

•
Table of
Content
s

Exceptional C++ Style 40 New Engineering Puzzles, Programming
Problems, and Solutions
By Herb Sutter

Publisher: Addison Wesley
Pub Date: August 02, 2004

ISBN: 0-201-76042-8
Pages: 352

 Preface

 Style or Substance?

 The Exceptional Socrates

 What I Assume You Know

 How to Read This Book

 ##. The Topic of This Item

 Acknowledgments

 Generic Programming and the C++ Standard Library

 Chapter 1. Uses and Abuses of vector

 Solution

 Chapter 2. The String Formatters of Manor Farm, Part 1: sprintf

 Solution

 Chapter 3. The String Formatters of Manor Farm, Part 2: Standard (or Blindingly Elegant)
Alternatives

 Solution

 Chapter 4. Standard Library Member Functions

 Solution

 Chapter 5. Flavors of Genericity, Part 1: Covering the Basis [sic]

 Solution

 Chapter 6. Flavors of Genericity, Part 2: Generic Enough?

 Solution

 Chapter 7. Why Not Specialize Function Templates?

 Solution

 Chapter 8. Befriending Templates

 Solution

 Chapter 9. Export Restrictions, Part 1: Fundamentals

 Solution

 A Tale of Two Models

 Illustrating the Issues

 Export InAction [sic]

 Issue the First: Source Exposure

 Issue the Second: Dependencies and Build Times

 Summary

 Chapter 10. Export Restrictions, Part 2: Interactions, Usability Issues, and Guidelines

 Solution

 Exception Safety Issues and Techniques

 Chapter 11. Try and Catch Me

 Solution

 Chapter 12. Exception Safety: Is It Worth It?

 Solution

 Chapter 13. A Pragmatic Look at Exception Specifications

 Solution

 C lass Design, Inheritance, and Polymorphism

 Chapter 14. Order, Order!

 Solution

 Chapter 15. Uses and Abuses of Access Rights

Page 1

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.informit.com/author_bio.asp/ISBN=0201760428
http://www.processtext.com/abcchm.html

 Solution

 Chapter 16. (Mostly) Private

 Solution

 Chapter 17. Encapsulation

 Solution

 Chapter 18. Virtuality

 Solution

 Chapter 19. Enforcing Rules for Derived C lasses

 Solution

 Memory and Resource Management

 Chapter 20. Containers in Memory, Part 1: Levels of Memory Management

 Solution

 Chapter 21. Containers in Memory, Part 2: How Big Is It Really?

 Solution

 Chapter 22. To new, Perchance to throw, Part 1: The Many Faces of new

 Solution

 In-Place, Plain, and Nothrow new

 C lass-Specific new

 A Name-Hiding Surprise

 Summary

 Chapter 23. To new, Perchance to throw, Part 2: Pragmatic Issues in Memory Management

 Solution

 Optimization and Efficiency

 Chapter 24. Constant Optimization?

 Solution

 Chapter 25. inline Redux

 Solution

 Chapter 26. Data Formats and Efficiency, Part 1: When Compression Is the Name of the Game

 Solution

 Chapter 27. Data Formats and Efficiency, Part 2: (Even Less) Bit-Twiddling

 Solution

 Traps, Pitfalls, and Puzzlers

 Chapter 28. Keywords That Aren't (or, Comments by Another Name)

 Solution

 Chapter 29. Is It Initialization?

 Solution

 Chapter 30. double or Nothing

 Solution

 Chapter 31. Amok Code

 Solution

 Chapter 32. Slight Typos? Graphic Language and Other Curiosities

 Solution

 Chapter 33. Operators, Operators Everywhere

 Solution

 Style Case Studies

 Chapter 34. Index Tables

 Solution

 Chapter 35. Generic Callbacks

 Solution

 Chapter 36. Construction Unions

 Solution

 Chapter 37. Monoliths "Unstrung," Part 1: A Look at std::string

 Solution

 Summary

 Chapter 38. Monoliths "Unstrung," Part 2: Refactoring std::string

 Solution

 Chapter 39. Monoliths "Unstrung," Part 3: std::string Diminishing

 Solution

 Chapter 40. Monoliths "Unstrung," Part 4: std::string Redux

 Solution

Page 2

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Bibliography

Page 3

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Preface
The scene: Budapest. A hot summer evening.
Looking across the Danube, with a view of the
eastern bank.

In the cover photo showing this pastel-colored
European scene, what's the first building that jumps
out at you? Almost certainly it's the Parliament
building on the left. The massive neo-Gothic building
catches the eye with its graceful dome, thrusting
spires, dozens of exterior statues and other ornate
embellishmentsand catches the eye all the more so
because it stands in stark contrast to the more
utilitarian buildings around it on the Danube
waterfront.

Why the difference? For one thing, the Parliament
building was completed in 1902; the other stark,
utilitarian buildings largely date from Hungary's stark
and utilitarian Communist era, between World War
II and 1989.

"Aha," you might think, "that explains the difference.
All very nice, of course, but what on earth does this
have to do with Exceptional C++ Style?"

Certainly the expression of style has much to do with
the philosophy and mindset that goes into it, and that
is true whether we're talking about building
architecture or software architecture. I feel certain
that you have seen software designed on the scale
and ornateness of the Parliament building; I feel
equally sure that you have seen utilitarian blocky (or
should that be "bloc-y"?) software buildings. On the
extremes, I am just as convinced that you have seen
many gilded lilies that err on the side of style, and
many ugly ducklings that err on the side of pushing
code out the door (and don't even turn out to be
swans).

Page 4

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Style or Substance?
Which is better?

Don't be too sure you know the answer. For one thing, "better" is
an unuseful term unless you define specific measures. Better for
what? Better in which cases? For another, the answer is almost
always a balance of the two and begins with: "It depends…"

This book is about finding that balance in many detailed aspects of
software design and implementation in C++, and knowing your
tools and materials well to know when they are appropriate.

Quick: Is the Parliament building a better building, crafted with
better style, than the comparatively drab ones around it? It's easy
to say yes unthinkinglyuntil you have to consider building and
maintaining it:

 Construction. When it was completed in 1902, this was
the largest Parliament building in the world. It also cost a
horrendous amount of time, effort, and money to produce
and was considered by many to be a "white elephant,"
which means a beautiful thing that comes at too high a
cost. Consider: By comparison, how many of the ugly,
drab, and perhaps outright boring concrete buildings could
have been built for the same investment? And you work in
an industry where the time-to-market pressure is far
fiercer than the time pressure was in the age of this
Parliament.

 Maintenance. Those of you familiar with the Parliament
will note that in this picture the Parliament building was
under renovation and had been in that state for a number
of years, at a controversial and arguably ruinous cost. But
there's more to the maintenance story than just this recent
round of expensive renovations: Sadly, the beautiful
sculptures you can see on the exterior of the building were
made of the wrong materials, materials that were too soft.
Soon after the building was originally completed, those
sculptures became the subjects of a continual repair
program under which they have been replaced with
successively harder and more durable materials, and the
heavy maintenance of the "bells and whistles" begun in the
early 1900s has gone on continuously ever sincefor the
past century.

Likewise in software, it is important to find the right balance
between construction cost and functionality, between elegance and

Page 5

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

maintainability, between the potential for growth and excessive
ornateness.

We deal with these and similar tradeoffs every day as we go about
software design and architecture in C++. Among the questions this
book tackles are the following: Does making your code
exception-safe make it better? If so, for what meanings of "better,"
and when might it not be better? That question is addressed
specifically in this book. What about encapsulation; does it make
your software better? Why? When doesn't it? If you're wondering,
read on. Is inlining a good optimization, and when is it done? (Be
very very careful when you answer this one.) What does C++'s
export feature have in common with the Parliament building?
What does std::string have in common with the monolithic
architecture of the Danube waterfront in our idyllic little scene?

Finally, after considering many C++ techniques and features, at
the end of this book we'll spend our last section looking at real
examples of published code and see what the authors did well,
what they did poorly, and what alternatives would perhaps have
struck a better balance between workmanlike substance and
exceptional C++ style.

What do I hope that this and the other Exceptional C++ books
will help to do for you? I hope they will add perspective, add
knowledge of details and interrelationships, and add understanding
of how balances can be struck in your software's favor.

Please look one more time at the front cover photo, at the top
rightthat's it, right there. We should want to be in the balloon flying
over the city, enjoying the full perspective of the whole view,
seeing how style and substance coexist and interact and interrelate
and intermingle, knowing how to make the tradeoffs and strike the
right balances, each choice in its place in the integral and thriving
whole.

Yes, I think Budapest is a great cityso rich with history, so replete
with metaphor.

Page 6

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The Exceptional Socrates
The Greek philosopher Socrates taught by asking his
students questionsquestions designed to guide them
and help them draw conclusions from what they
already knew and to show them how the things they
were learning related to each other and to their
existing knowledge. This method has become so
famous that we now call it the Socratic method.
From our point of view as students, Socrates'
legendary approach involves us, makes us think, and
helps us relate and apply what we already know to
new information.

This book takes a page from Socrates, as did its
predecessors, Exceptional C++ [Sutter00] and
More Exceptional C++ [Sutter02]. It assumes
you're involved in some aspect of writing production
C++ software today, and it uses a question-answer
format to teach how to make effective use of
standard C++ and its standard library, with a
particular focus on sound software engineering in
modern C++. Many of the problems are drawn
directly from experiences I and others have
encountered while working with production C++
code. The goal of the questions is to help you draw
conclusions from things you already know as well as
things you've just learned, and to show how they
interrelate. The puzzles will show how to reason
about C++ design and programming issuessome of
them common issues, some not so common; some of
them plain issues, some more esoteric; and a couple
because, well, just because they're fun.

This book is about all aspects of C++. I don't mean
to say that it touches on every detail of C++that
would require many more pagesbut rather that it
draws from the wide palette of the C++ language
and library features to show how apparently
unrelated items can be used together to synthesize
novel solutions to common problems. It also shows
how apparently unrelated parts of the palette
interrelate on their own, even when you don't want
them to, and what to do about it. You will find
material here about templates and namespaces,
exceptions and inheritance, solid class design and
design patterns, generic programming and macro

Page 7

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

magicand not just as randomized tidbits, but as
cohesive Items showing the interrelationships among
all these parts of modern C++.

Exceptional C++ Style continues where
Exceptional C++ and More Exceptional C++ left
off. This book follows in the tradition of the first two:
It delivers new material, organized in bite-sized Items
and grouped into themed sections. Readers of the
first book will find some familiar section themes, now
including new material, such as exception safety,
generic programming, and optimization and memory
management techniques. The books overlap in
structure and theme but not in content. This book
continues the strong emphasis on generic
programming and on using the C++ standard library
effectively, including coverage of important template
and generic programming techniques.

Versions of most Items originally appeared in
magazine columns and on the Internet, particularly as
print columns and articles I've written for C/C++
Users Journal, Dr. Dobb's Journal, the former
C++ Report, and other publications, and also as
Guru of the Week [GotW] issues #63 to #86. The
material in this book has been significantly revised,
expanded, corrected, and updated since those initial
versions, and this book (along with its de rigueur
errata list available at www.gotw.ca) should be
treated as the current and authoritative version of that
original material.

Page 8

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.gotw.ca
http://www.processtext.com/abcchm.html

What I Assume You Know
I expect that you already know the basics of C++. If
you don't, start with a good C++ introduction and
overview. Good choices are a classic tome such as
Bjarne Stroustrup's The C++ Programming
Language [Stroustrup00] or Stan Lippman and
Josée Lajoie's C++ Primer, Third Edition [
Lippman98]. Next, be sure to pick up a style guide
such as Scott Meyers' classic Effective C++ books
[Meyers96, Meyers97]. I find the browser-based
CD version [Meyers99] convenient and useful.

Page 9

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

How to Read This Book
Each Item in this book is presented as a puzzle or
problem, with an introductory header that resembles
the following:

Page 10

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

##. The Topic of
This Item
Difficulty: #

A few words about what this Item will cover.

The topic tag and difficulty rating gives you a hint of
what you're in for, and typically there are both
introductory/review questions ("JG," a term for a
new junior-grade military officer) leading to the main
questions ("Guru"). Note that the difficulty rating is
my subjective guess at how difficult I expect most
people will find each problem, so you might well find
that a "7" problem is easier for you than some "5"
problem. Since writing Exceptional C++ [Sutter00]
and More Exceptional C++ [Sutter02], I've
regularly received e-mail saying that "Item #N is
easier (or harder) than that!" It's common for
different people to vote "easier!" and "harder!" for
the same Item. Ratings are personal; any Item's
actual difficulty for you depends on your knowledge
and experience and could be easier or harder for
someone else. In most cases, though, you should find
the rating to be a reasonable guide to what to expect.

You might choose to read the whole book front to
back; that's great, but you don't have to. You might
decide to read all the Items in a section together
because you're particularly interested in that section's
topic; that's cool too. Except where there are what I
call a "miniseries" of related problems which you'll
see designated as Part 1, Part 2, and so on, the
Items are pretty independent, and you should feel
free to jump around, following the many
cross-references among the Items in the book, as
well as the many references to the first two
Exceptional C++ books. The only guidance I'll
offer is that the miniseries are designed to be read
consecutively as a group; other than that, the choice
is yours.

Unless I call something a complete program, it's
probably not. Remember that the code examples are
usually just snippets or partial programs and aren't
expected to compile in isolation. You'll usually have

Page 11

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

to provide some obvious scaffolding to make a
complete program out of the snippet shown.

Finally, a word about URLs: On the web, stuff
moves. In particular, stuff I have no control over
moves. That makes it a real pain to publish random
web URLs in a print book lest they become out of
date before the book makes it to the printer, never
mind after it's been sitting on your desk for five
years. When I reference other peoples' articles or
web sites in this book, I do it via a URL on my own
web site, www.gotw.ca, which I can control and
which contains just a straight redirect to the real web
page. Nearly all the other works I reference are
listed in the Bibliography, and I've provided an online
version with active hyperlinks. If you find that a link
printed in this book no longer works, send me e-mail
and tell me; I'll update that redirector to point to the
new page's location (if I can find the page again) or
to say that the page no longer exists (if I can't). Either
way, this book's URLs will stay up to date despite
the rigors of print media in an Internet world. Whew.

Page 12

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.gotw.ca
http://www.processtext.com/abcchm.html

Acknowledgments
My thanks go first and most of all to my wife Tina for
her enduring love and support, and to all my family
for always being there, during this project and
otherwise. Even when I had to "go dark" sometimes
to crank out another few articles or edit another few
Items, their patience knew no bounds. Without their
patience and kindness this book would never have
come to exist in its current form.

Our little puppy Frankie offered her own valuable
contribution, namely wanting to playeven when I was
working, thus forcing me to come up for air every
once in a while. Frankie knows nothing whatever
about software architecture or programming
language design or even code micro-optimizations,
but she's exuberantly happy anyway. Hmm.

Many thanks to series editor Bjarne Stroustrup, to
editors Peter Gordon and Debbie Lafferty, and to
Tyrrell Albaugh, Bernard Gaffney, Curt Johnson,
Chanda Leary-Coutu, Charles Leddy, Malinda
McCain, Chuti Prasertsith, and the rest of the
Addison-Wesley team for their assistance and
persistence during this project. It's hard to imagine a
better bunch of people to work with, and their
enthusiasm and cooperation has helped make this
book everything I'd hoped it would become.

There is one other group of people who deserve
thanks and credit, namely the many expert reviewers
who generously offered their insightful comments and
savage criticisms on all or part of this material exactly
where needed. Their efforts have made the text you
hold in your hands that much more complete, more
readable, and more useful than it would otherwise
have been. Special thanks for their technical
feedback to series editor Bjarne Stroustrup, and to
the following people who contributed comments on
various parts of this material as it was developed:
Dave Abrahams, Steve Adamczyk, Andrei
Alexandrescu, Chuck Allison, Matt Austern, Joerg
Barfurth, Pete Becker, Brandon Bray, Steve
Dewhurst, Jonathan Caves, Peter Dimov, Javier
Estrada, Attila Fehér, Marco Dalla Gasperina, Doug
Gregor, Mark Hall, Kevlin Henney, Howard

Page 13

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Hinnant, Cay Horstmann, Jim Hyslop, Mark E.
Kaminsky, Dennis Mancl, Brian McNamara, Scott
Meyers, Jeff Peil, John Potter, P. J. Plauger, Martin
Sebor, James Slaughter, Nikolai Smirnov, John
Spicer, Jan Christiaan van Winkel, Daveed
Vandevoorde, and Bill Wade. The remaining errors,
omissions, and shameless puns are mine, not theirs.

Herb Sutter
Seattle, May 2004

Page 14

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Generic
Programming and
the C++ Standard
Library
One of C++'s most powerful features is its support
for generic programming. This power is reflected
directly in the flexibility of the C++ standard library,
especially in its containers, iterators, and algorithms
portion, originally known as the standard template
library (STL).

Like More Exceptional C++ [Sutter02], this book
opens with Items that focus our attention on some
familiar parts of the STL, notably vector and
string, as well as on some that might be less
familiar. How can you avoid common gotchas when
using the standard library's most basic container,
vector ? How would you perform common C-style
string manipulation in C++? What lessons, good and
bad and down-right ugly, can we learn about library
design from the STL itself?

After getting our feet wet with these opening looks
into the predefined STL templates themselves, we'll
delve into more general issues with templates and
generic programming in C++. How can we avoid
making our own templated code need-lessly (and
quite unintentionally) nongeneric? Why is it actually a
bad idea to specialize function templates, and what
should we do instead? How can we correctly and
portably do something as seemingly simple as grant
friendship in the world of templates? And what's with
this funny little export keyword, anyway?

This and more, as we delve into topics related to
generic programming and the C++ standard library.

Page 15

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 1. Uses and Abuses of vector
Difficulty: 4

Almost everybody uses std::vector, and that's good. Unfortunately, many people
misunderstand some of its semantics and end up unwittingly using it in surprising and dangerous
ways. How many of the subtle problems illustrated in this Item might be lurking in your current
program?

JG Question
1. Given a vector<int> v, what is the difference between the lines marked A and

B?
2.
3. void f(vector<int>& v) {

4. v[0]; // A

5. v.at(0); // B

6. }

Guru Question
2. Consider the following code:
3.
4. vector<int> v;

5.
6. v.reserve(2);

7. assert(v.capacity() == 2);

8. v[0] = 1;

9. v[1] = 2;

10. for(vector<int>::iterator i = v.begin(); i < v.end(); i++) {
11. cout << *i << endl;
12. }
13.
14. cout << v[0];
15. v.reserve(100);
16. assert(v.capacity() == 100);
17. cout << v[0];
18.
19. v[2] = 3;
20. v[3] = 4;
21. // …
22. v[99] = 100;
23. for(vector<int>::iterator i = v.begin(); i < v.end(); i++) {

Page 16

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

24. cout << *i << endl;
25. }

Critique this code. Consider both style and correctness.

Page 17

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Accessing Vector Elements

1. Given a vector<int> v, what is the difference between the lines marked A
and B?

2.
3. // Example 1-1: [] vs. at

4. //

5. void f(vector<int>& v) {

6. v[0]; // A

7. v.at(0); // B

8. }

In Example 1-1, if v is not empty then there is no difference between lines A and B. If v is
empty, then line B is guaranteed to throw a std::out_of_range exception, but there's
no telling what line A might do.

There are two ways to access contained elements within a vector. The first,
vector<T>::at, is required to perform bounds-checking to ensure that the vector
actually contains the requested element. It doesn't make sense to ask for, say, the 100th
element in a vector that contains only 10 elements at the moment, and if you try to do
such a thing, at will protest by throwing a std::out_of_range hissy fit (also known as
an exception).

On the other hand, vector<T>::operator[] is allowed, but not required, to perform
bounds-checking. There's not a breath of wording in the standard's specification for
operator[] that says anything about bounds-checking, but neither is there any
requirement that it have an exception specification, so your standard library implementer is
free to add bounds-checking to operator[] too. If you use operator[] to ask for an
element that's not in the vector, you're on your own, and the standard makes no
guarantees about what will happen (although your standard library implementation's
documentation might)your program may crash immediately, the call to operator[] might
throw an exception, or things might seem to work and occasionally and/or mysteriously fail.

Given that bounds-checking protects us against many common problems, why isn't
operator[] required to perform bounds-checking? The short answer is: Efficiency.
Always checking bounds would cause a (possibly slight) performance overhead on all
programs, even ones that never violate bounds. The spirit of C++ includes the dictum that,
by and large, you shouldn't have to pay for what you don't use, so bounds-checking isn't
required for operator[]. In this case we have an additional reason to want the efficiency:
vectors are intended to be used instead of built-in arrays, and so should be as efficient as
built-in arrays, which don't do bounds-checking. If you want to be sure that bounds get
checked, use at instead.

Size-ing Up Vector

Page 18

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Let's turn now to Example 1-2, which manipulates a vector<int> by using a few simple
operations.

2. Consider the following code:
3.
4. // Example 1-2: Some fun with vectors

5. //

6. vector<int> v;

7.
8. v.reserve(2);

9. assert(v.capacity() == 2);

This assertion has two problems, one substantive and one stylistic.

First, the substantive problem is that this assertion might fail. Why might it fail? Because the
call to reserve will guarantee that the vector's capacity is at least 2but it might also be
greater than 2. Indeed it is likely to be greater because a vector's size must grow
exponentially and so typical implementations might choose to always grow the internal
buffer on exponentially increasing boundaries even when specific sizes are requested via
reserve. So this comparison should instead test by using >=, not strict equality:

assert(v.capacity() >= 2);

Second, the stylistic problem is that the assertion (even the corrected version) is redundant.
Why? Because the standard already guarantees what is here being asserted. Why add
needless clutter by testing for it explicitly? This doesn't make sense unless you suspect a
bug in the standard library implementation you're using, in which case you have bigger
problems.

v[0] = 1;

v[1] = 2;

Both of these lines are flat-out errors, but they might be hard-to-find flat-out errors
because they'll likely "work" after a fashion on your implementation of the standard library.

There's a big difference between size (which goes with resize) and capacity (which
goes with reserve):

 size tells you how many elements are currently actually present in the container,
and resize adjusts the actual contents of the container to be the specified size by
adding or removing elements at the end. Both functions are available for list,
vector, and deque, but not other containers.

 capacity tells you how many elements have room before adding another would
force the vector to allocate more space, and reserve grows (never shrinks) into
a larger internal buffer if necessary to ensure at least the specified space is
available. Both functions are available only for vector.

In this case, we used v.reserve(2) and therefore know that v.capacity() >= 2, and
that's fine as far as it goesbut we never actually added any elements to v, so v is still empty!

Page 19

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

At this point v just happens to have room for two or more elements.

Guideline
Remember the difference between size/resize and capacity/reserve.

We can safely use operator[] (or at) only to modify elements that are actually present,
which means that they count toward size. At first you might wonder why operator[]
couldn't just be smart enough to add the element if it's not already there, but if
operator[] were allowed to work this way, you could create a vector with "holes" in it!
For example, consider:

vector<int> v;

v.reserve(100);

v[99] = 42; // an error, but for the sake of discussion let's say it

was allowed…

// … then at this point what can we say about the values of

v[0..98]?

Alas, because operator[] isn't required to perform range-checking, on most
implementations the expression v[0] will simply return a reference to the not-yet-used
space in the vector's internal buffer where the first element would eventually go.
Therefore, the statement v[0] = 1; will probably appear to work, kind of, sort of, in that
if the program were to cout << v[0] now, the result would probably be 1, just as
(mis)expected.

Again, whether this will actually happen on the implementation you're using isn't guaranteed;
it's just one typical possibility. The standard puts no requirements on what the
implementation should do with flat-out errors such as writing v[0] for an empty vector v
, because the programmer is assumed to know enough not to write such things. And after
all, if the programmer had wanted the library to perform bounds-checking, then presumably
he would have written v.at(0), right?

Of course, the assignments v[0] = 1; v[1] = 2; would have been fine if the earlier
code had performed a v.resize(2) instead of just a v.reserve(2)but it didn't, so
they're not. Alternatively, it would have been fine to replace them with v.push_back(1);
v.push_back(2); which is the always-safe way to tack elements onto the end of a
container.

for(vector<int>::iterator i = v.begin(); i < v.end(); i++) {

 cout << *i << endl;

}

First, note that this loop prints nothing because of course the vector is still empty. This
might surprise the original programmer, until that programmer realizes that the earlier code
never really added anything to the vectorit was just (dangerously) playing around with
some of the reserved but still-officially-unused space hanging around inside the vector.

Page 20

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Having said that, there is no outright error in this loop, but there are several stylistic
problems that I would comment on if I saw this code in a code review setting. Most are
low-level comments:

1. Be as const correct as possible. The iterator is never used to modify the
vector's contents, so it should be a const_iterator.

2. Prefer comparing iterators with !=, not <. True, because
vector<int>::iterator happens to be a random-access iterator (not
necessarily an int*, of course!), there's no downside to using < in the comparison
with v.end() as shown. But < only works with random-access iterators, whereas
!= works with other iterator types too, so we should routinely use != all the time
unless we really need <. (Note that using != also makes it that much easier to
switch to using a different container in the future, if desired. For example,
std::list's iterators don't support < because they're only bidirectional iterators.)

3. Prefer using prefix -- and ++, instead of postfix. Get in the habit of by default
writing ++i instead of i++ in loops unless you really need the old value of i. For
example, postfix is natural and fine when you're writing something like v[i++] to
access the i-th element and at the same time increment a loop counter.

4. Avoid needless recalculations. In this case, the value returned by v.end doesn't
change during the loop, so instead of recalculating it on every iteration, it might be
worthwhile to precalculate it before the loop begins.

Note: If your implementation's vector<int>::iterator is just an int*, and your
implementation inlines end and does reasonable optimization, it's probable that there's zero
overhead here anyway because the compiler will probably be able to see that the value
returned by end doesn't change and that it can therefore safely hoist the code out of the
loop. This is a pretty common case. However, if your implementation's
vector<int>::iterator is not an int* (for example, in most debugging
implementations it would instead be of class type), the function(s) are not inlined, and/or the
compiler doesn't perform the suggested optimizations, then hoisting the calculation code out
of the loop yourself can make a performance difference.

5. Prefer '\n' to endl. Using endl forces the stream to flush its internal output
buffers. If the stream is buffered and you don't really need a flush each time, just
write a flush once at the end of the loop and your program will perform that much
faster.

Finally, the last comment hits at a higher level:

6. Prefer reusing the standard library's copy and for_each instead of
handcrafting your own loops, where using the standard facilities is clean and
easy. Season to taste. I say "season to taste" because here's one of those places
where taste and aesthetic judgment do matter. In simple cases, copy and
for_each can and do improve readability over handcrafted loops. Beyond those
simple cases, though, unless you have a nice expression template library available,
code written using for_each can get unreadable pretty quickly because the code
in the loop body has to be split off into functors. Sometimes that kind of factoring is
still a good thing; other times it's merely obscure.

Page 21

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

That's why your tastes may vary. Still, in this case I would be tempted to replace the loop
with something like:

copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));

Besides, when you reuse copy like this, you can't get the !=, ++, end, and endl parts
wrong to begin with, because they're done for you. (Of course, this assumes that you don't
want to flush the output stream after each int is output; if you do, there's no way to do it
without writing your own loop instead of reusing std::copy.) Reuse, when applied well,
not only makes code more readable but can also make it better by avoiding some
opportunities for pitfalls.

You can take this a step further and write a container-based algorithm for copyingthat is,
an algorithm that operates on an entire container, not just an iterator range. Doing this
would also automatically get the const_iterator part right. For example:

template<class Container, class OutputIterator>

OutputIterator copy(const Container& c, OutputIterator result) {

 return std::copy(c.begin(), c.end(), result);

}

Here we simply wrap std::copy for an entire container, and because the container is
taken by const& the iterators will automatically be const_iterators.

Guidelines
Be const correct. In particular, use const_iterator when you are
not modifying the contents of a container.

Prefer comparing iterators with !=, not <.

Get in the habit of using the prefix forms of -- and ++ by default, unless
you really need the old value.

Practice reuse: Prefer reusing existing algorithms, particularly standard
algorithms (e.g., for_each), instead of crafting your own loops.

Next, we encounter the code:

cout << v[0];

When the program performs cout << v[0]; now, it will probably produce a 1. This is
because the program scribbled over memory in a way that it shouldn't have, but that will
probably not cause an immediate faultmore's the pity.

v.reserve(100);

assert(v.capacity() == 100);

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Again, this assertion should use >= and then becomes redundant anyway, as before.

cout << v[0];

Surprise! This time, the cout << v[0]; will probably produce a 0the value 1 that we just
set has mysteriously vanished!

Why? Assuming that the reserve(100) actually did trigger a reallocation of v's internal
buffer (i.e., if the initial call to reserve(2) didn't already raise the capacity to 100 or
more), v would only copy over into the new buffer the elements it actually containsand it
doesn't actually think it contains any! The new buffer initially holds zeroes, and that's what
stays there.

v[2] = 3;

v[3] = 4;

// …

v[99] = 100;

No doubt you are even now shaking your head sadly at this deplorable code. This is bad,
bad, bad… but because operator[] isn't required to perform bounds-checking, on most
implementations this will probably silently appear to work and won't cause an immediate
exception or memory trap.

If instead the user had written:

v.at(2) = 3;

v.at(3) = 4;

// …

v.at(99) = 100;

then the problem would have become obvious, because the very first call would have
thrown an out_of_range exception.

for(vector<int>::iterator i = v.begin(); i < v.end(); i++) {

 cout << *i << endl;

}

Again this prints nothing, and I'd consider replacing it with:

copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));

Notice again that this reuse automatically solves the !=, prefix ++, end, and endl
comments toothe opportunity to get them wrong never arises! Good reuse often makes
code automatically faster and safer, too.

Summary

Know the difference between size and capacity. Know also the difference between
operator[] and at, and always use the latter if you want bounds-checked access. Doing
so can easily save you long hours of sweat and tears inside a debugger.

Page 23

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 24

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 2. The String
Formatters of Manor Farm,
Part 1: sprintf
Difficulty: 3

In this Item and the next, an Orwellian look at the mysteries of
sprintf and why the alternatives are always (yes, always)
better.

JG Question
1. What is sprintf? Name as many standard

alternatives to sprintf as you can.

Guru Question
2. What are the major strengths and weaknesses of

sprintf? Be specific.

Page 25

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
"All animals are equal, but some animals are more equal than others."

George Orwell, Animal Farm

1. What is sprintf? Name as many standard alternatives to sprintf as you can.

Consider the following C code that uses sprintf to convert an integer value to a human-readable
string representation, perhaps for output on a report or in a GUI window:

// Example 2-1: Stringizing some data in C, using sprintf.

// PrettyFormat takes an integer, and formats it into the provided output

buffer.

// For formatting purposes, the result must be at least 4 characters wide.

//

void PrettyFormat(int i, char* buf) {

 // Here's the code, neat and simple:

 sprintf(buf, "%4d", i);

}

The $64,000 question is: How would you do this kind of thing in C++?

Well, all right, that's not quite the question because, after all, Example 2-1 is valid C++. The true
$64,000 question is: Throwing off the shackles and limitations of the C standard [C99] on which the
C++ standard [C++03] is based, if indeed they are shackles, isn't there a superior way to do this in
C++ with its classes and templates and so forth?

That's where the question gets interesting, because Example 2-1 is the first of no fewer than four direct,
distinct, and standard ways to accomplish this task. Each of the four ways offers a different tradeoff
among clarity, type safety, run-time safety, and efficiency. Moreover, to paraphrase George Orwell's
revisionist pigs, "all four choices are standard, but some are more standard than others"and, to add
insult to injury, not all of them are from the same standard. They are, in the order I'll discuss them:

 sprintf [C99, C++03]

 snprintf [C99]

 std::stringstream [C++03]

 std::strstream [C++03]

Finally, as though that's not enough, there's a fifth not-yet-standard-but-liable-to become-standard
alternative for simple conversions that don't require special for matting:

 boost::lexical_cast [Boost]

Enough chat; let's dig in.

Page 26

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The Joys and Sorrows of sprintf

2. What are the major strengths and weaknesses of sprintf? Be specific.

The code in Example 2-1 is just one example of how we might use sprintf. I'm going to use
Example 2-1 as a motivating case for discussion, but don't get too tied to this simple PrettyFormat
one-liner. Keep in mind the larger picture: We're interested in looking at how we would normally
choose to format nonstring values as strings in the general case, perhaps in code that's more likely to
change and grow over time than the simple case in Example 2-1.

I'm going to list the major issues involved by analyzing sprintf in more detail. sprintf has two
major advantages and three distinct disadvantages. The two advantages are as follows:

Issue #1: Ease of use and clarity. Once you've learned the commonly used formatting flags and their
combinations, using sprintf is succinct and obvious, not convoluted. It says directly and concisely
what needs to be said. For this, the printf family is hard to beat in most text-formatting work. (True,
most of us still have to look up the more rarely used formatting flags, but they are after all used rarely.)

Issue #2: Maximum efficiency (ability to directly use existing buffers). By using sprintf to put
the result directly into an already-provided buffer, PrettyFormat gets the job done without needing
to perform any dynamic memory allocations or other extra off-to-the-side work. It's given an
already-allocated place to put the output and puts the result directly there.

Caveat lector: Of course, don't put too much weight on efficiency just yet; your application might well
not notice the difference. Never optimize prematurely, but optimize only when timings show that you
really need to do so. Write for clarity first and for speed later if necessary. In this case, never forget
that the efficiency comes at the price of memory management encapsulationIssue #2 is phrased here as
"you get to do your own memory management," but the flip side is "you have to do your own memory
management"!

Alas, as most sprintf users know, the story doesn't end quite there. sprintf also has these
significant drawbacks:

Issue #3: Length safety. Using sprintf is a common source of buffer overrun errors if the
destination buffer doesn't happen to be big enough for the whole output.[1] For example, consider this
calling code:
[1] A common beginner's error is to rely on the width specifier, here 4, which doesn't work, because the width specifier dictates a
minimum width, not a maximum width.

char smallBuf[5];

int value = 42;

PrettyFormat(value, buf); // er, well, sort of okay

assert(value == 42);

In this case, the value 42 happens to be small enough so that the five-byte result "42\0" happens to fit
into smallBuf. But the day the code changes to:

char smallBuf[5];

int value = 12108642;

PrettyFormat(value, buf); // oops

assert(value == 12108642); // likely to fail

Page 27

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

we'll start scribbling past the end of smallBuf, which might be into the bytes of value itself if the
compiler chose a memory layout that put value immediately after smallBuf in memory.

We can't easily make Example 2-1 much safer, though. True, we could change Example 2-1 to take
the length of the buffer and then check sprintf's return value, which will tell after the fact how many
bytes sprintf ended up writing. This gives us something like:

// BAD: A not-at-all-improved PrettyFormat.

//

void PrettyFormat(int i, char* buf, int buflen) {

 if(buflen <= sprintf(buf, "%4d", i)) { // this is no better

 // …and now what? by the time the problem is detected here,

 // we've already corrupted whatever we were going to corrupt

 }

}

That's no solution at all. By the time the error is detected, the overrun has already occurred, we'll
already have scribbled on someone else's bytes, and in bad cases our execution might never even get
to the error-reporting code.[2]

[2] Note that in some cases you can mitigate the buffer length problem, at least in theory, by creating your own formats at run-time. I
say "in theory" because this is usually impractical; the code is always obscure and often fragile. As Bjarne Stroustrup puts it in [
Stroustrup99], speaking of a similar case:

The expert-level alternative is not one I'd care to explain to novices:

char fmt[10];

// create a format string: plain %s can overflow

psprintf(fmt,"%%%ds",max-1);

// read at most max-1 characters into name

scanf(fmt,name);

Issue #4: Type safety. For sprintf, type errors are run-time errors, not compile-time errors, and
they might not even manifest right away. The printf family uses C's variable argument lists, and C
compilers generally don't check the parameter types for such lists.[3] Nearly every C programmer has
had the joy of finding out in subtle and not-so-subtle ways that they got the format specifier wrong, and
all too often such errors are found only after a pressure-filled late-night debugging session spent trying
to duplicate a mysterious crash reported by a key customer.
[3] Using lint-like tools will help to catch this kind of error.

Granted, the code in Example 2-1 is so trivial that it's likely easy enough to maintain now when we
know we're just throwing a single int at sprintf, but even so it's not hard to go wrong if your finger
happens to hit something other than d by mistake.

For example, c happens to be right next to d on most keyboards; if we'd simply mistyped the
sprintf call as

sprintf(buf, "%4c", i); // oops

Page 28

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

then we'd probably see the mistake quite quickly when the output is some character instead of a
number, because sprintf will silently reinterpret the first byte of i as a char value. Alternatively, s is
also right next to d, and if we'd mistyped it as

sprintf(buf, "%4s", i); // oops again

then we'd probably also catch the error quite quickly because the program is likely to crash
immediately or at least intermittently. In this case sprintf will silently reinterpret the integer as a
pointer to char and then happily attempt to follow that pointer into some random region of memory.

But here's a more subtle one: What if we'd instead mistyped d as ld?

sprintf(buf, "%4ld", i); // a subtler error

In this case, the format string is telling sprintf to expect a long int, not just an int, as the first
piece of data to be formatted. This too is bad C code, but the trouble is that not only won't this be a
compile-time error, but it might not even be a run-time error right away. On many popular platforms,
the result will still be the same as before. Why? Because on many popular platforms ints happen to
have the same size and layout as longs. You might not notice this error until you port the code to a
platform where int isn't the same size as long, and even then it might not always produce incorrect
output or immediate crashes.

Finally, consider a related issue.

Issue #5: Templatability. It's very hard to use sprintf in a template. Consider:

template<typename T>

void PrettyFormat(T value, char* buf) {

 sprintf(buf, "%/*what goes here?*/", value);

}

The best (worst?) you could do is declare the primary template and then provide specializations for all
the types that are compatible with sprintf:

// BAD: A kludgy templated PrettyFormat.

//

template<typename T>

void PrettyFormat(T value, char* buf); // note: primary template is not

defined

template<> void PrettyFormat<int>(int value, char* buf) {

 sprintf(buf, "%d", value);

}

template<> void PrettyFormat<char>(char value, char* buf) {

 sprintf(buf, "%c", value);

}

// … etc., ugh …

In summary, here's sprintf:

Page 29

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Sprintf

Standard? Yes: [C90], [C++03], [C99]

Easy to use, good code clarity? Yes

Efficient, no extra allocation? Yes

Length-safe? No

Type-safe? No

Usable in template? No

The other solutions we'll consider in the next Item choose different tradeoffs among these
considerations.

Page 30

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 3. The String
Formatters of Manor Farm,
Part 2: Standard (or Blindingly
Elegant) Alternatives
Difficulty: 6

Our Orwellian look at the mysteries of sprintf concludes with a
comparative analysis of snprintf, std::stringstream,
std::strstream, and the nonstandard but blindingly elegant
boost::lexical_cast.

Guru Question
1. For each of the following alternatives to sprintf, compare

and contrast its strengths and weaknesses, using the analysis
and example code from Item 2:

a. snprintf

b. std::stringstream

c. std::strstream

d. boost::lexical_cast

Page 31

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Alternative #1: snprintf

1. For each of the following alternatives to sprintf, compare and contrast its strengths
and weaknesses, using the analysis and example code from Item 2:

a. snprintf

Of the other choices, sprintf's closest relative is of course snprintf. snprintf adds only one new
facility to sprintf, but it's an important one: the ability to specify the maximum length of the output
buffer, thereby eliminating buffer overruns. Of course, if the buffer is too small, then the output will be
truncated.

snprintf has long been a widely available nonstandard extension present on most major C
implementations. With the advent of the C99 standard [C99], snprintf has "come out" and gone legit,
now officially sanctioned as a standard facility. Until your own compiler is C99-compliant, though, you
might have to use this under a vendor-specific extension name such as _snprintf.

Frankly, you should already have been using snprintf over sprintf anyway, even before snprintf
was standard. Calls to length-unchecked functions such as sprintf are banned in most good coding
standards, and for good reason. The use of unchecked sprintf calls has long been a notoriously
common problem, causing program crashes in general[4] and security weaknesses in particular.[5]

[4] T his is a real problem, and not just with sprintf() but with all length-unchecked calls in the standard C library. T ry a Google
search for "strcpy" and "buffer overflow" to see what new problems have come up this week.

[5] For example, for years it was fashionable for malicious web servers to crash web browsers by sending them very long URLs that were
likely to be longer than the web browser's internal URL string buffer. Browsers that didn't check the length before copying into the
fixed-length buffer ended up writing past the end of the buffer, usually overwriting data but in some cases overwriting code areas with
malicious code that could then be executed. It's surprising just how much software out there was, and is, using unchecked calls.

With snprintf we can correctly write the length-checked version we were trying to create earlier:

// Example 3-1: Stringizing some data in C, using snprintf.

//

void PrettyFormat(int i, char* buf, int buflen) {

 // Here's the code, neat and simple and now a lot safer:

 snprintf(buf, buflen, "%4d", i);

}

Note that it's still possible for the caller to get the buffer length wrong. That means snprintf still isn't as
100% bulletproof for overflow safety as the later alternatives that encapsulate their own resource
management, but it's certainly lots safer and deserves a "Yes" under the "Length-safe?" question. With
sprintf we have no good way to avoid for certain the possibility of buffer overflow; with snprintf we
can ensure it doesn't happen.

Note that some prestandard versions of snprintf behaved slightly differently. In particular, under one
major implementation, if the output fills or would overflow the buffer, the buffer is not zero-terminated. On
such environments, the function would need to be written slightly differently to account for the

Page 32

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nonstandard behavior:

// Stringizing some data in C, using a not-quite-C99 _snprintf variant.

//

void PrettyFormat(int i, char* buf, int buflen) {

 // Here's the code, neat and simple and now a lot safer:

 if(buflen > 0) {

 _snprintf(buf, buflen-1, "%4d", i);

 buf[buflen-1] = '\0';

 }

}

In every other way, sprintf and snprintf are the same. In summary, here's how snprintf compares
to sprintf:

 Snprintf sprintf

Standard? Yes: [C99] only, but will likely also be in
C++0x

Yes: [C90], [C++03], [
C99]

Easy to use, good code
clarity?

Yes Yes

Efficient, no extra allocation? Yes Yes

Length-safe? Yes No

Type-safe? No No

Usable in template? No No

From this, we derive the following advice:

Guideline
Never use sprintf.

If you do decide to use C stdio facilities, always use length-checked calls such as snprintf even if
they're only available as a nonstandard extension on your current compiler. There's no drawback, and
there's real benefit, to using snprintf instead.

When I've presented this material at conferences, at first I was shocked to discover that typically only
about ten percent of a given class has heard of snprintf. But, nearly every time, there's one person in
the audience who immediately puts up his hand to describe how, on his current project, they'd recently
discovered a few buffer overrun bugs, globally replaced sprintf with snprintf throughout the project,
and found during testing that not only were those bugs gone but suddenly several other mysterious bugs
had also disappearedbugs that had been reported for years but that the team hadn't been able to diagnose

Page 33

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

and that had just been festering in the bug queue.

As I was saying, ahem: Never use sprintf.

Alternative #2: std::stringstream

b. std::stringstream

The most common facility in C++ for stringizing data is the stringstream family. Here's what Example
3-1 would look like, using an ostringstream instead of sprintf:

// Example 3-2: Stringizing some data in C++, using ostringstream.

//

void PrettyFormat(int i, string& s) {

 // Not quite as neat and simple:

 ostringstream temp;

 temp << setw(4) << i;

 s = temp.str();

}

Using stringstream exchanges the advantages and disadvantages of sprintf. Where sprintf
shines, stringstream does less well:

Issue #1: Ease of use and clarity. Not only has one line of code turned into three, but we've also
needed to introduce a temporary variable. This version of the code is superior in several ways, but code
clarity isn't one of them. It's not that the manipulators are hard to learnthey're as easy to learn as the
sprintf formatting flagsbut that they're generally more clumsy and verbose. I find that code littered with
long names such as << setprecision(9) and << setw(14) all over the place is a bear to read
(compared to, say, %14.9), even when all the manipulators are arranged reasonably well in columns.

Issue #2: Efficiency (ability to directly use existing buffers). A stringstream does its work in an
additional buffer off to the side and so will usually have to perform extra allocations for that working buffer
and for any other helper objects it uses. I tried the Example 3-2 code on two popular current compilers
and instrumented ::operator new to count the allocations being performed. One platform performed
two dynamic memory allocations, and the other performed three.

Where sprintf breaks down, however, stringstream glitters:

Issue #3: Length safety. The stringstream's internal basic_stringbuf buffer automatically grows
as needed to fit the value being stored.

Issue #4: Type safety. Using operator<< and overload resolution always gets the types right, even for
user-defined types that provide their own stream insertion operators. No more obscure run-time errors
because of type mismatches.

Issue #5: Templatability. Now that the right operator<< is automatically called, it's trivial to generalize
PrettyFormat to operate on arbitrary data types:

template<typename T>

void PrettyFormat(T value, string& s) {

 ostringstream temp;

 temp << setw(4) << value;

 s = temp.str();

}

Page 34

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

In summary, here's how stringstream compares to sprintf:

 stringstream sprintf

Standard? Yes: [C++03] Yes: [C90], [C++03], [C99]

Easy to use, good code clarity? No Yes

Efficient, no extra allocation? No Yes

Length-safe? Yes No

Type-safe? Yes No

Usable in template? Yes No

Alternative #3: std::strstream

c. std::strstream

Fairly or not, strstream is something of a persecuted pariah. Because it has been deprecated in the [
C++03] standard, the top C++ books at best cover it briefly (see [Josuttis99] page 649), mostly ignore it
(see [Stroustrup00]), or even explicitly state they won't cover it because of its official second-string status
(see [Langer00] page 587). Although deprecated because the standards committee felt it was superseded
by stringstream, which better encapsulates memory management, strstream is still an official part of
the standard that conforming C++ implementers must provide.[6]

[6] What does "deprecated" mean, in theory and in practice? When it comes to standards, "deprecated" denotes a feature that the
committee warns you might disappear anytime in the future, possibly as soon as the next revision of the standard. T o deprecate a feature
amounts to "normative discouragement;" it's the strongest thing the committee can do to discourage you from using a feature without
actually taking the feature away from you immediately. In practice, it's hard to remove even the worst deprecated features because, once
the feature appears in a standard, people write code that depends on the featureand every standards body is loath to break backward
compatibility. Even when a feature is removed, implementers often continue to supply it because they, too, are loath to break backward
compatibility. Oftentimes, deprecated features never do disappear from the standard. Standard Fortran, for example, still has features that
have been deprecated for decades.

Because strstream is still standard, it deserves mention here too for completeness. It also happens to
provide a useful mix of strengths. Here's what Example 3-1 might look like using strstream:

// Example 3-3: Stringizing some data in C++, using ostrstream.

//

void PrettyFormat(int i, char* buf, int buflen) {

 // Not too bad, just don't forget ends:

 ostrstream temp(buf, buflen);

 temp << setw(4) << i << ends;

}

Issue #1: Ease of use and clarity. strstream comes in slightly behind stringstream for ease of use
and code clarity. Both require a temporary object to be constructed. With strstream you have to
remember to tack on an ends to terminate the string, which is somewhere between distasteful and

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

dangerous. If you forget to do this, you are in danger of overrunning the end of the buffer when reading it
afterward if you're relying on its being terminated by a null character; even sprintf isn't this fragile and
always tacks on the null. But at least using strstream in the manner shown in Example 3-3 doesn't
require calling a .str function to extract the result at the end. (Of course, alternatively, if you let
strstream create its own buffer, the memory is only partly encapsulated; you will need not only a .str
call at the end to get the result out, but also a .freeze(false) else the strstreambuf won't free the
memory.)

Issue #2: Efficiency (ability to directly use existing buffers). By constructing the ostrstream object
with a pointer to an existing buffer, we don't need to perform any extra allocations at all; the ostrstream
will store its result directly in the output buffer. This is an important divergence from stringstream,
which offers no comparable facility for placing the result directly in an existing destination buffer, thereby
avoiding extra allocation.[7] Of course, ostrstream can alternatively use its own dynamically allocated
buffer if you don't have one handy already; just use ostrstream's default constructor instead.[8] Indeed,
strstream is the only one of the options covered here that gives you this choice.
[7] stringstream does offer a constructor that takes a string&, but it simply takes a copy of the string's contents instead
of directly using the supplied string as its work area.

[8] In T able 3-1's performance measurements, strstream shows unexpectedly poorly on two platforms, Borland C++ 5.5.1 and Visual
C++ 7. T he reason appears to be that on those implementations for some reason some allocations are always performed on each call to
Example 3-3's PrettyFormat() (although both implementations still actually do perform fewer allocations when given an
existing buffer to work with, as is done in Example 3-3, than when the strstream has to make its own buffer). T he other
environments, as expected, perform no allocations.

Issue #3: Length safety. As used in Example 3-3, the ostrstream's internal strstreambuf buffer
automatically checks its length to make sure it doesn't write beyond the end of the supplied buffer. If
instead we had used a default-constructed ostrstream, its internal strstreambuf buffer would
automatically grow as needed to fit the value being stored.

Issue #4: Type safety. Fully type-safe, just like stringstream.

Issue #5: Templatability. Fully templatable, just like stringstream. For example:

template<typename T>

void PrettyFormat(T value, char* buf, int buflen) {

 ostrstream temp(buf, buflen);

 temp << setw(4) << value << ends;

}

In summary, here's how strstream compares to sprintf:

 strstream sprintf

Standard? Yes: [C++03], but deprecated Yes: [C90], [C++03], [C99]

Easy to use, good code clarity? No Yes

Efficient, no extra allocation? Yes Yes

Length-safe? Yes No

Page 36

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 strstream sprintf

Type-safe? Yes No

Usable in template? Yes No

It's, um, slightly embarrassing that the deprecated facility shows so strongly in this side-by-side
comparison, but that's how life goes sometimes.

Alternative #4: boost::lexical_cast

d. boost::lexical_cast

If you haven't yet discovered [Boost], my advice is to discover it. It's a public library of C++ facilities
written principally by C++ standards committee members. Not only is it good peer-reviewed code
written by experts and in the style of the C++ standard library, but these facilities also are explicitly
intended as potential candidates for inclusion in the next C++ standard and are therefore worth getting to
know. Besides, you can freely use them today.

One of the facilities provided in the Boost libraries is boost::lexical_cast, which is a handy wrapper
around stringstream. Boost also includes other more ornate and heavyweight approaches that likewise
use internal streams and provide for more sprintf-like formatting options, notably boost::format, but
because the Boost code as written by Kevlin Henney is so concise and elegant, I can present it here in its
entirety (minus workarounds for older compilers)… so I will, even though it's not a standardized facility:

template<typename Target, typename Source>

Target lexical_cast(Source arg) {

 std::stringstream interpreter;

 Target result;

 if(!(interpreter << arg) || !(interpreter >> result) || !(interpreter >>

std::ws).eof())

 throw bad_lexical_cast();

 return result;

}

Note that lexical_cast is not intended to be a direct competitor for the more general string formatter
sprintf. Instead, lexical_cast is for converting data from one streamable type to another, and it
competes more directly with C's atoi et al. conversion functions as well as with the nonstandard but
commonly available itoa et al. functions. It's close enough to our topic, however, that it definitely would
be an omission not to mention it here.

Here's what Example 3-1 would look like using lexical_cast, minus the at-least-four-character
requirement:

// Example 3-4: Stringizing some data in C++, using boost::lexical_cast.

//

void PrettyFormat(int i, string& s) {

 // Perhaps the neatest and simplest yet, if it's all you need:

 s = lexical_cast<string>(i);

}

Page 37

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Issue #1: Ease of use and clarity. This code embodies the most direct expression of intent of any of
these examples.

Issue #2: Efficiency (ability to directly use existing buffers). Because lexical_cast uses
stringstream, it's no surprise that it needs at least as many allocations as stringstream. On one of
the platforms I tried, Example 3-4 performed one more allocation than the plain stringstream version
presented in Example 3-2; on the other platform, it performed no additional allocations over the plain
stringstream version.

Like stringstream, in terms of length safety, type safety, and templatability, lexical_cast shows
very strongly.

In summary, here's how lexical_cast compares to sprintf:

 lexical_cast sprintf

Standard? No (perhaps a potential candidate for
C++0x)

Yes: [C90], [C++03], [
C99]

Easy to use, good code
clarity?

Yes Yes

Efficient, no extra allocation? No Yes

Length-safe? Yes No

Type-safe? Yes No

Usable in template? Yes No

Summary

There are issues we've not considered in detail. For example, all the string formatting herein has been to
normal narrow char-based strings, not wide strings. We've also focused on the ability to gain efficiency
by using existing buffers directly in the case of sprintf, snprintf, and strstream, but the flip side to
"you get to do your own memory management" is "you have to do your own memory management," and
the better encapsulation of memory management offered by stringstream, strstream, and
lexical_cast might matter to you. (No typo, strstream is in both lists; it depends on how you want
to use it.)

There are also other nonstandard alternatives we've not considered in detail. I chose to show Boost's
lexical_cast because of its elegant simplicity, but even in Boost there are more complete and more
heavyweight options, notably boost::format, which provides more automation to support sprintf
-like formatting on top of a similar approach to the stringstream and strstream techniques described
here.

Putting it all together, we get the side-by-side comparison summarized in Table 3-1. Given the
considerations we're using to judge the relative merits of each solution, there is no clear unique
one-size-fits-all winner for all situations.

Page 38

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 3-1. C and C++ string formatting alternatives

 sprintf snprintf stringstream strstream boost::

lexical_cast

 Standard? (= n/a)

[C90] Yes No (common
extension)

[C++03] Yes No (common
extension)

Yes Yes, but
deprecated

No

[C99] Yes Yes

C++0x
(speculation)

Yes Likely Yes Likely
(probably still
deprecated)

Possible

 Usability Factors

Easy to use, good
code clarity?

Yes Yes No No Yes

Efficient, no extra
allocation?

Yes Yes No Yes No

Length-safe? No Yes Yes Yes Yes

Type-safe? No No Yes Yes Yes

Usable in template? No No Yes Yes Yes

 Sample Timings, Normalized to sprintf [9]

Borland C++ 5.5.1 /
Windows

1.0 1.0 12.6 8.1 19.7

Gnu g++ 2.95.2 /
Cygwin + Windows

1.0 2.0

Microsoft VC7 /
Windows

1.0 1.0 13.2 9.0 19.2

Rogue Wave 2.1.1 /
SunPro 5.3 / SunOS
5.7

1.0 1.1 8.7 4.7 16.5

Page 39

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 3-1. C and C++ string formatting alternatives

 sprintf snprintf stringstream strstream boost::

lexical_cast

Rogue Wave 2.2.1 /
HP aCC 3.30 /
HP-UX 11.00

1.0 1.0 7.9 3.9 9.9

[9] Sample results reporting the average of three runs each of which performs 1,000,000 calls to the corresponding Example code. Results
may vary with other compiler versions and switch settings.

On the basis of Table 3-1, we can justify the following guidelines, also summarized in Table 3-2:

 If all you're doing is converting a value to a string (or, for that matter, to anything else!):
Prefer using boost::lexical_cast by default.

 For simple formatting, or where you need wide string support or templatability: Prefer
using stringstream or strstream; the code will be more verbose and harder to grasp than it
would be with snprintf, but for simple formatting it won't be too bad.

 For more complex formatting, and where you don't need wide string support or
templatability: Prefer using snprintf. Just because it's C doesn't mean it's off limits to C++
programmers!

 Only if actual performance measurements show that any of the better alternatives is really
a bottleneck at a specific point in your code: In those isolated cases only, instead consider
using whichever one of the faster alternatives strstream or snprintf makes sense.

 Never use sprintf.

Table 3-2. Guideline summary

 By default, where efficiency
isn't an issue:

In places where efficiency has
measurably become an issue, really,

your profiler told you so:

If all you're doing is converting
to a string representation:

Boost::lexical_cast std::strstream or snprintf

For simple formatting, or where
you need wide strings or
templatability:

std::stringstream or
std::strstream

std::strstream or snprintf

For more complex formatting, if
you don't need wide strings or
templatability:

snprintf snprintf

Finally, a last word about the pariah strstream: It offers an interesting combination of features, not the

Page 40

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

least of which being that it's the only option that allows you to choose whether to do your own memory
management or to let the object (partly) encapsulate it. Its lone technical drawback is that of being more
fragile to use because of the ends issue and the memory management approach; its only other drawback
is social stigma, because it's been shunted aside and doesn't get invited to parties much anymore, and you
should be aware that there's a slight possibility that both the standards committee and your
compiler/library vendor might really take it away from you at some time in the future.

It's a bit strange to see a deprecated feature showing so well. Although a particular animal might have
distinct merits, even in the standard some animals are more equal than others.

Page 41

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 4. Standard
Library Member Functions
Difficulty: 5

Reuse is good, but can you always reuse the standard library
with itself? Here is an example that might surprise you, where
one feature of the standard library can be used portably with
any of your code as much as you like, but it cannot be used
portably with the standard library itself.

JG Question
1. What is std::mem_fun? When would you use it?

Give an example.

Guru Question
2. Assuming a correct incantation in the indicated

comment, is the following expression legal and
portable C++? Why or why not?

3.
4. std::mem_fun</*…*/

>(&(std::vector<int>::clear))

Page 42

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Fun with mem_fun

1. What is std::mem_fun? When would you use it? Give an example.

The standard mem_fun adapter lets you use member functions with standard library
algorithms and other code that normally deals with free functions.

For example, given:

class Employee {

public:

 int DoStandardRaise() { /*…*/ }

 //…

};

int GiveStandardRaise(Employee& e) {

 return e.DoStandardRaise();

}

std::vector<Employee> emps;

We might be used to writing code like the following:

std::for_each(emps.begin(), emps.end(), &GiveStandardRaise);

But what if GiveStandardRaise didn't exist or for some other reason we needed to call
the member function directly? Then we could write the following:

std::vector<Employee> emps;

std::for_each(emps.begin(), emps.end(),

 std::mem_fun_ref(&Employee::DoStandardRaise));

The _ref bit at the end of the name mem_fun_ref is a bit of an historical oddity. When
writing code like this, you should just remember to say mem_fun_ref if the container is a
plain old container of objects, because for_each will be operating on references to those
objects, and to say mem_fun if it's a container of pointers to objects:

std::vector<Employee*> emp_ptrs;

std::for_each(emp_ptrs.begin(), emp_ptrs.end(),

 std::mem_fun(&Employee::DoStandardRaise));

You'll probably have noticed that, for clarity, I've been showing how to do this with
functions that take no parameters. You can use the bind… helpers to deal with some
functions that take an argument, and the principle is the same. Unfortunately you can't use
this approach for functions that take two or more arguments. Still, it can be useful.

Page 43

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

And that, in a nutshell, is mem_fun. This brings us to the awkward part:

Use mem_fun, Just Not with the Standard Library

2. Assuming a correct incantation in the indicated comment, is the following
expression legal and portable C++? Why or why not?

3.
4. std::mem_fun</*…*/>(&(std::vector<int>::clear))

First, note that no "incantation" should be necessary. I deliberately wrote the question this
way because as of this writing some popular compilers cannot correctly deduce the
template parameters. For such compilers, depending on your implementation of the
standard library, you would have to write something like:

std::mem_fun<void, std::vector<int, std::allocator<int> > >

(&(std::vector<int>::clear));

Over time, this limitation will go away and compilers will be able to let you reliably omit the
template parameters.

You might wonder why I wrote "depending on your implementation of the standard
library." After all, the signature of std::vector<int>::clear is that it takes no
parameters and returns void, right? The standard tells us so, doesn't it?

Wrong (maybe), and that gets us to the crux of the problem.

The standard library specification deliberately gives some leeway to implementers when it
comes to member functions. Specifically:

 A member function signature with default parameters might be replaced by "two or
more member function signatures with the equivalent behavior."

 A member function signature might have additional defaulted parameters.

Aye, and there, in the second item, is the rub: Those pesky "might-be-there-or-might-not,"
"now-you-see-them-now-you-don't" extra parameter crittersfor short, let's call them
"peekaboo" parametersare what cause our problem in this case.

Much of the time, any extra implementation-specific defaulted peekaboo parameters just
go unnoticed; for example, when you call a member function you'll get the default values for
the peekaboo parameters, so you don't need to ever be aware that the library implementer
has thrown a few extra parameters on the end of the member function's signature.
Unfortunately, such possible extra parameters do become very noticeable if you need to be
sure of the exact signature of the member functionsuch as when you're trying to use
mem_fun. Note that this is true even if your compiler deduces template arguments
correctly, because of two potential problems:

 If the member function in question actually takes a parameter and you didn't expect
one, you need to write something like std::bind2nd to get rid of it. (For more
about the standard binder helpers, see [Josuttis99].) Of course, now your code
won't work on implementations that tack on an extra parameter of a different type,

Page 44

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

or none at allbut, hey, your code wasn't portable anyway, right?

 If the member function in question actually has two or more parameters (even if
they're defaulted), you can't use it with mem_fun at all. Bummerbut again, your
code wasn't portable anyway, right?

In practice, though, the problem might not be all that bad. I don't know whether library
implementers widely avail themselves of the leeway to add extra parameters, or intend to
do so in the future. To the extent that they don't do so, you won't encounter these
difficulties much in practice.

Unfortunately, though, that's not quite the end of the story. Finally, let's consider a more
general consequence of this leeway.

Use Pointers to Member Functions, Just Not with the
Standard Library

Alas, there's an even more basic issue: It is impossible to portably create a pointer to a
standard library member function, period.

After all, if you want to create a pointer to a function, member or not, you have to know
the pointer's type, which means you have to know the function's signature.

Because the signatures of standard library member functions are impossible to know
exactlyunless you peek in your library implementation's header files to look for any
peekaboo parameters, and even then the answer might change on a new release of the
same librarythe bottom line is that you can't reliably form pointers to standard library
member functions and still have portable code.

Summary

It's a little odd that you can portably use a standard library facility, namely mem_fun, with
most everything except the standard library itself. It's equally odd that you can portably use
a language feature, namely a pointer to member function, with everything except the
language's own standard library.

Normally the implementation latitude for standard member functions is invisible, and if all
you're doing is calling those functions you'll never know the difference. But if you use
pointers to member functions, or binders, be aware that they can't be used reliably with
standard library member functionseven if it happens to work for you today on particular
member functions in your particular standard library implementation.

Page 45

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 5. Flavors of
Genericity, Part 1:
Covering the Basis [sic]
Difficulty: 4

To get our feet wet before delving into Item 6, consider this
simple example of flexible generic code in C++. The code
examples in this Item and the next are taken from Exceptional
C++ [Sutter00, page 42].

JG Question
1. "C++ templates provide compile-time

polymorphism." Explain.

Guru Question
2. What are the semantics of the following function? Be

as complete as you can, and be sure to explain why
there are two template parameters and not just one.

3.
4. template <class T1, class T2>

5. void construct(T1* p, const T2& value)

{

6. new (p) T1(value);

7. }

Page 46

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
1. "C++ templates provide compile-time polymorphism." Explain.

When we think of polymorphism in an object-oriented world, we think of the kind of
run-time polymorphism we get from using virtual functions. A base class establishes an
interface "contract" as defined by a set of virtual functions, and derived classes may inherit
from the base class and override the virtual functions in a way that preserves the contracted
semantics. Then other code that expects to work on a Base object (and accepts the Base
object by pointer or reference) can work equally well with a Derived object:

// Example 5-1(a): Ye olde garden-variety run-time polymorphism.

//

class Base {

public:

 virtual void f();

 virtual void g();

};

class Derived : public Base {

 // override f and/or g if desired

};

void h(Base& b) {

 b.f();

 b.g();

}

int main() {

 Derived d;

 h(d);

}

This is great stuff, and gives a lot of run-time flexibility. There are two main drawbacks of
run-time polymorphism: First, the types must be related in a hierarchy derived from a
common base class. Second, when the virtual functions are called in a tight loop you might
notice some performance penalty because normally each call to a virtual function must be
made through an extra pointer indirection, as the compiler figures out the Derived function
you really mean to call.

If you know the types you're using at compile time, you can get around both of the
drawbacks: You can use types that are not related by inheritance, as long as they provide
the expected operations:

// Example 5-1(b): Ye newe Cvariety compile-time polymorphism.

Powerful

// stuff. We're still finding out just what kinds of nifty things

this makes possible.

//

class Xyzzy {

public:

Page 47

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 void f(bool someParm = true);

 void g();

 void GoToGazebo();

 // … more functions …

};

class Murgatroyd {

public:

 void f();

 void g(double two = 6.28, double e = 2.71828);

 int HeavensTo(const Z&) const;

 // … more functions …

};
template<class T>

void h(T& t) {

 t.f();

 t.g();

}

int main() {

 Xyzzy x;

 Murgatroyd m;

 h(x);

 h(m);

}

As long as both objects x and m are of a type that provides member functions f and g that
can be called with no parameters, h will work. In Example 5-1(b), both types actually have
different signatures for f and g, and they also provide additional functions beyond just
those two, but h doesn't care. As long as f and g can be called without parameters, the
compiler will allow h to make the calls. Of course, when called, those functions should also
do something that's sensible for h!

So templates provide powerful compile-time polymorphism. Misuse of templates can cause
really hard-to-read error messages on many compilers, but templates are also one of
C++'s most powerful features.

2. What are the semantics of the following function? Be as complete as you
can, and be sure to explain why there are two template parameters and not
just one.

3.
4. // Example 5-2(a): construct.

5. //

6. template <class T1, class T2>

7. void construct(T1* p, const T2& value) {

8. new (p) T1(value);

9. }

construct constructs an object in a given memory location, using an initial value. The

Page 48

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

form of new used here is called placement new, and instead of allocating memory for the
new object, it just puts it into the memory pointed at by p. Any object new'd in this way
should generally be destroyed by calling its destructor explicitly (as shown in Item 6,
Question 1), rather than by using a delete expression.

Why two template parameters? Isn't one sufficient to make a copy of the value object?
Well, if construct had only one template parameter, you would need to state explicitly
the type of that parameter when copying from an object of a different type:

// Example 5-2(b): A less functional construct, and why it's less

functional.

//

template <class T1>

void construct(T1* p, const T1& value) {

 new (p) T1(value);

}

// Assume that both p1 and p2 point to raw memory.

//

void f(double* p1, Base* p2) {

 Base b;

 Derived d;

 construct(p1, 2.718); // ok

 construct(p2, b); // ok

 construct(p1, 42); // error: is T1 double or int?

 construct<double>(p1, 42); // ok

 construct(p2, d); // error: is T1 Base or Derived?

 construct<Base>(p2, d); // ok

}

The reason the two cases noted as error are ambiguous is that the compiler doesn't know
enough to deduce the template parameter, and so the programmer is forced to nominate a
template parameter explicitly. Yet shouldn't we allow programmers to silently construct a
double from an int value? Probably; the worst that could happen is that we might lose
some precision. Shouldn't we allow programmers to silently construct a Base from a
Derived? Possibly; if Base allows that, then slicing would occur but that can be a
legitimate choice of operation.

Assuming that we want to allow the programmer to be able to do such things without
explicitly naming types, we need to use the originally presented version that has two
independent template parameters.

Page 49

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 6. Flavors of
Genericity, Part 2: Generic
Enough?
Difficulty: 7

How generic is a generic function, really? The answer can
depend as much on its implementation as on its interface, and a
perfectly generalized interface can be hobbled by simpleand
awkward-to-diagnoseprogramming lapses.

Guru Question
1. There is a subtle genericity trap in the following

functions. What is it, and what's the best way to fix
it?

2.
3. template <class T>

4. void destroy(T* p) {

5. p->~T();

6. }

7.
8. template <class FwdIter>

9. void destroy(FwdIter first, FwdIter

last) {

10. while(first != last) {
11. destroy(first);
12. ++first;
13. }
14. }

15. What are the semantics of the following function,
including the requirements on T? Is it possible to
remove any of those requirements? If so,
demonstrate how, and argue whether doing so is a
good idea or a bad idea.

16.
17. template <class T>
18. void swap(T& a, T& b) {
19. T temp(a); a = b; b = temp;
20. }

Page 50

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 51

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
1. There is a subtle genericity trap in the following functions. What is it, and

what's the best way to fix it?
2.
3. // Example 6-1: destroy

4. //

5. template <class T>

6. void destroy(T* p) {

7. p->~T();

8. }
9.
10. template <class FwdIter>
11. void destroy(FwdIter first, FwdIter last) {
12. while(first != last) {
13. destroy(first);
14. ++first;
15. }
16. }

destroy destroys an object or a range of objects. The first version takes a single pointer and
calls the pointed-at object's destructor. The second version takes an it erator range, and iteratively
destroys the individual objects in the designated range.

Still, there's a subtle trap here. This didn't make a difference in any example where it first
appeared in [Sutter00], but it's a little odd: The two-parameter destroy(FwdIter,FwdIter)
version is templatized to take any generic iterator, and yet it calls the one-parameter
destroy(T*) by passing it one of the iteratorswhich requires that FwdIter must be a plain old
pointer! This needlessly loses some of the generality of templatizing on FwdIter.

Guideline
Remember that pointers (into an array) are always iterators, but iterators are
not always pointers.

It also means you can get Really Obscure error messages when compiling code that tries to call
destroy(FwdIter,FwdIter) with nonpointer iterators, because (at least one of) the actual
failure(s) will be on the destroy(first) line inside the two-parameter version, which typically
generates such useful messages as the following, taken from one popular compiler:

'void __cdecl destroy(template-parameter-1,template-parameter-1)' :

expects 2

arguments - 1 provided

'void __cdecl destroy(template-parameter-1 *)' : could not deduce

template

Page 52

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

argument for 'template-parameter-1 *' from '[the iterator type I was

using]'

These error messages aren't as bad as some I've seen, and with only a little bit of extra reading
they do actually tell you (mostly) what's going on. The first message indicates that the compiler
was trying to resolve the statement destroy(first); as a call to the two-parameter version; the
second indicates an attempt instead to resolve it as a call to the one-parameter version. Both
attempts failed, each for a different reason: The two-parameter version can take iterators but
needs two of them, not just one, and the one-parameter version can take just one parameter but
needs it to be a pointer. No dice.

Having said all that, in reality we'd almost never want to use destroy with anything but pointers in
the first place just because of the way the function is intended to be used, given that it turns things
back into raw memory and all. Still, only a simple change is needed to let FwdIter be any iterator
type, not just a pointer, so why not do it: Have destroy(iter,iter) call the destructor
explicitly. In the two-parameter version of destroy, change:

destroy(first);

to:

destroy(&*first);

This will almost always work. Here we are dereferencing the iterator to get a direct reference to
the contained object and then taking its address, which guarantees that we get the pointer that we
want. In a little more detail: All standard-conforming iterators are required to supply an
operator* that returns a true T&. This is one of the reasons why proxied containers are not
supported by the C++ standard; for more information about this and related issues, see the
discussion of the expression &*t.begin() in Item 39 of More Exceptional C++ [Sutter02]. (It
is possible, if rare, to make destroy(&*first); fail to work: As Astute Reader Bill Wade
pointed out, that formulation won't work if T overrides its operator& to return something besides
the object's address, but that's pathological and I have never seen a defensible design that does
so.)

What's the moral of the story? Beware subtle genericity drawbacks when implementing one
generic function in terms of another. In this case, there was a subtle principal drawback: The
two-parameter version wasn't as generic for iterators as we originally thought. There was also an
even subtler secondary drawback: The quick fix of changing destroy(first); to
destroy(&*first); introduced a new requirement on T, namely that it should provide an
operator& with normal semanticsone that really returns a pointer to the object. Both traps were
neatly avoided when we stopped implementing one function in terms of the other.

Note: I am not discouraging you from implementing templates with templates; I'm encouraging you
to be aware of the potential interactions. Clearly templates are often correctly implemented in
terms of other templates. For example, programmers are commonly expected to specialize the
std::swap template for their own types if they know a more efficient way of swapping two
values than copying them around, and if you write a sort template then, sort should be
implemented by calling swap; otherwise sort would never be able to pick up an optimized swap
for the element type.

Page 53

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2. What are the semantics of the following function, including the requirements on
T? Is it possible to remove any of those requirements? If so, demonstrate how, and
argue whether doing so is a good idea or a bad idea.

3.
4. // Example 6-2(a): swap.

5. //

6. template <class T>

7. void swap(T& a, T& b) {

8. T temp(a); a = b; b = temp;

9. }

swap just exchanges two values by using the copy constructor and copy assignment operator. It
therefore requires that T have a copy constructor and a copy assignment operator.

If that's all you said, give yourself half marks only. One of the important things to note about the
semantics of any function is its exception-safety status, including what guarantees it provides. In
this case, swap is not at all exception-safe if T's copy assignment operator can throw an
exception. In particular, if T::operator= can throw but is atomic (all-or-nothing), then if the
second assignment fails, we exit via an exception but a has already been modified; if additionally
T::operator= can throw but is not atomic, then it is possible for swap to exit via an exception,
but both parameters might have been modified and one might now contain neither of the two
values. Therefore this swap must be documented as follows:

 If T::operator= doesn't throw, swap gives the guarantee that the operation is
all-or-nothing except for side effects of T operations (see also [Sutter99]).

 Otherwise, if T::operator= can throw:

o If T::operator= is atomic, and swap exits by means of an exception, the first
argument might or might not already have been modified.

o Otherwise, if T::operator= isn't atomic, and swap exits by means of an
exception, both arguments might or might not already have been modified, and
one of them might contain neither of the original two values.

There are two ways to remove the requirement that T have an assignment operator, and the first
additionally provides better exception safety.

1. Specialize or overload swap. Say that we have a class MyClass that uses the common
idiom of providing a nonthrowing Swap. Then we can specialize standard functions for
MyClass as follows.

2.
3. // Example 6-2(b): Specializing swap.

4. //

5. class MyClass {

6. public:

7. void Swap(MyClass&) /* throw() */ ;

8. // ...

9. };

10.
11. namespace std {

Page 54

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12. template<> swap<MyClass>(MyClass& a, MyClass& b) { // throw()
13. a.Swap(b);
14. }
15. }

Alternatively, we can overload standard functions for MyClass as follows:

// Example 6-2(c): Overloading swap.

//

class MyClass {

public:

 void Swap(MyClass&) /* throw() */ ;

 // ...

};

// NOTE: Not in namespace std.

swap(MyClass& a, MyClass& b) /* throw() */ {

 a.Swap(b);

}

Doing this is usually a good ideaeven if T does have an assignment operator that would allow the
original version to work!

For example, the standard library itself overloads[10] swap for vector so that calling swap actually
invokes vector::swap. This makes a lot of sense, because vector::swap can be much more
efficient by avoiding making any copies of the vectors' data at all. The primary template in
Example 6-2(a) would create a complete new copy (temp) of one of the vectors, and then
perform additional copying from one vector to the other, then perform additional copying from
temp to the other vector, which results in a lot of T operations and has complexity O(N) where
N is the combined size of the vectors being swapped. The specialized version will typically
simply just assign a few pointers and integral types, and it runs in constant (and usually negligible)
time. Zap, you're done.
[10] Not "specializes," because you can't partially specialize function templates. See Item 7 for more about function templates
and specialization.

So, if you create a type that provides a swap-like operation, it's usually a good idea to specialize
std::swap (or provide your own overloaded swap in another name space) that's specific to your
new type. It will usually be more efficient than a routine application of the primary std::swap
template's brute-force procedure and will often improve swap's own exception safety.

Guideline
Consider specializing std::swap for your own types when objects of your type
have a way to exchange their values more efficiently than via brute-force
assignment.

2. Destroy-and-reconstruct. The idea here is to write swap in terms of T's copy constructor
instead of its copy assignment operator, and of course this works only if T indeed has a
copy constructor:

Page 55

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.
4. // Example 6-2(d): swap without assignment.

5. //

6. template <class T>

7. void swap(T& a, T& b) {

8. if(&a != &b) { // note: this check is now

necessary!

9. T temp(a);

10.
11. destroy(&a);
12. construct(&a, b);
13.
14. destroy(&b);
15. construct(&b, temp);
16. }
17. }

First, this is never appropriate if T copy assignment can throw, because then you get all the
exception safety problems of the original version, only in spades. You can get into situations where
the objects not only hold indeterminate values but no longer exist at all!

If we know that T copy assignment is guaranteed not to throw, though, this version does have the
extra ability to deal with types that can't be assigned but can be copy constructed, and there are
indeed many such types. Being able to swap such types is not necessarily a good thing, because if
a type can't be assigned, it's probably set up that way for a good reasonfor example, it likely
doesn't have value semantics, and it might have const or reference membersand so providing a
mechanism to imbue (or impose) value semantics might be misguided and produce surprising and
incorrect results.

Worse still, this approach plays games with object lifetimes, and that's always questionable. Here
by "plays games" I mean that it changes not only the values, but the very existence, of the
operated-upon objects. Code using the Example 6-2(d) form of swap could easily produce
surprising results when users forget about the unusual destruction semantics.

A guideline: If you must play games with object lifetimes and you know that doing so is okay, and
you're certain that the operated-upon objects' copy constructors can never throw, and you're
very sure that the unusually "imposed" value semantics will be all right in your application for those
specific objects, then (and only then) you might legitimately decide to use such an approach in
those specific situations only. But even then, don't make such an operation a general template that
could be accidentally instantiated for any type, and be very sure to document the living day lights
out of it so that the poor unsuspecting programmer next door knows what to expect, because this
technique falls squarely into the "Unusual Beasties" section of the C++ coding catalog.

Page 56

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 7. Why Not
Specialize Function
Templates?
Difficulty: 8

Although the title of this Item is a question, it could also be made
into a statement: This Item is about when and why not to
specialize templates.

JG Question
1. What two major kinds of templates are there in

C++, and how can they be specialized?

Guru Question
2. In the following code, which version of f will be

invoked by the last line? Why?
3.
4. template<class T>

5. void f(T);

6.
7. template<>

8. void f<int*>(int*);

9.
10. template<class T>
11. void f(T*);
12.
13. // …
14.
15. int *p;
16. f(p); // which of the f's

is called here?

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
The Important Difference: Overloading vs. Specialization

It's important to make sure we have the terms down pat, so here's a quick review.

1. What two major kinds of templates are there in C++, and how can they be
specialized?

In C++, there are class templates and function templates. These two kinds of templates don't
work in exactly the same ways, and the most obvious difference is in overloading: Plain old C++
classes don't overload, so class templates don't overload either. On the other hand, plain old C++
functions having the same name do overload, so function templates are allowed to overload too.
This is pretty natural. What we have so far is summarized in Example 7-1:

// Example 7-1: Class vs. function template, and overloading

//

// A class template

template<class T> class X { /*...*/ }; // (a)

// A function template with two overloads

template<class T> void f(T); // (b)

template<class T> void f(int, T, double); // (c)

These unspecialized templates are also called the primary templates.

Further, primary templates can be specialized. This is where class templates and function
templates diverge further, in ways that will become important later in this Item. A class template
can be partially specialized and/or fully specialized.[11] A function template can only be fully
specialized, but because function templates can overload, we can get nearly the same effect via
overloading that we could have achieved via partial specialization. The following code illustrates
these differences:
[11] In standardese, a full specialization is called an "explicit specialization."

// Example 7-1, continued: Specializing templates

//

// A partial specialization of (a) for pointer types

template<class T> class X<T*> { /*...*/ };

// A full specialization of (a) for int

template<> class X<int> { /*...*/ };

// A separate primary template that overloads (b) and (c)not a partial

// specialization of (b), because there's no such thing as a partial

specialization

// of a function template!

template<class T> void f(T*); // (d)

Page 58

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

// A full specialization of (b) for int

template<> void f<int>(int); // (e)

// A plain old function that happens to overload with (b), (c), and (d)

// but not (e), which we'll discuss in a moment

void f(double); // (f)

Guideline
Remember that function templates can't be partially specialized; they
overload instead. Writing what looks like a function template partial
specialization is really writing a distinct primary function template.

Finally, let's focus on function templates only and consider the overloading rules to see which ones
get called in different situations. The rules are pretty simple, at least at a high level, and can be
expressed as a classic two-class system:

 Nontemplate functions are first-class citizens. A plain old nontemplate function that
matches the parameter types as well as any function template will be selected over an
otherwise-just-as-good function template.

 If there are no first-class citizens to choose from that are at least as good, then primary
function templates as the second-class citizens get consulted next. Which primary function
template gets selected depends on which matches best and is the "most specialized"
according to the following set of fairly arcane rules. (Important note: This use of
"specialized" oddly enough has nothing to do with template specializations; it's just an
unfortunate colloquialism.)

o If it's clear that there's one "most specialized" primary function template, that one
gets used. If that primary template happens to be specialized for the types being
used, the specialization will get used, otherwise the primary template instantiated
with the correct types will be used.

o Else if there's a tie for the "most specialized" primary function template, the call is
ambiguous because the compiler can't decide which is a better match. The
programmer will have to do something to qualify the call and say which one is
wanted.

o Else if there's no primary function template that can be made to match, the call is
bad and the programmer will have to fix the code.

Putting these rules together, here's a sample of what we get:

// Example 7-1, continued: Overload resolution

//

bool b;

int i;

double d;

f(b); // calls (b) with T = bool

f(i, 42, d); // calls (c) with T = int

Page 59

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

f(&i); // calls (d) with T = int

f(i); // calls (e)

f(d); // calls (f)

So far I've deliberately chosen simpler cases, because here's where we step off into the deep end
of the pool.

Why Not Specialize: The Dimov/Abrahams Example

Consider the following code:

// Example 7-2(a): Explicit specialization

//

template<class T> // (a) a primary template

void f(T);

template<class T> // (b) a primary template, overloads (a)function

templates

void f(T*); // can't be partially specialized; they overload

instead

template<> // (c) explicit specialization of (b)

void f<int>(int*);

// …

int *p;

f(p); // calls (c)

The result for the last line in Example 7-2(a) is just what you'd expect. The question of the day,
however, is why you expected it. If you expected it for the wrong reason, you will be very
surprised by what comes next. After all, "So what," someone might say, "I wrote a specialization
for a pointer to int, so obviously that's what should be called"and that's exactly the wrong
reason.

Consider now Question 2's code, put in this form by Peter Dimov and Dave Abrahams:

2. In the following code, which version of f will be invoked by the last line? Why?
3.
4. // Example 7-2(b): The Dimov/Abrahams Example

5. //

6. template<class T>

7. void f(T);

8.
9. template<>

10. void f<int*>(int*);
11.
12. template<class T>
13. void f(T*);
14.
15. // …
16.
17. int *p;

Page 60

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18. f(p); // which of the f's is called here?

The answer is… the third f. Here's the code again, this time annotated similarly to Example 7-2(a)
to compare and contrast the two examples:

template<class T> // (a) same old primary template as before

void f(T);

template<> // (c) explicit specialization, this time of (a)

void f<int*>(int*);

template<class T> // (b) a second primary template, overloads (a)

void f(T*);

// …

int *p;

f(p); // calls (b)! overload resolution ignores

specializations

 // and operates on the base function templates only

If this surprises you, you're not alone; it has surprised a lot of experts in its time. The key to
understanding this is simple, and here it is: Specializations don't overload.

Only the primary templates overload (along with nontemplate functions, of course). Consider
again the salient part from the summary I gave earlier of the overload resolution rules, this time
with specific words highlighted:

 …

 If there are no first-class citizens to choose from that are at least as good, then primary
function templates as the second-class citizens get consulted next. Which primary
function template gets selected depends on which matches best and is the "most
specialized" […] according to a set of fairly arcane rules:

o If it's clear that there's one "most specialized" primary function template, that
one gets used. If that primary template happens to be specialized for the types
being used, the specialization will get used, otherwise the primary template
instantiated with the correct types will be used.

o … etc.

Overload resolution selects only a primary template (or a nontemplate function, if one is available).
Only after it's been decided which primary template is going to be selected and that choice is
locked in will the compiler look around to see if there happens to be a suitable specialization of
that template available, and if so that specialization will get used.

Guideline
Remember that function template specializations don't participate in overload
resolution. A specialization will be used only when its primary template is
chosen, and the choice of primary template isn't affected by whether it

Page 61

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

happens to have specializations or not.

Important Morals

If you're like me, the first time you see this you'll ask the question: "Hmm. But it seems to me that I
specifically wrote a specialization for the case when the parameter is an int*, and it is an int*
that is an exact match, so shouldn't my specialization always get used?" That, alas, is a mistake: If
you want to be sure it will always be used in the case of an exact match, that's what a plain old
function is forso just make it a function instead of a specialization.

The rationale for why specializations don't participate in overloading is simple, once explained,
because the surprise factor is exactly the reverse: The standards committee felt it would be
surprising that, just because you happened to write a specialization for a particular
template, it would in any way change which template gets used. Under that rationale, and
because we already have a way of making sure our version gets used if that's what we want (we
just make it a function, not a specialization), we can understand more clearly why specializations
don't affect which template gets selected.

Guidelines
Moral #1: If you want to customize a primary function template and want that
customization to participate in overload resolution (or to always be used in the
case of exact match), don't make it a specializationmake it a plain old
function.

Corollary: If you do provide overloads of a function template, avoid also
providing specializations.

But what if you're the one who's writing, not just using, a function template? Can you do better
and avoid this (and other) problem(s) up front, for yourself and for your users? Indeed you can:

// Example 7-2(c): Illustrating Moral #2

//

template<class T>

struct FImpl;

template<class T>

void f(T t) { FImpl<T>::f(t); } // clients, don't touch this!

template<class T>

struct FImpl {

 static void f(T t); // clients, go ahead and specialize

this

};

Guideline

Page 62

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Moral #2: If you're writing a primary function template that is likely to need
specialization, prefer to write it as a single function template that should never
be specialized or overloaded, and then implement the function template
entirely as a simple handoff to a class template containing a static function
with the same signature. Everyone can specialize thatboth fully and partially,
and without affecting the results of overload resolution.

Summary

It's okay to overload function templates. Overload resolution considers all primary templates
equally and so it works as you would naturally expect from your experience with normal C++
function overloading: Whatever templates are visible are considered for overload resolution, and
the compiler simply picks the best match.

It's a lot less intuitive to specialize function templates. For one thing, you can't partially specialize
themyou overload them instead. For another thing, function template specializations don't
overload. This means that any specializations you write will not affect which template gets used,
which runs counter to what most people would intuitively expect. After all, if you had written a
nontemplate function with the identical signature instead of a function template specialization, the
nontemplate function would always be selected because it's always considered to be a better
match than a template.

If you're writing a function template, prefer to write it as a single function template that should
never be specialized or overloaded, and implement the function template entirely in terms of a
class template. This is the proverbial level of indirection that steers you well clear of the limitations
and dark corners of function templates. This way, programmers using your template will be able to
partially specialize and explicitly specialize the class template to their heart's content without
affecting the expected operation of the function template. This avoids both the limitation that
function templates can't be partially specialized and the sometimes surprising effect that function
template specializations don't overload. Problem solved.

If you're using someone else's plain old function template (one that's not implemented in terms of a
class template), and you want to write your own special-case version that should participate in
overloading, don't make it a specialization; just make it an overloaded function with the same
signature.

Page 63

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 8. Befriending
Templates
Difficulty: 4

If you want to declare a function template specialization as a
friend, how do you do it? According to the C++ standard, you
can choose either of two legal syntaxes. According to real-world
compilers, however, one of the syntaxes is widely unsupported;
the other works on all current versions of popular compilers…
except one.

Let's say we have a function template that does SomethingPrivate
to the objects it operates on. In particular, consider the
boost::checked_delete function template from [Boost], which
deletes the object it's givenamong other things, it invokes the object's
destructor:

namespace boost {

 template<typename T> void checked_delete(T* x) {

 // … other stuff …

 delete x;

 }

}

Now, say you want to use this function template with a class where
the operation in question (here the destructor) happens to be private:

class Test {

 ~Test() { } // private!

};

Test* t = new Test;

boost::checked_delete(t); // error: Test's

destructor is private,

 // so checked_delete

can't call it.

The solution is simple: Just make checked_delete a friend of Test.
(The only other option is to give up and make Test's destructor
public.) What could be easier?

And indeed, in the standard C++ language there are two legal and
easy ways to do it. If only compilers would agree….

Page 64

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

JG Question
1. Show the obvious standards-conforming syntax for

declaring boost::checked_delete as a friend of
Test.

Guru Question
2. Why is the obvious syntax unreliable in practice?

Describe the more reliable alternative.

Page 65

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
This Item exists as a reality check: Befriending a template in another namespace is easier said (in the standard)
than done (using real-world compilers that don't quite get the standard right).

In sum, I have some good news, some bad news, and then some good news again:

 The Good News: There are two perfectly good standards-conforming ways to do it, and the syntax is
natural and unsurprising.

 The Bad News: Neither standard syntax works on all current compilers. Even some of the strongest
and most conformant compilers don't let you write one or both of the legal, sanctioned,
standards-conforming and low-cholesterol methods that you should be able to use.

 The Good News (reprise): One of the perfectly good standards-conforming ways does work on every
current compiler I tried except gcc.

Let's investigate.

The Original Attempt

1. Show the obvious standards-conforming syntax for declaring boost::checked_delete as a
friend of Test.

This Item was prompted by a question on Usenet by Stephan Born, who wanted to do just that. His problem
was that when he tried to write the friend declaration to make a specialization of
boost::checked_delete a friend of his class Test, the code wouldn't work on his compiler.

Here's his original code:

// Example 8-1: One way to grant friendship

//

class Test {

 ~Test() { }

 friend void boost::checked_delete(Test* x);

};

Alas, not only does this code not work on the poster's compiler, it in fact fails on quite a few compilers. In
brief, Example 8-1's friend declaration has the following characteristics:

 It's legal according to the standard but relies on a dark corner of the language.

 It's rejected by many current compilers, including very good ones.

 It's easily fixed to not rely on dark corners and work on all but one current compiler (gcc).

I am about to delve into explaining the four ways that the C++ language lets you declare friends. It's easy. I'm
also going to have some fun showing you what real compilers do, and then finish with a guideline for how to
write the most portable code.

Page 66

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Why It's Legal But Dark

2. Why is the obvious syntax unreliable in practice? Describe the more reliable alternative.

When declaring friends, there are four options (enumerated in the [C++03] §14.5.3). They boil down to this:

When you declare a friend without saying the keyword template anywhere:

1. If the name of the friend looks like the name of a template specialization with explicit template
arguments (e.g., Name<SomeType>)

Then the friend is the indicated specialization of that template.

2. Else if the name of the friend is qualified with a class or namespace name (e.g., Some::Name) AND
that class or namespace contains a matching non-template function

Then the friend is that function.

3. Else if the name of the friend is qualified with a class or namespace name (e.g., Some::Name) AND
that class or namespace contains a matching function template (deducing appropriate template
parameters)

Then the friend is that function template specialization.

4. Else the name must be unqualified and declare (or redeclare) an ordinary (nontemplate) function.

Clearly #2 and #4 match only nontemplates, so to declare the template specialization as a friend we have two
choices: Write something that puts us into bucket #1, or write something that puts us into bucket #3. In our
example, the options are

// The original code, legal because it falls into bucket #3

friend void boost::checked_delete(Test* x);

or

// Adding "<Test>", still legal because it falls into bucket #1

friend void boost::checked_delete<Test>(Test* x);

The first is shorthand for the second… but only if the name is qualified (here by boost::) and there's no
matching nontemplate function in the same indicated scope. Even though both are legal, the first makes use of a
dark corner of the friend declaration rules that is sufficiently surprising to peopleand to most current
compilers!that I will propose no fewer than three reasons to avoid using it, even though it's technically legal.

Issue 1: It Doesn't Always Work

As already noted, the Bucket #3 syntax is a shorthand for explicitly naming the template arguments in angle
brackets, but the shorthand works only if the name is qualified and the indicated class or namespace does not
also contain a matching nontemplate function.

In particular, if the namespace has (or later gets) a matching nontemplate function, that would get chosen
instead, because the presence of a nontemplate function means bucket #2 preempts #3. Kind of subtle and
surprising, isn't it? Kind of easy to mistake, isn't it? Let's avoid such subtleties.

Page 67

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Issue 2: It's Surprising to People

Bucket #3 is edgy and fragile and surprising to programmers who look at the code and try to figure out what it
does. For example, consider this very slight variantall that I've changed is to remove the qualification boost::.

// Variant: Make the name unqualified, and it means something very different

//

class Test {

 ~Test() { }

 friend void checked_delete(Test* x);

};

If you omit boost:: (i.e., if the call is unqualified), you fall into a completely different bucket, namely #4,
which cannot match a function template at all, ever, not even with pretty please. I'll bet you dollars to donuts
that just about everyone on our beautiful planet will agree with me that it's Pretty Surprising that just omitting a
namespace name changes the meaning of the friend declaration so drastically. Let's avoid such edgy
constructs.

Issue 3: It's Surprising to Compilers

Bucket #3 is edgy and fragile and surprising to compilers, and that can make it unusable in practice even if we
disregard the other shortcomings mentioned earlier.

Let's try the two options, bucket #1 and bucket #3, on a wide range of current compilers and see what they
think. Will the compilers understand the standard as well as we do (having read this Item so far)? Will at least
all the strongest compilers do what we expect? No and no, respectively.

Let's try bucket #3 first:

// Example 8-1 again

//

namespace boost {

 template<typename T> void checked_delete(T* x) {

 // … other stuff …

 delete x;

 }

}

class Test {

 ~Test() { }

 friend void boost::checked_delete(Test* x); // the original code

};

int main() {

 boost::checked_delete(new Test);

}

Try this on your own compiler, and then compare with our results. If you've ever watched the game show
"Family Feud" on television, you can now imagine Richard Dawson's voice saying: "Survey saaaaays…" (see
Table 8-1).

Page 68

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 8-1. The results of compiling Example 8-1 on various compilers

Compiler Result Error message

Borland 5.5 OK

Comeau 4.3.0.1 OK

Digital Mars 8.38 Error Symbol Undefined ?checked_delete@@YAXPAV-Test@@@Z

(void cdecl checked_delete(Test *))

EDG 3.0.1 OK

Intel 6.0.1 OK

gcc 2.95.3 Error `boost::checked_delete(Test *)' should have

beendeclared inside `boost'

gcc 3.4 Error `void boost::checked_delete(Test*)' should have been

declared inside `boost'

Metrowerks 8.2 Error friend void boost::checked_delete(Test* x); name has

not been declared in namespace/class

MS VC++ 6.0 Error nonexistent function 'boost::checked_delete' specified

as friend

MS VC++ 7.0
(2002)

OK

MS VC++ 7.1
(2003)

Error 'boost::checked_delete' : not a function

MS VC++ 8.0
(2005) beta

OK

In this case, the survey says that this syntax is not well recognized on actual compilers; one implementation
changed its mind several times across versions. By the way, it shouldn't surprise us that Comeau, EDG, and
Intel all agree, because they're all based on the EDG C++ language implementation; of the five distinct C++
language implementations tested here, three don't accept this version (Digial Mars, gcc, Metrowerks), two do
(Borland, EDG), and one varies across versions (Microsoft).

Let's try writing it the other standards-conforming way, for bucket #1:

// Example 8-2: The other way to declare friendship

//

namespace boost {

 template<typename T> void checked_delete(T* x) {

 // … other stuff …

Page 69

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 delete x;

 }

}

class Test {

 ~Test() { }

 friend void boost::checked_delete<>(Test* x); // the alternative

};

int main() {

 boost::checked_delete(new Test);

}

Or, equivalently, we could have spelled out:

friend void boost::checked_delete<Test>(Test* x); // equivalent

Either way, when we twist our compilers' tails, our survey says that this is noticeably better supported (see
Table 8-2.).

Table 8-2. The results of compiling Example 8-2 on various compilers

Compiler Result Error message

Borland 5.5 OK

Comeau 4.3.0.1 OK

Digital Mars 8.38 OK

EDG 3.0.1 OK

Intel 6.0.1 OK

gcc 2.95.3 Error `boost::checked_delete(Test *)' should have been

declared inside `boost'

gcc 3.1.1 Error `void boost::checked_delete(Test*)' should have been

declared inside `boost'

gcc 3.4 Error `void boost::checked_delete(Test*)' should have been

declared inside `boost'

Metrowerks 8.2 OK

MS VC++ 6.0 Error nonexistent function 'boost::checked_delete'

specified as friend

MS VC++ 7.0 OK

Page 70

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 8-2. The results of compiling Example 8-2 on various compilers

Compiler Result Error message

(2002)

MS VC++ 7.1
(2003)

OK

MS VC++ 8.0
(2005) beta

OK

Bucket #1 sure feels saferExample 8-2 works on every current compiler except gcc, and every older compiler
except MS VC++ 6.0.

Aside: It's the Namespace That's Confusing Them

Note that if the function template we're trying to befriend weren't in a different namespace, we could use
bucket #1 correctly today on nearly all these compilers:

// Example 8-3: If only checked_delete weren't in a namespace…

//

template<typename T> void checked_delete(T* x) { // no longer in boost::

 // … other stuff …

 delete x;

}

class Test {

 friend void checked_delete<Test>(Test* x); // no longer need "boost:"

};

int main() {

 checked_delete(new Test);

}

Survey says (see Table 8-3).

Table 8-3. The results of compiling Example 8-3 on various compilers

Compiler Result Error message

Borland 5.5 OK

Comeau 4.3.0.1 OK

Digital Mars 8.38 OK

EDG 3.0.1 OK

Page 71

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 8-3. The results of compiling Example 8-3 on various compilers

Compiler Result Error message

Intel 6.0.1 OK

gcc 2.95.3 OK

gcc 3.4 OK

Metrowerks 8.2 OK

MS VC++ 6.0 Error syntax error (just can't handle it)

MS VC++ 7.0
(2002)

Error friend declaration incorrectly interpreted as declaring a brand-new (and
undefined) ordinary nontemplate function, even though we used template
syntax

MS VC++ 7.1
(2003)

OK

MS VC++ 8.0
(2005) beta

OK

So the problem on most compilers that can't handle Example 8-1 is specifically declaring friendship for a
function template specialization in another namespace. (Whew.Say that three times fast.)

Two Non-Workarounds

When this question arose on Usenet, some responses suggested writing a using-declaration (or equivalently
a using-directive) and making the friend declaration unqualified:

namespace boost {

 template<typename T> void checked_delete(T* x) {

 // … other stuff …

 delete x;

 }

}

using boost::checked_delete;

// or "using namespace boost;"

class Test {

~Test() { }

friend void checked_delete(Test* x); // not the template specialization!

};

Page 72

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

This friend declaration falls into bucket #4: "4. Else the name must be unqualified and declare (or redeclare) an
ordinary (nontemplate) function." This is actually declaring a brand-new, ordinary nontemplate function at the
enclosing namespace scope called ::checked_delete(Test *).

If you try this code, many of these compilers will reject it saying that checked_delete hasn't been defined,
and all of them will reject it if you actually try to make use of the friendship and put a private member access
call into the boost::checked_delete template.

Finally, one expert suggested changing it slightlyusing the using but also using the template syntax <>:

namespace boost {

 template<typename T> void checked_delete(T* x) {

 // … other stuff …

 delete x;

 }

}

using boost::checked_delete;

// or "using namespace boost;"

class Test {

 ~Test() { }

friend void checked_delete<>(Test* x); // legal?

};

This code is probably not legal C++: The Standard is not clear that this is legal, there's an open issue in the
standards committee to decide whether or not this ought to be legal, there is sentiment that it should not be
legal, and in the real world virtually all current compilers that I tried reject it.

Why do people feel that it should not be legal? For consistency, because using exists to make it easier to use
namesto call functions and to use type names in variable or parameter declarations. Declarations are different:
Just as you must declare a template specialization in the template's original namespace (you can't do it in
another namespace "through a using"), so you should be able to declare a template specialization as a friend
only by naming the template's original namespace (not "through a using").

Summary

To befriend a function template specialization, you can choose one of two syntaxes:

// From Example 8-1

friend void boost::checked_delete (Test* x);

// From Example 8-2: add <> or <Test>

friend void boost::checked_delete<>(Test* x); // or "<Test>"

This Item has demonstrated a pretty high portability price to pay in practice for not just writing <> or <Test>
as in Example 8-2.

Page 73

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Guidelines
Say what you mean. Be explicit. If you're talking about a template and there's any
question about what you mean, include a (possibly empty) template argument list.

Avoid the dark corners of the language, including constructs that might be arguably
legal but that are liable to confuse programmers, or even compilers.

When you befriend a function template specialization, always explicitly add at least the <> template syntax. For
example:

namespace boost {

 template<typename T> void checked_delete(T* x);

}

class Test {

 friend void boost::checked_delete (Test* x); // bad

 friend void boost::checked_delete <> (Test* x); // good

};

If your compiler doesn't yet allow either of these legal alternatives for the friend declaration, however, you'll
have to make the necessary function(s) public[12]but add a comment saying why, and make a note to change
it back to private as soon as you upgrade your compiler.
[12] T here are other workarounds, but they're all much more cumbersome. For example, you could create a proxy class inside namespace
boost and befriend that.

Page 74

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 9. Export
Restrictions, Part 1:
Fundamentals
Difficulty: 7

The scoop on exportwhat some people think it does, what it actually
might do, and why it's the most widely ignored major feature in the C++
standard.

JG Question
1. What is meant by the "inclusion model" for templates?

Guru Question
2. What is meant by the "separation model" for templates?

3. What are some of the major drawbacks to the inclusion
model for:

a. normal functions?

b. templates?

4. How can the drawbacks in Question 3 be helped by the
standard C++ separation model for:

a. normal functions?

b. templates?

Page 75

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
The standard C++ template export feature is widely
misunderstood, with more restrictions and consequences than
most people at first realize. This Item and the next take a closer
look at our experience to date with export.

As of this writing there is still exactly one commercially available
compiler that supports the export feature. The Comeau[13]

compiler, built on the Edison Design Group (EDG)[14] front-end
C++ language implementation, which was the first (and so far
only) C++ implementation to add support for export, was
released in 2002. There is still little experience with using export
on real-world projects, although that will hopefully change if
export-capable implementations become more widely available
and used. But there are things that we do know and that the
original implementers have learned.
[13] See www.comeaucomputing.com.

[14] See www.edg.com.

Here's what this Item and the next cover:

 What export is, and how it's intended to be used.

 The problems export is widely assumed to address and
why it does not in fact address them the way most people
think.

 The current state of export, including what our
implementation experience to date has been.

 The (often nonobvious) ways that export changes the
fundamental meaning of other apparently unrelated parts
of the C++ language.

 Some advice on how to use export effectively if and
when you do happen to acquire an export-capable
compiler.

Page 76

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.comeaucomputing.com
http://www.edg.com
http://www.processtext.com/abcchm.html

A Tale of Two Models
The C++ standard supports two distinct template source code
organization models: the inclusion model that we've been using for
years, and the separation model that is relatively new.

1. What is meant by the "inclusion model" for
templates?

In the inclusion model, template code is as good as all inline
from a source perspective (though the template doesn't have to
be actually inline): The template's full source code must be
visible to any code that uses the template. This is called the
inclusion model because we basically have to #include all
template definitions right there in the template's header file.[15]

[15] Or the equivalent, such as stripping the definitions out into a separate .cpp file
but having the template's .h header file #include the .cpp definition file,
which amounts to the same thing.

If you know today's C++ templates, you know the inclusion
model. It's the only template source model that has received any
real press over the past ten years because it's the only model that
has been available on standard C++ compilers until now. All the
templates you're likely to have ever seen over the years in C++
books and articles up to the time of this writing fall into this
category.

2. What is meant by the "separation model" for
templates?

On the other hand, the separation model is intended to allow
"separate" compilation of templates. (The "separate" is in
quotation marks for a reason.) In the separation model, template
definitions do not need to be visible to callers. It's tempting to add
"just like plain functions," but that's actually incorrectit's a similar
mental picture, but the effects are significantly different, as we
shall see when we get to the surprises. The separation model is
relatively newit was added to the standard in the mid-1990s, but
the first commercial implementation, by EDG, didn't appear until
the summer of 2002.[16]

[16] Note that Cfront had some similar functionality a decade earlier. But Cfront's
implementation was slow, and it was based on a "works most of the time" heuristic
such that, when Cfront users encountered template-related build problems, a common
first step to get rid of the problem was to blow away the cache of instantiated
templates and reinstantiate everything from scratch.

Bear with me as I risk delving too deeply into compilerese for one
paragraph: A subtle but important distinction to keep in mind is

Page 77

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

that the inclusion and separation models really are different
source code organization models. That is, they're about how
you can choose to arrange and organize your source code. They
are not different instantiation models; that is, a compiler does
essentially the same work to instantiate templates under either
source model, inclusion or export. This is important because this
is part of the underlying reason why export's limitations, which
we'll get to in a moment, surprise many people, especially that
using export is unlikely to improve build times to the degree that
separate compilation for functions routinely does. For example,
under either source model, the compiler can still perform
optimizations such as relying on (rather than enforcing) the One
Definition Rule (ODR) to only instantiate each unique combination
of template parameters once, no matter how often and widely that
combination is used throughout your project. Such optimizations
and instantiation policies are available to compiler writers
regardless of whether the inclusion or separation model is being
used to physically organize the template's source code; although
it's true that the separation model allows the optimizations, so
does the inclusion model.

Page 78

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Illustrating the Issues
3. What are some of the major drawbacks to the inclusion model

for:

a. normal functions?

b. templates?

To illustrate, let's look at some code.

We'll look at a function template under both the inclusion and separation
models, but for comparison purposes I'm also going to show a plain old
function under the usual inline and out-of-line separately-compiled models.
This will help to highlight the differences between today's usual function
separate compilation and export's "separate" template compilation. The two
are not the same, even though the terms commonly used to describe them
look the same, and that's why I put "separate" in quotes for the latter.

Consider the following code, a plain old inline function and an
inclusion-model function template:

// Example 9-3(a): A garden-variety inline function

//

// --- file f.h, shipped to user ---

namespace MyLib {

 inline void f(int) {

 // natty and quite dazzling implementation, the product

of many years of work;

 // uses some other helper classes and functions

 }

}

The following inclusion-model template demonstrates the parallel case for
templates:

// Example 9-3(b): An innocent and happy little template,

uses the inclusion model

//

// --- file g.h, shipped to user ---

namespace MyLib {

 template<typename T>

 void g(T&) {

 // avant-garde, truly stellar implementation, the

product of many years of work;

 // uses some other helper classes and functionsthe

functions aren't necessarily

 // declared "inline", but the body's code is all here

in the same file just the same

Page 79

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

}

In both cases, the Example 9-3 code harbors issues familiar to C++
programmers:

 Source exposure for the definitions: The whole world can see the
perhaps-proprietary definitions for f and g. In itself, that might or
might not be such a bad thing; more on that later.

 Source dependencies: All callers of f and g depend on the
respective bodies' internal details, so every time the body changes,
all its callers have to recompile. Also, if either f's or g's body uses
any other types not already mentioned in their respective
declarations, then all their respective callers will need to see those
types' full definitions too.

Page 80

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Export InAction [sic]
Can we solve, or at least mitigate, these problems?

4. How can the drawbacks in Question 3 be helped by the
standard C++ separation model for:

a. normal functions?

For the function, the answer is an easy "of course," because of separate
compilation:

// Example 9-4(a): A garden-variety separately compiled

function

//

// --- file f.h, shipped to user ---

namespace MyLib {

 void f(int); // MYOB

}
// --- file f.cpp, optionally shipped ---

namespace MyLib {

 void f(int) {

 // natty and quite dazzling implementation, the product

of many years of work;

 // uses some other helper classes and functionsand is

now separately compiled

 }

}

Unsurprisingly, this solves both problems, at least in the case of f: (The
same idea can be applied to whole classes using the Pimpl Idiom; see
Exceptional C++ [Sutter00].)

 No source exposure for the definition: We can still ship the
implementation's source code if we want to, but we don't have to.
Note that many popular libraries, even closely guarded proprietary
ones, ship source code anyway (possibly at extra cost) because
users demand it for debuggability and other reasons.

 No source dependencies: Callers no longer depend on f's internal
details, so every time the body changes, all its callers only have to
relink. This frequently makes builds an order of magnitude or more
faster. Similarly, usually to somewhat less dramatic effect on build
times, f's callers no longer depend on types used only in the body
of f.

That's all well and good for the function, but we already knew all that.
We've been doing this since C, and since before C (which is a very very
long time ago).

Page 81

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The real question is: What about the template?

a. templates?

The idea behind export is to get something like this effect for templates.
One might naïvely expect the following code to get the same advantages as
the code in Example 9-4(a). One would be wrong, but one would still be in
good company because this has surprised a lot of people, including
world-class experts. Consider:

// Example 9-4(b): A more independent little template?

//

// --- file g.h, shipped to user ---

namespace MyLib {

 export template<typename T>

 void g(T&); // MYOB

}
// --- file g.cpp, ??shipped to user?? ---
namespace MyLib {

 template<typename T>

 void g(T&) {

 // avant-garde, truly stellar implementation, the

product of many years of work;

 // uses some other helper classes and functionsand is

now "separately" compiled?

 }

}

Highly surprisingly to many people, this does not solve both problems in the
case of g. It might have ameliorated one of them, depending. Let's consider
the issues in turn.

Page 82

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Issue the First: Source
Exposure
The first problem is unsolved: Source exposure for
the definition remains.

Nothing in the C++ standard says or implies that you
won't have to ship full source code for g anyway just
because you wrote the export keyword. Indeed, in
the only existing implementation of export, the
compiler requires that the template's full definition be
shippedthe full source code.[17] One reason is that a
C++ compiler still needs the exported template
definition's full definition context when instantiating
the template elsewhere as it's used. For just one
example why, consider what the C++ standard says
about what happens when instantiating a template:
[17] "But couldn't we ship encrypted source code?" is a common
question. T he answer is that any encryption that a program can undo
without user intervention (say to enter a password each time) is
easily breakable. Also, several companies have already tried
"encrypting" or otherwise obfuscating source code before, for a
variety of purposes including protecting inclusion-model templates in
C++; those attempts have been widely abandoned because the
practice annoys customers, doesn't really protect the source code
well, and the source code rarely needs such protection in the first
place because there are other and better ways to protect intellectual
property claimsobfuscation comes to the same end here.

"[Dependent] names are unbound and are
looked up at the point of the template
instantiation in both the context of the template
definition and the context of the point of
instantiation."

[C++03] §14.6.2

A dependent name is a name that depends on the
type of a template parameter; most useful templates
mention dependent names. At the point of
instantiation or a use of the template, dependent
names must be looked up in two places. They must
be looked up in the instantiation context; that's easy,
because that's where the compiler is already
working. But they must also be looked up in the
definition context, and there's the rub, because that
includes knowing not only the template's full definition
but also the context of that definition inside the file
containing the definition, including what other relevant

Page 83

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

function signatures are in scope and so forth, so that
overload resolution and other work can be
performed.

Think about Example 9-4(b) from the compiler's
point of view: Your library has an exported function
template g with its definition nicely ensconced away
outside the header. Well and good. The library gets
shipped. A year later, one fine sunny day, it's used in
some customer's translation unit h.cpp where he
decides to instantiate g<CustType> for a CustType
that he just wrote that morning… what does the
compiler have to do to generate object code? It has
to look, among other places, at g's definition, at your
implementation file. And there's the rub… export
does not eliminate such dependencies on the
template's definition, it merely hides them.

Exported templates are not truly "separately
compiled" in the usual sense we mean when we apply
that term to functions. Exported templates cannot in
general be separately compiled to object code in
advance of use; for one thing, until the exact point of
use, we can't even know the actual types the
template will be instantiated with. So exported
templates are at best "separately partly compiled" or
"separately parsed." The template's definition needs
to be actually compiled with each instantiation.
(There is a similarity here to Java and .NET libraries
where the bytecode or IL can be reversed to reveal
something very like the source code.)

Guideline
Remember that export doesn't imply
true separate compilation of templates
like we have for functions.

Page 84

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Issue the Second:
Dependencies and Build
Times
The second problem is likewise unresolved:
Dependencies are hidden, but remain.

Every time the template's body changes, the compiler
has to reinstantiate all the uses of the template.
During that process, the translation units that use g
are still processed together with all of g's internals,
including the definition of g and the types used only in
the body of g.

The template code still has to be compiled in full
later, when each instantiation context is known. Here
is the key concept to remember:

Guideline
Remember that export only hides
dependencies; it doesn't eliminate them.

It's true that callers no longer visibly depend on g's
internal details, inasmuch as g's definition is no longer
openly brought into the caller's translation unit via
#included code; the dependency can be said to be
hidden at the human-reading-the-source-code level.

But that's not the whole story, because we're talking
compilation-the-compiler-must-perform
dependencies here, not
human-reading-the-code-while-sipping-a-latte
dependencies, and compilation dependencies on the
template definitions still exist. True, the compiler
might not have to go recompile every translation unit
that uses the template; but it must go away and
recompile at least enough of the other translation
units that use the template so that all the combinations
of template parameter types on which the template is
ever used get reinstantiated from scratch. The
compiler can't just go relink object code that is truly
separately compiled.

Page 85

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note that compilers could be made smart enough to
handle inclusion-model templates the same
waynamely, not rebuilding all files that use the
template but only enough of them to cover all the
instantiationsif the code is organized as shown in
Example 9-4(b) but with export removed and a
new line #include "g.cpp" added to g.h. The
idea is that the compiler would rely on the One
Definition Rule rather than enforcing it; i.e., it would
assume that the other instantiations with the same
parameters must be identical, rather than actually
performing all the instantiations and then checking
whether they are really identical.

Further, remember that many templates use other
templates, and therefore the compiler next performs
a cascading recompilation of those templates (and
their translation units) too, and then of whatever
templates those templates use, and so on recursively,
until there are no more cascading instantiations to be
done. (If, at this point in our discussion, you are glad
that you personally don't have to implement export,
that's a normal reaction.)

Even with export, it is not the case that all callers of
a changed exported template "just have to relink."
Unlike the situation with true separate function
compilation where builds will speed dramatically, it is
unknown as of this writing whether export-ized
builds will in general be the same speed, faster, or
slower in common real-world use.

Page 86

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Summary
So far, we've looked at the motivation behind
export and why it's not truly "separate" compilation
for templates in the same way we have separate
compilation for nontemplates. Many people think
that export means that template libraries can be
shipped without full definitions and/or that build
speeds will be faster. Neither outcome is promised
by export. The community's experience to date is
that source or its direct equivalent must still be
shipped and that build speeds are expected to be the
same or slower, rarely faster, principally because
dependencies, though masked, still exist, and the
compiler might still have to do the same amount of
work (or more) in common cases.

In the next Item, we'll see why export complicates
the C++ language and makes it trickier to use,
including that export actually changes the
fundamental meaning of parts of the rest of the
language in surprising ways that it is not clear were
foreseen. We'll also see some initial advice on how
to use export effectively if you happen to acquire
an export-capable compiler.

Page 87

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 10. Export
Restrictions, Part 2:
Interactions, Usability
Issues, and Guidelines
Difficulty: 9

How export interacts with existing C++ language features, and
the first guidelines on how to use it safely.

JG Question
1. When was export set in its current form in the C++

standard? When was it first implemented?

Guru Question
2. In what ways does export change the meaning of

other C++ language features? Briefly explain the
interactions.

3. How does export affect the programmer?

4. What real and potential benefits does export have?

Page 88

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
This is the second of a two-part miniseries. In the previous Item, we covered the following:

 What export is and how it's intended to be used. We looked at an analysis of the
similarities and differences between the "inclusion" and "export" template source code
organization models, and why they're not parallel to the differences between inline and
separately compiled functions.

 The problems export is widely assumed to address, and why it does not infact
address them the way most people think.

Widespread expectations notwithstanding, export is not about truly "separate" compilation
for templates in the same way we have true separate compilation for nontemplates. Many
people expect that export means that template libraries can be shipped without full source
code definitions (or their direct equivalent), and/or that build speeds will be faster. Neither
outcome is promised by export.

The community's most informed experience to date is that full source or its direct equivalent
must still be shipped and that it is yet unknown whether build speeds will be better, worse, or
just about the same in common real-world usage. Why? Principally this is because
dependencies, though masked, still exist, and the compiler still has to do at least the same
amount of work in common cases. In short, it's a mistake (albeit a natural one) to think that
export gives true separate compilation for templates in the sense that the template author
need only ship declaration headers and object code. Rather, what is exported is similar to
Java and .NET libraries where the bytecode or IL can be reversed to reveal something very
like the source; it is not traditional object code.

This time, I'll cover:

 The current state of export, including what our implementation experience to date
has been.

 The (often nonobvious) ways that export changes the fundamental meaning of other
apparently unrelated parts of the C++ language.

 Some advice on using export effectively if and when you do happen to acquire an
export-capable compiler.

But first, consider a little history.

Historical Perspective: 1988-1996

1. When was export set in its current form in the C++ standard? When was it
first implemented?

The answers are 1996 and 2002, respectively. (If you feel that the date of a feature's first
implementation usually ought to precede the date of the feature's standardization, well, you
aren't alone, but this isn't the only example where the C++ standard has taken this kind of

Page 89

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

inventive approach with novelties.)

Given this, and given also that there are some valid criticisms of export, it might be tempting
to start casting derisive stones and sharp remarks at the people who came up with what we
might view as a misfeature. It would also be ungracious and unkind, and could possibly smack
of armchair-quarterbacking. This "backgrounder" part of the Item exists for balance, because
on the export issue it's been easy for people to go to extremes in both directions, pro and
con export.

If export doesn't appear to deliver the advantages that many people expect, why does it
exist? The reason is quite simple: In the mid-1990s, a majority of the committee believed that
shipping a standard that did not have separate compilation for templates, as C already did for
functions, would be incomplete and embarrassing. In short, export was retained in the
then-draft standard on principle.

Principle is very often a good thing. It should never be disparaged, especially by armchair
quarterbacks like us, looking back with the benefit of many years' worth of hindsight. (That
"like ourselves" part includes me. Although now, years later, I chair the ISO committee, I
didn't start personally attending committee meetings till the following year.)

Remember that, in 1995 and 1996, templates themselves were still pretty new:

 The first presentation of the initial C++ template design was made by Bjarne
Stroustrup in October 1988 [Stroustrup88].

 In 1990, Margaret Ellis and Bjarne Stroustrup published The Annotated C++
Reference Manual (the ARM) [Ellis90]. The same year, the ISO/ANSI C++
standards committee got going and selected the ARM as its "starting point" base
document. The ARM was the first C++ reference to include a description of
templates, and they weren't templates as we know them today; the entire specification
and description of these simple templates was only ten pages long.

At that time, the focus was entirely on enabling parameterized types and functions, the
given examples being a List container that could hold different types of objects and
a sort that could sort different types of sequences. Even in these early days,
however, templates were conceived with the desire for a separate compilation model
in mind. Cfront (Stroustrup's C++ compiler) had support for a form of "separate"
template compilation for these simple templates, although its approach was not
scalable; see the note in the previous Item.

 During 19901996, C++ compiler vendors flourished and took different routes with
their template implementations, and at the same time the standards committee greatly
enhanced (and complexified) templates. A complete description of standard C++
templates alone now occupies some 133 pages of a 552-page tome that describes the
feature and how to use it effectivelythe lucidly written and recommended work C++
Templates [Vandevoorde03].

 In the early and mid-1990s, the committee was principally trying to make templates
more robust and practical to support the intended basic uses. Few suspected the
enormously flexible and slightly monstrous wonder they had createdit was known that
templates were a Turing-complete metalanguage allowing programs of arbitrary
complexity to be written that could execute entirely at compile time, but all the modern

Page 90

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

template metaprogramming and advanced library design that's in vogue today was
largely unanticipated by the people who gave us the very templates that make it
possible in the first place, and the techniques were largely unknown during 19901996.
Remember, it wasn't until late 1994 that Stepanov made his first presentation of the
STL to the committee, which adopted it in 1995 as a groundbreaking achievementand
by today's standards the STL was "just" a container and algorithm library.
Groundbreaking to be sure in 1995, and a powerful differentiator of C++ from other
languages still today, but it was nonetheless just the first testing of the template waters
by today's standards.

This is why I say that, "in 19951996, templates themselves were still pretty new." Modern
templates in their (mostly) final form existed, but even the people who invented them didn't
fully realize what they were capable of. The global C++ community was much smaller than it is
today, few compilers supported more than ARM templates, and most compilers' template
support of any kind was poor or essentially useless. Around that time, only one commercial
compiler could cope with the initial STL, for example.

So it was that the community in general and the standards committee in particular still had a
comparatively short record of real-world experience with even the simpler ARM templates
that existed. The climate in 1996 was no longer quite embryonic, but it was young and still
growing and forming.

And it was in this formative climate, with that limited experience, that the standards committee
was forced to decide whether to keep exported templates in the then-draft standard.

1996

In 1996, even with the little information that was available, enough was known that export
made a lot of experts nervous. In particular, it made all the compiler vendors nervous. Even
supporters of export viewed it as a necessary compromise while disliking export as a
source of complexity; some would have preferred general separate compilation with no
special keyword.

In 1996 there was a coordinated push within the committee to remove the notion of "separate"
template compilation. (It was finally as a concession to this objection that the export
keyword was soon thereafter invented to help out compilers by providing a means to at least
tag which templates were supposed to be separately compiled.) In particular, it was argued,
the separate template compilation model had never actually been implemented, and the
committee had no idea whether it would work as intended. Several C++ vendors had
implemented various forms of template source organization models, but export followed
none of them; export was a completely new and experimental beast with no implementation
experience behind it. Infact, there were papers presented at that timepapers that in retrospect
could be called insightful bordering on prescientthat detailed some of the major potential
shortcomings of the export model as described in the draft standard.

In particular, all the compiler implementers unanimously opposed including separate template
compilation in the standard on the grounds that it was too early to know if they were doing the
right thing. They had serious unanswered concerns about the existing formulations (with or
without an export keyword), and they didn't feel they had enough experience yet to come up
with a fully baked alternative (not to mention insufficient time; the standard was being
stabilized and would be set in stone the following year, 1997). For those reasons, the compiler

Page 91

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

vendors unanimously didn't want to rush a separation model into the first standard [C++98].
Rather, they wanted to take time to design it right and do it in the next standard. They favored
the idea of separate template compilation in principle, but felt that export wasn't fully baked
and they still didn't know enough to do it right.

They lost, narrowly, and export stayed in the standard.[18] It would be
armchair-quarterbacking at best to be unduly critical about this outcome, however. As I
summarized earlier, a (slim) majority of the committee believed that shipping a standard that
did not have some form of "separate" compilation for templates, as C already did for
functions, would be incomplete and embarrassing. Several compilers had already been
experimenting with forms of "separate" template compilation and it seemed to be a good idea
in principle. In short, export was retained in the then-draft standard on principle. And it's a
good principle, not to be disparaged.
[18] T hings were quite turbulent and support seesawed back and forth, balanced on a fulcrum. At the March 1996 meeting,
the straw vote was 2-to-1 against separate template compilation. At the July 1996 meeting where the export keyword
was introduced, the vote was 2-to-1 in favor of export.

To emphasize, note that the world's compiler vendors opposed export in particular, and did
not oppose the principle of separate template compilation. They just felt they needed more
time to be confident that the standard would get it right. Although some of the world-class
experts who in 1996 voted in favor of retaining export now see it as a mistake, the intent and
motivation was good, and there is still hope that export will deliver some benefitsif not all the
big ones that were initially hoped foras we gain experience with the first shipping compiler to
implement export (Comeau 4.3.01, released in 2002).

Our Export Experience to Date

The world's only implementers of export, EDG, report that in their experience export is by
far the most difficult C++ feature to implement, as much work as any three other major C++
language features they've done (such as namespaces or member templates). The export
feature alone took more than three person-years to code and test, not counting design work;
by comparison, implementing the entire Java language took the same three people only two
person-years.

Why is export so difficult to implement, and so complex? Here are two major reasons:

1. Export relies on Koenig lookup. Most compilers still get Koenig lookup wrong even
within a single translation unit (informally, this means a source file). Export requires
performing Koenig lookup across translation units. (For more about Koenig lookup,
see [Sutter00, Item 27].)

2. Conceptually, export requires a compiler to deal simultaneously with many
symbol tables. Instantiating an exported template can trigger cascaded instantiations
in other translation units. Each must be able to refer to entities that existed (or "sort of
existed") when the template definition was parsed. In C++, dealing with one symbol
table is complicated enough. With export, at least conceptually you need to
simultaneously deal with an arbitrary number of symbol tables.

Ch-ch-ch-changes: Export's Shadow Falls on Existing
Language Features

Page 92

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3. In what ways does export change the meaning of other C++ language
features? Briefly explain the interactions.

export has a few surprising effects on existing language features. Many of these real effects
of export are not mentioned or addressed in the standard. In particular, export "exports"
more than its template:

 Some functions and objects in unnamed namespaces must now be accessible and
callable across translation units if they are used in exported templates. Similarly, some
file-static functions and objects must now have external linkage, or at least behave
as though they did, if they are used in exported templates. This is counter to the intent
of unnamed namespaces and namespace-scope static, which was to make those
names strictly internal to their original translation unit. (File-static functions and
objects are deprecated, and you should use the unnamed namespace instead, but
they're still part of standard C++.)

 Overload resolution must also be able to resolve names from an arbitrary number of
different translation unitsincluding, amusingly, overloading names from an arbitrary
number of unnamed namespaces. A major benefit of putting internal functions into the
unnamed namespace (and the deprecated file static) was to "privatize" those
functions so you could give them simple names without worrying about name conflicts
and overloading effects across source files. Now, because part of the protection is
being removed and they can and do participate in overload resolution with each other
via exported templates, it's (alas) a good idea to obfuscate their names again if you
use such functions or objects in an exported template, even if the function is in an
unnamed namespace or file static, so as to avoid silent changes of meaning.

 There are new ambiguities and potential One Definition Rule (ODR) violations. For
example, a class might have multiple befriending entities in different translation units,
and declarations of that class from those different translation units might all be
participating in an instantiation. If so, which set of access rules should be applied?
These issues might seem minor and many of the errors might be innocuous, but on
some popular platforms, ODR violations are increasingly important (see [Sutter02c]
for one example).

Export Can Be Difficult to Use Correctly

4. How does export affect the programmer?

export will probably be somewhat more difficult to use correctly than normal templates.
Here are three examples to illustrate why this is so.

Example 1: It is easier than before for programmers to write programs that have
hard-to-predict meaning. Like an inclusion-model template, an exported template commonly
has different paths by which it could be instantiated, and each path commonly has a different
context. For those who might say, "But we already have that problem with functions defined in
header files (e.g., inline)," note that this template problem is already greater than that
because there are more opportunities for names to change meaning, in particular because
templates use a wider set of names than closed functions do. Templates use dependent
names, names that are dependent on (and therefore vary with) the template arguments, and so
for each instantiation of the template with the very same template arguments the template's
user must be careful to provide exactly the same context (e.g., overloaded functions that

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

operate on that template argument type) to prevent the instantiation from inadvertently having
a different meaning in different files, which would be a classic ODR violation. Why is this
expected to be somewhat worse under the export model than for inclusion-model templates?
The big thing about export is the fact that, in addition to the usual complexities, there are
names from multiple translation units available to name lookup, which is not true in any other
context in standard C++.

Example 2: It is harder for the compiler to generate high-quality diagnostics to aid
programmers. Template error messages are already notoriously hard to understand because
of long and verbose names, but besides that, what's less obvious to programmers is that it's
already harder for compiler writers to give good error messages for templates because
templates can generate multiple and cascading instantiations. With export, there is now the
additional dimension of multiple translation unitsa message such as "error on line X, caused by
the instantiation of this function, caused by the instantiation of this function, caused by the
instantiation of this function, …" must now add which translation unit it was in when it
happened, and each line in the traceback could be from a different translation unit. Detecting
ODR violations for exported templates is a challenging problem in itself, but detecting what
was really meant so as to provide "did you mean" guidance is even harder. Many of us would
be happy just to have our compiler emit readable error messages for plain old templates.

Example 3: Export puts new constraints on the build environment. The build environment
does not consist of just .cpp and .h files any more, and many of today's tools don't
understand how to handle apparently-circular dependencies when the linker can go back and
change .obj (or .o) files. As noted in the previous Item, if you change an exported template
file, you need to recompile that, but you also need to recompile the instantiations; that is,
export really does not separate dependencies, it just hides them.

As the world's top template guru, John Spicer of EDG, notes: "export is intricate in nature
and it takes a lot of work to understand the consequences. It's hard to make up simple
usage guidelines that will keep users out of trouble." [Emphasis mine.]

Potential Benefits of Export

5. What real and potential benefits does export have?

Now that an implementation of export is finally available, for the first time ever, the time is
ripe for the early adopters in the C++ community to start kicking the tires and see how it runs
in the field. Here are two actual and potential values of export that some early adopters hope
to achieve:

1. Build speed (still). It is still unknown what, if any, impact export will have on build
speed in common real-world template-using code. If the feature becomes more
widely adopted and used, exploration in this area will let us discover how common the
beneficial cases are and how easy or difficult those cases are to construct. In
particular, it is hoped that translation units that use exported templates will be less
sensitive to (i.e., less costly to rebuild when there are) changes in the template's
definition.

Caveats to #1: For reasons why being able to break dependencies might not be the
case and why dependencies still exist, see the previous Item. Also, note that in the
EDG implementation of templates, this potential advantage is available equally to both
inclusion and export source organization modelswhich would mean that for this

Page 94

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

implementation at least (the only available export implementation today) export
could have no benefit in this respect over inclusion-model templates.

2. Macro leakage. This is a real advantage of export. Macros leak across traditional
inclusion-model header files. Because the inclusion-model source code is entirely
available in each translation unit, outside macros pulled in from elsewhere earlier in
that translation unit can affect the template's definition. With export, macros don't
leak across translation units, and this will help the template author maintain better
control over his template definitions (which are off in a separate file) and prevent
outside macros from as easily interfering with his template definitions' internals.

This is a real advantage of export, but it is not unique to export. Note that within the C++
standards committee's early work on the next standard (C++0x), the Evolution Working
Group is already pursuing better and more general solutions to the macro problem in all
contexts, such as Stroustrup's work on potential new #scope and #endscope preprocessor
extensions. If such a solution is adopted, it would eliminate entirely this advantage of export,
because the preprocessor scope control solution would deliver all the macro-protection
benefits of export and many more, in a better and more general way.

In summary, it remains to be seen in the coming years how much benefit export gives over
normal include-all-the-code-in-the-header templates, but I'd like to strongly encourage the
people who run those tests to also report the results of organizing their code to take full
advantage of the EDG implementation's non-export template optimization capabilities and
see whether any advantages to export actually remain.

Morals

So should you use export, and if so, how can you use it safely? Well, for the time being, only
a fraction of C++ programmers will be using an export-capable compiler that they can
experiment with. For most C++ programmers, then, the question of whether to use export is
moot: They can't, not anytime soon, so they won't.

What if you're using one of those up-and-coming newfangled export-capable compilers? Ah,
now we can finally come up with an initial guideline:

Guideline
For portable code, don't use export.

This borders on being a truism: export certainly can't be used for portable code, because
given today's meager compiler support, any code that uses export is not portable in practice
today and will not be portable for some time to come.

What if you don't need portable code, have export, and are tempted to use it? Then caveat
emptor: Be aware that export is still experimental, that it does not necessarily deliver the
benefits people expect, and that it adds some new operational wrinkles to existing C++
language features. Be aware that exported templates can also be trickier to write for the
reasons mentioned in these two Items and summarized again below.

My best advice as of this writing would be that, even if you just use one compiler and it has

Page 95

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

export today, in general you should try to avoid export for now in production code
because it is still an experimental design. Let someone else be the guinea pig as we spend the
next year or two trying it out and learning about what export will really give us.

Guideline
(For now) Avoid export.

But, if you do decide to be one of the early-adopter experimenters, here are somethings we
already know you can do to make life safer and less stressful:

Guidelines
If you do choose to use export selectively for some templates, then:

Don't expect that export means you don't have to ship source code (or its
equivalent) anyway. You still do, and this will not change.

Don't expect that export means your builds will be earth-shatteringly
faster. Initial experience is inconclusive, but your builds could well be
slower.

Do check that your tools and environment can handle the new build
requirements and dependencies (e.g., make sure all your tools understand
that the linker can change its input .obj/.o files, if that's the technique
your export implementation uses).

If your exported template uses any functions or objects that are in an
unnamed namespace or file static:

 Understand that those functions/objects will behave as though they
were extern, and that the functions are liable to participate in
overload resolution with an arbitrary number of functions in other
unnamed namespaces from an arbitrary number of source files.

 Always obfuscate (uglify) the names of those functions so as to
prevent unintended semantic changes. (This is a pity because the
unnamed namespace and file static are supposed to protect you
from this so you don't have to obfuscate the names, but if you use
export you can too easily silently lose this protection and should
obfuscate them again.)

Do understand that this is not a complete list and that you will probably
encounter some other issues beyond the ones we already know about for
today's normal template uses. As Spicer put it: "It's hard to make up
simple guidelines that will keep users out of trouble." Do understand that
export is still somewhat experimental and that as a community we haven't
yet had a chance to learn how to use export, so we don't have a complete
set of good safety and usage guidelines yet. This will likely change in the

Page 96

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

future.

It's too early too tell whether the "avoid export" guideline will turn into permanent advice.
Time and experimentation will tell. As vendors slowly begin to adopt and support export in
the coming years and the community gets a chance to finally try it out, we'll know much more
about how and when to use itor not.

Page 97

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Exception Safety
Issues and
Techniques
Exception handling is a fundamental error reporting
mechanism in modern languages, including C++. In
Exceptional C++ [Sutter00] and More
Exceptional C++ [Sutter02] we considered in
detail many issues related to defining what exception
safety is, how to go about writing exception-safe
code, and language issues and interactions to be
aware of.

In this section, we continue to build on that material
by turning our attention to some specific
exception-related language features. We begin by
answering some perennial questions: Is exception
safety all about writing TRy and catch in the right
places? If not, then what? And what kinds of things
should you consider when developing an exception
safety policy for your software?

Delving beyond that, it's worth spending an entire
Item to lay out reasons why writing exception-safe
code is, well, just plain good for you, because doing
that promotes programming styles that lead to more
robust and more maintainable code in general, quite
apart from their benefits in the presence of
exceptions. But there is a limit to goodness and to "if
some is good, then more is better" thinking, and that
limit is hit well and hard when we get to exception
specifications: Why are they in the language? Why
are they well motivated in principle? And why,
despite all that, should you stop using them in your
programs?

This and more, as we dip our cups and drink again
from the font of today's most current exceptional
community wisdom.

Page 98

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 11. Try and Catch
Me
Difficulty: 3

Is exception safety all about writing TRy and catch in the right
places? If not, then what? And what kinds of things should you
consider when developing an exception safety policy for your
software?

JG Question
1. What is a try-block?

Guru Question
2. "Writing exception-safe code is fundamentally about

writing try and catch in the correct places."
Discuss.

3. When should try and catch be used? When
should they not be used? Express the answer as a
good coding standard guideline.

Page 99

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Playing catch

1. What is a try-block?

A try-block is a block of code (compound statement) whose execution will be attempted,
followed by a series of one or more handler blocks that can be entered to catch an exception of
the appropriate type if one is emitted from the attempted code. For example:

// Example 11-1: A try-block example

//

try {

 if(some_condition)

 throw string("this is a string");

 else if(some_other_condition)

 throw 42;

}

catch(const string&) {

 // do something if a string was thrown

}
catch(...) {

 // do something if anything else was thrown

}

In Example 11-1, the attempted code might throw a string, an integer, or nothing at all.

There's More to Life Than Playing catch

2. "Writing exception-safe code is fundamentally about writing TRy and catch in
the correct places." Discuss.

Put bluntly, such a statement reflects a fundamental misunderstanding of exception safety.
Exceptions are just another form of error reporting, and we certainly know that writing error-safe
code is not just about where to check return codes and handle error conditions.

Actually, it turns out that exception safety is rarely about writing TRy and catchand the more
rarely the better. Also, never forget that exception safety affects a piece of code's design; it is
never just an afterthought that can be retrofitted with a few extra catch statements as if for
seasoning.

There are three major considerations when writing exception-safe code:

1. Where and when should I throw? This consideration is about writing throw in the right
places. In particular, we need to answer:

o What code should throw? That is, what errors will we choose to report by
throwing an exception instead of by returning a failure value or using some other
method?

Page 100

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

o What code shouldn't throw? In particular, what code should provide the no-fail
guarantee? (See Item 12 and [Sutter99].)

2. Where and when should I handle an exception? This is the only consideration that is in
part about writing try and catch in the right places, and even this can be automated
most of the time. First, consider the questions we need to answer:

o What code could catch? That is, what code has enough context and knowledge
to handle the error being reported by the exception (possibly by translating the
exception into another form)? In particular, note that the catching code also needs
to have enough knowledge to perform any necessary cleanup, such as of dynamic
resources.

o What code should catch? That is, of the code that could catch the exception,
which is best suited to do so?

Once we've answered those questions, note that using the "resource acquisition is initialization"
idiom can eliminate many try-blocks by automating the cleanup work. If you wrap dynamically
allocated resources in owner-manager objects, typically the destructor can perform automatic
cleanup at the right time without any try or catch at all. This is clearly desirable, not to mention
that it's also usually easier to code now and to read later.

Guideline
Prefer handling exception cleanup automatically by using de-structors instead
of try/catch.

3. In all other places, is my code going to be safe if an exception comes roaring
through out of any given function call? This consideration is about using good resource
management to avoid leaks, maintaining class and program invariants, and other kinds of
program correctness. Put another way, it's about keeping the program from blowing up
just because an exception happens to pass from its throw site through code that shouldn't
have to particularly care about it before arriving at an appropriate handler. For most
programmers I've encountered, it turns out that this is typically by far the most
time-consuming and difficult-to-learn aspect of exception safety.

Notice that only one of these three considerations has anything to do with writing try and catch.
And even that one can often be avoided with the judicious use of de-structors to automate
cleanup.

4. When should try and catch be used? When should they not be used? Express
the answer as a good coding standard guideline.

Here's one suggestion. In brief:

1. Determine an overall error reporting and handling policy for your application or
subsystem, and stick to it. In particular, the policy should cover the following basic
aspects (and generally includes much more):

o Error reporting. Define what kinds of errors are to be reported and how; prefer

Page 101

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

using exceptions as opposed to other error reporting methods. Generally it's good
to choose the most readable and maintainable method for each case by default;
for example, exceptions are most useful for constructors and operators that
cannot emit return values or where the throw site and the handler are widely
separated.

o Error propagation. Among other things, define the boundaries that exceptions
shall not cross; typically these are module or API boundaries.

o Error handling. Among other things, mandate that owning objects and
destructors be used to manage cleanup instead of try/catch, wherever possible.

2. Write tHRow in the places that detect an error and cannot deal with it themselves.
(Clearly, code that can resolve an error immediately doesn't need to report it!)

For every operation, document what exceptions the operation might throw, and why, as part of
the documentation for every function and module. You don't need to actually write an exception
specification on each function (and you shouldn't; see Item 13), but you do need to document
clearly and rigorously what the caller can expect, because error semantics are part of the
function's or module's interface.

3. Write TRy and catch in the places that have sufficient knowledge to handle the
error, to translate it, or to enforce boundaries defined in the error policy. In
particular, I've found that there are three main reasons to write try and catch:

o To handle an error. This is the simple case: An error happened, we know what
to do about it, and we do it. Life goes on (sans the original exception, which has
been safely put to rest). Again, do this in a destructor if possible; if not, go ahead
and use TRy/catch.

o To translate an exception. This means catching one exception that reports a
lower-level problem and throwing another that is couched in the context of the
translating code's own higher-level semantics. Alternatively, the original exception
can be translated to another representation, such as an error code.

For example, consider a communications session utility class that works across
many host types and transport protocols: An attempt to open a session to another
host can fail for any number of low-level reasons that the session class can detect
(for example, a failure to detect the network or authentication/permission rejection
from the remote host). The Open function can handle these conditions itself, and
there's no use reporting them to the caller, who after all has no idea what a Foo
packet is or what to do if it Barifies; the session class handles its internal low-level
errors directly, keeps itself in a consistent state, and reports its own higher-level
error or exception to inform its caller that the session could not be opened.

void Session::Open(/*…*/) {

 try {

 // entire operation

 }

 catch(const ip_error& err) {

 // - do something about an IP error

 // - clean up

 throw Session::OpenFailed();

Page 102

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

 catch(const KerberosAuthentFail& err) {

 // - do something about an authentication error

 // - clean up

 throw Session::OpenFailed();

 }

 // … etc. …

}

o To catch(…) on subsystem boundaries or other run-time firewalls. This
usually also involves translating the error, usually to an error code or other
nonexceptional representation. For example, when your stack unwinds up to a C
API, you have only two choices: Return an error code right away for the current
API function, or set an error state that the caller can query later via a
complementary GetLastError API function.

Guidelines
Determine an overall error reporting and handling policy for your application
or subsystem, and stick to it. Include a policy for error reporting, error
propagation, and error handling.

Write throw in the places that detect an error and cannot deal with it
themselves.

Write try and catch in the places that have sufficient knowledge to handle
the error, to translate it, or to enforce boundaries defined in the error policy
(e.g., to catch(…) on subsystem boundaries or other run-time firewalls).

Summary

A wise man once said:

Lead, follow, or get the blazes out of the way!

In exception safety analysis, we might say instead:

tHRow, catch, or get the blazes out of the way!

In practice, the last get-out-of-the-way case accounts for the bulk of exception safety analysis and
testing. That's the major reason why exception-safe coding is not fundamentally about writing TRy
and catch in the right places. Rather, it's fundamentally about getting out of the bullet's way in the
right places.

Page 103

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 12. Exception Safety:
Is It Worth It?
Difficulty: 7

Is it worth the effort to write exception-safe code? This should no longer
be a seriously disputed and debated point… but sometimes it still is.

Guru Question
1. Recap: Briefly define the Abrahams exception safety

guarantees (basic, strong, and nofail).

2. When is it worth it to write code that meets:

a. the basic guarantee?

b. the strong guarantee?

c. the nofail guarantee?

Page 104

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
The Abrahams Guarantees

1. Recap: Briefly define the Abrahams exception safety
guarantees (basic, strong, and nofail).

The basic guarantee says that failed operations might alter program state,
but no leaks occur and affected objects/modules are still destructible and
usable, in a consistent (but not necessarily predictable) state.

The strong guarantee involves transactional commit/rollback semantics:
Failed operations guarantee that program state is unchanged with respect to
the objects operated upon. This means no side effects that affect the
objects, including the validity or contents of related helper objects such as
iterators pointing into containers being manipulated.

Finally, the nofail guarantee says that failure simply will not be allowed to
happen. In terms of exceptions, the operation will not throw an exception.
(Abrahams and others, including the earlier Exceptional C++ books,
originally called the nothrow guarantee. I have switched to calling it the nofail
guarantee because these guarantees apply equally to all error handling,
whether using exceptions or some other mechanism such as error codes.)

When Are Stronger Guarantees Worthwhile?

2. When is it worth it to write code that meets:

a. the basic guarantee?

b. the strong guarantee?

c. the nofail guarantee?

It is always worth it to write code that meets at least one of these
guarantees. There are several good reasons:

1. Exceptions happen. (To paraphrase a popular saying.) They just
do. The standard library emits them. The language emits them. We
have to code for them. Fortunately, it's not that big a deal, because
we now know how to do it. It does require adopting a few habits,
however, and following them diligentlybut then so did learning to
program with error codes.

The big thorny problem is, as it ever was, the general issue of error handling.
The detail of how to report errors, using return codes or exceptions, is
almost entirely a syntactic detail where the main differences are in the
semantics of how the reporting is done, so each approach requires its own
style.

Page 105

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2. Writing exception-safe code is good for you. Exception-safe code
and good code go hand in hand. The same techniques that have
been popularized to help us write exception-safe code are, pretty
much without exception, things we usually ought to be doing
anyway. That is, exception-safety techniques are good for your
code in and of themselves, even if exception safety weren't a
consideration.

To see this in action, consider the major techniques I and others have written
about to make exception safety easier:

 Use "resource acquisition is initialization" (RAII) to manage resource
ownership. Using resource-owning objects such as Lock classes
and shared_ptrs (see [Boost, Sutter02a]) is just a good idea in
general. It should come as no surprise that among their many
benefits we should also find exception safety. How many times have
you seen a function (here we're talking about someone else's
function, of course, not something you wrote) where one of the code
branches that leads to an early return fails to do some cleanup
because cleanup wasn't being managed automatically using RAII?

 Use "do all the work off to the side, then commit using nonthrowing
operations only" to avoid changing internal state until you're sure the
whole operation will succeed. Such transactional programming is
clearer, cleaner, and safer even with error codes. How many times
have you seen a function (and naturally here again we're talking
about someone else's function, of course, not something you wrote)
where one of the code branches that leads to an early return fails to
preserve the object's state, because some fiddling with internal state
had already happened before a later operation failed?

 Prefer "one class (or function), one responsibility." Functions that
have multiple effects, such as the Stack::Pop and
EvaluateSalaryAndReturnName functions described in Items 10
and 18 of Exceptional C++ [Sutter00], are difficult to make
strongly exception-safe. Many exception safety problems can be
made much simpler, or eliminated without conscious thought, simply
by following the "one function, one responsibility" guideline. And that
guideline long predates our knowledge that it happens to also apply
to exception safety; it's just a good idea in and of itself.

Doing these things is just plain good for you.

Having said that, then, which guarantee should we use when? In brief, here's
the guideline followed by the C++ standard library, and one that you can
profitably apply to your own code:

Guideline
A function should always support the strictest guarantee

Page 106

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

that it can support without penalizing callers who don't need
it.

So if your function can support the nofail guarantee without penalizing callers
who don't need that guarantee, it should do so. Note also that a handful of
key functions simply must be nofail operations:

Guideline
Never allow a destructor, deallocation, or swap function to
emit an exception, because otherwise it's often impossible to
reliably and safely perform cleanup.

Otherwise, if your function can support the strong guarantee without
penalizing some users, it should do so. Note that vector::insert is an
example of a function that does not support the strong guarantee in general
because doing so would force us to make a full copy of the vector's
contents every time we insert an element, and not all programs care so much
about the strong guarantee that they're willing to incur that much overhead.
(Those programs that do can wrap vector::insert with the strong
guarantee themselves, trivially: Take a copy of the vector, perform the
insert on the copy, and once it's successful, perform a swap with the original
vector, and you're done.)

Otherwise, your function should support the basic guarantee.

For more information about these concepts, such as what a nonthrowing
swap is all about or why destructors should never emit exceptions, see also
Exceptional C++ [Sutter00] and More Exceptional C++ [Sutter02].

Page 107

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 13. A Pragmatic
Look at Exception
Specifications
Difficulty: 6

Now that the community has gained experience with exception
specifications, it's time to reflect on when and how they should
best be used. This Item considers the usefulness, or lack thereof,
of exception specifications and how the answers can vary across
real-world compilers.

JG Questions
1. What happens when an exception specification is

violated? Why? Discuss the basic rationale for this
C++ feature.

2. For each of the following functions, describe what
exceptions the function could throw.

3.
4. int Func();

5. int Gunc() throw();

6. int Hunc() throw(A,B);

Guru Question
3. Is an exception specification part of the function's

type? Explain.

4. What are exception specifications, and what do they
do? Be precise.

5. When is it worth it to write an exception
specification on a function? Why would you choose
to write one, or why not?

Page 108

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
As we consider work now underway on the new C++ standard, C++0x, it's a good time
to take stock of what we're doing with, and have learned from, our experience with the
current standard [C++03]. The vast majority of standard C++'s features are good, and
they get the lion's share of the print because there's not much point harping on the weaker
features. Rather, the weaker and less useful features more often just get ignored and
atrophy from disuse until many people forget they're even there (not always a bad thing).
That's why you've seen relatively few articles about obscure features such as valarray,
bitset, locales, and the legal expression 5[a] (although a version of the last one does
show up in another Item later in this book)and the same is true, we will find, for exception
specifications.

Let's now take a closer look at the state of our experience with standard C++ exception
specifications.

Moving Violations

1. What happens when an exception specification is violated? Why? Discuss
the basic rationale for this C++ feature.

The idea of exception specifications is to do a run-time check that guarantees that only
exceptions of certain types will be emitted from a function (or that none will be emitted at
all). For example, the following function's exception specification guarantees that f will emit
only exceptions of type A or B:

int f() throw(A, B);

If an exception would be emitted that's not on the invited-guests list, the function
unexpected will be called. For example:

// Example 13-1

//

int f() throw(A, B) { // A and B are unrelated to C

 throw C(); // will call unexpected

}

You can register your own handler for the unexpected-exception case by using the
standard set_unexpected function. Your replacement handler must take no parameters
and it must have a void return type. For example:

void MyUnexpectedHandler() { /*…*/ }

std::set_unexpected(&MyUnexpectedHandler);

The remaining question is, what can your unexpected handler do? The one thing it can't do
is return via a usual function return. There are two things it may do:

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 It could decide to translate the exception into something that's allowed by that
exception specification, by throwing its own exception that does satisfy the
exception specification list that caused it to be called. Then stack unwinding would
resume from where it had left off.

 It could call terminate, which ends the program. (The terminate function can
itself be replaced, but any replacement must likewise also always end the
program.)

The Story So Far

The idea behind exception specifications is easy to understand: In a C++ program, unless
otherwise specified, any function might conceivably emit any type of exception. Consider a
function named Func (because the name f is so dreadfully over-used):

2. For each of the following functions, describe what exceptions the function
could throw.

3.
4. // Example 13-2(a)

5. //

6. int Func(); // can throw anything

By default, in C++, Func could indeed throw anything, just as the comment added hereto
says. Now, often we know just what kinds of things a function might throw, and then it's
certainly reasonable to want to supply the compiler and the human programmer with some
information limiting what exceptions could come tearing out of a function. For example:

// Example 13-2(b)

//

int Gunc() throw(); // will throw nothing

int Hunc() throw(A,B); // can only throw A or B

In these cases, the function's exception specification exists to say something about what the
functions Gunc and Hunc could emit. The comments document colloquially what the
specifications say. We'll return to that "colloquially" part in a moment, because as it turns
out, these two comments are deceptively close to being correct.

One might naturally think that making a statement about what the functions might throw
would be a good thing, that more information is better. One would not necessarily be right,
because the devil is in the details: Although the motivation is noble, the way exception
specifications are, well, specified in C++ isn't always useful and can often be downright
detrimental.

Issue the First: A "Shadow Type System"

3. Is an exception specification part of the function's type? Explain.

John Spicer, of Edison Design Group fame and an author of large swathes of the template
chapter of the C++ standard, has been known to call C++'s exception specifications a
"shadow type system." One of C++'s strongest features is its strong type system, and that's

Page 110

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

well and good. Why would we call exception specifications a shadow type system instead
of just part of the type system?

The reason is simple, and twofold:

 Exception specifications don't participate in a function's type.

 Except when they do.

Consider first an example of when exception specifications don't participate in a function's
type. Reflect on the following code:

// Example 13-3(a): You can't write an exception specification in a

typedef.

//

void f() throw(A,B);

typedef void (*PF)() throw(A,B); // syntax error

PF pf = f; // can't get here because of

the error

The exception specification on the typedef is illegal. C++ doesn't let you write that, so the
exception specification is not allowed to participate in the type of a function… at least, not
in the context of a typedef, it's not. But in other cases, exception specifications do indeed
participate in the function's type, such as if you wrote the same function declaration without
the typedef:

// Example 13-3(b): But you can if you omit the typedef!

//

void f() throw(A,B);

void (*pf)() throw(A,B); // ok

pf = f; // ok

Incidentally, you can do this kind of assignment of a pointer to a function as long as the
target's exception specification is no more restrictive than the source's:

// Example 13-3(c): Also kosher, low-carb, and fat-free.

//

void f() throw(A,B);

void (*pf)() throw(A,B,C); // ok

pf = f; // ok, pf's type is less

restrictive

Exception specifications also participate in a virtual function's type when you try to override
it:

// Example 13-3(d): Exception specifications matter for virtual

functions.

Page 111

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

//

class C {

 virtual void f() throw(A,B); // same exception

specification

};
class D : C {

 void f(); // error, now the ES matters

};

So the first issue with exception specifications as they exist in today's C++ is that they're
really a shadow type system that plays by different rules than the rest of the type system.

Issue the Second: (Mis)understandings

The second issue has to do with knowing what you're getting. As many notable persons,
including the authors of the Boost exception specification rationale [BoostES], have put it,
programmers tend to use exception specifications as though they be-haved the way the
programmer would like, instead of the way they actually do be-have.

Hence the question:

4. What are exception specifications, and what do they do? Be precise.

Here's what many people think exception specifications do:

 Guarantee that functions will throw only listed exceptions (possibly none).

 Enable compiler optimizations based on the knowledge that only listed exceptions
(possibly none) will be thrown.

These expectations are, again, deceptively close to being correct. Consider again the code
in Example 13-2(b):

// Example 13-2(b) reprise, and two potential white lies:

//

int Gunc() throw(); // will throw nothing ?

int Hunc() throw(A,B); // can only throw A or B ?

Are the comments correct? Not quite. Gunc might indeed throw something, and Hunc
might well throw something other than A or B! The compiler just guarantees to beat them
senseless if they do… oh, and to beat your program senseless too, most of the time.

Because Gunc or Hunc could indeed throw something they promised not to, not only can't
the compiler assume it won't happen, but the compiler is also responsible for being the
policeman with the billy club who checks to make sure such a bad thing doesn't happen
undetected. If it does happen, then the compiler must invoke the unexpected function.
Most of the time, that will terminate your program. Why? Because there are only two ways
out of unexpected, neither of which is a normal return. You can pick your poison:

 Throw instead an exception that the exception specification does allow. If so, the
exception propagation continues as it would normally have. But remember that the
unexpected handler is globalthere is only one for the whole program. A global

Page 112

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

handler is highly unlikely to be smart enough to Do the Right Thing for any given
particular case, and the result is to go to terminate, go directly to terminate,
do not pass catch, do not collect $200.

 Throw instead (or rethrow) an exception that the exception specification (still)
doesn't allow. If the original function allowed a bad_exception type in its
exception specification, okay, then it's a bad_exception that will now get
propagated. But if not, then go to terminate, go directly to terminate…

Because violated exception specifications end up terminating your program the vast
majority of the time, I think it's legitimate to call that "beating your program senseless."

Earlier, we saw two bullets stating what many people think that exception specifications do.
Here is an edited statement that more accurately portrays what they actually do do [sic]:[19]

[19] Yes, this is a sic joke.

 Guarantee Enforce at run-time that functions will throw only listed exceptions
(possibly none).

 Enable or prevent compiler optimizations based on the knowledge that only listed
exceptions (possibly none) will be thrown having to check whether listed
exceptions are indeed being thrown.

To see what a compiler has to do, consider the following code, which provides a body for
one of our sample functions, Hunc:

// Example 13-4(a)

//

int Hunc() throw(A,B) {

 return Junc();

}

Functionally, the compiler must generate code like the following, and it's typically just as
costly at run-time as if you'd hand-written it yourself (though less typing because the
compiler generates it for you):

// Example 13-4(b): A compiler's massaged version of Example 13-4(a)

//

int Hunc()

try {

 return Junc();

}

catch(A) {

 throw;

}
catch(B) {

 throw;

}
catch(…) {

 std::unexpected(); // won't return! but might throw an A or a B if

you're lucky

}

Page 113

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Here we can see more clearly why, rather than letting the compiler make optimizations by
assuming only certain exceptions will be thrown, it's exactly the reverse: The compiler has
to do more work to enforce at run-time that only those exceptions are indeed thrown.

The Scoop on Exception Specifications

Most people are surprised to discover that exception specifications can cause performance
penalties. One reason this is true has now been amply demonstrated: The exception
specification incurs the overhead for the implicitly generated TRy/catch blocks, although
this might be minor on efficient compilers.

There are at least two other ways that exception specifications can commonly cost you in
run-time performance:

 Some compilers will automatically refuse to inline a function having an exception
specification, just as they can apply other heuristics such as refusing to inline
functions that have more than a certain number of nested statements or that contain
any kind of loop construct.

 Some compilers don't optimize exception-related knowledge well at all and will
add the compiler-generated TRy/catch blocks even when the function body
provably can't throw. (I mean it; that's not a typo.)

Moving beyond run-time performance, exception specifications can cost you development
time because they increase coupling. For example, removing a type from the base class
virtual function's exception specification is a quick and easy way to break lots of derived
classes in one swell foop (if you're looking for a way). Try it on a Friday afternoon
check-in and start a pool to guess the number of angry emails that will be waiting for you in
your inbox on Monday morning.

Hence our natural next question would be:

5. When is it worth it to write an exception specification on a function? Why
would you choose to write one, or why not?

Here's what seems to be the best advice we as a community have learned as of this writing:

Guidelines
Moral #1: Never write an exception specification.

Moral #2: Except possibly an empty one, but if I were you, I'd avoid
even that.

Boost's experience is that a throws-nothing specification on a non-inline function is the only
place where an exception specification "may have some benefit with some compilers."
That's a rather underwhelming statement in its own right but a useful consideration if you
have to write portable code that will be used on more than one compiler platform.

It's actually even a bit worse than that in practice, because it turns out that popular
implementations vary in how they actually handle exception specifications. At least one

Page 114

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

popular C++ compiler (Microsoft's, up to the current version as of this writing, 7.1 (2003))
parses exception specifications but does not actually enforce them, reducing the exception
specifications to glorified comments. But wait, there's more: At the same time, there are
legal optimizations a compiler can perform outside a function, and which the Microsoft 7.x
compiler does perform, that rely on the exception specification enforcement's being done
inside each function; the idea is that if the function did try to throw something it shouldn't,
then the internal handler would stop the program and control would never return to the
caller, so because control did return to the caller the code generated for the call site can
assume nothing was thrown and do such things as eliminate external try/catch blocks.

On such a compiler that fails to enforce the exception specification but still relies on its
being enforced, the meaning of throw() changes from the standard "check me on this,
stop me if I inadvertently throw" to a "trust me on this, assume I'll never throw and optimize
away." So beware: If you do choose to use even an empty exception specification, read
your compiler's documentation and check to see what it will really do with it. You might
just be surprised. Be aware, drive with care.

Summary

In brief, don't bother with exception specifications. Even experts don't bother.

Slightly less briefly, the major issues are:

 Exception specifications can cause surprising performance hits, for example if the
compiler turns off inlining for functions with exception specifications.

 A run-time unexpected error is not always what you want to have happen for the
kinds of mistakes that exception specifications are meant to catch.

 You generally can't write useful exception specifications for function templates
anyway because you generally can't tell what the types they operate on might
throw.

While presenting this material as part of a broader talk at a conference not long ago, I
asked how many of the about 100 people in the room each time had used exception
specifications. About half put up their hands. Then a wag at the back said (quite correctly)
that I should also ask how many of those people later took the exception specifications
back out again, so I asked; about the same number of hands went up. This is telling. The
world-class library designers at Boost went through the same experience, and that's why
their coding policy on writing exception specifications pretty much boils down to "don't do
that" [BoostES].

True, many well-intentioned people wanted exception specifications in the language, and
that's why we have them. This reminds me of a cute poem that I first encountered about 15
years ago as it circulated in midwinter holiday emails. Set to the cadence of "'Twas the
Night Before Christmas," these days it's variously titled "'Twas the Night Before
Implementation" or "'Twas the Night Before Crisis." It tells of a master programmer who
slaves away late at night in the holiday season to meet user deadlines and performs multiple
miracles to pull out a functioning system that perfectly implements the requirements… only
to experience a final metaphorical kick in the teeth as the last four lines of the ditty report:

The system was finished, the tests were concluded,

Page 115

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The users' last changes were even included.

And the users exclaimed, with a snarl and a taunt,

"It's just what we asked for, but not what we want!"

The thought resonates as we finish considering our current experience with exception
specifications. The feature seemed like a good idea at the time… and it is just what some
people had asked for.

Be careful what you wish for. You might get your wish.

Page 116

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Class Design,
Inheritance, and
Polymorphism
In addition to the generic paradigm, C++ equally
supports object-oriented design and programming.
This section turns the spotlight on this more
traditional area, with particular attention to the way
C++ exposes OO features.

To get started, we'll consider a real-world example
of code containing a subtle flaw, and we'll use it as a
springboard to review basic object construction and
teardown ordering. Then it's on to an in-depth foray
into the world of writing robust code, which touches
on the issue of code security: First, what parts of a
class are accessible from various other code and, in
particular, what ways are there for "leaking" the
private parts of a class, intentionally or otherwise?
What is encapsulation, and how does it relate to the
choices we can and should make about member
accessibility? Finally, how can we make our classes
safer for versioning and for ensuring that base class
contracts are easy to maintain correctly and won't be
subverted accidentally?or otherwisein derived
classes, which would otherwise lead to broken
contracts and even security holes?

This and more, as we begin our foray into the world
of objects.

Page 117

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 14. Order, Order!
Difficulty: 2

Programmers learning C++ often come up with interesting
misconceptions of what can and can't be done in C++. In this
example, contributed by Jan Christiaan van Winkel, a student
makes a basic mistakebut one that many compilers let pass with
no warnings at all.

JG Question
1. The following code was actually written by a student

taking a C++ course, and the compiler the student
was using issued no warnings about it. Indeed,
several popular compilers issue no warnings for this
code. What's wrong with it, and why?

2.
3. #include <string>

4. using namespace std;

5.
6. class A {

7. public:

8. A(const string& s) { /* … */ }

9. string f() { return "hello, world"; }

10. };
11.
12. class B : public A {
13. public:
14. B() : A(s = f()) {}
15. private:
16. string s;
17. };
18.
19. int main() {
20. B b;
21. }

Guru Question
2. When you create a C++ object of class type, in

what order are its various parts initialized? Be as
specific and complete as you can. Demonstrate by

Page 118

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

showing the order of initialization of the various parts
of an X object, using the following example.

3.
4. class B1 { };

5. class V1 : public B1 { };

6. class D1 : virtual public V1 { };

7.
8. class B2 { };

9. class B3 { };

10. class V2 : public B1, public B2 { };
11. class D2 : public B3, virtual public V2

{ };

12.
13. class M1 { };
14. class M2 { };
15.
16. class X : public D1, public D2 {
17. M1 m1_;
18. M2 m2_;
19. };

Page 119

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
1. […] What's wrong with [this code], and why?
2.
3. // Example 14-1

4. //

5.
6. // …

7.
8. B() : A(s = f()) {}

9.
10. // …

This line harbors a couple of related problems, both associated with object lifetime and the use of
objects before they exist. Note that the expression s = f() appears as the argument to the A base
subobject constructor and hence will be executed before the A base subobject (or, for that matter,
any part of the B object) is constructed.

First, this line of code tries to use the A base subobject before it exists. This particular student's
compiler did not flag the (ab)use of A::f in that the member function f is being called on an A
subobject that hasn't yet been constructed. Granted, the compiler is not required to diagnose such an
error, but this is the kind of thing standards folks call "a quality of implementation issue"something that
a compiler is not required to do but that better compilers could be nice enough to do.

Second, this line then merrily tries to use the s member subobject before it exists, namely by calling
the member function operator= on a string member subobject that hasn't yet been constructed.

2. When you create a C++ object of class type, in what order are its various parts
initialized? Be as specific and complete as you can.

The following set of rules is applied recursively:

 First, the most derived class's constructor calls the constructors of the virtual base class
subobjects. Virtual base classes are initialized in depth-first, left-to-right order.

 Next, direct base class subobjects are constructed in the order they are declared in the class
definition.

 Next, (nonstatic) member subobjects are constructed in the order they were declared in the
class definition.

 Finally, the body of the constructor is executed.

For example, consider the following code. Whether the inheritance is public, protected, or private
doesn't affect initialization order, so I'm showing all inheritance as public.

Demonstrate by showing the order of initialization of the various parts of an X object, using
the following example.

Page 120

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

// Example 14-2

//

class B1 { };

class V1 : public B1 { };

class D1 : virtual public V1 { };

class B2 { };

class B3 { };

class V2 : public B1, public B2 { };

class D2 : public B3, virtual public V2 { };

class M1 { };

class M2 { };

class X : public D1, public D2 {

 M1 m1_;

 M2 m2_;

};

The inheritance hierarchy is structured as shown in Figure 14-1.

Figure 14-1. Inheritance hierarchy for Example 14-2

The initialization order for an X object in Example 14-2 is as follows, where each constructor call
shown represents the execution of the body of that constructor:

 First, construct the virtual bases:

construct V1: B1::B1() V1::V1()

construct V2: B1::B1() B2::B2() V2::V2()

 Next, construct the nonvirtual bases:

construct D1: D1::D1()

construct D2: B3::B3() D2::D2()

Page 121

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Next, construct the members: M1::M1() M2::M2()

 Finally, construct X itself: X::X()

Summary: A(nother) Word About Inheritance

Of course, although the main point of this Item was to understand the order in which objects are
constructed (and, in reverse order, destroyed), it doesn't hurt to repeat a tangentially related guideline:

Guideline
Avoid overusing inheritance.

Except for friendship, inheritance is the strongest relationship that can be expressed in C++ and
should be used only when it's necessary. For more details, see also Item 20 in Exceptional C++ [
Sutter00] on "Uses and Abuses of Inheritance" and Item 19 in More Exceptional C++ [Sutter02]
on "Exception-Safe Class Design, Part 2: Inheritance."

Page 122

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 15. Uses and Abuses
of Access Rights
Difficulty: 6

Who really has access to your class's internals? This Item is about
forgers, cheats, pickpockets, and thieves and how to recognize and avoid
them.

JG Question
1. What code can access the following parts of a class?

a. public

b. protected

c. private

Guru Question
2. Consider the following header file:
3.
4. // File x.h

5. //

6. class X {

7. public:

8. X() : private_(1) { /*...*/ }

9.
10. template<class T>
11. void f(const T& t) { /*...*/ }
12.
13. int Value() { return private_; }
14.
15. // …
16.
17. private:
18. int private_;
19. };

Demonstrate:

Page 123

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

a. a non-standards-conforming and non-portable
hack; and

b. a fully standards-conforming and portable technique

for any calling code to get direct access to this class's
private_ member.

1. Is this a hole in C++'s access control mechanism, and
therefore a hole in C++'s encapsulation? Discuss.

Page 124

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
This Item is about forgers, cheats, pickpockets, and thieves.

1. What code can access the following parts of a class?

In short:

a. public

Public members can be accessed by any code.

b. protected

Protected members can be accessed by the class's own member functions and friends and by the
member functions and friends of derived classes.

c. private

Private members can be accessed by the class's own member functions and friends only.

That's the usual answer, and it's true as far as it goes. In this Item, we consider a special case
where this answer doesn't, well, quite go far enough, because C++ sometimes provides a way that
makes it legal (if not moral) to subvert access to a class's private members.

4. Consider the following header file: […] Demonstrate:

a. a non-standards-conforming and non-portable hack; and

b. a fully standards-conforming and portable technique

for any calling code to get direct access to this class's private_ member.

There's a strange and perverse fascination that makes people stare at car wrecks, oncoming
headlights, and evil code hackery, so we might as well begin with a visit to a tragic "hit" scene in
(a) and get it out of the way.

For a non-standards-conforming and non-portable hack, several ideas come to mind. Here are
three of the more infamous offenders:

Criminal #1: The Forger

The Forger's hack of choice is to duplicate a forged class definition to make it say what he wants
it to say. For example:

// Example 15-1: Lies and forgery

//

class X {

 // instead of including x.h, manually (and illegally) duplicates X's

 // definition, and adds a line such as:

 friend ::Hijack(X&);

};

Page 125

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

void Hijack(X& x) {

 x.private_ = 2; // evil laughter here

}

This man is a Forger. Mark him well, for he cannot be trusted.

What the Forger is doing is illegal, of course. It's illegal because it violates the One Definition Rule,
which says that if a type (here X) is defined more than once, the definitions must be identical. The
object being used might be called an X and might look like an X, but it's not the same kind of X all
the other code in the program is using.

Still, this hack will work on most compilers because usually the underlying object data layout will
still be the same, and if so, the Forger might be able to live his lie for a time before Tom Hanks
finally manages to catch up with him.

Criminal #2: The Pickpocket

The Pickpocket's hack of choice is to silently change the meaning of the class definition. For
example:

// Example 15-2: Evil macro magic

//

#define private public // illegal

#include "x.h"

void Hijack(X& x) {

 x.private_ = 2; // evil laughter here

}

This man is a Pickpocket. Mark him well, for his fingers are light.

What the Pickpocket is doing is illegal, of course. The code in Example 15-2 is non-portable for
two reasons:

 It is illegal to #define a reserved word.

 It violates the One Definition Rule in the same way that the Forger's tactic did. Still, if the
object's data layout is unchanged, the hack might seem to work for a while.

Criminal #3: The Cheat

The Cheat's modus operandi is to substitute one item when you're expecting another. For
example:

// Example 15-3: Nasty attempt to simulate the object layout.

//

class BaitAndSwitch { // hopefully has the same data layout

as X

public: // so we can pass him off as one

 int notSoPrivate;

};

void f(X& x) {

Page 126

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 (reinterpret_cast<BaitAndSwitch&>(x)).notSoPrivate = 2;

} // evil laughter here

This man is a Cheat. Mark him well, for he's the kind of bait-and-switch artist who runs
newspaper ads just to get you into his store and then claims not to have the advertised item and
tries to fob off something of lesser value and higher price.

What the Cheat is doing is illegal, of course. The code in Example 15-3 is illegal for two reasons:

 The object layouts of X and BaitAndSwitch are not guaranteed to be the same, although
in practice they probably always will be.

 The results of the reinterpret_cast are undefined, although most compilers will let you
try to use the resulting reference in the way the hacker intended. After all, uttering
reinterpret_cast tells the compiler to trust you, shut its eyes, and not watch the
wickedness you're about to perpetrate.

But we were also asked to look for a fully standards-conforming and portable technique. Alas,
although many criminals and hackers are smelly and unwashed and nonconforming, some do
conform and have an air of respectability. And here he comes, wearing all his spiffed-up finest:

Person #4: The Language Lawyer

Many of us wisely fear dishonest, toothy-smiled lawyers more than (other) criminals.

Consider the following code:

// Example 15-4: The legal weasel

//

namespace {

 struct Y {};

}

template<>

void X::f(const Y&) {

 private_ = 2; // evil laughter here

}

void Test() {

 X x;

 cout << x.Value() << endl; // prints 1

 x.f(Y());

 cout << x.Value() << endl; // prints 2

}

This man is a Language Lawyer who knows the loopholes. He will never be caught, for he is
careful to obey the letter of the law while pillaging its spirit. Mark and avoid such ungentlemen.

I wish I could say, "What the Language Lawyer is doing is illegal, of course." Unfortunately, I
can't, because it's not illegal. How come? Well, Example 15-4 exploits the fact that X has a
member template. The code is entirely conforming and is guaranteed by the standard to work as
expected. The reason is twofold:

 It's legal to specialize a member template on any type.

Page 127

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The only room for error would be if you tried to specialize it on the same type twice in different
ways, which would be a One Definition Rule violation, but we get around that because:

 The code uses a type that's guaranteed to be unique, because it's in the hacker's own
unnamed namespace. Therefore it is guaranteed to be legal and won't tromp on anyone
else's specialization.

Don't Subvert

There remains only one question:

3. Is this a hole in C++'s access control mechanism, and therefore a hole in C++'s
encapsulation? Discuss.

This demonstrates an interesting interaction between two C++ features: the access control model
and the template model. It turns out that member templates appear to implicitly "break
encapsulation" in the sense that they effectively provide a portable way to bypass the class access
control mechanism.

This isn't actually a problem. The issue here is of protecting against Murphy vs. protecting against
Machiavelli… that is, protecting against accidental misuse (which the language does very well) as
opposed to protecting against deliberate abuse (which is effectively impossible). In the end, if a
programmer wants badly enough to subvert the system, he'll find a way, as demonstrated in
Examples 15-1 to 15-3.

The real answer to the issue is: Don't do that! Admittedly, there are times when it's tempting to
have a quick way to bypass the access control mechanism temporarily, such as to produce better
diagnostic output during debugging… but it's just not a habit you want to get into for production
code, and it should appear on the list of one-warning offenses in your development shop.

Guideline
Never subvert the language. For example, never attempt to break
encapsulation by copying a class definition and adding a friend declaration or
by providing a local instantiation of a template member function.

Page 128

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 16. (Mostly)
Private
Difficulty: 5

In C++, to what extent are the private parts of a class really
truly private? In this Item, we see how private names are
definitely not accessible from outside nonfriend code, and yet
they do leak out of a class in small wayssome of which are well
known, others of which aren't, and one of which can even be
done as a coldly calculated, deliberate act.

Guru Question
1. Quickassuming that the Twice functions are defined

in another translation unit that is included in the link,
should the following C++ program compile and run
correctly? If no, why not? If yes, what is the output?

2.
3. // Twice(x) returns 2*x

4. //

5. class Calc {

6. public:

7. double Twice(double d);

8. private:

9. int Twice(int i);

10. std::complex<float>
Twice(std::complex<float> c);

11. };
12.
13. int main() {
14. Calc c;
15. return c.Twice(21);
16. }

Page 129

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
"So, just how private is private, Private?"[20]

[20] O. B. Scure, C. Heap, and F. Ictional. Military Sounding (Reference, 2003).

At the heart of the solution lies this question: In C++, to what extent are the private parts
of a class, such as the Question's Twice, really truly private? In this Item, we see how
private names are definitely not accessible from outside nonfriend code, and yet they can
and do leak out of a class in small wayssome of which are wellknown, others of which
aren't, and two of which can even be done as a coldly calculated, deliberate act.

The Basic Story: Accessibility

The fundamental thing to recognize is this: Like public and protected, private is an
access specifier. That is, it controls what other code might have access to the member's
nameand that's all. Quoting from the C++ standard [C++03], the opening words of clause
11 state:

A member of a class can be

 private; that is, its name can be used only by members and friends of the
class in which it is declared.

 protected; that is, its name can be used only by members and friends of the
class in which it is declared, and by members and friends of classes derived
from this class (see class.protected).

 public; that is, its name can be used anywhere without access restriction.

This is pretty basic stuff, but for completeness let's look at a simple example that makes it
clear that access is indeed well controlled and there's no standards-conforming way around
this. Example 16-1 demonstrates that nonfriend code outside the class can never get to a
private member function by name either directly (by explicit call) or indirectly (via a function
pointer), because the function name can't be used at all, not even to take the function's
address:[21]

[21] Undefined hacks like trying to #define private public are nonstandard, deplorable, and reportedly
punishable by law in 42 states. See Item 15 for more on that and similar misbegotten practices.

// Example 16-1: I can't get No::Satisfaction

//

class No {

private:

 virtual void Satisfaction() { }

};

int main() {

 No no;

 no.Satisfaction(); // error

Page 130

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 typedef void (No::*PMember)();

 PMember p = &No::Satisfaction; // error

 return (no.*p)(); // nice try…

}

Note that this covers the case of virtual functions too. A private member that is a virtual
function can be overridden by any derived class, but it can't be accessed by the derived
class. That is, the derived class can override any virtual function with its own function of the
same name, but the derived class cannot call or otherwise use the name of a base class's
private virtual function. For example:

// Example 16-1, continued: Derived classes can

// override, but not access, private virtual members

//

class Derived : public No {

 virtual void Satisfaction() { // ok, overrides

 No::Satisfaction(); // error

 }

};

There's just no way for outside (nonmember, nonfriend) code to incant the name of the
function. To the question "Just how private is private?," we now have the first bit of an
answer:

 A private member's name is accessible only to other members and
friends.

If that were the whole story, this would be a short (and rather pointless) Item. But, of
course, accessibility is not the whole story.

The Other Story: Visibility

The keyword private does indeed control a member's accessibility. But there is another
concept that is related but often confused with accessibility, and that is visibility. Let's
return now to the code in the question: Will it compile and run correctly?

The short answer is: No. In the form shown, the program is not legal and will not compile
correctly. There are two reasons why. The first one is a fairly obvious error:

// Example 16-2 (question code repeated with annotation)

//

// Twice(x) returns 2*x

//

class Calc {

public:

 double Twice(double d);

private:

 int Twice(int i);

 std::complex<float> Twice(std::complex<float> c);

};

int main() {

 Calc c;

 return c.Twice(21);

}

Page 131

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Every C++ programmer knows that, even though the version of Twice that takes a
complex object isn't accessible to the code in main, it's still visible and constitutes a
source dependency. In particular, even though the code in main can't possibly ever care
about complexit can't even so much as use the name of Twice(complex<float>) (it
can't call it or even take its address), and the use of complex can't possibly affect Calc's
size or layout in any waythere still at minimum must be at least a forward declaration of
complex for this code to hope to compile. (If Twice(complex<float>) were also
defined inline, then a full definition of complex would be required too, even though it still
couldn't possibly matter to this code.)

To the question "Just how private is private?," we now have another bit of the answer:

 A private member is visible to all code that sees the class's definition.
This means that its parameter types must be declared even if they can
never be needed in this translation unit…

Everyone knows we can fix this easily enough by adding #include <complex>, so let's
do that. This leaves us with the second, and probably less obvious, problem:

// Example 16-3: A partly fixed version of Example 16-2

//

#include <complex>

class Calc {

public:

 double Twice(double d);

private:

 int Twice(int i);

 std::complex<float> Twice(std::complex<float> c);

};

int main() {

 Calc c;

 return c.Twice(21); // error, Twice is inaccessible

}

This result surprises a fair number of C++ developers. Some programmers expect that
because the only accessible overload of Twice takes a double, and 21 can be converted
to a double, that function should be called. That's not, in fact, what happens, for a simple
reason: Overload resolution happens before accessibility checking.

When the compiler has to resolve the call to Twice, it does three main things, in order:

1. Name lookup. Before doing anything else, the compiler searches for a scope that
has at least one entity named Twice and makes a list of candidates. In this case,
name lookup first looks in the scope of Calc to see if there is at least one member
named Twice; if there weren't, base classes and enclosing namespaces would be
considered in turn, one at a time, until a scope having at least one candidate was
found. In this case, though, the very first scope the compiler looks in already has an
entity named Twicein fact, it has three of them, and that trio becomes the set of
candidates. (For more information about name lookup in C++, with discussion
about how it affects the way you should package your classes and their interfaces,

Page 132

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

see also Items 31 to 34 in Exceptional C++ [Sutter00].)

2. Overload resolution. Next, the compiler performs overload resolution to pick the
unique best match out of the list of candidates. In this case, the argument is 21,
which is an int, and the available overloads take a double, an int, and a
complex<float>. Clearly the int parameter is the best match for the int
argument (it's an exact match and no conversions are required), so Twice(int) is
selected.

3. Accessibility checking. Finally, the compiler performs accessibility checking to
determine whether the selected function can be called. In this case… thud boom
splatter.

It doesn't matter that the only accessible function, Twice(double), could in fact be a
match; it can never be called, because there is a better match, and being a better match
always matters more than being an accessible match.

Interestingly, being even an ambiguous match matters more than being an accessible match.
Consider this slight change to Example 16-3:

// Example 16-4(a): Introducing ambiguity

//

#include <complex>

class Calc {

public:

 double Twice(double d);

private:

 unsigned Twice(unsigned i);

 std::complex<float> Twice(std::complex<float> c);

};

int main() {

 Calc c;

 return c.Twice(21); // error, Twice is ambiguous

}

In this case, we never get past the second step: Overload resolution fails to find a unique
best match out of the candidate list, because the actual parameter type int could be
converted to either unsigned or double and those two conversions are considered equally
good according to the language rules. Because the two functions are equally good matches,
the compiler can't choose between them and the call is ambiguous. The compiler never
even gets to the accessibility check.

Even more interestingly, perhaps, even an impossible match matters more than a more
accessible match. Consider this rearrangement of Example 16-3:

// Example 16-4(b): Introducing plain old name hiding

//

#include <string>

int Twice(int i); // now a global function

class Calc {

Page 133

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

private:

 std::string Twice(std::string s);

public:

 int Test() {

 return Twice(21); // error, Twice(string) is

unviable

 }

};

int main() {

 return Calc().Test();

}

Again, we never get past the second step: Overload resolution fails to find any viable match
out of the candidate list (which now is only Calc::Twice(string)), because the actual
parameter type int can't be converted to string. The compiler again never even gets to
the accessibility check. Remember, as soon as a scope is found that contains at least one
entity with the given name, the search endseven if that candidate turns out to be uncallable
and/or inaccessible. Other potential matches in enclosing scopes will never be considered.

To the question "Just how private is private?," we now have yet another bit of the
answer:

 A private member is visible to all code that sees the class's definition.
This means that … it participates in name lookup and overload resolution
and so can make calls invalid or ambiguous even though it itself could
never be called.

Bjarne Stroustrup writes about this effect in The Design and Evolution of C++ [
Stroustrup94, page 55]:

"Making public/private control visibility, rather than access, would have a change
from public to private quietly change the meaning of the program from one legal
interpretation (access [in our example, Calc::Twice(int)]) to another (access [in our
example, Calc::Twice(double)]). I no longer consider this argument conclusive (if I
ever did) but the decision made has proven useful in that it allows programmers to
add and remove public and private specifications during debugging without
quietly changing the meaning of programs. I do wonder if this aspect of the C++
definition is the result of a genuine design decision."

Back to the First Story: Granting Access

As the first part of our answer to the "how private is private?" question, we said that a
private member is accessible only to (its name can be used only by) other members and
friends. Note that I deliberately avoided saying anything like 'it can be called only by other
members or friends,' because that's actually not true. What accessibility establishes is the
code's right to use the name. Let me emphasize that point from the earlier quote from the
C++ standard:

A member of a class can be

 private; that is, its name can be used only by members and friends of the
class in which it is declared.

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

If code that has the right to directly use the name (in this case, a member or friend) uses the
name to form a function pointer and then passes that pointer out to other code, the
receiving code can use that pointer whether or not the receiving code has the right to use
the member's nameit no longer needs the name, because it's got this pointer, see. Example
16-5 illustrates this technique at work, where a member function that has access to the
name of Twice(int) uses that access to leak a pointer to that member:

// Example 16-5: Granting access

//

class Calc;

typedef int (Calc::*PMember)(int);

class Calc {

public:

 PMember CoughItUp() { return &Calc::Twice; }

private:

 int Twice(int i);

};
int main() {

 Calc c;

 PMember p = c.CoughItUp(); // yields access to Twice(int)

 return (c.*p)(21); // ok

}

See also [Newkirk97], which describes a useful application of deliberately leaking private
implementation details.

To the question "Just how private is private?," we now have one more bit of the answer:

 Code that has access to a member can grant that access to any other code
by leaking a (name-free) pointer to that member.

Finally, there's another way that some classes can and do give the world a perfectly
portable and standards-conforming way to access their private members: member
templates. In Item 15, we covered several ways to get access to private parts of a class.
Most are illegal or operate outside the laws of the standard, but one is perfectly
conforming:

// Example 16-6: Adapted from Example 15-4

//

// In a header file

//

class X {

public:

 template<class T>

 void f(const T& t) {

 // …

 }

// …

private:

 int private_;

Page 135

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

};

// In user code

//

namespace {

 struct Y {};

}

template<>

void X::f(const Y&) {

 private_ = 2; // evil laughter here

}

What's going on here? In short, any member template can be specialized for any type.
Specialize it on a type that you know nobody else will ever specialize it on (say, a type in
your own unnamed namespace), and poof! you've just written a member, and members
have access to all parts of the class.

To the question "Just how private is private?," we now have one final (at least, final for
this Item) bit of the answer:

 A private member's name is accessible only to other members (including
explicit instantiations of member templates, whether anticipated or not) and
friends.

Summary

So, how private is private? Here's what we've found:

A private member's name is accessible only to other members (including explicit
instantiations of member templates, whether anticipated or not) and friends. But code that
has access to a member can grant that access to any other code, by leaking a (name-free)
pointer to that member.

A private member is visible to all code that sees the class's definition. This means that its
parameter types must be declared even if they can never be needed in this translation unit,
and it participates in name lookup and overload resolution and so can make calls invalid or
ambiguous even though it itself could never be called.

Page 136

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 17. Encapsulation
Difficulty: 4

What exactly is encapsulation as it applies to C++
programming? What does proper encapsulation and access
control mean for member datashould it ever be public or
protected? This Item focuses on alternative answers to these
questions, and shows how those answers can increase either the
robustness or the fragility of your code.

JG Question
1. What does "encapsulation" mean? How important is

it to object-oriented design and programming?

Guru Question
2. Under what circumstances, if any, should nonstatic

class data members be made public, protected,
and private? Express your answer as a coding
guideline.

3. The std::pair class template uses public data
members because it is not an encapsulated class but
only a simple way of grouping data. Imagine a class
template that is like std::pair but that additionally
provides a deleted flag, which can be set and
queried but cannot be unset. Clearly the flag itself
must be private so as to prevent users from unsetting
it directly. If we choose to keep the other data
members public, as they are in std::pair, we end
up with something like the following:
[View full width]

template<class T, class U>

class Couple {

public:

 // The main data members are public…

 T first;

 U second;

 // … but there is still classlike

machinery and private

Page 137

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 implementation.

 Couple() :

deleted_(false) {}

 void MarkDeleted() { deleted_ =

true; }

 bool IsDeleted() { return

deleted_; }

private:

 bool deleted_;

};

Should the other data members still be public, as shown?
Why or why not? If so, is this a good example of why
mixing public and private data in the same class might
sometimes be good design?

Page 138

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
1. What does "encapsulation" mean?

According to Webster's Third New International Dictionary:

en-cap-su-late vt: to surround, encase, or protect in or as if in a capsule

Encapsulation in programming has precisely the same sense: To protect the internal
implementation of a class by hiding those internals behind a surrounding and encasing
interface visible to the outside world.

The definition of the word "capsule," in turn, gives good guidance as to what makes a good
class interface:

cap-sule [F, fr. L /capsula/ small box, dim. of /capsa/ chest, case]

1a: a membrane or saclike structure enclosing a part or organ …

2 : a closed container bearing spores or seeds …

4a: a gelatin shell enclosing medicine …

5 : a metal seal …

6 : … envelope surrounding certain microscopic organisms …

9 : a small pressurized compartment for an aviator or astronaut …

Note the recurring theme in the words:

 Surround, encase, enclose, envelope

A good class interface hides the class's internals, presenting a "face" to the outside world
that is separate and distinct from the internals. Because a capsule surrounds exactly one
cohesive group of subobjects, its interface should likewise be cohesiveits parts should be
directly related.

The outer surface of a bacterium's capsule contains its means for sensing, touching, and
interacting with the outside world, and the outside world with it. (Those means would be a
lot less useful if they were inside.)

 Closed, seal

A good class interface is complete and does not expose any internals. The interface acts as
a hermetic seal and often acts as a code firewall (at compile time, at run-time, or both)
whereby outside code cannot depend on class internals, and so changes to class internals
cause no impact on outside code.

A bacterium whose capsule isn't closed won't live long; its internals will quickly escape, and
the organism will die.

Page 139

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Protect, shell

A good class interface protects the internals against unauthorized access and manipulation.
In particular, a primary job of the interface is to ensure that all access to and manipulation
of internal structures is guaranteed to preserve class invariants.

The principal methods for killing bacteria (and humans) involve fashioning devices to break
outer and/or inner capsules. On the micro level, these include chemicals, enzymes, or
organisms (and possibly eventual nanomachines) capable of making appropriate holes. On
the macro level, knives and guns are perennial favorites.

Encapsulation's Place in OO

How important is it to object-oriented design and programming?

Encapsulation is the prime concept in object-oriented programming. Period.

Other OO techniquessuch as data hiding, inheritance, and polymorphismare important
principally because they support special cases of encapsulation. For example:

 Encapsulation nearly always implies data hiding.

 Run-time polymorphism, using virtual functions, more completely separates the
interface (provided by a base class) from the implementation (provided by the
derived class, which need not even exist at the time that the code that will
eventually use it is written).

 Compile-time polymorphism, using templates, completely divorces interface from
implementation, because any class having the required operations can be used
interchangeably without requiring any inheritance or other relationship.

Encapsulation is not always data hiding, but data hiding is always a form of encapsulation.
Encapsulation is not always polymorphism, but polymorphism is always a form of
encapsulation.

Object-orientation is often defined as:

the bundling together of data and the functions that operate on that data

That definition is true to a pointit excludes nonmember functions that are also logically part
of a class, such as operator<< in C++and it stresses high cohesion. It does not, however,
adequately emphasize the other essential element of object-orientation, namely:

the simultaneous separation of data from calling code through an interface of
functions that operate on that data

This complementary aspect stresses low coupling and that the purpose of the assembled
functions is to form a protective interface.

In short, object-orientation is all about separating interfaces from implementation in a way
that promotes high cohesion and low coupling, both of which have been known to be
sound software engineering goals since long before objects were invented. These concepts
address dependency management, which is one of the key concepts in modern software
engineering, especially for large systems. (See [Martin95], and various 1996 articles by

Page 140

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Martin, especially those with "Principle" in the title, at [ObjectMentor].)

Public, Protected, or Private Data?

2. Under what circumstances, if any, should nonstatic class data members be
made public, protected, and private? Express your answer as a coding
guideline.

Normally we first look at the rule and then at the exception. This time, let's do things the
other way around and consider the exception first.

The only exception to the general rule that follows is when all class members (both
functions and data) are public, as with a C-style struct. In this case the "class" isn't really
a full-fledged class with its interface, behavior, and invariantsit's not even a half-fledged
class; it's just a bundle-o-data. The "class" is merely a convenient bundling of objects, and
that's fine, especially for backward compatibility with C programs that manipulate C-style
structs.

Other than that special case, however, data members should always be private.

Public data is a breach of encapsulation because it permits calling code to manipulate the
object's internals directly. This implies a high level of trust! After all, in real life, most other
people don't get to manipulate my internals directly (e.g., by operating directly on my
stomach), because they might then easily and unintentionally do the wrong thing; at best,
they only get to manipulate my internals indirectly by going through my public interface with
my knowledge and consent (e.g., by handing me a bottle labeled "Drink Me," which I will
then decide to drink or shampoo my hair with or wash my car with, according to my own
feelings and judgment). Of course, some people really are qualified to manipulate my
internals directly (e.g., a surgeon), but even then: a) it's rare; b) I get to elect whether or not
to have the surgery; and c) I get to choose which surgeon I will declare has my requisite
high level of trust.

Similarly, most calling code shouldn't ever manipulate a class's internals directly (e.g., by
viewing or changing member data) because they might quite easily and unintentionally do
the wrong thing; at best, they only get to manipulate the class's internals indirectly by going
through the class's public interface with the class's knowledge and consent (e.g., by handing
a Bottle("Drink Me") object to a public member function, which will then decide what,
if anything, to do with the object according to the class author's own feelings and
judgment). Of course, some non-member code might really be qualified to manipulate a
class's internals directly (usually such code should be a member function, but for example
operator<< cannot be a member), but even then: a) it's rare; b) the class gets to elect
whether or not to declare friends at all; and c) the class gets to choose which such
outside code will be declared a friend with that declaration's attendant high level of trust.

In short, public data is evil (except only for C-style structs).

Likewise, in short, protected data is evilthis time with no exceptions.

"Now just wait a minute," someone might say. "I'm with you on the public data thing, but
why say that all protected data is evil?" Because the same argument applies equally to
protected data, which is part of an interface too: the protected interface, which is still an
interface to outside code, just a smaller set of it, namely the code down in the derived

Page 141

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

classes. Why is there no exception? Because protected data is never just a bundle-o-data;
if it were, it could be used as such only by derived classes, and since when do you use
additional instances of one of your base classes as a convenient bundle-o-data? That
would be bizarre.

For more on the history of why protected data was originally permitted and why even the
person who campaigned for it now agrees it was a bad idea, see

Stroustrup's The Design and Evolution of C++ [Stroustrup94].

Guideline
Always make all data members private. The only exception is the case
of a C-style struct that isn't intended to encapsulate anything and
where all members are public.

A General Transformation

Now let's prove the "member data should always be private" guideline by assuming the
opposite (that public/protected member data can be appropriate) and showing that in every
such case the data should not in fact be public/protected at all.

// Example 17-2(a): Nonprivate data (evil)

//

class X {

 // …

public:

 T1 t1_;

protected:

 T2 t2_;

};

First, we note that this can always be transformed, without loss of either generality or
efficiency, to:

// Example 17-2(b): Encapsulated data (good)

//

class X {

 // …

public:

 T1& UseT1() { return t1_; }

protected:

 T2& UseT2() { return t2_; }

private:

 T1 t1_;

 T2 t2_;

};

Therefore, even if there's a reason to allow direct access to t1_ or t2_, there exists a
simple transformation that causes the access to be performed through a(n initially inline)

Page 142

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

member function. Examples 17-2(a) and 17-2(b) are equivalent. But is there any benefit to
using the method in Example 17-2(a)?

To prove that Example 17-2(a) should never be used, all that remains is to show that:

1. Example 17-2(a) has no advantages not present in Example 17-2(b);

2. Example 17-2(b) has concrete advantages; and

3. Example 17-2(b) costs nothing.

Taking them in reverse order:

Point 3 is trivial to show. The inline function, which returns by reference and hence incurs
no copying cost, will probably be optimized away entirely by the compiler.

Point 2 is easy: Just look at the source dependencies. In Example 17-2(a), all calling code
that uses t1_ and/or t2_ mentions them explicitly by name; in Example 17-2(b), all calling
code that uses t1_ or t2_ mentions only the names of the functions UseT1 and UseT2.
Example 17-2(a) is rigid, because any change to t1_ or t2_ (e.g., removing them and
replacing them with something else or just tacking on some instrumentation) requires all
calling code to be changed to suit. In Example 17-2(b), however, instrumentation can be
added, and t1_ and/or t2_ can even be removed entirely, without any change to calling
code, because the member function completes the class's interface and "surrounds," "seals,"
and "protects" the internals.

Finally, Point 1 is demonstrated by observing that anything that calling code could do with
t1_ or t2_ directly in Example 17-2(a), it can still do by using the member accessor in
Example 17-2(b). The caller might have to write an extra pair of brackets, but that's it.

Let's consider a concrete example: Say you want to add some instrumentation, perhaps
something as simple as counting the number of accesses to t1_ or t2_. If it's a data
member, as in Example 17-2(a), here's what you have to do:

1. You create accessor functions that do what you want, and make the data
private. (In other words, you do Example 17-2(b) anyway, only later as a retrofit.)

2. All your users get to experience the joy of finding and changing every use of t1_
and t2_ in their code to the functional equivalent. This is just bound to cause
rejoicing among a user community with pressing deadlines who already have other
real work to do. Your users might thank you profusely and buy you gifts as a
reward; don't open them if they're ticking.

3. All your users recompile.

4. The compile will break if they missed any instances; fix them by repeating steps
2 and 3 until done.

If you already have simple accessor member functions, as in Example 17-2(b), here's what
you have to do:

1. You make the change inside the existing accessor functions.

Page 143

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2. All your users relink (if the functions are in a separate .cpp and not inline), or, at
worst, recompile (if the functions are in the header).

The worst part is that, in real life, if you started with Example 17-2(a), you might never
even be allowed later to make the change to get to Example 17-2(b). The more users there
are that depend on an interface, the more difficult it is to ever change the interface. This
brings us to a guideline that's tantamount to a Law of Second Chances:

Guideline
The most important thing to get right is the interface. Everything else
can be fixed later.

Get the interface wrong, and you might never be allowed to fix it.

Once an interface is in widespread use, so many people may depend on it that it becomes
infeasible to change it. True, interfaces can always be extended (added to instead of
changed) without impacting anyone, but just adding member functions doesn't help fix
existing parts that you later decide were a bad ideaat most it lets you add alternative ways
of doing things that will confuse your users, who will legitimately ask: "But there are two (or
three, or N) ways of doing it… why? Which one do I use?"

In short, a bad interface can be difficult or impossible to fix after the fact. Do your best to
get the interface right the first time, and make it surround, seal, and protect its internals.

A Case in Point

3. The std::pair class template uses public data members because it is not
an encapsulated class but only a simple way of grouping data.

Note that this is the exceptional valid use of public data. Even so, std::pair would have
been no worse off with accessors instead of public data.

Imagine a class template that is like std::pair but that additionally provides a
deleted flag, which can be set and queried but cannot be unset. Clearly the flag
itself must be private so as to prevent users from unsetting it directly. If we choose
to keep the other data members public, as they are in std::pair, we end up with
something like the following:

// Example 17-3(a): Mixing public and private data?

//

template<class T, class U>

class Couple {

public:

 // The main data members are public…

 T first;

 U second;

 // … but there is still classlike machinery and private

implementation.

 Couple() : deleted_(false) {}

 void MarkDeleted() { deleted_ = true; }

Page 144

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 bool IsDeleted() { return deleted_; }

private:

 bool deleted_;

};

Should the other data members still be public, as shown? Why or why not? If so,
is this a good example of why mixing public and private data in the same class
might sometimes be good design?

This Couple class was proposed as a counterexample to the usual coding guidelines. It
attempts to show a class that is "mostly a struct" but has some private housekeeping
data. The housekeeping data (here a simple attribute) has an invariant. The claim is that
updates to the attribute flag are totally independent of updates to the Couple's values.

Let's start with the last "totally independent" statement: I don't buy it. The updates might be
independent, but the attribute is clearly not independent of the values, else it wouldn't be
grouped together cohesively with them. Of course the deleted_ attribute isn't independent
of the accompanying objectsit applies to them!

Note how, instead of mixing public and private data, we can model the solution by using
accessors even if the accessors' initial implementation was to give up references:

// Example 17-3(b): Proper encapsulation, initially with inline

accessors. Later

// in life, these might grow into nontrivial functions if needed; if

not, then not.

//

template<class T, class U>

class Couple {

 Couple() : deleted_(false) { }

 T& First() { return first_; }

 U& Second() { return second_; }

 void MarkDeleted() { deleted_ = true; }

 bool IsDeleted() { return deleted_; }

private:

 T first_;

 U second_;

 bool deleted_;

};

"Huh?" someone might quickly say. "Why bother writing do-nothing accessor functions?"
Answer: As described in the earlier discussion about Example 17-2(b). If today calling
code can change some aspect of this object (in this example, the tagalong deleted_
attribute), tomorrow you might well want to add new features even if they do no more than
add debugging information or add checks. Example 17-3(b) lets you do that, and that
flexibility doesn't cost you anything in terms of efficiency because of the inline functions.

For example, say that one month in the future you decide that you want to check all
attempted accesses to an object marked deleted:

 In Example 17-3(a), you can't, periodnot without changing the design and requiring
all code that uses first_ and second_ to be rewritten.

Page 145

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 In Example 17-3(b), you simply put the check into the First and Second
members. The change is transparent to all past and present users of Couple. At
most a recompile is needed; no code changes are needed.

It turns out that Example 17-3(b) has other practical side benefits in the real world. For
example, as Nick Mein points out: "You can put a breakpoint (or whatever) in the
accessor to find out just where and when the value is being modified. This can be pretty
helpful in tracking down a bug." It sure can be, and often is.

Summary

Except for the case of a C-style struct (all members public), all data members should
always be private. Doing otherwise violates all the principles of encapsulation noted at the
start of this Item and creates dependencies on the data names, which makes it harder to
later encapsulate them correctly. There is never a good reason to write public or protected
data members; they can always be trivially wrapped in (at first) inline accessor functions at
no cost, so it's always right to do the right thing the first time. (True, there are examples of
protected data in the standard library. These examples are not exemplary.)

Get your interfaces right first. Internals are easy enough to fix later, but if you get the
interface wrong you might never be allowed to fix it.

Page 146

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 18. Virtuality
Difficulty: 7

In this Item, we delve into old questions with new and/or
improved answers. The up-to-date answers to two recurring
questions about virtual functions lead directly to four guidelines
targeting robust class design. These guidelines answer these
questions: why should interfaces be nonvirtual? why should
virtuals be private? and what's with the old and hoary advice
about base class destructors, and is the old hoary advice really
true?

JG Question
1. What is the "common advice" about base class

destructors?

Guru Question
2. When should virtual functions be public,

protected, or private? Justify your answer, and
demonstrate existing practice.

Page 147

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
In this Item, I want to present up-to-date answers to two recurring questions about virtual
functions. These answers then lead directly to four class design guidelines.

The questions are old, but people keep asking them, and some of the answers have
changed over time as we've gained experience with modern C++.

The Common Advice About Base Class Destructors

1. What is the "common advice" about base class destructors?

I know you've heard the question "Should base class destructors be virtual?"

Sigh. I wish this were only a frequently asked question. Alas, it's more often a frequently
debated question. If I had a penny for every time I've seen this debate, I could buy a cup
of coffee. Not just any old coffee, mind youI could buy a genuine Starbucks Venti Extra
Toffee Nut latte (my current favorite). Maybe even two of them, if I was willing to throw in
a dime of my own.

The usual answer to this question is: "Huh? Of course base class destructors should always
be virtual!" This answer is wrong, and the C++ standard library itself contains
counterexamples refuting it, but it's right often enough to give the illusion of correctness.

We'll get back to this in a moment, but it's only the second of two questions about virtual
function accessibility. Let's start with the more general one.

Virtual Question #1: Publicity vs. Privacy?

A general question we need to consider is this:

2. When should virtual functions be public, protected, or private? Justify
your answer, and demonstrate existing practice.

The short answer is: rarely if ever, sometimes, and by default, respectivelythe same answer
we've already learned for other kinds of class members.

Most of us have learned through bitter experience to make all class members private by
default unless we really need to expose them. That's just good encapsulation. Certainly
we've long ago learned that data members should always be private (except only in the
case of C-style data structs, which are merely convenient groupings of data and are not
intended to encapsulate anything; see Item 17). The same also goes for member functions,
so I propose the following guidelines, which could be summarized as a statement about the
benefits of privatization, at least as it applies to code.

Guideline
Prefer to make interfaces nonvirtual.

Page 148

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note: I'm saying "prefer," not "always."

Interestingly, the C++ standard library already overwhelmingly follows this guideline. Not
counting destructors (which are discussed separately later on under Guideline #4) and not
double-counting the same virtual function twice when it appears again in a specialization of
a class template, here's what the standard library has:

 6 public virtual functions, all of which are std::exception::what and its
overrides; and

 142 nonpublic virtual functions.

Recently I came across another major example. While writing this book, I've also been
working at Microsoft on the C++ aspects of the .NET platform and the .NET Frameworks
(FX), which is being evolved into WinFX, the object-oriented successor to the Win32 API
and the programming model for Longhorn, Microsoft's next-generation Windows operating
system due out around the middle of this decade. WinFX, even in its current in-progress
internal form, is already a huge APIas of this writing, WinFX already contains over 14,000
classes and nearly 100,000 member functions (which includes all the currently shipping
.NET Frameworks and a lot more stuff that busy people have been busy building). Yes,
that's big. No, you wouldn't be faulted for wondering whether it's too big, but there it is.

So here's why I mention .NET Frameworks and its evolution into WinFX: For a
be-hemoth class library this big, one would hope there would be good class design
guidelines and that they would be followed reliably. I'm happy to report that, at this point,
one would be correct about both of those things. Here is one WinFX design guideline that
might sound awfully familiar, and although I agree with it I had no influence on it… it was
completely independently arrived at, and for similar but overlapping reasons:

It is recommended that you provide customization through protected (family)
methods. The public interface of a base class should provide a rich set of
functionality for the consumer of that class. However, customizers of that class often
want to implement the fewest methods possible to provide that rich set of
functionality to the consumer. To meet this goal, provide a set of nonvirtual or final
public methods that call through to a single protected (family) method with the
'Core' suffix that provides implementations for such a method. Such pattern is also
known as 'Template Method'.

from the .NET Framework (WinFX) Design Guidelines, internal draft, January 2004

Why is this pattern, which keeps cropping up in practice, such a good idea? Let's
investigate.

Traditionally, many programmers were used to writing base classes using public virtual
functions. For example, we might write:

// Example 18-1: A traditional base class.

//

class Widget {

public:

 // Each of these functions might optionally be pure virtual, and if

so

Page 149

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 // might or might not have an implementation in Widget; see Item 23

 // in More Exceptional C++ [Sutter02].

 //

 virtual intProcess(Gadget&);

 virtual bool IsDone();

 // …

};

These public virtual functions, like all public virtual functions, simultaneously specify both
the interface and the customizable behavior. The problem is in that "simultaneously" part,
because every public virtual function is forced to serve two audiences with distinct needs
and different purposes:

 One audience is the outside callers of the class, who depend on the class's public
interface to use the class.

 The other audience is derived classes, who depend also on the "customization
interface" of virtual functions, through which they extend and customize their base
class.

A public virtual function is forced to do two jobs: It specifies interface because it's public
and therefore directly part of the interface Widget presents to the rest of the world; and it
specifies implementation detail, namely the internally customizable behavior, because it's
virtual and therefore provides a hook for derived classes to replace the base
implementation of that function (if any). That a public virtual function inherently has two
significantly different jobs, and two competing audiences, is a sign that it's not separating
concerns well and that we should consider a different approach.

What if we want to separate the specification of interface from the specification of the
implementation's customizable behavior? Then we end up with something that should
remind us strongly of the Template Method pattern [Gamma95] because it's very similar.
But this one has a narrower purpose, and so deserves a more focused name: The
Nonvirtual Interface (NVI) pattern. Here it is in action:

// Example 18-2: A more modern base class, using Nonvirtual

Interface (NVI)

// to separate interface from internals.

//

class Widget {

public:

 // Stable, nonvirtual interface.

 //

 intProcess(Gadget&); // uses DoProcess...()

 bool IsDone(); // uses DoIsDone()

 // ...

private:

 // Customization is an implementation detail that might or might

not directly

 // correspond to the interface. Each of these functions might

optionally be

 // pure virtual, and if so might or might not have an

implementation in

Page 150

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 // Widget; see Item 23 in More Exceptional C++ [Sutter02].

 //

 virtual intDoProcessPhase1(Gadget&);

 virtual intDoProcessPhase2(Gadget&);

 virtual bool DoIsDone();

 // ...

};

Prefer to use the NVI to make the interface stable and nonvirtual while delegating
customizable work to nonpublic virtual functions that are responsible for implementing the
customizable behavior. After all, virtual functions are designed to let derived classes
customize behavior; it's better to not let publicly derived classes also customize the
inherited interface, which is supposed to be consistent.

The NVI approach has several benefits and no significant drawbacks.

First, note that the base class is now in complete control of its interface and policy and can
enforce interface preconditions and postconditions, insert instrumentation, and do any
similar work all in a single convenient reusable placethe nonvirtual interface function. This
promotes good class design because it lets the base class enforce the substitutability
compliance of derived classes in accord with the Liskov Substitution Principle [Liskov88],
to whatever extent enforcement makes sense. If efficiency is an issue, the base class can
elect to check certain kinds of pre- and post-conditions only in a debug modefor example,
via a non-debug "release" build that completely removes the checking code from the
executable image, or via a configurable debug mode that suppresses selected checking
code at run-time.

Second, when we've better separated interface and implementation, we're free to make
each take the form it naturally wants to take instead of trying to find a compromise that
forces them to look the same. For example, notice that in Example 18-2 we've incidentally
decided that it makes more sense for our users to see a single Process function while
allowing more flexible customization in two parts, DoProcessPhase1 and
DoProcessPhase2. And it was easy. We couldn't have done this with the public virtual
version without making the separation also visible in the interface, thereby adding
complexity for the user who would then have to know to call two functions in the right way.
(For more discussion of a related example, see also Item 19 in Exceptional C++ [
Sutter00].)

Third, the base class is now less fragile in the face of change. We are free to change our
minds later and add pre- and postcondition checking, or separate processing into more
steps, or refactor, or implement a fuller interface/implementation separation using the Pimpl
idiom (see Exceptional C++ [Sutter00]), or make other modifications to Widget's
customizability, without affecting the code that uses Widget. For example, it's much more
difficult to start with a public virtual function and later try to wrap it for pre- and
postcondition checking after the fact, than it is to provide a dumb passthrough nonvirtual
wrapper up front (even if no checking or other extra work is immediately needed) and
insert the checking later. (For more discussion of how a class such as Widget is less fragile
and more amenable to future revision and refactoring, see [Hyslop00].)

"But but but," some have objected, "let's say that all the public nonvirtual function does
initially is pass through to the private virtual one. It's just one stupid little line. Isn't that

Page 151

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

pretty useless, and indeed haven't we lost something? Haven't we lost some efficiency (the
extra function call) and added some complexity (the extra function)?" No, and no. First, a
word about efficiency: No, none is lost in practice because if the public function is a
one-line passthrough declared inline, all compilers I know of will optimize it away
entirely, leaving no overhead.[22] Second, a word about complexity: The only complexity is
the extra time it takes to write the one-line wrapper function, which is trivial. Period. That's
it. C'est tout. The interfaces are unaffected: The class still has exactly the same number of
public functions for a public user to learn, and it has exactly the same number of virtual
functions for a derived class programmer to learn. Neither the interface presented to the
outside world nor the inheritance interface presented to derived classes has become any
more complex in itself for either audience. The two interfaces are just explicitly separated,
is all, and that is a Good Thing.
[22] Indeed, some compilers will always make such a function inline and eliminate it, whether you personally really
wanted it to or not, but that's another story; see Item 25.

Well, that justifies nonvirtual interfaces and tells us that virtual functions benefit from being
nonpublic, but we haven't answered whether virtual functions should be private or
protected. So let's answer that:

Guideline
Prefer to make virtual functions private.

That's easy. This lets the derived classes override the function to customize the behavior as
needed, without further exposing the virtual functions directly by making them callable by
derived classes (as would be possible if the functions were just protected). The point is that
virtual functions exist to allow customization; unless they also need to be invoked directly
from within derived classes' code, there's no need to ever make them anything but private.
But sometimes we do need to invoke the base versions of virtual functions (see [Hyslop00]
for an example), and in that case only it makes sense to make those virtual functions
protected, thus:

Guideline
Only if derived classes need to invoke the base implementation of a
virtual function, make the virtual function protected.

The bottom line is that NVI as applied to virtual functions nicely helps us separate interface
from implementation. It's possible to make the separation even more complete, of course,
by completely divorcing interface from implementation using patterns such as Bridge [
Gamma95], idioms such as Pimpl (principally for managing compile-time dependencies and
exception safety guarantees) [Sutter00, Sutter02] or the more general handle/body or
envelope/letter [Coplien92], or other approaches. Unless you need a more complete
interface/implementation separation, though, NVI will often be sufficient for your needs.
On the flip side, I am arguing that this use of NVI is also a good idea to adopt by default
and view as a necessary minimum separation in practice in new code. After all, it costs

Page 152

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nothing (beyond writing an extra line of code) and buys quite a bit of pain reduction down
the road.

For more examples of using the NVI pattern to privatize virtual behavior, see [Hyslop00].

Speaking of [Hyslop00], did you notice that the code there presented a public virtual
destructor? This brings us to the second topic of this Item:

Virtual Question #2: What About Base Class Destructors?

Now we're ready to tackle the second classic question, that old destructor chestnut:
"Should base class destructors be virtual?"

As already noted, the usual answer to this question is: "Huh? Of course base class
destructors should always be virtual!" This answer is wrong, and the C++ standard library
itself contains counterexamples refuting it, but it's right often enough to give the illusion of
correctness.

The slightly less usual and somewhat more correct answer is: "Huh? Of course base class
destructors should be virtual if you're going to delete polymorphically (i.e., delete via a
pointer to base)!" This answer is technically right but doesn't go far enough.

I've recently come to conclude that the fully correct answer is this:

Guideline
A base class destructor should be either public and virtual, or protected
and nonvirtual.

Let's see why this is so.

First, clearly any operation that will be performed through the base class interface and
should behave virtually, should be virtual. That's true even with NVI, because although the
public function is nonvirtual, the work is delegated to a nonpublic virtual function and we
get the virtual behavior that we need.

If deletion, therefore, can be performed polymorphically through the base class interface,
then it must behave virtually and must be virtual. Indeed, the language requires itif you
delete polymorphically without a virtual destructor, you summon the dreaded specter of
"undefined behavior," a specter I personally would rather not meet in even a moderately
well-lit alley, thank you very much. Hence:

// Example 18-3: Obvious need for virtual destructor.

//

class Base { /*...*/ };

class Derived : public Base { /*...*/ };

Base* b = new Derived;

delete b; // Base::~Base had better be

virtual!

Page 153

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note that the destructor is the one case where the NVI pattern cannot be applied to a
virtual function. Why not? Because once execution reaches the body of a base class
destructor, any derived object parts have already been destroyed and no longer exist. If
the Base destructor body were to call a virtual function, the virtual dispatch would reach no
further down the inheritance hierarchy than Base itself. In a destructor (or constructor)
body, further-derived classes just don't exist any more (or yet).

But base classes need not always allow polymorphic deletion. For example, in the standard
library itself [C++03], consider class templates such as std::unary_function and
std::binary_function. Those two class templates look like this:

template <class Arg, class Result>

struct unary_function {

 typedef Arg argument_type;

 typedef Result result_type;

};

template <class Arg1, class Arg2, class Result>

struct binary_function {

 typedef Arg1 first_argument_type;

 typedef Arg2 second_argument_type;

 typedef Result result_type;

};

Both of these templates are specifically intended to be instantiated as base classes (in order
to inject those standardized typedef names into derived classes) and yet do not provide
virtual destructors because they are not intended to be used for polymorphic deletion. That
is, code like the following is not merely unsanctioned but downright illegal, and it's
reasonable for you to assume such code will never exist:

// Example 18-4: Problematic code that you can assume will never

exist.

//

void f(std::unary_function* f) {

 delete f; // error, illegal

}

Note that the standard tut-tuts and declares Example 18-4 to fall squarely into the
Undefined Behavior Pit if you pass it a pointer to an object derived from
std::unary_function, but the standard doesn't actually require a compiler to prevent
you or anyone else from writing that code (more's the pity). It would be easy and niceand it
wouldn't break any standards-conforming C++ programs that exist todayto give
std::unary_function (and other classes like it) an empty but protected destructor, in
which case a compiler would actually be required to diagnose the error and toss it back in
the offender's face. Maybe we'll see such a change in a future revision to the standard,
maybe we won't, but it would be nice to make compilers reject such code instead of just
making tut-tut noises in standardish legalese. (Yes, making the destructor nonpublic means
that you wouldn't be able to instantiate unary_function directly, but that doesn't matter
because it is useful only as a base class.)

Finally, what if a base class is concrete (can be instantiated on its own) but also wants to
support polymorphic destruction? Doesn't it need a public destructor then, because

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

otherwise you can't easily create objects of that type? That's possible, but only if you've
already violated another guideline, to wit: Don't derive from concrete classes. Or, as
Scott Meyers puts it in Item 29 of [Meyers96], "Make non-leaf classes abstract."
(Admittedly, it can happen in practicein code written by someone else, of course, not by
youand in this one case you might have to have a public virtual destructor just to
accommodate what's already a poor design. Better to refactor and fix the design, though, if
you can.)

In brief, then, you're left with one of two situations. Either: a) you want to allow
polymorphic deletion through a base pointer, in which case the destructor must be virtual
and public; or b) you don't, in which case the destructor should be nonvirtual and
protected, the latter to prevent the unwanted usage.

Summary

In summary, prefer to make base class virtual functions private (or protected if you really
must). This separates the concerns of interface and implementation, which stabilizes
interfaces and makes implementation decisions easier to change and refactor later. For
normal base class functions:

 Guideline #1: Prefer to make interfaces nonvirtual, using the Nonvirtual Interface
pattern (NVI).

 Guideline #2: Prefer to make virtual functions private.

 Guideline #3: Only if derived classes need to invoke the base implementation of a
virtual function, make the virtual function protected.

For the special case of the destructor only:

 Guideline #4: A base class destructor should be either public and virtual, or
protected and nonvirtual.

True, the standard library itself does not always follow all these design criteria. In part,
that's a reflection of how we as a community have learned over the years.

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 19. Enforcing Rules
for Derived Classes
Difficulty: 5

Too many times, just being at the top of the (inheritance) world doesn't
mean that you can save programmers of derived classes from simple
mistakes. But sometimes you can! This Item is about safe design of base
classes, so that derived class writers have a more difficult time going
wrong.

JG Questions
1. When are the following functions implicitly declared and

implicitly defined for a class, and with what semantics? Be
specific, and describe the circumstances under which the
implicitly defined versions cause the program to be illegal
(not well-formed).

a. default constructor

b. copy constructor

c. copy assignment operator

d. destructor

2. What functions are implicitly declared and implicitly defined
for the following class X? With what signatures?

3.
4. class X {

5. auto_ptr<int> i_;

6. };

Guru Question
3. Say that you have a base class that requires that all derived

classes not use one or more of the implicitly declared and
defined functions. For example:
[View full width]

class Count {

public:

 // The Author of Count hereby documents that

Page 156

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

derived classes shall

 // inherit virtually, and that all their

constructors shall call

 Count's

 // special-purpose constructor only.

 //

 Count(/* special parameters */);

 Count& operator=(const Count&);

 // does the usual

 virtual ~Count();

 // does the usual

};

Unfortunately, programmers are human too, and they
sometimes forget that they should write two of the functions
explicitly.

class BadDerived : private virtual Count {

 int i_;

 // default constructor: should call special

ctor, but does it?

 // copy constructor: should call special

ctor, but does it?

 // copy assignment: ok?

 // destructor: ok?

};

In the context of this example, is there a way for the author
of Count to force derived classes to be coded correctlythat
is, to cause an error at compile time (preferable) or run time
(at minimum) if the derived class is not coded correctly?

More generally: Is there any way that the author of a base
class can force authors of derived classes to explicitly write
each of these four basic operations? If so, how? If not, why
not?

Page 157

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Implicitly Generated Functions (or, What the Compiler Does
for/to You)

In C++, four class member functions can be implicitly generated by the compiler: the
default constructor, the copy constructor, the copy assignment operator, and the
destructor.

The reason for this is a combination of convenience and backward compatibility with C.
Recall that C-style structs are just classes consisting of only public data members; in
particular, they don't have any (explicitly defined) member functions, and yet you do have
to be able to create, copy, and destroy them. To make this happen, the C++ language
automatically generates the appropriate functions (or some appropriate subset thereof) to
do the appropriate things if you don't define appropriate operations yourself.

This Item is about what all those "appropriate" words mean:

1. When are the following functions implicitly declared and implicitly
defined for a class, and with what semantics? Be specific, and describe the
circumstances under which the implicitly defined versions cause the
program to be illegal (not well-formed).

In short, an implicitly declared function is only implicitly defined when you actually try to
call it. For example, an implicitly declared default constructor is only implicitly defined when
you try to create an object using no constructor parameters.

Why is it useful to distinguish between when the function is implicitly declared and when it's
implicitly defined? Because it's possible that the function might never be called, and if it's
never called, then the program is still legal even if the function's implicit definition would
have been illegal.

For convenience, throughout this Item unless otherwise noted, "member" means "nonstatic
class data member." I'll also say "implicitly generated" as a catchall for "implicitly declared
and defined."

Exception Specifications of Implicitly Declared Functions

In all four of the cases where a function can be implicitly declared, the compiler will make
its exception specification just loose enough to allow all exceptions that could be allowed
by the functions the implicit definition would call. For example:

// Example 19-1(a)

//

class C // …

{
 // …

};

Page 158

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Because no constructors are explicitly declared, the implicitly generated default constructor
has the semantics of invoking all base and member default constructors. Therefore the
exception specification of C's implicitly generated default constructor must allow any
exception that any base or member default constructor might emit. If any base class or
member of C has a default constructor with no exception specification, the implicitly
declared function can throw anything:

// public:

inline C::C(); // can throw anything

If every base class or member of C has a default constructor with an explicit exception
specification, the implicitly declared function can throw any of the types mentioned in those
exception specifications:

// public:

inline C::C() throw (

 // anything that a C base or member default constructor might

throw;

 // i.e., the union of all types mentioned in C's bases' or members'

default

 // constructors' exception specifications

);

It turns out that there's a potential trap lurking here. Consider: What if one of the implicitly
generated functions overrides an inherited virtual function? This can't happen for
constructors (because constructors are never virtual), but it can happen for the copy
assignment operator (if you try hard and make a base version that matches the implicitly
generated derived version's signature), and it can happen pretty easily for the destructor:

// Example 19-1(b): Danger, Will Robinson!

//

class Derived;

class Base {

public:

 // Somewhat contrived, and almost certainly deplorable, but

technically it is

 // possible to use this trick to declare a Base assignment operator

that takes a

 // Derived argument; be sure to read [Meyers96] Item 33 before even

thinking

 // about trying anything like this:

 //

 virtual Base& /* or Derived& */

 operator=(const Derived&) throw(B1);

 virtual ~Base() throw(B2);

};

class Member {

public:

 Member& operator=(const Member&) throw(M1);

 ~Member() throw(M2);

Page 159

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

};

class Derived : public Base {

 Member m_;

 // implicitly declares four functions:

 // Derived::Derived(); // ok

 // Derived::Derived(const Derived&); // ok

 // Derived& Derived::operator=(const Derived&) throw(B1, M1); //

error

 // Derived::~Derived() throw(B2, M2); //

error

};

What's the problem? The two functions are ill-formed because whenever you over-ride any
inherited virtual function, your derived function's exception specification must be at least as
restrictive as the version in the base class. That only makes sense, after all: If it weren't that
way, it would mean that code that calls a function through a pointer to the base class could
get an exception that the base class version promised not to emit. For instance, if the
context of Example 19-1(b) were allowed, consider the code:

Base* p = new Derived;

// Ouchthis could throw B2 or M2, even though

// Base::~Base promised to throw at most B2:

delete p;

This is Yet Another Good Reason why every destructor should have either an exception
specification of throw() or none at all. Besides, destructors should never throw anyway
and should always be written as though they had an exception specification of throw()
even if that specification isn't written explicitly. (See Item 12 of Exceptional C++ [
Sutter00], which includes a section titled "Destructors That Throw and Why They're Evil.")

Guidelines
Never allow a destructor to emit an exception. Always write destructors
as though they had a throw-nothing exception specification.

Never write an exception specification. Except possibly an empty one,
but if I were you I'd avoid even that (see Item 13).

This is also Yet Another Good Reason to be careful about virtual assignment operators.
See [Meyers96] Item 29 and [Dewhurst03] Item 76 for more about the hazards of virtual
assignment and how to avoid them.

Guideline
Avoid making assignment operators virtual.

Page 160

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Now let's consider the four implicitly generated functions one at a time:

Implicit Default Constructor

a. default constructor

A default constructor is implicitly declared if you don't declare any constructor of your
own. An implicitly declared default constructor is public and inline.

An implicitly declared default constructor is only implicitly defined when you actually try to
call it, has the same effect as if you'd written an empty default constructor yourself, and can
throw anything that a base or member default constructor could throw. It is illegal if that
empty default constructor would also have been illegal had you written it yourself (for
example, it would be illegal if some base or member doesn't have a default constructor).

Implicit Copy Constructor

b. copy constructor

A copy constructor is implicitly declared if you don't declare one yourself. An implicitly
declared default constructor is public and inline and will take its parameter by
reference to const if possible (it's possible if and only if every base and member has a
copy constructor that takes its parameter by reference to const or const volatile
too), and by reference to non-const otherwise.

That's right, just like most C++ programmers, the standard itself pretty much ignores the
volatile keyword a lot of the time. Although the compiler will take pains to tack const
onto the parameter of an implicitly declared copy constructor (and copy assignment
operator) whenever possible, franklyto use the immortal words of Clark Gable in Gone
with the Windit doesn't give a hoot about tacking on volatile. Oh well, that's life.

An implicitly declared copy constructor is only implicitly defined when you actually try to
call it to copy an object of the given type, performs a memberwise copy of its base and
member subobjects, and can throw anything that a base or member copy constructor could
throw. It is illegal if any base or member has an inaccessible or ambiguous copy
constructor.

Implicit Copy Assignment Operator

c. copy assignment operator

A copy assignment operator is implicitly declared if you don't declare one yourself. An
implicitly declared default constructor is public and inline, returns a reference to non-
const that refers to the assigned-to object, and will take its parameter by reference to
const if possible (it's possible if and only if every base and member has a copy assignment
operator that takes its parameter by reference to const too), and by reference to non-
const otherwise. Once again, just as with the copy constructor, volatile can go hang.

An implicitly declared copy assignment operator is implicitly defined only when you actually
try to call it to assign an object of the given type, performs a member-wise assignment of its
base and member subobjects (including possibly multiple assignments of virtual base
subobjects), and can throw anything that a base or member copy constructor could throw.
It is illegal if any base or member is const, is a reference, or has an inaccessible or

Page 161

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ambiguous copy assignment operator.

Implicit Destructor

d. destructor

A destructor is implicitly declared if you don't declare any destructor of your own. An
implicitly declared destructor is public and inline.

An implicitly declared destructor is implicitly defined only when you actually try to call it,
has the same effect as if you'd written an empty destructor yourself, and can throw anything
that a base or member destructor could throw. It is illegal if any base or member has an
inaccessible destructor, or if any base destructor is virtual and not all base and member
destructors have identical exception specifications (see Exception Specifications of
Implicitly Declared Functions, page 141).

An auto_ptr Member

2. What functions are implicitly declared and implicitly defined for the
following class X? With what signatures?

3.
4. // Example 19-2

5. //

6. class X {

7. auto_ptr<int> i_;

8. };

Aside: Note that this is an example to illustrate the rules governing implicitly-declared and
defined functions. It isn't intended to be an example of good style. In general you should
avoid auto_ptr membersand try to avoid auto_ptr altogether. Instead, prefer
shared_ptr, now being added to the C++ standard library.

In class X, the following functions are implicitly declared as public members. Each is
implicitly defined, with the indicated effects, when you write code that tries to use it.

inline X::X() throw() : i_() { }

inline X::X(X& other) throw() : i_(other.i_) { }

inline X& X::operator=(X&) throw() { i_ = other.i_; return *this; }

inline X::~X() throw() { }

The copy constructor and copy assignment operators take references to non-const
because they canthat's what auto_ptr's versions do. Similarly, all of these functions have
throw-nothing specifications because they canno related auto_ptr operation throws, and
indeed no auto_ptr operation at all can throw.

Note that the copy constructor and copy assignment operator transfer ownership. That
might not be what the author of X necessarily wants, so X often should provide its own
versions of these functions. (For more details about this and related topics, see also Items
30 and 31 of More Exceptional C++ [Sutter02].)

Renegade Children and Other Family Problems

Page 162

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3. Say that you have a base class that requires that all derived classes not use
one or more of the implicitly declared and defined functions. For example:

4.
5. // Example 19-3

6. //

7. class Count {

8. public:

9. // The Author of Count hereby documents that derived classes

shall

10. // inherit virtually, and that all their constructors shall
call Count's

11. // special-purpose constructor only.
12. //
13. Count(/* special parameters */);
14. Count& operator=(const Count&); // does the

usual

15. virtual ~Count(); // does the
usual

Here we have a class that wants its derived child classes to play nice and call Count's
special constructor, perhaps so that Count can keep track of the number of objects of
derived types created in the system. That's a good reason to require virtual inheritance, to
avoid double-counting if some derived class happens to inherit multiply in such a way that
Count is a base class more than once.[23]

[23] T his example is adapted from one by Marco Dalla Gasperina in his unpublished article "Counting Objects and
Virtual Inheritance." His code didn't include the design errors I talk about next. T hat article was about something else,
not about enforcing rules for derived classes, but his example made me think, "hmm, how could I find a way to prevent
authors of derived classes from for-getting to use the special constructor when they use that Counter base class?"

Interestingly, did you notice that Count might have a design error already? It has an
implicitly generated copy constructor, which probably isn't what is wanted to keep track of
a correct count. To disable that, simply declare it private without a definition:

private:

 // undefined, no copy construction

 Count(const Count&);

};

So Count wants its derived child classes to behave. But kids don't always play nice, do
they? Indeed, we don't have to look far to find an example of a badly behaved problem
child:

Unfortunately, programmers are human too, and they sometimes forget that they
should write two of the functions explicitly.

class BadDerived : private virtual Count {

 int i_;

 // default constructor: should call special ctor, but does it?

Page 163

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

In short, no, the default constructor not only doesn't call the special constructor, but there's
an even more fundamental concern: Is there even a BadDerived default constructor at all?
The answer, which probably isn't reassuring, is: Sort of. There is an implicitly-declared
default constructor (okay), but if you ever try to call it, the program becomes ill-formed
(oops).

Let's see why this is so. First, BadDerived doesn't define any of its own constructors, so a
default constructor will be implicitly declared. That's cool. But the minute you try to use that
constructor (i.e., the minute you try to create a BadDerived object, which you might think
is kind of an important thing to be able to do, and you'd be right), that default constructor
gets implicitly definedor at least it should be, but because that implicit definition is supposed
to call a base default constructor that doesn't exist, the program is ill-formed. Bottom line,
any program that tries to create a BadDerived object is not a conforming C++ program,
and for that reason BadDerived is properly viewed as delinquent.

So is there a default constructor? Sort of. It's declared, but you can't call it, which makes it
considerably less useful. When kids go renegade like this, it's just not a happy family.

// copy constructor: should call special ctor, but does it?

For similar reasons, the implicitly generated copy constructor will be declared but, when
defined, won't call the special Count constructor. With the Count class as originally
shown, this copy constructor will simply call Count's implicitly generated copy constructor.

If we decide to suppress Count's implicitly generated copy constructor, as indicated
earlier, then this BadDerived would have a copy constructor implicitly declared, but
because it can't be implicitly defined (because Count's wouldn't be accessible), any
attempt to use it would make the program not valid C++.

Fortunately, now the news starts getting a little better:

// copy assignment: ok?

 // destructor: ok?

};

Yes, the implicitly generated copy assignment operator and destructor will both do the right
thing, namely invoke (and, in the destructor's case, override) the base class versions. So
the good news is that at least something worked right.

Still, all is not happy in this class family. Every household must have some minimum of
order, after all. Can we not find a way to give the parents better tools to keep the peace?

Enforcing Rules for Derived Classes

In the context of this example, is there a way for the author of Count to force
derived classes to be coded correctlythat is, to cause an error at compile time
(preferable) or run time (at minimum) if the derived class is not coded correctly?

The idea isn't to suppress the implicit declaration (we can't) but to make the implicit
definition not well-formed so that the compiler should emit an understandable error about
it.

Page 164

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

More generally: Is there any way that the author of a base class can force authors
of derived classes to explicitly write each of these four basic operations? If so,
how? If not, why not?

Well, as we went through the review of what happens to implicitly declare and define the
four basic operations, we kept coming across the words "inaccessible" and "ambiguous." It
turns out that adding ambiguous overloads, even with different access specifiers, doesn't
help much. It's hard to do much better than simply make the base class functions selectively
inaccessible by declaring them private (whether they're actually defined is optional)and this
approach works for all the functions but one.

// Example 19-4: Try to force derived classes to not use their

implicitly

// generated functions, by making Base functions inaccessible.

//

class Base {

public:

 virtual ~Base();

private:

 Base(const Base&); // undefined

 Base& operator=(const Base&); // undefined

};

This Base has no default constructor (because a user-defined constructor has been
declared, if not defined), and it has a hidden copy constructor and copy assignment
operator. There's no way we could hide the destructor, which must always be accessible to
derived classes after all, and which should normally be public and virtual as in Example
19-4, or else protected and nonvirtual (see Item 18).

The idea is that, even if we do want to support a form of a given operation (for example,
copy assignment), if we can't do it with the usual function, then we make the usual function
inaccessible and provide a named, or otherwise distinguishable, function to do the work the
way we want it done.

Where does this get us? Let's see:

class Derived : private Base {

int i_;

 // default constructor: declared, but definition is ill-formed

 // (there is no Base default constructor)

 // copy constructor: declared, but definition ill-formed

 // (Base's copy constructor is inaccessible)

 // copy assignment: declared, but definition ill-formed

 // (Base's copy assignment is inaccessible)

 // destructor: well-formed, will compile

};

Not bad… we got three compile-time errors out of a possible four, and it turns out that's

Page 165

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

pretty much the best we can do, or indeed need to do.

This simple solution can't handle the destructor case, but that's okay because destructors
are less amenable to special-purpose replacement anyway; base versions must always be
called, no two ways about it, and, after all, there can be only one destructor. The difficult
part is usually getting any unusual constructors to be correctly called so that the base class
is correctly initialized; the base class can then normally save the information it needs to do
the right thing in the destructor.

There, that wasn't bad. Simple solutions are usually best. In this case there were some
more complex alternatives; let's consider them briefly to reassure ourselves that none of
them could do better for the destructor case, or any other case for that matter:

Alternative #1: Make base class functions ambiguous. This isn't any better, it still
doesn't break the implicitly generated destructor, and it's more work.

Alternative #2: Provide base versions that blow up. For example, we could make them
throw a std::logic_error exception. This also doesn't break the implicitly generated
destructor (without breaking all possible destructors), and it turns a compile-time error into
a run-time error, which is not as good.

Guideline
Prefer compile-time errors to run-time errors.

Alternative #3: Provide base versions that are pure virtual. This is useless: It doesn't
apply to constructors (either default or copy); it won't help with copy assignment, because
the derived versions have different signatures; and it won't help with the destructor because
the implicitly generated version will satisfy the requirement to define a destructor.

Alternative #4: Use a virtual base class without a default constructor. This forces
each most-derived class to explicitly call the virtual base's constructor. This approach has
potential for the two constructors and has the additional advantage of working even for
classes that aren't immediately derived from Base, so this is really the only alternative that
could be used in conjunction with the Example 19-4 solution. Derived classes' implicitly
generated copy assignment operators and destructors will still be valid, though.

Summary

To prevent derived classes from getting an implicitly generated default constructor, copy
constructor, or copy assignment operator, the simplest and best choice is to make the base
class have nonpublic (or absent) versions of those functions.

Page 166

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Memory and
Resource
Management
If there's one issue dear to the heart of C and C++
programmers, it's memory and resource
management. One of C++'s greatest strengths
compared to other languages is the power it gives the
programmer to control and manage memory and
other resources, particularly to selectively automate
memory management using the standard containers.

How well do you understand the real memory cost
of using the different standard containers? Can you
state with certainty that a list containing 1,000
objects will consume less total memory space than,
say, a set of 1,000 of the same type of object?
Then, touching back on the exceptions front: Does
using the nothrow form of new help to make code
more exception-safe? And finally, on many popular
real-world platforms, when can it make sense not to
worry about new failure (gasp!), and why?

Page 167

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 20. Containers in
Memory, Part 1: Levels of
Memory Management
Difficulty: 3

Memory management on modern operating systems can be
complex and sophisticated in its own right, but it's only one layer
of memory management that matters to C++ programs. The
standard library provides and enables several further levels, any
and all of which can matter a lot to your program.

JG Question
1. What are memory managers (also known as

memory allocators), and what is their basic function?
Briefly describe two of the major dynamic memory
management strategies in C++.

Guru Question
2. In the context of the C++ standard library and the

typical environments in which implementations of
that library are used, what different levels of memory
management exist? What can be said about their
relationship with each other, how they interact, and
how they share responsibilities?

Page 168

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
The question this pair of Items will drive at is Item 21, Question 2: How much memory do the
various standard containers use to store the same number of objects of the same type T?

To answer this question, however, we have to take a little journey through the land of data
structures after first passing through the outskirts of the swamp of dynamic memory
management. In particular, we have to consider two major items:

 the internal data structures used by containers like vector, deque, list, set/
multiset, and map/multimap; and

 the way dynamic memory allocation works.

Let's begin with a recap of dynamic memory allocation and then work our way back up to what
it means for the standard library.

Memory Managers and Their Strategies: A Brief Survey

1. What are memory managers (also known as memory allocators), and what is
their basic function? Briefly describe two of the major dynamic memory
management strategies in C++.

To understand the total memory cost of using various containers, it's important to understand the
basics of how the underlying dynamic memory allocation worksafter all, the container has to get
its memory from some memory manager somewhere, and that manager in turn has to figure out
how to parcel out available memory by applying some memory management strategy.

Here, in brief, are two popular memory management strategies in C++. Further details are
beyond the scope of this Item; consult your favorite operating systems text for more information:

 General-purpose allocation can provide any size of memory block that a caller might
request (the request size, or block size). General-purpose allocation is very flexible but
has several drawbacks, two of which are: a) performance, because it has to do more
work; and b) fragmentation, because as blocks are allocated and freed we can end up
with lots of little noncontiguous areas of unallocated memory.

 Fixed-size allocation always returns a block of the same fixed size. This is obviously
less flexible than general-purpose allocation, but it can be done much faster and doesn't
result in the same kind of fragmentation.

A third major strategy, garbage-collected allocation, is not fully compatible with C and C++
pointers, malloc, and new and, as such, that strategy isn't directly relevant for the purposes of
this discussion. Garbage-collected heaps are increasingly popular, however, and coming to
C++, only not with pointers and new; I plan to write more about that topic in a future book.
(For details about garbage collection in general and for C++ in particular, see [C++CLI04] and
[Jones96].)

In practice, you'll often see combinations of these strategies. For example, perhaps your

Page 169

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

memory manager uses a general-purpose allocation scheme for all requests over some size S
and as an optimization provides a fixed-size allocation scheme for all requests up to size S. It's
usually unwieldy to have a separate arena for requests of size 1, another for requests of size 2,
and so on; what normally happens is that the manager has a separate arena for requests of
multiples of a certain size, say 16 bytes. If you request 16 bytes, great, you only use 16 bytes; if
you request 17 bytes, the request is allocated from the 32-byte arena, and 15 bytes are wasted.
This is a source of possible overhead, but more about that in a moment.

The obvious next question is: Who selects the memory management strategy?

Plotting Strategy

2. In the context of the C++ standard library and the typical environments in
which implementations of that library are used, what different levels of memory
management exist? What can be said about their relationship with each other,
how they interact, and how they share responsibilities?

Several possible layers of memory manager are involved, each of which might override the
previous (lower-level) one:

 The operating system kernel provides the most basic memory allocation services. This
underlying allocation strategy, and its characteristics, can vary from one operating
systems platform to another, and this level is the most likely to be affected by hardware
considerations.

 The compiler's default run-time library builds its allocation services, such as C++'s
operator new and C's malloc, upon the native allocation services. The compiler's
services might just be a thin wrapper around the native ones and inherit their
characteristics, or the compiler's services might override the native strategies by buying
larger chunks from the native services and then parceling those out according to their
own methods.

 The standard containers and allocators in turn use the compiler's services and
possibly further override them to implement their own strategies and optimizations.

 Finally, user-defined containers and/or user-defined allocators can further reuse any
of the lower-level services (for example, they might want to directly access native
services if portability doesn't matter) and do pretty much whatever they please.

These levels are summarized in Figure 20-1.

Figure 20-1. Major levels at which memory management is done. Each level
can typically be implemented in terms of lower level(s) adjacent to it as

shown.

Page 170

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Thus memory allocators come in various flavors and can or will vary from operating system to
operating system, from compiler to compiler on the same operating system, from container to
containerand even from object to object, say in the case of a vector<int> object that uses the
strategy implemented by allocator<int>, and a vector<int, MyAllocator> object that
could express-mail memory blocks from Taiwan unless it's a weekday night and the Mets are
playing or implement whatever other strategy you like.

Guideline
Know who does what: Understand the actual (and system-dependent)
allocation strategies and responsibilities of your platform and standard
library.

Summary

Memory management on modern operating systems can be complex and sophisticated in its
own right, but it's only one layer of memory management that matters to C++ programs. The
standard library provides and enables several further levels, first through its allocation and
deallocation primitives, then through its standard containers and allocators, and then to all the
newfangled containers and allocators you can write yourself.

But when you ask for memory, what do you really know about what you getand what it will
cost? How much memory do the standard containers usein theory, and in reality? Stay tuned, as
we ask and answer precisely these questions in the next Item.

Page 171

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 21. Containers in
Memory, Part 2: How Big Is
It Really?
Difficulty: 3

When you ask for memory, what do you really know about what
you getand what it will actually cost? How much memory do the
standard containers usein theory, in reality, and in the code
you'll be writing this afternoon?

JG Question
1. When you ask for n bytes of memory using new or

malloc, do you actually use up n bytes of memory?
Explain why or why not.

Guru Question
2. How much memory do the various standard

containers use to store the same number of elements
of the same type T?

Page 172

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
"I'll Take 'Operator New' for 200 Bytes, Alex"

1. When you ask for n bytes of memory using new or malloc, do you actually use up n bytes of
memory? Explain why or why not.

When you ask for n bytes of memory using new or malloc, you actually use up at least n bytes of memory,
because typically the memory manager must add some overhead to your request. Two common considerations
that affect this overhead are housekeeping overhead and chunk size overhead.

Consider first the housekeeping overhead: In a general-purpose (i.e., not fixed-size) allocation scheme, the
memory manager will have to somehow remember how big each block is so that it later knows how much
memory to release when you call delete or free. Typically the manager remembers the block size by storing
that value at the beginning of the actual block it allocates and then giving you a pointer to "your" memory that's
offset past the housekeeping information (see Figure 21-1). Of course, this means it has to allocate extra space
for that value, which could be a number as big as the largest possible valid allocation and so is typically the same
size as a pointer. When freeing the block, the memory manager will just take the pointer you give it, subtract the
number of housekeeping bytes and read the size, and then perform the deallocation.

Figure 21-1. Typical memory allocation using a general-purpose allocator for a request
size of n bytes

Of course, fixed-size allocation schemes (i.e., ones that return blocks of a given known size) don't need to store
such overhead because they always know how big the block will be.

Next, let's look at the chunk size overhead: Even when you don't need to store extra information, a memory
manager will often reserve more bytes than you asked for, because memory is often allocated in certain-sized
chunks.

For one thing, some platforms require certain types of data to appear on certain byte boundaries (e.g., some
require pointers to be stored on 4-byte boundaries) and either break or perform more slowly if they don't. This
is called alignment, and it calls for extra padding within, and possibly at the end of, the object's data. Even plain
old built-in C-style arrays are affected by this need for alignment because it contributes to sizeof(struct).
See Figure 21-2, where I distinguish between internal padding bytes and at-the-end padding bytes, although
both contribute to sizeof(struct).

Figure 21-2. What "contiguous" meanstypical in-memory layout of an array of n-byte

Page 173

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

objects that require m-byte alignment (note: sizeof(object) == m)

For example:

// Example 21-1: Assume sizeof(long) == 4 and longs require 4-byte alignment

//

struct X1 {

 char c1; // at offset 0, 1 byte

 // bytes 1-3: 3 padding bytes

 long l; // bytes 4-7: 4 bytes, aligned on 4-byte boundary

 char c2; // byte 8: 1 byte

 // bytes 9-11: 3 padding bytes (see narrative)

}; // sizeof(X1) == 12

In Figure 21-2's terms, n == 1 + 3 + 4 + 1 == 9 and m == sizeof(X1) == 12 in this example.[24] Note that all
the padding contributes to sizeof(X1). The at-the-end padding bytes might seem odd but are needed so that
when you build an array of X1 objects one after the other in memory, the long data is always 4-byte aligned.
This at-the-end padding is the padding that's the most noticeable and the most often surprising for folks
examining object data layout for the first time. It can be particularly surprising in this rearranged struct:
[24] Only a perverse implementation would add more than the minimum padding.

// Example 21-2: A rearranged version of Example 21-1

//

struct X2 {

 long l; // bytes 0-3

 char c1; // byte 4

 char c2; // byte 5

 // bytes 6-7: 2 padding bytes

}; // sizeof(X2) == 8

Now the data members really are all contiguous in memory (n == 6),[25] yet there's still extra space at the end that
counts toward m == sizeof(X2) == 8 and that padding is most noticeable when you build an array of X2
objects. Bytes 6 and 7 are the padding highlighted in Figure 21-2.
[25] T he compiler isn't allowed to perform the rearrangement of Example 21-1 to Example 21-2 by it-self, though. T he standard requires that all
data that's in the same public:, protected:, or private: group must be laid out in that order by the compiler. If you intersperse
your data with access specifiers, then the compiler is allowed to rearrange the access-specifier-delimited groups of data to improve the layout,
which is one reason why some people like putting an access specifier in front of every data member.

Incidentally, this is why when writing the standard it's surprisingly tricky to wordsmith the requirement that "
vectors must be contiguous" in the same sense as arraysin Figure 21-2, the memory is considered contiguous
even though there are "gaps" of dead space, so what is "contiguous," really? Essentially, the individual
sizeof(struct) chunks of memory are contiguous, and that definition works because sizeof(struct)

Page 174

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

already includes padding overhead.

The C++ standard guarantees that all memory allocated via operator new or malloc will be suitably aligned
for any possible kind of object you might want to store in it, which means that operator new and malloc have
to respect the strictest possible type alignment requirement of the native platform.

Alternatively, as described earlier, a fixed-size allocation scheme might maintain memory arenas for blocks of
certain sizes that are multiples of some basic size m, and a request for n bytes will get rounded up to the next
multiple of m.

Memory and the Standard Containers: The Basic Story

Now we can address the ultimate question of this Item:

2. How much memory do the various standard containers use to store the same number of
elements of the same type T?

Each standard container uses a different underlying memory structure and therefore imposes different overhead
per contained object:

 A vector<T> internally stores a contiguous C-style array of T objects and so has no extra per-element
overhead at all (besides padding for alignment, of course; note that here "contiguous" has the same
meaning as it does for C-style arrays, as shown in Figure 21-2).

 A deque<T> can be thought of as a vector<T> whose internal storage is broken up into chunks. A
deque<T> stores chunks, or "pages," of objects; the actual page size isn't specified by the standard and
depends mainly on how big T objects are and on the size choices made by your standard library
implementer. This paging requires the deque to store one extra pointer of management information per
page, which usually works out to a mere fraction of a bit per contained object; for example, on a system
with 8-bit bytes and 4-byte ints and pointers, a deque<int> with a 4K page size incurs an overhead
per int of 0.03125 bitsjust 1/32 of a bit. There's no other per-element overhead because deque<T>
doesn't store any extra pointers or other information for individual T objects. There is no requirement
that a deque's pages be C-style arrays, but that's the usual implementation.

 A list<T> is a doubly linked list of nodes that hold T elements. This means that for each T element,
list<T> also stores two pointers that point to the previous and next nodes in the list. Every time we
insert a new T element, we also create two more pointers, so a list<T> requires at least two pointers'
worth of overhead per element.

 A set<T> (and, for that matter, a multiset<T>, map<Key,T>, or multi-map<Key,T>) also stores
nodes that hold T (or pair<const Key,T>) elements. The usual implementation of a set is as a tree
with three extra pointers per node. Often people see this and think, "Why three pointers? Aren't two
enough, one for the left child and one for the right child?" The reason three are needed is that we also
need an "up" pointer to the parent node; otherwise determining the "next" element starting from some
arbitrary iterator can't be done efficiently enough. (Besides trees, other internal implementations of set
are possible; for example, an alternating skip list can be used, which still requires at least three pointers
per element in the set. See [Marrie00] for an example.)

Table 21-1 summarizes this basic overhead for each container. Note that smaller per-element costs are
sometimes possible if you're willing to pay a higher per-iterator cost. That is, some of the bookkeeping can be
moved into the iterators, creating fatter iterators in exchange for slimmer containers. I am not aware of any
commercial implementation that uses this technique as of this writing.

Page 175

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 21-1. Basic overhead per contained object for various containers

Container Typical housekeeping overhead per contained object

vector No overhead per T.

deque Nearly no overhead per T, typically just a fraction of a bit.

list Two pointers per T.

set, multiset Three pointers per T.

map, multimap Three pointers per pair<const Key, T>.

Memory and the Standard Containers: The Real World

Now we get to the interesting part: Don't be too quick to draw conclusions from Table 21-1. For example,
judging from just the housekeeping data required for list and set, you might conclude that list requires less
overhead per contained object than setafter all, list stores only two extra pointers, whereas set stores three.
The interesting thing is that this might not be true once you take into consideration the run-time memory
allocation policies.

To dig a little deeper, consider Table 21-2, which shows the node layouts typically used internally by list, set/
multiset, and map/multimap.

Table 21-2. Dynamic memory blocks used per contained object for various
containers

Container Typical memory block used per contained object

vector None; objects are not allocated individually.

deque None; objects are allocated in pages, and nearly always each page will store many
objects.

list struct
struct LNode {

 LNode* prev;

 LNode* next;

 T object;

};

set,

multiset
struct SNode {

 SNode* prev;

 SNode* next;

 SNode* parent;

 T object;

}; // or equivalent

Page 176

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 21-2. Dynamic memory blocks used per contained object for various
containers

Container Typical memory block used per contained object

map,

multimap
struct MNode {

 MNode* prev;

 MNode* next;

 MNode* parent;

 std::pair<const Key, T> data;

}; // or equivalent

Next, consider what happens in the real world under the following assumptions, which happen to be drawn from
a popular platform:

 Pointers and ints are 4 bytes long. (Typical for 32-bit platforms.)

 sizeof(string) is 16. Note that this is just the size of the immediate string object and ignores any
data buffers the string may itself allocate; the number and size of string's internal buffers will vary
from implementation to implementation, but doesn't affect the comparative results shown. (This
sizeof(string) is the actual value of one popular implementation.)

 The default memory allocation strategy is to use fixed-size allocation where the block sizes are multiples
of 16 bytes. (Typical for Microsoft Visual C++'s native allocator.)

Table 21-3 contains a sample analysis with these numbers. You can try this at home; just plug in the appropriate
numbers for your platform to see how this kind of analysis applies to your own current environment. To see how
to write a program that figures out what the actual block overhead is for allocations of specific sizes on your
platform, see Appendix 3 of Jon Bentley's updated classic [Bentley00].

Table 21-3. Same actual overhead per contained object
(implementation-dependent assumptions: sizeof(string) == 16, 4-byte pointers

and ints, and 16-byte fixed-size allocation blocks)

Container Basic node
data size

Actual size of allocation block for node,
including alignment and block allocation

overhead

list<char> 9 bytes 16 bytes

set<char>,

multiset<char>
13 bytes 16 bytes

list<int> 12 bytes 16 bytes

set<int>, multiset<int> 16 bytes 16 bytes

list<string> 24 bytes 32 bytes

Page 177

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 21-3. Same actual overhead per contained object
(implementation-dependent assumptions: sizeof(string) == 16, 4-byte pointers

and ints, and 16-byte fixed-size allocation blocks)

Container Basic node
data size

Actual size of allocation block for node,
including alignment and block allocation

overhead

set<string>,

multiset<string>
28 bytes 32 bytes

Looking at Table 21-3, we immediately spy one interesting result: For many casesthat is, for about 75% of all
possible sizes of the contained type Tlist and set/multiset actually incur the same memory overhead in this
particular environment. What's more, here's an even more interesting result: list<char> and set<int> have
the same actual overhead in this particular environment, even though the latter stores both more object data and
more housekeeping data in each node.

If memory footprint is an important consideration for your choice of data structure in specific situations, take a
few minutes to do this kind of analysis and see what the difference really is in your own environmentsometimes
it's less than you might think!

Summary

Each kind of container chooses a different space/performance tradeoff. You can do things efficiently with
vector and set that you can't do with list, such as O(log N) searching;[26] you can do things efficiently with
vector that you can't do with list or set, such as random element access; you can do things efficiently with
list, less so with set, and more slowly still with vector, such as insertion in the middle; and so on. To get
more flexibility often requires more storage overhead inside the container, but after you account for data
alignment and memory allocation strategies, the difference in overhead might be significantly different than you'd
think! For related discussion about data alignment and space optimizations, see also Item 26 in Exceptional
C++ [Sutter00].
[26] If the vector's contents are sorted.

Guideline
Know what you're getting: Understand the actual (and system-dependent) space costs of
dynamic memory allocation and of the different containers.

Page 178

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 22. To new,
Perchance to tHRow, Part 1:
The Many Faces of new
Difficulty: 4

Any class that provides its own class-specific operator new, or
operator new[], should also provide corresponding
class-specific versions of plain new, in-place new, and nothrow
new. Doing otherwise can cause needless problems for people
trying to use your class.

JG Question
1. What are the three forms of new provided in the

C++ standard?

Guru Question
2. What is class-specific new, and how do you make

use of it? Describe any areas where you need to
take particular care when providing your own
class-specific new and delete.

3. In the following code, which operator new is
invoked for each of the lines numbered 1 through 4?

4.
5. class Base {

6. public:

7. static void* operator new(std::size_t,

const FastMemory&);

8. };

9.
10. class Derived : public Base {
11. // …
12. };
13.
14. Derived* p1 = new Derived;

 // 1

15.
16. Derived* p2 = new (std::nothrow)

Derived; // 2

Page 179

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.
18. void* p3 = /* some valid memory that's

big enough for a Derived */ ;

19. new (p3) Derived;
 // 3

20.
21. Derived* p4 = new (FastMemory())

Derived; // 4

Page 180

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
In this Item and the next, I want to state and justify just two main
pieces of advice:

 Any class that provides its own class-specific operator
new or operator new[] should also provide
corresponding class-specific versions of plain new,
inplace new, and nothrow new. Doing otherwise can cause
needless problems for people trying to use your class.

 Avoid using new(nothrow), and make sure that when
you're checking for new failure, you're really checking
what you think you're checking.

Some of this advice might be surprising, so let's examine the
reasons and rationale that lead to it. This Item focuses on the first
point; in the next we'll consider the second. For simplicity, I'm not
going to mention the array forms of new specifically; what's said
about the single-object forms applies correspondingly to the array
forms.

Page 181

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

In-Place, Plain, and Nothrow new
1. What are the three forms of new provided in the C++ standard?

The C++ standard provides three forms of new and allows any number of additional overloads.

One useful form is in-place new, which constructs an object at an existing memory address without
allocating new space. For example:

// Example 22-1(a): Using in-place new, an "explicit constructor call"

//

void* p = ::operator new(sizeof(T)); // grab a sufficient amount of raw memory

new (p) T; // construct the T at address p, probably

 // calls ::operator new(std::size_t, void*) throw()

The standard also supplies "plain old new," which doesn't take any special additional parameters, and
nothrow new, which does. Here's a complete list of the operator new overloads supplied in standard
C++:

// The standard-provided overloads of operator new

// (there are also corresponding ones for array new[]):

//

void* ::operator new(std::size_t size) throw(std::bad_alloc);

 // usual plain old boring new

 // usage: new T

void* ::operator new(std::size_t size, const std::nothrow_t&) throw();

 // nothrow new usage: new (std::nothrow) T

void* ::operator new(std::size_t size, void* ptr) throw();

 // in-place (or "put-it-there") new usage: new (ptr) T

Programs are permitted to replace all but the last form with their own versions. All these standard
functions live in global scope, not in namespace std. In brief, Table 22-1 summarizes the major
characteristics of the standard versions of new.

Table 22-1. Comparison of the standard versions of new

Standard
version of
new

Additional
parameter

Performs
allocation

Can fail [27] Throws Replaceable

Plain None Yes Yes
(throws)

std::bad_alloc Yes

Page 182

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 22-1. Comparison of the standard versions of new

Standard
version of
new

Additional
parameter

Performs
allocation

Can fail [27] Throws Replaceable

Nothrow std::nothrow_t Yes Yes
(returns

null)

No Yes

In-Place void* No No No No

[27] After operator new is done, the object's constructor will be invoked and of course that constructor operation might still fail,
but we're not worried about that here. Here we're analyzing specifically whether or not operator new itself can fail.

Here is an example showing some ways to use these versions of new:

// Example 22-1(b): Using various indigenous and user-supplied overloads of new

//

new (FastMemory()) T; // calls some user-supplied

 // operator new(std::size_t, FastMemory&)

 // (or similar, with argument type conversions),

 // presumably to select a custom memory arena

new (42, 3.14159, "xyzzy") T; // calls some user-supplied

 // operator new(std::size_t, int, double, const

char*)

 // (or similar, with argument type conversions)

new (std::nothrow) T; // probably calls the standard or some

user-supplied

 // operator ::new(std::size_t,

 // const std::nothrow_t&) throw()

In each case shown in Examples 22-1(a) and 22-1(b), the parameters inside the brackets in the
new-expression turn into additional parameters tacked onto the call to operator new. Of course, unlike
the case in Example 22-1(a), the cases in Example 22-1(b) probably do allocate memory in one way or
another rather than using some existing location.

Page 183

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Class-Specific new
2. What is class-specific new, and how do you make use

of it? Describe any areas where you need to take
particular care when providing your own
class-specific new and delete.

Besides letting programs replace some of the global operators new
, C++ also lets classes provide their own class-specific versions.
When reading Examples 22-1(a) and 22-1(b), did you notice the
word "probably" in two of the comments? They were:

new (p) T; // construct the T

at address p, probably

 // calls ::operator

new(std::size_t, void*) throw()

new (std::nothrow) T; // probably calls

the standard or some user-supplied

 // operator ::

new(std::size_t,

 //

const std::nothrow_t&) throw()

Why only "probably"? Because the operators invoked might not
necessarily be the ones at global scope, but might be class-specific
ones. To understand this clearly, notice two interesting interactions
between class-specific new and global new:

 Although you can't directly replace the standard global
in-place new, you can write your own class-specific
in-place new that gets used instead for that class.

 You can add class-specific nothrow new with or without
replacing the global one.

So in these two code lines, it's possible that T (or one of T's base
classes) provides its own versions of one or both operators new
being invoked here, and if so those are the ones that will get used.

Here is a simple example of providing class-specific new, where
we just provide our own versions of all three global flavors:

// Example 22-2: Sample class-specific versions

of new

//

class X {

public:

 static void* operator new(std::size_t) throw();

Page 184

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 // 1

 static void* operator new(std::size_t,

 const std::nothrow_t&)

throw(); // 2

 static void* operator new(std::size_t, void*)

throw(); // 3

};

X* p1 = new X;

 // calls 1

X* p2 = new (std::nothrow) X;

 // calls 2

void* p3 = /* some valid memory that's big enough

for an X */ ;

new (p3) X;

 // calls 3 (!)

I put an exclamation point after the third call to again draw
attention to the funky fact that you can provide a class-specific
version of in-place new even though you can't replace the global
one.

Page 185

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A Name-Hiding Surprise
This, finally, brings us to the reason I've introduced all this machinery in the first place,
namely the name-hiding problem:

3. In the following code, which operator new is invoked for each of the lines
numbered 1 through 4?

// Example 22-3: Name-hiding "news"

//

class Base {

public:

 static void* operator new(std::size_t, const FastMemory&);

};

class Derived : public Base {

 // …

};

 Derived* p1 = new Derived; // 1

 Derived* p2 = new (std::nothrow) Derived; // 2

 void* p3 = /* some valid memory that's big enough for a Derived */

;

 new (p3) Derived; // 3

 Derived* p4 = new (FastMemory()) Derived; // 4

Most of us are familiar with the name-hiding problem in other contexts, such as a name in a
derived class hiding one in the base class, but it's worth remembering that name hiding can
crop up for operator new too.

Remember how name lookup works: In brief, the compiler starts in the current scope
(here, in Derived's scope) and looks for the desired name (here, operator new); if no
instances of the name are found, it moves outward to the next enclosing scope (in Base 's
and then global scope) and repeats. Once it finds a scope containing at least one instance
of the name (in this case, Base's scope), it stops looking and works only with the matches
it has found, which means that further outer scopes (in this case, the global scope) are not
considered and any functions in them are hidden; instead, the compiler looks at all the
instances of the name it has found, selects a function using overload resolution, and, finally,
checks access rules to determine whether the selected function can be called. The outer
scopes are ignored even if none of the overloads found has a compatible signature,
meaning that none of them could possibly be the right one; the outer scopes are also
ignored even if the signature-compatible function that's selected isn't accessible. That's why
name hiding works the way it does in C++. (For more details about name lookup and
name hiding, see Item 30 in Exceptional C++ [Sutter00].)

What this means is that if a class C, or any of its base classes, contains a class-specific
operator new with any signature, that function will hide all of the global ones and you

Page 186

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

won't be able to write normal new-expressions for C that intend to use the global versions.
Here's what this means in the context of Example 22-3:

Derived* p1 = new Derived; // error: no match

Derived* p2 = new (std::nothrow) Derived; // error: no match

void* p3 = /* some valid memory that's big enough for a Derived */ ;

new (p3) Derived; // error: no match

Derived* p4 = new (FastMemory()) Derived; // calls Base::operator

new()

But what if we wanted to use the global ones, at least in the first two cases, because the
overload in the base class can't be a match anyway? The only reasonable way to re-enable
the global ones is for Derived to provide the necessary passthrough functions itselfcalling
code must otherwise know to write globally qualified new-expressions to select a global
operator new.

This leads to a few interesting conclusions, best expressed as a coding and design
guideline. (Scott Meyers covers part of the first bullet in Item 5 of [Meyers97], but the
other points are just as important.)

Guideline
If you provide any class-specific new, always also provide class-specific
plain (no-extra-parameters) new.

The class-specific version should almost always preserve the global version's semantics, so
declare it with an exception specification of throw(std::bad_alloc), and prefer to
implement it in terms of the global version unless you really need to put in some special
handling:

// Preferred implementation of class-specific plain new.

//

void* C::operator new(std::size_t s) throw(std::bad_alloc) {

 return ::operator new(s);

}

Note that you might be calling a replaced global version, rather than the standard's default
one, but that's normally a good thing: In most cases, a replaced global operator new
exists for debugging or heap instrumentation reasons, and it's desirable to reflect such
behavior in class-specific versions.

If you don't do this, you won't be able to use the class with any code that tries to
dynamically allocate objects the usual way.

Guideline

Page 187

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

If you provide any class-specific new, then always also provide
class-specific in-place new.

This should always preserve the global version's semantics, so declare it to throw nothing,
and implement it in terms of the global version:

// Preferred implementation of class-specific in-place new.

//

void* C::operator new(std::size_t s, void* p) throw() {

 return ::operator new(s, p);

}

If you don't do this, you will surprise (and break) any calling code that tries to use in-place
new for your class. In particular, standard library container implementations commonly use
in-place construction and expect such in-place construction to work the usual way; this is,
after all, the only way to make an explicit constructor call in C++. Unless you write this,
you probably won't be able to use even a std::vector<C>.

Guideline
If you provide any class-specific new, then consider also providing
class-specific nothrow new in case some users of your class do want to
invoke it; otherwise, it will be hidden by other class-specific overloads
of new.

Either implement it using the global nothrow new:

// "Option A" implementation of class-specific nothrow new. Favors

consistency

// with global nothrow new. Should have the same effect as Option B.

//

void* C::operator new(std::size_t s, const std::nothrow_t& n)

throw() {

 return ::operator new(s, n);

}

Or, to ensure consistent semantics with the normal new (which the global nothrow new
ought to do, but what if someone replaced it in a way such that it doesn't?), implement it in
terms of that:

// "Option B" implementation of class-specific nothrow new. Favors

consistency

// with the corresponding class-specific plain new. Should have the

same effect

// as Option A.

//

void* C::operator new(std::size_t s, const std::nothrow_t&) throw()

{

 try {

Page 188

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return C::operator new(s);

 }

 catch(...) {

 return 0;

 }

}

Note that these passthroughs can't be simulated with a using declaration, such as using
::operator new;. The only place such a using declaration would be helpful would be
inside the definition for class C, but it's illegal there; within a class, you can only write using
declarations that bring in names from base classes, not other names such as global names
or names from other classes. Requiring that the calling code add the using declaration
itself would not only be onerous, but wouldn't even help because we might not be able to
modify it; some of the calling code would be inside what to us are read-only modules such
as third-party libraries, or even inside the C++ standard library if we were trying to provide
the standard containers with access to in-place new.

Page 189

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Summary
If you provide any class-specific new, then:

 Always also provide class-specific plain
(no-extra-parameters) new.

 Always also provide class-specific in-place new.

 Consider also providing class-specific nothrow new in
case some users of your class do want to invoke it;
otherwise, it will be hidden by other class-specific
overloads of new.

In the next Item, we'll delve deeper into the question of what
operator new failures mean, and how best to detect and handle
them. Along the way, we'll see why it can be a good idea to avoid
using new(nothrow)perhaps most surprisingly, we'll also see that,
on certain popular real-world platforms, memory allocation
failures usually don't even manifest in the way the standard says
they must! Stay tuned.

Page 190

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 23. To new,
Perchance to tHRow, Part 2:
Pragmatic Issues in
Memory Management
Difficulty: 5

Avoid using new(nothrow), and make sure that when you're
checking for new failure, you're really checking what you think
you're checking.

JG Question
1. Explain the two main ways that the standard forms

of new report an error if there isn't enough memory
available.

Guru Question
2. Does using the nothrow form of new help us make

our code more exception-safe? Justify your answer.

3. Describe real-world circumstances, either within
standard C++ or outside strictly standard C++,
where it might actually be impossible or useless to
try to check for memory exhaustion.

Page 191

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
In the previous Item, I illustrated and justified the following coding guideline:

 Any class that provides its own class-specific operator new or operator
new[] should also provide corresponding class-specific versions of plain new,
in-place new, and nothrow new. Doing otherwise can cause needless problems for
people trying to use your class.

This time, we'll delve deeper into the question of what operator new failures mean, and
how best to detect and handle them:

 Avoid using new(nothrow), and make sure that when you're checking for new
failure, you're really checking what you think you're checking.

The first part might be mildly surprising advice, but it's the latter that is likely to raise even
more eyebrowsbecause on certain popular real-world platforms, memory allocation failures
usually don't even manifest in the way the standard says they must.

Again, for simplicity I'm not going to mention the array forms of new specifically. What's
said about the single-object forms applies correspondingly to the array forms.

Exceptions, Errors, and new(nothrow)

First, a recap:

1. Explain the two main ways that the standard forms of new report an error
if there isn't enough memory available.

Whereas most forms of new report failure by throwing a bad_alloc exception, nothrow
new reports failure the time-honored malloc way, namely by returning a null pointer. This
guarantees that nothrow new will never throw, as indeed its name implies.

The question is whether this really buys us anything: Some people have had the mistaken
idea that nothrow new enhances exception safety because it prevents some exceptions
from occurring. So here's the $64,000 motivating question: Does using nothrow new
enhance program safety in general or exception safety in particular?

2. Does using the nothrow form of new help us make our code more
exception-safe? Justify your answer.

The (possibly surprising) answer is: No, not really. Error reporting and error handling are
orthogonal issues. "It's just syntax after all."[28]

[28] Can be sung to the tune of "It's a Small World (After All)."

The choice between throwing bad_alloc and returning null is just a choice between two
equivalent ways of reporting an error. Therefore, detecting and handling the failure is just a
choice between checking for an exception and checking for the null.

Page 192

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

To a calling program that checks for the error, the difference is just syntactic. That means
that it can be written with exactly equivalent program safety and exception safety, in either
casethe syntax by which the error happens to be detected isn't relevant to safety, because it
is just syntax and leads to only minor variations in the calling function's structure (e.g.,
something like if (null) { HandleError(); throw MyOwnException(); } vs.
something like catch(bad_alloc) { HandleError(); throw MyOwnException();
}). Neither way of new error reporting provides additional information or additional
inherent safety, so neither way inherently makes programs somehow "safer" or "able to be
more correct," assuming of course that the handling is coded accurately.

But what's the difference to a calling program that doesn't check for errors? In that case,
the only difference is that the eventual failure will be different in mode but not severity.
Either an uncaught bad_alloc will unceremoniously terminate the program (with or
without unwinding the program stack all the way back to main) or an unchecked null
pointer will cause a memory violation and immediate halt when it's later dereferenced. Both
failure modes are fairly catastrophic, but there's some advantage to the uncaught exception:
It will make an attempt to destroy at least some objects and therefore release some
resources, and if some of those objects are things like a TextEditor object that
automatically saves recovery information when prematurely destroyed, then not all the
program state need be lost if the program is carefully written. (Caveat emptor: When
memory really is exhausted, it's harder than it appears to write code that will correctly
unwind and back out, without trying to use a teensy bit more memory.) An abrupt halt due
to use of a bad pointer, on the other hand, is far less likely to be healthy.

From this we derive Moral #1:

Guideline
Moral #1: Avoid nothrow new

Nothrow new does not inherently benefit program correctness or exception safety. For
some failuresnamely, failures that are ignoredit's worse than an exception, because at least
an exception would get a chance to do some recovery via unwinding. As pointed out in the
previous Item, if classes provide their own new but forget to provide nothrow new too,
nothrow new will be hidden and won't even work. In most cases, nothrow new offers no
benefit, and for all these reasons it should be avoided.

I can think of two corner cases where nothrow new can be beneficial. The first case is one
that these days is getting pretty hoary with age: When you're migrating a lot of legacy really
-old-style C++ application code written before the mid-1990s that still assumes that (and
checks whether) new returns null to report failure, it can be easier to globally replace "new"
with "new(nothrow)" in those filesbut it's been a long time now since unadorned new
behaved the old way! The amount of such hoary old code that's still sitting around and
hasn't yet been migrated to (or recompiled using) a modern compiler is dwindling fast.

The second case for using nothrow new is if new is being used a lot in a time-critical
function or inner loop, and the function is being compiled under a weaker compiler that
generates inefficient exception-handling code overhead, and this produces a measurable
run-time difference in this time-critical function between using normal new and using

Page 193

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nothrow new. Note that when I say "measurably," I mean that we've actually written a test
harness that includes at least the entire piece of time-critical code (not just a toy example
of new by itself) and timed two versions, one with new and one with new(nothrow). If
after all that, we've proved that it makes a difference to the performance of the time-critical
code, we might consider new(nothrow)and should at the same time consider other ways
to improve the allocation performance, including the option of writing a custom new using a
fixed-size allocator or other fast-memory arena (but before you do that, read Item 21).

This brings us to Moral #2:

Guideline
Moral #2: There's often little point in checking for new failure anyway.

This statement might horrify some people. "How can you suggest that we not check for
new failure, or that checking failures is not important?!" some might say, righteously
indignant. "Checking failures is a cornerstone of robust programming!" That's very true in
general, butalasit often isn't as meaningful for new for reasons that are unique to memory
allocation, as opposed to other kinds of operations whose failure should indeed be
checked and handled. Hence, the third question:

When the Theoretical Rubber Meets the Real-World Road

3. Describe real-world circumstances, either within standard C++ or outside
strictly standard C++, where it might actually be impossible or useless to
try to check for memory exhaustion.

Here are some reasons why checking for new failure might not be as important as one
might think, in particular situations:

1. Checking new failure is useless on systems that don't commit memory until
the memory is used. On some operating systems, including but not limited to
Linuxes,[29] memory allocation always succeeds. Full stop.
[29] Lazy-commit is also a configurable feature on some other operating systems.

"Hey, wait a minute," you might rightly wonder. "How can allocation always succeed, even
when the requested memory really isn't available?" The reason is that the allocation itself
merely records a request for the memory; under the covers, the (physical or virtual)
memory is not actually committed to the requesting process, with real backing store, until
the memory is actually used. Even when the memory is used, often real (physical or virtual)
memory is only actually committed as each page of the allocated buffer is touched, so it can
be that only the parts of the block that have actually been touched get committed.

Note that, if new uses the operating system's facilities directly, then new will always
succeed, but any later innocent code like buf[100] = 'c'; can throw or fail or halt.
From a standard C++ point of view, both effects are nonconforming, because the C++
standard requires that if new can't commit enough memory, it must fail (this doesn't) and
that code like buf[100] = 'c' shouldn't throw an exception or otherwise fail (this might).

Page 194

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Background: Why do some operating systems do this kind of lazy allocation? There's a
noble and pragmatic idea behind this scheme, namely that a given process that requests
memory might not actually immediately need all of said memorythe process might never use
all of it, or it might not use it right away, and in the mean-time maybe the memory can be
usefully "lent" to a second process which may need it only briefly. Why immediately commit
all the memory a process demands when it might not really need it right away? So this
scheme does have some potential advantages.

The main problem with this approach, besides that it makes C++ standards conformance
difficult, is that it makes program correctness in general difficult, because any access to
successfully allocated dynamic memory might cause the program to halt. That's just not
good. If allocation fails up front, the program knows that there's not enough memory to
complete an operation, and then the program has the choice of doing something about it,
such as trying to allocate a smaller buffer size or giving up on only that particular operation
or at least attempting to clean up some things by unwinding the stack. But if there's no way
to know whether the allocation really worked, then any attempt to read or write the
memory may cause a haltand that halt can't be predicted, because it might happen on the
first attempt to use part of the buffer or on the millionth attempt after lots of successful
operations have used other parts of the buffer.

On the surface, it would appear that our only way to defend against this is to immediately
write to (or read from) the entire block of memory to force it to really exist. For example:

// Example 23-1: Manual initialization: Deliberately go and touch

each byte.

//

char* p = new char[1000000000];

memset(p, 0, 1000000000);

If the type being allocated happens to be a non-POD[30] class type, the memory is in fact
touched automatically for you:
[30] POD stands for "plain old data." Informally, a POD means any type that's just a bundle of plain data, though
possibly with user-defined member functions just for convenience. More formally, a POD is a class or union that has
no user-defined constructor or copy assignment operator or destructor, and no (non-static) data member that is a
reference, pointer to member, or non-POD.

// Example 23-2: Default initialization: If T is a non-POD, this

code initializes all

// the T objects immediately and will touch every (significant,

non-padding) byte.

//

T* p = new T[1000000000];

If T is a non-POD, each object is default-initialized, which means that all the significant
bytes of each object are written to, so the memory has to be accessed.[31]

[31] T his ignores the pathological case of a T whose constructor doesn't actually initialize the object's data.

You might think that's helpful. It's not. Sure, if we successfully complete the memset in
Example 23-1 or the new in Example 23-2, we do in fact know that the memory has
actually been allocated and committed. But if accessing the memory fails, the twist is that

Page 195

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

the failure won't be what we might naively expect it to be: We won't get a null return or a
nice bad_alloc exception, but rather we'll get an access violation and a program halt,
none of which the code can do anything about (unless it can use some platform-specific
way to trap the violation). That might be marginally better and safer than just allocating
without writing and pressing on regardless, hoping that the memory really will be there
when we need it and that all will be well, but not by much.

This brings us back to standards conformance, because it might be possible for the
compiler-supplied ::operator new and ::operator new[] itself to do better with this
approach than we as programmers could do easily. In particular, the compiler implementer
might be able to use knowledge of the operating system to intercept the access violation
and therefore prevent a program halt. That is, it might be possible for a C++ implementer
to do all this workallocate, and then confirm the allocation by making sure we write to each
byte, or at least to each pageand catch any failure in a platform-specific way and convert it
to a standard bad_alloc exception (or a null return, in the case of a nothrow new). I
doubt that any implementer would go to this trouble, though, for two reasons: first, it means
a performance hit, and probably a big one to incur for all cases; and second, new failure is
pretty rare in real life anyway… which happens to lead us nicely to the next point:

2. In the real world, new failure is a rare beast, made nearly extinct by the
thrashing beast. As a practical matter, many modern server-based programs
rarely encounter memory exhaustion.

On a virtual memory system, most real-world server-based software performs work in
various parts of memory while other processes are actively doing the same in their own
parts of memory; this causes increasing paging as the amount of memory in use grows, and
often the processes never reach new failure. Rather, long before memory can be fully
exhausted, the system performance will hit the thrash wall and just grind ever more
unusably slowly as pages of virtual memory are swapped in and out from disk, and the
sysadmin will start killing processes.

Caveat lector: I use words like "most" because it is possible to create a program that
allocates more and more memory but doesn't actively use much of it. That's possible but
unusual, at least in my own experience. This also of course does not apply to systems
without virtual memory, such as many embedded and real-time systems; some of these are
so failure-intolerant that they won't even use any kind of dynamic memory at all, never mind
virtual memory.

3. There's not always much you can do when you detect new failure. As Andy
Koenig pointed out in his article "When Memory Runs Low" [Koenig96], the
default behavior of halting the program on new failure (usually with at least an
attempt to un-wind the stack) is actually the best option in most situations,
especially during testing.

Sometimes when new fails, there are a few things you can do, of course: If you want to
record some diagnostic info, the new handler is a nice hook for doing logging. It is
sometimes possible to apply the strategy of keeping a reserve "emergency memory" buffer;
although anyone who does this should know what they are doing and actually carefully test
the failure case on their target platforms, because this doesn't necessarily work the way
people think. Finally, if memory really is exhausted, you can't necessarily rely on being able
to throw a nontrivial (e.g., non-built-in) exception; even throw string("failed"); will

Page 196

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usually attempt a dynamic allocation using new, depending on how highly optimized your
implementation of string happens to be.

So yes, sometimes there are useful things you can do to cope with specific kinds of new
failure, but often it's not worth it beyond letting stack unwinding and the new handler
(including perhaps some logging) do their thing.

What Should You Check?

There are special cases for which checking for memory exhaustion and trying to recover
from it do make sense. Koenig mentions some in [Koenig96]. For example, you could
choose to allocate (and if necessary write to) all the memory you're ever going to use up
front, at the beginning of your program, and then manage it yourself; if your program
crashes at all, it will crash right away before actually doing work. This approach requires
extra effort and is only an option if you know the memory requirements in advance.

The main category of recoverable new failure error I've seen in production systems has to
do with creating buffers whose size is externally supplied from some input. For example,
consider a communications application where each transmitted packet is prepended with
the packet length, and the first thing the receiver does with each packet is to read the length
and then allocate a buffer big enough to store the rest of the packet. In just such situations,
I've seen attempts to allocate monstrously large buffers, especially when data-stream
corruption or programming errors cause the length bytes to get garbled. In this case, the
application should be checking for this kind of corruption (better still, designing the
protocol to prevent it from happening in the first place, if possible) and aborting on invalid
data and unreasonable buffer sizes, because the program can often continue doing
something sensible, such as retrying the transmission with a smaller packet size or even just
abandoning that particular operation and going on with other work. After all, the program
is not really "out of memory" when an attempt to allocate 2GB failed but there's still 1GB
of virtual memory left![32]

[32] Interestingly, allocating buffers whose size is externally specified is a classic security vulnerability. Attacks by
malicious users or programs specifically trying to cause buffer problems is a classic, and still favorite, security exploit
to bring down a system. Note that trying to crash the program by causing allocation to fail is a denial-of-service
attack, not an attempt to actually gain access to the system; the related, but distinct, overrun-a-fixed-length-buffer
attack is also a perennial favorite in the hacker community, and it's amazing just how many people still use strcpy
and other unchecked calls and thereby leave themselves wide open to this sort of abuse.

Another special case where new failure recovery can make sense is when your program
optimistically tries to allocate a huge working buffer, and on failure just keeps retrying a
smaller one until it gets something that fits. This assumes that the program as a whole is
designed to adjust to the actual buffer size and does chunking as necessary.

Summary

Avoid using nothrow new, because it offers no significant advantages these days and
usually has worse failure characteristics than plain throwing new.

Remember that there's often little point in checking for new failure anyway, for several
reasons.

If you are rightly concerned about memory exhaustion, be sure that you're checking what
you think you're checking, because:

Page 197

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Checking new failure is typically useless on systems that don't commit memory until
the memory is used.

 In virtual memory systems, new failure is encountered rarely or never because long
before virtual memory can be exhausted, the system typically thrashes and a
sysadmin begins to kill processes.

 Except for special cases, even when you detect new failure, there's not always
much you can do if there really is no memory left.

Page 198

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Optimization and
Efficiency
We often want or need to make some part of our
programs more efficient, and there are a lot of faces
to optimization.

From time to time, it has been suggested that using
the keyword const can help the compiler optimize
code. Is that true or not? Why? Moving beyond
const, other programmers like to rely on using the
inline keyword for other kinds of optimizations.
Does writing inline affect the performance of a
program? If so, when, and which way? When can
inlining be done, both under programmer control and
otherwise?

Finally, we conclude this section with a brain teaser
demonstrating how often there's no substitute for
knowledge of the application domain to eke out the
best possible efficiency, and we'll get an opportunity
to bash out some honest-to-goodness low-level
bit-twiddling and -fiddling code.

Page 199

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 24. Constant
Optimization?
Difficulty: 3

Does const correctness help the compiler optimize code? A typical
programmer's reaction is that, yes, they suppose it probably does. Which
brings us to the interesting thing…

JG Question
1. Consider the following code:
2.
3. const Y& f(const X& x) {

4.
5. // … do something with x and find a Y object

…

6.
7. return someY;

8.
9. }

Does declaring the parameter and/or the return value as
const help the compiler generate more optimal code or
otherwise improve its code generation? Why or why not?

Guru Question
2. In general, explain why or why not the presence or absence

of const can help the compiler enhance the code it
generates.

3. Consider the following code:
4.
5. void f(const Z z) {

6.
7. // ...

8.
9. }

The questions:

Page 200

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

a. Under what circumstances and for what kinds of
class Z could this particular const qualification help
generate different and better code? Discuss.

b. For the kinds of circumstances mentioned in (a), are
we talking about a compiler optimization or some
other kind of optimization? Explain.

c. What's a better way to get the same effect?

Page 201

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
const: Not the Little Optimizer One Might Think

1. Consider the following code:
2.
3. // Example 24-1

4. //

5. const Y& f(const X& x) {

6.
7. // … do something with x and find a Y object …

8.
9. return someY;

10.
11. }

Does declaring the parameter and/or the return value as const help the compiler
generate more optimal code or otherwise improve its code generation?

In short, no, it probably doesn't.

Why or why not?

What could the compiler do better? Could it avoid a copy of the parameter or the return value?
No, because the parameter is already passed by reference, and the return is already by reference.
Could it put a copy of x or someY into read-only memory? No, because both x and someY live
outside its scope and come from and/or are given to the outside world. Even if someY is
dynamically allocated on the fly within f itself, it and its ownership are given up to the caller.

But what about possible optimizations of code that appears inside the body of f? Because of the
const, could the compiler somehow improve the code it generates for the body of f? This leads
into the second and more general question:

2. In general, explain why or why not the presence or absence of const can help the
compiler enhance the code it generates.

Referring again to Example 24-1, of course the usual reason that the parameter's constness
doesn't usually let the compiler do fancy things still applies here: Even when you call a const
member function, the compiler can't assume that the bits of object x or object someY won't be
changed. Further, there are additional problems (unless the compiler performs global
optimization): The compiler also may not know for sure whether any other code might have a non-
const reference that aliases the same object as x and/or someY, and whether any such non-
const references to the same object might get used incidentally during the execution of f; and the
compiler might not even know whether the real objects, to which x and someY are merely
references, were actually declared const in the first place.

Just because x and someY are declared const doesn't necessarily mean that their bits are
physically const. Why not? Because either class might have mutable members or their moral

Page 202

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

equivalent, namely const_casts inside member functions. Indeed, the code inside f itself might
perform const_casts or C-style casts that turn the const declarations into lies.

There is one case where saying const can really mean something, and that is when objects are
made const at the point where they are defined. In that case, the compiler can often successfully
put such "really const" objects into read-only memory, especially if they are PODs whose
memory images can be created at compile time and therefore can be stored right inside the
program's executable image itself. Such objects are colloquially called "ROM-able."

How Writing const Really Can Optimize

3. Consider the following code:
4.
5. // Example 24-3

6. //

7. void f(const Z z) {

8.
9. // …

10.
11. }

The questions:

a. Under what circumstances and for what kinds of class Z could this
particular const qualification help generate different and better code?
Discuss.

If the compiler knows that z truly is a const object, it could perform some useful optimizations
even without global analysis. For example, if the body of f contains a call like g(&z), the compiler
can be sure that the non-mutable parts of z do not change during the call to g.

Other than that, however, writing const in Example 24-3 is not an optimization for most classes Z
and in those cases where it is an optimization, it's not a compiler code generation optimization.

For compiler code generation, the question mostly comes down to whether the compiler could
elide copy construction or could put z into read-only memory. That is, it would be nice if we
knew that z was really untouched by what goes on inside f, because theoretically that would
mean we might be able to just directly use the out-side object that the caller passed into this
function instead of making a copy of it, or else we could make a copy but put that copy into
read-only memory if that happens to be faster or otherwise more desirable.

In general, the compiler can't use the parameter's constness to elide the copy construction or
assume bitwise constness. As already noted, too many things can go wrong. In particular, Z might
have mutable members, or someone somewhere (in f itself, in some other function, or in some
directly or indirectly called Z member function) might perform const_casts or other chicanery.

There is one case where the compiler might be able to generate better code. If:

 the definitions for Z's copy constructor and for all of Z's functions that are used directly or
indirectly in the body of f are visible at this point; and

 those functions are all pretty simple and free of side effects; and

Page 203

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 the compiler has an aggressive optimizer

then the compiler can be sure of what exactly is going on every step of the way, and might choose
to elide the copy under the "as if" rule, which says that a compiler is allowed to do something
different from what the standard technically says it must as long as a conforming program can't tell
the difference.

As an aside, it's worth mentioning one small red herring: Some people might say there's another
case where the compiler could generate better code with const, namely, if the compiler performs
global optimization. The thing is that that sentence is true even if you remove the "with const."
Never mind that global optimization is still fairly rare and very expensive; the real issue here is that
global optimization makes use of all knowledge about how an object is actually used and therefore
will do the same thing whether the object is actually declared const or notit makes decisions
based on what you really do, not on what you promised to do, so it doesn't matter if the two
happen to be the same thing. If you're getting true global optimization anyway, then promising
constness definitely doesn't help the optimizer do its job any better in this respect.

Note that a few paragraphs ago I said that "writing const in Example 24-3 is not an optimization
for most classes Z," and "for compiler code generation." There are, however, more optimizations
possible than are dreamt of in your compiler's optimizer! And indeed const can enable some real
optimizations:

a. For the kinds of circumstances mentioned in (a), are we talking about a compiler
optimization or some other kind of optimization? Explain.

In particular, there are also programmatic optimizations, where the author of Z can intelligently
choose to do things a different way for const objects.

As a case in point, let's say that Example 24-3's Z is a handle/body class, such as a String class
that uses reference counting to perform lazy copying:

// Example 24-4

//

void f(const String s) {

 // …

 s[4]; // or use iterators

 // …

}

Such a String, knowing that calling operator[] on a const String shouldn't be able to
change the contents of the string, might decide to provide a const overload for operator[] that
returns a char by value instead of a char&:

class String {

 // ...

public:

 const char operator[](size_t) const;

 char& operator[](size_t);

 // ...

Page 204

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

}

Similarly, String could also provide const_iterators whose operator* returns a char by
value instead of a char&.

If String does this work, and if you happen to use the smartened-up operator[] or iterators,
and you declare the pass-by-value parameter as const, thenwonder of wonders!the String can,
with no further help from you, automagically and whole- somely optimize your code by avoiding a
deep copy…

b. What's a better way to get the same effect?

… but you get all this and more by simply writing pass-by-reference instead:

// Example 24-5: Just do itbetter than Example 24-3

//

void f(const Z& z) {

 // …

}

and it works whether the object is handle/body or reference-counted or not, so just do that!

Guideline
Avoid passing objects by const value. Prefer passing them by reference to
const instead, except only if they're cheap-to-copy objects such as ints.

Summary

It's a common belief that const correctness helps compilers generate tighter code. Yes, const is
indeed a Good Thing, but the point of this Item is that const is mainly for humans, rather than for
compilers and optimizers.

When it comes to writing safe code, const is a great tool that lets programmers write safer code
with compiler checking and enforcement. Even when it comes to optimization, const is still
principally useful as a tool that lets human class designers better implement handcrafted
optimizations and less so as a tag for omniscient compilers to automatically generate better code.

Page 205

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 25. inline Redux
Difficulty: 7

Quick: When is inlining performed? And is it possible to write a function
that can be guar-anteed never to be inlined? In this Item, we'll consider
the many and varied opportunities for inlining, including many that are
likely to surprise you. The answers, stated simply, are, "It's never too
late, and nothing is impossible…"

JG Question
1. What is inlining?

Guru Question
2. When is inlining performed? Is it at:

a. coding time?

b. compile time?

c. link time?

d. application installation time?

e. run time?

f. some other time?

3. For extra marks: What kinds of functions are guaranteed
never to be inlined?

Page 206

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Which answer did you pick for Question 2? If you picked (a) or (b), you're not alone. Those are
the most common answers, and you might have thought of Item 8 of More Exceptional C++ [
Sutter02], where I gave some detailed discussion about the C++ inline keyword. If that were
all there was to it, we could stop right here, declare a spontaneous editorial holiday, and take the
rest of this Item off. But we won't do that this time, because it turns out that there is more to say.
Much more.

The reason I'm including this Item is to show why the most accurate answer to the primary
question is "any or all of the above," and the general answer to the for-extra-marks Question 3 is
"none." Wonder why? Read on.

Brief Recap: Inlining

1. What is inlining?

If you've already read Item 8 of More Exceptional C++ [Sutter02], the next few sections are
review and you can safely skim them while skipping ahead to the discussion of part (c).

In short, "inlining" means replacing a function call with an "in-place" expansion of the function's
body. For example, consider the following code:

// Example 25-1

//

double Square(double x) { return x * x; }

int main() {

 double d = Square(3.14159 * 2.71828);

}

The idea of inlining the function call is to treat this program (at least conceptually) as though it were
written instead as something like this:

int main() {

 const double __temp = 3.14159 * 2.71828;

 double d = __temp * __temp;

}

This inlining eliminates the overhead of performing the function call, namely of pushing the
parameter onto the stack and then having the CPU jump elsewhere in memory to execute the
function's code, thus losing some locality of reference. This inlining is also not the same thing as
treating Square as a macro, because an inlined function call is still a function call and its arguments
are evaluated only once. With a macro they could be evaluated multiple times, such as in a macro
like #define SquareMacro(x) ((x)*(x)), where the call SquareMacro(3.14159 *
2.71828) would expand to 3.14159 * 2.71828 * 3.14159 * 2.71828 (that's multiplying
pi by e twice, not once).

Page 207

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

There's a special case worth mentioning: recursive calls, where a function calls itself either directly
or indirectly. Although these calls are often not inlineable, in some cases a compiler can still inline
some recursion in much the same way that it can partly unroll some loops.

Incidentally, did you notice that this Example 25-1 illustrates inlining but does not use the inline
keyword? That's intentional. We'll come back to this interesting twist several times as we consider
the central question:

2. When is inlining performed? Is it at:

a. coding time?

b. compile time?

c. link time?

d. application installation time?

e. run time?

f. some other time?

3. For extra marks: What kinds of functions are guaranteed never to be inlined?

Answer A: At Coding Time

At coding time, developers can incant the inline keyword in their programs. That's not really
"performing" inlining in the sense of actually moving code around to eliminate a function call, but it
is an attempt to choose the appropriate places for inlining to take place, so we'll consider that as
the earliest opportunity to make decisions about inlining.[33]

[33] Arguably, another interpretation of "at coding time" is that some developers literally inline at coding time by physically
moving blocks of source code around. T hat's even more of a stretch from the usual meaning of "inlining" and so I'll ignore it.

When you're tempted to write inline in your code, there are three important things to
remember.

 By default, don't do it. Premature optimization is evil, and you shouldn't be tempted to
write inline until after profiling demonstrates the need in specific cases. See Item 8 of
More Exceptional C++ [Sutter02] or Google for "premature site:www.gotw.ca" for
further harangues and dire warnings about premature optimization in general and
premature inlining in particular.

 It only means "pretty please. " As described at length in Item 8 of More Exceptional
C++ [Sutter02], the inline keyword is merely a hint to the compiler, a special hook in
language to let you (try to) sweet-talk the compiler. (See below for the drawbacks of
sweet talk.) And that's all it's good for: The inline keyword is not required to have any
semantic effect whatsoever in a C++ program. It doesn't affect other parts of the standard
language, in that writing inline on a function does not change how you use the function
(for example, you can still take the function's address), and it is not possible for
standardsconforming C++ code to programmatically detect whether a given function was
declared as inline or not.

 It's often at the wrong level of granularity. We write inline on a function, but when

Page 208

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

inlining is performed, it actually is done to a function call. This distinction is important
because the very same function can (and often should) be inlined at one call site but not at
another. Writing inline does not give you any way to express that fact, because we can
only write inline on a function itself, and therefore when we do so we are implicitly
saying that we think we know that it is appropriate to inline this function at all possible call
sites. That kind of prescience is rarely accurate. So although we often colloquially speak
of "inlining a function," to be accurate it would be better to change our vocabulary to
consistently talk about "inlining a function call."

Guideline
Avoid writing inline or other attempted optimizations until performance
measurements show the need.

Answer B: At Compile Time

At compile time, compilers routinely perform precisely the kind of inlining described in Example
25-1.

What does the compiler do when we try to sweet-talk it by declaring certain functions to be
inline? It depends. Not all compilers respond well to sweet talk, even when it's accompanied
by chocolate and flowers. Your compiler (or other tools, as we will see) may ignore you, in three
interesting ways:

 By refusing to inline calls to functions that you declared inline.

 By inlining calls to functions you didn't declare inline.

 By inlining some calls, but not others, to the same function (whether or not that function
was declared inline).

Note again that Example 25-1 doesn't say inline anywhere. This was deliberate, because I
wanted to illustrate that inlining can still happen. Indeed, don't be surprised if the compiler you're
using today will in fact inline the function call in Example 25-1. Because you can't write a
conforming program that can tell the difference, this falls into the category of perfectly legitimate
optimizations that a compiler can (and often should) perform on your behalf.

Modern compilers are usually better than programmers are at deciding which function calls to
inline, including whether to perform inline expansion of the same function at some call sites but not
at others. Why? The simplest reason is that the compiler has more context because it knows the
"real" structure of the call sitethe machine code actually generated for the call site after other
optimizations, such as loop unrolling and dead branch elimination, have already been performed.
For example, the compiler might be able to detect that inlining a function call in a certain inner loop
would make the loop too large to fit into cache, which would slow down performance, and elect
not to inline that call site while still inlining other calls to the same function.

Answer C: At Link Time

Now we start to get into the more interesting, and more modern, aspects of inlining.

Page 209

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Question: Can a function be inlined at link time? Answer: Yes. This gets to the heart of the
for-extra-marks question posed at the outset: What kinds of functions are guaranteed to never be
inlined? I posed this extra question because there's a common belief that certain kinds of functions
can't be inlined. In particular, functions whose definitions are not put into header files but put into
separate modules are commonly thought to be uninlineable.

So let's try to make inlining as hard as we can. Consider this slight variation to Ex- ample 25-1:

// Example 25-2: Make life hard for the optimizer: Put the function in a

// different module, and make the function's source definition

unavailable.

//

//--- file main.cpp ---

//

double Square(double x);

int main() {

 double d = Square(3.14159 * 2.71828);

}

//--- file square.obj (or .o) ---

//

// contains the compiled definition for:

// double Square(double x) { return x * x; }

The idea here is that the implementation of Square has been moved out of the main.cpp
translation unit. In fact, more than that: Square is not even available in source form, only in object
form. "Certainly this call to Square is guaranteed to never be inlined!" some might be tempted to
exclaim. As far as the compiler goes, they would be correct. While compiling main.cpp, even an
inordinately precocious compiler could not possibly peek at the definition of Square.

A precocious linker, however, could, and some popular commercial implementations do. Several
compiler products, including Hewlett-Packard's implementation, have supported such
cross-module inlining; one popular product that supports it today is Microsoft Visual C++
version 7.0 (aka ".NET") and higher, using the /LTCG switch, which stands for "link time code
generation." One real advantage of doing such late inlining is, again, that the tool knows more of
the actual context of each call site and can make smarter choices about where and when it's worth
inlining a given call.

But wait, there's more: Did you notice that there's nothing in the description of Example 25-2 that
says Square is necessarily written in C++? This illustrates a second advantage of
post-compilation inlining: It is language-neutral. Square could just as easily have been written in
Fortran or Pascal. Sweet. All the linker has to do is be aware of the parameter-passing
convention and then remove the parameter-pushing and -popping code along with the program
jump instruction.

But wait (again), there's moremuch more. Fasten your seat belts, because it turns out that even
now we're still just getting started.

Answer D: At Application Installation Time

Fast-forward now to the joyous day when we've compiled and linked our application, bundled it

Page 210

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

all happily into a tarball or setup, and proudly shipped the shrink- wrapped CD to our first
customer. Surely now it's time to:

a. break open the morale fund;

b. have a ship party; and

c. declare that all opportunities for inlining are past.

Right?

Yes, yes, and no, respectively.

Particularly since the mid-1990s, increasing numbers of shipping applications are targeted for
managed run-time environments. That is, instead of being compiled to machine code that's specific
to a particular chip and to API calls that are specific to a particular operating system, the
applications are compiled to a bytecode stream that will be interpreted or compiled by a run-time
environment on the user's machine that abstracts away some or all CPU and OS facilities.
Common examples include, but are not limited to, a Java Virtual Machine (JVM) and the .NET
Common Language Run-time (CLR).[34] When targeting these environments, the compiler
translates the original C++ source code into said bytecode stream (also known as the virtual
machine's instruction language, or IL) that represents a program written as opcodes in the run-time
environment's instruction set.
[34] And the CLR's cousins, such as Mono, DotGNU, and Rotor, that also implement the ISO Common Language Infrastructure
(CLI) standard which specifies a subset of the CLR.

Aside: Some of these environments have an instruction set so rich that high-level object-oriented
concepts, including classes and inheritance and virtual functions, have direct first-class support. A
compiler that is targeting such a platform can (and many do) translate the source program into the
instruction language on a straight class- for-class, function-for-function basis, possibly after
applying some optimizations of its own, including performing some function-call inlining early at
compile time. If the compiler does this, then a C++ function in the source code can be more or
less directly represented by a function having the same signature, in the target instruction set. Of
course, a compiler doesn't have to mirror things that closely, and even if it doesn't necessarily do it
that way, the following inlining notes will still apply.

Back to the topic at hand: What does this have to do with inlining at application installation time?
Well, even in managed environments, eventually the CPU on the user's machine has to be fed
instructions in its native instruction set. Therefore, the managed environment is responsible for
translating the instruction language into native machine code that the local CPU can understand.
This is often done when the application is first installed, and at this point, just as in any other
compilation-like process, further optimizations can be (and frequently are) applied. In particular,
.NET's NGEN IL compiler performs some inlining at application installation time when some or all
of the installed IL is translated into native instructions ready for execution.

Again, it's worth noting that some of these managed environments are language-neutral, so that the
optimizations (including inlining) being performed at application install time can be applied across
language boundaries. Don't be too surprised if your C# program makes a call to a small C++
function, and the call ends up being inlined.

So, when is it too late to perform inlining? Never say never, because even now the story is not
quite over…

Page 211

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Answer E: At Run Time

All right, enough is enough: Surely by the time we hit run-time, we must be well be- yond
opportunities for code optimizations. Right?

It might seem impossible that inlining can still be performed at run-time, but in fact there are
several ways it can be done. In particular, I want to mention profile-directed optimization and
guarded inlining. Like a JIT-compiled environment (see the previous and next sections), this
requires some tool support to exist on the user's machine at run-time.

The idea behind profile-directed optimization is that when the application is actually run,
instrumentation hooks inserted into the executing program can gather data about how the program
is actually being usedin particular, what functions are be- ing called heavily and under what
conditions (e.g., the size of the working set com- pared to the total cache memory when the
function is called). The data gathered from these instrumented hooks can be used to modify the
executable image so that selected function calls can be inlined to tune the application to its target
environ- ment based on actual run-time performance measurements.

Guarded inlining is another example of how aggressive the run-time inline optimizations can be. In
particular, [Arnold00] and [JikesRVM] document the Jikes Re- search Virtual Machine (RVM),
née the Jalapeño dynamic optimizing compiler, for JVM targets. Among other things, this compiler
is able to inline calls to virtual functions by assuming that the receiver of the virtual call will be of a
given declared type (to avoid not only the cost of the function call but also the extra expense of
virtual dispatch). Now, compilers can already routinely nonvirtualize (and therefore also optionally
inline) certain virtual function calls today, if the type of the target is statically known. What's new
here is that the Jikes/Jalapeño environment can speculatively nonvirtualize and inline calls to virtual
functions even if the static type of the target is not known. Because the guess might not be right,
however, the compiler inserts a guard that performs a run-time check that validates that the target
object's type is what was expected; if it's not, execution falls back to performing a normal virtual
function call.

Answer F: At Some Other Time

Finally, I'll add one "other time" example I can think of, which is similar to some of the others but
distinct enough that I'll give it its own section.

Recall that in answer (d) we considered inlining that happens when installing applications on
certain managed run-time environments, such as a JVM or .NET CLR environment. Of course,
Astute Readers will already have noticed that earlier I only mentioned translation from bytecode to
native machine instructions at application installation time, but there's another and more common
time when that translation takes place, namely at JIT time, where JIT refers to "just-in-time"
compilation.

The idea behind JITting is to compile functions "just in time," just before they're about to be used.
This has the advantage of amortizing the cost of compiling the program down to native code,
because instead of one big compilation step, you get lots of little compilations for individual parts
of the code, just in the nick of time as they're about to be executed. It has the corresponding
disadvantages of potentially making the first runs of a program somewhat slower and of reducing
the quality of optimization because the JIT has to be fast and can't afford to spend a lot of time
analyzing inlining and other optimization opportunities. A JITter can still perform optimizations like
inlining, and many JITters do, but we can generally get better re- sults by doing the same work

Page 212

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

earlier, say at application installation time (see Answer D) when we're not so time-sensitive and
the optimizer can afford to be less thrifty with machine cycles and spend a little more time on
analysis.

Guideline
Inlining can happen anytime.

Summary

Like all optimizations, inlining is frequently better when performed by tools that are aware of the
generated code and/or the execution environment rather than by the programmer. The later inlining
is performed, the more specific and targeted it can be.

We talk about inlining functions, but it's more correct to say that we perform inlin- ing on function
calls. After all, the same function might be inlined in one place but not in others. And, because of
the many opportunities that exist for inlining even well after initial compilation has finished, the
same function can be inlined, not only in different places, but by different tools in each place.

There's more to inlining than the inline keyword alone.

Page 213

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 26. Data Formats and
Efficiency, Part 1: When
Compression Is the Name of
the Game
Difficulty: 4

How good are you at choosing highly compact and memory-efficient
data formats? How good are you at writing bit-twiddling code? This
Item and the next give you ample opportunity to exercise both skills as
we consider efficient representations of chess games and a BitBuffer to
hold them.

Background: I assume you know the basics of chess.

JG Question
1. Which of these standard containers uses the least memory

to store the same number of objects of the same type T:
deque, list, set, or vector? Explain.

Guru Question
2. You are creating a worldwide chess server that stores all

games ever played on it. Because the database can get very
large, you want to represent each game using as few bytes
as possible. For this problem, consider only the actual game
moves and ignore extra information such as the players'
names and comments.

For each of the following data sizes, demonstrate a format
for representing a chess game that requires the indicated
amount of data to store each half-move (a half-move is one
move played by one side). For this question, assume 8 bits
per byte.

a. 128 bytes per half-move

b. 32 bytes per half-move

c. minimum 4 bytes and maximum 8 bytes per

Page 214

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

half-move

d. minimum 2 bytes and maximum 4 bytes per
half-move

e. 12 bits per half-move

Page 215

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
1. Which of these standard containers uses the least memory to store the same number of

objects of the same type T: deque, list, set, or vector? Explain.

Recall Items 20 and 21, which cover the underlying memory footprints and structures of the various
standard containers. Each kind of container chooses a different space/performance tradeoff:

 A vector<T> internally stores a contiguous array of T objects and so has no perelement
overhead at all.

 A deque<T> can be thought of as a vector<T> whose internal storage is broken up into
chunks. A deque<T> stores chunks, or "pages," of objects. This requires storing one extra
pointer of management information per page, which usually works out to a fraction of a bit per
element. There's no other per-element overhead, because deque<T> doesn't store any extra
pointers or other information for individual T objects.

 A list<T> is a doubly linked list of nodes that hold T elements. This means that for each T
element, list<T> also stores two pointers, which point to the previous and next nodes in the
list. Every time we insert a new T element, we also create two more pointers, so a list<T>
requires two pointers' worth of overhead per element.

 Finally, a set<T> (and, for that matter, a multiset<T>, map<Key,T>, or
mul-timap<Key,T>) also stores nodes that hold T (or pair<const Key,T>) elements. The
usual implementation of a set is as a tree with three extra pointers per node. Often people see
this and think, "Why three pointers? Aren't two enough, one for the left child and one for the
right child?" Because it must be possible to efficiently iterate over the set, we also need an "up"
pointer to the parent node; otherwise, determining the next element starting from some arbitrary
iterator can't be done efficiently. (Besides trees, other internal implementations of set are
possible; for example, an alternating skip list can be used, although this still requires at least
three pointers per element in the set (see [Marrie00]).

Part of choosing an efficient in-memory representation of data is choosing the right (read: most
space-and time-efficient) container that supports the functionality you need. But that's not the end of it
by any means: Another big part of choosing an efficient in-memory representation of data is determining
how to represent the data that will be put into those containers. This question brings us to the meat of
this Item.

Different Ways to Represent Data

The point of Question 2 is to demonstrate that there can be a plethora of ways to represent the same
information:

2. You are creating a worldwide chess server that stores all games ever played on it.
Because the database can get very large, you want to represent each game using as few
bytes as possible. For this problem, consider only the actual game moves and ignore
extra information such as the players' names and comments.

The rest of this Item uses the following standard terms and abbreviations:

Page 216

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

K King

Q Queen

R Rook

B Bishop

N Knight

P Pawn

rank row on the chessboard, typically numbered 1 (White's home row) to 8 (Black's home row)

file column on the chessboard, typically numbered a (left, from White's point of view) to h (right)

The questions:

For each of the following data sizes, demonstrate a format for representing a chess game that
requires the indicated amount of data to store each half-move (a half-move is one move played
by one side). For this question, assume 8 bits per byte.

a. 128 bytes per half-move

One representation that would take this amount of space would be to assume that the program already
knows the current board position (which it can deduce from the previous moves) and store the entire
new board position, using two bytes per square. In this case, we are mimicking one of the standard
online notations, which uses a 'W' or 'B' or '.' to designate the side that owns the piece in the given
square, and a 'K', 'Q', 'R', 'B', 'N', 'P', or '.' to designate the type of piece in the given square.

Using this scheme and storing the board from rank 1 to rank 8 and file a to file h within each rank, one
possible half-move representation might be:

WRWNWBWQWKWBWNWRWPWPWP..WPWPWPWP..... WP.............

 BPBPBPBPBPBPBPBPBRBNBBBQBKBBBNBR

If this is the first move, it represents "1. d4" (or, "1. P-Q4"), my usual opening move.

b. 32 bytes per half-move

The representation in (a) seems a little wasteful, because it's in ASCII text that humans can read
whereas we really only need a machine-readable format. After all, the software running in front of the
chess database is going to take care of displaying positions to the user.

We can get down to 32 bytes per half-move by keeping the basic strategy of storing the entire new
board position, but this time storing only 4 bits for each square: we need 3 bits to store the piece type
(e.g., 0 for K, 1 for Q, 2 for R, 3 for B, 4 for N, 5 for P, or 6 for none, which requires 3 bits although it
wastes two possible values), and 1 bit to store the color (which can be ignored if there is no piece on
the square).

Page 217

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using this scheme, and storing the board from rank 1 to rank 8, and file a to file h within each rank, one
possible half-move representation might consume this many bytes:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

c. minimum 4 bytes and maximum 8 bytes per half-move

We can achieve this by storing the half-move as text in old-style chess notation.

Old-style "descriptive" chess notation identifies squares using variable-length tags like K3 and QN8
instead of using two-character tags like e3 and b8. To write down a half-move this way requires at least
4 characters (e.g., P-Q4) and possibly as many as 8 characters (e.g., RKN1-KB1, P-KB8(Q)). Note
that no extra trailing null or other delimiter is needed, because the move format can be decoded
unambiguously.

Using this scheme, one possible half-move representation might be:

P-KB8(Q)

c. minimum 2 bytes and maximum 4 bytes per half-moves

We can achieve this by storing the half-move as text in modern chess notation.

Modern "algebraic" chess notation is more compact, and any half-move can be written using at least 2
characters (e.g., d4) and at most 4 characters (e.g., Rgf1, gh=Q).

Again, no special move delimiter is needed because the format can be decoded unambiguously.[35]

[35] Incidentally, a major advantage of this representation outside the computing world is that it can be written down quickly on paper
by a human, even under time pressure. T he reduction from a maximum of 8 characters to a maximum of 4 characters, coupled with
some improved conceptual simplicity, turns out to make a big difference to usersalso known as players.

Using this scheme, one possible half-move representation might be:

gh=Q

e. 12 bits per half-move

We can get more compact still by taking a different approach: What if we were to store just the moving
piece's origin and destination squares? To encode one square location requires 6 bits because there are
64 possibilities, so to encode two square locations to allow for both the origin and the destination to be
recorded requires 12 bits. That suffices for usual moves; however, in the case of a pawn promotion, this
scheme will need more than 12 bits.

That's already a lot better than the earlier attempts. Let's put the compression front on hold for just a
moment, though, and begin the next Item by considering how we might create auxiliary data structures
to store such bits of information that won't play nice and fall on even byte boundaries.

Page 218

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 27. Data Formats
and Efficiency, Part 2:
(Even Less) Bit-Twiddling
Difficulty: 8

Time to consider even more highly compact and
memory-efficient data formats and get down to writing some
bit-twiddling code.

Guru Question
1. To implement solution Item 26-2(e), you decide to

create the following class that manages a buffer of
bits. Implement it portably so that it will work
correctly on all conforming C++ compilers
regardless of platform.

2.
3. class BitBuffer {

4. public:

5. // … add other functions as needed …

6.
7. // Append num bits starting with the

first bit of p.

8. //

9. void Append(unsigned char* p, size_t

num);

10.
11. // Query #bits in use (initially

zero).

12. //
13. size_t Size() const;
14.
15. // Get num bits starting with the

start-th bit,

16. // and store the result starting with
the first

17. // bit of p.
18. //
19. void Get(size_t start, size_t num,

unsigned char* dest) const;

20.
21. private:
22. // … add details here …

Page 219

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

23. };

24. Is it possible to store a chess game using fewer
than 12 bits per half-move? If so, demonstrate
how. If not, why not?

Page 220

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
BitBuffer, the Binary Slayer

1. To implement solution Item 26-2(e), you decide to create the following
class that manages a buffer of bits. Implement it portably so that it will
work correctly on all conforming C++ compilers regardless of platform.

First, note that the directive "assume 8 bits per byte "applied only to the previous Itemit
does not apply here. We need a solution that will compile and run correctly on any
conforming C++ implementation, no matter what kind of underlying platform it's running on.

The required interface boiled down to:

class BitBuffer {

public:

 void Append(unsigned char* p, size_t num);

 size_t Size() const;

 void Get(size_t start, size_t num, unsigned char* dest) const;

 // …

};

You might wonder why the BitBuffer interface was specified in terms of pointers to
unsigned char. First off, there's no such thing as a pointer to a bit in standard C++, so
that's out. Second, the C++ standard guarantees that operations on unsigned types
(including unsigned char, unsigned short, unsigned int, and unsigned long)
won't run afoul of "Hey, you didn't initialize that byte!" or "Hey, that's not a valid value!"
messages from your compiler. As Bjarne Stroustrup writes in [Stroustrup00]:

The unsigned integer types are ideal for uses that treat storage as a bit array.

So compilers are required to treat unsigned char (and the other unsigned integer types)
as raw bits of storagewhich is just what we want. There are other approaches, but this is a
reasonable one that lets us exercise our bit-fiddling coding skills, which happens to be a
major goal of this Item.

The main question in implementing BitBuffer is: What internal representation should we
use? I'll consider two major alternatives.

Attempt #1: Bit-Fiddling into an unsigned char Buffer

The first idea is to implement the BitBuffer via an internal big block of unsigned char
s, and fiddle the bits ourselves when we put them in and take them out. We could let
BitBuffer have a member of type unsigned char* that points to the buffer, but let's at
least use a vector<unsigned char> so that we don't have to worry as much about

Page 221

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

basic memory management.

Do you think that sounds pretty easy? If you do, and you haven't yet tried to implement
(and test!) it, take an hour or three and try it now. I bet you'll find it's not as simple as you
think.

I'm not entirely ashamed to report that this version took me quite a bit of effort to write.
Just drafting the initial version of the code took me more programming effort than I
expected, and then it took a lot of debugging effort to find and fix all the bugs. I didn't keep
track of the development effort, but in retrospect I estimate it took me several score
compiles, including several to add reporting cout statements to analyze intermediate values
and see where things were going wrong, plus half a dozen sessions in the debugger
stepping through code, to determine and fix all the problems.

Here's the result. I don't claim it's perfect, but it passed the unit tests I threw at it, including
single- and multi-byte appends and boundary cases. (You always write unit test harnesses
for your code, right? And make sure your code passes them all, before you check the code
in?) Note that this version of the code operates on chunks of bytes at a timefor example, if
we're using 8-bit bytes and have an offset of 3 bits, we'll copy the first 3 bits as a unit and
copy the last 5 bits as a unit, for two operations per byte. For simplicity, I also require the
user to provide buffers that are a byte bigger than might otherwise be necessary, just so
that I can simplify my own code by allowing a little running off the end.

// Example 27-1: BitBuffer implemented in terms of

// vector<unsigned char>. Hard, finicky work. Ugh.

//

class BitBuffer {

public:

 BitBuffer() : buf_(0), size_(0) { }

 // Append num bits starting with the first bit of p.

 //

 void Append(unsigned char* p, size_t num) {

 int bits = numeric_limits<unsigned char>::digits;

 // first destination byte & bit offset

 int dst = size_ / bits;

 int off = size_ % bits;

 while(buf_.size() < (size_+num) / bits + 1)

 buf_.push_back(0);

 for(int i = 0; i < (num+bits-1)/bits; ++i) {

 unsigned char mask = FirstBits(num - bits*i);

 buf_[dst+i] |= (*(p+i) & mask) >> off;

 if(off > 0)

 buf_[dst+i+1] = (*(p+i) & mask) << (bits - off);

 }

 size_ += num;

}

// Query #bits in use (initially zero).

//

size_t Size() const {

 return size_;

Page 222

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

}

// Get num bits starting with the start-th bit (0-based), and store

the result

// starting with the first bit of dst. The buffer pointed at by dst

should be at

// least one byte bigger than the minimum needed to hold num bits.

//

void Get(size_t start, size_t num, unsigned char* dst) const {

 int bits = numeric_limits<unsigned char>::digits;

 // first source byte & bit offset

 int src = start / bits;

 int off = start % bits;

 for(int i = 0; i < (num+bits-1)/bits; ++i) {

 *(dst+i) = buf_[src+i] << off;

 if(off > 0)

 *(dst+i) |= buf_[src+i+1] >> (bits - off);

 }

}

private:

 vector<unsigned char> buf_;

 size_t size_; // in bits

 // Build a mask where the first n bits are 1 and the rest are 0.

 //

 unsigned char FirstBits(size_t n) {

 int num = min(n, numeric_limits<unsigned char>::digits);

 unsigned char b = 0;

 while(num-- > 0)

 b = (b >> 1) | (1 << (numeric_limits<unsigned char>::digits-1));

 return b;

 }

};

This code is nontrivial. Take some time to read it and to convince yourself that it's doing the
right thing. (If you think you've found a bug, first write a test harness that attempts to
demonstrate the bug; once the bug has been confirmed, please do go ahead and send me
both the bug report and the test harness that tickles the problem behavior.)

Attempt #2: Reusing a Standard Bit-Packed Container

The second idea is to note that the standard library already includes two containers that
store bits: bitset and vector<bool>. Now, bitset is a bad choice simply because
bitset<N> has fixed length N and we'll be encoding variable-length bitstreams. No dice.
Here vector<bool>, for all its other faults, is a tempting choice and in this case turns out
to be just what the doctor ordered. (Of course, the standard doesn't actually require that
vector<bool> implementations must use packed storage, it just encourages it; but most
implementations do.)

The most important thing I can say about the following code is this:

The Example 27-2 code was essentially correct on first writing.

Page 223

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Yes, really. Between my first compile and the final code, all I did was fix a few syntax
typos, in particular to add a missing semicolon (these are, after all, things the compiler is
supposed to find for you) and add parentheses in two places where I'd for-gotten that %
has higher precedence than +. That's it.

// Example 27-2: BitBuffer implemented in terms of vector<bool>

//

class BitBuffer {

public:

 // Append num bits starting with the first bit of p.

 //

 void Append(unsigned char* p, size_t num) {

 int bits = numeric_limits<unsigned char>::digits;

 for(int i = 0; i < num; ++i) {

 buf_.push_back(*p & (1 << (bits-1 - i%bits)));

 if((i+1) % bits == 0)

 ++p;

 }

 }

 // Query #bits in use (initially zero).

 //

 size_t Size() const {

 return buf_.size();

 }

 // Get num bits starting with the start-th bit (0-based), and store

the result

 // starting with the first bit of dst.

 //

 void Get(size_t start, size_t num, unsigned char* dst) const {

 int bits = numeric_limits<unsigned char>::digits;

 *dst = 0;

 for(int i = 0; i < num; ++i) {

 *dst |= unsigned char(buf_[start+i]) << (bits-1 - i%bits);

 if((i+1) % bits == 0)

 *++dst = 0;

 }

 }

private:

 vector<bool> buf_;

};

That writing this version was so much easier than writing Example 27-1 shouldn't be
surprising. This version reuses existing bit-fiddling code instead of writing its own, it uses
about 50% fewer lines of codeand it's disproportionately less buggy as a result. It's also
cleaner: This time I didn't even have to ask the caller to supply a bit[36] of extra output space
just to make my Get code simpler, as I did in the first version.
[36] Pun unintended.

I suspect that both solutions, especially the first, could probably be further improvedthere
might be bugs I didn't detect, and maybe the code could be simplified a bit[37] in ways I

Page 224

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

didn't seebut I think they're pretty close to optimal in terms of both correctness and style.
[37] Pun still unintended.

The Big Squeeze

Let's take one final look at the compressed representation of a chess game and see if
there's anything more we can do to squeeze it down.

2. Is it possible to store a chess game using fewer than 12 bits per half-move?
If so, demonstrate how. If not, why not?

Yes, but if you're going to represent them in code you need a bit-twiddling container like
BitBuffer.

For example, here are three ways:

We can get down to 10 bits per half-move by encoding the destination square and the
piece that moved there. Encoding a square requires 6 bits, as before. Encoding which
piece moved there can be done by simply identifying the number of the piece, assigning an
arbitrary ordering to the squares, say from rank 1 to rank 8 and file a to file h within each
rank, and numbering the pieces in the order their current squares appear in that ordering.
There can be only 16 pieces on the board, so the piece can be identified using 4 bits, for a
total of 10 bits.

Could we do better still? Let's reason it through: We can encode all possible squares as
destination, but usually only a minority of squares could actually be moved to with a legal
move, so there must be some redundancy left in that part of our encoding. Similarly, we
can represent all pieces moving to the given square, even though almost certainly not all
pieces could move to that squareindeed, some pieces might not even have a legal move at
all to any squareso somehow we're probably encoding more than we need to encode. For
example, we could compress the second part further by storing from 0 to 4 bits to identify
the piece that moved: There are 1 to 16 possibilities, and if there is only one piece that
could move to the square then we don't need to encode any bits at all. On decoding, we
know how many possible pieces could have moved to the square, so we know how many
bits to pull from the input format for that half-move.

We can get down to an encoding that uses at least 0 and at most 8 bits per half-move as
follows: First, invent an ordering of legal moves; for example, we could order the pieces
according to their squares as before, and for each piece order its possible moves as
possible destination squares according to the same square ordering. Then, store the
number of the actual move made using the minimum number of bits required; for example,
the opening position has 20 legal moves, and to store them as a plain binary number
requires ceiling(log2(20)) = 5 bits.

The result is that we need a minimum of 0 bits to represent each half-move. Zero bits are
needed if there is only one possibility, a forced move. But how many bits could be needed
in the worst case? This corresponds directly to the question: How many moves could there
be in a legal chess position? As far as I have been able to determine, the current known
maximum is 218 in the following position:

Page 225

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

In this worst case, 8 bits are needed to encode the move as a plain binary number. On
average, probably 5 bits will be required to store a typical move; the opening position has
20 moves, and a typical endgame with the side to move having, say, K+R+2P on an open
board can yield about 30 legal moves if the pawns are getting ready to promote, both of
which cases require 5 bits to store, using this method.

Thinking about this briefly should convince us that this encoding ought to be pretty close to
optimal because it is representing directly and exactly the answer to the question at hand:
"Which legal move was made?" We are using the minimum number of bits to represent the
possibilities for any given move as a plain binary number, with full knowledge of what has
gone before.

Can we do better still? Yes, although now we'll start to see diminishing returns as the
further gains become incremental. This is because further gains rely on having more
knowledge and/or saving only partial bits. To illustrate how we could do a bit better still,
consider that the opening position has 20 moves, which under the previous scheme we
would store using ceiling(log2(20)) = 5 bits. Really that choice of first move theoretically
holds only log2(20) = 4.3 bits of actual information, even assuming that all moves are
equally likely, and on average we should require even fewer bits because the two most
popular opening moves for White account for the majority of all chess games. In brief, if
we can additionally gain knowledge about the relative probabilities of each move (for
example, by building into the compression engine a deterministic chess-playing program
that can guess which moves are better or more likely than others for any given position),
then we could use variable-length encodings such as Huffman and arithmetic compression
that use fewer bits to store the more likely moves. This trades off computing time, using
domain-specific knowledge in return for better compression.

Summary

This Item shows how domain-specific knowledge can be applied to make a significant
difference in the solution of a given problem.

In summary, even without any knowledge of which moves are more likely in any given
position, a typical 40-move (80-half-move) game can be stored in about 50 bytes. That's
pretty small, and it's possible only by applying knowledge of the problem domain to arrive
at an optimally optimized solution.

Guideline
Optimize based only on solid information: a) that you should optimize;
and b) how you should optimize. There's no substitute for domain
expertise.

Page 226

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Traps, Pitfalls, and
Puzzlers
Before we get to our concluding section
demonstrating several Style Case Studies in depth,
let's pause to consider a few other C++ issues or just
puzzling situations.

Why does C++, like most programming languages,
reserve the names of keywords, so that, for example,
you can't have a variable named class? Why does
a line of code that looks like it ought to be doing
some real work actually turn out to do nothing at all,
with the compiler emitting not even a single machine
instruction for it as though the line didn't even exist?
On the other hand, why does code that looks just
down-right wrong actually compile and run just fine,
legally and reliably? When you're floating in a sea
of numbers, why is it good to double-check your
work?

Finally, with apologies to Dylan (the troubadour, not
the language): How many times must the cannonballs
fly before we learn macros don't care? The answer,
my friend, is blowin' in the wind, the answer is
blowin' in the wind….

Page 227

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 28. Keywords That
Aren't (or, Comments by
Another Name)
Difficulty: 3

All keywords are equal (to the parser), but some are more equal
than others. In this Item, we see why reserving keywords is
important, because keywords are important and special. But
we'll also see two keywords that have absolutely no semantic
impact on a C++ program.

JG Question
1. Why do most programming languages have reserved

keywords, words that programs are not allowed to
use?

Guru Question
2. How does adding the keyword auto alter the

semantics of a C++ program?

3. How does adding the keyword register alter the
semantics of a C++ program?

Page 228

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Why Have Keywords?

It's important for the C++ language to have keywords that are reserved to the language itself and that
can't be used as the names of such things as types or functions or variables.

1. Why do most programming languages have reserved keywords, words that programs
are not allowed to use?

If there weren't such reserved words, it would be easy to write programs that are impossible to
compile because they're undecidably ambiguous. Consider the unbelievably simple conditional code in
Example 28-1(a):

// Example 28-1(a): A legal C++ program.

//

int main() {

 if(true); // 1: OK

 if(42); // 2: OK

}

Lines 1 and 2 each test a condition; if the condition evaluates to true (and both do), an empty
statement is executed.

Granted, that might not be the most thrilling code the planet has ever seen. I fervently hope it is not
even the most thrilling code you have personally written in the past week. But it is legal C++, and it's
the simplest code I can think of that illustrates the problems we would have if C++ allowed keywords
to be used as identifiers.

Now consider the following speculative code that just recently arrived in my office (with a quiet pop
and a faint smell reminiscent of camphor mixed with sulfur) from an alternate universe in which C++ did
not reserve keywords and people happily tried to use the keywords as identifiers too. For a moment,
leave aside how a compiler might make sense of this, and consider instead the far simpler question:
What do you as a human think the code in Example 28-1(b) ought to mean?

// Example 28-1(b): Not legal C++, but what if it were?

//

class if { // Let's call the class "if" (not legal, but what if it

were?)

public:

 if(bool) {} // 3: Hmm… constructor?

};

What does line 3 mean? "Oh, that's easy," someone might say. "We know that a conditional statement
couldn't possibly make sense there, plus a type name wouldn't appear by itself as the condition being
tested, so clearly this has got to be a constructor. Hey, maybe letting users reuse names like if isn't so
bad after allafter all, it's not hard to guess what they must mean!" Some language designers have been
quick to go down this dirty little road… and it's a very short dirty little road as it turns out, because you

Page 229

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

don't get very far along it before falling face-first across situations like lines 4 and 5:

// Example 28-1(b), continued: Now let's go back to that code again…

//

int main() {

 if(true); // 4: Hmm… what does this mean?

 if(42); // 5: Hmm… and this?

}

In this alternate universe's code, what would lines 4 and 5 mean? Are they the same old plain-jane
conditional statements we knew and loved in Example 28-1(a)? Or are they uses of the type if, which
happens to helpfully have a suitable constructor, in which case the statements mean to create two
unnamed temporary objects? After thinking about this question for a few seconds, I hope you'll quickly
come to the conclusion that not even a human could know the answer for sure in this case, never mind
the general case. And if a human can't know, what more could we reasonably expect from a compiler?

"But wait," the person still trying to force his way down the dirty little road might say, "We can still
invent a rule for this and make it work! In lines 4 and 5, creating a temporary just to destroy it again
isn't very useful, so we can just arbitrarily decide it's not what the programmer must have meant, and
that therefore it must be a plain old conditional statement." I hope that you've recoiled in some
combination of horror, disgust, shock, and dismay at the very suggestion of such a filthy hack, but let's
pursue it long enough to note two killer objections that blast such a hack to smithereens: 1. One could
just as easily say that writing "if(true);" is a no-op and couldn't possibly be what the programmer
meant, so we should treat both statements as declaring a temporary object. 2. Whichever way you
choose, you're in the situation where lines 4 and 5 have an utterly different meaning depending solely on
whether there happens to be such a class if in scope or not, and that would be disgraceful.

Having ad-hoc hacked-up special-case foul-smelling rules like that ought to be a big flashing red light
that's warning of a serious design problem. Indeed, it is.

There are, of course, other ways to create such ambiguities if keywords are not specially reserved.
Example 28-1(c) illustrates another simple way:

// Example 28-1(c): Not legal C++, but what if it were?

//

class SomeFunctor {

public:

 int operator()(bool) { return 42; }

};

SomeFunctor if; // Let's call the variable "if" (not legal, but what if it

were?)

// Now let's go back to that code again…

int main() {

 if(true); // 6: Hmm… what does this mean?

 if(42); // 7: Hmm… and this?nnn

}

Here again, what would lines 6 and 7 mean? Are they the same old plain-jane conditional statements
we knew and loved in Example 28-1(a)? Or are they uses of the variable if, which happens to
helpfully understand operator() hey, it even takes compatible parameters!in which case the

Page 230

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

statements mean if.operator()(true); and if.operator()(42);? I think it's clear that it's next
to impossible for even a human like you or me to come up with a sane rule to decide what this ought to
mean, and if a human can't know, he can't write a compiler that knows.

It's clear that C++ (like other languages) does indeed need to firmly nail down the meanings of some
names. It needs to reserve the names for the language's own use, so such things are called reserved
words.

Our Rather Reserved Cast: The Keywords

The C++ standard reserves 63 names as keywords. I've listed them in Table 28-1. Most or all of those
names should be familiar to us. We use most of them daily.

Table 28-1. Standard C++ keywords

asm do if return typedef

auto double inline short typeid

bool dynamic_cast int signed typename

BReak else long sizeo union

case enum mutable static unsigned

catch explicit namespace static_cast using

char export new struct virtual

class extern operator switch void

const false private template volatile

const_cast float protected this wchar_t

continue for public throw while

default friend register TRue

delete goto reinterpret_cast try

On top of that, 11 of the operators and punctuators can be spelled out as words instead of in their
usual form; for example, you can write and instead of && in a conditional expression. The standard
reserves those names too, so that you can't use them for your own names; see Table 28-2.

Page 231

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Table 28-1. Standard C++ keywords

and and_eq bitand bitor compl not

not_eq or or_eq xor xor_eq

That's 74count 'em74 specific names your program is not allowed to use for its own purposes, such as
for the names of types, functions, or variables (see [C++03, §2.11]).

Keywords: The Lesser Ones

Most of these keywords do something. That's goodotherwise, why have them?

Some keywords, however, don't do nearly as much as one might hope. In fact, several have no
semantic impact on your program at allreally. I mean it. That's right, some keywords are semantically
equivalent to whitespace, a glorified comment. In particular, I have three in mind: auto, register,
and, in many respects, inline (see Item 25). (For those who may wonder whether the keyword
export has any effect in theory and/or practice, we have Items on that too; see Item 9 and Item 10.)

auto

Consider first poor auto:

2. How does adding the keyword auto alter the semantics of a C++ program?

In short: Not at all. auto is an entirely redundant storage class specifier. It can only appear on the
names of objects declared in a code block and designates that those objects are automatically
destroyed when their function or block ends; but in all the cases where auto can appear, it's implied
anyway if it's not written, and that's what makes it redundant. In short, auto is exactly as meaningful as
whitespace.

Now, at this point, some astute readers of the C++ standard might pipe up and say in a high, shrill
voice, "But that's not quite what the Standard says! Why, it even says, in a note, that auto is only
almost always redundant!" And so it does:

…the auto specifier is almost always redundant and not often used; one use of auto is to
distinguish a declaration-statement from an expression-statement explicitly.

[C++03] §7.1.1

Yes, that's what the Standard says, but no, it's not correct. (I've submitted a defect report to correct
the non-normative note.) Why not? The rule in C++ that specifically deals with such ambiguity is that
anything that can possibly be a declaration must be a declaration; adding auto never changes that. For
example:

// Example 28-2: auto does not disambiguate.

//

int i;

int j;

int main() {

int(i); // declares i; not a reference to ::i

auto int(j); // still declares j; not a reference to ::j

Page 232

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 int f(); // a function declaration, not a default-constructed int

variable

 auto int f(); // still a function declaration, though this time one

that

} // will get an error on strict compilers

For further discussion of the declaration ambiguity in C++, turn to Item 29 (see also Item 39 of [
Meyers01]). In sum, auto cannot be used to disambiguate any such ambiguity.

Guideline
Never write auto. It's exactly as meaningful as whitespace.

Aside: In the future, auto might become meaningful. As the C++ committee works on the next version
of the C++ standard, colloquially known as C++0x, it keeps casting an eye toward auto as a
keyword to reuse for "auto" matic type deduction so that in time we might be able to replace
declarations like this:

vector<SomeNamepace::SomeType>::const_iterator i = v.begin();

with just this:

auto i = v.begin(); // illegal today, but a possible future extension for C++

register

Enough about auto. What about register? Let's ask:

3. How does adding the keyword register alter the semantics of a C++ program?

In short: Not at all, on most modern compilers.

To see why, consider what the C++ standard has to say immediately following the quoted note about
auto… it begins:

A register specifier has the same semantics as an auto specifier…

Uh, oh. According to what we've just discovered, that would mean "no semantics." Not an auspicious
start. Forging ahead, the text continues:

…together with a hint to the implementation that the object so declared will be heavily used.
[Note: the hint can be ignored and in most implementations it will be ignored if the address of
the object is taken.end note]

[C++03] §7.1.1

The idea behind register is that if some variables are going to be heavily used, then it makes sense to
put them in physical CPU registers whenever possible, which lets them be operated on much faster
than if they need to be fetched from (relatively) slow cache memoryor, worse still, from main memory.

Page 233

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

That's fine as far as it goes, but it doesn't go as far as the programmer.

You should almost never want to write register. These days, the idea of having the programmer
pepper the code with register allocation hints is a wild goose chase more than ever it has been, because
it's virtually impossible for even the best programmer (that's you) to come up with the best allocation of
registers to make his code run fastest. Even if the programmer knows the exact chip his code will run
on (which is rare) and knows it as well as his compiler's code generation development team (which is
unlikely in the extreme), the programmer can never assign objects to registers as well as a good
compiler can do it because the programmer has no idea what other transformationsfor example,
inlining, loop unrolling, dead branch elimination, variable foldinghave already been performed by the
time the code generator sees the code and can start to decide what parts of what's left will benefit most
from register use. Not only can't you do as good a job as your compiler, but you shouldn't want tothis
sort of thing is just what automated tools are for, not to mention much better at.

Guideline
Never write register (unless you know you're on a compiler, and in code, where
it will actually matter). On most compilers, it's exactly as meaningful as
whitespace.

Summary

We've seen why the C++ language treats keywords as reserved words, and we've seen two keywords
auto and registerthat make no semantic difference whatso-ever to a C++ program. Don't use them;
they're just whitespace anyway, and there are faster ways to type whitespace.

Never write auto. It's exactly as meaningful as whitespace.

Never write register (unless you know you're on a compiler, and in code, where it will actually
matter). On most compilers, it's exactly as meaningful as whitespace.

Page 234

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 29. Is It
Initialization?
Difficulty: 3

Most people know the famous quote: "What if they gave a war
and no one came?" This time, we consider the question: "What
if we initialized an object and nothing happened?" As Scarlett
might say in such a situation: "This isn't right, I do declare!"

Assume that the relevant standard headers are included and that the
appropriate using-declarations are made.

JG Question
1. What does the following code do?
2.
3. deque<string> coll1;

4.
5. copy(istream_iterator<string>(cin),

6. istream_iterator<string>(),

7. back_inserter(coll1));

Guru Question
2. What does the following code do?

[View full width]

deque<string> coll2(coll1.begin(),

coll1.end());

deque<string>

coll3(istream_iterator<string>(cin),

 istream_iterator<string>());

3. What must be changed to make the code do what
the programmer probably expected?

Page 235

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 236

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Basic Population Mechanics

1. What does the following code do?
2.
3. // Example 29-1(a)

4. //

5. deque<string> coll1;

6.
7. copy(istream_iterator<string>(cin),

8. istream_iterator<string>(),

9. back_inserter(coll1));

This code declares a deque of strings called coll1 that is initially empty. It then
populates the container by copying every whitespace-delimited string in the standard input
stream (cin) into the deque using deque::push_back, until there is no more input
available.

The Example 29-1(a) code is equivalent to:

// Example 29-1(b): Equivalent to 29-1(a)

//

deque<string> coll1;

istream_iterator<string> first(cin), last;

copy(first, last, back_inserter(coll1));

The only difference is that in Example 29-1(a) the istream_iterator objects are
created on the fly as unnamed temporary objects, so they are destroyed at the end of the
copy call. In Example 29-1(b), the istream_iterator objects are named variables and
survive the copy call; they won't be destroyed until the end of whatever scope surrounds
the Example 29-1(b) code.

Interlude: Population Explosion

2. What does the following code do?
3.
4. // Example 29-2(a): Declaring another deque

5. //

6. deque<string> coll2(coll1.begin(), coll1.end());

This code declares a second deque of strings called coll2, and populates it using
initializers passed to the constructor. Here, it uses the deque constructor that takes a pair
of iterators corresponding to a range from which the contents should be copied. In this
case, we're initializing coll2 from an iterator range that happens to correspond to

Page 237

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

"everything that's in coll1."

The code so far in Example 29-2(a) is nearly equivalent to the following:

// Example 29-2(b): Almost the same as Example 29-2(a)

//

// extra step: call default constructor

deque<string> coll2;

// append elements using push_back

copy(coll1.begin(), coll1.end(), back_inserter(coll2));

The (minor) difference is that coll2's default constructor is called first and then the
elements are pushed into the collection as a separate step, using push_back. The original
code simply did it all using the constructor that takes an iterator pair, which probably
(though not necessarily) does exactly the same thing under the covers.

You might wonder why I've belabored this syntax. The reason will become clear as we
take a look at the last part of the code, which is completely benignand "benign" is usually a
good thing, but unfortunately in this case it's much more benign than some might think or
actually want:

// Example 29-2(c): Declaring yet another deque?

//

deque<string> coll3(istream_iterator<string>(cin),

istream_iterator<string>());

This code looks at first blush like it's trying to do the same thing as Example 29-1(a),
namely create a deque of strings populated from the standard input, except that it's
trying to do it using the syntax of Example 29-2(a), namely using the iterator range
constructor.

This has one potential problem and one actual problem. The potential problem is that cin
is exhausted, so there's no input left to read as was probably intended, which might be a
logical problem.

The big problem, though, is that the code doesn't actually do anything at all. Why not?
Because it doesn't actually declare a deque<string> object named coll3. What it
actually declares is (take a deep breath here):

a function named coll3
 that returns a deque<string> by value
 and takes two parameters:
 an istream_iterator<string> with a formal parameter name of cin,
 and a function with no formal parameter name
 that returns an istream_iterator<string>
 and takes no parameters.

(Say that three times fast.)

Page 238

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

What's going on here? Basically, we're running across one of the painful rules that C++
inherited from C, to maintain C compatibility: If a piece of code can be interpreted as a
declaration, it will be. In the words of the C++ standard:

There is an ambiguity in the grammar involving expression-statements and
declarations: An expression-statement with a function-style explicit type conversion
(_expr.type.conv_) as its leftmost subexpression can be indistinguishable from a
declaration where the first declarator starts with a (. In those cases the statement is
a declaration. [C++03] §6.8

Without going into the gory details, the reason why this is the way that it is comes down to
helping compilers deal with C's horrid declaration syntax, which can be ambiguousso to
make things manageable the compiler resolves such ambiguities by universally assuming that
"if in doubt, it must be a function declaration." 'Nuff said.

If you haven't already, take a quick look at Item 42 of Exceptional C++ [Sutter00],
which contains a similar but simpler example. Let's dissect the declaration step by step to
see what's going on:

// Example 29-2(d): Identical to Example 29-2(c), removing

// redundant parentheses and adding a typedef

//

typedef istream_iterator<string> (Func)();

deque<string> coll3(istream_iterator<string> cin, Func);

Does that look more like a function declaration? Maybe so, maybe not, so let's take
another step and remove the formal parameter name cin, which is ignored anyway, and
change the name coll3 to something that we usually expect to see as a function name:

// Example 29-2(e): Still identical to Example 29-2(c),

// other than slight name changes

//

typedef istream_iterator<string> (Func)();

deque<string> f(istream_iterator<string>, Func);

Now it's pretty clear: This "could be" a function declaration, so according to the C and
C++ syntax rules, it is one. What makes it confusing is that it looks a lot like constructor
syntax; what makes it downright obscure is that the formal parameter name, cin, happens
to resemble the name of a variable that is indeed in scope and is even defined by the
standardbecause that's what it was in fact intended to bebut, misleading as it is, that doesn't
matter, for the formal parameter name and std::cin have nothing in common other than
the accident that they happen to be spelled the same way.

People still run across this problem from time to time in real-world coding, and that's the
reason why this problem deserves its own Item. Because the code is (probably
surprisingly) just a function declaration, it doesn't actually do anythingno code gets
generated by the compiler, no actions are performed, no deque constructors are called, no
objects are created.

Page 239

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Proper Population Control

It wouldn't be fair to throw up an example like this, however, without also showing how
you can fix it. This brings us to the final question:

3. What must be changed to make the code do what the programmer probably
expected?

All we need is something that makes it impossible for the compiler to treat the code as a
function declaration. There are two easy ways to do it. Here's the seductive way:

// Example 29-3(a): Disambiguate, say by adding parens (okay

solution, score 7/10)

//

deque<string> coll3((istream_iterator<string>(cin)),

istream_iterator<string>());

Here, just adding the extra parentheses around the parameters makes it clear to the
compiler that what we intend to be constructor parameter names can't be parameter
declarations. This is because although istream_iterator<string>(cin) can be a
variable (or parameter declaration, as already noted),
(istream_iterator<string>(cin)) can'tthe code in Example 29-3(a) can't be a
function declaration for the same reason that void f((int i)) can't be, namely because
of the extra parentheses, which are illegal around a whole parameter declaration.

There are other ways to try to disambiguate this by forcing the statement out of the
declaration syntax, but I won't present them for a simple reason: They only work if both
you and your compiler understand this corner case of the standard very well.

Guideline
Avoid the dark corners of the language, including constructs that might
be arguably legal but that are liable to confuse programmers, or even
compilers.

This declaration-vs.-constructor syntax ambiguity is by its nature such a thorny edge case
that the best thing to do is just avoid the ambiguity altogether, and not rely on methods that
essentially amount to coaxing and wheedling a surly three-year-old compiler into treating it
as a declaration. Put another way, if you were talking to someone, would you purposely
say something ambiguous and then change it slightly by adding, "Well, honey, what I really
meant was…"? Hardly.

It's far better to avoid the ambiguity in the first place. I prefer and recommend the following
alternative because it's much easier to get right, it's utterly understandable to even the
weakest compilers, and it makes the code clearer to read to boot:

// Example 29-3(b): Use named variables (recommended solution, score

10/10)

//

istream_iterator<string> first(cin), last;

Page 240

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

deque<string> coll3(first, last);

Actually, in both Example 29-3(a) and Example 29-3(b), making the suggested change to
just one of the parameters would have been sufficient, but for consistency I've treated both
parameters the same way.

Guideline
Prefer using named variables as constructor parameters. This avoids
possible declaration ambiguities. It also often makes the purpose of
your code clearer and thus is easier to maintain.

Summary

Avoid the language's dusty corners; programmers only know there are enough of them.

Be clear and explicit, and say what you mean: By all means use named variables as
constructor parameters to avoid subtle language weirdness and make your code clearer
and more maintainable.

Page 241

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 30. double or Nothing
Difficulty: 4

No, this Item isn't about gambling. It is, however, about a
different kind of "float," so to speak, and lets you test your skills
about basic floating-point operations in C and C++.

JG Question
1. What's the difference between float and double?

Guru Question
2. Say that the following program takes 1 second to

run, which is not unusual for a modern desktop
computer:

3.
4. int main() {

5. double x = 1e8;

6. while(x > 0) {

7. --x;

8. }

9. }

How long would you expect it to take if you changed
double to float? Why?

Page 242

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
float and double in a Nutshell

1. What's the difference between float and double?

Quoting from the C++ standard:

There are three floating point types: float, double, and
long double. The type double provides at least as much
precision as float, and the type long double provides at
least as much precision as double. The set of values of the
type float is a subset of the set of values of the type double;
the set of values of the type double is a subset of the set of
values of the type long double.

[C++03, §3.9.1/8]

Now let's see how this definition, particularly the last sentence, can
affect your code.

The Wheel of Time

2. Say that the following program takes 1 second to
run, which is not unusual for a modern desktop
computer:

3.
4. int main() {

5. double x = 1e8;

6. while(x > 0) {

7. --x;

8. }
9. }

How long would you expect it to take if you
changed double to float? Why?

It will probably take either about 1 second (on a particular
implementation floats might be somewhat faster, as fast, or
somewhat slower than doubles) or forever, depending on
whether or not float can exactly represent all integer values
from 0 to 1e8 inclusive.

The previous quote from the standard means that there might be
values that can be represented by a double but that cannot be
represented by a float. In particular, on some popular platforms
and compilers, double can exactly represent all integer values in
the range 0 to 1e8, inclusive, but float cannot.

Page 243

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

What if float can't exactly represent all integer values from 0 to
1e8? Then the modified program will start counting down but will
eventually reach a value N that can't be represented and for which
N-1 == N (due to insufficient floating-point precision)… and then
the loop will stay stuck on that value until the machine on which
the program is running runs out of power (due to a local power
outage or battery life limits), its operating system crashes (more
common on some platforms than others), Sol turns out to be a
variable star and scorches the inner planets, or the universe dies of
heat death, whichever comes first.[38]

[38] Indeed, because the program keeps the computer running needlessly, it also
needlessly increases the entropy of the universe, thereby theoretically hastening said
heat death. In short, such a program is quite environmentally unfriendly and should be
considered a threat to our species. Don't write code like this.

Of course, performing any kind of additional work, whether by humans or machines,
also increases the entropy of the universe, thereby hastening heat death. T his is a
good argument to keep in mind for times when your employer requests extra
overtime. End of spurious digression.

A Word About Narrowing Conversions

Some people might wonder, "Well, besides universal heat death,
isn't there another problem? The constant 1e8 has type double.
So if we just changed double to float, the program wouldn't
compile because of the narrowing conversion, right?" Well, let's
quote standardese again, this time from a different section:

An rvalue of floating point type can be converted to an rvalue
of another floating point type. If the source value can be
exactly represented in the destination type, the result of the
conversion is that exact representation. If the source value is
between two adjacent destination values, the result of the
conversion is an implementation-defined choice of either of
those values. Otherwise, the behavior is undefined.

[C++03] §4.8/1

This means that a double constant can be implicitly (i.e., silently)
converted to a float constant, even if doing so loses precision
(i.e., data, information, knowledge, state, meaning). This was
allowed to remain for C compatibility and usability reasons, but it's
worth keeping in mind when you do floating-point work.

Summary

This Item barely scratches the surface of floating-point issues.
Floating-point math is hard, deep, and almost entirely nonobvious.
I can say with some confidence that there are three kinds of
people in the world: people who know they don't understand
floating-point math (and are correct), people who think they
understand floating-point math (and are wrong), and those few
true experts who wonder if they will ever fully understand

Page 244

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

floating-point math (and are wise).

Guideline
Remember that floating-point math is weird and
deeply strange. Be alert when using floating point,
and avoid relying on floating point conversions.
Almost everything that people think they know
about arithmetic is subtly or grossly incorrect when
it concerns floating-point math.

A quality compiler will warn you if you try to do something that's
undefined behavior, namely, put a double quantity into a float
that's less than the minimum or greater than the maximum value
that a float is able to represent. A really good compiler will
provide an optional warning if you try to do something that might
be defined but could lose information, namely, put a double
quantity into a float that is between the minimum and maximum
values representable by a float but which can't be represented
exactly as a float.

Be alert to possible odd floating-point behavior, try hard to avoid
relying on floating-point conversions, and turn on all the
diagnostics that your compiler gives you, and you can wade more
or less safely in the strange and exciting but decidedly murky
waters of floating-point arithmetic.

Page 245

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 31. Amok Code
Difficulty: 4

Sometimes life hands you some debugging situations that seem
just plain deeply weird. Try this one on for size, and see if you
can reason about possible causes for the problem.

Guru Question
1. One programmer has written the following code:
2.
3. //--- file biology.h ---

4. //

5.
6. // … appropriate includes and other

stuff …

7. class Animal {

8. public:

9. // Functions that operate on this

object:

10. //
11. virtual int Eat (int) { /*…*/ }
12. virtual int Excrete (int) { /*…*/ }
13. virtual int Sleep (int) { /*…*/ }
14. virtual int Wake (int) { /*…*/ }
15.
16. // Apparently for animals that were

once married, and

17. // sometimes dislike their ex-spouses,
we provide:

18. //
19. int EatEx (Animal* a) { /*…*/ }
20. int ExcreteEx (Animal* a) { /*…*/ }
21. int SleepEx (Animal* a) { /*…*/ }
22. int WakeEx (Animal* a) { /*…*/ }
23.
24. // …
25. };
26.
27. // Concrete classes.
28. //
29. class Cat : public Animal { /*…*/ };
30. class Dog : public Animal { /*…*/ };
31. class Weevil : public Animal { /*…*/ };

Page 246

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

32. // … more cute critters …
33.
34. // Convenient, if redundant, helper

functions.

35. //
36. int Eat (Animal* a) { return a->Eat(1);

}

37. int Excrete (Animal* a) { return
a->Excrete(1); }

38. int Sleep (Animal* a) { return
a->Sleep(1); }

39. int Wake (Animal* a) { return
a->Wake(1); }

Unfortunately, the code fails to compile. The compiler
rejects the definition of at least one of the …Ex functions
with an error message saying the function has already been
defined.

To get around the compile error, the programmer comments
out the …Ex functions, and now the program compiles and
he starts testing the sleeping functions. Unfortunately, the
Animal::Sleep member function doesn't seem to always
work correctly; when he tries to call the member function
Animal::Sleep directly, all is well. But when he tries to
call it through the Sleep free function wrapper, which does
nothing but call the member function version, sometimes
nothing happens… not all the time, only in some cases.
Finally, when the programmer goes into the debugger or the
linker-generated symbol map in an attempt to diagnose the
problem, he can't seem to even find the code for
Animal::Sleep at all.

Is the compiler on the fritz? Should the programmer send the
compiler vendor an angry flame e-mail and submit an irate
letter to the New York Times? Is it a delayed Year 2000
problem? Or is it just due to a rogue virus caught from the
Internet?

What's going on?

Page 247

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
1. One programmer has written the following code:

[…]

What's going on?

In short, several things might be going on to cause these symptoms, but there's one
outstanding possibility that would account for all the observed behavior: Yes, you guessed
it: an ugly combination of macros running amok and a side dish of mixed intentional and
unintentional overloading.

Motivation

Certain popular C++ programming environments give you macros that are deliberately
designed to change function names. Usually they do this for "good" or "innocent" reasons,
namely, backward and forward API compatibility. For example, if a Sleep function in one
version of an operating system is replaced by a SleepEx, the vendor supplying the header
in which the functions are declared might decide to "helpfully" provide a macro that
automatically changes Sleep to SleepEx:

#define Sleep SleepEx

This is most definitely Not a Good Idea. Macros are the antithesis of encapsulation,
because their actual range of effect cannot be controlled, not even by the macro writer.

Macros Don't Care

Macros are obnoxious, smelly, sheet-hogging bedfellows for several reasons, most of
which are related to the fact that they are a glorified text-substitution facility whose effects
are applied during preprocessing, before any C++ syntax and semantic rules can even
begin to apply. The following are some of macros' less charming habits.

1. Macros change names more often than not to harm, not protect, the
innocent.

It is an understatement to say that this silent renaming can make debugging some what
confusing. Such macro renaming means that your functions aren't actually called what you
think they're called.

For example, consider our nonmember function Sleep:

int Sleep (Animal* a) { return a->Sleep(1); }

You won't find Sleep anywhere in the object code or the linker map file because there's
really no Sleep function at all. It's really called SleepEx. At first, when you're wondering
where your Sleep went, you might think, "Ah, maybe the compiler is automatically inlining

Page 248

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Sleep for me," because that could explain why the short function doesn't seem to exist in
the object code. If you jump to conclusions and fire off an angry email to your compiler
vendor complaining about aggressive optimizations, though, you're blaming the wrong
company (or, at least, the wrong department).

Some of you might already have encountered this unfortunate and demonstrably bad effect.
If you're like me, which is to say easily irritated by compiler weirdnesses and not satisfied
with simple explanations, your curiosity bump might get the better of you. Then, curious,
you might fire up the debugger and deliberately step into the function… only to be taken to
the correct source line where the phantom function (which still looks as though it has its
original name, in the source code) lives, stepping into the phantom function that indeed
works and is indeed getting called, but which by all other accounts doesn't seem to exist.
It's usually at this point that you quickly figure out what's really going on and mutter a sotto
voce grumbling at stupid macro tricks.

But wait, it gets better:

1(b). C++ already has features to deal with names. That macros provide a different
feature to deal with similar work causes what might be best termed an unhealthy
interaction.

You might think that it's not such a big deal to change a function's name. All right, fine;
often it's not. But say you change a function's name to be the same as another function that
also exists… what does C++ do if it finds two functions with the same name? It overloads
them. That's not quite so fine when you don't realize it's happening silently.

This, alas, seems to be the case with Sleep. The whole reason the library vendor decided
to "helpfully" provide a Sleep macro to automatically rename things to SleepEx is that
both such functions in fact do already exist in the vendor's library. Consider that the
functions might have different signatures; then when we write our own Sleep function, we
might well be aware of the overloading on the library supplied Sleep and take care to
avoid ambiguities or other errors that might cause us problems. We might even rely on the
overloading because we want to provide library-Sleep-like behavior intentionally. If,
instead, our function is being silently overloaded with some other function, the overload isn't
just going to behave differently than we expect, but if our original overloading was
intentional it's not going to happen at all, at least not in the way we thought.

In the context of our question, such a Sleep-renaming macro can partly explain why
different functions could end up being called in different circumstances; which function gets
called can depend on how the overload resolution happened to work out for the specific
types used at different call sites. Sometimes it's ours, and sometimes it's the library's. It just
depends, perhaps in nonobvious ways.

If this sordid tale ended with these lamentable effects on nonmember functions, that would
be bad enough. Unfortunately, like shrapnel from a grenade, there's dangerous stuff flying in
several other directions too.

2. Macros don't care about type.

The original intent for the Sleep macro I described was to change a global nonmember
function's name. Unfortunately, the macro will change the name Sleep wherever it finds it;
if we happen to have a global variable named Sleep, that member's name will silently

Page 249

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

change too. This is altogether a Bad Thing.

3. Macros don't care about scope.

Worse still, a macro designed to change a global nonmember function name will happily
change any matching function (or other) names that happen to be members of your classes
or nicely encapsulated within your own namespaces. In this case, we wrote a class with
both Sleep and SleepEx functions; many of the described problems could be accounted
for at least in part by a Sleep-renaming macro that makes our own functions invisibly
overloadwith each other. Indeed, as with the invisible overloading already mentioned under
point #1, this can explain why sometimes an unexpected member function can be called,
depending on how the overload resolution happened to work out for the specific types
used at different call sites.

If you think this is yet another Bad Thing, you're right. It's like having some ungloved,
uncertified doctor (the injudicious library header writer) with dirty hands (unsterilized
macros) slice open your torso (class or namespace) and reach into your body cavity to
rearrange things (members and other code)… while sleepwalking (not even realizing they're
doing it).

Summary

In short, macros don't care about much of anything.

Guidelines
Avoid macros.

Do not ever ever ever even consider starting to think about writing a
macro that is a common word or abbreviation.

Your default response to macros should be something like "Macros! Ew, yuck!" unless
there's a compelling reason to use them in special cases where they are not a hack. Macros
are not type-safe, they're not scope-safe… they're just not safe, period. If you must write
macros, avoid putting them in header files and try to give them long and personalized names
that are highly unlikely to ever tromp upon things that they aren't intentionally meant to beat
into unwilling submission and grind under their heels into the dust.

Guideline
Prefer to use namespaces to encapsulate names.

In short, practice good encapsulation. Not only does good encapsulation make for better
designs, but it can also defend you against unexpected threats you might not even see
coming. Macros are the antithesis of encapsulation because their actual range of effect
cannot be controlled, not even by the macro writer. Classes and namespaces are among
C++'s useful tools to help manage and minimize interdependencies between parts of your
program that should be unrelated, and judicious use of these and other C++ facilities to

Page 250

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

promote encapsulation will not just make for superior designs but will at the same time offer
a measure of protection against the shrapnel that ill-considered code from fellow
programmers, however wellintentioned, might occasionally send your way.

Page 251

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 32. Slight Typos?
Graphic Language and
Other Curiosities
Difficulty: 5

Sometimes even small and hard-to-see typos can accidentally
have a significant effect on code. To illustrate how hard typos
can be to see and how easy phantom typos are to see
accidentally even when they're not there, consider these
examples.

Attempt to answer the following questions without using a compiler.

Guru Question
1. What is the output of the following program on a

standards-conforming C++ compiler?
2.
3. // Example 32-1

4. //

5. #include <iostream>

6. #include <iomanip>

7.
8. int main() {

9. int x = 1;

10. for(int i = 0; i < 100; ++i);
11. // What will the next line do?

Increment???????????/

12. ++x;
13. std::cout << x << std::endl;
14. }

15. How many distinct errors should be reported when
compiling the following code on a conforming C++
compiler?

16.
17. // Example 32-2
18. //
19. struct X {
20. static bool f(int* p) {
21. return p && 0[p] and not p[1:>>p[2];
22. };

Page 252

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

23. };

Page 253

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
1. What is the output of the following program on a

standards-conforming C++ compiler?

For Example 32-1, assuming that there is no invisible whitespace
at the end of the comment line, the output is 1.

There are two tricks here, one obvious and one less so.

First, consider the for loop line:

for(int i = 0; i < 100; ++i);

There's a semicolon at the end, a "curiously recurring typo pattern"
that (usually accidentally) makes the body of the for loop just the
empty statement. Even though the following lines might be
indented and might even have braces around them, they are not
part of the body of the for loop.

This was a deliberate red herringin this case, because of the next
point, it doesn't matter that the for loop never repeats any
statements, because there's no increment statement to be repeated
at all (even though there appears to be one). This brings us to the
second point:

Second, consider the comment line. Did you notice that it ends
oddly, with a '/' character?

// What will the next line do?

Increment???????????/

Nikolai Smirnov writes:

Probably, what's happened in the program is obvious for you
but I lost a couple of days debugging a big program where I
made a similar error. I put a comment line ending with a lot
of question marks accidentally releasing the 'Shift' key at the
end. The result is [an] unexpected trigraph sequence '??/'
which was converted to '\' (phase 1) which was annihilated
with the following '\n' (phase 2).

N. Smirnov, private communication

The ??/ sequence is converted to '\' which, at the end of a line,
is a line-splicing directivesurprise! In this case, it splices the
following line ++x; to the end of the comment line and thus makes
the increment part of the comment. The increment is never

Page 254

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

executed. (If you look closely at the question one more time, you'll
see this subtle hint right in the original code. In this book I've been
italicizing code comments, and because I'm a stickler for
consistency to the point of being obsessive-compulsive, I couldn't
resist correctly italicizing that line because it is after all part of a
comment.)

Interestingly, if you look at the Gnu g++ documentation for the
WTRigraphs command-line switch, you will encounter the
following incorrect generalization:

Warnings are not given for trigraphs within comments, as
they do not affect the meaning of the program. [39]

[39] A Google search for "trigraphs within comments" yields this and several other
interesting and/or amusing hits, not all of which are printable.

That might be true much of the time, but here we have a case in
pointfrom real-world code, no lesswhere this expectation certainly
does not hold.

2. How many distinct errors should be reported when
compiling the following code on a conforming C++
compiler?

3.
4. // Example 32-2

5. //

6. struct X {

7. static bool f(int* p) {

8. return p && 0[p] and not p[1:>>p[2];

9. };
10. };

The short answer is: Zero. This code is perfectly legal and
standards-conforming (whether the author might have wanted it to
be or not).

Let's consider in turn each of the expressions that might be
questionable and see why they're really okay:

 0[p] is legal and has exactly the same meaning as p[0].
In C (and C++), an expression of the form x[y], where
one of x and y is a pointer type and the other is an integer
value, always means *(x+y). In this case, 0[p] and p[0]
have the same meaning because they mean *(0+p) and
*(p+0), respectively, which comes out to the same thing.
For more details, see [C99] §6.5.2.1.

 and and not are valid keywords that are alternative
spellings of && and !, respectively.

 :> is legal. It is a digraph for the] character, not a smiley

Page 255

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

(smileys are unsupported in the C++ language outside of
comment blocks, which is rather a shame). This turns the
final part of the expression into p[1]>p[2].

 The "extra" semicolon at the end of the member function
declaration is allowed and is completely benign. The C++
class definition syntax allows an empty member
declaration (a bald semicolon) to appear anywhere, as
often as you like. For example, the following is a perfectly
legal definition of a class with no members:

 class X { ;;;;;;;;;; };

Of these, most people seem to find the :> digraph the most
surprising. Of course, it could well be that the colon ":" was a
typo and the author really meant something else, such as perhaps
p[1]>>p[2], but even if it was a typo it's still (unfortunately, in
that case) perfectly legal code.

Page 256

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 33. Operators,
Operators Everywhere
Difficulty: 4

How many operators can you put together, when you really put your
mind to it? This Item takes a break from production coding to get some
fun C++ exercise.

JG Question
1. What is the greatest number of plus signs (+) that can

appear consecutively, without intervening whitespace, in a
valid C++ program?

Note: Of course, plus signs in comments, preprocessor
directives and macros, and literals don't count. That would
be too easy.

Guru Question
2. Similarly, what is the greatest number of each of the

following characters that can appear consecutively, without
whitespace, outside comments in a valid C++ program?

a. &

b. <

c. |

For example, for (a), the code if(a && b) trivially
demonstrates two consecutive & characters in a valid C++
program. Try for more.

Page 257

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Background:

Who Is Max Munch, and What's He Doing in My C++
Compiler?

The "max munch" rule says that, when interpreting the characters of source code into
tokens, the compiler does it greedilyit makes the longest tokens possible. Therefore >> is
always interpreted as a single token, the stream extraction (right-shift) operator, and never
as two individual > tokens even when the characters appear in a situation like this:

template<class T = X<Y>> ...

That's why such code has to be written with an extra space, as:

template<class T = X<Y> > ...

Similarly, >>> is always interpreted as >> followed by >, never as > followed by >>, and so
on.

Some Fun with Operators

1. What is the greatest number of plus signs (+) that can appear
consecutively, without intervening whitespace, in a valid C++ program?

Note: Of course, plus signs in comments, preprocessor directives and
macros, and literals don't count. That would be too easy.

It is possible to create a source file containing arbitrarily long sequences of consecutive +
characters, up to a compiler's limits (such as the maximum source file line length the
compiler can handle).

If the sequence has an even number of + characters, it will be interpreted as ++ ++ ++ ++
… ++, a sequence of two-character ++ tokens. To make this work and have well-defined
semantics because of sequence points, all we need is a class with a user-defined prefix ++
operator that allows chaining. For example:

// Example 33-1(a)

//

class A {

public:

 A& operator++() { return *this; }

};

Now we can (if we're so inclined) write code like:

A a;

Page 258

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

++++++a; // meaning: ++ ++ ++ a;

which works out to:

a.operator++().operator++().operator++()

What if the sequence has an odd number of + characters? Then it will be interpreted as ++
++ ++ ++ … ++ +, a series of two-character ++ tokens ending with a final
single-character +. To make this work, we just need to additionally provide a + operator.
For example:

// Example 33-1(b)

//

class A {

public:

 A& operator+ () { return *this; }

 A& operator++() { return *this; }

};

Now we can (if the afternoon is particularly slow) write code like:

A a;

+++++++a; // meaning: ++ ++ ++ + a;

which works out to:

a.operator+().operator++().operator++().operator++()

This trick is fairly simple. Creating longer-than-usual sequences of other characters turns
out to be a little more challenging, but still possible.

Abuses of Operators

The code in Examples 33-1(a) and 33-1(b) doesn't especially abuse the ++ and +
operators' usual semantics. What we're going to do next, however, goes far beyond
anything you'd ever want to see in production code; this is for fun only.

2. Similarly, what is the greatest number of each of the following characters
that can appear consecutively, without whitespace, outside comments in a
valid C++ program?

For this question, let's create and use the following helper class:

// Example 33-2

//

class A {

public:

 void operator&&(int) { }

 void operator<<(int) { }

 void operator||(int) { }

};

Page 259

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

typedef void (A::*F)(int);

Now let's consider the challenges:

a. &

Answer: Five.

Well, && is easy and &&& not too much harder, so let's go right to the next level: Can we
create a series of four &'s, namely &&&&? Well, if we did, they would be interpreted as &&
&&, but expressions like a && && b are syntactically illegal; we can't have two binary &&
operators immediately after each other.

The trick is to see that we can use the second && as an operator, and make the first &&
come out as the end of something that's not an operator. With that in mind, it doesn't take
too long to see that the first && could be the end of a name, specifically the name of a
function, so all we need is an operator&&() that can accept a pointer to some other
operator&&() as its first parameter:

void operator&&(F, A) { }

This lets us write:

&A::operator&&&&a; // && &&

which means:

operator&&(&A::operator&&, a);

That's the longest even-numbered run of &'s we can make, because &&&&&& has to be
illegal. Why? Because it would mean && && &&, and even after making the first && part of
a name again, we can't make the final && the beginning of another name, so we're left with
two binary && operators in a row, which is illegal.

But can we squeeze in one more & by going to an odd number of &'s? Yes, indeed.
Specifically, &&&&& means && && &; we already have a solution for the first part, and with
not too much more thought it's easy to tack on a unary &:

&A::operator&&&&&a; // && && &

which uses the built-in operator&&() that can take pointers:

operator&&(&A::operator&&, &a);

Now let's try (b) and (c):

b. <

c. |

Page 260

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Answer for both: Four.

Having seen the solution to 2(a), this one should be easy. To make a series of four, we just
use the same trick as before, defining a:

void operator<<(F, A) { }

void operator||(F, A) { }

which lets us write:

&A::operator<<<<a; // << <<

&A::operator||||a; // || ||

which means:

operator<<(&A::operator<<, a);

operator||(&A::operator||, a);

These are the longest even-numbered runs we can make, because <<<<<< and ||||||
have to be illegal, just as we've already noted that &&&&&& has to be illegal. But this
time we can't manage an extra < or | to make a series of five, because there is no unary <
or | operator.

Bonus Challenge Question

Here's a bonus question: How many question mark (?) characters can appear in a row in a
valid C++ program?

Think about the question before reading on. It's a lot harder than it looks.

• • • • •

Do you have an answer?

You might think that the answer must be "one," because the only legitimate token in the
C++ language that includes a ? is the ternary ? : operator. It's true that that's the only
legitimate language feature that includes a ?, but "there are more things in the translator and
preprocessor, Horatio, than are dreamt of in your language syntax rules…" In particular,
there's more to C++ than just the language, or even just the preprocessor.

For ?, the correct answer is three. For example:

1???-0:0;

This question is harder than the others in part because it's the only one that doesn't follow
the maximal munch rule. The three question marks, ???, are not interpreted as the tokens
?? and ?. Why not? Because ??- happens to be a trigr… quit groaning there in the
back… trigraph, and trigraphs are replaced very early during source code
processingbefore tokenization begins, even before preprocessor instructions are handled. If
you haven't heard about trigraphs before, don't worry; that just means that you don't use an
exotic foreign-language keyboard or you haven't yet read Item 32. A trigraph is an

Page 261

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

alternate way to spell certain unusual source code characters (specifically #, \, ^, [,], |, {
, }, and ~) provided for the benefit of program mers whose keyboards don't happen to
have a key for that character.

In this case, long before any tokenization can occur, the trigraph ??- is replaced with ~, the
one's-complement operator. Therefore the statement becomes:

1?~0:0;

which is tokenized as:

1 ? ~ 0 : 0 ;

and means:

1 ? (~0) : 0 ;

Summary

Trigraphs are a feature inherited from C, they are rare in practice, and they were principally
useful politically during standardization. (Don't ask.) Just to give you an idea of how rare
they are, note that as of this writing several compilers I know of do not have trigraph
support turned on by default, and one of those documents it as "enables the undesirable
and rarely used ANSI trigraph feature." This is an accurate and well-founded comment.

Page 262

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Style Case Studies
It might be cheeky to dissect published code. It
might be cheeky, but it's fun.

This concluding section introduces a new theme: We
will examine several pieces of real-world published
code, critique it to illustrate proper design and coding
style by demonstrating what the published code does
well and does poorly, and use that information to
develop an improved version. You might be amazed
at just how much can be done even with code that
has been written, vetted, and proofread by experts.

Enjoy! But, in the spirit of straws and rafters, keep
also in the back of your mind how some of these
same issues might just apply also to the code
checked into your own source-control system.

Page 263

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 34. Index Tables
Difficulty: 5

Index tables are a genuinely useful idiom and a technique that's worth
being aware of. But how can we implement the technique effectively…
nay, even better than that, exceptionally?

JG Question
1. Who benefits from clear, understandable code?

Guru Question
2. The following code presents an interesting and genuinely

useful idiom for creating index tables into existing containers.
For a more detailed explanation, see the original article [
Hicks00].

Critique this code and identify:

a. Mechanical errors, such as invalid syntax or
nonportable conventions.

b. Stylistic improvements that would improve code
clarity, reusability, and maintainability.

c.
d. // program sort_idxtbl(…) to make a

permuted array of indices

e. #include <vector>

f. #include <algorith>

g.
h. template <class RAIter>

i. struct sort_idxtbl_pair

j. {

k. RAIter it;

l. int i;

m.
n. bool operator<(const sort_idxtbl_pair&

s)

o. { return (*it) < (*(s.it)); }

p.
q. void set(const RAIter& _it, int _i) {

it=_it; i=_i; }

Page 264

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

r.
s. sort_idxtbl_pair() {}

t. };

u.
v. template <class RAIter>

w. void sort_idxtbl(RAIter first, RAIter

last, int* pidxtbl)

x. {

y. int iDst = last-first;

z. typedef std::vector<

sort_idxtbl_pair<RAIter> > V;

aa. V v(iDst);
ab. int i=0;
ac. RAIter it = first;
ad. V::iterator vit = v.begin();
ae. for(i=0; it<last; it++, vit++, i++)
af. (*vit).set(it,i);

ag.
ah. std::sort(v.begin(), v.end());
ai.
aj. int *pi = pidxtbl;

ak. vit = v.begin();
al. for(; vit<v.end(); pi++, vit++)

am. *pi = (*vit).i;
an. }
ao.
ap. main()
aq. {
ar. int ai[10] = {

15,12,13,14,18,11,10,17,16,19 };

as.
at. cout << "#################" << endl;

au. std::vector<int> vecai(ai, ai+10);
av. int aidxtbl[10];
aw. sort_idxtbl(vecai.begin(),

vecai.end(), aidxtbl);

ax.
ay. for (int i=0; i<10; i++)
az. cout << "i="<< i
ba. << ", aidxtbl[i]="<< aidxtbl[i]
bb. << ", ai[aidxtbl[i]]="<<

ai[aidxtbl[i]]

bc. << endl;
bd. cout << "#################" << endl;
be. }

Page 265

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Clarity: A Short Sermon

1. Who benefits from clear, understandable code?

In short, just about everyone benefits.

First, clear code is easier to follow while debugging and, for that matter, is less likely to have as
many bugs in the first place, so writing clean code makes your own life easier even in the very
short term. (For a case in point, see the discussion surrounding Example 27-2 in Item 27.)
Further, when you return to the code a month or ayear lateras you surely will if the code is any
good and is actually being usedit's much easier to pick it up again and understand what's going on.
Most programmers find keeping full details of code in their heads difficult for even a few weeks,
especially after having moved on to other work; after a few months or even a few years, it's too
easy to go back to your own code and imagine it was written by a strangeralbeit a stranger who
curiously happened to follow your personal coding style.

But enough about selfishness. Let's turn to altruism: Those who have to maintain your code also
benefit from clarity and readability. After all, to maintain code well one must first grok the code.
"To grok," as coined by Robert Heinlein, means to comprehend deeply and fully; in this case, that
includes understanding the internal workings of the code itself, as well as its side effects and
interactions with other sub-systems. It is altogether too easy to introduce new errors when
changing code one does not fully understand. Code that is clear and understandable is easier to
grok, and therefore, fixes to such code become less fragile, less risky, less likely to have
un-intended side effects.

Most important, however, your end users benefit from clear and understandable code for all these
reasons: Such code is likely to have had fewer initial bugs in the first place, and it's likely to have
been maintained more correctly without as many new bugs being introduced.

Guideline
By default, prefer to write for clarity and correctness first.

Dissecting Index Tables

2. The following code presents an interesting and genuinely useful idiom for
creating index tables into existing containers. For a more detailed explanation,
see the original article [Hicks00].

Critique this code and identify:

a. Mechanical errors, such as invalid syntax or nonportable conventions.

b. Stylistic improvements that would improve code clarity, reusability, and

Page 266

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

maintainability.

Again, let me repeat that which bears repeating: This code presents an interesting and genuinely
useful idiom. I've frequently found it necessary to access the same container in different ways, such
as using different sort orders. For this reason it can be useful indeed to have one principal
container that holds the data (for example, a vector<Employee>) and secondary containers of
iterators into the main container that support variant access methods (for example, a
set<vector<Employee>::iterator, Funct> where Funct is a functor that compares
Employee objects indirectly, yielding a different ordering than the order in which the objects are
physically stored in the vector).

Having said that, style matters too. The original author has kindly allowed me to use his code as a
case in point, and I'm not trying to pick on him here; I'm just adopting the technique, pioneered
long ago by such luminaries as P. J. Plauger, of expounding coding style guidelines via the
dissection and critique of published code. I've critiqued other published material before and have
had other people critique my own, and I'm positive that further dissections will no doubt follow.

Having said all that, let's see what we might be able to improve in this particular piece of code.

Correcting Mechanical Errors

a. Mechanical errors, such as invalid syntax or nonportable conventions.

The first area for constructive criticism is mechanical errors in the code, which on most platforms
won't compile as shown.

#include <algorith>

1. Spell standard headers correctly. Here the header <algorithm> is misspelled as
<algorith>. My first guess was that this is probably an artifact of an 8-character file
system used to test the original code, but even my old version of VC++ on an old version
of Windows (based on the 8.3 filename system) rejected this code. Anyway, it's not
standard, and even on hobbled file systems the compiler itself is required to support any
standard long header names, even if it silently maps it onto a shorter filename (or onto no
file at all).

Next, consider:

main()

2. Define main correctly. This unadorned signature for main has never been standard C++
[C++98], although it is a conforming extension as long as the compiler warns about it. It
used to be valid in pre-1999 C, which had an implicit int rule, but it's nonstandard in
both C++ (which never had implicit int) and C99 [C99] (which as far as I can tell didn't
merely deprecate implicit int, but actually removed it outright). In the C++ standard, see:

o §3.6.1/2: portable code must define main as either int main() or int
main(int,char*[])

o §7/7 footnote 78, and §7.1.5/2 footnote 80: implicit int banned

o Annex C (Compatibility), comment on 7.1.5/4: explicitly notes that bare main()

Page 267

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

is invalid C++, and must be written int main()

Guideline
Don't rely on implicit int; it's not standard-conforming portable C++. In
particular "void main()" or just "main()" has never been standard C++,
although many compilers still support them as conforming extensions.

3.
4.
5. cout << "#################" << endl;

6.
7. Always #include the headers for the types whose definitions you need. The program

uses cout and endl but fails to #include <iostream>. Why did this probably work
on the original developer's system? Because C++ standard headers can #include each
other, but unlike C, C++ does not specify which standard headers #include which other
standard headers.

In this case, the program does #include <vector> and <algorithm>, and on the original
system it probably just so happened that one of those headers also happened to indirectly
#include <iostream> too. That might work on the library implementation used to develop the
original code, and it happens to work on mine too, but it's not portable and not good style.

4. Follow the guidelines in Item 36 in More Exceptional C++ [Sutter02] about using
namespaces. Speaking of cout and endl, the program must also qualify them with
std:: or write using std::cout; using std::endl;. Unfortunately it's still
common for authors to forget namespace scope qualifiersI hasten to point out that this
author did correctly scope vector and sort, which is good.

Improving Style

b. Stylistic improvements that would improve code clarity, reusability, and
maintainability.

Beyond the mechanical errors, there were several things I personally would have done differently
in the code example. First, a couple of comments about the helper struct:

template <class RAIter>

struct sort_idxtbl_pair

{
 RAIter it;

 int i;

 bool operator<(const sort_idxtbl_pair& s)

 { return (*it) < (*(s.it)); }

 void set(const RAIter& _it, int _i) { it=_it; i=_i; }

 sort_idxtbl_pair() {}

};

1. Be const correct. In particular, sort_idxtbl_pair::operator< doesn't modify

Page 268

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

*this, so it ought to be declared as a const member function.

Guideline
Practice const correctness.

2.
3. Remove redundant code. The program explicitly writes class sort_idxtbl_pair's

default constructor even though it's no different from the implicitly generated version.
There doesn't seem to be much point to this. Also, as long as sort_idxbl_pair is a
struct with public data, having a distinct set operation adds a little syntactic sugar but
because it's called in only one place the minor extra complexity doesn't gain much.

Guideline
Avoid code duplication and redundancy.

Next, we come to the core function, sort_idxtbl:

template <class RAIter>

void sort_idxtbl(RAIter first, RAIter last, int* pidxtbl)

{
 int iDst = last-first;

 typedef std::vector< sort_idxtbl_pair<RAIter> > V;

 V v(iDst);

 int i=0;

 RAIter it = first;

 V::iterator vit = v.begin();

 for(i=0; it<last; it++, vit++, i++)

 (*vit).set(it,i);

 std::sort(v.begin(), v.end());

 int *pi = pidxtbl;

 vit = v.begin();

 for(; vit<v.end(); pi++, vit++)

 *pi = (*vit).i;

}

3. Choose meaningful and appropriate names. In this case, sort_idxtbl is a misleading
name because the function doesn't sort an index table… it creates one! On the other hand,
the code gets good marks for using the template parameter name RAIter to indicate a
random-access iterator; that's what's required in this version of the code, so naming the
parameter to indicate this is a good reminder.

Guideline
Choose clear and meaningful names.

Page 269

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.
5. Be consistent. In sort_idxtbl, sometimes variables are initialized (or set) in for loop

initialization statements, and sometimes they aren't. This just makes things harder to read,
at least for me. Your mileage may vary on this one.

6. Remove gratuitous complexity. This function adores gratuitous local variables! It
contains three examples. First, the variable iDst is initialized to last-first and then
used only once; why not just write last-first where it's used and get rid of clutter?
Second, the vector iterator vit is created where a subscript was already available and
could have been used just as well, and the code would have been clearer. Third, the local
variable it gets initialized to the value of a function parameter, after which the function
parameter is never used; my personal preference in that case is just to use the function
parameter (even if you change its valuethat's okay!) instead of introducing another name.

7. Reuse Part 1: Reuse more of the standard library. Now, the original program gets
good marks for reusing std::sortthat's good. But why handcraft that final loop to
perform a copy when std::copy does the same thing? Why reinvent a special-purpose
sort_idxtbl_pair class when the only thing it has that std::pair doesn't is a
comparison function? Besides being easier, reuse also makes our own code more
readable. Humble thyself and reuse!

Guideline
Know about and (re)use the standard library's facilities wherever appropriate
instead of hand-rolling your own.

8.
9. Reuse Part 2: Kill two birds with one stone by making the implementation itself

more re-usable. Of the original implementation, nothing is directly reusable other than the
function itself. The helper sort_idxtbl_pair class is hardwired for its purpose and is
not independently reusable.

10. Reuse Part 3: Improve the signature. The original signature
11.
12. template <class RAIter>
13. void sort_idxtbl(RAIter first, RAIter last, int* pidxtbl)

takes a bald int* pointer to the output area, which I generally try to avoid in favor of managed
storage (say, a vector). But at the end of the day the user ought to be able to call sort_idxtbl
and put the output into a plain array or a vector or anything else. Well, the requirement "be able
to put the output into any container" simply cries out for an iterator, doesn't it? (See also Items 5
and 6.)

template< class RAIn, class Out >

void sort_idxtbl(RAIn first, RAIn last, Out result)

Guideline

Page 270

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Widen the reusability of your generic components by not hardcoding types
that don't need to be hardcoded.

9. Reuse Part 4, or Prefer comparing iterators using !=: When comparing iterators,
always use != (which works for all kinds of iterators) instead of < (which works only for
random-access iterators), unless of course you really need to use < and only intend to
support random-access iterators. The original program uses < to compare the iterators it's
given to work on, which is fine for random-access iterators, which was the program's
initial intent: to create indexes into vectors and arrays, both of which support
random-access iteration. But there's no reason we might not want to do exactly the same
thing for other kinds of containers, like lists and sets, that don't support
random-access iteration, and the only reason the original code won't work for such
containers is that it uses < instead of != to compare iterators.

As Scott Meyers puts it eloquently in Item 32 of [Meyers96], "Program in the future tense." He
elaborates:

Good software adapts well to change. It accommodates new features, it ports to new
platforms, it adjusts to new demands, it handles new inputs. Software this flexible, this
robust, and this reliable does not come about by accident. It is designed and implemented
by programmers who conform to the constraints of today while keeping in mind the
probable needs of tomorrow. This kind of softwaresoftware that accepts change
gracefullyis written by people who program in the future tense.

Guideline
Prefer to compare iterators using !=, not <.

10. Prefer preincrement unless you really need the old value. Here, for the iterators,
writing preincrement (++i) should habitually be preferred over writing postincrement (i++
); see [Sutter00, Item 39]. True, that might not make a material difference in the original
code because vector<T>::iterator might be a cheap-to-copy T* (although it might
not be, particularly on checked STL implementations), but if we implement point 13 we
may no longer be limited to just vector<T>::iterators, and most other iterators are of
class typeperhaps often still not too expensive to copy, but why introduce this possible
inefficiency needlessly?

Guideline
Prefer to write preincrement rather than postincrement, unless you really
need to use the previous value.

That covers most of the important issues. There are other things we could critique but that I didn't
consider important enough to call attention to here; for example, production code should have
comments that document each class's and function's purpose and semantics, but that doesn't apply

Page 271

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

to code accompanying magazine articles where the explanation is typically written in better English
and in greater detail than code comments have any right to expect.

I'm deliberately not critiquing the mainline for style (as opposed to the mechanical errors already
noted that would cause the mainline to fail to compile), because, after all, this particular mainline is
only meant to be a demonstration harness to help readers of the magazine article see how the
index table apparatus is meant to work, and it's the index table apparatus that's the intended focus.

Summary

Let's preserve the original code's basic interface choice instead of straying far afield and proposing
alternate design choices.[40] Limiting our critique just to correcting the code for mechanical errors
and basic style, then, consider the three alternative improved versions below. Each has its own
benefits, drawbacks, and style preferences as explained in the accompanying comments. What all
three versions have in common is that they are clearer, more understandable, and more portable
codeand that ought to count for something, in your company and in mine.
[40] T he original author also reports separate feedback from another reader demonstrating another elegant, but substantially
different, approach: He creates a containerlike object that wraps the original container, including its iterators, and allows
iteration using the alternative ordering.

// An improved version of the code originally published in [Hicks00].

//

#include <vector>

#include <map>

#include <algorithm>

// Solution 1 does some basic cleanup but still preserves the general

structure

// of the original's approach. We're down to 17 lines (even if you count

"public:"

// and "private:" as lines), where the original had 23.

//

namespace Solution1 {

 template<class Iter>

 class sort_idxtbl_pair {

 public:

 void set(const Iter& it, int i) { it_ = it; i_ = i; }

 bool operator<(const sort_idxtbl_pair& other) const

 { return *it_ < *other.it_; }

 operator int() const { return i_; }

 private:

 Iter it_;

 int i_;

 };

 // This function is where most of the clarity savings came from; it has

5 lines,

 // where the original had 13. After each code line, I'll show the

corresponding

 // original code for comparison. Prefer to write code that is clear and

concise,

 // not unnecessarily complex or obscure!

 //

Page 272

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 template<class IterIn, class IterOut>

 void sort_idxtbl(IterIn first, IterIn last, IterOut out) {

 std::vector<sort_idxtbl_pair<IterIn> > v(last-first);

 // int iDst = last-first;

 // typedef std::vector< sort_idxtbl_pair<RAIter> > V;

 // V v(iDst);

 for(int i=0; i < last-first; ++i)

 v[i].set(first+i, i);

 // int i=0;

 // RAIter it = first;

 // V::iterator vit = v.begin();

 // for (i=0; it<last; it++, vit++, i++)

 // (*vit).set(it,i);

 std::sort(v.begin(), v.end());

 // std::sort(v.begin(), v.end());

 std::copy(v.begin(), v.end(), out);

 // int *pi = pidxtbl;

 // vit = v.begin();

 // for (; vit<v.end(); pi++, vit++)

 // *pi = (*vit).i;

 }

}

// Solution 2 uses a pair instead of reinventing a pair-like helper

class. Now we're

// down to 13 lines, from the original 23. Of the 14 lines, 9 are

purpose-specific,

// and 5 are directly reusable in other contexts.

//

namespace Solution2 {

 template<class T, class U>

 struct ComparePair1stDeref {

 bool operator()(const std::pair<T,U>& a, const std::pair<T,U>& b) const

 { return *a.first < *b.first; }
 };

 template<class IterIn, class IterOut>

 void sort_idxtbl(IterIn first, IterIn last, IterOut out) {

 std::vector< std::pair<IterIn,int> > s(last-first);

 for(int i=0; i < s.size(); ++i)

 s[i] = std::make_pair(first+i, i);

 std::sort(s.begin(), s.end(), ComparePair1stDeref<IterIn,int>());

 for(int i=0; i < s.size(); ++i, ++out)

 *out = s[i].second;

 }

}

 // Solution 3 just shows a couple of alternative detailsit uses a map

to avoid a

// separate sorting step, and it uses std::transform() instead of a

handcrafted loop.

// Here we still have 15 lines, but more are reusable. This version uses

more space

// overhead and probably more time overhead too, so I prefer Solution 2,

but this

Page 273

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

// is an example of finding alternative approaches to a problem.

//

namespace Solution3 {

 template<class T>

 struct CompareDeref {

 bool operator()(const T& a, const T& b) const

 { return *a < *b; }

 };

 template<class T, class U>

 struct Pair2nd {

 const U& operator()(const std::pair<T,U>& a) const { return a.second; }

 };

 template<class IterIn, class IterOut>

 void sort_idxtbl(IterIn first, IterIn last, IterOut out) {

 std::multimap<IterIn, int, CompareDeref<IterIn> > v;

 for(int i=0; first != last; ++i, ++first)

 v.insert(std::make_pair(first, i));

 std::transform(v.begin(), v.end(), out, Pair2nd<IterIn const,int>());

 }

}

// I left the test harness essentially unchanged, except to demonstrate

putting

// the output in an output iterator (instead of necessarily an int*) and

using the

// source array directly as a container.

//

#include <iostream>

int main() {

 int ai[10] = { 15,12,13,14,18,11,10,17,16,19 };

 std::cout << "#################" << std::endl;

 std::vector<int> aidxtbl(10);

 // use another namespace name to test a different solution

 Solution3::sort_idxtbl(ai, ai+10, aidxtbl.begin());

 for(int i=0; i<10; ++i)

 std::cout << "i="<< i

 << ", aidxtbl[i]="<< aidxtbl[i]

 << ", ai[aidxtbl[i]]="<< ai[aidxtbl[i]]

 << std::endl;

 std::cout << "#################" << std::endl;

}

Page 274

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 35. Generic Callbacks
Difficulty: 5

Part of the allure of generic code is its usability and reusability in as
many kinds of situations as reasonably possible. How can the simple
facility presented in the cited article be stylistically improved, and how
can it be made more useful than it is and really qualify as generic and
widely usable code?

JG Question
1. What qualities are desirable in designing and writing generic

facilities? Explain.

Guru Question
2. The following code presents an interesting and genuinely

useful idiom for wrapping callback functions. For a more
detailed explanation, see the original article. [Kalev01]

Critique this code and identify:

a. Stylistic choices that could be improved to make the
design better for more idiomatic C++ usage.

b. Mechanical limitations that restrict the usefulness of
the facility.

template < class T, void (T::*F)() >

class callback

{

public:

 callback(T& t) : object(t) {} // assign

actual object to T

 void execute() {(object.*F)();} // launch

callback function

private:

 T& object;

};

Page 275

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Generic Quality

1. What qualities are desirable in designing and writing generic facilities? Explain.

Generic code should above all be usable. That doesn't mean it has to include all options up to and
including the kitchen sink. What it does mean is that generic code ought to make a reasonable and
balanced effort to avoid at least three things:

1. Avoid undue type restrictions. For example, are you writing a generic container? Then it's
perfectly reasonable to require that the contained type have, say, a copy constructor and a
nonthrowing destructor. But what about a default constructor or an assignment operator?
Many useful types that users might want to put into our container don't have a default
constructor, and if our container uses it, then we've eliminated such a type from being used
with our container. That's not very generic. (For a complete example, see Item 11 of
Exceptional C++ [Sutter00].)

2. Avoid undue functional restrictions. If you're writing a facility that does X and Y, what if
some user wants to do Z, and Z isn't so much different from Y? Sometimes you'll want to
make your facility flexible enough to support Z; sometimes you won't. Part of good generic
design is choosing the ways and means by which your facility can be customized or
extended. That this is important in generic design should hardly be a surprise, though,
because the same principle applies to object-oriented class design.

Policy-based design is one of several important techniques that allow "pluggable" behavior with
generic code. For examples of policy-based design, see any of several chapters in [Alexandrescu01
]; the SmartPtr and Singleton chapters are a good place to start.

This leads to a related issue:

3. Avoid unduly monolithic designs. This important issue doesn't arise as directly in our style
example under consideration below, and it deserves some dedicated consideration in its
own right, hence it gets not only its own Item, but its own concluding miniseries of Items:
see Items 37 through 40.

In these three points, you'll note the recurring word "undue." That means just what it says: Good
judgment is needed when deciding where to draw the line between failing to be sufficiently generic
(the "I'm sure nobody would want to use it with anything but char" syndrome) on the one hand and
overengineering (the "what if someday someone wants to use this toaster-oven LED display routine
to control the booster cutoff on an interplanetary spacecraft?" misguided fantasy) on the other.

Dissecting Generic Callbacks

4. The following code presents an interesting and genuinely useful idiom for
wrapping callback functions. For a more detailed explanation, see the original
article. [Kalev01]

Here again is the code:

Page 276

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

template < class T, void (T::*F)() >

class callback

{
public:

 callback(T& t) : object(t) {} // assign actual object to T

 void execute() { (object.*F)(); } // launch callback function

private:

 T& object;

};

Now, really, how many ways are there to go wrong in a simple class with just two one-liner member
functions? Well, as it turns out, its extreme simplicity is part of the problem. This class template
doesn't need to be heavyweight, not at all, but it could stand to be a little less lightweight.

Improving Style

Critique this code and identify:

a. Stylistic choices that could be improved to make the design better for
more idiomatic C++ usage.

How many did you spot? Here's what I came up with:

5. The constructor should be explicit. The author probably didn't mean to provide an
implicit conversion from T to callback<T>. Well-behaved classes avoid creating the
potential for such problems for their users. So what we really want is more like this:

6.
7. explicit callback(T& t) : object(t) {} // assign actual object to T

While we're already looking at this particular line, there's another stylistic issue that's not about the
design per se but about the description:

Guideline
Prefer making constructors explicit unless you really intend to enable type
conversions.

(Nit) The comment is wrong. The word "assign" in the comment is incorrect and so somewhat
misleading. More correctly, in the constructor, we're "binding" a T object to the reference and by
extension to the callback object. Also, after many rereadings I'm still not sure what the "to T" part
means. So better still would be "bind actual object."

explicit callback(T& t) : object(t) {} // bind actual object

But then, all that comment is saying is what the code already says, which is faintly ridiculous and a
stellar example of a useless comment, so best of all would be:

explicit callback(T& t) : object(t) {}

Page 277

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1. The execute function should be const. The execute function isn't doing anything to the
callback<T> object's state, after all! This is a "back to basics" issue: Const correctness
might be an oldie, but it's a goodie. The value of const correctness has been known in C and
C++ since at least the early 1980s, and that value didn't just evaporate when we clicked
over to the new millennium and started writing lots of templates.

void execute() const { (object.*F)(); } // launch callback function

Guideline
Be const correct.

While we're already beating on the poor execute function, there's an arguably more serious
idiomatic problem:

2. (Idiom) And the execute function should be spelled operator(). In C++, it's idiomatic
to use the function-call operator for executing a function-style operation. Indeed, then the
comment, already somewhat redundant, becomes completely so and can be removed
without harm because now our code is already idiomatically commenting itself. To wit:

3.
4. void operator()() const { (object.*F)(); } // launch callback

function

"But," you might be wondering, "if we provide the function-call operator, isn't this some kind of
function object?" That's an excellent point, which leads us to observe that, as a function object,
maybe callback instances ought to be adaptable too.

Guideline
Provide operator() for idiomatic function objects rather than providing a
named execute function.

Pitfall: (Idiom) Should this callback be derived from std::unary_function? See Item 36 in [
Meyers01] for a more detailed discussion about adaptability and why it's a Good Thing in general.
Alas, here, there are two excellent reasons why callback should not be derived from
std::unary_function, at least not yet:

 It's not a unary function. It takes no parameter, and unary functions take a parameter. (No,
void doesn't count.)

 Deriving from std::unary_function isn't going to be extensible anyway. Later on, we're
going to see that callback perhaps ought to work with other kinds of function signatures too,
and depending on the number of parameters involved, there might well be no standard base
class to derive from. For example, if we supported callback functions with three parameters,
we have no std::ternary_function to derive from.

Page 278

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Deriving from std::unary_function or std::binary_function is a convenient way to give
callback a handful of important typedefs that binders and similar facilities often rely upon, but it
matters only if you're going to use the function objects with those facilities. Because of the nature of
these callbacks and how they're intended to be used, it's unlikely that this will be needed. (If in the
future it turns out that they ought to be usable this way for the common one-and two-parameter
cases, then the one-and two-parameter versions we'll mention later can be derived from
std::unary_function and std::binary_function, respectively.)

Correcting Mechanical Errors and Limitations

b. Mechanical limitations that restrict the usefulness of the facility.

1. Consider making the callback function a normal parameter, not a template parameter
. Non-type template parameters are rare in part because there's rarely much benefit in so
strictly fixing a type at compile time. That is, we could instead have:

2.
3. template < class T >

4. class callback {

5. public:

6. typedef void (T::*Func)();

7.
8. callback(T& t, Func func) : object(t), f(func) {} // bind

actual object

9. void operator()() const { (object.*f)(); } // launch

callback function

10.
11. private:
12. T& object;
13. Func f;
14. };

Now the function to be used can vary at run-time, and it would be simple to add a member function
that allowed the user to change the function that an existing call-back object was bound to,
something not possible in previous versions of the code.

Guideline
It's usually a good idea to prefer making non-type parameters into normal
function parameters, unless they really need to be template parameters.

2. Enable containerization. If a program wants to keep one callback object for later use, it's
likely to want to keep more of them. What if it wants to put the callback objects into a
container, such as a vector or a list? Currently that's not possible, because call-back
objects aren't assignablethey don't support operator=. Why not? Because they contain a
reference, and once that reference is bound during construction, it can never be rebound to
something else.

Pointers, however, have no such compunction and are quite happy to point at what-ever you'd ask

Page 279

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

them to. In this case it's perfectly safe for callback instead to store a pointer, not a reference, to the
object it's to be called on and then to use the default compiler-generated copy constructor and copy
assignment operator:

template < class T >

class callback {

public:

 typedef void (T::*Func)();

 callback(T& t, Func func) : object(&t), f(func) {} // bind actual

object

 void operator()() const { (object->*f)(); } // launch callback

function

private:

 T* object;

 Func f;

};

Now it's possible to have, for example, a list< callback< Widget, &Widget::Some-Func >
>.

Guideline
Prefer to make your objects compatible with containers. In particular, to be put
into a standard container, an object must be assignable.

"But wait," you might wonder at this point, "if I could have that kind of a list, why couldn't I have a
list of arbitrary kinds of callbacks of various types, so that I can remember them all and go execute
them all when I want to?" Indeed, you can, if you add a base class:

3. Enable polymorphism: Provide a common base class for callback types. If we want to
let users have a list<callbackbase*> (or, better, a list<
shared_ptr<callbackbase> >) we can do it by providing just such a base class, which
by default happens to do nothing in its operator():

4.
5. class callbackbase {

6. public:

7. virtual void operator()() const { };

8. virtual ~callbackbase() = 0;

9. };
10.
11. callbackbase::~callbackbase() { }
12.
13. template < class T >
14. class callback : public callbackbase {
15. public:
16. typedef void (T::*Func)();
17.
18. callback(T& t, Func func) : object(&t), f(func) {} // bind

Page 280

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

actual object

19. void operator()() const { (object->*f)(); } // launch
callback function

20.
21. private:
22. T* object;
23. Func f;
24. };

Now anyone who wants to can keep a list<callbackbase*> and polymorphically invoke
operator() on its elements. Of course, a list< shared_ptr<callback> > would be even
better; see [Sutter02b].

Note that adding a base class is a tradeoff, but only a small one: We've added the overhead of a
second indirection, namely a virtual function call, when the callback is triggered through the base
interface. But that overhead actually manifests only when you use the base interface. Code that
doesn't need the base interface doesn't pay for it.

Guideline
Consider enabling polymorphism so that different instantiations of your class
template can be used interchangeably, if that makes sense for your class
template. If it does, do it by providing a common base class shared by all
instantiations of the class template.

4. (Idiom, Tradeoff) There could be a helper make_callback function to aid in type
deduction. After a while, users may get tired of explicitly specifying template parameters for
temporary objects:

5.
6. list< callback< Widget > > l;

7. l.push_back(callback<Widget>(w, &Widget::SomeFunc));

Why write Widget twice? Doesn't the compiler know? Well, no, it doesn't, but we can help it to
know in contexts where only a temporary object like this is needed. Instead, we could provide a
helper so that they need only type:

list< callback< Widget > > l;

l.push_back(make_callback(w, &Widget::SomeFunc));

This make_callback works just like the standard std::make_pair. The missing
make_callback helper should be a function template, because that's the only kind of template for
which a compiler can deduce types. Here's what the helper looks like:

template<typename T >

callback<T> make_callback(T& t, void (T::*f) ()) {

 return callback<T>(t, f);

}

Page 281

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5. (Tradeoff) Add support for other callback signatures. I've left the biggest job for last. As
the Bard might have put it, "There are more function signatures in heaven and earth, Horatio,
than are dreamt of in your void (T::*F) ()!"

Guideline
Avoid limiting your template; avoid hardcoding for specific types or for less
general types.

If enforcing that signature for callback functions is sufficient, then by all means stop right there.
There's no sense in complicating a design if we don't need tofor complicate it we will, if we want to
allow for more function signatures!

I won't write out all the code, because it's significantly tedious. (If you really want to see code this
repetitive, or you're having trouble with insomnia, see books and articles like [Alexandrescu01] for
similar examples.) What I will do is briefly sketch the main things you'd have to support and how
you'd have to support them:

First, what about const member functions? The easiest way to deal with this one is to provide a
parallel callback that uses the const signature type, and in that version, remember to take and hold
the T by reference or pointer to const.

Second, what about non-void return types? The simplest way to allow the return type to vary is by
adding another template parameter.

Third, what about callback functions that take parameters? Again, add template parameters,
remember to add parallel function parameters to operator(), and stir well.

Remember to add a new template to handle each potential number of callback arguments.

Alas, the code explodes, and you have to do things like set artificial limits on the number of function
parameters that callback supports. Perhaps in a future C++0x language we'll have features like
template "varargs" that will help to deal with this, but not today.

Summary

Putting it all together, and making some purely stylistic adjustments like using typename consistently
and naming conventions and whitespace conventions that I happen to like better, here's what we get:

class CallbackBase {

public:

 virtual void operator()() const { };

 virtual ~CallbackBase() = 0;

};

CallbackBase::~CallbackBase() { }

template<typename T>

class Callback : public CallbackBase {

public:

 typedef void (T::*F)();

Page 282

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Callback(T& t, F f) : t_(&t), f_(f) { }

 void operator()() const { (t_->*f_)(); }

private:

 T* t_;

 F f_;

};

template<typename T>

Callback<T> make_callback(T& t, void (T::*f) ()) {

 return Callback<T>(t, f);

}

Page 283

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 36. Construction Unions
Difficulty: 4

No, this Item isn't about organizing carpenters and bricklayers. Rather, it's about deciding
between what's cool and what's uncool, good motivations gone astray, and the
consequences of subversive activities carried on under the covers. It's about getting around
the C++ rule of using constructed objects as members of unions.

JG Questions
1. What are unions, and what purpose do they serve?

2. What kinds of types cannot be used as members of unions? Why do these
limitations exist? Explain.

Guru Question
3. The article [Manley02] cites the motivating case of writing a scripting language:

Say that you want your language to support a single type for variables that at
various times can hold an integer, a string, or a list. Creating a union {
int i; list<int> l; string s; }; doesn't work for the reasons
covered in Questions 1 and 2. The following code presents a workaround that
attempts to support allowing any type to participate in a union. (For a more
detailed explanation, see the original article.)

Critique this code and identify:

a. Mechanical errors, such as invalid syntax or nonportable conventions.

b. Stylistic improvements that would improve code clarity, reusability, and
maintainability.

c.
d. #include <list>

e. #include <string>

f. #include <iostream>

g. using namespace std;

h.
i. #define max(a,b) (a)>(b)?(a):(b)

j.
k. typedef list<int> LIST;

l. typedef string STRING;

m.
n. struct MYUNION {

Page 284

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

o. MYUNION() : currtype(NONE) {}

p. ~MYUNION() {cleanup();}

q.
r. enum uniontype {NONE,_INT,_LIST,_STRING};

s. uniontype currtype;

t. inline int& getint();

u. inline LIST& getlist();

v. inline STRING& getstring();

w.
x. protected:

y. union {

z. int i;

aa. unsigned char
buff[max(sizeof(LIST),sizeof(STRING))];

ab. } U;
ac.
ad. void cleanup();
ae. };
af.
ag. inline int& MYUNION::getint()
ah. {
ai. if(currtype==_INT) {

aj. return U.i;

ak. } else {
al. cleanup();

am. currtype=_INT;
an. return U.i;
ao. } // else
ap. }
aq.
ar. inline LIST& MYUNION::getlist()

as. {
at. if(currtype==_LIST) {

au. return *(reinterpret_cast<LIST*>(U.buff));
av. } else {
aw. cleanup();
ax. LIST* ptype = new(U.buff) LIST();
ay. currtype=_LIST;
az. return *ptype;
ba. } // else
bb. }
bc.
bd. inline STRING& MYUNION::getstring()
be. {
bf. if(currtype==_STRING) {

bg. return *(reinterpret_cast<STRING*>(U.buff));
bh. } else {
bi. cleanup();

bj. STRING* ptype = new(U.buff) STRING();

bk. currtype=_STRING;

Page 285

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

bl. return *ptype;

bm. } // else
bn. }
bo. void MYUNION::cleanup()
bp. {
bq. switch(currtype) {
br. case _LIST: {
bs. LIST& ptype = getlist();
bt. ptype.~LIST();

bu. break;
bv. } // case
bw. case _STRING: {
bx. STRING& ptype = getstring();
by. ptype.~STRING();
bz. break;
ca. } // case
cb. default: break;
cc. } // switch
cd. currtype=NONE;
ce. }

4. Show a better way to achieve a generalized variant type, and comment on any
tradeoffs you encounter.

Page 286

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Unions Redux

1. What are unions, and what purpose do they serve?

Unions allow more than one object, of either class or built-in type, to occupy the same
space in memory. For example:

// Example 36-1

//

union U {

 int i;

 float f;

};

U u;

u.i = 42; //ok, now i is active

std::cout << u.i << std::endl;

u.f = 3.14f; // ok, now f is active

std::cout << 2 * u.f << std::endl;

But only one of the types can be "active" at a timeafter all, the storage can hold only one value at a
time. Also, unions support only some kinds of types, which leads us into the next question:

2. What kinds of types cannot be used as members of unions? Why do these
limitations exist? Explain.

From the C++ standard:

An object of a class with a non-trivial constructor, a non-trivial copy constructor, a
non-trivial destructor, or a non-trivial copy assignment operator cannot be a member of a
union, nor can an array of such objects.

In brief, for a class type to be usable in a union, it must meet all the following criteria:

 The only constructors, destructors, and copy assignment operators are the
compiler-generated ones.

 There are no virtual functions or virtual base classes.

 Ditto for all of its base classes and nonstatic members (or arrays thereof).

That's all, but that sure eliminates a lot of types.

Unions were inherited from C. The C language has a strong tradition of efficiency and support for
low-level close-to-the-metal programming, which has been compatibly preserved in C++; that's why
C++ also has unions. On the other hand, the C language does not have any tradition of language
support for an object model supporting class types with constructors and destructors and

Page 287

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

user-defined copying, which C++ definitely does; that's why C++ also has to define what, if any,
uses of such newfangled types make sense with the "oldfangled" unions and do not violate the C++
object model including its object lifetime guarantees.

If C++'s restrictions on unions did not exist, Bad Things could happen. For example, consider what
could happen if the following code were allowed:

// Example 36-2: Not standard C++ code, but what if it were allowed?

//

void f() {

 union IllegalImmoralAndFattening {

 std::string s;

 std::auto_ptr<int> p;

 };

 IllegalImmoralAndFattening iiaf;

 iiaf.s = "Hello, world"; // has s's constructor run?

 iiaf.p = new int(4); // has p's constructor run?

} // will s get destroyed? should it be? will p get destroyed? should it
be?

As the comments indicate, serious problems would exist if this were allowed. To avoid further
complicating the language by trying to craft rules that at best might only partly patch up a few of the
problems, the problematic operations were simply banished.

But don't think that unions are only a holdover from earlier times. Unions are perhaps most useful for
saving space by allowing data to overlap, and this is still desirable in C++ and in today's modern
world. For example, some of the most advanced C++ standard library implementations in the world
now use just this technique for implementing the "small string optimization," a great optimization
alternative that reuses the storage inside a string object itself. Here's the idea: For large strings,
space inside the string object stores the usual pointer to the dynamically allocated buffer and
housekeeping information like the size of the buffer; for small strings, however, the same space is
instead reused to store the string contents directly and completely avoid any dynamic memory
allocation. For more about the small string optimization (and other string optimizations and
pessimizations in considerable depth), see Items 13 through 16 in More Exceptional C++ [
Sutter02]; see also the discussion of current commercial std::string implementations in [
Meyers01].

Dissecting Construction Unions

3. The article [Manley02] cites the motivating case of writing a scripting language:
Say that you want your language to support a single type for variables that at
various times can hold an integer, a string, or a list. Creating a union { int
i; list<int> l; string s; }; doesn't work for the reasons covered in
Questions 1 and 2. The following code presents a workaround that attempts to
support allowing any type to participate in a union. (For a more detailed
explanation, see the original article.)

On the plus side, the cited article addresses a real problem, and clearly much effort has been put into
coming up with a good solution. Unfortunately, from well-intentioned beginnings, more than one
programmer has gone badly astray.

Page 288

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The problems with the design and the code fall into three major categories: legality, safety, and
morality.

Critique this code and identify:

a. Mechanical errors, such as invalid syntax or nonportable
conventions.

b. Stylistic improvements that would improve code clarity, reusability,
and maintainability.

The first overall comment that needs to be made is that the fundamental idea behind this code is not
legal in standard C++. The original article summarizes the key idea:

The idea is that instead of declaring object members, you instead declare a raw buffer
[non-dynamically, as a char array member inside the object pretending to act like a union]
and instantiate the needed objects on the fly [by in-place construction].

[Manley02]

The idea is common, but unfortunately it is also unsound.

Allocating a buffer of one type and then using casts to poke objects of another type in and out, is
nonconforming and nonportable because buffers that are not dynamically allocated (i.e., that are not
allocated via malloc or new) are not guaranteed to be correctly aligned for any other type than the
one with which they were originally declared. Even if this technique happens to accidentally work for
some types on someone's current compiler, there's no guarantee it will continue to work for other
types or for the same types in the next version of the same compiler. For more details and some
directly related discussion, see Item 30 in Exceptional C++ [Sutter00], notably the sidebar titled
"Reckless Fixes and Optimizations, and Why They're Evil." See also the alignment discussion in [
Alexandrescu02].

For C++0x, the standards committee is considering adding alignment aids to the language
specifically to enable techniques that rely on alignment like this, but that's all still in the future. For
now, to make this work reasonably reliably even some of the time, you'd have to do one of the
following:

 Rely on the max_align hack (see [Manley02] which footnotes the max_align hack, or do
a Google search for max_align).)

 Rely on nonstandard extensions like Gnu's __alignof__ to make this work reliably on a
particular compiler that supports such an extension. (Even though Gnu provides an ALIGNOF
macro intended to work more reliably on other compilers, it too is admitted hackery that
relies on the compiler's laying out objects in certain ways and making guesses based on
offsetof inquiries, which might often be a good guess but is not guaranteed by the
standard.)

You could work around this by dynamically allocating the array using malloc or new, which would
guarantee that the char buffer is suitably aligned for an object of any type, but that would still be a
bad idea (it's still not type-safe) and it would defeat the potential efficiency gains that the original
article was aiming for as part of its original motivation. An alternative and correct solution would be
to use boost::any (see below), which incurs a similar allocation/indirection overhead but is at least
both safe and correct; more about that later on.

Page 289

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Attempts to work against the language, or to make the language work the way we want it to work
instead of the way it actually does work, are often questionable and should be a big red flag. In the
Exceptional C++ [Sutter00] sidebar cited earlier, while in an ornery mood, I also accused a similar
technique of "just plain wrongheadedness" followed by some pretty strong language. There can still
be cases where it could be reasonable to use constructs that are known to be nonportable but okay
in a particular environment (in this case, perhaps using the max_align hack), but even then I would
argue that that fact should be noted explicitly and, further, that it still has no place in a general piece
of code recommended for wide use.

Into the Code

Let's now consider the code:

#include <list>

#include <string>

#include <iostream>

using namespace std;

Always include necessary headers. Because new is going to be used below, we need to also
#include <new>. (Note: The <iostream> header is okay; later in the original code, not shown
here, was a test harness that emitted output using iostreams.)

#define max(a,b) (a)>(b)?(a):(b)

typedef list<int> LIST;

typedef string STRING;

struct MYUNION {

 MYUNION() : currtype(NONE) {}

 ~MYUNION() {cleanup();}

The first classic mechanical error here is that MYUNION is unsafe to copy because the programmer
forgot to provide a suitable copy constructor and copy assignment operator.

MYUNION is choosing to play games that require special work to be done in the constructor and
destructor, so these functions are provided explicitly as shown; that's fine as far as it goes. But it
doesn't go far enough, because the same games require special work in the copy constructor and
copy assignment operator, which are not provided explicitly. That's bad because the default
compiler-generated copying operations do the wrong thing; namely, they copy the contents bitwise
as a char array, which is likely to have most unsatisfactory results, in most cases leading straight to
memory corruption. Consider the following code:

// Example 36-3: MYUNION is unsafe for copying

//

{
 MYUNION u1, u2;

 u1.getstring() = "Hello, world";

 u2 = u1; // copies the bits of u1 to u2

} // oops, double delete of the string (assuming the bitwise copy even made
sense)

Page 290

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Guideline
Observe the Law of the Big Three [Cline99]: If a class needs a custom copy
constructor, copy assignment operator, or destructor, it probably needs all
three.

Passing on from the classic mechanical error, we next encounter a duo of classic stylistic errors:

enum uniontype {NONE,_INT,_LIST,_STRING};

uniontype currtype;

inline int& getint();

inline LIST& getlist();

inline STRING& getstring();

There are two stylistic errors here. First, this struct is not reusable because it is hard-coded for
specific types. Indeed, the original article recommended hand-coding such a struct every time it was
needed. Second, even given its limited intended usefulness, it is not very extensible or maintainable.
We'll return to this frailty again later, once we've covered more of the context.

Guideline
Avoid hard-wiring information that needlessly makes code more brittle and
limits flexibility.

There are also two mechanical problems. The first is that currtype is public for no good reason;
this violates good encapsulation and means any user can freely mess with the type flag, even by
accident. The second mechanical problem concerns the names used in the enumeration; I'll cover
that in its own section, "Underhanded Names," later on.

protected:

Here we encounter another mechanical error: The internals ought to be private, not protected. The
only reason to make them protected would be to make the internals available to derived classes, but
there had better not be any derived classes because MYUNION is unsafe to derive from for several
reasonsnot least because of the murky and abstruse games it plays with its internals and because it
lacks a virtual destructor.

Guideline
Always make all data members private. The only exception is the case of a
C-style struct which isn't intended to encapsulate anything and where all
members are public.

Page 291

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 union {

 int i;

 unsigned char buff[max(sizeof(LIST),sizeof(STRING))];

 } U;

 void cleanup();

};

That's it for the main class definition. Moving on, consider the three parallel accessor functions:

inline int& MYUNION::getint()

{
 if(currtype==_INT) {

 return U.i;

 } else {
 cleanup();

 currtype=_INT;

 return U.i;

 } // else
}

inline LIST& MYUNION::getlist()

{
 if(currtype==_LIST) {

 return *(reinterpret_cast<LIST*>(U.buff));

 } else {
 cleanup();

 LIST* ptype = new(U.buff) LIST();

 currtype=_LIST;

 return *ptype;

 } // else
}

inline STRING& MYUNION::getstring()

{
 if(currtype==_STRING) {

 return *(reinterpret_cast<STRING*>(U.buff));

 } else {
 cleanup();

 STRING* ptype = new(U.buff) STRING();

 currtype=_STRING;

 return *ptype;

 } // else
}

A minor nit: The // else comments add nothing. It's unfortunate that the only comments in the
code are useless ones.

Guideline
Write (only) useful comments. Never write comments that repeat the code;
instead, write comments that explain the code and the reasons why you wrote it
that way.

Page 292

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

More seriously, there are three major problems here. The first is that the functions are not written
symmetrically, and whereas the first use of a list or a string yields a default-constructed object,
the first use of int yields an uninitialized object. If that is intended, in order to mirror the ordinary
semantics of uninitialized int variables, then that should be documented; because it is not, the int
ought to be initialized. For example, if the caller accesses getint and tries to make a copy of the
(uninitialized) value, the result is undefined behaviornot all platforms support copying arbitrary
invalid int values, and some will reject the instruction at run-time.

The second major problem is that this code hinders const-correct use. If the code is really going to
be written this way, then at least it would be useful to also provide const overloads for each of
these functions; each would naturally return the same thing as its non-const counterpart, but by a
reference to const.

Guideline
Practice const-correctness.

The third major problem is that this approach is fragile and brittle in the face of change. It relies on
type switching, and it's easy to accidentally fail to keep all the functions in sync when you add or
remove new types.

Stop reading here and consider: What do you have to do in the published code if you want to add a
new type? Make as complete a list as you can.

• • • • • •

Are you back? All right, here's the list I came up with. To add a new type, you have to remember
to:

 Add a new enum value;

 Add a new accessor member;

 Update the cleanup function to safely destroy the new type; and

 Add that type to the max calculation to ensure buff is sufficiently large to hold the new type
too.

If you missed one or more of those, well, that just illustrates how difficult this code really is to
maintain and extend.

Pressing onward, we come to the final function:

void MYUNION::cleanup()

{
 switch(currtype) {

 case _LIST: {

 LIST& ptype = getlist();

 ptype.~LIST();

 break;

 } // case
 case _STRING: {

Page 293

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 STRING& ptype = getstring();

 ptype.~STRING();

 break;

 } // case
 default: break;

 } // switch
 currtype=NONE;

}

Let's reprise that small commenting nit: The // case and // switch comments add nothing; it's
unfortunate that the only comments in the code are useless ones. It is better to have no comments at
all than to have comments that are just distractions.

But there's a larger issue here: Rather than having simply default: break;, it would be good to
make an exhaustive list (including the int type) and signal a logic error if the type is
unknownperhaps via an assert or a tHRow std::logic_error(…);.

Again, type switching is purely evil. A Google search for switch C++ Dewhurst will yield all sorts
of interesting references on this topic, including [Dewhurst02]. See those references for more details
if you need more ammo to convince colleagues to avoid the type-switching beast.

Guideline
Avoid type switching; prefer type safety.

Underhanded Names

There's one mechanical problem I haven't yet covered. This problem first rears its ugly, unshaven,
and unshampooed head in the following line:

enum uniontype {NONE,_INT,_LIST,_STRING};

Never, ever, ever create names that begin with an underscore or contain a double underscore;
they're reserved for your compiler and standard library vendor's exclusive use so that they have
names they can use without tromping on your code. Tromp on their names, and their names might
just tromp back on you![41]

[41] T he more specific rule is that any name with a double underscore anywhere in it like__this or that starts with an
underscore and a capital letter _LikeThis is reserved. You can remember that rule if you like, but it's a bit easier to just avoid
both leading underscores and double underscores entirely.

Don't stop! Keep reading! You might have read that advice before. You might even have read it
from me. You might even be tired of it, and yawning, and ready to ignore the rest of this section. If
so, this one's for you, because this advice is not at all theoretical, and it bites and bites hard in this
code.

The enum definition line happens to compile on most of the compilers I tried: Borland 5.5, Comeau
4.3.0.1, gcc 2.95.3 / 3.1.1 / 3.4, Intel 7.0, and Microsoft Visual C++ 6.0 through 8.0 (2005) beta.
But under two of themMetrowerks CodeWarrior 8.2 and EDG 3.0.1 used with the Dinkumware
4.0 standard librarythe code breaks horribly.

Page 294

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Under Metrowerks CodeWarrior 8, this one line breaks noisily with the first of 52 errors (that's not
a typo). The 225 lines of error messages (again, that's not a typo) begin with the following
diagnostics, which point straight at one of the commas:

mwcc Compiler:

File: 36.cpp

17: enum uniontype {NONE,_INT,_LIST,_STRING};

Error: ^

identifier expected

mwcc Compiler:

18: uniontype currtype;

Error: ^^^^^^^^^

declaration syntax error

followed by 52 further error messages and 215 more lines. What's pretty obvious from the second
and later errors is that we should ignore them for now because they're just cascades from the first
errorbecause uniontype was never successfully defined, the rest of the code which uses
uniontype extensively will of course break too.

But what's up with the definition of uniontype? The indicated comma sure looks like it's in a
reasonable place, doesn't it? There's an identifier happily sitting in front of it, isn't there? All becomes
clear when we ask the Metrowerks compiler to spit out the preprocessed output… omitting many
many lines, here's what the compiler finally sees:

enum uniontype {NONE,_INT,, };

Aha! That's not valid C++, and the compiler rightly complains about the third comma because
there's no identifier in front of it.

But what happened to _LIST and _STRING? You guessed ittromped on and eaten by the
ravenously hungry Preprocessor Beast. It just so happens that Metrowerks' implementation has
macros that happily strip away the names _LIST and _STRING, which is perfectly legal and
legitimate because it (the implementation) is allowed to own those _Names (as well as
other__names).

So Metrowerks' implementation happens to eat both _LIST and _STRING. That solves that part of
the mystery. But what about EDG's/Dinkumware's implementations? Judge for yourself:

"1.cpp", line 17: error: trailing comma is nonstandard

 enum uniontype {NONE,_INT,_LIST,_STRING};

 ^

"1.cpp", line 58: error: expected an expression

 if(currtype==_STRING) {

 ^

"1.cpp", line 63: error: expected an expression

 currtype=_STRING;

 ^

"1.cpp", line 76: error: expected an expression

 case _STRING: {

 ^

Page 295

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4 errors detected in the compilation of "36.cpp".

This time, even without generating and inspecting a preprocessed version of the file, we can see
what's going on: The compiler is behaving as though the word _STRING just wasn't there. That's
because it wasyou guessed ittromped on, not to mention thoroughly chewed up and spat out, by the
still-peckish Preprocessor Beast.

I hope that this will convince you that when some of us boring writers natter on about not using
_Names like__these, the problem is far from theoretical, far more than mere academic tedium.
It's a practical problem indeed, because the naming restriction directly affects your relationship with
your compiler and standard library writer. Trespass on their turf, and you might get lucky and remain
unscathed; on the other hand, you might not.

The C++ landscape is wide open and clear and lets you write all sorts of wonderful and flexible
code and wander in pretty much whatever direction your development heart desires, including that it
lets you choose pretty much whatever names you like outside of namespace std. But when it comes
to names, C++ also has one big fenced-off grove, surrounded by gleaming barbed wire and signs
that say things like "Employees__OnlyMust Have Valid _Badge To Enter Here" and "Violators
Might be Tromped and Eaten." This is a stellar example of the tromping one gets for disregarding
the _Warnings.

Guideline
Never use "underhanded names"ones that begin with an underscore or that
contain a double underscore. They are reserved for your compiler and standard
library implementation.

Toward a Better Way: boost::any

4. Show a better way to achieve a generalized variant type, and comment on any
tradeoffs you encounter.

The original article says:

[Y]ou might want to implement a scripting language with a single variable type that can
either be an integer, a string, or a list.

[Manley02]

This is true, and there's no disagreement so far. But the article then continues:

A union is the perfect candidate for implementing such a composite type.

[Manley02]

Rather, the article has served to show in some considerable detail just why a union is not suitable at
all.

But if not a union, then what? One very good candidate for implementing such a variant type is [
Boost]'s any facility, along with its many and any_cast.[42] Interestingly, the complete

Page 296

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

implementation for the fully general any (covering any number/combination of types and even some
platform-specific #ifdefs) is about the same amount of code as the sample MYUNION solution
hardwired for just the special case of the three types int, list<int>, and stringand any is fully
general, extensible, and type-safe to boot, and part of a healthy low-cholesterol diet.
[42] For further discussion of this facility, see [Hyslop01].

There is still a tradeoff, however, and it is this: dynamic allocation. The boost::any facility does not
attempt to achieve the potential efficiency gain of avoiding a dynamic memory allocation, which was
part of the motivation in the original article.

Note too that the boost::any dynamic allocation overhead is more than if the original article's code
was just modified to use (and reuse) a single dynamically allocated buffer that's acquired once for
the lifetime of MYUNION, because boost::any also performs a dynamic allocation every time the
contained type is changed.

Here's how the article's demo harness would look if it instead used boost::any. The old code that
uses the original article's version of MYUNION is shown in comments for comparison:

any u; // instead of: MYUNION u;

Instead of a handwritten struct, which has to be written again for each use, just use any directly.
Note that any is a plain class, not a template.

// access union as integer

u = 12345; // instead of: u.getint() = 12345;

The assignment shows any's more natural syntax.

cout << "int="<< any_cast<int>(u) << endl; // or just int(u)

 // instead of: cout << "int="<< u.getint() <<

endl;

I like any's cast form better because it's more general (including that it is a nonmember) and more
natural to C++ style; you could also use the less verbose int(u) without an any_cast if you know
the type already. On the other hand, MYUNION's get[type] is more fragile, harder to write and
maintain, and so forth.

// access union as std::list

u = list<int>();

list<int>& l = *any_cast<list<int> >(&u); // instead of: LIST& list =

u.getlist();

l.push_back(5); // same: list.push_back(5);

l.push_back(10); // same: list.push_back(10);

l.push_back(15); // same: list.push_back(15);

I think any_cast could be improved to make it easier to get references, but this isn't too bad.
(Aside: I'd discourage using list as a variable name when it's also the name of a template in scope;
too much room for expression ambiguity.)

So far we've achieved some typability and readability savings. The remaining differences are more

Page 297

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

minor:

list<int>::iterator it = l.begin(); // instead of: LIST::iterator it

= list.begin();

while(it != l.end()) {

 cout << "list item="<< *(it) << endl;

 it++;

} // while

Pretty much unchanged. I've let the original comment stand because it's not germane to the
side-by-side style comparison with any.

// access union as std::string

u = string("Hello world!"); // instead of: STRING& str =

u.getstring();

 // str = "Hello world!";

Again, about a wash; I'd say the any version is slightly simpler than the original, but only slightly.

cout << "string='"<< any_cast<string>(u) << "'"<< endl; // or just

"string(u)"

 // instead of: cout << "string='"<< str.c_str() << "'"<<

endl;

As before.

Alexandrescu's Discriminated Unions

Is it possible to fully achieve both of the original goalssafety and avoiding dynamic memoryin a
conforming standard C++ implementation? That sounds like a problem that someone like Andrei
Alexandrescu would love to sink his teeth into, especially if it could somehow involve complicated
templates. As evidenced in [Alexandrescu02], where he describes his discriminated unions (aka
Variant) approach, it turns out that:

 it is (something he would love to tackle), and

 it can (involve weird templates, and just one quote from [Alexandrescu02] says it all: "Did
you know that unions can be templates?"), so

 he does.

In short, by performing heroic efforts to push the boundaries of the language as far as possible,
Alexandrescu's Variant comes very close to being a truly portable solution. It falls only slightly
short and is probably portable enough in practice even though it too goes beyond the pale of what
the Standard guarantees. Its main problem is that, even ignoring alignment-related issues, the
Variant code is so complex and advanced that it actually works on very few compilersin my
testing, I only managed to get it to work with one.

A key part of Alexandrescu's Variant approach is an attempt to generalize the max_align idea to
make it a reusable library facility that can itself still be written in conforming standard C++. The
reason for wanting this is specifically to deal with the alignment problems in the code we've been

Page 298

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

analyzing so that a non-dynamic char buffer can continue to be used in relative safety. Alexandrescu
makes heroic efforts to use template metaprogramming to calculate a safe alignment. Will it work
portably? His discussion of this question follows:

Even with the best Align, the implementation above is still not 100-percent portable for all
types. In theory, someone could implement a compiler that respects the Standard but still
does not work properly with discriminated unions. This is because the Standard does not
guarantee that all user-defined types ultimately have the alignment of some POD type. Such a
compiler, however, would be more of a figment of a wicked language lawyer's imagination,
rather than a realistic language implementation.

[…] Computing alignment portably is hard, but feasible. It never is 100-percent portable.

[Alexandrescu02]

There are other key features in Alexandrescu's approach, notably a union template that takes a
typelist template of the types to be contained, visitation support for extensibility, and an
implementation technique that will "fake a vtable" for efficiency to avoid an extra indirection when
accessing a contained type. These parts are more heavyweight than boost::any but are portable in
theory. That "portable in theory" part is importantas with Andrei's great work in Modern C++
Design [Alexandrescu01], the implementation is so heavy on templates that the code itself contains
comments like, "Guaranteed to issue an internal compiler error on: [various popular compilers,
Metrowerks, Microsoft, Gnu gcc]," and the mainline test harness contains a commented-out test
helpfully labeled "The construct below didn't work on any compiler."

That is Variant's major weakness: Most real-world compilers don't even come close to being able
to handle this implementation, and the code should be viewed as important but still experimental. I
attempted to build Alexandrescu's Variant code using a variety of compilers: Borland 5.5;
Comeau 4.3.0.1; EDG 3.0.1; gcc 2.95, 3.1.1, and 3.2; Intel 7.0; Metrowerks 8.2; and Microsoft
VC++ 6.0, 7.0 (2002), and 7.1 (2003). As some readers will know, some of the products in that
list are very strong and standards-conforming compilers. None of these compilers could successfully
compile Alexandrescu's template-heavy source as it was provided.

I tried to massage the code by hand to get it through any of the compilers but was successful only
with Microsoft VC++ 7.1 (2003). Most of the compilers didn't stand a chance, because they did
not have nearly strong enough template support to deal with Alexandrescu's code. (Some emitted a
truly prodigious quantity of warnings and errorsIntel 7.0's response to compiling main.cpp was to
spew back an impressive 430K worthreally, nearly half a megabyteof diagnostic messages.)

I had to make three changes to get the code to compile without errors (although still with some
narrowing-conversion warnings at the highest warning level) under Microsoft VC++ 7.1 (2003):

 Added a missing typename in class AlignedPOD.

 Added a missing this-> to make a name dependent in
ConverterTo<>::-Unit<>::DoVisit().

 Added a final newline character at the end of several headers, as required by the C++
standard (some conforming compilers aren't strict about this and allow the absence of a final
newline as a conforming extension; VC++ is stricter and requires the newline).[43]

[43] T hanks to colleague Jeff Peil for pointing out this requirement in [C++03] § 2.1/1, which states: "If a source file that
is not empty does not end in a new-line character, or ends in a new-line character immediately preceded by a backslash

Page 299

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

character, the behavior is undefined."

As the author of [Manley02] commented further about tradeoffs in Alexandrescu's design:

It doesn't use dynamic memory, and it avoids alignment issues and type switching.
Unfortunately I don't have access to a compiler that can compile the code, so I can't evaluate
its performance vs. myunion and any. Alexandrescu's approach requires 9 supporting header
files totaling ~80KB, which introduces its own set of maintenance problems.

K. Manley, private communication

Those points are all valid.

I won't try to summarize Andrei's three articles further here, but I encourage readers who are
interested in this problem to look them up. They're available online as indicated in the bibliography.

Guideline
If you want to represent variant types, for now prefer to use boost::any (or
something equally simple).

Once the compiler you are using catches up (in template support) and the Standard catches up (in
true alignment support) and Variant libraries catch up (in mature implementations), it will be time to
consider using Variant-like library tools as type-safe replacements for unions.

Summary

Even if the design and implementation of MYUNION are lacking, the motivating problem is both real
and worth considering. I'd like to thank Mr. Manley for taking the time to write his article and raise
awareness of the need for variant type support and Kevlin Henney and Andrei Alexandrescu for
contributing their own solutions to this area. It is a hard enough problem that Manley's and
Alexandrescu's approaches are not strictly portable, standards-conforming C++, although
Alexandrescu's Variant makes heroic efforts to get thereAlexandrescu's design is very close to
portable in theory, although the implementation is still far from portable in practice because very few
compilers can handle the advanced template code it uses.

For now, an approach like boost::any is the preferred way to go. If in certain places your
measurements tell you that you really need the efficiency or extra features provided by something
like Alexandrescu's Variant, and you have time on your hands and some template know-how, you
might experiment with writing your own scaled-back version of the full-blown Variant by applying
only the ideas in [Alexandrescu02] that are applicable to your situation.

Page 300

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 37. Monoliths
"Unstrung," Part 1: A Look
at std::string
Difficulty: 3

I've decided to conclude the Style Case Studies section somewhat
impishly, with a miniseries targeting an example from the C++
standard library itself: std::string. We begin our critique with
a review of an important design guideline and a contrasting
overview of the standard string facility.

JG Question
1. What is a monolithic class, and why is it bad?

Explain.

Guru Question
2. List all the member functions of

std::basic_string.

Page 301

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Avoid Unduly Monolithic Designs

1. What is a monolithic class, and why is it bad? Explain.

The word "monolithic" is used to describe software that is a single, big, indivisible piece,
like a monolith. The word "monolith" comes from the words "mono" (one) and "lith"
(stone), whose vivid image of a single massive boulder well illustrates the heavyweight and
indivisible nature of such code.

A single heavyweight facility that thinks it does everything is often a dead end. After all, a
single big heavyweight facility doesn't necessarily do moreit often does less, because the
more complex it is, the narrower its application and relevance is likely to be.

In particular, a class might fall into the "monolith trap" by trying to offer its functionality
through member functions instead of nonmember functions, even when nonmember
nonfriend functions would be possible and at least as good. This has at least two
drawbacks:

 (Major) It isolates potentially independent functionality inside a class. The
operation in question might otherwise be nice to use with other types, but because
it's hardwired into a particular class, that won't be possible, whereas if it were
exposed as a nonmember function template, it could be more widely usable.

 (Minor) It can discourage extending the class with new functionality. "But
wait!" someone might say. "It doesn't matter whether the class's existing interface
leans toward member or nonmember functions, because I can equally well extend it
with my own new nonmember functions either way!" That's technically true and
misses the salient point: If the class's built-in functionality is offered mainly (or only)
via member functions and therefore presents that as the class's natural idiom, the
extended nonmember functions cannot follow the original natural idiom and will
always remain visibly second-class johnny-come-latelies. That the class presents its
functions as members is a semantic statement to its users, who will be accustomed
to the member syntax that extenders of the class cannot use. (Do we really want to
go out of our way to make our users commonly have to look up which functions
are members and which ones aren't? That already happens often enough even in
better designs.)

Where it's practical, break generic components down into pieces.

Guidelines
Prefer "one class (or function), one responsibility."

Where possible, prefer writing functions as nonmember nonfriends.

Page 302

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The rest of this Item will go further toward justifying the latter guideline.

The Basics of Strings

2. List all the member functions of std::basic_string.

It's, well, a fairly long list.

Counting constructors, there are no fewer than 103 member functions. Really. If that's not
monolithic, it's hard to imagine what would be.

Imagine yourself in an underground cavern, at the edge of a subterranean lake. There is a
submerged channel that leads to the next air-filled cavern. You prepare to dive into the
black water and swim through the flooded tunnel…

Take a deep breath, and repeat after ISO/IEC 14882:1998(E):[44]

[44] A thick tome also known as the ISO C++ standard [C++03].

namespace std {

 template<class charT, class traits = char_traits<charT>,

 class Allocator = allocator<charT> >

 class basic_string {

 // ... some typedefs ...

 explicit basic_string(const Allocator& a = Allocator());

 basic_string(const basic_string& str, size_type pos = 0,

 size_type n = npos, const Allocator& a =

Allocator());

 basic_string(const charT* s, size_type n, const Allocator& a =

Allocator());

 basic_string(const charT* s, const Allocator& a = Allocator());

 basic_string(size_type n, charT c, const Allocator& a =

Allocator());

 template<class InputIterator>

 basic_string(InputIterator begin, InputIterator end,

 const Allocator& a = Allocator());

 ~basic_string();

 basic_string& operator=(const basic_string& str);

 basic_string& operator=(const charT* s);

 basic_string& operator=(charT c);

 iterator begin();

 const_iterator begin() const;

 iterator end();

 const_iterator end() const;

 reverse_iterator rbegin();

 const_reverse_iterator rbegin() const;

 reverse_iterator rend();

 const_reverse_iterator rend() const;

 size_type size() const;

 size_type length() const;

 size_type max_size() const;

 void resize(size_type n, charT c);

 void resize(size_type n);

Page 303

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 size_type capacity() const;

 void reserve(size_type res_arg = 0);

 void clear();

 bool empty() const;

 const_reference operator[](size_type pos) const;

 reference operator[](size_type pos);

 const_reference at(size_type n) const;

 reference at(size_type n);

 basic_string& operator+=(const basic_string& str);

 basic_string& operator+=(const charT* s);

 basic_string& operator+=(charT c);

 basic_string& append(const basic_string& str);

 basic_string& append(const basic_string& str, size_type pos,

size_type n);

 basic_string& append(const charT* s, size_type n);

 basic_string& append(const charT* s);

 basic_string& append(size_type n, charT c);

 template<class InputIterator>

 basic_string& append(InputIterator first, InputIterator last);

 void push_back(const charT);

 basic_string& assign(const basic_string&);

 basic_string& assign(const basic_string& str, size_type pos,

size_type n);

 basic_string& assign(const charT* s, size_type n);

 basic_string& assign(const charT* s);

 basic_string& assign(size_type n, charT c);

 template<class InputIterator>

 basic_string& assign(InputIterator first, InputIterator last);

 basic_string& insert(size_type pos1, const basic_string& str);

 basic_string& insert(size_type pos1, const basic_string& str,

 size_type pos2, size_type n);

 basic_string& insert(size_type pos, const charT* s, size_type n);

 basic_string& insert(size_type pos, const charT* s);

 basic_string& insert(size_type pos, size_type n, charT c);

 iterator insert(iterator p, charT c);

 void insert(iterator p, size_type n, charT c);

 template<class InputIterator>

 void insert(iterator p, InputIterator first, InputIterator last);

You break surface at a small air pocket and gasp. Don't give upwe're halfway there!
Another deep breath, and:

 basic_string& erase(size_type pos = 0, size_type n = npos);

 iterator erase(iterator position);

 iterator erase(iterator first, iterator last);

 basic_string& replace(size_type pos1, size_type n1, const

basic_string& str);

 basic_string& replace(size_type pos1, size_type n1, const

basic_string& str,

 size_type pos2, size_type n2);

 basic_string& replace(size_type pos, size_type n1, const charT* s,

size_type n2);

 basic_string& replace(size_type pos, size_type n1, const charT*

s);

Page 304

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 basic_string& replace(size_type pos, size_type n1, size_type n2,

charT c);

 basic_string& replace(iterator i1, iterator i2, const

basic_string& str);

 basic_string& replace(iterator i1, iterator i2, const charT* s,

size_type n);

 basic_string& replace(iterator i1, iterator i2, const charT* s);

 basic_string& replace(iterator i1, iterator i2, size_type n, charT

c);

 template<class InputIterator>

 basic_string& replace(iterator i1, iterator i2, InputIterator j1,

InputIterator j2);

 size_type copy(charT* s, size_type n, size_type pos = 0) const;

 void swap(basic_string<charT,traits,Allocator>&);

 const charT* c_str() const; // explicit

 const charT* data() const;

 allocator_type get_allocator() const;

 size_type find (const basic_string& str, size_type pos = 0) const;

 size_type find (const charT* s, size_type pos, size_type n) const;

 size_type find (const charT* s, size_type pos = 0) const;

 size_type find (charT c, size_type pos = 0) const;

 size_type rfind(const basic_string& str, size_type pos = npos)

const;

 size_type rfind(const charT* s, size_type pos, size_type n) const;

 size_type rfind(const charT* s, size_type pos = npos) const;

 size_type rfind(charT c, size_type pos = npos) const;

 size_type find_first_of(const basic_string& str, size_type pos =

0) const;

 size_type find_first_of(const charT* s, size_type pos, size_type

n) const;

 size_type find_first_of(const charT* s, size_type pos = 0) const;

 size_type find_first_of(charT c, size_type pos = 0) const;

 size_type find_last_of (const basic_string& str, size_type pos =

npos) const;

 size_type find_last_of (const charT* s, size_type pos, size_type

n) const;

 size_type find_last_of (const charT* s, size_type pos = npos)

const;

 size_type find_last_of (charT c, size_type pos = npos) const;

 size_type find_first_not_of(const basic_string& str, size_type pos

= 0) const;

 size_type find_first_not_of(const charT* s, size_type pos,

size_type n) const;

 size_type find_first_not_of(const charT* s, size_type pos = 0)

const;

 size_type find_first_not_of(charT c, size_type pos = 0) const;

 size_type find_last_not_of (const basic_string& str, size_type pos

= npos) const;

 size_type find_last_not_of (const charT* s, size_type pos,

size_type n) const;

 size_type find_last_not_of (const charT* s, size_type pos = npos)

const;

 size_type find_last_not_of (charT c, size_type pos = npos) const;

Page 305

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 basic_string substr(size_type pos = 0, size_type n = npos) const;

 int compare(const basic_string& str) const;

 int compare(size_type pos1, size_type n1, const basic_string& str)

const;

 int compare(size_type pos1, size_type n1, const basic_string& str,

 size_type pos2, size_type n2) const;

 int compare(const charT* s) const;

 int compare(size_type pos1, size_type n1,

 const charT* s, size_type n2 = npos) const;

 };

}

Whew 103 member functions or member function templates! The rocky tunnel expands
and we break through a new lake's surface just in time. Somewhat water-logged but feeling
like better persons for the experience, we look around inside the new cavern to see if the
exercise has let us discover anything interesting and useful.

Page 306

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Summary
Where it's practical, break generic components down into pieces:

 Prefer "one class (or function), one responsibility."

 Where possible, prefer writing functions as nonmember
nonfriends.

Was the recitation of all those member functions worth it? With
the drudge work now behind us, let's look back at what we've just
traversed and use the information in the next Item….

Page 307

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 38. Monoliths
"Unstrung," Part 2:
Refactoring std::string
Difficulty: 5

"All for one, and one for all" might work for musketeers, but it
doesn't work nearly as well for class designers. Here's an
example that is not altogether exemplary, and it illustrates just
how badly you can go wrong when design turns into overdesign.
The example is, unfortunately, taken from a standard library
near you.

JG Question
1. Which member functions of std::string must be

member functions? Why?

Guru Question
2. Which member functions of std::string should

be members? Why?

3. Demonstrate why std::string's member
functions at, clear, empty, and length can be
provided as nonmember nonfriend functions without
loss of generality or usability, and without impact on
the rest of std::string's interface.

Page 308

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Membership Has Its Rewardsand Its Costs

Recall the advice from the last Item: Where it's practical, break generic components down
into pieces. Prefer "one class (or function), one responsibility." Where possible, prefer
writing functions as nonmember nonfriends.

For example, if you write a string class and make searching, pattern-matching, and
tokenizing available as member functions, you've hardwired those facilities so that they can't
be used with any other kind of sequence. (If this frank preamble is giving you an
uncomfortable feeling about basic_string, well and good.) On the other hand, a facility
that accomplishes the same goal but is composed of several parts that are also
independently usable is often a better design. In this example, it's often best to separate the
algorithm from the container, which is what the STL does most of the time.

I (in Items 31 through 34 of Exceptional C++ [Sutter00]] and Scott Meyers (in [
Meyers00]) have written before on why some nonmember functions are a legitimate part of
a type's interface and why nonmember nonfriends should be preferredamong other
reasons, to improve encapsulation. For example, as Scott wrote in his opening words of
the cited article:

I'll start with the punchline: If you're writing a function that can be implemented as
either a member or as a non-friend non-member, you should prefer to implement it
as a non-member function. That decision increases class encapsulation. When you
think encapsulation, you should think non-member functions.

[Meyers00]

So when we consider the functions that will operate on a basic_string (or any other
class type), we want to make them nonmember nonfriends if reasonably possible. Hence,
here are some questions to ask about the members of basic_string in particular:

 Always make it a member if it has to be one. Which operations must be
members, either because the C++ language just says so (e.g., constructors) or
because of functional reasons (e.g., they must be virtual)? If they have to be, then
oh well, they just have to be; case closed.

 Prefer to make it a member if it needs access to internals. Which operations
need access to internal data we would otherwise have to grant via friendship?
These should normally be members. Note that there are some rare exceptions such
as operations needing conversions on their left-hand arguments and some like
operator<< whose signatures don't allow the *this reference to be their first
parameters; even these can normally be nonfriends implemented in terms of
(possibly virtual) members, but sometimes doing that is merely an exercise in
contortionism and they're best and naturally expressed as friends.

 In all other cases, prefer to make it a nonmember nonfriend. Which operations

Page 309

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

can work equally well as nonmember nonfriends? These can, and therefore
normally should, be nonmembers. This should be the default case to strive for.

It's important to ask these and related questions because we want to put as many functions
into the last bucket as possible.

A word about efficiency: For each function, we'll consider whether it can be implemented
as a nonmember nonfriend function as efficiently as a member function. Is this premature
optimization (an evil I often rail against)? Not a bit of it. The primary reason why I'm going
to consider efficiency is to demonstrate just how many of basic_string's member
functions could be implemented "equally well as nonmember nonfriends." I want to
specifically shut down any accusations that making them nonmember nonfriends is a
potential efficiency hit, such as preventing an operation from being performed in constant
time if the standard so requires. A secondary reason is that optimizing a general-purpose
library is not premature in the same way as advance optimization of an application
programyou can do actual performance measurements of the final system for an application
program, whereas you often have little idea just how and where your library will be used!
In the latter case, it's best to err on the side of making anything that could be a common
operation efficient by default, where doing so doesn't involve tradeoffs with the interface or
needless complications. Also, note that the general-purpose library's implementer often has
concrete information from past experience (e.g., past user reports, or the implementer's
own experience in the problem domain) about what operations are being used by users in
time-sensitive ways, so his optimizations are not done blindly and are less likely to be
premature.

So don't get hung up about premature optimizationwe're not falling into that trap here.
Rather, we are primarily investigating just how many of basic_string's members could
"equally well" be implemented as nonmember nonfriends. Even if you are expecting many
to be implementable as nonmembers, the actual results might well surprise you.

Operations That Must Be Members

1. Which member functions of std::string must be member functions?
Why?

As a first pass, let's sift out those operations that just have to be members. There are some
obvious ones at the beginning of the list.

 constructors (6)

 destructor

 assignment operators (3)

 [] operators (2)

Clearly these functions must be members. It's impossible to write a constructor, destructor,
assignment operator, or [] operator in any other way!

12 functions down, 91 to go…

Operations That Should Be Members

Page 310

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2. Which member functions of std::string should be members? Why?

Which operations need access to internal data we would otherwise have to grant via
friendship? Clearly these have a reason to be members and normally ought to be. This list
includes the following, some of which provide indirect access to (e.g., begin) or change
(e.g., reserve) the internal state of the string:

 begin (2)

 end (2)

 rbegin (2)

 rend (2)

 size

 max_size

 capacity

 reserve

 swap

 c_str

 data

 get_allocator

These ought to be members not only because they're tightly bound to basic_string but
also because they happen to form the public interface that nonmember nonfriend functions
will need to use. Sure, you could implement these as nonmember friends, but why? (There
actually is a reason you might prefer to write nonmember nonfriend versions too which just
pass through to the members, namely uniformity of interface; this will be touched on again
later.)

I'm going to add a few more to this list as fundamental string operations:

 insert (1the three-parameter version)

 erase (1the "iter, iter" version)

 replace (2the "iter, iter, num, char" and templated versions)

We'll return to the question of insert, erase, and replace a little later. For replace in
particular, it's important to be able to choose well and make the most flexible and
fundamental version(s) into member(s).

Into the Fray: Possibly-Contentious Operations That Can
Be Nonmember Nonfriends

3. Demonstrate why std::string's member functions at, clear, empty, and
length can be provided as nonmember nonfriend functions without loss of
generality or usability, and without impact on the rest of std::string's

Page 311

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

interface.

First in this section, allow me to perform a stunning impersonation of a lightning rod by
pointing out that all of the following functions have something fundamental in common, to
wit: Each one could obviously as easilyand as efficientlybe a nonmember nonfriend.

 at (2)

 clear

 empty

 length

Sure they can be nonmember nonfriends; that's obvious, no sweat. Of course, these
functions also happen to have something else pretty fundamental in common: They're
mentioned in the standard library's container and sequence requirements as member
functions. Hence the lightning-rod effect…

"Yeah, wait!" I can already hear some standardiste-minded people saying, heading in my
direction and resembling the beginnings of a lynch mob, "Not so fast! Don't you know that
basic_string is designed to meet the C++ standard's container and sequence
requirements, and those requirements require or suggest that some of those functions be
members? So quit misleading the readers! Those functions are membersthey just are, so
live with it!" Indeed, and true, but for the sake of this discussion I'm going to waive those
container and sequence requirements with a dismissive wave of a hand and a quick escape
across some back yards past small barking dogs and various clothes drying on the line.

Having left my pursuers far enough behind to resume reasoned discourse, here's the point:
For once, the question I'm considering isn't what the container requirements say. It's which
functions can, without loss of efficiency, be made nonmember nonfriends, and whether
there's any additional benefit to be gained from doing so. If those benefits exist for
something the container requirements say must be a member, well, why not point out that
the container requirements could be improved while we're at it? And so we shall….

Take empty as a case in point. Can we implement it as a nonmember nonfriend? Sure…
the standard itself requires the following behavior of basic_string::empty, in [C++03,
§21.3.3/14]:

Returns: size() == 0.

Well, now, that's pretty easy to write as a nonmember without loss of efficiency:

template<class charT, class traits, class Allocator>

bool empty(const basic_string<charT, traits, Allocator>& s) {

 return s.size() == 0;

}

Of course, if we didn't already have size then implementing empty as a nonmember
nonfriend would not be possible. Alternatively (and with in some cases more reliable
performance) we could implement it as:

template<class charT, class traits, class Allocator>

bool empty(const basic_string<charT, traits, Allocator>& s) {

Page 312

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return s.begin() != s.end ();

}

Or more generally still:

template<typename T>

bool empty(const T& t) {

 return t.begin() != t.end();

}

This final version doesn't rely on strings at all, although even then the template argument
must provide begin and end. The class's public member functions do have to provide the
necessary and sufficient functionality already. We'll see this point crop up several more
times as we consider other functions. (For the rest of the sample code in this Item, I don't
go all the way to writing the nonmember nonfriend function templates as fully general
templates; I leave each one specific to basic_string. But they can all be thusly
generalized, and we'll see as we go why there might in fact be good reasons to want to do
so.)

Notice that, although we can make size a member and implement a nonmember empty in
terms of it, we could not do the reverse. In several cases here, there's a group of related
functions, and perhaps more than one could be nominated as a member and the others
implemented in terms of that one as nonmembers. Which function should we nominate to
be the member? My advice is to choose the most flexible one that doesn't force a loss of
efficiencythat will be the enabling flexible foundation on which the others can be built. In this
case, we choose size as the member because its result can always be cached (indeed, the
standard encourages that it be cached because size "should" run in constant time), in
which case an empty implemented only in terms of size is no less efficient than anything
we could do with full direct access to the string's internal data structures.[45]

[45] Interestingly, note that the same performance analysis would not hold for list, because list::size runs
in linear time, not constant time.

For another case in point, what about at? The same reasoning applies. For both the
const and non-const versions, the standard requires the following:

Throws: out_of_range if pos >= size().

Returns: operator[](pos).

That's easy to provide as a nonmember, too. Each is just a two-line function template,
albeit a bit syntactically tedious because of all those template parameters and nested type
namesand remember all your typenames! Here's the code:

template<class charT, class traits, class Allocator>

typename basic_string<charT, traits, Allocator>::const_reference

at(const basic_string<charT, traits, Allocator>& s,

 typename basic_string<charT, traits, Allocator>::size_type pos)

{

 if(pos >= s.size()) throw out_of_range("don't do that");

 return s[pos];

}

template<class charT, class traits, class Allocator>

Page 313

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

typename basic_string<charT, traits, Allocator>::reference

at(basic_string<charT, traits, Allocator>& s,

 typename basic_string<charT, traits, Allocator>::size_type pos)

{

 if(pos >= s.size())

 throw out_of_range("I said, don't do that");

 return s[pos];

}

What about clear? Easy, that's the same as erase(begin(),end()). No fuss, no
muss. Exercise for the reader, and all that.

What about length? Easy, againit's defined to give the same result as size. What's more,
note that the other containers don't have length, and it's there in the basic_string
interface as a sort of "string thing," but by making it a nonmember suddenly we can
consistently say "length" about any container. Not too useful in this case because it's just
a synonym for size, I grant you, but a noteworthy point in the principle it illustratesmaking
algorithms nonmembers immediately also makes them more widely useful and usable.

In summary, let's consider the benefits and drawbacks of providing functions like at and
empty as members vs. nonmembers. First, just because we can write these members as
nonmembers (and nonfriends) without loss of efficiency, why should we do so? What are
the actual or potential benefits? Here are several:

1. Simplicity. Making them nonmembers lets us write and maintain less code. We
can write empty just once and be done with it forever. Why write it many times as
basic_string::empty and vector::empty and list::empty and so forth,
including writing it over and over again for each new STL-compliant container that
comes along in third-party or internal libraries and even in future versions of the
C++ standard? Write it once, be done, and move on.

Note that there are some limitations to this simplicity advantage. For one thing,
some of the functions, such as at, won't be able to guarantee a single complexity
guarantee, because the complexity will vary by the container that's being used; at
for maps is logarithmic complexity, whereas for vector, it's constant time
complexity. For another, it might be that not all present or future containers might
supply exactly the interface the generalized function expects; as already shown, the
sample nonmember version of empty that uses size won't work for a container
that doesn't provide size,[46] and would need to be specialized or overloaded for
containers that supply an interface that's sufficient but different.
[46] Of course, such a container wouldn't conform to the standard ST L container requirements, but there
might be other legacy (or future) containers that are useful if not entirely ST L-ish and that we might still
want to support.

2. Consistency. It avoids gratuitous incompatibilities between the member algorithms
of different containers, and between the member and nonmember versions of
algorithms (some existing inconsistencies between members and nonmembers are
pointed out in [Meyers01]). If customized behavior is needed, specialization or
overloading of the nonmember function templates should be able to accommodate
it.

3. Encapsulation. It improves encapsulation (as argued by Meyers strongly and at
length in [Meyers00]).

Page 314

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Having said that, what are the potential drawbacks? Here are two, although in my
opinion they are outweighed by the advantages:

4. Namespace pollution. Because empty is such a common name, putting it at
namespace scope risks namespace pollutionafter all, will every function named
empty want to have exactly these semantics? This argument is valid to a point, but
weakened in two ways: First, by noting that encouraging consistent semantics for
functions is a Good Thing and, second, by noticing that overload resolution has
turned out to be a very good tool for disambiguation, and namespace pollution has
never been as big a problem as some have made it out to be in the past. Really, by
putting all the names in one place and sharing implementations, we're not polluting
that one namespace as much as we're sanitizing the functions by gathering them up
and helping to avoid the gratuitous and needless incompatibilities that Meyers
mentions.

5. Consistency. You could argue that keeping things like empty as members follows
the principle of least surprisesimilar functions are members, and do we really want
to remember to write length(str) but str.size()? This argument might seem
convincing, but only until we notice that this wouldn't be inconsistent at all if people
were in the habit of following Meyers' advice in the first place, routinely writing
functions as nonmembers whenever reasonably possible even when there also have
to be member versions.

In particular, what if we added nonmember versions of several of the functions that are also
members, such as size, where the nonmember nonfriends were simple passthroughs or
synonyms for the member versions? This would unify the calling syntax and address this
consistency concern. For example, if we provide a nonmember size, both size(str)
and str.size() work, getting rid of the need to remember which are members in cases
that would otherwise feel inconsistent, like length(str) vs. str.size(). Then people
would get used to the nonmember syntax and benefit from its simplicity, consistency, and
encapsulation advantages.

By the way, there are other valid technical and design reasons to prefer nonmember syntax.
For one thing, it turns out that routinely and consistently providing nonmember functions
makes writing templates significantly easier. If templates can rely on the functions' being
nonmembers for all types instead of members for some types and nonmembers for others,
they can avoid jumping through some traits-like hoops to figure out which is which and
work correctly in both cases. (See Item 37 in More Exceptional C++ [Sutter02] for a
detailed example.) For another, it would make (erstwhile) members and nonmembers
overloadand if you're jumping back in horror and about to strenuously resist that as
undesirable, well, experience has shown that it could often be a Good Thing, and some
committee members feel that in general the overloading of members and nonmembers might
ought to be added to C++0x. (Such a change might well never happen. I'm merely pointing
out that even experts feel it's potentially a good idea).

So this objection about consistency really comes down to whether we ought to trade away
real benefits in order to follow a tradition of member naming or to change the tradition of
member naming in order to reap real benefits. Bottom line, I think this objection is weak,
because writing the functions as nonmembers wherever reasonably possible yields a greater
consistency, as noted, than the questionable inconsistency being claimed here.

Page 315

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

With perhaps these more contentious choices out of the way, then, in the next Item we'll
continue with other operations that can be nonmember nonfriends. Some, like those listed
earlier, are mentioned in the container requirements as members; again, here we're
considering not what the standard says we must do, but rather what, given a blank page,
we might choose to do in designing these as members vs. nonmember nonfriends.

Page 316

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 39. Monoliths
"Unstrung," Part 3: std::string
Diminishing
Difficulty: 5

The Slim-Fast diet continues, and std::string is indeed slimming fast.

JG Question
1. Can string::resize be a nonmember function? Explain.

Guru Question
2. Analyze the following member functions of std::string

and demonstrate whether or not they could or should
instead be nonmember functions. Justify your an-swers.

a. assign and +=/append/push_back

b. insert

Page 317

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
More Operations That Can Be Nonmember Nonfriends

In this Item, we'll see that all the following functions can be implemented as non-member
nonfriends:

 resize (2)

 assign (6)

 += (3)

 append (6)

 push_back

 insert (7all but the three-parameter version)

Let's investigate.

resize

1. Can string::resize be a nonmember function? Explain.

Well, let's see:

void resize(size_type n, charT c);

void resize(size_type n);

Can each resize be a nonmember nonfriend? Sure it can, because it can be implemented in
terms of basic_string's public interface without loss of efficiency. Indeed, the standard's own
functional specifications express both versions in terms of the functions we've already considered.
For example:

template<class charT, class traits, class Allocator>

void resize(basic_string<charT, traits, Allocator>& s,

 typename Allocator::size_type n, charT c)

{

 if(n > s.max_size()) throw length_error("won't fit");

 if(n <= s.size()) {

 basic_string<charT, traits, Allocator> temp(s, 0, n);

 s.swap(temp);

} else {

 s.append(n - s.size(), c);

 }

}

template<class charT, class traits, class Allocator>

void resize(basic_string<charT, traits, Allocator>& s,

 typename Allocator::size_type n)

{

Page 318

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 resize(s, n, charT());

}

That's one way to implement them as nonmember nonfriends that are just as efficient as members.

assign and +=/append/push_back

2. Analyze the following member functions of std::string and demonstrate
whether or not they could or should instead be nonmember functions. Justify
your answers.

a. assign and +=/append/push_back

Of this group, let's first tackle assign: We have sixcount 'emsix forms of assign. Fortunately,
this case is simple: Most of them are already specified in terms of each other, and all can be
implemented in terms of a constructor and operator= combination.

Next, operator+=, append, and push_back: What about all those pesky flavors of appending
operations, namely the three forms of operator+=, the sixcount 'emsix forms of append, and the
lone push_back? Just the similarity ought to alert us to the fact that probably at most one needs
to be a member. After all, they're doing about the same thing, even if the details differ slightly; for
example, appending a character in one case, a string in another case, and an iterator range in still
another case. Indeed, as it turns out, all of them can likewise be implemented as nonmember
nonfriends without loss of efficiency:

 Clearly operator+= can be implemented in terms of append, because that's how it's
specified in the C++ standard.

 Equally clearly, five of the six versions of append can be nonmember non-friends because
they are specified in terms of the three-parameter version of append, and that in turn can
be implemented in terms of insert, all of which quite closes the append family.

 Determining the status of push_back takes only slightly more work, because its
operational semantics aren't specified in the basic_string clause but only in the
container requirements clause, and there we find the specification that a.push_back(x)
is just a synonym for a.insert(a.end(),x).

"But wait!" someone might say, "the C++ standard says that assignment operators must be
members, and += is an assignment operator!" Yes and no. Without getting into the gory details,
although += is listed along with all the other *= operators as an assignment operator in the C++
language grammar, the only assignment operator that must be a member is, as already noted,
operator= itself. Therefore, the following sample implementations of the nonmember
operator+= functions are perfectly valid C++:

template<class charT, class traits, class Allocator>

basic_string<charT, traits, Allocator>&

operator+=(basic_string<charT, traits, Allocator>& s,

 const basic_string<charT, traits, Allocator>& t) {

 return s.append(t);

}

template<class charT, class traits, class Allocator>

basic_string<charT, traits, Allocator>&

operator+=(basic_string<charT, traits, Allocator>& s, const charT* p) {

Page 319

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return s.append(p);

}

template<class charT, class traits, class Allocator>

basic_string<charT, traits, Allocator>&

operator+=(basic_string<charT, traits, Allocator>& s, charT c) {

 return s.append(1, c);

}

What's the linchpin holding all the members of this group together as valid non-member
nonfriends? It's insert; hence insert's status as a good choice to be the member that does the
work and encapsulates the append-related access to the string's internals in one place instead of
spreading the internal access all over the place in a dozen different functions.

insert

b. insert

Next, insert: For those of you who might think that six-count'em-six versions of as-sign and
six-count'em-six versions of append might have been a little much, those were just the warmup.
Now we consider the eight-count'em-eight versions of insert.

I've already nominated the three-parameter version of insert as a member, and now it's time to
justify why. First, as noted before, insert is a more general operation than append, and having a
member insert allowed all the append operations to be non-member nonfriends; if we didn't
have at least one insert as a member, then at least one of the appends would have had to be a
member, so I chose to nominate the more fundamental and flexible operation.

But we have eight-count'em-eight flavors of insert. Which one (or more) ought to be the
member(s)? Five of the eight forms of insert are already specified in terms of the
three-parameter form, and the others can also be implemented efficiently in terms of the
three-parameter form, so we only need that one form to be a member. The others can all be
nonmember nonfriends.

Interlude

For those of you who might think that the eight-count'em-eight versions of insert take the cake,
well, that was a warmup too. In a moment we'll consider the ten-count'em-ten forms of replace.
Before we attempt those, though, let's take a short break. In the next Item, we'll tackle an easier
function first, because it turns out that erase is instructive in building up to dealing with replace
…

Page 320

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 40. Monoliths
"Unstrung," Part 4: std::string
Redux
Difficulty: 6

In this Item, we enter the home stretch, and uncover a (more) modest
and minimal edition of std::string.

JG Question
1. Can string::erase be a nonmember function? Explain.

Guru Question
2. Analyze the remaining member functions of std::string

and demonstrate whether or not they can or should instead
be nonmember functions. Justify your answers.

a. replace

b. copy and substr

c. compare

d. find family (find, find_*, and rfind)

Page 321

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Solution
Still More Operations That Can Be Nonmember Nonfriends

In this Item, we're in the home stretch, and the finish line is in sight. Only a few functions
remainand we'll see that all of them can be implemented as nonmember nonfriends:

 erase (2all but the "iter, iter" version)

 replace (8all but the "iter, iter, num, char" and templated versions)

 copy

 substr

 compare (5)

 find (4)

 rfind (4)

 find_first_of (4)

 first_last_of (4)

 find_first_not_of (4)

 find_last_not_of (4)

Coffee Break (Sort Of): Erasing erase

1. Can string::erase be a nonmember function? Explain.

Pressing onward from our last Item, next let's tackle erase: After talking about the total
30-count'em-30 flavors of assign, append, insert, and replaceand having dealt with 20 of
the 30 alreadyyou will be relieved to know that there are only three forms of erase and that only
two of them belong in this section. After what we just went through for the others, this is like
knocking off for a well-deserved coffee break…

The troika of erase members is a little interesting. At least one of these erase functions must be
a member (or friend), there being no other way to erase efficiently using the other
already-mentioned member functions alone. There are actually two "families" of erase functions:

// erase(pos, length)

basic_string& erase(size_type pos = 0, size_type n = npos);

// erase(iter, …)

iterator erase(iterator position);

iterator erase(iterator first, iterator last);

First, notice that the two families' return types are not consistent: The first version returns a

Page 322

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

reference to the string, whereas the other two return iterators pointing immediately after the erased
character or range. Second, notice that the two families' argument types are not consistent: The
first version takes an offset and length, whereas the other two take an iterator or iterator range;
fortunately, we can convert from iterators to offsets via pos = iter - begin() and from
offsets to iterators via iter= begin() + pos.

(Aside: The standard does not require, but an implementer can choose, that basic_string
objects store their data in a contiguous charT array buffer in memory. If they do, then the
conversion from iterators to positional offsets and vice versa clearly need incur no overhead. For
that matter, I would argue that even segmented storage schemes could provide for very efficient
conversion back and forth between offsets and iterators using only the container's and iterator's
public interfaces. This is all aside from the main "member vs. nonmember nonfriend" theme and
mentioned only for completeness.)

This allows the first two forms to be expressed in terms of the third. (Again, remember your
typenames and qualifications!)

template<class charT, class traits, class Allocator>

basic_string<charT, traits, Allocator>&

erase(basic_string<charT, traits, Allocator>& s,

 typename Allocator::size_type pos = 0,

 typename Allocator::size_type n =

 basic_string<charT, traits, Allocator>::npos)

{

 if(pos > s.size())

 throw out_of_range("yes, we have no bananas");

 typename basic_string<charT, traits, Allocator>::iterator

 first = s.begin()+pos,

 last = n == basic_string<charT, traits, Allocator>::npos

 ? s.end() : first + min(n, s.size() - pos);

 if(first != last)

 s.erase(first, last);

 return s;

}

template<class charT, class traits, class Allocator>

typename basic_string<charT, traits, Allocator>::iterator

erase(basic_string<charT, traits, Allocator>& s,

 typename basic_string<charT, traits, Allocator>::iterator position)

{

 return s.erase(position, position+1);

}

OK, coffee break's over…

Back to Work: Replacing replace

2. Analyze the remaining member functions of std::string and demonstrate
whether or not they can or should instead be nonmember functions. Justify your
answers.

a. replace

Next, replace: Truth be told, the ten-count'em-ten replace members are less interesting than
they are tedious and exhausting.

Page 323

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

At least one of these replace functions must be a member (or friend), there being no other way
to replace efficiently using the other already-mentioned member functions alone. In particular, note
that you can't efficiently implement replace in terms of erase followed by insert or vice versa
because both ways would require more character shuffling and possibly buffer reallocation.

Note that we have two families of replace functions:

// replace(pos, length, …)

basic_string& replace(size_type pos1, size_type n1, const basic_string&

str); // #1

basic_string& replace(size_type pos1, size_type n1, // #2

 const basic_string& str, size_type pos2, size_type

n2);

basic_string& replace(size_type pos, size_type n1, const charT* s,

size_type n2); // #3

basic_string& replace(size_type pos, size_type n1, const charT* s); // #4

basic_string& replace(size_type pos, size_type n1, size_type n2, charT

c); // #5

// replace(iter, iter, …)

basic_string& replace(iterator i1, iterator i2, const basic_string&

str); // 6

basic_string& replace(iterator i1, iterator i2, const charT* s, size_type

n); // 7

basic_string& replace(iterator i1, iterator i2, const charT* s); // 8

basic_string& replace(iterator i1, iterator i2, size_type n, charT c); //

9

template<class InputIterator> // 10

 basic_string& replace(iterator i1, iterator i2, InputIterator j1,

InputIterator j2);

This time, the two families' return types are consistent; that's a small pleasure. But, as with erase,
the two families' argument types are not consistent: One family is based on an offset and length,
whereas the other is based on an iterator range. As with erase, because we can convert between
iterators and positions, we can easily implement one family in terms of the other.

When considering which must be members, we want to choose the most flexible and fundamental
version(s) as members and implement the rest in terms of those. Here are a few pitfalls one might
encounter while doing this analysis, and some tips for how one might avoid them. Consider first
the first family:

 One function (#2)? One might notice that the standard specifies all of the first family in
terms of the #2 version. Unfortunately, some of the passthroughs would needlessly
construct temporary basic_string objects, so we can't get by with #2 alone even for
just the first family. The standard specifies the observable behavior, but the operational
specification isn't necessarily the best way to actually implement a given function.

 Two functions (#3 and #5)? One might notice that all but #5 in the first family can be
implemented efficiently in terms of #3, but then #5 would still need to be special-cased to
avoid needlessly creating a temporary string object (or its equivalent).

Consider second, the second family:

 One function (#6)? One might notice that the standard specifies all of the second family in

Page 324

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

terms of #6. Unfortunately, again some of the passthroughs would needlessly construct
temporary basic_string objects, so we can't get by with #6 alone even for just the
second family.

 Three functions (#7, #9, #10)? One might notice that most of the functions in the second
family can be implemented efficiently in terms of #7, except for #9 (for the same reason
that made #5 the outcast in the first family, namely that there was no existing buffer with
the correct contents to point to) and #10 (which cannot assume that iterators are pointers
or even, for that matter, basic_string::iterators!).

 Two functions (#9, #10)! One might then immediately notice that all but #9 in the second
family can be implemented efficiently in terms of #10, including #7. In fact, assuming string
contiguity and position/iterator convertibility as we've already assumed, we could
probably even handle all the members of the first family… aha! That's it.

So it appears that the best we can do is two member functions upon which we can then build
everything else as nonmember nonfriends. The members are the "iter, iter, num, char" and
templated versions. The nonmembers are everything else. (Exercise for the reader: For each of the
other eight versions, write sample implementations as efficient nonmember nonfriends.)

Note that #10 well illustrates the power of templatesthis one function can be used to implement all
but two of the others without any loss of efficiency and to implement the remaining ones with what
would probably be only a minor loss of efficiency (constructing a temporary basic_string
containing n copies of a character).

Time for another quick coffee break…

Coffee Break #2: Copying copy and substr

b. copy and substr

Oh, copy, schmopy. Note that copy is a somewhat unusual beast and that its interface is
inconsistent with the std::copy algorithm. Note again the signature:

size_type copy(charT* s, size_type n, size_type pos = 0) const;

The function is const; it does not modify the string. Rather, what the string object has to do is
copy part of itself (up to n characters, starting at position pos) and dump it into s, the target buffer
(note, I deliberately did not say "C-style string"), which is required to be big enoughif it's not, oh
well, then the program will scribble onward into whatever memory happens to follow the string
and get stuck somewhere in the Undefined Behavior swamp. And better still,
basic_string::copy does not, repeat not, append a null object to the target buffer, which is
one reason it's not a C-style string. (The other reason is that charT doesn't need to be char ; this
function will copy into a buffer of whatever kind of characters the string itself is made of). The lack
of null-termination is also what makes copy a dangerous function.

Guideline
Never use functions that write to range-unchecked buffers (e.g., strcpy, sprintf)
or could fail to null-terminate C-style strings (e.g.,strncpy, basic_string::copy).

Page 325

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

They are not only crashes waiting to happen but a clear and present security
hazardbuffer overrun attacks continue to be a perennially popular pastime for hackers
and malware writers. [For more on this topic, turn to Items 2 and 3.]

All the required work could be done pretty much as simply, and a lot more flexibly, just by using
plain old std::copy:

string s = "0123456789";

char* buf1 = new char[5];

s.copy(buf1, 0, 5); // ok: buf will contain the chars '0', '1',

'2', '3', '4'

copy(s.begin(), s.begin()+5, buf1);

 // ok: buf will contain the chars '0', '1',

'2', '3', '4'

int* buf2 = new int[5];

s.copy(buf2, 0, 5); // error: first parameter is not char*

copy(s.begin(), s.begin()+5, buf2);

 // ok: buf2 will contain the values

corresponding to

 // '0', '1', '2', '3', '4' (e.g., ASCII

values)

Incidentally, this code also shows how basic_string::copy can trivially be written as a
nonmember nonfriend, most trivially in terms of the copy algorithmanother exercise for the reader,
but do remember to handle the n == npos special case correctly.

Well, that one didn't leave us breathing too hard, so while we're still relaxing, let's knock off
another simple one at the same time: substr. Recall its signature: [47]

[47] Astute readers might have noticed that this function chooses to take its parameters in the order "position, length" whereas
the copy we just considered takes the very same parameters in the order "length, position." Besides being aesthetically
inconsistent, this can actually be dangerous. T rying to remember which function takes the parameters in which order makes for
an easy trap for users of basic_string to stumble into, and because both parameters also happen to be of the same type
the poor users who get it wrong will find that their code continues to happily compile without any errors or warnings and
continue to happily run… well, except only every so often hiccupping and generating odd user support calls when odd strings
get emitted after odd and wrong substrings get taken. A jaundiced eye could view this as the moral equivalent of neglectfully
leaving a land mine neatly labeled "Design By Committee™ " lying around the countryside just waiting to blow up without
warning beneath the unwary. But I digress.

basic_string substr(size_type pos = 0, size_type n = npos) const;

Notice that substr can be easily implemented as a nonmember nonfriend because it's syntactic
sugar for a string constructorafter all, the standard itself specifies that it must simply return a fresh
basic_string object constructed using the equivalent of
basic_string<charT,traits,Allocator>(data()+pos, min(n, size()-pos)). That
is, creating a new string that's a substring of an existing one can be done equally well with or
without substr, using the more general string constructor, which already does all this and a lot
more besides:

string s = "0123456789";

string s2 = s.substr(0, 5); // s2 contains "01234"

Page 326

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

string s3(s.data(), 5); // s3 contains "01234"

string s4(s.begin(), s.begin()+5); // s4 contains "01234"

All right, break's over. Back to work again… fortunately we have only two families left to
consider: compare and the *find*s.

Almost There: Comparing compares

c. compare

The penultimate family is compare. It has five members, all of which can be trivially shown to be
implementable efficiently as nonmember nonfriends. How? Because in the standard they're
specified in terms of basic_string's size and data, which we already decided to make
members, and traits::compare, which does the real work. (For more information about
traits::compare, see [Josuttis99].)

Wow, wait a minute. That was almost easy! Let's not question it but move right along….

The Home Stretch: Finding the finds

d. find family (find, find_*, and rfind)

Our relief doesn't last long, alas. Lest the sight of the eight-count'em-eight flavors of insert and
the ten-count'em-ten versions of replace wasn't enough to bring you verily to the verge of tears,
we end on a truly unsurpassed (in basic_string) distressing note, namely this: the
24-count'em-24 (yes, really, I am not making this up) variations on find-like algorithms.

There are six families of find functions, each with exactly four members:

 find. Forward search for the first occurrence of a string or character (str, s, or c)
starting at point pos

 rfind. Backward search for the first occurrence of a string or character (str, s, or c)
starting at point pos

 find_first_of. Forward search for the first occurrence of any of one or more
characters (str, s, or c) starting at point pos

 find_last_of. Backward search for the first occurrence of any of one or more
characters (str, s, or c) starting at point pos

 find_first_not_of. Forward search for the first occurrence of any but one or more
characters (str, s, or c) starting at point pos

 find_last_not_of. Backward search for the first occurrence of any but one or more
characters (str, s, or c) starting at point pos

Each family has four members:

 "str, pos" where str contains the characters to search for (or not) and pos is the starting
position in the string

 "ptr, pos, n" where ptr is a charT* pointing to a buffer of length n containing the
characters to search for (or not) and pos is the starting position in the string

Page 327

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 "ptr, pos" where ptr is a charT* pointing to a null-terminated buffer containing the
characters to search for (or not) and pos is the starting position in the string

 "c, pos" where c is the character to search for (or not) and pos is the starting position in
the string

All of these can be written efficiently as nonmember nonfriends; the implementations are left as
exercises for the reader. Having said that, we're done!

But let's add one final note about string finding. In fact, you might have noticed that, in addition to
the extensive bevy of basic_string::*find* algorithms, the C++ standard also provides a
not-quite-as-extensive-but-still-plentiful bevy of std::*find* algorithms. In particular:

 std::find can do the work of basic_string::find

 std::find using reverse_iterators, or std::find_end, can do the work of
basic_string::rfind

 std::find_first_of, or std::find with an appropriate predicate, can do the work
of basic_string::find_first_of

 std::find_first_of, or std::find with an appropriate predicate, using
reverse_-iterators can do the work of basic_string::find_last_of

 std::find with an appropriate predicate can do the work of
basic_string::find_first_not_of

 std::find with an appropriate predicate and using reverse_iterators can do the
work of basic_string::find_last_not_of

What's more, the nonmember algorithms are more flexible, because they work on more than just
strings. Indeed, all the basic_string::*find* algorithms could be iplemented using the
std::find and std::find_end, tossing in appropriate predicates and/or reverse_iterator
s as necessary.

So what about just ditching the basic_string::*find* families altogether and just telling
programmers to use the existing std::find* algorithms? Sure, but be careful: One caution here
is that, even though the basic_string::*find* work can be emulated, doing it with the default
implementations of std::find* would incur significant loss of performance in some cases, and
there's the rub. The three forms each of find and rfind that search for substrings (not just
individual characters) can be made much more efficient than a brute-force search that tries each
position and compares the substrings starting at those positions. There are well-known algorithms
that construct finite state machines on the fly to run through a string and find a substring (or prove
its absence) in linear time, and it might be desirable to take advantage of such techniques.

To take advantage of such optimizations, could we provide overloads (not specializations, see
Item 7) of std::find* that work on basic_string::iterators? Yes, but only if
basic_string::iterator is a class type, not a plain charT*. The reason is that if it were a
plain pointer type and we did specialize std::find for it, we'd be specializing std::find for all
pointers of that type, which is clearly wrong because not all character pointers necessarily point
into std::strings. Thus we would need basic_string::iterator to be a distinct type that
we can detect and specialize on. Then those specializations could perform the optimizations and
work at full efficiency for matching substrings.

Page 328

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Summary

Decomposition and encapsulation are Good Things. In particular, it's often best to separate the
algorithm from the container, which is what the STL does most of the time.

It's widely accepted that basic_string has way too many member functions. Of the 103
functions in basic_string, only 32 really need to be members, and 71 could be written as
nonmember nonfriends without loss of efficiency. In fact, many of them needlessly duplicate
functionality already available as algorithms or are themselves algorithms that would be useful
more widely if only they were decoupled from basic_string instead of being buried inside it.

Don't repeat basic_string's mistakes in your designsdecouple your algorithms from your
containers, use template specialization or overloading to get special- purpose behavior where
warranted (as for substring searching), and above all follow these guidelines… your users will
thank you, because you will be actively decreasing the surface area of the libraries that you ask
them to learn.

Guidelines
Prefer "one class (or function), one responsibility."

Where possible, prefer writing functions as nonmember non-friends.

Page 329

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Bibliography
Note: For browsing convenience, this bibliography is also available
online at:

http://www.gotw.ca/publications/xc++s/bibliography.htm

Bold references (e.g., [Alexandrescu02]) are hyperlinks in the online
bibliography.

[Alexandrescu01] A. Alexandrescu. Modern C++ Design
(Addison-Wesley, 2001).

[Alexandrescu02] A. Alexandrescu. "Discriminated Unions (I)," "…
(II)," and "… (III)" (C/C++ Users Journal, 20(4,6,8),
April/June/August 2002).

[Arnold00] M. Arnold, S. Fink, D. Grove, M. Hind, P. F. Sweeney.
"Adaptive Optimization in the Jalapeño JVM" (Proceedings of the
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ACM Press, 2000).

[Bentley00] J. Bentley. Programming Pearls, Second Edition
(Addison-Wesley, 2000).

[Boost] C++ Boost (www.boost.org).

[BoostES] "Boost Library Requirements and Guidelines,
Exception-specification rationale" (Boost web site).

[Cargill94] T. Cargill. "Exception Handling: A False Sense of Security" (
C++ Report, 9(6), November-December 1994).

[C90] ISO/IEC 9899:1990(E), Programming LanguagesC (ISO C90
and ANSI C89 standard).

[C99] ISO/IEC 9899:1999(E), Programming LanguagesC (revised
ISO and ANSI C99 standard).

[C++98] ISO/IEC 14882:1998(E), Programming LanguagesC++
(ISO and ANSI C++ standard).

[C++03] ISO/IEC 14882:2003(E), Programming LanguagesC++
(up-dated ISO and ANSI C++ standard including the contents of
[C++98] plus errata corrections).

[C++CLI04] C++/CLI Language Specification, Working Draft 1.6
(Ecma International, August 2004).

[Cline99] M. Cline, G. Lomow, and M. Girou. C++ FAQs, Second

Page 330

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.gotw.ca/publications/xc++s/bibliography.htm
http://www.boost.org
http://www.gotw.ca/publications/xc++s/bibliography.htm
http://www.processtext.com/abcchm.html

Edition (Addison-Wesley, 1999).

[Coplien92] J. Coplien. Advanced C++ Programming Styles and
Idioms (Addison-Wesley, 1992).

[Dewhurst02] S. Dewhurst. "C++ Hierarchy Design Idioms" (
Software Development 2002 West conference talk, April 2002).

[Dewhurst03] S. Dewhurst. C++ Gotchas (Addison-Wesley, 2003).

[Ellis90] M. Ellis and B. Stroustrup. The Annotated C++ Reference
Manual (Addison-Wesley, 1990).

[Gamma95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995).

[GotW] H. Sutter. Guru of the Week

[Hicks00] C. Hicks. "Creating an Index Table in STL" (C/C++ Users
Journal, 18(8), August 2000).

[Hyslop00] H. Sutter and J. Hyslop. "Virtually Yours" (C/C++ Users
Journal, 18(12), December 2000).

[Hyslop01] H. Sutter and J. Hyslop. "I'd Hold Anything For You" (
C/C++ Users Journal, 19(12), December 2001).

[JikesRVM] Jikes RVM home page.

[Jones96] R. Jones and R. Lins. Garbage Collection (Wiley, 1996).

[Josuttis99] N. Josuttis. The C++ standard Library (Addison-Wesley,
1999).

[Kalev01] D. Kalev. "Designing a Generic Callback Dispatcher" (DevX,
2001).

[Koenig96] A. Koenig, "When Memory Runs Low" (C++ Report,
8(6), June 1996).

[Langer00] A. Langer and K. Kreft. Standard C++ IOStreams and
Locales (Addison-Wesley, 2000).

[Lippman98] S. Lippman and J. Lajoie. C++ Primer, Third Edition
(Addison-Wesley, 1998).

[Liskov88] B. Liskov. "Data Abstraction and Hierarchy" (SIGPLAN
Notices, 23(5), May 1988).

[Manley02] K. Manley. "Using Constructed Types in Unions" (C/C++
Users Journal, 20(8), August 2002).

[Martin95] R. C. Martin. Designing Object-Oriented Applications
Using the Booch Method (Prentice-Hall, 1995).

Page 331

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

[Marrie00] L. Marrie. "Alternating Skip Lists" (Dr. Dobb's Journal,
25(8), August 2000).

[Meyers96] S. Meyers. More Effective C++ (Addison-Wesley,
1996).

[Meyers97] S. Meyers. Effective C++, Second Edition
(Addison-Wesley, 1997).

[Meyers99] S. Meyers. Effective C++ CD: 85 Specific Ways to
Improve Your Programs and Designs (Addison-Wesley, 1999).

[Meyers00] S. Meyers. "How Non-Member Functions Improve
Encapsulation" (C/C++ Users Journal, 18(2), February 2000).

[Meyers01] S. Meyers. Effective STL (Addison-Wesley, 2001).

[Newkirk97] J. Newkirk. "Private Interface" (Object Mentor, 1997).

[ObjectMentor] Object Mentor Inc.

[Stroustrup88] B. Stroustrup. "Parameterized Types for C++" (Proc.
USENIX Conference, Denver, October 1988).

[Stroustrup94] B. Stroustrup. The Design and Evolution of C++
(Addison-Wesley, 1994).

[Stroustrup99] B. Stroustrup. "Learning Standard C++ as a New
Language" (C/C++ Users Journal, 17(5), May 1999).

[Stroustrup00] B. Stroustrup. The C++ Programming Language,
Special Edition (Addison-Wesley, 2000).

[Sutter99] H. Sutter. "ACID Programming" (Guru of the Week #61,
September 1999).

[Sutter00] H. Sutter. Exceptional C++ (Addison-Wesley, 2000).

[Sutter02] H. Sutter. More Exceptional C++ (Addison-Wesley,
2002).

[Sutter02a] H. Sutter. "The Group of Seven: Extensions Under
Consideration for the C++ Standard Library" (C/C++ Users Journal
Experts Forum, 20(4), April 2002).

[Sutter02b] H. Sutter. "Smart(er) Pointers" (C/C++ Users Journal,
20(8), August 2002).

[Sutter02c] H. Sutter. "Standard C++ Meets Managed C++" (C/C++
Users Journal, C++ .NET Solutions Supplement, 20(9), September
2002).

[Vandevoorde03] D. Vandevoorde and N. Josuttis. C++ Templates:
The Complete Guide (Addison-Wesley, 2003).

Page 332

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 333

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

	[Trial version] Table of Contents
	[Trial version] Preface
	[Trial version] Style or Substance?
	[Trial version] The Exceptional Socrates
	[Trial version] What I assume You Know
	[Trial version] How to Read This Book
	[Trial version] ##. The Topic of This Item
	[Trial version] Acknowledgments

	[Trial version] Part 1 - Generic Programming and the C++ Standard Library
	[Trial version] Chapter 1. Uses and Abuses of vector
	[Trial version] Solution

	[Trial version] Chapter 2. The String Formatters of Manor Farm, Part 1: sprintf
	[Trial version] Solution

	[Trial version] Chapter 3. The String Formatters of Manor Farm, Part 2: Standard (or Blindingly Elegant) Alternatives
	[Trial version] Solution

	[Trial version] Chapter 4. Standard Library Member Functions
	[Trial version] Solution

	[Trial version] Chapter 5. Flavors of Genericity, Part 1: Covering the Basis [sic]
	[Trial version] Solution

	[Trial version] Chapter 6. Flavors of Genericity, Part 2: Generic Enough?
	[Trial version] Solution

	[Trial version] Chapter 7. Why Not Specialize Function Templates?
	[Trial version] Solution

	[Trial version] Chapter 8. Befriending Templates
	[Trial version] Solution

	[Trial version] Chapter 9. Export Restrictions, Part 1: Fundamentals
	[Trial version] Solution
	[Trial version] A Tale of Two Models
	[Trial version] Illustrating the Issues
	[Trial version] Export InAction [sic]
	[Trial version] Issue the First: Source Exposure
	[Trial version] Issue the Second: Dependencies and Build Times
	[Trial version] Summary

	[Trial version] Chapter 10. Export Restrictions, Part 2: Interactions, Usability Issues, and Guidelines
	[Trial version] Solution

	[Trial version] Part 2 - Exception Safety Issues and Techniques
	[Trial version] Chapter 11. Try and Catch Me
	[Trial version] Solution

	[Trial version] Chapter 12. Exception Safety: Is It Worth It?
	[Trial version] Solution

	[Trial version] Chapter 13. A Pragmatic Look at Exception Specifications
	[Trial version] Solution

	[Trial version] Part 3 - Class Design, Inheritance, and Polymorphism
	[Trial version] Chapter 14. Order, Order!
	[Trial version] Solution

	[Trial version] Chapter 15. Uses and Abuses of Access Rights
	[Trial version] Solution

	[Trial version] Chapter 16. (Mostly) Private
	[Trial version] Solution

	[Trial version] Chapter 17. Encapsulation
	[Trial version] Solution

	[Trial version] Chapter 18. Virtuality
	[Trial version] Solution

	[Trial version] Chapter 19. Enforcing Rules for Derived Classes
	[Trial version] Solution

	[Trial version] Part 4 - Memory and Resource Management
	[Trial version] Chapter 20. Containers in Memory, Part 1: Levels of Memory Management
	[Trial version] Solution

	[Trial version] Chapter 21. Containers in Memory, Part 2: How Big Is It Really?
	[Trial version] Solution

	[Trial version] Chapter 22. To new, Perchance to tHRow, Part 1: The Many Faces of new
	[Trial version] Solution
	[Trial version] In-Place, Plain, and Nothrow new
	[Trial version] Class-Specific new
	[Trial version] A Name-Hiding Surprise
	[Trial version] Summary

	[Trial version] Chapter 23. To new, Perchance to tHRow, Part 2: Pragmatic Issues in Memory Management
	[Trial version] Solution

	[Trial version] Part 5 - Optimization and Efficiency
	[Trial version] Chapter 24. Constant Optimization?
	[Trial version] Solution

	[Trial version] Chapter 25. inline Redux
	[Trial version] Solution

	[Trial version] Chapter 26. Data Formats and Efficiency, Part 1: When Compression Is the Name of the Game
	[Trial version] Solution

	[Trial version] Chapter 27. Data Formats and Efficiency, Part 2: (Even Less) Bit-Twiddling
	[Trial version] Solution

	[Trial version] Part 6 - Traps, Pitfalls, and Puzzlers
	[Trial version] Chapter 28. Keywords That Aren't (or, Comments by Another Name)
	[Trial version] Solution

	[Trial version] Chapter 29. Is It Initialization?
	[Trial version] Solution

	[Trial version] Chapter 30. double or Nothing
	[Trial version] Solution

	[Trial version] Chapter 31. Amok Code
	[Trial version] Solution

	[Trial version] Chapter 32. Slight Typos? Graphic Language and Other Curiosities
	[Trial version] Solution

	[Trial version] Chapter 33. Operators, Operators Everywhere
	[Trial version] Solution

	[Trial version] Part 7 - Style Case Studies
	[Trial version] Chapter 34. Index Tables
	[Trial version] Solution

	[Trial version] Chapter 35. Generic Callbacks
	[Trial version] Solution

	[Trial version] Chapter 36. Construction Unions
	[Trial version] Solution

	[Trial version] tring
	[Trial version] Solution
	[Trial version] Summary

	[Trial version] tring
	[Trial version] Solution

	[Trial version] tring Diminishing
	[Trial version] Solution

	[Trial version] tring Redux
	[Trial version] Solution

	[Trial version] Bibliography

