for the same business scenario,
we will need some measures of quality. In the broadest sense, we are
asking the question: “How well does this model support a sound overall
system design that meets the business requirements?” But we can be a bit
more precise than this and identify some general criteria for evaluating and
comparing models. We will come back to these again and again as we look
at data models and data modeling techniques, and at their suitability in a
variety of situations.

1.6.1 Completeness

Does the model support all the necessary data? Our insurance model lacks,
for example, a column to record a customer’s occupation and a table to

10 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 10

1.6 What Makes a Good Data Model? ■ 11

record premium payments. If such data is required by the system, then
these are serious omissions. More subtly, we have noted that we might
be unable to register a commission rate if no policies had been sold at
that rate.

1.6.2 Nonredundancy

Does the model specify a database in which the same fact could be
recorded more than once? In the example, we saw that the same commis-
sion rate could be held in many rows of the Policy table. The Age column
would seem to record essentially the same fact as Birth Date, albeit in a
different form. If we added another table to record insurance agents, we
could end up holding data about people who happened to be both cus-
tomers and agents in two places. Recording the same data more than once
increases the amount of space needed to store the database, requires extra
processes (and processing) to keep the various copies in step, and leads to
consistency problems if the copies get out of step.

1.6.3 Enforcement of Business Rules

How accurately does the model reflect and enforce the rules that apply to
the business’ data? It may not be obvious at first glance, but our insurance
model enforces the rule that each policy can be owned by only one cus-
tomer, as there is provision for only one Customer Number in each row of
the Policy table. No user or even programmer of the system will be able to
break this rule: there is simply nowhere to record more than one customer
against a policy (short of such extreme measures as holding a separate row
of data in the Policy table for each customer associated with a policy). If
this rule correctly reflects the business requirement, the resulting database
will be a powerful tool in enforcing correct practice, and in maintaining
data quality as discussed in Section 1.5.3. On the other hand, any misrep-
resentation of business rules in the model may be very difficult to correct
later (or to code around).

1.6.4 Data Reusability

Will the data stored in the database be reuseable for purposes beyond
those anticipated in the process model? Once an organization has captured
data to serve a particular requirement, other potential uses and users almost

Simsion-Witt_01 10/12/04 12:09 AM Page 11

invariably emerge. An insurance company might initially record data about
policies to support the billing function. The sales department then wants to
use the data to calculate commissions; the marketing department wants
demographic information; regulators require statistical summaries. Seldom
can all of these needs be predicted in advance.

If data has been organized with one particular application in mind, it is
often difficult to use for other purposes. There are few greater frustrations
for system users than to have paid for the capture and storage of data, only
to be told that it cannot be made available to suit a new information
requirement without extensive and costly reorganization.

This requirement is often expressed in terms of its solution: as far
as possible, data should be organized independently of any specific
application.

1.6.5 Stability and Flexibility

How well will the model cope with possible changes to the business
requirements? Can any new data required to support such changes be
accommodated in existing tables? Alternatively, will simple extensions suf-
fice? Or will we be forced to make major structural changes, with corre-
sponding impact on the rest of the system?

The answers to these questions largely determine how quickly the
system can respond to business change, which, in many cases, determines
how quickly the business as a whole can respond. The critical factor in get-
ting a new product on the market or responding to a new regulation may
well be how quickly the information systems can be adapted. Frequently
the reason for redeveloping a system is that the underlying database either
no longer accurately represents the business rules or requires costly ongo-
ing maintenance to keep pace with change.

A data model is stable in the face of a change to requirements if we do
not need to modify it at all. We can sensibly talk of models being more or
less stable, depending on the level of change required. A data model is
flexible if it can be readily extended to accommodate likely new require-
ments with only minimal impact on the existing structure.

Our insurance model is likely to be more stable in the event of changes
to the product range if it uses a generic Policy table rather than separate
tables (and associated processing, screens, reports, etc.) for each type of
policy. New types of policies may then be able to be accommodated in the
existing Policy table and take advantage of existing programming logic
common to all types of policies.

Flexibility depends on the type of change proposed. The insurance
model would appear relatively easy to extend if we needed to include
details of the agent who sold each policy. We could add an Agent Number

12 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 12

column to the Policy table and set up a new table containing details of all
agents, including their Agent Numbers. However, if we wanted to change
the database to be able to support up to three customers for each policy, the
extension would be less straightforward. We could add columns called
Customer Number 2 and Customer Number 3 to the Policy table, but, as we shall
see in Chapter 2, this is a less than satisfactory solution. Even intuitively, most
information systems professionals would find it untidy and likely to disrupt
existing program logic. A tidier solution would involve moving the original
Customer Number from the Policy table and setting up an entirely new table
of Policy Numbers and associated Customer Numbers. Doing this would
likely require significant changes to the programming logic, screens, and
report formats for handling the customers associated with a policy. So our
model is flexible in terms of adding agents, but it is less flexible in handling
multiple customers for a policy.

1.6.6 Elegance

Does the data model provide a reasonably neat and simple classification of
the data? If our Customer table were to include only insured persons and
not beneficiaries, we might need a separate Beneficiary table. To avoid
recording facts about the same person in both tables, we would need to
exclude beneficiaries who were already recorded as customers. Our
Beneficiary table would then contain “beneficiaries who are not otherwise
customers,” an inelegant classification that would very likely lead to a
clumsy system.

Elegance can be a difficult concept to pin down. But elegant models are
typically simple, consistent, and easily described and summarized, for
example “This model recognizes that our basic business is purchasing
ingredients and transforming them into beer through a number of brewing
stages: the major tables hold data about the various raw, intermediate, and
final products.” Processes and queries that are central to the business can
be met in a simple, reasonably obvious way by accessing relatively few
tables.

The difference in development cost between systems based on simple,
elegant data models and those based on highly complex ones can be con-
siderable indeed. The latter are often the result of incremental business
changes over a long period without any rethinking of processes and sup-
porting data. Instead, each change is accompanied by requirements for new
data and a corresponding increase in the complexity of the model. In our
insurance model, we could imagine a proliferation of tables to accommo-
date new products and associated persons as the business expanded. Some
rethinking might suggest that all of our products fall into a few broad
categories, each of which could be supported by a single table. Thus, a

1.6 What Makes a Good Data Model? ■ 13

Simsion-Witt_01 10/12/04 12:09 AM Page 13

simple Person table could accommodate all of the beneficiaries, policy-
holders, guarantors, assignees, etc.

The huge variation in the development costs for systems to support
common applications, such as retail banking or asset management, can
often be traced to the presence or absence of this sort of thinking during
the data modeling phase of systems design.

1.6.7 Communication

How effective is the model in supporting communication among the vari-
ous stakeholders in the design of a system? Do the tables and columns rep-
resent business concepts that the users and business specialists are familiar
with and can easily verify? Will programmers interpret the model correctly?

The quality of the final model will depend very much on informed feed-
back from business people. Programmers, in turn, need to understand the
model if they are to use it as intended.

The most common communication problems arise from high levels of
complexity, new concepts, and unfamiliar terminology.

A model of twenty or thirty tables will be overwhelmingly complex for
most nonspecialists, unless presented in a summary form, preferably using
graphics. Larger models may need to be presented at different levels of
detail to allow the reader to take a “divide and conquer” approach to
understanding.

New concepts—in particular highly generic tables intended to accom-
modate a wide range of data—may bring stability and elegance to the
model, but may be difficult for business specialists and programmers to
grasp.

Unfamiliar terminology is frequently the result of the data modeler striv-
ing to be rigorous and consistent in constructing table and column names,
rather than using terms that are familiar to the business but ambiguous or
dependent on context.

1.6.8 Integration

How will the proposed database fit with the organization’s existing and
future databases? Even when individual databases are well designed, it is
common for the same data to appear in more than one database and for
problems to arise in drawing together data from multiple databases. How
many other databases hold similar data about our customers or insurance
agents? Are the coding schemes and definitions consistent? How easy is it
to keep the different versions in step, or to assemble a complete picture?

14 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 14

Many organizations address problems of this kind by establishing an
organization-wide architecture specifying how individual information sys-
tems should work together to achieve the best overall result. Developing a
data model in the context of such an architecture may involve building onto
existing data structures, accepting a common view on how data should be
organized, and complying with organizational standards for data definitions,
formats, and names.

1.6.9 Conflicting Objectives

In many cases, the above aims will conflict with one another. An elegant
but radical solution may be difficult to communicate to conservative users.
We may be so attracted to an elegant model that we exclude requirements
that do not fit. A model that accurately enforces a large number of business
rules will be unstable if some of those rules change. And a model that is
easy to understand because it reflects the perspectives of the immediate
system users may not support reusability or integrate well with other data-
bases.

Our overall goal is to develop a model that provides the best balance
among these possibly conflicting objectives. As in other design disciplines,
achieving this is a process of proposal and evaluation, rather than a step-
by-step progression to the ideal solution. We may not realize that a better
solution or trade-off is possible until we see it.

1.7 Performance

You may have noticed an important omission from our list of quality crite-
ria in the previous section: performance. Certainly, the system user will not
be satisfied if our complete, nonredundant, flexible, and elegant database
cannot meet throughput and response-time requirements. However, per-
formance differs from our other criteria because it depends heavily on the
software and hardware platforms on which the database will run.
Exploiting their capabilities is a technical task, quite different from the more
business-focused modeling activities that we have discussed so far. The
usual (and recommended) procedure is to develop the data model without
considering performance, then to attempt to implement it with the available
hardware and software. Only if it is not possible to achieve adequate per-
formance in this way do we consider modifying the model itself.

In effect, performance requirements are usually “added to the mix” at a
later stage than the other criteria, and then only when necessary. The next
section provides an overview of how this is done.

1.7 Performance ■ 15

Simsion-Witt_01 10/12/04 12:09 AM Page 15

1.8 Database Design Stages and Deliverables

Figure 1.3 shows the key tasks and deliverables in the overall task of data-
base design, of which data modeling is a part. Note that this diagram is a
deliberate over-simplification of what is involved; each task shown is
inevitably iterative, involving at least one cycle of review and modification.

1.8.1 Conceptual, Logical, and Physical Data Models

From Figure 1.3, you can see that there are three different data models
produced as we progress from business requirements to a complete database

16 ■ Chapter 1 What Is Data Modeling?

Figure 1.3 Overview of database design tasks and deliverables.

Design
Physical

Data Model

Design
Logical

Data Model

Build
Conceptual
Data Model

Develop
Information

Requirements

Data Modeler

Database Designer

Business
Specialist

Business
Requirements

Information
Requirements

DBMS &
Platform

Specification

Performance
Requirements

Conceptual
Data Model

Logical Data
Model

Physical Data
Model

Simsion-Witt_01 10/12/04 12:09 AM Page 16

specification. The conceptual data model is a (relatively)5 technology-
independent specification of the data to be held in the database. It is the focus
of communication between the data modeler and business stakeholders,
and it is usually presented as a diagram with supporting documentation. The
logical data model is a translation of the conceptual model into structures
that can be implemented using a database management system (DBMS).
Today, that usually means that this model specifies tables and columns, as we
saw in our first example. These are the basic building blocks of relational data-
bases, which are implemented using a relational database management
system (RDBMS). The physical data model incorporates any changes
necessary to achieve adequate performance and is also presented in terms of
tables and columns, together with a specification of physical storage (which
may include data distribution) and access mechanisms.

Different methodologies differ on the exact level of detail that should be
included in each model and at what point certain decisions should be taken.
In some methodologies, the translation from conceptual to logical is com-
pletely mechanical; in others, including our recommended approach, there
are some decisions to be made. The step from logical to physical may be
straightforward with no changes to tables and columns, if performance is not
a problem, or it may be highly complex and time-consuming, if it becomes
necessary to trade performance against other data model quality criteria.

Part 2 of this book is largely about how to produce these three models.

1.8.2 The Three-Schema Architecture and Terminology

Figure 1.4 shows an important feature of the organization of a modern rela-
tional database. The three-layer (or three-schema) architecture supported
by popular DBMSs achieves two important things:

1. It insulates programmers and end-users of the database from the way
that data is physically stored in the computer(s).

2. It enables different users of the data to see only the subset of data rel-
evant to them, organized to suit their particular needs.

The three-schema architecture was formally defined by the ANSI/SPARC
standards group in the mid-1970s.6

1.8 Database Design Stages and Deliverables ■ 17

5We say “relatively” because the language that we use for the conceptual model has grown
from the common structures and capabilities supported by past and present database tech-
nology. However, the conceptual model should certainly not reflect the capabilities of indi-
vidual products within that very broad class.
6Brodie and Schmidt (1982): Final Report of the ANSI/X3/SPARC Study Group on Database
Management Systems, ACM SIGMOD Record 12(4) and Interim Report (1975), ACM SIGMOD
Bulletin: 7(2).

Simsion-Witt_01 10/12/04 12:09 AM Page 17

The conceptual schema describes the organization of the data into
tables and columns, as in our insurance example.

The internal schema describes how the data will be physically stored
and accessed, using the facilities provided by a particular DBMS. For exam-
ple, the data might be organized so that all the insurance policies belonging
to a given customer were stored close together, allowing them all to be
retrieved into the computer’s memory in a single operation. An index might
be provided to enable rapid location of customers by name. We can think of
the physical database design as the inside of a black box, or the engine under
the hood. (To pursue the architecture analogy, it represents the foundations,
electrical wiring, and hidden plumbing; the owner will want only to know
that the house will be sound and that the lights and faucets will work.)

The external schemas specify views that enable different users of the
data to see it in different ways. As a simple example, some users of policy
data might not require details of the commission paid. By providing them
with a view that excludes the Commission Rate column, we would not only
shield them from unwanted (and perhaps unauthorized) information, but
also insulate them from changes that might be made to the format of that
data. We can also combine tables in various ways. For example, we could
add data from the relevant customer to each row of the Policy table.7 It is
usual to provide one external schema that covers the entire conceptual

18 ■ Chapter 1 What Is Data Modeling?

Figure 1.4 Three-schema architecture.

External Schema External Schema External Schema

Conceptual Schema

(User views of data)

(Common view of data)

Internal Schema (Internal storage of data)

7The ways in which views can be constructed and the associated constraints (e.g., whether data
in a view constructed using particular operators can be updated) are beyond the scope of this
book. Some suitable references are suggested at the end of this book under “Further Reading.”

Simsion-Witt_01 10/12/04 12:09 AM Page 18

schema, and then to provide a number of external schemas that meet spe-
cific user requirements.

It is worth reemphasizing the role of the three-schema architecture in
insulating users from change that is not relevant to them. The separation of
the conceptual schema from the internal schema insulates users from a
range of changes to the physical organization of data. The separation of the
external schema from the full conceptual schema can insulate users from
changes to tables and columns not relevant to them. Insulation of this kind
is a key feature of DBMSs and is called data independence.

The formal terminology of conceptual, external, and internal schemas is
not widely used in practice, particularly by database designers and admin-
istrators, who tend to think of the database in terms of the way it is
described in the data definition language (DDL)8 of the particular DBMS:

1. The total database design (all three schemas) is usually referred to as the
database design (reasonably enough) or sometimes the physical data-
base design, the latter term emphasizing that it is the actual imple-
mented design, rather than some earlier version, that is being described.
It is more common to use this collective term than to single out the indi-
vidual schemas.

2. Each external schema is generally referred to in terms of the views it
contains. Hence the term “view” is more widely used than the collective
term “external schema.”

3. The conceptual schema is sometimes referred to as the logical schema
or logical database design. There is room for confusion here since, as
we saw in Section 1.8.2, the terms “conceptual” and “logical” are used to
describe different data models. To distinguish the conceptual schema
from the views constituting an external schema the term base tables can
be used to describe the tables that make up the conceptual schema.

4. There is no widely used alternative term for the internal schema. This is
perhaps because, in the data definition language used by relational DBMSs,
the details of storage and access mechanisms are typically specified on a
table-by-table basis rather than being grouped together in a single place. If
the need to refer to the internal schema does arise (typically in the context
of defining the respective roles of the data modeler and database designer),
most practitioners would use the terms “indexing and storage structures”
(or something similar) and generally convey the message successfully.

The practitioner terminology presents plenty of opportunity for confusion
with the names for the various stages of data model development discussed
in the previous section. It may assist to remember that the different data

1.8 Database Design Stages and Deliverables ■ 19

8In the relational database world, DDL is the subset of SQL (the standard relational database
language) used to define the data structures and constraints and Data Manipulation Language
(DML) is the subset used to retrieve and update data.

Simsion-Witt_01 10/12/04 12:09 AM Page 19

models are the outputs of various stages in the overall data modeling task,
while the three-schema architecture describes the various layers of a par-
ticular database.

In our experience, the most serious problem with terminology is that its
ambiguity frequently reflects a lack of clarity in methodology, roles, and
deliverables. In particular, it may effectively license a database technician
to make changes to tables and columns without the involvement of the data
modeler. We cannot emphasize too strongly that the conceptual schema
should be a direct implementation of the tables specified in the physical
data model—a final, negotiated, deliverable of the data modeling process.

1.9 Where Do Data Models Fit In?

It should be fairly clear by now that data modeling is an essential task in devel-
oping a database. Any sound methodology for developing information systems
that require stored data will therefore include a data-modeling phase. The
main difference between the various mainstream methodologies is whether
the data model is produced before, after, or in parallel with the process model.

1.9.1 Process-Driven Approaches

Traditional “process-driven” or “data-flow-driven” approaches focus on the
process model.9 This is hardly surprising. We naturally tend to think of sys-
tems in terms of what they do. We first identify all of the processes and the
data that each requires. The data modeler then designs a data model to sup-
port this fairly precise set of data requirements, typically using “mechanical”
techniques such as normalization (the subject of Chapter 2). Some method-
ologies say no more about data modeling. If you are using a process-driven
approach, we strongly advise treating the initial data model as a “first cut”
only, and reviewing it in the light of the evaluation criteria outlined in
Section 1.6. This may result in alterations to the model and subsequent
amendments to the process model to bring it into line.

1.9.2 Data-Driven Approaches

“Data-driven” approaches—most notably Information Engineering (IE)10—
appeared in the late 1970s; they have since generally evolved into parallel
or “blended” methodologies, as described in the following section.

20 ■ Chapter 1 What Is Data Modeling?

9See, for example, De Marco, T., Structured Analysis and Systems Specification, Yourdon
Inc. (1978).
10Usually associated with Clive Finkelstein and James Martin.

Simsion-Witt_01 10/12/04 12:09 AM Page 20

The emphasis was on developing the data model before the detailed
process model in order to achieve the following:

■ Promote reusability of data. We aim to organize the data independently of
the process model on the basis that the processes it describes are merely
the initial set that will access the data. The process model then becomes
the first test of the data model’s ability to support a variety of processes.

■ Establish a consistent set of names and definitions for data. If we develop
the process model prior to the data model, we will end up implicitly defin-
ing the data concepts. A process called “Assign salesperson to customer”
implies that we will hold data about salespersons and customers. But a
second process “Record details of new client” raises the question (if we are
alert): “What is the difference between a client and a customer?” Designing
the data model prior to the detailed process model establishes a language
for classifying data and largely eliminates problems of this kind.

■ “Mechanically” generate a significant part of the process model. Just by
looking at the insurance data model, we can anticipate that we will need
programs to (for example):

■ Store details of a new policy
■ Update policy details
■ Delete policy details
■ Report on selected policy details
■ List all policies belonging to a nominated customer
■ Store details of a new customer.

We do not need to know anything about insurance to at least suggest
these processes. In defining the data we intend to store, we have implicitly
(and very concisely) identified a whole set of processes to capture, display,
update, and delete that data. Some Computer Aided Software
Engineering (CASE) tools make heavy use of the data model to generate
programs, screens, and reports.
■ Provide a very concise overview of the system’s scope. As discussed

above, we can infer a substantial set of processes just by looking at the
data structures. Not all of these will necessarily be implemented, but we
can at least envision specifying them and having them built without too
much fuss. Conversely, we can readily see that certain processes will not
be supportable for the simple reason that the necessary data has not
been specified. More subtly, we can see what business rules are sup-
ported by the model, and we can assess whether these will unduly con-
strain the system. The data model is thus an excellent vehicle for
describing the boundaries of the system, far more so than the often over-
whelmingly large process model.

1.9 Where Do Data Models Fit In? ■ 21

Simsion-Witt_01 10/12/04 12:09 AM Page 21

1.9.3 Parallel (Blended) Approaches

Having grasped this theoretical distinction between process-driven and data-
driven approaches, do not expect to encounter a pure version of either in
practice. It is virtually impossible to do data modeling without some inves-
tigation of processes or to develop a process model without considering
data. At the very least, this means that process modelers and data modelers
need to communicate regularly. Indeed, they may well be the same person
or multiskilled members of a team charged with both tasks.

The interdependence of data and process modeling is now recognized
by many of the most popular methodologies and CASE products, which
require that the models are developed in parallel. For example, an early set
of deliverables might include high-level process and data models to spec-
ify the scope of the computerized application; while further along in the
life-cycle, we might produce logical models specifying process and data
requirements without taking into account performance issues.

1.9.4 Object-Oriented Approaches

Since the mid-1990s, we have seen increasing use of object-oriented
approaches to system specification and development, and, for a while, it
seemed (at least to some) that these would largely displace conventional
“data-centric” development.

It is beyond the scope of this book to discuss object-oriented
approaches in detail, or to compare them with conventional approaches.
From the perspective of the data modeler, the key points are:

■ Many information systems remain intrinsically “data-centric”—containing
large volumes of consistently structured data. Experience has shown
that the basic principles of good data modeling remain relevant, regard-
less of whether an object-oriented or conventional approach is taken to
their development. In short, if you are an object modeler working on a
data-centric business application, you should still read this book!

■ True object-oriented DBMSs are not widely used. In the overwhelming
majority of cases, data associated with object-oriented applications is
stored in a conventional or extended relational database, which should be
specified by a conventional data model.

■ Unified Modeling Language11 (UML) has become popular as a
diagramming standard for both conventional models and object models.
The UML option is discussed as an alternative to the more traditional
standards in Chapter 7.

22 ■ Chapter 1 What Is Data Modeling?

11Rumbaugh, Jacobson, and Booch (1998): The Unified Modeling Language Reference Manual,
Addison Wesley.

Simsion-Witt_01 10/12/04 12:09 AM Page 22

1.9.5 Prototyping Approaches

Rapid Applications Development (RAD) approaches have, in many
quarters, displaced the traditional waterfall12 approaches to systems devel-
opment. Rather than spend a long time developing a detailed paper spec-
ification, the designer adopts a “cut and try” approach: quickly build a
prototype, show it to the client, modify it in the light of comments, show
it to the client again, and so forth. Our experiences with prototyping have
been mixed, but they bear out what other experienced designers have
observed: even when prototyping you need to design a good data model
early in the project. It comes back to the very high impact of a change to
the data model in comparison with the relatively low cost of changing a
program. Once prototyping is under way, nobody wants to change the
model. So designers using a prototyping approach need to adopt what is
effectively a data-driven approach.

1.9.6 Agile Methods

Agile methods can be seen as a backlash against “heavy” methodologies,
which are characterized as bureaucratic, unresponsive to change, and gen-
erating large quantities of documentation of dubious value.13

In valuing working software over documentation, they owe something
to prototyping approaches, and the same caution applies: A good data
model developed early in the project can save much pain later. However,
the data model is communicated—as formal documentation, by word of
mouth, or through working software—a shared understanding of data
structures, meaning, and coding remains vital. We suggest that if you only
document one aspect of the design, you document the data model.

1.10 Who Should Be Involved in
Data Modeling?

In Part 2, we look more closely at the process of developing a data model
within the context of the various approaches outlined in the previous section.

1.10 Who Should Be Involved in Data Modeling? ■ 23

12So-called because there is no going back. Once a step is completed, we move on to the next,
with no intention of doing that step again. In contrast, an iterative approach allows for several
passes through the cycle, refining the deliverables each time.
13See, for example, Ambler, S. and Jeffries, R (2002): Agile Modeling: Effective Practices for
Extreme Programming and the Unified Process, John Wiley & Sons; and The Agile Manifesto,
2001 at www.agilemanifesto.org.

Simsion-Witt_01 10/12/04 12:09 AM Page 23

At this stage, let us just note that at least the following people have a stake
in the model and should expect to be involved in its development or review:

The system users, owners, and/or sponsors will need to verify that the
model meets their requirements. Our ultimate aim is to produce a model that
contributes to the most cost-effective solution for the business, and the users’
informed agreement is an important part of ensuring that this is achieved.

Business specialists (sometimes called subject matter experts or SMEs)
may be called upon to verify the accuracy and stability of business rules incor-
porated in the model, even though they themselves may not have any imme-
diate interest in the system. For example, we might involve strategic planners
to assess the likelihood of various changes to the organization’s product range.

The data modeler has overall responsibility for developing the model
and ensuring that other stakeholders are fully aware of its implications for
them: “Do you realize that any change to your rule that each policy is asso-
ciated with only one customer will be very expensive to implement later?”

Process modelers and program designers will need to specify pro-
grams to run against the database. They will want to verify that the data
model supports all the required processes without requiring unnecessarily
complex or sophisticated programming. In doing so, they will need to gain
an understanding of the model to ensure that they use it correctly.

The physical database designer (often an additional role given to the
database administrator) will need to assess whether the physical data
model needs to differ substantially from the logical data model to achieve
adequate performance, and, if so, propose and negotiate such changes.
This person (or persons) will need to have an in-depth knowledge of the
capabilities of the chosen DBMS.

The systems integration manager (or other person with that respon-
sibility, possibly an enterprise architect, data administrator, information
systems planner, or chief information officer) will be interested in how the
new database will fit into the bigger picture: are there overlaps with other
databases; does the coding of data follow organizational or external stan-
dards; have other users of the data been considered; are names and docu-
mentation in line with standards? In encouraging consistency, sharing, and
reuse of data, the integration manager represents business needs beyond
the immediate project.

Organizing the modeling task to ensure that the necessary expertise is
available, and that the views of all stakeholders are properly taken into
account, is one of the major challenges of data modeling.

1.11 Is Data Modeling Still Relevant?

Data modeling emerged in the late 1960s, in line with the commercial use
of DBMSs, and the basic concepts as used in practice have changed

24 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 24

remarkably little since then. However, we have seen major changes in
information technology and in the way that organizations use it. In the face
of such changes, is data modeling still relevant?

Whether as a result of asking this question or not, many organizations
have reduced their commitment to data modeling, most visibly through pro-
viding fewer jobs for professional data modelers. Before proceeding, then, we
look at the challenges to the relevance of data modeling (and data modelers).

1.11.1 Costs and Benefits of Data Modeling

We are frequently asked by project leaders and managers: “What are the
benefits of data modeling?” or, conversely, “How much does data model-
ing add to the cost of a system?”

The simple answer is that data modeling is not optional; no database
was ever built without a model, just as no house was ever built without a
plan. In some cases the plan or model is not documented; but just as an
architect can draw the plan of a building already constructed, a data mod-
eler can examine an existing database and derive the underlying data model.
The choice is not whether or not to model, but (a) whether to do it formally,
(b) whom to involve, and (c) how much effort to devote to producing a
good design. If these issues are not explicitly addressed, the decisions are
likely to be, respectively, “no,” “a database technician,” and “not enough.”

A formal data-modeling phase, undertaken by skilled modelers, should
reduce the costs of database development (through the greater efficiency
of competent people), and of the overall system (through the leverage
effect of a good quality model). Unfortunately the question about cost is
sometimes prompted by past problems with data modeling. In our experi-
ence, the two most common complaints are excessive, unproductive time
spent in modeling, and clashes between data modelers and physical data-
base designers. Overly long exercises are sometimes due to lack of famil-
iarity with data modeling principles and standard approaches to problems.
Surprisingly often, modeling is brought to a standstill by arguments as to
which of two or more candidate models is correct—the “one-right-answer”
syndrome. Arguments between data modelers and physical database
designers often reflect misunderstandings about roles and a lack of hard
data about the extent to which the logical data model needs to be changed
to achieve performance goals. Finally, some data modeling problems are
just plain difficult and may take some time to sort out. But we will not solve
them any more easily by leaving them to the database technicians.

It is certainly possible for data modeling to cost too much, just as any
activity that is performed incorrectly or not properly managed can cost too
much. The solution, however, is to address the causes of the problem,
rather than abdicating the job to people whose expertise is in other fields.

1.11 Is Data Modeling Still Relevant? ■ 25

Simsion-Witt_01 10/12/04 12:09 AM Page 25

1.11.2 Data Modeling and Packaged Software

In the early days of information technology, information systems—even
for such common applications as payroll and accounting—were gen-
erally developed in-house, and most large organizations employed teams
of systems developers. As DBMSs became more prevalent, devel-
opment teams would often include or call upon specialist data modelers.
Good data modeling was essential, even if its importance was not always
recognized.

That picture has changed substantially, with many organizations adopt-
ing a policy of “buy not build” as packaged software is now available for
a wide range of applications. Packaged software arrives with its data struc-
tures largely predefined, and the information systems practitioner focuses
largely on tailoring functionality and helping the organization to adopt the
new ways of working.

What is the role of data modeling in a world increasingly dominated by
packaged software?

Obviously, the original development of packaged software requires data
modeling of a very high standard. Such software needs to be comprehen-
sive and adaptable to suit the differing needs of the vendors’ clients. As we
have discussed, flexibility starts with the data model.

In organizations using packaged software, rather than producing their
own, there is still important work for data modelers, beginning at the selec-
tion phase.

The selection of a suitable package needs to be based on an under-
standing of the organization’s requirements. These will need to be formally
documented to ensure that they are agreed and can be supported, and pos-
sibly to enable alternative candidate solutions to be compared. A data
model is an essential component of such a statement of requirements, and
the data modeler faces the challenge of being comprehensive without
restricting creativity or innovation on the part of the vendor or vendors.
This is an important example of the importance of recognizing choice in
data modeling. Too often, we have seen data modelers develop the “one
right model” for an application and look for the product that most closely
matches it, overlooking the fact that a vendor may have come up with a
different but no less effective solution.

Once we are in a position to look at candidate packages, one of the
most useful ways of getting a quick, yet quite deep understanding of their
designs and capabilities is to examine the underlying data models.
An experienced data modeler should be able to ascertain fairly rapidly
the most important data structures and business rules supported by
each model, and whether the business can work effectively within
them. This does presuppose that vendors are able and willing to provide
models. The situation seems to have improved in recent years, perhaps

26 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 26

because vendors now more frequently have a properly documented model
to show.

After the package is purchased, we may still have considerable say as
to how individual tables and attributes are defined and used. In particular,
some of the Enterprise Resource Planning (ERP) packages, which aim to
cover a substantial proportion of an organization’s information processing,
deliberately offer a wealth of options for configuration. There is plenty of
room for expensive errors here and thus plenty of room for data modelers
to ensure that good practices are followed.

If modifications and extensions are to be made to the functionality of
the package, the data modeler will be concerned to ensure that the data-
base is used as intended.

1.11.3 Data Integration

Poor data integration remains a major issue for most organizations. The use
of packages often exacerbates the problem, as different vendors organize
and define data in different ways. Even ERP packages, which may be inter-
nally well integrated, will usually need to share data with or pass data to
peripheral applications. Uncontrolled data duplication will incur storage
and update costs. To address these issues, data models for each application
may need to be maintained, and a large-scale enterprise data model may
be developed to provide an overall picture or plan for integration. It needs
to be said that, despite many attempts, few organizations have succeeded
in using enterprise data models to achieve a good level of data integration,
and, as a result, enterprise data modeling is not as widely practiced as it
once was. We look at this issue in more depth in Chapter 17.

1.11.4 Data Warehouses

A data warehouse is a specialized database that draws together data from
a variety of existing databases to support management information needs.
Since the early 1990s, data warehouses have been widely implemented.
They generally need to be purpose-built to accommodate each organiza-
tion’s particular set of “legacy” databases.

The data model for a warehouse will usually need to support high vol-
umes of data subject to complex ad hoc queries, and accommodate data
formats and definitions inherited from independently designed packages
and legacy systems. This is challenging work for any data modeler and merits
a full chapter in this book (Chapter 16).

1.11 Is Data Modeling Still Relevant? ■ 27

Simsion-Witt_01 10/12/04 12:09 AM Page 27

1.11.5 Personal Computing and User-Developed Systems

Today’s professionals or knowledge workers use PCs as essential “tools of
trade” and frequently have access to a DBMS such as Microsoft Access™.
Though an organization’s core systems may be supported by packaged
software, substantial resources may still be devoted to systems develop-
ment by such individuals. Owning a sophisticated tool is not the same thing
as being able to use it effectively, and much time and effort is wasted by
amateurs attempting to build applications without an understanding of basic
design principles.

The discussion about the importance of data models earlier in this chapter
should have convinced you that the single most important thing for an
application designer to get right is the data model. A basic understanding
of data modeling makes an enormous difference to the quality of the results
that an inexperienced designer can achieve. Alternatively, the most critical
place to get help from a professional is in the data-modeling phase of the
project. Organizations that encourage (or allow) end-user development of
applications would do well to provide specialist data modeling training
and/or consultancy as a relatively inexpensive and nonintrusive way of
improving the quality of those applications.

1.11.6 Data Modeling and XML

XML (Extensible Markup Language) was developed as a format for pre-
senting data, particularly in web pages, its principal value being that it pro-
vided information about the meaning of the data in the same way that
HTML provides information about presentation format. The same benefits
have led to its wide adoption as a format for the transfer of data between
applications and enterprises, and to the development of a variety of tools
to generate XML and process data in XML format.

XML’s success in these roles has led to its use as a format for data stor-
age as an alternative to the relational model of storage used in RDBMSs
and, by extension, as a modeling language. At this stage, the key message
is that, whatever its other strengths and weaknesses, XML does not remove
the need to properly understand data requirements and to design sound,
well-documented data structures to support them. As with object-oriented
approaches, the format and language may differ, but the essentials of data
modeling remain the same.

1.11.7 Summary

The role of the data modeler in many organizations has changed. But as
long as we need to deal with substantial volumes of structured data, we

28 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 28

need to know how to organize it and need to understand the implications
of the choices that we make in doing so. That is essentially what data mod-
eling is about.

1.12 Alternative Approaches to Data Modeling

One of the challenges of writing a book on data modeling is to decide
which of the published data modeling “languages” and associated conven-
tions to use, in particular for diagrammatic representation of conceptual
models.

There are many options and continued debate about their relative
merits. Indeed, much of the academic literature on data modeling is
devoted to exploring different languages and conventions and proposing
DBMS architectures to support them. We have our own views, but in writ-
ing for practitioners who need to be familiar with the most common con-
ventions, our choice is narrowed to two options:

1. One core set of conventions, generally referred to as the Entity
Relationship14 (E-R) approach, with ancestry going back to the late
1960s,15 was overwhelmingly dominant until the late 1990s. Not every-
one uses the same “dialect,” but the differences between practitioners
are relatively minor.

2. Since the late 1990s, an alternative set of conventions—the Unified
Modeling Language (UML), which we noted in Section 1.9.4—has
gained in popularity.

The overwhelming majority of practicing modelers know and use one
or both of these languages. Similarly, tools to support data modeling almost
invariably use E-R or UML conventions.

UML is the “richer” language. It provides conventions for recording a
wide range of conventional and object-oriented analysis and design deliv-
erables, including data models represented by class diagrams. Class dia-
grams are able to capture a greater variety of data structures and rules than
E-R diagrams.

However, this complexity incurs a substantial penalty in difficulty of use
and understanding, and we have seen even very experienced practitioners
misusing the additional language constructs. Also some of the rules and
structures that UML is able to capture are not readily implemented with
current relational DBMSs.

1.12 Alternative Approaches to Data Modeling ■ 29

14Chen, P, P (1976): The Entity-Relationship Model—Towards a Unified View of Data, ACM
Transactions on Database Systems (1,1) March, pp. 9–36.
15Bachman, C (1969): Data Structure Diagrams, Bulletin of ACM SIGFIDET 1(2).

Simsion-Witt_01 10/12/04 12:09 AM Page 29

We discuss the relative merits of UML and E-R in more detail in Chapter 7.
Our decision to use (primarily) the E-R conventions in this book was the
result of considerable discussion, which took into account the growing
popularity of UML. Our key consideration was the desire to focus on what
we believe are the most challenging parts of data modeling: understanding
user requirements and designing appropriate data structures to meet them.
As we reviewed the material that we wanted to cover, we noted that the
use of a more sophisticated language would make a difference in only a
very few cases and could well distract those readers who needed to devote
a substantial part of their efforts to learning it.

However, if you are using UML, you should have little difficulty adapt-
ing the principles and techniques that we describe. In a few cases where
the translation is not straightforward—usually because UML offers a feature
not provided by E-R—we have highlighted the difference.

At the time of writing, we are planning to publish all of the diagrams
in this book in UML format on the Morgan Kaufmann website at
www.mkp.com/?isbn=0126445516.

As practicing data modelers, we are sometimes frustrated by the short-
comings of the relatively simple E-R conventions (for which UML does not
always provide a solution). In Chapter 7, we look at some of the more
interesting alternatives, first because you may encounter them in practice
(or more likely in reading more widely about data modeling), and second
because they will give you a better appreciation of the strengths and weak-
nesses of the more conventional methods. However, our principal aim in
this book is to help you to get the best results from the tools that you are
most likely to have available.

1.13 Terminology

In data modeling, as in all too many other fields, academics and practi-
tioners have developed their own terminologies and do not always employ
them consistently.

We have already seen an example in the names for the different com-
ponents of a database specification. The terminology that we use for the
data models produced at different stages of the design process—viz con-
ceptual, logical, and physical models—is widely used by practitioners, but,
as noted earlier, there is some variation in how each is defined. In some
contexts (though not in this book), no distinction may be made between
the conceptual and logical models, and the terms may be used inter-
changeably.

Finally, you should be aware of two quite different uses of the term data
model itself. Practitioners use it, as we have in this chapter, to refer to a
representation of the data required to support a particular process or set of
processes. Some academics use “data model” to describe a particular way

30 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 30

of representing data: for example, in tables, hierarchically, or as a network.
Hence, they talk of the “Relational Model” (tables), the “Object-Role Model,”
or the “Network Model.”16 Be aware of this as you read texts aimed at the
academic community or in discussing the subject with them. And encour-
age some awareness and tolerance of practitioner terminology in return.

1.14 Where to from Here?—An Overview
of Part I

Now that we have an understanding of the basic goals, context, and termi-
nology of data modeling, we can take a look at how the rest of this first
part of the book is organized.

In Chapter 2 we cover normalization, a formal technique for organiz-
ing data into tables. Normalization enables us to deal with certain common
problems of redundancy and incompleteness according to straightforward
and quite rigorous rules. In practice, normalization is one of the later steps
in the overall data modeling process. We introduce it early in the book to
give you a feeling for what a sound data model looks like and, hence, what
you should be working towards.

In Chapter 3, we introduce a method for presenting models in a dia-
grammatic form. In working with the insurance model, you may have
found that some of the more important business rules (such as only one
customer being allowed for each policy) were far from obvious. As we
move to more complex models, it becomes increasingly difficult to see the
key concepts and rules among all the detail. A typical model of 100 tables
with five to ten columns each will appear overwhelmingly complicated. We
need the equivalent of an architect’s sketch plan to present the main points,
and we need the ability to work “top down” to develop it.

In Chapter 4, we look at subtyping and supertyping and their role in
exploring alternative designs and handling complex models. We touched on
the underlying idea when we discussed the possible division of the Customer
table into separate tables for personal and corporate customers (we would say
that this division was based on Personal Customer and Corporate Customer
being subtypes of Customer, or, equivalently, Customer being a supertype
of Corporate Customer and Personal Customer).

In Chapter 5 we look more closely at columns (and their conceptual
model ancestors, which we call attributes). We explore issues of defini-
tion, coding, and naming.

1.14 Where to from Here?—An Overview of Part 1 ■ 31

16On the (rare) occasions that we employ this usage (primarily in Chapter 7), we use capitals
to distinguish; the Relational Model of data versus a relational model for a particular database.

Simsion-Witt_01 10/12/04 12:09 AM Page 31

In Chapter 6 we cover the specification of primary keys—columns such
as Policy Number, which enable us to identify individual rows of data.

In Chapter 7 we look at some extensions to the basic conventions and
some alternative modeling languages.

1.15 Summary

Data and databases are central to information systems. Every database is
specified by a data model, even if only an implicit one. The data model is
an important determinant of the design of the associated information sys-
tems. Changes in the structure of a database can have a radical and expen-
sive impact on the programs that access it. It is therefore essential that the
data model for an information system be an accurate, stable reflection of
the business it supports.

Data modeling is a design process. The data model cannot be produced
by a mechanical transformation from hard business facts to a unique solu-
tion. Rather, the modeler generates one or more candidate models, using
analysis, abstraction, past experience, heuristics, and creativity. Quality is
assessed according to a number of factors including completeness, non-
redundancy, faithfulness to business rules, reusability, stability, elegance,
integration, and communication effectiveness. There are often trade-offs
involved in satisfying these criteria.

Performance of the resulting database is an important issue, but it is pri-
marily the responsibility of the database administrator/database technician.
The data modeler will need to be involved if changes to the logical data
model are contemplated.

In developing a system, data modeling and process modeling usually
proceed broadly in parallel. Data modeling principles remain important for
object-oriented development, particularly where large volumes of struc-
tured data are involved. Prototyping and agile approaches benefit from a
stable data model being developed and communicated at an early stage.

Despite the wider use of packaged software and end-user development,
data modeling remains a key technique for information systems profes-
sionals.

32 ■ Chapter 1 What Is Data Modeling?

Simsion-Witt_01 10/12/04 12:09 AM Page 32

Chapter 2
Basics of Sound Structure

“A place for everything and everything in its place.”
– Samuel Smiles, Thrift, 1875

“Begin with the end in mind.”
– Stephen R. Covey, The 7 Habits of Highly Effective People

2.1 Introduction

In this chapter, we look at some fundamental techniques for organizing data.
Our principal tool is normalization, a set of rules for allocating data

to tables in such a way as to eliminate certain types of redundancy and
incompleteness.

In practice, normalization is usually one of the later activities in a data
modeling project, as we cannot start normalizing until we have established
what columns (data items) are required. In the approach described in
Part 2, normalization is used in the logical database design stage, following
requirements analysis and conceptual modeling.

We have chosen to introduce normalization at this early stage of the
book1 so that you can get a feeling for what a well-designed logical data
model looks like. You will find it much easier to understand (and under-
take) the earlier stages of analysis and design if you know what you are
working toward.

Normalization is one of the most thoroughly researched areas of data
modeling, and you will have little trouble finding other texts and papers on
the subject. Many take a fairly formal, mathematical approach. Here, we
focus more on the steps in the process, what they achieve, and the practi-
cal problems you are likely to encounter. We have also highlighted areas
of ambiguity and opportunities for choice and creativity.

The majority of the chapter is devoted to a rather long example. We
encourage you to work through it. By the time you have finished, you will

33

1Most texts follow the sequence in which activities are performed in practice (as we do in
Part 2). However, over many years of teaching data modeling to practitioners and college
students, we have found that both groups find it easier to learn the top-down techniques if
they have a concrete idea of what a well-structured logical model will look like. See also
comments in Chapter 3, Section 3.3.1.

Simsion-Witt_02 10/11/04 8:47 PM Page 33

have covered virtually all of the issues involved in basic normalization2

and encountered many of the most important data modeling concepts
and terms.

2.2 An Informal Example of Normalization

Normalization is essentially a two-step3 process:

1. Put the data into tabular form (by removing repeating groups).

2. Remove duplicated data to separate tables.

A simple example will give you some feeling for what we are trying to
achieve. Figure 2.1 shows a paper form (it could equally be a computer input
screen) used for recording data about employees and their qualifications.

If we want to store this data in a database, our first task is to put it into
tabular form. But we immediately strike a problem: because an employee
can have more than one qualification, it’s awkward to fit the qualification
data into one row of a table (Figure 2.2). How many qualifications do we
allow for? Murphy’s law tells us that there will always be an employee who
has one more qualification than the table will handle.

We can solve this problem by splitting the data into two tables. The first
holds the basic employee data, and the second holds the qualification
data, one row per qualification (Figure 2.3). In effect, we have removed
the “repeating group” of qualification data (consisting of qualification
descriptions and years) to its own table. We hold employee numbers in the
second table to serve as a cross-reference back to the first, because we need
to know to whom each qualification belongs. Now the only limit on the

34 ■ Chapter 2 Basics of Sound Structure

2Advanced normalization is covered in Chapter 13.
3This is a simplification. Every time we create a table, we need to identify its primary key. This
task is absolutely critical to normalization; the only reason that we have not nominated it as a
“step” in its own right is that it is performed within each of the two steps which we have listed.

Figure 2.1 Employee qualifications form.

Employee
Number: 01267

Employee
Name: Clark

Department
Number: 05

Department
Name: Auditing

Department
Location: HO

Qualification Year

Bachelor of Arts
Master of Arts
Doctor of Philosophy

1970
1973
1976

Simsion-Witt_02 10/11/04 8:47 PM Page 34

number of qualifications we can record for each employee is the maximum
number of rows in the table—in practical terms, as many as we will ever need.

Our second task is to eliminate duplicated data. For example, the fact
that department number “05” is “Auditing” and is located at “HO” is repeated
for every employee in that department. Updating data is therefore compli-
cated. If we wanted to record that the Auditing department had moved to
another location, we would need to update several rows in the Employee
table. Recall that two of our quality criteria introduced in Chapter 1 were
“non-redundancy” and “elegance”; here we have redundant data and a
model that requires inelegant programming.

The basic problem is that department names and addresses are really
data about departments rather than employees, and belong in a separate
Department table. We therefore establish a third table for department data,
resulting in the three-table model of Figure 2.4 (see page 37). We leave
Department Number in the Employee table to serve as a cross-reference, in
the same way that we retained Employee Number in the Qualification table.
Our data is now normalized.

This is a very informal example of what normalization is about. The
rules of normalization have their foundation in mathematics and have been
very closely studied by researchers. On the one hand, this means that we
can have confidence in normalization as a technique; on the other, it is very
easy to become lost in mathematical terminology and proofs and miss the
essential simplicity of the technique. The apparent rigor can also give us a
false sense of security, by hiding some of the assumptions that have to be
made before the rules are applied.

You should also be aware that many data modelers profess not to
use normalization, in a formal sense, at all. They would argue that they
reach the same answer by common sense and intuition. Certainly, most

2.2 An Informal Example of Normalization ■ 35

Figure 2.2 Employee qualifications table.

Qualification 1Employee
Number

Employee
Name

Dept.
Number

Dept.
Name

Dept.
Location Description Year

01267 Clark 05 Auditing HO Bachelor of Arts 1970
70964 Smith 12 Legal MS Bachelor of Arts 1969
22617 Walsh 05 Auditing HO Bachelor of Arts 1972
50607 Black 05 Auditing HO

Qualification 2 Qualification 3 Qualification 4

Description Year Description Year Description Year

Master of Arts 1973 Doctor of Philosophy 1976

Master of Arts 1977

Simsion-Witt_02 10/11/04 8:47 PM Page 35

practitioners would have had little difficulty solving the employee qualifi-
cation example in this way.

However, common sense and intuition come from experience, and
these experienced modelers have a good idea of what sound, normalized
data models look like. Think of this chapter, therefore, as a way of gaining
familiarity with some sound models and, conversely, with some important
and easily classified design faults. As you gain experience, you will find that
you arrive at properly normalized structures as a matter of habit.

Nevertheless, even the most experienced professionals make mistakes
or encounter difficulties with sophisticated models. At these times, it is
helpful to get back onto firm ground by returning to first principles such as
normalization. And when you encounter someone else’s model that has not
been properly normalized (a common experience for data modeling con-
sultants), it is useful to be able to demonstrate that some generally accepted
rules have been violated.

2.3 Relational Notation

Before tackling a more complex example, we need to learn a more concise
notation. The sample data in the tables takes up a lot of space and is not
required to document the design (although it can be a great help in

36 ■ Chapter 2 Basics of Sound Structure

Figure 2.3 Separation of qualification data.

Employee
Number

Employee
Name

Dept.
Number

Dept.
Name

Dept.
Location

01267 Clark 05 Auditing HO

70964 Smith 12 Legal MS

22617 Walsh 05 Auditing HO

50607 Black 05 Auditing HO

Employee
Number

Qualification
Description

Qualification
Year

01267 Bachelor of Arts 1970
01267 Master of Arts 1973
01267 Doctor of Philosophy 1976
70964 Bachelor of Arts 1969
22617 Bachelor of Arts 1972
22617 Master of Arts 1977

Employee Table

Qualification Table

Simsion-Witt_02 10/11/04 8:47 PM Page 36

communicating it). If we eliminate the sample rows, we are left with just
the table names and columns.

Figure 2.5 on the next page shows the normalized model of employees
and qualifications using the relational notation of table name followed by
column names in parentheses. (The full notation requires that the primary
key of the table be marked—discussed in Section 2.5.4.) This convention is
widely used in textbooks, and it is convenient for presenting the minimum
amount of information needed for most worked examples. In practice,
however, we usually want to record more information about each column:
format, optionality, and perhaps a brief note or description. Practitioners
therefore usually use lists as in Figure 2.6, also on the next page.

2.4 A More Complex Example

Armed with the more concise relational notation, let’s now look at a more
complex example and introduce the rules of normalization as we proceed.

2.4 A More Complex Example ■ 37

Figure 2.4 Separation of department data.

Employee
Number

Qualification
Description

Qualification
Year

01267 Bachelor of Arts 1970
01267 Master of Arts 1973
01267 Doctor of Philosophy 1976
70964 Bachelor of Arts 1969
22617 Bachelor of Arts 1972
22617 Master of Arts 1977

Employee
Number

Employee
Name

Dept.
Number

01267 Clark 05

22617 Walsh 05

70964 Smith 12

50607 Black 05

Dept. Number Dept. Name Dept. Location

05 Auditing HO

12 Legal MS

Employee Table

Department Table

Qualification Table

Simsion-Witt_02 10/11/04 8:47 PM Page 37

The rules themselves are not too daunting, but we will spend some time
looking at exactly what problems they solve.

The form in Figure 2.7 is based on one used in an actual survey of
antibiotic drug prescribing practices in Australian public hospitals. The
survey team wanted to determine which drugs and dosages were being
used for various operations, to ensure that correct clinical decisions were
being made and that patients and taxpayers were not paying for unneces-
sary (or unnecessarily expensive) drugs.

One form was completed for each operation. A little explanation is
necessary to understand exactly how the form was used.

Each hospital in the survey was given a unique hospital number to
distinguish it from other hospitals (in some cases two hospitals had the
same name). All hospital numbers were prefixed “H” (for “hospital”).

Operation numbers were assigned sequentially by each hospital.

38 ■ Chapter 2 Basics of Sound Structure

Figure 2.6 Employee model using list notation.

EMPLOYEE
Employee Number: 5 Numeric—The number allocated to this employee by the Human
Resources Department
Employee Name: 60 Characters—The name of this employee: the surname, a comma
and space, the first given name plus a space and the middle initial if any
Department Number: The number used by the organization to identify the Department
that pays this employee’s salary

DEPARTMENT
Department Number: 2 Numeric—The number used by the organization to identify this
Department
Department Name: 30 Characters—The name of this Department as it appears in
company documentation
Department Location: 30 Characters—The name of the city where this Department is
located

QUALIFICATION
Employee Number: 5 Numeric—The number allocated to the employee holding this
qualification by the Human Resources Department
Qualification Description: 30 Characters—The name of this qualification
Qualification Year: Date Optional—The year in which this employee obtained this
qualification

Figure 2.5 Employee model using relational notation.

EMPLOYEE (Employee Number, Employee Name, Department Number)
DEPARTMENT (Department Number, Department Name, Department Location)
QUALIFICATION (Employee Number, Qualification Description, Qualification Year)

Simsion-Witt_02 10/11/04 8:47 PM Page 38

Hospitals fell into three categories: “T” for “teaching,” “P” for “public,”
and “V” for “private”. All teaching hospitals were public (“T” implied “P”).

The operation code was a standard international code for the named
operation. Procedure group was a broader classification.

The surgeon number was allocated by individual hospitals to allow
surgeons to retain a degree of anonymity. The prefix “S” stood for “surgeon.”
Only a single surgeon number was recorded for each operation.

Total drug cost was the total cost of all drug doses for the operation.
The bottom of the form recorded the individual antibiotic drugs used in the
operation. A drug code was made up of a short name for the drug plus the
size of the dose.

As the study was extended to more hospitals, it was decided to replace
the heaps of forms with a computerized database. Figure 2.8 shows the
initial database design, using the relational notation. It consists of a single
table, named Operation because each row represents a single operation.
Do not be put off by all the columns; after the first ten, there is a lot of
repetition to allow details of up to four drugs to be recorded against the
operation. But it is certainly not elegant.

The data modeler (who was also the physical database designer and
the programmer) took the simplest approach, exactly mirroring the
form. Indeed, it is interesting to consider who really did the data modeling.
Most of the critical decisions were made by the original designer of the
form.

When we present this example in training workshops, we give participants
a few minutes to see if they can improve on the design. We strongly suggest
you do the same before proceeding. It is easy to argue after seeing a
worked solution that the same result could be achieved intuitively.

2.4 A More Complex Example ■ 39

Figure 2.7 Drug expenditure survey.

Hospital
Number: H17

Hospital
Name: St Vincent’s

Operation
Number: 48

Hospital
Category: P

Contact at
Hospital: Fred Fleming

Operation
Name: Heart Transplant

Operation
Code: 7A

Procedure
Group: Transplant

Surgeon
Number: S15

Surgeon
Specialty: Cardiology

Total Drug
Cost: $75.50

Drug Code Full Name
of Drug

Manufacturer Method
of Admin.

Cost of
Dose ($)

Number
of Doses

MAX 150mg Maxicillin ABC Pharmaceuticals ORAL $3.50 15
MIN 500mg Minicillin Silver Bullet Drug Co. IV $1.00 20
MIN 250mg Minicillin Silver Bullet Drug Co. ORAL $0.30 10

Simsion-Witt_02 10/11/04 8:47 PM Page 39

2.5 Determining Columns

Before we get started on normalization proper, we need to do a little
preparation and tidying up. Normalization relies on certain assumptions
about the way data is represented, and we need to make sure that these
are valid. There are also some problems that normalization does not
solve, and it is better to address these at the outset, rather than carrying
excess baggage through the whole normalization process. The following
steps are necessary to ensure that our initial model provides a sound
starting point.

2.5.1 One Fact per Column

First we make sure that each column in the table represents one fact only.
The Drug Code column holds both a short name for the drug and a dosage
size, two distinct facts. The dosage size in turn consists of a numeric size
and a unit of measure. The three facts should be recorded in separate
columns. We will see that this decision makes an important difference to
the structure of our final model.

A more subtle example of a multifact column is the Hospital Category.
We are identifying whether the hospital is public or private (first fact) as
well as whether the hospital provides teaching (second fact). We should
establish two columns, Hospital Type and Teaching Status, to capture these
distinct ideas. (It is interesting to note that, in the years since the original
form was designed, some Australian private hospitals have been accredited
as teaching hospitals. The original design would not have been able to
accommodate this change as readily as the “one-fact-per-column” design.)

40 ■ Chapter 2 Basics of Sound Structure

Figure 2.8 Initial drug expenditure model.

OPERATION (Hospital Number, Operation Number, Hospital Name, Hospital Category,
Contact Person, Operation Name, Operation Code, Procedure Group, Surgeon Number,
Surgeon Specialty, Total Drug Cost,
Drug Code 1, Drug Name 1, Manufacturer 1, Method of Administration 1, Dose Cost 1,
Number of Doses 1,
Drug Code 2, Drug Name 2, Manufacturer 2, Method of Administration 1, Dose Cost 1,
Number of Doses 2,
Drug Code 3, Drug Name 3, Manufacturer 3, Method of Administration 3, Dose Cost 3,
Number of Doses 3,
Drug Code 4, Drug Name 4, Manufacturer 4, Method of Administration 4, Dose Cost 4,
Number of Doses 4)

Simsion-Witt_02 10/11/04 8:47 PM Page 40

The identification and handling of multifact columns is covered in more
detail in Chapter 5.

2.5.2 Hidden Data

The second piece of tidying up involves making sure that we have not lost
any data in the translation to tabular form. The most common problem here
is that we cannot rely on the rows of the table being stored in any partic-
ular order. Suppose the original survey forms had been filed in order
of return. If we wanted to preserve this data, we would need to add a
Return Date or Return Sequence column. If the hospitals used red forms for emer-
gency operations and blue forms for elective surgery, we would need to add
a column to record the category if it was of interest to the database users.

2.5.3 Derivable Data

Remember our basic objective of nonredundancy. We should remove any
data that can be derived from other data in the table and amend the
columns accordingly. The Total Drug Cost is derivable by adding together the
Dose Costs multiplied by the Numbers of Doses. We therefore remove it, noting
in our supporting documentation how it can be derived (since it is pre-
sumably of interest to the database users, and we need to know how to
reconstruct it when required).

We might well ask why the total was held in the first place.
Occasionally, there may be a regulatory requirement to hold derivable data
rather than calculating it whenever needed. In some cases, derived data is
included unknowingly. Most often, however, it is added with the intention
of improving performance. Even from that perspective, we should realize
that there will be a trade-off between data retrieval (faster if we do not have
to assemble the base data and calculate the total each time) and data
update (the total will need to be recalculated if we change the base data).
Far more importantly, though, performance is not our concern at the logical
modeling stage. If the physical database designers cannot achieve the
required performance, then specifying redundant data in the physical
model is one option we might consider and properly evaluate.

We can also drop the practice of prefixing hospital numbers with “H”
and surgeon numbers with “S.” The prefixes add no information, at least
when we are dealing with them as data in the database, in the context of
their column names. If they were to be used without that context, we
would simply add the appropriate prefix when we printed or otherwise
exported the data.

2.5 Determining Columns ■ 41

Simsion-Witt_02 10/11/04 8:47 PM Page 41

2.5.4 Determining the Primary Key

Finally, we determine a primary key 4 for the table. The choice of primary
keys is a critical (and sometimes complex) task, which is the subject of
Chapter 6. For the moment, we will simply note that the primary key is a
minimal set of columns that contains a different combination of values for
each row of the table. Another way of looking at primary keys is that each
value of the primary key uniquely identifies one row of the table. In this
case, a combination of Hospital Number and Operation Number will do the job.
If we nominate a particular hospital number and operation number, there
will be at most one row with that particular combination of values.
The purpose of the primary key is exactly this: to enable us to refer unam-
biguously to a specific row of a table (“show me the row for hospital
number 33, operation 109”). We can check this with the business experts by
asking: “Could there ever be more than one form with the same
combination of hospital number and operation number?” Incidentally, any
combination of columns that includes these two (e.g., Hospital Number,
Operation Number, and Surgeon Number) will also identify only one row, but
such combinations will not satisfy our definition (above), which requires
that the key be minimal (i.e., no bigger than is needed to do the job).

Figure 2.9 shows the result of tidying up the initial model of Figure 2.8.
We have replaced each Drug Code with its components (Drug Short Name,
Size of Dose, and Unit of Measure) in line with our “one-fact-per-column” rule
(Section 2.5.1). Note that Hospital Number and Operation Number are under-
lined. This is a standard convention for identifying the columns that form
the primary key.

42 ■ Chapter 2 Basics of Sound Structure

4“Key” can have a variety of meanings in data modeling and database design. Although it is
common for data modelers to use the term to refer only to primary keys, we strongly recom-
mend that you acquire the habit of using the full term to avoid misunderstandings.

Figure 2.9 Drug expenditure model after tidying up.

OPERATION (Hospital Number, Operation Number, Hospital Name, Hospital Type,
Teaching Status, Contact Person, Operation Name, Operation Code, Procedure Group,
Surgeon Number, Surgeon Specialty,
Drug Short Name 1, Drug Name 1, Manufacturer 1, Size of Dose 1, Unit of Measure 1,
Method of Administration 1, Dose Cost 1, Number of Doses 1,
Drug Short Name 2, Drug Name 2, Manufacturer 2, Size of Dose 2, Unit of Measure 2,
Method of Administration 2, Dose Cost 2, Number of Doses 2,
Drug Short Name 3, Drug Name 3, Manufacturer 3, Size of Dose 3, Unit of Measure 3,
Method of Administration 3, Dose Cost 3, Number of Doses 3,
Drug Short Name 4, Drug Name 4, Manufacturer 4, Size of Dose 4, Unit of Measure 4,
Method of Administration 4, Dose Cost 4, Number of Doses 4)

Simsion-Witt_02 10/11/04 8:47 PM Page 42

2.6 Repeating Groups and First Normal Form

Let’s start cleaning up this mess. Earlier we saw that our first task in nor-
malization was to put the data in tabular form. It might seem that we have
done this already, but, in fact, we have only managed to hide a problem
with the data about the drugs administered.

2.6.1 Limit on Maximum Number of Occurrences

The drug administration data is the major cause of the table’s complexity and
inelegance, with its Drug Short Name 2, Drug Name 4, Number of Doses 3, and so
forth. The columns needed to accommodate up to four drugs account for
most of the complexity. And why only four? Why not five or six or more?
Four drugs represented a maximum arrived at by asking one of the survey
teams, “What would be the maximum number of different drugs ever used in
an operation?” In fact, this number was frequently exceeded, with some oper-
ations using up to ten different drugs. Part of the problem was that the ques-
tion was not framed precisely enough; a line on the form was required for
each drug-dosage combination, rather than just for each different drug. Even
if this had been allowed for, drugs and procedures could later have changed
in such a way as to increase the maximum likely number of drugs. The
model rates poorly against the completeness and stability criteria.

With the original clerical system, this limit on the number of different
drug dosage combinations was not a major problem. Many of the forms
were returned with a piece of paper taped to the bottom, or with additional
forms attached with only the bottom section completed to record the addi-
tional drug administrations. In a computerized system, the change to the
database structure to add the extra columns could be easily made, but the
associated changes to programs would be much more painful. Indeed, the
system developer decided that the easiest solution was to leave the data-
base structure unchanged and to hold multiple rows for those operations
that used more than four combinations, suffixing the operation number
with “A,” “B,” or “C” to indicate a continuation. This solution necessitated
changes to program logic and made the system more complex.

So, one problem with our “repeating group” of drug administration data is
that we have to set an arbitrary maximum number of repetitions, large enough
to accommodate the greatest number that might ever occur in practice.

2.6.2 Data Reusability and Program Complexity

The need to predict and allow for the maximum number of repetitions is
not the only problem caused by the repeating group. The data cannot

2.6 Repeating Groups and First Normal Form ■ 43

Simsion-Witt_02 10/11/04 8:47 PM Page 43

necessarily be reused without resorting to complex program logic. It is
relatively easy to write a program to answer questions like, “How many
operations were performed by neurosurgeons?” or “Which hospital is
spending the most money on drugs?” A simple scan through the relevant
columns will do the job. But it gets more complicated when we ask a
question like, “How much money was spent on the drug Ampicillin?”
Similarly, “Sort into Operation Code sequence” is simple to handle, but
“Sort into Drug Name sequence” cannot be done at all without first copying
the data to another table in which each drug appears only once in
each row.

You might argue that some inquiries are always going to be intrinsically
more complicated than others. But consider what would have happened if
we had designed the table on the basis of “one row per drug.” This might
have been prompted by a different data collection method—perhaps the
hospital drug dispensary filling out one survey form per drug. We would
have needed to allow a repeating group (probably with many repetitions)
to accommodate all the operations that used each drug, but we would find
that the queries that were previously difficult to program had become
straightforward, and vice versa. Here is a case of data being organized to
suit a specific set of processes, rather than as a resource available to all
potential users.

Consider also the problem of updating data within the repeating group.
Suppose we wanted to delete the second drug administration for a
particular operation (perhaps it was a nonantibiotic drug, entered in error).
Would we shuffle the third and fourth drugs back into slots two and three,
or would our programming now have to deal with intermediate gaps?
Either way, the programming is messy because our data model is inelegant.

2.6.3 Recognizing Repeating Groups

To summarize: We have a set of columns repeated a number of times—a
“repeating group”—resulting in inflexibility, complexity, and poor data
reusability. The table design hides the problem by using numerical suffixes
to give each column a different name.

It is better to face the problem squarely and document our initial structure
as in Figure 2.10. The braces (curly brackets) indicate a repeating group
with an indefinite number of occurrences. This notation is a useful
convention, but it describes something we cannot implement directly with
a simple table. In technical terms, our data is unnormalized.

At this point we should also check whether there are any repeating
groups that have not been marked as such. To do this, we need to ask
whether there are any data items that could have multiple values for a given
value of the key. For example, we should ask whether more than one

44 ■ Chapter 2 Basics of Sound Structure

Simsion-Witt_02 10/11/04 8:47 PM Page 44

surgeon can be involved in an operation and, if so, whether we need to be
able to record more than one. If so, the columns describing surgeons
(Surgeon Number and Surgeon Specialty) would become another repeating
group.

2.6.4 Removing Repeating Groups

A general and flexible solution should not set any limits on the maximum
number of occurrences of repeating groups. It should also neatly handle
the situation of few or no occurrences (some 75% of the operations, in fact,
did not use any antibiotic drugs).

This brings us to the first step in normalization:

STEP 1: Put the data in table form by identifying and eliminating repeating
groups.

The procedure is to split the original table into multiple tables (one for
the basic data and one for each repeating group) as follows:

1. Remove each separate set of repeating group columns to a new table
(one new table for each set) so that each occurrence of the group
becomes a row in its new table.

2. Include the key of the original table in each new table, to serve as a
cross-reference (we call this a foreign key).

3. If the sequence of occurrences within a repeating group has business sig-
nificance, introduce a “Sequence” column to the corresponding new table.

4. Name each new table.

5. Identify and underline the primary key of each new table, as discussed
in the next subsection.

Figure 2.11 shows the two tables that result from applying these rules
to the Operation table.

We have named the new table Drug Administration, since each row
in the table records the administration of a drug dose, just as each row in
the original table records an operation.

2.6 Repeating Groups and First Normal Form ■ 45

Figure 2.10 Drug expenditure model showing repeating group.

OPERATION (Hospital Number, Operation Number, Hospital Name, Hospital Category,
Teaching Status, Contact Person, Operation Name, Operation Code, Procedure Group,
Surgeon Number, Surgeon Specialty,
{Drug Short Name, Drug Name, Manufacturer, Size of Dose, Unit of Measure, Method of
Administration, Dose Cost, Number of Doses})

Simsion-Witt_02 10/11/04 8:47 PM Page 45

2.6.5 Determining the Primary Key of the New Table

Finding the key of the new table was not easy (in fact this is usually the
trickiest step in the whole normalization process). We had to ask, “What is
the minimum combination of columns needed to uniquely identify one
row (i.e., one specific administration of a drug)?” Certainly we needed
Hospital Number and Operation Number to pin it down to one operation, but
to identify the individual administration we had to specify not only the
Drug Short Name, but also the Size of Dose, Unit of Measure, and Method of
Administration—a six-column primary key.

In verifying the need for this long key, we would need to ask: “Can the
same drug be administered in different dosages for the one operation?”
(yes) and “Can the same drug and dose be administered using different
methods for the one operation?” (yes, again).

The reason for including the primary key of the Operation table in the
Drug Administration table should be fairly obvious; we need to know
which operation each drug administration applies to. It does, however,
highlight the importance of primary keys in providing the links between
tables. Consider what would happen if we could have two or more
operations with the same combination of hospital number and operation
number. There would be no way of knowing which of these operations a
given drug administration applied to.

To recap: primary keys are an essential part of normalization.
In determining the primary key for the new table, you will usually

need to include the primary key of the original table, as in this case
(Hospital Number and Operation Number form part of the primary key). This
is not always so, despite what some widely read texts (including Codd’s5

original paper on normalization) suggest (see the example of insurance
agents and policies in Section 13.6.3).

The sequence issue is often overlooked. In this case, the sequence in
which the drugs were recorded on the form was not, in fact, significant,

46 ■ Chapter 2 Basics of Sound Structure

Figure 2.11 Repeating group removed to separate table.

OPERATION (Hospital Number, Operation Number, Hospital Name, Hospital Type,
Teaching Status, Contact Person, Operation Name, Operation Code, Procedure Group,
Surgeon Number, Surgeon Specialty)
DRUG ADMINISTRATION (Hospital Number, Operation Number, Drug Short Name,
Size of Dose, Unit of Measure, Method of Administration, Dose Cost, Number of Doses,
Drug Name, Manufacturer)

5Codd, E., “A Relational Model of Data for Large Shared Data Banks,” Communications of
the ACM (June, 1970). This was the first paper to advocate normalization as a data modeling
technique.

Simsion-Witt_02 10/11/04 8:47 PM Page 46

but the original data structure did allow us to distinguish between first,
second, third, and fourth administrations. A sequence column in the
Drug Administration table would have enabled us to retain that data if
needed. Incidentally, the key of the Drug Administration table could then
have been a combination of Hospital Number, Operation Number, and the
sequence column.6

2.6.6 First Normal Form

Our tables are now technically in First Normal Form (often abbreviated
to 1NF). What have we achieved?

■ All data of the same kind is now held in the same place. For example,
all drug names are now in a common column. This translates into ele-
gance and simplicity in both data structure and programming (we could
now sort the data by drug name, for example).

■ The number of different drug dosages that can be recorded for an oper-
ation is limited only by the maximum possible number of rows in the
Drug Administration table (effectively unlimited). Conversely, an oper-
ation that does not use any drugs will not require any rows in the
Drug Administration table.

2.7 Second and Third Normal Forms

2.7.1 Problems with Tables in First Normal Form

Look at the Operation table in Figure 2.11.
Every row that represents an operation at, say, hospital number 17 will

contain the facts that the hospital’s name is St. Vincent’s, that Fred Fleming
is the contact person, that its teaching status is T, and that its type is P. At
the very least, our criterion of nonredundancy is not being met. There are
other associated problems. Changing any fact about a hospital (e.g., the
contact person) will involve updating every operation for that hospital. And
if we were to delete the last operation for a hospital, we would also be
deleting the basic details of that hospital. Think about this for a moment.
If we have a transaction “Delete Operation,” its usual effect will be to delete
the record of an operation only. But if the operation is the last for a

2.7 Second and Third Normal Forms ■ 47

6We say “could” because we would now have a choice of primary keys. The original key
would still work. This issue of multiple candidate keys is discussed in Section 2.8.3.

Simsion-Witt_02 10/11/04 8:47 PM Page 47

particular hospital, the transaction has the additional effect of deleting data
about the hospital as well. If we want to prevent this, we will need to
explicitly handle “last operations” differently, a fairly clear violation of our
elegance criterion.

2.7.2 Eliminating Redundancy

We can solve all of these problems by removing the hospital information
to a separate table in which each hospital number appears once only (and
therefore is the obvious choice for the table’s key). Figure 2.12 shows the
result. We keep Hospital Number in the original Operation table to tell us
which row to refer to in the Hospital table if we want relevant hospital
details. Once again, it is vital that Hospital Number identifies one row only,
to prevent any ambiguity.

We have gained quite a lot here. Not only do we now hold hospital
information once only; we are also able to record details of a hospital even
if we do not yet have an operation recorded for that hospital.

2.7.3 Determinants

It is important to understand that this whole procedure of separating hos-
pital data relied on the fact that for a given hospital number there could be
only one hospital name, contact person, hospital type, and teaching status.
In fact we could look at the dependency of hospital data on hospital
number as the cause of the problem. Every time a particular hospital
number appeared in the Operation table, the hospital name, contact
person, hospital type, and teaching status were the same. Why hold them
more than once?

48 ■ Chapter 2 Basics of Sound Structure

Figure 2.12 Hospital data removed to separate table.

OPERATION (Hospital Number, Operation Number, Operation Name, Operation Code,
Procedure Group, Surgeon Number, Surgeon Specialty)

HOSPITAL (Hospital Number, Hospital Name, Hospital Type, Teaching Status, Contact
Person)

DRUG ADMINISTRATION (Hospital Number, Operation Number, Drug Short Name,
Size of Dose, Unit of Measure, Method of Administration, Dose Cost, Number of Doses,
Drug Name, Manufacturer)

Simsion-Witt_02 10/11/04 8:47 PM Page 48

Formally, we say that Hospital Number is a determinant of the other four
columns. We can show this as:

Hospital Number� Hospital Name, Contact Person, Hospital Type, Teaching Status
where we read “�” as “determines” or “is a determinant of.”
Determinants need not consist of only one column; they can be a com-

bination of two or more columns, in which case we can use a + sign to
indicate such a combination. For example: Hospital Number + Operation
Number � Surgeon Number.

This leads us to a more formal description of the procedure:

1. Identify any determinants, other than the primary key, and the columns
they determine (we qualify this rule slightly in Section 2.7.3).

2. Establish a separate table for each determinant and the columns it deter-
mines. The determinant becomes the key of the new table.

3. Name the new tables.

4. Remove the determined columns from the original table. Leave the
determinants to provide links between tables.

Of course, it is easy to say “Identify any determinants.” A useful starting
point is to:

1. Look for columns that appear by their names to be identifiers (“code,”
“number”, “ID”, and sometimes “Name” being obvious candidates).
These may be determinants or components of determinants.

2. Look for columns that appear to describe something other than what the
table is about (in our example, hospitals rather than operations). Then
look for other columns that identify this “something” (Hospital Number in
this case).

Our “other than the key” exception in step 1 of the procedure is inter-
esting. The problems with determinants arise when the same value appears
in more than one row of the table. Because hospital number 17 could
appear in more than one row of the Operation table, the corresponding
values of Contact Person and other columns that it determined were also held
in more than one row—hence, the redundancy. But each value of the key
itself can appear only once, by definition.

We have already dealt with “Hospital Number � Hospital Name, Contact
Person, Hospital Type, Teaching Status.”

Let’s check the tables for other determinants.
Operation table:
Hospital Number + Surgeon Number � Surgeon Specialty
Operation Code � Operation Name, Procedure Group
Drug Administration table:
Drug Short Name � Drug Name, Manufacturer

2.7 Second and Third Normal Forms ■ 49

Simsion-Witt_02 10/11/04 8:47 PM Page 49

Drug Short Name + Method of Administration + Size of Dose + Unit of Measure
� Dose Cost
How did we know, for example, that each combination of Drug Short

Name, Method of Administration, and Size of Dose would always have the same
cost? Without knowledge of every row that might ever be stored in the table,
we had to look for a general rule. In practice, this means asking the busi-
ness specialist. Our conversation might have gone along the following lines:

■ Modeler: What determines the Dose Cost?
■ Business Specialist: It depends on the drug itself and the size of the dose.
■ Modeler: So any two doses of the same drug and same size would

always cost the same?
■ Business Specialist: Assuming, of course, they were administered by the

same method; injections cost more than pills.
■ Modeler: But wouldn’t cost vary from hospital to hospital (and operation

to operation)?
■ Business Specialist: Strictly speaking, that’s true, but it’s not what we’re

interested in. We want to be able to compare prescribing practices, not
how good each hospital is at negotiating discounts. So we use a stan-
dardized cost.

■ Modeler: So maybe we could call this column “Standard Dose Cost” rather
than “Dose Cost.” By the way, where does the standard cost come from?

Note that if the business rules were different, some determinants might
well be different. For example, consider the rule “We use a standardized
cost.” If this did not apply, the determinant of Dose Cost would include
Hospital Number as well as the other data items identified.

Finding determinants may look like a technical task, but in practice
most of the work is in understanding the meaning of the data and the
business rules.

For example, we might want to question the rule that Hospital Number +
Operation Number determines Surgeon Number. Surely more than one surgeon
could be associated with an operation. Or are we referring to the surgeon
in charge, or the surgeon who is to be contacted for follow-up?

The determinant of Surgeon Specialty is interesting. Surgeon Number alone
will not do the job because the same surgeon number could be allocated
by more than one hospital. We need to add Hospital Number to form a true
determinant. Think about the implications of this method of identifying
surgeons. The same surgeon could work at more than one hospital, and
would be allocated different surgeon numbers. Because we have no way
of keeping track of a surgeon across hospitals, our system will not fully
support queries of the type “List all the operations performed by a particular
surgeon.” As data modelers, we need to ensure the user understands this
limitation of the data and that it is a consequence of the strategy used to
ensure surgeon anonymity.

50 ■ Chapter 2 Basics of Sound Structure

Simsion-Witt_02 10/11/04 8:47 PM Page 50

By the way, are we sure that a surgeon can have only one specialty?
If not, we would need to show Surgeon Specialty as a repeating group. For
the moment, we will assume that the model correctly represents reality, but
the close examination of the data that we do at this stage of normalization
often brings to light issues that may take us back to the earlier stages of
preparation for normalization and removal of repeating groups.

2.7.4 Third Normal Form

Figure 2.13 shows the final model. Every time we removed data to a sepa-
rate table, we eliminated some redundancy and allowed the data in the
table to be stored independently of other data (for example, we can now
hold data about a drug, even if we have not used it yet).

Intuitive designers call this “creating reference tables” or, more collo-
quially, “creating look-up tables.” In the terminology of normalization, we
say that the model is now in third normal form (3NF). We will anticipate
a few questions right away.

2.7.4.1 What Happened to Second Normal Form?

Our approach took us directly from first normal form (data in tabular form)
to third normal form. Most texts treat this as a two-stage process, and

2.7 Second and Third Normal Forms ■ 51

Figure 2.13 Fully normalized drug expenditure model.

OPERATION (Hospital Number, Operation Number, Operation Code, Surgeon Number)

SURGEON (Hospital Number, Surgeon Number, Surgeon Specialty)

OPERATION TYPE (Operation Code, Operation Name, Procedure Group)

STANDARD DRUG DOSAGE (Drug Short Name, Size of Dose, Unit of Measure,
Method of Administration, Standard Dose Cost)

DRUG (Drug Short Name, Drug Name, Manufacturer)

HOSPITAL (Hospital Number, Hospital Name, Hospital Type, Teaching Status, Contact
Person)

DRUG ADMINISTRATION (Hospital Number, Operation Number, Drug Short Name,
Size of Dose, Unit of Measure, Method of Administration, Number of Doses)

Simsion-Witt_02 10/11/04 8:47 PM Page 51

deal first with determinants that are part of the table’s key and later with
non-key determinants. For example, Hospital Code is part of the key of
Operation, so we would establish the Hospital table in the first stage.
Similarly, we would establish the Drug and Standard Drug Dosage
tables as their keys form part of the key of the Drug Administration table.
At this point we would be in Second Normal Form (2NF), with the
Operation Type and Surgeon information still to be separated out. The
next stage would handle these, taking us to 3NF.

But be warned: most explanations that take this line suggest that you
handle determinants that are part of the key first, then determinants that are
made up entirely from nonkey columns. What about the determinant of
Surgeon Specialty? This is made up of one key column (Hospital Number) plus
one nonkey column (Surgeon Number) and is in danger of being overlooked.
Use the two-stage process to break up the task if you like, but run a final
check on determinants at the end.

Most importantly, we only see 2NF as a stage in the process of getting
our data fully normalized, never as an end in itself.

2.7.4.2 Is “Third Normal Form” the Same as “Fully Normalized”?

Unfortunately, no. There are three further well-established normal forms:
Boyce-Codd Normal Form (BCNF), Fourth Normal Form (4NF), and Fifth
Normal Form (5NF). We discuss these in Chapter 13. The good news is
that in most cases, including this one, data in 3NF is already in 5NF. In
particular, 4NF and 5NF problems usually arise only when dealing with
tables in which every column is part of the key. By the way, “all key” tables
are legitimate and occur quite frequently in fully normalized structures.

A Sixth Normal Form (6NF) has been proposed, primarily to deal with
issues arising in representing time-dependent data. We look briefly at 6NF
in Section 15.3.3.

2.7.4.3 What about Performance? Surely all Those Tables Will Slow
Things Down?

There are certainly a lot of tables for what might seem to be relatively little
data. This is partly because we deliberately left out quite a few columns,
such as Hospital Address, which did not do much to illustrate the normal-
ization process. This is done in virtually all illustrative examples, so they
have a “stripped-down” appearance compared with those you will encounter
in practice.

Thanks to advances in the capabilities of DBMSs, and the increased
power of computer hardware, the number of tables is less likely to be an
important determinant of performance than it might have been in the past.

52 ■ Chapter 2 Basics of Sound Structure

Simsion-Witt_02 10/11/04 8:47 PM Page 52

But the important point, made in Chapter 1, is that performance is not
an issue at this stage. We do not know anything about performance
requirements, data and transaction volumes, or the hardware and software
to be used. Yet time after time, trainee modelers given this problem will do
(or not do) things “for the sake of efficiency.” For the record, the actual
system on which our example is based was implemented completely with-
out compromise and performed as required.

Finally, recall that in preparing for normalization, we split the original
Drug Code into Drug Short Name, Size of Dose, and Unit of Measure. At the time,
we mentioned that this would affect the final result. We can see now that
had we kept them together, the key of the Drug table would have been
the original compound Drug Code. A look at some sample data from such a
table will illustrate the problem this would have caused (Figure 2.14).

We are carrying the fact that “Max” is the short name for Maxicillin
redundantly, and would be unable to neatly record a short name and its
meaning unless we had established the available doses—a typical symptom
of unnormalized data.

2.8 Definitions and a Few Refinements

We have taken a rather long walk through what was, on the surface, a fairly
simple example. In the process, though, we have encountered most of the
problems that arise in getting data models into 3NF. Because we will be
discussing normalization issues throughout the book, and because you will
encounter them in the literature, it is worth reviewing the terminology and
picking up a few additional important concepts.

2.8.1 Determinants and Functional Dependency

We have already covered determinants in some detail. Remember that a
determinant can consist of one or more columns and must comply with the
following formula:

For each value of the determinant, there can only be one value of
some other nominated column(s) in the table at any point in time.

2.8 Definitions and a Few Refinements ■ 53

Figure 2.14 Drug table resulting from complex drug code.

Drug Code Drug Name

Max 50mg Maxicillin
Max 100mg Maxicillin
Max 200mg Maxicillin

Simsion-Witt_02 10/11/04 8:47 PM Page 53

Equivalently we can say that the other nominated columns are function-
ally dependent on the determinant. The determinant concept is what 3NF
is all about; we are simply grouping data items around their determinants.

2.8.2 Primary Keys

We have introduced the underline convention to denote the primary key of
each table, and we have emphasized the importance of primary keys in nor-
malization. A primary key is a nominated column or combination of columns
that has a different value for every row in the table. Each table has one (and
only one) primary key. When checking this with a business person, we
would say, “If I nominated, say, a particular account number, would you be
able to guarantee that there was never more than one account with that
number?” We look at primary keys in more detail in Chapter 6.

2.8.3 Candidate Keys

Sometimes more than one column or combination of columns could serve
as a primary key. For example, we could have chosen Drug Name rather
than Drug Short Name as the primary key of the Drug table (assuming, of
course, that no two drugs could have the same name). We refer to such
possible primary keys, whether chosen or not, as candidate keys. From
the point of view of normalization, the important thing is that candidate
keys that have not been chosen as the primary key, such as Drug Name, will
be determinants of every column in the table, just as the primary key is.
Under our normalization rules, as they stand, we would need to create a
separate table for the candidate key and every other column (Figure 2.15).

All we have done here is to create a second table that will hold exactly
the same data as the first—albeit with a different primary key.

To cover this situation formally, we need to be more specific in our rule
for which determinants to use as the basis for new tables. We previously
excluded the primary key; we need to extend this to all candidate keys.
Our first step then should strictly begin:

“Identify any determinants, other than candidate keys . . .”

54 ■ Chapter 2 Basics of Sound Structure

Figure 2.15 Separate tables for each candidate key.

DRUG 1 (Drug Short Name, Drug Name, Manufacturer)

DRUG 2 (Drug Name, Drug Short Name, Manufacturer)

Simsion-Witt_02 10/11/04 8:47 PM Page 54

2.8.4 A More Formal Definition of Third Normal Form

The concepts of determinants and candidate keys give us the basis for a
more formal definition of Third Normal Form (3NF). If we define the term
“nonkey column” to mean “a column that is not part of the primary key,”
then we can say:

A table is in 3NF if the only determinants of nonkey columns are
candidate keys.7

This makes sense. Our procedure took all determinants other than can-
didate keys and removed the columns they determined. The only determi-
nants left should therefore be candidate keys. Once you have come to grips
with the concepts of determinants and candidate keys, this definition of 3NF
is a succinct and practical test to apply to data structures. The oft-quoted
maxim, “Each nonkey column must be determined by the key, the whole
key, and nothing but the key,” is a good way of remembering first, second,
and third normal forms, but not quite as tidy and rigorous.

Incidentally, the definition of Boyce-Codd Normal Form (BCNF) is even
simpler: a table is in BCNF if the only determinants of any columns (i.e.,
including key columns) are candidate keys. The reason that we defer
discussion of BCNF to Chapter 13 is that identifying a BCNF problem is one
thing; fixing it may be another.

2.8.5 Foreign Keys

Recall that when we removed repeating groups to a new table, we carried
the primary key of the original table with us, to cross-reference or “point
back” to the source. In moving from first to third normal form, we left deter-
minants behind as cross-references to the relevant rows in the new tables.

These cross-referencing columns are called foreign keys, and they are
our principal means of linking data from different tables. For example,
Hospital Number (the primary key of Hospital) appears as a foreign key in
the Surgeon and Operation tables, in each case pointing back to the rel-
evant hospital information. Another way of looking at it is that we are using
the foreign keys as substitutes8 or abbreviations for hospital data; we can
always get the full data about a hospital by looking up the relevant row in
the Hospital table.

Note that “elsewhere in the data model” may include “elsewhere in the
same table.” For example, an Employee table might have a primary key of

2.8 Definitions and a Few Refinements ■ 55

7If we want to be even more formal, we should explicitly exclude trivial determinants: each
column is, of course, a determinant of itself.
8The word we wanted to use here was “surrogates” but it carries a particular meaning in the
context of primary keys—see Chapter 6.

Simsion-Witt_02 10/11/04 8:47 PM Page 55

Employee Number. We might also hold the employee number of each
employee’s manager (Figure 2.16). The Manager’s Employee Number would
be a foreign key. This structure appears quite often in models as a means
of representing hierarchies. A common convention for highlighting the
foreign keys in a model is an asterisk, as shown.

For the sake of brevity, we use the asterisk convention in this book. But
when dealing with more complex models, and recording the columns in a
list as in Figure 2.6, we suggest you mark each foreign key column by
including in its description the fact that it forms all or part of a foreign key
and the name of the table to which it points (Figure 2.17).

Some columns will be part of more than one primary key and, hence,
potentially of more than one foreign key: for example, Hospital Number is
the primary key of Hospital, but also part of the primary keys of
Operation, Surgeon, and Drug Administration.

It is a good check on normalization to mark all of the foreign keys and
then to check whether any column names appear more than once in
the overall model. If they are marked as foreign keys, they are (probably)
serving the required purpose of cross-referencing the various tables. If not,
there are three likely possibilities:

1. We have made an error in normalization; perhaps we have moved a
column to a new table, but forgotten to remove it from the original table.

2. We have used the same name to describe two different things; perhaps
we have used the word “Unit” to mean both “unit of measure” and
“(organizational) unit in which the surgeon works” (as in fact actually
happened in the early stages of designing the more comprehensive
version of this model).

3. We have failed to correctly mark the foreign keys.

In Chapter 3, foreign keys will play an important role in translating our
models into diagrammatic form.

2.8.6 Referential Integrity

Imagine we are looking at the values in a foreign key column—perhaps the
hospital numbers in the Operation table that point to the relevant Hospital
records. We would expect every hospital number in the Operation table to

56 ■ Chapter 2 Basics of Sound Structure

Figure 2.16 A foreign key convention.

EMPLOYEE (Employee Number, Name, Manager’s Employee Number*, . . .)

Simsion-Witt_02 10/11/04 8:47 PM Page 56

have a matching hospital number in the Hospital table. If not, our data-
base would be internally inconsistent as critical information about the hos-
pital at which an operation was performed would be missing.

Modern DBMSs provide referential integrity features that ensure auto-
matically that each foreign key value has a matching primary key value.
Referential integrity is discussed in more detail in Section 14.5.4.

2.8.7 Update Anomalies

Discussions of normalization often refer to update anomalies. The term
nicely captures most of the problems which normalization addresses,
particularly if the word “update” is used in its broadest sense to include the
insertion and deletion of data, and if we are talking about structures, which
are at least in tabular form.

As we have seen, performing simple update operations on structures
which are not fully normalized may lead to inconsistent or incomplete data.
In the unnormalized and partially normalized versions of the drug expen-
diture model, we saw:

1. Insertion anomalies. For example, recording a hospital for which there
were no operations would have required the insertion of a dummy
operation record or other artifice.

2. Change anomalies. For example, the name of a drug could appear in
many places; updating it in one place would have left other records
unchanged and hence inconsistent.

3. Deletion anomalies. For example, deleting the record of the only oper-
ation performed at a particular hospital would also delete details of the
hospital.

Textbook cases typically focus on such update anomalies and use exam-
ples analogous to the above when they want to show that a structure is not
fully normalized.

2.8 Definitions and a Few Refinements ■ 57

Figure 2.17 A more comprehensive foreign key convention.

DRUG ADMINISTRATION
Hospital Number: FK of Hospital, Part FK of Operation
Operation Number: Part FK of Operation
Drug Short Name: FK of Drug, Part FK of Standard Drug Dosage
Size of Dose: Part FK of Standard Drug Dosage
Unit of Measure: Part FK of Standard Drug Dosage
Method of Administration: Part FK of Standard Drug Dosage
Number of Doses

Simsion-Witt_02 10/11/04 8:47 PM Page 57

2.8.8 Denormalization and Unnormalization

As we know, from time to time it is necessary to compromise one data mod-
eling objective to achieve another. Occasionally, we will be obliged to imple-
ment database designs that are not fully normalized in order to achieve some
other objective (most often performance). When doing this, it is important to
look beyond “normalization,” as a goal in itself, to the underlying benefits it
provides: completeness, nonredundancy, flexibility of extending repeating
groups, ease of data reuse, and programming simplicity. These are what we
are sacrificing when we implement unnormalized,9 or only partly normalized,
structures.

In many cases, these sacrifices will be prohibitively costly, but in others,
they may be acceptable. Figure 2.18 shows two options for representing
data about a fleet of aircraft. The first model consists of a single table which
is in 1NF, but not in 3NF; the second is a normalized version of the first,
comprising four tables.

If we were to find (through calculations or measurement, not just intuition)
that the performance cost of accessing the four tables to build up a picture
of a given aircraft was unacceptable, we might consider a less-than-fully-
normalized structure, although not necessarily the single table model of Figure
2.18(a). In this case, it may be that the Variant, Model, and Manufacturer
tables are very stable, and that we are not interested in holding the data unless
we have an aircraft of that type. Nevertheless, we would expect that there
would be some update of this data, and we would still have to provide the
less-elegant update programs no matter how rarely they were used.

58 ■ Chapter 2 Basics of Sound Structure

Figure 2.18 Normalization of aircraft data.

(a) Unnormalized Model
AIRCRAFT (Aircraft Tail Number, Purchase Date, Model Name, Variant Code, Variant
Name, Manufacturer Name, Manufacturer Supplier Code)
(b) Normalized Model
AIRCRAFT (Aircraft Tail Number, Purchase Date, Variant Code*)
VARIANT (Variant Code, Variant Name, Model Name*)
MODEL (Model Name, Manufacturer Code*)
MANUFACTURER (Manufacturer Supplier Code, Manufacturer Name)

9Strictly, unnormalized means “not in 1NF” and denormalized means “in 1NF but not fully
normalized.” However, these terms are often used loosely and interchangeably to refer to
any structures that are not fully normalized. Unnormalized may be used to mean “prior to
normalization” and denormalized to mean “after deliberate compromises to structures which
were previously fully normalized.”

Simsion-Witt_02 10/11/04 8:47 PM Page 58

Considered decisions of this kind are a far cry from the database design
folklore that regards denormalization as the first tactic in achieving acceptable
performance, and sometimes even as a standard implementation practice
regardless of performance considerations. Indeed, the word “denormalization”
is frequently used to justify all sorts of design modifications that have nothing
to do with normalization at all. We once saw a data model grow from
25 to 80 tables under the guise of “denormalization for performance.”
(We would expect denormalization to reduce the number of tables.)

To summarize:

■ Normalization is aimed at achieving many of the basic objectives of data
modeling, and any compromise should be evaluated in the light of the
impact on those objectives.

■ There are other techniques for achieving better database performance,
many of them affecting only the physical design. These should always be
thoroughly explored before compromising the logical database design.

■ The physical structure options and optimizers provided by DBMSs are
reducing the importance of denormalization as a technique for improv-
ing performance.

■ No change should ever be made to a logical database design without
consultation with the data modeler.

2.8.9 Column and Table Names

In carrying out the normalization process, we took our column names
from the original paper form, and we made up table names as we needed
them. In a simple example such as this, we may not encounter too many
problems with such a casual approach, yet we noted (in Section 2.8.5) that
the word “unit” might refer to both the unit in which a surgeon worked and
a unit of measure. A close look at the column names suggests that they do
not fulfill their potential: for example the column name Operation Code
suggests that the values in the column will be drawn from a set of codes—
potentially useful information. But surely the same would apply to Method
of Administration, which should then logically be named Method of
Administration Code.

What we need is a consistent approach to column naming in particular,
to convey the meaning of each column as clearly as possible10 and to allow
duplicates to be more readily identified. We look at some suitable rules and
conventions in Chapter 5.

2.8 Definitions and a Few Refinements ■ 59

10As we shall see in Chapter 3, names alone are not sufficient to unambiguously define the
meaning of columns; they need to be supported by definitions.

Simsion-Witt_02 10/11/04 8:47 PM Page 59

2.9 Choice, Creativity, and Normalization

Choice and creativity have not featured much in our discussion of normal-
ization so far. Indeed, normalization by itself is a deterministic process,
which makes it particularly attractive to teachers; it is always nice to be able
to set a problem with a single right answer. The rigor of normalization, and
the emphasis placed on it in teaching and research, has sometimes encour-
aged a view that data modeling as a whole is deterministic.

On the contrary, normalization is only one part of the modeling process.
Let’s look at our example again with this in mind.

We started the problem with a set of columns. Where did they come
from? Some represented well-established classifications; Operation Code
was defined according to an international standard. Some classified other
data sought by the study—Hospital Name, Contact Person, Surgeon Specialty.
And some were invented by the form designer (the de facto modeler): the
study group had not asked for Hospital Number, Drug Short Name, or Surgeon
Number.

We will look at column definition in some detail in Chapter 5; for the
moment, let us note that there are real choices here. For example, we could
have allocated nonoverlapping ranges of surgeon numbers to each hospital
so that Surgeon Number alone was the determinant of Surgeon Specialty. And
what if we had not invented a Hospital Number at all? Hospital Name and
Contact Person would have remained in the Operation table, with all the
apparent redundancy that situation would imply. We could not remove
them because we would not have a reliable foreign key to leave behind.

All of these decisions, quite outside the normalization process, and
almost certainly “sellable” to the business users (after all, they accepted the
unnormalized design embodied in the original form), would have affected
our final solution. The last point is particularly pertinent. We invented a
Hospital Number and, at the end of the normalization process, we had a
Hospital table. Had we not recognized the concept of “hospital” (and
hence the need for a hospital number to identify it) before we started nor-
malization, we would not have produced a model with a Hospital table.
There is a danger of circular reasoning here; we implicitly recognize the
need for a Hospital table, so we specify a Hospital Number to serve as a key,
which in turn leads us to specify a Hospital table.

A particularly good example of concepts being embodied in primary
keys is the old account-based style of banking system. Figure 2.19 shows

60 ■ Chapter 2 Basics of Sound Structure

Figure 2.19 Traditional savings account model.

SAVINGS ACCOUNT (Savings Account Number, Name, Address, Account Class, Interest Rate, . . .)

Simsion-Witt_02 10/11/04 8:47 PM Page 60

part of a typical savings account file (a savings account table, in modern
terms). Similar files would have recorded personal loan accounts, checking
accounts, and so on. This file may or may not be normalized (for example,
Account Class might determine Interest Rate), but no amount of normalizing
will provide two of the key features of many modern banking data models:
recognition of the concept of “customer,” and integration of different
types of accounts. Yet we can achieve this very simply by adding a
Customer Number (uniquely identifying each customer) and replacing the
various specific account numbers with a generic Account Number.

Let us be very clear about what is happening here. At some stage in the
past, an organization may have designed computer files or manual records
and invented various “numbers” and “identifiers” to identify individual
records, forms, or whatever. If these identifiers are still around when we get
to normalization, our new data model will contain tables that mirror these
old classifications of data, which may or may not suit today’s requirements.

In short, uncritical normalization perpetuates the data organization of
the past.

In our prenormalization tidying-up phase, we divided complex facts into
more primitive facts. There is a degree of subjectivity in this process. By
eliminating a multifact column, we add apparent complexity to the model
(the extra columns); on the other hand, if we use a single column, we may
hide important relationships amongst data, and will need to define a code
for each allowable combination.

We will need to consider:

■ The value of the primitive data to the business: A paint retailer might
keep stock in a number of colors but would be unlikely to need to
break the color codes into separate primary color columns (Percentage
Red, Percentage Yellow, Percentage Blue); but a paint manufacturer who was
interested in the composition of colors might find this a workable
approach.

■ Customary and external usage: If a way of representing data is well
established, particularly outside the business, we may choose to live
with it rather than become involved in “reinventing the wheel” and
translating between internal and external coding schemes. Codes that
have been standardized for electronic data interchange (e-business) are
frequently overloaded, or suffer from other deficiencies, which we will
discuss in Chapter 5. Nevertheless, the best trade-off often means
accepting these codes with their limitations.

Finally, identification of repeating groups requires a decision about
generalization. In the example we decide that (for example) Drug Name 1,
Drug Name 2, Drug Name 3, and Drug Name 4 are in some sense the “same
sort of thing,” and we represent them with a generic Drug Name. It is hard
to dispute this case, but what about the example in Figure 2.20?

2.9 Choice, Creativity, and Normalization ■ 61

Simsion-Witt_02 10/11/04 8:47 PM Page 61

Here we have different currency exchange rates, depending on the
number of days until the transaction will be settled. There seems to be a
good argument for generalizing most of the rates to a generic Rate, giving
us a repeating group, but should we include Spot Rate, which covers settle-
ment in two days? On the one hand, renaming it “Exchange Rate 2 Days”
would probably push us towards including it; on the other, the business
has traditionally adopted a different naming convention, perhaps because
they see it as somehow different from the others. In fact, spot deals are
often handled differently, and we have seen experienced data modelers
in similar banks choose different options, without violating any rules of
normalization.

Common examples of potential repeating groups include sequences of
actions and roles played by people (Figure 2.21).

In this section, we have focused on the choices that are not usually
explicitly recognized in the teaching and application of normalization
theory, in particular the degree to which primary key selection preempts
the outcome. It is tempting to argue that we might as well just define a
table for each concept and allocate columns to tables according to common
sense. This approach would also help to overcome another problem
with the normalization process: the need to start with all data organized
into a single table. In a complex real-world model, such a table would be
unmanageably large.

In fact, this is the flavor of Chapter 3. However, normalization provides
a complementary technique to check that columns are where they belong
and that we have not missed any of the less obvious tables. The approach
to data modeling projects described in Part 2 begins with top-down
modeling, which gives us a first-cut set of tables, and then uses normaliza-
tion as a test to ensure that these tables are free of the avoidable problems
we have discussed in this chapter.

2.10 Terminology

In this chapter we have used terminology based around tables: more specif-
ically tables, columns, and rows. These correspond fairly closely with the
familiar (to older computer professionals) concepts of files, data items (or
fields), and records, respectively.

62 ■ Chapter 2 Basics of Sound Structure

Figure 2.20 Currency exchange rates.

CURRENCY (Currency ID, Date, Spot Rate, Exchange Rate 3 Days, Exchange Rate 4 Days,
Exchange Rate 5 Days, . . .)

Simsion-Witt_02 10/11/04 8:47 PM Page 62

Most theoretical work on relational structures uses a different set of
terms: relations, attributes, and tuples, respectively. This is because much
of the theory of tabular data organization, including normalization, comes
from the mathematical areas of relational calculus and relational algebra.

All that this means to most practitioners is a proliferation of different
words for essentially the same concepts. We will stick with tables, columns,
and rows, and we will refer to models in this form as relational models. If
you are working with a relational DBMS, you will almost certainly find
the same convention used, but be prepared to encounter the more formal
relational terminology in books and papers, and to hear practitioners
talking about files, records, and items. Old habits die hard!

2.11 Summary

Normalization is a set of techniques for organizing data into tables in such
a way as to eliminate certain types of redundancy and incompleteness, and
associated complexity and/or anomalies when updating it. The modeler
starts with a single file and divides it into tables based on dependencies
among the data items. While the process itself is mechanistic, the initial data
will always contain assumptions about the business that will affect the out-
come. The data modeler will need to verify and perhaps challenge these
assumptions and the business rules that the data dependencies represent.

Normalization relies on correct identification of determinants and keys.
In this chapter, we covered normalization to third normal form (3NF).
A table is in 3NF if every determinant of a nonkey item is a candidate key.
A table can be in 3NF but still not fully normalized. Higher normal forms
are covered in Chapter 13.

In practice, normalization is used primarily as a check on the correct-
ness of a model developed using a top-down approach.

2.11 Summary ■ 63

Figure 2.21 Generalization produces repeating groups.

APPLICATION (Application ID, Submission Date, Submitted By, Registration Date,
Registered By, Examination Date, Examined By, Approval Date, Approved By, . . .)

SCHOOL (School ID, Principal Name, Principal’s Contact Number, Deputy Principal
Name, Deputy Principal’s Contact Number, Secretary Name, Secretary’s Contact
Number, . . .)

Simsion-Witt_02 10/11/04 8:47 PM Page 63

This page intentionally left blank

Chapter 3
The Entity-Relationship
Approach

“It is above all else the separation of designing from making and the increased
importance of the drawing which characterises the modern design process.”

– Bryan Lawson, How Designers Think

3.1 Introduction

This chapter presents a top-down approach to data modeling, supported by
a widely used diagramming convention. In Chapter 2, the emphasis was on
confirming that the data organization was technically sound. The focus of
this chapter is on ensuring that the data meets business requirements.

We start by describing a procedure for representing existing relational
models, such as those that we worked with in Chapter 2, in diagrammatic
form. We then look at developing the diagrams directly from business
requirements, and introduce a more business-oriented terminology, based
around entity classes (things of interest to the business) and the relation-
ships among them. Much of the chapter is devoted to the correct use of
terminology and diagramming conventions, which provide a bridge
between technical and business views of data requirements.1

3.2 A Diagrammatic Representation

Figure 3.1 is the model we produced in Chapter 2 for the drug expenditure
example.

Imagine for a moment that you are encountering this model for the first
time. Whatever its merits as a rigorous specification for a database designer,
its format does not encourage a quick appreciation of the main concepts and

65

1It would be nice to be able to say (as many texts would) “a common language” rather than
merely a “bridge between views,” but in reality most nonspecialists do not have the ability,
experience, or inclination to develop or interpret data model diagrams directly. We look at the
practicalities of developing and verifying models in Chapter 10. There is further material on the
respective roles of data modeling specialists and other stakeholders in Chapters 8 and 9.

Simsion-Witt_03 10/8/04 8:02 PM Page 65

rules. For example, the fact that each operation can be performed by only
one surgeon (because each row of the Operation table allows only one
surgeon number) is an important constraint imposed by the data model, but
is not immediately apparent. This is as simple a model as we are likely to
encounter in practice. As we progress to models with more tables and more
columns per table, the problem of comprehension becomes increasingly
serious.

Process modelers solve this sort of problem by using diagrams, such as data
flow diagrams and activity diagrams, showing the most important features of
their models. We can approach data models the same way, and this chapter
introduces a widely used convention for representing them diagrammatically.

3.2.1 The Basic Symbols: Boxes and Arrows

We start by presenting our model as a data structure diagram using just
two symbols:

1. A “box” (strictly speaking, a rectangle)2 represents a table.

2. An arrow3 drawn between two boxes represents a foreign key pointing
back to the table where it appears as a primary key.

The boxes are easy. Just draw a box for each table in the model
(Figure 3.2), with the name of the table inside it.

66 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.1 Drug expenditure model in relational notation.

OPERATION (Hospital Number*, Operation Number, Operation Code*, Surgeon
Number*)
SURGEON (Hospital Number*, Surgeon Number, Surgeon Specialty)
OPERATION TYPE (Operation Code, Operation Name, Procedure Group)
STANDARD DRUG DOSAGE (Drug Short Name*, Size of Dose, Unit of Measure,
Method of Administration, Standard Dose Cost)
DRUG (Drug Short Name, Drug Name, Manufacturer)
HOSPITAL (Hospital Number, Hospital Name, Hospital Category, Contact Person)
DRUG ADMINISTRATION (Hospital Number*, Operation Number*, Drug Short Name*,
Size of Dose*, Unit of Measure*, Method of Administration*, Number of Doses)

2At this stage, we are producing a data structure diagram in which the boxes represent tables.
Later in this chapter we introduce boxes with rounded corners to represent business entity classes.
3For the moment, we will refer to these lines as arrows, as it is useful at this stage to see them
as “pointing” to the primary key.

Simsion-Witt_03 10/8/04 8:02 PM Page 66

3.2 A Diagrammatic Representation ■ 67

3.2.2 Diagrammatic Representation of Foreign Keys

To understand how to draw the arrows, look at the Operation and
Surgeon tables. The primary key of Surgeon (Hospital Number + Surgeon
Number) appears in the Operation table as a foreign key. Draw a line
between the two boxes, and indicate the direction of the link by putting a
“crow’s foot”4 at the foreign key end (Figure 3.3). You can think of the
crow’s foot as an arrow pointing back to the relevant surgeon for each
operation.

Figure 3.2 Boxes representing tables.

Hospital

Operation

Operation
Type Surgeon

Drug
Admin

Drug

Standard
Drug Dosage

4Some refer to these as “chicken feet.” The shape would seem to be common to a wide range
of birds, but we have only encountered these two variants. Excessive attention to matters of
this kind is the sort of thing that gives data modelers a reputation for pedantry.

Simsion-Witt_03 10/8/04 8:02 PM Page 67

3.2.3 Interpreting the Diagram

If presented only with this diagram, we could deduce at least four important
things:

1. The model specifies a Surgeon table (hence we want to keep data
about surgeons).

2. The model specifies an Operation table (hence we want to keep data
about operations).

3. Each operation can be associated with only one surgeon (because the
key of Surgeon can appear only once in each row of the Operation
table, and this is reflected in the diagram by the crow’s foot “pointing
back” to a single Surgeon row).

4. Each surgeon could be associated with many operations (because there
is nothing to stop many rows of the Operation table containing the
same value for the foreign key of Surgeon; again, the positioning of the
crow’s foot at the Operation end of the arrow captures this).

The first two rules would have been obvious from the relational repre-
sentation, the other two much less so. With the diagram, we have suc-
ceeded in summarizing the relationships between tables implied by our
primary and foreign keys, without having to actually list any column names
at all.

We could now ask a business specialist, referring to the diagram: “Is it
true that each operation is performed by one surgeon only?” It is possible
that this is not so, or cannot be relied upon to be so in future. Fortunately,
we will have identified the problem while the cost of change is still only a
little time reworking the model (we would need to represent the surgeon
information as a repeating group in the Operation table, then remove it
using the normalization rules).

Let us assume that the client in fact confirms that only one surgeon should
be recorded against each operation but offers some explanation: while more
than one surgeon could in reality participate in an operation, the client is
only interested in recording details of the surgeon who managed the opera-
tion. Having made this decision, it is worth recording it on the diagram

68 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.3 Foreign key represented by arrow and crow’s foot.

Surgeon Operation

Simsion-Witt_03 10/8/04 8:02 PM Page 68

(Figure 3.4), first to avoid the question being revisited, and second to specify
more precisely what data will be held. It is now clear that the database will
not be able to answer the question: “In how many operations did surgeon
number 12 at hospital number 18 participate?” It will support: “How many
operations did surgeon number 12 at hospital number 18 manage?”

As well as annotating the diagram, we should change the name of the
Surgeon Number column in the Operation table to “Managing Surgeon
Number.”

3.2.4 Optionality

The diagram may also raise the possibility of operations that do not involve
any surgeons at all: “We don’t usually involve a surgeon when we are treating
a patient with a small cut, but we still need to record whether any drugs were
used.” In this case, some rows in the Operation table may not contain a value
for Surgeon Number. We can show whether the involvement of a surgeon in an
operation is optional or mandatory by using the conventions of Figure 3.5.
Note that the commentary about the optionality would not normally be

3.2 A Diagrammatic Representation ■ 69

Figure 3.4 Annotated relationship.

Surgeon Operation
manage

be managed
by

Figure 3.5 Optional and mandatory relationships.

Surgeon Operation
manage

be managed
by

be managed
by

Surgeon Operation
manage

Each operation must be
managed by a surgeon.

Each surgeon may
manage operations.

Each operation may be
managed by a surgeon.

Each surgeon may
manage operations.

Simsion-Witt_03 10/8/04 8:02 PM Page 69

shown on such a diagram. You can think of the circle as a zero and the
perpendicular bar as a one, indicating the minimum number of surgeons per
operation or (at the other end of the arrow) operations per surgeon.

Our diagram now contains just about as much information about the
Surgeon and Operation tables and their interrelationships as can be
recorded without actually listing columns.5 The result of applying the rules
to the entire drug expenditure model is shown in Figure 3.6.

3.2.5 Verifying the Model

The diagram provides an excellent starting point for verifying the model
with users and business specialists. Intelligent, thorough checking of each

70 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.6 Diagram of drug expenditure model.

Hospital

Operation

Operation
Type

Surgeon

Drug
Admin

Drug

Standard
Drug Dosage

be
performed

at

perform

operate
 at

be
operated
at by

manage

be
classified

by

classify

follow

be
followed by

use

be used in

be used in

use

be of
be
available
in

be prescribed at

prescribe

be
managed

by

5This is not quite all we can usefully record, but few documentation tools support much more
than this. Chapter 7 discusses a number of alternatives and extensions to the conventions pre-
sented here.

Simsion-Witt_03 10/8/04 8:02 PM Page 70

arrow on the diagram will often reveal unsound assumptions and misun-
derstandings or, equally useful, increase stakeholders’ confidence in the
workability of the model.

We have already looked at the relationship between Operation and
Surgeon. Now, let’s consider the relationship between Operation and
Operation Type. It prompts the question: “Are we sure that each opera-
tion can be of only one type?” This is the rule held in the model, but how
would we represent a combined gall bladder removal and appendectomy?
There are at least two possibilities:

1. Allow only “simple” operation types such as “Gall Bladder Removal”
and “Appendectomy.” If this course was selected, the model would
need to be redesigned, based on the operation type information being
a repeating group within the operation; or

2. Allow complex operation types such as “Combined Gall Bladder
Removal and Appendectomy.”

Both options are technically workable and the decision may be made for
us by the existence of an external standard. If the database and associated
system have already been implemented, we will probably be forced to
implement option 2, unless we are prepared to make substantial changes.
But option 1 is more elegant, in that, for example, a single code will be used
for all appendectomies. Queries like, “List all operations that involved
appendectomies,” will therefore be simpler to specify and program.

Examining the relationship between the two tables led to thinking about
the meaning of the tables themselves. Whatever decision we made about
the relationship, we would need to document a clear definition of what was
and what was not a legitimate entry in the Operation Type table.

3.2.6 Redundant Arrows

Look at the arrows linking the Hospital, Operation, and Surgeon tables.
There are arrows from Hospital to Surgeon and from Surgeon to
Operation. Also there is an arrow from Operation direct to Hospital. Does
this third arrow add anything to our knowledge of the business rules
supported by the model? It tells us that each operation must be performed
at one hospital. But we can deduce this from the other two arrows, which
specify that each operation must be managed by a surgeon and that each
surgeon operates at a hospital. The arrow also shows that a program could
“navigate” directly from a row in the Operation table to the corresponding
row in the Hospital table. But our concern is with business rules rather than
navigation. Accordingly, we can remove the “short-cut” arrow from the
diagram without losing any information about the business rules that the
model enforces.

3.2 A Diagrammatic Representation ■ 71

Simsion-Witt_03 10/8/04 8:02 PM Page 71

Figure 3.7 summarizes the rule for removing redundant arrows, but the
rule has some important caveats:

If it were possible for an operation to be recorded without a surgeon
(i.e., if the link to the Surgeon table were optional), we could not remove
the short-cut arrow (from Operation direct to Hospital). If we did, we
could no longer count on being able to deduce from the other arrows the
hospital at which an operation was performed.

If the arrow from Surgeon to Hospital was named (for example)
“be trained at,” then the direct link from Operation to Hospital would
represent different information than the combined link. The former would
identify the hospital at which the operation was performed, the latter which
hospital trained the surgeon who performed the operation.

The value of recording names and optionality on the arrows should now be
a little clearer. For one thing, they allow the correct decision to be made about
which arrows on the diagram are redundant and can be removed. Figure 3.8
shows the result of applying the redundant arrow rule to the whole model.

3.3 The Top-Down Approach:
Entity-Relationship Modeling

In the preceding section, a reasonably straightforward technique was used
to represent a relational data model in diagrammatic form. Although the

72 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.7 Removing redundant arrows.

A

B

C

A

B

C

Simsion-Witt_03 10/8/04 8:02 PM Page 72

diagram contains little new information6, it communicates some of the
model’s most important rules so much more clearly that you should never
review or present a model without drawing one. In the past, databases
were often designed without the use of diagrams, or the working diagrams
were not kept. It is interesting to prepare a diagram for such a database and
show it to programmers and analysts who have been working with the
database for some time.7 Frequently they have never explicitly considered
many of the rules and limitations that the diagram highlights.

There is a good analogy with architecture here: we may have lost the
plans for an existing building, but we can reconstruct them by examining

3.3 The Top-Down Approach: Entity-Relationship Modeling ■ 73

Figure 3.8 Drug expenditure model with redundant lines removed.

Hospital

Operation

Operation
Type Surgeon

Drug
Admin

Drug

Standard
Drug Dosage

operate
at

be
operated
at by

manage

be
classified

 by

classify

follow

be
followed by

be used in

use

be of
be
available
in

be
managed

by

6The new information it contains is the names of the relationships (which can be captured by
well-chosen names for foreign key columns) and whether relationships are optional or manda-
tory in the “many” direction (a relatively unimportant piece of information, captured largely
to achieve symmetry with the “one” end of the relationship, where optionality reflects the fact
that the foreign key columns need not contain a value).
7Techniques for developing diagrams for existing databases (as distinct from well-documented
relational models) are covered in Section 9.5.

Simsion-Witt_03 10/8/04 8:02 PM Page 73

the existing structure and following some accepted diagramming conven-
tions. The plans then form a convenient (and portable) summary of the
building’s design.

3.3.1 Developing the Diagram Top Down

The most interesting thing about the diagram is that it prompts a suspicion
that normalization and subsequent translation into boxes and arrows was
not necessary at all. If instead we had asked the client, “What things do you
need to keep data about?” would we not have received answers such as,
“hospitals, operations, and surgeons?” If we had asked how they were
related, might we not have been able to establish that each operation was
managed by one surgeon only, and so forth? With these questions
answered, could we not draw the diagram immediately, without bothering
about normalization?

In fact, this is the approach most often taken in practice, and the one
that we describe in Part 2 of this book. The modeler develops a diagram
that effectively specifies which tables will be required, how they will need
to be related, and what columns they will contain. Normalization becomes
a final check to ensure that the “grammar” of the model is correct. For
experienced modelers, the check becomes a formality, as they will have
already anticipated the results of normalization and incorporated them into
the diagram.

The reason we looked at normalization first is that in order to produce
a normalized model, you need to know what one looks like, just as an
architect needs to have examined some completed buildings before attempt-
ing to design one. Ultimately, we want a design, made up of sound, fully
normalized tables, that meets our criteria of completeness, nonredundancy,
stability, flexibility, communication, rule enforcement, reusability, integra-
tion, and elegance—not a mish-mash of business concepts. The frequently
given advice, “Ask what things the business needs to keep information
about, and draw a box for each of these,” is overly simplistic, although it
indicates the general direction of the approach.

The need to produce a normalized model should be in the back of our
minds, and we will therefore split up repeating groups and “reference
tables” as we discover them. For example, we might identify a table called
Vehicle. We recognize that some data will be the same for all vehicles of
a particular type and that normalization would produce a Vehicle Type
reference table for this data. Accordingly, a box named “Vehicle Type” is
drawn. We are actually doing a little more than normalization here, as we
do not actually know if there is an existing determinant of Vehicle Type in
the data (e.g., Vehicle Model Number). No matter: we reserve the right to
define one if we need it.

74 ■ Chapter 3 The Entity-Relationship Approach

Simsion-Witt_03 10/8/04 8:02 PM Page 74

In dealing with a Customer table, we may recognize that a customer
may have more than one occupation, and that data about occupations
therefore forms a repeating group that normalization would remove. We
can anticipate this and define a separate Occupation table, again without
knowledge of actual columns and determinants.

The top-down approach also overcomes most of the limitations of
normalization used by itself. We do not need to start with a formidably
complex single table, nor do we need to accept the tables implicitly defined
by our historical choice of determinants.

3.3.2 Terminology

As we shift our focus from the technicalities of table definition toward
business requirementsand indeed toward the conceptual modeling
stage—it helps to introduce a more business-oriented terminology. The
relational models we looked at in Chapter 2 were built on three basic
concepts: tables, columns, and keys.

Our terminology for the conceptual model is more business-oriented.
Again, there are three basic concepts:

1. Entity classes: categories of things of interest to the business; repre-
sented by boxes on the diagram, and generally implemented as tables

2. Attributes: what we want to know about entity classes; not usually
shown on the diagram and generally implemented as columns in
tables

3. Relationships: represented by lines with crows’ feet (we will drop the
term “arrow” now that we are talking about conceptual models), and
generally implemented through foreign keys.

Note the use of the word “generally” in the above descriptions of
how the components of the conceptual model will be implemented. As we
shall see later in this chapter, and in Chapters 11 and 12, there are
some exceptions, which represent important transformations and design
decisions as we move from the conceptual model to logical and physical
models.

Do not be daunted by the new terms. Broadly speaking, we have just
introduced a less technical language, to enable us to talk about (for exam-
ple) “the relationship between a hospital and a surgeon,” rather than “the
existence of the primary key of Hospital as a foreign key in the Surgeon
table.”

The process of designing appropriate classes of entity classes, relationships,
and attributes to meet a business problem is called entity-relationship
modeling (E-R modeling for short) or, more generally, conceptual modeling.

3.3 The Top-Down Approach: Entity-Relationship Modeling ■ 75

Simsion-Witt_03 10/8/04 8:02 PM Page 75

(The latter term does not restrict us to using a particular set of conventions;
as we shall see in Chapter 7, there are alternatives and extensions to the
basic entity-relationship approach.) A data model in this format is often
called an E-R8 model or conceptual model, and the diagram an E-R diagram
(ERD). The omission of the word “attribute” from these widely-used terms
reflects the fact that attributes do not generally appear on the diagrams,
which are usually the most visible deliverable of modeling. Of course, the
conceptual model is not just the diagram; E-R modeling needs to produce
(at a minimum) entity class definitions and attribute lists and definitions to
supplement the diagram.

In the following sections, these new terms and their representation are
examined in more detail.

3.4 Entity Classes

An entity class is a real-world class of things such as Hospital. We make
the distinction between entities, such as “St. Vincent’s Hospital” and entity
classes (sometimes called entity types) such as “Hospital.” In practice,
many E-R modelers use the word entity loosely to mean entity class and
use entity instance for those fairly rare occasions when they want to refer
to a single instance. However, modelers with a background in object-
oriented techniques are likely to use the term entity class more strictly,
and they may refer to entity instances as entities. In the interests of clarity
and of improving communication among modelers from different schools,
we use the term entity class throughout this book.9

All entity classes will meet the criterion of being “a class of things we
need to keep information about,” as long as we are happy for “thing” to
include more abstract concepts such as events (e.g., Operation) and clas-
sifications (e.g., Operation Type). However, the converse is not true; many
classes that a user might nominate in response to the question, “What do
you need to keep information about?” would not end up as entity classes.

Some concepts suggested by the user will be complex and will need to
be represented by more than one entity class. For example, invoices would

76 ■ Chapter 3 The Entity-Relationship Approach

8The term Entity Relationship Modeling originated with a paper by Peter Chen: P. Chen, “The
Entity-Relationship Model—Toward a Unified View of Data,” ACM Transactions on Database
Systems, Vol. 1, No. 1. March 1976. The diagramming conventions proposed in that paper are in
fact different from those used here. The Chen convention (recognizable by the use of diamonds
for relationships) is widely used in academic work, but much less so in practice. The conventions
that we use here reflect the Information Engineering (IE) approach associated with Finkelstein
and Martin. The IE conventions in turn have much in common with the Data Structure Diagrams
(“Bachman Diagrams”) used to document conceptual schemas from the late 1960s.
9Strictly, we should also refer to “relationship classes” and “attribute classes” to be consistent
with our use of the term “entity class.” However, these terms are seldom used by practitioners.

Simsion-Witt_03 10/8/04 8:02 PM Page 76

not usually be represented by a single Invoice entity class, but by two
entity classes: Invoice (holding invoice header information) and Invoice
Item (the result of removing the repeating group of invoice items to form
a separate entity class). Other user requirements will be derivable from
more primitive data—for example Quarterly Profit might be derivable
from sales and expense figures represented by other entity classes and their
attributes.

Still other “real-world” classes will overlap and will therefore violate our
nonredundancy requirement. If our model already had Personal Customer
and Corporate Customer entity classes, we would not add a Preferred
Customer entity class if such customers were already catered for by the
original entity classes.10

Finally, some concepts will be represented by attributes or relationships.
There is a degree of subjectivity in deciding whether some concepts are
best represented as entity classes or relationships; is a marriage better
described as a relationship between two people, or as “something we need
to keep information about?”

There is almost always an element of choice in how data is classified
into entity classes. Should a single entity class represent all employees or
should we define separate entity classes for part-time and full-time employ-
ees? Should we use separate entity classes for insurance policies and cover
notes, or is it better to combine them into a single Policy entity class?
We will discuss ways of generating and choosing alternatives in Chapters 4
and 10; for the moment, just note that such choices do exist, even though
they may not be obvious in these early examples.

Now a few rules for representing entity classes. Recommending a par-
ticular set of conventions is one of the best ways of starting an argument
among data modelers, and there was a time when there seemed to be as
many diagramming conventions as modelers. These days, the situation is
somewhat better, thanks mainly to the influence of CASE tools, which
enforce reasonably similar conventions. The rules for drawing entity classes
and relationships presented in this chapter are typical of current practice.

3.4.1 Entity Diagramming Convention

In this book, entity classes are represented by boxes with rounded corners.
We use the rounded corners to distinguish entity classes in conceptual
models from tables (represented by square-cornered boxes) in logical and
physical data models. The latter may include compromises required to

3.4 Entity Classes ■ 77

10This is not strictly true if we allow subtyping and, in particular, subtyping with multiple
partitions. We look at these topics in Chapter 4.

Simsion-Witt_03 10/8/04 8:02 PM Page 77

achieve adequate performance or to suit the constraints of the implemen-
tation software.

There are no restrictions, other than those imposed by your documenta-
tion tools, on the size or color of the boxes. If drawing an entity class box
larger or in another color aids communication, by all means do it. For exam-
ple, you might have a Customer entity class and several associated entity
classes resulting from removing repeating groups: Address, Occupation,
Dependant, and so on. Just drawing a larger box for the Customer entity
class might help readers approach the diagram in a logical fashion.

3.4.2 Entity Class Naming

The name of an entity class must be in the singular and refer to a single
instance (in relational terms, a row)not to the whole table. Thus, collective
terms like File, Table, Catalog, History, and Schedule are inappropriate.

For example, we use:
Account rather than Accounts
Customer rather than Customer File or Customer Table, or even
Customer Record
Product rather than Product Catalog
Historical Transaction rather than Transaction History
Scheduled Visit rather than Visiting Schedule

We do this for three reasons:

1. Consistency: It is the beginning of a naming standard for entity classes.

2. Communication: An entity class is “something we want to keep infor-
mation about,” such as a customer rather than a customer file.

3. Generating business assertions: As we will see in the following section
and in Section 10.18, if we follow some simple rules in naming the com-
ponents of an E-R model, we can automatically generate grammatically
sound assertions which can be checked by stakeholders.

You should be aware of, and avoid, some common bad practices in
entity class naming:

One is to name the entity class after the most “important” attribute—for
example, Dose Cost rather than Standard Drug Dosage, or Specialty
rather than Surgeon. This is particularly tempting when we have only one
nonkey attribute. It looks much less reasonable later when we add further
attributes, or if the original attribute is normalized out to another entity
class. You should also avoid giving an entity class a name that reflects only
a subset of the roles it plays in the business. For example, consider using
Material Item rather than Component, Person rather than Witness, and
Stock Item rather than Returned Item.

78 ■ Chapter 3 The Entity-Relationship Approach

Simsion-Witt_03 10/8/04 8:02 PM Page 78

Another mistake is to name one entity class by adding a prefix to the
name of another, for example, External Employee when there is already
an Employee entity class. The natural assumption is that an external
employee is a particular type of employee. Such naming should therefore
be limited to cases where one entity class is a subtype of the other entity
class (we look at subtypes in Chapter 4). It would be wrong to have entity
classes named Employee and External Employee where the Employee
entity class represented only internal employees, since it would be reason-
able to infer that the Employee entity class included external employees as
well. If an entity class representing only internal employees were required
in this model it should be named Internal Employee.

A third is to abbreviate names unnecessarily. This is often done merely
to save a few keystrokes. Modelers almost inevitably abbreviate inconsis-
tently and without providing a list of abbreviation meanings. While the use
of several abbreviations for the same word is perhaps more irritating
than ambiguous, the opposite condition, of the same abbreviation being
used for different words, is clearly ambiguous, but we have seen it more
than once.

A list of abbreviation meanings might seem to be overkill, yet it is
remarkable how much imagination is shown by analysts when choosing
abbreviations, resulting in abominations that mean nothing to those
attempting to understand the data structure. Some DBMSs impose stringent
limits on the length of table and column names, requiring even more abbre-
viation. Given that developers and the writers of ad hoc queries may only
have table and column names to work with, it is important that such names
be unambiguous.

A good example of these perils occurred in a school administration
system in which the names of the columns holding information about
students’ parents were prefixed by “M” and “F”: M-Parent and F-Parent. Was
that “mother” and “father” or “male” and “female”? It depended on who was
entering the data.

Often in data modeling we have to discard familiar terms in favor of less
widely used terms that do not carry the same diversity of meaning. This is
particularly so for the most commonly used terms, which may have
acquired all sorts of context-dependent meanings over a period of time. To
a railroad company, the word “train” may mean a particular service (the
8.15 P.M. from Sydney to Melbourne), a physical object (Old Number 10),
or perhaps a marketed product (the Orient Express).

Sometimes we have a choice of either restricting the meaning of an
existing term or introducing a new term. The first approach produces a
diagram that is more accessible to people familiar with the business, and
apparently more meaningful; on the other hand, readers are less likely to
look up the definition and may be misled. Keep this in mind: “communi-
cation” must include an understanding of the meaning of entity classes as
well as a superficial comfort with the diagram.

3.4 Entity Classes ■ 79

Simsion-Witt_03 10/8/04 8:02 PM Page 79

3.4.3 Entity Class Definitions

Entity class names must be supported by definitions.
We cannot overemphasize the importance of good entity class defini-

tions. From time to time, data modelers get stuck in long arguments with-
out much apparent progress. Almost invariably, they have not put adequate
effort into pinning down some working definitions, and they are continu-
ally making subtle mental adjustments, which are never recorded. Modelers
frequently (and probably unwittingly) shift definitions in order to support
their own position in discussion: “Yes, we could accommodate a patient
who transfers hospitals while undergoing treatment by defining Hospital
to mean the hospital where the treatment commenced,” and later, “Of
course we can work out how much each hospital spent on drugs; all the
relevant hospitals are represented by the Hospital entity class.”

As well as helping to clarify the modelers’ thinking, definitions provide
guidance on the correct use of the resulting database. Many a user interro-
gating a database through a query language has been misled because of
incorrect assumptions about what its tables contained. And many a pro-
grammer or user has effectively changed the data model by using tables to
hold data other than that intended by the modeler. The latter constitutes a
particularly insidious compromise to a model. If someone (perhaps the
physical database designer) proposes that the physical data model differ
from the logical data model in some way, we can at least argue the case
and ensure that the changes, if accepted, are documented and understood.
However, bypassing a definition is far subtler, as the violation is buried in
program specifications and logic. Because system enhancement cycles can
be slow, users themselves may resort to reuse of data items for other pur-
poses. In a typical case, a comment field was redefined by the users to hold
a series of classification codes in the first line and the comment proper in
the remaining lines.

The result can be inconsistent use of data by programmers and conse-
quent system problems (“I assumed that surgeons included anyone who
performed an operation,” or “I used the Surgeon table for pharmacists;
they’re all prefixed with a ‘P’”). The database may even be rendered
unworkable because a business rule specified by the model does not apply
under the (implicit) new definition. For example, the rule that each drug
has only one manufacturer will be broken if the programmer uses the table
to record generic drugs in violation of a definition that allows only for
branded drugs. Changes of this kind are often made after a database has
been implemented, and subsequently fails to support new requirements.
A failure on the stability criterion leads to compromises in elegance and
communication.

All of these scenarios are also examples of degradation in data quality.
If a database is to hold good quality data, it is vital that definitions are not

80 ■ Chapter 3 The Entity-Relationship Approach

Simsion-Witt_03 10/8/04 8:02 PM Page 80

only well written but used .11 This, of course, implies that all participants in
the system-development process and all users of the resulting system have
access to the same set of definitions, whether in a data dictionary or in
another form of controlled but accessible project documentation.

A good entity class definition will clearly answer two questions:

1. What distinguishes instances of this entity class from instances of other
entity classes?

2. What distinguishes one instance from another?

Good examples, focusing on the marginal cases, can often help clarify
the answers to these questions. The primary key (if one is known at this
stage) and a few other sample attributes can also do much to clarify the
definition prior to the full set of attributes being defined.

Again a number of bad practices occur regularly, particularly if entity
class definition is seen as a relatively meaningless chore rather than a key
part of the modeling process:

■ A glance at a thesaurus will reveal that many common words have
multiple meanings, yet these same words are often used without quali-
fication in definitions. In one model, an entity class named Role had the
definition “Part, task, or function,” which, far from providing the reader
with additional information as to what the entity class represented,
widened the range of possibilities.

■ Entity class definitions often do not make clear whether instances of the
entity class are classes or individual occurrences. For example, does a
Patient Condition entity class with a definition, “A condition that a
patient suffers,” have instances like “Influenza” and “Hangnail” or
instances like “Patient 123345’s influenza that was diagnosed on
1/4/2004”? This sort of ambiguity is often defended by assertions that
the identifier or other attributes of the entity class should make this
clear. If the identifier is simply Patient Condition Identifier, we are none
the wiser, and if the attributes are not well defined, as is often the case,
we may still be in the dark.

■ Another undesirable practice is using information technology terminol-
ogy, and technical data modeling terms in entity class definitions. Terms
such as “intersection entity,” “cardinality,” “optionality,” “many-to-many
relationship,” or “foreign key” mean nothing to the average business
person and should not appear in data definitions. If business users do
not understand the definitions, their review of them will lack rigor.

3.4 Entity Classes ■ 81

11See, for example, Witt, G.C., “The Role of Metadata in Data Quality,” Journal of Data
Warehousing Vol. 3, No. 4 (Winter 1998).

Simsion-Witt_03 10/8/04 8:02 PM Page 81

Let’s have a look at an example of a definition. We might define Drug
as follows:

“An antibiotic drug as marketed by a particular manufacturer. Variants
that are registered as separate entries in Smith’s Index of Therapeutic
Drugs are treated as separate instances. Excluded are generic drugs such
as penicillin. Examples are: Maxicillin, Minicillin, Extracycline.”

Note that there is no rule against using the entity class name in the
definition; we are not trying to write an English dictionary. However
beware of using other entity class names in a definition. When a modeler
chooses a name for an entity class, that entity class is usually not intended
to represent every instance of anything that conforms to the dictionary
definitions of that name. For example, the name “Customer” may be used
for an entity class that only represents some of the customers of a business
(e.g., loyalty program customers but not casual walk-in customers). If that
entity class name is then used in a definition of another entity class, there
is potential for confusion as to whether the common English meaning or
the strict entity class definition is intended.

3.5 Relationships

In our drug expenditure model, the lines between boxes can be interpreted
in real-world terms as relationships between entity classes. There are
relationships, for example, between hospitals and surgeons and between
operations and drug administrations.

3.5.1 Relationship Diagramming Conventions

We have already used a convention for annotating the lines to describe their
meaning (relationship names), cardinality (the crow’s foot can be inter-
preted as meaning “many,” its absence as meaning “one”), and optionality
(the circles and bars representing “optional” and “mandatory” respectively).

The convention is shown in Figure 3.9 and is typical of several in
common use and supported by documentation tools. Note that the arrows
and associated annotation would not normally be shown on such a diagram.
Figure 3.10 shows some variants, including Unified Modeling Language
(UML), which is now established as the most widely used alternative to the
E-R conventions.12 Use of this notation is discussed in Chapter 7.

82 ■ Chapter 3 The Entity-Relationship Approach

12The diagrams shown are not exactly equivalent; each diagramming formalism has its own
peculiarities in terms of what characteristics of a relationship can be captured and the exact
interpretation of each symbol.

Simsion-Witt_03 10/8/04 8:02 PM Page 82

Note that we have named the relationship in both directions: “issue” and
“be issued by.” This enables us to interpret the relationship in a very
structured, formal way:

“Each company may issue one or more shares.”
and
“Each share must be issued by one company.”

3.5 Relationships ■ 83

Figure 3.9 Relationship notation.

Company Share
 issue

be issued
by

“Each Company
may issue one

or more shares.”

“Each Share must
be issued by

one company.”

Figure 3.10 Some alternative relationship notations.13

Company Share
issuer

1

Chen notation

Company
Share n

is issued
by

ER Studio™

 issues

IDEF1X / ERwin™

Company Share
issued

by

Oracle Designer™

issuer of

Company Share

UML

+issues +is issued
by

1 0..*

Company Share
issues

System Architect™Company Share

Company Share
issues

13Note that these conventions and tools include many symbols other than those shown in this
diagram, which is intended only to show the variation in representing the most common type
of relationship. Note also that some tools allow alternative notations, (e.g., ERwin can alter-
natively use the System Architect relationship notation). For a more detailed comparison of
some of the diagramming conventions used by practitioners in particular, we recommend Hay,
D.C: Requirements Analysis—From Business Views to Architecture, Prentice-Hall, New Jersey,
2003, Appendix B.

Simsion-Witt_03 10/8/04 8:02 PM Page 83

The value of this assertion form is in improving communication. While
diagrams are great for conveying the big picture, they do not encourage
systematic and detailed examination, particularly by business specialists.
If we record plural forms of entity class names in our documentation
tool, generating these sentences can be an entirely automatic process. Of
course, when reading from a diagram we just pluralize the entity class
names ourselves. Some CASE tools do support such generation of asser-
tions, using more or less similar formulae.

We like to use the expression “one or more” rather than “many,” which
may have a connotation of “a large number” (“Oh no, nobody would have
many occupations, two or three would be the most”). We also like the
“may” and “must” approach to describing optionality, rather than the “zero
or more” and “one or more” wording used by some. “Zero or more” is an
expression only a programmer could love, and our aim is to communicate
with business specialists in a natural way without sacrificing precision.

An alternative to using “must” and “may” is to use “always” and “some-
times”: “Each company sometimes issues one or more shares,” and “Each
share is always issued by one company.” “Might” is also a workable alter-
native to “may.”

In order to be able to automatically translate relationships into assertions
about the business data, a few rules need to be established:

■ We have to select relationship names that fit the sentence structure. It is
worth trying to use the same verb in both directions (“hold” and “be
held by,” or “be responsible for” and “be the responsibility of”) to
ensure that the relationship is not interpreted as carrying two separate
meanings.

■ We have to name the relationships in both directions, even though
this adds little to the meaning. We make a practice not only of placing
each relationship name close to the entity class that is the object of the
sentence, but also of arranging the names above and below the line so
they are read in a clockwise direction when generating the sentence
(as, for example, in Figure 3.9).

■ We need to be strict about using singular names for entity classes. As
mentioned earlier, this discipline is worth following regardless of rela-
tionship naming conventions.

Finally, we need to show the optional/mandatory symbol at the crow’s
foot end of the relationship, even though this will not usually be enforce-
able by the DBMS (at the end without the crow’s foot, “optional” is normally
implemented by specifying the foreign key column as optional or nullable,
that is, it does not have to have a value in every row). Despite this there
are a number of situations, which we discuss in Section 14.5.3, in which
the mandatory nature of a relationship at the crow’s foot end is very
important.

84 ■ Chapter 3 The Entity-Relationship Approach

Simsion-Witt_03 10/8/04 8:02 PM Page 84

Figures 3.11 and 3.12 show some relationships typical of those we
encounter in practice.

Note that:

■ A crow’s foot may appear at neither, one, or both ends of a relationship.
The three alternatives are referred to as one-to-one, one-to-many, and
many-to-many relationships, respectively.

■ There may be more than one relationship between the same two entity
classes.

■ It is possible for the same entity class to appear at both ends of a rela-
tionship. This is called a “self-referencing” or “recursive” relationship.

When drawing one-to-many relationships, we suggest you locate the
boxes so that the crow’s foot points downwards (i.e., so that the box
representing the entity class at the “many” end of the relationship is nearer
the bottom of the page). This means that hierarchies appear in the expected

3.5 Relationships ■ 85

Figure 3.11 Examples of relationships.

Department Manager
be managed by

manage

one-to-one

one-to-many

Each Department must be managed by one Manager.
Each Manager may manage one Department.

Department Project
be responsible for

be the
responsibility of

Employee Qualification
be awarded

be awarded to

many-to-many

Each Employee may be awarded one or more Qualifications.
Each Qualification may be awarded to one or more Employees.

Each Department may be responsible for one or more Projects.
Each Project must be the responsibility of one Department.

Simsion-Witt_03 10/8/04 8:02 PM Page 85

way, and diagrams are easier to compare. For horizontal relationship lines,
the convention (by no means followed by all modelers) is to orient the
crow’s foot to the right. You will not always be able to follow these
conventions, especially when you use subtypes, which we introduce in
Chapter 4. Once again, do not sacrifice effectiveness of communication for
blind adherence to a layout convention.

Similarly, in laying out diagrams, it usually helps to eliminate crossing
lines wherever possible. But carrying this rule too far can result in large

86 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.12 More examples of relationships.

include

be
included
in

self-referencing one-to-many

be a
component

of

be an
assembly
of

self-referencing many-to-many

Each Manufactured Part may be an assembly of one or more
Manufactured Parts.

Each Manufactured Part may be a component of one or more
Manufactured Parts.

 hold

be held by act in

be acted in by
two relationships

Each Employee must hold one Position.
Each Position may be held by one Employee.

and

Each Employee may act in one or more Positions.
Each Position may be acted in by one Employee.

Employee Position

Land
Parcel

Manufactured
Part

Each Land Parcel may include one or more Land Parcels.
Each Land Parcel may be included in one Land Parcel.

Simsion-Witt_03 10/8/04 8:02 PM Page 86

numbers of close parallel lines not dissimilar in appearance (and compre-
hensibility) to the tracks on a printed circuit board.

Another useful technique is to duplicate entity classes on the diagram to
avoid long and difficult-to-follow relationship lines. You need to have a
symbol (provided by some CASE tools) to identify a duplicated entity class;
a dotted box is a good option.

3.5.2 Many-to-Many Relationships

Many-to-many relationships crop up regularly in E-R diagrams in practice.
But if you look again at the drug expenditure diagram in Figure 3.8 you will
notice that it contains only one-to-many relationships. This is no accident,
but a consequence of the procedure we used to draw the diagram from
normalized tables. Remember that each value of a foreign key pointed to
one row (representing one entity instance), and that each value could
appear many times; hence, we can only ever end up with one-to-many
relationships when documenting a set of relational tables.

Look at the many-to-many relationship between Employee and
Qualification in Figure 3.13.

How would we implement the relationship using foreign keys? The
answer is that we cannot in a standard relational DBMS.14 We cannot hold
the key to Qualification in the Employee table because an employee
could have several qualifications. The same applies to the Qualification
table, which would need to record multiple employees. A normalized
model cannot represent many-to-many relationships with foreign keys, yet
such relationships certainly exist in the real world. A quick preview of the
answer: although we cannot implement the many-to-many relationship
with a foreign key, we can implement it with a table. But let us tackle the
problem systematically.

3.5 Relationships ■ 87

Figure 3.13 Many-to-many relationship.

Employee Qualification
 be awarded

be awarded
to

14A DBMS that supports the SQL99 set type constructor feature enables implementa-
tion of a many-to-many relationship without creating an additional table through storage of
open-ended arrays in row/column intersections. This provides an alternative mechanism for
storage of a many-to-many relationship (admittedly no longer in 1NF).

Simsion-Witt_03 10/8/04 8:02 PM Page 87

3.5.2.1 Applying Normalization to Many-to-Many Relationships

Although we cannot represent the many-to-many relationship between
Employee and Qualification in a fully normalized logical model using
only Employee and Qualification tables, we can handle it with an unnor-
malized representation, using a repeating group (Figure 3.14).

We have made up a few plausible columns to give us something to
normalize!

Proceeding with normalization (Figure 3.15), we remove the repeating
group and identify the key of the new table as Employee Number +
Qualification ID (if an employee could receive the same qualification more
than once, perhaps from different universities, we would need to include
Qualification Date in the key to distinguish them).

Looking at our 1NF tables, we note the following dependency:
Qualification ID � Qualification Name
Hence, we provide a reference table for qualification details. The tables

are now in 3NF. You may like to confirm that we would have reached the
same result if we had represented the relationship initially with a repeating
group of employee details in the Qualification table.

88 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.15 Normalization of Employee and Qualification.

EMPLOYEE (Employee Number, Employee Name, {Qualification ID, Qualification
Name, Qualification Date})

First Normal Form:
EMPLOYEE (Employee Number, Employee Name)
EMPLOYEE QUALIFICATION (Employee Number*, Qualification ID, Qualification
Name, Qualification Date)

Second and Third Normal Forms:
EMPLOYEE (Employee Number, Employee Name)
EMPLOYEE QUALIFICATION RELATIONSHIP (Employee Number*, Qualification ID*,
Qualification Date)
QUALIFICATION (Qualification ID, Qualification Name)

Unnormalised:

Figure 3.14 Employee and Qualification unnormalized.

EMPLOYEE (Employee Number, Employee Name, {Qualification ID,
Qualification Name, Qualification Date})

Simsion-Witt_03 10/8/04 8:02 PM Page 88

Naming the tables presents a bit of a challenge. Employee and
Qualification are fairly obvious, but what about the other table?
Employee-Qualification Relationship15 is one option and makes some
sense because this less obvious table represents the many-to-many rela-
tionship between the other two. The result is shown diagrammatically in
Figure 3.16.

This example illustrates an important general rule. Whenever we
encounter a many-to-many relationship between two entity classes, we can
implement it by introducing a third table in addition to the tables derived
from the two original entity classes. This third table is referred to variously
as an intersection table, relationship table, associative table, or reso-
lution table.16 We call this process “resolving a many-to-many relation-
ship.” There is no need to go through the normalization process each time;
we simply recognize the pattern and handle it in a standard way.

Note the optional/mandatory nature of the new relationships and how
they derive from the optional/mandatory nature of the original many-
to-many relationship:

■ The “one” ends of the new relationships will always be mandatory (since
an instance of the relationship without both of the original participating
entity classes—in this case, an employee qualification relationship with-
out both an employee and a qualification—does not make sense).

■ The “many” ends of the new relationships will be optional or manda-
tory depending on the corresponding ends of the original relationship.

3.5 Relationships ■ 89

Figure 3.16 Many-to-many relationship resolved.

Employee Qualification

Employee
Qualification
Relationship

involve

be involved
in

involve

be involved
in

15Some modelers avoid the use of the word Relationship in a table name. We believe it is
entirely appropriate if the table implements a relationship from the conceptual model. Using
the term in the name of an entity is a different matter, though common practice, and there is
an argument for using an alternative such as “cross-reference.”
16In fact you will hear the terms used far more often in the context of entities, as discussed in
the following section.

Simsion-Witt_03 10/8/04 8:02 PM Page 89

The nature of that correspondence is best illustrated by reference to
Figures 3.13 and 3.16. The nature of the relationship to Employee will
correspond to the nature of the original relationship at the
Qualification end and the nature of the relationship to Qualification
will correspond to the nature of the original relationship at the
Employee end. Thus, if an employee had to have at least one qualifi-
cation (i.e., the original relationship was mandatory at the Qualification
end), the relationship between Employee and Employee Qualification
Relationship would also be mandatory at the “many” end.

3.5.2.2 Choice of Representation

There is nothing (at least technically) to stop us from now bringing the con-
ceptual model into line with the logical model by introducing an Employee
Qualification Relationship entity class and associated relationships.
Such entity classes are variously referred to as intersection entities, asso-
ciative entities, resolution entities, or (occasionally and awkwardly)
relationship entities.

So, we are faced with an interesting choice: we can represent the same
“real-world” situation either with a many-to-many relationship or with an
entity class and two new many-to-one relationships, as illustrated in
Figure 3.17.

90 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.17 Many-to-many relationship or intersection entity class plus two one-to-many
relationships.

Employee Qualification
 be awarded

be awarded
to

Employee Qualification

Employee
Qualification
Relationship

 involve

 be involved
 in

involve

be involved
in

Simsion-Witt_03 10/8/04 8:02 PM Page 90

The many-to-many notation preserves consistency; we use a line to
represent each real-world relationship, whether it is one-to-many or many-
to-many (or one-to-one, for that matter). But we now have to perform some
conversion to get to the relational representation required for the logical
model. Worse, the conversion is not totally mechanical, in that we have to
determine the key of the intersection table. In our example, this key might
simply be Employee Number plus Qualification ID; however, if an employee
can receive the same qualification more than once, the key of the intersec-
tion table must include Qualification Date. And how do we represent any
nonkey attributes that might apply to the intersection entity class, such as
Qualification Date? Do we need to allow entity classes and relationships to
have attributes?17

On the other hand, if we restrict ourselves to one-to-many relationships,
we seem to be stuck with the clumsy idea of an entity class whose name
implies that it is a relationship. And if this box actually represents a
real-world relationship rather than an entity class, what about the two one-
to-many “relationships” with the original entity classes? Can we really inter-
pret them as “real-world” relationships, or are they just “links” between
relationships and entity classes?

One solution lies in the fact that there is usually some choice as to
whether to classify a particular concept as an entity class or a relationship.
For example, we could model the data relating prospective employees and
job positions with either a relationship (“apply for/be applied for by”) or
an entity class (Application). Figure 3.18 shows some more examples.

The name of the many-to-many relationship is usually a good source of
an appropriate entity class name. Perhaps we could use Award as an alter-
native to Employee Qualification Relationship.

Experienced data modelers take advantage of this choice, and become
adept at selecting names that allow boxes to represent entity classes and
lines to represent relationships. As a last resort, they would name the box
representing a many-to-many relationship as “entity class-1 entity class-2
Relationship” (e.g., Employee Asset Relationship), and thereafter treat it
as an entity class. This practice is so widespread that most data modelers
refer to all boxes as entity classes and all lines as relationships. Many would

3.5 Relationships ■ 91

Figure 3.18 Intersection entity class names.

Relationship Intersection Entity Class

Students enroll in Subjects Enrollment

Companies employ Persons Employment

Employees are responsible for Assets Responsibility

17Note that UML does allow relationships to have attributes (see Section 7.4.1.2).

Simsion-Witt_03 10/8/04 8:02 PM Page 91

be unaware that this is possible only because of choices they have made
during the modeling process.

This may all sound a little like cheating! Having decided that a particu-
lar concept is going to be implemented by a foreign key (because of the
way our DBMS works), we then decide that the concept is a relationship.
Likewise, if a particular concept is to be implemented as a table, we decide
to call the concept a real world entity class. And we may change our view
along the way, if we discover, for example, that a relationship we originally
thought to be one-to-many is in fact many-to-many.

We come back to the questions of design, choice, and creativity. If we
think of the real world as being naturally preclassified into entity classes
and relationships, and our job as one of analysis and documentation, then
we are in trouble. On the other hand, if we see ourselves as designers who
can choose the most useful representation, then this classification into
entity classes and relationships is a legitimate part of our task.

Our own preference, reflected in Part 2 of the book, is to allow many-
to-many relationships in the conceptual model, provided they do not have
nonkey attributes. However, you may well be restricted by a tool that does
not separate conceptual and logical models (and hence requires that the
model be normalized), or one that simply does not allow many-to-many
relationships in the conceptual model. In these cases, you will need to
“resolve” all many-to-many relationships in the conceptual model.

3.5.3 One-to-One Relationships

Figure 3.19 shows some examples of one-to-one relationships.
One-to-one relationships occur far less frequently than one-to-many and

many-to-many relationships, and your first reaction to a one-to-one rela-
tionship should be to verify that you have it right.

The third example in Figure 3.19 appears simply to be factoring out
some attributes that apply only to government contracts. We see this sort
of structure quite often in practice, and it always warrants investigation.
Perhaps the modeler is anticipating that the attributes that have been
factored out will be implemented as columns in a separate table and is
making that decision prematurely. Or perhaps they want to capture the
business rule that the attributes need to be treated as a group: either “all
inapplicable” or “all applicable.” In Chapter 4, we will look at a better way
of capturing rules of this kind.

One-to-one relationships can be a useful tool for exploring alternative
ways of modeling a situation, allowing us to “break up” traditional entity
classes and reassemble them in new ways. They also present some special
problems in implementation. In particular, note that you should not auto-
matically combine the entity classes linked by a one-to-one relationship into

92 ■ Chapter 3 The Entity-Relationship Approach

Simsion-Witt_03 10/8/04 8:02 PM Page 92

a single entity class or implement them as a single table, as is sometimes
suggested.

We discuss the handling of one-to-one relationships in some detail in
Sections 10.8 and 10.9.

3.5.4 Self-Referencing Relationships

We use the term self-referencing or recursive to describe a relationship
that has the same entity class at both ends. Look at Figure 3.20 on the next
page. This type of relationship is sometimes called a “head scratcher,”18 not
only because of its appearance, but because of the difficulty many people
have in coming to grips with the recursive structure it represents.

We interpret this in the same way as any other relationship, except that
both participants in the relationship are the same entity class:

“Each Employee may manage one or more Employees.”
and
“Each Employee may be managed by one Employee.”
The model represents a simple hierarchy of employees as might be shown

on an organization chart. To implement the relationship using a foreign key,
we would need to carry the key of Employee (say, Employee ID) as a foreign
key in the Employee table. We would probably call it “Manager ID” or
similar. We encountered the same situation in Section 2.8.5 when we
discussed foreign keys that pointed to the primary key of the same table.

3.5 Relationships ■ 93

Figure 3.19 One-to-one relationships.

Customer
Customer
Discount

Agreement

be entitled to

be for

Subscriber
Seat at

Scheduled
Performance

be allocated

be allocated to

Contract
Government

Contract
Addendum

be supplemented by

supplement

18We have also heard the term “fish hook.”

Simsion-Witt_03 10/8/04 8:02 PM Page 93

Note that the relationship is optional in both directions. This reflects
the fact that the organizational hierarchy has a top and bottom (some
employees have no subordinates, one employee has no manager). A
mandatory symbol on a self-referencing relationship should always raise
your suspicions, but it is not necessarily wrong if the relationship represents
something other than a hierarchy.

Self-referencing relationships can also be many-to-many. Figure 3.21
shows such a relationship on a Manufactured Part entity class. In busi-
ness terms, we are saying that a part can be made up of parts, which them-
selves can be made up of parts and so on. Furthermore, we allow a given
part to be used in the construction of more than one part—hence, the
many-to-many relationship.

This relationship, being many-to-many, cannot be implemented19 by a
single table with suitable foreign key(s). We can, however, resolve it in much
the same way as a many-to-many relationship between two different entity
classes.

Figure 3.22 shows an intuitive way of tackling the problem directly from
the diagram. We temporarily split the Manufactured Part entity class in
two, giving us a familiar two-entity class many-to-many relationship, which
we resolve as described earlier. We then recombine the two parts of the
split table, taking care not to lose any relationships.

94 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.20 Self-referencing one-to-many relationship.

manage

be
managed
by

Employee

19Except in a DBMS that supports the SQL99 set type constructor feature.

Figure 3.21 Self-referencing many-to-many relationship.

be
used

in

be
made up
of

Manufactured
Part

Simsion-Witt_03 10/8/04 8:02 PM Page 94

3.5 Relationships ■ 95

Figure 3.22 Resolving a self-referencing many-to-many relationship.

(a) Starting Point

be an
assembly of

be a
component of

(b) Temporarily Showing Manufactured Part as Two Entities

involve as an
assembly

be involved in
as assembly in

involve as a
component

be involved in
as component in

(c) Resolving Many-to-Many Relationship

involve as
a component

be involved
in as
component

(d) Recombining the Two Manufactured Part Tables

be a
component

of

be an
assembly
of

Manufactured
Part

Manufactured
Part

(Assembly)

Manufactured
Part

(Component)

Manufactured
Part

(Component)

Manufactured
Part

(Assembly)

Manufactured
Part Usage

Manufactured
Part

Manufactured
Part Usage

involve as
an assembly

be involved
in as
assembly

Simsion-Witt_03 10/8/04 8:02 PM Page 95

96 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.23 Using normalization to resolve a self-referencing many-to-many relationship.

MANUFACTURED PART (Manufactured Part Number, Description,
{Component Manufactured Part Number, Quantity Used})
Removing repeating group . . .
MANUFACTURED PART (Manufactured Part Number, Description)
MANUFACTURED PART USAGE (Assembly Manufactured Part Number*, Component
Manufactured Part Number*, Quantity Used)

Figure 3.23 shows the same result achieved by representing the structure
with a repeating group and normalizing.

The structure shown in Figure 3.22(d) can be used to represent any self-
referencing many-to-many relationship. It is often referred to as the Bill of
Materials structure, because in manufacturing, a bill of materials lists all
the lowest level components required to build a particular product by pro-
gressively breaking down assemblies, subassemblies, and so forth. Note
that the Manufactured Part Usage table holds two foreign keys pointing
to Manufactured Part (Assembly Manufactured Part Number and Component
Manufactured Part Number) to support the two relationships.

Self-referencing relationships are an important part of the data modeler’s
tool kit and appear in most data models. They are used to represent three
types of structure: hierarchies, networks, and (less commonly) chains. We
discuss their use in greater detail in Chapter 10.

3.5.5 Relationships Involving Three or More
Entity Classes

All our relationships so far have involved one or (more commonly) two
entity classes. How would we handle a real world relationship involving
three or more entity classes?

A welfare authority might need to record which services were provided
by which organizations in which areas. Let us look at the problem from the
perspective of the tables we would need in the logical model. Our three
basic tables might be Service, Organization, and Area. The objective is to
record each allowable combination of the three. For example, the Service
“Child Care” might be provided by “Family Support Inc.” in “Greentown.”
We can easily do this by defining a table in which each row holds an
allowable combination of the three primary keys. The result is shown
diagrammatically in Figure 3.24, and it can be viewed as an extension of the
technique used to resolve two-entity class many-to-many relationships. The
same principle applies to relationships involving four or more entity classes.

Simsion-Witt_03 10/8/04 8:02 PM Page 96

Once more, in modeling the real world using an E-R model, we find
ourselves representing a relationship with a box rather than a line. However,
once again we can change our perspective and view the relationship as an
entity class; in this case we might name it Service Availability, Allowed
Combination, or similar.

We begin to encounter problems if we start talking about the cardinality
and optionality of these higher degree relationships prior to their resolution.
The concepts are certainly applicable,20 but they are difficult to come to grips
with for most data modelers,21 let alone business specialists asked to verify
the model. Nor do all diagramming conventions support the direct represen-
tation of higher degree relationships.22 Our advice (reflecting common prac-
tice) is that, unless you are using such a convention, you should use an

3.5 Relationships ■ 97

Figure 3.24 Intersection table representing a ternary (3-entity class) relationship.

involve
be involved

in

involve

be involved
in

(Service ID, Organization-ID, Area ID)

Service Organization

Service
Availability

Area

be involved
in

 involve

20See, for example, Ferg, S., “Cardinality Concepts in Entity-Relationship Modeling,”
Proceedings of the 10th International Conference on the Entity Relationship Approach, San
Mateo (1991); or Teorey: Database Modeling and Design, 3rd Edition, Morgan Kaufmann
(1999).
21Hitchman, S. (1995): Practitioner perceptions on the use of some semantic concepts in the
entity-relationship model, European Journal of Information Systems, 4, 31–40.
22UML and the Chen version of the E-R approach do.

Simsion-Witt_03 10/8/04 8:02 PM Page 97

intersection entity class to represent the relationships in the conceptual
model, then work with the familiar two-entity-class relationships that result.

Whenever you encounter what appears to be a higher degree relation-
ship, you should check that it is not in fact made up of individual many-
to-many relationships among the participating entity classes. The two
situations are not equivalent, and choosing the wrong representation may lead
to normalization problems. This is discussed in some detail in Chapter 13.

Figure 3-25 shows a number of legitimate structures, with different
cardinality and optionality.

3.5.6 Transferability

An important property of relationships that receives less attention than it
should from writers and tool developers is transferability. We suspect
there are two reasons for its neglect.

First, its impact on the design of a relational database is indirect.
Changing a relationship from transferable to nontransferable will not affect
the automatic part of the conversion of a conceptual model to relational
tables.

Second, most diagramming tools do not support a symbol to indicate
transferability. However, some do provide for it to be recorded in support-
ing documentation, and the Chen E-R conventions support the closely
related concept of weak entity classes (Chapter 7).

3.5.6.1 The Concept of Transferability

Figure 3.26 illustrates the distinction between transferable and non-
transferable relationships (see page 100).

The two models in this example appear identical in structure. However,
let us impose the reasonable rule that public broadcasting licenses may be
transferred from one person to another, while amateur radio licenses are
nontransferable. Every time someone qualifies for an amateur license, a
new one is issued.

3.5.6.2 The Importance of Transferability

The difference in transferability has some important consequences. For
example, we could choose to identify amateur licenses with a two-column
key of Person ID + License No, where License No was not unique in itself. We
would expect the value of the key for a particular license to be stable23

98 ■ Chapter 3 The Entity-Relationship Approach

23The importance of stability for primary keys is discussed in Section 6.2.4.

Simsion-Witt_03 10/8/04 8:02 PM Page 98

3.5 Relationships ■ 99

Figure 3.25 Structures interpretable as three-way relationships.

Employee
Assignment

Type Task

Assignment

Inspector Site
Visitor's

Pass

Inspection

Employee Task Contractor

Assignment

have
allocated

be allocated
 to

be to
perform

be performed through

be classified
by

classify

be
performed

by

 perform

be classified
by

be checked
by

use

be used for

 have
 allocated

be allocated
 to

 be to
 perform

 be performed
 through

 have
 allocated

be allocated to

(a)

(b)

(c)

Simsion-Witt_03 10/8/04 8:02 PM Page 99

because the Person ID associated with a license could not change. But if we
used this key for public broadcasting licenses, it would not be stable,
because the Person ID would change if the license were transferred. The crucial
role of transferability in defining primary keys is discussed in some detail
in Section 6.4.1.

Another difference is in handling historical data. If we wanted to keep
an “audit trail” of changes to the data, we would need to provide for an
ownership history of public broadcasting licenses, but not of amateur
licenses. In Chapter 15, we look in detail at the modeling of historical data,
and we frequently need to refer to the transferability of a relationship in
choosing the appropriate structures.

Some DBMSs provide facilities, such as management of “delete” opera-
tions, that need to know whether relationships are transferable.

In Sections 10.8 and 10.9, we look in some detail at one-to-one rela-
tionships; transferability is an important criterion for deciding whether the
participating entity classes should be combined.

3.5.6.3 Documenting Transferability

So, transferability is an important concept in modeling, and we will refer to
it elsewhere in this book, particularly in our discussions of the time dimen-
sion in Chapter 15. We have found it very useful to be able to show on E-R
diagrams whether or not a relationship is transferable. Unfortunately, as
previously mentioned, most documentation tools do not support a trans-
ferability symbol.

100 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.26 Nontransferable and transferable licenses.

Person

Amateur
Radio

License

Person

Public
Broadcasting

License

 be
held
 by

 hold

(a) (b)

 be
held
 by

 hold

Simsion-Witt_03 10/8/04 8:02 PM Page 100

3.5 Relationships ■ 101

24Barker, R., CASE Method Entity Relationship Modelling, Addison Wesley (1990).

Barker24 suggests a symbol for nontransferability (the less common
situation) as shown in Figure 3.27. He does not suggest a separate symbol
to indicate that a relationship is transferable; transferability is the default.

Note that transferability, unlike optionality and cardinality, is non-
directional in one-to-many relationships (we shall see in a moment that it
can be directional in many-to-many relationships). Transferring a public
broadcasting license from one person to another can equally be viewed as
transferring the persons from one license to another. It is usually more
natural and useful to view a transfer in terms of the entity class at the
“many” end of the relationship being transferable. In relational model
terms, this translates into a change in the value of the foreign key.

Nontransferable one-to-many relationships are usually, but not always,
mandatory in the “one” direction. An example of an optional nontransferable
relationship is shown in Figure 3.28. An insurance policy need not be
sold by an agent (optionality), but if it is sold by an agent, it cannot be
transferred to another (nontransferability).

One-to-one relationships may be transferable or nontransferable: The
entity classes in a transferable relationship generally represent different real
world concepts, whereas the entity classes in a nontransferable relationship
often represent different parts of the same real-world concept.

Figure 3.27 Nontransferability symbol.

Person
Amateur

Radio
License

hold

be held
by

nontransferability
symbol

Figure 3.28 Optional nontransferable relationship.

Agent Policy
sell

be sold
by

Simsion-Witt_03 10/8/04 8:02 PM Page 101

A point of definition: We regard establishment or deletion of a one-
to-many relationship instance without adding or deleting entity instances
as a transfer. (The terms “connect” and “disconnect” are sometimes used
to describe these situations.) For example, if we could connect an agent
to an existing policy that did not have an associated agent, or disconnect
an agent from the policy, the relationship would be considered trans-
ferable. Obviously these types of transfers are only relevant to optional
relationships.

Many-to-many relationships may be transferable or nontransferable.
Often the only transactions allowed for a many-to-many relationship
(particularly one that lists allowable combinations or some supports
some other business rulesee Chapter 14) are creation and deletion.
A many-to-many relationship may be transferable in only one direction. For
example, a student may transfer his or her enrollment from one course to
another course, but a student’s enrollment in a course cannot be transferred
to another student.

Transferability can easily be incorporated in the business sentences we
generate from relationships:

Each public broadcasting license must be owned by one person who
may change over time.

Each amateur radio license must be owned by one person who must not
change over time.

In this book, we have shown the transferability of relationships dia-
grammatically only where it is relevant to a design decision.

3.5.7 Dependent and Independent Entity Classes

A concept closely related to transferability (but not the same!) is that of
dependent and independent entity classes. It is useful primarily in allocat-
ing primary keys during the transition from a conceptual to a logical model
(as we will see in Chapter 11).

An independent entity class is one whose instances can have an inde-
pendent existence. By contrast a dependent entity class is one whose
instances can only exist in conjunction with instances of another entity
class, and cannot be transferred between instances of that other entity.
In other words, an entity class is dependent if (and only if) it has a mandatory,
nontransferable many-to-one (or one-to-one) relationship with another
entity class.

For example, we would expect Order Item to be a dependent entity:
order items cannot exist outside orders and cannot be transferred between
orders.

Dependent entity classes can form hierarchies several levels deep, as
well as being dependent on more than one owner entity.

102 ■ Chapter 3 The Entity-Relationship Approach

Simsion-Witt_03 10/8/04 8:02 PM Page 102

3.5 Relationships ■ 103

3.5.8 Relationship Names

Finally, a few words on one of the areas most often neglected in modeling—
the naming of relationships. It is usual in the early stages of modeling to
leave relationships unnamed. This is fine while the basic entity classes are
still being debated, but the final E-R model should always be properly
annotated with meaningful relationship names (not “associated with” or
“related to”). The exception to this rule is the two relationships that arise
from resolving a many-to-many relationship, because the name of the rela-
tionship has usually been used to name the new entity class. We suggest
“involve” and “be involved in” as workable names, as in Figure 3.16, but
only for relationships that arise from resolving a many-to-many relationship.

A good example of the need for meaningful names is the relationship
between Country and Currency, as might be required in a database to
support foreign currency dealing. Figure 3.29 shows the two entity classes.

What is the relationship between these two entity classes? One-to-many?
Many-to-many? We cannot answer these questions until the meaning of the
relationship has been clarified. Are we talking about the fact that currency
is issued by a country, is legal tender in the country, or is able to be traded
in that country? The result of our investigation may well be that we iden-
tify more than one relationship between the same pair of entity classes.

There is an even more fundamental problem here that may affect cardi-
nalities. What do we mean by “country”? Again, a word can have many
meanings. Does the Holy See (Vatican City) qualify as a country? If the rela-
tionship is “issued by” do we define the Euro as being issued by multiple
countries, or do we revise the definition (and name) of the Country entity
class to accommodate “European Union,” thus keeping the relationship as
one-to-many?

The point is that definition of the relationship is closely linked to
definitions of the participating entity classes. We focus on the entity class
definitions first, but our analysis of the relationships may lead us to revise
these definitions.

Let’s look at some further examples of the way in which entity class and
relationship definitions interact. Consider Figure 3.30: if the Customer
entity class represents all customers, the relationships are correct since
every purchase must be made by a customer but not every customer
belongs to a loyalty program.

Figure 3.29 Unnamed relationship.

Country Currency
?

?

Simsion-Witt_03 10/8/04 8:02 PM Page 103

However, if the business is an airline or a retail store, it may not keep
records of customers other than those in loyalty programs. In this case, not
all purchases are made by customers (as defined in the model), but all cus-
tomers (as defined in the model) belong to loyalty programs. The relation-
ships should now look like those in Figure 3.31.

An example of another type of entity class that can cause problems of
definition is a Position entity class in a Human Resources model. Is a posi-
tion a generic term like “Database Administrator,” of which there may be
more than one in the organization, or a specific budgeted position with a
single occupant? We need to know before we can correctly draw the
Position entity class’s relationships.

3.6 Attributes

3.6.1 Attribute Identification and Definition

We have left the easiest concept until last (although we will have much
more to say in Chapter 5). Attributes in an E-R model generally correspond
to columns in a relational model.

We sometimes show a few attributes on the diagram for clarification of
entity class meaning (or to illustrate a particular point), and some model-
ing tools support the inclusion of a nominated subset of attributes. But we
do not generally show all of the attributes on the diagram, primarily because
we would end up swamping our “big picture” with detail. They are nor-
mally recorded in simple lists for each entity class, either on paper or in an
automated documentation tool such as a data dictionary, CASE tool, or
other modeling tool.

104 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.31 Another use of a customer entity class.

include

belong to

Loyalty
Program

Customer Purchase
make

be made by

Figure 3.30 One use of a customer entity class.

include

belong to

Loyalty
Program Customer Purchase

make

be made by

Simsion-Witt_03 10/8/04 8:02 PM Page 104

3.7 Myths and Folklore ■ 105

Attributes represent an answer to the question, “What data do we want to
keep about this entity class?” In the process of defining the attributes we may
find common information requiring a reference table. If so, we normalize,
then modify the model accordingly.

3.6.2 Primary Keys and the Conceptual Model

Recall that, in a relational model, every table must have a primary key. In
E-R modeling, we can identify entity classes prior to defining their keys. In
some cases, none of the attributes of an entity class (alone or in combina-
tion) is suitable as a primary key. For example, we may already have a
company-defined Employee ID but it might not cover casual employees, who
should also be included in our entity class definition. In such cases, we can
invent our own key, but we can defer this step until the logical modeling
stage. That way, we do not burden the business stakeholders with an
attribute that is really a mechanism for implementation.

Since we will not have necessarily nominated primary keys for all entity
classes at this stage, we cannot identify foreign keys. To do so, in fact,
would be redundant, as the relationships in our conceptual model give us
all the information we need to add these at the logical modeling stage. So,
we do not include foreign keys in the attribute lists for each entity class.

Once again, your methodology or tools may require that you identify
keys at the conceptual modeling stage. It is not a serious problem.

We discuss attributes in more detail in Chapter 5 and the selection of
keys in Chapter 6.

3.7 Myths and Folklore

As with any relatively new discipline, data modeling has acquired its own
folklore of “guidelines” and “rules.” Some of these can be traced to genuine
attempts at encouraging good and consistent practice. Barker25 labels a
number of situations “impossible” when a more accurate description would
be “possible but not very common.” The sensible data modeler will be
alerted by such situations, but will not reject a model solely on the basis
that it violates some such edict.

Here are a few pieces of advice, including some of the “impossible”
relationships, which should be treated as warnings rather than prohibitions.

25Barker, R., CASE Method Entity Relationship Modelling, Addison Wesley (1990).

Simsion-Witt_03 10/8/04 8:02 PM Page 105

3.7.1 Entity Classes without Relationships

It is perfectly possible, though not common, to have an entity class that is
not related to any other entity class. A trivial case that arises occasionally is
a model containing only one entity class. Other counter-examples appear
in models to support management information systems, which may require
data from disparate sources, for example, Economic Forecast and
Competitor Profile. Entity classes representing rules among types may be
stand-alone if the types themselves are not represented by entity classes
(see Section 14.5.2.3).

3.7.2 Allowed Combinations of Cardinality
and Optionality

Figure 3.32 shows examples of relationships with combinations of cardi-
nality and optionality we have seen described as impossible.

The problem with relationships that are mandatory in both directions
may be the “chicken and egg” question: which comes first? We cannot
record a customer without an account, and we cannot record an account
without a customer. In fact, the problem is illusory, as we create both the
customer and the account within one transaction. The database meets the
stated constraints both at the beginning and the end of the transaction.

Remember also that self-referencing relationships need not only repre-
sent simple hierarchies but may model chains as in Figure 3.32(c).

3.8 Creativity and E-R Modeling

The element of choice is far more apparent in E-R modeling than in normal-
ization, as we would expect. In E-R modeling we are defining our categories
of data; in normalization these have been determined (often by someone
else) before we start. The process of categorization is so subjective that
even our broadest division of data, into entity classes and relationships,
offers some choice, as we have seen.

It is helpful to think of E-R modeling as “putting a grid on the world.”
We are trying to come up with a set of nonoverlapping categories so that
each fact in our world fits into one category only. Different modelers will
choose differently shaped grids to achieve the same purpose. Current busi-
ness terminology is invariably a powerful influence, but we still have room
to select, clarify, and depart from this.

Consider just one area of our drug expenditure model—the classifica-
tion of operations into operation types. As discussed earlier, we could

106 ■ Chapter 3 The Entity-Relationship Approach

Simsion-Witt_03 10/8/04 8:02 PM Page 106

3.8 Creativity and E-R Modeling ■ 107

Figure 3.32 Examples of unusual but legitimate relationships.

Customer
Customer
Account

 hold

be held
by

(a)

Inspection
Cycle Task

precede

follow Twin

be older
sibling of

be younger
sibling of

(b)

Network
Node

receive
from

send
to

send

receive

(c)

Network
Node

be
connected

from

be
connected
to

(d)

define Operation Type to either include or exclude hybrid operations. If
we chose the latter course, we would need to modify the model as in
Figure 3.33(a) to allow an operation to be of more than one operation type.

Alternatively, we could define two levels of operation type: Hybrid
Operation Type and Basic Operation Type, giving us the model in Figure
3.33(b). Or we could allow operation types to be either basic or hybrid, as
in the original model, but record the component operations of hybrid
operations, resulting in Figure 3.33(c).

Another option is to represent a hybrid operation as two separate
operations, possibly an inelegant solution, but one we might end up adopt-
ing if we had not considered hybrid operations in our initial modeling

Simsion-Witt_03 10/8/04 8:02 PM Page 107

108 ■ Chapter 3 The Entity-Relationship Approach

Figure 3.33 Alternative models for operations and operation types.

classify

be classified by

Operation
Type Operation

Operation
Type Operation

Original Model

Variation (a)

classify

classify

be classified by

be classified by

be
classified by classify

classify

 be classified
 by

be included
in

include

Variation (b)

Variation (c)

include

be
included

in

Variation (d)

Operation
Type

Operation

classify

be classified by

Operation
Type Operation

Hybrid
Operation

Type

Operation

Basic
Operation

Type

Simsion-Witt_03 10/8/04 8:02 PM Page 108

3.9 Summary ■ 109

(Figure 3.33(d)). This diagram looks the same as the original, but the defi-
nitions of Operation and Operation Type will be different. This gives us
five solutions altogether (including the original one), each with different
implications. For example, Figure 3.33(b), Figure 3.33(c), and the original
model allow us to record standard hybrids while the other options only
allow their definition on an operation-by-operation basis. How many of
these possibilities did you consider as you worked with the model?

Creativity in modeling is a progressively acquired skill. Once you make
a habit of looking for alternative models, finding them becomes easier. You
also begin to recognize common structures. The Operation Type example
provides patterns that are equally relevant to dealing with customers and
customer types or payments and payment types.

But we can also support the search for alternative models with some
formal techniques. In the next chapter we will look at one of the most
important of these.

3.9 Summary

Data models can be presented diagrammatically by using a box to repre-
sent each table and a line for each foreign key relationship. Further dia-
gramming conventions allow the name, cardinality, and optionality of the
relationships to be shown.

We can view the boxes as representing entity classes—things about
which the business needs to keep information—and the lines as represent-
ing business relationships between entity classes. This provides a language
and diagramming formalism for developing a conceptual data model “top
down” prior to identifying attributes. The resulting model is often called an
Entity-Relationship (E-R) model.

Entity class identification is essentially a process of classifying data, and
there is considerable room for choice and creativity in selecting the most
useful classification. Entity class naming and definition is critical.

Many-to-many “real-world” relationships may be represented directly or
as a pair of one-to-many relationships and an intersection entity class.

Some modeling notations, including the E-R notation generally used in
this book, do not directly support business relationships involving three or
more entity classes. To model such a relationship in one of those notations,
you must use an intersection entity class.

Much folklore surrounds relationships. Most combinations of optionality,
cardinality, transferability, and recursion are possible in some context. The
modeler should be alert for unusual combinations but examine each case
from first principles.

Simsion-Witt_03 10/8/04 8:02 PM Page 109

This page intentionally left blank

Chapter 4
Subtypes and Supertypes

“A very useful technique … is to break the parts down into still smaller parts and
then recombine these smaller units to form larger novel units.”

– Edward de Bono, The Use of Lateral Thinking

“There is no abstract art. You must always start with something. Afterward you
can remove all traces of reality.”

– Pablo Picasso

4.1 Introduction

In this chapter, we look at a particular and very important type of choice
in data modeling. In fact, it is so important that we introduce a special con-
ventionsubtypingto allow our E-R diagrams to show several different
options at the same time. We will also find subtyping useful for concisely
representing rules and constraints, and for managing complexity.

Our emphasis in this chapter is on the conceptual modeling phase, and
we touch only lightly on logical modeling issues. We look more closely at
these in Chapter 11.

4.2 Different Levels of Generalization

Suppose we are designing a database to record family trees. We need to
hold data about fathers, mothers, their marriages, and children. We have
presented this apparently simple problem dozens of times to students and
practitioners, and we have been surprised by the sheer variety of workable,
if sometimes inelegant, ways of modeling it. Figure 4.1 shows two of the
many possible designs.

Incidentally, the Marriage entity class is the resolution of a many-to-
many relationship “be married to” between Person and Person in (a) and
Man and Woman in (b). The many-to-many relationship arises from persons
possibly marrying more than one other person, usually over time rather
than concurrently.

Note the optionality of the relationships “mother of” and “father of,”
particularly in the first model, where they are self-referencing. (Recall our

111

Simsion-Witt_04 10/8/04 7:40 PM Page 111

advice in Section 3.5.4 to beware of mandatory self-referencing relation-
ships.) While the rule “every person must have a mother” may seem
reasonable enough at first glance, it is not supported by the data available
to us. We simply run out of data long before we need to face the real-world
problem of, “Who was the first woman?” Eventually, we reach an ancestor
whose mother we do not know.

112 ■ Chapter 4 Subtypes and Supertypes

Figure 4.1 Alternative family tree models.

Person

be the
mother of

have as
mother

have as
father

Marriage

involve
as wife

be the
wife in

Man Woman

Model (a)

 be the father of

 be the daughter of
 be the son of

 be the mother of

Marriage

involve
 as
 wife

be the
wife in

involve
as

husband

be the
husband in

be the
mother

of be the
daughter
of

be the
father

of be the
son of

Model (b)

involve
as

husband

be the
husband in

be the
father of

Simsion-Witt_04 10/8/04 7:40 PM Page 112

4.3 Rules Versus Stability ■ 113

The important issue, however, is our choice of entity classes. We cannot
use the nouns (“mother,” “father,” “child”) given in the problem description,
because these will overlap; a given person can be both a mother and a
child, for example. Implementing Mother and Child entity classes would
therefore compromise our objective of nonredundancy, by holding details
of some persons in two places. We need to come up with another set of
concepts, and in Figure 4.1 we see two different approaches to the problem.
The first uses the person concept; the second uses the two nonoverlapping
concepts of man and woman.

Aside from this difference, the models are essentially the same (although
they need not be). They appear to address our criterion of completeness
equally well. Any person who can be represented by the first model can
also be handled by the second, and vice versa. Neither model involves any
redundant data. Although no attributes are shown, simple attributes such as
Name, Birth Date, and Marriage Locality could be allocated to either model
without causing any normalization problems.

The difference between the models arises from the level of generaliza-
tion we have selected for the entity classes. Person is a generalization of
Man and Woman, and, conversely, Man and Woman are specializations
of Person. Recognizing this helps us to understand how the two models
relate and raises the possibility that we might be able to propose other
levels of generalization, and hence other modelsperhaps specializing
Man into Married Man and Unmarried Man, or generalizing Marriage
to Personal Relationship.

It is important to recognize that our choice of level of generalization will
have a profound effect not only on the database but on the design of the
total system. The most obvious effect of generalization is to reduce the
number of entity classes and, on the face of it, simplify the model.
Sometimes this will translate into a significant reduction in system com-
plexity, through consolidating common program logic. In other cases, the
increase in program complexity from combining the logic needed to handle
quite different subtypes outweighs the gains. You should be particularly
conscious of this second possibility if you are using an algorithm to esti-
mate system size and cost (e.g., in terms of function points). A lower cost
estimate, achieved by deliberately reducing the number of entity classes
through generalization, may not adequately take into account the associ-
ated programming complexity.

4.3 Rules versus Stability

To select the most appropriate level of generalization, we start by looking
at an important difference between the models: the number and type of
business rules (constraints) that each supports. The man-woman model has

Simsion-Witt_04 10/8/04 7:40 PM Page 113

three entity classes and six relationships, whereas the person model has
only two entity classes and four relationships. The man-woman model
seems to be representing more rules about the data.

For example, the man-woman model insists that a marriage consists of
one man and one woman, while the person model allows a marriage
between two men or two women (one of whom would participate in the
“wife” relationship and the other in the “husband” relationship, irrespective
of gender). The person model would allow a person to have two parents
of the same gender; the man-woman model insists that the mother must be
a woman, and the father a man.

Under most present marriage laws at least, the man-woman model is
looking pretty good! But remember that we can enforce rules elsewhere in
the system as well. If we adopt the person-based model, we only need to
write a few lines of program code to check the gender of marriage partners
and parents when data is entered and return an error message if any rules
are violated. We could even set up a table of allowed combinations, which
was checked whenever data was entered. Or we could implement the rule
outside the computerized component of the system, through (for example)
manual review of input documents. The choice, therefore, is not whether
to build the rules into the system, but whether the database structure, as
specified by the data model, is the best place for them.

Recall that one of the reasons we give so much attention to designing a
sound data model is the impact of changing the database structure after it
is implemented. On the other hand, changing a few lines of program code,
or data in a table, is likely to be much less painful. Accordingly, we
included stability as one of the criteria for data model quality. But there is
a natural trade-off between stability and enforcement of constraints.

Put simply, the more likely it is that a rule will change during the life of
the system, the less appropriate it is to enforce that rule by data structures
rather than some other mechanism. In our example, we need to trade off
the power of representing the rules about marriage in data structures
against the risk that the rules may change during the life of the system. In
some jurisdictions, the man-woman model would already be unworkable.
Once again there is a need for some forward thinking and judgment on the
part of those involved in the modeling process.

Let us just look at how strongly the man-woman model enforces the
constraint on marriages. The Marriage table will contain, as foreign keys,
a Man ID and a Woman ID. Programs will be written to interpret these as
pointers to the Man and Woman tables, respectively. If we want to record
a marriage between two men without redesigning the database and pro-
grams, the most obvious “work around” is to record one as a man and one
as a woman. What if both have previously been married to women? How
will we need to modify reports such as “list all men?” Some complicated
logic is going to be required, and our criterion of elegance is going to be
severely tested.

114 ■ Chapter 4 Subtypes and Supertypes

Simsion-Witt_04 10/8/04 7:40 PM Page 114

We can express the flexibility requirement as a guideline:
Do not build a rule into the data structure of a system unless you are rea-

sonably confident that the rule will remain in force for the life of the system.
As a corollary, we can add:
Use generalization to remove unwanted rules from the data model.
It is sometimes difficult enough to determine the current rules that

apply to business data, let alone those that may change during the life of a
system. Sometimes our systems are expected to outlast the strategic plan-
ning time frame of the business: “We’re planning five years ahead, but
we’re expecting the system to last for ten.”

The models developed by inexperienced modelers often incorporate
too many rules in the data structures, primarily because familiar concepts
and common business terms may themselves not be sufficiently general.
Conversely, once the power of generalization is discovered, there is a
tendency to overdo it. Very general models can seem virtually immune to
criticism, on the basis that they can accommodate almost anything. This is
not brilliant modeling, but an abdication of design in favor of the process
modeler, or the user, who will now have to pick up all the business rules
missed by the data modeler.

4.4 Using Subtypes and Supertypes

It is not surprising that many of the arguments that arise in data modeling
are about the appropriate level of generalization, although they are not
always recognized as such. We cannot easily resolve such disputes by turn-
ing to the rulebook, nor do we want to throw away interesting options
too early in the modeling process. While our final decision might be to
implement the “person” model, it would be nice not to lose the (perhaps
unstable) rules we have gathered which are specific to men or women.
Even if we do not implement the subtypes as tables in our final database
design, we can document the rules to be enforced, by the DBMS (as
integrity constraints) or by the process modeler.

So, we defer the decision on generalization, and treat the problem of
finding the correct level as an opportunity to explore different options. To
do this, we allow two or more models to exist on top of one another on
the same E-R diagram. Figure 4.2 shows how this is achieved.

The ability to represent different levels of generalization requires a new
diagramming convention, the box-in-box. You should be very wary about
overcomplicating diagrams with too many different symbols, but this one lit-
erally adds another dimension (generalization/specialization) to our models.

We call the use of generalization and specialization in a model subtyping.
Man and Woman are subtypes of Person.
Person is a supertype of Man and of Woman.

4.4 Using Subtypes and Supertypes ■ 115

Simsion-Witt_04 10/8/04 7:40 PM Page 115

We note in passing at this stage that the diagram highlights three imple-
mentation options:

1. A single Person table

2. Separate Man and Woman tables

3. A Person table holding data common to both men and women, sup-
plemented by Man and Woman tables to hold data (including foreign
keys) relevant only to men or women, respectively.

We discuss the implications of the different options in some detail in
Chapter 11.

We will now look at the main rules for using subtypes and supertypes.

4.5 Subtypes and Supertypes as Entity Classes

Much of the confusion that surrounds the proper use of subtypes and
supertypes can be cleared with a simple rule: subtypes and supertypes are
entity classes.

Accordingly:

1. We use the same diagramming convention (the box with rounded
corners) to represent all entity classes, whether or not they are subtypes
or supertypes of some other entity class(es).

116 ■ Chapter 4 Subtypes and Supertypes

Figure 4.2 Different levels of generalization on a single diagram.

Person

Man Woman

Marriage

involve
as

husband

involve
as

wife

be
husband in

be the
mother of

be the
father of

have as
mother

have as
father

be
wife in

Simsion-Witt_04 10/8/04 7:40 PM Page 116

2. Subtypes and supertypes must be supported by definitions.

3. Subtypes and supertypes can have attributes. Attributes particular to
individual subtypes are allocated to those subtypes; common attributes
are allocated to the supertype.

4. Subtypes and supertypes can participate in relationships. Notice in our
family tree model how neatly we have been able to capture our “mother
of” and “father of” relationships by tying them to entity classes at the
most appropriate level. In fact, this diagram shows most of the sorts of
relationships that seem to worry modelers, in particular the relationship
between an entity class and its own supertype.

5. Subtypes can themselves have subtypes. We need not restrict ourselves
to two levels of subtyping. In practice, we tend to represent most con-
cepts at one, two, or three levels of generality, although four or five
levels are useful from time to time.

Keep this basic rule in mind as we discuss these matters further in the
following sections.

4.5.1 Naming Subtypes

It is important to remember that subtypes are entity classes when naming
them. Too often we see subtypes named using adjectives instead of nouns
[e.g., Permanent and Temporary as types of Employee (rather than
Permanent Employee and Temporary Employee) or Domestic and
Overseas as subtypes of Customer (rather than Domestic Customer and
Overseas Customer)]. There are two good reasons for not doing this. The
first is that an attribute list or other documentation about entity classes may
show subtypes out of context (not associated with the supertype) and it can
be difficult in this situation to establish what the subtype is supposed to be.
The second reason is that most CASE tools and database development
methodologies generate table names automatically from entity class names.
Again, a table representing a subtype will not be obviously associated with
the relevant supertype table (indeed there may be no such table) so its
meaning may not be obvious to a programmer or query writer.

4.6 Diagramming Conventions

4.6.1 Boxes in Boxes

In this book, we use the “box-in-box” convention for representing subtypes.
It is not the only option, but it is compact, widely used, and supported by

4.6 Diagramming Conventions ■ 117

Simsion-Witt_04 10/8/04 7:40 PM Page 117

several popular documentation tools. Virtually all of the alternative con-
ventions, including UML (see Figure 4.3), are based around lines between
supertypes and subtypes. These are easily confused with relationships,1 and
can give the impression that the model allows redundant data. (In our
example, Person, Man, and Woman would appear to overlap, until we
recognized that the lines joining them represented subtype-supertype
associations, rather than relationships.)

4.6.2 UML Conventions

Figure 4.3 illustrates how the model in Figure 4.2 could be represented in
UML notation. The subtypes are represented by boxes outside rather than

118 ■ Chapter 4 Subtypes and Supertypes

1To add to the confusion, some practitioners and researchers use the term “relationship”
broadly to include associations between subtypes and their supertypes. We believe the two
concepts are sufficiently different to warrant different terms, but occasionally find ourselves
talking loosely about a “subtype-supertype relationship” and unfortunately reinforcing the idea
that these are relationships in the strict sense of the word. If you need a generic term, we
suggest “association” as used in UML.

Figure 4.3 Family tree model in UML.

Person

WomanMan

Marriage

 1..1

be the husband in

 0..*

 1..1

be the wife in

0..*

be the father of 0..*

1..1

0..* be the mother of

 1..1

Simsion-Witt_04 10/8/04 7:40 PM Page 118

inside the supertype box. The unfilled arrowhead at the upper end of the
line from Person to Man and Woman indicates that the latter are subtypes
of Person.

4.6.3 Using Tools That Do Not Support Subtyping

Some documentation tools do not provide a separate convention for sub-
types at all, and the usual suggestion is that they be shown as one-to-one
relationships. This is a pretty poor option, but better than ignoring subtypes
altogether. If forced to use it, we suggest you adopt a relationship name,
such as “be” or “is,” which is reserved exclusively for subtypes. (Which one
you use depends on your formula for constructing business assertions
to describe relationships, as discussed in Section 3.5.1.) Above all, do not
confuse relationships with subtype-supertype associations just because a
similar diagramming convention is used. This is a common mistake and the
source of a great deal of confusion in modeling.

4.7 Definitions

Every entity class in a data model must be supported by a definition, as dis-
cussed in Section 3.4.3. To avoid unnecessary repetition, a simple rule
applies to the definition of a subtype:

An entity class inherits the definition of its supertype.
In writing the definition for the subtype, then, our task is to specify what

differentiates it from its sibling subtypes (i.e., subtypes at the same level
and, if relevant, within the same partitionsee Section 4.10.5). For example,
if the entity class Job Position is subtyped into Permanent Job Position
and Temporary Job Position, the definition of Permanent Job Position
will be “a Job Position that” In effect we build a vocabulary from the
supertypes, allowing us to define subtypes more concisely.

4.8 Attributes of Supertypes and Subtypes

Where do we record the attributes of an entity class that has been divided
into supertypes and subtypes? In our example, it makes sense to document
attributes that can apply to all persons against Person and those that can
apply only to men or only to women against the respective entity classes.
So we would hold Birth Date as an attribute of Person, and Maiden Name

4.8 Attributes of Supertypes and Subtypes ■ 119

Simsion-Witt_04 10/8/04 7:40 PM Page 119

(family name prior to marriage)2 as an attribute of Woman. By adopting
this discipline, we are actually modeling constraints: “Only a woman can
have a maiden name.”

Sometimes we can add meaning to the model by representing attributes
at two or more levels of generalization. For example, we might have an
entity class Contract, subtyped into Renewable Contract and Fixed-Term
Contract. These subtypes could include attributes Renewal Date and
Expiry Date, respectively. We could then generalize these attributes to End
Date, which we would hold as an attribute of Contract. You can think of
this as subtyping at the attribute level. If an attribute’s meaning is different
in the context of different subtypes, it is vital that the differences be
documented.

4.9 Nonoverlapping and Exhaustive

The subtypes in our family tree model obeyed two important rules:

1. They were nonoverlapping: a given person cannot be both a man and
a woman.

2. They were exhaustive: a given person must be either a man or a
woman, nothing else.

In fact, these two rules are necessary in order for each level of general-
ization to be a valid implementation option in itself.

Consider a model in which Trading Partner is subtyped into Buyer
and Seller.

If a buyer can also be a seller, then the subtypes overlap. If we were to
discard the supertype and implement the two subtypes, our database
would hold redundant data: those trading partners who were both buyers
and sellers would appear in both tables.

If we can have a trading partner who is neither a buyer nor a seller (per-
haps an agent or intermediary), then if we were to discard the supertype
and implement the two subtypes, our database would be incomplete.
Agents or intermediaries who were not buyers or sellers would not appear
in either the buyer or seller table.

120 ■ Chapter 4 Subtypes and Supertypes

2As an aside, Maiden Name is a culture-specific concept and term; it is likely that it will be
irrelevant for a significant subclass of women (an opportunity for another level of subtyping?).
And could we derive a maiden name from the father’s family name (if that is indeed how we
define Maiden Name)? But would we record a father if the only data we had for him was his
family name, as a result of knowing his daughter’s maiden name? “Simple” examples are not
so simple!

Simsion-Witt_04 10/8/04 7:40 PM Page 120

With these restrictions in mind, let’s take a harder look at the family tree
model. Are we sure that we can classify every person as either a man or a
woman? A look at medical data standards3 will show that gender is a com-
plex and controversial issue, not easily reduced to a simple division
between “male” and “female.” Different definitions may be useful for dif-
ferent purposes (for example a government agency may accept an individ-
ual’s statement of their own gender; a sporting organization may base its
determination on a medical assessment; a medical researcher may be inter-
ested only in chromosomes). In dealing with large numbers of people, we
are going to encounter the less common (and even very rare) cases. If our
modeling does not recognize them, our systems are not likely to be able to
accommodate them easily.

Finally, what if we do not know the person’s gender? Sometimes our
data about the real world is incomplete, and we may not have enough
information to classify all of the instances that we want to record.
Implementing Man and Woman tables only would result in a database that
was unable to hold what might be an important category of personsthose
whose gender was unknown or uncertain.

Did we pick this example deliberately to be awkward (and perhaps
provocative)? On the contrary, many situations that seem simple on the
surface turn out to be far more complex when they are explored in detail,
and many “obvious” definitions turn out to be difficult to pin down. We
used this example for many years4 without the assertion that there were
only two genders ever being challenged. Then, in the space of a few
months, we encountered several situations in which a naive approach to
gender definition had caused real problems in established systems.

To summarize: in order to allow the subtypes at each level to represent
a sound option for implementation, they must be nonoverlapping and
exhaustive. This makes leveling of the model (as we move from the con-
ceptual E-R model to the logical model, which may need to specify simple
tables) considerably easier, but restricts our choice in selecting subtypes
and, consequently, our ability to represent rules applying to specific sub-
types. Whether the sacrifice is worth it is a contentious issue.

The most common argument against restrictions on subtyping is that we
should not allow the facilities available for implementation (i.e., simple
tables) to limit the power of our data modeling language. This is a nice idea
in theory, but there are many facts about data that cannot be represented

4.9 Nonoverlapping and Exhaustive ■ 121

3See for example the Australian Institute of Health and Welfare Data Dictionary
www.aihw.gov.au and compare with ISO Standard 5218 http://www.fact-index.
com/i/is/iso_5218.html.
4In earlier editions of this book, the complexities of gender were not discussed.

Simsion-Witt_04 10/8/04 7:40 PM Page 121

even by overlapping nonexhaustive subtypes. Genuine observance of
this principle would seriously complicate our data modeling language and
conventions with constructs that could not be translated into practical data-
base designs using available technology. This has not stopped researchers
from developing richer languages (see Chapters 7 and 14), but practition-
ers have been reluctant to extend their modeling much beyond that needed
to specify a database design. Indeed, some practitioners do not even use
subtypes.

Another more convincing argument is that the value of our models is
reduced (particularly in the areas of communication and representation of
constraints) if we cannot represent common but overlapping business
concepts. This happens most often when modeling data about people and
organizations. Typical businesses deal with people and organizations in
many roles: supplier, customer, investor, account holder, guarantor, and so
forth. Almost invariably the same person or organization can fill more than
one of these roles; hence, we cannot subtype the entity classes Person and
Organization into these roles without breaking the “no overlaps” rule. But
leaving them out of the model may make them difficult to understand
(“Where is ‘Customer’?”) and will limit our ability to capture important
constraints (“Only a customer can have a credit rating.”). This is certainly
awkward, but in practice is seldom a problem outside the domain of
persons and organizations. Some tactics for dealing with situations that
seem to demand overlapping subtypes are discussed in the next section.

It is worth comparing the situation with process modeling. The rules for
function decomposition and data flow diagrams do not normally allow
functions at any level to overlap. Most of us do not even stop to consider
this, but happily model nonoverlapping functions without thinking about
it. Much the same applies in data modeling: we are used to modeling non-
overlapping entity classes in a level (subtype-free) model, and we tend to
carry this over into the modeling of subtypes.

Some of the major documentation tool manufacturers have chosen the
restrictive route, in part no doubt, because translation to relational tables is
simpler. If you are using these tools, the choice will be made for you. UML
allows nonoverlapping and nonexhaustive subtypings, and provides for
annotations that can be placed on the line linking the supertype to the set
of subtypes to indicate whether the latter is overlapping or not and whether
it is exhaustive or not. However, there is no requirement for those annota-
tions to be added. As a result many UML modelers do not do so and their
models are ambiguous.

The academic community has tended to allow the full range of options,
in some cases recommending diagramming conventions to distinguish the
different possible combinations of overlap and completeness.

On balance, our recommendation is that you discipline yourself to use
only nonoverlapping, exhaustive subtypes, as we do in practice and in the
remainder of this book.

122 ■ Chapter 4 Subtypes and Supertypes

Simsion-Witt_04 10/8/04 7:40 PM Page 122

4.10 Overlapping Subtypes and Roles

Having established a rule that subtypes must not overlap, we are left with
the problem of handling certain real-world concepts and constraints that
seem to require overlapping subtypes to model. As mentioned earlier,
the most common examples are the various roles played by persons and
organizations. Many of the most important terms used in business (Client,
Employee, Stockholder, Manager, etc.) describe such roles, and we are
likely to encounter at least some of them in almost every data modeling
project. The way that we model (and hence implement) these roles can
have important implications for an organization’s ability to service its
customers, manage risk, and comply with antitrust and privacy legislation.

There are several tactics we can use without breaking the “no
overlaps” rule.

4.10.1 Ignoring Real-World Overlaps

Sometimes it is possible to model as if certain overlaps did not exist. We
have previously distinguished real-world rules (“Every person must have a
mother.”) from rules about the data that we need to hold or are able to hold
about the real world (“We only know some peoples’ mothers.”). Similarly,
while a customer and a supplier may in fact be the same person, the
business may be happy to treat them as if they were separate individuals.
Indeed, this may be legally required. In such cases, we can legitimately
model the roles as nonoverlapping subtypes. In the absence of such a
legal requirement, we will need to look at the business value of knowing
that a supplier and customer may be the same person or organization. We
know of an organization that sued a customer for an outstanding debt
unaware that the customer was also a supplier, and was deliberately with-
holding the money to offset money owed to them by the organization.
Anecdotes of this kind abound and provide great material for people keen
to point out bureaucratic or computer incompetence, but their frequency
and impact on the business is often not sufficient to justify consolidating
the data.

You obviously need to be careful in choosing not to reflect real-world
overlap in the data model. Failure to recognize overlaps among parties is
one of the most common faults in older database designs, and it is most
unlikely that we can ignore all such overlaps. But neither should we auto-
matically model all real-world overlaps. Sometimes it is possible to exclude
a few important entity classes from the problem. If these are entity classes
that are handled quite differently by the business, useful gains in simplicity
and elegance may be achieved. A modern banking model is unlikely to

4.10 Overlapping Subtypes and Roles ■ 123

Simsion-Witt_04 10/8/04 7:40 PM Page 123

treat borrowers, guarantors, and depositors as separate entity classes, but
may well separate stockholders and suppliers.

Data modelers are inclined to reject such separation purely on the
grounds of infidelity to the real world, rather than any negative impact on
the resulting database or system. This is a simplistic argument, and not
likely to convince other stakeholders.

4.10.2 Modeling Only the Supertype

One of the most common approaches to modeling the roles of persons and
organizations is to use only a single supertype entity class to represent all
possible roles. If subtyping is done at all, it is on the basis of some other
criterion, such as “legal entity class type”partnership, company, individ-
ual, etc. The supertype is typically named Party, Involved Party, or Legal
Entity.

The problem of communicating this high-level concept to business
people has been turned into an opportunity to influence thinking and
terminology in some organizations. In particular, it can encourage a move
from managing “customer” relationships to managing the total relationship
with persons and organizations. A database that includes a table of parties
rather than merely those who fulfill a narrower definition of “customer”
provides the data needed to support this approach.

The major limitation of the approach is that we cannot readily capture
in the model the fact that some relationships apply only to certain roles.
These can still be documented, of course, along with other rules con-
straining the data, as formal constraints or supporting commentary, (e.g.,
“Market Segment must be recorded if this Party interacts with the organiza-
tion in the role of Customer,” but such relationships will not appear in the
E-R Diagram).

4.10.3 Modeling the Roles as Participation
in Relationships

In the supertype-only model described above, roles can often be described
in terms of participation in relationships. For example, we can describe a
customer as a party who maintains an account and a supplier as a party
who participates in a contract for supply. The Chen notation, (introduced
in Section 3.5.1 and discussed further in Chapter 7) includes a convention
to support this (Figure 4.4).

If you are not using the Chen notation, then, rather than further
complicate relationship notation for the sake of one section of a model, we

124 ■ Chapter 4 Subtypes and Supertypes

Simsion-Witt_04 10/8/04 7:40 PM Page 124

suggest you document such rules within the definition of the main entity
class. For example, “A Guarantor is a Party who participates in the guar-
antee relationship with a Loan.”

4.10.4 Using Role Entity Classes and One-to-One
Relationships

An approach that allows us to record the business terminology as well as
the specific attributes and relationships applicable to each role is shown in
Figure 4.5. The role entity classes can be supertyped into Party Role to

4.10 Overlapping Subtypes and Roles ■ 125

Figure 4.5 Role entity classes and one-to-one relationships.

Party

Supplier
Role

Customer
Role

Account

Contract
for Supply

be played
by

be
played by

 play

be party
to

nominate
as supplier

own

be owned
by

play

Figure 4.4 Chen convention for roles.

Account

Contract
for Supply

Party
Contract

Party
Account

Contract

N

Account

M

Party

Supplier

Customer

1
Role
Names

N

Simsion-Witt_04 10/8/04 7:40 PM Page 125

facilitate communication, although we would be most unlikely to imple-
ment at this level, for we would then lose the distinction among roles that
the role entity classes were designed to provide. However, intermediate
supertyping is often useful. For example, we might decide that a single
customer role would cover all roles involving participation in insurance
policies, regardless of the type of policy or participation.

Note the entity class names. The word “role” is included to indicate that
these entity classes do not hold the primary data about customers, suppliers,
and so forth. There is a danger here of blurring the distinction between sub-
types and one-to-one relationships.

Despite this inelegance in distinguishing relationships from subtypes,
the role entity class approach is usually the neatest solution to the problem
when there are significant differences in the attributes and relationships
applicable to different roles.

4.10.5 Multiple Partitions

Several CASE tools5 support a partial solution to overlapping subtypes by
allowing multiple breakdowns (partitions) into complete, nonoverlapping
subtypes (Figure 4.6). In the example, the two different subtypings of
Company enable us to model the constraints that, for example:

■ Only a public company can be listed on a stock exchange.
■ Only an overseas company can be represented by a local company.

If a given company could be both public and local, for example, it
would be difficult to model both of these constraints if we were restricted
to a single partition.

The multiple partition facility is useful when we have two or three alter-
native ways of subtyping according to our rules. Translation to a relational
model, however, is more difficult. We can do any one of the following:

1. Implement only the highest level supertype as a table (straightforward,
but not always the best choice)

2. Select one partition and implement the subtypes as tables, (e.g., Private
Company and Public Company)

3. Implement multiple levels selecting only some of the partitions, (e.g.,
implement only Company, Private Company and Public Company as
tables)

126 ■ Chapter 4 Subtypes and Supertypes

5Including ERwin and ER/Studio.

Simsion-Witt_04 10/8/04 7:40 PM Page 126

4. Implement multiple levels and multiple partitions, (e.g., implement
Company, Local Company, Overseas Company, Private Company
and Public Company all as tables)

If we choose option 2 or 3, we need to ensure that relationships and
attributes from the other partitions are reallocated to the chosen subtypes.

The multiple partition facility is less helpful in handling the roles prob-
lem, as we can end up with a less-than-elegant partitioning like the one in
Figure 4.7.

4.11 Hierarchy of Subtypes

We have already used the term “subtype hierarchy.” Each subtype can have
only one immediate supertype (in a hierarchy, everybody has one imme-
diate boss only, except the person at the top who has none). This follows
from the “no overlap” requirement, as two supertypes that contained a

4.11 Hierarchy of Subtypes ■ 127

Figure 4.6 Multiple partitions.

Local
Company

Overseas
Company

Private
Company

Public
Company

Stock
Exchange

list

be
listed on

be
represented

by

represent

Company

Simsion-Witt_04 10/8/04 7:40 PM Page 127

common subtype would overlap. Again, adherence to this rule produces a
model that is more readily translated into an implementable form with each
fact represented in one place only.

Few conventions or tools support multiple supertypes for an entity class,
possibly because they introduce the sophistication of “multiple inheri-
tance,” whereby a subtype inherits attributes and relationships directly from
two or more supertypes. Multiple inheritance is a major issue in object-
oriented design. The object-oriented designers’ problem is almost the
opposite of ours; their programming languages provide the facilities, but
the questions of how and where they should be used, if at all, are still
contentious.

4.12 Benefits of Using Subtypes and Supertypes

We have introduced subtypes and supertypes as a means of comparing
many possible options on the one diagram. Each level in each subtype hier-
archy represents a particular option for implementing the business concepts
embraced by the highest-level supertype. But subtypes and supertypes
offer benefits not only in presenting options, but in supporting creativity
and handling complexity as well.

128 ■ Chapter 4 Subtypes and Supertypes

Figure 4.7 Representing roles using multiple partitions.

Company

Customer

Noncustomer

Supplier

Nonsupplier

Contract
for

Supply

be
held by

hold
Account

nominate

be party to

Simsion-Witt_04 10/8/04 7:40 PM Page 128

4.12.1 Creativity

Our use of subtypes in the creative process has been a bit passive so far.
We have assumed that two or more alternative models have already been
designed, and we have used subtypes to compare them on the same dia-
gram. This is a very useful technique when different modelers have been
working on the same problem and (as almost always happens) produced
different models. Generally, though, we use these conventions to enhance
creativity in a far more active way. Rather than design several models and
attempt to bring them together, we work with one multilevel model. As we
propose entity classes we ask:

“Can this entity class be subtyped into more specific entity classes that
represent distinct business concepts?” and,

“Are any of the entity classes candidates for generalization into a
common supertype?”

The first question is usually reasonably straightforward to answer,
although it may require some research and perhaps some thinking as to the
best breakdown. However, the second frequently prompts us to propose
new supertype entity classes that represent novel but useful classifications
of data. Let us assume we already have a model that is complete and non-
redundant. Experimenting with different supertypes will preserve these
properties, and we can focus on other objectives, such as simplicity and
elegance. “Taking the model down another level” by further subtyping
existing entity classes will give us more raw material to work with. We will
look at this technique more closely in Chapter 10. For the moment, take
note that the use of subtyping and supertyping is one of the most impor-
tant aids to creativity in modeling.

4.12.2 Presentation: Level of Detail

Subtypes and supertypes provide a mechanism for presenting data models
at different levels of detail. This ability can make a huge difference to our
ability to communicate and verify a complex model. If you are familiar with
process modeling techniques, you will know the value of leveled data flow
diagrams in communicating first the “big picture,” then the detail as
required. The concept is applied in many, many disciplines, from the hier-
archy of maps in an atlas, to the presentation of a company’s accounts.
Subtypes and supertypes can form the basis of a similar structured
approach to presenting data models.6

4.12 Benefits of Using Subtypes and Supertypes ■ 129

6First described in Simsion, G.C., “A Structured Approach to Data Modelling,” Australian
Computer Journal (August 1989).

Simsion-Witt_04 10/8/04 7:40 PM Page 129

We can summarize a data model simply by removing subtypes, choos-
ing the level of summarization by how many levels of subtyping we leave.
We can even vary this across the model: show the full detail in an area of
interest, while showing only supertypes outside that area. For example, our
model might contain (among other things) details of contracts and the
employees who authorized them. The human resources manager might be
shown a model in which all the subtypes of Employee were included, with
a relationship to the simple supertype entity class Contract. Conversely, the
contract manager might be shown a full subtyping of contracts, with a
relationship to the supertype entity class Employee (Figure 4.8).

Each sees only what is of interest to them, without losing the context of
external data.

In practice, when presenting a very high-level model, we often selec-
tively delete those entity classes that do not fit into any of the major gen-
eralizations and that are not critical to conveying the overall “shape” of the
model. In doing this, we lose the completeness of coverage that a strict
supertype model provides. While the model no longer specifies a viable
design, it serves as a starting point for understanding. Anyone who has
tried to explain a data model for even a medium-sized application to a non-
technical person will appreciate the value of such a high-level starting
point.

Documentation tools that can display and/or print multiple views of the
same model by selective removal of entity classes and/or relationships are
useful in this sort of activity.

4.12.3 Communication

Communication is not only a matter of dealing with complexity.
Terminology is also frequently a problem. A vehicles manager may be inter-
ested in trucks, but the accountant’s interest is in assets. Our subtyping
convention allows Truck to be represented as a subtype of Asset, so both
terms appear on the model, and their relationship is clear.

The ability to relate familiar and unfamiliar entity classes is particularly
useful to the creative modeler, who may want to introduce an entity class
that will not be immediately recognizable. By showing a new entity class
in terms of old, familiar entity classes, the model can be verified without
business people becoming stuck on the unfamiliar term. Perhaps our
organization trades in bonds and bills, and we are considering represent-
ing both by a single entity class type Financial Instrument. To the organ-
ization, they are separate and have always been treated as such. By
showing Financial Instrument subtyped into Bond and Bill, we provide a
starting point for understanding. If they prefer, the business specialists need
never use the new word, but can continue to talk about “bonds and bills.”

130 ■ Chapter 4 Subtypes and Supertypes

Simsion-Witt_04 10/8/04 7:40 PM Page 130

4.12 Benefits of Using Subtypes and Supertypes ■ 131

Figure 4.8 Different views of a model.

Permanent
Employee

Manager

Professional

Clerical
Employee

Contract

Casual Employee

Employee

authorize

be
authorized
by

View (a) Human Resources Focus

Supply
Contract

Service
Contract

Delivery
Contract

Contract

Employee
 authorize

be
authorized
by

View (b) Contract Management Focus

Simsion-Witt_04 10/8/04 7:40 PM Page 131

In one organization, senior management wanted to develop a consoli-
dated asset management system, but divisional management wanted local
systems, arguing that their own requirements were unique. Rather than try
to develop a consolidated model straightaway (with little cooperation), we
developed two separate models, using local terminology, but with one eye
on consistency. We then combined the models, preserving all the local
entity classes but introducing supertypes to show the commonality. With
the understanding that their specific needs had been accommodated (and
the differencesand there were somerecognized), the managers agreed
to proceed with the consolidated system.

When using subtypes and supertypes to help communicate a model, we
need have no intention of implementing them as tables; communication is
a sound enough reason in itself for including them.

4.12.4 Input to the Design of Views

Recall that relational DBMSs allow data to be accessed through views.
Views can be specified to select only a subset of the rows in a table, or to
combine rows from multiple tables, (i.e., to present subtypes or supertypes,
respectively). In our original example, a Person table could be presented
as separate Man and Woman views; alternatively Man and Woman tables
could be combined to present a Person view.

There are some limitations on what we can do with views (in particular
there are some important restrictions on the ability to update data through
views) so using them does not absolve us from the need to select our base
tables carefully. However, views do provide at least a partial means of imple-
menting the subtypes and supertypes that we identify in conceptual modeling.

Looking at it from the other direction, using subtypes and supertypes to
capture different perspectives on data gives us valuable input to the spec-
ification of useful views and encourages rigor in their definition.

4.12.5 Classifying Common Patterns

We can also use supertypes to help us classify and recognize common pat-
terns. In the later chapters of this book, we look at a number of structures
that appear again and again in models. In most cases, we first look at an
example of the structure (such as the different ways of modeling
Operation Type and Operation in Section 3.8), then we apply what we
have learned to the general case (Thing and Thing Type, if you like).
Without generalization, we cannot apply what we learn in designing one

132 ■ Chapter 4 Subtypes and Supertypes

Simsion-Witt_04 10/8/04 7:40 PM Page 132

model to the design of another. Supertypes and subtypes provide a formal
means of doing this.

We once had to review several models covering different stages in the
brewing of beer. The models had been produced independently, but some
common patterns began to emerge so that we developed a mental generic
model roughly applicable to any stage. We could then concentrate on how
the models differed. Reviewing one model, we asked why no samples
were taken at this stage (since the high-level model included a Sample
entity class). Later investigation showed that this was an oversight by the
modeler, and we were congratulated on our knowledge of brewing. The
other modelers had not noticed the omission because, without a high-level
model, they were “too close to the problem”unable to see the pattern for
the detail.

4.12.6 Divide and Conquer

The structured approach to modeling gives us the ability to attack a model
from the top down, the middle out, or the bottom up.

The top-down option is particularly important as it allows us to break
a large modeling problem into manageable parts then to address the
question: “What types of . . . do we need to keep information about?” Early
analysis of a finance company might suggest the entity classes Customer
and Loan (nothing terribly creative here). We could then tackle the ques-
tions: “What types of loan are we interested in (and how do they differ)?”
and, “What type of customers are we interested in (and how do they
differ)?” Alternatively, we might model the same business problem in
terms of agreements and parties to agreements. Again, we can then pro-
ceed with more detailed analysis within the high-level framework we have
established.

In developing large models, we may allocate different areas to different
modelers, with some confidence that the results will all fit together in the
end. This is much harder to achieve if we divide the task based on func-
tion or company structure rather than data (“Let us model the data for com-
mercial lending first, then retail lending.”). Because data is frequently used
by more than one function or area, it will be represented in more than one
model, usually in different ways. Often the reconciliation takes much
longer than the initial modeling.

From a creative modeling perspective, a top-down approach based on
specialization allows us to put in place a set of key concepts at the super-
type level and to fit the rest of our results into this framework. There is a
good analogy with architecture here: the basic shape of the building deter-
mines how other needs will be accommodated.

4.12 Benefits of Using Subtypes and Supertypes ■ 133

Simsion-Witt_04 10/8/04 7:40 PM Page 133

4.13 When Do We Stop Supertyping
and Subtyping?

We once encountered a data model that contained more than 900 entity
classes and took up most of a sizeable wall. The modelers had adopted the
rule of “keep subtyping until there are no optional attributes,”7 and had in
fact run out of wall space before they ran out of optional attributes.

There is no absolute limit to the number of levels of subtypes that we
can use to represent a particular concept. We therefore need some guide-
lines as to when to stop subtyping. The problem of when to stop super-
typing is easier. We cannot go any higher than a single entity class covering
all the business datathe “Thing” entity class. In practice, we will often go
as high as a model containing only five to ten entity classes, if only for the
purpose of communicating broad concepts.

Very high levels of supertyping are actually implemented sometimes. As
we should expect, they are used when flexibility is paramount. Data dic-
tionaries that allow users to define their own contents (or metamodels as
they are often called) are one example.

No single rule tells us when to stop subtyping because we use subtypes
for several different purposes. We may, for example, show subtypes that
we have no intention of implementing as tables, in order to better explain
the model. Instead, there are several guidelines. In practice, you will find
that they seldom conflict. When in doubt, include the extra level(s).

4.13.1 Differences in Identifiers

If an entity class can be subtyped into entity classes whose instances are
identified by different attributes, show the subtypes.

For example, we might subtype Equipment Item into Vehicle and
Machine because vehicles were identified by registration number and
machines by serial number. Conversely, if we have two entity classes that are
identified by the same attribute(s), we should consider a common supertype.

Beware of circular thinking here! We are not talking about identifiers that
have been created purely to support past or proposed database structures

134 ■ Chapter 4 Subtypes and Supertypes

7There is some research to suggest that subtypes should be preferred to optional attributes and
relationships where users require a deep-level understanding of the model: Bodart, F., Patel,
A., Sim, M., and R. Weber (2001): Should Optional Properties Be Used in Conceptual
Modelling? A Theory and Three Empirical Tests. Information Systems Research, 12 (4):
384–405. We would caution against uncritically adopting this practice: researchers generally
work with relatively simple models, and the results may not scale to more complex models.

Simsion-Witt_04 10/8/04 7:40 PM Page 134

or processing, but identifiers that have some standing within or outside the
organization.

4.13.2 Different Attribute Groups

If an entity class can be subtyped into entity classes that have different
attributes, consider showing the subtypes.

For example, Insurance Policy may be subtyped into House Policy
(with attributes Construction Type, Floor Area, and so on) and Motor Vehicle
Policy (with attributes Make, Model, Color, Engine Capacity, Modifications,
Garaging Arrangements, and so on).

In practice, optional attributes are so common that strict enforcement of
this rule will result in a proliferation of subtypes as discussed earlier; we
should not need to draw two boxes just to show that a particular attribute
can take a null value. However, if groups of attributes are always null or
nonnull together, show the corresponding subtypes.

4.13.3 Different Relationships

If an entity class can be divided into subtypes such that one subtype may
participate in a relationship while the other never participates, show the
subtype.

Do not confuse this with a simple optional relationship. You need to look
for groups that can never participate in the relationship. For example, a
machine can never have a driver but a vehicle may have a driver (Figure 4.9).

4.13 When Do We Stop Supertyping and Subtyping? ■ 135

Figure 4.9 Subtyping based on relationship participation.

Vehicle

Machine

Physical Asset

Driver

be available
to

be authorized
to use

Simsion-Witt_04 10/8/04 7:40 PM Page 135

4.13.4 Different Processes

If some instances of an entity class participate in important processes, while
others do not, consider subtyping. Conversely, entity classes that participate
in the same process are candidates for supertyping.

Be very wary of supertyping entity classes that are not treated in a
similar way by the business, regardless of superficial similarity of attributes,
relationships, or names. For example, a wholesaler might propose entity
classes Supplier Order (placed by the wholesaler) and Customer Order
(placed by the customer). The attributes of both types of order may be
similar, but the business is likely to handle them in quite different ways. If
so, it is unlikely that there will be much value in introducing an Order
supertype. Inappropriate supertyping of this kind is a common error in
conceptual modeling.

4.13.5 Migration from One Subtype to Another

We should not subtype to a level where an entity class occurrence may
migrate from one subtype to another (at least not with a view to imple-
menting the subtypes as separate tables). For example, we would not sub-
type Account into Account in Credit and Overdrawn Account because
an account could move back and forth from subtype to subtype. Most mod-
elers seem to observe this rule intuitively, but we note in passing that a family
tree model based around Man and Woman entity classes may actually
violate this rule (depending on our definitions, of course).

If we were to implement a database based on such unstable subtypes,
we would need to transfer data from table to table each time the status
changed. This would complicate processing and make it difficult to keep
track of entity instances over time. More fundamentally, we would fail to
distinguish the creation of a new entity instance from a change in status of
an entity instance. We look further at this question when we discuss identity
in Section 6.2.4.2.

4.13.6 Communication

As mentioned earlier, we may add both subtypes and supertypes to help
explain the model. Sometimes it is useful to show only two or three illustra-
tive subtypes. To avoid breaking the completeness rule, we then need to add
a “miscellaneous” entity class. For example, we might show Merchant Event
(in a credit card model) subtyped into Purchase Authorization, Voucher
Deposit, Stationery Delivery, and Miscellaneous Merchant Event.

136 ■ Chapter 4 Subtypes and Supertypes

Simsion-Witt_04 10/8/04 7:40 PM Page 136

4.13.7 Capturing Meaning and Rules

In our discussions with business people, we are often given information
that can conveniently be represented in the conceptual data model, even
though we would not plan to include it in the final (single level) logical
model. For example, the business specialist might tell us, “Only manage-
ment staff may take out staff loans.” We can represent this rule by subtyp-
ing Staff Member into Manager and Nonmanager and by tying the
relationship to Staff Loan to Manager only (Figure 4.10). We would antic-
ipate that these subtypes would not be implemented as tables in the logi-
cal model (the subtyping is likely to violate the “migration” rule), but we
have captured an important rule to be included elsewhere in the system.

4.13.8 Summary

Subtypes and supertypes are tools we use in the data modeling process,
rather than structures that appear in the logical and physical models, at least
as long as our DBMSs are unable to implement them directly. Therefore,
we use them whenever they can help us produce a better final product,
rather than according to a rigid set of rules. No subtyping or supertyping is
invalid if it achieves this aim, and if it obeys the very simple rules of com-
pleteness and overlap. In particular, there is nothing intrinsically wrong
with subtypes or supertypes that do not have any attributes other than

4.13 When Do We Stop Supertyping and Subtyping? ■ 137

Figure 4.10 Using subtypes to represent rules.

Manager Nonmanager

Employee

Staff
Loan

be taken
 out by

take out

Simsion-Witt_04 10/8/04 7:40 PM Page 137

those inherited or rolled-up, if they contribute to some other objective, such
as communicating the model.

4.14 Generalization of Relationships

So far in this chapter we have focused on the level of generalization of
entity classes and, to a lesser extent, attributes (which we cover in some
detail in Section 5.6). Choosing the right level of generalization for rela-
tionships is also important and involves the same sorts of trade-off between
enforcement of constraints and stability in the face of change.

However, our options for generalizing or specializing relationships are
far more limited because we are only interested in relationships between
the same pair of entity classes. Much of the time we have only one rela-
tionship to play with. For that reason, we do not have a separate conven-
tion for “subtyping” relationships.

But as we generalize entity classes, we find that the number of rela-
tionships between them increases, as a result of “rolling up” from the sub-
types (Figure 4.11). Much of the time, we generalize relationships of the
same name almost automatically, and this very seldom causes any prob-
lems. Most of us would not bother about the intermediate stage shown in
Figure 4.11, but would move directly to the final stage.

As with entity classes, our decision needs to be based on commonality
of use, stability, and enforcement of constraints. Are the individual rela-
tionships used in a similar way? Can we anticipate further relationships? Are
the rules that are enforced by the relationships stable?

Let’s look briefly at the main types of relationship generalization.

4.14.1 Generalizing Several One-to-Many Relationships
to a Single Many-to-Many Relationship

Figure 4.12 shows several one-to-many relationships between Customer
and Insurance Policy (see page 140). These can easily be generalized to a
single many-to-many relationship.

Bear in mind the option of generalizing only some of the one-to-many
relationships and leaving the remainder in place. This may be appropriate
if one or two relationships are fundamental to the business, while the
others are “extras.” For example, we might choose to generalize the “ben-
eficiary,” “contact,” and “security” relationships, but leave the “insure” rela-
tionship as it stands. This apparently untidy solution may in fact be more
elegant from a programming point of view if many programs must navigate
only the most fundamental relationship.

138 ■ Chapter 4 Subtypes and Supertypes

Simsion-Witt_04 10/8/04 7:40 PM Page 138

4.14.2 Generalizing Several One-to-Many Relationships
to a Single One-to-Many Relationship

Generalization of several one-to-many relationships to form a single many-
to-many relationship is appropriate if the individual one-to-many relationships

4.14 Generalization of Relationships ■ 139

Figure 4.11 Relationship generalization resulting from entity class generalization.

Vehicle

Furniture
Item

Machine

Vehicle
Maintenance

Event

Furniture
Item

Maintenance
Event

Machine
Maintenance

Event

be for

be for

be the
 subject of

be the
 subject of

be for

Physical Asset Maintenance Event

generalizing entities

Maintenance
Event

 be the
 subject of

be for

 be the
 be for subject of

 be for be the
subject of

Physical
Asset

Physical
Asset

Maintenance
Event

 be the
 subject of

be for

generalizing relationships

be the
 subject of

Simsion-Witt_04 10/8/04 7:40 PM Page 139

are mutually exclusive, a more common situation than you might suspect.
We can indicate this with an exclusivity arc (Figure 4.13).

We have previously warned against introducing too many additional
conventions and symbols. However, the exclusivity arc is useful enough to
justify the extra complexity, and it is even supported by some CASE tools.8

As well as highlighting opportunities to generalize relationships, the exclu-
sivity arc can suggest potential entity class supertypes. In Figure 4.13, we
are prompted to supertype Company, Individual, Partnership, and
Government Body, perhaps to Taxpayer (Figure 4.14).

We find that we use exclusivity arcs quite frequently during the modeling
process. In some cases, they do not make it from the whiteboard to the
final conceptual model, being replaced with a single relationship to the
supertype. Of course, if your CASE tool does not support the convention
and you wish to retain the arc, rather than supertype, you will need to
record the rule in supporting documentation.

140 ■ Chapter 4 Subtypes and Supertypes

Figure 4.12 Generalization of one-to-many relationships.

Person
Insurance

Policy

 be involved in

involve

Person
Insurance

Policy

be insured under

insure
be beneficiary of

nominate as beneficiary

be contact for

have as contact

hold as security

be assigned as security to

8Notably Oracle Designer from Oracle Corporation. UML tools we have reviewed support arcs
but apparently only between pairs of relationships.

Simsion-Witt_04 10/8/04 7:40 PM Page 140

4.14.3 Generalizing One-to-Many and Many-to-Many
Relationships

Our final example involves many-to-many relationships, along with two
one-to-many relationships (see Figure 4.15 on next page). The generalization
should be fairly obvious, but you need to recognize that if you include the
one-to-many relationships in the generalization, you will lose the rules that
only one employee can fill a position or act in a position. (Conversely, you
will gain the ability to be able to break those rules.)

4.14 Generalization of Relationships ■ 141

Figure 4.13 Diagramming convention for mutually exclusive relationships.

Tax
Assessment

Company

Individual

Partnership

Government
Body

 be for

be the
subject of be for

be the
subject of

be the
subject of be for

be the
subject

be for

exclusivity arc

Figure 4.14 Entity class generalization prompted by mutually exclusive relationships.

Tax
Assessment Taxpayer

 be for

be the
subject of

Simsion-Witt_04 10/8/04 7:40 PM Page 141

4.15 Theoretical Background

In 1977 Smith and Smith published an important paper entitled “Database
Abstractions: Aggregation and Generalization,”9 which recognized that the
two key techniques in data modeling were aggregation/disaggregation and
generalization/specialization.

Aggregation means “assembling component parts,” and disaggregation
means, “breaking down into component parts.” In data modeling terms,
examples of disaggregation include breaking up Order into Order Header
and Ordered Item, or Customer into Name, Address, and Birth Date. This is
quite different from specialization and generalization, which are about clas-
sifying rather than breaking down. It may be helpful to think of disaggre-
gation as “widening” a model and specialization as “deepening” it.

Many texts and papers on data modeling focus on disaggregation, par-
ticularly through normalization. Decisions about the level of generalization
are often hidden or dismissed as “common sense.” We should be very
suspicious of this; before the rules of normalization were formalized, that
process too was regarded as just a matter of common sense.10

142 ■ Chapter 4 Subtypes and Supertypes

Figure 4.15 Generalizing one-to-many and many-to-many relationships.

Employee Positionbe eligible for

fill
be acting in

have applied for
have filled

Employee Position????

9ACM Transactions on Database Systems, Vol. 2, No. 2 (1977).
10Research in progress by Simsion has shown that experienced modelers not only vary in the
level of generalization that they choose for a particular problem, but also may show a bias
toward higher or lower levels of generalization across different problems (see www.
simsion.com.au).

Simsion-Witt_04 10/8/04 7:40 PM Page 142

In this book, and in day-to-day modeling, we try to give similar
weight to the generalization/specialization and aggregation/disaggregation
dimensions.

4.16 Summary

Subtypes and supertypes are used to represent different levels of entity
class generalization. They facilitate a top-down approach to the develop-
ment and presentation of data models and a concise documentation of
business rules about data. They support creativity by allowing alternative
data models to be explored and compared.

Subtypes and supertypes are not directly implemented by standard
relational DBMSs. The logical and physical data models therefore need to
be subtype-free.

By adopting the convention that subtypes are nonoverlapping and
exhaustive, we can ensure that each level of generalization is a valid imple-
mentation option. The convention results in the loss of some representa-
tional power, but it is widely used in practice.

4.16 Summary ■ 143

Simsion-Witt_04 10/8/04 7:40 PM Page 143

This page intentionally left blank

Chapter 5
Attributes and Columns

“There’s a sign on the wall but she wants to be sure
’Cause you know sometimes words have two meanings”

– Page/Plant: Stairway to Heaven, © Superhype Publishing Inc.

“Sometimes the detail wags the dog”
– Robert Venturi

5.1 Introduction

In the last two chapters, we focused on entity classes and relationships,
which define the high-level structure of a data model. We now return to
the “nuts and bolts” of data: attributes (in the conceptual model) and
columns (in the logical and physical models). The translation of attributes
into columns is generally straightforward,1 so in our discussion we will
usually refer only to attributes unless it is necessary to make a distinction.

At the outset, we need to say that attribute definition does not always
receive the attention it deserves from data modelers.

One reason is the emphasis on diagrams as the primary means of
presenting a model. While they are invaluable in communicating the over-
all shape, they hide the detail of attributes. Often many of the participants
in the development and review of a model see only the diagrams and
remain unaware of the underlying attributes.

A second reason is that data models are developed progressively; in
some cases the full requirements for attributes become clear only toward
the end of the modeling task. By this time the specialist data modeler may
have departed, leaving the supposedly straightforward and noncreative job
of attribute definition to database administrators, process modelers, and
programmers. Many data modelers seem to believe that their job is finished
when a reasonably stable framework of entity classes, relationships, and
primary keys is in place.

On the contrary, the data modeler who remains involved in the devel-
opment of a data model right through to implementation will be in a good

145

1We discuss the specifics of the translation of attributes (and relationships) into columns,
together with the addition of supplementary columns, in Chapter 11.

Simsion-Witt_05 10/8/04 7:56 PM Page 145

position to ensure not only that attributes are soundly modeled as the need
for them arises, but to intercept “improvements” to the model before they
become entrenched.

In Chapter 2 we touched on some of the issues that arise in modeling
attributes (albeit in the context of looking at columns in a logical model).
In this chapter we look at these matters more closely.

We look first at what makes a sound attribute and definition, and then
introduce a classification scheme for attributes, which enables us to discuss
the different types of attributes in some detail. The classification scheme also
provides a starting point for constructing attribute names. Naming of attrib-
utes is far more of an issue than naming of entity classes and relationships,
if only because the number of attributes in a model is so much greater.

The chapter concludes with a discussion of the role of generalization
in the context of attributes. As with entity-relationship modeling, we have
some quite firm rules for aggregation, whereas generalization decisions
often involve trade-offs among conflicting objectives. And, as always, there
is room for choice and sometimes creativity.

5.2 Attribute Definition

Proper definitions are an essential starting point for detailed modeling of
attributes. In the early stages of modeling, we propose and record attrib-
utes before even the entity classes are fully defined, but our final model
must include an unambiguous definition of each attribute. If we fail to do
this, we are likely to overlook the more subtle issues discussed in this chap-
ter and run the risk that the resulting columns in the database will be used
inappropriately by programmers or users. Poor attribute definitions have
the same potential to compromise data quality as poor entity class defini-
tions (see Section 3.4.3). Definitions need not be long: a single line is often
enough if the parent entity class is well defined.

In essence, we need to know what the attribute is intended to record,
and how to interpret the values that it may take. More formally, a good
attribute definition will:

1. Complete the sentence: “Assignment of a value to the <attribute name>
for an instance of <entity class name> is a record of . . .”; for example:
Assignment of a value to the Fee Exemption Minimum Balance for an
instance of Account is a record of the minimum amount which must be
held in this Account at all times to qualify for exemption from annual
account keeping fees.” As in this example, the definition should refer to
a single instance, (e.g., “The date of birth of this Customer,” “The mini-
mum amount of a transaction that can be made by a Customer against
a Product of this type.”)

146 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 146

2. Answer the questions “What does it mean to assign a value to this attrib-
ute?” and “What does each value that can be assigned to this attribute
mean?”

It can be helpful to imagine that you are about to enter data into a data
entry form or screen that will be loaded into an instance of the attribute.
What information will you need in order to answer the following questions:

■ What fact about the entity instance are you providing information about?
■ What value should you enter to state that fact?

For a column to be completely defined in a logical data model, the
following information is also required (although ideally your documenta-
tion tool will provide facilities for recording at least some of it in a more
structured manner than writing it into the definition):

■ What type of column it is (e.g., character, numeric)
■ Whether it forms part of the primary key or identifier of the entity class
■ What constraints (business rules) it is subject to, in particular whether it

is mandatory (must have a value for each entity instance), and the range
or set of allowed values

■ Whether these constraints are to be managed by the system or externally
■ The likelihood that these constraints will change during the life of the

system
■ (For some types of attribute) the internal and external representations

(formats) that are to be used.

In a conceptual data model, by contrast, we do not need to be so pre-
scriptive, and we are also providing the business stakeholders a view of
how their information requirements will be met rather than a detailed first
cut database design, so we need to provide the following information for
each attribute:

■ What type of attribute it is in business terms (see Section 5.4)
■ Any important business rules to which it is subject.

5.3 Attribute Disaggregation: One
Fact per Attribute

In Chapter 2 we introduced the basic rule for attribute disaggregationone
fact per attribute. It is almost never technically difficult to achieve this, and
it generally leads to simpler programming, greater reusability of data, and

5.3 Attribute Disaggregation: One Fact per Attribute ■ 147

Simsion-Witt_05 10/8/04 7:56 PM Page 147

easier implementation of change. Normalization relies on this rule being
observed; otherwise we may find “dependencies” that are really depend-
encies on only part of an attribute. For example, Bank Name may be deter-
mined by a three-part Bank-State-Branch Number, but closer examination
might show that the dependency is only on the “Bank” part of the Number.

Why, then, is the rule so often broken in practice? Violations (sometimes
referred to as overloaded attributes) may occur for a variety of reasons,
including:

1. Failing to identify that an attribute can be decomposed into more
fundamental attributes that are of value to the business

2. Attempting to achieve greater efficiency through data compression

3. Reflecting the fact that the compound attribute is more often used by
the business than are its components

4. Relying on DBMS or programming facilities to perform “trivial” decom-
position when required

5. Confusing the way data is presented with the way it is stored

6. Handling variable length and “semistructured” attributes (e.g., addresses)

7. Changing the definition of attributes after the database is implemented
as an alternative to changing the database design

8. Complying with external standards or practices

9. Perpetuating past practices, which may have resulted originally from 1
through 8 above.

In our experience, most problems occur as a result of attribute definition
being left to programmers or analysts with little knowledge of data model-
ing. In virtually all cases, a solution can be found that meets requirements
without compromising the “one fact per attribute” rule. Compliance with
external standards or user wishes is likely to require little more than a trans-
lation table or some simple data formatting and unpacking between screen
and database. However, as in most areas of data modeling, rigid adherence
to the rule will occasionally compromise other objectives. For example, divid-
ing a date attribute into components of Year, Month, and Day may make it
difficult to use standard date manipulation routines. When conflicts arise, we
need to go back to first principles and look at the total impact of each option.

The most common types of violation are discussed in the following
sections.

5.3.1 Simple Aggregation

An example of simple aggregation is an attribute Quantity Ordered that
includes both the numeric quantity and the unit of measure (e.g., “12 cases”).
Quite obviously, this aggregation of two different facts restricts our ability to

148 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 148

compare quantities and perform arithmetic without having to “unpack” the
data. Of course, if the business was only interested in Quantity Ordered as,
for example, text to print on a label, we would have an argument for treating
it as a single attribute (but in this case we should surely review the attribute
name, which implies that numeric quantity information is recorded).
A good test as to whether an attribute is fully decomposed is to ask:

■ Does the attribute correspond to a single business fact? (The answer
should be “Yes.”)

■ Can the attribute be further decomposed into attributes that them-
selves correspond to meaningful business facts? (The answer should
be “No.”)

■ Are there business processes that update only part of the attribute? (The
answer should be “No.”) We should also look at processes that read the
attribute (e.g., for display or printing). However, if the reason for using
only part of the attribute is merely to provide an abbreviation of the
same fact as represented by the whole, there is little point in decom-
posing the attribute to reflect this.

■ Are there dependencies (potentially affecting normalization) that apply
to only part of the attribute? (The answer should be “No.”)

Let’s look at a more complex example in this light. A Person Name attrib-
ute might be a concatenation of salutation (Prof.), family name (Deng), given
names (Chan, Wei), and suffixes, qualifications, titles, and honorifics (e.g., Jr.,
MBA, DFC). Will the business want to treat given names individually (in
which case we will regard them as forming a repeating group and normalize
them out to a separate entity class)? Or will it be sufficient to separate First
Given Name (and possibly Preferred Given Name, which cannot be automatically
extracted) from Other Given Names? Should we separate the different qualifi-
cations? It depends on whether the business is genuinely interested in indi-
vidual qualifications, or simply wants to address letters correctly. To answer
these questions, we need to consider the needs of all potential users of the
database, and employ some judgment as to likely future requirements.

Experienced data modelers are inclined to err on the side of disaggre-
gation, even if familiar attributes are broken up in the process. The situa-
tion has parallels with normalization, in which familiar concepts (e.g.,
Invoice) are broken into less obvious components (in this case Invoice
Header, Invoice Item) to achieve a technically better structure. But most of
us would not split First Given Name into Initial and Remainder of Name, even
if there was a need to deal with the initials separately. We can verify this
decision by using the questions suggested earlier:

■ “Does First Given Name correspond to a single business fact?” Most
people would agree that it does. This provides a strong argument that
we are already at a “one fact per attribute” level.

5.3 Attribute Disaggregation: One Fact per Attribute ■ 149

Simsion-Witt_05 10/8/04 7:56 PM Page 149

■ “Can First Given Name be meaningfully decomposed?” Initial has some
real-world significance, but only as an abbreviation for another fact. Rest
of Name is unlikely to have any value to the business in itself.

■ “Are there business processes that change the initial or the rest of
the name independently?” We would not expect this to be so; a change
of name is a common business transaction, but we are unlikely to
provide for “change of initial” or “change of rest of name” as distinct
processes.

■ “Are there likely to be any other attributes determined by (i.e., dependent
on) Initial or Rest of Name?” Almost certainly no.

On this basis, we would accept First Given Name as a “single fact” attribute.
Note that it is quite legitimate in a conceptual data model to refer to aggre-
gated attributes, such as a quantity with associated unit, or a person name,
provided the internal structure of such attributes is documented by the time
the logical data model is prepared. Such complex attributes are discussed
in detail in Section 7.2.2.4.

Note also that there are numerous (in fact too many!) standards for
representation of such common aggregates as person names and addresses,
and these may be valuable in guiding your decisions as to how to break
up such aggregates. ISO and national standards bodies publish standards
that have been subject to due consideration of requirements and formal
review. While there are also various XML schemas that purport to be stan-
dards, some at least do not appear to have been as rigorously developed,
at least at the time of writing.

5.3.2 Conflated Codes

We encountered a conflated code in Chapter 2 with the Hospital Type attrib-
ute, which carried two pieces of information (whether the hospital was
public or private and whether it offered teaching services or not). Codes of
this kind are not as easy to spot as simple aggregations, but they lead to
more awkward programming and stability problems.

The problems arise when we want to deal with one of the under-
lying facts in isolation. Values may end up being included in program
logic (“If Hospital Code equals ‘T’ or ‘P’ then . . .”) making change more
difficult.

One apparent justification for conflated codes is their value in enforcing
data integrity. Only certain combinations of the component facts may be
allowable, and we can easily enforce this by only defining codes for those
combinations. For example, private hospitals may not be allowed to have
teaching facilities, so we simply do not define a code for “Private & Teaching.”

150 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 150

This is a legitimate approach, but the data model should then specify a
separate table to translate the codes into their components, in order to
avoid the sort of programming mentioned earlier.

The constraint on allowed combinations can also be enforced by hold-
ing the attributes individually, and maintaining a reference table2 of allowed
combinations. Enforcement now requires that programmers follow the dis-
cipline of checking the reference table.

5.3.3 Meaningful Ranges

A special case of the conflated codes situation results from assigning mean-
ing not only to the value of the attribute, but to the (usually numeric) range
in which it falls.

For example, we may specify an attribute Status Code for an immigration
application, then decide that values 10 through 50 are reserved for applica-
tions requiring special exemptions. What we actually have here is a hier-
archy, with status codes subordinate to special exemption categories. In
this example the hierarchy is two levels deep, but if we were to allocate mean-
ing to subranges, sub-subranges, and so on, the hierarchy would grow
accordingly. The obvious, and correct, approach is to model the hierarchy
explicitly.

Variants of the “meaningful range” problem occur from time to time,
and should be treated in the same way. An example is a “meaningful
length”; in one database we worked with, a four-character job number
identified a permanent job while a five-character job number indicated a
job of fixed duration.

5.3.4 Inappropriate Generalization

Every COBOL programmer can cite cases where data items have been
inappropriately redefined, often to save a few bytes of space, or to avoid
reorganizing a file to make room for a new item. The same occurs under
other file management and DBMSs, often even less elegantly. (COBOL at
least provides an explicit facility for redefinition; relational DBMSs allow
only one name for each column of a table,3 although different names can
be used for columns in views based on that table.)

5.3 Attribute Disaggregation: One Fact per Attribute ■ 151

2Normalization will not automatically produce such a table (refer to Section 13.6.2).
3Note that although object-relational DBMSs allow containers to be defined over columns,
exploitation of this feature to use a column for multiple purposes goes against the spirit of the
relational model.

Simsion-Witt_05 10/8/04 7:56 PM Page 151

The result is usually a data item that has no meaning in isolation but can
only be interpreted by reference to other data itemsfor example, an
attribute of Client which means “Gender” for personal clients and “Industry
Category” for company clients. Such a generalized item is unlikely to be
used anywhere in the system without some program logic to determine
which of its two meanings is appropriate.

Again, we make programming more complex in exchange for a notional
space saving and for enforcement of the constraint that the attributes are
mutually exclusive. These benefits are seldom adequate compensation. In
fact, data compression at the physical level may allow most of the “wasted”
space to be retrieved in any case. On the other hand, few would argue with
the value of generalizing, say, Assembly Price and Component Price if we had
already decided to generalize the entity classes Assembly and Component
to Product.

But not all attribute generalization decisions are so straightforward. In
the next section, we look at the factors that contribute to making the most
appropriate choice.

5.4 Types of Attributes

5.4.1 DBMS Datatypes

Each DBMS supports a range of datatypes, which affect the presentation of
the column, the way the data is stored internally, what values may be stored,
and what operations may be performed on the column. Presentation,
constraints on values, and operations are of interest to us as modelers; the
internal representation is primarily of interest to the physical database
designer. Most DBMSs will provide at least the following datatypes:

■ Integer signed whole number
■ Date calendar date and time
■ Float floating-point number
■ Char (n) fixed-length character string
■ Varchar (n) variable-length character string.

Datatypes that are supported by only some DBMSs include:

■ Smallint 2-byte whole number
■ Decimal (p,s) or numeric (p,s) exact numeric with s decimal places
■ Money or currency money amount with 2 decimal places
■ Timestamp date and time, including time zone
■ Boolean logical Boolean (true/false)

152 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 152

■ Lseg line segment in 2D plane
■ Point geometric point in 2D plane
■ Polygon closed geometric path in 2D plane.

Along with the name and definition, many modelers define the DBMS
datatype for each attribute at the conceptual modeling stage. While this is
important information once the DBMS and the datatypes it supports are
known, such datatypes do not really represent business requirements as
such but particular ways of supporting those requirements. For this reason
we recommend that:

■ Each attribute in the conceptual data model be categorized in terms of
how the business intends to use it rather than how it might be imple-
mented in a particular DBMS.

■ Allocation of DBMS datatypes (or, if the DBMS supports them, user-
defined datatypes) to attributes be deferred until the logical database
design phase as described in Chapter 11.

For example, consider the attributes Order No and Order Quantity in
Figure 5.1. A modeler fixated on the database rather than the fundamental
nature of these attributes may well decide to define them both as integers.
But we also need to recognize some fundamental differences in the way
these attributes will be used:

■ Order Quantity can participate in arithmetic operations, such as Order
Quantity × Unit Price or sum (Order Quantity), whereas it does not make
sense to include Order No in any arithmetic expressions.

■ Inferences can legitimately be drawn from the fact that one Order Quantity
is greater than another, thus the expressions Order Quantity > 2, Order
Quantity < 10 and max (Order Quantity) make sense, as do attributes such
as Minimum Order Quantity or Maximum Order Quantity. On the other hand,
Order No > 2, Order No < 10, max (Order No), Minimum Order No and
Maximum Order No are unlikely to have any business meaning. (If they do,
we may well have a problem with meaningful ranges as discussed earlier.)

■ Although the current set of Order Numbers may be solely numeric, there
may be a future requirement for nonnumeric characters in Order Numbers.
The use of integer for Order No effectively prevents the business taking
up that option, but without an explicit statement to that effect.

5.4 Types of Attributes ■ 153

Figure 5.1 Integer attributes.

ORDER (Order No, Customer No, Order Date, . . .)
ORDER LINE (Order No, Line No, Product Code, Order Quantity, . . .)

Simsion-Witt_05 10/8/04 7:56 PM Page 153

Attributes can usefully be divided into the following high-level classes:

■ An Identifier exists purely to identify entity instances and does not imply
any properties of those instances (e.g., Order No, Product Code, Line No).

■ A Category can only hold one of a defined set of values (e.g., Product
Type, Customer Credit Rating, Payment Method, Delivery Status).

■ A Quantifier is an attribute on which some arithmetic can be per-
formed (e.g., addition, subtraction), and on which comparisons other
than “=” and “≠” can be performed (e.g., Order Quantity, Order Date, Unit
Price, Discount Rate).

■ A Text Item can hold any string of characters that the user may choose
to enter (e.g., Customer Name, Product Name, Delivery Instructions).

This broad classification of attributes corresponds approximately to that
advocated by Tasker.4 As with taxonomies in general, it is by no means the
only one possible, but is one that covers most practical situations and
encourages constructive thinking.

In the following sections, we examine each of these broad categories in
more detail and highlight some important subcategories. In some cases,
recognizing an attribute as belonging to a particular subcategory will lead
you directly to a particular design decision, in particular the choice of data-
type; in other cases it will simply give you a better overall understanding
of the data with which you are working.

Classifying attributes in this way offers a number of benefits:

■ A better understanding by business stakeholders of what it is that we as
modelers are proposing.

■ A better understanding by process modelers of how each attribute can
be used (the operations in which it can be involved).

■ The ability to collect common information that might otherwise be
repeated in attribute descriptions in one place in the model.

■ Standardization of DBMS datatype usage.

5.4.2 The Attribute Taxonomy in Detail

5.4.2.1 Identifiers

Identifiers may be system-generated, administrator-defined, or externally
defined. Examples of system-generated identifiers are Customer Numbers,

154 ■ Chapter 5 Attributes and Columns

4Tasker, D., Fourth Generation Data—A Guide to Data Analysis for New and Old Systems,
Prentice-Hall, Australia (1989) This book is currently out of print.

Simsion-Witt_05 10/8/04 7:56 PM Page 154

Order Numbers, and the like that are generated automatically without user
intervention whenever a new instance of the relevant entity class is created.
These are often generated in sequence although there is no particular
requirement to do so. Again, they are often but not exclusively numeric:
an example of a nonnumeric system-generated identifier is the booking
reference “number” assigned to an airline reservation. In the early days of
relational databases, the generation of such an identifier required a separate
table in which to hold the latest value used; nowadays, DBMSs can generate
such identifiers directly and efficiently without the need for such a table.
System-generated identifiers may or may not be visible to users.

Administrator-defined identifiers are really only suitable for relatively
low-volume entity classes but are ideal for these. Examples are Department
Codes; Product Codes; and Room, Staff, and Class Codes in a school admin-
istration system. These can be numeric or alphanumeric. The system should
provide a means for an administrative user of the system to create new
identifiers when the system is commissioned and later as new ones are
required.

Externally-defined identifiers are those that have been defined
by an external party, often a national or international standards authority.
Examples include Country Codes, Currency Codes, State Codes, Zip Codes,
and so on. Of course, an externally-defined identifier in one system is a
user-defined (or possibly system-generated) identifier in another; for example,
Zip Code is externally-defined in most systems but may be user-defined in
a Postal Authority system! Again, these can be numeric or alphanumeric.
Ideally these are loaded into a system in bulk from a dataset provided by
the defining authority.

A particular kind of identifier attribute is the tie-breaker which is often
used in an entity class that has been created to hold a repeating group
removed from another entity class (see Chapter 2). These are used when
none of the “natural” attributes in the repeating group appears suitable for
the purpose, or in place of a longer attribute. Line No in Order Line in
Figure 5.1 is a tie-breaker. These are almost always system-generated and
almost always numeric to allow for a simple means of generating new
unique values.

It should be clear that identifiers are used in primary keys (and there-
fore in foreign keys), although keys may include other types of attribute.
For example, a date attribute may be included in the primary key of an
entity class designed to hold a version or snapshot of something about
which history needs to be maintained (e.g., a Product Version entity
class could have a primary key consisting of Product Code and Date Effective
attributes).

Names are a form of identifier but may not be unique; a name is usually
treated as a text attribute, in that there are no controls over what is entered
(e.g., in an Employee Name or Customer Name attribute). However, you could
identify the departments of an organization by their names alone rather

5.4 Types of Attributes ■ 155

Simsion-Witt_05 10/8/04 7:56 PM Page 155

than using a Department Code or Department No, although there are good
reasons for choosing one of the latter, particularly as you move to defining
a primary key.

We look at identifiers and the associated issue of primary keys in more
detail in Chapter 6.

5.4.2.2 Categories

Categories are typically administrator-defined, but some may be externally
defined. Externally (on screens and reports), they are represented using
character strings (e.g., “Cash,” “Check,” “Credit Card,” “Charge Card,” “Debit
Card”) but may be represented internally using shorter codes or integer
values. The internal representations may even be used externally if users
are familiar with them and their meanings.

A particular kind of category attribute is the flag: this holds a Yes or No
answer to a suitably worded question about the entity instance, in which
case the question should appear as a legend on screens and reports along-
side the answer (usually represented both internally and externally as either
“Y” or “N”). Many categories, including flags, also need to be able to hold
“Not applicable,” “Not supplied,” and/or “Unknown.” You may be tempted
to use nulls to represent any of these situations, but nulls can cause a
variety of problems in queries, as Chris Date has pointed out eloquently;5

if the business wishes to distinguish between any two or more of these,
something other than null is required. In this case special symbols such as
a dash or a question mark may be appropriate.

5.4.2.3 Quantifiers

Quantifiers come in a variety of forms:

■ A Count enumerates a set of discrete instances (e.g., Vehicle Count,
Employee Count); it answers a question of the form “How many . . .?” It
represents a dimensionless (unitless) magnitude.

■ A Dimension answers a question of the form “How long . . .?”; “How
high . . .?”; “How wide . . .?”; “How heavy . . .?”; and so forth. (e.g., Room
Width, Unit Weight). It can only be interpreted in conjunction with a unit
(e.g., feet, miles, millimeters).

■ A Currency Amount answers a question of the form “How much . . .?”
and specifies an amount of money (e.g., Unit Price, Payment Amount,
Outstanding Balance). It requires a currency unit.

156 ■ Chapter 5 Attributes and Columns

5Date, C.J. Relational Database Writings 1989-1991, Pearson Education POD, 1992, Ch. 12.

Simsion-Witt_05 10/8/04 7:56 PM Page 156

■ A Factor is (conceptually) the result of dividing one magnitude by
another (e.g., Interest Rate, Discount Rate, Hourly Rate, Blood Alcohol
Concentration). It requires a unit (e.g., $/hour, meters/second) unless
both magnitudes are of the same dimension, in which case it is a unit-
less ratio (or percentage).

■ A Specific Time Point answers a question of the form “When . . .?” in rela-
tion to a single event (e.g., Transaction Timestamp, Order Date, Arrival Year).

■ A Recurrent Time Point answers a question of the form “When . . .?”
in relation to a recurrent event (e.g., Departure TimeOfDay, Scheduled
DayOfWeek, Mortgage Repayment DayOfMonth, Annual Renewal DayOfYear).

■ An Interval (or Duration) answers a question of the form “For how
long . . .?” (e.g., Lesson Duration, Mortgage Repayment Period). It requires a
unit (e.g., seconds, minutes, hours, days, weeks, months, years).

■ A Location answers a question of the form “Where . . .?” and may be a
point, a line segment or a two-, three- (or higher) dimensional figure.

Where a quantifier requires units, there are two options:

1. Ensure that all instances of the attribute are expressed in the same units,
which should, of course, be specified in the attribute definition.

2. Create an additional attribute in which to hold the units in which the
quantifier is expressed, and provide conversion routines.

Obviously the first option is simpler but the second option offers greater
flexibility. A common application of the second option is in handling
currency amounts.

For many quantifiers it is important to establish and document what
accuracy is required by the business. For example, most currency amounts
are required to be correct to the nearest cent (or local currency equivalent)
but some (e.g., stock prices) may require fractions of cents, whereas others
may always be rounded to the nearest dollar. It should also be established
whether the rounding is merely for purposes of display or whether arith-
metic is to be performed on the rounded amount (e.g., in an Australian
Income Tax return, Earnings and Deductions are rounded to the nearest
dollar before computations using those amounts).

Time Points can have different accuracies and scope depending on
requirements:

■ A Timestamp (or DateTime) specifies the date and time when some-
thing happened.

■ A Date specifies the date on which something happened but not
the time.

■ A Month specifies the month and year in which something happened.
■ A Year specifies the year in which something happened (e.g., the year

of arrival of an immigrant).

5.4 Types of Attributes ■ 157

Simsion-Witt_05 10/8/04 7:56 PM Page 157

■ A Time of Day specifies the time but not the date (e.g., in a timetable).
■ A Day of Week specifies only the day within a week (e.g., in a timetable).
■ A Day of Month specifies only the day within a month (e.g., a mortgage

repayment date).
■ A Day of Year specifies only the day within a year (e.g., an annual

renewal date).
■ A Month of Year specifies only the month within a year.

For quantifiers other than Currency Amounts and Points in Time we also
need to define whether exact arithmetic is required or whether floating-
point arithmetic can be used.

5.4.3 Attribute Domains

The term domain is unfortunately over-used and has a number of quite
distinct meanings. We base our definition of “attribute domain” on the
mathematical meaning of the term “domain” namely “the possible values of
the independent variable or variables of a function”6—the variable in this
case being an attribute. However many practitioners and writers appear to
view this as meaning the set of values that may be stored in a particular
column in the database. The same set of values can have different meanings,
however, and it is the set of meanings in which we should be interested.

Consider the set of values {1, 2, . . . 8}. In a school administration appli-
cation, for example, this might be the set of values allowed in any of the
following columns:

■ One recording payment types, in which 1 represents cash, 2 check,
3 credit card, and so on

■ One recording periods, sessions, or timeslots in the timetabling module
■ One recording the number of elective subjects taken by a student

(maximum eight)
■ One recording the grade achieved by a student in a particular subject

It should be clear that each of these sets of values has quite different
meanings to the business. In a conceptual data model, therefore, we should
not be interested in the set of values stored in a column in the database,
but in the set (or range) of values or alternative meanings that are of
interest to, or allowed by, the organization. While the four examples above
all have the same set of stored values, they do not have the same set of

158 ■ Chapter 5 Attributes and Columns

6Concise Oxford English Dictionary, 10th Ed. Revised, Oxford University Press 2002.

Simsion-Witt_05 10/8/04 7:56 PM Page 158

real-world values, so they do not really have the same domain. Put another
way, it makes no sense to say that the “cash” payment type is the same as
“Period 1” in the timetable.

This property of comparability is the heart of the attribute domain
concept. Look at the conceptual data model in Figure 5.2.

In a database built from this model, we might wish to obtain a list of all
customers who placed an order on the day we first made contact. The
enquiry to achieve this would contain the (SQL) predicate Order Date = First
Contact Date. Similarly a comparison between Order Date and Product Release
Date is necessary for a query listing products ordered on the day they
were released, a comparison between Order Date and Promised Delivery Date
is necessary for a query listing “same day” orders, and a comparison
between Promised Delivery Date and Actual Delivery Date is necessary for a
query listing orders that were not delivered on time.

But now consider a query in which Order Date and Current Price are com-
pared. What does such a comparison mean? Such a comparison ought to
generate an SQL compile-time or run-time error. In at least one DBMS,
comparison between columns with Date and Currency datatypes is quite
legal, although the results of queries containing such comparisons are
meaningless. Even if our DBMS rejects such mixed-type comparisons, it
won’t reject comparisons between Customer No and Product No if these have
both been defined as numbers, or between Customer Name and Address.

In fact only the following comparisons are meaningful between the
attributes in Figure 5.2:

■ Preferred Payment Method and Payment Method
■ Those between any pair of First Contact Date, Product Release Date, Order

Date, Promised Delivery Date and Actual Delivery Date

5.4 Types of Attributes ■ 159

Figure 5.2 A conceptual data model of a simple ordering application.

Customer Order ProductOrder Item

CUSTOMER (Customer No, Customer Name, Customer Type, Registered Business
Address, Normal Delivery Address, First Contact Date, Preferred Payment Method)
PRODUCT (Product No, Product Type, Product Description, Current Price, Product
Release Date)
ORDER (Order No, Order Date, Alternative Delivery Address, Payment Method)
ORDER ITEM (Item No, Ordered Quantity, Quoted Price, Promised Delivery Date,
Actual Delivery Date)

Simsion-Witt_05 10/8/04 7:56 PM Page 159

■ Current Price and Quoted Price
■ Those between any pair of Registered Business Address, Normal Delivery

Address, and Alternative Delivery Address.

Whether or not these comparisons are meaningful is completely inde-
pendent of any implementation decisions we might make. It would not
matter whether we implemented Price attributes in the database using
specialized currency or money datatypes, integer datatypes (holding cents),
or decimal datatypes (holding dollars and two decimal places); the mean-
ingfulness of comparisons between Price attributes and other attributes is
quite independent of the DBMS datatypes we choose. Meaningfulness of
comparison is therefore a property of the attributes that form part of the
conceptual data model rather than the database design.

You may be tempted to use an operation other than comparison to decide
whether two attributes have the same domain, but beware. Comparison is
the only operation that makes sense for all attributes and other operations
may allow mixed domains; for example it is legal to multiply Ordered
Quantity and Quoted Price although these belong to different domains.

How do attribute domains compare to the attribute types we described
earlier in this chapter? An attribute domain is a lower level classification of
attributes than an attribute type. One attribute type may include multiple
attribute domains, but one attribute domain can only describe attributes of
one attribute type.

What benefits do we get from defining the attribute domain of each
attribute? The same benefits as those that accrue from attribute types (as
described in Section 5.4.1) accrue in greater measure from the more refined
classification that attribute domains allow. In addition they support quality
reviews of process definitions:

■ Only attributes in the same attribute domain can be compared.
■ The value in an attribute can only be assigned to another attribute in the

same attribute domain.
■ Each attribute domain only accommodates some operations. For exam-

ple, only some allow for ordering operations (>, <, between, order by,
first value, last value).

The following “rules of thumb” are appropriate when choosing domains
for attributes:

1. Each attribute used solely to identify an entity class should be assigned
its own attribute domain (thus Customer No, Order No, and Product No
should each be assigned a different attribute domain).

2. Each category attribute should be assigned its own attribute domain unless
it shares the same possible values and meanings with another category
attribute, in which case they share an attribute domain. (Thus Preferred

160 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 160

Payment Method and Payment Method share an attribute domain, but
Customer Type and Product Type have their own attribute domains.)

3. All quantifier attributes of the same attribute type can be assigned the
same attribute domain. For example:

a. All counts can be assigned the same attribute domain.

b. All currency amounts can be assigned the same attribute domain.

c. All dates can be assigned the same attribute domain.

4. Text item attributes with different meanings should be assigned differ-
ent attribute domains. (Thus Registered Business Address, Normal Delivery
Address, and Alternative Delivery Address share an attribute domain, but
Customer Name and Product Description have their own attribute domains.)

In the example shown in Figure 5.2, therefore, the attribute types and
domains would be as listed in Figure 5.3.

5.4 Types of Attributes ■ 161

Figure 5.3 Attribute types and domains.

High-Level
Attribute Types

Detailed
Attribute Types Domains Attributes

Customer No Customer NoSystem-Generated
Identifiers Order No Order No
Administrator-
Defined Identifiers

Product No Product No

Identifiers

Tie-Breakers Item No Item No
Customer Type Customer Type

Payment MethodPayment Method

Preferred Payment
Method

Categories

Product Type Product Type
Count Count Ordered Quantity

Current PriceCurrency Amount Currency Amount

Quoted Price
First Contact Date
Product Release Date
Order Date
Promised Delivery Date

Quantifiers

Specific Time Point Date

Actual Delivery Date
Customer Name Customer Name

Registered Business
Address
Normal Delivery
Address

Address

Alternative Delivery
Address

Text Items

Product Description Product Description

Simsion-Witt_05 10/8/04 7:56 PM Page 161

5.4.4 Column Datatype and Length Requirements

We now look at the translation of attribute types into column datatypes.
If your DBMS does not support UDTs (user-defined datatypes), you

should assign to each column the appropriate DBMS datatype (as indicated
in Sections 5.4.4.1 thru 5.4.4.4).

If, however, you are using an SQL99-compliant DBMS that supports
UDTs, you should do the following:

1. For each attribute type or attribute domain in the taxonomy, create a
UDT based on the appropriate DBMS datatype.

2. Assign to each column the UDT corresponding to the attribute type of
the attribute that it represents.

For example, if your model includes Identifier attributes, create one or
more UDTs based on the char or varchar DBMS datatypes (either an
Identifier UDT or Customer No, Product No, Order No UDTs, and so forth).
Then, assign those UDTs to your Identifier attributes.

5.4.4.1 Identifiers

An Identifier should use the char or varchar datatype7 (depending on the
particular properties of these datatypes in the DBMS being used), unless it
is known that nonnumeric values will never be required, in which case the
integer datatype can be used. Even if only numeric values are used at pres-
ent, this may not always be the case. For example, U.S. Zip codes are
numeric; while nonnumeric codes may never be introduced in the United
States, a U.S.-based company may want to allow for expansion into countries
like Canada where nonnumeric codes are used. This is flexibility in
exchange for rule enforcementin this case probably a good exchange.

The length should be chosen to accommodate the maximum number of
instances of the entity class required over the life of the system. As reuse
of identifiers is not advisable, we are not talking about the maximum
number of instances at any one time! The numbers of instances that can be
accommodated by various lengths of (var)char and integer columns are
shown in Figure 5.4, in which it is assumed that only letters and digits are
used in a (var)char column. Of course, with an administrator-defined or
externally defined identifier, there may already be a standard for the length
of the identifier.

162 ■ Chapter 5 Attributes and Columns

7Note that we are talking here about Identifier attributes in the conceptual data model, not about
surrogate keys in the logical data model (see Chapter 7) for which there are other options.

Simsion-Witt_05 10/8/04 7:56 PM Page 162

5.4.4.2 Categories

If a Category attribute is represented internally using the same character
strings as are used externally, the char or varchar datatype should be used
with a length sufficient to accommodate the longest character string.

If (as is more usually the case) it is represented internally using a shorter
code, the char or varchar datatype should again be used; now, however,
the length depends on the number of values that may be required over the
life of the system, according to Figure 5.4.

If integer values are to be used internally, the integer datatype should
be used. Once again Figure 5.4 indicates how many values can be accom-
modated by each length of integer column.

Flags should be held in char(1) columns unless Boolean arithmetic is to
be performed on them, in which case use integer1 and represent Yes by 1
and No by 0 (zero). However, these should still be represented in forms
and reports using Y and N. Section 5.4.5 discusses conversion between
external and internal representations.

5.4.4.3 Quantifiers

1. Counts should use the integer datatype. The length should be sufficient
to accommodate the maximum value (e.g., if more than 32,767 use a
4-byte integer, otherwise if more than 127 use a 2-byte integer).

2. Dimensions, Factors, and Intervals should generally use a decimal
datatype if available in the DBMS, unless exact arithmetic is not
required, in which case the float datatype can be used. The decimal

5.4 Types of Attributes ■ 163

Figure 5.4 Identifier capacities.

Datatype Length Number accommodated

(var)char 1 36
2 1,296
3 46,656
4 1,679,616
5 60,466,176
6 2,176,782,336
7 78,364,164,096
8

integer 1 127
2 32,767
4 2,147,483,647

2.82×1012

Simsion-Witt_05 10/8/04 7:56 PM Page 163

datatype requires the number of digits after the decimal point to be spec-
ified. If the decimal datatype is not available, the integer datatype must
be used. A decision must then be made as to where the decimal point is
understood to occur. (This will, of course, be the same for all instances
of the attribute.) Then, data entry and display functionality must be
programmed accordingly. For example, if there are two digits after the
decimal point, any value entered by the user into the attribute must be
multiplied by 100 and all values of the attribute must be displayed with
a decimal point before the second-to-last digit. This is discussed further
in Section 5.4.5. Note that use of a simple numeric datatype is only
appropriate if all quantities to be recorded in the column use the same
units. If a variety of units is required, you have a complex attribute with
quantity and unit components (see Section 7.2.2.4).

3. Currency Amounts should use the currency datatype (if available in the
DBMS) provided it will handle the business requirements. For example
we may need to record amounts in different currencies and the DBMS’s
currency datatype may not handle this correctly. If a currency datatype
is not available or does not support the requirements, the decimal
datatype should be used with the appropriate number of digits after the
decimal point (normally two) specified. If there is a requirement to
record fractions of a cent and the DBMS currency datatype does not
accommodate more than two digits after the decimal point, again the
decimal datatype should be used. If the decimal datatype is not avail-
able, the integer datatype should be used in the same way as described
for dimensions and factors.

4. Timestamps should use whichever datatype is defined in the DBMS to
record date and time together (this datatype is often called simply
“date”). If the business needs to record timestamps in multiple time
zones, you need to ensure that the DBMS datatype supports this. As for
the “year 2000” issue, as far as we are aware all commercial DBMSs
record years using 4 digits, so that is one issue you should not need to
worry about!

5. If there is a specific datatype in the DBMS to hold just a date without a
time, this should be used for Dates. If not, the datatype defined in the
DBMS to record date and time together can be used. The time should
be standardized to 00:00 for each date recorded. This however can
cause problems with comparisons. If an expiry date is recorded and an
event occurs with a timestamp during the last day of the validity period,
the comparison Event Timestamp <= Expiry Date will return False even
though the event is valid. To overcome this, Expiry Dates using
date/time datatypes need to be recorded as being at 00:00 on the day
after the actual date (but displayed correctly!).

6. Months should probably use the datatype suitable for dates and stan-
dardize the day to the 1st of the month.

164 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 164

7. Years should use the integer2 datatype.

8. Times of Day can use the datatype defined in the DBMS to record date
and time together if there is no specific datatype for time of day. The
date should be standardized to some particular day throughout the
system, such as 1/1/2000.

9. Days of Week should use the integer1 datatype and a standard
sequential encoding starting at 0 or 1 representing Sunday or Monday.
A suitable external representation is the first two letters of the day
name. Conversion between external and internal representations is dis-
cussed in Section 10.5.3.

10. Days of Month should also use the integer1 datatype, but the internal
and external representations can be the same.

11. Days of Year should probably use the datatype suitable for dates; the
year should be standardized to some particular year throughout the
system, such as 2000.

12. Months of Year should use the integer1 datatype and a standard
sequential encoding starting at 1 representing January. The external
representation should be either the integer value or the first three let-
ters of the month name. Conversion between external and internal rep-
resentations is discussed in Section 5.4.5.

13. If there is a specific datatype in the DBMS to hold position data, it
should be used for Locations. If not, the most common solution is to
use a coordinate system (e.g., represent a point by two decimal
columns holding the x and y coordinates, a line segment by the x and
y coordinates of each end, a polygon by the x and y coordinates of
each vertex, and so on).

5.4.4.4 Text Attributes

Text attributes must use the char or varchar datatype (which of these is
better depends on particular properties of these datatypes in the DBMS
being used). The length should be sufficient to accommodate the longest
character string that the business may need to record. The DBMS may
impose an upper limit on the length of a (var)char column, but it may also
provide a means of storing character strings of unlimited length; again, con-
sult the documentation for that DBMS. If you need to store special charac-
ters, you will need to confirm whether the selected datatype will handle
these; there may be an alternative datatype that does.

A particular type of text attribute is the Commentary (or comment) for
when the business requires the ability to enter as much or as little text as
each instance demands. If the DBMS does not provide a means of storing
character strings of unlimited length, use the maximum length available in
a standard varchar column. Do not make the common mistake of defining

5.4 Types of Attributes ■ 165

Simsion-Witt_05 10/8/04 7:56 PM Page 165

the commentary as a repeating char(80) (or thereabouts) column, which
after normalization would be spread over multiple rows. This makes editing
of a commentary nearly impossible since there is no word-wrap between
rows as in a word processor.

5.4.5 Conversion Between External and Internal
Representations

We have seen that a number of attribute types may have different external
and internal representations. In a relational DBMS, SQL views can be used
to manage the conversion from internal to external representation as in
Figure 5.5.

This particular example uses an arithmetic expression to convert an
amount stored as an integer to dollars and cents and a case statement to
convert a flag stored as 0 or 1 to N or Y, respectively. Functions may also
be used in views, particularly for date manipulation. None of these con-
versions will work in reverse however, so such a view is not updateable
(e.g., one cannot enter Y into Obsolete Flag and have it recorded as 1). Such
logic must therefore be written into the data entry screen(s) for the entity
class in question. Ideally, there would only be one for each entity class.

5.5 Attribute Names

5.5.1 Objectives of Standardizing Attribute Names

Many organizations have put in place detailed standards for attribute
naming, typically comprising lists of component words with definitions,
standard abbreviations, and rules for stringing them together. Needless
to say, there has been much “reinvention of the wheel.” Names and abbre-
viations tend to be organization-specific, so most of the common effort has
been in deciding sequence, connectors, and the minutiae of punctuation.
IBM’s “OF” language and the “reverse OF” language variant, originally

166 ■ Chapter 5 Attributes and Columns

Figure 5.5 Use of a view to convert from internal to external representation.

Create PRODUCT_VIEW (Product Code, Unit Price, Obsolete Flag) as

Select Product Code, Unit Price/100.00,

Case Obsolete Flag when 1 then “Y” else “N” end. . .

Simsion-Witt_05 10/8/04 7:56 PM Page 166

proposed in the early 1970s, have been particularly influential, if only
because the names that they generate often correspond to those that are
already in use or that we would come up with intuitively. Attribute names
constructed using the OF language consist of a single “class word” drawn from
a short standard list (Date, Name, Flag, and so on) and one or more organi-
zation- defined “modifiers,” separated by connectors (primarily “of” and
“that is”hence, the name). Examples of names constructed using the OF
language are “Date of Birth,” “Name of Person,” and “Amount that is
Discount of Product that is Retail.” Some of these names are more natural
and familiar than others!

Other standards include:

■ The NIST Special Publication 500-149 “Guide on Data Entity Naming
Conventions” from the U.S. National Institute of Standards and
Technology

■ ISO/IEC International Standard 11179-5, Information technology
Specification and standardization of data elements, Part 5: Naming and
identification principles for data elements, International Organization for
Standardization

The objectives of an attribute-naming standard are usually to:

■ Reduce ambiguity in interpreting the meaning of attributes (the name
serving as a short form of documentation)

■ Reduce the possibility of “synonyms”two or more attributes with the
same meaning but different names

■ Reduce the possibility of “homonyms”two or more attributes with the
same name but different meanings.

Consider the data shown in Figure 5.6. On the face of it, we can interpret
this data without difficulty. However, we cannot really answer with confi-
dence such questions as:

■ How much of product FX-321-0138 has customer 36894 ordered?
■ How much will that product cost that customer?
■ When was that product delivered?

5.5 Attribute Names ■ 167

Figure 5.6 Some data in a database.

Simsion-Witt_05 10/8/04 7:56 PM Page 167

The reason is that we do not know from the column names:

■ What units apply to quantities in the Qty column?
■ Is Discount a percentage or a $ amount?
■ Is Date the date ordered, date required by, or date actually delivered?

This is as much a data quality problem as a failure to get correct and
complete data into the database. (Data quality is not only about getting
the right data into the system; it is also about correctly interpreting the data
in the system.) Indeed data quality can be compromised by any of the
following:

■ Data-capture errors (not only invalid data getting into the database but
also the failure of all required data to get into the database)

■ Data-interpretation errors (when users misinterpret data)
■ Data-processing errors (when developers misinterpret data processing

requirements).

Thus, correct interpretation of data structures is essential by data entry
personnel, data users, and developers. There are various views on how one
might interpret the meaning of a data item in a database. Practitioners and
writers often make statements to the effect that a “6” in the Quantity column
means that Supplier x supplied Customer y with 6 of Product z (rather an
overconfident view in the light of the prevalence of data quality problems!).
A more realistic view is that a “6” in the Quantity column means either that
the data entry person thought that was the right number to enter or that a pro-
grammer has written a program that puts “6” in that column for some reason.

So the issue becomes one of where people (data entry personnel or pro-
grammers) get their perceptions about what a data item means. Data entry
persons and data users get their perceptions from onscreen captions, help
screens, and (possibly) a user manual. Programmers get their perceptions
from specifications written by process designers, and process designers in
turn get their perceptions from table/column names and descriptions. This
is all metadata. What it should tell a data entry person or user is how to put
information in, how to express it, and what it means once it is in there.
Likewise, what it should tell a developer is where to put information, how
to represent it, and how to use it (again, what it means once it is in there).

5.5.2 Some Guidelines for Attribute Naming

The naming standard you adopt may be influenced by the facilities provided
by your documentation tool or data dictionary and by established practices
within your organization or industry, which are, ideally, the result of a

168 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 168

well-thought-out and consistent approach. If you are starting with a blank
slate, here are some basic guidelines and options:

1. Build a list of standard class words to be used for each attribute type,
along the following lines:

Identifiers: Number (or No), Code, Identifier (or Id), Tie-Breaker
Categories: Type, Method, Status, Reason, and so forth.

Counts: Count (never Number as in “Number of . . .”)8

Dimensions: Length, Width, Height, Weight, and so forth.

Amounts: Amount, Price, Balance, and so forth.

Factors: Rate, Concentration, Ratio, Percentage, and so forth.

Specific Time Points: Timestamp, DateTime, Date, Month, Year
Recurrent Time Points: TimeOfDay, DayOfWeek, DayOfMonth, DayOfYear,

MonthOfYear
Intervals: Duration, Period
Positions: Point, LineSegment, Polygon, and so forth

Texts: Name, Description, Comment, Instructions

While it is desirable not to use different words for the same thing, it is
more important to use terminology with which the business is comfort-
able. Thus, for example, Price is included as well as Amount since Unit
Price Amount does not read as comfortably as Unit Price.

2. Select suitable qualifiers or modifiers to precede class words in attribute
names (e.g., Registration in Registration Number and Purchase in Purchase
Date). There may be value in building a standard list of modifiers, but
the list should include all terms in common use in the business unless
these are particularly ambiguous.

3. Sequence the qualifiers in each attribute name using the “reverse” vari-
ation of the IBM OF language. The traditional way of achieving this is
to string together the words using “that is” and “of” as connectors, to
produce an OF language name, then to reverse the order and eliminate
the connectors. For example, an attribute to represent the average
annual dividend amount for a stock could be (using the OF language):

Amount of Dividend that is Average that is Annual of Stock
Reversing gives:

Stock Average Annual Dividend Amount
This is pretty painful, but with a little practice you can move directly to
the reverse OF language name, which usually sounds reasonable, at
least to an information systems professional!

4. Determine a policy for inclusion of the name of the entity class in attrib-
ute names. This continues to be a matter of debate, probably because

5.5 Attribute Names ■ 169

8To avoid confusion with identifier attributes with names ending in “number.”

Simsion-Witt_05 10/8/04 7:56 PM Page 169

there is no overwhelming reason for choosing one option over another.
Workable variants include:

■ Using the “home” entity class name as the first word or words of each
attribute name. The “home” entity class of a foreign key is the entity
class in which it appears as a primary key; the “home” entity class of
an attribute inherited or rolled up from a supertype or a subtype is that
supertype or subtype, respectively. So, attributes of Vehicle might
include Vehicle Registration Number, Asset Purchase Date (inherited), Truck
Capacity (rolled up), and Responsible Organization Unit Code (foreign key).

■ Using home entity class names only in primary and foreign keys.
■ Using home entity class names only in foreign keys.

5. In addition to using the home entity class name, prefix foreign keys
according to the name of the relationship they implement, (e.g., Issuing
Branch No, Responsible Branch No). This is not always easy, and it is rea-
sonable to bend the rule if the relationship is obvious and the name
clumsy, or if an alternative role name is available. For example,
Advanced Customer No, meaning the key of the customer to whom a loan
was advanced, could be better named Borrower (Customer) No.

6. Avoid abbreviations in attribute names, unless they are widely under-
stood in your organization (by business people!) or you are truly con-
strained by your documentation tool or data dictionary. It is very likely
that the DBMS will impose length and punctuation constraints. These
apply to columns, not to attributes!

7. Look hard at any proposal to use “aliases” (i.e., synonyms to assist
access). This is really a data dictionary (metadata repository) manage-
ment issue rather than a modeling one, but take note that alias facilities
are often established but relatively seldom used.

8. Establish a simple translation from attribute names to column names.
Here is where abbreviations come in.

In the pursuit of consistency and purity, do not lose sight of one of the fun-
damental objectives of modeling: communication. Sometimes we must sacrifice
rigid adherence to standards for familiarity and better-quality feedback from
nontechnical participants in the modeling process. Conversely, it is sometimes
valuable to introduce a new term to replace a familiar, but ambiguous term.

A final word on attribute names: If you are building your own data
dictionary, do not use Attribute Name as the primary key for the table
containing details of Attributes. Names and even naming standards will
change from time to time, and we need to be able to distinguish a change in
attribute name from the creation of a new attribute.9 A simple meaningless

170 ■ Chapter 5 Attributes and Columns

9We look at the problem of unstable primary keys (of which this is one example) in Chapter 6.

Simsion-Witt_05 10/8/04 7:56 PM Page 170

identifier will do the job; it need not be visible to anyone. Most documen-
tation tools and data dictionaries support this; a few do not.

5.6 Attribute Generalization

5.6.1 Options and Trade-Offs

In Chapter 4 we looked at entity class generalization (and specialization, its
converse), and we also looked at the use of supertypes and subtypes to
represent the results. Recall that higher levels of generalization meant fewer
entity classes, fewer rules within the data structure, and greater resilience
to change. On the other hand, specialization provided a more detailed
picture of data and enforcement of more business rules, but less stability in
the face of changes to these rules.

The best design was necessarily a trade-off among these different features.
Making the best choice started with being aware of the different possibili-
ties (by showing them as subtypes and supertypes on the model), rather
than merely recording the first or most obvious option.

Much the same trade-offs apply to attribute definition. In some cases,
the decision is largely predetermined by decisions taken at the entity
class level. We generalize two or more entity classes, then review their
attributes to look for opportunities for generalization. In other cases,
the discovery that attributes belonging to different entity classes are used in
the same way may prompt us to consider generalizing their parent entity
classes.

Conversely, close examination of the attributes of a single entity class
may suggest that the entity class could usefully be subtyped. One or more
attributes may have a distinct meaning for a specific subset of entity
instances (e.g., Ranking, Last Review Date, and Special Agreement Number apply
only to those Suppliers who have Preferred Supplier status). Often a set of
attributes will be inapplicable under certain conditions. We need to look at
the conditions and decide whether they provide a basis for entity class
subtyping.

Generalizing attributes within an entity class can also affect the overall
shape of the model. For example, we might generalize Standard Price, Trade
Price, and Preferred Customer Price to Price. The generalized attributes will then
become a repeating group, requiring us to separate them out in order to
preserve first normal form (as discussed in Chapter 2).

Finally, at the attribute level, consistency (of format, coding, naming,
and so on) is an important consideration, particularly when we are dealing
with a large number of attributes. The starting point for consistency is gen-
eralization. Without recognizing that several attributes are in some sense
similar, we cannot recognize the need to handle them consistently.

5.6 Attribute Generalization ■ 171

Simsion-Witt_05 10/8/04 7:56 PM Page 171

In turn, consistent naming practices may highlight opportunities for
generalization.

Some examples will illustrate these ideas.

5.6.2 Attribute Generalization Resulting from
Entity Generalization

Figure 5.7 shows a simple example of entity class generalization/special-
ization. The generalization of Company and Person to Party may have
been suggested by their common attributes; equally, it may have resulted
from our knowledge that the two are handled similarly. Alternatively, we
may have worked top-down, starting with the Party entity class and look-
ing for subtypes. The subtyping may have been prompted by noting that
some of the attributes of Party were applicable only to people, and others
only to companies.

Our initial task is to allocate attributes among the three entity classes.
We have three options for each attribute:

1. Allocate the attribute to one of the subtypes only. We do this if the
attribute can apply only to that subtype. For example, we may allocate
Birth Date to Person only.

2. Allocate the attribute to the supertype only. We do this if the attribute
can apply to all of the subtypes and has essentially the same meaning
wherever it is used. For example, Address might be allocated to Party.

3. Allocate the attribute to more than one of the subtypes, indicating in the
documentation that the attributes are related. We do this if the attribute has
a different meaning in each case, but not so different that we cannot see
any value in generalization. For example, we might allocate Name to both
subtypes, on the basis that some processes will handle the names of both
persons and companies in the same way (e.g., “Display party details.”)

172 ■ Chapter 5 Attributes and Columns

Figure 5.7 Allocating attributes among subtypes.

Person Company

Party

Simsion-Witt_05 10/8/04 7:56 PM Page 172

while others will be specific to company or person names (e.g.,
“Print envelope for person, including title.”).

If we are thorough about this, handling of attributes when we level the
model (by selecting the final level of generalization for each entity class)
will be reasonably straightforward. If we follow the largely intuitive “inher-
itance” and “roll up” rules described in Chapter 11, the only issue in leveling
the model will be what to do in situation 3 if we implement at the super-
type level. We will then have to decide whether to specify a single general-
ized attribute or to retain the distinct attributes as rolled up from the subtypes.

A good guide is to look closely at the reasons for selecting the higher
level of generalization for the entity class. Are we anticipating further, as yet
unidentified, subtypes? If so, will they require a corresponding attribute?
Have we decided that the subtypes are subject to common processes? How
do these processes use the attribute in question? In practice, we tend to carry
through the entity class generalization to the attribute more often than not.

We also find frequently that we have not been as thorough as we should
have been in spotting possible attribute generalizations. Once the entity
class level has been decided upon, it is worth reviewing all of the attrib-
utes “rolled up” from subtype entity classes to ensure that opportunities for
generalization have not been overlooked.

5.6.3 Attribute Generalization within Entity Classes

Opportunities for attribute generalization can arise quite independently of
entity class generalization. The following rather long (but instructive) exam-
ple illustrates the key possibilities and issues. To best highlight some of the
normalization issues, we present it in terms of manipulations to a logical
model. In practice we would expect these decisions to be made at the con-
ceptual modeling stage.

The Financial Performance table in Figure 5.8 represents data about
budgeted and annual expenditure on a quarterly basis.

There are such obvious opportunities for column generalization here
(most data modelers cannot wait to get started on a structure like this) that
it is worth pointing out that the structure as it stands is a legitimate option,
useable without further generalization. In particular, it is in at least first
normal form. Technically, there are no repeating groups in the structure,
despite the temptation to view, for example, the four material budget items
as a repeating group. Doing this requires that we bring to bear our knowl-
edge of the problem domain and recognize these columns as representing
at some level of generalization, the “same thing.”

Having conceded that the structure is at least workable, we can be a bit
more critical and note some problems with resilience to change. Suppose we

5.6 Attribute Generalization ■ 173

Simsion-Witt_05 10/8/04 7:56 PM Page 173

were to make a business decision to move to monthly rather than quarterly
reporting, or to include some other budget category besides “labor,” “mate-
rial,” and “other”perhaps “external subcontracts.” Changing the table
structures and corresponding programs would be a major task, particularly
if the possible generalizations had not been recognized even at the pro-
gram level; in other words, if we had written separate program logic to
handle each quarter or to handle labor figures in contrast to material fig-
ures. Perhaps this seems an unlikely scenario; on the contrary, we have
seen very similar structures on many occasions in practice.

Let us start our generalization with the four material budget columns.
We make two decisions here.

First, we confirm that there is value in treating all four in a similar way;
that there are business processes that handle first, second, third, and last
quarter budgets in much the same way. If this is so, we make the general-
ization to Quarterly Material Budget Amount, noting that the new column
occurs four times. We flag this as a repeating group to be normalized out.
Because sequence within the group is important, we need to add a new
column Quarter Number. Another way of looking at this is that we have
removed some information from the data structure (the words first, second,
third, and last) and need to provide a new place to store that informa-
tionhence, the additional column.

Second, we relax the upper limit of four. We know that normalization
is going to remove the constraint in any case, so we might as well recog-
nize the situation explicitly and consider its consequences. In this example,
the effect is that we are no longer constrained to quarterly budgets, so we
need to change the names of the columns accordingly“Material Budget
Amount” and “Period Number.”

We can now remove the repeating group, creating a new table Material
Budget Item (Figure 5.9).

174 ■ Chapter 5 Attributes and Columns

Figure 5.8 Financial performance table prior to generalization.

FINANCIAL PERFORMANCE
(Department No, Year, Approved By,
First Quarter Material Budget Amount, Second Quarter Material Budget Amount,
Third Quarter Material Budget Amount, Last Quarter Material Budget Amount,
First Quarter Material Actual Amount, Second Quarter Material Actual Amount,
Third Quarter Material Actual Amount, Total Material Actual Amount,
First Quarter Labor Budget Amount, Second Quarter Labor Budget Amount,
Third Quarter Labor Budget Amount, Last Quarter Labor Budget Amount,
First Quarter Labor Actual Amount, Second Quarter Labor Actual Amount,
Third Quarter Labor Actual Amount, Total Labor Actual Amount,
Other Budget Amount, Other Actual Amount, Discretionary Spending Limit)

Simsion-Witt_05 10/8/04 7:56 PM Page 174

The example, thus far, has illustrated the main impact of attribute gen-
eralization within an entity class:

■ The increased flexibility obtainable through sensible generalization
■ The need to add data items to hold information taken out of the data

structure by generalization
■ The creation of new entity classes to normalize out the repeating groups

resulting from generalization.

Continuing with the financial results example, we could apply the same
process to labor and other budget items, and to material, labor, and other
actual items, producing a total of seven tables as in Figure 5.10.

In doing this, we would notice that there was no column named Fourth
Quarter Material Actual Amount. Instead, we have Total Material Actual Amount.

5.6 Attribute Generalization ■ 175

Figure 5.9 Material Budget Item Table.

MATERIAL BUDGET ITEM (Department No, Year, Period Number, Material Budget
Amount)

Figure 5.10 Budget and actual data separated.

Financial
Performance

Material
Budget

Item

Labor
Budget

Item

Other
Budget

Item

Material
Actual
Item

be
included in

include

be
included in

 include

be
included in

include

be
included in

include

be
included

in

be
included

in

includeinclude

Labor
Actual
Item

Other
Actual
Item

FINANCIAL PERFORMANCE (Department No, Year, Approved By, Discretionary Spending Limit)
MATERIAL BUDGET ITEM (Department No, Year, Period Number, Material Budget Amount)
LABOR BUDGET ITEM (Department No, Year, Period Number, Labor Budget Amount)
OTHER BUDGET ITEM (Department No, Year, Period Number, Other Budget Amount)
MATERIAL ACTUAL ITEM (Department No, Year, Period Number, Material Actual Amount)
LABOR ACTUAL ITEM (Department No, Year, Period Number, Labor Actual Amount)
OTHER ACTUAL ITEM (Department No, Year, Period Number, Other Actual Amount)

Simsion-Witt_05 10/8/04 7:56 PM Page 175

This does not break any data modeling rules, since one value could be
derived from the others. But if we choose to generalize, we will have to
replace the “total” column with a “fourth quarter” column to make gener-
alization possible. Even if we decide not to model the more generalized
structure, we are likely to change the column anyway, for the sake of
consistency. It is important to recognize that this “commonsense” move to
consistency relies on our having seen the possibility of generalization in the
first place. To achieve consistency, we need to recognize first that the columns
(or the attributes which they implement) have something in common.

There is a flavor of creative data modeling here too. We deliberately
choose a particular attribute representation in order to provide an opportunity
for generalization.

Inconsistencies that become visible as a result of trying to generalize
may suggest useful questions to be asked of the user. Why, for instance,
are “other” budgets and expenditures recorded on an annual basis rather
than quarterly? Do we want to bring them into line with labor and materials?
Alternatively, do we need to provide for labor and materials also being
reported at different intervals?

We can take generalization further, bringing together labor, material,
and other budgets, and doing likewise for actuals. We gain the flexibility to
introduce new types of financial reporting, but we will need to add a
Budget Type column to replace the information lost from the data structure
(Figure 5.11). Note that we can do this either by generalizing the tables in
Figure 5.10, or generalizing the columns in the original model of Figure 5.8.

Finally, we could consider generalizing budget and actual data. After
all, they are represented by identical structures. When we present this

176 ■ Chapter 5 Attributes and Columns

Figure 5.11 Generalization of labor, material, and other data.

Financial
Performance

Actual
Item

Budget
Item

be
included in

include

be
included in

 include

FINANCIAL PERFORMANCE (Department No, Year, Approved By, Discretionary

Spending Limit)

BUDGET ITEM (Department No, Year, Period Number, Budget Type, Budget Amount)

ACTUAL ITEM (Department No, Year, Period Number, Budget Type, Actual Amount)

Simsion-Witt_05 10/8/04 7:56 PM Page 176

example in training courses, there is often strong support for doing this, as
in Figure 5.12, perhaps because we have been doing so well with general-
ization to that point!

But we need to ask: Does the business have processes that treat budget
and actual items in much the same way? Is there the possibility of a new
category (in addition to “budget” and “actual”) arising that can take advan-
tage of existing processes? Chances are that the answer to both is no, and
we may achieve only unnecessary obscurity by generalizing any further.
The data model may look elegant, but the program logic needed to unravel
the different data will be less so.

But before we abandon the idea completely, we could consider the option
shown in Figure 5.13, which is different from the previous generalizations
in that it joins Budget Item and Actual Item. This seems to make more sense.

To summarize: we need to look always at how the business treats the
data, using commonality of shape only as a prompt, not as a final arbiter.

5.6.4 “First Among Equals”

Sometimes it is tempting to generalize a single-valued attribute and a similar
multivalued attribute. For example, in Australia an organization can have
only one Registered Business Name but may have more than one Trading
Name. These could be modeled using a number of alternative patterns:

1. Separate attributes in Organization for Registered Business Name (single-
valued) and Trading Names (multivalued—see Section 7.2.2.5). This is
appropriate in the conceptual model and probably the best structure, as
the representation is closest to what we observe in the real world.

2. A “child” entity class Organization Name at the “many” end of a one-
to-many relationship with Organization, having a Name attribute and a
Registered Business Name Flag attribute to indicate whether the name is the

5.6 Attribute Generalization ■ 177

Figure 5.12 Generalization of budget and actual amounts.

BUDGET/ACTUAL ITEM (Department No, Year, Period Number, Budget Type,
Budget/Actual Flag, Budget/Actual Amount)

Figure 5.13 Joining budget item and actual item.

BUDGET ITEM (Department No, Year, Period Number, Budget Item Type, Budget Amount,
Actual Amount)

Simsion-Witt_05 10/8/04 7:56 PM Page 177

Registered Business Name. This is a less than ideal, but still acceptable,
conceptual model and can be directly converted to an acceptable logical
model.

3. A “child” table Organization Name with a primary key consisting of a
foreign key to Organization and a Name No column, and a nonkey
Name column. The Organization table has a Registered Business Name No
column that identifies which row in the Organization Name table has
the Registered Business Name; this is also an acceptable logical model,
and if used unchanged as the physical data model is likely to achieve
better overall performance for queries returning the Registered Business
Name than the physical data model derived unchanged from pattern 2.

4. A Registered Business Name column in the Organization table and a Name
column in a Trading Name table. This is the standard relational logical
data model that corresponds to the conceptual data model in pattern 1
and as a physical data model is likely to achieve still better performance
for queries that require only the Registered Business Name; however, an
“all names” query is more complex (a UNION query is required).

5. Pattern 2 but with an additional Registered Business Name column in the
Organization table to hold a copy of the Registered Business Name.
Although this structure is technically fully normalized, it still has some
redundancy so should not be acceptable as a logical model, although it
is a workable physical model (provided the redundancy is documented
so that inconsistency can be avoided).

5.6.5 Limits to Attribute Generalization

In the budgeting example of Section 5.6.3, we reached the point of limited
further gains from generalization while we still had a number of distinct
attributes. But there are situations in which a higher level of attribute
generalization is justified. Figure 5.14 shows an example of a very high
level of attribute generalization, in which all attributes are generalized to a

178 ■ Chapter 5 Attributes and Columns

Figure 5.14 Highly generalized attributes.

Equipment
Item

Parameter
Value

be
characterized by

characterize

Equipment Item ID
Parameter Type
Parameter Value

Simsion-Witt_05 10/8/04 7:56 PM Page 178

single Parameter Value attribute and subsequently removed as a repeating
group. We have called the new entity class Parameter Value rather than
Attribute; an entity class named Attribute is not going to do much for
communication with the uninitiated!

This is the attribute level equivalent of the Thing entity class (Chapter 4).
It may be useful when structures are genuinely unstable and unpredictable.
In this example, every time we purchase a new type of equipment, we
might want to record new attributes: perhaps bandwidth, range, tensile
strength, or mean time between failures. Rather than add new attributes to
Equipment Item, we simply record new values for Parameter Type.

Commercial software packages may employ high levels of generaliza-
tion to support “user-defined attributes.” We have seen the technique used
very successfully in product databases, allowing new products with unan-
ticipated attributes to be defined very quickly without altering the database
structure. But we have also seen it used far too often as a substitute for
rigorous analysis. You need to keep in mind the following:

■ Some of the entity class’s attributes may be stable and handled in a
distinct way. Model them separately, and do not include them in the
generic repeating group.

■ Consider subtyping Parameter Value based on attribute type, (e.g.,
Quantity Parameter Value, Text Parameter Value).

■ You will need to add attributes to replace the information removed from
the data structure. This includes anything you would normally specify
for an attribute, including name, format, editing rules, and optionality.
These become attributes initially of the Parameter Value entity class,
then, through normalization, of a Parameter Type entity class (see
Figure 5.15). Parameter Types can be related to Equipment Types to

5.6 Attribute Generalization ■ 179

Figure 5.15 Highly generalized attributes with reference table.

Equipment
Item

Parameter
Value

be
characterized by

characterize

Parameter
Type

be
classified by

classify

Parameter Type Code

Parameter Name

Format

Editing Rules

Optionality

Equipment
Type

be
characterized by

characterize

be
classified by

 classify

Simsion-Witt_05 10/8/04 7:56 PM Page 179

specify which parameter types are applicable to each type of equipment
(see Section 14.5.6 for further discussion of this technique).

■ The technique is only useful if the different parameter types can utilize
common program code. If not, you may as well make the change to
the system in the conventional fashion by modifying the database and
writing the necessary code. Good candidates for the parameter approach
are attributes that are simply entered and displayed, rather than those
that drive or are involved in more complex logic.

■ Programs will need to be suitably parameter-driven, to the extent that
you may need to support run-time decisions on screen and report
formatting. You will need to look hard at how well your tool set
supports the approach. Many program generators cannot effectively
handle challenges of this kind. Even human programmers will need
guidance from someone very familiar with the data model if they are to
exploit it properly.

5.7 Summary

Proper definitions are an essential starting point for detailed modeling of
attributes and can make a significant contribution to the quality of the data
in the eventual system.

Each attribute should represent one fact type only. The most common
types of violations are simple aggregations, complex codes, meaningful
ranges, and inappropriate generalization.

We should create a complete business attribute taxonomy to cover all
required attributes, with:

■ Usage requirements
■ Requirements for units, maximum value, accuracy, negative values,

number of instances to be identified (as appropriate).

Then we should analyze how each attribute will be used, classifying it
according to the taxonomy rather than using DBMS datatypes and specify-
ing column lengths according to the business’ capacity requirements. Each
attribute then inherits the requirements of its classification. Any exception
to those requirements should be handled using:

■ An additional classification, or
■ An override in the attribute description.

Name attributes according to whatever standard is in place or develop
a standard according to the guidelines provided in Section 5.5.2.

180 ■ Chapter 5 Attributes and Columns

Simsion-Witt_05 10/8/04 7:56 PM Page 180

There is value in exploring different levels of generalization for attributes.
Attributes can be allocated to different levels of the entity class subtype hier-
archy and will influence the choice of level for implementation. Attributes
belonging to the same entity class may also be generalized, possibly result-
ing in repeating groups, which will be separated by normalization.

5.7 Summary ■ 181

Simsion-Witt_05 10/8/04 7:56 PM Page 181

This page intentionally left blank

Chapter 6
Primary Keys and Identity

“The only thing we knew for sure about Henry Porter was that his name wasn’t
Henry Porter.”

– Bob Dylan and Sam Shepard, Brownsville Girl, 1986, Special Rider Music

“No entity without identity.”
– Slogan cited by P.F. Strawson in Contemporary British Philosophy1

6.1 Basic Requirements and Trade-Offs

There is no area of data modeling in which mistakes are more frequently
made, and with more impact, than the specification of primary keys.

From a technical perspective, the job seems straightforward. For each
table, we need to select (or create) a set of columns that have a different
combination of values for each row of that table.

But from a business perspective, the purpose of the primary key is to
identify the row corresponding to a particular entity instance in the real
world—a client, a product, an item on an order. Unfortunately, this mapping
from real-world identity to values in a database is not always straight-
forward. In the real world, we routinely cope with ambiguity and com-
plexity in dealing with identity; we happily use the same name for more
than one thing, or multiple names for the same thing, relying on context
and questioning to clarify if necessary. In a database we need a simple,
unambiguous identifier.

Most problems with primary keys arise from conflicts between technical
soundness and ease of mapping to real-world identifiers.

Let us look first at the technical requirements.
To access data in a relational database, we need to be able to locate

specific rows of a table by specifying values for their primary key column
or columns. In particular:

■ We must be able to unambiguously specify the row that corresponds to
a particular real-world entity instance. When a payment for an account
arrives, we need to be able to retrieve the single relevant row in the

183

1“Entity and Identity” in H.D. Lewis (Ed.) 4th Series, Allen and Unwin, London, 1976.

Simsion-Witt_06 10/11/04 8:57 PM Page 183

Account table by specifying the Account Number that was supplied with
the payment.

■ Relationships are implemented using foreign keys (see Section 2.8.5),
which must each point to one row only. Imagine the problems if we had
an insurance policy that referred to customer number “12345” but found
two or more rows with that value in the Customer table.

So we require that a primary key be unique. Even more fundamentally,
we require that it be applicable to all instances of an entity (and hence to
all rows in the table). It is not much good using Registration Number to
identify vehicles if we need to keep track of unregistered vehicles.
Applicability and uniqueness are essential criteria.

There are further properties that are highly desirable. We require that a
primary key be minimal; we should not include more columns than are
necessary for uniqueness. A key should also be stable; it should not change
value over time. The stability requirement is frequently overlooked in data
modeling texts and training courses (and indeed by all too many practi-
tioners), but by observing it we can avoid the often complex program logic
needed to accommodate changes in key values.

A very simple way of meeting all of the requirements is to invent a new
column for each table, specifically to serve as its primary key, and to assign
a different system-generated value to each row, and, by extension, to the
corresponding entity instance. We refer to such a column as a surrogate key,
which is typically named by appending “ID” (or, less often, “Number” or
“No”) to the table name. Familiar examples are customer IDs, employee
IDs, and account numbers allocated by the system.

And here we strike the clash with business requirements. To begin with,
primary keys are often confused with “available access mechanisms.” The
fact that the term “key” is often used loosely for both does not help. So,
business stakeholders (and all too often technical people as well) may
believe that using a surrogate key will preclude them from accessing the
database using more familiar and convenient data. While this concern is
based on a misunderstanding, it is a reflection of a real issue: each value
of a surrogate key still needs to be matched to the real-world instance that
it represents. Sometimes this is straightforward, as with internal account
numbers that we generate ourselves; sometimes it is not, as with customers
who cannot remember the numbers we have allocated them or the code
that we have assigned to their country of origin. Often the necessary match-
ing will incur costs in programming and database performance, as we have
to match surrogate keys against real-world identifiers (so-called natural
keys) in reference tables. So the physical database designer and program-
mers may also line up against the data modeler to support the use of
natural keys.

Most arguments about primary keys come back to this choice between
surrogate and natural keys. At the one extreme we have the argument that

184 ■ Chapter 6 Primary Keys and Identity

Simsion-Witt_06 10/11/04 8:57 PM Page 184

only surrogate keys should be used; at the other, a view that the natural
key should always be the starting point, even if it needs to be modified or
augmented to provide uniqueness. Most serious mistakes in primary key
selection are the result of ill-considered decisions to use natural keys with-
out reference to whether or not they meet the basic requirements. As a data
modeler, you may well feel that the surrogate option offers a simple solu-
tion that eliminates the risk and complexities of using natural identifiers,
and the need to read the rest of this chapter. However, if you take that
option, you may find yourself revisiting the question at the physical design
stage. In any event, you should read the section on surrogate keys and
structured keys; there are still some decisions to be made!

In this chapter, we next look in detail at the technical criteria governing
primary key selection. Going back to these basics can help resolve the
majority of questions that arise in practice. We then explore the trade-offs
involved with surrogate keys. We devote a full section to structured (multi-
column) keys, in particular the choice between using a “stand-alone” key
or one that incorporates the primary key of another table. Finally, we look
at some issues that arise when there are multiple candidate keys available
and at the impact of nullable (optional) columns in primary keys.

6.2 Basic Technical Criteria

6.2.1 Applicability

We must be able to determine a value for the primary key for every row of
a table. Watch for the following traps when attempting to use columns
derived from real-world attributes rather than surrogate keys.

6.2.1.1 Special Cases

Often our understanding of a business area is based on a few examples that
may not be adequately representative. It is worth adopting the discipline of
asking the business specialists, “Are there any cases in which we would not
have a value for one of these attributes?” Do we ever encounter persons
without a Social Security Number? Or flights without a flight number?
Or sound recordings without a catalogue number? Surprisingly often, such
special cases emerge. We are then faced with a choice of:

1. Setting up a mechanism to allocate values to these cases

2. Excluding them from the entity definition altogether

3. Rejecting the proposed primary key, usually in favor of a surrogate key.

6.2 Basic Technical Criteria ■ 185

Simsion-Witt_06 10/11/04 8:57 PM Page 185

Selecting option 2 will lead to a change to the conceptual model at
the entity level as a new entity is added to cater to the special cases or the
overall scope of the model is modified to exclude them.

6.2.1.2 Data Unavailable at Time of Entry

All components of a primary key need to be available at the time a row is
first stored in the database. This can sometimes be a problem if we are
building up data progressively. For example, we may propose Customer
Number plus Departure Date as the primary key of Travel Itinerary. But will
we always know the departure date at the time we first record information
about an itinerary? Are we happy to hold off recording the travel plans until
that date is available?

6.2.1.3 Broadening of Scope

One of the most common causes of problems with keys is a broadening of
the original scope of a system, resulting in tables being used to hold data
beyond that originally intended. Frequently, the primary key is not appli-
cable to some of the instances embraced by the more general definition.
For example, we may decide to market our products to individual persons,
where in the past we only dealt with companies. In this case, a government-
assigned Company Number will no longer be suitable as a primary key for
Customer. Or our bookselling business may broaden its product range to
include stationery, and International Standard Book Number will no longer be
an appropriate key for Product.

One way of reducing the likelihood of being caught by scope changes
is to be as precise as possible in entity class naming and definition: name
the original entity class Company rather than Customer, or Book Title
rather than Product. Then use supertyping to explore different levels of
generalization, such as Customer and Product. The resulting model will
prompt questions such as, “Are we potentially interested in customers who
are not companies?” It now comes back to the familiar task of choosing a
level of generalization, and a corresponding key, that will accommodate
business change. We cannot expect to get it right every time, but most
problems that arise in this area are a result of not having addressed the
generalization issue at all, rather than coming up with the wrong answer.

6.2.2 Uniqueness

Uniqueness is the most commonly cited requirement of primary keys. To reit-
erate: you cannot build a relational database without unique primary keys.

186 ■ Chapter 6 Primary Keys and Identity

Simsion-Witt_06 10/11/04 8:57 PM Page 186

Indeed, the term “unique primary key” is a tautology; if a combination of
columns is not unique, it does not qualify to be called a primary key. There
are three ways you can satisfy yourself that a key will be unique.

The first is that it is intrinsically unique, as a result of the nature of the
real world. A fingerprint or signature might qualify under this criterion, as
would coordinates of a location, if sufficiently precise. Such keys occur
only rarely in practice.

The second is that you, as the designer, establish a mechanism for the
allocation of key values and can therefore ensure that no value is allocated
more than once. Surrogate keys, such as computer-generated sequential
Customer Numbers, are the obvious examples. Another possibility is a
tie-breaker—a (usually sequential) number added to an “almost unique”
set of attributes. A common example is a numeric suffix added to a person’s
or organization’s name, or part of the name (“Drummond0043”). Why use
a tie-breaker when it would seem at least as easy to use a sequential
number for the whole key? Performance, real or imagined, is usually the
reason. The designer aims to be able to use a single index to provide access
on both the primary key and a natural key (the first part of the primary
key). In keeping with the “one fact per column” rule introduced in Section
2.5.1 (and discussed in detail in Section 5.3), a tie-breaker should be
handled as a separate column, rather than simply appended to the natural
key. And, as always with natural keys, you need to make sure that the
stability requirement is met.

The third possibility is that someone else with the same intention as you
has allocated the key values. Their surrogate key may have gained suffi-
cient recognition for it to be treated as a natural key by others. A vehicle
registration number is allocated by a state authority with the intention that
it be unique in the issuing state. In these cases, the most common problem
is a difference between our scope of interest and theirs. For example, we
may be interested in vehicles in more than one state. We can address this
problem by including in the key a column that identifies the issuer of the
number, (e.g., State of Registration). If this column does not already exist, and
we need to add it, we must update the conceptual model with a corre-
sponding attribute and verify that we will in fact be able to capture its value
in all circumstances. And again, we need to think about possible extensions
to the scope of the system. Racehorse names may be unique within a coun-
try, but what happens if we want to extend our register to cover overseas
events, or greyhounds?

The advantage of using someone else’s scheme, particularly if it is
widely accepted, is that the primary key will be useful in communicating
with the world outside the system. Customers will be able to quote and
verify registration numbers, and we avoid singularity problems (discussed
in Section 6.3.2). But there is an element of faith in tying our primary key
to another’s decisions. We need to be reasonably confident that the key
issuer’s entity class definition will remain in line with our own, and that the

6.2 Basic Technical Criteria ■ 187

Simsion-Witt_06 10/11/04 8:57 PM Page 187

key also meets basic standards of soundness. Many a system has been
severely disrupted by an external decision to change a numbering scheme
or to reuse old numbers.

If you are not using one of these three schemes, you need to ask your-
self, “How can I guarantee that the key will be unique?” A common mis-
take is to use a “statistical reduction” approach, best illustrated by the
problem of choosing a primary key for persons (customers, employees, and
so forth). The modeler starts with a desire to use Person Name as the key,
prompted by its obvious real-world significance as an identifier. We all
know that names are not unique, but what about Person Name plus Birth
Date? Or Person Name plus Birth Date plus Zip Code plus . . .? The problem is
that while we can reduce the possibility of duplicates, we can never actu-
ally eliminate it, and it takes only one exception to destroy the integrity of
the database. And do not forget that human beings are remarkably good at
deliberately causing odd situations, including duplicates, if doing so is not
actually impossible or illegal! The fact that a primary key of this type is
almost unique might prompt you to use a tie-breaker as described above:
note that while this will solve the uniqueness problem it will not solve the
problem that Person Name and Zip Code are not stable (the values for a given
person can change).

6.2.3 Minimality

A primary key should not include attributes beyond those required
to ensure uniqueness. Having decided that Customer Number uniquely
identifies a customer, we should not append Customer Name to the key.
We refer to this property as minimality (more formally irreducibility).
There are at least two reasons for requiring that primary keys be minimal.

First, whenever a primary key with an extra attribute appears as a foreign
key, we will have normalization problems, as the extra attribute will be
determined by the “real” key. For example, if we held both Customer Number
and Customer Name in a Purchase table, we would be carrying Customer
Name redundantly for each purchase made by the customer. A change of
name would require a complex update procedure.

Second, it would be possible to insert multiple rows representing the
same real-world object without violating the uniqueness constraint on the
primary key (which can be routinely checked by DBMSs). If, for example,
Customer Name were included in the primary key of the Customer table, it
would then be possible to have two different rows with the same customer
number but different names, which would be confusing, to say the least.

Minimality problems do not often occur, and they are usually a result of
simple errors in modeling or documentation or of confusion about defini-
tions, rather than an attempt to achieve any particular objective such as

188 ■ Chapter 6 Primary Keys and Identity

Simsion-Witt_06 10/11/04 8:57 PM Page 188

performance. They should be picked up by normalization, and there
should be no argument about correcting them.

6.2.4 Stability

Stability is the subtlest of the design considerations for primary keys, and it
is the one least discussed in the literature on data modeling and relational
database theory—hence, the one most often violated. The idea is that a
given real-world entity instance should keep the same value of the primary
key for as long as it is recorded in the database. For example, a given
customer should retain the same customer number for as long as he or she
is a customer.

6.2.4.1 A Technical Perspective

The first reason for using stable primary keys is that they are used else-
where as foreign keys. Changing the value of a primary key is therefore not
a simple process because all of the foreign key references will also need to
be updated. We will need program logic to deal with this,2 and we will
need to change that logic whenever another table carrying the relevant for-
eign key is added to the database design.

The foreign key maintenance problem is usually the most effective
method of convincing programmers and physical database designers of the
need for stable primary keys. But there is a more fundamental reason for
not allowing changes to primary key values. Think about our customer
example again. The customer may, over time, change his/her name,
address, or even date of birth if it was stated or entered incorrectly. To
match historical data—including data archived on paper, microfiche, tape,
or other backup media—with the current picture, we require some attrib-
ute or combination of attributes that is not only unique, but does not
change over time. The requirement for uniqueness points us to the primary
key; to be able to relate current and historical data, we require that it be
stable. Really, this is just the foreign key concept extended to include
references from outside the database.

6.2.4.2 Reflecting Identity in the Real World

Another way of looking at stability is this: In a relational database, all of the
nonkey columns hold data about real-world entity instances; but the key

6.2 Basic Technical Criteria ■ 189

2Such logic may be provided through “Update Cascade” facilities within the DBMS.

Simsion-Witt_06 10/11/04 8:57 PM Page 189

represents the existence of real-world entity instances. In other words, a new
primary key value corresponds to a new entity instance being recorded in
the database, while deletion of a primary key value corresponds to the
record of an entity instance being deleted from the database. Without
this discipline, it is difficult to distinguish a change of key value from the
deletion of one entity instance and the addition of another.

Admittedly, it is possible to build workable databases without stable
primary keys, and much complicated program logic has been written to
support key changes. But the simplest approach is to adhere rigidly to the
discipline of stable primary keys. Stability can always be achieved by using
surrogate keys if necessary. There is invariably a payoff in terms of simpler,
more elegant databases and systems. In all of the examples in this book, we
assume that the primary keys are stable. If you require further convincing
that unstable primary keys cause complexity, we suggest you try modifying
some of the models of historical data in Chapter 15 to accommodate pri-
mary key changes.

Stability is very closely tied to the idea of identity. In the insurance
business, for example, there are many options that we may want to add to or
delete from a policy in order to provide the cover required by the client over
the years. At some point, however, the business may decide that a particular
change should not be accommodated under the original policy, and a replace-
ment policy should be issued. It is important for the business to distinguish
between changes and replacements to allow consistent compliance with
legislation and management reporting. (“How many new policies did we issue
this month? What is the average cost of issuing a new policy?”) The support-
ing information systems need to reflect the distinction, and the primary key of
Policy provides the mechanism. We can change virtually every nonkey
attribute of a policy, but if the key value remains the same, we interpret the
table row as representing the same policy. Conversely, we can leave all other
attribute values unchanged, but if the key value changes, we interpret it as a
new policy being recorded with identical characteristics to the old.

In some cases, such as persons, the definition of identity is so well
entrenched that we would have to be creative modelers indeed to propose
alternatives (although it is worth thinking about how a database would
handle the situation of a police informer being given a “new identity,” or
even an employee who resigns and is later reemployed). In others, such as
contracts, products, and organization units, a variety of definitions may be
workable. Returning to the insurance policy example, what happens if the
insurance company issues a temporary “cover note” to provide insurance
cover while details of the actual policy are being finalized? Should the cover
note and insurance policy be treated as different stages in the life-cycle of
the same real-world entity instance, or as different instances? The decision
is likely to have a profound impact on the way that we process—and even
talk about—the data.

As data modelers we need to capture in entity definitions the essence of
what distinguishes one instance from another, and define the primary key

190 ■ Chapter 6 Primary Keys and Identity

Simsion-Witt_06 10/11/04 8:57 PM Page 190

accordingly. Sometimes our work at this logical modeling stage will prompt
some hard questions about the business and the associated conceptual model.

6.3 Surrogate Keys

As discussed earlier, the requirements of applicability, uniqueness, mini-
mality, and stability seem to have a simple answer: just create a single pri-
mary key column for each table and use the system to generate a unique
value for each occurrence. For example, we could specify Branch ID as the
primary key of Branch and number the first Branch “1,” the second “2,”
and so forth. We refer to all such columns as surrogate keys, although some
modelers reserve the term for keys that are not only system-generated, but
are kept invisible to system users.3

6.3.1 Performance and Programming Issues

The two arguments most commonly advanced against surrogate keys are
programming complexity and performance. Frequently, we need to access
a reference table to find the corresponding natural identifier. This situation
occurs often enough that programmers are frequently opponents of surro-
gate keys. However, performance is not usually a problem if the reference
tables are small and can reside in primary storage.

The more common performance-related issue with surrogate keys is the
need for additional access mechanisms such as indexes to support access
on both the surrogate and natural keys.

In databases handling high volumes of new data, problems may also
arise with contention for “next available numbers.” However, many DBMSs
provide mechanisms specifically to generate unique key values efficiently.

6.3.2 Matching Real-World Identifiers

Simply specifying Supplier ID as the surrogate key of Supplier does not solve
the problem of matching real-world suppliers with rows in a database table.
However, in many cases we are able to “change the world” by making the
surrogate key values generally available or even using them to supplant
existing natural keys, and suggesting or insisting that they be used when
data is to be retrieved. This is easier to insist upon if the keys are used only

6.3 Surrogate Keys ■ 191

3The choice of definition usually reflects a view as to how surrogate keys are to be used; those
who choose to restrict the definition to “invisible” keys are usually advocating that system-
generated keys should be invisible.

Simsion-Witt_06 10/11/04 8:57 PM Page 191

within our organization, rather than externally, or if there is some incentive
for using them. In general it is relatively easy to get employees and
suppliers to play by our rules; customers can be more difficult!

One of the most difficult problems with surrogate keys is the possibility
of allocating more than one value to the same real-world object, a violation
of singularity, which requires that each real-world object be represented by
only one key value and, hence, only one row in the relevant database table.
The problem can happen with natural keys as well as surrogate keys—for
example, a person may have aliases (or misspellings)—but is less common.
Merging two or more rows once the problem has been discovered can be a
complicated business, especially if foreign keys also have to be consolidated.
Mailing list managers (and recipients) will be familiar with this situation.

Problems with singularity arise when databases are merged. For exam-
ple, it is common for organizations to consolidate customer files from
different applications to support better customer management, but, in order
for the exercise to be useful, they need to be able to identify situations in
which records sourced from different databases refer to the same customer.
It is a relatively simple matter to provide a new surrogate key for a merged
customer record (row); the challenge, of course, is in matching the source
records. This usually means using data such as names and addresses
that fall short of providing a fully reliable identity, and possibly checking
potential matches through direct customer contact.

At the organizational level, the consolidation of health care providers in
the United States provides a good example of the challenges in customer
identification that result from acquisitions and mergers. The technical solution
is typically a Patient Master Index (PMI) that records the various databases
in which data about each patient is held, together with the patient’s “local”
key in each database. But again, the real issue is in constructing the index,
identifying where a patient record in one database refers to the same
person as a patient record in another. And in a health care setting, getting
it wrong can have serious ramifications.

In developing a new application, the best solution is good design of
business processes, in particular data capture procedures, to ensure that
duplicates are picked up at data entry time. For example, a company might
ask a “new” customer, “Do you already have business with us?” and back
this up with a check for matching names, addresses, and so forth. Making
the employee who captures the details responsible for fixing any duplicates
is one useful tactic in improving the quality of checking.

6.3.3 Should Surrogate Keys Be Visible?

It is often suggested that surrogate keys be hidden from system users
and used only as a mechanism for navigation within the database.

192 ■ Chapter 6 Primary Keys and Identity

Simsion-Witt_06 10/11/04 8:57 PM Page 192

The usual arguments are:

■ If the surrogate keys are visible, users may begin to attribute meaning
to them (“the contract number is between 5000 and 6000—hence, it is
managed in London”). This meaning may not be reliable.

■ We may wish to change the keys, perhaps as a result of not making
adequate provision for growth or to consolidate existing databases.

We frequently see the first problem described above, and it usually
arises when specific ranges of numbers are allocated to different locations,
subtypes, or organization units. In these cases we can place a meaning on
the code, but the meaning is “issued by,” which is not necessarily equiva-
lent to (for example) “permanently responsible for.” The problem can be
avoided by making it more difficult or impossible for the users to interpret
the numbers by allocating multiple small ranges, or assigning available
numbers randomly to sites. At the same time, we need to make sure the
real information is available where it is required so the user does not need
to resort to attempting to interpret the code.

The second problem described above should not often arise. Changing
primary keys is a painful process even if the keys are hidden. We can
insure against running out of numbers by allowing an extra digit or two.
When designing the system, we should look at the likelihood of other
databases being incorporated, and plan accordingly: simply adding a
Source column to the primary key to identify the original database will
usually solve the problem. If we have not made this provision, one of the
simpler solutions is to assign new surrogate keys to one set of data and to
provide a secondary access mechanism based on the old key, which is now
held as a nonkey column.

The disadvantages of a visible key are usually outweighed by the advan-
tage of being able to specify simply the row we want in a table—or, more
generally, that the surrogate key can effectively supplant a less-suitable
natural key. One example of surrogate keys that is in common use
throughout the world is the booking number used in airline reservation
systems (sometimes called a “record locator”). If a customer provides his or
her record locator, access is available quickly and unambiguously to the
relevant data. If the customer does not have the number available, the
booking can be accessed by a combination of other attributes, but this is
intrinsically a more involved process.

6.3.4 Subtypes and Surrogate Keys

If we decide to define a surrogate key at the supertype level, that key will
be applicable to all of the subtypes. An interesting question then arises if

6.3 Surrogate Keys ■ 193

Simsion-Witt_06 10/11/04 8:57 PM Page 193

we choose to implement a different table for each subtype: should we
allow instances belonging to different subtypes to take the same key value?
For example, if we implement Criminal Case and Civil Case tables, having
previously defined a supertype Legal Case, should we allocate case num-
bers as in Figure 6.1(a) or as in 6.1(b)? If contention for “next available
number,” as described earlier in this section, is not a serious problem, we
recommend you choose option (b). This provides some recognition of the
supertype in our relational design. A supertype table can then be con-
structed using the “union” operator and easily joined to tables that hold
case numbers as foreign keys (Figure 6.2).

6.3.4.1 Surrogate Key Datatypes

An appropriate datatype needs to be chosen for each surrogate key
column. If the DBMS provides a specialized datatype for such columns
(often in conjunction with an efficient mechanism for allocating new key
values), you should use it, otherwise use an integer datatype that is suffi-
ciently long (see Section 5.4.4).

6.4 Structured Keys

A structured key (sometimes called a “concatenated key” or “composite
key”) is technically just a key made up of more than one column. The term

194 ■ Chapter 6 Primary Keys and Identity

Figure 6.1 Allocation of key values to subtypes.

CRIMINAL CASE CIVIL CASE

Case No Date Scheduled Case No Date Scheduled

000001 01/02/93 000001 01/02/93
000002 01/03/93 000002 01/03/93
000003 01/04/93 000003 01/05/93
000004

(a) Primary keys allocated independently

(b) Primary keys allocated from a common source

01/06/93 000004 01/07/93

CRIMINAL CASE CIVIL CASE

Case No Date Scheduled Case No Date Scheduled

000001 01/02/93 000002 01/02/93
000005 01/03/93 000003 01/03/93
000006 01/04/93 000004 01/05/93
000008 01/06/93 000007 01/07/93

Simsion-Witt_06 10/11/04 8:57 PM Page 194

also covers the situation in which several distinct attributes have been
combined to form a single-column key, in contravention of the “one-
fact-per-column” rule introduced in Section 2.5.1.

A structured key usually signifies that the entity instances that it
represents can only exist in the context of some other entity instances. For
example an order line (identified by a combination of Order ID and Order
Line Number) can only exist in the context of an order.

What we are doing, technically, in these cases is including one or more
mandatory foreign keys in the primary key for a table. Most experienced
data modelers will automatically do this in at least some cases.

Structured keys often cause problems, but not because there is anything
inherently wrong with multi-attribute keys. Rather, the problem keys
usually fail to meet one or more of the basic requirements discussed
earlier—in particular, stability.

In this section we look at the rationale for using structured keys, and the
trade-offs involved.

6.4 Structured Keys ■ 195

Figure 6.2 Combining subtypes.

Criminal
Case

Civil
Case

Courtroom
Booking

Legal Case

be for

be
allocated

Original Tables:

CRIMINAL CASE (Case No, Scheduled Date, . . .)
CIVIL CASE (Case No, Scheduled Date, . . .)
COURTROOM BOOKING (Courtroom No, Date, Period, Case No*, . . .)
After Union of Criminal Case and Civil Case Tables:

LEGAL CASE (Case No, Scheduled Date, . . .)
COURTROOM BOOKING (Courtroom No, Date, Period, Case No*)

Simsion-Witt_06 10/11/04 8:57 PM Page 195

6.4.1 When to Use Structured Keys

The rule for using structured keys is straightforward: you can include a
foreign key in a primary key only if it represents a mandatory non-
transferable4 relationship.

The relationship needs to be mandatory because an optional relation-
ship would mean that some rows would have a null value for the foreign
key; hence, the primary key for those rows would be partially null. The
problems of nulls in primary key columns are discussed in Section 6.7.

The reason for the nontransferability may not be so obvious. The
problem with transferable relationships is that the value of the foreign key
will need to change when the relationship is transferred to a new owner.
For example, if an employee is transferred from one department to another,
the value of Department ID for that employee will change. If the foreign key
is part of the primary key, then we have a change in value of the primary
key, and a violation of our stability criterion. In this example, Department ID
should not form part of the primary key of Employee.

Another way of looking at this situation is that if we strictly follow the
rule that primary key values cannot change (as we should), then structured
keys can be used to enforce nontransferability (i.e., the structured key
implements the rule that dependent entity instances cannot be transferred
from one owner entity to another).

Figure 6.3 provides a more detailed example, using the notation for
nontransferability introduced in Section 3.5.6. The Stock Holding entity
class has mandatory, nontransferable relationships to both Stock and
Client. In business terms:

1. An instance of Stock Holding cannot exist without corresponding
instances of Stock and Client.

2. An instance of Stock Holding cannot be transferred to a different stock
or client.

By contrast, the relationship from Client to Investment Advisor is
optional and transferable, representing the business rules that:

1. We can hold information about a client who does not have an investment
adviser.

2. A client can be transferred to a different investment adviser.

Accordingly, in constructing a primary key for a Stock Holding table,
we could include the primary keys of the tables implementing the Stock
and Client entity classes, but we would not include the primary key of the

196 ■ Chapter 6 Primary Keys and Identity

4Transferability was introduced in Section 3.5.6.

Simsion-Witt_06 10/11/04 8:57 PM Page 196

table implementing the Investment Advisor entity class in the primary key
of the Client table.

Incidentally, a very common case in which structured keys are suitable is
that of an intersection table that supports a many-to-many relationship. This
is because rows of the intersection table cannot exist without corresponding
instances of the entity classes involved in the many-to-many relationship and
cannot be reallocated to different instances of those entity classes.

In working through these examples, you should be aware of a real trap.
Standard E-R diagrams do not include a symbol for nontransferability.5

And many data modelers overlook the stability criterion for primary keys.
We therefore reemphasize: It is only safe to incorporate a foreign

key into a primary key if that foreign key represents a nontransferable
relationship.

6.4.2 Programming and Structured Keys

Structured keys may simplify programming and improve performance by
providing more data items in a table row without violating normalization

6.4 Structured Keys ■ 197

Figure 6.3 Transferable and nontransferable relationships.

Stock Client

Stock
Holding

be
of

be the
subject of

Investment
Advisor

be
advised by

 advise

be
held by

 hold

5Some CASE tools and E-R modeling extensions do provide some support.

Simsion-Witt_06 10/11/04 8:57 PM Page 197

rules. In Figure 6.4, we are able to determine the department from which
a leave application comes without needing to access the Employee table.
But can an employee transfer from one department to another? If so, the
primary key of Employee will be unstable—almost certainly an unaccept-
able price to pay for a little programming convenience and performance. If
performance was critically affected by the decision, it would probably be
better to carry Department ID redundantly as a nonprimary-key item in the
Leave Application table. In any event, these are decisions for the physical
design stage!

6.4.3 Performance Issues with Structured Keys

Although performance is not our first concern as data modelers, it can
provide a useful basis for deciding between alternatives that rate similarly
against other criteria. (At the physical database design stage, we may need
to reconsider the implications of structured keys as we explore compro-
mises to improve performance.)

Structured keys may affect performance in three principal ways.
First, they may reduce the number of tables that need to be accessed by

some transactions, as in Figure 6.4 (discussed above).
Second, they may reduce the number of access mechanisms that need

to be supported. Take the Stock Holding example from Figure 6.3. If we
proposed a stand-alone surrogate key for Stock Holding, it is likely that

198 ■ Chapter 6 Primary Keys and Identity

Figure 6.4 Navigation short cut supported by structured key.

Department

Employee
Leave

Application

be
employed by

 employ

submit

be submitted by

Department ID

Navigation
Short-Cut

Department ID
Employee ID
Employee Name

Department ID
Employee ID
Leave Start Date
Leave End Date
Leave Type

Simsion-Witt_06 10/11/04 8:57 PM Page 198

the physical database designer would need to construct three indexes: one
for the surrogate key and one for each of the foreign keys to Client and
Stock. But if we used Client ID + Stock ID + Date, the designer could probably
get by with two indexes, resulting in a saving in space and update time.

Third, as the number of columns in a structured key increases, so does
the size of table and index records. It is not unknown for a table at the
bottom of a deep hierarchy to have six or more columns in its key. A key
we encountered in an Insurance Risk table reflected the following hierar-
chy: State + Branch + District + Agent + Client + Policy Class + Original Issuer +
Policy + Risk—a nine part key, used throughout the organization. In this case,
the key had been constructed in the days of serial files and reflected neither
a true hierarchy nor a nontransferable relationship. Very large keys are also
common in data marts in which star schemas (see Chapter 16) are used.

When we encounter large keys, we have the option of introducing a stand-
alone surrogate key at any point(s) in the hierarchy, reducing the size of the
primary keys from that point downwards. Doing so will prevent us from fully
enforcing nontransferability and will cost us an extra access mechanism. In the
Compact Disk Library model of Figure 6.5 on the next page, we can add a
surrogate key Track ID to Track, as the primary key, and use this to replace the
large foreign key in Performer Role. The primary key of Performer Role
would then become Track ID + Performer ID. However, the model would no
longer enforce the fact that a track could not be transferred from one CD to
another (and perhaps prompt us to rethink our definition of Track).

6.4.4 Running Out of Numbers

Structured keys are prone to a particular kind of stability problem—running
out of numbers—which can ultimately require that we reallocate all key
values. The more parts to a key, the more likely we are to exhaust all pos-
sible values for one of them. Of course, this may also imply running out of
numbers for the relevant owner entity instances, but the impact on what is
often only a reference table may be more local and manageable.
Incidentally, the owner entity class may not actually be represented by a
table in the database; its key may provide sufficient information in itself for
our purposes.

If we do run out of numbers, it may be prohibitively expensive to rede-
fine the key and amend the programs that use it. Experience suggests that
we (or the system users) will be tempted to add new data and meaning to
other parts of the key in order to keep the overall value unique. In turn,
program logic now has to be amended to extract the meaning of the values
held in these parts.

Most experienced data modelers have horror stories to tell in this area.
One organization had a team of four staff members working full time on

6.4 Structured Keys ■ 199

Simsion-Witt_06 10/11/04 8:57 PM Page 199

allocating location codes. Another had to completely redevelop a system
because they ran out of insurance agent identifiers (the agent identifier
consisted of a State Code, Branch Code within state, and Agent Number within
state and branch; when all agent numbers for a particular branch had been
allocated, new numbers were assigned by creating phantom branches
and states). As a result of problems of this kind, it is often suggested that
structured keys be avoided altogether. However, a structured key should
involve no more risk than a single-column key, as long as we make
adequate provision for growth of each component, and do not break the
basic rules of column definition and key design.

200 ■ Chapter 6 Primary Keys and Identity

Figure 6.5 Large structured keys.

Manufacturer

CD

Track

Performer
Role

Performer

be
issued by

 issue

be
contained on

contain

be
featured on

feature

be
performed by

perform

Label (Manufacturer ID)

Label (Manufacturer ID)
Catalogue Number

Label
Catalogue Number
Track Number

Performer ID

Label
Catalogue Number
Track Number
Performer ID
Role

Simsion-Witt_06 10/11/04 8:57 PM Page 200

6.5 Multiple Candidate Keys

Quite frequently we encounter tables in which there are two or more
columns (or combinations of columns) that could serve as the primary key.
There may be two or more natural keys or, more often, a natural and a
surrogate key. We refer to each possible key as a candidate key. There are
a few rules we need to observe and some traps to watch out for when there
is more than one candidate key.

6.5.1 Choosing a Primary Key

We strongly recommend that you always nominate a single primary key for
each table. One of the most important reasons for doing so is to specify
how relationships will be supported; in nominating the primary key, you
are specifying which columns are to be held elsewhere as foreign keys.6

The choice of primary key should be based on the requirements and
issues discussed earlier in this section. In addition to comparing applicability,
stability, structure, and meaningfulness, we should ask, “Does each candidate
key represent the same thing for all time?” The presence of more than one
candidate key may be a clue that an entity class should be split into two
entity classes linked by a one-to-one transferable relationship.

If after this we still genuinely have two (or more) candidate keys for the
same entity that are equally applicable and stable, the shortest of these may
result in a significant saving in storage requirements, as primary keys are
replicated in foreign keys and indexes.

6.5.2 Normalization Issues

Multiple candidate keys can be a sign of tables that are in third normal form
but not Boyce-Codd normal form (this is discussed in Chapter 13). Tables
with two or more candidate keys can also be a source of confusion in
earlier stages of normalization. Some informal definitions of 3NF imply that
a nonkey column (i.e., a column that is not part of the primary key) is not
allowed to be a determinant of another nonkey column. (“Each nonkey
item must depend on the key, the whole key, and nothing but the key.”)

Look at the table in Figure 6.6:

6.5 Multiple Candidate Keys ■ 201

6The SQL standard and some DBMSs allow relationships to be supported by foreign keys that
point to candidate keys other than the primary key (Section 10.6.1.2). We recommend that use
of this facility be restricted to the physical design stage.

Simsion-Witt_06 10/11/04 8:57 PM Page 201

Let us assume that every customer has a Tax File No, and that no two
customers have the same Tax File No. A bit of thought will show that Tax File
No (a nonkey item) is a determinant of Name, Address, and indeed every other
column in the table. On the basis of our informal definition of 3NF, we would
conclude that the table is not in third normal form, and remove Name,
Address, and so on. to another table, with Tax File No copied across as the key.

We do not want to do this! It does not achieve anything useful.
Remember our definition of 3NF in Chapter 2: Every determinant of a non-
key item must be a candidate key. Our table satisfies this; it is only the
“rough and ready” definition of 3NF that leads us astray.

6.6 Guidelines for Choosing Keys

Having read this far, you may feel that we have adequately made our point
about primary key choice being complex and difficult! As in much of data
modeling, there are certainly choices to be made, and when unusual cir-
cumstances arise, there is no substitute for a good understanding of the
underlying principles.

However, we can usefully draw together the threads of the discussion
so far and offer some general guidelines for choosing keys.

We divide the problem into two cases, based on the concepts of
dependent and independent entity classes introduced in Section 3.5.7.
Recall that a dependent entity class is one that has at least one many-to-
one mandatory, nontransferable relationship with another entity class. An
independent entity class has no such relationships.

A table representing a many-to-many relationship can be thought of as
implementing an intersection entity class, which (as we saw in Section 3.5.2)
will be dependent on the entity classes participating in the relationship.
Accordingly, such a table will follow the rules for a dependent entity class.

6.6.1 Tables Implementing Independent Entity Classes

The primary key of a table representing an independent entity class must
be one of the following:

1. A natural identifier: one or more columns in the table corresponding to
attributes that are used to identify things in the real world: if you have

202 ■ Chapter 6 Primary Keys and Identity

Figure 6.6 Table with two candidate keys

CUSTOMER (Customer No, Tax File No, Name, Address, . . .)

Simsion-Witt_06 10/12/04 3:55 PM Page 202

used the naming conventions outlined in Chapter 5, they will usually be
columns with names ending in “Number,” “Code,” or “ID.”

2. A surrogate key: a single column.

A sensible general approach to selecting the primary key of an inde-
pendent entity class is to use natural identifiers when they are available and
surrogate keys otherwise.

6.6.2 Tables Implementing Dependent Entity Classes
and Many-to-Many Relationships

We have an additional option for the primary key of a table representing a
dependent entity class or a many-to-many relationship in that we can
include the foreign key(s) representing the relationships to the entity
classes on which the entity class in question depends. Obviously, a single
foreign key alone is not sufficient as a primary key, since that would only
allow for one instance of the dependent entity for each instance of the
associated entity.

The additional options for the primary key of the table representing a
dependent entity class are as follows:

1. The foreign key(s) plus one or more existing columns. For example, a
scheduled flight will be flown as multiple actual flights; there is there-
fore a one-to-many relationship between Scheduled Flight and Actual
Flight. Actual flights can be identified by a combination of the Flight No
(the primary key of Scheduled Flight) and the date on which the actual
flight is flown.

2. Multiple foreign keys that together satisfy the criteria for a primary key.
The classic example of this is the implementation of an intersection
entity class (Section 3.5.2) (though this approach will not work for all
intersection entity classes, some of which will require options 1 or 3, [i.e.,
the addition of an existing column (e.g., a date) or a surrogate key)].

3. The foreign key(s) plus a surrogate key. For example, a student could
be identified by a combination of the Student ID issued by his or her col-
lege and the ID of the college that issued it (the foreign key represent-
ing the relationship between Student and College).

Our general rule is to include all foreign keys that represent depend-
ency relationships, adding a surrogate or (if available) an existing column
to ensure uniqueness if necessary. By doing this, we are enforcing non-
transferability, as long as we stick to the general rule that primary key
values cannot be changed.

6.6 Guidelines for Choosing Keys ■ 203

Simsion-Witt_06 10/11/04 8:57 PM Page 203

We nearly always use primary keys containing foreign keys for tables
representing dependent entity classes, but will sometimes find that such a
table has an excellent stand-alone key available. We may then choose to
trade enforcement of nontransferability for the convenience of using an
available “natural” key. For example, it may not be possible for a passport
to be transferred from one person to another; hence, we could include
the key of Person in the key of Passport, but we may prefer to use a
well-established stand-alone Passport Number.

6.7 Partially-Null Keys

We complete this chapter by looking at an issue that arises from time to
time: whether or not null values should be permitted in primary key
columns.

There are plenty of good reasons why the entire primary key should
never be allowed to be null (empty); we would then have a problem with
interpreting foreign keys—does null mean “no corresponding row” or is it
a pointer to the row with the null primary key?

But conventional data modeling wisdom also dictates that no part (i.e.,
no column) of a multicolumn primary key should ever be null. Some of the
arguments are to do with sophisticated handling of different types of nulls,
which is currently of more academic than practical relevance, since the null
handling of most DBMSs is very basic. To our knowledge, no DBMS allows
for any column of a primary key to be null. However, there are situations
where not every attribute represented by a column of the primary key has
a legitimate value for every instance. In these situations you may want to
use some special value to indicate that there is no real-world value for
those attributes in those instances. (We shall discuss possible special values
shortly.)

The issue often arises when implementing a supertype whose subtypes
have distinct primary keys. For example, an airline may want to implement
a Service entity whose subtypes are Flight Service (identified by a Flight
Number) and Accommodation Service (identified by an alphabetic
Accommodation Service ID). The key for Service could be Flight Service No +
Accommodation Service ID, where one value would always be logically null.
This is a workable, if inelegant, alternative to generalizing the two to
produce a single alphanumeric attribute.

A variant of this situation is shown in Figure 6.7. The keys for Branch
and Department are legitimate as long as branches cannot be transferred
from one division to another and departments cannot be transferred from
one branch to another.

But if we decide to implement at the Organization Unit level, giving
us a simple hierarchy, can we generalize the primary keys of the subtypes

204 ■ Chapter 6 Primary Keys and Identity

Simsion-Witt_06 10/11/04 8:57 PM Page 204

into a primary key for Organization Unit? The proposed key would be
Division ID + Branch ID + Department ID. For divisions, Branch ID and Department
ID would be logically null, and for branches Department ID would be
logically null. Again, we have logically null values in the primary key;
again, we have a solution that is workable and that has been employed
successfully in practice.

The choice of key in this example has some interesting implications.
The foreign key, which points to the next level up the hierarchy, is contained
in the primary key (e.g., Branch ID “0219” contains the key of Division “02”).
This limits us to three levels of hierarchy; our choice of primary key has
imposed a constraint on the number of levels and their relationships. With
a surrogate key, by contrast, any such limits would need to be enforced
outside the data structure. This is another example of a structured key
imposing constraints that we may or may not want to enforce for the life
of the system.

What special values can we use to represent a logically-null primary key
attribute given that our DBMS will almost certainly not allow us to use
“null” itself? If the attribute is a text item or category (see Section 5.4.2), you
might use a zero-length character string. If it is a quantifier, you can use
zero if it does not represent a real-world value. If it does, you are reduced
to either choosing some other special value, like –1 or 999999 or adding a

6.7 Partially-Null Keys ■ 205

Figure 6.7 Use of a primary key with logically null attributes.

Division

Branch

Department

Organization Unit

report to
 control

report to
 control

Division ID

Division ID
Branch ID

Division ID
Branch ID
Department ID

Simsion-Witt_06 10/11/04 8:57 PM Page 205

flag column to indicate whether the original column holds a real-world
value or not.

6.8 Summary

Primary keys must be applicable to all instances, unique, minimal, and
stable. Stability is frequently overlooked, but stable keys provide a better
representation of real-world identity and lead to simpler system designs.

Natural keys may offer simpler structures and performance advantages
but are often unstable.

Surrogate keys are system-generated, meaningless keys and can be
managed to ensure uniqueness and stability. They do not guarantee singu-
larity (one key value per real-world entity instance). Surrogate keys may be
made visible to users, but no meaning that is not constant over time for
each instance should be attached to them.

Structured keys consist of two or more columns. Provided they satisfy
the basic criteria of soundness, they can contribute to enforcing nontrans-
ferability and may offer better performance.

Primary keys must not be allowed to take a logically null value, but
there are arguments for individual components being allowed to do so.

206 ■ Chapter 6 Primary Keys and Identity

Simsion-Witt_06 10/11/04 8:57 PM Page 206

Chapter 7
Extensions and Alternatives

“The limits of my language mean the limits of my world.”
– Ludwig Wittgenstein, Tractatus Logico-Philosophicus

7.1 Introduction

In Chapters 2 and 3, we introduced two closely-related languages or con-
ventions for data modeling.

The Entity-Relationship (E-R) Model and its associated diagramming
conventions are used to document an implementation-independent view
of the data structures: A conceptual model, which is the key input to the
logical design phase. Its principal concepts are entity classes, attributes, and
relationships.

The Relational Model1 is used to describe a relational database (existing
or proposed). Its principal concepts are tables, columns, and keys (primary
and foreign). It is the language we use for the logical data model.2

These conventions are by no means the only ones available for modeling
data at the conceptual and logical levels. Since the advent of DBMSs,
numerous alternatives have been proposed, and an enormous amount of
effort on the part of both academics and practitioners has been devoted
to debating their relative merits. In Chapter 4 we introduced a common
extension to the basic E-R Model to represent subtypes and supertypes; as
we discussed, not all practitioners use this extension, and different tools
implement it in different ways.

Extensions to conceptual modeling languages are usually driven by two
factors, sometimes synergistic, sometimes in conflict. The first is a desire to
capture more meaning. The addition of subtypes is a nice example of this,
as is the representation of constraints, such as relationships being mutually
exclusive. The second is to improve stakeholders’ ability to understand the
model and, hence, their effectiveness in reviewing or contributing to it.

207

1Note the use of the capitalized “Model” to refer to a language and set of conventions, in contrast
to the non-capitalized “model” which refers to a model of data to support a particular problem.
2The language we use for the physical data model is usually the Data Definition Language
(DDL) supported by the DBMS, sometimes supplemented by data structure diagrams similar
to those of the logical data model.

Simsion-Witt_07 10/8/04 9:19 PM Page 207

Extensions to logical modeling languages are often prompted by
extensions (either real or desired) to DBMS capabilities. If a DBMS can
implement a particular logical structure, we need to be able to specify it.

Remember that not all modelers make the distinction between concep-
tual and logical modeling and may therefore use the same language
for both.

In practice, pragmatic considerations quickly narrow the choice. Most
modelers will be specifying a logical model for implementation using a
standard or extended relational DBMS, and the Relational Model will be the
obvious choice. At the conceptual level, only a few sets of conventions are
supported by CASE products. Many data modelers will have experience
with only mainstream conventions. And, with some exceptions, there is
relatively little value in capturing structures and constraints that will not
affect the design of the database.

In this chapter we look at some of the more common alternatives and
extensions, focusing on conceptual modeling.

We look first at some extensions to the E-R approach that we use
generally in this bookin particular, facilities for the more sophis-
ticated modeling of attributes. Each is supported by at least one popular
CASE product. Even if you choose to skip over some of the material
in this chapter because you are using a method or tool that does
not support the extensions, we do suggest you read Section 7.2.2 on
advanced attribute concepts, since we recommend that you use these con-
cepts in the conceptual modeling stage, and we refer to them in Chapters
10 and 11.

We then look at the “true” E-R conventions, as proposed by Chen.
To avoid ambiguity, we refer to these conventions as the Chen E-R
Model.

UML (Unified Modeling Language) is the most-widely used alternative
to the E-R and relational approaches, and it provides, as standard, a number
of the constructs supported by Chen E-R and E-R extensions. It covers a
number of activities and deliverables in systems analysis and design beyond
data modeling. In this chapter we focus on some of the key issues for the
data modeler.

Finally we look briefly at Object Role Modeling (ORM), which has been
well researched, has CASE tool support, and is in use in some organizations.

We do not look at modeling languages for object-oriented (OO) data-
bases; they represent a substantially different paradigm and the take-up of
true OO DBMSs, at the time of writing, remains very low in comparison to
relational products.

This chapter is not a tutorial or reference for any of these languages;
at the end of the book we suggest some further reading if you wish to
explore any of them in depth. Rather, we look at the key new facilities that
they introduce to provide you with a starting point for approaching
themand perhaps a better appreciation of the comparative strengths and

208 ■ Chapter 7 Extensions and Alternatives

Simsion-Witt_07 10/8/04 9:19 PM Page 208

weaknesses of the approach that you use yourself. From time to time we
find ourselves “borrowing” a concept from outside the language that we are
using in order to describe a particular structure or rule that we encounter
in practice. An understanding of other modeling languages will increase
your ability to recognize and describe patterns and, hence, contribute to
your skill as a modeler.

You should be aware that every approach comes with “baggage” in
terms of associated methodologies and philosophies. For example, con-
ventional E-R modeling is widely associated with Information Engineering
methodologies and UML with object-oriented approaches. In many cases,
these associations have more to do with the views of the language origi-
nators or proponents than with the languages themselves. In evaluating and
learning from the languages and their proponents, it is important not to
confuse the two.

7.2 Extensions to the Basic E-R Approach

7.2.1 Introduction

The basic E-R approach, which is widely used in practice, is not too
different from the Bachman diagrams, which were used from the late 1960s
to document prerelational (CODASYL)3 database designs. In the transition
to a conceptual modeling language, it has gained relatively little; doubtless,
one of the reasons is that CASE tool vendors are not keen to support
constructs that cannot be mechanically translated into relational structures.
Perhaps the most consistent addition has been the inclusion of many-to-
many relationships, which, as we saw in Chapter 3, cannot be implemented
directly in a relational DBMS (or for that matter a network DBMS).

Perhaps for these reasons, too many modelers restrict themselves to
only those concepts that were supported by the first generation of relational
DBMSs. This is a mistake for two reasons:

1. The business is likely to see the data with which it deals in a much
richer fashion than tables and columns. A conceptual model, which is
designed to convey to the business the information concepts to be
supported, should do likewise.

2. Many relational DBMSs now support these richer structures. If the
business for which you are producing a logical data model intends to

7.2 Extensions to the Basic E-R Approach ■ 209

3CODASYL from “Conference on Data Systems Languages” (specifically the Database Task
Group which became the Data Description Language Committee) refers to a set of standards for
“network” DBMSs in which the principal constructs were Record Types, Data Items, and Sets.

Simsion-Witt_07 10/8/04 9:19 PM Page 209

implement it on such a DBMS, it is similarly a mistake to constrain the
logical data model to exclude structures that make business sense and
that can be implemented directly. Even if the DBMS does not support a
particular structure, there are simple techniques for converting these
richer structures in the conceptual data model into simpler structures in
the logical data model; these are described in Chapter 11.

7.2.2 Advanced Attribute Concepts

E-R modeling is subject in practice to a number of conventions that do not
appear to have any basis other than conformity to the rather restrictive ver-
sion of the relational model represented by the original SQL standard and
implemented in the earliest versions of the various relational DBMS prod-
ucts. These restrictive conventions are inappropriate in a logical data model
if the target DBMS implements any of the additional features of the SQL99
standard and, in any case, inappropriate in a conceptual data model, which
should illustrate data structures as the business would naturally view them
rather than as they will be implemented in a database.

Having said that, we are aware that some CASE tools continue to
enforce these conventions; if you are using such a tool, you may not be
able to take advantage of some of the suggestions in this section.

7.2.2.1 Category Attributes

A convention seems to have been established whereby a category attribute
(see Section 5.4.2.2) such as Gender, Customer Type, or Payment Type is repre-
sented in a conceptual data model as a relationship to a classification entity
class, which generally has Code and Meaning (or Description) attributes. It is
not entirely clear why it is necessary to represent a single business concept
by four modeling artifacts (the classification entity class, its Code and
Meaning attributes, and the relationship between the entity class containing
the category attribute and the classification entity class). If, as some model-
ers and CASE tools insist, the foreign key representing a relationship is
shown as well as the relationship, the single business concept is represented
by five modeling artifacts. This seems particularly inappropriate given that a
classification table is not the only way to ensure that the column represent-
ing the category attribute is constrained to a discrete set of values.

Our recommendation is to represent each category attribute as just an
attribute. If two different category attributes have the same set of meanings,
this should be documented by assigning them the same attribute domain
(see Section 5.4.3).

210 ■ Chapter 7 Extensions and Alternatives

Simsion-Witt_07 10/8/04 9:19 PM Page 210

7.2.2.2 Derived Attributes

Given the focus on getting to a normalized logical data model, many mod-
elers completely ignore derived attributes (those that can be calculated from
others) yet such quantities often arise during the analysis process as explicit
business requirements. Our view is that they should be included in a con-
ceptual data model since a major but often overlooked contributor to poor
data quality is inconsistent calculation of derived quantities. For example:

1. A derived quantity appears on a variety of different application screens
and reports.

2. There are alternative methods of calculating that quantity, only one of
which is correct.

3. As there is no definition of the derived quantity in any data model, each
process analyst specifying a screen or report on which that quantity appears
has defined the calculation method in the specification of that screen/
report and different stakeholders have reviewed those specifications.

Each derived quantity can be “normalized” to a single conceptual data
model entity class, in the sense that:

1. Each instance of that entity class has only one value for that quantity.

2. There is no other attribute of that entity class, other than candidate keys,
on which the derived quantity is functionally dependent.

Each derived quantity can be included in the conceptual data model as
an attribute of that entity class with the following provisos:

1. It is marked to indicate that it is derived.

2. The single correct calculation method is recorded in the definition of the
attribute.

To illustrate how this works, consider the logical data model in Figure 7.1:
Four of these attributes appear to be derived. Total Order Amount is

presumably the sum of the products of Order Quantity and Quoted Price in each
associated order line, Applicable Discount Rate is presumably the minimum of
the Standard Discount Rate for the customer and the Maximum Discount Rate for
the product, and Quoted Price is presumably the Standard Product Price less the
applicable discount. However, YearToDate Total Sales Amount could be based on:

■ Orders raised, promised deliveries, or actual deliveries within the current
year-to-date

■ Either standard product prices or quoted prices
■ Either current or historic standard product prices.

7.2 Extensions to the Basic E-R Approach ■ 211

Simsion-Witt_07 10/8/04 9:19 PM Page 211

The analyst should establish which of each of these sets of alternatives
applies. Another issue that arises with YearToDate Total Sales Amount is that it
may not actually be able to be calculated from other data. If order data is
deleted before the year is out, the Order and Order Line tables may not
contain all orders raised (or delivered against) within the year-to-date.
Further, if YearToDate Total Sales Amount is based on historical standard prod-
uct prices, these are not available to support such a calculation “on the fly.”
In each of these situations, YearToDate Total Sales Amount can be held in the
Product table and added to as each order is raised (or delivered against, as
the case may be).

In UML a derived attribute or relationship can be marked by preceding
the name with a solidus or forward slash (“/”). There is no standard for
marking derived attributes in E-R modeling and your E-R CASE tool may
not support them. If so, they will need to be listed separately.

7.2.2.3 Attributes of Relationships

Consider the model in Figure 7.2. If we need to record the date that each
student enrolled in each course, is that date an attribute of Student or of
Course? It is in fact an attribute of the relationship between Student and
Course as there is one Enrollment Date for each combination of Student
and Course.

212 ■ Chapter 7 Extensions and Alternatives

Figure 7.1 A logical data model of an ordering application.

CUSTOMER (Customer No, Customer Name, Customer Address, Standard Discount
Rate)
PRODUCT (Product No, Product Name, Standard Product Price, YearToDate Total
Sales Amount, Maximum Discount Rate)
ORDER (Order No, Order Date, Customer No*, Delivery Charge, Total Order Amount)
ORDER LINE (Order No, Product No*, Order Quantity, Applicable Discount Rate,
Quoted Price, Promised Delivery Date, Actual Delivery Date)

Figure 7.2 An E-R model of a simple education application.

Student Course

Simsion-Witt_07 10/8/04 9:19 PM Page 212

In E-R modeling, generally the only way to record the existence of
such an attribute is to convert the many-to-many relationship into an entity
class and two one-to-many relationships as described in Section 3.5.2, as
the attribute can then be assigned to the intersection entity class. UML, by
contrast, supports association classes, which are object classes tied to
associations (which in UML includes relationships). The notation for an
association class is illustrated later in this chapter in Figure 7.12.

Consider the model in Figure 7.3. If we need to record the date (if any)
that an employee joined a union, is that an attribute of Employee or of
Union? Because there can only be one Union Joining Date for each employee,
most modelers would treat it as if it were an attribute of Employee. It is in
fact better represented as an attribute of the relationship between
Employee and Union: if a particular employee does not belong to a union,
Union Joining Date must be null. By associating the attribute with the rela-
tionship, we enforce that rule.

In UML we can create an association class named Employee Union
Membership and make Union Joining Date an attribute of that class. In E-R
modeling we could do something similar by converting the relationship
into an Employee Union Membership entity class with a one-to-many
relationship (optional at the many end) between it and Union and a one-
to-one relationship (optional at the Employee Union Membership end)
between it and Employee. While this is valid in a conceptual data model,
its principal disadvantage is the fact that any CASE tool is likely to create
separate Employee and Employee Union Membership tables in the
logical data model. (For that matter, this may well happen in a UML CASE
tool if you model this relationship as we have suggested.)

If your CASE tool does not allow pairs of entity classes joined by one-
to-one relationships to be implemented as single tables, you are probably
better off documenting the business rule in text form.

7.2.2.4 Complex Attributes

Consider the following “attributes”:

■ Delivery Address
■ Foreign Currency Amount

7.2 Extensions to the Basic E-R Approach ■ 213

Figure 7.3 A conceptual data model of a simple employee record application.

Union Employee

Simsion-Witt_07 10/8/04 9:19 PM Page 213

■ Order Quantity
■ Customer Name
■ Customer Phone Number

In each case, how many attributes are there really? A Delivery Address
(or any address for that matter) can be regarded as a single text attribute or
as a set of attributes, such as:

■ Apartment No
■ Street No(s) with Street No Suffix
■ Street Name and Street Type, with Street Name Suffix
■ Locality Name and State Abbreviation
■ Postal Code
■ Country Name

This, of course, is just one example of what might be required.
Similarly Foreign Currency Amount will require not only a currency amount

attribute but must indicate what currency is involved (e.g., USD, AUD, GBP).
If we are in the business of selling bulk products, Order Quantity may
involve different units (lb, tons, ft).

Customer Name may be a single attribute but is more likely to require
Surname, Given Name, Salutation, Honorifics (e.g., Ph.D.), while Phone Number
may require separate country and/or area codes.

The use of complex attributes can facilitate a top-down approach to
modeling. In a five-day data modeling project that one of us reviewed, very
little apparent progress had been made at the end of the first day, as
the group had become bogged down in a debate about how addresses
should be broken up. As a result there was nothing completed (neither a
subject area model nor a high-level model) that could be reviewed by
stakeholders outside the group. If that group had decided that an address
was just a complex attribute with an internal structure that could be dealt
with as a separate issue, they would have been able to produce a model
including those entity classes for which addresses existed significantly
sooner.

There are two significant other advantages in treating complex attributes
as attributes rather than modeling their internal structure immediately. First,
if requirement change or refinement during modeling leads to internal
structure change (e.g., a decision is taken to allow for overseas addresses,
which require a country name and nonnumeric postal codes), all that needs
to be changed in the model is the internal structure of the appropriate
attribute type (e.g., Address, Foreign Currency Amount), rather than changing
each address (and possibly missing one or making slightly different changes
to different addresses).

214 ■ Chapter 7 Extensions and Alternatives

Simsion-Witt_07 10/8/04 9:19 PM Page 214

Second, if a complex attribute such as an address is optional, it is easier
to document that fact directly rather than document that:

■ All individual attributes making up an address must be null if any of the
essential parts of an address are null.

■ Any essential individual attribute of an address must be non-null if any
other essential part of an address is non-null.

There are two distinct ways in which we can model complex attributes.
One is to include additional complex attribute types in the attribute tax-

onomy. We can then (for example) simply identify Customer Address and
Supplier Address as being of the type “Address.” Note that there may be more
than one set of requirements for each major type of complex attribute, (e.g.,
some addresses may need to be formatted in a particular way for a partic-
ular purpose or have some properties that differ from others). In this situ-
ation, we need to create multiple attribute types, (e.g., U.S. Postal Address,
Overseas Postal Address, Delivery Location Address.

Alternatively, we can model complex attributes as separate entity
classes4 and link those entity classes to the entity classes to which the com-
plex attributes belong. Using addresses again as the example, we would
create an Address entity class and relationships between it and Customer,
Employee, Supplier, Party Role, and so on.

Your CASE tool will certainly allow you the second of these options and
also the first if it supports attribute types, but a problem may arise when it
comes to generate the logical data model from the conceptual data model.
Whichever of these techniques you have used to model complex attributes,
it may not support the transformations required to generate the appropriate
structure in the logical data model if the DBMS for which the logical
data model is being generated does not support complex attributes. The
relevant transformations are described in Section 11.4.5.

7.2.2.5 Multivalued Attributes

Traditionally E-R modelers have included only single-valued attributes in
conceptual data models. Whenever an attribute can have more than one
value for an entity instance, a separate entity class is created to hold that
attribute with a one-to-many relationship between the original “parent” entity
class and the new “child” entity class, in a process equivalent to converting
a relational data model to First Normal Form (in fact, we are anticipating the
need to produce a normalized logical model). This practice, however, adds
an extra box and an extra line to the model for the sake of one attribute.

7.2 Extensions to the Basic E-R Approach ■ 215

4Somewhat analogous to the Row data type in SQL99.

Simsion-Witt_07 10/8/04 9:19 PM Page 215

While it is essential for a logical data model to be normalized if the
DBMS on which it is to be implemented does not support multivalued
attributes, there is no particular reason why a conceptual data model
should be, so multivalued attributes are acceptable if they are clearly
marked as such. However, in our experience object modelers sometimes
include multivalued attributes without marking them to indicate that they
are multivalued. Neither UML nor any of the E-R variants provides a nota-
tion for this purpose. One possible technique is to give such attributes
plural names, [e.g., Nicknames as an attribute of Employee—using singular
names for all other attributes of course].

Note that if an entity class has more than one multivalued attribute, you
should ensure that such attributes are independent. If two multivalued
attributes are dependent on each other, you should create a single multi-
valued complex attribute. For example, an Employee entity class should
not be given separate multivalued attributes Dependent Names and Dependent
Birth Dates; instead, you should create a Dependents multivalued complex
attribute, each element of which is a dependent with name and birth date
components.

Again, CASE tool support for multivalued attributes is not guaranteed,
even if you are modeling in UML.

7.3 The Chen E-R Approach

In 1976, Peter Chen published an influential paper “The Entity-Relationship
Approach: Towards a Unified View of Data.”5 He proposed a conceptual
modeling language that could be used to specify either a relational or a net-
work (CODASYL) database. The language itself continues to be widely
used in academic work, but is much less common in industry. Arguably,
the paper’s greater contribution was the recognition of the value of sepa-
rating conceptual design from logical and physical design.

However, in the space of a short academic paper, Chen introduced
several interesting extensions, many of which have been adopted or
adapted by later languages, notably UML.

7.3.1 The Basic Conventions

Chen E-R diagrams are immediately recognizable by the use of a diamond
as the symbol for a relationship, and the Chen extensions relate largely

216 ■ Chapter 7 Extensions and Alternatives

5ACM Transactions on Database Systems, Vol. 1, No. 1, March 1976.

Simsion-Witt_07 10/8/04 9:19 PM Page 216

to relationships. We included a simple example in Chapter 3, but only as
an alternative way of representing something that we could already capture
using our standard E-R conventions. The same basic symbol is used to
represent all relationships, whether one-to-one, one-to-many or many-
to-manyan important reflection of the desire to be true to real-world
semantics rather than the constraints of a DBMS (which would have
required that many-to-many relationships be represented as tables or
record types).

7.3.2 Relationships with Attributes

In the Chen approach, relationships may have attributes. As discussed in
7.2.2.3, this facility is particularly useful for consistently representing many-
to-many relationships, but it also has application in representing and
enforcing constraints associated with one-to-many relationships.

Figure 7.4 shows an Employee-Asset example using the Chen conven-
tion. If we had started out thinking that the relationship was one-to-many
but on checking with the user found that it was many-to-many, we
would only need to make a minor change to the diagram (changing the “l”
to “N”). This seems more appropriate than introducing a Responsibility
entity class (“Fine,” says the user, “but why didn’t we need this entity class
before?”).

7.3.3 Relationships Involving Three or More
Entity Classes

The Chen convention allows us to directly represent relationships involv-
ing more than two entity classes (as illustrated in Figure 7.5), rather than
introducing an intersection entity class as is necessary in conventional E-R
modeling (discussed in Section 3.5.2).

7.3 The Chen E-R Approach ■ 217

Figure 7.4 Chen convention for relationships (including relationships with attributes).

Employee AssetResponsibility
1 N

Simsion-Witt_07 10/8/04 9:19 PM Page 217

As in the case of many-to-many relationships, this convention enables
us to be true to “real-world” classifications of concepts as entity classes or
relationships, rather than being driven by implementation considerations,
as discussed in Section 3.5.5.

7.3.4 Roles

The Chen conventions allow us to give a name to the role that an entity
instance plays when it participates in a particular relationship. In Figure 7.6,
we are able to note that a person who guarantees a loan contract is known
as the guarantor. In our experience, this is an attractive feature when

218 ■ Chapter 7 Extensions and Alternatives

Figure 7.5 Ternary relationship documented using Chen E-R convention.

Service Organization
Service

Availability
M N

Area

P

Figure 7.6 Bank loan and party entity classes.

Bank Loan

Lent to

Guaran-
teed by

Party

Bor
ro

wer

Guarantor

1

1

N

N

Simsion-Witt_07 10/8/04 9:19 PM Page 218

dealing with relationships between generic parties, but of only occasional
value elsewhere.

7.3.5 The Weak Entity Concept

Chen introduced the concept of a weak entity (class), an entity class that
relies on another for its identification. For example, Invoice Line would
be a weak entity class if we decided to use the primary key of Invoice in
constructing its primary key. An entity class with a stand-alone key (i.e.,
a nonweak entity) is called a regular entity. The primary key of a weak
entity class is sometimes called a weak key. These are useful terms
to have in our vocabulary for describing models and common structures
(for example, the split foreign key situation covered in Section 11.6.6).

Chen introduced special diagramming symbols to distinguish weak
entities (Figure 7.7), but we find the nontransferability concept more useful
at the conceptual modeling stage, since we prefer to defer definition of
primary keys to the logical design stage. Of course, if you stick strictly to the
practice of always enforcing nontransferability by using appropriately struc-
tured keys (see Section 6.4.1), then nontransferability and weakness will be
one and the same.

7.3 The Chen E-R Approach ■ 219

Figure 7.7 Chen’s weak entity convention. Account has a stand-alone key; Account Entry does not.

Account Customer

Account

Posted
to

Own

1 1

n

Account
Entry

n

Weak Entity Regular Entity

Simsion-Witt_07 10/8/04 9:19 PM Page 219

7.3.6 Chen Conventions in Practice

The Chen approach offers some clear and useful advantages over the
simple boxes and lines convention. Yet most practitioners do not use it, for
three practical reasons. First, it simply puts too many objects on the page.
With our boxes and lines convention, we tend to look at the boxes first,
then the lines, allowing us to come to grips with the model in two logical
stages. In our experience, diamonds make this much harder, and practical
Chen models can be quite overwhelming. Some academics even extend the
convention to include attributes, shown as circles connected to the entity
classes and relationshipsexcellent for illustrating simple examples, but
quite unwieldy for practical problems.

Second, many of the people who contribute to and verify the model will
also need to see the final database design. End users may access it through
query languages, and analysts will need to specify processes against it. If the
final database design has the same general shape as the verified model,
these people do not have the problem of coming to grips with two different
views of their data.

Third, most documentation tools do not support the diamond convention.
A few provide a special symbol for intersection entity classes, but still
require one-to-many relationships to be documented using lines.

None of these problems need bother researchers, who typically work
with fairly simple examples. And we would take issue with the second
reason, the extreme version of which is to lose the distinction between
conceptual modeling and logical database design. However, the reality is
that the chief benefits of knowing the Chen conventions are likely to be the
ability to read research papers and some useful tools for thinking.

7.4 Using UML Object Class Diagrams

UML has become increasingly popular in the last few years. UML is with-
out doubt a very useful object-oriented application component design and
development environment, and the growing object-oriented developer
community has taken to it with justifiable enthusiasm.

You should have little trouble finding guides to UML and its use; how-
ever, the overwhelming majority of these are written by enthusiasticeven
evangelicaladvocates. Here we focus on some of the issues and limita-
tions that the data modeler will also need to take into account in making
the best use of UML, or in deciding whether to use it.

It is certainly possible to represent entity classes and relationships using
UML class models, and indeed at least one UML CASE tool can use these
to generate physical data models representing tables and columns in a
manner indistinguishable from an E-R CASE tool. However, this overlooks

220 ■ Chapter 7 Extensions and Alternatives

Simsion-Witt_07 10/8/04 9:19 PM Page 220

a significant issue: UML class models are very much focused on the physical
system to be built rather than on the business requirements that that system
will support. For example, when drawing a class model, the dialogues with
which you are presented to define association (relationship) characteristics
include such system function concepts as navigability (or visibility) and
privacy across the link in each direction.

As an example of this focus, we have observed that many UML class
models produced by object modelers contain implementation classes as
well as, or instead of, genuine business object classes. In much the same
vein, UML use cases often focus on system dialogues apparently unsup-
ported by any analysis of business functions and processes.

You may wish to use (or be required to use) a UML Object Class
Diagram to represent data requirements. If you are using object classes, the
UML symbols that we introduced in Chapter 3 (Figure 3.10) are appropri-
ate as a representation of your entity classes and relationships (since each
of your entity classes is treated as an object class).

7.4.1 A Conceptual Data Model in UML

Figure 7.8 shows a simple UML class model diagram. In this type of diagram
each box represents an object class, and we can therefore represent each
entity class using a box.

Each line between two boxes represents an association, of which there
are many varieties, distinguishable by the symbols at the ends of the line; a
line with only open arrowhead symbols on the line itself (as in Figure 7.8)
or with no arrow heads represents a relationship. Cardinality (multiplicity in
UML terminology) and optionality of a relationship is represented by one of
the following legends placed somewhere near each end of the line:

■ 0..1 optional “1” end
■ 1…1 or 1 mandatory “1” end

7.4 Using UML Object Class Diagrams ■ 221

Figure 7.8 A simple UML class model.

Order Order Line
1 *

Product

*

1

Simsion-Witt_07 10/8/04 9:19 PM Page 221

■ 0…* or * optional “many” end
■ 1…* mandatory “many” end.

In fact, numerals other than 0 and 1 can be used (e.g., 2…4 indicates
that each instance of the class at the other end of the relationship line must
be associated with at least 2 but no more than 4 instances of the class at
this end of the relationship line).

Attributes can be listed within a class box. Boxes can be divided into
two or three “compartments” by means of horizontal lines; the lower com-
partment of a two-compartment box or the middle compartment of a three-
compartment box is available for listing the object class’s attributes (the
lowest compartment of a three-compartment box is for the object class’
methods or operations).

7.4.2 Advantages of UML

UML has many notational facilities not available in standard E-R modeling.
In our experience the most useful of these for business information require-
ment modeling are derived attributes and relationships, association classes,
n-ary relationships (those involving more than two entity classes), and
on-diagram constraint documentation. Derived attributes are marked by
preceding the attribute name with a solidus (“/”). Derived relationships can
also be drawn. The name of such a relationship is similarly preceded by a
solidus. Figure 7.9 features a derived attribute and a derived relationship.
Association classes are a means of overcoming the dilemma as to whether
to represent a many-to-many relationship as a relationship or as an entity
class. In UML a class box can be drawn with a dashed line connecting it to

222 ■ Chapter 7 Extensions and Alternatives

Figure 7.9 Derived attributes and relationships.

+Order Qty
Order Line+Order No

+Order Date
+/Total Order Value

Order

1 *

Product

* 1
+Customer No
+Customer Name

Customer *1

+Street No
+Street Name
+Postal Code

Address

+City Name
City

+State Code
+State Name

State

*

*

* 1 * 1

+/is in*
1

+Product Code
+Product Name
+Price

Simsion-Witt_07 10/8/04 9:19 PM Page 222

an association line: any class represented in this way is known as an
association class. Any attributes of the relationship can be listed within the
association class box, yet the original many-to-many relationship continues
to be depicted. This is obviously an improvement on the replacement of
a many-to-many relationship by an entity class and two one-to-many
relationships that is required in E-R diagramming if the many-to-many rela-
tionship has attributes. Association classes are not limited to many-to-many
relationships. Figure 7.10 features an association class. Relationships can
involve more than two entity classes in UML. An association class can also
be used to document the attributes of such a relationship, as illustrated in
Figure 7.11, which also shows that the Chen notation for a relationship has
been adapted for this purpose. Constraints (business rules) can be docu-
mented on a UML class diagram using statements (in natural language or a
formal constraint language) enclosed in braces ({ and }).

7.4 Using UML Object Class Diagrams ■ 223

Figure 7.10 An association class.

Student Course

+Enrollment Date

Enrollment

* *

Figure 7.11 An n-ary relationship.

Service Organization

Area

Simsion-Witt_07 10/8/04 9:19 PM Page 223

7.4.1.3 Use Cases and Class Models

If you are a data modeler working in a UML environment you may be
expected to infer the necessary object classes by reading the Use Cases, as
this is a claim often made for UML. Since a Use Case can and does contain
anything its author wishes to include, the usefulness of a set of use cases
for inferring object classes is not guaranteed; indeed, Alex Sharp has coined
the term “useless cases”6 to describe Use Cases from which nothing useful
about object classes can be inferred.

Even if the Use Cases are useful for this purpose, the absence from UML
of a “big picture” in the form of a function hierarchy correlated to entity
classes via a “CRUD matrix” means that the question, “Have we yet identified
all the Use Cases?” is not able to be answered easily and is sometimes not
even asked.

Let us assume however that you have managed to convince the business
stakeholders to submit to a second round of interviews and workshops to
help you establish their information requirements and you are now devel-
oping UML class models. There are some features of the notation that have
the potential to cause trouble.

7.4.1.4 Objects and Entity Classes

One of the most fundamental issues is how the concept of an object class
relates to concepts in the E-R model. Many practitioners and CASE tool
vendors state or imply that an object class is just an entity class. There are,
however, other approaches that appear to define an object class as a cluster
of related entity classes and processes that act on them, and still others that
consider an object class to be a set of attributes that support a business
process.

A significant contributor to this issue is the fact that the Object-Oriented
Model is less prescriptive than the Relational Model and object modelers
are relatively free to define the concept of an object class to suit their own
needs or approaches. That flexibility can be used to advantage, however;
an object class can include any set of things with similar behavior, be they
entity classes, attributes, or relationships. Date and Darwen7, for example,
pursue this argument in interesting directions in their approach to recon-
ciling the O-O and Relational Models. In Chapter 9 we introduce the concept
of an Object Class Hierarchy, which can include entity classes, attributes, and

224 ■ Chapter 7 Extensions and Alternatives

6Sharp, A: Developing Useful Use Cases—How to Avoid the “Useless Case” Phenomenon,
DAMA/MetaData Conference, San Antonio, April 2002.
7Date, C., and Darwen, H: Foundation for Future Database Systems: The Third Manifesto, 2nd
Edition, Addison-Wesley, 2000.

Simsion-Witt_07 10/8/04 9:19 PM Page 224

relationships as a powerful means of capturing business data requirements
in the earlier stages of modeling.

7.4.1.5 Aggregations and Compositions

The original UML specification8 made a distinction between aggregation
and composition but many UML modelers do not make such a distinction,
perhaps because these terms have been used interchangeably so often.
So what is the difference?

In an Aggregation each part instance may belong to more than one
aggregate instance, and a part instance can have a separate existence. For
example, an employee who is part of a team may be part of other teams
and will continue to exist after any team to which he/she belongs is
deleted.

In a Composition, by contrast, each part instance may belong to only
one composite instance, and a part instance cannot have a separate exis-
tence, which means that a part instance can only be created as part of a
composite instance and deletion of a composite instance deletes all of its
associated part instances. For example, an order line that is part of an order
may only be part of that order and is deleted when the order is deleted.

7.4.1.6 Qualified Associations

A Qualified Association is an association with identifying attributes.
Unfortunately the designers of UML have chosen to use the same cardinality
adornment symbols as for an unqualified association, but with a different
meaning, as can be seen in Figure 7.13, in which a piece is rightly constrained

7.4 Using UML Object Class Diagrams ■ 225

8Rumbaugh, Jacobson, and Booch (1998): The Unified Modeling Language Reference Manual,
Addison Wesley.

Figure 7.12 An aggregation and a composition.

EmployeeTeam

1

+Member

*

Order LineOrder

1 *

Simsion-Witt_07 10/8/04 9:19 PM Page 225

to occupy only one square (at a time) and a square to hold only one piece
(at a time) but a chessboard apparently has only one square. What these
symbols are meant to convey is that a chessboard has only one square per
combination of rank and file. This change of meaning of a symbol depend-
ing on context can only hinder understanding of the model by business
stakeholders, so we recommend you do not use qualified associations.

7.4.1.7 Generalization and Inheritance

We saw in Section 4.9 that UML’s representation of inheritance structures
(superclasses and subclasses) can be ambiguous unless the modeler adopts
a disciplined approach to representing them. To recap, the subtypes of a
supertype do not have to be nonoverlapping or exhaustive in UML. There
are symbols to distinguish these cases, but no compulsion to use them.

7.4.1.8 Diagram Understandability

UML exhibits two major weaknesses in terms of the understandability of
diagrams, not only by business reviewers but by analysts and developers
(although one of these is shared by some variants of E-R modeling).

One of these is the UML notation for relationship cardinality. The use of
numerals and asterisks rather than graphic devices to indicate relationship
cardinality is not only less intuitive (in that it engages the other side of the
brain from the one that is dealing with the implications of a line between
two boxes) but also has the potential to lead to confusing diagrams.9

226 ■ Chapter 7 Extensions and Alternatives

Figure 7.13 Qualified and unqualified associations.

Square

Chessboard

1

*

rank: Rank
file: File

1

Piece
+occupies

1 1

9Currently at least one CASE tool may jumble up the cardinality notations of multiple
relationship lines to or from the same box, may leave the cardinality notation behind if you
move a relationship line, and may even allow one or more cardinality notations to disappear
behind a box if you move a box or line.

Simsion-Witt_07 10/8/04 9:19 PM Page 226

UML’s representation of inheritance structures (subtype boxes outside
rather than inside supertype boxes) can (like some E-R variants) make it
difficult to establish what relationships an entity class is involved in,
particularly if the inheritance hierarchy is deep (subtypes themselves have
subtypes and so on). In that situation the inheritance of a relationship by
a subtype can only be inferred by tracing the generalization lines back
through the hierarchy of supertypes.

7.5 Object Role Modeling

Object-Role Modeling (ORM) has a long history. Its ancestors include
Binary Modeling and NIAM,10 and (more so than most alternative languages)
it has been used quite widely in practice and generated a substantial body
of research literature.

Given the semantic richness of this notation, it perhaps deserves to be
more popular than it is. Now that more CASE tools (in particular Microsoft
Visio™) support ORM diagramming and the generation of business sentences
and a relational logical data model from an ORM model, we may see more
use made of ORM.

Figure 7.14 depicts an ORM model. In ORM ellipses represent object
classes, which are either entity classes (sets of entity instances) or domains
(sets of attribute values). Each multicompartment box represents a rela-
tionship between two or more object classes and enables the attributes of
an entity class and the relationships in which it participates to be modeled
in the same way. This confers a particular advantage in establishing which
attributes and relationships of an entity class are mandatory and which are
optional (by contrast, E-R modeling uses different mandatory/optional nota-
tions for attributes and relationships). ORM also provides a rich constraint
language, an example of which is discussed in Section 14.6.2.

Perhaps the major disadvantage of ORM as a means of capturing busi-
ness information requirements is that many more shapes are drawn on the
page when compared to the E-R or UML representation of the same model.
This may make it difficult for business stakeholders to come to grips with,
at least initially. It also needs to be said that ORM’s richness means that it
takes longer to learn; we would be the last to suggest that data modelers
should not invest time in learning their profession, but simpler languages
have consistently proved more attractive.

7.5 Object Role Modeling ■ 227

10Variously standing for Natural Language Information Analysis Method, Nijssen’s Information
Analysis Method, and An Information Analysis Method.

Simsion-Witt_07 10/8/04 9:19 PM Page 227

7.6 Summary

There are a number of alternatives to the simple E-R modeling conventions
for conceptual modeling. Relatively few, however, have a significant follow-
ing in the practitioner community.

The Chen conventions provide for a more detailed and consistent
representation of relationships but are not widely used in practice.

UML has a substantial following and offers a wide variety of constructs
for representing concepts and constraintswhich require skill to employ
correctly and may be difficult for business stakeholders to grasp.

ORM is a powerful language that has been taken up only sporadically
in industry. The lack of a distinction between entity classes and attributes
is a key conceptual feature but can lead to diagrams becoming unacceptably
complex.

The professional modeler, even if restricted to using a single language,
will gain from an understanding of alternative conventions.

228 ■ Chapter 7 Extensions and Alternatives

Figure 7.14 An ORM model.

Gender

Year

Sport

has

plays

was born in

many-to-many

one-to-many

Person

Period

Heart Rate

has reaction time

has resting heart rate

represents constraint that
reaction time is recorded only
if resting heart rate is

means mandatory

Simsion-Witt_07 10/8/04 9:19 PM Page 228

Part II
Putting It Together

Simsion-Witt_08 10/8/04 7:46 PM Page 229

This page intentionally left blank

Chapter 8
Organizing the Data
Modeling Task

“The fact was I had the vision . . . I think everyone has . . . what we lack is
the method.”

– Jack Kerouac

“Art and science have their meeting point in method.”
– Edward Bulwer-Lytton

8.1 Data Modeling in the Real World

In the preceding chapters, we have focused largely on learning the lan-
guage of data modeling without giving much attention to the practicalities
of modeling in a real business environment.

We are in a position not unlike that of the budding architect who has
learned the drawing conventions and a few structural principles. The real
challenges of understanding a set of requirements and designing a sound
data model to meet them are still ahead of us.

As data modelers, we will usually be working in the larger context of an
information systems development or enhancement project, or perhaps a
program of change that may require the development of several databases.
As such, we will need to work within an overall project plan, which will
reflect a particular methodology, or at least someone’s idea of how to
organize a project.

Our first challenge, then, is to ensure that the project plan allows for the
development and proper use of high quality data models.

The second challenge is to actually develop these modelsor, more
specifically, to develop a series of deliverables that will culminate in a com-
plete physical data model and, along the way, provide sufficient information
for other participants in the project to carry out their work.

This second part of the book is organized according to the framework
for data model development that we introduced in Chapter 1. We commence
by gaining an understanding of business requirements then by developing
(in turn) conceptual, logical, and physical data models. Finally, we need to
maintain the model or models as business requirements change, either

231

Simsion-Witt_08 10/8/04 7:46 PM Page 231

before or after the formal completion of the project. Figure 8.1 provides a
more detailed picture of these stages. You should note that data model
development does not proceed in a strictly linear fashion; from time to
time, discoveries we make about requirements or alternative designs will
necessitate revisiting an earlier stage. If the project methodology is itself
iterative, it will support this (and perhaps encourage too much data model
volatility!); conversely if you are following a waterfall method (based on
a single pass through each activity), you will need to ensure that mecha-
nisms are in place to enable some iteration and associated revision of
documentation.

Not all methodologies follow the framework exactly. The most common
variations are the introduction of intermediate deliverables within the con-
ceptual modeling stage (for example, a high-level model to support system
scoping) and the use of an iterative approach in which the modeling
stages are repeated, along with other project tasks, to achieve increasing

232 ■ Chapter 8 Organizing the Data Modeling Task

Figure 8.1 Data model development stages.

Design
Physical

Data Model

Design
Logical

Data Model

Build
Conceptual
Data Model

Develop
Information

Requirements

Data Modeler

Database Designer

Business
Specialist

Review
Information

Requirements

Business
SpecialistReview

Conceptual
Data Model

Review
Logical

Data Model

Review
Physical

Data Model

Data Modeler

Database Designer

Business
Requirements

Information
Requirements

DBMS &
Platform

Specification

Performance
Requirements

Conceptual
Data Model

Logical Data
Model

Physical Data
Model

Simsion-Witt_08 10/8/04 7:46 PM Page 232

refinement or coverage. None of these variations changes the nature of the
tasks, as we describe them, in any substantial way.

It is beyond the scope of this book to explore in detail the role of data
modeling across the range of generic and proprietary methodologies and
their local variants. In this chapter we look at the critical data modeling
issues in project planning and management, with the aim of giving you the
tools to examine critically any proposed approach from a data modeling
perspective. We look in some detail at the often-neglected issue of manag-
ing change to the data model as it develops within and across the various
stages.

8.2 Key Issues in Project Organization

As a data modeler, you may find yourself participating in the development
of a project plan or (perhaps more likely) faced with an existing plan
specifying how you will be involved and what you are expected to deliver.
What should you look for and argue for? Here is a minimum list.

8.2.1 Recognition of Data Modeling

Let us repeat what we said in Chapter 1: No database was ever built with-
out a data model. Unfortunately, many databases have been built from
models that existed only in the minds of database technicians, and it is not
uncommon for projects to be planned without allowing for a data model to
be properly developed and documented by someone qualified to do so.

You are most likely to encounter such a situation in a “short and sharp”
project that does not use a formal methodology, or loosely claims alle-
giance to a “prototyping,” “agile,” or “extreme” approach. Typically, the
response to suggestions that a formal data modeling phase be included is
that it will take too much time; instead, the database will be developed
quickly and modified as necessary.

You should know the arguments by now: good data modeling is the
foundation for good system design, and it is easier to get the foundations
right at the outset than to try to move them later.

If these arguments are not effective, your options are to distance your-
self from the project or to do what you can to make the best of the situa-
tion. If you opt for the latter, we recommend you rebadge yourself as a
“logical database designer” and use the logical database design as the focus
of discussion. The same quality issues and arguments will apply, but you
will lack the discipline of staged development and deliverables.

8.2 Key Issues in Project Organization ■ 233

Simsion-Witt_08 10/8/04 7:46 PM Page 233

8.2.2 Clear Use of the Data Model

It is not sufficient to develop a data model; it is equally important that its
role and value be recognized and that it be used appropriately. We have
seen projects in which substantial resources were devoted to the develop-
ment of a data model, only for it to be virtually ignored in the implemen-
tation of the system. The scenario is typically one in which lip service is
given to data modeling; perhaps it is part of a mandated methodology or
policy, or the development team has been prevailed upon by a central data
management or architectures function without truly understanding or being
convinced of the place of data modeling in the project.

The crucial requirement is that the physical data modelas agreed to
by the data modeleris the ultimate specification for the database. Another
take on this is that any differences between the logical and physical data
models must have the data modeler’s agreement.

Other important uses flow from this requirement. If process modelers
and programmers know that the data model will truly form the specifica-
tion for the database, they will refer to the model in their own work. If not,
they will wait for the arrival of the “real” data structures.

It is not only project managers and database administrators who are
guilty of breaking the link between data modeling and database imple-
mentation. On too many occasions we have seen data modelers deliver
models that are incomplete or unworkable. Often this can be traced to a
lack of understanding of database structures and a limited view of data
modeling as “describing the real world,” without adequate recognition that
the description has to serve as a database specification. Such modelers may
be only too pleased to have someone else take responsibility for the result.

Ernest Hemingway once suggested that screenwriters would do well to
throw their manuscripts across the California state line and “get the hell out
of there.” This may or may not be good advice for screenwriters, but data
modelers have a responsibility to see that their models are both imple-
mentable and implemented. As such, the project plan must allow for data
modeler involvement in performance design and tuning of the physical data
model.

8.2.3 Access to Users and Other Business Stakeholders

Good data modeling requires direct access to business stakeholders to
ascertain requirements, verify models, and evaluate trade-offs. This is an
ongoing process that does not stop until the physical data model is finalized.

It is not uncommon for data modelers to be expected to get their
requirements from the process modelers or an individual charged with
representing “the business.” These situations are almost never satisfactory.

234 ■ Chapter 8 Organizing the Data Modeling Task

Simsion-Witt_08 10/8/04 7:46 PM Page 234

Getting information second hand usually means that the right questions
about data are not asked and the right answers not obtained.

8.2.4 Conceptual, Logical, and Physical Models

While some tools and methodologies call for more or fewer stages of
modeling, we recommend (along with most other writers and practitioners)
that you employ a three-stage approach, delivering, in turn, a conceptual,
logical, and physical model.

The separation of the modeling task into stages allows us to do a number
of things:

■ Divide the major design objectives into groups and work on each group
in turn. We can thereby more easily trace the reasons for a design deci-
sion and are less likely to make decisions without clear justification.

■ Defer some details of the design until they are needed, giving us the
maximum time to gather information and explore possibilities.

■ Use representation methods and techniques appropriate to the different
participants in each stage.

■ Establish some reference points to which we can return if the imple-
mentation environment changes. In particular, if performance require-
ments or facilities change, we can return to the logical model as the
starting point for a new physical model, and if the DBMS changes,
we can return to the conceptual model as the starting point for a new
logical model.

In practice, we will often look beyond the stage that we are working on
and come up with ideas of relevance to later stages. This is entirely normal
in design activities: the discipline lies in noting the ideas for later reference,
but not committing to them until the appropriate time. We call this “just in
time design.”

In the conceptual modeling activity, our focus is on designing a set of
data structures that will meet business requirements (the determination of
which forms the earlier “requirements” stage). The principal participants are
business people, and we want them to be able to discuss and review
proposed data concepts and structures without becoming embroiled in the
technicalities of DBMS-specific constructs or performance issues. Plain
language assertions, supported by diagrams, are our primary tools for
presenting and discussing the conceptual model.

In the transition from conceptual to logical model, our principal concern
is to properly map the conceptual model to the logical data structures sup-
ported by a particular DBMS. If the DBMS is relational, the logical model

8.2 Key Issues in Project Organization ■ 235

Simsion-Witt_08 10/8/04 7:46 PM Page 235

will be documented in terms of tables and columns; keys will need to be
introduced; and many-to-many relationships will need to be resolved.
If subtypes are not supported we will need to finalize the choice of
implementation option.

In the transition from logical to physical model, our principal concern is
performance. We may need to work creatively with the database designer
to propose and evaluate changes to the logical model to be incorporated
in the physical model, if these are needed to achieve adequate perform-
ance, and, similarly, we may need to work with the business stakeholders
and process modelers or programmers to assess the impact of such changes
on them. The physical model describes the actual implemented database
including the tables (with names and definitions), their columns (with
names, definitions and datatypes), primary and foreign keys, indexes, stor-
age structures, and so on. This can be the DBMS catalogue provided that it
has a human-readable view, although there are advantages in supporting it
with a diagram showing the foreign key linkages between tables.

It is interesting to compare this widely-used partitioning of the data mod-
eling task with the data component (“column 1”) of the Zachman Enterprise
Architecture Framework,1 which specifies four levels of data model, namely
the Planner’s, Owner’s, Designer’s, and Builder’s views (there is also a Sub-
contractor’s view but it is not clear that that requires an additional model).
While our conceptual model clearly corresponds to the Owner’s view and
our physical model corresponds to the Builder’s view it is not clear in what
way the Designer’s view should differ from each of those. The Planner’s
view would appear to correspond to what we call an enterprise model
(Chapter 17). Hay2 has with some justification modified Zachman’s
Framework to include an Architect’s view, eliminating the Subcontractor’s
view and shifting the Designer’s and Builder’s views each down a row.

8.2.5 Cross-Checking with the Process Model

The data and process models are interdependent. At regular intervals
during the life cycle, we need to be able to verify the developing data
model against the process model to ensure that:

1. We have included the data needed to support each process.

2. The process model is using the same data concepts and terminology as
those that we have defined.

236 ■ Chapter 8 Organizing the Data Modeling Task

1This has been significantly extended since Zachman’s initial paper on the Framework. The
best current resource for information about the Framework is at www.zifa.com.
2Hay, D.C: Requirements Analysis—From Business Views to Architecture, Prentice-Hall,
New Jersey, 2003.

Simsion-Witt_08 10/8/04 7:46 PM Page 236

Several formal techniques are available for reconciling the two models.
Probably the most widely used is the unfortunately-named “CRUD” matrix
which maps processes against entity classes, showing whether they create,
read, update, or delete (hence c, r, u, d) records of entity instances, as
illustrated in Figure 8.2.

While there should be formal reviews and techniques to compare data
and process models, there is also great value in having someone thor-
oughly familiar with the data model participating in day-to-day process and
program design. A member of the data modeling team should be the first
person contacted for clarification and explanation of data definitions and
structures, and should participate in reviews and walkthroughs.

8.2.6 Appropriate Tools

If there is a single tool universally associated with data modeling, it is the
whiteboard. It reflects a longstanding tradition of multiple stakeholders
contributing to and reviewing models, a dynamic that can be difficult to
reproduce with computer-based documentation tools. It also supports rapid
turnover of candidate models, particularly in the early stages; an idea can
be sketched, evaluated, modified, and perhaps discarded quickly and
easily. Whiteboards place no constraints on modeling practices or notation,
allowing flexibility to explore ideas without worrying about getting the
grammar right. Of course, modelers also need to verify and cross-check
models, produce complete and easily accessed documentation, and generate

8.2 Key Issues in Project Organization ■ 237

Figure 8.2 A portion of a CRUD matrix.

E
nt

ity
Process C

us
to

m
er

O
rd

er

O
rd

er
 L

in
e

In
vo

ic
e

In
vo

ic
e

Li
ne

P
ro

du
ct

P
ro

du
ct

 P
ac

k

D
ep

ot

P
ro

du
ct

 S
to

ck

Register new customer C

Take order R C C R R

Change order R U U R R

Make delivery R R R C C R R R U

Make new stock R R R U

Record address change U

Update prices R U

Simsion-Witt_08 10/8/04 7:46 PM Page 237

database schemas. These tasks can be better supported by automated tools.
But in preparing for a data modeling project, or setting up an ongoing data
modeling function, whiteboards, preferably with copying facilities, should
be at the top of this list.

If a project is going to use CASE (computer-aided software engineering)
tools, you will usually find yourself tightly tied to the tool-designer’s view
of how data modeling should be done. It is generally much more difficult
to tailor an automated methodology to meet your personal preferences than
it is to make changes to a written methodology.

Usually the tool has been chosen for a variety of reasons, which may or
may not include how well it supports data modeling. The quality of data
modeling support differs from tool to tool: the most common limitations are:

■ Use of a particular data modeling language. The most widely used tools
support UML or an E-R variant, but some of the useful extensions (e.g.,
nontransferability or even subtyping) may not be available.

■ A mechanical translation from conceptual to logical model. In seeking
to make the translation completely automatic, the tool designer is obliged
to push certain design decisions back to the conceptual modeling stage.
Some tools do not provide for a conceptual model at all; conceptual and
logical modeling are combined into a single phase.

■ Poor support for:

◆ Recording and manipulating incomplete models (“sketch plans”). For
this reason, many modelers defer recording the conceptual model in
the CASE tool until it is substantially complete, relying on paper and
whiteboards up to that point.

◆ Common conceptual model changes such as global renames and
moving attributes between entity classes (from supertype to a sub-
type or vice versa, or from an entity class to its associated snapshot
or vice versa).

◆ Synchronizing the logical schema and the database. A good tool will
not only support rebuilding of the database but will enable data to
be saved and reloaded when making design changes to a populated
database.

8.3 Roles and Responsibilities

There is some debate about how many and what sort of people should
participate in the development of a data model. The extremes are the
specialist data modeler, working largely alone and gathering information
from documentation and one-on-one interviews, and the joint applications
development (JAD) style of session, which brings business people, data
modelers, and other systems staff together in facilitated workshops.

238 ■ Chapter 8 Organizing the Data Modeling Task

Simsion-Witt_08 10/8/04 7:46 PM Page 238

We need to keep in mind two key objectives: (a) we want to produce
the best possible models at each stage, and (b) we need to have them
accepted by all stakeholders. Both objectives suggest the involvement of a
fairly large group of people, first to maximize the “brainstorming” power
and second to build commitment to the result. On the other hand, involve-
ment need not mean constant involvement. Good ideas come not only
from brainstorming sessions but also from reflection by individuals outside
the sessions. Time outside group sessions is also required to ensure that
models are properly checked for technical soundness (normalization, con-
formity to naming standards, and so forth). And some tasks are best delegated
to one or two people, with the group being responsible for checking the
result. These tasks include diagram production, detailed entity class and
attribute definition, and follow-up of business issues that are beyond the
expertise of the group.

Some decisions need to be made jointly with other specialists. For
example, the choice of how to implement the various business rules (as
program logic, data content, database design or outside the computerized
systemcovered in more detail in Chapter 14) needs to involve the process
modeler as well as the data modeler. Performance tuning needs to involve
the database administrator. Another key player may be the data adminis-
trator or architect, who will be interested in maintaining consistency in data
definition across systems. However we organize the modeling task, we
must ensure the involvement of these professionals.

Our own preference is to nominate a small core team, usually consist-
ing of one or two specialist data modelers and a subject matter expert
(generally from the business side). Another, larger team is made up of other
stakeholders, including further owner/user representatives, process modelers,
a representative of the physical database design team, and perhaps a more
experienced data modeler. Other participants may include subject area
specialists (who may not actually be users of the system), the project
manager(s), and the data administrator. The larger team meets regularly to
discuss the model. In the initial stages, their focus is on generating ideas
and exploring major alternatives. Later, the emphasis shifts to review and
verification. The smaller team is responsible for managing the process,
developing ideas into workable candidate models, ensuring that the models
are technically sound, preparing material for review, and incorporating
suggestions for change.

Support for the final model by all stakeholders, particularly the process
modelers and physical database designers, is critical. Many good data
models have been the subject of long and acrimonious debate, and some-
times rejection, after being forced upon process modelers and physical
database designers who have not been involved in their development. This
is particularly true of innovative models. Other stakeholders may not have
shared in the flashes of insight that have progressively moved the model
away from familiar concepts, nor may they be aware of the problems or

8.3 Roles and Responsibilities ■ 239

Simsion-Witt_08 10/8/04 7:46 PM Page 239

limitations of those concepts. Taking all stakeholders along with the process
stage by stage is the best way of overcoming this. A good rule is to involve
anyone likely to be in a position to criticize or reject the model and anyone
likely to ask, “Why wasn’t I asked?” If this seems to be excessive, be
assured that the cost of doing so is likely to be far less than that of trying
to force the model on these people later.

8.4 Partitioning Large Projects

Larger applications are often partitioned and designed in stages. There are
essentially two approaches:

1. Design the processes that create entity instances before those that read,
update, and delete them. Achieving this is not quite as simple as it might
appear, as some entity instances cannot be created without referring
to other entity classes. In the data model of Figure 8.3, we will not be
able to create an instance of Contribution without checking Employee
and Fund to ensure that the contribution refers to valid instances of
these. We would therefore address these “reference” entity classes and
associated processes first.

Generally, this approach leads to us starting at the top of the hierarchy
and working down. In Figure 8.3 we would commence detailed modeling
around Fund Type and Fund, Employer, or Account, at the top of the
hierarchy, moving to Person only when Fund and Fund Type were com-
pleted, and Account Entry only when all the other entity classes were fully
specified.

The attraction of the approach is that it progressively builds on what
is already in place and (hopefully) proven. If we follow the same
sequence for building the system (as we will have to do if we are pro-
totyping), we should avoid the problems of developing transactions that
cannot be tested because the data they read cannot be created.

2. Design core processes first and put in place the necessary data structures
to support them. In Figure 8.3 we might commence with the “Record
Contribution” process, which could require virtually all of the entity
classes in the model. This puts pressure on the data modeler to deliver
quite a complete design early (and we need to plan accordingly), but it
also provides considerable input on the workability of the high level
model. If we follow the same sequence for development, we may have
to use special programs (e.g., database utilities) to populate the refer-
ence tables for testing. While this approach is less elegant, it has the
advantage of addressing the more critical issues first, leaving the more
straightforward handling of reference data until later. As a result, rework
may be reduced.

240 ■ Chapter 8 Organizing the Data Modeling Task

Simsion-Witt_08 10/8/04 7:46 PM Page 240

There are as many variations on these broad options as there are
systems development methodologies. Some rigorously enforce a sequence
derived from “Create, Read, Update, Delete” dependencies, while others
allow more flexibility to sequence development to meet business priorities.
As data modelers, our preference is for the second approach, which tends
to raise critical data modeling issues early in the process before it is too late
or expensive to address them properly. Whichever approach you use, the

8.4 Partitioning Large Projects ■ 241

Figure 8.3 Pension fund model.

Fund
Type

Fund

Person

Contribution

Account
Entry

Employer

Account

be classified
by

classify

make

be made
by

be the
target of

be posted
to

be a
 member of

have as
member

be made on
behalf of

have made on
their behalf

be generated
by

generate

Simsion-Witt_08 10/8/04 7:46 PM Page 241

important thing is to be conscious of the quality and reliability of the data
model at each stage, and to ensure that the process modeler understands
the probability of change as later requirements are identified.

8.5 Maintaining the Model

However well your data model meets the business requirements, changes
during its development are inevitable. Quite apart from actual changes in
scope or requirements that may arise during the project, your understanding
of requirements will grow as you continue to work with stakeholders.
At the same time, the stakeholders’ increasing understanding of the impli-
cations of the system proposed may prompt them to suggest changes to the
data structures originally discussed. Most modelers (and indeed most design-
ers in any field) have had the experience of finding a better way of handling
a situation even after they have ostensibly completed their work in an area.

Another reason why significant changes to a model are likely to occur
during its development is because it makes good sense to publish an early
draft to ensure that scope and requirements are “in the ballpark” rather than
leaving publication until you are confident that all details have been captured.

Here we show the rules for managing some common changes and then
look at some more general principles. We cover them in this chapter
because they are relevant across all phases of a modeling project.

8.5.1 Examples of Complex Changes

Some model changes, such as the addition of an attribute to an entity class
to support a previously unsupported requirement, can be made without
any need to consider the impact of the change on the rest of the model.
Two common types of change that do require such consideration are those
involving generalization and those involving entity class or attribute renam-
ing. These are discussed in the following sections.

8.5.1.1 Changes Resulting from Generalization

One of the most common forms of generalization results from the recogni-
tion of similarities between two entity classes and the subsequent creation
of a supertype of which those entity classes become subtypes. This requires
a number of individual changes to the data model:

■ Add the supertype.
■ Mark each of the original entity classes as a subtype of that supertype.

242 ■ Chapter 8 Organizing the Data Modeling Task

Simsion-Witt_08 10/8/04 7:46 PM Page 242

■ Move each of the common attributes (renaming, if necessary, to a
more general name) from one of the original entity classes to the
supertype.

■ Move each of the common relationships (renaming, if necessary, to a
more general name) from one of the original entity classes to the super-
type.

■ Remove the common attributes from the other original entity class(es).
■ Remove the common relationships from the other original entity class(es).

Another form of generalization is the merging of two or more entity
classes, when each has a set of attributes and relationships that corres-
ponds to those of the other entity class(es). The changes required in this
situation are:

■ Add the generalized entity class.
■ Move all the attributes (renaming each, if necessary, to a more general

name) from one of the original entity classes to the generalized entity
class.

■ Move all the relationships (renaming each, if necessary, to a more gen-
eral name) from one of the original entity classes to the generalized
entity class.

■ Remove the original entity classes.
■ Remove the common relationships from the other original entity class(es).
■ Add a category attribute distinguishing the original entity classes to

support any business rules referring to those classes.

Figure 8.4 shows an example of a conceptual model to support various
types of insurance claims (see next page). This model could benefit from
some generalization in both of the ways described above.

For example, Compensation Claim Item, Service Claim Item, and
Equipment Claim Item can be generalized by creating the supertype
Claim Item. This requires the following individual changes:

■ Add the Claim Item entity class.
■ Mark Compensation Claim Item, Service Claim Item, and Equipment

Claim Item as subtypes of Claim Item.
■ Add the attributes Claim Date, Claimed Amount, Claim Item Status, and Details

to Claim Item.
■ Remove those attributes from Compensation Claim Item, Service

Claim Item, and Equipment Claim Item.

By way of contrast, since Registered Practitioner and Registered
Equipment Supplier have corresponding attributes they might be general-
ized into the single entity class Registered Service Provider without being

8.5 Maintaining the Model ■ 243

Simsion-Witt_08 10/8/04 7:46 PM Page 243

retained as subtypes thereof. This requires the following individual
changes:

■ Add the Registered Service Provider entity class.
■ Add the attributes Service Provider Registration No, Service Provider Name,

Registered Address Street No, Registered Address Street Name, Registered
Address Locality Name, Registered Address Postal Code, and Contact Phone No
to Registered Service Provider.

244 ■ Chapter 8 Organizing the Data Modeling Task

Figure 8.4 A model requiring generalization.

Workplace
Incident

Compensation
Claim Item

Registered
Equipment

Supplier

Registered
Practitioner

Service Claim
Item

Equipment
Claim Item

REGISTERED PRACTITIONER (Practitioner Registration No, Practitioner Name,
Registered Address Street No, Registered Address Street Name, Registered Address
Locality Name, Registered Address Postal Code, Contact Phone No)
REGISTERED EQUIPMENT SUPPLIER (Supplier Registration No, Supplier Name,
Registered Address Street No, Registered Address Street Name, Registered Address
Locality Name, Registered Address Postal Code, Contact Phone No)
WORKPLACE INCIDENT (Incident Date, Incident TimeOfDay, Incident Nature, Injury
Nature, Injured Body Part, Injury Severity, Employee Time Off Start Date, Claim No,
Claim Status, Employee Time Off End Date, Incapacity Duration, Details)
COMPENSATION CLAIM ITEM (Claim Date, Compensation Type, Period Start Date,
Period End Date, Claimed Amount, Claim Item Status, Details)
SERVICE CLAIM ITEM (Claim Date, Service Type, Service Start Date, Service End
Date, Claimed Amount, Claim Item Status, Details)
EQUIPMENT CLAIM ITEM (Claim Date, Equipment Type, Acquisition Type, Equipment
Use Start Date, Equipment Use End Date, Claimed Amount, Claim Item Status, Details)

Simsion-Witt_08 10/8/04 7:46 PM Page 244

■ Move the relationship between Registered Practitioner and Service Claim
Item from Registered Practitioner to Registered Service Provider.

■ Move the relationship between Registered Equipment Supplier and
Equipment Claim Item from Registered Equipment Supplier to
Registered Service Provider.

■ Record in the “off-model” business rules list the rules that:
◆ Only Registered Service Providers of type Registered

Practitioner can be associated with a Service Claim Item.

◆ Only Registered Service Providers of type Registered Equipment
Supplier can be associated with a Equipment Claim Item.

■ Add the attribute Service Provider Type to Registered Service Provider to
support those business rules.

■ Remove the entity classes Registered Practitioner and Registered
Equipment Supplier.

The results of both these generalization activities are illustrated in
Figure 8.5.

8.5 Maintaining the Model ■ 245

Figure 8.5 The same model after generalization.

Workplace
Incident

Registered
Service
Provider

Claim Item

Service
Claim Item

Compensation
Claim Item

Equipment
Claim Item

REGISTERED SERVICE PROVIDER (Service Provider Type, Service Provider
Registration No, Service Provider Name, Registered Address Street No, Registered
Address Street Name, Registered Address Locality Name, Registered Address Postal
Code, Contact Phone No)
WORKPLACE INCIDENT (Incident Date, Incident TimeOfDay, Incident Nature, Injury
Nature, Injured Body Part, Injury Severity, Employee Time Off Start Date, Claim No,
Claim Status, Employee Time Off End Date, Incapacity Duration, Details)
CLAIM ITEM (Claim Date, Claimed Amount, Claim Item Status, Details)
COMPENSATION CLAIM ITEM (Compensation Type, Period Start Date, Period End
Date)
SERVICE CLAIM ITEM (Service Type, Service Start Date, Service End Date)
EQUIPMENT CLAIM ITEM (Equipment Type, Acquisition Type, Equipment Use Start
Date, Equipment Use End Date)

Simsion-Witt_08 10/8/04 7:46 PM Page 245

8.5.1.2 Changes to Generalized Structures

Among the changes to an already-generalized structure that may trigger
consequential changes are adding an attribute, relationship, or new subtype
to a supertype.

If you add an attribute or relationship to a supertype, you must check
the attributes and relationships of each subtype of that supertype to deter-
mine whether any are now superfluous. Note that the subtype attributes
and relationships may not have the same name as those of the supertype.
For example if Period Start Date and Period End Date are added to Claim Item
in Figure 8.3, then:

■ Period Start Date and Period End Date should be removed from
Compensation Claim Item.

■ Service Start Date and Service End Date should be removed from Service
Claim Item.

■ Equipment Use Start Date and Equipment Use End Date should be removed
from Equipment Claim Item.

If you add a new subtype to a supertype, you must check each attribute
and relationship of the supertype to determine whether any are not appro-
priate for the new subtype. If any are not appropriate, there are three
options:

■ Move the attribute or relationship to each existing subtype.
■ Create an intermediate subtype as a supertype of the existing subtypes.
■ Rename the attribute or relationship to something more general (if

possible).

For example, if we need to add the subtype Electric Locomotive Class
to the model in Figure 8.6, we discover that the attribute Engine Model does
not apply to the new subtype. We can either move that attribute to Diesel-
Electric Locomotive Class and Diesel-Hydraulic Locomotive Class or
create an additional Diesel Locomotive Class subtype of Locomotive Class
to hold that attribute and make Diesel-Electric Locomotive Class and
Diesel-Hydraulic Locomotive Class subtypes of Diesel Locomotive Class.

246 ■ Chapter 8 Organizing the Data Modeling Task

Figure 8.6 Adding a new subtype to a supertype.

LOCOMOTIVE CLASS (Wheel Arrangement, Wheel Diameter, Engine Model, Tractive
Effort, Power, Length, Weight, Body Style, Manufacturer, Duty Type, Maximum Speed)
DIESEL-ELECTRIC LOCOMOTIVE CLASS (Generator Model, Traction Motor Model)
DIESEL-HYDRAULIC LOCOMOTIVE CLASS (Transmission Model)

Simsion-Witt_08 10/8/04 7:46 PM Page 246

Since there is nothing resembling an engine in an electric locomotive, we
cannot rename Engine Model to something more general.

8.5.1.3 Entity Class or Attribute Renaming

A major issue to be considered when model reviewers (or indeed the mod-
eler) decide that an entity class or attribute should be renamed is the extent
to which other uses of the same words should be changed to correspond.
For example, when the model of which Figure 8.4 is a fragment was
reviewed, one reviewer stated that the attributes Start Date and End Date used
in a particular entity class representing a business rule (not shown in Figure
8.4) should instead be Effective Date and Expiry Date, while another stated that
all occurrences of the attributes Start Date and End Date throughout the
model should be renamed thus. The real requirement was somewhere
between those conservative and radical viewpoints. This was that Start Date
and End Date should be renamed to Effective Date and Expiry Date in all busi-
ness rule entity classes and in the entity class recording insurance policies
but not in Workplace Incident or in any of the Claim Item entity classes.

It is important when renaming any entity class or attribute to check not
only all entity classes or attributes with names incorporating the same
words but relationship names and descriptions of entity classes and
attributes.

Some renaming will have semantic implications—or at least alert us to
deeper issues. For example, in Figure 8.4 we were advised that Incapacity
Duration was really Incapacity Lost Time Duration, which meant that it was
derivable from Employee Time Off Start Date and Employee Time Off End Date
(given that weekends and public holidays were also recorded).

8.5.2 Managing Change in the Modeling Process

It should be obvious from the foregoing examples and discussion that
many changes to the data model are “long transactions.” Can we keep track
if there are likely to be interruptions? These can occur not only in the guise
of visitors, phone calls, meetings, breaks, and so on, but also as a result of
noticing, while making one change, that other changes are required.

For this reason alone, we recommend that you produce a list of
intended changes before actually making them. Doing this yields a number
of advantages. For a start noone who has reviewed an earlier version of the
model will be prepared to review the revised model unless they are fur-
nished with a list of the changes. Secondly, we can sort changes by entity
class and check for any conflicting changes. For example, we may have
been asked by one reviewer to remove an attribute but by another to

8.5 Maintaining the Model ■ 247

Simsion-Witt_08 10/8/04 7:46 PM Page 247

rename it or change one of its properties. We can obtain a “second opin-
ion” of our intended changes before we make them. And if we decide that
a change is inappropriate or ill-formed, we can reverse it more easily if we
have a statement of what changes we have made. Finally, we can check off
the changes on the list as we make them and avoid forgetting to make
intended changes due to interruptions.

Each change decision should be listed in business terms, followed by
the individual types of model change that are required, for example:

Addition of entity classes or relationships
Changes to the attributes of an entity class
Moving attributes/relationships
Changing relationship cardinality
Changing identification data items
Renaming

8.6 Packaging It Up

In the remainder of this part of the book, we discuss the stages in the data
modeling process and the deliverables that we believe need to be pro-
duced. At the end of a data modeling project, the final deliverables will be
the sum of the outputs of the individual stages—a substantial body of doc-
umentation that will include not only what is required directly by the proj-
ect, but also interim outputs produced along the way. The latter provide at
least a partial audit trail of design decisions and a basis for making changes
in a controlled manner in the future.

The list below summarizes the central deliverables; whatever formal or
informal methodology you are using, it should deliver these as a minimum.

1. A broad summary of requirements covering scope, objectives, and
future business directions. These should provide the justification for the
overall approach taken—for example, highly generic or customer-
centered.

2. Inputs to the model: interview summaries, reverse-engineered models,
process models, and so forth. Normally these are appended to the main
documentation and referred to as necessary in definitions.

3. A conceptual data model in the form of a fully annotated entity-
relationship diagram, UML class diagram, or alternative.

4. Entity class definitions, attribute lists, and attribute definitions for every
entity class in the model.

5. Documentation of constraints and business rules other than those
implicit in items 3 and 4 (see Section 14.4).

6. A logical data model suitable for direct implementation as a logical
database design. If our target DBMS is a conventional relational

248 ■ Chapter 8 Organizing the Data Modeling Task

Simsion-Witt_08 10/8/04 7:46 PM Page 248

product, the model will not include subtypes and should be fully
normalized.

7.Design notes covering decisions made in translating the conceptual
model to a logical model—in particular, implementation of subtypes
and choice of primary keys.

8.Cross-reference to the process model, proving that all processes are
supported.

9.As necessary, higher level and local versions of the model to facilitate
presentation.

10.A physical data model with documentation explaining all changes from
the logical data model.

This is quite a lot of documentation. Items 1 to 9 are certainly more than
a database designer needs to produce a physical database design. But data-
base designers are not the only audience for data models.

Some of the additional documentation is to allow the business stake-
holders to verify that the database will meet their requirements. Some is
aimed at process modelers and program designers, to ensure that they will
understand the model and use it as intended. This role of data model doc-
umentation is often overlooked, but it is absolutely critical; many a good
model has been undermined because it was incorrectly interpreted by pro-
grammers. The documentation of source material provides some traceabil-
ity of design decisions and allows proposals to change or compromise the
model to be assessed in terms of the business requirements that they affect.

8.7 Summary

Data modeling is generally performed in the context of an information sys-
tems project with an associated methodology and toolset. The data mod-
eler will need to work within these constraints, but needs to ensure that the
appropriate inputs and resources are available to support the development
of a sound data model, and that the model is used correctly as a basis for data-
base design. Regular cross-checking against the process model is essential.

The data modeling task is usually assigned to a small team, with regular
input from and review by a larger group of stakeholders.

Remember that changes to a data model can be complex, so plan,
document, and review changes before making them.

8.7 Summary ■ 249

Simsion-Witt_08 10/8/04 7:46 PM Page 249

This page intentionally left blank

Chapter 9
The Business Requirements

“The greater part of all mischief in the world arises from the fact that men do
not sufficiently understand their own aims.”

– Johann Wolfgang von Goethe

“The real voyage of discovery consists not in seeking new landscapes
but in having new eyes.”

– Marcel Proust

9.1 Purpose of the Requirements Phase

There are two extreme views of the requirements phase and its deliverables.
The first is that we do not need a separate requirements phase and asso-

ciated “statement of requirements” at all. Rather, requirements are captured
in the conceptual data modeling phase and represented in the conceptual
data model. This approach is prescribed by many data modeling texts and
methodologies and, accordingly, widely used in practice. Sometimes, it
reflects a view that the purpose of data modeling is to document data struc-
tures that are “out there,” independent of other business requirements. You
should know by now that we do not subscribe to this view of modeling.

A more persuasive argument for proceeding straight to modeling is that
it is common for designers in other fields to start designing before they
have a complete understanding of requirements. Architects may begin
sketching plans well before they have a complete understanding of all of
the client’s needs. The evolving plan becomes the focus of the dialogue
between client and architect. As the architect cannot refer back to a com-
plete statement of requirements, the client must take a large share of the
responsibility for confirming that the design meets his or her needs.

The strongest arguments for this approach are:

1. Many requirements are well-known to the designer and client (“The
house must be structurally sound; the shower requires both hot and cold
water.”) and it would be impractical to try to document them in full.

2. Some requirements are only relevant to specific design alternatives
(“The shelves in this cupboard should be widely spaced,” only makes
sense in the context of a design that includes the cupboard).

251

Simsion-Witt_09 10/8/04 7:47 PM Page 251

3. Some requirements may emerge only when the client has seen an actual
design (“I like to sleep in complete darkness.” or “I don’t want to hear
the kids practicing piano.”).

The second extreme position is that we should develop a rigorous and
complete statement of business requirements sufficient to enable us to
develop and evaluate data models without needing to refer back to the
client. For the reasons described above, such a comprehensive specifica-
tion is unlikely to be practical, but there are good reasons for having at least
some written statement of requirements. In particular:

1. There are requirements—typically high-level business directions and
rules—that will influence the design of the conceptual data model, but
that cannot be captured directly using data modeling constructs. We
cannot directly capture in an E-R model requirements such as, “We need
to be able to introduce new products without redesigning the system.”
or, “The database will be accessed directly by end-users who would
have difficulty coming to grips with unfamiliar terminology or sophisti-
cated data structures.”

2. There are requirements we can represent directly in the model, but in
doing so, we may compromise other goals of the model. For example,
we can capture the requirement, “All transactions (e.g., loans, payments,
purchases) must be able to be conducted in foreign currencies.” We can
do so by introducing a generic Transaction entity class with appropri-
ate currency-related attributes as a high level supertype. However, if
there is no other reason for including this entity class, we may end up
unnecessarily complicating the model.

3. Expressing requirements in a form other than a data model provides a
degree of traceability. We can go back to the requirements documenta-
tion to see why a particular modeling decision was taken or why a
particular alternative was chosen.

4. If only a data model is produced, the opportunity to experiment confi-
dently with alternative designs may be lost; the initial data model effec-
tively becomes the business requirement.

Our own views have, over the years, moved toward a more formal and
comprehensive specification of requirements. In earlier editions of this
book we devoted only one section (“Inputs to the Modeling Task”) to the
analysis of requirements prior to modeling. We now view requirements
gathering as an important task in its own right, primarily because good
design begins with an understanding of the big picture rather than with
narrowly focused questions.

In this chapter, we look at a variety of techniques for gaining a holistic
understanding of the relevant business area and the role of the proposed

252 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 252

information system. That understanding will take the form of (a) written
structured deliverables and (b) knowledge that may never be formally
recorded, but that will inform data modelers’ decisions. Data modeling is a
creative process, and the knowledge of the business that modelers hold in
their heads is an essential input to it.

We do not expect to uncover every requirement. On the contrary, we
soon reach a point where data modeling becomes the most efficient way
of capturing detail. As a rough guide, once you are able to propose a “first
cut” set of entity classes (but not necessarily relationships or attributes) and
justify their selection, you are ready to start modeling.

This chapter could have been titled “What Do You Do Before You Start
Modeling?” Certainly that would capture the spirit of what the chapter is about,
but we recognize that it is difficult to keep data modelers from modeling. Most
of us will use data models as one tool for capturing requirements—and
experimenting with some early solutions—during this phase. There is nothing
wrong with this as long as modeling does not become the dominant
technique, and the models are treated as inputs to the formal conceptual
modeling phase rather than preempting it.

Finally, this early phase in a project provides an excellent opportunity
to build relationships not only with the business stakeholders but with the
other systems developers. Process modelers in particular also need a holistic
view of the business, and it makes sense to work closely with them at this
time and to agree on a joint set of deliverables and activities. Virtually all
of the requirements-gathering activities described in this chapter can prof-
itably be undertaken jointly with the process modelers. If the process
modelers envisage a radical redesign of business processes, it is important
that the data modeling effort reflects the new way of working. The common
understanding of business needs and the ability to work effectively together
will pay off later in the project.

9.2 The Business Case

An information system is usually developed in response to a problem, an
opportunity, or a directive/mandate, the statement of which should be
supported by a formal business case. The business case typically estimates
the costs, benefits, and risks of alternative approaches and recommends a
particular direction. It provides the logical starting point for the modeler
seeking to gain an overall understanding of the context and requirements.

In reviewing a business case, you should take particular note of the
following matters:

1. The broad justification for the application, who will benefit from it, and
(possibly) who will be disadvantaged. This background information is

9.2 The Business Case ■ 253

Simsion-Witt_09 10/8/04 7:47 PM Page 253

fundamental to understanding where business stakeholders are coming
from in terms of their commitment to the system and likely willingness
to contribute to the models. People who are going to be replaced by the
system are unlikely to be enthusiastic about ensuring its success.

2. The business concepts, rules, and terminology, particularly if this is your
first encounter with the business area. These will be valuable in estab-
lishing rapport in the early meetings and workshops with stakeholders.

3. The critical success factors for the system and for the area of the business
in general, and the data required to support them.

4. The intended scope of the system, to enable you to form at least a
preliminary picture of what data will need to be covered by the model.

5. System size and time frames, as a guide to planning the data modeling
effort and resources.

6. Performance-related information—in particular, throughputs and
response times. At the broadest level, this will enable you to get a sense
of the degree to which performance issues are likely to dominate the
modeling effort.

7. Management information requirements that the system is expected to
meet in addition to supporting operational processes.

8. The expected lifetime of the application and changes likely to occur
over that period. This issue is often not well addressed, but there should
at least be a statement of the payback period or the period over which
costs and benefits have been calculated. Ultimately, this information will
influence the level of change the model is expected to support.

9. Interfaces to other applications, both internal and external—in particular,
any requirement to share or transfer data (including providing data
for data warehouses and/or marts). Such requirements may constrain
data formats to those that are compatible with the other applications.

9.3 Interviews and Workshops

Interviews and workshops are essential techniques for requirements gath-
ering. In drawing up interview and workshop invitation lists, we recommend
that you follow the advice in Section 8.3 and include (a) the people whom
you believe collectively understand the requirements of the system and (b)
anyone likely to say, after the task is complete, “why wasn’t I asked?”

Including the latter group will add to the cost and time of the project,
and you may feel that the additional information gained does not justify the
expense. We suggest you consider it an early investment in “change
management”—the cost of having the database and the overall system
accepted by those whom it will affect. People who have been consulted

254 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 254

and (better still) who have contributed to the design of a system are more
likely to be committed to its successful implementation.

Be particularly wary of being directed to the “user representative”—
the single person delegated to answer all of your questions about the
business—while the real users get on with their work. One sometimes
wonders why this all-knowing person is so freely available!

9.3.1 Should You Model in Interviews and Workshops?

Be very, very careful about using data models as your means of communi-
cation during these initial interviews or workshops. In fact, use anything
but data models: UML Use Cases and Activity Diagrams, plain text, data
flow diagrams, event diagrams, function hierarchies, and/or report layouts.

Data models are not a comfortable language for most business people,
who tend to think more in terms of activities. Too often we have seen well-
intentioned business people trying to fulfill a facilitator’s or modeler’s
request to “identify the things you need to keep information about,” and
then having their suggestions, typically widely-used business terms, rejected
because they were not proper entity classes. Such a situation creates at least
four problems:

1. It is demotivating not only to the stakeholder who suggested the term
but to others in the same workshop.

2. Whatever is offered in a workshop is presumably important to the stake-
holder and probably to the business in general and will therefore need
to be captured eventually, yet such an approach fails to capture any
terms other than entity classes.

3. By drawing the model now, you are making it harder (both cognitively
and politically) to experiment with other options later.

4. Future requirement gathering sessions focused on attributes, relation-
ships, categories, and so on may also be jeopardized.

Instead, you need to be able to accept all terms offered by stakeholders,
be they entity classes, attributes, relationships, classification schemes, cate-
gories or even instances of any of these. Later in this chapter (Section 9.7),
we look at a formal technique for doing this without committing to a model.

Because “on the fly” modeling is so common (and we may have failed
to convince you to avoid it), it is worth looking at the problems it can cause
a bit more closely.

In a workshop, the focus is usually on moving quickly and on capturing
the “boxes and lines.” There is seldom the time or the patience to accu-
rately define each entity class. In fact what generally happens is that each

9.3 Interviews and Workshops ■ 255

Simsion-Witt_09 10/8/04 7:47 PM Page 255

participant in the workshop assumes an implicit definition of each entity
class. If a relationship is identified between two entity classes that have
names but only ambiguous definitions (or none), any subsequent attempt
to achieve an agreed detailed definition of either of those entity classes
(which is in effect a redefinition of that entity class) may change the cardi-
nality and optionality of that relationship. This is not simply a matter of
rework: We have observed that the need to review the associated relation-
ships is often overlooked when an entity is defined or redefined, risking
inconsistency in the resulting model.

You may recall that, in Section 3.5.8 (Figures 3.30 and 3.31), we pre-
sented an example in which the cardinality and optionality of two rela-
tionships depended on whether the definition of one entity class
(Customer) included all customers or only those belonging to a loyalty
program.

Similarly while a particular attribute might be correctly assigned to an
entity class while it has a particular implicit definition, a change to (or
refinement of) that definition might mean that that attribute is no longer
appropriate as an attribute of that entity class. As an example, consider an
entity class named Patient Condition in a health service model. If the
assumption is made that this entity class has instances such as “Patient
123345’s influenza that was diagnosed on 1/4/2004,” it is reasonable to
propose attributes like First Symptom Date or Presenting Date, but such attrib-
utes are quite inappropriate if instances of this entity class are simply
conditions that such patients can suffer, such as “Influenza” and “Hangnail.”
In this case, those attributes should instead be assigned to the relationship
between Patient and Patient Condition (or the intersection entity class
representing that relationship).

9.3.2 Interviews with Senior Managers

CEOs and other senior managers may not be familiar with the details of
process and data but are usually the best placed to paint a picture of future
directions. Many a system has been rendered prematurely obsolete because
information known to senior management was not communicated to the
modeler and taken into account in designing the data model.

Getting to these people can be an organizational and political problem
but one that must be overcome. Keep time demands limited; if you are
working for a consultancy, bring in a senior partner for the occasion;
explain in concise terms the importance of the manager’s contribution to
the success of the system.

Approach the interview with top management forearmed. Ensure that
you are familiar with their area of business and focus on future directions.
What types of regulatory and competitive change does the business face?

256 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 256

How does the business plan to respond to these challenges? What changes
may be made to product range and organizational structure? Are there plans
to radically reengineer processes? What new systems are likely to be required
in the future?

By all means ask if their information needs are being met, but do not
make this the sole subject of the interview. Senior managers are far less
driven by structured information than some data warehouse vendors would
have us believe. We recall one consultant being summarily thrown out by the
chief executive of a major organization when he commenced an interview
with the question: “What information do you need to run your business?” (To
be fair, this is an important question, but many senior managers have been
asked it one too many times without seeing much value in return.)

Above all, be aware of what the project as a whole will deliver for the
interviewee. Self-interest is a great motivator!

9.3.3 Interviews with Subject Matter Experts

Business experts, end users, and “subject matter experts” are the people we
speak to in order to understand the data requirements in depth. Do not let
them design the model—at least not yet! Instead, encourage them to talk
about the processes and the data they use and to look critically at how well
their needs are met.

A goal and process based approach is often the best way of structuring
the interview. “What is the purpose of what you do?” is not a bad opening
question, leading to an examination of how the goals are achieved and
what data is (ideally) required to support them.

9.3.4 Facilitated Workshops

Facilitated workshops are a powerful way of bringing people together to
identify and verify requirements. Properly run, they can be an excellent
forum for brainstorming, for ensuring that a wide range of stakeholders have
an opportunity to contribute, and for identifying and resolving conflicts.

Here are a few basic guidelines:

■ Use an experienced facilitator if possible and spend time with them
explaining what you want from the workshop. (The cost of bringing
in a suitable person is usually small compared with the cost of the
participants’ time.)

■ If your expertise is in data modeling, avoid facilitating the workshop
yourself. Facilitating the workshop limits your ability to contribute and

9.3 Interviews and Workshops ■ 257

Simsion-Witt_09 10/8/04 7:47 PM Page 257

ask questions, and you run the risk of losing credibility if you are not
an expert facilitator.

■ Give the facilitator time to prepare an approach and discuss it with
you. The single most important factor in the success of a workshop is
preparation.

■ Appoint a note-taker who understands the purpose of the workshop
and someone to assist with logistics (finding stationery, chasing “no-
shows,” and so forth).

■ Avoid “modeling as you go.” Few things destroy the credibility of a
“neutral” facilitator more effectively than their constructing a model on
the whiteboard that noone in the room could have produced, in a lan-
guage noone is comfortable using.

■ Do not try to solve everything in the workshop, particularly if deep-
seated differences surface or there is a question of “saving face.” Make
sure the problem is recognized and noted; then, organize to tackle it
outside the workshop.

9.4 Riding the Trucks

A mistake often made by systems analysts (including data modelers) is to
rely on interviews with managers and user representatives rather than direct
contact with the users of the existing and proposed system. One of our
colleagues used to call such direct involvement “riding the trucks,” refer-
ring to an assignment in which he had done just that in order to understand
an organization’s logistics problems.

We would strongly encourage you to spend time with the hands-on
users of the existing system as they go about their day-to-day work.
Frequently such people will be located outside of the organization’s head
office; even if the same functions are ostensibly performed at head office,
you will invariably find it worthwhile to visit a few different locations.
On such visits, there is usually value in conducting interviews and even
workshops with the local management, but the key objective should be
to improve your understanding of system requirements and issues by
watching people at work and questioning them about their activities and
practices.

Things to look for, all of which can affect the design of the conceptual
data model, include:

■ Variations in practices and interpretation of business rules at different
locations

■ Variations in understanding of the meaning of data—particularly in
interpretation and use of codes

258 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 258

■ Terminology used by the real users of the system
■ Availability and correct use of data (on several occasions we have heard,

“Noone ever looks at this field, so we just make it up.”)
■ Misuse or undocumented use of data fields (“Everyone knows that an

‘F’ at the beginning of the comment field signifies a difficult customer.”)

While you will obviously keep your eyes open for, and take note of,
issues such as the above, the greatest value from “riding the trucks” comes
from gaining a real sense of the purpose and operation of the system.

It is not always easy to get access to these end-users. Travel, particularly
to international locations, may be costly. Busy users—particularly those
handling large volumes of transactions, such as customer service represen-
tatives or money market dealers—may not have time to answer questions.
And managers may not want their own vision of the system to be com-
promised by input from its more junior users.

Such obstacles need to be weighed against the cost of fixing or working
around a data model based on an incorrect understanding of requirements.
Unfortunately, data modelers do not always win these arguments. If you
cannot get the access you want through formal channels, you may be
able to use your own network to talk informally to users, or settle for
discussions with people who have had that access.

9.5 Existing Systems and Reverse
Engineering

Among the richest sources of raw material for the data modeler are existing
file and database designs. Unfortunately, they are often disregarded by
modelers determined to make a fresh start. Certainly, we should not incor-
porate earlier designs uncritically; after all, the usual reason for developing
a new database is that the existing one no longer meets our requirements.
There are plenty of examples of data structures that were designed to cope
with limitations of the technology being carried over into new databases
because they were seen as reflecting some undocumented business
requirement. But there are few things more frustrating to a user than a new
application that lacks facilities provided by the old system.

Existing database designs provide a set of entity classes, relationships,
and attributes that we can use to ask the question, “How does our new
model support this?” This question is particularly useful when applied to
attributes and an excellent way of developing a first-cut attribute list for
each entity class. A sound knowledge of the existing system also provides
common ground for discussions with users, who will frequently express
their needs in terms of enhancements to the existing system.

9.5 Existing Systems and Reverse Engineering ■ 259

Simsion-Witt_09 10/8/04 7:47 PM Page 259

The existing system may be manual or computerized. If you are
very fortunate, the underlying data model will be properly documented.
Otherwise, you should produce at least an E-R diagram, short definitions,
and attribute lists by “reverse engineering,” a process analogous to an
architect drawing the plan of an existing building.

The job of reverse engineering combines the diagram-drawing tech-
niques that we discussed in Chapter 3 with a degree of detective work
to determine the meaning of entity classes, attributes, and relationships.
Assistance from someone familiar with the database is invaluable. The
person most able to help is more likely to be an analyst or programmer
responsible for maintenance work on the application than a database
administrator.

You will need to adapt your approach to the quality of available docu-
mentation, but broadly the steps are as follows:

1. Represent existing files, segments, record types, tables, or equivalents as
entity classes. Use subtypes to handle any redefinition (multiple record
formats with substantially different meanings) within files.

2. Normalize. Recognize that here you are “improving” the system, and the
resulting documentation will not show up any limitations due to lack of
normalization. It will, however, provide a better view of data require-
ments as input to the new design. If your aim is purely to document the
capabilities of the existing system, skip this step.

3. Identify relationships supported by “hard links.” Non-relational DBMSs
usually provide specific facilities (“sets,” “pointers,” and so forth) to sup-
port relationships. Finding these is usually straightforward; determining
the meaning of the relationship and, hence, assigning a name is some-
times less so.

4. Identify relationships supported by foreign keys. In a relational data-
base, all relationships will be supported in this way, but even where
other methods for supporting relationships are available, foreign keys
are often used to supplement them. Finding these is often the greatest
challenge for the reverse engineer, primarily because data item
(column) naming and documentation may be inconsistent. For example,
the primary key of Employee may be Employee Number, but the data
item Authorized By in another file may in fact be an employee number
and, thus, a foreign key to Employee. Common formats are sometimes
a clue, but they cannot be totally relied upon.

5. List the attributes for each entity class and define each entity class and
attribute.

6. The resulting model should be used in the light of outstanding requests
of system enhancement and of known limitations. The proposal for the
new system is usually a good source of such information.

260 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 260

9.6 Process Models

If you are using a process-driven approach to systems development, as
outlined briefly in Section 1.9.1, you will have valuable input in the form
of the data used by the processes, as well as a holistic view of requirements
conveyed by the higher level documentation. The data required by indi-
vidual processes may be documented explicitly (e.g., as data stores) or
implicitly within the process description (e.g., “Amend product price on
invoice.”). Even if you have adopted a data-driven approach, in which data
modeling precedes process modeling, you should plan to verify the data
model against the process model when it is available and allow time for
enhancement of the data model. In any case, you should not go too far
down the track in data modeling without some sort of process model, even
if its detailed development is not scheduled until later.

We find a one or two level data flow diagram or interaction diagram a
valuable adjunct to communicating the impact of different data models on the
system as a whole. In particular, the processes in a highly generic system will
look quite different from those in a more traditional system and will require
additional data inputs to support “table driven” logic. A process model shows
the differences far better than a data model alone (Figures 9.1 and 9.2).

9.7 Object Class Hierarchies

In this section, we introduce a technique for eliciting and documenting
information that can provide quite detailed input to the conceptual data
model, without committing us to a particular design. Its focus is on captur-
ing business terms and their definition.

The key feature of this technique is that no restrictions are placed on what
types of terms are identified and defined. A term proposed by a stakeholder
may ultimately be modeled as an entity class but may just as easily become
an attribute, relationship, classification scheme, individual category within a
scheme, or entity instance. This means that we need a “metaterm” to embrace
all these types of terms, and since at least some in the object-oriented com-
munity have stated that “everything is an object (class),” we use the term
object class for that purpose. It is essential to organize the terms collected.
We do this by classifying them using an Object Class Hierarchy that tends
to bring together related terms and synonyms. While each enterprise’s set of
terms will naturally differ, there are some high-level object classes that are
applicable to virtually all enterprises and can therefore be reused by each
project. Let us consider the various ways in which we might classify terms
before we actually lay out a suggested set of high-level object classes.

9.7 Object Class Hierarchies ■ 261

Simsion-Witt_09 10/8/04 7:47 PM Page 261

262 ■ Chapter 9 The Business Requirements

Figure 9.1 Data flow diagrams used to supplement data models: “Traditional” model.

Member
Contribution

Account

Administration
Fees

Account

Tax
Account

Member
Contribution

Administration
Deduction

Tax
Deduction

Employer
Contribution

be
posted

to

be
posted

to

be
posted

to

be
part of

be
 part of

be
allocated

to

be
allocated

to
be

allocated
to

be
part of

(a) Data Model

Deduct
Tax

Deduct
Administration

Fees

Allocate
Net

Contribution
to

Members

Employer
Contributions

Tax
Account

Administration
Fees Account

Member
Account

contribution
less tax

net employer
contribution

tax
deduction

administration
fees

(b) Data Flow Diagram

member
contribution

Simsion-Witt_09 10/8/04 7:47 PM Page 262

9.7.1 Classifying Object Classes

The most obvious way of classifying terms is as entity classes (and instances
thereof), attributes, relationships, classification schemes, and categories
within schemes. There are then various ways in which we can further
classify entity classes.

One way is based on the life cycle that an entity class exhibits. Some
entity classes represent data that will need to be in place before the

9.7 Object Class Hierarchies ■ 263

Figure 9.2 Data flow diagrams used to supplement data models: “Generic” model.

Contribution
Type

Contribution
Allocation

Rule

Account
Type

AccountContribution
Allocation

Contribution

Allocate
Contribution

Contribution
Allocation Rule

Account
Employer

Contributions

 be
subject to

apply to

 apply to

be
subject to

 classify

be posted to

be the
destination of

be the
source of

allocate

(a) Data Model

account id

contribution
contribution
allocation

(b) Data Flow Diagram

be
classified

by

be
classified

by
 classify

Simsion-Witt_09 10/8/04 7:47 PM Page 263

enterprise starts business (although this does not preclude addition to or
modification of these once business gets under way). These include:

■ Classification systems (e.g., Customer Type, Transaction Type)
■ Other reference classes (e.g., Organization Unit, Currency, Country,

Language)
■ The service/product catalogue (e.g., Installation Service, Maintenance

Service, Publication)
■ Business rules (e.g., Maximum Discount Rate, Maximum Credit Limit)
■ Some parties (e.g., Employee, Regulatory Body).

Other entity classes are populated as the enterprise does business, with
instances that are generally long-lived. These include:

■ Other parties (e.g., Customer, Supplier, Other Business Partner)
■ Agreements (e.g., Supply Contract, Employment Contract, Insurance

Policy)
■ Assets (e.g., Equipment Item).

Still other entity classes are populated as the enterprise does business,
but with instances that are generally transient (although information on
them may be retained for some time). These include:

■ Transactions (e.g., Sale, Purchase, Payment)
■ Other events (e.g., Equipment Allocation).

Another way of classifying entity classes is by their degree of independ-
ence. Independent entity classes (with instances that do not depend for their
existence on instances of some other entity class) include parties, classifica-
tion systems, and other reference classes. By contrast, dependent entity
classes include transactions, historic records (e.g., Historic Insurance Policy
Snapshot), and aggregate components (e.g., Order Line). Attributes and
relationships are of course also dependent as their instances cannot exist in
the absence of “owning” instances of one or two entity classes respectively.

A third way of classifying entity classes is by the type of question to
which they enable answers (or which column(s) they correspond to in
Zachman’s Architecture Framework):1

■ Parties enable answers to “Who?” questions.

264 ■ Chapter 9 The Business Requirements

1Zachman’s framework (at www.zifa.com) supports the classification of the components of an
enterprise and its systems; its six columns broadly address the questions, “What?”, “How?”,
“Where?”, “Who?”, “When?”, and “Why?” Note that in general entity classes fall into column 1
(“What”) of the framework, but that the things they describe may fall into any of the columns.

Simsion-Witt_09 10/8/04 7:47 PM Page 264

■ Products and Services and Assets and Equipment enable answers to
“What?” questions.

■ Events enable answers to “When?” questions.
■ Locations enable answers to “Where?” questions.
■ Classifications and Business Rules enable answers to “How?” and “Why?”

questions.

Another way of looking at question types is:

■ Events and Transactions enable answers to “What happened?” questions.
■ Business Rules enable answers to “What is (not) allowed?” questions.
■ Other entity classes enable answers to “What is/are/was/were?”

questions.

9.7.2 A Typical Set of Top-Level Object Classes

The different methods of classification described in the preceding section
will actually generate quite similar sets of top-level object classes when
applied to most enterprises. The following set is typical:

■ Product/Service: includes all product types and service types that the
enterprise is organized to provide

■ Party: includes all individuals and organizations with which the enter-
prise does business (some organizations prefer the term Entity)

■ Party Role: includes all roles in which parties interact with the enterprise
[e.g., Customer (Role), Supplier (Role), Employee (Role), Service
Provider (Role)]

■ Location: includes all physical addresses of interest to the enterprise
and all geopolitical or organizational divisions of the earth’s surface
(e.g., Country, Region, State, County, Postal Zone, Street)

■ Physical Item: includes all equipment items, furniture, buildings, and
so on of interest to the enterprise

■ Organizational Influence: includes anything that influences the
actions of the enterprise, its employees and/or its customers, or how
those actions are performed, such as:
◆ Items of legislation or government policy that govern the enterprise’s

operation
◆ Organizational policies, performance indicators, and so forth used by

the enterprise to manage its operation
◆ Financial accounts, cost centers, and so forth (although this collection

might be placed in a separate top-level object class)

9.7 Object Class Hierarchies ■ 265

Simsion-Witt_09 10/8/04 7:47 PM Page 265

◆ Business Rules: standard amounts and rates used in calculating prices
or fees payable, maxima and minima (e.g., Minimum Credit Card
Transaction Amount, Maximum Discount Rate, Maximum Session
Duration) and equivalences (e.g., between Qantas™ Frequent Flier
Silver Status and OneWorld™ Frequent Flier Ruby Status)

◆ Any other external issues (political, industrial, social, economic, demo-
graphic, or environmental) that influence the operation or behavior
of the enterprise

■ Event: includes all financial transactions, all other actions of interest by
customers (e.g., Complaint), all service provisions by the enterprise or
its agents, all tasks performed by employees, and any other events of
interest to the enterprise

■ Agreement: includes all contracts and other agreements (e.g., insurance
policies, leases) between the enterprise (or any legally-constituted parts
thereof) and parties with which it does business and any contracts
between other parties in which the enterprise has an interest

■ Initiative: includes all programs and projects run by the enterprise
■ Information Resource: includes all files, libraries, catalogues, copies of

publications, and so on
■ Classification: includes all classification schemes (entity classes with

names ending in “Type,” “Class,” “Category,” “Reason,” and so on)
■ Relationship: includes all relationships between parties other than agree-

ments, all roles played by parties with respect to events (e.g., Claimant,
Complainant), agreements (Insurance Policy Beneficiary) or locations
(e.g., Workplace Supervisor), and any other relationships of interest to
the enterprise (except equivalences, which are Business Rules)

■ Detail: includes all detail records (e.g., Order Line) and all attributes
other than Business Rules identified by the enterprise as being impor-
tant (e.g., Account Balance, Annual Sales Total)

A number of things should be noted in connection with this list:

1. A particular enterprise may not need all the top-level classes in this list
and may need others not in this list, but you should avoid creating too
many top-level classes (more than 20 is probably too many).

2. Terms listed as included within each top-level class are not meant to be
exhaustive.

3. Object classes may include low-level subtypes that would never appear
as tables in a logical data model or even entity classes in a conceptual
data model.

4. Relationships do not have to be “many-to-many.”

5. Attributes may include calculated or derived attributes, such as aggre-
gates (e.g., Total Order Amount).

266 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 266

9.7.3 Developing an Object Class Hierarchy

Terms (or object classes) are best gathered in a series of workshops, each
covering a specific business function or process, with the appropriate stake-
holders in attendance. Remember that any term offered by a stakeholder,
however it might eventually be classified, should be recorded. This should
be done in a manner visible to all participants (a whiteboard or in a docu-
ment or spreadsheet on a computer attached to a projector). Rather than
attempt to achieve an agreed definition and position in the hierarchy of
each term as it is added, it is better to just list them in the first instance, and
then, after a reasonable number have been gathered, group terms by their
most appropriate top-level class.

Definitions should then be sought for each term within a top-level class
before moving on to the next top-level class. In this way it is easier to
ensure that definitions of different classes within a given top-level class do
not overlap.

Some terms may be already defined in existing documentation, such as
policy manuals or legislation. For each of these, identify the corresponding
documentation if possible, or delegate an appropriate workshop participant
to examine the documentation and supply the required definition. Other
terms may lend themselves to an early consensus within the workshop group
as a whole. If, however, discussion takes more than five or ten minutes and
no consensus is in sight, move on to the next item, and, before the end of
the workshop, deal with outstanding terms in one of the following ways:

1. Assign terms to breakout groups within the workshop to agree on
definitions and report back to the plenary group with their results

2. Assign terms to appropriate workshop participants (or groups thereof)
to agree on definitions and report back to the modeler for inclusion in
the next iteration of the Object Class Hierarchy

3. Agree that the modeler will take on the job of coming up with a
suggested definition and include it in the next iteration.

The key word here is iteration. Workshop results should be fed back as
soon as possible to participants. The consolidated Object Class Hierarchy
(including results from all workshop groups) should be made available to
each participant, instead of, or in addition to, the separate results from that
participant’s workshop, and each participant should review the hierarchy
before attending one or more follow-up workshops in which necessary
changes to the hierarchy as perceived by the modeler can be negotiated.

However there is work for the modeler to do before feeding results back:

1. We will usually need to introduce intermediate classes to further organize
the object classes within a top-level classification. If, for example, a large

9.7 Object Class Hierarchies ■ 267

Simsion-Witt_09 10/8/04 7:47 PM Page 267

number of Party Roles have been identified, we might organize them
into intermediate classifications such as Client (Customer) Roles,
Enterprise Employee Roles, and Third Party Service Provider Roles.
In turn we might further categorize Enterprise Employee Roles accord-
ing to the type of work done, and Third Party Service Provider Roles
according to the type of service provided.

2. All Classification classes should be categorized according to the object
classes that they classify. For example, classifications of Party Roles
(e.g., Customer Type) should be grouped under the intermediate class
Party Role Classification and classifications of Events (e.g., Transaction
Type) should be grouped under the intermediate class Event
Classification.

3. If there is more than one Classification class associated with a particular
object class (e.g., Claim Type, Claim Decision Type, and Claim Liability
Status might all classify Claims) then they should be grouped into a
common class (e.g., Claim Classification). This intermediate class would
in turn belong to a higher level intermediate class. In this example, Claim
might be a subclass of Event, in which case Claim Classification would
be a subclass of Event Classification. So we would have a hierarchy from
Classification to Event Classification to Claim Classification to Claim
Type, Claim Decision Type, and Claim Liability Status.

4. All Relationship classes should similarly be categorized by the classes
that they associate: relationships between parties grouped under
Inter-Party Relationship, roles played by parties with respect to
events grouped under Party Event Role, roles played by parties with
respect to agreements grouped under Party Agreement Role, and
so on.

5. All of these intermediate classes and any other additional classes created
by the modeler rather than supplied by stakeholders should be clearly
marked as such.

6. Any synonyms identified should be included as facts about classes.

7. All definitions not explicitly agreed on at the workshop should be
added.

8. The source of each definition (the name or job title of the person who
supplied it or the name of the document from which it was taken)
should be included.

Figure 9.3 shows a part of an object class hierarchy using these
conventions.

The follow-up workshop will inevitably result in not only changes to
definitions (and possibly even names) of classes, but also in reclassification
of classes as stakeholders develop more understanding of the exact meaning
of each class. The extent to which this occurs will dictate how many

268 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 268

additional review cycles are required. In each new published version of the
Object Class Hierarchy, it is important to identify:

1. New classes (with those added by the modeler marked as such)

2. Renamed classes

3. New definitions (with the source—person or document—of each
definition)

4. Classes moved within the hierarchy (i.e., reclassified)

5. Deleted classes (These are best collected under an additional top-level
class named Deleted Class.)

Given the highly intensive and iterative nature of this process, we do
not recommend a CASE tool for recording and presenting this information,
unless it provides direct access to the repository for textual entry of
names, definitions, and superclass/subclass associations. We have found
that, compared with some commonly-used CASE tools, a spreadsheet not
only provides significantly faster data entry and modification facilities but

9.7 Object Class Hierarchies ■ 269

Figure 9.3 Part of an object class hierarchy—indentation shows the hierarchical relationships.

Class Source Synonym Definition

Administrative Area Any area that may be gazetted or
otherwise defined for a particular
administrative purpose.

Country ISO
3166

A country as defined by International
Standard ISO 3166:1993(E/F) and
subsequent editions.

Jurisdiction A formally recognized administrative or
territorial unit used for the purpose of
applying or performing a responsibility.
Jurisdictions include States, Territories,
and Dominions.

Australian State GNR State A state of Australia.

County RGD
GNR

A basic division of an Australian State,
further divided into Parishes, for
administrative purposes.

Parish RGD
GNR

An area formed by the division of a county.

Portion RGD A land unit capable of separate disposition
created by the Crown within the boundaries of a
Parish.

Simsion-Witt_09 10/8/04 7:47 PM Page 269

requires significantly less effort in tidying up outputs for presentation back
to stakeholders.

9.7.4 Potential Issues

The major issue that we have found arising from this process has been
debate about which top-level class a given class really belongs to, and it
has been tempting to allow “multiple inheritance” whereby a class is
assigned to multiple top-level classes. In most cases in our experience the
“class” in question turns out to be, in fact, two different classes. Among the
situations in which this issue arises, we have found the same name used by
the business for:

■ Both types and instances (e.g., Stock Item, used for both entries in the
stock catalogue and issues of items of stock from the warehouse in
response to requisitions)

■ Both events and the documents raised to record those events (e.g.,
Application for License)

■ Planned or required events or rules about events and the events them-
selves (e.g., Crew Member Recertification, used by an airline for the
requirement for regular recertification and the occurrence of a recertifi-
cation of a particular crew member).

9.7.5 Advantages of the Object Class Hierarchy
Technique

We have found that the process we have described inspires a high level of
business buy-in, as it is neither too technical nor too philosophical but vis-
ibly useful. The use of the general term “object class” provides a useful sep-
aration from the terminology of the conceptual data model and does not
constrain our freedom to explore alternative data classifications later.

At the enterprise level (see Chapter 17), an object class model can offer
significant advantages over traditional E-R-based enterprise data models,
particularly as a means of classifying existing data.

9.8 Summary

In requirements gathering, the modeler uses a variety of sources to gain a
holistic understanding of the business and its system needs, as well as
detailed data requirements. Sources of requirements and ideas include

270 ■ Chapter 9 The Business Requirements

Simsion-Witt_09 10/8/04 7:47 PM Page 270

system users, business specialists, system inputs and outputs, existing data-
bases, and process models.

An object class hierarchy can provide a focus for the requirements gath-
ering exercise by enabling stakeholders to focus on data and its definitions
without preempting the conceptual model.

9.8 Summary ■ 271

Simsion-Witt_09 10/8/04 7:47 PM Page 271

This page intentionally left blank

Chapter 10
Conceptual Data Modeling

“Our job is to give the client not what he wants, but what he never dreamed
he wanted.”

– Denys Lasdun, An Architect’s Approach to Architecture1

“If you want to make an apple pie from scratch, you must first create the universe.”
– Carl Sagan

10.1 Designing Real Models

Conceptual data modeling is the central activity in a data modeling project.
In this phase we move from requirements to a solution, which will be
further developed and tuned in later phases.

In common with other design processes, development of a conceptual
data model involves three main stages:

1. Identification of requirements (covered in Chapter 9)

2. Design of solutions

3. Evaluation of the solutions.

This is an iterative process (Figure 10.1). In practice, the initial require-
ments are never comprehensive or rigorous enough to constrain us to only
one possible design. Draft designs will prompt further questions, which will,
in turn, lead to new requirements being identified. The architecture analogy
is again appropriate. As users, we do not tell an architect the exact dimensions
and orientation of each room. Rather we specify broader requirements such
as, “We need space for entertaining,” and, “We don’t want to be disturbed by
the children’s play when listening to music.” If the architect returns with a plan
that includes a wine cellar, prompted perhaps by his or her assessment of our
lifestyle, we may decide to revise our requirements to include one.

In this chapter, we look at the design and evaluation stages.
The design of conceptual models is the most difficult stage in data model

development to learn (and to teach). There is no mechanical transformation
from requirements to candidate solutions. Designing a conceptual data model

273

1RIBA Journal, 72(4), 1965

Simsion-Witt_10 10/11/04 8:49 PM Page 273

from first principles involves conceptualization, abstraction, and possibly
creativity, skills that are hard to invoke on a day-to-day basis without
considerable practice. Teachers of data modeling frequently find that stu-
dents who have understood the theory (sometimes in great depth) become
“stuck” when faced with the job of developing a real model.

If there is a single secret to getting over the problem of being stuck, it
is that data modeling practitioners, like most designers, seldom work from
first principles, but adapt solutions that have been used successfully in
the past. The development and use of a repertoire of standard solutions
(“patterns”) is so much a part of practical data modeling that we have
devoted a large part of this chapter to it.

We look in some detail at two patterns that occur in most models, but
are often poorly handled: hierarchies and one-to-one relationships.

Evaluation of candidate models presents its own set of challenges. Reviews
with users and business specialists are an essential part of verifying a data
model, particularly as formal statements of user requirements do not normally
provide a sufficiently detailed basis for review (as discussed in Section 9.1).

Several years ago, one of us spent some time walking through a relatively
simple model with a quite sophisticated user—a recent MBA with exposure

274 ■ Chapter 10 Conceptual Data Modeling

Figure 10.1 Data modeling as a design activity.

Evaluate
Solutions

Design
Solutions

Identify
Requirements

Business
Inputs Requirements

Proposed
Solutions

Selected
Solution

changes to
design

changes to
requirements

Simsion-Witt_10 10/11/04 8:49 PM Page 274

to formal systems design techniques—including data modeling. He was
fully convinced that the user understood the model, and it was only some
years later that the user confessed that her sign-off had been entirely due
to her faith that he personally understood her requirements, rather than to
her seeing them reflected in the data model.

We can do better than this, and in the second part of this chapter, we
focus on a practical technique—business assertions—for describing a
model with a set of plain language statements, which can be readily under-
stood and verified by business people whether or not they are familiar with
data modeling.

10.2 Learning from Designers in Other
Disciplines

Once we recognize that we are performing a design task, we achieve at
least two things:

1. We gain a better perspective on the nature of the task facing us. On the
one hand, design can be intimidating; creating something new seems a
more difficult task than describing something that already exists. On the
other hand, most of us successfully create designs in other areas every
daybe they report layouts or the menu for a dinner party.

2. As a relatively new profession, we can learn from designers in other
disciplines. We have leaned heavily on the architecture analogy through-
out this book, and for good reason. Time and again this analogy has
helped us to solve problems with our own approaches and to commu-
nicate the approaches and their rationale to others.

There is a substantial body of literature on how designers work. It is
useful not only as a source of ideas, but also for reassurance that what you
are doing is reasonable and normal—especially when others are expecting
you to proceed in a linear, mechanical manner. Designers’ preferences and
behavior include:

■ Working with a limited “brief”: in Chapter 9 we discussed the problem
of how much to include in the statement of requirements; many designers
prefer to work with a very short brief and to gain understanding from
the client’s reaction to candidate designs.

■ A preference for early involvement with their clients, before the clients
have had an opportunity to start solving the problem themselves.

■ The use of patterns at all levels from overall design to individual details.
■ The heavy use of diagrams to aid thinking (as well as communication).

10.2 Learning from Designers in Other Disciplines ■ 275

Simsion-Witt_10 10/11/04 8:49 PM Page 275

■ The deliberate production of alternatives, though this is by no means
universal: many designers focus on one solution that seems “right” while
recognizing that other solutions are possible.

■ The use of a central idea (“primary generator”) to help focus the thinking
process: for example, an architect might focus on “seminar rooms off a
central hub”; a data modeler might focus on “parties involved in each
transaction.”

10.3 Starting the Modeling

Despite the availability of documentation tools, the early work in data mod-
eling is usually done with whiteboard and marker pen. Most experienced
data modelers initially draw only entity classes and partly annotated rela-
tionships. Crow’s feet are usually shown, but optionality and names are only
added if they serve to clarify an obviously difficult or ambiguous concept.
The idea is to keep the focus on the big picture, moving fairly quickly and
exploring alternatives, rather than becoming bogged down in detail.

We cannot expect our users to have the data model already in their
minds, ready to be extracted with a few well-directed questions (“What
things do you want to keep data about? What data do you want to keep
about them? How are those things related?”). Unfortunately, much that is
written and taught about data modeling makes this very naive assumption.
Experienced data modelers do not try to solicit a data model directly, but take
a holistic approach. Having established a broad understanding of the client’s
requirements, they then propose designs for data structures to meet them.

This puts the responsibility for coming up with the entity classes squarely
on the data modeler’s shoulders. In the first four chapters, we looked at a
number of techniques that generated new entity classes: normalization
produces new tables by disaggregating existing tables, and supertyping and
subtyping produce new entity classes through generalizing and specializing
existing entity classes. But we have to start with something!

It is at this point that an Object Class Hierarchy, as described in Section
9.7, delivers one of its principal advantages. Rather than starting with a
blank whiteboard, the Object Class Hierarchy can be used as a source of
the key entity classes and relationships.

To design a data model from “first principles,” we generalize (more
precisely, classify) instances of things of interest to the business into entity
classes. We have a lot of choice as to how we do this, even given the
constraint that we do not want the same fact to be represented by more
than one entity class. Some classification schemes will be much more useful
than others, but, not surprisingly, there is no rule for finding the best
scheme, or even recognizing it if we do find it. Instead, we have a set of
guidelines that are essentially the same as those we use for selecting good

276 ■ Chapter 10 Conceptual Data Modeling

Simsion-Witt_10 10/11/04 8:49 PM Page 276

supertypes (Chapter 4). The most important of these is that we group
together things that the business handles in a similar manner (and about
which it will, therefore, need to keep similar data).

This might seem a straightforward task. On the contrary, “similarity” can
be a very subjective concept, often obscured by the organization’s structure
and procedures. For example, an insurance company may have assigned
responsibility for handling accident and life insurance policies to separate
divisions, which have then established quite different procedures and
terminology for handling them. It may take a considerable amount of inves-
tigation to determine the underlying degree of similarity.

10.4 Patterns and Generic Models

10.4.1 Using Patterns

Experienced data modelers rarely develop their designs from first princi-
ples. Like other designers, they draw on a “library” of proven structures and
structural components, some of them formally documented, others remem-
bered from experience or observation. We already have a few of these from
the examples in earlier chapters. For example, we know the general way
of representing a many-to-many relationship or a simple hierarchy. In Part III,
you will find data modeling structures for dealing with (for example) the
time dimension, data warehousing, and the higher normal forms. These
structures are patterns that you can come to use and recognize.

Until relatively recently (as recently as the first edition of this book in
1994) there was little acknowledgment of the importance of patterns. Most
texts treated data modeling as something to be done from first principles,
and there were virtually no published libraries of data modeling patterns
to which practitioners could refer. What patterns there were tended to exist
in the minds of experienced data modelers (sometimes without the data
modelers being aware of it).

That picture has since changed substantially. A number of detailed data
modelsgenerally aimed at particular industries such as banking, health
care, or oilcan now be purchased or, in some cases, have been made
available free of charge through industry bodies. Many of these provide
precise definitions and coding schemes for attributes to facilitate data com-
parison and exchange. Some useful books of more general data modeling
patterns have been published.2 And the object-oriented theorists and prac-
titioners, with their focus on reuse, have contributed much to the theory
and body of experience around patterns.3 The practicing data modeler

10.4 Patterns and Generic Models ■ 277

2Refer to “Further Reading” at the end of this book.
3Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley (1997).

Simsion-Witt_10 10/11/04 8:49 PM Page 277

should be in a position to use general patterns from texts such as this book,
application-specific patterns from books and industry, patterns from their
own experience, and, possibly, organization-specific patterns recorded in
an enterprise data model.

10.4.2 Using a Generic Model

In practice, we usually try to find a generic model that broadly meets
the users’ requirements, then tailor it to suit the particular application,
drawing on standard structures and adapting structures from other models
as opportunities arise. For example, we may need to develop a data
model to support human resource management. Suppose we have seen
successful human resources models in the past, and have (explicitly or just
mentally) generalized these to produce a generic model, shown in part in
Figure 10.2.

278 ■ Chapter 10 Conceptual Data Modeling

Figure 10.2 Generic human resources model.

Employee Event
Organization

Unit

Job
Position

Skill

Employee

Contractor

Human Resource

be
required

by

require

be occupied
by

occupy

be possessed
by

possess

be involved
in

involve

include

be
part

of

manage

report
to

Miscellaneous
Event

Appraisal
Event

Promotion
Event

Transfer
Event

Leave
Event

Human Resource
Event

Hire
Event

Termination
Event

be involved in

involve

Simsion-Witt_10 10/11/04 8:49 PM Page 278

The generic model suggests some questions, initially to establish scope
(and our credibility as modelers knowledgeable about the data issues of
human resource management). For example:

“Does your organization have a formally-defined hierarchy of job
positions?” “Yes, but they’re outside the scope of this project.” We
can remove this part of the model.

“Do you need to keep information about leave taken by employ-
ees?” “Yes, and one of our problems is to keep track of leave taken
without approval, such as strikes.” We will retain Leave Event, pos-
sibly subtyped, and add Leave Approval. Perhaps Leave
Application with a status of approved or not approved would be
better, or should this be an attribute of Leave Event? Some more
focused questions will help with this.

“Could Leave be approved but not taken?” “Certainly.” “Can one
application cover multiple periods of leave?” “Not currently. Could our
new system support this?”

And so on. Having a generic model in place as a starting point
helps immensely, just as architects are helped by being familiar with
some generic “family home” patterns. Incidentally, asking an experienced
modeler for his or her set of generic models is likely to produce a blank
response. Experienced modelers generally carry their generic models in
their heads rather than on paper and are often unaware that they use such
models at all.

10.4.3 Adapting Generic Models from Other Applications

Sometimes we do not have an explicit generic model available but can
draw an analogy with a model from a different field. Suppose we are devel-
oping a model to support the management of public housing. The users
have provided some general background on the problem in their own
terms. They are in the business of providing low-cost accommodation, and
their objectives include being able to move applicants through the waiting
list quickly, providing accommodation appropriate to clients’ needs, and
ensuring that the rent is collected.

We have not worked in this field before, so we cannot draw on a model
specific to public housing. In looking for a suitable generic model, we
might pick up on the central importance of the rental agreement. We recall
an insurance model in which the central entity class was Policyan agree-
ment of a different kind, but nevertheless one involving clients and the
organization (Figure 10.3). This model suggests an analogous model for
rental agreement management (Figure 10.4).

10.4 Patterns and Generic Models ■ 279

Simsion-Witt_10 10/11/04 8:49 PM Page 279

We proceed to test and flesh out the model with the business specialist:

“Who are the parties to a rental agreement? Only persons? Or families
or organizations?” “Only individuals (tenants) can be parties to a
rental agreement, but other occupiers of the house are noted on the
agreement. We don’t need to keep track of family relationships.”

“Are individual employees involved in rental agreements? In what
role?” “Yes, each agreement has to be authorized by one of our staff.”

280 ■ Chapter 10 Conceptual Data Modeling

Figure 10.3 Insurance model.

Policy
Type

Organization
Unit

Policy

Nonemployee

Employee

. . .

Assignment

Claim

Billing
Transaction

Policy
Alteration

Person

Policy Event

Person
Role in
Policy

be
classified

by
classify

affect
be affected
bybe for

 involve

play

be played
by

be issued by

issue

be part
of

include

Simsion-Witt_10 10/11/04 8:49 PM Page 280

10.4 Patterns and Generic Models ■ 281

Figure 10.4 Rental agreement model based on insurance model.

Rental
Agreement

Type

Organization
Unit

Rental
Agreement

Renter

. . .

Rental
Payment

Rental
Agreement
Alteration

Person

Rental Agreement
Event

Person
Role in
Rental

Agreement

 be
classified
 by
 classify

affect
 be affected
 bybe for

 involve

play

 be played
 by

 be managed by

manage

be part
of

include

Employee

Other
Occupier

Simsion-Witt_10 10/11/04 8:49 PM Page 281

“How do we handle changes to rental agreements? Do we need to
keep a history of changes?” “Yes, it’s particularly important that we
keep a history of any changes to rent. Sometimes we establish a
separate agreement for payment of arrears.”

What do we do here? Can we treat a rental arrears agreement as a subtype
of Agreement? We can certainly try the idea.

“How do rental arrears agreements differ from ordinary rental
agreements?” “They always relate back to a basic rental agreement.
Otherwise, administration is much the samesending the bill and
collecting the scheduled repayments.”
Let’s check the cardinality of the relationship:

“Can we have more than one rental arrears agreement for a given
basic rental agreement?” “No, although we may modify the original
rental arrears agreement later.”

The answer provides some support for treating rental arrears agree-
ments similarly to basic rental agreements. Now we can look for further
similarities to test the value of our subtyping and refine the model.

“Do we have different types of rental arrears agreements? Are people
directly involved in rental arrears agreements, or are they always the
same as those involved in the basic rental agreement?”

And so on. Figure 10.5 shows an enhanced model including the Rental
Arrears Agreement concept.

10.4.4 Developing a Generic Model

As we gained experience with using this model in a variety of business sit-
uations, we would develop a generic “agreement” model, rather than draw-
ing analogies or going through the two-stage process of generalizing from
Policy to Agreement, then specializing to Rental Agreement.

With this model in mind, we can approach data modeling problems
with the question: “What sort of agreements are we dealing with?” In some
cases, the resulting model will be reasonably conventional, as with our
housing example, where perhaps the only unusual feature is the handling
of arrears repayment agreements. In other cases, approaching a problem
from the perspective of agreements might lead to a new way of looking at
it. The new perspective may offer an elegant approach; on the other hand,
the result of “shoe-horning” a problem to fit the generic model may be inel-
egant, inflexible, and difficult to understand. For example, the “agreement”
perspective could be useful in modeling foreign currency dealing, where

282 ■ Chapter 10 Conceptual Data Modeling

Simsion-Witt_10 10/11/04 8:49 PM Page 282

deals could be modeled as Agreements, but less useful in a retail sales model.
Certainly a sale constitutes an agreement to purchase, but the concepts of alter-
ations, parties to agreements, and so on may be less relevant in this context.

Generic models can also be suggested by answers to the “What is our
business?” type of question. Business people addressing the question

10.4 Patterns and Generic Models ■ 283

Figure 10.5 Inclusion of rental arrears agreement.

Rental Agreement

Rental
Agreement

Type

Organization
Unit

Rental
Arrears

Agreement

Person Role
in Rental

Agreement

 be
classified
 by
 classify

affect be affected
 by

be for

involve

play

 be played by

 be managed by

manage

be part
of

include
Basic
Rental

Agreement

supplement

be
supplemented

by

Person

Renter

. . .

Rental
Payment

Rental
Agreement
Alteration

Rental Agreement
Event

Employee

Other
Occupier

Simsion-Witt_10 10/11/04 8:49 PM Page 283

are consciously trying to cut through the detail to the “essence” of
the business, and the answers can be helpful in establishing a stable
generic model. For example, during the development of a model to support
money market dealing, a business specialist offered the explanation that
the fundamental objective was to “trade cash flows.” This very simple
unifying idea (a “primary generator” in design theory) suggested a generic
model based on the entity classes Deal and Cash Flow, and ultimately
provided the basis for a flexible and innovative system. Often these
insights will come not from those who are close to the problem and
burdened with details of current procedures, but from more senior man-
agers, staff who have recently learned the business, consultants, and even
textbooks.

Even among very experienced modelers, there is a tendency to adopt
an “all purpose” generic model. We have seen some particularly inelegant
data models resulting from trying to force such a model to fit the problem.
In our housing model, for example, there is unlikely to be much value in
including Employment Agreement and Supplier Agreement under the
Agreement supertype, unless we can establish that the business treats
these entity classes in a common way. The high-level classes, which we
suggest for developing an object class hierarchy in Section 9.7, should only
carry over to the conceptual model if they correspond to entity classes of
genuine use to the business at that level of generalization.

Sometimes an organization will develop a generic enterprise model
covering its primary business activities, with the intention of coordinating
data modeling at the project level (data models of this kind are discussed
in Chapter 17). Such a model may be an excellent representation of the
core business but inappropriate for support functions such as human
resource management or asset management.

The best approach is to consciously build up your personal library of
generic models and to experiment with more than one alternative when
tackling problems in practice. This is not only a good antidote to the “shoe-
horning” problem; it also encourages exploration of different approaches
and often provides new insights into the problem. Frequently, the final
model will be based primarily on one generic model but will include ideas
that have come from exploring others.

10.4.5 When There Is Not a Generic Model

From time to time, we encounter situations for which we cannot find a suit-
able generic model as a starting point. Such problems should be viewed,
of course, as opportunities to develop new generic models. There are
essentially two approaches, the first “bottom up” and the second “top
down.” We look at these in the following sections.

284 ■ Chapter 10 Conceptual Data Modeling

Simsion-Witt_10 10/11/04 8:49 PM Page 284

10.5 Bottom-Up Modeling

With the bottom-up approach, you initially develop a very “literal” model,
based on existing data structures and terminology, then use subtyping and
supertyping to move toward other options.

We touched on this technique in Chapter 4, but it is so valuable that it
is worth working through an example that is complex enough to illustrate
it properly. Figure 10.6 shows a form containing information about products
sold by an air conditioning systems retailer.

Figure 10.7 is a straightforward model produced by normalizing the
repeating groups contained in the form (note that we have already departed
from strictly literal modeling by generalizing the specific types of tax, delivery,
and service charges).

There is a reasonably obvious opportunity to generalize the various
charges and discounts into a supertype entity class Additional Charge or
Discount. In turn, this decision would suggest separating Insurance Charge
from Product, even though it is not a repeating group, in order to repre-
sent all price variations consistently (Figure 10.8).

We could also consider including Unit Price and renaming the supertype
Price Component, depending on how similarly the handling of Unit Price
was to that of the price variations.

Looking at the subtypes of Additional Charge or Discount, we might
consider an intermediate level of subtyping, to distinguish charges and
discounts directly related to sale of the original product from stand-alone
services (Figure 10.9).

This, in turn, might prompt a more adventurous generalization; why not
broaden our definition of Product to embrace services as well? We would
then need to change the name of the original entity class Product to (say)
Physical Product. Figure 10.10 shows the result.

Note that we started with a very straightforward model, based on the
original form. This is the beauty of the technique; we do not need to be
creative “on the fly” but can concentrate initially on getting a model that

10.5 Bottom-Up Modeling ■ 285

Figure 10.6 Air conditioning product form.

Product No.: 450TE 2-4 5%

Type: Air Conditioning Unit– Industrial 5 -10 10%

Unit Price: $420

Volume
Discount

Over 10 12%

Sales Tax: 3% (except VT/ND: 2%) 09 Install $35

Delivery Charge: $10 01 Yearly Service $40

Remote Delivery: $15 05 Safety Check $10

Insurance: 5%

Service
Charges

Simsion-Witt_10 10/11/04 8:49 PM Page 285

286 ■ Chapter 10 Conceptual Data Modeling

Figure 10.8 Generalizing additional charges.

Product

Product
Sales
Tax

Volume
Discount

Delivery
Charge

Service
Charge

Insurance
Charge

Additional Charge
or Discount

be
subject to

apply to

Figure 10.7 Literal model of air conditioning products.

Product
Product
Sales
Tax

Volume
Discount

Delivery
Charge

Service
Charge

be
subject to

be
subject to

be
subject to

be
subject to

apply to

apply
 to

apply
 to

apply
 to

Simsion-Witt_10 10/11/04 8:49 PM Page 286

Figure 10.10 Redefining product to include services.

Physical
Product

Product
Sales
Tax

Volume
Discount

Delivery
Charge

Insurance
Charge

 be
 subject to

apply to

Base Price
Variation

Service
Product

Product

apply to

have
associated

Figure 10.9 Separating service charges.

Product

Product
Sales
Tax

Base Price
Variation

Volume
Discount

Delivery
Charge

Insurance
Charge

Additional Charge
or Discount

be
subject to

apply to

Service
Charge

Simsion-Witt_10 10/11/04 8:49 PM Page 287

is complete and nonredundant, and on clarifying how data is currently
represented. Later we can break down the initial entity classes and reassem-
ble them to explore new ways of organizing the data. The approach is par-
ticularly useful if we are starting from existing data files.

Note also that we ended up with a new definition of Product. Ideally,
we would never give more than one meaning to the same word, even over
time. However the desire to keep the model reasonably approachable
through use of familiar terminology often means that a term will need to
change meaning as we develop it. We could have encountered the same
situation with Service Product, had we decided to regard delivery as a type
of service. Just remember to keep the definitions up to date!

10.6 Top-Down Modeling

The top-down approach to an unfamiliar problem is an extreme version of
the generic model approach; we simply use a model that is generic enough
to cover at least the main entity classes in any business or organization.
The ultimate extreme is that suggested in many texts: by asking, “What
‘things’ are of interest to the business?” we are effectively starting from the
single entity class Thing, and looking for subtypes. We can usually be a
little more specific than this!

An object class hierarchy developed as part of the requirements phase
(as described in Section 9.7) can provide an excellent basis, starting with
the highest level classes defined by the business.

Just be aware that this technique used by itself may not challenge
current views of data. If you want to explore alternatives, it can be useful
to experiment with alternative supertypes and intermediate classifications,
once you have finished the top-down identification of entity classes.

10.7 When the Problem Is Too Complex

Sometimes it is possible to be overwhelmed by the complexity of the busi-
ness problem. Perhaps we are attempting to model the network managed
by a large and diverse telecommunications provider. Unless we are very
experienced in the area, we will be quickly bogged down in technical
detail, terminology, and traditional divisions of responsibilities. A useful
strategy in these circumstances is to develop a first-cut generic model as a
basis for classifying the detail.

Paradoxically, a good way to achieve this is by initially narrowing our
view. We select a specific (and, as best as we can judge) typical area and

288 ■ Chapter 10 Conceptual Data Modeling

Simsion-Witt_10 10/11/04 8:49 PM Page 288

model it in isolation. We then generalize this to produce a generic model,
which we then use as a basis for investigating other areas. In this way we are
able to focus on similarities and differences and on modifying and fleshing
out our base model.

Obviously, the choice of initial area is important. We are looking for
business activities that are representative of those in other areas. In other
words we anticipate that when generalized they will produce a useful
generic model. There is a certain amount of circular thinking here but, in
practice, selection is not too difficult. Many organizations are structured
around products, customer types, or geographic locations. Often, each
organization unit has developed its own procedures and terminology.
Selecting an organizational unit, then generalizing out these factors, is
usually a good start. Often the second area that we examine will provide
some good pointers on what can usefully be generalized.

In our telecommunications example, we might start by modeling the
part of the network that links customers to local exchanges or, perhaps,
only that part administered by a particular local branch. Part of an initial
model is shown in Figure 10.11.

Testing this model against the requirements of the Trunk Network
Division, which has an interest in optical fiber and its termination points,
suggests that Cable Pair can usefully be generalized to Physical Bearer,
and Cable Connection Point to Connection Point, to take account of
alternative technologies (Figure 10.12).

But we are now able to ask some pointed questions of the next division:
What sort of bearers do you use? How do they terminate or join?

10.7 When the Problem Is Too Complex ■ 289

Figure 10.11 Local exchange network model.

Cable
Connection

Point

Cable
Pair

Simsion-Witt_10 10/11/04 8:49 PM Page 289

This is a very simple generic model, but not much simpler than many
that we have found invaluable in coming to grips with complex problems.
And its use is not confined to telecommunications networks. What about
other networks, such as electricity supply, railways, or electrical circuits?
Or, more creatively, could the model be applied to a retail distribution
network?

10.8 Hierarchies, Networks, and Chains

In this section and the next, we take a detour from the generalities of con-
ceptual modeling for a closer look at some common structures that we
introduced in Section 3.5.4.

Hierarchies, networks, and chains are all modeled using self-referencing
(single entity) relationships (Figure 10.13). Note that these inevitably have
important business rules constraining how each member of the hierarchy
may relate to others. These are discussed in Section 14.6.1.

The more we generalize our entity classes, the more we encounter these
structures.

Figure 10.14 shows an organization structure at two levels of generalization
(see page 288).

If we choose to implement the model using Branch, Department, and
Section entity classes, we do not require any self-referencing relationships.
But if we choose the higher level of generalization, the relationships
between branches, departments, and sections become self-referencing
relationships among organization units.

290 ■ Chapter 10 Conceptual Data Modeling

Figure 10.12 Generalized network model.

Connection
Point

Physical
Bearer

originate
at

be the
origin
of

terminate
at

be the
termination
of

Simsion-Witt_10 10/11/04 8:49 PM Page 290

10.8.1 Hierarchies

Hierarchies are characterized by each instance of the entity class having any
number of subordinates but only one superior of the same entity class.
Accordingly, we use one-to-many relationships to represent them.

Examples of the types of hierarchies we need to model in practice are
“Contains”e.g., System may contain (component) Systems; Location

may contain (smaller) Locations.
“Classifies”e.g., Equipment Type may classify (more specific) Equipment

Types; Employee Type may classify (more specific) Employee Types.
“Controls”e.g., Organization Unit may control (subordinate)

Organization Units; Network Node may control (subordinate) Network
Nodes.

Implementation of one-to-many self-referencing relationships is straight-
forward and was covered in Sections 2.8.5 and 3.5.4. (Basically, we hold a
foreign key such as “Superior Organization Unit.”)

Programming against such structures is less straightforward if we want
to retain the full flexibility of the structure (in particular, the unlimited
number of levels). Some programming languages do not provide good

10.8 Hierarchies, Networks, and Chains ■ 291

Figure 10.13 Self-referencing relationships.

Aircraft
Type

classify

be
classified

by

Geographic
Region

be
made up
of

be
contained

in

Flight
Leg

be
followed
by

follow

Hierarchy

Network

Chain

Simsion-Witt_10 10/11/04 8:49 PM Page 291

support for recursion. Screen and report design is also more difficult if we
want to allow for a variable number of levels.

The important thing here, as always, is to make the options clear by
showing the subtypes and their explicit relationships as well as the more
general entity class. One way of limiting the number of levels is to use a
structured primary key, as discussed in Section 6.7.

Note that hierarchies may not be of consistent depth. For example, if not
all branches are divided into departments and not all departments are
divided into sections, the organization unit hierarchy in Figure 10.14 will be
one, two, or three deep in different places. If the DBMS does not provide
a specialized extension for hierarchy navigation, such hierarchies can be
difficult to query. In this case a query might have to be a union of three
separate queries, one to handle each depth.

A neat solution to this problem is provided if each organization unit
without a parent holds its own primary key, rather than null in the foreign
key representing the self-referencing relationship. It is then possible to
write a simple (nonunion) query that assumes the full depth (in this case
three levels).

Should you be concerned about such implementation issues during the
conceptual modeling phase? Strictly, the answer is no, but we have found

292 ■ Chapter 10 Conceptual Data Modeling

Figure 10.14 Self-referencing relationship resulting from generalization.

Organization
Unit

control

report
to

Branch

Department

Section

control

Organization Unit

report
to

report
to

control

Simsion-Witt_10 10/11/04 8:49 PM Page 292

many data modelers to be a little cavalier in their use of self-referencing
relationships, sometimes to represent quite stable two- or three-level hier-
archies. It is worth being aware that hierarchies may be difficult to query
and that you may therefore be called upon to justify your decisions and
perhaps provide some suggestions as to how the model can be queried.

10.8.2 Networks (Many-to-Many Relationships)

Networks differ from hierarchies in that each entity instance may have more
than one superior. We therefore model them using many-to-many relation-
ships, which can be resolved as discussed in Section 3.5.4.

Like hierarchical structures, they are easy to draw and not too difficult to
implement, but they can provide plenty of headaches for programmers and
users of query languages. Again, modelers frequently fail to recognize under-
lying structures that could lead to a simpler system. In particular, multiple
hierarchies are often generalized to networks without adequate consideration.
For example, it might be possible for an employee to have more than one
superior, which suggests a network structure. But further investigation might
show that individual employees could report to at most three superiorstheir
manager as defined in the organization hierarchy, a project manager, and a
technical mentor. This structure could be more accurately represented by
three hierarchies (Figure 10.15) leaving us the option of direct implementation
using three foreign keys or generalization to a many-to-many relationship.

Be careful in defining self-referencing many-to-many relationships to
ensure that they are asymmetric. The relationship must have a different
name in each direction. Figure 10.16 shows the reason. If we name the rela-
tionship “in partnership with,” we will end up recording each partnership
twice. We discuss symmetric and asymmetric relationships in more detail in
Section 14.6.1.

10.8 Hierarchies, Networks, and Chains ■ 293

Figure 10.15 Multiple hierarchies.

Employee

formally
report

to

formally
manage

act as
manager
for

have as
acting

manager

have as
project

manager

be project
manager for

Simsion-Witt_10 10/11/04 8:49 PM Page 293

294 ■ Chapter 10 Conceptual Data Modeling

Figure 10.16 Symmetry leading to duplication.

Person

be the
senior partner of

be the
junior partner of

Person

be in
partnership with

Person
Person

resolving the
many-to-many

relationship

Partnership Partnership

involve
as senior
partner

be the
senior
partner in

involve

be
involved
in

involve

be
involved
in

(a) Asymmetric
Relationship

(b) Symmetric
Relationship

involve
as junior
partner

be the
junior
partner in

be in
partnership with

Partnership Partnership

Senior
Partner

Junior
Partner

Date
Established

Person
1

Person
2

Date
Established

Anne Mary 6/2/1953 Anne Mary 6/2/1953
Fred Sue 3/8/1982 Fred Sue 3/8/1982
Anne Jane 7/5/1965 Anne Jane 7/5/1965

Mary Anne 6/2/1953
Sue Fred 3/8/1982
Jane Anne 7/5/1965

Simsion-Witt_10 10/11/04 8:49 PM Page 294

Sometimes we need to impose this asymmetry on a symmetric world, as
in Figure 10.17. Here, we deliberately make the “associated with” relation-
ship asymmetric, using an identifier (Person ID) as a means of determining
which role each entity instance plays. The identifier chosen needs to be
stable or we will have some complicated processing to do when values
change. (Stability of identifiers is discussed in Section 6.2.4.)

10.8.3 Chains (One-to-One Relationships)

Chains (sometimes called linked lists) occur far less frequently than hierar-
chies and networks. In a chain, each entity instance is associated with a
maximum of one other instance of the same entity class in either direction.
Chains are therefore modeled using one-to-one relationships. Implementation
using a foreign key presents us with the same problem as for transferable
one-to-one relationships; we end up implementing a one-to-many rela-
tionship whether we like it or not. Other mechanisms, such as unique
indexes on the foreign key attribute, will be needed to enforce the one-to-
one constraint.

A frequently used alternative is to group the participants in each chain
and to introduce a sequence number to record the order (Figure 10.18).

This is another example of deviating from the conventional implementa-
tion of relationships, but, unlike some of the other variations we have looked
at, it is usually well supported by DBMSs. Inserting a new instance in the
chain will involve resequencingan inelegant option unless we regard the
use of floating point sequence numbers (i.e., using decimals) as elegant.

10.9 One-to-One Relationships

There is little to stop us from taking any entity class and splitting it into two
or more entity classes linked by a one-to-one relationship, provided (for the

10.9 One-to-One Relationships ■ 295

Figure 10.17 Deliberate creation of asymmetry.

Person

associated
with

(lower ID)

associated
with
(higher ID)

Simsion-Witt_10 10/11/04 8:49 PM Page 295

sake of nonredundancy) that each nonkey attribute appears in only one of
the new entity classes.

The main consequence of splitting an entity class in this way is that
inserting and deleting full rows in the resulting database becomes a little
more complicated. We now have to update two or more tables instead of
one. The sacrifice in simplicity and elegance means that we should have a
good reason for introducing one-to-one relationships. Once again, there are
few absolute rules, but several useful guidelines.

10.9.1 Distinct Real-World Concepts

Be very wary of combining entity classes that represent concepts com-
monly accepted as distinct just because the relationship between them
appears to be one-to-one (e.g., Person and Passport, Driver and Racing
Car), particularly in the earlier stages of modeling. Closer examination may

296 ■ Chapter 10 Conceptual Data Modeling

Figure 10.18 Chaining and grouping.

Inspection

precede

follow

(a) Using Chain

Inspection
Series

Inspection

be
included

in

 comprise

Sequence Number

(b) Using Group and Sequence Number

Simsion-Witt_10 10/11/04 8:49 PM Page 296

suggest supertypes in which only one of the pair participates, or even that
the relationship is actually one-to-many or many-to-many. Combining the
entity classes will hide these possibilities.

The entity class Telephone Exchange provides a nice example; chances
are it can profitably be broken into entity classes representing locations,
nodes, switching equipment, buildings, and possibly more.

In many of these cases, transferability (as discussed below) will dictate
that the entity classes remain separate. Relationships that are optional in
both directions suggest entity classes that are independently important. And
look also at the cardinality; could we envisage a change to the business that
would make the relationship one-to-many or many-to-many?

10.9.2 Separating Attribute Groups

In Section 4.13.2 we discussed the situation in which a group of attributes
would be either applicable or not applicable to a particular entity instance.
For example, in a Client entity, the attributes Incorporation Date, Company
Registration No, and Employee Count might only be applicable if the client was
a company rather than a person. We saw that this situation suggested a sub-
typing strategyin this case, subtyping Client into Company Client and
Personal Client to represent the “all applicable or none applicable” rule.

But sometimes we can better handle an attribute group by removing it to
a separate entity class. For example, we might have a number of attributes
associated with a client’s credit ratingperhaps Rating, Source, Last Update
Date, Reason for Check. If these were recorded for only some clients, we
could model two subtypes: Client with Credit Rating and Client without
Credit Rating. But this seems less satisfactory than the previous example.
For a start, a given client could migrate from one entity class to another
when a credit rating was acquired. An alternative is to model a separate
Credit Rating entity class, linked to the Client entity class through a
one-to-one relationship (Figure 10.19). Note the optional and mandatory
symbols, showing that a client may have a credit rating.

Which is the better approach? The subtyping approach is based on
specialization, the one-to-one relationship on disaggregation, so they are

10.9 One-to-One Relationships ■ 297

Figure 10.19 Separate entity class for credit rating attributes.

Client
Credit
Rating

 have

apply to

Simsion-Witt_10 10/11/04 8:49 PM Page 297

fundamentally different. But both allow us to represent the constraint
that the attribute group applies to only certain instances. A few guidelines
will help.

Look at the name of the attribute group. Does it suggest an entity class
in its own right (e.g., Credit Rating) or a set of data items that applies only
to certain stable subtypes (e.g., additional company data)? In the first case,
we would prefer a one-to-one relationshipin the second, subtypes.

In Section 4.13.5 we introduced the guideline that real-world instances
should not migrate from one subtype to anotheror at least that such sub-
types would not remain as tables in the logical model. A company will not
become a person, but a client may acquire a credit rating. So, the “never
applicable to this instance” situation suggests subtyping; the “not currently
applicable to this instance” situation suggests the one-to-one approach.

Remember also that our subtyping rules restrict us to nonoverlapping
subtypes. If there is more than one relevant attribute group, we will have
trouble with the subtyping approach. But there is no limit to the number
of one-to-one relationships that an entity class can participate in. This is a
good technique to bear in mind when faced with alternative useful break-
downs into subtypes based on attribute groups.

10.9.3 Transferable One-to-One Relationships

Transferable one-to-one relationships should always be modeled as such
and never combined into a single entity class. Figure 10.20 shows a trans-
ferable one-to-one relationship between parts and bins. If we were to com-
bine the two entity classes, then transferring parts from one bin to another
would involve not only updating Bin No, but all other attributes “belonging
to” the bin.

Another way of looking at transferability is that the relationship will be
many-to-many over time.

Figure 10.20 is an excellent counterexample to the popular view that
one-to-one relationships that are mandatory in both directions should
always be reduced to a single entity class. In fact, we may want to model
three entity classes. Suppose that Bin Capacity was defined as the number of

298 ■ Chapter 10 Conceptual Data Modeling

Figure 10.20 Transferable one-to-one relationship.

Part
Type Bin

be stored
in

store

Simsion-Witt_10 10/11/04 8:49 PM Page 298

parts that could be stored in a bin (and could not be calculated from
the attributes of Bin and Part). Should we now hold Bin Capacity as an
attribute of Part or of Bin? Updating the attribute when a part moves from
one bin to another is untidy. We might want to consider modeling a sepa-
rate entity class with a key of Part No + Bin No as the most elegant solution
to the problem.

We discuss this example from a normalization perspective in Section 13.5.

10.9.4 Self-Referencing One-to-One Relationships

Self-referencing one-to-one relationships cannot be collapsed into a single
entity class. These were discussed in Section 10.8.3.

10.9.5 Support for Creativity

If splitting an entity class or combining entity classes linked by a
one-to-one relationship helps to develop a new and potentially useful
model of the business area, then there is no need for further justification.
(Of course, the professional modeler will try to look behind his or her intu-
ition to understand the original motivation for proposing the splite.g., are
there really two concepts that the business handles differently?)

The value of one-to-one relationships in fostering creativity is best
illustrated by an example. Figure 10.21 shows a simple banking model,
including provision for regular transfers of funds from one account
to another.

There does not appear to be much scope for generalization or special-
ization here. But there is an opportunity to break Account into two parts—
the “accounting part,” which is basically the balance, and the “contractual
part,” which covers interest rates, fees, and so forthgiving us the model in
Figure 10.22. We now have some more material for generalization. We might

10.9 One-to-One Relationships ■ 299

Figure 10.21 Funds transfer model.

Account
Funds

Transfer
Agreement

be the
source in

specify as
source

be the
destination in

specify as
destination

Simsion-Witt_10 10/11/04 8:49 PM Page 299

300 ■ Chapter 10 Conceptual Data Modeling

Figure 10.22 Separating components of account.

Account
(Financial
Position)

Funds
Transfer

Agreement

be the
source in

specify as
source

be the
destination in

specify as
destination

Account
Operating
Contract

 hold financial
position of

 be accounted
for through

choose to regard both account operating contracts and funds transfer
agreements as agreements between the bank and the customer (Figure 10.23);
we are now on our way to exploring a new view of data. Many banks have,
in fact, implemented systems based on this new view, usually after a far
longer and more painful creative process than described here!

Of course, you do not need to use one-to-one relationships to arrive
at a new view. But they often provide a starting point and can be particu-
larly useful “after the event” in showing how a new model relates to the
old. But on what basis do we decide to break an entity class into two
entity classes linked by a one-to-one relationship? Or, conversely, on what
basis do we combine the entity classes participating in a one-to-one
relationship?

10.10 Developing Entity Class Definitions

Definitions, even if initially very rough, should be noted as entity classes
are identified, and written up more fully at the end of each session or day.
It is surprising how much disagreement can arise overnight!

One useful way of getting to a first-cut definition is to write down a few
candidate subtypes or examples, some of which are expected to fit the
ultimate definition, and some of which are expected to be outside the

Simsion-Witt_10 10/11/04 8:49 PM Page 300

definition or “borderline.” Then take a vote of participants in the modeling
session: include or exclude? This is a very effective way of highlighting
areas of agreement and disagreement, and it often produces some sur-
prises. For the entity class Asset, we might suggest Building, Vehicle,
Consumable, Employee, Cash on Hand, and Bank Account Balance as
potential subtypes. A vote might unanimously support inclusion of
Building, Vehicle, Cash, and Bank Account Balance and exclusion of
Employee, but disagreement may arise concerning Consumable. Further
discussion might indicate that some participants were assuming a strict
accounting definition of asset, while others (perhaps unfamiliar with
accounting) have taken a more flexible view. Once any disagreements are
resolved, the examples can be included permanently in the definition.

We provide some rules for forming entity class definitions in Section
10.16.2.

10.11 Handling Exceptions

One of the frustrations of data modeling is to produce a model that seems
to handle every case except one or two. In general we should welcome

10.11 Handling Exceptions ■ 301

Figure 10.23 Generalizing customer agreements.

Account
(Financial
Position)

Funds
Transfer

Agreement

Customer
Agreement

be the
source in

specify as
source

be the
destination in

specify as
destination

Account
Operating
Contract

account
for

 be accounted
for through

Simsion-Witt_10 10/11/04 8:49 PM Page 301

these exceptions. Better to discover them now than to have them appear
as new requirements after the database is built. Usually we face a choice:

1. Make the model more flexible by generalizing the structures to accom-
modate the exceptions. This often makes the model more difficult to
understand by introducing obscure terminology and may make the
common cases more complicated to specify and process.

2. Add new structures specifically to cope with the exceptions. The result may
be a more complex model and less elegant processing when common
cases and exceptions need to be handled together (e.g., in calculating
totals).

3. Optimize for the common situation, and accept that exceptions will not
be as well handled. Perhaps most wine can be classified as being from
one vintage only or from unspecified vintages (“nonvintage”), but a
very few wines are blends from specific years. We could record these
exceptions with a vintage year of (say) “2001/2003”—possibly a reason-
able compromise between complexity of structure and processing. (You
might find it a useful exercise to reflect on how you would explain the
implications of this choice to a business stakeholder.)

But sometimes the exceptions are historical and unlikely to recur. In
these situations, the best decision may require intervention at the business
level. Perhaps those few unusual insurance policies can be paid out at
less cost to the business than that of accommodating them in the informa-
tion system. Perhaps they could be handled outside the computerized
system. This solution may be attractive from an operational, day-to-day, pro-
cessing perspective, but it can play havoc with reporting as the exceptions
have to be “added in.” It is the data modeler’s duty to suggest these options,
rather than assuming that every problem requires a data modeling solution.

The option of deferring the exceptions to a later stage of systems devel-
opment is usually unrealistic, though often proposed as an easy way to
avoid facing the problem. If the data model cannot handle the exceptions
from the outset, we will not be able to accommodate them later without
database changes and probable disruption to existing programs.

10.12 The Right Attitude

We began this first part of the chapter by looking at some lessons from
design in general. We conclude with a look at “attitude,” specifically in the
context of data modeling.

We are indebted to Clare Atkins of Nelson Marlborough Institute of
Technology in New Zealand—who has taught data modeling for many
years—for suggesting some of the factors that make up a good attitude to
the data modeling task.

302 ■ Chapter 10 Conceptual Data Modeling

Simsion-Witt_10 10/11/04 8:49 PM Page 302

10.12.1 Being Aware

A big part of improving your modeling skill and being able to explain your
decisions is simply being conscious of what you are doing. As you model,
it is worth asking:

■ What process am I following?
■ What heuristics am I using?
■ What patterns am I using?
■ What do I not know yet? Where am I guessing?
■ What have I done that I could use again? (Write it down!)
■ How did I do? What would I do differently next time?

If you want to be forced to do all of these things, take any opportunity
to teach an “apprentice” modeler and explain to him or her what you
are doing as you go. Meetings with a mentor or experienced modeler in a
quality assurance role can also help.

10.12.2 Being Creative

If we have not stressed it enough already, modeling is a creative process.
You need to ask:

■ Am I deliberately creating alternative models, or am I getting “anchored”
on one design?

■ Have I stepped back from the problem, or am I still modeling the
traditional view?

■ Have I “fallen in love” with a particular design at the expense of
others?

■ Am I trying to force this model to fit a pattern?
■ Why do I prefer this design to another?
■ Have I asked for a second or third opinion and opened my mind to it?

10.12.3 Analyzing or Designing

Data modeling is, overall, a design activity, but it includes the task of under-
standing requirements. There is a time to ask and to listen, a time to propose,
and even a time to persuade. What is important is recognizing which you
are doing (analysis or design) to ensure that adequate attention is given to
both. Literal modeling (the model is the user requirement) is one extreme;

10.12 The Right Attitude ■ 303

Simsion-Witt_10 10/11/04 8:49 PM Page 303

uninformed design (the model ignores the user requirement) is the other.
The key questions are:
■ Am I balancing analysis and design?
■ Am I analyzing or designing right now?

10.12.4. Being Brave

Designers, particularly if they are proposing an unfamiliar or radical solution,
need to have a level of self-confidence. The requirement to get others’
agreement to a model should not cause you to neglect your professional
duty to produce the highest quality model (and we use the word “quality”
in the sense of “fit for purpose”). Rather, it should alert you to the need to
present the model and its rationale clearly and persuasively.
You need to ask:

■ Do I believe in the model?
■ Are there areas of which I am unsure, and am I prepared to admit this?
■ Can I explain how the model works?
■ Can I explain the design decisions?
■ Can I explain how the model provides a better solution than alternatives?
■ Am I prepared to modify the model in the face of sound criticism?

10.12.5 Being Understanding and Understood

Many a data modeler has been frustrated to see a quality solution or
approach rejected in favor of one proposed by someone with more power
or persuasive skills. (This does not just happen to data modelers!)
Data modelers need to be aware of the context in which they are operat-
ing. If you are a student studying data modeling and this sounds irrelevant
to you, take note that one of our very experienced colleagues helped a stu-
dent with an assignment, and the student was failed. The model was too
sophisticated for the context, and, by the time the professional modeler
entered into an argument with the professor, there was too much “face” at
stake!

You should be asking:

■ How will this model be used? Who will use it?
■ Have I involved all stakeholders? Will anyone say, “Why wasn’t I asked?”
■ Can I communicate the model to all stakeholders?

304 ■ Chapter 10 Conceptual Data Modeling

Simsion-Witt_10 10/11/04 8:49 PM Page 304

■ Will anyone have reasons for not liking the model (too hard to program
against, difficult to understand . . .)?

■ Is there any history in the organization or project of data models being
misunderstood, ignored, or rejected?

■ Will the model surprise anyone? Will anyone have to change their plans?

10.13 Evaluating the Model

Having developed one or more candidate conceptual models, we still need
to select the most appropriate alternative and verify that it meets the busi-
ness’ needs. If we do the job thoroughly at this point, we will then need
only to review the design decisions that we make as we proceed from the
conceptual to logical and physical models, rather than reviewing those later
models in their entirety.

If we have developed more than one candidate model, our first task is
to select the best option. In practice, this situation seldom occurs; alterna-
tive models are usually eliminated as modeling progresses, typically on the
basis of elegance and simplicity in meeting the requirements. (In architec-
ture, it would be unusual to arrive at more than one detailed design.)
However, if there are still two or more candidates in contention, it will be
necessary to discuss with the stakeholders the trade-offs they represent and
reach a decision as to which one to use.

The trade-off between stability and enforcement of rules can be deferred
to some extent, as the model at this stage will still contain subtypes; the
decision as to which level(s) of generalization to implement takes place at
the “conceptual to logical” stage, described in the next chapter.

In reviewing the model, we are asking stakeholders to verify that:

1. It is complete, meaning all business requirements are met.

2. Each component4 of the model is correctly defined.

3. It does not contain any components that are not required.

In our experience, this level of verification is often not achieved. The
quality assurance of the conceptual model is frequently carried out in a
fairly haphazard manner even when requirements gathering and modeling
have been performed rigorously. Typically, some diagrams and supporting
text are supplied to stakeholders in the proposed system, who raise any
issues that are obvious to them. Once those issues are addressed, the model
becomes part of a signed-off specification.

10.13 Evaluating the Model ■ 305

4In this context we are using the term “component” to refer to all artifacts in a model, such as
entity classes, attributes, associations/relationships, and constraints.

Simsion-Witt_10 10/11/04 8:49 PM Page 305

Several factors can contribute to this less-than-rigorous scenario:

1. The desire to achieve a formal sign-off and get on with the project; this
in turn may be a result of not allowing sufficient time for review.

2. A reluctance on the part of the modelers to encourage criticism of their
work.

3. Failure on the part of the reviewers to fully understand the model and
its implications.

In the remainder of this chapter, we focus on the last of these factors
and look at a number of techniques and approaches for communicating
with people who are not fluent in the language of modeling. We present
the last of thesethe translation of the model into plain language
assertionsin some detail, and we recommend it as the central, mandatory
technique to be supported by the other techniques at the modeler’s
discretion.

10.14 Direct Review of Data Model Diagrams

The traditional method of data model review is to present the data model
diagram with supporting attribute lists and definitions.

Those of us who work with data models on a daily basis can easily
forget how difficult it is for others to understand them. Research has shown
clearly that nonspecialists who have been shown data modeling conven-
tions cannot be relied upon to interpret models correctly.5 Our own
experience supports this.

Consider the following:

1. It is not uncommon for reviewers to make such fundamental errors as
interpreting lines as data flows (particularly if modeling variants using
arrowheads are used).

2. Some discipline is required to ensure that all components of a two-
dimensional diagram are covered.

3. There is always a trade-off between including detail on the diagram
and recording it in a separate textual document. On the one hand, the
cluttered appearance of even a moderately complex model when all
attributes are shown (let alone all the business rules to which those
attributes are subject) can act as a strong disincentive to review the

306 ■ Chapter 10 Conceptual Data Modeling

5See Shanks, G., Nuredini, J., Tobin, D., Moody, D., and Weber, R. Representing Things and
Properties in Conceptual Modelling: An Empirical Evaluation, Proc. European Conference on
Information Systems, Naples, June 2003.

Simsion-Witt_10 10/11/04 8:49 PM Page 306

diagram for a person who does not deal with such diagrams as part of
their daily work.

4. Splitting a complex model (e.g., into subject areas) or removing detail
from the diagram may make the model less intimidating, but there is a
risk that reviewers will comment on “missing” detail, only to find that
they did not look in the right place.

5. Some diagramming conventions (including UML and some variants of
the E-R notation) include detail that is not relevant to business reviewers—
in particular, information relevant only to physical schema or process
design.

There is a simple lesson here: do not send out the data model to stake-
holders asking for their feedback. Including an explanation of the dia-
gramming conventions does not alleviate the problem; on the contrary it
constitutes an admission that we are expecting people to understand a
model immediately after learning the language. Remember too that if
reviewers have to be told that their comments are based on misunder-
standings, they will quickly lose interest in contributing.

“Walking through” a data model diagram with the stakeholder(s) is a big
improvement and provides an opportunity to explain issues and design
decisions that span more than one entity class or relationship, and to test
your understanding of the requirements on which the model is explicitly or
implicitly based. You should interpret the model in business terms to
the user, rather than simply presenting the conventions and working
through entity class by entity class. In particular, discuss design decisions
and their rationale, instead of presenting your best solution without
background.

For example: “This part of the model is based around the ‘Right of Abode’
concept rather than the various visas, passports, and special authorities.
We’ve done this because we understand that new ways of authorizing
immigrants to stay in the country may arise during the life of the system. Is
this so? Here is how we’ve defined Right of Abode. Are there any ways of
staying in the country that wouldn’t fit this definition? We also thought of
using a ‘travel document’ concept instead, but rejected it because an
authority doesn’t always tie to one document only, and perhaps there
might not be a document at all in some cases. Did we understand that
correctly?”

Having walked through the model, it now makes sense to let the stake-
holder take it away if he or she wants to think about it further. In this
situation (by contrast to simply sending the data model out) an explanation
of the diagramming conventions such as that in Figure 10.24 does make a
useful addition to the documentation.

A final warning: if the reviewers do not find something wrong with the
model, or do not prompt you to improve it in some way, you should be
very suspicious about their level of understanding.

10.14 Direct Review of Data Model Diagrams ■ 307

Simsion-Witt_10 10/11/04 8:49 PM Page 307

10.15 Comparison with the Process Model

One of the best means of verifying a data model is to ensure that it includes
all the necessary data to support the process model. This is particularly
effective if the process model has been developed relatively independently,
as it makes available a second set of analysis results as a cross-check.
(This is not an argument in favor of data and process modelers working
separately; if they work effectively together, the verification will take place
progressively as the two models are developed.)

There will be little value in checking against the process model if an
extreme form of data-driven approach has been taken and processes have
been mechanically derived from the data model.

There are a number of formal techniques for mapping process models
against data models to ensure consistency. They include matrices of processes
mapped against entity classes, entity life cycles, and state transition diagrams.

Remember however, that the final database may be required to support
processes as yet undefined and, hence, not included in the process model.
Support for the process model is therefore a necessary but not sufficient
criterion for accepting a data model.

10.16 Testing the Model with Sample Data

If sample data is available, there are few better ways of communicating and
verifying a data model than to work through where each data item would

308 ■ Chapter 10 Conceptual Data Modeling

Figure 10.24 A typical guide to notations used in a data model.

Mandatory relationship

Optional relationship

Entity

Measurement Unit Claim Payment

Claim Payment/
Recovery Type

Claim Payment
Type

Claim Recovery
Type

Subtype (inner box) inheriting attributes &
relationships from supertype (outer box)

Simsion-Witt_10 10/11/04 8:49 PM Page 308

be held. The approach is particularly appropriate when the data model
represents a new and unfamiliar way of organizing data: fitting some
existing data to the new model will provide a bridge for understanding, and
may turn up some problems or oversights.

We recall a statistical analysis system that needed to be able to cope with
a range of inputs in different formats. The model was necessarily highly
generalized and largely the work of one specialist modeler. Other partici-
pants in its development were at least a little uncomfortable with it. Half an
hour walking through the model with some typical inputs was far more
effective in communicating and verifying the design than the many hours
previously spent on argument at a more abstract level (and it revealed areas
needing more work).

10.17 Prototypes

An excellent way of testing a sophisticated model, or part of a model, is to
build a simple prototype. Useful results can often be achieved in a few
days, and the exercise can be particularly valuable in winning support and
input from process modelers, especially if they have the job of building
the prototype.

One of the most sophisticated (and successful) models in which we
have been involved was to support a product management database and
associated transaction processing. The success of the project owed much to
the early production of a simple PC prototype, prior to the major task of
developing a system to support fifteen million accounts. A similar design,
which was not prototyped, failed at a competitor organization, arguably
because of a lack of belief in its workability.

10.18 The Assertions Approach

In this section, we look at a rigorous technique for reviewing the detail of
data models by presenting them as a list of plain language assertions. In
Section 3.5, we saw that if we named a relationship according to some
simple rules, we could automatically generate a plain language statement
that fully described the relationship, including its cardinality and optionality,
and, indeed, some CASE products provide this facility.

The technique described here extends the idea to cover the entire data
model diagram. It relies on sticking to some fairly simple naming conven-
tions, consistent with those we have used throughout this book. Its great
strength is that it presents the entire model diagram in a nondiagrammatic
linear form, which does not require any special knowledge to navigate
or interpret. We have settled, after some experimentation, on a single

10.18 The Assertions Approach ■ 309

Simsion-Witt_10 10/11/04 8:49 PM Page 309

numbered list of assertions with a check box against each in which review-
ers can indicate that they agree with, disagree with, or do not understand
the assertion.

The assertions cover the following metadata:

1. Entity classes, each of which may be a subtype of another entity
class

2. Relationships with cardinality and optionality at each end (the technique
is an extension of that described in Section 3.5)

3. Attributes of entity classes (and possibly relationships), which may be
marked as mandatory or optional (and possibly multivalued)

4. Intersection entity classes implementing binary “many-to-many” relation-
ships or n-ary relationships

5. Uniqueness constraints on individual attributes or subsets of the attributes
and relationships associated with an entity class

6. Other constraints.

10.18.1 Naming Conventions

In order to be able to generate grammatically sensible assertions, we have
to take care in naming the various components of the model. If you are fol-
lowing the conventions that we recommend, the following rules should be
familiar to you:

■ Entity class names must be singular and noncollective, (e.g., Employee
or Employee Transaction but not Employees, Employee Table, nor
Employee History).

■ Entity class definitions must be singular and noncollective, (e.g., for an
entity class named Injury Nature, “a type of injury that can be incurred
by a worker,” not “a reference list of the injuries that can be incurred by
a worker,” nor “injuries sustained by a worker”). They should also be
indefinite, (i.e., commencing with “a” or “an” rather than “the”hence
“a type of injury incurred by a worker” rather than “the type of injury
incurred by a worker”).

■ Relationship names must be in infinitive form, (e.g., “deliver” rather than
“delivers” or “deliverer” and “be delivered by” rather than “is delivered
by” or “delivery”). There is an alternative set of assertion forms to sup-
port attributes of relationships; if this is used, alternative relationship
names must also be provided in the 3rd person singular form (“delivers,”
“is delivered by”).

■ Attribute definitions must refer to a single instance, (e.g., for an attribute
named Total Price, “the price paid inclusive of tax” not “the prices paid

310 ■ Chapter 10 Conceptual Data Modeling

Simsion-Witt_10 10/11/04 8:49 PM Page 310

inclusive of tax”). They should also be definite, (i.e., commencing with
“the” rather than “a” or “an” hence “the price paid inclusive of tax”
rather than “a price paid inclusive of tax”).

■ Attribute and entity class constraints must start with “must” or “must not”
and any other data item referred to should also be qualified so as to
make clear precisely which instance of that data item we are referring
to, (e.g., “[End Date] must not be earlier than the corresponding Start
Date” rather than “must not be earlier than Start Date”).

10.18.2 Rules for Generating Assertions

In the assertion templates that follow:

1. The symbols < and > are used to denote placeholders for which the
nominated metadata items can be substituted.

2. The symbols { and } are used to denote sets of alternative wordings
separated by the | symbol, (e.g., {A|An} indicates that either “A” or “An”
may be used). Which alternative is used may depend on:

a. The context, (e.g., “A” or “An” is chosen to correspond to the name
that follows).

b. A property of the component being described, (e.g., “must” or “may”
is chosen depending on the optionality of the relationship being
described).

The examples should make these conventions clear.

10.18.2.1 Entity Class Assertions

For each entity class, we can make an assertion of the form:

“{A|An} <Entity Class Name> is <Entity Class Definition>.”
(e.g., “A Student is an individual person who has enrolled in a course
at Smith College.”)

For each entity class that is marked as a subtype (subclass) of another
entity class, we can make an assertion of the form:

“{A|An} <Entity Class Name> is a type of <Superclass Name>, namely
<Entity Class Definition>.”

(e.g., “A Distance Learning Student is a type of Student, namely a
student who does not attend classes in person but who uses the
distance learning facilities provided by Smith College.”)

10.18 The Assertions Approach ■ 311

Simsion-Witt_10 10/11/04 8:49 PM Page 311

10.18.2.2 Relationship Assertions

For each relationship, we can make an assertion of the form:
“Each <Entity Class 1 Name> {must|may} <Relationship Name> {just
one <Entity Class 2 Name>|one or more <Entity Class 2 Plural
Name>} that {may|must not}6 change over time.”
(e.g., “Each Professor may teach one or more Classes that may
change over time.”)

For recursive relationships, however, this assertion type reads better if
worded as follows

“Each <Entity Class 1 Name> {must|may} <Relationship Name>
{just one other <Entity Class 2 Name>|one or more other
<Entity Class 2 Plural Name>} that {may|must not} change
over time.”
(e.g., “Each Employee may report to just one other Employee.”)

We found in practice that the form of this assertion for optional
relationships (i.e., with “may” before the relationship name) was not
strong enough to alert reviewers who required that the relationship be manda-
tory, so an additional assertion was added for each optional relationship:

“Not every <Entity Class 1 Name> has to <Relationship Name>
{{a|an} <Entity Class 2 Name>|<Entity Class 2 Plural Name>}.”
(nonrecursive) or
“Not every <Entity Class 1 Name> has to <Relationship Name>
{another <Entity Class 2 Name>|other <Entity Class 2 Plural
Name>}.” (recursive)
(e.g., “Not every Organization Unit has to consist of other
Organization Units.”)

We have also found that those relationships that are marked as optional
solely to cope with population of one entity class occurring before the other
(e.g., a new organization unit is created before employees are reassigned to
that organization unit) require an additional assertion of the form:

“Each <Entity Class 1 Name> should ultimately <Relationship
Name> {{a|an} <Entity Class 2 Name>|<Entity Class 2 Plural Name>}.”
(e.g., “Each Organization Unit should ultimately be assigned
Employees.”)

312 ■ Chapter 10 Conceptual Data Modeling

6Depending on whether the relationship is transferable or non-transferable.

Simsion-Witt_10 10/11/04 8:49 PM Page 312

10.18.2.3. Attribute Assertions

For each single-valued attribute of an entity class, we can make assertions7

of the form:

“Each <Entity Class Name> {must|may} have {a|an} <Attribute Name>
which is <Attribute Definition>.

No <Entity Class Name> may have more than one <Attribute
Name>.”
(e.g., “Each Student must have a Home Address, which is the address
at which the student normally resides during vacations.

No Student may have more than one Home Address.”)

Note that the must/may choice is based on whether the attribute is
marked as optional. Again, the “may” form of this assertion is not strong
enough to alert reviewers who required that the attribute be mandatory, so
we added for each optional attribute:

“Not every <Entity class Name> has to have {a|an} <Attribute Name>.”
(e.g., “Not every Service Provider has to have a Contact E-mail Address.”)

This particular type of assertion highlights the importance of precise
assertion wording. Originally this assertion type read:

“{A|An} <Entity Class Name> does not have to have {a|an} <Attribute
Name>.”
(e.g., “A Service Provider does not have to have a Contact E-mail Address.”)

However, that led to one reviewer commenting, “Yes they do have to
have one in case they advise us of it.” Clearly that form of wording allowed
for confusion between provision of an attribute for an entity class and
population of that attribute.

If the model includes multivalued attributes, then for each such attribute
we can make assertions8 of the form:

“Each <Entity Class Name> {must|may} have <Attribute Plural Name>
which are <Attribute Definition>.

{A|An} <Entity Class Name> may have more than one <Attribute
Name>.”
(e.g., “Each Flight may have Operating Days, which are the days on
which that flight operates.

Each Flight may have more than one Operating Day.”)

10.18 The Assertions Approach ■ 313

7These are not alternatives; both assertions must be made.
8Again these are not alternatives; both assertions must be made.

Simsion-Witt_10 10/11/04 8:49 PM Page 313

If the model includes attributes of relationships, then for each single-
valued attribute of a relationship, we can make assertions of the form:

“Each combination of <Entity Class 1 Name> and <Entity Class 2
Name> {must|may} have {a|an} <Attribute Name> which is <Attribute
Definition>.

No combination of <Entity Class 1 Name> and <Entity Class 2
Name> may have more than one <Attribute Name>.”
(e.g., “Each combination of Student and Course must have an
Enrollment Date, which is the date on which the student enrolls in
the course.

No combination of Student and Course may have more than one
Enrollment Date.”)

Similarly, if the model includes multivalued attributes as well as attrib-
utes of relationships, then for each such attribute, we can make assertions9

of the form:

“Each combination of <Entity Class 1 Name> and <Entity Class 2
Name> {must|may} have <Attribute Plural Name> which are <Attribute
Definition>.

A combination of <Entity Class 1 Name> and <Entity Class 2
Name> may have more than one <Attribute Name>.”
(e.g., “Each combination of Student and Course may have Assignment
Scores which are the scores achieved by that student for the assign-
ments performed on that course.

A combination of Student and Course may have more than one
Assignment Score.”)

All assertions about relationships we have previously described relied
on the relationship being named in each direction using the infinitive form
(the form that is grammatically correct after “may” or “must”); if a 3rd
person singular form (“is” rather than “be,” “reports to” rather than “report
to”) of the name of each relationship with attributes is also recorded, alter-
native assertion forms are possible. If the attribute is single-valued:

“Each <Entity Class 1 Name> that <Relationship Alternative Name>
{a|an} <Entity Class 2 Name> {must|may} have {a|an} <Attribute
Name> which is <Attribute Definition>.

No <Entity Class 1 Name> that <Relationship Alternative Name>
{a|an} <Entity Class 2 Name> may have more than one <Attribute
Name> for that <Entity Class 2 Name>.”

314 ■ Chapter 10 Conceptual Data Modeling

9Again these are not alternatives; both assertions must be made.

Simsion-Witt_10 10/11/04 8:49 PM Page 314

(e.g., “Each Student that enrolls in a Course must have an Enrollment
Date, which is the date on which the student enrolls in the course.

No Student that enrolls in a Course may have more than one
Enrollment Date for that Course.”)

If the attribute is multivalued:

“Each <Entity Class 1 Name> that <Relationship Alternative Name>
{a|an} <Entity Class 2 Name> {must|may} have <Attribute Plural
Name> which are <Attribute Definition>.

A <Entity Class 1 Name> that <Relationship Alternative Name>
{a|an} <Entity Class 2 Name> may have more than one <Attribute
Name> for that <Entity Class 2 Name>.”
(e.g., “Each Student that enrolls in a Course may have Assignment
Scores, which are the scores achieved by that student for the
assignments performed on that course.

Each Student that enrolls in a Course may have more than one
Assignment Score for that Course.”)

Note that each derived attribute should include in its <Attribute
Definition> the calculation or derivation rules for that attribute.

If the model includes the attribute type of each attribute (see Section 5.4),
then for attribute of an entity class we can make an assertion of the form:

“The <Attribute Name> of {a|an} <Entity Class Name> is (and exhibits
the properties of) {a|an} <Attribute Type Name>.”
(e.g., “The Departure Time of a Flight is (and exhibits the properties of)
a TimeOfDay.”)

The document containing the assertions should then contain in its front-
matter a list of all attribute types used and their properties. If these are
negotiable with stakeholders they should be included as assertions, (i.e.,
each should be given a number and a check box).

10.18.2.4. Intersection Assertions

There are three types of intersection entity class to consider:

1. Those implementing a binary many-to-many relationship for which only
one combination of each pair of instances is allowed (i.e., if imple-
mented in a relational database, the primary key would consist only of
the foreign keys of the tables representing the two associated entity
classes). The classic example is Enrollment where each Student may
only enroll once in each Course.

10.18 The Assertions Approach ■ 315

Simsion-Witt_10 10/11/04 8:49 PM Page 315

2. Those implementing a binary many-to-many relationship for which
more than one combination of each pair of instances is allowed (i.e., if
implemented in a relational database the primary key would consist not
only of the foreign keys of the tables representing the two associated
entity classes, but also an additional attribute, usually a date). The classic
example is Enrollment where a Student may enroll more than once in
each Course.

3. Those implementing an n-ary relationship.

For each attribute of an intersection entity class of the first type, we can
make assertions10 of the form:

“There can only be one <Data Item Name> for each combination
of <Associated Entity Class 1 Name> and <Associated Entity
Class 2 Name>.

For any particular <Associated Entity Class 1 Name> a different
<Data Item Name> can occur for each <Associated Entity Class 2
Name>.

For any particular <Associated Entity Class 2 Name> a different <Data
Item Name> can occur for each <Associated Entity Class 1 Name>.”
(e.g., “There can only be one Conversion Factor for each combination of
Input Measurement Unit and Output Measurement Unit.

For any particular Input Measurement Unit a different Conversion
Factor can occur for each Output Measurement Unit.

For any particular Output Measurement Unit a different Conversion
Factor can occur for each Input Measurement Unit.”)

Note that <Data Item Name> can be:

1. An attribute name

2. The name of an entity class associated with the intersection entity class
via a nonidentifying relationship.11

For each attribute of an intersection entity class of the second or third
type, we can make assertions12 of the form:

“There can only be one <Data Item Name> for each combination of
<Identifier Component 1 Name>, <Identifier Component 2 Name>, . . .
and <Identifier Component n Name>.

316 ■ Chapter 10 Conceptual Data Modeling

10Again, these are not alternatives; all assertions must be made.
11For example the intersection entity class Enrollment may have identifying relationships to
Student and Course but a nonidentifying relationship to Payment Method and attributes
of Enrollment Date and Payment Date. <Data Item Name> can refer to any of those last three.
12Again these are not alternatives; all assertions must be made.

Simsion-Witt_10 10/11/04 8:49 PM Page 316

For any particular combination of <Identifier Component 1 Name>
. . . and <Identifier Component n-1 Name> a different <Data Item
Name> can occur for each <Identifier Component m Name>.”

Note that:

1. There is an <Identifier Component Name> for each part of the identifier
of the intersection entity class, and it is expressed as one of:

a. The name of an entity class associated with the intersection entity
class via an identifying relationship

b. The name of the attribute included in the identifier of the intersection
entity class.

2. An assertion of the second form above must be produced for each iden-
tifier component of each intersection entity class, in which the name of
that identifier component is substituted for <Identifier Component m
Name>, and all other identifier components appear in the list following
“combination of.”

Thus, in the case of Enrollment where a Student may enroll more than
once in each Course:

“There can only be one Achievement Score for each combination of
Student, Course, and Enrollment Date.

For any particular combination of Course and Enrollment Date, a
different Achievement Score can occur for each Student.

For any particular combination of Student and Enrollment Date, a
different Achievement Score can occur for each Course.

For any particular combination of Student and Course, a different
Achievement Score can occur for each Enrollment Date.”

10.18.2.5. Constraint Assertions

For each attribute of an entity class on which there is a uniqueness con-
straint, we can make an assertion of the form:

“No two <Entity Class Plural Name> can have the same <Attribute
Name>.”
(e.g., “No two Students can have the same Student Number.”)

For each set of data items of an entity class on which there is a
uniqueness constraint, we can make an assertion of the form:

“No two <Entity Class Plural Name> can have the same combina-
tion of <Data Item 1 Name>, <Data Item 2 Name>, . . . and <Data
Item n Name>.”

10.18 The Assertions Approach ■ 317

Simsion-Witt_10 10/11/04 8:49 PM Page 317

(e.g., “No two Payment Rejections can have the same combination of
Payment Transaction and Payment Rejection Reason.”)

Note that each <Data Item Name> can be:

1. An attribute name

2. The name of another entity class associated with this entity class via a
relationship.

For each other constraint13 on an attribute, we can make an assertion of
the form:

“The <Attribute Name> of {a|an} <Entity Class Name> <Attribute
Constraint>.”

As these can vary considerably in their syntax, we provide a number of
examples:

“The Unit Price of a Stock Item must not be negative.”
“The End Date & Time of an Outage Period must be later than the

Start Date & Time of the same Outage Period.”
“The Alternative Date of an Examination must be entered if the

Deferral Flag is set but must not be entered if the Deferral Flag is not set.”
“The Test Day of a Test Requirement must be specified if the Test

Frequency is Weekly, Fortnightly, or Monthly. If the Test Frequency is
Monthly, this day can be either the nth day in the month or the nth
occurrence of a specified day of the week.”

“The Test Frequency of a Test Requirement may be daily, weekly,
fortnightly, monthly, a specified number of times per week or year, or
every n days.”

The last example shows how a category attribute having a defined
discrete set of values can be documented for confirmation by reviewers.

For each other constraint on an entity class, we can make an assertion
of the form:

“{A|An} <Entity Class Name> <Entity Class Constraint>.”
(e.g., “A Student Absence may not overlap in time another Student
Absence for the same Student.”)

It can also be useful to use this template to include additional statements
to support design decisions, such as:

318 ■ Chapter 10 Conceptual Data Modeling

13Note that these may exist in many forms, as described in Chapter 14.

Simsion-Witt_10 10/11/04 8:49 PM Page 318

“A Sampling/Analysis Assignment covers sampling and/or analysis
relating to all Sampling Points at one or more Plants, therefore there is
no need to identify which Sampling Points at a Plant are covered by
an Assignment.”

10.19 Summary

Data modeling is a design discipline. Data modelers tend to adapt generic
models and standard structures, rather than work from first principles.
Innovative solutions may result from employing generic models from other
business areas. New problems can be tackled top-down from very generic
supertypes, or bottom-up by modeling representative areas of the problem
domain and generalizing.

Verification of the conceptual model requires the informed participation
of business stakeholders. Direct review of data model diagrams is not
sufficient: it needs to be supplemented by other techniques, which can
include explanation by the modeler, comparison with the process model,
testing with sample data, and development of prototypes. Plain language
assertions, generated directly from metadata, provide a powerful way of
presenting a model in a form suitable for detailed verification.

10.19 Summary ■ 319

Simsion-Witt_10 10/11/04 8:49 PM Page 319

This page intentionally left blank

Chapter 11
Logical Database Design

“Utopia to-day, flesh and blood tomorrow.”
– Victor Hugo, Les Miserables

11.1 Introduction

If we have produced a conceptual data model and had it effectively reviewed
and verified as described in Chapter 10, the next step is to translate it into a
logical data model suitable for implementation using the target DBMS.

In this chapter we look at the most common situation (in which the
DBMS is relational) and describe the transformations and design decisions
that we need to apply to the conceptual model to produce a logical model
suitable for direct implementation as a relational database. As we shall see
in Chapter 12, it may later be necessary to make some changes to this initial
relational model to achieve performance goals; for this purpose we will
produce a physical data model.

The advantages of producing a logical data model as an intermediate
deliverable rather than proceeding directly to the physical data model are:

1. Since it has been produced by a set of well-defined transformations from
the conceptual data model, the logical data model reflects business infor-
mation requirements without being obscured by any changes required
for performance; in particular, it embodies rules about the properties of
the data (such as functional dependencies, as described in Section 2.8.1).
These rules cannot always be deduced from a physical data model,
which may have been denormalized or otherwise compromised.

2. If the database is ported to another DBMS supporting similar structures
(e.g., another relational DBMS or a new version of the same DBMS
having different performance properties), the logical data model can be
used as a baseline for the new physical data model.

The task of transforming the conceptual data model to a relational logical
model is quite straightforwardcertainly more so than the conceptual mod-
eling stageand is, even for large models, unlikely to take more than a few
days. In fact, many CASE tools provide facilities for the logical data model to
be generated automatically from the conceptual model. (They generally

321

Simsion-Witt_11 10/11/04 8:51 PM Page 321

achieve this by bringing forward some decisions to the conceptual model-
ing stage, and/or applying some default transformation rules, which may
not always provide the optimum result.)

We need to make a number of transformations; some of these lend
themselves to alternatives and therefore require decisions to be made,
while others are essentially mechanical. We describe both types in detail in
this chapter. Generally the decisions do not require business input, which
is why we defer them until this time.

If you are using a DBMS that is not based on a simple relational model,
you will need to adapt the principles and techniques described here to suit
the particular product. However, the basic Relational Model currently rep-
resents the closest thing to a universal, simple view of structured data for
computer implementation, and there is a good case for producing a rela-
tional data model as an interim deliverable, even if the target DBMS is not
relational. From here on, unless otherwise qualified, the term “logical
model” should be taken as referring to a relational model.

Similarly, if you are using a CASE tool that enforces particular transfor-
mation rules, or perhaps does not even allow for separate conceptual and
logical models, you will need to adapt your approach accordingly.

In any event, even though this chapter describes what is probably the
most mechanical stage in the data modeling life cycle, your attitude should
not be mechanistic. Alert modelers will frequently uncover problems and
challenges that have slipped through earlier stages, and will need to revisit
requirements or the conceptual model.

The remainder of this chapter is in three parts.
The next section provides an overview of the transformations and design

decisions in the sequence in which they would usually be performed.
The following sections cover each of the transformations and decisions

in more detail. A substantial amount of space is devoted to subtype imple-
mentation, a central decision in the logical design phase. The other critical
decision in this phase is the definition of primary keys. We discussed the
issues in detail in Chapter 6, but we reiterate here: poor choice of primary
keys is one of the most common and expensive errors in data modeling.

We conclude the chapter by looking at how to document the resulting
logical model.

11.2 Overview of the Transformations
Required

The transformations required to convert a conceptual data model to a logical
model can be summarized as follows:

1. Table specification:
a. Exclusion of entity classes not required in the database

322 ■ Chapter 11 Logical Database Design

Simsion-Witt_11 10/11/04 8:51 PM Page 322

b. Implementation of classification entity classes, for which there are
two options

c. Removal of derivable many-to-many relationships (if our conceptual
modeling conventions support these)1

d. Implementation of many-to-many relationships as intersection tables

e. Implementation of n-ary relationships (if our conceptual modeling
conventions support these)2 as intersection tables

f. Implementation of supertype/subtypes: mapping one or more levels
of each subtype hierarchy to tables

g. Implementation of other entity classes: each becomes a table.

2. Basic column specification:

a. Removal of derivable attributes (if our conceptual modeling conven-
tions support these)3

b. Implementation of category attributes, for which there are two
options

c. Implementation of multivalued attributes (if our conceptual modeling
conventions support these),4 for which there are multiple options

d. Implementation of complex attributes (if our conceptual modeling
conventions support these),5 for which there are two options

e. Implementation of other attributes as columns

f. Possible introduction of additional columns

g. Determination of column datatypes and lengths

h. Determination of column nullability.

At this point, the process becomes iterative rather than linear, as we
have to deal with some interdependency between two tasks. We cannot
specify foreign keys until we know the primary keys of the tables to which
they point; on the other hand, some primary keys may include foreign key
columns (which, as we saw in Section 6.4.1, can make up part or all of a
table’s primary key).

What this means is that we cannot first specify all the primary keys
across our model, then specify all the foreign keys in our modelor the
reverse. Rather, we need to work back and forth.

11.2 Overview of the Transformations Required ■ 323

1UML supports derived relationships; E-R conventions generally do not.
2UML and Chen conventions support n-ary relationships; E-R conventions generally do not.
3UML supports derived attributes; E-R conventions generally do not.
4UML supports multivalued attributes.
5Although not every CASE tool currently supports complex attributes, there is nothing in
the UML or E-R conventions to preclude the inclusion of complex attributes in a conceptual
model

Simsion-Witt_11 10/11/04 8:51 PM Page 323

First, we identify primary keys for tables derived from independent
entity classes (recall from Section 3.5.7 that these are entity classes that are
not at the “many” end of any nontransferable mandatory many-to-one rela-
tionships;6 loosely speaking, they are the “stand-alone” entity classes). Now
we can implement all of the foreign keys pointing back to those tables.
Doing this will enable us to define the primary keys for the tables repre-
senting any entity classes dependent on those independent entity classes
and then implement the foreign keys pointing back to them. This is
described, with an example, in Section 11.5.

So, the next step is:

3. Primary key specification (for tables representing independent entity
classes):

a. Assessment of existing columns for suitability

b. Introduction of new columns as surrogate keys.

Then, the next two steps are repeated until all relationships have been
implemented.

4. Foreign key specification (to those tables with primary keys already
identified):

a. Removal of derivable one-to-many relationships (if our conceptual
modeling conventions support these)7

b. Implementation of one-to-many relationships as foreign key columns

c. Implementation of one-to-one relationships as foreign keys or through
common primary keys

5. Primary key specification (for those tables representing entity classes
dependent on other entity classes for which primary keys have already
been identified):

a. Inclusion of foreign key columns representing mandatory relationships

b. Assessment of other columns representing mandatory attributes for
suitability

c. Possible introduction of additional columns as “tie-breakers.”

We counsel you to follow this sequence, tempting though it can be to
jump ahead to “obvious” implementation decisions. There are a number of

324 ■ Chapter 11 Logical Database Design

6An entity class that is at the “many” end of a non-transferable mandatory many-to-one
relationship may be assigned a primary key, which includes the foreign key implementing that
relationship.
7UML supports derived relationships; E-R conventions generally do not.

Simsion-Witt_11 10/11/04 8:51 PM Page 324

dependencies between the steps and unnecessary mistakes are easily made
if some discipline is not observed.

11.3 Table Specification

11.3.1 The Standard Transformation

In general, each entity class in the conceptual data model becomes a table
in the logical data model and is given a name that corresponds to that of
the source entity class (see Section 11.7).

There are, however, exceptions to this “one table per entity” picture:

1. Some entity classes may be excluded from the database

2. Classification entity classes (if included in the conceptual model) may
not be implemented as tables

3. Tables are created to implement many-to-many relationships and n-ary
relationships (those involving more than two entity classes)

4. A supertype and its subtypes may not all be implemented as tables.

We discuss these exceptions and additions below in the sequence in
which we recommend you tackle them. In practice, the implementation of
subtypes and supertypes is usually the most challenging of them.

Finally, note that we may also generate some classification tables during
the next phase of logical design (see Section 11.4.2), when we select our
method(s) of implementing category attributes.

11.3.2 Exclusion of Entity Classes from the Database

In some circumstances an entity class may have been included in the con-
ceptual data model to provide context, and there is no actual requirement
for that application to maintain data corresponding to that entity class. It is
also possible that the data is to be held in some medium other than the
relational database: nondatabase files, XML streams, and so on.

11.3.3 Classification Entity Classes

As discussed in Section 7.2.2.1, we do not recommend that you specify
classification entity classes purely to support category attributes during
the conceptual modeling phase. If, however, you are working with a

11.3 Table Specification ■ 325

Simsion-Witt_11 10/11/04 8:51 PM Page 325

conceptual model that contains such entity classes, you should not imple-
ment them as tables at this stage but defer action until the next phase
of logical design (column specification, as described in Section 11.4.2)
to enable all category attributes to be looked at together and consistent
decisions made.

11.3.4 Many-to-Many Relationship Implementation

11.3.4.1 The Usual Case

We saw in Section 3.5.2 how a many-to-many relationship can be represented
as an additional entity class linked to the two original entity classes by one-
to-many relationships. In the same way, each many-to-many relationship in
the conceptual data model can be converted to an intersection table with
two foreign keys (the primary keys of the tables implementing the entity
classes involved in that relationship)

The issues described in Section 3.5.2 with respect to the naming of inter-
section entity classes apply equally to the naming of intersection tables.

11.3.4.2 Derivable Many-to-Many Relationships

Occasionally, you may discover that a many-to-many relationship that
you have documented can be derived from attributes of the participat-
ing entity classes. Perhaps we have proposed Applicant and Welfare
Benefit entity classes and a many-to-many relationship between them
(Figure 11.1).

On further analysis, we discover that eligibility for benefits can be deter-
mined by comparing attributes of the applicant with qualifying criteria for
the benefit (e.g., Birth Date compared with Eligible Age attributes).

326 ■ Chapter 11 Logical Database Design

Applicant
Welfare
Benefit

qualify for

be applicable to

APPLICANT (Applicant ID, Name, Birth Date, . . .)
WELFARE BENEFIT (Benefit ID, Minimum Eligible Age, Maximum Eligible Age . . .)

Figure 11.1 Derivable many-to-many relationship.

Simsion-Witt_11 10/11/04 8:51 PM Page 326

In such cases, if our chosen CASE tool does not allow us to show many-
to-many relationships in the conceptual data model without creating a corre-
sponding intersection table in the logical data model, we should delete the
relationship on the basis that it is derivable (and hence redundant); we do not
want to generate an intersection table that contains nothing but derivable data.

If you are using UML you can specifically identify a relationship as
being derivable, in which case the CASE tool should not generate an
intersection table. If you look at any model closely, you will find opportuni-
ties to document numerous such many-to-many “relationships” derivable from
inequalities (“greater than,” “less than”) or more complex formulae and
rules. For example:

Each Employee Absence may occur during one or more Strikes and
Each Strike may occur during one or more Employee Absences (derivable
from comparison of dates).

Each Aircraft Type may be able to land at one or more Airfields and
Each Airfield may be able to support landing of one or more Aircraft Types
(derivable from airport services and runway facilities and aircraft type spec-
ifications).

If our chosen CASE tool does not allow us to show many-to-many rela-
tionships in the conceptual data model without including a corresponding
intersection table in the logical data model, what do we say to the business
reviewers? Having presented them with a diagram, which they have
approved, we now remove one or more relationships.

It is certainly not appropriate to surreptitiously amend the model on the
basis that “we know better.” Nor is it appropriate to create two conceptual
data models, a “business stakeholder model” and an “implementation
model.” Our opposition to these approaches is that the first involves impor-
tant decisions being taken without business stakeholder participation, and
the second complicates the modeling process for little gain. We have found
that the simplest and most effective approach in this situation is to remove
the relationship(s) from the conceptual data model but inform business
stakeholders that we have done so and explain why. We show how the
relationship is derivable from other data, and demonstrate, using sample
transactions, that including the derivable relationship will add redundancy
and complexity to the system.

11.3.4.3 Alternative Implementations

In Chapter 12 we shall see that a DBMS that supports the SQL99 set type
constructor feature enables implementation of a many-to-many relation-
ship without creating an additional table. However, we do not recommend
that you include such a structure in your logical data model. The decision
as to whether to use such a structure should be taken at the physical
database design stage.

11.3 Table Specification ■ 327

Simsion-Witt_11 10/11/04 8:51 PM Page 327

11.3.5 Relationships Involving More Than
Two Entity Classes

The E-R conventions that we use in this book do not support the direct
representation of relationships involving three or more entity classes
(“n-ary relationships”). If we have encountered such relationships at the
conceptual modeling stage, we will have been forced to represent them
using intersection entity classes, anticipating the implementation. There is
nothing more to do at this stage, since the standard transformation from
entity class to table will have included such entity classes. However, you
should check for normalization; such structures provide the most common
situations of data that is in third normal form but not in fourth or fifth normal
form (Chapter 13).

If you are using UML (or other conventions that support n-ary relation-
ships), you will need to resolve the relationships [i.e., represent each n-ary
relationship as an intersection table (Section 3.5.5)].

11.3.6 Supertype/Subtype Implementation

The Relational Model and relational DBMSs do not provide direct support
for subtypes or supertypes. Therefore any subtypes that were included in
the conceptual data model are normally replaced by standard relational
structures in the logical data model. Since we are retaining the documen-
tation of the conceptual data model, we do not lose the business rules and
other requirements represented by the subtypes we created in that model.
This is important since there is more than one way to represent a super-
type/subtype set in a logical data model and the decisions we make to rep-
resent each such set may need to be revisited in the light of new
information (such as changes to transaction profiles, other changes to business
processes, or new facilities provided by the DBMS) or if the system is
ported to a different DBMS. Indeed if the new DBMS supports subtypes
directly, supertypes and subtypes can be retained in the logical data model;
the SQL998 standard provides for direct support of subtypes and at least
one object-relational DBMS provides such support.

11.3.6.1 Implementation at a Single Level of Generalization

One way of leveling a hierarchy of subtypes is to select a single level of
generalization. In the example in Figure 11.2, we can do this by discarding
Party, in which case we implement only its subtypes, Individual and

328 ■ Chapter 11 Logical Database Design

8ANSI/ISO/IEC 9075.

Simsion-Witt_11 10/11/04 8:51 PM Page 328

Organization, or by discarding Individual and Organization and imple-
menting only their supertype, Party.

Actually, “discard” is far too strong a word, since all the business rules
and other requirements represented by the subtypes have been retained in
the conceptual data model.

We certainly will not discard any attributes or relationships. Tables rep-
resenting subtypes inherit the attributes and relationships of any “discarded”
supertypes, and tables representing supertypes roll up the attributes and
relationships of any “discarded” subtypes. So if we implement Individual
and Organization as tables but not Party, each will inherit all the attrib-
utes and relationships of Party. Conversely, if we implement Party as a
table but not Individual or Organization, we need to include in the Party
table any attributes and relationships specific to Individual or
Organization. These attributes and relationships would become optional
attributes and relationships of Party. In some cases, we might choose to
combine attributes or relationships from different subtypes to form a single
attribute or relationship. For example, in rolling up Purchase and Sale
into Financial Transaction we might combine Price and Sale Value into
Amount. This is generalization at the attribute level and is discussed in
more detail in Section 5.6, while relationship generalization is discussed in
Section 4.14.

If we implement at the supertype level, we also need to add a Type
column to allow us to preserve any distinctions that the discarded subtypes
represented and that cannot be derived from existing attributes of the
supertype. In this example we would introduce a Party Type column to
allow us to distinguish those parties that are organizations from those who
are individuals.

If we are rolling up two or more levels of subtypes, we have some
choice as to how many Type columns to introduce. For a generally work-
able solution, we suggest you simply introduce a single Type column based
on the lowest level of subtyping. Look at Figure 11.3 on the next page. If
you decide to implement at the Party level, add a single Party Type column,
which will hold values of “Adult,” “Minor,” “Private Sector Organization,”
and “Public Sector Organization.” If you want to distinguish which of these
are persons and which are organizations, you will need to introduce an
additional reference table with four rows as in Figure 11.4.

11.3 Table Specification ■ 329

Party

Individual Organization

Figure 11.2 A simple supertype/subtype set.

Simsion-Witt_11 10/11/04 8:51 PM Page 329

11.3.6.2 Implementation at Multiple Levels of Generalization

Returning to the example in Figure 11.2, a third option is to implement all
three-entity classes in the Party hierarchy as tables. We link the tables by
carrying the foreign key of Party in the Individual and Organization
tables. The appeal of this option is that we do not need to discard any of
our concepts and rules. On the other hand, we can easily end up with a
proliferation of tables, violating our aim of simplicity. And these tables will
usually not correspond on a one-to-one basis with familiar concepts; the
Individual table in this model does not hold all the attributes of individu-
als, only those that are not common to all parties. The concept of an indi-
vidual is represented by the Party and Individual tables in combination.

Figure 11.6 illustrates all three options for implementing the super-
type/subtype structure in Figure 11.5. (As described in Section 4.14.2, the
exclusivity arc drawn across a set of relationships indicates that they are
mutually exclusive.)

11.3.6.3 Other Options

There may be other options in some situations.

330 ■ Chapter 11 Logical Database Design

Party

Individual

Organization

Private Sector
Organization

Public Sector
Organization

Adult Minor

Figure 11.3 A more complex supertype/subtype structure.

Party Type Organization/Individual Indicator

Private Sector Organization Organization
Public Sector Organization Organization
Adult Individual
Minor Individual

Figure 11.4 Reference table of party types.

Simsion-Witt_11 10/11/04 8:51 PM Page 330

11.3 Table Specification ■ 331

PARTY (Party ID, First Contact Date)
INDIVIDUAL (Family Name, Given Name, Gender, Birth Date)
ORGANIZATION (Registered Name, Incorporation Date, Employee Count)

Party

Individual Organization

Figure 11.5 A conceptual data model with a supertype/subtype set.

Option 1:
PARTY (Party ID, First Contact Date, Family Name, Given Name, Gender, Birth Date,
Registered Name, Incorporation Date, Employee Count)
Option 2:
INDIVIDUAL (Party ID, First Contact Date, Family Name, Given Name, Gender, Birth
Date)
ORGANIZATION (Party ID, First Contact Date, Registered Name, Incorporation Date,
Employee Count)
Option 3:
PARTY (Party ID, First Contact Date)
INDIVIDUAL (Party ID, Family Name, Given Name, Gender, Birth Date)
ORGANIZATION (Party ID, Registered Name, Incorporation Date, Employee Count)

Party

Individual Organization

Party

Individual Organization

Option 1

Option 3

Option 2

Figure 11.6 Implementing a supertype/subtype set in a logical data model.

Simsion-Witt_11 10/11/04 8:51 PM Page 331

First, we may create a table for the supertype and tables for only some
of the subtypes. This is quite common when some subtypes do not have
any attributes or relationships in addition to those of the supertype, in
which case those subtypes do not need separate tables.

Second, if a supertype has three or more subtypes and some of those
subtypes have similar attributes and relationships, we may create single
tables for similar subtypes and separate tables for any other subtypes, with
or without a table for the supertype. In this case we are effectively recog-
nizing an intermediate level of subtyping and should consider whether it is
worth including it in the conceptual model. For example in a financial
services conceptual data model the Party Role entity class may have
Customer, Broker, Financial Advisor, Employee, Service Provider, and
Supplier subtypes. If we record similar facts about brokers and financial
advisors, it may make sense to create a single table in which to record both
these roles; similarly, if we record similar facts about service providers and
suppliers, it may make sense to create a single table in which to record
both these roles.

11.3.6.4 Which Option?

Which option should we choose for each supertype hierarchy?
An important consideration is the enforcement of referential integrity

(see Section 14.5.4). Consider this situation:

1. The database administrator intends to implement referential integrity
using the DBMS referential integrity facilities

2. The target DBMS only supports standard referential integrity between
foreign keys and primary keys.9

In this case, each entity that is at the “one” end of a one-to-many
relationship must be implemented as a table, whether it is a supertype
or a subtype, so that the DBMS can support referential integrity of those
relationships.

This is because standard DBMS referential integrity support allows a
foreign key value to be any primary key value from the one associated table.
If a subtype is represented by a subset of the rows in a table implementing
the supertype rather than as its own separate table, any foreign keys imple-
menting relationships to that subtype can have any primary key value
including those of the other subtypes. Referential integrity on a relationship

332 ■ Chapter 11 Logical Database Design

9That is without any selection of rows from the referenced table (i.e., only the rows
of a subtype) or multiple referenced tables (i.e., all the rows of a supertype).
The authors are not aware of any DBMSs that provide such facilities.

Simsion-Witt_11 10/11/04 8:51 PM Page 332

to that subtype can therefore only be managed by either program logic or a
combination of DBMS referential integrity support and program logic.

By contrast if the supertype is represented by multiple subtype tables
rather than its own table, any foreign key implementing relationships to
that supertype can have any value from any of the subtype tables.
Referential integrity on a relationship to that supertype can therefore only
be managed in program logic.

Another factor is the ability to present data in alternative ways. As men-
tioned in Chapter 1, we do not always access the tables of a relational data-
base directly. Usually, we access them through views, which consist of data
from one or more tables combined or selected in various ways. We can use
the standard facilities available for constructing views to present data at the
subtype or supertype level, regardless of whether we have chosen to imple-
ment subtypes, supertype, or both. However, there are some limitations.
Not all views allow the data presented to be updated. This is sometimes
due to restrictions imposed by the particular DBMS, but there are also some
logical constraints on what types of views can be updated. In particular
these arise where data has been combined from more than one table, and
it is not possible to unambiguously interpret a command in terms of which
underlying tables are to be updated. It is beyond the scope of this book to
discuss view construction and its limitations in any detail. Broadly, the
implications for the three implementation options described above are:

1. Implementation at the supertype level: if we implement a Party table,
a simple selection operation will allow us to construct Individual and
Organization views. These views will be logically updateable.

2. Implementation at the subtype level: if we implement separate
Individual and Organization tables, a Party view can be constructed
using the “union” operator. Views constructed using this operator are
not updateable.

3. Implementation of both supertype and subtype tables: if we implement
Individual, Organization, and Party tables, full views of Individual
and Organization can be constructed using the “join” operator. Some
views using this operator are not updateable, and DBMSs differ on
precisely what restrictions they impose on “join” view updateability.
They can be combined using the “union” operator to produce a Party
view, which again will not be updateable.

Nonrelational DBMSs offer different facilities and may make one or other
of the options more attractive. The ability to construct useful, updateable
views becomes another factor in selecting the most appropriate implemen-
tation option.

What is important, however, is to recognize that views are not a substi-
tute for careful modeling of subtypes and supertypes, and to consider
the appropriate level for implementation. Identification of useful data

11.3 Table Specification ■ 333

Simsion-Witt_11 10/11/04 8:51 PM Page 333

classifications is part of the data modeling process, not something that
should be left to some later task of view definition. If subtypes and super-
types are not recognized in the conceptual modeling stage, we cannot
expect the process model to take advantage of them. There is little point in
constructing views unless we have planned to use them in our programs.

11.3.6.5 Implications for Process Design

If a supertype is implemented as a table and at least one of its subtypes is
implemented as a table as well, any process creating an instance of that
subtype (or one of its subtypes) must create a row in the corresponding
supertype table as well as the row in the appropriate subtype table(s).
To ensure that this occurs, those responsible for writing detailed specifica-
tions of programs (which we assume are written in terms of table-level
transactions) from business-level process specifications (which we assume
are written in terms of entity-level transactions) must be informed of
this rule.

11.4 Basic Column Definition

11.4.1 Attribute Implementation: The Standard
Transformation

With some exceptions, each attribute in the conceptual data model
becomes a column in the logical data model and should be given a name
that corresponds to that of the corresponding attribute (see Section 11.7).

The principal exceptions to this are:

1. Category attributes

2. Derivable attributes

3. Attributes of relationships

4. Complex attributes

5. Multivalued attributes.

The following subsections describe each of these exceptions.
We may also add further columns for various reasons. The most

common of these are surrogate primary keys and foreign keys (covered in
Sections 11.5 and 11.6 respectively), but there are some additional situa-
tions, discussed in Section 11.4.7. The remainder of Section 11.4 looks at
some issues applicable to columns in general.

Note that in this phase we may end up specifying additional tables to
support category attributes.

334 ■ Chapter 11 Logical Database Design

Simsion-Witt_11 10/11/04 8:51 PM Page 334

11.4.2 Category Attribute Implementation

In general, DBMSs provide two distinct methods of implementing a cate-
gory attribute (see Section 5.4.2.2):

1. As a foreign key to a classification table

2. As a column on which a constraint is defined limiting the values that the
column may hold.

The principal advantage of the classification table method is that the
ability to change codes or descriptions can be granted to users of the data-
base rather than them having to rely on the database administrator to make
such changes. However, if any procedural logic depends on the value
assigned to the category attribute, such changes should only be made in
controlled circumstances in which synchronized changes are made to pro-
cedural code.

If you have adopted our recommendation of showing category attributes
in the conceptual data model as attributes rather than relationships to clas-
sification entity classes (see Section 7.2.2.1), and you select the “constraint
on column” method of implementation, your category attributes become
columns like any other, and there is no more work to be done. If, however,
you select the “classification table” method of implementation, you must:

1. Create a table for each domain that you have defined for category attrib-
utes, with Code and Meaning columns.

2. Create a foreign key column that references the appropriate domain
table to represent each category attribute.10

For example, if you have two category attributes in your conceptual data
model, each named Customer Type (one in the Customer entity class and the
other in an Allowed Discount business rule entity class recording the
maximum discount allowed for each customer type), then each of these
should belong to the same domain, also named “Customer Type.” In this case,
you must create a Customer Type table with Customer Type Code and Customer
Type Meaning columns and include foreign keys to that table in your Customer
and Allowed Discount tables to represent the Customer Type attributes.

By contrast, if you have modeled category attributes in the conceptual
data model as relationships to classification entity classes, and you select
the classification table option, your classification entity classes become

11.4 Basic Column Definition ■ 335

10Strictly speaking, we should not be specifying primary or foreign keys at this stage, but the
situation here is so straightforward that most of us skip the step of initially documenting only
a relationship.

Simsion-Witt_11 10/11/04 8:51 PM Page 335

tables like any other and the relationships to them become foreign key
columns like any other. If, however, you select the “constraint on column”
option, you must not create tables for those classification entity classes but
you must represent each relationship to a classification entity class as a
simple column, not as a foreign key column.

11.4.3 Derivable Attributes

Since the logical data model should not specify redundant data, derivable
attributes in the conceptual data model should not become columns in
the logical data model. However, the designer of the physical data model
needs to be advised of derivable attributes so as to decide whether they
should be stored as columns in the database or calculated “on the fly.”
We therefore recommend that, for each entity class with derivable attrib-
utes, you create a view based on the corresponding table, which includes
(as well as the columns of that table) a column for each derived attribute,
specifying how that attribute is calculated. Figure 11.7 illustrates this
principle.

11.4.4 Attributes of Relationships

If the relationship is many-to-many or “n-ary,” its attributes should be
implemented as columns in the table implementing the relationship. If the
relationship is one-to-many, its attributes should be implemented as
columns in the table implementing the entity class at the “many” end. If the
relationship is one-to-one, its attributes can be implemented as columns in
either of the tables used to implement one of the entity classes involved in
that relationship.

336 ■ Chapter 11 Logical Database Design

Table: ORDER LINE (Order No, Product No, Order Quantity, Applicable Discount Rate,
Quoted Price, Promised Delivery Date, Actual Delivery Date)

View: ORDER LINE (Order No, Product No, Order Quantity, Applicable Discount Rate,
Quoted Price, Promised Delivery Date, Actual Delivery Date,
Total Item Cost = Order Quantity * Quoted Price * (1- Applicable Discount Rate/100.0))

Figure 11.7 A table and a view defining a derivable attribute.

Simsion-Witt_11 10/11/04 8:51 PM Page 336

11.4.5 Complex Attributes

In general, unless the target DBMS provides some form of row datatype
facility (such as Oracle™’s “nested tables”), built-in complex datatypes
(such as foreign currencies or timestamps with associated time zones), or
constructors with which to create such datatypes, each component of a
complex attribute (see Section 7.2.2.4) will require a separate column. For
example, a currency amount in an application dealing with multiple cur-
rencies will require a column for the amount and another column in which
the currency unit for each amount can be recorded. Similarly, a time attribute
in an application dealing with multiple time zones may require a column
in which the time zone is recorded as well as the column for the time itself.
Addresses are another example of complex attributes. Each address
component will require a separate column.

An alternative approach where a complex attribute type has many com-
ponents (e.g., addresses) is to:

1. Create a separate table in which to hold the complex attribute

2. Hold only a foreign key to that table in the original table.

11.4.6 Multivalued Attribute Implementation

Consider the conceptual data model of a multi-airline timetable database
in Figure 11.8. A flight (e.g., AA123, UA345) may operate over multiple
flight legs, each of which is from one port to another. Actually a flight has
no real independent existence but is merely an identifier for a series of
flight legs. Although some flights operate year-round, others are seasonal
and may therefore have one or more operational periods (in fact two legs
of a flight may have different operational periods: the Chicago-Denver
flight may only continue to Los Angeles in summer). And of course not
all flights are daily, so we need to record the days of the week on which
a flight (or rather its legs) operates. In the conceptual data model we can
do this using the multivalued attribute {Week Days}. At the same time
we should record for the convenience of passengers on long-distance
flights what meals are served (on a trans-Pacific flight there could be as
many as three). The {Meal Types} multivalued attribute supports this require-
ment.

In general, unless the target DBMS supports the SQL99 set type con-
structor feature, which enables direct implementation of multivalued
attributes, normal practice is to represent each such attribute in the logical
data model using a separate table. Thus, the {Meal Types} attribute of the
Flight Leg entity class could be implemented using a table (with the name

11.4 Basic Column Definition ■ 337

Simsion-Witt_11 10/11/04 8:51 PM Page 337

Flight Leg Meal Type, i.e., the singular form of the attribute name prefixed
by the name of its owning entity class) with the following columns:

1. A foreign key to the Flight Leg table (representing the entity class
owning the multivalued attribute)

2. A column in which a single Meal Type can be held (with the name Meal
Type, i.e., the singular form of the attribute name).

The primary key of this table can simply be all these columns.
Similarly normal practice would be to represent the {Week Days} attrib-

ute in the logical data model using a Flight Leg Operational Period Week
Day table with a foreign key to Flight Leg Operational Period and a Week
Day column.

However, the case may be that:

1. The maximum number of values that may be held is finite and small.

2. There is no requirement to sort using the values of that attribute.

338 ■ Chapter 11 Logical Database Design

Port /City

Port

Country

Flight Leg

City

Airline

Flight Leg
Operational

Period

PORT/CITY (Code, Name, Time Zone)
COUNTRY (Code, Name)
AIRLINE (Code, Name)
FLIGHT LEG (Flight Number, Leg Number, Departure Local TimeOfDay, Arrival Local
Time TimeOfDay, Arrival Additional Day Count, Aircraft Type, {Meal Types})
FLIGHT LEG OPERATIONAL PERIOD (Start Date, End Date, {Week Days})

Figure 11.8 Implementing a multivalued attribute.

Simsion-Witt_11 10/11/04 8:51 PM Page 338

Then, the designer of the physical data model may well create, rather
than an additional table, a set of columns (one for each value) in the original
table (the one implementing the entity class with the multivalued attribute).
For example, {Week Days} can be implemented using seven columns in the
Flight Leg Operational Period table, one for each day of the week, each
holding a flag to indicate whether that flight leg operates on that day during
that operational period.

If the multivalued attribute is textual, the modeler may even implement it
in a single column in which all the values are concatenated, or separated if
necessary by a separator character. This is generally only appropriate if
queries searching for a single value in that column are not rendered unduly
complex or slow. If this is likely to occur, it may be better from a pragmatic
point of view to model such attributes this way in the logical data model as
well, to avoid the models diverging so much. For example, {Meal Types} can
be implemented using a single Meal Types column in the Flight Leg table,
since there is a maximum of three meals that can be served on one flight leg.

By way of another example, an Employee entity class may have the attrib-
ute Dependent Names, which could be represented by a single column in the
Employee table, which would hold values such as “Peter” or “Paul, Mary.”

11.4.7 Additional Columns

In some circumstances additional columns may be required. We have
already seen in Section 11.3.6.1 the addition of a column or columns to
identify subtypes in a supertype table. Other columns are typically required
to hold data needed to support system administration, operation, and main-
tenance. The following examples will give you a flavor.

A very common situation is when a record is required of who inserted
each row and when, and of who last updated each row and when. In
this case, you can create a pair of DateTime columns, usually named along
the lines of Insert DateTime and Last Update DateTime, and a pair of text
columns, usually named along the lines of Insert User ID and Last Update User
ID. Of course, if a full audit trail of all changes to a particular table is
required, you will need to create an additional table with the following
columns:

1. Those making up a foreign key to the table to be audited

2. An Update DateTime column, which together with the foreign key
columns makes up the primary key of this table

3. An Update User ID column

4. The old and/or new values of the remaining columns of the table to be
audited.

11.4 Basic Column Definition ■ 339

Simsion-Witt_11 10/11/04 8:51 PM Page 339

The Meaning attribute in a classification entity class in the conceptual
data model is usually a relatively short text that appears as the interpreta-
tion of the code in screens and reports. If the differences between some
meanings require explanation that would not fit in the Meaning column,
then an additional, longer Explanation column (to expand upon Meaning)
may need to be added.

By contrast, additional columns holding abbreviated versions of textual
data may be needed for any screens, other displays (such as networked
equipment displays), reports, and other printouts (such as printed tickets)
in which there may be space limitations. A typical example is location
names: given the fact that these may have the same initial characters (e.g.,
Carlton and Carlton North) simple truncation of such names may produce
indistinguishable abbreviations.

Another situation in which additional columns may be required is when
a numeric or date/time attribute may hold approximate or partly-defined
values such as “At least $10,000,” “Approximately $20,000,” “some time in
1968,” “25th July, but I can’t remember which year.” To support values like
the first two examples, you might create an additional text column in which
a qualifier of the amount in the numeric column can be recorded. To sup-
port values like the other two examples, you might store the year and
month/day components of the date in separate columns.

11.4.8 Column Datatypes

If the target DBMS and the datatypes available in that DBMS are known,
the appropriate DBMS datatype for each domain (see Section 5.4.3) can
be identified and documented. Each column representing an attribute
should be assigned the appropriate datatype based on the domain of the
corresponding attribute. Each column in a foreign key should be given
the same datatype as the corresponding column in the corresponding
primary key.

11.4.9 Column Nullability

If an attribute has been recorded as mandatory in the business rule docu-
mentation accompanying the conceptual data model, the corresponding
column should be marked as mandatory in the logical data model; the stan-
dard method for doing this is to follow the column name and its datatype
with the annotation “NOT NULL.” By contrast, if an attribute has been
recorded as optional, the corresponding column should be marked as
optional using the annotation “NULL.”

340 ■ Chapter 11 Logical Database Design

Simsion-Witt_11 10/11/04 8:51 PM Page 340

Any row in which no value has been assigned to that attribute for the
entity instance represented by that row will have a null marker rather than
a value assigned to that column. Nulls can cause a variety of problems in
queries, as Chris Date has pointed out.11

Ranges (see Section 12.6.6) provide a good example of a situation in
which it is better to use an actual value rather than a null marker in a
column representing an optional attribute. The range end attribute is often
optional because there is no maximum value in the last range in a set. For
example, the End Date of the current record in a table that records current
and past situations is generally considered to be optional as we have no
idea when the current situation will change. Unfortunately, to use a null
marker in End Date complicates any queries that determine the date range
to which a transaction belongs, like the first query in Figure 11.9. Loading
a “high value” date (a date that is later than the latest date that the appli-
cation could still be active) into the End Date column of the current record
enables us to use the second, simpler, query in Figure 11.9.

11.5 Primary Key Specification

We set out the rules for primary key specification in Chapter 6. Recall that
in that chapter we discussed the possibility that the primary key of a table
may include foreign keys to other tables. However, at this point in the trans-
lation to a logical model, we haven’t defined the foreign keys—and cannot
do so until we have defined the primary keys of the tables being referenced.
We resolve this “chicken and egg” situation with an iterative approach.

At the start of this step of the process, you can only determine primary
keys for those tables that correspond to independent entity classes (see
Chapter 6), since, as we have seen, the primary keys of such tables will not
include foreign keys. You therefore first select an appropriate primary key
for each of these tables, if necessary adding a surrogate key column as a
key in its own right or to supplement existing attributes.

Having specified primary keys for at least some tables, you are now in
a position to duplicate these as foreign keys in the tables corresponding to
related entity classes. Doing that is the subject of the next section.

You are now able to determine the primary keys of those tables repre-
senting entity classes dependent on the entity classes for which you have
already identified primary keys (since you now have a full list of columns
for these tables, including foreign keys). You can then duplicate these in
turn as foreign keys in the tables corresponding to related entity classes.
You then repeat this step, “looping” until the model is complete.

11.5 Primary Key Specification ■ 341

11Date, C.J. Relational Database Writings 1989–1991, Pearson Education POD, 1992.

Simsion-Witt_11 10/11/04 8:51 PM Page 341

This may sound complicated but, in practice, this iterative process
moves quickly and naturally, and the discipline will help to ensure that you
select sound primary keys and implement relationships faithfully. The
process is illustrated in Figure 11.10:

1. Policy Type and Person are obviously independent, and Organization
Unit is at the “many” end of a transferable relationship, so we can
identify primary keys for them immediately.

2. Policy is at the “many” end of a nontransferable relationship so depends
on Policy Type having a defined primary key.

3. Policy Event and Person Role in Policy are at the “many” ends of non-
transferable relationships so depend on Policy and Person having
defined primary keys.

11.6 Foreign Key Specification

Foreign keys are our means of implementing one-to-many (and occasion-
ally one-to-one) relationships. This phase of logical design requires that
we know the primary key of the entity class at the “one” end of the
relationship, and, as discussed in Section 11.2, definition of primary keys is,
in turn, dependent on definition of foreign keys. So, we implement the
relationships that meet this criterion, then we return to define more
primary keys.

This section commences with the basic rule for implementing one-
to-many relationships. This rule will cover the overwhelming majority of
situations. The remainder of the section looks at a variety of unusual

342 ■ Chapter 11 Logical Database Design

select TRANSACTION.*, HISTORIC_PRICE.PRICE
from TRANSACTION, HISTORIC_PRICE
where TRANSACTION.TRANSACTION_DATE between
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE
or TRANSACTION.TRANSACTION_DATE >
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE is null;

select TRANSACTION.*, HISTORIC_PRICE.PRICE
from TRANSACTION, HISTORIC_PRICE
where TRANSACTION.TRANSACTION_DATE between
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE;

Figure 11.9 Queries involving date ranges.

Simsion-Witt_11 10/11/04 8:51 PM Page 342

situations. It is worth being familiar with them because they do show up
from time to time, and, as a professional modeler, you need to be able to
recognize and deal with them.

11.6.1 One-to-Many Relationship Implementation

11.6.1.1 The Basic Rule

In Section 3.2 we saw how to translate the links implied by primary and
foreign keys in a relational model into lines representing one-to-many rela-
tionships on an E-R diagram. This is a useful technique when we have an
existing database that has not been properly documented in diagrammatic
form. The process of recovering the design in this all-too-frequent situation
is an example of the broader discipline of “reverse engineering” and is one
of the less glamorous tasks of the data modeler (Section 9.5).

11.6 Foreign Key Specification ■ 343

Policy Event

Person

Policy
Type

Organization
Unit

Policy

Person
Role in
Policy

be
classified

by
classify

affect
be affected
by

be
for

 involve

be issued by

issue

be part
of

include

1 1

1

2

3

3

Figure 11.10 Primary and foreign key specification.

Simsion-Witt_11 10/11/04 8:51 PM Page 343

When moving from a conceptual to a logical data model, however, we
work from a diagram to tables and apply the following rule (illustrated in
Figure 11.11):

A one-to-many relationship is supported in a relational database by
holding the primary key of the table representing the entity class at the
“one” end of the relationship as a foreign key in the table representing
the entity class at the “many” end of the relationship.

In the logical data model, therefore, we create, in the table representing
the entity class at the “many” end of the relationship, a copy of the primary
key of the entity class at the “one” end of the relationship. (Remember
that the primary key may consist of more than one column, and we will,
of course. need to copy all of its columns to form the foreign key.) Each
foreign key column should be given the same name as the primary key
column from which it was derived, possibly with the addition of a prefix.
Prefixes are necessary in two situations:

1. If there is more than one relationship between the same two entity
classes, in which case prefixes are necessary to distinguish the two
different foreign keys, for example Preparation Employee ID and Approval
Employee ID.

2. A self-referencing relationship (see Section 3.5.4) will be represented by
a foreign key which contains the same column(s) as the primary key of
the same table, so a prefix will be required for the column names of the
foreign key; typical prefixes are “Parent,” “Owner,” “Manager” (in a
organizational reporting hierarchy).

344 ■ Chapter 11 Logical Database Design

to

Customer (Customer ID, Name, Address . . .)

Customer ID Loan ID

Loan (Loan ID, Customer ID*, Date Drawn . . .)

Figure 11.11 Deriving foreign keys from relationships.

Simsion-Witt_11 10/11/04 8:51 PM Page 344

Note the use of the asterisk; as mentioned in Chapter 3, this is a con-
vention sometimes used to indicate that a column of a table is all or part
of a foreign key. Different CASE tools use different conventions.

A column forming part of a foreign key should be marked as NOT NULL
if the relationship it represents is mandatory at the “one” end; conversely, if
the relationship is optional at the “one” end, it should be marked as NULL.

11.6.1.2 Alternative Implementations

In Chapter 12 we shall see that a DBMS that supports the SQL99 set type
constructor feature enables implementation of a one-to-many relationship
within one table. However, we do not recommend that you include such a
structure in your logical data model; the decision as to whether to use such
a structure should be made at the physical database design stage.

Some DBMSs (including DB2) allow a one-to-many relationship to be
implemented by holding a copy of any candidate key of the referenced
table, not just the primary key. (The candidate key must have been defined
to the DBMS as unique.) This prompts two questions:

1. How useful is this?

2. Does the implementation of a relationship in this way cause problems
in system development?

The majority of database designs cannot benefit from this option.
However, consider the following tables from a public transport manage-
ment system (Figure 11.12):

There are two alternative candidate keys for Actual Vehicle Trip (in
addition to the one chosen):

Route No + Trip No + Trip Date, and
Route No + Direction Code + Trip Date + Actual Departure TimeOfDay
However, in the system as built these were longer than the key actually

chosen (by one and three bytes respectively). Since a very large number
of records would be stored, the shortest key was chosen to minimize the
data storage costs of tables, indexes, and so on. There was a requirement
to identify which Actual Vehicle Trip each Passenger Trip took place on.

11.6 Foreign Key Specification ■ 345

SCHEDULED VEHICLE TRIP (Route No, Trip No, Direction Code, Scheduled Departure
TimeOfDay)
ACTUAL VEHICLE TRIP (Vehicle No, Trip Date, Actual Departure TimeOfDay, Route
No, Direction Code, Trip No)
PASSENGER TRIP (Ticket No, Trip Date, Trip Start Time, Route No, Direction Code)

Figure 11.12 Tables with candidate keys.

Simsion-Witt_11 10/11/04 8:51 PM Page 345

In a DBMS that constrains a foreign key to be a copy of the primary key of
the other table, Vehicle No and Actual Departure TimeOfDay would have had
to be added to the Passenger Trip table at a cost of an extra four bytes in
each of a very large number of rows. The ability to maintain a foreign key
that refers to any candidate key of the other table meant that only Trip No
needed to be added at a cost of only one extra byte.

Of course, exploitation of this option might be difficult if the CASE tool
being used to build the application did not support it. Beyond the issue of tool
support, there do not appear to be any technical problems associated with this
option. However, it is always sensible to be as simple and consistent as pos-
sible; the less fancy stuff that programmers, users, and DBAs have to come to
grips with, the more time they can devote to using the data model properly!

11.6.2 One-to-One Relationship Implementation

A one-to-one relationship can be supported in a relational database by
implementing both entity classes as tables, then using the same primary key
for both. This strategy ensures that the relationship is indeed one-to-one
and is the preferred option.

In fact, this is the way we retain the (one-to-one) association between
a supertype and its subtypes when both are to be implemented as tables
(see Section 11.3.6.2).

However we cannot use the same primary key when dealing with a
transferable one-to-one relationship. If we used Part No to identify both Part
and Bin in our earlier example (reproduced in Figure 11.13), it would not be
stable as a key of Bin (whenever a new part was moved to a bin, the key of
that bin would change).

In this situation we would identify Bin by Bin No and Part Type by
Part No, and we would support the relationship with a foreign key: either
Bin No in the Part Type table or Part No in the Bin table. Of course, what
we are really supporting here is not a one-to-one relationship any more,
but a one-to-many relationship. We have flexibility whether we like it or
not! We will need to include the one-to-one rule in the business rule doc-
umentation. A relational DBMS will support such a rule by way of a unique
index on the foreign key, providing a simple practical solution. Since we have
a choice as to the direction of the one-to-many relationship, we will need to

346 ■ Chapter 11 Logical Database Design

Part
Type Bin

be stored
in

store

Figure 11.13 A one-to-one relationship.

Simsion-Witt_11 10/11/04 8:51 PM Page 346

consider other factors, such as performance and flexibility. Will we be more
likely to relax the “one part per bin” or the “one bin per part” rule?

Incidentally, we once struck exactly this situation in practice. The data-
base designer had implemented a single table, with a key of Bin No. Parts
were thus effectively identified by their bin number, causing real problems
when parts were allocated to a new bin. In the end, they “solved” the prob-
lem by relabeling the bins each time parts were moved!

11.6.3 Derivable Relationships

Occasionally a one-to-many relationship can be derived from other data in
one or more of the tables involved. (We discussed derivable many-to-many
relationships in Section 11.3.4.2.) The following example is typical. In
Figure 11.14, we are modeling information about diseases and their groups
(or categories), as might be required in a database for medical research.

During our analysis of attributes we discover that disease groups are
identified by a range of numbers (Low No through High No) and that each
disease in that group is assigned a number in the range. For example, 301
through 305 might represent “Depressive Illnesses,” and “Post-Natal
Depression” might be allocated the number 304. Decimals can be used to
avoid running out of numbers. We see exactly this sort of structure in many
classification schemes, including the Dewey decimal classification used in
libraries. We can use either High No or Low No as the primary key; we have
arbitrarily selected Low No.

If we were to implement this relationship using a foreign key, we would
arrive at the tables in Figure 11.15.

However, the foreign key Disease Group Low No in the Disease table is
derivable; we can determine which disease group a given disease belongs
to by finding the disease group with the range containing its disease no. It
therefore violates our requirement for nonredundancy.

In UML we can mark the relationship as derivable, in which case no
foreign key is created, but many CASE tools will generate a foreign key to
represent each relationship in an Entity-Relationship diagram (whether you
want it or not). In this case, the best option is probably to retain the
relationship in the diagram and the associated foreign key in the logical

11.6 Foreign Key Specification ■ 347

Figure 11.14 Initial E-R model of diseases and groups.

Simsion-Witt_11 10/11/04 8:51 PM Page 347

data model and to accept some redundancy in the latter as the price of
automatic logical data model generation.

Including a derivable foreign key may be worthwhile if we are generat-
ing program logic based on navigation using foreign keys. But carrying
redundant data complicates update and introduces the risk of data incon-
sistency. In this example, we would need to ensure that if a disease moved
from one group to another, the foreign key would be updated. In fact this
can happen only if the disease number changes (in which case we should
regard it as a new diseasesee Section 6.2.4.2: if we were unhappy with
this rule, we would need to allocate a surrogate key) or if we change the
boundaries of existing groups. We may well determine that the business
does not require the ability to make such changes; in this case the deriv-
able foreign key option becomes more appealing.

Whether or not the business requires the ability to make such changes,
the fact that Disease No must be no less than Disease Group Low No and no
greater than the corresponding Disease Group High No should be included in
the business rule documentation (see Chapter 14).

The above situation occurs commonly with dates and date ranges. For
example, a bank statement might include all transactions for a given account
between two dates. If the two dates were attributes of the Statement entity
class, the relationship between Transaction and Statement would be deriv-
able by comparing these dates with the transaction dates. In this case, the
boundaries of a future statement might well change, perhaps at the request
of the customer, or because we wished to notify them that the account was
overdrawn. If we choose the redundant foreign key approach, we will need
to ensure that the foreign key is updated in such cases.

11.6.4 Optional Relationships

In a relational database, a one-to-many relationship that is optional at the
“many” end (as most are) requires no special handling. However, if a one-
to-many relationship is optional at the “one” end, the foreign key repre-
senting that relationship must be able to indicate in some way that there is
no associated row in the referenced table. The most common way of
achieving this is to make the foreign key column(s) “nullable” (able to
be null or empty in some rows). However, this adds complexity to queries.
A simple join of the two tables (an “inner join”) will only return rows with

348 ■ Chapter 11 Logical Database Design

DISEASE (Disease No, Disease Group Low No*, Disease Name, . . .)
DISEASE GROUP (Disease Group Low No, Disease Group High No, . . .)

Figure 11.15 Relational model of diseases and groups.

Simsion-Witt_11 10/11/04 8:51 PM Page 348

nonnull foreign keys. For example, if nullable foreign keys are used, a
simple join of the Agent and Policy tables illustrated in Figure 11.16 will
only return those policies actually sold by an agent. One of the major sell-
ing points of relational databases is the ease with which end-users can
query the database. The novice user querying this data to obtain a figure
for the total value of policies is likely to get a value significantly less than
the true total. To obtain the true total it is necessary to construct an outer
join or use a union query, which the novice user may not know about.

A way around this problem is to add a “Not Applicable” row to the ref-
erenced table and include a reference to that row in each foreign key that
would otherwise be null. The true total can then be obtained with only a
simple query. The drawback is that other processing becomes more com-
plex as we need to allow for the “dummy” agent.

11.6.4.1 Alternatives to Nulls

In Section 11.4.9 we discussed some problems with nulls in nonkey
columns. We now discuss two foreign key situations in which alternatives
to nulls can make life simpler.

Optional Foreign Keys in Hierarchies
In a hierarchy represented by a recursive relationship, that relationship

must be optional at both ends as described in Section 3.5.4. However, we
have found that making top-level foreign keys self-referencing rather than
null (see the first two rows in Figure 11.17) can simplify the programming of
queries that traverse a varying number of levels. For example, a query to
return the H/R Department and all its subordinate departments does not need
to be a UNION query as it can be written as a single query that traverses the
maximum depth of the hierarchy.

Other Optional Foreign Keys
If a one-to-many relationship is optional at the “one” end, a query that

joins the tables representing the entity classes involved in that relationship
may need to take account of that fact, if it is not to return unexpected results.
For example, consider the tables in Figure 11.18 on page 347. If we wish to
list all employees and the unions to which they belong, the first query in
Figure 11.18 will only return four employees (those that belong to unions)

11.6 Foreign Key Specification ■ 349

Agent Policy
sell

be sold
by

Figure 11.16 Optional relationship.

Simsion-Witt_11 10/11/04 8:51 PM Page 349

rather than all of them. By contrast an outer join, indicated by the keyword
“left”12 as in the second query in Figure 11.18, will return all employees.

If users are able to access the database directly through a query inter-
face, it is unreasonable to expect all users to understand this subtlety. In
this case, it may be better to create a dummy row in the table representing
the entity class at the “one” end of the relationship and replace the null for-
eign key in all rows in the other table by the key of that dummy row, as
illustrated in Figure 11.19. The first, simpler, query in Figure 11.18 will now
return all employees.

11.6.5 Overlapping Foreign Keys

Figure 11.20 is a model for an insurance company that operates in several
countries. Each agent works in a particular country, and sells only to cus-
tomers in that country. Note that the E-R diagram allows for this situation
but does not enforce the rule (see page 352).

If we apply the rule for representing relationships by foreign keys, we find
that the Country ID column appears twice in the Policy tableonce to support
the link to Agent and once to support the link to Customer. We can distin-
guish the columns by naming one Customer Country ID and the other Agent
Country ID. But because of our rule that agents sell only to customers in their
own country, both columns will always hold the same value. This seems a
clear case of data redundancy, easily solved by combining the two columns
into one. Yet, there are arguments for keeping two separate columns.

The two-column approach is more flexible; if we change the rule about
selling only to customers in the same country, the two-column model will

350 ■ Chapter 11 Logical Database Design

Org Unit ID Org Unit Name Parent Org Unit ID

1 Production 1

2 H/R 2

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID*)

Figure 11.17 An alternative simple hierarchy table.

12The keyword “right” may also be used if all rows from the second table are required rather
than all rows from the first table.

Simsion-Witt_11 10/11/04 8:51 PM Page 350

easily support the new situation. But here we have the familiar trade-off
between flexibility and constraints; we can equally argue that the one-
column model does a better job of enforcing an important business rule, if
we are convinced that the rule will apply for the life of the database.

There is a more subtle flexibility issue: What if one or both of the rela-
tionships from Policy became optional? Perhaps it is possible for a policy
to be issued without involving an agent. In such cases, we would need to
hold a null value for the foreign key to Agent, but this involves “nulling
out” the value for Country ID, part of the foreign key to Customer. We would
end up losing our link to Customer. We have been involved in some long
arguments about this one, the most common suggestion being that we only
need to set the value of Agent ID to null and leave Country ID untouched.

11.6 Foreign Key Specification ■ 351

Surname Initial Union Code Union Code Union Name

Chekov P APF APF Airline Pilots’ Federation

Kirk J null ETU Electrical Trades Union

McCoy L null TCU Telecommunications Union

Scott M ETU

Spock M null

Sulu H APF

Uhura N TCU

select SURNAME, INITIAL, UNION_NAME

from EMPLOYEE join UNION on

EMPLOYEE.UNION_CODE = UNION.UNION_CODE;

select SURNAME, INITIAL, UNION_NAME

from EMPLOYEE left join UNION on

EMPLOYEE.UNION_CODE = UNION.UNION_CODE;

Figure 11.18 Tables at each end of an optional one-to-many relationship.

Surname Initial Union Code Union Code Union Name

Chekov P APF APF Airline Pilots’ Federation

Kirk J N/A ETU Electrical Trades Union

McCoy L N/A TCU Telecommunications Union

Scott M ETU N/A Not applicable

Spock M N/A

Sulu H APF

Uhura N TCU

Figure 11.19 A dummy row at the “one” end of an optional one-to-many relationship.

Simsion-Witt_11 10/11/04 8:51 PM Page 351

But this involves an inconsistency in the way we handle foreign keys. It
might not be so bad if we only had to tell programmers to handle the sit-
uation as a special case (“Don’t set the whole of the foreign key to null in
this instance”), but these days program logic may be generated automati-
cally by a CASE tool that is not so flexible about handling nonstandard sit-
uations. The DBMS itself may recognize foreign keys and rely on them not
overlapping in order to support referential integrity (Section 14.5.4).

Our advice is to include both columns and to include the rule that
agents and customers must be from the same country in the business rule
documentation (see Chapter 14).

Of course, we can alternatively use stand-alone keys for Customer and
Agent. In this case the issue of overlapping foreign keys will not arise, but
again the rule that agents and customers must be from the same country
should be included in the business rule documentation.

11.6.6 Split Foreign Keys

The next structure has a similar flavor but is a little more complex. You are
likely to encounter it more often than the overlapping foreign key problem,
once you know how to recognize it!

352 ■ Chapter 11 Logical Database Design

Country

Customer Agent

Policy

be serviced
in

 service

be sold
to

 be sold

be sold
by

sell

be employed
in

employ

Country ID
. . .

* Country ID
 Agent ID
 . . .

Policy ID
. . .

* Country ID
 Customer ID
 . . .

Figure 11.20 E-R model leading to overlapping foreign keys.

Simsion-Witt_11 10/11/04 8:51 PM Page 352

Figure 11.21 shows a model for an organization that takes orders from
customers and dispatches them to the customers’ branches. Note that the
primary key of Branch is a combination of Customer No and Branch No, a
choice that would be appropriate if we wanted to use the customers’ own
branch numbers rather than define new ones ourselves. In translating this
model into relational tables, we need to carry two foreign keys in the
Ordered Item table. The foreign key to Order is Order No, and the foreign
key to Branch is Customer No + Branch No.

Our Ordered Item table, including foreign keys (marked with aster-
isks), is shown in Figure 11.22.

But let us assume the reasonable business rule that the customer who
places the order is also the customer who receives the order. Then, since
each order is placed and received by one customer, Order No is a determinant
of Customer No. The Ordered Item table is therefore not fully normalized, as
Order No is a determinant but is not a candidate key of the table.

We already have a table with Order No as the key and Customer No as
a non-key item. Holding Customer No in the Ordered Item table tells us
nothing new and involves us in the usual problems of un-normalized struc-
tures. For example, if the Customer No for an order was entered incorrectly,
it would need to be corrected for every item in that order. The obvious
solution seems to be to remove Customer No from the Ordered Item table.
But this causes its own problems.

11.6 Foreign Key Specification ■ 353

Customer

Branch Order

Ordered
Item

 be owned
by

 own

for

receive

be
under

comprise

be placed
by

 place

Customer No

Order No
Item No

Customer No
Branch No Order No

Figure 11.21 E-R model leading to split foreign key.

Simsion-Witt_11 10/11/04 8:51 PM Page 353

First, we have broken our rule for generating a foreign key for each one-
to-many relationship. Looked at another way, if we were to draw a diagram
from the tables, would we include a relationship line from Ordered Item
to Branch? Not according to our rules, but we started off by saying there
was a relationship between the two; Branch No is in the Ordered Item table
to support a relationship to Branch.

But there is more to the problem than a diagramming nicety. Any CASE
tool that generates foreign keys automatically from relationships is going to
include Customer No in the Ordered Item table. A program generator that
makes the usual assumption that it can find the full primary key of Branch
in the Ordered Item table will be in trouble if Customer No is excluded.
Again, standard facilities for enforcing referential integrity are most unlikely
to support the special situation that arises if Customer No is excluded.

Whether we include or exclude Customer No, we strike serious problems.
When you encounter this situation, which you should pick up through a
normalization check after generating the foreign keys, we strongly suggest
you go back and select different primary keys. In this case, a stand-alone
Branch No as the primary key of Branch will do the job. (The original Branch
No and Customer No will become nonkey items, forming a second candidate
key.) You will lose the constraint that the customer who places the order
receives the order. This will need to be included in the business rule doc-
umentation (see Chapter 14).

11.7 Table and Column Names

There are two factors affecting table and column names:

1. The target DBMS (if known) may impose a limit on the length of names,
may require that there are no spaces or special characters other than
underlines in a name, and may require names to be in all uppercase or
all lowercase.

2. There may be a standard in force within the organization as to how
tables and columns are named.

If there is no name length limit and no table/column naming standard,
the best approach to table and column naming is to use the corresponding
entity class or attribute name, with spaces and special characters replaced

354 ■ Chapter 11 Logical Database Design

ORDERED ITEM (Order No*, Item No, Product, Customer No*, Branch No*)

Figure 11.22 Ordered item table.

Simsion-Witt_11 10/11/04 8:52 PM Page 354

by underlines if necessary (e.g., the entity class Organization Unit would
be represented by the table organization_unit). An alternative, provided
the target DBMS supports mixed-case names, is to delete all spaces and
special characters and capitalize the first letter of each word in the name13

(e.g., OrganizationUnit).
In our experience, installation table/column naming standards often

require that table names all start with a particular prefix, typically “t_” or
“Tbl.” Our example table name would then be t_organization_unit or
TblOrganizationUnit, respectively.

If the target DBMS imposes a name length limit, it is usually necessary
to abbreviate the words that make up table and column names. If so, two
principles should be observed:

1. Use abbreviations consistently.

2. Do not also abbreviate entity class and attribute names as these are for
use by the business, not the database.

11.8 Logical Data Model Notations

How should a logical data model be presented to users and reviewers?
There is a choice of diagrammatic and textual notations.

An Entity-Relationship diagram can be used to present a logical data
model using the following conventions:

1. Each table is represented by a box as if it were an entity class.

2. Each foreign key in a table is represented by a line from that table to
the referenced table, marked as “optional many” at the foreign key end
and either “mandatory one” or “optional one” at the primary key end,
depending on whether the column is mandatory (NOT NULL) or
optional (NULL), which will have been derived from the optionality of
the relationship that the particular foreign key represents.

3. All columns (including foreign keys) should be listed either on the diagram
(inside the box representing the table) or in a separate list depending on
the facilities provided by the chosen CASE tool and the need to produce
an uncluttered diagram that fits the page.

If this notation is chosen, it is important to be able to distinguish the
logical data model diagram from the conceptual data model diagram. Your
chosen CASE tool may provide different diagram templates for the two
types of model with different notations, but if it does not, be sure to label
clearly each diagram as to whether it is conceptual or logical.

11.8 Logical Data Model Notations ■ 355

13The so-called “CamelCase.”

Simsion-Witt_11 10/11/04 8:52 PM Page 355

Some UML CASE tools (e.g., Rational Rose™) provide a quite different
diagram type for the logical data model; although it consists of boxes and
lines, the boxes look quite different from those used in a class model.

The textual notations available also depend on the CASE tool chosen
but generally conform to one of three formats:

1. “Relational” notation in Figure 11.23 in which each table name is listed
and followed on the same line by the names of each of its columns, the
entire set of column names enclosed in parentheses or braces.

2. “List” notation as in Figure 11.24 in which each table name and column
name appears in a line on its own, and the datatype and length (and
possibly the definition) of each column is shown.

3. DDL (data description language) as in Figure 11.25 in which the instruc-
tions to the DBMS to create each table and its columns are couched.

356 ■ Chapter 11 Logical Database Design

EMPLOYEE (Employee Number, Employee Name, Department Number)
DEPARTMENT (Department Number, Department Name, Department Location)
QUALIFICATION (Employee Number, Qualification Description, Qualification Year)

Figure 11.23 Employee model using relational notation.

EMPLOYEE
Employee Number: 5 Numeric—The number allocated to this employee by the Human
 Resources Department
Employee Name: 60 Characters—The name of this employee: the surname, a comma
 and space, the first given name plus a space and the middle initial if any
Department Number: The number used by the organization to identify the Department
 that pays this employee’s salary

DEPARTMENT
Department Number: 2 Numeric—The number used by the organization to identify this
 Department
Department Name: 30 Characters—The name of this Department as it appears in
 company documentation
Department Location: 30 Characters—The name of the city where this Department is
 located

QUALIFICATION
Employee Number: 5 Numeric—The number allocated to the employee holding this
 qualification by the Human Resources Department
Qualification Description: 30 Characters—The name of this qualification
Qualification Year: Date Optional—The year in which this employee obtained this
 qualification

Figure 11.24 Employee model using list notation.

Simsion-Witt_11 10/11/04 8:52 PM Page 356

11.9 Summary ■ 357

create table EMPLOYEE (
EMPLOYEE_NUMBER integer not null,
EMPLOYEE_NAME char(60) not null,
DEPARTMENT_NUMBER integer not null);
alter table EMPLOYEE add constraint PK1 primary key (EMPLOYEE_NUMBER);

create table DEPARTMENT (
DEPARTMENT_NUMBER: integer not null,
DEPARTMENT_NAME char(30) not null,
DEPARTMENT_LOCATION: char(30) not null);
alter table DEPARTMENT add constraint PK2 primary key (DEPARTMENT_NUMBER);

create table QUALIFICATION (
EMPLOYEE_NUMBER integer not null,
QUALIFICATION_DESCRIPTION char(30) not null,
QUALIFICATION_YEAR date null);
alter table QUALIFICATION add constraint PK3 primary key (EMPLOYEE_NUMBER,
QUALIFICATION_DESCRIPTION);
alter table EMPLOYEE add constraint FK1 foreign key (DEPARTMENT_NUMBER)
references DEPARTMENT;
alter table QUALIFICATION add constraint FK2 foreign key (EMPLOYEE_NUMBER)
references EMPLOYEE;

Figure 11.25 Employee model using DDL notation.

11.9 Summary

The transformation from conceptual model to logical model is largely
mechanical, but there are a few important decisions to be made by the
modeler.

Subtypes and supertypes need to be “leveled.” Tables can represent a
selected single level of generalization or multiple levels of generalization.

The allowed values of category attributes need to be specified either by
a constraint on the relevant column or by the addition of a new table to
hold them.

Care needs to be taken in the interdependent tasks of primary key spec-
ification and implementation of relationships using foreign keys.

At all stages of this phase, there are exceptions and unusual situations
that the professional modeler needs to be able to recognize and deal with.

Simsion-Witt_11 10/11/04 8:52 PM Page 357

This page intentionally left blank

Chapter 12
Physical Database Design

“‘Necessity is the mother of invention’ is a silly proverb. ‘Necessity is the mother of
futile dodges’ is much nearer to the truth.”

– Alfred North Whitehead

“Judgment, not passion, should prevail.”
– Epicharmus

12.1 Introduction

The transition from logical to physical database design marks a change in
focus and in the skills required. To this point, our goal has been to develop
a set of data structures independent of any particular DBMS, without
explicit regard for performance. Now our attention shifts to making those
structures perform on a particular hardware platform using the facilities of
our selected DBMS. Instead of business and generic data structuring skills,
we require a detailed knowledge of general performance tuning techniques
and of the facilities provided by the DBMS. Frequently this means that a
different, more technical, person will take on the role of database design.
In this case, the data modeler’s role will be essentially to advise on the
impact of changes to tables and columns, which may be required as a last
resort to achieve performance goals.

An enduring myth about database design is that the response time for
data retrieval from a normalized set of tables and columns will be longer
than acceptable. As with all myths there is a grain of truth in the assertion.
Certainly, if a large amount of data is to be retrieved, or if the database itself
is very large and either the query is unduly complex or the data has not
been appropriately indexed, a slow response time may result. However,
there is a lot that can be done in tuning the database and in careful crafting
of queries, before denormalization or other modification of the tables and
columns defined in a logical data model becomes necessary. This has
become increasingly true as overall computer performance has improved
and DBMS designers have continued to develop the capabilities of their
optimizers (the built-in software within a DBMS that selects the most efficient
means of executing each query).

Before we go any further, we need to clarify some terminology that we
touched on in Chapter 1.

359

Simsion-Witt_12 10/11/04 8:58 PM Page 359

The data modeler’s focus will be on the tables and columns (and the
views based on them). He or she will typically refer to the tables and
columns delivered by the physical database design process as the Physical
Data Model to distinguish it from the Logical Data Model. As we saw in the
previous chapter, the Logical Data Model is an ideal structure, which
reflects business information requirements and makes assertions about data
properties such as functional dependency, without being obscured by any
changes required for performance.

The database designer will be interested not only in the tables and columns
but also in the infrastructure componentsindexes and physical storage mech-
anismsthat support data management and performance requirements.
Since program logic depends only on tables and columns (and views based
on them), that set of components is often referred to as the Logical Schema1

while the remainder may be referred to as the Physical Schema.2

These alternative uses of the terms “logical” and “physical” can easily
lead to confusion!

In this chapter we review the inputs that the physical database designer
requires in addition to the Logical Data Model, then we look at a number
of options available for achieving performance goals. We divide these
options into three broad categories:

1. Design decisions that do not affect program logic (i.e., that preserve the
structure of the Logical Data Model)

2. Approaches to redesigning queries themselves to run faster (rather than
changing the database structure)

3. Design decisions that entail changes to the structures specified in the
Logical Data Model.

Finally, we look at the definition of views.
If you are a specialist data modeler, you may be tempted to skip this

chapter, since much of it relates to the tools and work of the physical data-
base designer. We encourage you not to do so. One of the key factors in
getting good outcomes in physical database design is the level of commu-
nication and respect between the database designer and the data modeler.
That means understanding what the other party does and how they do it.
Good architects maintain an up-to-date knowledge of building materials.

On the other hand, if you are responsible for physical database design, you
need to recognize that this chapter merely scratches the surface of the many
features and facilities available to you in a modern DBMS. Many of these are
DBMS-specific, and accordingly better covered in vendor manuals or guides for
the specific product. Specialist physical database designers generally focus on
one (or a limited number) of DBMSs, in contrast to modelers whose special-
ization is more likely to be in a specific business domain.

360 ■ Chapter 12 Physical Database Design

1Equivalent to the ANSI/SPARC Conceptual Schema and External Schemas.
2Equivalent to the ANSI/SPARC Internal Schema.

Simsion-Witt_12 10/11/04 8:58 PM Page 360

12.2 Inputs to Database Design

As well as the logical data model, the database designer will require other
information to be able to make sound design decisions:

1. The Process Model, detailing input processes (creation and updating of
rows in tables) and output requirements (retrieval of data from the data-
base), enabling the database designer to establish:

a. The circumstances in which rows are added to each table: how fre-
quently on average and at peak times (e.g., 1 per day or 100 per
second), and how many at a time, plus such details as whether the
primary key of an added row depends on the time that it is added,
so that rows added at about the same time have similar primary keys
(which can impact performance both through contention and the
need to rebalance the primary key index)

b. The circumstances in which rows are updated in each table: how
frequently on average and at peak times plus the likelihood that
rows with similar primary keys are updated at about the same time,
which may affect locking (see Section 12.5.1)

c. The circumstances in which rows are deleted from each table: how
frequently and how many at a time (deletes, like inserts, affect all
indexes on the table)

d. The circumstances in which rows are retrieved from each table:
what columns in the table are used for selecting rows, how many
rows are retrieved, what other tables are referenced, what
columns in the referring and referenced tables are correlated or
“joined”

2. The Process/Entity Matrix3 or mapping that shows which processes
access each entity class and how (create, update, retrieve), providing the
database designer with a list of the processes that create, update, and
retrieve each entity class

3. Nonstructural data requirements:

a. Retention: how long data in each table is to be retained before
deletion or archiving, whether there is a requirement for data to be
removed from a table within a certain time frame

b. Volumes: how many rows are likely to be included in each table at
system roll-out, how many additional rows are likely to be created
within a given time period (retention and volumes enable the
database designer to establish how big each table will be at various
times during the life of the application)

12.2 Inputs to Database Design ■ 361

3Often referred to as a “CRUD” matrix (Create, Read, Update, Delete). See Section 8.2.5.

Simsion-Witt_12 10/11/04 8:58 PM Page 361

c. Availability: whether data is required on a “24 × 7” basis, and if not,
for how long and how frequently the database can be inaccessible
by users, enabling the database designer to plan for:
i. Any batch processes specified in the process model

ii. Downtime during which the database can be reorganized; (i.e., data
and indexes redistributed more evenly across the storage medium)

iii. Whether data needs to be replicated at multiple sites to provide
fallback in the event of network failure

d. Freshness: how up-to-date the data available to those retrieving it has
to be, enabling the database designer to decide whether it is feasible to
have separate update and retrieval copies of data (see Section 12.6.4)

e. Security requirements, driving access permissions and possibly
prompting table partitioning and creation of views reflecting differ-
ent subsets of data available to different classes of users

4. Performance requirements: usually expressed in terms of the Response
Time, the time taken by each defined exchange in each application/user
dialog, (i.e., the time between the user pressing the Enter key and the
application displaying the confirmation of the creation or updating of the
data in the database or the results of the query). These enable the data-
base designer to focus on those creates, updates, and retrieval queries
that have the most critical performance requirements (beware of state-
ments such as “all queries must exhibit subsecond response time”; this is
rarely true and indicates that the writer has not bothered to identify the
critical user operations; we once encountered this statement in a contract
that also contained the statement “The application must support retrieval
queries of arbitrary complexity.”)

5. The target DBMS: not only the “brand” (e.g., DB2™, Informix™,
Oracle™, SQL Server™, Access ™, and so on), but the version, enabling
the database designer to establish what facilities, features, and options
are provided by that DBMS

6. Any current or likely limitations on disk space: these will be a factor in
choosing one or the other option where options differ in their use of
disk space (see, for example, Section 12.6.8)

7. Any likely difficulties in obtaining skilled programming resources: these may
prompt the avoidance of more complex data structures where these impact
programming complexity (see, for example, Sections 12.6.4 and 12.6.5).

12.3 Options Available to the Database Designer

The main challenge facing the database designer is to speed up those trans-
actions with critical performance requirements. The slowest activities in a
database are almost always the reading of data from the storage medium into
main memory and the writing of data from main memory back to the storage

362 ■ Chapter 12 Physical Database Design

Simsion-Witt_12 10/11/04 8:58 PM Page 362

medium, and it is on this data access (also known as “I/O”input/output)
that we now focus.

Commercial relational DBMSs differ in the facilities and features they
offer, the ways in which those facilities and features are implemented, and
the options available within each facility and feature. It is beyond the scope
and intention of this book to detail each of these; in any case, given the
frequency with which new versions of the major commercial DBMSs are
released, our information would soon be out-of-date. Instead, we offer a
list of the most important facilities and features offered by relational DBMSs
and some principles for their use. This can be used:

1. By the database designer, as a checklist of what facilities and features to
read up on in the DBMS documentation

2. By the data modeler who is handing over to a database designer, as a
checklist of issues to examine during any negotiations over changes to
tables and columns.

We first look at those design decisions that do not affect program logic.
We then look at ways in which queries can be crafted to run faster. We
finally look at various types of changes that can be made to the logical
schema to support faster queries when all other techniques have been tried
and some queries still do not run fast enough. This is also the sequence in
which these techniques should be tried by the database designer.

Note that those design decisions that do not affect program logic can be
revisited and altered after a database has been rolled out with minimal, if
any, impact on the availability of the database and, of course, none on pro-
gram logic. Changes to the logical schema, however, require changes to
program logic. They must therefore be made in a test environment (along
with those program changes), tested, packaged, and released in a con-
trolled manner like any other application upgrade.

12.4 Design Decisions Which Do Not Affect
Program Logic

The discussion in this section makes frequent reference to the term block.
This is the term used in the Oracle™ DBMS product to refer to the small-
est amount of data that can be transferred between the storage medium and
main memory. The corresponding term in IBM’s DB2™ DBMS is page.

12.4.1 Indexes

Indexes provide one of the most commonly used methods for rapidly retriev-
ing specified rows from a table without having to search the entire table.

12.4 Design Decisions Which Do Not Affect Program Logic ■ 363

Simsion-Witt_12 10/11/04 8:58 PM Page 363

Each table can have one or more indexes specified. Each index applies
to a particular column or set of columns. For each value of the column(s),
the index lists the location(s) of the row(s) in which that value can be found.
For example, an index on Customer Location would enable us to readily locate
all of the rows that had a value for Customer Location of (say) New York.

The specification of each index includes:

■ The column(s)
■ Whether or not it is unique, (i.e., whether there can be no more than

one row for any given value) (see Section 12.4.1.3)
■ Whether or not it is the sorting index (see Section 12.4.1.3)
■ The structure of the index (for some DBMSs: see Sections 12.4.1.4 and

12.4.1.5).

The advantages of an index are that:

■ It can improve data access performance for a retrieval or update
■ Retrievals which only refer to indexed columns do not need to read any

data blocks (access to indexes is often faster than direct access to data
blocks bypassing any index).

The disadvantages are that each index:

■ Adds to the data access cost of a create transaction or an update transac-
tion in which an indexed column is updated

■ Takes up disk space
■ May increase lock contention (see Section 12.5.1)
■ Adds to the processing and data access cost of reorganize and table load

utilities.

Whether or not an index will actually improve the performance of an
individual query depends on two factors:

■ Whether the index is actually used by the query
■ Whether the index confers any performance advantage on the query.

12.4.1.1 Index Usage by Queries

DML (Data Manipulation Language)4 only specifies what you want, not
how to get it. The optimizer built into the DBMS selects the best available

364 ■ Chapter 12 Physical Database Design

4This is the SQL query language, often itself called “SQL” and most commonly used to retrieve
data from a relational database.

Simsion-Witt_12 10/11/04 8:58 PM Page 364

access method based on its knowledge of indexes, column contents, and
so on. Thus index usage cannot be explicitly specified but is determined
by the optimizer during DML compilation. How it implements the DML will
depend on:

■ The DML clauses used, in particular the predicate(s) in the WHERE
clause (See Figure 12.1 for examples)

■ The tables accessed, their size and content
■ What indexes there are on those tables.

Some predicates will preclude the use of indexes; these include:

■ Negative conditions, (e.g., “not equals” and those involving NOT)

■ LIKE predicates in which the comparison string starts with a wildcard

■ Comparisons including scalar operators (e.g., +) or functions (e.g.,
datatype conversion functions)

■ ANY/ALL subqueries, as in Figure 12.2

■ Correlated subqueries, as in Figure 12.3.

Certain update operations may also be unable to use indexes. For exam-
ple, while the retrieval query in Figure 12.1 can use an index on the
Salary column if there is one, the update query in the same figure cannot.

Note that the DBMS may require that, after an index is added, a utility
is run to examine table contents and indexes and recompile each SQL
query. Failure to do this would prevent any query from using the new
index.

12.4.1.2 Performance Advantages of Indexes

Even if an index is available and the query is formulated in such a way that
it can use that index, the index may not improve performance if more
than a certain proportion of rows are retrieved. That proportion depends
on the DBMS.

12.4 Design Decisions Which Do Not Affect Program Logic ■ 365

select EMP_NO, EMP_NAME, SALARY
from EMPLOYEE
where SALARY > 80000;

update EMPLOYEE
set SALARY = SALARY* 1.1

Figure 12.1 Retrieval and update queries.

Simsion-Witt_12 10/11/04 8:58 PM Page 365

12.4.1.3 Index Properties

If an index is defined as unique, each row in the associated table must
have a different value in the column or columns covered by the index.
Thus, this is a means of implementing a uniqueness constraint, and a
unique index should therefore be created on each table’s primary key as
well as on any other sets of columns having a uniqueness constraint.
However, since the database administrator can always drop any index
(except perhaps that on a primary key) at any time, a unique index cannot
be relied on to be present whenever rows are inserted. As a result most
programming standards require that a uniqueness constraint is explicitly
tested for whenever inserting a row into the relevant table or updating any
column participating in that constraint.

The sorting index (called the clustering index in DB2) of each table
is the one that controls the sequence in which rows are stored during a
bulk load or reorganization that occurs during the existence of that index.
Clearly there can be only one such index for each table. Which column(s)
should the sorting index cover? In some DBMSs there is no choice; the
index on the primary key will also control row sequence. Where there is a
choice, any of the following may be worthy candidates, depending on the
DBMS:

■ Those columns most frequently involved in inequalities, (e.g., where >
or >= appears in the predicate)

■ Those columns most frequently specified as the sorting sequence

366 ■ Chapter 12 Physical Database Design

select EMP_NO, EMP_NAME, SALARY
from EMPLOYEE
where SALARY > all
 (select SALARY
 from EMPLOYEE
 where DEPT_NO = '123');

Figure 12.2 An ALL subquery.

select EMP_NO, EMP_NAME
from EMPLOYEE as E1
where exists
 (select*
 from EMPLOYEE as E2
 where E2.EMP_NAME = E1.EMP_NAME
 and E2.EMP_NO <> E1.EMP_NO);

Figure 12.3 A correlated subquery.

Simsion-Witt_12 10/11/04 8:58 PM Page 366

■ The columns of the most frequently specified foreign key in joins

■ The columns of the primary key.

The performance advantages of a sorting index are:

■ Multiple rows relevant to a query can be retrieved in a single I/O
operation

■ Sorting is much faster if the rows are already more or less5 in sequence.

By contrast, creating a sorting index on one or more columns may
confer no advantage over a nonsorting index if those columns are mostly
involved in index-only processing, (i.e., if those columns are mostly
accessed only in combination with each other or are mostly involved in =
predicates).

Consider creating other (nonunique, nonsorting) indexes on:

■ Columns searched or joined with a low hit rate

■ Foreign keys

■ Columns frequently involved in aggregate functions, existence checks or
DISTINCT selection

■ Sets of columns frequently linked by AND in predicates

■ Code & Meaning columns for a classification table if there are other less-
frequently accessed columns

■ Columns frequently retrieved.

Indexes on any of the following may not yield any performance benefit:

■ Columns with low cardinality (the number of different values is signifi-
cantly less than the number of rows) unless a bit-mapped index is used
(see Section 12.4.1.5)

■ Columns with skewed distribution (many occurrences of one or two
particular values and few occurrences of each of a number of other
values)

■ Columns with low population (NULL in many rows)

■ Columns which are frequently updated

■ Columns which take up a significant proportion of the row length

■ Tables occupying a small number of blocks, unless the index is to be
used for joins, a uniqueness constraint, or referential integrity, or if
index-only processing is to be used

■ Columns with the “varchar” datatype.

12.4 Design Decisions Which Do Not Affect Program Logic ■ 367

5Note that rows can get out of sequence between reorganizations.

Simsion-Witt_12 10/11/04 8:58 PM Page 367

12.4.1.4 Balanced Tree Indexes

Figure 12.4 illustrates the structure of a Balanced Tree index6 used in most
relational DBMSs. Note that the depth of the tree may be only one (in which
case the index entries in the root block point directly to data blocks), two (in
which case the index entries in the root block point to leaf blocks in which
index entries point to data blocks), three (as shown) or more than three (in
which the index entries in nonleaf blocks point to other nonleaf blocks). The
term “balanced” refers to the fact that the tree structure is symmetrical. If
insertion of a new record causes a particular leaf block to fill up, the index
entries must be redistributed evenly across the index with additional index
blocks created as necessary, leading eventually to a deeper index.

Particular problems may arise with a balanced tree index on a column
or columns on which INSERTs are sequenced, (i.e., each additional row has
a higher value in those column[s] than the previous row added). In this
case, the insertion of new index entries is focused on the rightmost (high-
est value) leaf block, rather than evenly across the index, resulting in more
frequent redistribution of index entries that may be quite slow if the entire
index is not in main memory. This makes a strong case for random, rather
than sequential, primary keys.

368 ■ Chapter 12 Physical Database Design

6Often referred to as a “B-tree Index.”

nonleaf
block

nonleaf
block

leaf
block

leaf
block

leaf
block

leaf
block

root
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

Figure 12.4 Balanced tree index structure.

Simsion-Witt_12 10/11/04 8:58 PM Page 368

12.4.1.5 Bit-Mapped Indexes

Another index structure provided by some DBMSs is the bit-mapped
index. This has an index entry for each value that appears in the indexed
column. Each index entry includes a column value followed by a series of
bits, one for each row in the table. Each bit is set to one if the correspon-
ding row has that value in the indexed column and zero if it has some
other value. This type of index confers the most advantage where the
indexed column is of low cardinality (the number of different values is
significantly less than the number of rows). By contrast such an index may
impact negatively on the performance of an insert operation into a large
table as every bit in every index entry that represents a row after
the inserted row must be moved one place to the right. This is less of a
problem if the index can be held permanently in main memory (see
Section 12.4.3).

12.4.1.6 Indexed Sequential Tables

A few DBMSs support an alternative form of index referred to as ISAM
(Indexed Sequential Access Method). This may provide better performance
for some types of data population and access patterns.

12.4.1.7 Hash Tables

Some DBMSs provide an alternative to an index to support random access
in the form of a hashing algorithm to calculate block numbers from key
values. Tables managed in this fashion are referred to as hashed random
(or “hash” for short). Again, this may provide better performance for some
types of data population and access patterns. Note that this technique is of
no value if partial keys are used in searches (e.g., “Show me the customers
whose names start with ‘Smi’”) or a range of key values is required (e.g.,
“Show me all customers with a birth date between 1/1/1948 and
12/31/1948”), whereas indexes do support these types of query.

12.4.1.8 Heap Tables

Some DBMSs provide for tables to be created without indexes. Such tables
are sometimes referred to as heaps.

If the table is small (only a few blocks) an index may provide no advan-
tage. Indeed if all the data in the table will fit into a single block, access-
ing a row via an index requires two blocks to be read (the index block and
the data block) compared with reading in and scanning (in main memory)

12.4 Design Decisions Which Do Not Affect Program Logic ■ 369

Simsion-Witt_12 10/11/04 8:58 PM Page 369

the one block: in this case an index degrades performance. Even if the data
in the table requires two blocks, the average number of blocks read to
access a single row is still less than the two necessary for access via an
index. Many reference (or classification) tables fall into this category.

Note however that the DBMS may require that an index be created for
the primary key of each table that has one, and a classification table will
certainly require a primary key. If so, performance may be improved by
one of the following:

1. Creating an additional index that includes both code (the primary key)
and meaning columns; any access to the classification table which
requires both columns will use that index rather than the data table itself
(which is now in effect redundant but only takes up space rather than
slowing down access)

2. Assigning the table to main memory in such a way that ensures the
classification table remains in main memory for the duration of each
load of the application (see Section 12.4.3).

12.4.2 Data Storage

A relational DBMS provides the database designer with a variety of options
(depending on the DBMS) for the storage of data.

12.4.2.1 Table Space Usage

Many DBMSs enable the database designer to create multiple table spaces
to which tables can be assigned. Since these table spaces can each be given
different block sizes and other parameters, tables with similar access patterns
can be stored in the same table space and each table space then tuned to
optimize the performance for the tables therein. The DBMS may even allow
you to interleave rows from different tables, in which case you may be able
to arrange, for example, for the Order Item rows for a given order to follow
the Order row for that order, if they are frequently retrieved together. This
reduces the average number of blocks that need to be read to retrieve an
entire order. The facility is sometimes referred to as clustering, which may
lead to confusion with the term “clustering index” (see Section 12.4.1.3).

12.4.2.2 Free Space

When a table is loaded or reorganized, each block may be loaded with
as many rows as can fit (unless rows are particularly short and there is a

370 ■ Chapter 12 Physical Database Design

Simsion-Witt_12 10/11/04 8:58 PM Page 370

limit imposed by the DBMS on how many rows a block can hold). If a new
row is inserted and the sorting sequence implied by the primary index
dictates that the row should be placed in an already full block, that row
must be placed in another block. If no provision has been made for addi-
tional rows, that will be the last block (or if that block is full, a new block
following the last block). Clearly this “overflow” situation will cause a
degradation over time of the sorting sequence implied by the primary index
and will reduce any advantages conferred by the sorting sequence of
that index.

This is where free space enters the picture. A specified proportion of
the space in each block can be reserved at load or reorganization time for
rows subsequently inserted. A fallback can also be provided by leaving
every nth block empty at load or reorganization time. If a block fills up,
additional rows that belong in that block will be placed in the next avail-
able empty block. Note that once this happens, any attempt to retrieve data
in sequence will incur extra block reads.

This caters, of course, not only for insertions but for increases in the
length of existing rows, such as those that have columns with the “varchar”
(variable length) datatype.

The more free space you specify, the more rows can be fitted in or
increased in length before performance degrades and reorganization is nec-
essary. At the same time, more free space means that any retrieval of mul-
tiple consecutive rows will need to read more blocks. Obviously for those
tables that are read-only, you should specify zero free space. In tables that
have a low frequency of create transactions (and update transactions that
increase row length) zero free space is also reasonable since additional data
can be added after the last row.

Free space can and should be allocated for indexes as well as data.

12.4.2.3 Table Partitioning

Some DBMSs allow you to divide a table into separate partitions based on
one of the indexes. For example, if the first column of an index is the state
code, a separate partition can be created for each state. Each partition can
be independently loaded or reorganized and can have different free space
and other settings.

12.4.2.4 Drive Usage

Choosing where a table or index is on disk enables you to use faster drives
for more frequently accessed data, or to avoid channel contention by dis-
tributing across multiple disk channels tables that are accessed in the
same query.

12.4 Design Decisions Which Do Not Affect Program Logic ■ 371

Simsion-Witt_12 10/11/04 8:58 PM Page 371

12.4.2.5 Compression

One option that many DBMSs provide is the compression of data in the
stored table, (e.g., shortening of null columns or text columns with trailing
space). While this may save disk space and increase the number of rows
per block, it can add to the processing cost.

12.4.2.6 Distribution and Replication

Modern DBMSs provide many facilities for distributing data across multiple
networked servers. Among other things distributing data in this manner can
confer performance and availability advantages. However, this is a special-
ist topic and is outside the scope of this brief overview of physical database
design.

12.4.3 Memory Usage

Some DBMSs support multiple input/output buffers in main memory and
enable you to specify the size of each buffer and allocate tables and
indexes to particular buffers. This can reduce or even eliminate the need to
swap frequently-accessed tables or indexes out of main memory to make
room for other data. For example, a buffer could be set up that is large
enough to accommodate all the classification tables in their entirety.
Once they are all in main memory, any query requiring data from a classi-
fication table does not have to read any blocks for that purpose.

12.5 Crafting Queries to Run Faster

We have seen in Section 12.4.1.1 that some queries cannot make use of
indexes. If a query of this kind can be rewritten to make use of an index,
it is likely to run faster. As a simple example, consider a retrieval of
employee records in which there is a Gender column that holds either “M”
or “F.” A query to retrieve only male employees could be written with
the predicate GENDER <> ‘F’ (in which case it cannot use an index on the
Gender column) or with the predicate GENDER = ‘M’ (in which case it
can use that index). The optimizer (capable of recasting queries into logi-
cally equivalent forms that will perform better) is of no help here even if
it “knows” that there are currently only “M” and “F” values in the Gender
column, since it has no way of knowing that some other value might

372 ■ Chapter 12 Physical Database Design

Simsion-Witt_12 10/11/04 8:58 PM Page 372

eventually be loaded into that column. Thus GENDER = ‘M’ is not logically
equivalent to GENDER <> ‘F’.

There are also various ways in which subqueries can be expressed dif-
ferently. Most noncorrelated subqueries can be alternatively expressed as a
join. An IN subquery can always be alternatively expressed as an EXISTS
subquery, although the converse is not true. A query including “> ALL
(SELECT . . .)” can be alternatively expressed by substituting “> (SELECT
MAX(. . .))” in place of “> ALL (SELECT . . .).”

Sorting can be very time-consuming. Note that any query including
GROUP BY or ORDER BY will sort the retrieved data. These clauses may,
of course, be unavoidable in meeting the information requirement. (ORDER
BY is essential for the query result to be sorted in a required order since
there is otherwise no guarantee of the sequencing of result data, which will
reflect the sorting index only so long as no inserts or updates have occurred
since the last table reorganization.) However, there are two other situations
in which unnecessary sorts can be avoided.

One is DISTINCT, which is used to ensure that there are no duplicate
rows in the retrieved data, which it does by sorting the result set. For exam-
ple, if the query is retrieving only addresses of employees, and more than
one employee lives at the same address, that address will appear more than
once unless the DISTINCT clause is used. We have observed that the DIS-
TINCT clause is sometimes used when duplicate rows are impossible; in
this situation it can be removed without affecting the query result but with
significant impact on query performance.

Similarly, a UNION query without the ALL qualifier after UNION ensures
that there are no duplicate rows in the result set, again by sorting it (unless
there is a usable index). If you know that there is no possibility of the same
row resulting from more than one of the individual queries making up a
UNION query, add the ALL qualifier.

12.5.1 Locking

DBMSs employ various locks to ensure, for example, that only one user
can update a particular row at a time, or that, if a row is being updated,
users who wish to use that row are either prevented from doing so, or
see the pre-update row consistently until the update is completed. Many
business requirements imply the use of locks. For example, in an airline
reservation system if a customer has reserved a seat on one leg of a
multileg journey, that seat must not be available to any other user, but if
the original customer decides not to proceed when they discover that there
is no seat available on a connecting flight, the reserved seat must be
released.

12.5 Crafting Queries to Run Faster ■ 373

Simsion-Witt_12 10/11/04 8:58 PM Page 373

The lowest level of lock is row-level where an individual row is locked
but other rows in the same block are still accessible. The next level is the
block-level lock, which requires less data storage for management but
locks all rows in the same block as the one being updated. Table locks
and table space locks are also possible. Locks may be escalated, whereby
a lock at one level is converted to a lock at the next level to improve per-
formance. The designer may also specify lock acquisition and lock
release strategies for transactions accessing multiple tables. A transaction
can either acquire all locks before starting or acquire each lock as required,
and it can either release all locks after committing (completing the update
transaction) or release each lock once no longer required.

12.6 Logical Schema Decisions

We now look at various types of changes that can be made to the logical
schema to support faster queries when the techniques we have discussed
have been tried and some queries still do not run fast enough.

12.6.1 Alternative Implementation of Relationships

If the target DBMS supports the SQL99 set type constructor feature:

1. A one-to-many relationship can be implemented within one table.

2. A many-to-many relationship can be implemented without creating an
additional table.

Figure 12.5 illustrates such implementations.

12.6.2 Table Splitting

Two implications of increasing the size of a table are:

1. Any Balanced Tree index on that table will be deeper, (i.e., there will
be more nonleaf blocks between the root block and each leaf block
and, hence, more blocks to be read to access a row using that index).

2. Any query unable to use any indexes will read more blocks in scanning
the entire table.

Thus, all queriesthose that use indexes and those that do notwill
take more time. Conversely, if a table can be made smaller, most, if not all,
queries on that table will take less time.

374 ■ Chapter 12 Physical Database Design

Simsion-Witt_12 10/11/04 8:58 PM Page 374

12.6.2.1 Horizontal Splitting

One technique for reducing the size of a table accessed by a query is to
split it into two or more tables with the same columns and to allocate the
rows to different tables according to some criteria. In effect we are defin-
ing and implementing subtypes. For example, although it might make sense
to include historical data in the same table as the corresponding current
data, it is likely that different queries access current and historical data.
Placing current and historical data in different tables with the same structure
will certainly improve the performance of queries on current data. You may
prefer to include a copy of the current data in the historical data table to
enable queries on all data to be written without the UNION operator. This
is duplication rather than splitting; we deal with that separately in Section
12.6.4 due to the different implications duplication has for processing.

12.6.2.2 Vertical Splitting

The more data there is in each row of a table, the fewer rows there are
per block. Queries that need to read multiple consecutive rows will there-
fore need to read more blocks to do so. Such queries might take less time
if the rows could be made shorter. At the same time shortening the rows
reduces the size of the table and (if it is not particularly large) increases the

12.6 Logical Schema Decisions ■ 375

Department
No

Department
Code

Department Name Employee Group

Employee No Employee Name

123 ACCT Accounts 37289 J Smith

41260 A Chang

50227 B Malik

135 PRCH Purchasing 16354 D Sanchez

26732 T Nguyen

Employee
No

Employee Name Assignment Group

Project No

50227 B Malik 1234

2345

37289 J Smith 1234

Assignment Date

27/2/95

2/3/95

28/2/95

Figure 12.5 Alternative implementations of relationships in an SQL99 DBMS.

Simsion-Witt_12 10/11/04 8:58 PM Page 375

likelihood that it can be retained in main memory. If some columns of a
table constitute a significant proportion of the row length, and are accessed
significantly less frequently than the remainder of the columns of that table,
there may be a case for holding those columns in a separate table using the
same primary key.

For example, if a classification table has Code, Meaning, and Explanation
columns, but the Explanation column is infrequently accessed, holding that
column in a separate table on the same primary key will mean that the clas-
sification table itself occupies fewer blocks, increasing the likelihood of it
remaining in main memory. This may improve the performance of queries
that access only the Code and Meaning columns. Of course, a query that
accesses all columns must join the two tables; this may take more time than
the corresponding query on the original table. Note also that if the DBMS
provides a long text datatype with the property that columns using that
datatype are not stored in the same block as the other columns of the same
table, and the Explanation column is given that datatype, no advantage
accrues from splitting that column into a separate table.

Another situation in which vertical splitting may yield performance ben-
efits is where different processes use different columns, such as when an
Employee table holds both personnel information and payroll information.

12.6.3 Table Merging

We have encountered proposals by database designers to merge tables that
are regularly joined in queries.

An example of such a proposal is the merging of the Order and Order
Line tables shown in Figure 12.6. Since the merged table can only have one
set of columns making up the primary key, this would need to be Order No
and Line No, which means that order rows in the merged table would need
a dummy Line No value (since all primary key columns must be nonnull); if
that value were 0 (zero), this would have the effect of all Order Line rows
following their associated Order row if the index on the primary key were
also the primary index. Since all rows in a table have the same columns,
Order rows would have dummy (possibly null) Product Code, Unit Count, and

376 ■ Chapter 12 Physical Database Design

Separate: ORDER (Order No, Customer No, Order Date)
ORDER LINE (Order No, Line No, Product Code, Unit Count, Required By Date)

Merged: ORDER/ORDER LINE (Order No, Line No, Customer No, Order Date, Product
Code, Unit Count, Required By Date)

Figure 12.6 Separate and merged order and order line tables.

Simsion-Witt_12 10/11/04 8:58 PM Page 376

Required By Date columns while Order Line rows would have dummy (again
possibly null) Customer No and Order Date columns. Alternatively, a single
column might be created to hold the Required By Date value in an Order row
and the Order Date value in an Order Line row.

The rationale for this approach is to reduce the average number of blocks
that need to be read to retrieve an entire order. However, the result is
achieved at the expense of a significant change from the logical data model.
If a similar effect can be achieved by interleaving rows from different tables
in the same table space as described in Section 12.4.2.1, this should be
done instead.

12.6.4 Duplication

We saw in Section 12.6.2.1 how we might separate current data from his-
torical data to improve the performance of queries accessing only current
data by reducing the size of the table read by those queries. As we indi-
cated then, an alternative is to duplicate the current data in another table,
retaining all current data as well as the historical data in the original table.
However, whenever we duplicate data there is the potential for errors to
arise unless there is strict control over the use of the two copies of the data.
The following are among the things that can go wrong:

1. Only one copy is being updated, but some users read the other copy
thinking it is up-to-date.

2. A transaction causes the addition of a quantity to a numeric column in one
copy, but the next transaction adds to the same column in the other copy.
Ultimately, the effect of one or other of those transactions will be lost.

3. One copy is updated, but the data from the other copy is used to over-
write the updated copy, in effect wiping out all updates since the second
copy was taken.

To avoid these problems, a policy must be enforced whereby only one
copy can be updated by transactions initiated by users or batch processes
(the current data table in the example above). The corresponding data in
the other copy (the complete table in the example above) is either auto-
matically updated simultaneously (via a DBMS trigger, for example) or, if it
is acceptable for users accessing that copy to see data that is out-of-date,
replaced at regular intervals (e.g., daily).

Another example of an “active subset” of data that might be copied into
another table is data on insurance policies, contracts, or any other agree-
ments or arrangements that are reviewed, renewed, and possibly changed
on a cyclical basis, such as yearly. Toward the end of a calendar month the
data for those policies that are due for renewal during the next calendar

12.6 Logical Schema Decisions ■ 377

Simsion-Witt_12 10/11/04 8:58 PM Page 377

month could become a “hot spot” in the table holding information about
all policies. It may therefore improve performance to copy the policy data
for the next renewal month into a separate table. The change over from
one month to the other must, of course, be carefully managed, and it may
make sense to have “last month,” “this month,” and “next month” tables as
well as the complete table.

Another way in which duplication can confer advantages is in optimiza-
tion for different processes. We shall see in Section 12.6.7 how hierarchies
in particular can benefit from duplication.

12.6.5 Denormalization

Technically, denormalization is any change to the logical schema that
results in it not being fully normalized according to the rules and defini-
tions discussed in Chapters 2 and 13. In the context of physical database
design, the term is often used more broadly to include the addition of deriv-
able data of any kind, including that derived from multiple rows.

Four examples of strict violations of normalization are shown in the
model of Figure 12.7:

1. It can be assumed that Customer Name and Customer Address have been
copied from a Customer table with primary key Customer No.

2. Customer No has been copied from the Order table to the Order Line
table.

3. It can be assumed that Unit Price has been copied from a Product table
with primary key Product Code.

4. Total Price can be calculated by multiplying Unit Price by Unit Count.

Changes such as this are intended to offer performance benefits for
some transactions. For example, a query on the Order Line table which
also requires the Customer No does not have to also access the Order table.
However, there is a down side: each such additional column must be care-
fully controlled.

1. It should not be able to be updated directly by users.

378 ■ Chapter 12 Physical Database Design

ORDER (Order No, Customer No, Customer Name, Customer Address, Order Date)
ORDER LINE (Order No, Line No, Customer No, Customer Name, Customer Address,
Product Code, Unit Count, Unit Price, Total Price, Required By Date)

Figure 12.7 Denormalized Order and Order Line Tables.

Simsion-Witt_12 10/11/04 8:58 PM Page 378

2. It must be updated automatically by the application (via a DBMS trigger,
for example) whenever there is a change to the original data on which
the copied or derived data is based.

The second requirement may slow down transactions other than those
that benefit from the additional data. For example, an update of Unit Price
in the Product table will trigger an update of Unit Price and Total Price in
every row of the Order Line table with the same value of Product Code. This
is a familiar performance trade-off; enquiries are made faster at the expense
of more complex (and slower) updating.

There are some cases where the addition of redundant data is generally
accepted without qualms and it may indeed be included in the logical data
model or even the conceptual data model. If a supertype and its subtypes
are all implemented as tables (see Section 11.3.6.2), we are generally happy
to include a column in the supertype table that indicates the subtype to
which each row belongs.

Another type of redundant data frequently included in a database is the
aggregate, particularly where data in many rows would have to be summed
to calculate the aggregate “on the fly.” Indeed, one would never think of
not including an Account Balance column in an Account table (to the extent
that there will most likely have been an attribute of that name in the
Account entity class in the conceptual data model), yet an account balance
is the sum of all transactions on the account since it was opened. Even if
transactions of more than a certain age are deleted, the account balance
will be the sum of the opening balance on a statement plus all transactions
on that statement.

Two other structures in which redundant data often features are Ranges
and Hierarchies. We discuss these in the next two sections.

12.6.6 Ranges

There are many examples of ranges in business data. Among the most
common are date ranges. An organization’s financial year is usually divided
into a series of financial or accounting periods. These are contiguous, in
that the first day of one accounting period is one day later than the last day
of the previous one. Yet we usually include both first and last day columns
in an accounting period table (not only in the physical data model, but
probably in the logical and conceptual data models as well), even though
one of these is redundant in that it can be derived from other data. Other
examples of date ranges can be found in historical data:

1. We might record the range of dates for which a particular price of some
item or service applied.

12.6 Logical Schema Decisions ■ 379

Simsion-Witt_12 10/11/04 8:58 PM Page 379

2. We might record the range of dates for which an employee reported to
a particular manager or belonged to a particular organization unit.

Time ranges (often called “time slots”) can also occur, such as in sched-
uling or timetabling applications. Classifications based on quantities are
often created by dividing the values that the quantity can take into “bands”
(e.g., age bands, price ranges). Such ranges often appear in business rule
data, such as the duration bands that determine the premiums of short-term
insurance policies.

Our arguments against redundant data might have convinced you that
we should not include range ends as well as starts (e.g., Last Date as well as
First Date, Maximum Age as well as Minimum Age, Maximum Price as well as
Minimum Price). However, a query that accesses a range table that does not
include both end and start columns will look like this:

select PREMIUM_AMOUNT
from PREMIUM_RULE as PR1
where POLICY_DURATION >= MINIMUM_DURATION
and POLICY_DURATION < MIN

(select PR2.MINIMUM_DURATION
from PREMIUM_RULE as PR2
where PR2.MINIMUM_DURATION > PR1.MINIMUM_DURATION);

However, if we include the range end Maximum Duration as well as the
range start Minimum Duration the query can be written like this:

select PREMIUM_AMOUNT
from PREMIUM_RULE
where POLICY_DURATION between MINIMUM_DURATION
and MAXIMUM_DURATION;

The second query is not only easier to write but will take less time to
run (provided there is an index on POLICY DURATION) unless the
Premium Rule table is already in main memory.

12.6.7 Hierarchies

Hierarchies may be specific, as in the left-hand diagram in Figure 12.8, or
generic, as in the right-hand diagram. Figure 12.9 shows a relational imple-
mentation of the generic version.

Generic hierarchies can support queries involving traversal of a fixed
number of levels relatively simply, (e.g., to retrieve each top-level organiza-
tion unit together with the second-level organization units that belong to it).

380 ■ Chapter 12 Physical Database Design

Simsion-Witt_12 10/11/04 8:58 PM Page 380

Often, however, it is necessary to traverse a varying number of levels, (e.g.,
retrieve each top-level organization unit together with the bottom-level
organization units that belong to it). Queries of this kind are often written
as a collection of UNION queries in which each individual query traverses
a different number of levels.

There are various alternatives to this inelegant approach, including some
nonstandard extensions provided by some DBMSs. In the absence of these,
the simplest thing to try is the suggestion made in Section 11.6.4.1 as to
population of the recursive foreign key (Parent Org Unit ID in the table shown
in Figure 12.9). The revised table is shown in Figure 12.10.

If that does not meet all needs, one of the following alternative ways of
representing a hierarchy in a relational table, each of which is illustrated in
Figure 12.11, may be of value:

12.6 Logical Schema Decisions ■ 381

Division

Department

Branch

Organization
Unit

Figure 12.8 Specific and generic hierarchies.

Org Unit ID Org Unit Name Parent Org Unit ID

1 Production null

2 H/R null

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID)

Figure 12.9 A simple hierarchy table.

Simsion-Witt_12 10/11/04 8:58 PM Page 381

1. Include not only a foreign key to the parent organization unit but for-
eign keys to the “grandparent,” “great-grandparent” . . . organization
units (the number of foreign keys should be one less than the maximum
number of levels in the hierarchy).

2. As a variation of the previous suggestion, include a foreign key to each
“ancestor” at each level.

3. Store all “ancestor”/“descendant” pairs (not just “parents” and “children”)
together with the difference in levels. In this case the primary key must
include the level difference as well as the ID of the “descendant” organ-
ization unit.

As each of these alternatives involves redundancy, they should not be
directly updated by users; instead, the original simple hierarchy table shown
in Figure 12.9 should be retained for update purposes and the additional table
updated automatically by the application (via a DBMS trigger, for example).

Still other alternatives can be found in Joe Celko’s excellent book on this
subject.7

12.6.8 Integer Storage of Dates and Times

Most DBMSs offer the “date” datatype, offering the advantages of automatic
display of dates in a user-friendly format and a wide range of date and time
arithmetic. The main disadvantage of storing dates and times using the
“date” datatype rather than “integer” is the greater storage requirement,
which in one project in which we were involved increased the total data
storage requirement by some 15%. In this case, we decided to store dates
in the critical large tables in “integer” columns in which were loaded the

382 ■ Chapter 12 Physical Database Design

Org Unit ID Org Unit Name Parent Org Unit ID

1 Production 1

2 H/R 2

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID)

Figure 12.10 An alternative way of implementing a hierarchy.

7Celko, J. Joe Celko’s Trees and Hierarchies in SQL for Smarties, Morgan Kaufmann, 2004.

Simsion-Witt_12 10/11/04 8:58 PM Page 382

number of days since some base date. Similarly, times of day could be
stored as the number of minutes (or seconds) since midnight. We then cre-
ated views of those tables (see Section 12.7) in which datatype conversion
functions were used to derive dates in “dd/mm/yyyy” format.

12.6.9 Additional Tables

The processing requirements of an application may well lead to the creation
of additional tables that were not foreseen during business information

12.6 Logical Schema Decisions ■ 383

Org Unit ID Org Unit Name Parent Org Unit ID Grandparent Org Unit ID

1 Production null null

2 H/R null null

21 Recruitment 2 null

22 Training 2 null

221 IT Training 22 2

222 Other Training 22 2

ORG UNIT (Org Unit ID, Org Unit Name, Level 1 Org Unit ID, Level 2 Org Unit ID)

Org Unit ID Org Unit Name Level 1 Org Unit ID Level 2 Org Unit ID

1 Production 1 null

2 H/R 2 null

21 Recruitment 2 21

22 Training 2 22

221 IT Training 2 22

222 Other Training 2 22

ORG UNIT (Org Unit ID, Level Difference, Org Unit Name, Ancestor Org Unit ID)

Org Unit ID Level Difference Org Unit Name Ancestor Org Unit ID

1 1 Production null

2 1 H/R null

21 1 Recruitment 2

22 1 Training 2

221 1 IT Training 22

221 2 IT Training 2

222 1 Other Training 22

222 2 Other Training 2

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID, Grandparent Org Unit ID)

Figure 12.11 Further alternative ways of implementing a hierarchy.

Simsion-Witt_12 10/11/04 8:58 PM Page 383

analysis and, hence, do not appear in the conceptual or logical data
models. These can include:

■ Summaries for reporting purposes
■ Archive retrieval
■ User access and security control data
■ Data capture control, logging, and audit data
■ Data distribution control, logging, and audit data
■ Translation tables
■ Other migration/interface support data
■ Metadata

12.7 Views

The definition of Views (introduced in Chapter 1) is one of the final stages
in database design, since it relies on the logical schema being finalized.

Views are “virtual tables” that are a selection of rows and columns
from one or more real tables and can include calculated values in additional
virtual columns. They confer various advantages, among them support for
users accessing the database directly through a query interface. This support
can include:

■ The provision of simpler structures
■ Inclusion of calculated values such as totals
■ Inclusion of alternative representations of data items (e.g., formatting

dates as integers as described in Section 12.6.8)
■ Exclusion of data for which such users do not have access permission.

Another function that views can serve is to isolate not only users but
programmers from changes to table structures. For example, if the decision
is taken to split a table as described in Section 12.6.2 but access to that table
was previously through a view that selected all columns of all rows (a so-
called “base view”), the view can be recoded as a union or join of the two
new tables. For this reason, installation standards often require a base view
for every table. Life, however, is not as simple as that, since there are two
problems with this approach:

■ Union views and most join views are not updateable, so program code
for update facilities must usually refer to base tables rather than views.

■ As we show in Section 12.7.3, normalized views of denormalized tables
lose any performance advantages conferred by that denormalization.

384 ■ Chapter 12 Physical Database Design

Simsion-Witt_12 10/11/04 8:58 PM Page 384

Some standards that we do recommend, however, are presented and
discussed in the next four sections.

12.7.1 Views of Supertypes and Subtypes

However a supertype and its subtypes have been implemented, each of
them should be represented by a view. This enables at least “read” access
by users to all entity classes that have been defined in the conceptual data
model rather than just those that have ended up as tables.

If we implement only the supertype as a table, views of each subtype
can be constructed by selecting in the WHERE clause only those rows that
belong to that subtype and including only those columns that correspond
to the attributes and relationships of that subtype.

If we implement only the subtypes as tables, a view of the supertype
can be constructed by a UNION of each subtype’s base view.

If we implement both the supertype and the subtypes as tables, a view
of each subtype can be constructed by joining the supertype table and the
appropriate subtype table, and a view of the supertype can be constructed
by a UNION of each of those subtype views.

12.7.2 Inclusion of Derived Attributes in Views

If a derived attribute has been defined as a business information require-
ment in the conceptual data model it should be included as a calculated
value in a view representing the owning entity class. This again enables user
access to all attributes that have been defined in the conceptual data model.

12.7.3 Denormalization and Views

If we have denormalized a table by including redundant data in it, it may
be tempting to retain a view that reflects the normalized form of that table,
as in Figure 12.12.

However a query of such a view that includes a join to another view so
as to retrieve an additional column will perform that join even though the
additional column is already in the underlying table. For example, a query
to return the name and address of each customer who has ordered product
“A123” will look like that in Figure 12.13 and will end up reading the
Customer and Order tables as well as the Order Line table to obtain
Customer Name and Customer Address, even though those columns have been

12.7 Views ■ 385

Simsion-Witt_12 10/11/04 8:58 PM Page 385

copied into the Order Line table. Any performance advantage that may
have accrued from the denormalization is therefore lost.

12.7.4 Views of Split and Merged Tables

If tables have been split or merged, as described in Sections 12.6.2 and
12.6.3, views of the original tables should be provided to enable at least
“read” access by users to all entity classes that have been defined in the
conceptual data model.

12.8 Summary

Physical database design should focus on achieving performance goals
while implementing a logical schema that is as faithful as possible to the
ideal design specified by the logical data model.

The physical designer will need to take into account (among other
things) stated performance requirements, transaction and data volumes,
available hardware and the facilities provided by the DBMS.

386 ■ Chapter 12 Physical Database Design

CUSTOMER (Customer No, Customer Name, Customer Address)
ORDER (Order No, Customer No, Customer Name, Customer Address, Order Date)
ORDER LINE (Order No, Line No, Customer No, Customer Name, Customer Address,
Product Code, Unit Count, Required By Date)
Views:
CUSTOMER (Customer No, Customer Name, Customer Address)
ORDER (Order No, Customer No, Order Date)
ORDER LINE (Order No, Line No, Product Code, Unit Count, Required By Date)

Tables:

Figure 12.12 Normalized views of denormalized tables.

select CUSTOMER_NAME, CUSTOMER_ADDRESS

from ORDER LINE join ORDER on

ORDER LINE. ORDER_NO = ORDER.ORDER_NO join CUSTOMER on

ORDER.CUSTOMER_NO = CUSTOMER.CUSTOMER_NO

where PRODUCT_CODE = 'A123';

Figure 12.13 Querying normalized views.

Simsion-Witt_12 10/11/04 8:58 PM Page 386

Most DBMSs support a wide range of tools for achieving performance
without compromising the logical schema, including indexing, clustering,
partitioning, control of data placement, data compression, and memory
management.

In the event that adequate performance across all transactions cannot be
achieved with these tools, individual queries can be reviewed and some-
times rewritten to improve performance.

The final resort is to use tactics that require modification of the logical
schema. Table splitting, denormalization, and various forms of data dupli-
cation can provide improved performance, but usually at a cost in other
areas. In some cases, such as hierarchies of indefinite depth and specifica-
tion of ranges, data duplication may provide a substantial payoff in easier
programming as well as performance.

Views can be utilized to effectively reconstruct the conceptual model
but are limited in their ability to accommodate update transactions.

12.8 Summary ■ 387

Simsion-Witt_12 10/11/04 8:58 PM Page 387

This page intentionally left blank

Part III
Advanced Topics

Simsion-Witt_13 10/11/04 9:54 PM Page 389

This page intentionally left blank

Chapter 13
Advanced Normalization

“Everything should be made as simple as possible, but not simpler.”
– Albert Einstein (attrib.)

“The soul never thinks without a picture.”
– Aristotle

13.1 Introduction

In Chapter 2 we looked at normalization, a formal technique for eliminat-
ing certain problems from data models. Our focus was on situations in
which the same facts were carried in more than one row of a table
resulting in wasted space, more complex update logic, and the risk of
inconsistency. In data structures that are not fully normalized, it can also
be difficult to store certain types of data independently of other types
of data. For example, we might be unable to store details of customers
unless they currently held accounts with us, and similarly, we could lose
customer details when we deleted their accounts. All of these problems,
with the exception of the wasted space, can be characterized as “update
anomalies.”

The normalization techniques presented in Chapter 2 enable us to put
data into third normal form (3NF). However, it is possible for a set of tables
to be in 3NF and still not be fully normalized; they can still contain the
problems of the kind that we expect normalization to remove.

In this chapter, we look at three further stages of normalization: Boyce-
Codd normal form (BCNF), fourth normal form (4NF), and fifth normal
form (5NF).

We then discuss in more detail a number of issues that were mentioned
only briefly in Chapter 2. In particular, we look further at the limitations
of normalization in eliminating redundancy and allowing us to store data
independently and at some of the pitfalls of failing to follow the rules of
normalization strictly.

Before proceeding, we should anticipate the question: Are there normal
forms beyond 5NF? Until relatively recently, we would have answered,
“No,” although from time to time we would see proposals for further
normal forms intended to eliminate certain problems which could still

391

Simsion-Witt_13 10/11/04 9:54 PM Page 391

exist in a 5NF structure. In most cases these problems were of a different
kind to those that we aim to eliminate by normalization, and the propos-
als did not win much support in the academic or practitioner commu-
nities. More recently, however, Date et al.1 proposed a sixth normal form
(6NF), which has gained some acceptance. The issues that it
addresses relate to time-dependent data, and we therefore discuss it in
Chapter 15.

13.2 Introduction to the Higher Normal Forms

We have left the discussion of the normal forms beyond 3NF until this chap-
ter, not because the problems they address are unimportant, but because they
occur much less frequently. Most tables in 3NF are already in BCNF, 4NF, and
5NF. The other reason for handling the higher normal forms separately is
that they are a little more difficult to understand, particularly if we use only
the relational notation, as in Chapter 2. Diagrams, which were not intro-
duced until Chapter 3, make understanding much easier.

If you are a practicing data modeler, you are bound to encounter nor-
malization problems beyond 3NF from time to time. Recognizing the patterns
will save a lot of effort. And, because each higher normal form includes all
the lower normal forms, you only need to be able to prove that a structure
is in 5NF to be certain that it is also in 1NF through 4NF.

13.2.1 Common Misconceptions

Before we start on the specifics of each of the higher normal forms, it is
worth clearing up a few common misconceptions.

The first is that 4NF and 5NF are impossibly difficult for practitioners to
understand. When running seminars for experienced data modelers we
sometimes ask whether they have a practical understanding of the higher
normal forms. It is not unusual to find that noone in the audience is prepared
to claim that knowledge.

The reality is that 4NF and 5NF are often not well-taughtsometimes
because the teachers themselves do not understand them. But while the
formal definitions can be hard work, the structural problems that they
address are relatively simple to grasp, particularly if they are translated into
entity-relationship terms. If you observe the rule, “Do not resolve several

392 ■ Chapter 13 Advanced Normalization

1Date C.J., Darwen H., Lorentzos N, Temporal Data and the Relational Model. Morgan
Kaufmann, 2002.

Simsion-Witt_13 10/11/04 9:54 PM Page 392

distinct many-to-many relationships with a single entity,” you are well on
the way to ensuring you have 5NF structures. But we would like you to
understand it a little more deeply than that!

The general lack of understanding of the higher normal forms has led
to all sorts of data modeling guidelines and decisions, most of them bad,
being paraded under the banner of 4NF and 5NF. Unsound data structures
have been defended on the basis that they were required to achieve some-
one’s spurious definition of 4NF or 5NF. And we have even seen perfectly
sound design practices rejected on the basis that they lead to (incorrectly
defined) 4NF or 5NF structures, which in turn are seen to be academic
or detrimental to performance. If nothing else, an understanding of the
higher normal forms will ensure that you are not swayed by arguments of
this kind.

Practitioners are frequently advised to normalize “only as far as third
normal form” on the basis that further normalization offers little benefit or
that it incurs serious performance costs. The argument that normalization
beyond 3NF is not useful is only true in the sense that normalization to 3NF
will remove most, and usually all, of the problems associated with unnor-
malized data. In other words, once we have put our data in 3NF, it is very
often already in 5NF. But those data structures that are in 3NF but not in
5NF still exhibit serious problems of very much the same type that we
address in the earlier stages of normalization: redundancy; insertion, update,
and deletion complexity and anomalies; and difficulty in storing facts inde-
pendently of other facts.

The performance argument is no more valid for the higher normal forms
than it is for 3NF. As with the other normal forms and good design practices
in general, we may ultimately need to make compromises to achieve ade-
quate performance, but our starting point should always be fully normalized
structures. Denormalization should be a last resort because the resulting
redundancy, complexity, and incompleteness are likely to be expensive to
manage.

The most common reason for not looking beyond 3NF is plain igno-
rance: not knowing how to proceed any further!

Finally, you can expect to hear modelers argue that a formal knowledge
of normalization is unnecessary, as they can arrive at normalized structures
through proper application of top-down techniques. This looks like a con-
venient excuse for avoiding a potentially difficult subject, but there is some
truth in the argument.2 Most of the time, good data modelers are able to
achieve normalized structures without going through a formal normalization
process. However, if you understand normalization, you are in a position to

13.2 Introduction to the Higher Normal Forms ■ 393

2If you are using the Object Role Modeling (ORM) technique, mentioned in Chapter 7, rather than
E-R, this argument carries more weight, as the various business rules relevant to normalization
are rigorously checked during the conceptual modeling stages to allow a mechanical transla-
tion to normalized structures.

Simsion-Witt_13 10/11/04 9:54 PM Page 393

tackle certain types of modeling problems from an alternative (and very
rigorous) perspective, to check your intuition and patterns, and to verify and
justify your decisions. You will also have a deeper understanding of what
makes a sound (or unsound) data structure. For a professional data modeler,
this should be core knowledge.

13.3 Boyce-Codd Normal Form

13.3.1 Example of Structure in 3NF but Not in BCNF

Look at the model in Figure 13.1, which represents data about an organi-
zation’s branches and how each branch services its customers.

Figure 13.2 shows the Branch-Customer Relationship table.
Note three things about this table:

1. The table enforces the rule that each branch will serve a customer
through only one salesperson, as there is only one Salesperson No for
each combination of Customer No and Branch No. This rule cannot be
deduced from the diagram alone. We need the additional information

394 ■ Chapter 13 Advanced Normalization

Branch -
Customer

Relationship

Customer Branch

Salesperson

involve

be involved
 in

involve

be involved
in

be involved
in
 involve

Figure 13.1 Customers, salespersons, and branches.

Simsion-Witt_13 10/11/04 9:54 PM Page 394

that Customer No and Branch No form the primary key of the table, so
each combination can occur only once. (If the primary key also
included Salesperson No, then the table would support multiple sales-
persons for each combination of branch and customer.)

2. The table is in 3NF; there are no repeating groups, and every determi-
nant of a nonkey item is a candidate key.

3. If we are given the additional information that each salesperson works
for one branch only, then the table will still have some normalization
problems. The fact that a particular salesperson belongs to a particular
branch will be recorded in every row in which that salesperson’s iden-
tifier appears.

The underlying reason for the normalization problems is that we have
a dependency between Salesperson No and Branch No; Salesperson No is a
determinant of Branch No. (A reminder on the terminology: this means that
for every Salesperson No, there is only one corresponding Branch No.) The
unusual feature here is that Branch No is part of the key. In all our exam-
ples so far, we have dealt with determinants of nonkey items. We now have
a real problem. What we would like to do is set up a reference table with
Salesperson No as the key (Figure 13.3).

But this does not really help. Although we can now record which
branch a salesperson belongs to, regardless of whether he or she is serving
any customers, we cannot take anything out of the original table. We would
like to remove Branch No, but that would mean destroying the key.

The trick is to recognize that the original table has another candidate
key. We could just as well have used a combination of Salesperson No and
Customer No as the primary key (Figure 13.4, next page).

The new key suggests a new name for the table: Customer-Salesperson
Relationship. But now we are no longer in 3NF (in fact not even in 2NF).
Salesperson No is a determinant of Branch No, so we need to split these
columns off to another table (Figure 13.5, next page).

We now have our Salesperson reference table, including the foreign
key to Branch, and we have eliminated the problem of repeated data.

13.3 Boyce-Codd Normal Forms ■ 395

BRANCH-CUSTOMER RELATIONSHIP (Customer No, Branch No, Visiting Frequency,
Relationship Establishment Date, Salesperson No)

Figure 13.2 Branch-Customer relationship table.

SALESPERSON (Salesperson No, Branch No)

Figure 13.3 Salesperson table.

Simsion-Witt_13 10/11/04 9:54 PM Page 395

Technically, we have resolved a situation in which the tables were in 3NF
but not BCNF.

13.3.2 Definition of BCNF

For a table to be in BCNF, we require that the following rule be satisfied:
Every determinant must be a candidate key.
In our example, Salesperson No was a determinant of Branch No, but was

not a candidate key of Branch-Customer Relationship. Compare this with
the definition of 3NF: “Every determinant of a nonkey column must be a
candidate key.” If you compare the two definitions it should be clear that
BCNF is stronger than 3NF in the sense that any table in BCNF will also be
in 3NF.

Situations in which tables may be in 3NF but not BCNF can only occur
when we have more than one candidate keyto be more precise, over-
lapping candidate keys. We can often spot them more quickly in diagram-
matic form. In Figure 13.1, the Branch-Customer-Relationship box indicates
a three-way relationship between Branch, Customer, and Salesperson.
Approaching the problem from an Entity-Relationship perspective, we
would normally draw the model as in Figure 13.6, recognizing the direct
relationship between Salesperson and Branch. Any proposed relationship
between Customer-Salesperson Relationship and Branch would then be
seen as derivable from the separate relationships between Customer-
Salesperson Relationship and Salesperson, and between Salesperson
and Branch. Taking this top-down approach, we would not have consid-
ered holding Branch No as an attribute of Customer-Salesperson
Relationship, and the BCNF problem would not have arisen.

You may find it interesting to experiment with different choices of keys
for the various tables in the flawed model of Figure 13.1. In each case, you

396 ■ Chapter 13 Advanced Normalization

CUSTOMER-SALESPERSON RELATIONSHIP (Customer No, Salesperson No,
Visiting Frequency, Relationship Established Date, Branch No)

Figure 13.4 Changing the primary key.

CUSTOMER-SALESPERSON RELATIONSHIP (Customer No, Salesperson No,
Visiting Frequency, Relationship Established Date)
SALESPERSON (Salesperson No, Branch No)

Figure 13.5 Normalized tables.

Simsion-Witt_13 10/11/04 9:54 PM Page 396

will find that a normalization rule is violated or a basic business requirement
not supported.

13.3.3 Enforcement of Rules versus BCNF

There are some important issues about rules here, which can easily be lost
in our rather technical focus on dependencies and normalization. In the
original table, we enforced the rule that a given customer was only served
by one salesperson from each branch. Our new model no longer enforces
that rule. It is now possible for a customer to be supported by several sales-
persons from the same branch. We have traded the enforcement of a rule
for the advantages of normalization. It is almost certainly a good trade,
because it is likely to be easier to enforce the rule within program logic
than to live with the problems of redundant data, update complexity, and
unwanted data dependencies.

But do not lose sight of the fact that changing a data structure, for what-
ever reason, changes the rules that it enforces. For example, in Figure 13.6,
we enforce the rule that each salesperson is employed by a single branch;

13.3 Boyce-Codd Normal Form ■ 397

Customer-
Salesperson
Relationship

Customer Salesperson

involve

be involved
in

involve

be involved
in

Branch

be
employed
in

 employ

Figure 13.6 Revised model for customer-salesperson-branch.

Simsion-Witt_13 10/11/04 9:54 PM Page 397

in the original example, the rule was perhaps implied by the description,
but certainly not enforced by the model.

13.3.4 A Note on Domain Key Normal Form

We complete our discussion of this example with a slightly academic aside.
You may occasionally see references to Domain Key Normal Form (DKNF),
which requires that “All constraints are a consequence of domains or keys.”3

The idea of a constraint being a consequence of a domain4 in the sense of
a set of allowed values is a familiar one; if we say that the value of Contract
Status must be drawn from a domain containing only the values “Pending,”
“Active,” and “Closed,” then Contract Status is constrained to those three values.
The idea of a constraint being a consequence of the choice of keys is less
obvious, but our example nicely illustrates it: if we choose a combination
of Branch No and Customer No as the key of Branch-Customer Relationship
in Figure 13.1, we are able to enforce the constraint that each customer is
served by only one salesperson from each branch, but if we choose a com-
bination of Customer No and Salesperson No as the key, we do not enforce
the constraint.

Academic interest in DKNF seems to have faded, and it has never been
used much by practitioners. We mention it here primarily to highlight the
important impact that key choice and normalization have on the enforcement
of constraints.

13.4 Fourth Normal Form (4NF) and
Fifth Normal Form (5NF)

Let us start our discussion of fourth and fifth normal forms with some good
news. Once data structures are in BCNF, remaining normalization problems
come up almost exclusively when we are dealing with “key only”
tablesthat is, tables in which every column is part of the key. Even then,
for practical purposes (see Section 13.4.3), they only apply to tables with
three or more columns (and, hence, a three-or-more-part key). We will dis-
cuss 4NF and 5NF together because the reason these two forms are defined

398 ■ Chapter 13 Advanced Normalization

3Fagin, R., “A Normal Form for Relational Databases That Is Based on Domains and Keys,”
ACM Transactions on Database Systems (September 1981).
4Not to be confused with the term “domain” in the sense of “problem domain” (the subset
of interest of an organization or its data) in which sense it is also used by data modeling prac-
titioners.

Simsion-Witt_13 10/11/04 9:54 PM Page 398

separately has more to do with the timing of their discovery than anything
else. We will not bother too much about a formal definition of 4NF because
the 5NF definition is simpler and covers 4NF as well. (As mentioned earlier,
any structure in 5NF is automatically in 4NF and all the lower normal forms.
In Chapter 2, we similarly skipped over 2NF and proceeded directly to 3NF.)

13.4.1 Data in BCNF but Not in 4NF

Suppose we want to record data about financial market dealers, the instru-
ments they are authorized to trade, and the locations at which they are
allowed to operate. For example, Smith might be authorized to deal in stocks
in New York and in Government Bonds in London.

Let us suppose for the moment that:
Each instrument can be traded only at a specified set of locations, and
Each dealer is allowed to trade in a specified set of instruments.
So, if we wanted to know whether Smith could deal in Government

Bonds in Sydney, we would ask:
Can Government Bonds be traded in Sydney?
Can Smith deal in Government Bonds?
If the answer to both questions was, “Yes,” then we would deduce that

Smith could indeed deal in Government Bonds in Sydney. Figures 13.7(a)
and (b) show data models for this situation. In (b), the many-to-many rela-
tionships shown in (a) are resolved using all-key tables.

If we wanted to know all of the authorized combinations of dealer, loca-
tion, and instrument, we could derive a list by combining (joining) the two
tables to produce the single table in Figure 13.8 (see page 401).

But what if this derived table was offered up as a solution in itself? It
should be reasonably clear that it suffers from normalization-type problems
of redundancy and nonindependence of facts. Any authorized combination
of instrument and location (e.g., the fact that Government Bonds can be
traded in New York) will have to be repeated for each dealer permitted to
trade in that instrument. This is the familiar normalization problem of the
same fact being held in more than one row. Adding or deleting a combi-
nation will then involve updating multiple rows. A similar problem applies
to combinations of dealer and instrument. Note that the derived table
carries more column values than the two original tables. This is hardly
surprising considering that it contains duplicated data, but we have often
seen derivable tables offered up on the basis that they will save space.

Using the three-column table, we cannot record the fact that an instrument
is allowed to be traded at a particular location unless there is at least one
dealer who can trade in that instrument. Options can be traded in Tokyo,
but this fact is not reflected in the derived table. Nor can we record the fact
that the dealer can trade in a particular instrument unless that instrument

13.4 Fourth Normal Form (4NF) and Fifth Normal Form (5NF) ■ 399

Simsion-Witt_13 10/11/04 9:54 PM Page 399

400 ■ Chapter 13 Advanced Normalization

Dealer Instrument

Location

be allowed to
trade in

be traded
to

allow
trading of

be traded
at

(a) Using Many-to-Many
Relationships

Dealer-
Instrument

Relationship
Dealer Instrument

Instrument-
Location

Relationship

Location

 be
 involved in

involve

 involve

be
involved in

involve

be
involved in

be
involved in

 involve

(Instrument ID, Location ID)

(Dealer ID, Instrument ID)

(b) Many-to-Many Relationships
Resolved

Dealer ID Instrument ID Instrument ID Location ID

Smith Ordinary Stocks Government Bonds New York
Smith Government Bonds Government Bonds London
Bruce Futures Government Bonds Sydney
Bruce Government Bonds Futures Singapore

Futures Tokyo
Options Tokyo

Figure 13.7 Dealing model with sample data.

Simsion-Witt_13 10/11/04 9:54 PM Page 400

can be traded at a minimum of one location. The derived table does not
show that Smith is authorized to trade in ordinary stocks.

So our derived table appears to be unnormalized, but on checking, we
find that it is in BCNF. Technically, our normalization problem is the
result of a multivalued dependency (MVD)5 and our table is not in 4NF
(which specifies, roughly speaking, that we should not have any nontrivial
multivalued dependencies).

Rather than get sidetracked by more formal definitions of 4NF and multi-
valued dependencies, let us refer back to the diagrams. In our one-table
solution, we have tried to resolve two many-to-many relationships with a
single table, rather than with two separate tables. The simple message
is not to do this! Another way of looking at it is that we should record
underlying rules rather than derived rules. This is a basic principle of
data modeling we have encountered before when eliminating derivable
attributes and relationships. It also provides a good starting point for
understanding 5NF.

13.4.2 Fifth Normal Form (5NF)

Throughout the various stages of normalization, at least one thing has
remained constant: each new stage involves splitting a table into two or
more new tables. Remember: “Normalization is like marriage; you always
end up with more relations.”

We have taken care not to lose anything in splitting a table; we could
always reconstruct the original table by joining (matching values in) the

13.4 Fourth Normal Form (4NF) and Fifth Normal Form (5NF) ■ 401

5Instrument ID is said to multidetermine Location ID and Dealer ID, and conversely,
Location ID and Dealer ID each multidetermine Instrument ID.

Dealer Instrument ID Location ID
Smith Government Bonds New York
Smith Government Bonds London
Smith Government Bonds Sydney
Bruce Futures Singapore
Bruce Futures Tokyo
Bruce Government Bonds New York
Bruce Government Bonds London
Bruce Government Bonds Sydney

Dealer Instrument ID Location ID

Figure 13.8 Allowed combinations of Dealer, Instrument, and Location.

Simsion-Witt_13 10/11/04 9:54 PM Page 401

new tables. In essence, normalization splits each table into underlying
tables from which the original table can be derived, if necessary.

The definition of 5NF picks up on this idea and essentially tells us to
keep up this splitting process until we can go no further. We only stop
splitting when one of the following is true:

■ Any further splitting would lead to tables that could not be joined to
produce the original table.

■ The only splits left to us are trivial.

“Trivial” splits are defined as being splits based on candidate keys,
such as those shown in Figure 13.9. A nontrivial split results in two or more
tables with different keys, none of which is a candidate key of any other
table.

The definition of 5NF differs in style from our definitions for earlier
stages in normalization. Rather than picking a certain type of anomaly to
be removed, 5NF defines an end-point after which any further “normaliza-
tion” would cause us to lose information. Applying the definition to the
dealing authority problem, we have shown that the three-key table can be
split into two without losing information; hence, we perform the split.

The 5NF definition enables us to tackle a more complex version of the
dealing authority problem. Suppose we introduce an additional rule: each
dealer can only operate at a specified set of locations. The new model is
shown in Figures 13.10(a) and (b).

Now that we have three separate relationships, could we resolve them
all with one entity? We hope your intuitive answer based on the preceding
discussion is, “No.” The resulting three-column table would have to be

402 ■ Chapter 13 Advanced Normalization

EMPLOYEE (Employee Number, Name, Birth Date)
can be trivially split into:

EMPLOYEE-NAME (Employee Number, Name)
EMPLOYEE-BIRTH (Employee Number, Birth Date)
(a) Split Based on Primary Key

DEPARTMENT (Department Number, Department Name, Location Code, Manager
Employee Number)
assuming Department Name is a candidate key, can be trivially split into:

DEPARTMENT-LOCATION (Department Number, Department Name, Location Code)
DEPARTMENT-MANAGER (Department Name, Manager Employee Number)
(b) Split Based on Non Primary Candidate Key

Figure 13.9 Trivial table splits.

Simsion-Witt_13 10/11/04 9:54 PM Page 402

equivalent to the three separate tables and, hence, could be broken down
into them. Figure 13.11 on the next page shows the combined table, which
still exhibits normalization problems. Changing one of the underlying rules
may require multiple rows to be added or deleted, and we cannot record
rules that do not currently lead to any valid combinations.

For example, deleting the rule that Smith can trade in Tokyo requires only
one row to be removed from the underlying tables, but two from the derived

13.4 Fourth Normal Form (4NF) and Fifth Normal Form (5NF) ■ 403

Dealer Instrument

Location

Dealer
Instrument
Authority

Dealer Instrument

Dealer
Location
Authority

Instrument
Location
Authority

Location

be allowed
to trade in

be
traded by

allow
operation

by be allowed
to operate at

allow
trading of

be
traded at

(a) Using Many-to-Many
Relationships

 be
 involved in

involve

 involve

be
involved in

involve

 be
 involved in

involve

 be
 involved in

 be
 involved in

involve

be
involved in

 involve

(Dealer ID, Instrument ID)

(Dealer ID, Location ID) (Instrument ID, Location ID)

(b) Many-to-Many Relationships
Resolved

Figure 13.10 Dealing model with three many-to-many relationships.

Simsion-Witt_13 10/11/04 9:54 PM Page 403

table. As populations are increased from a few sample rows to hundreds or
thousands of rows, the differences become correspondingly greater.

Technically, the three-column derived table is in 4NF, as there are no
multivalued dependencies (you may have to take our word on this!). But
because we can split the table into three new tables and reconstruct it, it is
not yet in 5NF. Splitting the table into three solves the problem.

In simple terms, then, the definition of 4NF effectively says that two
many-to-many relationships cannot be resolved with one table. Satisfying
5NF requires that two or more many-to-many relationships are not resolved
by a single table.

13.4.3 Recognizing 4NF and 5NF Situations

The first step in handling 4NF and 5NF problems is recognizing them. In
relational notation, we can spot all-key tables with three or more columns;
in a diagram, we look for three- or more-way intersection entity classes. We
are indebted to Chris Date (see Further Reading) for bringing to our atten-
tion the possibility of 4NF and 5NF being violated in situations other than
those involving only “all key” tables. We will not pursue these cases here;
suffice to say that:

■ The examples we have seen and those that we have been able to con-
struct involve business rules which we would not seriously contemplate
enforcing in the data structure.

■ We have yet to encounter an example in practice.

404 ■ Chapter 13 Advanced Normalization

Dealer ID Location ID Instrument ID
Smith Sydney 90-Day Bills
Smith Sydney 180-Day Bills
Smith Tokyo 90-Day Bills
Smith Tokyo 10-Year Bonds
Philip Sydney 180-Day Bills
Philip Perth 180-Day Bills

This table is derivable from the following tables.

Dealer ID Location ID Dealer ID Instrument ID Location ID Instrument ID
Smith Sydney Smith 90-Day Bills Sydney 90-Day Bills
Smith Tokyo Smith 180-Day Bills Sydney 180-Day Bills
Philip Sydney Smith 10-Year Bonds Tokyo 90-Day Bills
Philip Perth Philip 180-Day Bills Tokyo 10-Year Bonds

Perth 180-Day Bills

Figure 13.11 Allowed combinations derivable from underlying rules.

Simsion-Witt_13 10/11/04 9:54 PM Page 404

Figure 13.12 shows some variations to the basic three-way intersection
entity pattern, which may be less easy to recognize (see following page).

Each of the structures in Figure 13.12 contains an all-key table repre-
senting a three-way intersection entity and may therefore exhibit 4NF or
5NF problems. Of course, some three-way relationships are perfectly legit-
imate. The problems arise only when they are derivable from simpler, more
fundamental relationships.

If, in our dealer authority example, authorities were decided on a case-
by-case basis independently of underlying rules, then the three-way rela-
tionship entity would be valid. Figure 13.13 on page 407 shows a table of
values assigned in this way. You may find it an interesting exercise to try
to break the table down into “underlying” tables; it cannot be done because
there are no underlying rules beyond “any combination may be independ-
ently deemed to be allowed.” Any set of two-column tables will either fail
to cover some permitted combinations or generate combinations that are not
permitted. For example, our “underlying” tables would need to record that:

1. Smith can deal in Sydney (first row of table).

2. Smith can deal in 180-day Bills (third row of table).

3. 180-day bills can be traded in Sydney (fourth row of table).

With these three facts we would derive a three-column table that recorded
that Smith can deal in 180-day bills in Sydney, which, as we can see from the
original table, is not true.

We have gone as far as we can in table splitting, and our tables are
therefore in 5NF.

13.4.4 Checking for 4NF and 5NF with the
Business Specialist

In determining whether all-key tables are in 4NF and 5NF, we suggest that
you do not bother with the multivalued dependency concept. It is not an easy
idea to grasp and certainly not a good starting point for dialogue with a
nontechnical business specialist. And, after all that, you have only established
4NF, with 5NF still in front of you! Move straight to the 5NF definition, and
look to see if there are simpler business rules underlying those represented
by the multiway relationship. Ask the following questions: On what (business)
basis do we add a row to this table? On what basis do we delete rows? Do
we apply any rules? Understanding the business reasons behind changes to
the table is the best way of discovering whether it can be split further.

Do not expect the answers to these business questions to come easily.
Often the business rules themselves are not well understood or even well
defined. We have found it helpful to present business specialists with pairs

13.4 Fourth Normal Form (4NF) and Fifth Normal Form (5NF) ■ 405

Simsion-Witt_13 10/11/04 9:54 PM Page 405

Surgeon Physician

Prescribing
Practice

Drug Disease

Component

Component-
Component

Structure
Procedure

Pension
Scheme

Pension
Benefit

Eligibility
Benefit

Employee
Class

(a)

Note: Relationships to Physician and Surgeon are mutually exclusive.
Structure emerges clearly if we use the "exclusivity arc" as described

in Section 4.14.2, or generalize Surgeon and Physician to Medical Practitioner.

be assembled
using

be used
to assemble

(Component-1 ID, Component-2 ID,
Procedure ID)

(b) Extended "Bill of Materials" Structure

(Pension scheme ID, Benefit ID, Employee Class ID)

(c) Hidden Entity

not identified
as an entity

Figure 13.12 Structures possibly not in 4NF or 5NF.

Simsion-Witt_13 10/11/04 9:54 PM Page 406

of attribute values, or, equivalently, with a null value in one of the columns
of a three-column table, and ask “Does this mean anything by itself?” Another
useful technique is to look for possible nonkey columns. Remember that 4NF
and 5NF problems are generally associated with all-key tables.

13.5 Beyond 5NF: Splitting Tables Based on
Candidate Keys

In defining 5NF, we indicated that the task of normalization was complete
when the only ways of further splitting tables either resulted in our losing
information or were based on candidate keys. Because it represents the
point at which our simple splitting process can take us no further, 5NF is
usually considered synonymous with “fully normalized.”

However, as we saw in Chapter 10 in our discussion of one-to-one rela-
tionships, sometimes we do want to split tables based on candidate keys.
In Section 10.9.3, we looked at an example of a manufacturing business
that stored parts in bins according to the following rules:

1. Each type of part is stored in one bin only.

2. Each bin contains one type of part only.

It is interesting to reexamine this example from a normalization per-
spective. We might be offered the following table to represent data about
parts and bins (Figure 13.14):

In checking normalization, our first reaction is likely to be that Bin No
determines Bin Height, Bin Width, and Bin Depth. But Bin No is a candidate key,
so technically we do not have a problem. Nevertheless, most experienced
data modelers would still feel uncomfortable about this structure, and with

13.5 Beyond 5NF: Splitting Tables Based on Candidate Keys ■ 407

Dealer ID Location ID Instrument ID

Smith Sydney 90-Day Bills

Smith Tokyo 90-Day Bills
Smith Tokyo 180-Day Bills
Philip Sydney 180-Day Bills

Figure 13.13 Nonderivable combinations.

PART (Part No, Bin No, Bin Height, Bin Width, Bin Depth, Part Name, Quantity)

Figure 13.14 Parts and bins.

Simsion-Witt_13 10/11/04 9:54 PM Page 407

good reason. Think about the problem of moving parts from one bin to
another. Suppose, for example, we want to swap the parts stored in two bins.
We would expect this to involve changing only the bin numbers for the rel-
evant parts. But with this structure, we will also need to update (swap) the
values for Bin Height, Bin Width, and Bin Depth, and of any other columns that
“belong to” bins rather than parts. If we split bin and part data into separate
tables, we can avoid this problem, and this is indeed the best approach.

But what distinguishes this example from the trivial employee example
in the previous section where we did not split the original table? The dif-
ference is basically that Bin No and Part No represent different things in the
real world, and the relationship between them is transferable (i.e., a part
may move from one bin to another and vice versa). Although the 5NF rule
does not require us to split the data into separate tables, it does not prohibit
us from doing so. The two resulting tables are still in 5NF.

This issue is seldom discussed in texts on normalization, and you need
to be aware of it, if only to back up your intuition when another modeler
or a database designer argues that the two tables should be combined. In
practice, if you start with an E-R diagram, you will almost certainly identify
separate entity classes, with a one-to-one relationship between them, rather
than a single entity.

13.6 Other Normalization Issues

In this section, we look more closely at some normalization issues that we
have mentioned only in passing so far. We start by examining some
common misconceptions about what is achieved by normalization. We then
look at some of the less usual situations that may arise when applying the
standard rules of normalization.

13.6.1 Normalization and Redundancy

Normalization plays such an important role in reducing data redundancy
that it is easy to forget that a model can be fully normalized and still allow
redundant data. The most common situations are as follows.

13.6.1.1 Overlapping Tables

Normalization does not address data redundancy resulting from overlap-
ping classifications of data. If we recognize Teacher Number and Student
Number as keys when normalizing data, we will build a Teacher table and

408 ■ Chapter 13 Advanced Normalization

Simsion-Witt_13 10/11/04 9:54 PM Page 408

a Student table. But if a teacher can also be a student, we will end up
holding the values of any common attributes (such as Address) in both
tables.

13.6.1.2 Derivable Data

If the value of one column can be calculated from others, normalization by
itself will not eliminate the redundancy. If the underlying column values
and the result are all within one row, normalization will remove the calcu-
lated value to a separate table (Figure 13.15), but we will still need to
observe that the table itself is redundant and remove it.

Better to remove the derivable item at the outset rather than going
through this procedure! Normalization will not help at all with values calcu-
lated from multiple rows (possibly from more than one table), such as “Total
Quantity of this Item Outstanding” or “Total Charge on an Invoice Header.”

Another example of data derivable across multiple rows is a table used
to translate contiguous numeric rangesfor example, Australian postal
code ranges to Statesand including columns First Number and Last Number.
The value of Last Number is incremented by one to derive the next First
Number; hence, if the Last Number column was removed, we could recreate
it by subtracting one from the next highest First Number (Figure 13.16).
(We do not need to have the rows sequenced to achieve this.) This is, how-
ever, hardly elegant programming. And can we rely on the organization
that defines the ranges to maintain the convention that they are contiguous?
This is therefore a data structure holding redundant data that we should not
take exception to.

Repeated data of this kind does not show up as the simple dependencies
that we tackle with normalization. As discussed in Chapter 2, the best
approach is to remove columns representing derivable data (as distinct
from dependent data), prior to starting normalization. But sometimes the

13.6 Other Normalization Issues ■ 409

Figure 13.15 Removing derivable data.

ORDER ITEM (Order No, Item No, Ordered Quantity, Delivered Quantity, Outstanding
Quantity)
Outstanding Quantity = Ordered Quantity less Delivered Quantity

Hence (Ordered Quantity, Delivered Quantity) determines Outstanding Quantity

Normalizing:

ORDER ITEM (Order No, Item No, Ordered Quantity, Delivered Quantity)
OUTSTANDING ORDER (Ordered Quantity, Delivered Quantity, Outstanding Quantity)
Outstanding Order table contains no useful information and can be removed on this basis

Simsion-Witt_13 10/11/04 9:54 PM Page 409

distinction may be hard to make. And, as in the example of Figure 13.16,
the sacrifice in programming simplicity and stability may not justify the
reduction in redundancy. If in doubt, leave the questionable columns in,
then review again after normalization is complete.

13.6.2 Reference Tables Produced by Normalization

Each stage in normalization beyond 1NF involves the creation of “reference”
tables (often referred to as “look-up” tables as some data is removed from
the original table to another table where it can be “looked up” by citing the
relevant value of the primary key). As well as reducing data redundancy,
these tables allow us to record instances of the reference data that do not cur-
rently appear in the unnormalized table. For example, we could record a hos-
pital for which there were no operations or a customer who did not hold any
accounts with us. We become so used to these reference tables appearing
during the normalization process that it is easy to miss the fact that normal-
ization alone will not always generate all the reference tables we require.

Imagine we have the table of employee information shown in Figure 13.17:
Normalization gives us a table of all the employees and their names and

another table of all the skill names and their descriptions. We have not only
eliminated duplicate rows but are now able to record a skill even though
no employee has that skill. However, if we remove Skill Description from the

410 ■ Chapter 13 Advanced Normalization

SKILL HELD (Employee No, Skill Name, Skill Description, Employee Name)
Normalizing:
SKILL HELD (Employee No, Skill Name)
EMPLOYEE (Employee No, Employee Name)
SKILL (Skill Name, Skill Description)

Figure 13.17 Normalization producing reference table.

Australian Postal Code Table

First Number Last Number State

2000 2999 New South Wales
3000 3999 Victoria
4000 4999 Queensland
5000 5999 South Australia
etc.

Figure 13.16 Data derivable across rows.

Simsion-Witt_13 10/11/04 9:54 PM Page 410

problem, normalization will no longer give us a Skill table (which would
contain the single column Skill Name). If we want such a list, we can certainly
specify an all-key table consisting of Skill Name only. But normalization will
not do it for us.

In discussing 4NF and 5NF situations, we raised the possibility of finding
a nonkey column. If such a column, dependent on the full key, was added,
our 4NF and 5NF problems would disappear. So why not just introduce a
dummy column? The problem is much the same as the one we encountered
with employees and skills: normalization will provide an internally consis-
tent model, but will not generate the reference tables we require.

Suppose, for example, we found in our dealing model (Figure 13.10)
that there was a rule that limited the amount of any deal for each combi-
nation of dealer, location, and instrument. We now need the three-key table
to hold the Limit column, even if our underlying rules are as in Figure 13.10,
giving us the model in Figure 13.18 on the following page. This one can be
a bit tricky to draw. Modelers often show relationships from the basic tables
(Dealer, Instrument, Location) rather than the intersection tables. We
have shown it first with all foreign-key relationships, including redundant
relationships, then with redundant relationships removed. We have left off
relationship names in the interest of minimizing clutter.

Can we now eliminate the three outside intersection tables, giving us the
model in Figure 13.19? (see page 413)

At first glance, the answer may appear to be, “Yes.” It would seem that
we could find all allowable combinations of (say) dealer and location just by
searching the relevant columns of the three-column rule table. The problem
is that some of the underlying (two-column) rules may not have given rise
to any rows in the rule table. For example, a dealer may be authorized to
deal in New York but may not yet be authorized to deal in any of the
instruments available in that city.

In this example, if we started with just the rule table (including the Limit
column), no rule of normalization would lead us to the two-column inter-
section tablesthe “reference” tables. This is because they contain separate
and additional facts to the information in the original table. But it is also
the sort of thing that is easily missed.

The message here is that normalization is an adjunct to E-R modeling,
not a substitute. In the two examples discussed here, we need to identify
the reference tables as entity classes during the conceptual modeling phase.

13.6.3 Selecting the Primary Key after Removing
Repeating Groups

In Chapter 2, we highlighted the importance of correctly identifying primary
keys at each stage of the normalization process. Once the tables are in 1NF,

13.6 Other Normalization Issues ■ 411

Simsion-Witt_13 10/11/04 9:54 PM Page 411

412 ■ Chapter 13 Advanced Normalization

Dealer
Instrument
Authority

Dealer Instrument

Dealer
Location
Authority

Instrument
Location
Authority

Location

(a) All Foreign Key Links Shown

Dealer
Instrument
Authority

Dealer Instrument

Dealer
Location
Authority

Instrument
Location
Authority

Location

(b) Derivable Links Removed

Dealer
Instrument

Location
Rule

Dealer
Instrument

Location
Rule

Figure 13.18 Dealing model including dealer instrument location rule table.

Simsion-Witt_13 10/11/04 9:54 PM Page 412

this is usually straightforward; in progressing to BCNF, we identify deter-
minants that become primary keys, and the new tables we create in moving
beyond BCNF are generally “all key.”

The point, therefore, at which mistakes in primary key identification are
most often made is in moving from unnormalized structures to 1NF. We
should already have a key for the original file or list (we do not use the
word table here, as tables do not have repeating groups); the problem is to
identify a key for the new table that represents the repeating group. The
simplest approach is to look at the repeating group before removing it and
ask: what identifies one occurrence in the group within the context of a
given record in the file? Then, ask whether the context is necessary at all; in
other words: do we need to add the primary key of the original file or not?

On most occasions, we do need to include the primary key of the orig-
inal file. But this is not always so, and you will eventually get into trouble
if you do so unthinkingly. Figure 13.20 on the next page shows normal-
ization of a simple file of insurance agents and the policies they have sold.

The key of Policy is Policy No alone. Although Agent No must be
included in the Policy table as a foreign key, it is not part of the primary
key. Note that the result depends on the two business rules stated under-
neath the original model in Figure 13.20.

Surprisingly, a number of texts and papers do not recognize this possibility
or, through choice of examples, encourage a view that it does not occur.

13.6 Other Normalization Issues ■ 413

Dealer Instrument

Location

Dealer Instrument
Location

Rule

Figure 13.19 Dealing model with two-way intersection tables removed.

Simsion-Witt_13 10/11/04 9:54 PM Page 413

13.6.4 Sequence of Normalization and
Cross-Table Anomalies

We conclude this chapter with an example that illustrates the importance
of rigorously following the rules of normalization, and of developing a
sound E-R model at the outset.

Let us go back to the customer-salesperson example we used to illustrate
BCNF earlier in this chapter (shown again in Figure 13.21):

Recall that we ended up with two tables and observed that the structure
did not appear to enforce our original business rule that each branch serv-
iced a customer through one salesperson only.

But think about the consequences of relaxing the rule. Let us assume
that Relationship Established Date is the date that the branch established a rela-
tionship with the customer. Then, for a given customer, we will end up car-
rying that same date for each salesperson within the branch (exactly the
sort of redundancy that we would expect normalization to eliminate). But
both tables are fully normalized.

We can see the problem more clearly if we go back to our original
single table (Figure 13.22).

If we now normalize, taking into account the revised rule, we see that
Customer No + Branch No is a determinant of Relationship Established Date and
is no longer a candidate key. We therefore need to set up a separate table
for these items, removing Relationship Established Date from the original table.
Salesperson No is still a determinant of Branch No, so we set up another table

414 ■ Chapter 13 Advanced Normalization

AGENT (Agent No, Name, {Policy No, Customer ID, Insured Amount })
Policy No uniquely identifies Policy

Each policy is sold by only one agent

Normalizing:

AGENT (Agent No, Agent Name)
POLICY (Policy No, Customer ID, Insured Amount, Agent No*)

Figure 13.20 Repeating group table with stand-alone key.

CUSTOMER-SALESPERSON RELATIONSHIP (Customer No, Salesperson No,
Visiting Frequency, Relationship Established Date)
SALESPERSON (Salesperson No, Branch No)

Figure 13.21 Customer-salesperson model.

Simsion-Witt_13 10/11/04 9:54 PM Page 414

for these items, removing Branch No from the original table. The result is
shown in Figure 13.23.

There are at least three lessons here:

1. If you find during normalization that business rules on which you have
relied are incorrect, go back to the E-R model and revise it accordingly;
then renormalize. Be very careful about “patching” the logical model.

2. Normalization alone is not completely reliable if you start with data
already divided into more than one table. But in practice, this is what
we do virtually all of the time. So we need to analyze our E-R diagrams
for problems as well as going through the steps of normalization.

3. Try to identify all the determinants at the start, and do not remove any
part of them until all the columns they determine have first been
removed. In this example, if we had removed Branch No first, we would
have missed the “Branch No + Customer No determines Relationship
Established Date” dependency.

13.7 Advanced Normalization in Perspective

Earlier in this chapter (Section 13.2.1), we noted that many modelers claim
that they produce normalized structures intuitively, without recourse to nor-
malization theory. And in teaching the higher normal forms and some of
the more subtle aspects of normalization, we are frequently challenged by
experienced data modelers as to their value in practice.

As we have seen, most of the problems that normalization addresses are
more easily seen and resolved in the context of an E-R diagram. But much

13.7 Advanced Normalization in Perspective ■ 415

CUSTOMER-SALESPERSON RELATIONSHIP (Customer No, Salesperson No,
Visiting Frequency, Relationship Established Date, Branch No)

Figure 13.22 Original customer-branch-salesperson model (not fully normalized).

CUSTOMER-SALESPERSON RELATIONSHIP (Customer No, Salesperson No,
Visiting Frequency)
CUSTOMER-BRANCH RELATIONSHIP (Customer No, Branch No, Relationship
Established Date)
SALESPERSON (Salesperson No, Branch No)

Figure 13.23 Fully normalized customer-branch-salesperson model.

Simsion-Witt_13 10/11/04 9:54 PM Page 415

of data modeling is about understanding, recognizing, and reusing patterns.
The real value of the normalization to practitioners is in increasing their
store of patterns, and backing it up with a deep understanding of the
advantages and disadvantages of those patterns. When we see a three-way
intersection entity, we automatically know to ask whether it can be derived
from underlying relationships. If it is derivable, we can quote exactly the
types of problems that will occur if it is not broken down into individual
tables. (If we have forgotten, we need only look up a text on 4NF or 5NF,
having classified the problem.) These patterns are useful enough that every
professional data modeler needs to have them in his or her armory.

13.8 Summary

Tables in third normal form may not be in Boyce Codd, fourth, and fifth
normal forms. Such tables will have problems with redundancy and incom-
pleteness. The higher normal forms are frequently misunderstood by prac-
titioners and, hence, ignored, or they are cited to support unsound
modeling practices.

Boyce Codd Normal Form requires that every determinant be a candi-
date key. A table in 3NF will be in BCNF unless a key item is determined
by a nonkey item. This will only occur if the table has multiple overlapping
candidate keys. The problem is fixed by replacing the primary key with
another candidate key and renormalizing.

A table in BCNF will usually only exhibit 4NF and 5NF problems if it has
three or more columns, all of which are part of the key and can be derived
from “underlying” tables. In entity-relationship terms, 4NF and 5NF prob-
lems arise when two or more many-to-many relationships are (incorrectly)
resolved using a single entity.

To use normalization as the prime modeling technique, we need to start
with all data in a single table. In practice, we commence with an E-R model,
which will embody numerous assumptions. Normalization will not challenge
these.

Normalization by itself does not remove all redundancy from a model
nor guarantee completeness.

416 ■ Chapter 13 Advanced Normalization

Simsion-Witt_13 10/11/04 9:54 PM Page 416

Chapter 14
Modeling Business Rules

“He may justly be numbered among the benefactors of mankind, who contracts the
great rules of life into short sentences.”

– Samuel Johnson

14.1 Introduction

Information systems contain and enforce rules about the businesses they
support. (Some writers prefer the word constraints; we use the two inter-
changeably). For example, a human resource management system might
incorporate the following rules (among others):

“Each employee can belong to at most one union at one time.”
“A minimum of 4% of each employee’s salary up to $80,000 must

be credited to the company pension fund.”
“If salary deductions result in an employee’s net pay being negative,

include details in an exception report.”
“At most two employees can share a job position at any time.”
“Only employees of Grade 4 and above can receive entertainment

allowances.”
“For each grade of employee, a standard set of base benefits applies.”
“Each employee must have a unique employee number.”
“An employee’s employment status must be either Permanent or Casual.”
“Employee number 4787 has an annual salary of $82,000.”

What is a rule? Systems contain information in various forms (data struc-
ture, data content, program logic, procedure manuals), which may be:

1. Assertions that something has happened (e.g., a particular customer has
placed an order for a particular product)

2. Information about how the system1 is to behave in particular situations
(e.g., if the user attempts to raise an order without any products specified,
reject it).

417

1We are using the term “system” in its broadest sense to mean not only the database and
programs that operate upon it but the people who interact with it.

Simsion-Witt_14 10/11/04 8:53 PM Page 417

We refer to information of the second type as rules. Thus, it is fair to say
that all of the statements listed in italics above are rules since each describes
in some way how the system is to behave. Even the last, which is quite
specific, affects the outcome of a process in the payroll system.

In this chapter we begin with a broad look at business rules then focus
on the types of rules that are of particular concern to the data modeler. We
look at what rules can be captured in E-R and relational models, and we
discuss the problem of documenting those that cannot.

We then look at where and how rules should be implemented within
an application, focusing on options available within popular DBMSs.

But before we get into the detail of rules, an important caveat. As dis-
cussed in Section 1.4, a new database is usually developed for the purpose
of supporting a new way of doing business. Some of the recent writing
on business rules has overlooked the fact that our job is to model what
will be, not what was. And as people in a position to see what may be
possible, we should be proactive in suggesting new possibilities and new
rules to the business.

14.2 Types of Business Rules

Given our definition of a business rule as information about how the
system is to behave in a particular situation, we can see that there are a
number of different types of business rules.

14.2.1 Data Rules

First, there are rules that constrain the data the system can handle and how
items of data relate to each other. These fall into two categories:

1. Data validation rules (strictly speaking data update rules), which
determine what data may be recorded in the database and what changes
may be made to that data

2. Data derivation rules, which specify the methods by which derived
data items (on screens, in reports, and possibly in the database itself)
are calculated.

Two specific types of data validation rules are of particular interest:

1. Structural or cardinality rules, which determine how many of a partic-
ular data item can be recorded in the database in association with some
other data item

418 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:53 PM Page 418

2. Referential integrity rules, which require that both entity instances
involved in each relationship instance must exist.

Examples of cardinality rules include “Each employee can belong to at
most one union at any time” and “At most two employees can share a job
position at any time.” Some “laws of physics” fall under this heading, such
as “Each employee can only be in one place at the one time”: while hardly
a business rule, it is presumably a requirement of the system that we cannot
enter data that indicates that an employee was in two different places at the
same time.

Strictly speaking, we should distinguish between rules about real-world
objects and rules about the data that represents those objects. In most
cases, the distinction is academic, but, as we see in Section 14.5.8, there are
sometimes requirements to record information about real-world objects that
have broken the rules.

Examples of data validation rules include “Each employee must have a
unique employee number,” “An employee’s employment status must be
either Permanent or Casual,” and “Only employees of Grade 4 and above
can receive entertainment allowances.” It is likely to be a requirement of
the system that any attempt to record two employees with the same
employee number, an employee with an employment status other than
Permanent or Casual, or an entertainment allowance for an employee of
Grade 3 will be rejected.

An example of a data derivation rule is “An employee’s gross monthly
salary is the sum of 1/12 of their annual salary plus 52/12 of the total of
each of the nontaxable weekly allowances for each week for which that
allowance applies less the total of each of the before-tax deductions for each
week for which that deduction applies.”

In a relational database there is an implicit referential integrity rule for
each foreign key, which states that each instance of that foreign key must
match one of the primary keys in the referenced table (e.g., we cannot have
an order without an associated customer). There is no need to explicitly
document these rules if the relevant relationships or foreign keys are fully
documented, although there may occasionally be a requirement to relax
such rules. Referential integrity is discussed further in Section 14.5.4.

The rule “Only employees of Grade 4 and above can receive entertain-
ment allowances” includes two items (“Grade 4” and allowance type “enter-
tainment”) that could be recorded in any of a number of places, including
the database. So we also need to consider data that supports data rules,
which are most often data validation rules like this one, but possibly
cardinality rules (e.g., “What is the maximum number of unions an
employee can belong to at one time?”) or data derivation rules (e.g., “Is
allowance x nontaxable and, hence, included in the calculation of an
employee’s gross monthly salary?”) We discuss the options for recording
data of this kind in Section 14.5.7.

14.2 Types of Business Rules ■ 419

Simsion-Witt_14 10/11/04 8:53 PM Page 419

14.2.2 Process Rules

A system will also be constrained by process rules, such as “A minimum of
4% of each employee’s salary up to $80,000 must be credited to the company
pension fund” and “If salary deductions result in an employee’s net pay being
negative, include details in an exception report.” Rules of this kind determine
what processing the system is to do in particular circumstances.

The first of the preceding examples includes two numbers (4% and
$80,000), which may or may not be recorded as data in the database itself.
We discuss data that supports process rules in Section 14.5.7.

Another example of a process rule that requires some data somewhere
is “For each grade of employee, a standard set of base benefits applies.”
To support this rule, we need to record the base benefits for each grade of
employee.

“Employee number 4787 has annual salary $82,000” is, as already indi-
cated, a process rule. It is reasonable to expect that the data to support this
process rule is going to be held in the database.

14.2.3 What Rules Are Relevant to the Data Modeler?

The data modeler should be concerned with both data and process rules
and the data that supports them with one exception: other than in making
a decision where and how the data supporting a process rule is to be
recorded, it is not in the data modeler’s brief to either model or decide on
the implementation of any process rules. References to “business rules” in
the rest of this chapter therefore include only the various data rule types
listed above, whereas references to “data that supports rules” covers both
data that supports process rules and data that supports data rules.

14.3 Discovery and Verification of Business Rules

While the business people consulted will volunteer many of the business
rules that a system must support, it is important to ensure that all bases
have been covered. Once we have a draft data model, the following activ-
ities should be undertaken to check in a systematic way that the rules it
embodies correctly reflect the business requirements.

14.3.1 Cardinality Rules

We can assemble a candidate set of cardinality rules by constructing asser-
tions about each relationship as described in Sections 3.5.1 and 10.18.2.2.

420 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:53 PM Page 420

We should also check the cardinality of each attribute (how many values it
can have for one entity instance). This should be part of the process of nor-
malization, as described in Chapter 2. However, if you have worked top-
down to develop an Entity-Relationship model, you need to check whether
each attribute can have more than one value for each instance of the entity
class in which it has been placed. For example, if there is a Nickname attrib-
ute in the Employee entity class and the business needs to record all nick-
names for those employees that have more than one, the data model needs
to be modified, either by replacing Nickname by the multivalued attribute
Nicknames (in a conceptual data model or in a logical data model in which
these are allowablesee Section 11.4.6) or by creating a separate entity for
nicknames (related to the Employee entity class). To establish attribute car-
dinalities, we can ask questions in the following form for each attribute:

“Can an employee have more than one nickname?”
“If so, is it necessary to record more than one in the database?”

14.3.2 Other Data Validation Rules

Other data validation rules can be discovered by asking, for each entity class:

“What restrictions are there on adding an instance of this entity
class?”

“What restrictions are there on the values that may be assigned to
each attribute of a new instance of this entity class?”

“What restrictions are there on the values that may be assigned to
each attribute when changing an existing instance of this entity class?”
(The answer to this question is often the same as the answer to the pre-
vious question but on occasion they may differ; in particular, some
attributes once assigned a value must retain that value without change.)

“What restrictions are there on removing an instance of this entity
class?”

14.3.3 Data Derivation Rules

Data derivation rules are best discovered by analyzing each screen and each
report that has been specified and by listing each value therein that does not
correspond directly to an attribute in the data model. For each value, it is nec-
essary to establish with the business exactly how that value is to be derived
from the data that is in the database. In the case of a data warehouse
(Chapter 16), or any other database in which we decide to hold summary
data, we will need to ask similar questions and document the answers.

14.3 Discovery and Verification of Business Rules ■ 421

Simsion-Witt_14 10/11/04 8:53 PM Page 421

14.4 Documentation of Business Rules

14.4.1 Documentation in an E-R Diagram

Only a few types of business rules can be documented in an E-R diagram:

1. The referential integrity rules implicit in each relationship (see Section
14.5.4)

2. The cardinalities of each relationship (as discussed in Section 3.2.3):
these are (of course) cardinality rules

3. Whether each relationship is mandatory or optional (as also discussed
in Section 3.2.4): these are data validation rules, since they determine
restrictions on the addition, changing, and/or removal of entity instances

4. Various limitations on which entity instances can be associated with
each other (by specifying that a relationship is with a subtype of an
entity class rather than the entity class itself; this is discussed further in
Section 14.4.3): these are also data validation rules

5. The fact that an attribute is restricted to a discrete set of values (a data val-
idation rule) can be documented by adding an entity class to represent
the relevant set of categories and a relationship from that entity class to
one containing a category attributethe familiar “reference table” struc-
ture (see Section 14.5.5)although, as discussed in Section 7.2.2.1, we do
not recommend this in a conceptual data model.

Further business rules can conveniently be documented in the attribute
lists supporting an E-R diagram. Most documentation tools will allow you
to record:

6. Whether each attribute is optional (nullable) (a data validation rule)

7. The DBMS datatype of each attribute (e.g., if the attribute is given a
numeric datatype, this specifies a data validation rule that nonnumerics
cannot be entered; if a date datatype, that the value entered must be a
valid date).

If the transferability notation (see Section 3.5.6) is available, an additional
type of business rule can be documented:

8. Whether each relationship is transferable (a data validation rule).

14.4.2 Documenting Other Rules

Unfortunately, there are many other types of rules, including all data deri-
vation rules and the following types of data validation rules, which are not

422 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:53 PM Page 422

so readily represented in an E-R diagram or associated attribute list, or at
least not in a manner amenable to direct translation into relational database
constraints (we can always record them as text in definitions):

1. Nondiscrete constraints on attribute values (e.g., “The Unit Price of a
Product must be positive”)

2. Attribute constraints dependent on values of other attributes in the same
entity instance (e.g., “The End Date must be later than the Start Date”)

3. Most attribute constraints that are dependent on values of attributes in
different entity instances, including instances of different entity classes
(e.g., “The amount of this allowance for this employee cannot exceed the
maximum for this employee grade”) exceptions that can be modeled
in an E-R diagram are referential integrity (see Section 14.5.4) and those
involving allowable combinations of values of different attributes
(see Section 14.5.6)

4. Cardinality/optionality constraints such as “There can be no more than
four subjects recorded for a teacher” or “There must be at least two
subjects recorded for each teacher” (actually the first of these could be
documented using a repeating group with four items but, as discussed
in Section 2.6, repeating groups generally have serious drawbacks)

5. Restrictions on updatability (other than transferability) such as “No existing
transaction can be updated,” “This date can only be altered to a date
later than previously recorded,” and “This attribute can only be updated
by the Finance Manager.”

E-R diagrams do not provide any means of documenting these other
rule types, yet such rules tell us important information about the data, its
meaning, and how it is to be correctly used. They logically belong with the
data model, so some supplementary documentation technique is required.
Some other modeling approaches recognize this need. ORM (Object Role
Modeling, discussed briefly in Section 7.4.2) provides a well-developed and
much richer language than the E-R Model for documenting constraints, and
the resulting models can be converted to relational database designs fairly
mechanically. UML also provides some constraint notations, although in
general the ability of UML CASE tools to automatically implement con-
straints in the resulting database is less developed than for ORM. We can
also choose to take advantage of one or more of the techniques available
to specify process logic: decision tables, decision trees, data flow diagrams,
function decompositions, pseudo-code, and so on. These are particularly
relevant for rules we would like to hold as data in order to facilitate change,
but which would more naturally be represented within program logic. The
important thing is that whichever techniques are adopted, they be readily
understood by all participants in the system development process.

It is also important that rules not be ignored as “too hard.” The rules are
an integral part of the system being developed, and it is essential to be able
to refer back to an agreed specification.

14.4 Documentation of Business Rules ■ 423

Simsion-Witt_14 10/11/04 8:53 PM Page 423

Plain language is still one of the most convenient and best understood
ways to specify rules. One problem with plain language is that it provides
plenty of scope for ambiguity. To address this deficiency, Ross2 has devel-
oped a very sophisticated diagrammatic notation for documenting rules of
all types. While he has developed a very thorough taxonomy of rules and
a wide range of symbols to represent them, the complexity of the diagrams
produced using this technique may make them unsuitable as a medium for
discussion with business people.

Ross’ technique may be most useful in documenting rules for the bene-
fit of those building a system and in gaining an appreciation of the types
of rules we need to look for. The great advantage of using plain language
for documentation is that the rules remain understandable to all participants
in the system development process. The downside is the possibility of
making ambiguous statements, but careful choice of wording can add rigor
without loss of understanding.

Data validation rules that cannot be represented directly in the data model
proper should be documented in text form against the relevant entity classes,
attributes, and relationships (illustrated in Figure 14.1). Data derivation rules
should be documented separately only if the derived data items have not
been included in the data model as we recommended in Section 7.2.2.2.

Where there is any doubt about the accuracy of a rule recorded against
the model, you should obtain and list examples. These serve not only to
clarify and test the accuracy of the specified requirements and verify that
the rules are real and important, but provide ammunition to fire at pro-
posed solutions. On occasions, we have seen requirements dropped or sig-
nificantly modified after the search for examples failed to turn up any, or
confirmed that the few cases from which the rules had been inferred were
in fact the only cases!

14.4.3 Use of Subtypes to Document Rules

Subtypes can be used in a conceptual data model to document limitations
on which entity instances can be associated with each other (outlined in
Chapter 4). Figure 14.2 on page 426 illustrates the simplest use of subtypes
to document a rule. The initial model relates workers and annual leave
applications, but we are advised that only certain types of workers
employeescan submit annual leave applications. A straightforward sub-
typing captures the rule.

Nonemployee Worker is not an elegant classification or name, and we
should be prompted to ask what other sorts of workers the user is

424 ■ Chapter 14 Modeling Business Rules

2Ross, R.G., The Business Rule Book: Classifying, Defining & Modeling Rules, Business Rule
Solutions (1997).

Simsion-Witt_14 10/11/04 8:53 PM Page 424

interested in. Perhaps we might be able to change the entity class name to
Contractor.

Note that, as described in Chapter 11, we have a variety of options for
implementing a supertype/subtype structure; inclusion of subtypes in the
model does not necessarily imply that each will be implemented in a sep-
arate table. We may well decide not to, perhaps because we can envision
other worker types in the future, or due to a relaxation of the rule as to
who can submit leave applications. We would then implement the rule
either within program logic, or through a table listing the types of workers
able to submit annual leave applications.

This simple example provides a template for solving more complex prob-
lems. For example, we might want to add the rule that “Only noncitizens
require work permits.” This could be achieved by using the partitioning
convention introduced in Chapter 4 to show alternative subtypings
(see Figure 14.3, page 427).

Note that the relationship from Noncitizen to Work Permit is optional,
even though the original rule could have been interpreted as requiring it to
be mandatory. We would have checked this by asking the user: “Could we
ever want to record details of a noncitizen who did not have a work permit
(perhaps prior to their obtaining one)?”

14.4 Documentation of Business Rules ■ 425

Entity Class/Data Item Constraints

Student Absence No date/time overlaps between records for the same Student

be for Student Mandatory; Student must already exist

Start Date Mandatory; must be valid date; must be within reasonable
range

End Date If entered: must be valid date; must be not be before Start
Date; must be within reasonable range

First Timetable Period No Mandatory; integer; must be between 1 and maximum
timetable period no inclusive

Last Timetable Period No If entered: integer; must be between 1 and maximum
timetable period no inclusive; must not be less than First
Timetable Period No

be classified by Student
Absence Reason

Mandatory; Student Absence Reason must already exist

Notification Date If entered: must be valid date; must be within reasonable
range

Absence Approved Flag If entered: must be Yes or No

Student Absence Reason

Absence Reason Code Mandatory; must be unique

Description Mandatory; must be unique

Figure 14.1 Some data validation rules.

Simsion-Witt_14 10/11/04 8:53 PM Page 425

Suppose we wanted to model the organizational structure of a company
so as to enforce the rule that an employee could be assigned only to a
lowest level organizational unit. This kind of structure also occurs in hier-
archical charts of accounts, in which transactions can be posted only to the
lowest level.

Figure 14.4 on page 428 shows the use of subtypes to capture the rule.
Note that the structure itself defines a Lowest Level Organization Unit as
an Organizational Unit that cannot control other Organizational Units
(since it lacks the “control” relationship). Once again, we might not imple-
ment the subtypes, perhaps because a given lowest level organizational
unit could later control other organization units, thus changing its subtype.
(Section 4.13.5 discusses why we want to avoid instances changing from
one subtype to another.)

Wherever subtyping allows you to capture a business rule easily in a
conceptual data model, we recommend that you do so, even if you have
little intention of actually implementing the subtypes as separate tables in
the final database design. Even if you plan to have a single table in the
database holding many different types of real-world objects, documenting
those real-world objects as a single entity class is likely to make the model
incomprehensible to users. Do not omit important rules that can be readily
documented using subtypes simply because those subtypes are potentially

426 ■ Chapter 14 Modeling Business Rules

Worker
Annual
Leave

Application

Annual
Leave

Application
Employee

Nonemployee
Worker

submit

be
submitted by

submit

be
submitted by

Worker

“only employees can
submit annual leave
applications”

Figure 14.2 Using subtypes to model rules.

Simsion-Witt_14 10/11/04 8:53 PM Page 426

volatile. This is an abdication of the data modeler’s responsibility for doing
detailed and rigorous analysis and the process modelers will not thank you
for having to ask the same questions again!

14.5 Implementing Business Rules

Deciding how and where each rule is to be implemented is one of the most
important aspects of information system design. Depending on the type of
rule, it can be implemented in one or more of the following:

■ The structure of the database (its tables and columns)
■ Various properties of columns (datatype, nullability, uniqueness, refer-

ential integrity)
■ Declared constraints, enforced by the DBMS
■ Data values held in the database
■ Program logic (stored procedures, screen event handling, application

code)

14.5 Implementing Business Rules ■ 427

Employee

Nonemployee
Worker

Citizen

Noncitizen

Work
Permit

Annual
Leave

Application

be held by

 hold

be
submitted

by

 submit

Worker

Figure 14.3 Using alternative subtypings to model rules.

Simsion-Witt_14 10/11/04 8:53 PM Page 427

■ Inside specialized “rules engine” software
■ Outside the computerized component of the system (manual rules, pro-

cedures).

14.5.1 Where to Implement Particular Rules

Some rules by their nature suggest one of the above techniques in particu-
lar. For example, the rule “Each employee can belong to at most one union
at one time” is most obviously supported by data structure (a foreign key
in the Employee table representing a one-to-many relationship between
the Union and Employee entity classes). Similarly, the rule “If salary
deductions result in an employee’s net pay being negative, include details in
an exception report” is clearly a candidate for implementation in program
logic. Other rules suggest alternative treatments; for example, the values 4%
and $80,000 supporting the rule “A minimum of 4% of each employee’s
salary up to $80,000 must be credited to the company pension fund” could
be held as data in the database or constants in program logic.

428 ■ Chapter 14 Modeling Business Rules

Figure 14.4 Using unstable subtypes to capture rules.

Higher Level
Organization

Unit

Lowest Level
Organization

Unit

Employee

work
for

be worked
for by

Organization Unit

be
controlled by

control

Simsion-Witt_14 10/11/04 8:53 PM Page 428

14.5.1.1 Choosing from Alternatives

Where there are alternatives, the selection of an implementation technique
should start with the following questions:

1. How readily does this implementation method support the rule?

2. How volatile is the rule (how likely is it to change during the lifetime of
the system)?

3. How flexible is this implementation method (how easily does it lend
itself to changing a rule)?

For example, changing the database structure after a system has been
built is a very complex task whereas changing a data value is usually very
easy. Changes to program logic involve more work than changing a data
value but less than changing the database structure (which will involve
program logic changes in at least one programand possibly many).
Changes to column properties can generally be made quite quickly but not
as quickly as changing a data value.

Note that rules implemented primarily using one technique may also
affect the design of other components of the system. For example, if we
implement a rule in data structure, that rule will also be reflected in program
structure; if we implement a rule using data values, we will need to design
the data structure to support the necessary data, and design the programs
to allow their processing logic to be driven by the data values.

This is an area in which it is crucial that data modelers and process
modelers work together. Many a data model has been rejected or inappro-
priately compromised because it placed demands upon process modelers
that they did not understand or were unprepared to meet.

If a rule is volatile then we may need to consider a more flexible imple-
mentation method than the most obvious one. For example, if the rule
“Each employee can belong to at most one union at one time” might change
during the life of the system, then rather than using an inflexible data struc-
ture to implement it, the alternative of a separate Employee Union
Membership table (which would allow an unlimited number of member-
ships per employee) could be adopted. The current rule can then be
enforced by adding a unique index to the Employee No column in that
table. Removal of that index is quick and easy, but we would then have no
limit on the number of unions to which a particular employee could
belong. If a limit other than one were required, it would be necessary to
enforce that limit using program logic, (e.g., a stored procedure triggered
by insertion to, or update of, the Employee Union Membership table).

Here, once again, there are alternatives. The maximum number of union
memberships per employee could be included as a constant in the program
logic or held as a value in the database somewhere, to be referred to by the
program logic. However, given the very localized effect of stored procedures,

14.5 Implementing Business Rules ■ 429

Simsion-Witt_14 10/11/04 8:53 PM Page 429

the resultant ease of testing changes to them, and the expectation that changes
to the rule would be relatively infrequent (and not require direct user control),
there would be no great advantage in holding the limit in a table.

One other advantage of stored procedures is that, if properly associated
with triggers, they always execute whenever a particular data operation
takes place and are therefore the preferred location for rule enforcement
logic (remember that we are talking about data rules). Since the logic is
now only in one place rather than scattered among all the various programs
that might access the data, the maintenance effort in making changes to that
logic is much less than with traditional programming.

Let us look at the implementation options for some of the other rules
listed at the start of this chapter:

“At most two employees can share a job position at any time” can be
implemented in the data structure by including two foreign keys in the
Job Position table to the Employee table. This could be modeled as such
with two relationships between the Job Position and Employee entity
classes. If this rule was volatile and there was the possibility of more than
two employees in a job position, a separate Employee Job Position table
would be required. Program logic would then be necessary to impose any
limit on the number of employees that could share a job position.

“Only employees of Grade 4 and above can receive entertainment
allowances” can be implemented using a stored procedure triggered by
insertion to or update of the Employee Allowance table (in which each
individual employee’s allowances are recorded). This and the inevitable
other rules restricting allowances to particular grades could be enforced by
explicit logic in that procedure or held in an Employee Grade Allowance
table in which legitimate combinations of employee grades and allowance
types could be held (or possibly a single record for each allowance type
with the range of legitimate employee grades). Note that the recording of
this data in a table in the database does not remove the need for a stored
procedure; it merely changes the logic in that procedure.

“For each grade of employee, a standard set of base benefits applies” can
be implemented using a stored procedure triggered by insertion to the
Employee table or update of the Grade column in that table. Again the base
benefits for each grade could be explicitly itemized in that procedure or
held in an Employee Grade table in which the benefits for each employee
grade are listed. Again, the recording of this data in a table in the database
does not remove the need for a stored procedure; it merely changes the
logic in that procedure.

“Each employee must have a unique employee number” can be imple-
mented by addition of a unique index on Employee No in the Employee
table. This would, of course, be achieved automatically if Employee No was
declared to be the primary key of the Employee table, but additional
unique indexes can be added to a table for any other columns or combi-
nations of columns that are unique.

430 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:53 PM Page 430

“An employee’s employment status must be either Permanent or
Casual” is an example of restricting an attribute to a discrete set of values.
Implementation options for this type of rule are discussed in Section 14.5.5.

A detailed example of alternative implementations of a particular set of
rules is provided in Section 14.5.2.

14.5.1.2 Assessment of Rule Volatility

Clearly we need to assess the volatility (or, conversely, stability) of each
rule before deciding how to implement it. Given a choice of “flexible” or
“inflexible,” we can expect system users to opt for the former and, conse-
quently, to err on the side of volatility when asked to assess the stability of
a rule. But the net result can be a system that is far more sophisticated and
complicated than it needs to be.

It is important, therefore, to gather reliable evidence as to how often and
in what way we can expect rules to change. Figure 14.5 provides an illus-
tration of the way in which the volatility of rules can vary.

History is always a good starting point. We can prompt the user: “This
rule hasn’t changed in ten years; is there anything that would make it more
likely to change in the future?” Volume is also an indication. If we have a
large set of rules, of the same type or in the same domain, we can antici-
pate that the set will change.

14.5 Implementing Business Rules ■ 431

Type of Rule Example Volatility
Laws of nature: violation would
give rise to a logical contradiction

A person can be working in no more than
one location at a given time

Zero

Legislation or international or
national standards for the
industry or business area

Each customer has only one Social
Security Number

Low

Generally accepted practice in
the industry or business area

An invoice is raised against the customer
who ordered the goods delivered

Low3

Established practice (formal
procedure) within the
organization

Reorder points for a product are centrally
determined rather than being set by
warehouses

Medium

Discretionary practices: “the way
it’s done at the moment”

Stock levels are checked weekly High

Figure 14.5 Volatility of rules.

3This is the sort of rule that is likely to be cited as non-volatileand even as evidence that
data structures are intrinsically stable. But breaking it is now a widely known business process
reengineering practice.

Simsion-Witt_14 10/11/04 8:53 PM Page 431

When you find that a rule is volatile, at least to the extent that it is likely
to change over the life of the system, it is important to identify the com-
ponents that are the cause of its volatility. One useful technique is to look
for a more general “higher-level” rule that will be stable.

For example, the rule “5% of each contribution must be posted to the
Statutory Reserve Account” may be volatile. But what about “A percentage
of each contribution must be posted to the Statutory Reserve Account?” But
perhaps even this is a volatile instance of a more general rule: “Each con-
tribution is divided among a set of accounts, in accordance with a standard
set of percentages.” And will the division always be based on percentages?
Perhaps we can envision in the future deducting a fixed dollar amount from
each contribution to cover administration costs.

This sort of exploration and clarification is essential if we are to avoid
going to great trouble to accommodate a change of one kind to a rule, only
to be caught by a change of a different kind.

It is important that volatile rules can be readily changed. On the other
hand, stable rules form the framework on which we design the system by
defining the boundaries of what it must be able to handle. Without some
stable rules, system design would be unmanageably complex; every system
would need to be able to accommodate any conceivable possibility or
change. We want to implement these stable rules in such a way that they
cannot be easily bypassed or inadvertently changed.

In some cases, these two objectives conflict. The most common situa-
tion involves rules that would most easily be enforced by program logic,
but which need to be readily updateable by users. Increased pressure on
businesses to respond quickly to market or regulatory changes has meant
that rules that were once considered stable are no longer so. One solution
is to hold the rules as data. If such rules are central to the system, we often
refer to the resulting system as being “table-driven.” Note, however, that no
rule can be implemented by data values in the database alone. Where the
data supporting a rule is held in the database, program logic must be writ-
ten to use that data. While the cost of changing the rule during the life of
the system is reduced by opting for the table-driven approach, the sophis-
tication and initial cost of a table-driven system is often significantly greater,
due to the complexity of that program logic.

A different sort of problem arises when we want to represent a rule
within the data structure but cannot find a simple way of doing so. Rules
that “almost” follow the pattern of those we normally specify in data
models can be particularly frustrating. We can readily enforce the rule that
only one person can hold a particular job position, but what if the limit is
two? Or five? A minimum of two? How do we handle more subtle (but
equally reasonable) constraints, such as “The customer who receives the
invoice must be the same as the customer who placed the order?”

There is room for choice and creativity in deciding how each rule
will be implemented. We now look at an example in detail, then at some
commonly encountered issues.

432 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:53 PM Page 432

14.5.2 Implementation Options: A Detailed Example

Figure 14.6 shows part of a model to support transaction processing for a
medical benefits (insurance) fund. Very similar structures occur in many
systems that support a range of products against which specific sets of
transactions are allowed. Note the use of the exclusivity arc introduced in
Section 4.14.2 to represent, for example, that each dental services claim
must be lodged by either a Class A member or a Class B member.

Let us consider just one rule that the model represents: “Only a Class A
member can lodge a claim for paramedical services.”

14.5.2.1 Rules in Data Structure

If we implement the model at the lowest level of subtyping, the rule
restricting paramedical services claims to Class A members will be imple-
mented in the data structure. The Paramedical Services Claim table will
hold a foreign key supporting the relationship to the Class A Member
table. Program logic will take account of this structure in, for example, the
steps taken to process a paramedical claim, the layout of statements to be

14.5 Implementing Business Rules ■ 433

Class A
Member

Class B
Member

Class C
Member

Paramedical
Services

Claim

Dental
Services

Claim

Medical
Practitioner
Visit Claim

Hospital
Visit

Claim

 lodge
be lodged by

 lodge

be lodged by

 lodge

 be lodged by

 lodge

 be lodged by lodge
be lodged by

 lodge

be lodged by

 lodge

be lodged by lodge

be lodged by

 lodge

be lodged by

Member Claim

Figure 14.6 Members and medical insurance claims.

Simsion-Witt_14 10/11/04 8:53 PM Page 433

sent to Class B members (no provision for paramedical claims), and in
ensuring that only Class A members are associated with paramedical claims,
through input vetting and error messages. If we are confident that the rule
will not change, then this is a sound design and the program logic can
hardly be criticized for inflexibility.

Suppose now that our assumption about the rule being stable is incor-
rect and we need to change the rule to allow Class B members to claim for
paramedical services. We now need to change the database design to
include a foreign key for Class B members in Paramedical Claim. We will
also need to change the corresponding program logic.

In general, changes to rules contained within the data structure require
the participation of data modelers and database administrators, analysts, pro-
grammers, and, of course, the users. Facing this, we may well be tempted
by “quick and dirty” approaches: “Perhaps we could transfer all Class B
members to Class A, distinguishing them by a flag in a spare column.” Many
a system bears the scars of continued “programming around” the data struc-
ture rather than incurring the cost of changes.

14.5.2.2 Rules in Programs

From Chapter 4, we know broadly what to do with unstable rules in data
structure: we generalize them out. If we implement the model at the level
of Member, the rules about what sort of claims can be made by each type
of member will no longer be held in data structure.

Instead, the model holds rules including:

“Each Paramedical Claim must be lodged by one Member.”
“Each Dental Claim must be lodged by one Member.”

But we do need to hold the original rules somewhere. Probably the sim-
plest option is to move them to program logic. The logic will look a little
different from that associated with the more specific model, and we will
essentially be checking the claims against the new attribute Member Type.

Enforcement of the rules now requires some discipline at the program-
ming level. It is technically possible for a program that associates any sort
of claim with any sort of member to be written. Good practice suggests a
common module for checking, but good practice is not always enforced!

Now, if we want to change a rule, only the programs that check the con-
straints will need to be modified. We will not need to involve the data mod-
eler and database administrator at all. The amount of programming work
will depend on how well the original programmers succeeded in localizing
the checking logic. It may include developing a program to run periodic
checks on the data to ensure that the rule has not been violated by a rogue
program.

434 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:53 PM Page 434

14.5.2.3 Rules in Data

Holding the rules in program logic may still not provide sufficient respon-
siveness to business change. In many organizations, the amount of time
required to develop a new program version, fully test it, and migrate it into
production may be several weeks or months.

The solution is to hold the rules in the data. In our example, this would
mean holding a list of the valid member types for each type of claim. An
Allowed Member Claim Combination table as in Figure 14.7 will provide
the essential data.

But our programs will now need to be much more sophisticated. If
we implement the database at the generalized Member and Claim level (see
Figure 14.8, next page), the program will need to refer to the Allowed
Member Claim Combination table to decide which subsets of the main
tables to work with in each situation.

If we implement at the subtype level, the program will need to decide
at run time which tables to access by referring to the Allowed Member
Claim Combination table. For example, we may want to print details of all
claims made by a member. The program will need to determine what types
of claims can be made by a member of that type, and then it must access
the appropriate claim tables. This will involve translating Claim Type Codes
and Member Type Codes into table names, which we can handle either with
reference tables or by translation in the program. In-program translation
means that we will have to change the program if we add further tables;
the use of reference tables raises the possibility of a system in which we
could add new tables without changing any program logic. Again, we
would need to be satisfied that this sophisticated approach was better over-
all than simply implementing the model at the supertype level. Many pro-
gramming languages (in particular, SQL) do not comfortably support
run-time decisions about which table to access.

The payoff for the “rules in data” or “table-driven” approach comes
when we want to change the rules. We can leave both database adminis-
trators and programmers out of the process, by handling the change with
conventional transactions. Because such changes may have a significant
business impact, they are typically restricted to a small subset of users or
to a system administrator. Without proper control, there is a temptation for
individual users to find “novel” ways of using the system, which may inval-
idate assumptions made by the system builders. The consequences may

14.5 Implementing Business Rules ■ 435

ALLOWED MEMBER CLAIM COMBINATION (Claim Type Code, Member Type
Code)

Figure 14.7 Table of allowed claim types for each member type.

Simsion-Witt_14 10/11/04 8:54 PM Page 435

include unreliable, or uninterpretable, outputs and unexpected system
behavior.

For some systems and types of change, the administrator needs to be an
information systems professional who is able to assess any systems changes
that may be required beyond the changes to data values (not to mention
taking due credit for the quick turnaround on the “systems maintenance”
requests). In our example, the tables would allow a new type of claim to
be added by changing data values, but this might need to be supplemented
by changes to program logic to handle new processing specific to claims
of that type.

14.5.3 Implementing Mandatory Relationships

As already discussed, a one-to-many relationship is implemented in a
relational database by declaring a column (or set of columns) in the table
at the “many” end to be a foreign key and specifying which table is
referenced. If the relationship is mandatory at the “one” end, this is imple-
mented by declaring the foreign key column(s) to be nonnullable; con-
versely, if the relationship is optional at the “one” end, this is implemented
by declaring the foreign key column(s) to be nullable. However if the
relationship is mandatory at the “many” end, additional logic must be
employed.

436 ■ Chapter 14 Modeling Business Rules

Figure 14.8 Model at claim type and member type level.

Member
Type

Claim
Type

Allowed
Member

Claim
Combination

Member Claim

be
allowed
for

allow

be
allowed

for

allow be
classified

by

 classify

be
classified

by

 classify

lodge

be
lodged by

Simsion-Witt_14 10/11/04 8:54 PM Page 436

Relationships that are mandatory at the “many” end are more common
than some modelers realize. For example, in Figure 14.9, the relationship
between Order and Order Line is mandatory at the “many” end since an
order without anything ordered does not make sense. The relationship
between Product and Product Size is mandatory at the “many” end for a
rather less obvious reason. In fact, intuition may tell us that in the real
world not every product is available in multiple sizes. If we model this rela-
tionship as optional at the “many” end then we would have to create two
relationships from Order Line—one to Product Size, (to manage products
that are available in multiple sizes) and one to Product (to manage prod-
ucts that are not). This will make the system more complex than necessary.
Instead, we establish that a Product Size record is created for each prod-
uct, even one that is only available in one size.

To enforce these constraints it is necessary to employ program logic that
allows neither an Order row to be created without at least one Order Line
row nor a Product row to be created without at least one Product Size
row. In addition (and this is sometimes forgotten), it is necessary to pro-
hibit the deletion of either the last remaining Order Line row for an Order
or the last remaining Product Size row for a Product.

14.5 Implementing Business Rules ■ 437

Customer

Order

Order
Line

Product

Product
Size

be
placed

by

 place

be
part

of
be made
up of

be for

be
available
as

be for

be ordered
on

Figure 14.9 An order entry model.

Simsion-Witt_14 10/11/04 8:54 PM Page 437

14.5.4 Referential Integrity

14.5.4.1 What It Means

The business requirements for referential integrity are straightforward. If a
column supports a relationship (i.e., is a foreign key column), the row
referred to:

■ Must exist at all times that the reference does
■ Must be the one that was intended at the time the reference was created

or last updated.

14.5.4.2 How Referential Integrity Is Achieved in a Database

These requirements are met in a database as follows.
Reference Creation: If a column is designed to hold foreign keys the

only values that may be written into that column are primary key values of
existing records in the referenced table. For example, if there is a foreign
key column in the Student table designed to hold references to families,
only the primary key of an existing row in the Family table can be written
into that column.

Key Update: If the primary key of a row is changed, all references to
that row must also be changed in the same update process (this is known
as Update Cascade). For example, if the primary key of a row in the
Family table is changed, any row in the Student table with a foreign key
reference to that row must have that reference updated at the same time.
Alternatively the primary key of any table may be made nonchangeable
(No Update) in which case no provision needs to be made for Update
Cascade on that table. You should recall from Chapter 6 that we strongly
recommend that all primary keys be nonchangeable (stable).

Key Delete: If an attempt is made to delete a record and there are
references to that record, one of three policies must be followed, depending
on the type of data:

1. The deletion is prohibited (Delete Restrict).

2. All references to the deleted record are replaced by nulls (Delete Set
Null).

3. All records with references to the deleted record are themselves deleted
(Delete Cascade).

Alternatively, we can prohibit deletion of data from any table irrespective
of whether there are references (No Delete), in which case no provision
needs to be made for any of the listed policies on that table.

438 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:54 PM Page 438

14.5.4.3 Modeling Referential Integrity

Most data modelers will simply create a relationship in an E-R model or (in
a relational model) indicate which columns in each table are foreign keys.
It is then up to the process modeler or designer, or sometimes even the
programmer or DBA, to decide which update and delete options are appro-
priate for each relationship/foreign key. However, since the choice should
be up to the business and it is modelers rather than programmers or DBAs
who are consulting with the business, it should be either the data modeler
or the process modeler who determines the required option in each case.
Our view is that even though updating and deleting of records are
processes, the implications of these processes for the integrity of data are
such that the data modeler has an obligation to consider them.

14.5.5 Restricting an Attribute to a Discrete Set of Values

14.5.5.1 Use of Codes

Having decided that we require a category attribute such as Account Status,
we need to determine the set of possible values and how we will represent
them. For example, allowed statuses might be “Active,” “Closed,” and
“Suspended.” Should we use these words as they stand, or introduce a
coding scheme (such as “A,” “C,” and “S” or “1,” “2,” and “3” to represent
“Active,” “Closed,” and “Suspended”)?

Most practitioners would introduce a coding scheme automatically, in
line with conventional practice since the early days of data processing.
They would also need to provide somewhere in the system (using the word
“system” in its broadest sense to include manual files, processes, and
human knowledge) a translation mechanism to code and decode the fully
descriptive terms.

Given the long tradition of coding schemes, it is worth looking at what
they actually achieve.

First, and most obviously, we save space. “A” is more concise than
“Active.” The analyst responsible for dialogue design may well make the
coding scheme visible to the user, as one means of saving key strokes and
reducing errors.

We also improve flexibility, in terms of our ability to add new codes in
a consistent fashion. We do not have the problem of finding that a new
value of Account Status is a longer word than we have allowed for.

Probably the most important benefit of using codes is the ability to change
the text description of a code while retaining its meaning. Perhaps we wish
to rename the “Suspended” status “Under Review.” This sort of thing happens
as organizational terminology changes, sometimes to conform to industry

14.5 Implementing Business Rules ■ 439

Simsion-Witt_14 10/11/04 8:54 PM Page 439

standards and practices. The coding approach provides us with a level of
insulation, so that we distinguish a change in the meaning of a code
(update the Account Status table) from a change in actual status of an
account (update the Account table).

To achieve this distinction, we need to be sure that the code can remain
stable if the full description changes. Use of initial letters, or indeed anything
derived from the description itself, will interfere with this objective. How
many times have you seen coding schemes that only partially follow
some rule because changes or later additions have been impossible to
accommodate?

The issues of code definition are much the same as those of primary key
definition discussed in Chapter 6. This is hardly surprising, as a code is the
primary key of a computerized or external reference table.

14.5.5.2 Simple Reference Tables

As soon as we introduce a coding scheme for data, we need to provide for
a method of coding and decoding. In some cases, we may make this
a human responsibility, relying on users of the computerized system to
memorize or look up the codes themselves. Another option is to build the
translation rules into programs. The third option is to include a table for
this purpose as part of the database design. Such tables are commonly
referred to as reference tables. Some DBMSs provide alternative translation
mechanisms, in which case you have a fourth option to choose from. The
advantage of all but the first option is that the system can ensure that only
valid codes are entered.

In fact, even if we opt for full text descriptions in the category attribute
rather than codes, a table of allowed values can be used to ensure that only
valid descriptions are entered. In either case referential integrity (discussed
in Section 14.5.4) should be established between the category attribute and
the table of allowed values.

As discussed in Section 7.2.2.1, even though we may use entity classes
to represent category attributes in the logical data model, we recommend
that you omit these “category entity classes” from the conceptual data
model in order to reduce the complexity of the diagram, and to avoid pre-
empting the method of implementation.

There are certain circumstances in which the reference table approach
should be strongly favored:

1. If the number of different allowed values is large enough to make
human memory, manual look-up, and programming approaches cum-
bersome. At 20 values, you are well into this territory.

2. If the set of allowed values is subject to change. This tends to go hand
in hand with large numbers of values. Changing a data value is simpler

440 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:54 PM Page 440

than updating program logic, or keeping people and manual documents
up-to-date.

3. If we want to hold additional information (about allowed values) that is to
be used by the system at run-time (as distinct from documentation for the
benefit of programmers and others). For example, we may need to hold a
more complete description of the meaning of each code value for inclu-
sion in reports or maintain “Applicable From” and “Applicable To” dates.

4. If the category entity class has relationships with other entity classes in
the model, besides the obvious relationship to the entity class holding
the category attribute that it controls (see Section 14.5.6).

Conversely, the reference table approach is less attractive if we need to
“hard code” actual values into program logic. Adding new values will then
necessitate changes to the logic, so the advantage of being able to add
values without affecting programs is lost.

14.5.5.3 Generalization of Reference Tables

The entity classes that specify reference tables tend to follow a standard
format: Code, Full Name (or Meaning), and possibly Description. This suggests
the possibility of generalization, and we have frequently seen models that
specify a single supertype reference table (which, incidentally, should not
be named “Reference Table,” but something like “Category,” in keeping
with our rule of naming entity classes according to the meaning of a single
instance).

Again, we need to go back to basics and ask whether the various code
types are subject to common processes. The answer is usually “Yes,” as far
as their update is concerned, but the inquiry pattern is likely to be less con-
sistent. A consolidated reference table offers the possibility of a generic
code update module and easy addition of new code types, not inconsider-
able benefits when you have seen the alternative of individual program
modules for each code type. Views can provide the subtype level pictures
required for enquiry.

Be ready for an argument with the physical database designer if you
recommend implementation at the supertype level. The generalized table will
definitely make referential integrity management more complex and may
well cause an access bottleneck. As always, you will want to see evidence of
the real impact on system design and performance, and you will need to
negotiate trade-offs accordingly. Programmers may also object to the less
obvious programming required if full advantage is to be taken of the gener-
alized design. On the other hand, we have seen generalization of all refer-
ence tables proposed by database administrators as a standard design rule.

As usual, recognizing the possibility of generalization is valuable even if
the supertype is not implemented directly. You may still be able to write or

14.5 Implementing Business Rules ■ 441

Simsion-Witt_14 10/11/04 8:54 PM Page 441

clone generic programs to handle update more consistently and at reduced
development cost.

14.5.6 Rules Involving Multiple Attributes

Occasionally, we encounter a rule that involves two or even more attributes,
usually but not always from the same entity class. If the rule simply states that
only certain combinations of attribute values are permissible, we can set up a
table of the allowed combinations. If the attributes are from the same entity
class, we can use the referential integrity features of the database management
system (see Section 14.5.4) to ensure that only valid combinations of values
are recorded. However, if they are from different entity classes enforcement
of the rule requires the use of program logic, (e.g., a stored procedure).

We can and should include an entity class in the data model represent-
ing the table of allowed combinations, and, if the controlled attributes are
from the same entity class, we should include a relationship between that
entity class and the Allowed Combination entity.

Some DBMSs provide direct support for describing constraints across
multiple columns as part of the database definition. Since such constraints
are frequently volatile, be sure to establish how easily such constraints can
be altered.

Multiattribute constraints are not confined to category attributes. They
may involve range checks (“If Product Type is ‘Vehicle,’ Price must be
greater than $10,000”) or even cross-entity constraints (“Only a Customer
with a credit rating of ‘A’ can have an Account with an overdraft limit of
over $1000”). These too can be readily implemented using tables specify-
ing the allowed combinations of category values and maxima or minima,
but they require program logic to ensure that only allowed combinations
are recorded. Once again the DBMS may allow such constraints to be spec-
ified in the database definition.

As always, the best approach is to document the constraints as you
model and defer the decision as to exactly how they are to be enforced
until you finalize the logical database design.

14.5.7 Recording Data That Supports Rules

Data that supports rules often provides challenges to the modeler. For
example, rules specifying allowed combinations of three or more categories
(e.g., Product Type, Customer Type, Contract Type) may require analysis
as to whether they are in 4th or 5th normal form (see Chapter 13).

Another challenge is presented by the fact that many rules have exceptions.
Subtypes can be valuable in handling rules with exceptions. Figure 14.10 is
a table recording the dates on which post office branches are closed. (A bit

442 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:54 PM Page 442

of creativity may already have been applied here; the user is just as likely
to have specified a requirement to record when the post offices were open).

Look at the table closely. There is a definite impression of repetition for
national holidays, such as Christmas Day, but the table is in fact fully nor-
malized. We might see what appears to be a dependency of Reason on Date,
but this only applies to some rows of the table.

The restriction “only some rows” provides the clue to tackling the prob-
lem. We use subtypes to separate the two types of rows, as in Figure 14.11
on the following page.

The National Branch Closure table is not fully normalized, as Reason
depends only on Date; normalizing gives us the three tables of Figure 14.12
(page 445).

We now need to ask whether the National Branch Closure table holds
any information of value to us. It is fully derivable from a table of branches
(which we probably have elsewhere) and from the National Closure data.
Accordingly, we can delete it. We now have the two-table solution of
Figure 14.13 (page 446).

In solving the problem of capturing an underlying rule, we have produced a
far more elegant data structure. Recording a new national holiday, for example,
now requires only the addition of one row. In effect we found an unnormalized
structure hidden within a more general structure, with all the redundancy and
update anomalies that we expect from unnormalized data.

14.5.8 Rules That May Be Broken

It is a fact of life that in the real world the existence of rules does not
preclude them being broken. There is a (sometimes subtle) distinction
between the rules that describe a desired situation (e.g., a customer’s
accounts should not exceed their overdraft limits) and the rules that
describe reality (some accounts will in fact exceed their overdraft limits).

14.5 Implementing Business Rules ■ 443

Figure 14.10 Post office closures model.

Post Office Closure

POST OFFICE CLOSURE (Branch No, Date, Reason)

Branch Date Reason

18
63

1

2

3

4

5

6

12/19/2004
12/24/2004

12/25/2004

12/25/2004

12/25/2004

12/25/2004

12/25/2004

12/25/2004

Maintenance
Local Holiday

Christmas

Christmas

Christmas

Christmas

Christmas

Christmas

Simsion-Witt_14 10/11/04 8:54 PM Page 443

We may record the first kind of rule in the database (or indeed elsewhere),
but it is only the second type of rule that we can sensibly enforce there.

A local government system for managing planning applications did not
allow for recording of land usage that broke the planning regulations. As a
result data entry personnel would record land details using alternative
usage codes that they knew would be accepted. In turn the report that
was designed to show how many properties did not conform to planning
regulations regularly showed 100% conformity!

To clarify such situations, each rule discovered should be subject to the
following questions:

“Is it possible for instances that break this rule to occur?”
“If so, is it necessary to record such instances in the database?”
If the answer to both questions is “Yes,” the database needs to allow

nonconforming instances to be recorded. If the rule is or includes a refer-
ential integrity rule, DBMS referential integrity enforcement cannot be used.

444 ■ Chapter 14 Modeling Business Rules

Individual
Branch
Closure

National
Branch
Closure

Post Office
Closure

INDIVIDUAL BRANCH CLOSURE (Branch No, Date, Reason)

NATIONAL BRANCH CLOSURE (Branch No, Date, Reason)

Individual Branch Closure National Branch Closure
Branch No Date Reason Branch No Date Reason

18 12/21/93 Maintenance 1 12/25/93 Christmas
63 12/23/93 Local Holiday 2 12/25/93 Christmas

3 12/25/93 Christmas
4 12/25/93 Christmas
5 12/25/93 Christmas
6 12/25/93 Christmas

Figure 14.11 Subtyping post office closure.

Simsion-Witt_14 10/11/04 8:54 PM Page 444

14.5.9 Enforcement of Rules Through Primary
Key Selection

The structures available to us in data modeling were not designed as a
comprehensive “tool kit” for representing rules. To some extent, the types
of rules we are able to model are a by-product of database management
system design, in which other objectives were at the fore. Most of these are
well-understood (cardinality, optionality, and so forth), but others arise
from quite subtle issues of key selection.

In Section 11.6.6, we looked at an apparently simple customer orders
model reproduced with different primary keys in Figure 14.14 (page 447).

By using a combination of Customer No and Order No as the key for Order
and using Customer and Branch No as the key for Branch, as shown, we are
able to enforce the important constraint that the customer who placed the

14.5 Implementing Business Rules ■ 445

National
Closure

Individual
Branch
Closure

National
Branch
Closure

be
determined

by

determine

INDIVIDUAL BRANCH CLOSURE (Branch No, Date, Reason)
NATIONAL BRANCH CLOSURE (Branch No, Date)
NATIONAL CLOSURE (Date, Reason)

Individual Branch Closure National Branch Closure
Branch No Date Reason Branch No Date

18 12/21/93 Maintenance 1 12/25/93
63 12/23/93 Local Holiday 2 12/25/93

3 12/25/93

National Closure 4 12/25/93
Date Reason 5 12/25/93

12/25/93 Christmas 6 12/25/93

Figure 14.12 Post office closuresnormalized after subtyping.

Simsion-Witt_14 10/11/04 8:54 PM Page 445

order also received the order (because the Customer No in the Ordered
Item table is part of the foreign key to both Order and Branch). But this
is hardly obvious from the diagram or even from fairly close perusal of the
attribute lists, unless you are a fairly experienced and observant modeler.
Do not expect the database administrator, user, or even your successor
to see it.

We strongly counsel you not to rely on these subtleties of key con-
struction to enforce constraints. Clever they may be, but they can easily be
overridden by other issues of key selection or forgotten as time passes.
It is better to handle such constraints with a check within a common pro-
gram module and to strongly enforce use of that module.

14.6 Rules on Recursive Relationships

Two situations in which some interesting rules are required are:

■ Recursive relationships (see Section 3.5.4), which imply certain con-
straints on the members thereof

■ Introduction of the time dimension, which adds complexity to basic
rules.

446 ■ Chapter 14 Modeling Business Rules

National
Closure

Individual
Branch
Closure

INDIVIDUAL BRANCH CLOSURE (Branch No, Date, Reason)

NATIONAL CLOSURE (Date, Reason)

Individual Branch Closure National Closure
Branch Date Reason Date Reason

18 12/21/93 Maintenance 12/25/93 Christmas

63 12/23/93 Local Holiday

Figure 14.13 Final post office closure model.

Simsion-Witt_14 10/11/04 8:54 PM Page 446

We discuss the time dimension in Chapter 15, so we will defer discussion
of time-related business rules until that chapter (Section 15.9 if you want to
look ahead!).

Recursive relationships are often used to model hierarchies, which have
an implicit rule that instance a cannot be both above and below instance
b in the hierarchy (at least at any one time). This may seem like stating the
obvious, but without implementation of this rule, it is possible to load con-
tradictory data. For example, if the hierarchy is a reporting hierarchy among
employees, we could specify in John Smith’s record that he reports to Susan
Brown and in Susan Brown’s record that she reports to John Smith. We
need to specify and implement a business rule to ensure that this situation
does not arise.

14.6.1 Types of Rules on Recursive Relationships

The relationship just described is asymmetric: if a reports to b, b cannot
report to a. It is actually more complicated than that. It is equally contradic-
tory to specify that John Smith reports to Susan Brown, Susan Brown reports
to Miguel Sanchez, and Miguel Sanchez reports to John Smith. You should

14.6 Rules on Recursive Relationships ■ 447

*Customer No
*Order No
 Item No
*Branch No

Customer

Branch Order

Ordered
Item

be owned
by

 own

be for

 receive

be
under

comprise

be placed
by

place

Customer No

*Customer No
Order No

*Customer No
Branch No

Figure 14.14 Constraint enforced by choice of keys.

Simsion-Witt_14 10/11/04 8:54 PM Page 447

be able to see that we need to restrict anyone from being recorded as
reporting to anyone below them in the hierarchy to whatever depth the
hierarchy might extend.

The technical term for relationships of this kind is acyclic.
This relationship is also irreflexive (cannot be self-referencing): an

employee cannot report to himself or herself.
It is also intransitive: if a is recorded as reporting to b, and b is recorded

as reporting to c, we cannot then record a as reporting to c. However, not
all acyclic relationships are intransitive: if the relationship “is an ancestor
of”4 rather than “reports to,” we can record that a is an ancestor of b, b is
an ancestor of c, and a is an ancestor of c. In fact the first two statements
taken together imply the third statement, which makes “is an ancestor of” a
transitive relationship. This means that the third statement (a is an ances-
tor of c) is redundant if the other statements are also recorded. You should
prevent the recording of redundant instances of a transitive relationship.
Technically speaking you could achieve this by marking the relationship as
intransitive although to the business this would be a false statement.

Note that a recursive relationship may be neither transitive nor intransi-
tivefor example, the relationship “shares a border with” on the entity
class Country. France shares a border with Germany, and Germany shares
a border with Switzerland. This does not prevent France sharing a border
with Switzerland but does not imply it either; that is a separate fact, which
should be recorded.

This relationship is also symmetric: if country a shares a border with
country b, country b must share a border with country a. With symmetric
relationships we again have the issue of redundancy. Recording that the
United States shares a border with Canada and that Canada shares a border
with the United States is redundant. Symmetric relationships therefore need
to be managed carefully; you should not only prevent the reverse form of a
relationship instance also being recorded but you should go further and
ensure that each relationship instance be recorded in only one way. For
example, you can require that the name of the first country in the statement
alphabetically precedes that of the second country. So, if “France shares a
border with Germany” were entered, this would be stored as such in the
appropriate table (if not already present), but if “Germany shares a border
with France” were entered, it would be stored as “France shares a border with
Germany” (again, if not already present). This automatically prevents redun-
dancy. We saw an example of symmetric relationships in Section 10.8.2.

Again, there are relationships which are neither symmetric nor asym-
metric; we have seen the relationship “likes” on the entity class Person
cited in course material as an example of a symmetric relationship but

448 ■ Chapter 14 Modeling Business Rules

4Although we recommend in Section 3.5.1 that relationships be named “be an ancestor of,”
“be a parent of,” and so on, we use an alternative form in this section to make the discussion
more readable.

Simsion-Witt_14 10/11/04 8:54 PM Page 448

the fact that Joe likes Maria does not imply that Maria likes Joe.5 Perhaps
a more useful relationship for some business purposes might be the
relationship “requires a visa from citizens of” on the entity class Country.
If Country a requires visas from citizens of country b, this does not prevent
country b requiring visas from citizens of country a but does not imply it
either; that is a separate fact, which should be recorded.

A reflexive relationship is one in which a self-referencing instance is
implied for each instance of the entity class participating in the relationship.
An example of a reflexive relationship is “allows work by citizens of” on
the entity class Country. While it would be necessary to record for each
country those other countries whose citizens may work in that country, it
should not be necessary to record that each country allows its own citizens
to work in that country.

Again, there are relationships that are neither reflexive nor irreflexive;
again, we have seen the relationship “likes” on the entity class Person
incorrectly cited in course material as an example of a reflexive relationship,
but not everyone likes himself or herself.

Asymmetric relationships must be irreflexive. There are also antisym-
metric relationships, which may include self-referencing instances but not
instances that are reflections of other instances. Examples are hard to come
by; one possibility is the relationship “teaches.” One can teach oneself a
skill but if I teach you a skill, you cannot then teach it to me.

14.6.2 Documenting Rules on Recursive Relationships

ORM (Object Role Modeling) refers to constraints on recursive relationships
as ring constraints and allows you to specify each ring constraint as
acyclic, irreflexive, intransitive, symmetric, asymmetric, or antisymmetric
(or one of the allowable combinations: acyclic intransitive, asymmetric
intransitive, symmetric intransitive, and symmetric irreflexive). If you are not
using ORM, your best option is to include in the description of the rela-
tionship whether it is subject to a ring constraint and, if so, which type(s).
This assumes, of course, that the parties responsible for implementing
constraints are familiar with those terms!

14.6.3 Implementing Constraints on
Recursive Relationships

Implementing constraints on recursive relationships is a complex subject
outside the scope of this book; while it is relatively simple to constrain an

14.6 Rules on Recursive Relationships ■ 449

5The poetic term is “unrequited love.”

Simsion-Witt_14 10/11/04 8:54 PM Page 449

irreflexive relationship (the foreign key to the parent row cannot have the
same value as the primary key in the same row), constraining an acyclic
relationship is very complex.

14.6.4 Analogous Rules in Many-to-Many Relationships

Analogous rules may apply to recursive many-to-many relationships that
have been modeled using an intersection entity class or table. For example,
the Bill of Materials model [Section 3.5.4 Figure 3.22(d)] is subject to a cyclic
ring constraint: an assembly cannot consist of any subassembly that
includes the original assembly as a component.

In fact any table with two foreign keys to the same other table (or entity
class with two one-to-many relationships to the same other entity class)
may also be subject to ring constraints. For example, a Flight Leg entity
class will have two relationships to a Port entity class (identifying origin
and destination). These two relationships are jointly subject to an irreflex-
ive ring constraint; no scheduled commercial flight leg can have the same
port as both origin and destination.

14.7 Summary

Both E-R and relational data models can capture a variety of business rules
in their structures, definitions, and supporting documentation. The data in
the resulting database will also serve to enforce business rules.

There are various techniques for discovery, verification, and documen-
tation of business rules.

A conventional information system may implement rules in the data
structure, declared constraints, data in the database, program logic or spe-
cialized “rules engine” software. Rules held in data structure are difficult to
circumvent or change. Rules held in data values are more readily changed
but may demand more sophisticated programming.

450 ■ Chapter 14 Modeling Business Rules

Simsion-Witt_14 10/11/04 8:54 PM Page 450

Chapter 15
Time-Dependent Data

“. . . the flowing river of time more closely resembles a giant block of ice with every
moment frozen into place.”

– Brian Greene, The Future of the Cosmos, 2004

“History smiles at all attempts to force its flow into theoretical patterns or logical
grooves; it plays havoc with our generalizations, breaks all our rules; history is

baroque.”
– Will Durrant, The Lessons of History, 1968

15.1 The Problem

Few areas of data modeling are the subject of as much confusion as the
handling of time-related and time-dependent data.

Perhaps we are modeling data for an insurance company. It is certainly
important for us to know the current status of a client’s insurance policy
how much is insured and what items are covered. But in order to handle
claims for events that happened some time ago, we need to be able to
determine the status at any given date in the past.

Or, we may want to support planning of a railway network and to be
able to represent how the network will look at various times in the future.

Or, we might want to track deliveries of goods around the world and
need to take into account different time zones when recording dates of
dispatch and receipt.

Underlying each of these problems is the concept of effective dates and
times (past or future) and how we handle them in a data model.

A closely related issue is the maintenance of an audit trail: a history of
database changes and of the transactions that caused them. What cash
flows contributed to the current balance? Why was a customer’s credit
rating downgraded?

The difficulties that even experienced data modelers encounter in these
areas are often the result of trying to find a simple recipe for “adding the
time dimension” to a model. There are two fundamental problems with this
approach: first, the conceptual model usually includes time-dependent data
even before we have explicitly considered the time dimension, and second,
we seldom need to maintain a full history and set of past positions for
everything in the database.

451

Simsion-Witt_15 10/8/04 8:07 PM Page 451

In this chapter we look at some basic principles and structures for han-
dling time-related data. You should be able to solve most problems you
encounter in practice by selectively employing combinations of these. We
look at some techniques specific to data warehouses in Chapter 16. Once
again, the choice of the best approach in a given situation is not always
straightforward, and, as in all our modeling, we need to actively explore
and compare alternatives.

15.2 When Do We Add the Time Dimension?

At what stage in modeling should we consider time-related issues? As we
pointed out in the introduction to this chapter, the inclusion of the time
dimension in a model is not a stand-alone task, but rather something that
we achieve using a variety of techniques as modeling proceeds. Many of
our decisions will be responses to specific business needs and should
therefore be made during the conceptual modeling phase.

We may also need to implement certain time-related data to assist with
the administration and audit of the database. For example, we may include
in every table a column to record the date and time when that table was
last updated. Often, such decisions are not in the hands of the individual
modeler, but they are the result of data administration policies applicable
to all databases developed in the organization. Business interest in such
data is usually peripheral; stakeholders will have an interest in the overall
improvement in (for example) auditability, but not in the mechanism
used to achieve it. If the changes to data structures are largely mechanical,
and the data is not of direct interest to the business, it makes sense
to perform these additions during the transformation from conceptual to
logical model.

In this chapter we focus on the issues of most interest to the modeler,
which should generally be tackled at the conceptual modeling stage.
However, in many examples we have shown the resulting logical models,
in order to show primary and foreign keys, and have included some nonkey
columns in the diagrams. In doing this, our aim is to give you a better
appreciation of how the structures work.

15.3 Audit Trails and Snapshots

Let us start with a very simple examplea single table. Our client is an
investor in shares (stocks), and the table Share Holding represents
the client’s holdings of each share type (Figure 15.1). As it stands, the

452 ■ Chapter 15 Time-Dependent Data

Simsion-Witt_15 10/8/04 8:07 PM Page 452

model enables us to record the current quantity and price of each type
of share.

We assume that the primary key has been properly chosen and, therefore,
that the type and issuer of a share cannot change. We will add the business
rule that the par value (nominal issue value) of a share also cannot change.
But quantities and prices certainly may change over time, and we may need
to hold data about past holdings and prices to support queries such as, “How
many shares in company xyz did we hold on July 1, 2002?” or, “By how
much has the total value of our investments changed in the past month?”

There are essentially two ways of achieving this:

1. Record details of each change to a share holdingthe “audit trail”
approach.

2. Include an Effective Date attribute in the Share Holding table, and record
new instances either periodically or each time there is a changethe
“snapshot” approach.

If you are familiar with accounting, you can think of these as “income
statement” and “balance sheet” approaches, respectively. Balance sheets
are snapshots of a business’ position at particular times, while income
(profit and loss) statements summarize changes to that position.

15.3.1 The Basic Audit Trail Approach

We will start with the audit trail approach. Let’s make the reasonable
assumption that we want to keep track not only of changes, but of the
events that cause them. This suggests the three-table model of Figure 15.2.
Note that Share Holding represents current share holdings.

This is the basic audit trail solution, often quite workable as it stands.
But there are a number of variations we can make to it.

The Event table implements a very generic entity class that could well
be subtyped to reflect different sets of attributes and associated processes.
In this example we might implement tables that represented subtypes
Purchase, Sale, Rights Issue, Bonus Issue, and so on.

15.3 Audit Trails and Snapshots ■ 453

Share
Holding

Share Type Code
Issuer ID
Share Price
Held Quantity
Par Value

Figure 15.1 Model of current share holdings.

Simsion-Witt_15 10/8/04 8:07 PM Page 453

There is often value in grouping events into higher-level events or,
conversely, breaking them down into component events. For example, we
might group a number of different share purchases into the aggregate event
“company takeover” or break them down into individual parcels. We can
model this with a variable or fixed-depth hierarchy (e.g., a recursive rela-
tionship on Event, or separate tables for Aggregate Event, Basic Event,
and Component Event).

In some circumstances we may not require the Event table at all.
Attributes of the Share Holding Change entity class (typically DateTime or
External Reference Number) can sometimes provide all the data we need about
the source of the change. For example, values may change or be recorded
at predetermined intervals. We might record share prices on a daily basis,
rather than each time there was a movement.

Another possibility is that each event affects only one share holding(i.e.,
generates exactly one share holding change). We can very often propose
workable definitions of Event to make this so. For example, we could
choose to regard a bundled purchase of shares of different types as several
distinct “purchase events.” This makes the relationship between Event and
Share Holding Change mandatory, nontransferable, and one-to-one and
suggests combining the two tables (see Section 10.9). Figure 15.3 shows
the result.

Even if some types of events do cause more than one change (for exam-
ple, exercising options would mean a reduction in the holding of options
and an increase in the number of ordinary shares), we can extend the
model to accommodate them as in Figure 15.4.

454 ■ Chapter 15 Time-Dependent Data

Share
Holding

Share Type Code
Issuer ID
Share Price
Held Quantity
Par Value

Share

Holding

Change

Share Type Code
Issuer ID
Event ID
Change in Price
Change in Held Quantity

Event
Event ID
DateTime
Event Type Code

apply
to

be
subject to

be
generated by

generate

Figure 15.2 Basic audit trail approach.

Simsion-Witt_15 10/8/04 8:07 PM Page 454

Returning to the model in Figure 15.2, Share Holding Change can also
be divided into two tables (reflecting subtypes in the conceptual model) to
distinguish price changes from quantity changes (Figure 15.5).

With only two attributes, our choices are straightforward, but as the
number of attributes increases so does the variety of subtyping options.

15.3 Audit Trails and Snapshots ■ 455

Share
Holding

Share Type Code
Issuer ID
Share Price
Held Quantity
Par Value

Share

Holding

Change

Share Type Code
Issuer ID
Event ID
Change in Price
Change in Held Quantity

Event

apply
to

be
subject to

be
generated by

Event ID
DateTime
Event Type Code

generate

Figure 15.3 Event defined as generating only one change.

Share
Holding

Simple
Event

Complex
Event

apply
to

be
subject to

comprise

be
part of

Event

Figure 15.4 Separating complex and simple events.

Simsion-Witt_15 10/8/04 8:07 PM Page 455

During conceptual modeling, it can be helpful to look at the different types
of events (whether formal subtypes or not) and the combination of attrib-
utes that each affects. This will often suggest subtypes based on groups of
attributes that are affected by particular types of events. For example,
Share Acquisition might be suggested by the Event subtypes Share
Purchase, Bonus Issue, Rights Issue, and Transfer In. But you do need
to look closely at the stability of these groups of attributes. If they reflect
well-established business events, there may be no problem, but if they are
based around, for example, the sequence of events in an extended inter-
action (e.g., a customer applying for and being granted or refused a loan),
we may find ourselves having to change the database structure simply
because we want to update a column at a different point in the interaction.

The Share Holding table not only contains the current values of all attrib-
utes, but is the only place in which any static attributes (other than the pri-
mary key) need to be held. For example, the Par or Issue Value of the share
never changes and therefore should not appear in Share Holding Change.

Instead of defining Share Holding as representing current share holdings,
we could have used it to represent initial share holdings (Figure 15.6).

In one way this is more elegant, as updates will need only to create
rows in the Event and Share Holding Change tables; they will not need
to update the Initial Share Holding table. On the other hand, inquiries on
the current position require that it be built up by applying all changes to
the initial holding.

The definition of Initial Share Holding may need to take into account
share holdings that were in place before the database and associated

456 ■ Chapter 15 Time-Dependent Data

Share
Holding

Quantity
Change

Price
Change

apply
to

be
subject to

Event

be
generated by

generate

Share Holding Change

Change in Price Change in Quantity

Figure 15.5 Subtyping to reflect different types of changes.

Simsion-Witt_15 10/8/04 8:07 PM Page 456

system were implemented. Do we want to record the actual initial pur-
chases (perhaps made many years ago) and all subsequent events and
changes? Or is it more appropriate to “draw a line” at some point in time
and record the quantities held at that time as initial share holdings? Similar
questions will arise if we choose to remove (and presumably archive)
events that are no longer of interest to us.

One very important assumption in the model of Figure 15.6 is that
instances of Event and Share Holding Change cannot themselves be
updated (or, at least, that we are not interested in keeping any history of
such changes). Imagine for a moment that we could update the column
values in Share Holding Change. Then we would need to extend the
model to include Share Holding Change Change to keep track of these
changes, and so on, until we reached a nonupdatable tableone in which
each row, once recorded, never changed. So, an interesting feature of the
audit trail approach to modeling time-dependent data is that it relies on
defining some data that is invariant.

In our example, it is difficult to envision any business event that would
cause the values of Share Holding Change columns to change. But there
is always the possibility that we record some data in error (perhaps we
have miskeyed a price change). We then have essentially three options:

1. Correct the data without keeping a history of the change. This is a
simple solution, but it will cause reconciliation problems if reports have
been issued or decisions made based on the incorrect data.

2. Maintain a separate history of “changes to changes.” This complicates
the model but does separate error corrections from business changes.

3. Allow for a “reversal” or “correction” event, which will create another
Share Holding Change row. This is the approach used in accounting.

15.3 Audit Trails and Snapshots ■ 457

Event
Initial
Share

Holding

Share
Holding
Change

 be
generated by

 generate

apply
 to

be
subject to

Figure 15.6 Model based on changes to initial share holding.

Simsion-Witt_15 10/8/04 8:07 PM Page 457

It is often the cleanest way of avoiding both the problems inherent
in option 1 and situations where the correction event can cause more
complex changes to the database (e.g., reversal of commission and
government tax).

Any of these approaches may be used, depending on the circumstances.
The important thing is to plan explicitly for changes resulting from error
corrections as well as those caused by the more usual business events.

15.3.2 Handling Nonnumeric Data

You may have noticed that we conveniently chose numeric attributes (Share
Quantity and Share Price) as the time-dependent data in the example. It makes
sense to talk about the change (increase or decrease) to a numeric attribute.
But how do we handle changes to the value of nonnumeric attributes
(for example, Custodian Name)? One approach is to hold the value prior to
the change, rather than the amount of change. The value after the change
will then be held either in the next instance of Share Holding Change or
in (Current) Share Holding. For example, if the value of Custodian Name was
changed from “National Bank” to “Rural Bank,” the sequence of updates
would be as follows (in terms of the model in Figure 15.7):

1. Update Custodian Name in the relevant row of the Share Holding table
to “Rural Bank.”

2. Create a new row in the Share Holding Change table, with relevant
values of Share Type Code, Issuer ID and Event ID, and “National Bank” as
the value for Previous Custodian Name.

Holding the prior value is also an option when dealing with numeric
data. We could just as well have held Previous Price instead of Change in Price.
One will be derivable from the other, and selecting the best option usually
comes down to which is more commonly required by the business
processes, and perhaps maintaining a consistency of approachelegance
again!

Note that if we were using the approach based on an Initial Share
Holding table (Figure 15.6), we would need to record the values after the
change in the Share Holding Change table.

15.3.3 The Basic Snapshot Approach

The idea of holding prior values rather than changes provides a nice lead-in
to the “snapshot” approach.

458 ■ Chapter 15 Time-Dependent Data

Simsion-Witt_15 10/8/04 8:07 PM Page 458

One of the options available to us is to consistently hold prior values
rather than changes, to the extent that “no change” is represented by the
prior value being the same as the new value. If we take this approach, then
Share Holding Change starts to look very like Current Share Holding.
The only difference in the attributes is the inclusion of the event identifier
or effective date, and the exclusion of data that is not time-dependent, such
as Par Value.

Share Holding Change is now badly named, as we are representing
past positions, rather than changes. Historical Share Holding is more
appropriate (Figure 15.8). This change of name reflects a change in the
flavor of the model. Queries of the form, “What was the position at a partic-
ular date?” are now supported in a very simple way (just find the relevant
Historical Share Holding), while queries about changes are still supported,
but require some calculation to assemble the data.

If typical updates to share holdings involve changes to only a small
number of attributes, this snapshot approach will be less tidy than an audit
trail with subtypes. We will end up carrying a lot of data just to indicate
“no change.” If we wanted to eliminate this redundancy, we could split
Historical Share Holding into several tables, each with only one nonkey
column. In our simplified example with two nonkey columns, this would
mean replacing Historical Share Holding with a Historical Share Price
table and a Historical Held Quantity table. In doing this we would be
going beyond Fifth Normal Form (Chapter 13) insofar as we were perform-
ing further table splits based on keys. This type of further normalization
and the formal concept of Sixth Normal Formhas been explored by

15.3 Audit Trails and Snapshots ■ 459

Share
Holding

Share Type Code
Issuer ID
Share Price
Held Quantity
Par Value
Custodian Name

Share
Holding
Change

Share Type Code
Issuer ID
Event ID
Change in Price
Change in Held Quantity
Previous Custodian Name

Event

apply
to

be
subject to

generate

be
generated by

Event ID
DateTime
Event Type Code

Figure 15.7 Change to numeric and nonnumeric data.

Simsion-Witt_15 10/8/04 8:07 PM Page 459

Date et al. (see reference in “Further Reading”). In considering such a tactic,
remember that historical share holdings should be created but not updated;
hence, we are not avoiding any update anomalies. Look also at the com-
plexity of programming needed to assemble a complete snapshot. Much
that has been written on organizing time-dependent data is based on the
premise that direct DBMS support for such data manipulation is available.

Note that the event associated with a particular historical share holding
is the event that ended that set of attribute values, not the event that set
them up. The relationship name “update” (in contrast to “create”) reflects
this. Another option is to link events to the historical share holding they
create. In this case, we will also need to link Current Share Holding to
Event (Figure 15.9).

This gives us yet another option, with some advantages in elegance if
the business is more interested (as it often is) in the event that led to a
particular position.

Note that the two relationships to Event are now optional. This is
because the initial share holding (which may be an instance of either
Current Share Holding or Historical Share Holding) may represent an
opening position, not created by any event we have recorded. Of course,
we have the option of defining an “initialize” or “transfer in” event to set
up the original holdings, in which case the two relationships would
become mandatory.

The model as it now stands has at least two weaknesses. The first is the
inelegance of having two separate relationships to Current Share Holding
and Historical Share Holding. The second is more serious. Each time we
create a new current share holding, we will need to create a historical share
holding that is a copy of the previous current share holding. This is very

460 ■ Chapter 15 Time-Dependent Data

Current
Share

Holding

Historical
Share

Holding
Event

 update

be
updated by

be a past
position of

be the
current
position of

Share Type Code
Issuer ID
Share Price
Held Quantity
Par Value

Share Type Code
Issuer ID
Event ID
Share Price
Held Quantity

Event ID
DateTime
Event Type Code

Figure 15.8 Basic snapshot approach.

Simsion-Witt_15 10/8/04 8:07 PM Page 460

close to breaking our rule of not transferring instances from one entity class
to another (Section 4.13.5).

We can overcome both problems by generalizing the two relationships,
along with the two entity classes. We do this by first splitting out the time-
dependent portion of Current Share Holding, using a one-to-one relation-
ship, according to the technique described in Section 10.9. The result is
shown in Figure 15.10.1

Historical Share Holding will have basically the same attributes as this
extracted part of Current Share Holding, and there may well be important
processes (e.g., portfolio valuation plotted over time) that treat the two in
much the same way.

The Share Holding (Fixed) entity class represents attributes that are not
time-dependent, or for which we require only one value (perhaps the current
value, perhaps the original value). If there are no such attributes apart from
the key, we will not require this entity class at all. Nor will we require it if
we take the “sledge hammer” approach of assuming at the outset that all
data is time-dependent and that we need to record all historical values.

We have now come quite some distance from our original audit trail
approach. The path we took is a nice example of the use of creative model-
ing techniques. Along the way we have seen a number of ways of handling
historical data, even for the simplest one-entity model. The one-entity

15.3 Audit Trails and Snapshots ■ 461

Current
Share

Holding

Historical
Share

Holding
Event

create

be
created by

be a past
position of

be the
current
position of

create

be
created by

Figure 15.9 Linking events to the positions they create.

1In adding a supertype at this stage we are effectively working backwards from the logical
model to the conceptual model. The model we show represents an interim stage and shows
both foreign keys and subtyping, which you would not normally expect to see together in a
final model (unless of course your DBMS directly supports subtypes).

Simsion-Witt_15 10/8/04 8:07 PM Page 461

example is quite general and can easily be adapted to handle future posi-
tions (for example, the results of a planned share purchase) as well as (or
instead of) past positions.

We often arrive at models like those discussed here without ever explic-
itly considering the time dimension. For example, a simple model of bank
accounts and transactions is an example of the audit trail approach, and a
Staff Appraisal entity class, which represents multiple appraisals of the
same person over time, is an example of the snapshot approach.

15.4 Sequences and Versions

In our examples so far, we have used the term “time-dependent” in a very
literal way to mean that events, snapshots, and changes have an attribute
of Date or DateTime. We can equally apply these rules to sequences that are
not explicitly or visibly tied to dates and times. For example, we may wish
to keep track of software according to Version Number or to record the effect
of events that can be placed in sequence without specifying absolute
timesperhaps the stages in a human-computer dialogue.

462 ■ Chapter 15 Time-Dependent Data

Share
Holding
(Fixed)

Current Share
Holding (Time-

Dependent)

Historical
Share

HoldingEvent

Share Holding
Snapshot

 create

be created
by

be the current
 position of

be the
fixed

part of

be a past
position of

be the
fixed

part of

Share Type Code
Issuer ID
Par Value

Share Type Code
Issuer ID
Share Price
Held Quantity

Share Type Code
Issuer ID
Event ID
Share Price
Held Quantity

Event ID
DateTime
Event Type Code

Figure 15.10 Separating time-dependent and static data.

Simsion-Witt_15 10/8/04 8:07 PM Page 462

15.5 Handling Deletions

Sometimes entity instances become obsolete in the real world. Consider the
case of the Soviet Union. If we have a table of countries and there are ref-
erences to that table infor example, our Employee table (country of
birth), Customer table (country in which the business is registered) or
Product table (country of manufacture)we cannot simply delete the
record for the Soviet Union from our country table unless there are no
records in any other table that refer to the Soviet Union. In fact we cannot
rely on there being no such records so we must design for the situation in
which a country is no longer current but there are records that continue to
refer to it (after all there may be employees who were born in what was
then the Soviet Union).

Often these noncurrent entity instances will still have relevance in
the context of relationships with other entity classes. For example, although
the country “Soviet Union” may no longer exist and, hence, be flagged
as noncurrent, it will still have meaning as a place of birth for a visa
applicant.

A simple solution in this case is to include a Current Flag attribute in the
Country table, which can be set to mark a country as no longer current
(or obsolete). This enables us to include logic that, for example, prevents
the Soviet Union from being recorded as either the country of registration
of a new customer or the country of manufacture of a product (unless we
were dealing in antiques!). We would still wish to be able to record the
Soviet Union as the country of birth of a new employee.

It is possible for an entity instance to be deleted and then reinstated. In
these cases we can simply keep a history of the Current Flag attribute in the
same way that we would for any other attribute.

15.6 Archiving

In modeling time-dependent data, you need to take into account any
archiving requirements and the associated deletion of data from the
database.

Snapshot approaches are generally amenable to having old data
removed; it is even possible to retain selected “snapshots” from among the
archived data. For example, we might remove daily snapshots from before
a particular date but retain the snapshots from the first day of each month
to provide a coarse history.

Audit trail approaches can be less easy to work with. If data is to be
removed, it will need to be summarized into an aggregate “change” or
“event” or into a “starting point snapshot.” Similarly, if a coarse history is
required, it will be necessary to summarize intermediate events.

15.6 Archiving ■ 463

Simsion-Witt_15 10/8/04 8:07 PM Page 463

15.7 Modeling Time-Dependent Relationships

15.7.1 One-to-Many Relationships

We have now had a fairly good look at the simplest of models, the one-
entity model. If we can extend this to a model of two entity classes linked
by a relationship, we have covered the basic building blocks of a data
model and should be able to cope with any situation that arises. In fact,
handling relationships requires no new techniques at all if we think in
terms of a relational model where they are represented by foreign keys; a
change to a relationship is just a change to a (foreign key) data item.

So let’s develop the share holding example further to include an entity
class representing the company that issued the shares (Figure 15.11).

We can use any of the preceding approaches to represent a history of
changes to Company and Share Holding. Figure 15.12 shows the result
of applying a version of the snapshot approach. The Event, Share Holding
Snapshot, and Company Snapshot entity classes are a result of using the
techniques for one-entity models. The new problem is what to do with the
relationship between Company and Share Holding. In this case, we note
that the “issued by” relationship is nontransferable and, hence, is part of
the fixed data about share holdings. (The foreign key Company ID will not
change value for a given Share Holding.)

We already hold Company ID in Share Holding (Fixed), and the rela-
tionship is therefore between Share Holding (Fixed) and Company
(Fixed), as shown.

But what if the relationship were transferable? In Figure 15.13 we
include the entity class Location, and the rule that shareholdings can be

464 ■ Chapter 15 Time-Dependent Data

Company

Share
Holding

 be
issued
 by

 issue

Company ID
Company Name
Contact Name
Incorporation Date

Share Type Code
Company ID

Figure 15.11 Companies and sharescurrent position.

Simsion-Witt_15 10/8/04 8:07 PM Page 464

transferred from one location to another. Each shareholding snapshot is
now related to a single instance of Location. A new shareholding snapshot
is created whenever a share holding is moved from one location to another.
From a relational model perspective, the foreign key to Location is now

15.7 Modeling Time-Dependent Relationships ■ 465

Company
(Fixed)

Share
Holding
(Fixed)

Share
Holding

Snapshot
Event

Company
Snapshot

apply
to

be the fixed
part of

update

be
updated by

be
issued

by
 issue

apply
 to

be the fixed
part of

update

be
updated by

Company ID
Event ID
Company Name
Contact Name

Share Type Code
Company ID

Company ID
Incorporation Date

Figure 15.12 Basic snapshot approach applied to nontransferable relationship.

Location

Share
Holding

be
held

at

 hold

Figure 15.13 Location and shareholdingcurrent data.

Simsion-Witt_15 10/8/04 8:07 PM Page 465

time-dependent and therefore needs to be an attribute of Share Holding
Snapshot (Figure 15.14).

The effects on the original relationship under the two options (transfer-
able and nontransferable) are summarized in Figure 15.15. Note the use of
the nontransferability symbol introduced in Section 3.5.6.

You might find it interesting to compare this result with the often-
quoted guideline, “When you include the time dimension, one-to-many
relationships become many-to-many.” If you think of Shareholding
Snapshot as an intersection entity class, you will see that this guideline
only applies to transferable relationships.

This makes sense. If a relationship is nontransferable, it will not change
over time; hence, there is no need to record its history.

15.7.2 Many-to-Many Relationships

Many-to-many relationships present no special problems, as we can start by
resolving them into two one-to-many nontransferable relationships, plus an
intersection entity class.

466 ■ Chapter 15 Time-Dependent Data

Location
(Fixed)

Share
Holding
(Fixed)

Share
Holding

Snapshot
Event

Location
Snapshot

apply
to

be the fixed
part of

generate

be
generated by

apply
to

be the fixed
part of

 generate

be
generated by

be
held at

hold

Figure 15.14 Basic snapshot approach applied to transferable relationship.

Simsion-Witt_15 10/8/04 8:07 PM Page 466

Figure 15.16 on the next page shows a worked example using the snap-
shot approach (we have left out the individual histories of the Employee
and Equipment Item entity classes).

In the simplest case, when the intersection entity class does not contain
any attributes other than the key, we need only keep track of the periods
for which the entity instance (i.e., the relationship) exists. We can use either
of the structures in Figure 15.17. Option 1 is based on an audit trail of
changes, option 2 on periods of currency. Note that while option 1 allows
us to easily determine which are the current responsibilities of an employee,
establishing what were an employee’s responsibilities at an earlier date
involves complex query programming, since one has to select from the set
of Responsibility rows with Effective Date earlier than the date in question,
the one with the latest Effective Date. By contrast option 2 supports both types

15.7 Modeling Time-Dependent Relationships ■ 467

AA

B B

A (Fixed)

B Snapshot

B (Fixed)

A (Fixed)

B (Fixed)

over
time

over
time

Date

Figure 15.15 Adding history to transferable and nontransferable relationships.

Simsion-Witt_15 10/8/04 8:07 PM Page 467

of query with relatively easy programming, in each case selecting the one
Responsibility row for which the date in question (which may be today)
is between Effective Date and Expiry Date. For this reason many database
designs to support history include Expiry Date as well as Effective Date even
though it is technically redundant (this has already been discussed in
Section 12.6.6). Our recommendation is to include Expiry Date in the logical
data model if you intend it to appear in the database although some would
argue that it should be deferred until the physical data model.

15.7.3 Self-Referencing Relationships

Handling self-referencing relationships is no different in principle from han-
dling relationships between two entity classes, but it is easy to get confused.
Figure 15.18 on page 470 shows solutions to the most common situations.

468 ■ Chapter 15 Time-Dependent Data

Employee

Employee Responsibility Equipment
Item

Equipment
Item

Employee
Responsibility

(Fixed)
Equipment

Item

Responsibility
Snapshot

be
responsible for

be the
responsibility of

be
involved in

involve

involve

be
involved in

be
involved in

involve

 involve

be
involved in

apply
to

be the fixed
part of

(resolving)

(over time)

Figure 15.16 History of many-to-many relationships.

Simsion-Witt_15 10/8/04 8:07 PM Page 468

15.8 Date Tables

Occasionally, we need to set up a table called Date or something similar, to
record such data as whether a given date is a public holiday. (Incidentally,
we have often seen this table named “Calendar”a violation of our rule that
names should reflect a single instance, covered in Section 3.4.2.)

There is no problem with the table as such, but a difficulty does arise
when we note that the primary key is Date and that this column appears
in tables throughout the data model where, technically, it is a foreign key
to the Date table. According to our diagramming rules, we should draw
relationships between the Date table and all the tables in which the foreign
key appears, a tedious and messy exercise.

Our advice is to break the rules and not to worry about drawing the rela-
tionships. The rules that the relationships enforce (i.e., ensuring that only
valid dates appear) are normally handled by standard date-checking routines;
our explicit relationships add virtually nothing except unnecessary complex-
ity. The situation is different if the dates are a special subsetfor example,
public holidays. In this case, you should name the table appropriately
(Public Holiday) and show any relationships that are constrained to that
subset (e.g., Public Holiday Bonus paid for work on Public Holiday).

15.9 Temporal Business Rules

Consider the model fragment (see Figure 15.19, page 471) of a database to
manage employees. This has been developed using the “snapshot”
approach to handle a full history of changes affecting those employees.

A number of business rules apply to these tables:

1. Employee Snapshot:
a. No two Employee Snapshot rows for the same employee can over-

lap in time. If this were to occur we could not establish the correct
name, address, salary amount, commission amount or union mem-
bership for the period covered by the overlapping rows. Note that this
rule is not enforced by the fact that Snapshot Effective Date is part of the
primary key of Employee Snapshot, a common misconception.

15.9 Temporal Business Rules ■ 469

Option 1:
RESPONSIBILITY (Employee ID, Equipment ID, Effective Date, Currency Indicator)
Option 2:
RESPONSIBILITY (Employee ID, Equipment ID, Effective Date, Expiry Date)

Figure 15.17 Alternatives for handling history of simple intersection entity class.

Simsion-Witt_15 10/8/04 8:07 PM Page 469

470 ■ Chapter 15 Time-Dependent Data

Organization
Unit

(a) One-to-Many Nontransferable

manage

be
managed

by

Organization
Unit

manage

be
managed

by

Employee

supervise

be
supervised

by

over time

Employee

Employee
Snapshot

over time

be variable
part of

be fixed
part of

be
supervised

by
 supervise

(b) One-to-Many Transferable

Part

be made
up of

be
used in

over time
Part

Part
Usage
(Fixed)

involve
as part

be involved
as part

involve as
assembly

be involved
as assembly

Part
Usage

Snapshot

be variable
part of

 be fixed
 part of

(c) Many-to-Many

Figure 15.18 History of self-referencing relationships.

Simsion-Witt_15 10/8/04 8:07 PM Page 470

b. No Employee Snapshot row can have a Snapshot Effective Date earlier
than the Commencement Date of the corresponding employee.

c. No Employee Snapshot row can have a Snapshot Expiry Date later
than the Termination Date of the corresponding employee.

d. If at least one of the Employee attributes now in Employee Snapshot
is mandatory (e.g., Employee Name), the Snapshot Effective Date of each
Employee Snapshot row must be no later than one day after the
Snapshot Expiry Date of the previous Employee Snapshot row for the
same employee. Combined with the first business rule, Snapshot Effective
Date must be exactly one day after the relevant Snapshot Expiry Date.

One way of avoiding rules a, c, and d, of course, is to remove Snapshot
Expiry Date from Employee Snapshot, but we will almost certainly pay a
price in more complex programming.

2. Employee Project Assignment:
a. If there is a business rule to the effect that an employee may only be

assigned to one project at a time, no two Employee Project
Assignment rows for the same employee can overlap in time.

b. No two Employee Project Assignment rows for the same
employee/project combination can overlap in time.

c. No two Employee Project Assignment rows for the same
employee/project combination should between them cover a single
unbroken time period. In other words, we should not use two rows
to represent a fact that could be captured in a single row. Violation
of this rule can lead to misleading query results. For example, con-
sider a query on the table in Figure 15.20 intended to return all
employee project assignments as at 06/30/2001 along with the dates
on which each employee started that assignment. Such a query would
correctly show RICHB76 as having started on project 234 on
01/12/2001 but incorrectly show WOODI02 as having started on proj-
ect 123 on 06/13/2001 rather than 01/23/2001. Of course, if
Employee Project Assignment was defined to mean “An assignment

15.9 Temporal Business Rules ■ 471

EMPLOYEE (Employee ID, Commencement Date, Termination Date)
EMPLOYEE SNAPSHOT (Employee ID, Snapshot Effective Date, Snapshot Expiry
Date, Employee Name, Employee Address, Weekly Salary Amount, Weekly
Commission Amount, Union Code)
EMPLOYEE PROJECT ASSIGNMENT (Employee ID, Project ID, Start Date, End Date)
EMPLOYEE ALLOWANCE (Employee ID, Allowance Code, Start Date, End Date,
Weekly Allowance Amount)

Figure 15.19 A model holding a full history of changes affecting employees.

Simsion-Witt_15 10/8/04 8:07 PM Page 471

to a project under a specific set of terms and conditions” and the new
row reflected a change in terms and conditions, the above rule would
now read “no two Employee Project Assignment rows for the same
combination of employee, project, and set of terms and conditions
should between them cover a single unbroken time period.” Then,
we would need to interpret the results of our query in this light.

d. No Employee Project Assignment row can have a Start Date earlier
than the Commencement Date of the corresponding employee.

e. No Employee Project Assignment row can have an End Date later
than the Termination Date of the corresponding employee.

f. If there is a business rule to the effect that an employee must be
assigned to at least one project at all times during his or her employ-
ment (unlikely in the past but more likely nowadays), there must be
no date between the Commencement Date and Termination Date of an
employee that is not also between the Start Date and End Date of at least
one Employee Project Assignment row for the same employee.

If an employee may only be assigned to one project at a time, removal
of End Date from Employee Project Assignment is again an option
which avoids rules a, b, d, and e.

3. Employee Allowance: the rules that apply to this table are analogous
to those that apply to Employee Project Assignment. Note that the
equivalent of rule c is that no two Employee Allowance rows for the
same employee/allowance type/allowance amount combination should
between them cover a single unbroken time period. (Two rows for the
same employee/allowance type combination could between them cover
a single unbroken time period if the allowance amount were different
in two rows.)

Note that the business may be quite happy with the notion that all changes
nominally occur at the end of each business day, that is that the time of
day is of no interest or relevance. If the time as well as the date of a change
is relevant, an issue arises of how one defines a gap in the last rule quoted

472 ■ Chapter 15 Time-Dependent Data

Employee ID Project ID Start Date End Date
WOODI02 123 01/23/2001 06/12/2001
WOODI02 123 06/13/2001 07/31/2001
RICHB76 234 01/12/2001 06/30/2001
RICHB76 234 09/12/2001 09/30/2001

EMPLOYEE PROJECT ASSIGNMENT

Figure 15.20 Expressing one fact with two rows.

Simsion-Witt_15 10/8/04 8:07 PM Page 472

for each table. The easiest way to deal with this issue in our experience is
to require that Snapshot Effective DateTime is equal to Snapshot Expiry DateTime
in the previous row. A slight problem then occurs. Any enquiry about the
state of affairs at one of the time points recorded in Snapshot Effective
DateTime will return two records per employee: one for the snapshot that
expires at that time and one for the snapshot that becomes effective at that
time. A convention needs to be established so that in such circumstances,
only the first (or second) of the records is actually used in the query result.
The rules in this example are typical of those that you will encounter in

models of time-dependent data and are special cases of the general data
rules discussed in Chapter 14, and thus subject to the same guidelines for
documentation and enforcement. If historical data is always created by
update transactions, then a natural place to implement many of these rules
is in common logic associated with database updates.

15.10 Changes to the Data Structure

Our discussion so far has related to keeping track of changes to data con-
tent over time. From time to time, we need to change a data modeland,
hence, the logical database structureto reflect a new requirement or
changes to the business.

Handling this falls outside the realm of data modeling and is a serious
challenge for the database administrator. The problem is not only to imple-
ment the changes to the database and the (often-considerable) consequent
changes to programs. The database administrator also needs to ensure the
ongoing usefulness of archived data, which remains in the old format.
Usually, this means archiving copies of the original programs and of any
data conversion programs.

15.11 Putting It into Practice

In this chapter, we have worked through a number of options for incorpo-
rating time and history in data models. In practice, we suggest that you do
not worry too much about these issues in your initial modeling. On the other
hand, you should not consciously try to exclude the time dimension. You will
find that you automatically include much time-related data through the use
of familiar structures such as account entries, transactions, and events.

You should then review the model to ensure that time-related needs are
met. The best approach often does not become clear until attributes are
well-defined and functional analysis has identified the different event types
and their effects on the data.

15.11 Putting It into Practice ■ 473

Simsion-Witt_15 10/8/04 8:07 PM Page 473

Keep in mind that every transaction that changes or deletes data with-
out leaving a record of the previous position is destroying data the organ-
ization has paid to capture. It is important to satisfy yourself and the user
that such data is no longer of potential value to the organization before
deciding that it will be deleted without trace.

15.12 Summary

There are numerous options for modeling historical and future (planned or
anticipated) data. The most appropriate technique will vary from case to
case, even within the same model.

The two basic approaches are the “audit trail,” which records a history of
changes, and the “snapshot,” which records a series of past or future posi-
tions. Other variations arise from different levels of generalization and aggre-
gation for events and changes and from the choice of whether to treat current
positions separately or as special cases of historical or future positions.

Transferable relationships that are one-to-many with the time factor
excluded become many-to-many over time. Nontransferable relationships
remain one-to-many.

Other time-related issues of relevance to the data modeler include the
documentation of associated business rules, management of data and time
information, and dealing with archived data in the face of changes to the
structure of the operational version of the databases.

474 ■ Chapter 15 Time-Dependent Data

Simsion-Witt_15 10/8/04 8:07 PM Page 474

Chapter 16
Modeling for Data
Warehouses and Data
Marts

“The structure of language determines not only thought, but reality itself.”
– Noam Chomsky

“The more constraints one imposes, the more one frees oneself of the chains that
shackle the spirit.”

– Igor Stravinsky, Poetics of Music

16.1 Introduction

Data warehouses and data marts emerged in the 1990s as a practical solu-
tion to the problem of drawing together data to support management and
(sometimes) external reporting requirements. One widely used architecture
for a data warehouse and associated data marts is shown in Figure 16.1.

The terminology in the diagram is typical, but the term data warehouse
is sometimes used loosely to include data marts as well. And while we are
clarifying terms, in this chapter we use the term operational to distinguish
databases and systems intended to support transaction processing rather
than management queries.

The diagram shows that data is extracted periodically from operational
databases (and sometimes external sources—providers of demographic
data), consolidated in the data warehouse, and then extracted to data marts,
which serve particular users or subject areas. In some cases the data marts
may be fed directly, without an intermediate data warehouse, but the
number of load programs (more precisely extract/transformation/load
or ETL programs) needed can grow quickly as the number of source systems
and marts increases. In some cases data marts may be developed without
a data warehouse, but within a framework of data standards, to allow a
data warehouse to be added later or to enable data from different marts to
be consolidated. Another option is for the data marts to be logical views of
the warehouse; in this scenario there is no physical data mart, but rather a
window into the data warehouse with data being selected and combined
for each query.

475

Simsion-Witt_16 10/8/04 8:08 PM Page 475

It is beyond the scope of this chapter to contribute to the ongoing
debate about the relative advantages of these and other data warehouse
architectures. (Some suitable references are listed in Further Reading.)
Unless otherwise noted, our discussion in this chapter assumes the simple
architecture of Figure 16.1, but you should have little trouble adapting the
principles to alternative structures.

Data warehouses are now widely used and generally need to be devel-
oped in-house, primarily because the mix of source systems (and associated

476 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Load
Program

Load
Program

Load
Program

Query
Tools

Query
Tools

Load
Program

Load
Program

Load
Program

Load
Program

Load
Program

Data
Mart

Data Warehouse

Source
Data

Source
Data

Source
Data

Source
Data

External
Data

Query
Tools

Data
Mart

Data
Mart

Figure 16.1 Typical data warehouse and data mart architecture.

Simsion-Witt_16 10/8/04 8:08 PM Page 476

operational databases) varies so much from organization to organization.
Reporting requirements, of course, may also vary. This is good news for
data modelers because data warehouses and data marts are databases,
which, of course, must be specified by data models. There may also be
some reverse engineering and general data management work to be done
in order to understand the organization and meaning of the data in the
source systems (as discussed in Chapter 17).

Data modeling for data warehouses and marts, however, presents a
range of new challenges and has been the subject of much debate among
data modelers and database designers. An early quote indicates how the
battle lines were drawn:

“Forget everything you know about entity relationship data modeling . . .
using that model with a real-world decision support system almost
guarantees failure.”1

On the other side of the debate were those who argued that “a database
is a database” and nothing needed to change.

Briefly, there are two reasons why data modeling for warehouses and
marts is different. First, the requirements that data warehouses and marts
need to satisfy are different (or at least differ in relative importance) from
those for operational databases. Second, the platforms on which they are
implemented may not be relational; in particular, data marts are frequently
implemented on specialized multidimensional DBMSs.

Many of the principles and techniques of data modeling for operational
databases are adaptable to the data warehouse environment but cannot
be carried across uncritically. And there are new techniques and patterns
to learn.

Data modeling for data warehouses and marts is a relatively new disci-
pline, which is still developing. Much has been written, and will continue
to be written, on the subject, some of it built on sound foundations, some
not. In this chapter we focus on the key requirements and principles to pro-
vide you with a basis for evaluating advice, leveraging what you already
know about data modeling, and making sound design decisions.

We first look at how the requirements for data marts and data ware-
houses differ from those for operational databases. We then reexamine the
rules of data modeling and find that, although the basic objectives
(expressed as evaluation criteria/quality measures) remain the same, their
relative importance changes. As a result, we need to modify some of the
rules and add some general guidelines for data warehouse and data
mart modeling. Finally, we look specifically at the issues of organizing

16.1 Introduction ■ 477

1Kimball, R., and Strehlo, K., “Why Decision Support Fails and How to Fix It,” Datamation
(June 1, 1994.)

Simsion-Witt_16 10/8/04 8:08 PM Page 477

data to suit the multidimensional database products that underpin many
data marts.

16.2 Characteristics of Data Warehouses
and Data Marts

The literature on data warehouses identifies a number of characteristics that
differentiate warehouses and marts from conventional operational data-
bases. Virtually all of these have some impact on data modeling.

16.2.1 Data Integration: Working with Existing
Databases

A data warehouse is not simply a collection of copies of records from
source systems. It is a database that “makes sense” in its own right. We
would expect to specify one Product table even if the warehouse drew on
data from many overlapping Product tables or files with inconsistent defi-
nitions and coding schemes. The data modeler can do little about these his-
torical design decisions but needs to define target tables into which all of
the old data will fit, after some translation and/or reformatting. These tables
will in turn need to be further combined, reformatted, and summarized as
required to serve the data marts, which may also have been developed
prior to the warehouse. (Many organizations originally developed individ-
ual data marts, fed directly from source systemsand often called “data
warehouses”until the proliferation of ETL programs forced the develop-
ment of an intermediate warehouse.) Working within such constraints adds
an extra challenge to the data modeling task and means that we will often
end up with less than ideal structures.

16.2.2 Loads Rather Than Updates

Data marts are intended to support queries and are typically updated
through periodic batch loading of data from the warehouse or directly from
operational databases. Similarly, the data warehouse is likely to be loaded
from the operational databases through batch programs, which are not
expected to run concurrently with other access. This strategy may be adopted
not only to improve efficiency and manage contention for data resources, but
also to ensure that the data warehouse and data marts are not “moving
targets” for queries, which generally need to produce consistent results.

478 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Simsion-Witt_16 10/8/04 8:08 PM Page 478

Recall our discussion of normalization. One of the strongest reasons for
normalizing beyond first normal form was to prevent “update anomalies”
where one occurrence of an item is updated but others are left unchanged.
In the data warehouse environment, we can achieve that sort of consistency
in a different way through careful design of the load programsknowing
that no other update transactions will run against the database.

Of course, there is no point in abandoning or compromising normalization
just because we can tackle the problem in another (less elegant) way. There
needs to be some payoff, and this may come through improved performance
or simplified queries. And if we chose to “trickle feed” the warehouse using
conventional transactions, update anomalies could become an issue again.

16.2.3 Less Predictable Database “Hits”

In designing an operational database, we usually have a good idea of the type
and volumes of transactions that will run against it. We can optimize the data-
base design to process those transactions simply and efficiently, sometimes at
the expense of support for lower-volume or unpredicted transactions.

Queries against a data mart are less predictable, and, indeed, the ability
to support ad hoc queries is one of the major selling points of data marts.
A design decision (such as use of a repeating group, as described in
Chapter 2) that favors one type of query at the expense of others will need
to be very carefully thought through.

16.2.4 Complex QueriesSimple Interface

One of the challenges of designing data marts and associated query tools
is the need to support complex queries and analyses in a relatively simple
way. It is not usually reasonable to expect users of the facility to navigate
complex data structures in the manner of experienced programmers, yet
typical queries against a fully normalized database may require data from a
large number of tables. (We say “not usually reasonable” because some
users of data marts, such as specialist operational managers, researchers,
and data miners may be willing and able to learn to navigate sophisticated
structures if the payoff is sufficient.)

Perhaps the central challenge for the data mart modeler comes from the
approach that tool vendors have settled on to address the problem. Data
mart query tools are generally intended for use with a multidimensional
database based on a central “fact” table and associated look-up tables called
dimension tables or just dimensions. (Figure 16.2 in Section 16.6.2
shows an example.) The data modeler is required to fit the data into this

16.2 Characteristics of Data Warehouses and Data Marts ■ 479

Simsion-Witt_16 10/8/04 8:08 PM Page 479

shape. We can see this as an interesting variation of the “elegance” objec-
tive discussed in Chapter 1. From a user perspective, the solution is elegant,
in that it is easy to understand and use and is consistent from one mart to
the next. From the data modeler’s perspective, some very inelegant deci-
sions may need to be taken to meet the constraint.

16.2.5 History

The holding of historical information is one of the most important charac-
teristics of a data warehouse. Managers are frequently interested in trends,
whereas operational users of data may only require the current position.
Such information may be built up in the data warehouse over a period of
time and retained long after it is no longer required in the source systems.
The challenge of modeling time-dependent data may be greater for the data
warehouse designer than for the operational database designer.

16.2.6 Summarization

The data warehouse seldom contains complete copies of all data held (cur-
rently or historically) in operational databases. Some is excluded, and some
may be held only in summary form. Whenever we summarize, we lose
information, and the data modeler needs to be fully aware of the impact of
summarization on all potential users.

16.3 Quality Criteria for Warehouse
and Mart Models

It is interesting to take another look at the evaluation or quality criteria for data
models that we identified in Chapter 1, but this time in the context of the spe-
cial requirements of data warehouses and marts. All remain relevant, but their
relative importance changes. Thus, our trade-offs are likely to be different.

16.3.1 Completeness

In designing a data warehouse, we are limited by the data available in the
operational databases or from external sources. We have to ask not only,

480 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Simsion-Witt_16 10/8/04 8:08 PM Page 480

“What do we want?” but also, “What do we have?” and, “What can we get?”
Practically, this means acquainting ourselves with the source system data
either at the outset or as we proceed. For example:

User: “I want to know what percentage of customers spend more than
a specified amount on CDs when they shop here.”

Modeler: “We only record sales, not customers, so what we can tell you
is what percentage of sales exceed a certain value.”

User: “Same thing, isn’t it?”
Modeler: “Not really. What if the customer buys a few CDs in the clas-

sical section then stops by the rock section and buys some more?”
User: “That’d actually be interesting to know. Can you tell us how often

that happens? And what about if they see another CD as they’re walking
out and come back and buy it. They see the display by the door . . .”

Modeler: “We can get information on that for those customers who use
their store discount card, because we can identify them . . .”

The users of data warehouses, interested in aggregated information,
may not make the same demands for absolute accuracy as the user of an
operational system. Accordingly, it may be possible to compromise com-
pleteness to achieve simplicity (as discussed below in Section 16.3.3). Of
course, this needs to be verified at the outset. There are examples of ware-
houses that have lost credibility because the outputs did not balance to the
last cent. What we cannot afford to compromise is good documentation,
which should provide the user with information on the currency, com-
pleteness, and quality of the data, as well as the basic definitions.

Finally, we may lose data by summarizing it to save space and process-
ing. The summarization may take place either when data is loaded from
operational databases to the warehouse (a key design decision) or when it
is loaded from the warehouse to the marts (a decision more easily
reversed).

16.3.2 Nonredundancy

We can be a great deal less concerned about redundancy in data ware-
houses and data marts than we would be with operational databases.
As discussed earlier, since data is loaded through special ETL programs
or utilities, and not updated in the usual sense, we do not face the
same risk that fields may be updated inconsistently. Redundancy does, of
course, still cost us in storage space, and data warehouses can be very large
indeed.

Particularly in data marts, denormalization is regularly practiced to sim-
plify structures, and we may also carry derived data, such as commonly
used totals.

16.3 Quality Criteria for Warehouse and Mart Models ■ 481

Simsion-Witt_16 10/8/04 8:08 PM Page 481

16.3.3 Enforcement of Business Rules

We tend not to think of a data warehouse or mart as enforcing business rules
in the usual sense because of the absence of traditional update transactions.

Nevertheless, the data structures will determine what sort of data can be
loaded, and if the data warehouse or mart implements a rule that is not
supported by a source system, we will have a challenge to address!
Sometimes, the need to simplify data leads us to (for example) implement a
one-to-many relationship even though a few real world cases are many-
to-many. Perhaps an insurance policy can occasionally be sold by more than
one salesperson, but we decide to build our data mart around a Policy table
with a Salesperson dimension. We have specified a tighter rule, and we are
going to end up trading some “completeness” for the gain in simplicity.

16.3.4 Data Reusability

Reusability, in the sense of reusing data captured for operational purposes
to support management queries, is the raison d’être of most data ware-
houses and marts. More so than in operational databases, we have to
expect the unexpected as far as queries are concerned. Data marts may be
constructed to support a particular set of queries (we can build another
mart if necessary to support a new requirement), but the data warehouse
itself needs to be able to feed virtually any conceivable mart that uses the
data that it holds. Here is an argument in favor of full normalization in the
data warehouse, and against any measures that irrecoverably lose datasuch
as summarization with removal of the source data.

16.3.5 Stability and Flexibility

One of the challenges of data warehouse design is to accommodate
changes in the source data. These may reflect real changes in the business
or simply changes (including complete replacement) to the operational
databases.

Much of the value of a data warehouse may come from the build-up of
historical data over a long period. We need to build structures that not only
accommodate the new data, but also allow us to retain the old.

It is a maxim of data warehouse designers that “data warehouse design
is never finished.” If users gain value from the initial implementation, it is
almost inevitable that they will require that the warehouse and marts be
extendedoften very substantially. Many a warehouse project has delivered
a warehouse that cannot be easily extended, requiring new warehouses to

482 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Simsion-Witt_16 10/8/04 8:08 PM Page 482

be constructed as the requirements grow. The picture in Figure 16.1
becomes much less elegant when we add multiple warehouses in the
middle, possibly sharing common source databases and target data marts.

16.3.6 Simplicity and Elegance

As discussed earlier, data marts often need to be restricted to simple struc-
tures that suit a range of query tools and are relatively easy for end-users
to understand.

16.3.7 Communication Effectiveness

It is challenging enough to communicate “difficult” data structures to pro-
fessional programmers, let alone end-users, who may have only an occa-
sional need to use the data marts. Data marts that use highly generalized
structures and unfamiliar terminology, or that are based on a sophisticated
original view of the business, are going to cause problems.

16.3.8 Performance

Query volumes against data marts are usually very small compared with
transaction volumes for operational databases. Response times can usually
be much greater than would be acceptable in an operational system, but
the time required to process large tables in their entiretyas is required for
many analyses if data has not been summarized in advancemay still be
unacceptable.

The data warehouse needs to be able to accept the uploading of large
volumes of data, usually within a limited “batch window” when operational
databases are not required for real-time processing. It also needs to support
reasonably rapid extraction of data for the data marts. Data loading may use
purpose-designed ETL utilities, which will dictate how data should be
organized to achieve best performance.

16.4 The Basic Design Principle

The architecture shown in Figure 16.1 has evolved from earlier approaches
in which the data warehouse and data marts were combined into a single
database.

16.4 The Basic Design Principle ■ 483

Simsion-Witt_16 10/8/04 8:08 PM Page 483

The separation is intended to allow the data warehouse to act as a bridge
or clearinghouse between different representations of the data, while the
data marts are designed to present simpler views to the end-users.

The basic rule for the data modeler is to respect this separation.
Accordingly, we design the data warehouse much as we would an oper-

ational database, but with a recognition that the relative importance of the
various design objectives/quality criteria (as reviewed in the previous sec-
tion) may be different. So, for example, we may be more prepared to
accept a denormalized structure, or some data redundancyprovided, of
course, there is a corresponding payoff. Flexibility is paramount. We can
expect to have to accommodate growth in scope, new and changed oper-
ational databases, and new data marts.

Data marts are a different matter. Here we need to fit data into a quite
restrictive structure, and the modeling challenge is to achieve this without
losing the ability to support a reasonably wide range of queries. We will
usually end up making some serious compromises, which may be accept-
able for the data mart but would not be so for an operational database or
data warehouse.

16.5 Modeling for the Data Warehouse

Many successful data warehouses have been designed by data modelers
who tackled the modeling assignment as if they were designing an opera-
tional database. We have even seen examples of data warehouses that had
to be completely redesigned according to this traditional approach after
ill-advised attempts to apply modeling approaches borrowed from the data
mart theory. Conversely, there is a strong school of thought that argues that
the data warehouse model can usefully anticipate some common data
manipulation and summarization.

Both arguments have merit, and the path you take should be guided by
the business and technical requirements in each case. That is why we
devoted so much space at the beginning of this chapter to differences and
goals; it is a proper appreciation of these rather than the brute application
of some special technique that leads to good warehouse design.

We can, however, identify a few general techniques that are specific to
data warehouse design.

16.5.1 An Initial Model

Data warehouse designers usually find it useful to start with an E-R model
of the total business or, at least, of the part of the business that the data
warehouse may ultimately cover. The starting point may be an existing

484 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Simsion-Witt_16 10/8/04 8:08 PM Page 484

enterprise data model (see Chapter 17) or a generalization of the data struc-
tures in the most important source databases. If an enterprise data model
is used, the data modeler will need to check that it aligns reasonably closely
with existing structures rather than representing a radical “future vision.”
Data warehouse designers are not granted the latitude of data modelers
starting with a blank slate!

16.5.2 Understanding Existing Data

In theory, we could construct a data warehouse without ever talking to the
business users, simply by consolidating data from the operational data-
bases. Such a warehouse would (again in theory) allow any query possible
within the limitations of the source data.

In practice, we need user input to help select what data will be relevant
to the data mart users (the extreme alternative would be to load every data
item from every source system), to contribute to the inevitable decisions on
compromises, and, of course, to “buy in” and support the project.

Nevertheless, a good part of data warehouse design involves gaining an
understanding of data from the source systems and defining structures to
hold and consolidate it. Usually the most effective approach is to use the
initial model as a starting point and to map the existing structures against
it. Initially, we do this at an entity level, but as modeling proceeds in col-
laboration with the users, we add attributes and possibly subtypes.

16.5.3 Determining Requirements

Requirements are likely to be expressed in a different way to those for an
operational database. The emphasis is on identifying business measures (such
as monthly turnover) and the base data needed to derive them. Much of this
discussion will naturally be at the attribute level. Prototype data marts can be
invaluable in helping potential users to articulate their requirements. The data
modeler also needs to have one eye on the source data structures and the
business rules they implement, in order to provide the user with feedback as
to what is likely to be possible and what alternatives may be available.

16.5.4 Determining Sources and Dealing
with Differences

One of the great challenges of data warehouse design is in making the most
of source data in legacy systems. If we are lucky, some of the source data

16.5 Modeling for the Data Warehouse ■ 485

Simsion-Witt_16 10/8/04 8:08 PM Page 485

structures may be well designed, but we are likely to have to contend with
overloaded attributes (see Section 5.3), poor documentation of definitions
and coding schemes, and (almost certainly) inconsistency across databases.

Our choice of source for a data itemand, hence, its definition in the
data warehousewill depend on a number of factors:

1. The objective of minimizing the number of source systems feeding the
data warehouse, in the interests of simplicity; reduced need for data
integration; and reduced development, maintenance, and running costs.

2. The “quality” of the data itema complex issue involving primarily the
accuracy of the item instances (i.e., whether they accurately reflect the
real world), but also timeliness (when were they last updated?)and
compatibility with other items (update cycles again). Timing differences
can be a major headache. The update cycles of data vary in many organ-
izations from real-time to annually. Because of this, the “same” data item
may hold different values in different source databases.

3. Whether multiple sources can be reconciled to produce a better overall
quality. We may even choose to hold two or more versions of the
“same” attribute in the warehouse, to enable a choice of the most appro-
priate version as required.

4. The compatibility of the coding scheme with other data. Incompatible
coding schemes and data formats are relatively straightforward to han-
dleas long as the mapping between them is simple. If the underlying
definitions are different, it may be impossible to translate to a common
scheme without losing too much meaning. It is easy to translate coun-
try codes as long as you can agree what a country is! One police force
recognizes three eye colors, another four.2

5. Whether overloaded attributes can be or need to be unpacked. For
example, one database may hold name and address as a single field,3

while another may break each down into smaller fieldsinitial, family
name, street number, and so on. Programmers often take serious liber-
ties with data definitions and many a field has been redefined well
beyond its original intent. Usually, the job of unpacking it into primitive
attributes is reasonably straightforward once the rules are identified.

In doing the above, the data warehouse designer may need to perform
work that is, more properly, the responsibility of a data management or data

486 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

2For a fascinating discussion of how different societies classify colors and a detailed example
of the challenges that we face in coming up with classification schemes acceptable to all, see
Chapter 2 of Language Universals and Linguistic Typology by Bernard Comrie, Blackwell,
Oxford 1981, ISBN 0-631-12971-5.
3We use the general term “field” here rather than “column” as many legacy databases are not
relational.

Simsion-Witt_16 10/8/04 8:08 PM Page 486

administration team. Indeed, the problems of building data warehouses in
the absence of good data management groundwork have often led to such
teams being established or revived.

16.5.5 Shaping Data for Data Marts

How much should the data warehouse design anticipate the way that data
will be held in the data marts? On the one hand, the data warehouse should
be as flexible as possible, which means not organizing data in a way that
will favor one user over another. Remember that the data warehouse may
be required not only to feed data marts, but may also be the common
source of data for other analysis and decision support systems. And some
data marts offer broader options for organizing data.

On the other hand, if we can be reasonably sure that all users of the
data will first perform some common transformations such as summariza-
tion or denormalization, there is an argument for doing them onceas data
is loaded into the warehouse, rather than each time it is extracted. And
denormalized data can usually be renormalized without too much trouble.
(Summarization is a different matter: base data cannot be recovered from
summarized data.) The data warehouse can act as a stepping-stone to
greater levels of denormalization and summarization in the marts. When
data volumes are very high, there is frequently a compelling argument for
summarization to save space and processing.

Another advantage of shaping data at the warehouse stage is that it pro-
motes a level of commonality across data marts. For example, a phone
company might decide not to hold details of all telephone calls but rather
only those occurring during a set of representative periods each week. If the
decision was made at the warehouse stage, we could decide once and for
all what the most appropriate periods were. All marts would then work
with the same sampling periods, and results from different marts could be
more readily compared.

Sometimes the choice of approach will be straightforward. In particular,
if the data marts are implemented as views of the warehouse, we will need
to implement structures that can be directly translated into the required
shape for the marts.

The next section discusses data mart structures, and these can, with
appropriate discretion, be incorporated into the data warehouse design.

Where you are in doubt, however, our advice is to lean toward design-
ing the data warehouse for flexibility, independent of the data marts. One
of the great lessons of data modeling is that new and unexpected uses will
be found for data, once it is available, and this is particularly true in the
context of data warehouses. Maximum flexibility and minimum anticipation
are good starting points!

16.5 Modeling for the Data Warehouse ■ 487

Simsion-Witt_16 10/8/04 8:08 PM Page 487

16.6 Modeling for the Data Mart

16.6.1 The Basic Challenge

In organizing data in a data mart, the basic challenge is to present it in a
form that can be understood by general business people. A typical opera-
tional database design is simply too complex to meet this requirement.
Even our best efforts with views cannot always transform the data into
something that makes immediate sense to nonspecialists. Further, the query
tools themselves need to make some assumptions about how data is stored
if they are going to be easy to implement and use, and if they are going to
produce reports in predictable formats. Data mart users also need to be
able to move from one mart to another without too much effort.

16.6.2 Multidimensional Databases,
Stars and Snowflakes

Developers of data marts and vendors of data mart software have
settled on a common response to the problem of providing a simple data
structure: a star schema specifying a multidimensional database. Multi-
dimensional databases can be built using conventional relational DBMSs or
specialized multidimensional DBMSs optimized for such structures.

Figure 16.2 shows a star schema. The structure is very simple: a fact
table surrounded by a number of dimension tables.

The format is not difficult to understand. The fact tables hold (typically)
transaction data, either in its raw, atomic form or summarized. The dimen-
sions effectively classify the data in the fact table into categories, and make
it easy to formulate queries based on categories that aggregate data from
the fact table: “What percentage of sales were in region 13?” or “What was
the total value of sales in region 13 to customers in category B?”

With our user hats on, this looks fine. Putting our data modeling
hats on, we can see some major limitationsat least compared with the
data structures for operational databases that we have been working with
to date.

Before we start looking at these “limitations,” it is interesting to observe
that multidimensional DBMSs have been around long enough now that
there are professional designers who have modeled only in that environ-
ment. They seem to accept the star schema structure as a “given” and do
not think of it as a limiting environment to work in. It is worth taking a leaf
from their book if you are a “conventional” modeler moving to data mart
design. Remember that relational databases themselves are far from com-
prehensive in the structures that they supportmany DBMSs do not
directly support subtypes for exampleyet we manage to get the job done!

488 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Simsion-Witt_16 10/8/04 8:08 PM Page 488

16.6.2.1 One Fact Table per Star

While there is usually no problem implementing multiple stars, each with
its own fact table (within the same4 or separate data marts), we can have
only one fact table in each star. Figure 16.3 illustrates the key problem that
this causes.

It is likely that we will hold numeric data and want to formulate queries
at both the loan and transaction level. Some of the options we might
consider are the following:

1. Move the data in the Loan table into the Transaction table, which
would then become the fact table. This would mean including all of the
data about the relevant loan in each row of the Transaction table.
If there is a lot of data for each loan, and many transactions per loan,
the space requirement for the duplicated data could be unacceptable.
Such denormalization would also have the effect of making it difficult
to hold loans that did not have any transactions against them. Our solu-
tion might require that we add “dummy” rows in the Transaction table,
containing only loan data. Queries about loans and transactions would

16.6 Modeling for the Data Mart ■ 489

Period

Accounting Month No
Quarter No
Year No

Product

Product ID
Product Type Code
Product Name

Sale

Accounting Month No *
Product ID *
Customer ID *
Location ID *
Quantity
Value

Location

Location ID
Location Type Code
Region Code
State Code
Location Name

Customer

Customer ID
Customer Type Code
Region Code
State Code
Customer Name

Figure 16.2 A star schema: the fact table is Sale.

4Multiple stars in the same data mart can usually share dimension tables.

Simsion-Witt_16 10/8/04 8:08 PM Page 489

be more complicated than would be the case with a simple loan or
transaction fact table.

2. Nominate the Loan table as the fact table, and hold transaction informa-
tion in a summarized form in the Loan table. This would mean holding
totals rather than individual items. If the maximum number of transac-
tions per loan was relatively small (perhaps more realistically, we might
be dealing with the number of assets securing the loan), we could hold
a repeating group of transaction data in the Loan tableas always with
some loss of simplicity in query formulation.

3. Implement separate star schemas, one with Loan as a fact table and
the other with Transaction as a fact table. We would probably turn
Loan into a dimension for the Transaction schema, and we might hold
summarized transaction data in the Loan table.

16.6.2.2 One Level of Dimension

A true star schema supports only one level of dimension. Some data marts
do support multiple levels (usually simple hierarchies). These variants are
generally known as snowflake schemas (Figure 16.4).

490 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Loan

Customer

Period

Branch

Transaction
Transaction

Type

 be
issued by

 issue
be owned

by

own

 be issued in
be time of
issue of

 take place
 in

include the
time of

be against

 be the
 object of

 classify

be
classified by

Loan
Type

 classify

be
classified by

Figure 16.3 Which is the fact tableLoan or Transaction?

Simsion-Witt_16 10/8/04 8:08 PM Page 490

To compress what may be a multilevel hierarchy down to one level, we
have to denormalize (specifically from fully normalized back to first normal
form). Figure 16.5 provides an example.

While we may not need to be concerned about update anomalies from
denormalizing, we do need to recognize that space requirements can some-
times become surprisingly large if the tables near the top of the hierarchy
contain a lot of data. We may need to be quite brutal in stripping these
down to codes and (perhaps) names, so that they function only as cate-
gories. (In practice, space requirements of dimensions are seldom as much
of a problem as those of fact tables.)

Another option is to summarize data from lower-level tables into higher-
level tables, or completely ignore one or more levels in the hierarchy
(Figure 16.6). This option will only be workable if the users are not inter-
ested in some of the (usually low-level) classifications.

16.6.2.3 One-to-Many Relationships

The fact table in a star schema is in a many-to-one relationship with the
dimensions. In the discussion above on collapsing hierarchies, we also
assumed that there were no many-to-many relationships amongst the
dimensions, in which case simple denormalization would not work.

What do we do if the real-world relationship is many-to-many, as in
Figure 16.7? Here, we have a situation in which, most of the time, sales are
made by only one salesperson, but, on occasion, more than one salesper-
son shares the sale.

One option is to ignore the less common case and tie the relationship
only to the “most important” or “first” salesperson. Perhaps we can

16.6 Modeling for the Data Mart ■ 491

Product
Type

Product Type ID
Product Type Name

Product

Product ID
Product Type ID
Product Name

Period

Accounting Month No
Quarter No
Year No Sale

Accounting Month No
Product ID
Customer ID
Location ID
Quantity
Value

Customer

Customer ID
Customer Type ID
Region ID
Customer Name

Location

Location ID
Location Type ID
Region ID
Location Name

Customer
Type

Customer Type ID
Customer Type Name

Location
Type

Location Type ID
Location Type Name

Region

Region ID
State ID
Region Name

State ID
State Name

State

Figure 16.4 A snowflake schemaSale is the fact table.

Simsion-Witt_16 10/8/04 8:08 PM Page 491

492 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Customer

Customer ID
Customer Type ID
Region ID
Customer Name

Region

Region ID
State ID
Region Name

State

State ID
State Name

Customer

(a) Normalized

Customer ID
Customer Type ID
Region ID
Customer Name
Region Name
State Name
State ID

(b) Denormalized

Figure 16.5 Denormalizing to collapse a hierarchy of dimension tables.

Customer
Type

Customer

Sale

Customer
Type

Sale

be classified
by

 classify

be to a
customer

classified by

 classify

be to

 classify

Figure 16.6 (a) Ignoring one or more levels in the hierarchy.

Simsion-Witt_16 10/8/04 8:08 PM Page 492

compensate to some degree by carrying the number of salespersons
involved in the Sale table, and even by carrying (say) the percentage
involvement of the key person. For some queries, this compromise may be
quite acceptable, but it would be less than satisfactory if a key area of inter-
est is sales involving multiple salespersons.

We could modify the Salesperson table to allow it to accommodate
more than one salesperson, through use of a repeating group. It is an
inelegant solution and breaks down once we want to include (as in the pre-
vious section) details from higher-level look up tables. Which region’s data
do we includethat of the first, the second, or the third salesperson?

Another option is to in effect resolve the many-to-many relationship and
treat the Sale-by-Salesperson table as the fact table (Figure 16.8). We will
probably need to include the rest of the sale data in the table.

16.6 Modeling for the Data Mart ■ 493

Product Code
Product Description

Product

Product
Variant

Product Code
Product Variant Code
Standard Price
Total Sales Amount

Sale

Sale ID
Product Code
Product Variant Code
Value
.
.
.

Product

Product Code
Product Description
Average Price
Total Sales Amount

Sale

Sale ID
Product Code
Product Variant Code
Value
.
.
.

Figure 16.6 (b) Summarizing data from lower-level tables into higher-level tables.

Simsion-Witt_16 10/8/04 8:08 PM Page 493

Once again, we have a situation in which there is no single, mechani-
cal solution. We need to talk to the users about how they want to “slice
and dice” the data and work through with them the pros and cons of the
different options.

16.6.3 Modeling Time-Dependent Data

The basic issues related to the modeling of time, in particular the choice of
“snapshots” or history are covered in Chapter 15 and apply equally to data
warehouses, data marts, and operational databases. This section covers a
few key aspects of particular relevance to data mart design.

16.6.3.1 Time Dimension Tables

Most data marts include one or more dimension tables holding time periods
to enable that dimension to be used in analysis (e.g., “What percentage or
sales were made by salespeople in Region X in the last quarter?”). The key
design decisions are the level of granularity (hours, days, months, years)
and how to deal with overlapping time periods (financial years may overlap
with calendar years, months may overlap with billing periods, and so on).
The finer the granularity (i.e., the shorter the periods), the fewer problems
we have with overlap and the more precise our queries can be. However,

494 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Salesperson

Sale

Product

be
credited to

be credited
with

be
classified by

classify

Figure 16.7 Many-to-many relationship between dimension and fact tables.

Simsion-Witt_16 10/8/04 8:08 PM Page 494

query formulation may be more difficult or time-consuming in terms of
specifying the particular periods to be covered.

Sometimes, we will need to specify a hierarchy of time periods (as a
snowflake or collapsed into a single-level denormalized star). Alternatively,
or in addition, we may specify multiple time dimension tables, possibly
covering overlapping periods.

16.6.3.2 Slowly-Changing Dimensions

One of the key concerns of the data mart designer is how quickly the data
in the dimension tables will change, and how quickly fact data may move
from one dimension to another.

Figure 16.9 shows a simple example of the problem in snowflake form
for clarity. This might be part of a data mart to support analysis of customer
purchasing patterns over a long period.

It should be clear that, if customers can change from one customer
group to another over time and our mart only records the current group,
we will not be able to ask questions such as, “What sort of vehicles did
people buy while they were in group ‘A’?” (We could ask, “What sort of
vehicles did people currently in group ‘A’ buy over time?”but this may
well be less useful.)

16.6 Modeling for the Data Mart ■ 495

Sale Product

Sale by
Salesperson

Salesperson

be classified
by

 classify

be credited
for

be credited
to

be classified by

classify

Figure 16.8 Treating the sale-by-salesperson table as the fact table.

Simsion-Witt_16 10/8/04 8:08 PM Page 495

In the operational database, such data will generally be supported by
many-to-many relationships, as described in Chapter 15, and/or matching
of timestamps and time periods. There are many ways of reworking the
structure to fit the star schema requirement. For example:

1. Probably the neatest solution to the problem as described is to carry two
foreign keys to Customer Group in the Purchase table. One key points
to the customer group to which the customer belonged at the time of
the purchase; the other points to the customer group to which the cus-
tomer currently belongs. In fact, the information supported by the latter
foreign key may not be required by the users, in which case we can
delete it, giving us a very simple solution.

Of course, setting up the mart in this form will require some translation
of data held in more conventional structures in the operational databases
and (probably) the data warehouse.

2. If the dimension changes sufficiently slowly in the time frames in which
we are interested, then the amount of error or uncertainty that it causes
may be acceptable. We may be able to influence the speed of change
by deliberately selecting or creating dimensions (perhaps at the data
warehouse stage) which change relatively slowly. For example, we may
be able to classify customers into broad occupational groups (“profes-
sional,” “manual worker,” “technician”) rather than more specific occu-
pations, or even develop lifestyle profiles that have been found to be
relatively stable over long periods.

3. We can hold a history of (say) the last three values of Customer Group in
the Customer table. This approach will also give us some information on
how quickly the dimension changes.

16.7 Summary

Logical data warehouse and data mart design are important subdisciplines
of data modeling, with their own issues and techniques.

496 ■ Chapter 16 Modeling for Data Warehouses and Data Marts

Customer
Group Customer Purchase

Figure 16.9 Slowly changing dimensions.

Simsion-Witt_16 10/8/04 8:08 PM Page 496

Data warehouse design is particularly influenced by its role as a staging
point between operational databases and data marts. Existing data struc-
tures in operational databases or (possibly) existing data marts will limit the
freedom of the designer, who will also need to support high volumes of
data and load transactions. Within these constraints, data warehouse design
has much in common with the design of operational databases.

The rules of data mart design are largely a result of the star schema
structurea limited subset of the full E-R structures used for operational
database designand lead to a number of design challenges, approaches,
and patterns peculiar to data marts. The data mart designer also has to con-
tend with the limitations of the data available from the warehouse.

16.7 Summary ■ 497

Simsion-Witt_16 10/8/04 8:08 PM Page 497

This page intentionally left blank

Chapter 17
Enterprise Data Models and
Data Management

“Always design a thing by considering it in its next larger context—a chair in a room,
a room in a house, a house in an environment, an environment in a city plan.”

– Eliel Saarinen

17.1 Introduction

So far, we have discussed data modeling in the context of database design;
we have assumed that our data models will ultimately be implemented
more or less directly using some DBMS. Our interest has been in the data
requirements of individual application systems.

However, data models can also play a role in data planning and manage-
ment for an enterprise as a whole. An enterprise data model (sometimes
called a corporate data model) is a model that covers the whole of, or a
substantial part of, an organization. We can use such a model to:

■ Classify or index existing data
■ Provide a target for database and systems planners
■ Provide a context for specifying new databases
■ Support the evaluation and integration of application packages
■ Guide data modelers in the development or implementation of individ-

ual databases
■ Specify data formats and definitions to support the exchange of data

between applications and with other organizations
■ Provide input to business planning
■ Specify an organization-wide database (in particular, a data warehouse)

These activities are part of the wider discipline of data management—
the management of data as a shared enterprise resource—that warrants a
book in itself.1 In this chapter, we look briefly at data management in

499

1A useful starting point is Guidelines to Implementing Data Resource Management, 4th Edition,
Data Management Association, 2002.

Simsion-Witt_17 10/8/04 8:08 PM Page 499

general, then discuss the uses of enterprise data models. Finally, we exam-
ine how development of an enterprise data model differs from develop-
ment of a conventional project-level data model.

But first, a word of warning: far too many enterprise data models have
ended up “on the shelf” after considerable expenditure on their develop-
ment. The most common reason, in our experience, is a lack of a clear idea
of how the model is to be used. It is vital that any enterprise data model be
developed in the context of a data management or information systems strat-
egy, within which its role is clearly understood, rather than as an end in itself.

17.2 Data Management

17.2.1 Problems of Data Mismanagement

The rationale for data management is that data is a valuable and expensive
resource that therefore needs to be properly managed. Parallels are often
drawn with physical assets, people, and money, all of which need to be
managed explicitly if the enterprise is to derive the best value from them.
As with the management of other assets, we can best understand the need
for data management by looking at the results of not doing it.

Databases have traditionally been implemented on an application-
by-application basis—one database per application system. Indeed, data-
bases are often seen as being “owned” by their parent applications. The
problem is that some data may be required by more than one application.
For example, a bank may implement separate applications to handle per-
sonal loans and savings accounts, but both will need to hold data about cus-
tomers. Without some form of planning and control, we will end up holding
the same data in both databases. And here, the element of choice in data
modeling works against us; we have no guarantee that the modelers work-
ing on different systems will have represented the common data in the same
way, particularly if they are software package developers working for
different vendors. Differences in data models can make data duplication
difficult to identify, document, and control.

The effects of duplication and inconsistency across multiple systems
are similar to those that arise from poor data modeling at the individual
system level.

There are the costs of keeping multiple copies of data in step (and
repercussions from data users—including customers, managers, and regu-
lators—if we do not). Most of us have had the experience of notifying an
organization of a change of address and later discovering that only some of
their records have been updated.

Pulling data together to meet management information needs is far more
difficult if definitions, coding, and formats vary. An airline wants to know

500 ■ Chapter 17 Enterprise Data Models and Data Management

Simsion-Witt_17 10/8/04 8:08 PM Page 500

the total cost of running each of its terminals, but the terminals are identi-
fied in different ways in different systems—sometimes only by a series of
account numbers. An insurance company wants a breakdown of profitabil-
ity by product, but different divisions have defined “product” in different
ways. Problems of this kind constitute the major challenge in data ware-
house development (Chapter 16).

Finally, poor overall data organization can make it difficult to use the
data in new ways as business functions change in response to market and
regulatory pressures and internal initiatives. Often, it seems easier to imple-
ment yet another single-purpose database than to attempt to use inconsis-
tent existing databases. A lack of central documentation also makes reuse
of data difficult; we may not even know that the data we require is held in
an existing database. The net result, of course, is still more databases, and
an exacerbation of the basic problem. Alternatively, we may decide that the
new initiative is “too hard” or economically untenable.

We have seen banks with fifty or more “Branch” files, retailers with
more than thirty “Stock Item” files, and organizations that are supposedly
customer-focused with dozens of “Customer” files. Often, just determining
the scope of the problem has been a major exercise. Not surprisingly, it is
the data that is most central to an organization (and, therefore, used by the
greatest number of applications) that is most frequently mismanaged.

17.2.2 Managing Data as a Shared Resource

Data management aims to address these issues by taking an organization-wide
view of data. Instead of regarding databases as the sole property of their
parent applications, we treat them as a shared resource. This may entail doc-
umenting existing databases; encouraging development of new, sharable data-
bases in critical areas; building interfaces to keep data in step; establishing
standards for data representation; and setting an overall target for data organ-
ization. The task of data management may be assigned to a dedicated data
management (or “data administration” or “information architecture”) team, or
be included in the responsibilities of a broader “architectures” group.

17.2.3 The Evolution of Data Management

The history of data management as a distinct organizational function dates
from the early 1970s. In an influential paper, Nolan2 identified “Data

17.2 Data Management ■ 501

2Nolan: Managing the Crisis in Data Processing, Harvard Business Review, 5(2), March–April,
1979.

Simsion-Witt_17 10/8/04 8:08 PM Page 501

Resource Management” as the fifth stage in his Stages of Growth model (the
last being “Maturity”). Many medium and large organizations established
data management groups, and data management began to emerge as a
discipline in its own right.3

In the early days of data management, some organizations pursued what
seemed to be the ideal solution: development of a single shared database,
or an integrated set of “subject databases” covering all of the enterprise’s
data requirements. Even in the days when there were far fewer information
systems to deal with, the task proved overwhelmingly difficult and expen-
sive, and there were few successes. Today, most organizations have a sub-
stantial base of “legacy” systems and cannot realistically contemplate
replacing them all with new applications built around a common set of data
structures.

Recognizing that they could not expect to design and build the enter-
prise’s data structures themselves, data managers began to see themselves
as akin to town planners (though the term “architect” has continued to be
more widely used—unfortunately, in our view, as the analogy is mislead-
ing). Their role was to define a long-term target (town plan) and to ensure
that individual projects contributed to the realization of that goal.

In practice, this meant requiring developers to observe common data
standards and definitions (typically specified by an enterprise-wide data
model), to reuse existing data where practicable, and to contribute to a
common set of data documentation. Like town planners, data managers
encountered considerable resistance along the way, as builders asserted
their preference for operating without outside interference and appealed to
higher authorities for special dispensation for their projects.

This approach, too, has not enjoyed a strong record of success, though
many organizations have persisted with it. A number of factors have
worked against it, in particular the widespread use of packaged software in
preference to in-house development, and greater pressure to deliver results
in the short-to-medium term.

In response to such challenges, some data managers have chosen to
take a more proactive and focused role, initiating projects to improve data
management in specific areas, rather than attempting to solve all of an orga-
nization’s data management problems. For example, they might address a
particularly costly data quality problem, or establish data standards in an
area in which data matching is causing serious difficulties. Customer
Relationship Management (CRM) initiatives fall into this category, though
in many cases they have been initiated and managed outside the data
management function.

502 ■ Chapter 17 Enterprise Data Models and Data Management

3The International Data Managers Association (DAMA) at www.dama.org is a worldwide body
that supports data management professionals.

Simsion-Witt_17 10/8/04 8:08 PM Page 502

More recently we have seen a widespread change in philosophy. Rather
than seek to consolidate individual databases, organizations are looking to
keep data in step through messages passed amongst applications. In effect,
there is a recognition that applications (and their associated databases) will
be purchased or developed one at a time, with relatively little opportunity
for direct data sharing. The proposed solution is to accept the duplication
of data, which inevitably results, but to put in place mechanisms to ensure
that when data is updated in one place, messages (typically in XML format)
are dispatched to update copies of the data held by other applications.
For some data managers, this approach amounts to a rejection of the data
management philosophy. For others, it is just another mechanism for
achieving similar ends. What is clear is that while the technology and archi-
tecture may have changed, the basic issues of understanding data meaning
and formats within and across applications remain. To some extent at least,
the problem of data specification moves from the databases to the message
formats.

An enterprise data model has been central to all of the traditional
approaches to data management, and, insofar as the newer approaches also
require enterprise-wide data definitions, is likely to continue to remain so.

In the following sections, we examine the most important roles that an
enterprise data model can play.

17.3 Classification of Existing Data

Most organizations have a substantial investment in existing databases and
files. Often, the documentation of these is of variable quality and held
locally with the parent applications.

The lack of a central, properly-indexed register of data is one of the
greatest impediments to data management. If we do not know what
data we have (and where it is), how can we hope to identify opportunities
for its reuse or put in place mechanisms to keep the various copies in step?
The problem is particularly apparent to builders of data warehouses
(Chapter 16) and reporting and analysis applications which need to
draw data from existing operational files and databases. Just finding the
required data is often a major challenge. Correctly interpreting it in the
absence of adequate documentation can prove an even greater one,
and serious business mistakes have been made as a result of incorrect
assumptions.

Commercial data dictionaries and “repositories” have been around for many
years to hold the necessary metadata (data about data). Some organizations
have built their own with mixed success. But data inventories are of lim-
ited value without an index of some kind; we need to be able to ask, “What

17.3 Classification of Existing Data ■ 503

Simsion-Witt_17 10/8/04 8:08 PM Page 503

files or databases hold data about flight schedules?” or, “Where is Country
Code held?” remembering that Country Code may be called “CTRY-ID” in one
system and “E12345” in another. Or an attribute named “Country Code”
may mean something entirely different to what we expect. We recall
encountering a Vehicle ID attribute, which in fact identified salespersons; the
salesperson was the “vehicle” by which the sale was made.

Probably the cleanest method of indexing a data inventory is to map
each item to the relevant component of an enterprise data model.

In developing an enterprise data model specifically to index existing
data, remember that the mapping between the model and existing data
structures will be simpler if the two are based on similar concepts. Avoid
radically new, innovative enterprise data models unless there is an ade-
quate payoff! Of course, if the business has changed substantially since the
databases were built, the enterprise data model may well, by necessity,
differ significantly from what is currently in place. It then becomes an
important tool for assessing the completeness and quality of information
systems support for the business.

One of the most effective approaches to building an indexed inventory
of data is to develop a fairly generalized enterprise data model and to
devote the major effort to improving documentation of individual data-
bases. The enterprise model is mapped against existing data at the entity
class level and serves as a coarse index to identify databases in which any
required data may be held; the final assessment is made by close exami-
nation of the local documentation.

The Object Class Hierarchy technique described in Section 9.7 is a good
method of developing an enterprise data model that classifies data in the
same way that the business does.

17.4 A Target for Planning

Just as a town plan describes where we aim to be at some future date, an
enterprise data model can describe how we intend to organize our total set
of computerized data at some point in the future.

It is here that enterprise data modelers have frequently encountered
trouble. It is one thing to start with a blank sheet of paper and develop an
ideal model that may be conceptually quite different from the models on
which existing applications are based. It is quite another to migrate from
existing databases and files to new ones based on the model, or to find
package vendors who share the same view of data organization.

There is a natural (and often economically sound) reluctance to replace
current databases that are doing an adequate job. We may need to accept,
therefore, that large parts of an enterprise model will remain unimplemented.

504 ■ Chapter 17 Enterprise Data Models and Data Management

Simsion-Witt_17 10/8/04 8:08 PM Page 504

This leads to a second problem: should implementers of new applica-
tions aim to share data from existing databases, or should they build
new databases following the specification of the enterprise data model?
The former approach perpetuates the older structures; the latter increases
the problems of data duplication. We have even seen developers refusing
to use databases that had been designed in accordance with an enterprise
data model because the enterprise model had since changed.

Third, in many business areas, the most cost-effective approach is to
purchase a packaged application. In these cases, we have little choice
about the underlying data models (except insofar as we may be able to
choose among packages that are better or worse matches with the enter-
prise data model). With one purchase decision, we may render a large part
of the enterprise data model irrelevant.

Enterprise data modelers frequently find themselves fighting both sys-
tems developers and users who want economical solutions to their
local problems and who feel constrained by the requirement to fit in with a
larger plan. There are arguments for both sides. Without an overall target,
it will certainly be difficult to achieve better sharing of data. But too often
data modelers forget the basic tenet of creative data modeling: there may
be more than one good answer. We have seen data modelers arguing
against purchase of a package because it does not fit “their” enterprise
model, when in fact the underlying database for the package is built on
a sound model and could readily be incorporated into the existing set of
databases.

The “town planning” paradigm mentioned earlier, if pragmatically
applied, can help us develop a target that balances the ideal vision with the
practicalities of what is in place or available. The target needs to be a com-
bination of existing databases that are to be retained, databases to be imple-
mented as components of packages, and databases to be developed
in-house. It is, in fact, an enterprise data model produced within the
constraints of other commitments, the most important being the existing
systems and the applications development strategy. Some of it will be less
than ideal; the structures that fit in best will often differ from those we
would use if we had started with a “clean slate.”

In developing this sort of model, you should set a specific date—typically,
three to five years hence—and aim to model how the organization’s data
will look at that time. Some areas of the model can be very precise indeed,
as they merely document current databases; others may be very broad
because we intend to purchase a package whose data structure is as yet
unknown.

Such a model represents a realistic target that can be discussed in con-
crete terms with systems planners, developers, and users, and can be used
as a basis for assessing individual proposals.

17.4 A Target for Planning ■ 505

Simsion-Witt_17 10/8/04 8:08 PM Page 505

17.5 A Context for Specifying New Databases

17.5.1 Determining Scope and Interfaces

In specifying a new database, three fundamental questions we need to
ask are:

1. What is included?

2. What is excluded?

3. What do we have to fit in with?

These questions need to be answered early in a systems development
or acquisition project as an important part of agreeing expectations and
budgets and of managing overlaps and interfaces among databases. Once
a project team has planned and budgeted to design their own database
(and all the associated processing to maintain it) in isolation, it can be
virtually impossible to persuade them to use existing files and databases.
Similarly, once it has been decided (even if only implicitly) not to include
certain data, it is very difficult to change the decision.

A “big picture” of an organization’s overall data requirements—an
enterprise data model—can be an invaluable aid to answering questions of
scope and overlap, and highlighting data issues before it is too late to
address them.

17.5.2 Incorporating the Enterprise Data Model in the
Development Life Cycle

Here is how a large organization might ensure that databases are specified
in the context of an overall data plan.

The organization requires that every information systems project beyond a
certain size receive funding approval from a committee of senior managers,4

which looks at proposals in terms of overall costs and benefits to the busi-
ness. The committee’s charter is far broader than data management; its
prime concern is that the organization’s total investment in information
systems is well directed, and that local needs do not override the best
interests of the organization as a whole. (For example, they may enforce a
preferred supplier policy for hardware.)

506 ■ Chapter 17 Enterprise Data Models and Data Management

4It has been an almost universal practice in organizations with a substantial investment in infor-
mation technology to establish a permanent committee to review investment proposals and
projects. Increasingly, we are seeing the senior executive team taking on this role as a part of
their management and governance responsibilities.

Simsion-Witt_17 10/8/04 8:08 PM Page 506

The committee requires that each proposal include a brief “data man-
agement” statement, prepared in consultation with the data management
group. This involves project and data management representatives looking
at the enterprise data model and identifying the entity classes that will be
required by the proposed system. The resulting “first-cut” data model for the
system is a subset of the enterprise data model produced by “slicing” in two
dimensions: horizontally, to select which entity classes are to be included,
and vertically, to select which subtypes of those entity classes are applica-
ble to the project. For example, the project might decide that it requires the
entity class Physical Asset (horizontal selection), but only in order to keep
data about vehicles (vertical selection). This exercise may lead to reconsid-
eration of system scope, perhaps to include other subtypes that are handled
similarly. For example, it might turn out that with some minor enhancements
the vehicle management system could handle all movable assets.

The data management group then advises on whether and in what form
the required data is currently held, by reference to the data inventory. This,
in turn, provides a basis for deciding where data will be sourced, and what
new data structures the project will build. Where data is to be duplicated,
the need for common representation and/or interfaces can be established.
The results of the discussions form the data management statement.

From time to time, disagreements as to data sourcing arise, typically
because the project prefers to “roll its own,” and the data management
group favors data reuse. Ultimately, the committee decides, but following
a formal procedure ensures that the implications of each option are laid out
and discussed.

In practice, this can be a very simple process, with the data management
statement typically taking less than a day to prepare. But it can make a real
difference to the scope and cost of projects, and to the integration of
systems. It does, however, depend upon having an enterprise data model,
and someone in authority who is interested in overall costs and benefits to
the organization rather than the cost-justification of each project in isolation.

The first-cut project data model can also be a valuable tool for estimating
and budgeting. It is possible to make an estimate of system size in terms of
function points5 using only a data model and some rules of thumb, such as
average number of functions per entity class. The accuracy of the estimate
depends very much on how well data boundaries are defined; the enterprise
model approach does much to assist this.

Another benefit of an early look at project data requirements in the
context of an enterprise data model is that the terminology, definitions, and

17.5 A Context for Specifying New Databases ■ 507

5The function point approach to estimating system size is credited to Albrecht (Albrecht, A.J.:
Measuring Application Development Productivity, in GUIDE/SHARE: Proceedings of the IBM
Applications Development Symposium (Monterey, Calif.), 1979, pp. 83–92. For an evaluation
of Function Point Analysis using both the traditional approach and one based on the E-R
model and a starting point for further reading, see Kemerer, Chris F.: Reliability of function
points measurement, Communications of the ACM, New York, Feb. 1993.

Simsion-Witt_17 10/8/04 8:08 PM Page 507

data structures of the enterprise data model are communicated to the proj-
ect team before they embark on a different course. The value of this in
improving the quality and compatibility of databases is discussed in the
next section.

17.6 Guidance for Database Design

An enterprise data model can provide an excellent starting point for the
development of project-level data models (and, hence, database designs).

An enterprise data model takes a broad view of the business (and is
likely to incorporate contributions from senior management and strategic
planners) that might not otherwise be available to data modelers working
on a specific project. In particular, it may highlight areas in which change
can be expected. This is vital input to decisions as to the most appropriate
level of generalization.

Because an enterprise data model is usually developed by very experi-
enced data modelers, it should specify sound data structures and may
include good and perhaps innovative ideas.

The enterprise data model can also provide standard names and defini-
tions for common entity classes and attributes. Pulling together data from
multiple databases or transferring data from one to another is much easier
if definitions, formats, and coding are the same. More and more, we need
to be able to exchange data with external bodies, as well as among our
own databases. The enterprise data model can be the central point for
specifying the necessary standard definitions and formats.

Achieving genuine consistency demands a high level of rigor in data
definition. We recall an organization that needed to store details of lan-
guages spoken. One database treated Afghani as a single language, while
another treated it as two—Pushtu and Pashto. What might seem to be an
academic difference caused real problems when transferring data from one
system to another or attempting to answer simple questions requiring data
from both databases. In cases of code sets like this, reference to an exter-
nal standard can sometimes assist in resolving the problem. Often decisions
at this level of detail are not taken in the initial enterprise modeling exer-
cise but are “fed back” to the model by project teams tackling the issue, for
the benefit of future project data modelers.

17.7 Input to Business Planning

An enterprise data model provides a view of an important business resource
(data) from what is usually a novel perspective for business specialists.

508 ■ Chapter 17 Enterprise Data Models and Data Management

Simsion-Witt_17 10/8/04 8:08 PM Page 508

As such, it may stimulate original thinking about the objectives and organ-
ization of the business.

In business, new ideas frequently arise through generalization: a classic
example is redefining a business as “transportation” rather than “trucking.”
We as modelers make heavy use of generalization and are able to support
it in a formal way through the use of supertypes.

So, we find that even if the more specialized entity classes in an enterprise
data model represent familiar business concepts, their supertypes may not.
Or, commonly, the supertypes represent critical high-level concepts that
cut across organizational boundaries and are not managed well as a whole.
In a bank, we may have Loan (whereas, individual organization units
manage only certain types of loan), and in a telecommunications company
we may have Customer Equipment Item (whereas, different organization
units manage different products).

We have seen some real breakthroughs in thinking stimulated by well-
explained enterprise data models. Some of these have been attributable to
a multidisciplinary, highly skilled enterprise modeling team looking closely
at a business’s aims and objectives as input to the modeling exercise.
Others have appeared as a result of the actual modeling.

Nevertheless, we would not encourage enterprise data modeling for this
reason alone. Better results can usually be achieved by the use of specific
business planning and modeling techniques. We need to remember that data
modeling was developed as a stage in database design, and its conventions
and principles reflect this. Normalization is unlikely to help you set your
business direction!

Unfortunately, there is a tendency among data modelers to see a business
only from the perspective of data and to promote the data model as repre-
senting a kind of “business truth.” Given the element of choice in modeling,
the argument is hard to sustain. In fact, enterprise data models usually
encourage a view of the business based on common processes, as distinct
from products, customers, or projects. For example, the high-level super-
type Policy in an insurance model might suggest common handling of all
policies, rather than distinct handling according to product or customer
type. Sometimes the new view leads to useful improvements; sometimes it
is counterproductive. The business strategy that allows for the most elegant
handling of data certainly has its advantages, but these may be of relatively
minor importance in comparison to other considerations, such as business
unit autonomy.

17.8 Specification of an Enterprise Database

The last use of an enterprise data model was historically the first. The
dream in the early days of DBMSs was to develop a database embracing all

17.8 Specification of an Enterprise Database ■ 509

Simsion-Witt_17 10/8/04 8:08 PM Page 509

of an organization’s computer data, fully normalized, nonredundant, and
serving the needs of all areas of the organization.

As mentioned earlier, a number of organizations actually attempted this,
almost invariably without success.

A variant is the “subject database” approach, in which the enterprise
data model is carved up into smaller, more manageable components, which
are to be built one at a time. The difficulty lies in deciding how to partition
the data. If we partition the data on an application-by-application basis, we
end up with duplication, resulting from data being required by more than
one application (the same as if we had developed application databases
without any plan).

An alternative approach is to divide the data by supertypes: thus, a bank
might plan subject databases for Loans, Customers, Transactions, Branches,
and so on. The problem here is that most practical systems require data
from many of these subject databases. To implement a new loan product,
the bank would probably require all of the databases mentioned above.

In practice, the subject database approach encountered much the same dif-
ficulties as the enterprise database approach: complexity, unacceptably long
time frames to achieve results, and incompatibility with packaged software.

A less ambitious variant is to focus on a few important reference data-
bases, holding widely used but centrally updated data, typically of low to
medium volume. These databases are usually implementations of entity
classes near the top of the one-to-many relationship hierarchy. Examples
include data about products, organizational structure, regulations, and staff,
as well as common codes and their meanings. Customer data does not
quite fit the criteria but, since most organizations these days are customer-
focused, support can frequently be gained for a customer database project.

Although reference databases may have a potentially large user base, it
is almost always a mistake to develop them (or indeed databases of any
kind) in isolation. “If we build it they will come,” is not a sound motto for
a data management group. Successful projects deliver a system, even if this
only provides for update and basic inquiries on the data. For example,
rather than deliver a product database, we should aim to deliver a product
management system for the marketing division. By doing this, we bring the
subject database initiative into the mainstream of systems development and
can manage it using well-understood procedures and roles. Most impor-
tantly, organizations have proved more reluctant to abandon the develop-
ment of a conventional system with specific user sponsorship than an
infrastructure project whose benefits may be less obvious and less clearly
“owned.”

Since the mid-1990s, we have seen the concept of enterprise-wide data-
bases become relevant once again, this time in the context of Enterprise
Resource Planning (ERP) applications. These applications are intended
to provide support for a substantial part of an organization’s information

510 ■ Chapter 17 Enterprise Data Models and Data Management

Simsion-Witt_17 10/8/04 8:08 PM Page 510

processing and reporting. Accordingly, they are large, complex, highly cus-
tomizable, and provided only by a relatively small number of vendors able
to make the necessary investment in their development.

It is well beyond the scope of this book to cover the range of issues that
arise in the selection and implementation of ERP packages. From the data
manager’s perspective, the vendor of the ERP package should have solved
many of the problems of data integration. (However, not all ERP packages
have been developed top-down using a single high-quality data model.)
The customizability of ERP packages usually means that there are impor-
tant data modeling choices still to be made, particularly in terms of attrib-
ute definition and coding. And it is unusual for ERP to provide a complete
solution; most enterprises will continue to need supplementary applications
to support at least some aspects of their business. An enterprise data model,
reflecting the data structures of the ERP package, can be an important tool
in integrating such applications.

17.9 Characteristics of Enterprise Data Models

Although enterprise data models use the same building blocks—entity
classes, relationships, and attributes—as individual database models, they
differ in several ways. Most of the differences arise from the need to cover
a wide area, but without the detail needed to specify a database.

Ultimately, the level of detail in an enterprise data model depends upon
its role in the data management strategy—in other words, what it is going
to be used for. An extreme example is the organization that produced, after
considerable effort and investment, an enterprise data model with only six
entity classes. But suppose the organization was a bank, and the entity
classes were Customer, Product, Service, Contract, Account, and
Branch. If the model was successfully used to win agreement throughout
the organization on the meaning of these six terms, drove the rationaliza-
tion of the databases holding the associated data, and encouraged a review
of the way each group of data was managed, then the six-entity-class model
would have justified its cost many times over.

More typical enterprise data models contain between 50 and 200 entity
classes. This relatively low number (in comparison with the model that
would result from consolidating all possible project-level models) is
achieved by employing a high level of generalization—often higher than
we would select for implementation. Traditionally, enterprise models
focused on entity classes rather than attributes, in line with their role of pro-
viding guidance on data structures or classifying existing data. Today, with
the greater emphasis on message-based data integration, central definition
of attributes is gaining greater importance, and the entity classes in the

17.9 Characteristics of Enterprise Data Models ■ 511

Simsion-Witt_17 10/8/04 8:08 PM Page 511

model may be regarded by its users as little more than “buckets” to hold
the standards for message construction.

Even a highly generalized enterprise data model may still be too compli-
cated to be readily understood. Many business specialists have been perma-
nently discouraged from further participation in the modeling process by a
forbiddingly complex “circuit diagram” of boxes and lines. In these cases, it is
worth producing a very high-level diagram showing less than ten very gener-
alized entity classes. Ruthless elimination of entity classes that are not critical
to communicating the key concepts is essential. Such a diagram is intended
solely as a starting point for understanding, and you should therefore make
decisions as to what to generalize or eliminate on this basis alone.

17.10 Developing an Enterprise Data Model

In developing an enterprise data model, we use the same basic techniques
and principles as for a project-level model. The advice in Chapter 10 about
using patterns and exploring alternatives remains valid, but there are some
important differences in emphasis and skills.

17.10.1 The Development Cycle

Project-level models are developed reasonably quickly to the level of detail
necessary for implementation. Later changes tend to be relatively minor
(because of the impact on system structure) and driven by changes to busi-
ness requirements.

In contrast, enterprise models are often developed progressively over a
long period. The initial modeling exercise may produce a highly general-
ized model with few attributes. But project teams and architects using the
enterprise model as a starting point will need to “flesh it out” by adding
subtypes, attributes, and new entity classes resulting from detailed analysis
and normalization. To do so, they will spend more time analyzing the rel-
evant business area, and will be able to cross-check their results against
detailed function models. They may also receive better quality input from
users, who have a more personal stake in specifying a system than in con-
tributing to the planning exercise that produced the enterprise data model.

The results of project-level modeling can affect the enterprise model in
two ways. First, more detailed analysis provides a check on the concepts
and rules included in the enterprise model. Perhaps a one-to-many rela-
tionship is really many-to-many, or an important subtype of an entity class
has been overlooked. The enterprise model will need to be corrected to
reflect the new information.

512 ■ Chapter 17 Enterprise Data Models and Data Management

Simsion-Witt_17 10/8/04 8:08 PM Page 512

Second, the additional subtypes, entity classes, and attributes that do not
conflict with the enterprise model, but add further detail, may be incorporated
into the enterprise model. Whether this is done or not depends on the data
management strategy and often on the resources and tools available to
maintain a more complex model. Many organizations choose to record only
data of “corporate significance” in the enterprise data model, leaving “local”
data in project models.

In planning an enterprise modeling exercise, then, you need to recog-
nize that development will extend beyond the initial study, and you need
to put in place procedures to ensure that later “field work” by project teams
is appropriately incorporated.

17.10.2 Partitioning the Task

Project-level data models are usually small enough that one person or team
can undertake all of the modeling. While a model may be notionally
divided into sections that are examined one at a time, this is usually done
by the team as a whole rather than by allocating each section to a different
modeler.

With enterprise models, this is not always possible. For many reasons,
including time constraints, skill sets, and organizational politics, we may
need to divide up the task, and have separate teams develop parts of the
model in parallel.

If doing this, consider partitioning the task by supertype, rather than by
functional area, as data is often used by more than one functional area. You
might, for example, assign a team to examine Physical Assets (supertype)
rather than Purchasing (functional area). Although this approach may be
less convenient from an organizational perspective, it means that different
teams will not be modeling the same data. The element of choice in mod-
eling inevitably leads to different models of the same data and long argu-
ments in their reconciliation. We have seen teams spend far longer on
reconciliation than on modeling, and enterprise modeling projects aban-
doned for this reason.

If you choose to partition by functional area, ensure that you have an
agreed framework of supertypes in place before starting, and meet very
regularly to fit results into the framework and identify any problems.

The initial high-level model is essential whichever approach is taken. Its
development provides a great opportunity for creative exploration of
options—so great that enterprise data modeling project teams frequently
spend months arguing or become seriously stuck at this point looking for
the “perfect” solution. Beware of this. Document the major options and
move quickly to collect more detailed information to allow them to be
better evaluated.

17.10 Developing an Enterprise Data Model ■ 513

Simsion-Witt_17 10/8/04 8:08 PM Page 513

17.10.3 Inputs to the Task

Few things are more helpful to enterprise data modelers than a clearly doc-
umented business strategy that is well supported by management. In devel-
oping an enterprise model, overall business objectives need to take the
place of system requirements in guiding and verifying the model. The best
answer to, “Why did you choose this particular organization of data?” is,
“Because it supports the following business objectives in the following way.”

Business objectives prompt at least three important questions for the
data modeler:

1. What data do we need to support the achievement of each objective? A
welfare organization might need a consolidated register of welfare recip-
ients to achieve the objective: “Reduce the incidence of persons illegally
claiming more than one benefit.”

2. What data do we need to measure the achievement of each objective?
A police force may have the objective of responding to urgent calls as
quickly as possible and could specify the key performance indicator
(KPI): “Mean time to respond to calls classified as urgent.” Base data
needed to derive the KPI would include time taken to respond to each
call and categories of calls.

3. How will pursuit of the objectives change our data requirements over time?
An investment bank may have the objective of providing a full range of
investment products for retail and commercial clients. Meeting the objec-
tive could involve introduction of new products and supporting data.

Ideally, the enterprise data model will be developed within the context
of a full information systems planning project, following establishment of
a comprehensive business plan. In many cases, however, data modeling
studies are undertaken in relative isolation, and we need to make the best
of what we have, or attempt to put together a working set of business
objectives as part of the project. Interviews with senior staff can help, but
it is unrealistic to expect an enterprise modeling project to produce a busi-
ness strategy as an interim deliverable!

The best approach in these cases is to make maximum use of whatever
is available: company mission statement, job descriptions, business unit
objectives, annual plans. Interviews and workshops can then be used to
verify and supplement these.

One of the most difficult decisions facing the enterprise modeling team
is what use to make of existing project-level models, whether implemented
or not, and any earlier attempts at enterprise or business unit models. We
find the best approach is to commit only to taking them into account, with-
out undertaking to include any structures uncritically. These existing
models are then used as an important source of requirements, and for

514 ■ Chapter 17 Enterprise Data Models and Data Management

Simsion-Witt_17 10/8/04 8:08 PM Page 514

verification, but are not allowed to stand in the way of taking a fresh look
at the business.

The situation is different if our aim is to produce a realistic target for
planning that incorporates databases to which we are committed. In this
case, we will obviously need to copy structures from those databases
directly into the enterprise model.

17.10.4 Expertise Requirements

Data modelers working at the project level can reasonably be forgiven any
initial lack of familiarity with the area being modeled. The amount of knowl-
edge required is limited by the scope of the project, and expertise can be
gained as the model is developed, typically over several weeks or months.

In the case of an enterprise data model, the situation is quite different.
A wide range of business areas need to be modeled, with limited time avail-
able for each. And we are dealing with senior members of the organization
whose time is too precious to waste on explaining basic business concepts.

Conducting an interview with the finance manager without any
prior knowledge of finance will achieve two things: a slightly improved
knowledge of finance on the part of the interviewer, and a realization
on the part of the finance manager that he/she has contributed little
of value to the model. On the other hand, going into the interview with
a good working knowledge of finance in general, and of the company’s
approach in particular, will enable the interview to focus on rules specific
to the business, and will help build credibility for the model and data
management.

In enterprise data modeling, then, modeling skills need to be comple-
mented by business knowledge. The modeling team will usually include at
least one person with a good overall knowledge of the business. In com-
plex businesses, it can be worthwhile seconding business specialists to the
team on a temporary basis to assist in examining their area of expertise. We
find that there is also great value in having someone whose knowledge of
the business area was acquired outside the organization: experienced
recruits, consultants, and MBAs are often better placed to take an alterna-
tive or more general view of the organization and its data.

17.10.5 External Standards

External data standards are an important, but often overlooked, input to an
enterprise data model. There is little point in inventing a coding scheme if
a perfectly good (and hopefully well-thought-out) one is accepted as an

17.10 Developing an Enterprise Data Model ■ 515

Simsion-Witt_17 10/8/04 8:08 PM Page 515

industry, national, or international standard, nor in rewriting definitions and
inventing data names for entity classes and attributes.

A major payoff in using external standards is in facilitating electronic
communication with business partners and external resources. The enter-
prise model can be the means by which the necessary standards are made
available to development teams, with the data management team taking
responsibility for ascertaining which standards are most appropriate for use
by the business.

17.11 Choice, Creativity, and Enterprise
Data Models

Enterprise data models can be a powerful means of promulgating innova-
tive concepts and data structures. Equally, they can inhibit original thought
by presenting each new project with a fait accompli as far as the overall
structure of its model is concerned. In our experience, both situations are
common and frequently occur together in the one organization.

With their access to the “big picture” and strong data modeling skills, an
enterprise data modeling team is in a good position to propose and evalu-
ate creative approaches. They are more likely than a conventional applica-
tion project team to have the necessary access to senior management to win
support for new ideas. Through the data management process, they have
the means to at least encourage development teams to adopt them. Some
of the most significant examples of business benefits arising from creative
modeling have been achieved in this way.

On the other hand, an enterprise data model may enshrine poor or out-
dated design and inhibit innovation at the project level. There needs to be a
means by which the enterprise model can be improved by ideas generated
by systems developers, and at least some scope for breaking out of the enter-
prise data modeling framework at the project level. Too often, a lack of
provision for changing the enterprise data model in response to ideas from
project teams has led to the demise of data management as the model ages.

It is vital that both systems developers and enterprise modelers clearly
understand the choice factor in modeling and recognize that:

■ If the project model meets the user requirements but differs from the
enterprise model, the enterprise model is not necessarily wrong.

■ If the enterprise model meets business requirements but the project
model differs, it too is not necessarily wrong.

Indeed, both models may be “right,” but in the interests of data man-
agement we may need to agree on a common model, ideally one that
incorporates the best of both.

516 ■ Chapter 17 Enterprise Data Models and Data Management

Simsion-Witt_17 10/8/04 8:08 PM Page 516

A genuine understanding of these very basic ideas will overcome many of
the problems that occur between enterprise modelers and project teams and
provide a basis for workable data management standards and procedures.

17.12 Summary

Enterprise data models cover the data requirements of complete enterprises
or major business units. They are generally used for data planning and
coordination rather than as specifications for database design.

An enterprise data model should be developed within the context of a
data management strategy. Data management is the management of data as
an enterprise resource, typically involving central control over its organiza-
tion and documentation and encouraging data sharing across applications.

An enterprise data model can be mapped against existing data and
thereafter used as an index to access it. It may also serve as a starting point
for detailed project-level data modeling, incorporating ideas from senior
business people and experienced data modelers.

Development of an enterprise data model requires good business skills
as well as modeling expertise. If the task is partitioned, it should be divided
by data supertype rather than functional area.

While enterprise data models can be powerful vehicles for promulgating
new ideas, they may also stifle original thinking by requiring conformity.

17.12 Summary ■ 517

Simsion-Witt_17 10/8/04 8:08 PM Page 517

This page intentionally left blank

Further Reading

Chapter 1

Virtually every textbook on data modeling or database design offers an
overview of the data modeling process. However, data modeling is seldom
presented as a design activity, and issues of choice and quality criteria are,
therefore, not covered.

If you are interested in reading further on the question of choice in data
modeling, we would recommend a general book on category theory first:

Lakoff, G.: Women, Fire and Dangerous Things: What Categories Reveal
about the Mind, University of Chicago Press (1987). The first part of the
book is the more relevant.

William Kent’s 1978 book Data and Reality is a classic in the field,
lucidly written, covering some of the basic issues of data representation
in a style accessible and relevant to practitioners. A new edition appeared
in 2000: Kent, W.: Data and Reality, 1st Books Library (2000).

The literature on data modeling and choice is largely written from a
philosophical perspective. The following paper is a good starting point:

Klein, H., and Hirschheim, R.A. (1987): A comparative framework,
of data modelling paradigms and approaches, The Computer Journal,
30(1): 8–15.

If your appetite for the philosophical foundations of data modeling has
been whetted, we would suggest the following book and papers as a starting
point, recognizing that you are now heading firmly into academic territory.

Hirschheim, Klein, and Lyytinen: Information Systems Development and
Data Modeling: Conceptual and Philosophical Foundations, Cambridge
University Press, Cambridge (1995).

Weber, R.: The Link between Data Modeling Approaches and
Philosophical Assumptions: A Critique, Proceedings of the Association of
Information Systems Conference, Indianapolis (1997) 306–308.

Milton, S., Kazmierczak, E., and Keen, C. (1998): Comparing Data
Modelling Frameworks Using Chisholm’s Ontology, 6th European
Conference on Information Systems, pp. 260–272, “Euro-Arab Management
School, Granada, Spain, Aix-en-Provence, France.

A number of papers, particularly by our former colleagues Graeme
Shanks and Daniel Moody, have looked at data model quality. As a start-
ing point, we would suggest:

Moody, D., and Shanks, G. (1998): What makes a good data model?
A framework for evaluating and improving the quality of entity relationship
models, The Australian Computer Journal, 30(3): 97–110.

519

Simsion-Witt_FR 10/11/04 8:59 PM Page 519

Chapter 2

Most textbooks on data modeling cover basic normalization, and you may
find that a different presentation of the material will reinforce your under-
standing. Beyond that, the logical next step is to read Chapter 13 in this
book and then refer to the suggestions for further reading in connection
with that chapter.

More broadly, in Chapter 2 we have worked with the Relational Model
for data representation. This originated with Edgar (Ted) Codd, and his
writings, and those of his colleague Chris Date, are the seminal references
on the Relational Model. Codd’s original paper was “A relational model of
data for large shared data banks,” Communications of the ACM (June, 1970).

For a comprehensive treatment of the relational model, we strongly
recommend:

Date, C.J.: Fundamentals of Database Systems, 8th Edition, Pearson
Addison Wesley (2003).

This book also provides an excellent background for working with
RDBMSs—and with physical database designers.

Chapter 3

Most data modeling textbooks cover E-R modeling conventions, usually in
less detail than we do in Chapters 3 and 4. At this point, the next logical
step is to learn about using them in practice to model real business situations,
the subject of Chapter 10.

It would also make sense to familiarize yourself with the conventions
supported by your CASE tool or in your place of work. This is particularly
relevant if you are using UML or other alternative notation. We provide an
overview of the most common alternatives in Chapter 7.

A good CASE-tool-oriented reference is Barker’s CASE Method: Entity
Relationship Modelling, Addison Wesley (1990). There is much excellent
advice here even if you are not using the Oracle CASE method or tool.

Chapter 7

The starting point for the Chen approach is the original paper, “The entity-
relationship approach: Towards a unified view of data,” ACM Transactions
on Database Systems, Vol. 1, No. 1, March 1976. For more detail, we
suggest:

Batini, Ceri, and Navathe, Conceptual Database Design—An Entity-
Relationship Approach, Addison Wesley (1992).

520 ■ Further Reading

Simsion-Witt_FR 10/11/04 8:59 PM Page 520

Further Reading ■ 521

There is now an extensive body of literature on UML. The logical starting
point is the original specification: Rumbaugh, Jacobson, and Booch: The
Unified Modeling Language Reference Manual, Addison Wesley (1998).

The definitive reference for Object Role Modeling is Halpin, T: Information
Modeling and Relational Database: From Conceptual Analysis to Logical
Design, 3rd Edition, Morgan Kaufmann (2001).

Chapter 8

If your organization recommends or prescribes a particular methodology, then
the documentation of that methodology is your logical next port of call.

If you are interested in how data modeling fits into a broader range of
methodologies than we discuss here, the definitive reference is:

Avison, D. and Fitzgerald, G.: Information Systems Development:
Methodologies, Techniques and Tools, 3rd edition, Maidenhead, McGraw-
Hill (2003).

Chapter 9

For a comprehensive coverage of requirements analysis and much else,
Hay, D.C.: Requirements Analysis—From Business Views to Architecture,
Prentice-Hall, New Jersey (2003).

Chapter 10

If you are interested in design in general, a good starting point is:
Lawson, B.: How Designers Think, 3rd Edition, Architectural Press,

Oxford, UK (1997).
Two books of data modeling patterns should be owned by every pro-

fessional data modeler:
Hay, D.C.: Data Model Patterns: Conventions of Thought, Dorset House

(1995).
Silverston, L.: The Data Model Resource Book—A Library of Universal

Models for all Enterprises, Volumes 1 and 2, John Wiley & Sons (2001).
The assertions approach has much in common with the Business Rules

Approach advocated by the Business Rules Group’s first paper,1 which

1Defining Business Rules ~ What Are They Really? available at www.businessrulesgroup.org.

Simsion-Witt_FR 10/11/04 8:59 PM Page 521

categorizes Business Rules as Structural Assertions (Terms and Facts),
Action Assertions (Constraints), and Derivations.

The assertion forms that we have suggested here are nearly all Facts,
with those we have labeled as Constraints corresponding to the Business
Rules Group definition of Constraint and those we have labeled as Attribute
Assertions corresponding to the Business Rule Group definition of Derivation
when used as suggested for derived attributes.

A set of Action Assertion templates, known as RuleSpeak™, is available
from Ronald Ross of the Business Rules Group at http://www.brsolutions.com/
rulespeak_download.shtml. The approach is described in more detail in:

Ross, R.: Principles of the Business Rule Approach, Addison Wesley (2003).

Chapter 12

As suggested throughout this chapter, the next logical step in improving
your ability to contribute to physical data modeling is to become familiar
with the DBMS(s) that your organization uses. Your source may be the offi-
cial manual or one of the many third-party books covering specific products.
Just be careful that your reading material reflects the version of the software
that you are using.

We would also recommend:
Shasha, D., and Bonnet, P.: Database Tuning—Principles, Experiments

and Troubleshooting Techniques, Morgan Kaufmann (2003).
A feature of this book is a number of “experiments” or benchmarks that

show the real (as distinct from folkloric) improvements that are obtained
from various design decisions.

Chapter 13

Normalization is one of the most widely covered areas of data modeling
theory, and you will have little trouble finding texts and papers covering
the higher normal forms with far more theoretical detail than presented
here. However, unless you have a strong background in mathematics, you
are likely to find many of them very hard going and, perhaps, not worth
the considerable effort required. (Conversely, if you can manage the math-
ematics, we would encourage you to take advantage of the opportunity to
leverage your mathematical knowledge to strengthen your modeling skills.)

Kent, W.: “A Simple Guide to the Five Normal Forms of Relational
Database Theory,” Communications of the ACM (February 1983) is a very
readable paper at a similar level to this chapter.

Chris Date is one of the most lucid and insightful writers on the techni-
calities of relational data organization and the Relational Model in general.

522 ■ Further Reading

Simsion-Witt_FR 10/11/04 8:59 PM Page 522

In addition to his classic Fundamentals of Database Systems (8th Edition,
Pearson Addison Wesley 2003), we would recommend the “Selected
Writings” seriesin particular, the earlier booksfor articles covering a
variety of important topics.

Most authors stick strictly with the relational notation and do not offer
a lot of context. For example, 4NF and 5NF problems usually show only
one table to start with; this is technically adequate, but it can be hard
coming to grips with the problem unless you imagine the columns as foreign
keys to “context” tables. If you have trouble following such examples, you
are not alone! We suggest you draw a data structure diagram of the problem
and add extra reference tables as we did in our 4NF and 5NF examples to
show context.

Chapter 15

The time dimension has been the subject of a number of papers. Many of
them propose extensions to DBMSs to better support time-related data.
From a practitioner’s perspective, they may make interesting reading but
are of limited value unless the suggestions have been incorporated in the
DBMSs available to them.

Chris Date, Hugh Darwen, and Nikos Lorentzos’s book Temporal Data
and the Relational Model (Morgan Kaufmann, 2003) is perhaps the most
up-to-date and erudite publication on the topics in this chapter, particularly
temporal business rules. Date has summarized these issues in the 8th edition
of his Introduction to Database Systems.

Chapter 16

As mentioned earlier, there is a substantial body of literature on the design
of data warehouses and marts. William Inmon and Ralph Kimball have
been key contributors to the practitioner-oriented literature and offer
markedly different views on architecture in particular. We suggest you look
for the most recent and relevant publications from both authors.

For an introductory book on the related subject of data mining, we
suggest:

Delmater and Hancock: Data Mining Explained, Digital Press (2001).

Chapter 17

A useful starting point is Guidelines to Implementing Data Resource
Management, 4th Edition, Data management Association, 2002.

Further Reading ■ 523

Simsion-Witt_FR 10/11/04 8:59 PM Page 523

This page intentionally left blank

Numbers
1NF through 6NF, see as spelled out
3-entity class (ternary) relationship, 96-97

A
abbreviation, avoidance in E-R names, 79
“active subset,” database, 377
activity diagrams, 66
acyclic relationship, 448
administrator-defined attribute identi-

fiers, 155
aggregate event time dependency event

table, 454
aggregation, 142, 225
agile methods, 23
alternative family tree models, 112
analogous rules, in many-to-many

relationships, 450
ANSI/SPARC, 17
antisymmetric relationship, 449
architecture, 15

compared to data modeling, 5, 7, 18
three-schema architecture and

terminology, 17–20
assertions, 78, 84, 309–319

metadata classes for testing, 310
naming conventions, 310–311
overview, 309–310
rules for generating assertions, 311–319

“association,” compared to “relation,” 118
association classes, UML, 222–223
associative entities, 90
associative table, 89
asymmetry

business rules and recursion, 447
conceptual models, 295

attitudes for data modeling, 302–305
attribute assertions, 313–315
attributes, 145–181

ambiguity examples, 167–168
cardinality, 421
category attributes, 156, 163
complex attributes, 215, 337
conversion between external and

internal attribute representations,
166

DBMS Datatypes, 152
decomposition tests, 149
definition of “domain,” 158
definition rules, 146–147
disaggregation, 147–152, 171–181

conflated codes, 150–151
within entity classes, 173–177
“first among equals,” 177–178
inappropriate generalization,

151–152
limits to, 178–181

meaningful ranges, 151
options and trade-offs, 171–172
overview, 147–148, 171
resulting from entity generalization,

172–173
simple aggregation, 148–150

domain “rules of thumb,” 158
generalize single-valued and

multivalued, 177
grouping and subtypes, 134
high level classification, 154
implementing, 334
names of, 166–171

guidelines for naming, 168–171
objectives of standardizing, 166–168
overview, 166

not transforming directly to columns,
334

overview, 145–146
quantifier attributes, 163
types of, 152–166

attribute domains, 158–161
attribute taxonomy, 154–158
column datatype and length

requirements, 162–166
conversion between external and

internal representations, 166
DBMS datatypes, 152–154
overview, 152

audit trails, 452–462
basic approach, 453–458
database requirements, 339
handling nonnumeric data, 458
overview, 452–453
time dependencies, 451

awareness factors for data modeling, 303

B
Balanced Tree indexes, 368, 374
“balance sheet,” approach to time

dependencies, 453
base tables, 19
“batch window,” 483
BCNF. See Boyce-Codd Normal Form
bill of materials structure, 96
bit-mapped indexes, 369
blended data modeling approaches, 22
block, unit of storage, 363
block-level lock, 374
bottom-up modeling, 285–288
Boyce-Codd Normal Form (BCNF), 55,

394–398
defined, 396–397
Domain Key Normal Form, 398
vs. enforcement of rules, 397–398
overview, 394
structure in 3NF but not in BCNF,

394–396

B-tree, 368
business requirements, 12, 16, 65,

251–271
business case, 253–254
existing systems and reverse engi-

neering, 259–260
interviews and workshops, 254–258

facilitated workshops, 257–258
interviews with senior managers,

256–257
interviews with subject matter

experts, 257
overview, 254–255
whether to model in, 255–256

object class hierarchies, 261–271
advantages of, 270–271
classifying object classes, 263–265
developing, 266–270
overview, 261–263
potential issues, 270
typical set of top-level object

classes, 265–266
overview, 251
process models, 261
purpose of the requirements phase,

251–253
“riding the trucks,” 258–259

business rules, 11, 15, 50, 417–450
assessing volatility, 431
discovery and verification of, 420–421
documentation of, 422–427

in E-R diagram, 422
overview, 422
use of subtypes for, 424–427

enforcement of, 11
implementing, 427–446

enforcement of rules through
primary key selection, 445–446

mandatory relationships, 436–437
options for, 433–436
overview, 427–428
recording data that supports rules,

442–443
referential integrity, 438–439
restricting attribute to discrete set

of values, 439–442
rules involving multiple

attributes, 442
rules that may be broken, 443–445
where to implement particular

rules, 428–432
overview, 417–418
rules on recursive relationships,

446–450
analogous rules in many-to-many

relationships, 450
documenting, 449
implementing constraints on,

449–450

525

Index

Simsion&Witt_Index 10/14/04 3:22 AM Page 525

business rules, (continued)
overview, 446–447
types of, 447–449

selecting an implementation alterna-
tive, 429

types of, 418–420
data rules, 418–419
overview, 418
process rules, 420
rules relevant to data modeler, 420

UML, 223
business specialists, see subject matter

experts
“buy not build,” 26

C
candidate keys, 54
cardinality, 82–83, 103, 256, 418,

420–421
CASE (Computer Aided Software

Engineering), 21, 238
categories of data, choices and

creativity, 106
category attributes, 156, 163, 210,

335–336
chains, see one-to-one

relationships
change management, 254
Chen E-R approach, 216–220

basic conventions, 216–217
overview, 216
in practice, 220
relationships involving three or more

entity classes, 217–218
relationships with attributes, 217
roles, 218–219
weak entity concept, 219

Chen model conventions, 125, 216
“chicken and egg,” key

specification, 106, 341
class diagrams in UML, 29
classification of data, 13
clustering, 366, 370
CODASYL, 209, 216
columns

column definition, 334–341
additional columns, 339–340
attribute implementation, 334
attributes of relationships, 336
category attribute

implementation, 335–336
column datatypes, 340
column nullability, 340–341
complex attributes, 337
derivable attributes, 336
multivalued attribute

implementation, 337–339
overview, 334

determining, 40–42
derivable data, 41
determining primary key, 42
hidden data, 41
one fact per column, 40–41
overview, 40

names of, 59, 354–355
transformation from attributes, 334

commentary, in text attributes, 165
common structures in data

modeling, 290
communication, 14
completeness, 10–11, 43

complex attributes, 215, 337
component event time dependency

event table, 454
composite key, 194
composition, UML, 225
compression, 372
Computer Aided Software Engineering

(CASE), 21, 238
concatenated key, 194
conceptual data modeling, 16–17, 207,

273–321, see also extensions and
alternatives to conceptual mod-
eling languages

assertions approach, 309–319
naming conventions, 310–311
overview, 309–310
rules for generating assertions,

311–319
bottom-up modeling, 285–288
comparison with process model, 308
designing real models, 273–275
developing entity class

definitions, 300–301
diagram, 274
direct review of data model

diagrams, 306–308
evaluating the model, 305–306
handling exceptions, 301–302
hierarchies, 291–293
learning from designers in other

disciplines, 275–276
many-to-many relationships,

293–295
one-to-one relationships, 295–300

distinct real-world concepts,
296–297

overview, 295–296
self-referencing, 299
separating attribute groups,

297–298
support for creativity, 299–300
transferable one-to-one

relationships, 298–299
overview, 273
patterns and generic models, 277–284

adapting generic models from
other applications, 279–282

developing generic model,
282–284

overview, 277
using generic model, 278–279
using patterns, 277–278
when there is no generic model,

284
prototypes, 309
requirements, 305
right attitude, 302–305

analyzing or designing, 303–304
being aware, 303
being brave, 304
being creative, 303
being understanding and under-

stood, 304–305
overview, 302

starting the modeling, 276–277
testing model with sample data,

308–309
top-down modeling, 288
when problem is too complex,

288–290
conceptual schema, 18
conciseness, 9

“connect” and “disconnect,” 102
constraint assertions, 317–319
conversion, between external and

internal attribute
representations, 166

corporate data model, 499
counts, in quantifier attributes, 163
creativity factors for data modeling, 303
“crow’s foot,” 67
CRUD matrix, UML, 224, 237. see also

Process/Entity Matrix
currency amounts, in quantifier

attributes, 164

D
data administration, 501
data analysis, 7
database design

definition, 19
stages and deliverables, 16–20
tasks and deliverables diagram, 16

database duplication, 377
database management system (DBMS),

17
database planning, 506
database structure changes, 473
database tables, see tables
Data Definition Language (DDL), 19,

207
data derivation rules, 418, 421
data-driven approaches, 20–21
data-driven data modeling approaches,

20–21
data flow diagrams, 9, 66, 262–263
data management, 499, 500–503, see

also enterprise data models
evolution of, 501–503
managing data as shared resource,

501
overview, 500
problems of data

mismanagement, 500–501
Data Manipulation Language (DML),

364
data marts, 475–497

basic design principle, 483–484
characteristics of, 478–480

complex queries, 479–480
data integration, 478
history, 480
less predictable database “hits,”

479
loads rather than updates, 478–479
overview, 478
summarization, 480

modeling for, 488–497, see also
multidimensional databases

basic challenge, 488
modeling time-dependent data,

494–497
overview, 488

quality criteria for, 480–483
communication effectiveness, 483
completeness, 480–481
data reusability, 482
enforcement of business rules, 482
nonredundancy, 481
overview, 480
performance, 483
simplicity and elegance, 483
stability and flexibility, 482–483

526 ■ Index

Simsion&Witt_Index 10/14/04 3:22 AM Page 526

data modelers
multiple roles, 39
questions for, 304–305
role in business rule

implementation, 439
role in data modeling, 23

data modeling, overview of, 3–32, see
also organizing data modeling
task

advantages, 8
criteria for good data model

communication, 14
completeness, 10–11
conflicting objectives, 15
data reusability, 11–12
elegance, 13–14
enforcement of business

rules, 11
integration, 14–15
nonredundancy, 11
stability and flexibility, 12–13

database design stages and
deliverables, 16–20

overview, 16
three-schema architecture and

terminology, 17–20
data-centered perspective, 3–4
data model defined, 4, 30
design, choice, and creativity, 6–8
importance of, 8–10

conciseness, 9
data quality, 10
leverage, 8–9
overview, 8

individuals who should be involved
in data modeling, 23–24

overview, 3
performance, 15
relevance of

alternative approaches to data
modeling, 29–30

costs and benefits of data
modeling, 25

data integration, 27
data modeling and packaged

software, 26–27
data modeling and XML, 28–29
data warehouses, 27
overview, 24–29
personal computing and

user-developed systems, 28
simple example, 4–6
terminology, 30–31
where data models fit in, 20–23

agile methods, 23
data-driven approaches, 20–21
object-oriented approaches, 22
overview, 20
parallel (blended) approaches, 22
process-driven approaches, 20
prototyping approaches, 23

data quality, 10, 80
data storage

compression, 372
distribution and replication, 372
drive usage, 371
free space, 370–371
table partitioning, 371
table space usage, 370

data structure diagram, 66, 73
data structures in business, 7
data validation rules, 418

data warehouses, 475–497
basic design principle, 483–484
characteristics of, 478–480

complex queries, 479–480
data integration, 478
history, 480
less predictable database “hits,”

479
loads rather than updates, 478–479
overview, 478
summarization, 480

modeling for, 484–487
determining requirements, 485
determining sources and

dealing with differences,
485–487

initial model, 484–485
overview, 484
shaping data for, 487
understanding existing data, 485

modeling “starting point,” 484
overview, 475–478
quality criteria for, 480–483

communication effectiveness, 483
completeness, 480–481
data reusability, 482
enforcement of business rules, 482
nonredundancy, 481
overview, 480
performance, 483
simplicity and elegance, 483
stability and flexibility, 482–483

dates
integer storage of, 382–383
in quantifier attributes, 164

date tables, 469
days, in quantifier attributes, 165
DBMS (database management system),

17
DBMS locks, 373
DDL (Data Definition Language), 19,

207
denormalization, 58–59, 378–379

and data mart design, 492
and views, 385–386

derivable attributes, 336
derivable data, 409–410
derivable relationships, 347–348
derived attributes, 211–212
description vs. prescription, 7
determinants, 49, 52, 53–55, 395
development life cycle, data

architecture, 506
DFD (data flow diagramming), 9, 66,

262–263
diagrammatic model presentation, 31
diagramming conventions, 117–119

boxes in boxes, 117–118
overview, 117
UML conventions, 118–119
using tools that do not support

subtyping, 119
diagramming conventions,

relationships, 82
dimensions, factors, and intervals, in

quantifier attributes, 163
dimension tables, 479, 488
disaggregation, 142
distribution, 372
DKNF (Domain Key Normal Form),

398
DML (Data Manipulation Language), 364

documentation
of business rules, 422–427

in E-R diagram, 422
overview, 422
use of subtypes for, 424–427

versus prototyping, 23
recursive relationships, rules on, 449
requirements, 6

Domain Key Normal Form (DKNF), 398
drive usage, 371
duplicate entity classes, in

relationship diagrams, 87
duplication, 34, 377–378

E
elegance of data models, 13–14
enterprise data modeling team, 515, 516
enterprise data models, 499–517

characteristics of, 511–512
classification of existing data, 503–504
context for specifying new

databases, 506–508
determining scope and

interfaces, 506
incorporating data model in

development life cycle, 506–508
overview, 506

developing, 512–516
development cycle, 512–513
expertise requirements, 515
external standards, 515–516
inputs to task, 514–515
overview, 512
partitioning the task, 513

guidance for database design, 508
input to business planning, 508–509
overview, 499–500
specification of enterprise

database, 509–511
target for planning, 504–505

Enterprise Resource Planning (ERP), 27,
513, 514

entities vs. entity classes, 76
entity class assertions, 311
entity classes, 75

allowed combinations, 442
classification, 325–326
definition requirements, 81
exclusion from database, 325
relationships involving more than

two, 328
specialization in selection, 113
subtypes and supertypes as, 116–117

naming subtypes, 117
overview, 116–117

entity-relationship approach, 65–109
attributes, 104–105
creativity and E-R modeling, 106–109
dependent and independent entity

classes, 102
diagrammatic representation, 65–72

basic symbols: boxes and arrows,
66–67

diagrammatic representation of
foreign keys, 67–68

interpreting diagram, 68–69
optionality, 69–70
overview, 65–66
redundant arrows, 71–72
verifying the model, 70–71

diagramming conventions, 82–87

Index ■ 527

Simsion&Witt_Index 10/14/04 3:22 AM Page 527

528 ■ Index

entity-relationship approach, (continued)
entity classes, 76–82

definitions, 80–82
diagramming convention, 77–78
naming, 78–79
overview, 76–77

many-to-many relationships, 87–92
applying normalization to, 88–90
choice of representation, 90–92
overview, 87–88

one-to-one relationships, 92–93
overview, 65, 82
relationship names, 103–104
relationships involving three or more

entity classes, 96–98
self-referencing relationships, 93–96
top-down approach: entity-

relationship modeling, 72–76
developing the diagram top down,

74–75
overview, 72–74
terminology, 75–76

transferability, 98–102
concept of, 98
documenting, 100–102
importance of, 98–100
overview, 98

entity-relationship modeling (E-R), 29,
207

E-R (entity-relationship modeling)
description, 75
diagram, 76, 422
extensions to basic E-R approach,

209–216
advanced attribute concepts,

210–216
overview, 209–210

minimum result, 76
subjectivity in, 77
ERP (Enterprise Resource Planning),

27, 513, 514
ETL (extract/transformation/load)

programs, 476
event time dependency event table, 454
exceptions, conceptual models, 301
exclusivity arc, 140–141
Extensible Markup Language (XML), 28,

503
extensions and alternatives to

conceptual modeling
languages, 207–228

Chen E-R approach, 216–220
basic conventions, 216–217
overview, 216
in practice, 220
relationships involving three or

more entity classes, 217–218
relationships with attributes, 217
roles, 218–219
weak entity concept, 219

extensions to basic E-R approach,
209–216

advanced attribute concepts,
210–216

overview, 209–210
object role modeling, 227–228
overview, 207–209
using UML object class diagrams,

220–227
advantages of UML, 222–227
conceptual data model in UML,

221–222

overview, 220–221
external and internal attribute

representations, conversion
between, 166

externally-defined attribute
identifiers, 155

external schema, 18
extract/transformation/load (ETL)

programs, 476

F
fact tables

data mart design, 488
problems caused by more than one

per star, 489–490
family tree models, alternative, 112
Fifth Normal Form (5NF), 392,

398–407
checking for 4NF and 5NF with

business specialist, 405–407
recognizing 4NF and 5NF

situations, 404–405
“first cut design,” database, 20
First Normal Form (1NF), 47, see also

sound structure, basics of
problems with tables in, 47–48
repeating groups and, 43–47

data reusability and program
complexity, 43–44

determining primary key of the
new table, 46–47

limit on maximum number of
occurrences, 43

overview, 43
recognizing repeating groups, 44–45
removing repeating groups, 45–46

flag category attribute, 156
flexibility

of data models, 12–13
of data warehouses, 484, 487

foreign keys, 45, 55–56, 342–354
derivable relationships, 347–348
one-to-many relationship

implementation, 343–346
one-to-one relationship

implementation, 346–347
optional relationships, 348–350
overlapping foreign keys, 350–352
overview, 342–343
split foreign keys, 352–354

formal E-R methodologies, 76
Fourth Normal Form (4NF), 398–407

checking for 4NF and 5NF with
business specialist, 405–407

data in BCNF but not in 4NF,
399–401

overview, 398–399
recognizing 4NF and 5NF

situations, 404–405
free space, 370–371
fully normalized, 52
functional dependency, 53–54
functional specification, 3
function points, data management, 507

G
generalization, 138–142

data architecture, 509
entity class selection, 113
levels, 115–116

one and many-to-many
relationships, 141–142

overview, 138
results, 113–114
several one-to-many relationships to

single one-to-many
relationship, 139–141

single many-to-many relationship,
138–139

theory, Smith and Smith ACM paper,
142

generic models, see patterns and generic
models

guide to notations, example
diagram, 308

H
hashed random, 369
hash tables, 369
heap tables, 369–370
hierarchies, 291–293, 380–382

alternative representations, 381
examples, 291, 381

higher degree relationships, 98
horizontal table splitting, 375–376

I
implicit data definition, 21
impossible model situations, 105
“income statement,” approach to time

dependencies, 453
inconsistent existing databases, 501
indexes, 363–370

balanced tree indexes, 368
bit-mapped indexes, 369
hash tables, 369
heap tables, 369–370
indexed sequential tables, 369
overview, 363–364
performance advantages of indexes,

365–366
properties, 366–368
usage by queries, 364–365

information architecture, 501
Information Engineering (IE), 20, 209
information system, 4
input/output buffers, 372
integer storage of dates and times,

382–383
integration, 14–15
integrity constraints, 10
interdependence of data and process

modeling, 22
internal and external attribute

representations, conversion
between, 166

internal schema, 18
intersection assertions, 315–317
intersection entities, 90
intersection table, 89
interviews and workshops

facilitated workshops, 257–258
interviews with senior managers,

256–257
interviews with subject matter

experts, 257
whether to model in interviews and

workshops, 255–256
intransitive relationship, 448
irreducibility, primary keys, 188
irreflexive relationship, 448

Simsion&Witt_Index 10/14/04 3:22 AM Page 528

J
just in time design, 235

L
languages, conceptual modeling. see

also extensions and alternatives
to conceptual modeling
languages

legacy systems, 485, 502
leverage, 8–9
“library” of proven structures, 277
linked lists, 295
locations, in quantifier attributes, 165
lock acquisition, lock release, 374
logical database design, 19, 321–357

basic column definition, 334–341
additional columns, 339–340
attribute implementation, 334
attributes of relationships, 336
category attribute

implementation, 335–336
column datatypes, 340
column nullability, 340–341
complex attributes, 337
derivable attributes, 336
multivalued attribute

implementation, 337–339
overview, 334

foreign key specification, 342–354
derivable relationships, 347–348
one-to-many relationship

implementation, 343–346
one-to-one relationship

implementation, 346–347
optional relationships, 348–350
overlapping foreign keys, 350–352
overview, 342–343
split foreign keys, 352–354

logical data model notations, 355–357
overview, 321–322
primary key specification, 341–342
table and column names, 354–355
table specification, 325–334

classification entity classes, 325–326
exclusion of entity classes from

database, 325
many-to-many relationship

implementation, 326–327
overview, 325
relationships involving more than

two entity classes, 328
standard transformation, 325
supertype/subtype

implementation, 328–334
transformations required, overview

of, 322–325
logical database designers, project

planning by, 233
logical schema, 19, 360

M
mandatory relationships, 436–437
many-to-many relationships, 87–92,

293–295, 466–468
analogous rules in, 450
applying normalization to, 88–90
choice of representation, 90–92
diagramming conventions, 85
diagram of derivable

relationships, 326

entity class representation, 90
generalization of, 138–139
implementing, 326–327
overview, 87–88
resolving self-referencing, 95–96
self-referencing, 94
tables implementing dependent entity

classes and, 203–204
unnormalized representation, 88

meaningful relationship names, 103
merged tables, 376–377, 386–387
metadata, 503
metamodels, 134
minimality, primary keys, 188
mismanagement of data, 500
months, in quantifier attributes, 164, 165
multidetermine, 401
multidimensional databases, 477,

488–494
one fact table per star, 489–490
one level of dimension, 490–491
one-to-many relationships, 491–494
overview, 488–489

multiple attributes, rules involving, 442
multiple candidate keys

choosing primary key, 201
normalization issues, 201–202
overview, 201

“multiple inheritance” compared with
multiple supertypes, 128

multiple sources, data warehouse
update, 486

multivalued attributes, 215–216, 337–339
multivalued dependency (MVD), 401
mutually exclusive relationships, 140

N
name prefix, avoidance in E-R names,

79
names, column and table, 59
naming roles, Chen E-R, 218
narrowing view, modeling

technique, 288
n-ary relationships, 328
natural key, 184
networks, see many-to-many

relationships
NIAM, 227
nondirectional relationship, 101
nonkey column, 55
nonredundancy, 11, 47
nontransferability, 101, 196, 219
no overlaps rule, 122–123
normalization, 31, 391–416

Boyce-Codd Normal Form, 394–398
definition of BCNF, 396–397
Domain Key Normal Form, 398
enforcement of rules versus BCNF,

397–398
example of structure in 3NF but

not in BCNF, 394–396
overview, 394

data representation, 40
description, 33–34
Fourth Normal Form (4NF) and Fifth

Normal Form (5NF), 398–407
checking for 4NF and 5NF with

business specialist, 405–407
data in BCNF but not in 4NF,

399–401
overview, 398–399

recognizing 4NF and 5NF
situations, 404–405

higher normal forms, 392–394
informal example of, 34–36
and multiple candidate keys, 201–202
“other than the key” exception, 47
overview, 391–392
real-world example, 37
and redundancy, 408–410

derivable data, 409–410
overlapping tables, 408–409
overview, 408

reference tables produced by,
410–411

selecting primary key after removing
repeating groups, 411–414

sequence of normalization and
cross-table anomalies, 414–415

splitting tables based on
candidate keys, 407–408

step 1, 45
two-step process, 34

nullable foreign keys, 348–349

O
object class hierarchies, 261–271

advantages of, 270–271
classifying object classes, 263–265
developing, 266–270
overview, 261–263
potential issues, 270
typical set of top-level object classes,

265–266
object-oriented databases, 208
object-oriented modeling, 22, 209
Object Role Modeling (ORM), 227, 392,

449
OF language., 166, 169
one-fact-per-attribute rule, 148
one-fact-per-column design, 40
“one or more” versus “many,” 84
one-right-answer syndrome, 25
one-to-many relationships, 464–466

diagramming conventions, 85
implementing, 343–346
and multidimensional databases,

491–494
optional primary key, 348

one-to-one relationships, 295–300
diagramming conventions, 85
distinct real-world concepts, 296–297
example diagram, 346
implementing, 346–347
overview, 295–296
and role entity classes, 125
self-referencing, 299
separating attribute groups, 297–298
support for creativity, 299–300
transferable one-to-one

relationships, 298–299
using role entity classes and, 125–126

on the fly modeling, 255
optionality, 82–83, 256
optional or mandatory, in data structure

diagram, 69
optional relationships, 348–350
organizing data modeling task, 231–249

data modeling in real world,
231–233

key issues in project
organization, 233–238

Index ■ 529

Simsion&Witt_Index 10/14/04 3:22 AM Page 529

organizing data modeling task,
(continued)

access to users and other
business stakeholders, 234–235

appropriate tools, 237–238
clear use of data model, 234
conceptual, logical, and

physical models, 235–236
cross-checking with the process

model, 236–237
overview, 233
recognition of data modeling, 233

maintaining the model, 242–248
examples of complex changes,

242–247
managing change in modeling

process, 247–248
overview, 242

overview, 231
partitioning large projects, 240–242
roles and responsibilities, 238–240

ORM (Object Role Modeling), 227, 392,
449

“other than the key” exception,
normalization, 47

overlapping foreign keys, 350–352
overlapping tables, 408–409
overloaded attributes, 148

P
packaged software, 26
page, unit of storage, 363
parallel (blended) approaches, 22
partially-null keys, 204–206
partitions, 126, 128, 371
patterns and generic models, 277–284

adapting generic models from other
applications, 279–282

developing generic model, 282–284
generic human resources model, 278
generic insurance model, 280
overview, 277
using generic model, 278–279
using patterns, 277–278
when there is no generic model, 284

performance, 15
and logical model, 41
normalization myth, 359
and number of tables, 52
use of database index, 364

physical database design, 359–387
crafting queries to run faster, 372–374
definition, 19
design decisions not affecting

program logic, 363–372
data storage, 370–372
indexes, 363–370
memory usage, 372
overview, 363

inputs to database design, 361–362
logical schema decisions, 374–384

additional tables, 383–384
alternative implementation of

relationships, 374
denormalization, 378–379
duplication, 377–378
hierarchies, 380–382
integer storage of dates and times,

382–383
overview, 374
ranges, 379–380

table merging, 376–377
table splitting, 374–376

options available to database
designer, 362–363

overview, 359–360
views, 384–387

and denormalization, 385–386
inclusion of derived attributes, 385
overview, 384–385
of split and merged tables,

386–387
of supertypes and subtypes, 385

physical database designers, role in data
modeling, 23

physical data model, 16, 18
physical schema, physical database

design, 360
planning, role in data architecture, 504
prescription vs. description, 7
“primary generator” idea, 276, 284
primary keys, 32, 54, 183–206

basic requirements and trade-offs,
183–185

applicability, 185–186
minimality, 188–189
overview, 183–185
stability, 189–191
uniqueness, 186–188

determining, 42, 46–47
guidelines for choosing keys, 202–204

overview, 202
tables implementing

dependent entity classes and
many-to-many
relationships, 203–204

tables implementing
independent entity classes,
202–203

logically-null, 205
minimum column requirement, 46
multiple candidate keys,

201–202
choosing primary key, 201
normalization issues, 201–202
overview, 201

overview, 183
partially-null keys, 204–206
requirements and tradeoffs, 183
running out of numbers, 199
selection, enforcement of rules

through, 445–446
specifying, 341–342
stability, 189
structured keys, 194–200

overview, 194–195
performance issues, 198–199
programming and structured keys,

197–198
running out of numbers, 199–200
when to use, 196–197

surrogate keys, 191–194
matching real-world

identifiers, 191–192
overview, 191
performance and

programming issues, 191
subtypes and surrogate keys,

193–194
whether should be visible, 192–193

unique identification, 42, 184
primitive data, normalization, 59
process-driven approaches, 20

process-driven data modeling
approaches, 20

Process/Entity Matrix, see also CRUD
matrix, 361

process modelers, role in data
modeling, 23

process models, 3, 261
compared with subtypes and

supertypes, 129
input to database design, 361
sequence relative to data

model, 20
project management, see

organizing data modeling task
prototyping approaches, 23

Q
“quality,” data warehouse update, 486
quantifier attributes, 156, 163
queries, index usage by, 364–365
query optimization, 372

R
ranges, 341, 379–380
Rapid Applications Development

(RAD), 23
Rational Rose tool, 356
recursive relationships, rules on,

446–450
analogous rules in many-to-many

relationships, 450
documenting, 449
implementing constraints on, 449–450
overview, 446–447
types of, 447–449

redundancy, and normalization, 408–410
reference databases, 509
reference tables, 440–441
referential integrity, 56–57, 438–439

implemented with key delete, 438
implemented with key update, 438
implemented with reference

creation, 438
implications of subtypes and

supertypes, 332
rules, 419

reflexive relationship, 449
relational database management system

(RDBMS), 17
relational model, 207
relational notation, 38
relationships, 68, 75, see also entity-

relationship modeling; many-to-
many relationships; one-to-many
relationships

acyclic relationship, 448
antisymmetric relationship, 449
entity-relationship modeling, 207
examples of, 85–86
generalization of, 138–142

one and many-to-many
relationships, 141–142

overview, 138
several one-to-many

relationships to single
one-to-many relationship,
139–141

single many-to-many
relationship, 138–139

higher degree relationships, 98
intransitive relationships, 448

530 ■ Index

Simsion&Witt_Index 10/14/04 3:22 AM Page 530

relationships, (continued)
irreflexive relationships, 448
meaningful relationship names, 103
“n-ary relationships,” 328
nondirectional relationships, 101
notations, alternatives, 83
reflexive relationships, 449
self-referencing, 86, 94, 291
verification, in data structure

diagram, 71
relationship table, 89
repeating groups and First Normal

Form, 43–47
data reusability and program com-

plexity, 43–44
determining the primary key of new

table, 46–47
limit on maximum number of occur-

rences, 43
overview, 43
recognizing repeating groups, 44–45
removing repeating groups, 45–46

replication, 372
resolution entities, 90
resolution table, 89
reusability, 11–12, 21
reverse engineering, 259–260, 343
“riding the trucks,” 258
ring constraints, 449
rounded corners, in E-R diagrams, 77
row-level lock, 374

S
schema, 18
Second Normal Form (2NF), 47–53

determinants, 48–51
eliminating redundancy, 48
overview, 47

self-referencing relationships, 86, 94,
291, 468–469

senior management, data
architecture, 506–507

senior managers, interviews with,
256–257

sequence, in normalization, 46
sequential tables, indexed, 369
sibling subtypes, 119
single instance, E-R class names, 77
singularity, primary key, 192
Sixth Normal Form (6NF), 392
SMEs. See subject matter experts
snapshots, 458–462
snowflake schema, data mart design,

490–491
solidus (“/”), UML, 222
sorting index, 366
sound structure, basics of, 33–63

choice, creativity, and
normalization, 60–62

complex example, 37–40
definitions and refinements, 53–59

candidate keys, 54
column and table names, 59
denormalization and

unnormalization, 58–59
determinants and functional

dependency, 53–54
foreign keys, 55–56
more formal definition of Third

normal Form, 55
overview, 53

primary keys, 54
referential integrity, 56–57

determining columns, 40–42
derivable data, 41
determining primary key, 42
hidden data, 41
one fact per column, 40–41
overview, 40

informal example of
normalization, 34–36

limit on maximum number of
occurrences, 51–53

overview, 33–34
relational notation, 36–37
repeating groups and first normal

form, 43–47
data reusability and program

complexity, 43–44
determining primary key of new

table, 46–47
limit on maximum number of

occurrences, 43
overview, 43
recognizing repeating groups,

44–45
removing repeating groups, 45–46

Second Normal Form, 47–53
determinants, 48–51
eliminating redundancy, 48
overview, 47
problems with tables in First

Normal Form, 47–48
terminology, 62–63
Third Normal Form, 47–53

determinants, 48–51
eliminating redundancy, 48
overview, 47, 51
performance issues, 52–53
whether same as “fully

normalized,” 52
specialization in entity class

selection, 113
split foreign keys, 352–354
split tables, 374–376, 386–387
SQL99-compliant DBMS, user-defined

datatypes (UDT), 162
SQL99 set type constructor, 87, 94, 327,

328, 345, 374
stability, 12–13

primary keys, 189
real-world example, 43

star schema, data mart design, 488
“statement of requirements”

justification, 252
strict relational modeling, limitation

of, 209
structural data rules, 418
structured approach, data model

presentation, 129–130
structured keys, 194–200

overview, 194–195
performance issues, 198–199
programming and structured keys,

197–198
running out of numbers, 199–200
when to use, 196–197

subject databases, 502, 509
subjectivity, in E-R, 77
subject matter experts (SMEs)

checking 5NF, 407
interviews with, 257
role in data modeling, 23, 50, 68

subtypes and supertypes, 31, 111–143
adding new supertype in project, 242
and attribute grouping, 135
attributes of, 119–120
benefits of, 128–133

classifying common patterns,
132–133

communication, 130–132
creativity, 129
input to design of views, 132
overview, 128
presentation, 129–130

and business rules, 424–427
definitions, 119
diagramming conventions, 117–119

boxes in boxes, 117–118
overview, 117
UML conventions, 118–119
using tools that do not support

subtyping, 119
different levels of generalization,

111–113
as entity classes, 116–117
generalization of relationships,

138–142
one and many-to-many

relationships, 141–142
overview, 138
several one-to-many relationships

to single one-to-many
relationship, 139–141

single many-to-many relationship,
138–139

hierarchy of subtypes, 127–128
implementing, 328–334

implications for process design,
334

in logical data model, 331
at multiple levels of generalization,

330
other options, 330–332
overview, 328
at single level of generalization,

328–330
implementing referential integrity, 332
implications for process design, 334
modeling only, 124
nonoverlapping and exhaustive,

120–122
overlapping subtypes and roles,

123–127
ignoring real-world overlaps,

123–124
modeling only supertype, 124
modeling roles as participation in

relationships, 124–125
multiple partitions, 126–127
overview, 123
using role entity classes and one-

to-one relationships, 125–126
overview, 111
and processes, 136
rules versus stability, 113–115
and surrogate keys, 193–194
theoretical background, 142–143
using, 115–116
views of, 385
when to stop supertyping and

subtyping, 134–138
capturing meaning and rules,

137–138
communication, 136

Index ■ 531

Simsion&Witt_Index 10/14/04 3:22 AM Page 531

subtypes and supertypes, (continued)
differences in identifiers, 134–135
different attribute groups, 135
different processes, 136
different relationships, 135
migration from one subtype to

another, 136
overview, 134

surrogate keys, 184–185, 187, 191–194
matching real-world identifiers,

191–192
overview, 191
performance and programming

issues, 191
subtypes and surrogate keys, 193–194
visibility, 192
whether should be visible, 192–193

symmetric relationship, 448
symmetry leading to duplication,

conceptual models, 294
system boundaries and data driven

design, 21
system-generated attribute identifiers,

154–155
systems integration manager, role in

data modeling, 23

T
“table driven” logic, 261, 432
table lock, 374
tables, 4–5

implementing dependent entity
classes and many-to-many
relationships, 203–204

implementing independent entity
classes, 202–203

merging, 376–377
names of, 59, 354–355
overlapping, 408–409
partitioning, 371
space usage, 370
split tables, 374–376, 386–387

table specification, 325–334
classification entity classes, 325–326
exclusion of entity classes from

database, 325
many-to-many relationship

implementation, 326–327
overview, 325
relationships involving more than two

entity classes, 328
standard transformation, 325
supertype/subtype implementation,

328–334
ternary (3-entity class) relationship,

96–97
Third Normal Form (3NF), 47–53, 55, 392

determinants, 48–51

eliminating redundancy, 48
formal definition, 55
overview, 47, 51
performance issues, 52–53
whether same as “fully normalized,” 52

three-schema architecture and terminol-
ogy, 17–20

three-stage approach, overall project
modeling, 235

three-way relationships, 99
tie-breaker identifier attribute, 155
tie-breaker keys, 187
time-dependent data, 451–474

archiving, 463
audit trails and snapshots, 452–462

basic audit trail approach, 453–458
basic snapshot approach, 458–462
handling nonnumeric data, 458
overview, 452–453

changes to the data structure, 473
Date tables, 469
handling deletions, 463
modeling time-dependent relation-

ships, 464–469
many-to-many relationships,

466–468
one-to-many relationships, 464–466
overview, 464
self-referencing relationships,

468–469
overview, 451
sequences and versions, 462
temporal business rules, 469–473
when to add time dimension, 452

times
integer storage of, 382–383
in quantifier attributes, 164, 165

top down analysis, bypassing
normalization, 74

top-down modeling, 288
top-level object classes, 265–266
total relationship, facilitated by

supertype modeling, 124
“town planning” paradigm, data

architecture, 505
transformations

attributes to columns, 334
conceptual to logical model, 322

transforming entity classes, 325
translate relationships into assertions, 84
“trickle feed,” data warehouse update,

479
“trivial” splits, 402
tuples, 63

U
UML (Unified Modeling Language), 22

association classes, 222–223

class diagrams in, 29
composition, 225
conceptual data model, 221
“CRUD matrix,” 224, 237
diagramming conventions, 118–119
family tree model example, 118
limitations, 220
object class diagrams, 220–227

advantages of UML, 222–227
conceptual data model in UML,

221–222
overview, 220–221

objects and E-R entity classes, 224
solidus (“/”), 222
“useless cases,” 224
web source for book diagrams, 29

unique index considerations, 366
uniqueness, candidate primary keys, 186
unnormalization, 58–59
unusual but legitimate relationships, 107
update anomalies, 391
“useless cases,” UML, 224
“user representative,” 255. see also

subject matter experts
users, role in data modeling, 23

V
validation rules, 418
views, 18, 132

and denormalization, 385–386
inclusion of derived attributes, 385
of split and merged tables, 386–387
of supertypes and subtypes, 385

W
waterfall, systems development

methodology, 23, 232
weak key, Chen E-R, 219
whiteboards, 237–238
workshops, see interviews and

workshops

X
XML (Extensible Markup Language),

28, 503

Y
years, in quantifier attributes, 165

Z
Zachman Enterprise Architecture

Framework, 236, 264

532 ■ Index

Simsion&Witt_Index 10/14/04 3:22 AM Page 532

