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Preface

Machine Learning is known under many names such as Machine Learning,
Artificial Intelligence, Pattern Recognition, Data Mining, Data Assimilation,
and Big Data, to list but a few. It developed in many areas of science, such
as in physics, engineering, computer science, and mathematics in parallel and
independently. For example it is used for Spam Filtering, Optical Charac-
ter Recognition (OCR), Search Engines, Computer Vision, Natural Language
Processing (NLP), Advertising, Fraud Detection, Robotics, Data Prediction,
Material Discovery, Astronomy. This makes it sometimes difficult to find a
solution for a particular problem in the literature, simply because different
words and phrases are used for the same concept.

This book aims to alleviate this. A common concept, but known in sev-
eral disciplines under different names, is described using mathematics as the
common language. Readers will find the index useful to find a particular topic
as it is known to them. The index is comprehensive, making it easy to find
the required information. Hopefully, the book will prove useful as a reference
and make it an essential on the bookshelves of anybody employing machine
learning techniques.

Often, in teaching Machine Learning, the emphasis is on the questions
“What?” and “How?”, and the question “Why?” is neglected. In my opinion,
however, this is the most important question. Only if why an algorithm is
successful is understood can it be properly applied. On the other hand, if why
it arrived at its results is not understood, these results cannot be trusted.

Algorithms are often taught side by side without showing the similarities
and differences between them. This book addresses this by introducing the
commonalities. Most techniques try to find an approximate model generating
the data in a finite, low-dimensional space. They differ in how a solution to
this approximate model is found and how the model space is chosen. This
approach helps to keep the book concise while still giving a thorough and in
depth treatment. In some places, where further detail was felt to be beyond
the scope of this book, the reader is referred to further reading.

Techniques are illustrated by MATLABr implementations. The main
purpose is to show the inner workings of the method in order to
develop an intuition. In most cases, the listings are printed in the
book, but all are available online at https://www.crcpress.com/A-Concise-
Introduction-to-Machine-Learning/Faul/9780815384106 as part of the pack-
age K339637_Downloads.zip.
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C H A P T E R 1

Introduction

When thinking about machine learning, it seems prudent to start thinking
about how we learn. King Frederick II (26 December 1194 - 13 December
1250) was Holy Roman Emperor and King of Sicily in the 13th century. King
Frederick was a passionate patron of the sciences and arts. He spoke six lan-
guages which were Latin, Sicilian, German, French, Greek and Arabic. He
desired to determine the “god given” language. The Italian Franciscan friar
Salimbene de Adam writes in his Cronica [25] that Frederick bade “foster-
mothers and nurses to suckle and bathe and wash the children, but in no
ways to prattle or speak with them; for he would have learned whether they
would speak the Hebrew language (which had been the first), or Greek, or
Latin, or Arabic, or perchance the tongue of their parents of whom they had
been born. But he laboured in vain, for the children could not live without
clappings of the hands, and gestures, and gladness of countenance, and blan-
dishments.” In other words the physical needs of the children were satisfied,
but they were raised without any human interaction. It is doubtful whether
this is a true account, since this is the only account and Salimbene was a
political opponent of Frederick II. Nevertheless, nobody doubts that sensory
stimulation and experiences are essential for learning in any respect.

Blakemore and Cooper [4] experimented with kittens. The kittens were
brought up in a dark room and only brought out at certain times and then
placed in an environment with either only horizontal or only vertical lines. Kit-
tens brought up in the horizontal environment showed no reaction to vertical
lines. There was no brain activity. Indeed, when the inclination of a horizontal
line was changed gradually towards a vertical line the brain activity became
less and less.

The experiment showed that only what the brain is presented with by the
environment is learned. This is an efficient preparation for the future. This
is also true for human vision. Australian Aborigines have the sharpest vision
ever measured, about four times better than the vision of those of white eth-
nicity. This means that they can see objects sharply at six meters distance
which the average white person can see clearly at only 1.5 meters, a quarter

1
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Figure 1.1: Vertical environment. Reprinted by permission from Macmillan

Publishers Ltd: Nature [4], copyright (1970).

of the distance. Often the eyesight deteriorates with old age. Ophthalmolo-
gist Professor Fred Hollows [22] corrected the vision of an elderly Aboriginal
man back to the average white person’s vision with glasses. The reaction was
“Thank you for trying, but this is hopeless. I used to be able to see much
better.” The Australian outback is a wide open landscape and good vision in
the distance is vital for survival.

We can conclude that there is a need for experiences. However, how does
a machine “experience”? We can view our senses as taking measurements and
our brain interprets these and draws conclusions. A machine can take various
measurements and then perform calculations, but can it emulate the power of
a human brain?

Perhaps to answer this question, we need to take a step back and not look
at how we learn, but how we teach. Traditional teaching is from the front
of the classroom. The pupils are given a set of instructions and are expected
to reproduce these. This is very similar to procedural programming where the
flow of instructions is encoded. Object oriented programming was a further
development where instructions depend on the nature of the data.

However, our brain retains information much better when it has the pos-
itive experience of discovery. So often there is teacher-led learning. Galileo
illustrates this beautifully in his book “Discourses and Mathematical Demon-
strations Relating to Two New Sciences” [15] (Figure 1.2). The two sciences
are the science of motion and the science of materials and construction. The
ideas are developed as a dialogue between three characters, Salviati, Sagredo
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and Simplicio. The latter is portrayed as a simpleton, the pupil to be in-
structed. In the science of motion, the starting point is the observation that
even though objects have different masses, they reach the ground at the same
time. However, this is very difficult to quantify, since it is over all too fast.
Galileo therefore developed the inclined plane experiment which he describes
as such:

“A piece of wooden moulding or scantling, about 12 cubits
long, half a cubit wide, and three finger-breadths thick, was taken;
on its edge was cut a channel a little more than one finger in
breadth; having made this groove very straight, smooth, and pol-
ished, and having lined it with parchment, also as smooth and
polished as possible, we rolled along it a hard, smooth, and very
round bronze ball. Having placed this board in a sloping position,
by raising one end some one or two cubits above the other, we
rolled the ball, as I was just saying, along the channel, noting, in
a manner presently to be described, the time required to make the
descent. We repeated this experiment more than once in order to
measure the time with an accuracy such that the deviation be-
tween two observations never exceeded one-tenth of a pulse-beat.
Having performed this operation and having assured ourselves of
its reliability, we now rolled the ball only one-quarter the length
of the channel; and having measured the time of its descent, we
found it precisely one-half of the former. Next we tried other dis-
tances, compared the time for the whole length with that for the
half, or with that for two-thirds, or three-fourths, or indeed for any
fraction; in such experiments, repeated a full hundred times, we
always found that the spaces traversed were to each other as the
squares of the times, and this was true for all inclinations of the
plane, i.e., of the channel, along which we rolled the ball. We also
observed that the times of descent, for various inclinations of the
plane, bore to one another precisely that ratio which, as we shall
see later, the Author had predicted and demonstrated for them.

For the measurement of time, we employed a large vessel of
water placed in an elevated position; to the bottom of this vessel
was soldered a pipe of small diameter giving a thin jet of water
which we collected in a small glass during the time of each descent,
whether for the whole length of the channel or for part of its length;
the water thus collected was weighed, after each descent, on a very
accurate balance; the differences and ratios of these weights gave us
the differences and ratios of the times, and this with such accuracy
that although the operation was repeated many, many times, there
was no appreciable discrepancy in the results.”

In the 19th century an apparatus for this experiment was built and can now
be seen in the Museo Galileo in Florence, Italy. This experiment is repeated
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Figure 1.2: Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove
Scienze Image in the public domain.

by school children all over the world again and again, stacking their books
to create an inclined plane. Only stop watches have replaced the water clock.
This is supervised learning and a regression problem. In regression we try to
find a relationship between two or more parameters. In this case it is distance,
d, and time, t.

Note that the relationship between the two parameters, distance and time,
is not linear . In fact,

d1

d2
=
t21
t22
.

We can rephrase this so that distance and time are primary parameters and
the square of the time is a secondary parameter. Then we have found a linear
relationship between a primary parameter, the distance, and a secondary pa-
rameter, the square of time. We will encounter this again when discussing the
kernel trick . Another way of viewing this is as an instance of deep learning
since another layer of abstraction is added by the square. Deep learning is
trying to uncover hidden relationships.

However, how did Galileo arrive at this experiment? Remember that the
starting point was the observation that objects of different masses reach the
ground at the same time. He realized that air resistance is a factor, becoming
dominant for extremely light objects with a lot of air resistance such as feath-
ers. Thus he needed to make his experiment as independent from air resistance
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Figure 1.3: Two smoothly connected ramps.

as possible and arrived at a bronze ball. More importantly, however, he needed
to slow the experiment down in order to make accurate measurements. Galileo
noticed that a ball rolling down a ramp which is smoothly connected to an
upward ramp will reach essentially the same level it started from. It will roll
backwards and forwards until it comes to a rest because of friction and air
resistance. If both ramps have the same inclination, this is not that surprising,
but the ball will reach the same level even if the second ramp is much steeper.
This is illustrated in Figure 1.3. Making this second ramp steeper and steeper,
we approach a vertical ramp. This means that the experiment of a falling ball
and a rolling ball are equivalent. In the latter the motion is however slower
and thus measurements can be obtained.

This is an instance of unsupervised learning . Galileo realized by himself
that all the experiments belong to the same class, independent of the angles
of the two ramps.

Returning to the experiment with one ramp. Galileo showed that balls of
different weights would travel the same distance in the same amount of time.
Hence he proved that weight was not a parameter influencing the experiment.
However the times of descent for the same distance depend on the inclinations
of the plane. The steeper the plane, the sooner the experiment is over. Thus the
inclination angle is a parameter influencing the outcome. This is an example
of feature detection where we try to find which parameters, or in other words
features, are relevant.

Human learning is a combination of all these:

• Feature detection: Our senses experience the world around us. The cat
in the Blakemore and Cooper experiments never experienced the feature
of a vertical line.

• Unsupervised learning: Here we try to make sense of our experiences.
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• Deep learning: We put our experiences in a wider context and draw
conclusions.

• Supervised learning: Here we have some external input, but are also
allowed to discover things by ourselves.

• Teaching: This is completely governed by external input.

Once we have learned something, we can recognize anomalies. A child
below a certain age will not be impressed by a levitation act. However, once
it has discovered gravity (though in a more rudimentary way than Galileo),
it wants to experiment on it again and again and again as any parent picking
up the toy the child has dropped from its highchair for the thousandth time
will testify.

Machine learning is all about transferring the various modes of learning
we have identified here to machines. We are already very good at writing
procedural or object oriented programs, teaching machines this way. But what
about the other modes?



C H A P T E R 2

Probability Theory

The concepts in probability theory needed for machine learning are intro-
duced. These include independence, rules of probability, Simpson’s paradox,
probability mass and density functions, cumulative distribution functions, and
the definitions of expectation, variance and moments. The probability mass
and density functions used throughout the book are introduced and their
connections explained. Further functions of random variables are explored as
well as conjugacy of probability distributions and their application to prior
and posterior probability distributions. The chapter concludes with graphical
representations of random variables and their dependencies and parameters.

2.1 Independence, Probability Rules and Simpson’s
Paradox

In the introduction we have seen that learning is not possible without experi-
ences which can be obtained from repeating experiments. To formalize this we
need to quantify the different outcomes of the experiments, and probability
theory lends itself to that. Ross gives a very good introduction in [36]. An
example is given of a fair die; each number is equally probable with the prob-
ability being 1/6. The probabilities for getting heads or tails when flipping
a coin are equal, 1/2. Here the coin and die are random variables. They are
discrete variables, since there are only finitely many different outcomes. That
is when repeating the experiment, different outcomes are possible. To describe
more complex situations, probabilities are combined. For example, the prob-
ability of getting heads and also rolling the number 3, is 1/2 × 1/6 = 1/12.
This is called the joint probability of the coin and die and can be expressed in
a grid.

� � � � 	 

heads 1/12 1/12 1/12 1/12 1/12 1/12
tails 1/12 1/12 1/12 1/12 1/12 1/12

7
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Note that the rows sum to 1/2, which are the marginal probabilities of the
coin, while the columns sum to 1/6, the marginal probabilities of the die. The
term marginal comes from marginalizing , that is rendering the other random
variable unimportant.

When learning, we can repeat an experiment with random variables N
times and record the number of experiments where the random variables take
a certain value. For example let X and Y be two random variables where
X can take the values x1, . . . xM and Y can take the values y1, . . . yL. The
probabilities are denoted

p(X = x) and p(Y = y),

while the joint probability is denoted by

p(X = x, Y = y).

However, this notation is cumbersome, and we write instead p(x), p(y) and
p(x, y). In the above example X is the coin and Y is the die with p(heads) =
1/2, p(3) = 1/6 and p(heads, 3) = 1/12 for example.

The coin and the die cannot influence each other, but other random vari-
ables can, for example the height and weight of a person. We expect a very tall
person to not be feather light. Of course, there are also examples proving this
expectation wrong. When two random variables do not influence each other,
they are called independent , otherwise dependent . Two random variables X
and Y are independent, if and only if

p(X,Y ) = p(X)p(Y ) (2.1)

for all possible outcomes xi, i = 1, . . . ,M and yj , j = 1, . . . , L.
When learning from experiments, instead of recording probabilities in the

grid we record how often a particular outcome occurs. Let nij be the number
the outcome is X = xi and Y = yj . We denote mi the number of occurrences
of X = xi disregarding Y , and lj the number of occurrences where Y = yj
whatever X is. The grid then looks like

Y

y1 . . . yj . . . yL

x1 n11 . . . n1L m1

...
. . . . .

. ...

X xi
... nij

... mi

... . .
. . . .

...

xM nM1 . . . nML mM

l1 . . . lj . . . lL
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We see that

mi =
L∑
j=1

nij and lj =
M∑
i=1

nij , (2.2)

since marginalizing over one random variable means summing over all possible
outcomes of the other.

We can now estimate the probabilities as fractions of the total number of
experiments N :

p(xi) =
mi

N
, p(yj) =

lj
N

and p(xi, yj) =
nij
N
.

Combining this with (2.2), we see that

p(xi) =

L∑
j=1

p(xi, yj) (2.3)

Equation (2.3) is known as the sum rule of probability. The random variable
Y is marginalized.

If we only consider experiments, where the outcome for X is xi, then the
fraction of those, where the outcome for Y is yj , is written as p(yj |xi) and is
called the conditional probability of yj given xi. Looking at the ith row of the
grid, it can be calculated as

p(yj |xi) =
nij
mi

.

On the other hand, we have

p(xi, yj) =
nij
N

=
nij
mi

mi

N
= p(yj |xi)p(xi).

This is known as the product rule of probability. Written in terms of the
random variables, the sum and product rule of probability are

p(X) =
∑
Y

p(X,Y ) and p(X,Y ) = p(Y |X)p(X),

where the sum is over all possible instances of Y .
From the definition of independence in (2.1), we see that Y is independent

of X, if the conditional probability equals the marginal probability for all
outcomes. That is, the outcome of X does not influence the outcome of Y at
all.

The joint probability of two random variables is symmetric. That is

p(X,Y ) = p(Y,X).



10 � A Concise Introduction to Machine Learning

Combining this with the product rule gives p(Y |X)p(X) = p(X|Y )p(Y ). Di-
viding by p(X) leads to Bayes’ rule, also known as Bayes’ law or theorem
which relates the conditional probabilities of random variables to each other:

p(Y |X) =
p(X|Y )p(Y )

p(X)
.

Bayes’ rule plays an important role within machine learning, sparking many
Bayesian subbranches. A very good account of its historic influence is given
by McGrayne in [28].

Within machine learning, the random variable X is often the available
data, which either has been gathered or is generated by experiments. X can be
multidimensional, since different kinds of information can be given for one data
point. The random variable Y on the other hand encompasses the variables
which we believe influence the data. Again this can be multidimensional. The
probability p(Y ) gives our prior belief. This can be experience or the opinion of
experts, or derived from other experiments. The prior has a controversial role,
since it quantifies a subjective opinion. The conditional probability p(X|Y )
is in some way a measure of how well different choices for Y explain X. It
is sometimes referred to as the likelihood and is a function of Y . The overall
probability of the data X is given by p(X). It can be calculated using a
combination of the sum and product rule

p(X) =
∑
Y

p(X|Y )p(Y ).

We see that it is the sum of the numerator in Bayes’ rule over all instances of
Y . Therefore it is also sometimes referred to as the normalizing factor , since
it ensures that ∑

Y

p(Y |X) = 1.

The sum of probabilities over all instances always has to add to one. Lastly, the
probability p(Y |X) quantifies our posterior belief once we have observed and
taken into account the data. The human equivalent is revising one’s opinion
once some experiences have been made. While many other factors influence
whether a human revises their opinion or not (e.g., their stubbornness), Bayes’
rule is a mathematical process to do so. If there are different hypotheses
with associated variables Y of explaining the data, p(Y |X) can be used to
select a hypothesis. It is then also called the evidence. More on the Bayesian
methodology can be found in [35], while [28] gives many examples of how the
repeated application of Bayes’ rule solved real world problems.

However, care needs to be taken when gathering data as the example by
Appleton, French and Vanderpump in [1] of Simpson’s paradox shows. They
gathered data on smoking behaviour in the seventies and followed this up
twenty years later. They restricted their view to women who either had never
smoked or were current smokers at the time of the original study. There were
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Figure 2.1: Distribution of participants across age groups in [1].

582 smokers of which 139 had died resulting in a mortality rate of 139/582 ≈
23.9%. In the non-smoking group 230 died out of 732 giving a mortality rate
of 230/732 ≈ 31.4%. This contradicts what health professionals tell us.

Let Y be the random variable taking the values {smoker, non-smoker},
and let X be the random variable with values {died, alive}. Our grid then
looks like

smoker non-smoker
died 139 230 369
alive 443 502 945

582 732 1314

The explanation reveals itself when looking at the data more closely by
taking into account the women’s age at the time of the original study. They
were grouped into seven age groups: 18 − 24, 25 − 34, 35 − 44, 45 − 54, 55 −
64, 65 − 74 and older than 75. We now let the variable Y have 14 possible
values, the age group together with whether they were smokers (S) or not
(NS). The table now becomes

18− 24 25− 34 35− 44 45− 54 55− 64 65− 74 75+

S NS S NS S NS S NS S NS S NS S NS

died 2 1 3 5 14 7 27 12 51 40 29 101 13 64

alive 53 61 121 152 95 114 103 66 64 81 7 28 0 0

55 62 124 157 109 121 130 78 114 121 36 129 13 64

The first thing to note is that the participants are not equally distributed
across the age ranges. This can be visualized by plotting the histogram of the
participants in the study with regards to their age groups as seen in Figure 2.1.

Ideally, one would like the data to be uniformly distributed . That is each
category is equally likely. If enough samples are taken, then each category
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should contain approximately the same number of samples. This is a big “if”.
In many practical situations, particularly when participants are self-selecting,
this is not possible. This is why white students are over-represented in psy-
chological experiments, since the participants are recruited among the student
population of the university where the experiment is conducted. Another odd-
ity about this data is that all the age ranges encompass ten years, apart from
the youngest and oldest. There are of course practical reasons for this, since
for the youngest age range only legal adults could take part, and at the other
end of the range, it needed to be ensured there are enough participants in
the oldest. These are just some examples of the care which needs to be taken
when gathering data.

As well as the above, in this example the percentage of smokers varies
across the age ranges:

18− 24 25− 34 35− 44 45− 54 55− 64 65− 74 75+

smokers 47% 44% 47% 63% 49% 22% 17%

The non-smokers are disproportionally overrepresented in the two oldest age
groups which are naturally more likely to die within the next twenty years.
This skews the overall mortality in favour of the smokers, when the data is
aggregated into just two groups of smokers and non-smokers.

We can now estimate the mortality for smokers and non-smokers for each
of the age groups. Or in other words the estimated conditional probability of
death given the age group and whether they were smokers or not, p(died|Y ):

mortality

18–24
smokers 3.6%

non-smokers 1.6%

25–34
smokers 2.4%

non-smokers 3.2%

35–44
smokers 12.8%

non-smokers 5.8%

45–54
smokers 20.8%

non-smokers 15.4%

55–64
smokers 44.3%

non-smokers 33.1%

65–74
smokers 80.6%

non-smokers 78.3%

75+
smokers 100%

non-smokers 100%
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Now the mortality reflects the health advice given. In all age groups but two,
the mortality of smokers is higher. Smokers die younger on average which
might in part explain their under-representation in the two oldest age groups.

Simpson’s paradox is due to another variable influencing the data, but
hiding. This is called the confounding variable. In this case, it is the ages of
the women in the original study and the distribution of smokers and non-
smokers within the different age groups. Whenever the distributions within a
population (the women in the original study) varies for different parts of the
population (the different age groups), data analysis has to be done carefully,
taking these variations into account.

Another example of Simpson’s paradox is the correlation between price
and demand. Here the confounding variable is time. If time is not taken into
account, price and demand can appear positively correlated, while in fact they
are negatively correlated which becomes apparent when plotting both demand
and price against time.

2.2 Probability Densities, Expectation, Variance and
Moments

In the previous sections, the random variables were discrete. However, one
of them, the age, is fundamentally a continuous variable, if it is considered
as time passed since birth. It was discretized by considering age groups. The
choice of how to discretize can influence the interpretation as well. We have
already seen that no discretization at all leads to the wrong interpretation of
mortality with smokers being less likely to die than non-smokers. On the other
hand, the discretization shall not be too fine grained, because then the number
of samples in each category becomes too small for interpretation. This is also
known as over-fitting, where the model fits the data too exactly and does not
generalize to unseen data. For example, assume that we discretized the ages
so finely that in each age group there is only one woman, or possibly none. We
can then either make no prediction at all for a new participant of the study,
if that age group is empty, or we will make the prediction according to the
mortality of that one woman in that age group, which could be completely
wrong.

Discretization is one way of dealing with probabilities of a continuous real-
valued variable x. Another way is the probability density function (pdf) f(x)
over x which describes the distribution. Formally, it is defined by f(x)∆x
being the probability of a sample falling inside the interval (x, x+ ∆x) as the
interval size ∆x approaches zero. The probability density function is always
non-negative. It can be viewed as taking discretization to the limit. There is
a valid probability value for x falling into any interval (a, b) and it is given by

p(x ∈ (a, b)) =

∫ b

a

f(x)dx.
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Figure 2.2: The normal probability density function for various values of µ
and σ.

If a = −∞ and b = ∞, that is we integrate over all possible values of x, the
probability has to be one.

As continuous variables can be discretized, discrete variables can be viewed
as continuous. In this case, f(x) is called the probability mass function (pmf),
because the probabilities for each discrete possible value of x are concentrated
as point masses at these values. For all other values of x the probability is
zero.

A well-known example of a probability density function is the bell curve of
the normal distribution also known as the Gaussian distribution x ∼ N (µ, σ2),
where ∼ means “is distributed as”. Its probability density function is given by

N (x|µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
. (2.4)

Its position and shape are determined by the parameters µ, called the mean,
and σ2, known as the variance. The square root of the variance, σ, is called
the standard deviation. Figure 2.2 illustrates the shapes of the bell curve for
various values of the mean and variance. When µ = 0 and σ = σ2 = 1, it is
known as the standard normal distribution.

There is a common misconception that “normal” means common. Gauss
introduced the naming with “normal” referring to a norm as in the method of
Ordinary Least Squares discussed in Section 8.4. One technique to minimize
the norm is to solve the “normal” equations and these were what Gauss in his
choice of words referred to. Over the years, “normal” took on the meaning of
“usual”.

Normal distributions are indeed quite common. Lyon elaborates on the
explanations of this in [27]. The central limit theorem is often quoted. It states
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that, if x1, . . . , xn is a sequence of independent and identically distributed
(i.i.d.) random variables with mean 0 and variance σ2, then the distribution
of the normalized sum

Sn =
x1 + . . .+ xn√

n

is close to a normal distribution for large enough n. As n tends to infinity
and Sn → S, it approaches the normal distribution N (S|0, σ2). This holds
however the distribution of x1, . . . , xn appeared in the first place, as long as
they are independent and identically distributed. This, however, is the crux
of this explanation.

While some phenomena we want to describe using probability density
functions might be the result of independent and identically distributed sum-
mands, many are influenced by different factors, all of which have their own
distinct distributions. Take for example a person’s height. There is their po-
tential for growth determined by their genetic make-up, where also different
genes play a role. This is the nature part. Next is the nurture part. Nutri-
tion, pollution, diseases, etc. all are factors. All these are not independent and
identically distributed, but height is still normally distributed.

Another explanation involves the entropy of the probability density f(x)
defined as

−
∫ ∞
−∞

f(x) log f(x)dx,

where f(x) log f(x) is zero, wherever f(x) = 0. A change of base for the log-
arithm results in scaling of the entropy. As long as the same base is used
throughout, entropies of different distributions can be compared. Information
theorists prefer to use base 2 in line with bits. Since 0 ≤ f(x) ≤ 1, the en-
tropy is non-negative. Entropy is often interpreted as a measure of disorder or
randomness or lack of information. The larger the entropy, the more disorder,
the less information. For example, if there is only one possible value for x with
probability 1, then log f(x) = 0 there and the integrand is zero everywhere.
Hence the entropy is zero. The information value is perfect, since the outcome
is determined. Many physical systems strive to maximize the entropy over
time. For a given mean µ and variance σ2, f(x) = N (x|µ, σ2) maximizes the
entropy. So this choice mirrors a natural process. Also, it is wise to choose a
distribution with the least information, if nothing else is known.

To show that the normal distribution integrates to one, we consider∫ ∞
−∞

1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
dx.

Letting x − µ = σy, we have dx = σdy. The range of integration does not
change with this change of variables. Thus we arrive at

1√
2π

∫ ∞
−∞

exp

(
−y

2

2

)
dy.
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Figure 2.3: Approximate percentages of data falling within ranges
determined by σ.

Next we consider the square of the integral:(
1√
2π

∫ ∞
−∞

exp

(
−y

2

2

)
dy

)2

=
1

2π

(∫ ∞
−∞

exp

(
−y

2

2

)
dy

)
×(∫ ∞

−∞
exp

(
−z

2

2

)
dz

)
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

(
−y

2 + z2

2

)
dydz.

(2.5)

Changing to polar coordinates, y = r cos θ, z = r sin θ and dydz = rdrdθ,
gives

1

2π

∫ 2π

0

∫ ∞
0

exp

(
−r2(cos2 θ + sin2 θ)

2

)
rdrdθ =

1

2π

∫ 2π

0

∫ ∞
0

r exp

(
−r2

2

)
drdθ,

(2.6)

where we used cos2 θ + sin2 θ = 1. The integrand is independent of θ. Thus
the integral with respect to θ evaluates to 2π, the length of the interval, which
cancels with the denominator. The integrand is the derivative of− exp

(
−r2/2

)
with respect to r which evaluates to 0 at the upper limit ∞ and −1 at the
lower limit 0 which we subtract. Hence the integral of the normal distribution
is one as required.

The standard deviation entered mainstream news in 2012, when the dis-
covery of the Higgs boson was announced at a significance of five sigma. This
means that the data observed in the particle colliders did not fall within five
standard deviations to the left or right of the mean of the distribution de-
scribing the null hypothesis. The null hypothesis assumes that the particle
does not exist. In other words, the data falls in the extremes at the end of the
bell curve. The probability of data that extreme or even more is very low.
Figure 2.3 shows the bell curve and gives the rough percentages of how



Probability Theory � 17

Figure 2.4: The normal cumulative distribution function for various values of
µ and σ.

much data falls into each region. The following table gives more accurate
percentages:

interval expected percentage of data inside interval
(µ− σ, µ+ σ) 68.26895%

(µ− 2σ, µ+ 2σ) 95.44997%
(µ− 3σ, µ+ 3σ) 99.73002%
(µ− 4σ, µ+ 4σ) 99.99367%
(µ− 5σ, µ+ 5σ) 99.99994%

The probability of the observed data (or even more extreme data) occurring
by chance under the null hypothesis is known as the p-value. In the case of five
sigma significance, the probability of data outside this region is 1−0.9999994 =
6 × 10−7. There is a subtlety here, because it is equally likely for data to be
in either the high or low tail of the bell curve. So the probability is halved
to give a p-value of 3 × 10−7 or approximately 1 in 3.5 million. This is not
the probability that the Higgs boson does not exist. It is the probability that
the data would be observed, if it does not exist. The scientific story of the
discovery of the Higgs boson is described in [38].

Setting the level of significance in terms of the standard deviation sigma is
one way. Another way is to set it to an arbitrarily pre-defined threshold value
α, for example α = 0.05, 0.01, 0.005, or 0.001. The chosen value depends on
the field of research. High-energy physics requires a threshold of 3 × 10−3 to
announce there is evidence of a particle, and a threshold of 3× 10−7 to claim
a discovery. This stringent threshold is due to the “look elsewhere effect”. The
probability that I win the lottery is quite small; the probability that some-
body wins the lottery is, however, quite large. So when a lot of experiments
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are conducted and data gathered, it is not unusual to see a few statistical
anomalies.

Associated with any probability density function is its cumulative distri-
bution function (cdf) given by

F (x) =

∫ x

−∞
f(t)dt.

It gives the probability of t falling in the interval (−∞, x). Hence the proba-
bility of t falling into the interval (a, b) can be calculated as F (b)−F (a). The
derivative of the cumulative distribution function satisfies d

dxF (x) = F ′(x) =
f(x) by the Fundamental Theorem of Calculus. The cumulative distribution
functions of the normal distribution for the same values of µ and σ as in Fig-
ure 2.2 are shown in Figure 2.4. All approach one as the argument increases,
since the probability for t falling into the interval (−∞,∞) is one.

The rules of probability also hold for continuous variables and probability
density functions:

sum rule f(x) =

∫ ∞
−∞

f(x, y)dy,

product rule f(x, y) = f(x|y)f(y),

Bayes’ rule f(y|x) =
f(x|y)f(y)

f(x)
.

For a formal derivation of these rules see [13].
When dealing with a random variable, it is useful to know the average

value it takes. This is known as the expectation, mean or first moment of the
probability distribution, and is defined as

E[x] =

∫ ∞
−∞

f(x)xdx.

When x is discrete, integrating over the point masses at the possible values x
can take reduces the expression to a sum,

E[x] =
∑
x

f(x)x.

Equally, it is useful to know how much we can expect the values to differ
from the average. This is the variance or second central moment ,

var[x] = E[(x− E[x])2].

Using the definition for the expectation this becomes

var[x] =

∫ ∞
−∞

(x2 − 2xE[x] + E[x]2)f(x)dx

=

∫ ∞
−∞

x2f(x)dx− 2E[x]

∫ ∞
−∞

x f(x)dx+ E[x]2
∫ ∞
−∞

f(x)dx

= E[x2]− E[x]2,
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since f(x) integrates to one and
∫∞
−∞ x f(x)dx = E[x]. This formula also holds

for discrete probability distributions with point masses.
We see that this formula involves the expectation of x2. This is known as

the second raw or crude moment . The ith raw (crude) moment is defined as∫ ∞
−∞

f(x)xidx,

while the ith central moment is given by∫ ∞
−∞

f(x)(x− E[x])idx.

The normalized ith central moment is the ith central moment divided by
var[x]i. The normalized central moments are invariant to any linear change
of the random variable x. This means if y = ax + b, the normalized central
moments of x and y are the same. The normalized central moments are used
to quantify the shape of a probability density.

The third normalized central moment is known as skewness and measures
the asymmetry around the mean of a probability distribution. If the distribu-
tion is symmetric, the skewness is zero. If more probability mass lies to the
left of the mean, the skewness is negative, and positive, if more probability
mass is to the right of the mean.

The forth normalized central moment is the kurtosis and measures how
heavy tailed the probability distribution is. It is derived from the Greek word
for “arching”. A large value of the kurtosis means that extreme values of the
random variable are more likely, while a small value of kurtosis means outliers
are rare.

The moments can be used to inform the choice of which probability density
function should be chosen for the distribution of a random variable.

More generally, often the random variable itself is not of interest, although
a derivation g(x) of it, which in itself is a random variable, is. In this case,
the expectation and variance are written as E[g] and var[g].

If there are more than one random variable, a subscript is used to indicate
with respect to which variable the expectation is taken. For example, in

Ey[g(x, y)]

the expectation is taken with respect to y, and the result is a function of x.
The expectation with respect to x can then be taken. Since the order does not
matter when integrating, the result is the same if the expectation with respect
to x is taken first and then with respect to y, if x and y are independent, that
is f(x, y) = f(x)f(y).

Returning to the normal distribution, we calculate its expectation (first
moment) as

E[x] =

∫ ∞
−∞

x√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx
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Letting y = x− µ with dy = dx, the range of integration with this change of
variable remains the same,

E[x] =

∫ ∞
−∞

y + µ√
2πσ

exp

(
− y2

2σ2

)
dy

=

∫ ∞
−∞

y√
2πσ

exp

(
− y2

2σ2

)
dy + µ

∫ ∞
−∞

1√
2πσ

exp

(
− y2

2σ2

)
dy.

The integrand of the first integral is an odd function, that is f(−y) = −f(y).
Integrals of odd functions over an interval symmetric about the origin evaluate
to zero. As we have seen above, the second integral evaluates to one. Hence
for the normal distribution E[x] = µ.

For the variance we calculate

var[x] =

∫ ∞
−∞

(x− µ)2

√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx.

Again letting y = x− µ as before, we have

var[x] =

∫ ∞
−∞

y2

√
2πσ

exp

(
− y2

2σ2

)
dy.

This integral can be calculated by integration by parts which can be thought
of as the inverse of the product rule of differentiation which is

d(uv)

dy
=
du

dy
v + u

dv

dy
.

Integration by parts is then∫ b

a

udv = [uv]
b
a −

∫ b

a

vdu.

Let u = y and dv = y exp
(
− y2

2σ2

)
dy, then du = dy and v = −σ2 exp

(
− y2

2σ2

)
.

With this we get

var[x] =

[
−σ2y√

2πσ
exp

(
− y2

2σ2

)]∞
−∞
−
∫ ∞
−∞

−σ2

√
2πσ

exp

(
− y2

2σ2

)
dy.

The first expression is dominated by the exponential as the argument tends
to ±∞ and thus is zero. The integrand is −σ2 times the probability density
function of a normal distribution with mean 0 and variance σ2. The integral
of a probability density function from −∞ to ∞ is one. Thus for the normal
distribution var[x] = σ2.

As for the third central moment, this is zero for the normal distribution,
since the integrand again becomes an odd function. This means the skewness
is also zero.
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Figure 2.5: The discrete uniform probability mass function and its
cumulative distribution function.

The forth central moment of the normal distribution can be calculated by
integration by parts similar to the calculation of the variance. It is given by
3σ4. Hence the kurtosis of the normal distribution is 3. Often the kurtosis of
other distributions is compared to this value. If it is larger the distribution is
known as leptokurtic. If it is smaller, it is platykurtic. Both present their own
difficulties, if an underlying normal distribution is assumed, but the data does
not support this. In the case of leptokurtic distributions, the risk of extreme
events is underestimated and is not sufficiently prepared for. Examples for
this can be found in the history of financial theory. Extreme events are rare in
platykurtic distributions. However, if these events are catastrophic, dismissing
their possibility can be literally fatal.

2.3 Examples of Discrete Probability Mass Functions
In the following we give a short overview of commonly used probability dis-
tributions starting with discrete variables. We have already encountered the
uniform distribution in the experiments of flipping a coin or rolling a die. All
outcomes are equally likely as long as the die and coin are fair. If there are K
possible outcomes, the probability for each is 1/K. Figure 2.5 illustrates the
discrete uniform probability density as point masses. The cumulative proba-
bility density function is a stair function where the left point of each step is
included, but the end point is not.

Next we consider binary variables used when experiments can only have
one of two outcomes, e.g yes or no, true or false, head or tail, 0 or 1. These
are also known as Boolean variables. For simplicity we use the outcomes 0
and 1. The probability of x = 1 is denoted by 0 ≤ µ ≤ 1. The probability of
x = 0 is then 1 − µ. This distribution is known as the Bernoulli distribution
x ∼ Bern(µ). Its probability density is given by

Bern(x|µ) = µx(1− µ)1−x.
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Figure 2.6: The Bernoulli probability mass function and its cumulative
distribution function.

This formula might look daunting, but remember that it is only evaluated
for x = 0 or 1, since no other outcomes are possible, and thus

Bern(0|µ) = µ0(1− µ)1 = 1− µ and Bern(1|µ) = µ1(1− µ)0 = µ.

In Figure 2.6 the probability mass function is two point masses, while the
cumulative distribution function is a simple step function.

The expectation and the second crude moment of the Bernoulli distribution
are given by

E[x] = µ× 1 + (1− µ)× 0 = µ,

E[x2] = µ× 12 + (1− µ)× 02 = µ.

From this we can calculate the variance

var[x] = E[x2]− E[x]2 = µ− µ2 = µ(1− µ).

The Bernoulli distribution describes an experiment where the outcome
is binary. We can now consider the question of how many successes
(x = 1) are in a set of N experiments. When considering m successes, there
are N possibilities for the first success, N − 1 for the second, and so on until
there are N −m + 1 possibilities for the last success. The resulting number
N(N − 1) · · · (N −m+ 1) is the number of m-permutations. It gives the num-
ber of possibilities of choosing an ordered set of size m from a set of size N .
However, the ordering in our case is unimportant, and we therefore divide by
the number of possible permutations of size m which is given by the factorial
m! = m(m− 1) · · · 1. The resulting number of possibilities to achieve m times
x = 1 in N experiments is given by the binomial coefficient ,(

N

m

)
=
N(N − 1) · · · (N −m+ 1)

m(m− 1) · · · 1
.

It is read as “N choose m” and is the coefficient of the am term in the expan-
sion of (1 + a)N .
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Figure 2.7: The binomial probability mass function and its cumulative
distribution function for N = 20 and µ = 0.3 (top row), µ = 0.5 (middle

row), and µ = 0.8 (bottom row).

This leads to the binomial distribution m ∼ Bin(N,µ) with probability
mass function

Bin(m|N,µ) =

(
N

m

)
µm(1− µ)N−m, (2.7)

which depends on the number of experiments N and the probability of success
µ. Figure 2.7 shows the binomial probability mass function and its cumulative
distribution function for µ = 0.3, 0.5 and 0.8. If the probability of x = 1 is
small, the probability of achieving a large number of successes is small. It
increases as µ increases.

The expectation of the binomial distribution is

E[m] = µN,

since we expect the portion of N given by µ to be successful. The variance on
the other hand is

var[m] = µ(1− µ)N.

It is N times the variance of a single experiment.
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Figure 2.8: The geometric probability mass function and its cumulative
distribution function for µ = 0.3 (top row), µ = 0.5 (middle row), and

µ = 0.8 (bottom row).

The other question is, how many attempts m ≥ 1 are necessary to succeed.
This is described by the geometric distribution m ∼ Geo(µ). Its probability
mass function is

Geo(m|µ) = µ(1− µ)m − 1.

Its expectation is

E[m] =
1

µ
.

This means that the smaller µ, the more attempts are necessary to succeed.
The variance on the other hand is given by

var[m] =
1− µ
µ2

.

Sometimes, e.g. in MATLAB, the geometric distribution is defined as the num-
ber of failures m̂ = m− 1 before the first success. In this case, the probability
mass function is µ(1 − µ)m̂ and the expectation is E[m̂] = (1 − µ)/µ, while
the variance remains the same.

Instead of using the probability of success, the rate λ of events occurring
over a certain time interval can be used. It is often given as a positive number,
but does not need to be an integer. It needs to be in the context of a time
interval. Examples for λ are the number of phone calls to a call center per
hour or the number of cars passing a traffic checkpoint per day.
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Figure 2.9: The Poisson probability mass function and its cumulative
distribution function for λ = 1 (top row), λ = 5 (middle row), and λ = 10

(bottom row).

The Poisson distribution m ∼ Po(λ) gives the probability of m events
occurring in the given time interval. The probability mass function is

Po(m|λ) =
λm exp(−λ)

m!
. (2.8)

Both its expectation and variance are equal to λ,

E[m] = var[m] = λ.

Of course, we are not just interested in experiments where the outcome is
binary, but where the outcome can be any of K possible, mutually distinct
outcomes. For example, the roll of a die would be one such experiment. The
outcomes could be denoted {1, 2, 3, 4, 5, 6} or {�,�,�,�,	,
}. However,
it is convention to standardize the representation by using a 1-of-K representa-
tion. That is the random variable x describing the outcome is a K-dimensional
vector, where exactly one element xk equals one and all the others are zero.
For example, if in the die experiment x4 = 1, then x = (0, 0, 0, 1, 0, 0)T and it
means that a four was rolled. The transpose T is used, since all vector vari-
ables are column vectors throughout, but it is easier to write row vectors. Any
experiments of a categorical nature can be described in this way.

The probability to get the kth possible result, which means xk = 1, is de-
noted by µk. All probabilities are summarized in the vector µ = (µ1, . . . , µK)T .
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Figure 2.10: The categorical probability mass function and its cumulative
distribution function for µ = (1/3, 1/2, 1/6)T .

The probabilities of all outcomes must sum to one,

K∑
k=1

µk = 1.

This defines the categorical distribution denoted x ∼ Cat(µ) with probability
density function

Cat(x|µ) = p(xk = 1|µ) =
K∏
k=1

µxk

k . (2.9)

Note that in the product all factors are 1 apart from one, since in x all entries
are 0 apart from one, which is 1. The categorical distribution can be viewed
as a generalization of the Bernoulli distribution. The uniform distribution is
a special case of it, as µ1 = · · · = µk = 1/K.

Figure 2.10 illustrates the probability mass function of a categorical dis-
tribution where µ = (1/3, 1/2, 1/6)T . The cumulative distribution function is
an irregular stair function. Both are drawn with regards to the indices in x. If
the possible outcomes are ordered differently in x, the graphs will be different.

The expectation of the categorical distribution is calculated as

E[x] =
∑
x

Cat(x|µ)x = µ,

where the sum is over all possible values x can take. Note that here we have
made the step into a multivariate distribution, since x is a vector, though one
where all elements are zero apart from one, which is one.

Recall that the variance of a univariate distribution of the random vari-
able x is given by var[x] = E[(x − E[x])2] = E[x2] − E[x]2. The multivariate
equivalent is

var[x] = E[(x− E[x])(x− E[x])T ] = E[xxT ]− E[x]E[x]T . (2.10)
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The result is a matrix, where the kth diagonal entry gives how much xk
varies around the mean µk. The off-diagonal entries measure how much dif-
ferent components of x influence each other.

Now, x is a 1-of-K representation. If xk = 1 in x, then xxT is a matrix
with zero entries everywhere apart from the kth diagonal element which has
the entry 1. From this

var[x] =
∑
x

Cat(x|µ)xxT − µµT = diag(µ)− µµT

follows, where diag(µ) denotes the matrix, where the off-diagonal elements
are zero and the diagonal is given by the entries of µ.

Note that the kth diagonal entry of var[x] is µk − µ2
k = µk(1 − µk). This

is the variance of a Bernoulli distribution, where success is defined as the
outcome being xk = 1 and failure as xk = 0. The (k, l) off-diagonal entry is
known as the covariance cov[xk, xl] between kth and lth element and is −µkµl.
This shows that the kth and lth component influence each other in a negative
way, since if one is 1, the other has to be 0.

As with binary variables, we can also ask for the distribution of different
combinations of outcomes, when the experiment is repeated N times. Each
experiment gives a result vector xn, n = 1, . . . , N . Let mk be the number of
times the outcome of the experiment is xnk = 1. Since xnk is zero otherwise,
we have

mk =

N∑
n=1

xnk.

We are interested in the distribution of the tuple m = (m1, . . . ,mK)T of
length K. It is actually of length K−1, since the numbers mk are constrained
by

N∑
k=1

mk = N, (2.11)

and hence mK is given by mK = N −m1− . . .−mK−1. The number of possi-
bilities to generate a particular tuple is given by the multinomial coefficient ,(

N

m1 · · ·mK

)
=

N !

m1! · · ·mK !
.

Combinatorially, it is the number of ways one can put N balls into K bins
where bin 1 contains m1 balls, bin 2 contains m2 objects and so on. Here 0! is
defined to be one. The binomial coefficient is the multinomial coefficient with
m1 = m and m2 = N −m.

The probability density function of the multinomial distribution m ∼
Mult(N,µ) is then

Mult(m|N,µ) =

(
N

m1 · · ·mK

) K∏
k=1

µmk

k . (2.12)
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Figure 2.11: The multinomial probability mass function for N = 5 and
µ = (1/3, 1/2, 1/6)T .

Figure 2.11 shows the probability mass function of the multinomial distribu-
tion for N = 5 and µ = (1/3, 1/2, 1/6)T as a bar graph. The graph only plots
against m1 and m2, since m3 = N −m1−m2 is given implicitly. On the right
hand side we see that the probability mass is zero, whenever m1 +m2 > 5 as
required by the constraint given in 2.11. After zero, the smallest probability is
for the tuple (0, 0, 5)T and is 1/65. The largest probability occurs three times
for the tuples (2, 2, 1)T , (2, 3, 0)T and (1, 3, 1)T , since

5!

2! 2! 1!

(
1

3

)2(
1

2

)2(
1

6

)1

=
5!

2! 3! 0!

(
1

3

)2(
1

2

)3(
1

6

)0

=
5!

1! 3! 1!

(
1

3

)1(
1

2

)3(
1

6

)1

=
5

62
.

The expectation of the binomial distribution is

E[m] = Nµ,

since we expect the µkN experiments to result in the outcome xk = 1. The
variance on the other hand is

var[m] = Ndiag(µ)− µµT .

It is N times the variance of a single experiment, which is described by the
categorical distribution.
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Figure 2.12: The uniform probability density function and its cumulative
distribution function.

2.4 Examples of Continuous Probability Density
Functions

As with the discrete distributions, the simplest continuous probability density
function is the uniform distribution. The random variable x can take any
value in the interval (a, b) with the same probability, x ∼ Unif(a, b). Since the
probability has to integrate to one over the interval, it has to be 1/(b − a).
The uniform density function is given by

Unif(x|a, b) =


1

b− a
for a < x < b

0 otherwise

,

while the cumulative distribution function is
0 for x < a

x− a
b− a

for a ≤ x ≤ b

1 for x > b

.

Figure 2.12 gives a graphical illustration. The continuous uniform density
function can be viewed as the limit of its discrete equivalent, when the set of
all possible results includes every point in the interval (a, b).

Its expectation is given by

E[x] =

∫ b

a

1

b− a
x dx =

[
x2

2(b− a)

]b
a

=
b2 − a2

2(b− a)
=
a+ b

2
.

The variance on the other hand is

var[x]=

∫ b

a

1

b− a

(
x− a+ b

2

)2

dx=

[
1

3(b− a)

(
x− a+ b

2

)3
]b
a

=
1

12
(b− a)2.
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Figure 2.13: The log-normal probability density function for various values of
µ and σ.

We already encountered the univariate normal distribution in Equation
(2.4) and its probability density function and cumulative distribution function
are depicted in Figures 2.2 and 2.4 respectively. Its multivariate counterpart
has the probability density function

f(x) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where | · | denotes the determinant and ·−1 is the inverse of the matrix Σ. The
mean of the multivariate normal distribution is µ, while its variance is Σ.

A random variable x, whose logarithm is normally distributed, that is
y = log x has a normal distribution, has a log-normal distribution, also known
as the Galton distribution. Likewise, since x = exp y, the exponential of a nor-
mally distributed variable is log-normally distributed. Since the exponential
is always positive, x will only take positive values.

Many growth processes are described by percentual changes. For example
the annual growth rate of the global human population varies around 1.1%.
Let z1 be the actual growth rate in year 1, z2 in year 2, and so on. If a is the
population size at the beginning, then after N years, the population will have
size

x = a
N∏
n=1

zn.
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Taking the logarithm results in

y = log a+
N∑
n=1

log zn.

Hence the change in the logarithm of the population size is a sum of inde-
pendent and identically distributed variables, the log zn. By the central limit
theorem, such a sum tends to be normally distributed, irrespective of the
distribution of log zn. The addition of log a only shifts the mean of this distri-
bution. Hence the logarithm of the population size y is normally distributed.
Thus the population size x is log-normally distributed. Instead of letting the
numbers of years grow, the limit can also be achieved by considering smaller
and smaller time intervals. It needs to be noted, though, that then the vari-
ance in the percentual growth increases, since longer time intervals have an
averaging effect.

Growth plays a major role in areas such as biology, medicine and eco-
nomics. There are many other examples, where a log-normal distribution is
used. For example the dwell time on online content and the length of comments
online follow a log-normal distribution, as does the length of chess games. The
Black-Scholes model for option pricing assumed that the returns of a stock are
log-normally distributed. However, this assumption is flawed, because extreme
price changes such as in the event of a stock market crash need a distribution
with a larger kurtosis. In practice, such extreme events are more likely than
the log-normal distribution indicates.

If µ and σ2 are the mean and variance of the associated normal distribu-
tion, the log-normal density function for x ∼ logN (µ, σ2) is given by

logN (x|µ, σ2) =
1

x
√

2πσ
exp

(
− (log x− µ)2

2σ2

)
.

It is shown in Figure 2.13, while Figure 2.14 depicts the cumulative distribu-
tion function for various values of µ and σ. For µ = 0 and σ = 2, the density
function is peaked very close to zero. It is not visible that it is zero at the
origin.

The expectation is calculated as

E[x] =

∫ ∞
0

x

x
√

2πσ
exp

(
− (log x− µ)2

2σ2

)
dx.

The factor of x cancels with the denominator in the density function. We let
y = log x or equivalently x = exp y. With this choice, dx = exp y dy and the
range of integration changes to (−∞,∞),

E[x] =

∫ ∞
−∞

1√
2πσ

exp

(
− (y − µ)2

2σ2

)
exp y dy

=

∫ ∞
−∞

1√
2πσ

exp

(
−(y − µ)2 + 2σ2y

2σ2

)
dy.
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Figure 2.14: The log-normal cumulative distribution function for various
values of µ and σ.

We now use a technique called completion of squares:

−(y − µ)2 + 2σ2y = −y2 + 2yµ− µ2 + 2σ2µ = −y2 + 2(µ+ σ2)y − µ2

= −(y − (µ+ σ2))2 + (µ+ σ2)2 − µ2

= −(y − (µ+ σ2))2 + 2µσ2 + σ4.

With this, the expectation becomes

E[x] =

∫ ∞
−∞

1√
2πσ

exp

(
−(y − (µ+ σ2))2 + 2µσ2 + σ4

2σ2

)
dy

= exp

(
µ+

σ2

2

)∫ ∞
−∞

1√
2πσ

exp

(
−(y − (µ+ σ2))2

2σ2

)
dy.

The integral evaluates to 1, since the integrand is the normal probability
density function with mean µ+ σ2 and variance σ2. Thus the expectation is

E[x] = exp

(
µ+

σ2

2

)
.

The variance can be similarly calculated and is

var[x] =
(
exp(σ2)− 1

)
exp

(
2µ+ σ2

)
.
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Figure 2.15: The log-normal density function for expectation E[x] = 100 and
variance var[x] = 1 on the left and the normal density function with the

same expectation and variance on the right.

If the variance var[x] and expectation E[x] of the log-normal distribution
are known, the mean and variance of the associated normal distribution can
be calculated as

µ = log

(
E[x]2√

var[x] + E[x]2

)
σ2 = log

(
1 +

var[x]

E[x]2

)
.

(2.13)

We already gave one word of caution, when using the log-normal distri-
bution. In general, assuming an underlying distribution, is a very strong as-
sumption, which needs to be well justified and communicated, in case new
data makes this assumption invalid. Figure 2.15 shows the log-normal density
function for expectation E[x] = 100 and variance var[x] = 1 on the left and
the normal density function with the same expectation and variance on the
right. They are essentially indistinguishable.

The log-normal probability density function has its only maximum at
exp(µ− σ2). This is also known as its mode. Both the log-normal and normal
distribution are unimodal , since they only have one maximum. If a probability
density function has several local maxima, which can take different values, it
is called multimodal . For the normal distribution the mode coincides with the
mean. The log-normal probability density function is looking more and more
like the normal one, the closer the mode gets to the expectation, that is the
mean. Using Equations (2.13), the mode can be calculated as

exp(µ− σ2) = exp

log

 E[x]√
1 + var[x]

E[x]2

− log

(
1 +

var[x]

E[x]2

)
=

(
1 +

var[x]

E[x]2

)−3/2

E[x].
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Figure 2.16: The exponential probability density function for various values
of β = 1/λ in accordance with Figure 2.9 of the Poisson distribution.

The factor by which the mode differs from the expectation is very close to 1, if
the variance is much smaller than the expectation. In our case with E[x] = 100
and var[x] = 1, the factor is approximately 0.99985.

It is important that underlying assumptions are clear and documented as
the following example illustrates. In 2G mobile phone networks, each mobile
is assigned its own frequency, and served by an antenna. It might hop to
another frequency, if it travels away from the coverage area of this antenna and
into the coverage area of another antenna. It might also get a new frequency
from another antenna further away, if the antenna which it is connected to
currently needs to serve more mobiles. To assess the coverage of the mobile
network of a large area, mobile phone usage would be simulated in this area,
including handovers between antennae. When the simulations were first coded,
programmers did not include code paths for cases, which were possible, but
improbable. With increased mobile phone usage, the probabilities changed.
Inserting these now necessary code paths into large often undocumented pieces
of code caused some problems. The moral of the story is that all cases, even
the improbable ones, need to be coded and documented. It is even wise to
include the impossible ones, because somewhere someone will change the code
and they become possible.

The exponential distribution, x ∼ Exp(β), has probability density function

Exp(x|β) =


1

β
exp

(
−x
β

)
for x ≥ 0,

0 for x < 0,
(2.14)
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Figure 2.17: The exponential cumulative distribution function for various
values of β = 1/λ in accordance with Figure 2.9 of the Poisson distribution.

which is parametrized by the scale parameter β. Its inverse, λ = 1/β, is the
rate parameter . It is related to the Poisson distribution defined in Equation
(2.8) with rate parameter λ = 1/β in that it describes the time between
occurrences of events described by the Poisson distribution.

The cumulative distribution function is zero for x < 0 and for x ≥ 0 is
given by

F (x) = p(t ≤ x) =

∫ x

−∞
Exp(t|β)dt =

∫ x

0

1

β
exp

(
− t
β

)
dt = 1− exp

(
−x
β

)
.

It gives the probability that the event has happened in this time frame. On

the other hand, 1 − F (x) = exp
(
− x
β

)
= p(t > x) is the probability that the

event has not occurred yet.
Examples of the probability density function and the cumulative distri-

bution function for various values of β are given in Figures 2.16 and 2.17
respectively.

The probability that the waiting time is x+y given that already x amount
of time has passed is by the product rule

p(t > x+ y|t > x)p(t > x) = p(t > x+ y and t > x) = p(t > x+ y).

Solving for p(t > x+ y|t > x), we arrive at

p(t > x+ y|t > x) =
p(t > x+ y)

p(t > x)
=

exp(−x+y
β )

exp(− x
β )

= exp

(
− y
β

)
= p(t > y).
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Figure 2.18: The Laplace probability density function for various values of µ
and b, chosen such that the mean and variance are the same as in Figure 2.2.

In practical terms, this means that the time one has to wait for an event is
not influenced at all by the time spent waiting so far. This means the expo-
nential distribution is memoryless, a property it shares with the geometric
distribution. The exponential distribution is the continuous equivalent of the
geometric distribution which describes the number of attempts of a binary
experiment to succeed. Instead of thinking about failures and successes, it is
more convenient to think about a change of state. λ gives the rate of change
over a unit time interval, and the exponential distribution describes the prob-
ability of how much time passes until the states changes. Constant rate of
change is a crucial assumption not often satisfied by real-world processes. For
example, the rate of emergency calls increases on Friday and Saturday nights
and staffing levels need to be adjusted compared to other times. If the rate
is constant, it is used in queuing theory. The exponential distribution is in-
appropriate to model the overall lifetime of organisms or technical devices,
where the event of death or failure depends on the lifetime so far.

Using integration by parts, the expectation is given by

E[x] =

∫ ∞
0

x

β
exp

(
−x
β

)
dx

=

[
x

β

(
−β exp

(
−x
β

))]∞
0

+

∫ ∞
0

exp

(
−x
β

)
dx

=

[
−β exp

(
−x
β

)]∞
0

= β.

The variance can be calculated similarly and is

var[x] = β2.
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Figure 2.19: The Laplace cumulative distribution function for various values
of µ and b, chosen such that the mean and variance are the same as in

Figure 2.2.

If the positive part of exponential probability density function is mirrored
across the vertical axis at zero and shifted and scaled such that it integrates to
one, it becomes the Laplace probability density function as seen in Figure 2.18.
The probability density function of the Laplace distribution x ∼ Laplace(µ, b)
is given by

Laplace(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
,

where µ is known as the location parameter and b is a scale parameter called
the diversity.

Its expectation is E[x] = µ and the variance is var[x] = 2b2. Examples of
the cumulative distribution function are shown in Figure 2.19. They can be
compared to Figures 2.2 and 2.4 illustrating the normal distribution, since the
mean is the same and b is chosen such that the variance is the same as well.

Next, we consider a probability density known as the beta distribution,
x ∼ Beta(α, β). It is only defined on the interval (0, 1) and its probability
density function is

Beta(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

where α and β are real numbers and positive. The function Γ(z) is known as
the gamma function and defined as

Γ(z) =

∫ ∞
0

xz−1 exp(−x)dx.
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Figure 2.20: The beta probability density function for various values of β
and α.

Using integration by parts, we can calculate

Γ(z + 1) =

∫ ∞
0

xz exp(−x)dx =
[
− xz exp(−x)

]∞
0

+

∫ ∞
0

z xz−1 exp(−x)dx.

The first term vanishes, since at zero we have a positive power of zero, while
when x tends to infinity, exp(−x) tends to zero quicker than any power of x.
Therefore,

Γ(z + 1) = z

∫ ∞
0

xz−1 exp(−x)dx = zΓ(z), (2.15)

and it is regarded as an extension of the factorial to real, positive num-
bers. Indeed, if z = n is an integer, then using the above relation repeatedly
leads to

Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 1) = n(n− 1) · · · 1Γ(1) = n!,

since Γ(1) = 1.
The fraction

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

is known as the beta function, giving the distribution its name. It can be
regarded as an extension to the inverse of the binomial coefficient. Indeed, if
α = m and β = n are integers, then

1

B(m,n)
=

(m+ n)!

m!n!
=

(
m+ n

m

)
=

(
m+ n

n

)
.
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With this in mind, we see that the beta density function has a functional form
similar to the probability density function of the binomial distribution in (2.7).
The main difference however is that in the binomial distribution the random
variable is the number of successes m, while in the beta distribution the ran-
dom variable is x. It takes the place of the probability of success. Because of
this, the beta distribution is often seen as a distribution over probabilities or
proportions. It gives the probability of seeing a certain probability x. We will
see in Section 2.6 how we can use the functional similarity to our advantage.

Figure 2.20 shows the beta density function for different choices of α and
β which encompasses many different shapes. For α = β = 1, the beta distri-
bution becomes the uniform distribution. When α or β is less than one, the
density function will go to infinity at the corresponding edge of the interval.

The expectation is calculated as

E[x] =

∫ 1

0

xBeta(x|α, β)dx =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα(1− x)β−1dx

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ 1)Γ(β)

Γ(α+ 1 + β)

∫ 1

0

Beta(x|α+ 1, β)dx

=
α

α+ β
,

where we used the property given in 2.15 of the gamma function and the fact
that the integral of any probability density function over its range is one. The
variance is given by

var[x] =
αβ

(α+ β)2(α+ β + 1)
.

When α = β, the expectation is always 1/2, while the variance is (4(2α+1))−1.
Therefore, the graphs of the probability density function for these values are
symmetric about 1/2, while the graphs of the cumulative distribution function
in Figure 2.21 pass through (1/2, 1/2).

The beta distribution can be viewed as the distribution over the probabili-
ties of experiments with binary outcomes, where x is the probability of success
and 1−x the probability of failure. If x has the distribution Beta(x|α, β), then
1− x has the distribution Beta(1− x|β, α).

Just as we moved from the Bernoulli distribution of binary variables to
the categorical distribution for experiments with multiple, mutually distinct
outcomes, we extend the beta distribution to a distribution of K probabilities
0 ≤ xk ≤ 1, k = 1, . . . ,K, which have to sum to one,

K∑
k=1

xk = 1.

The probabilities are gathered in the random variable vector x =
(x1, . . . , xK)T . Because of the constraints x can only lie in a subset of the
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Figure 2.21: The beta cumulative distribution function for various values of
β and α.

space of vectors of length K. For K = 3, this is illustrated in Figure 2.22. x
on lies on the face of the shown triangle. The generalization to higher dimen-
sions is known as a simplex .

The distribution is known as the Dirichlet distribution for x ∼ Dir(α) and
the probability density function is given by

Dir(x|α) =
Γ(α1 + · · ·+ αK)

Γ(α1) · · ·Γ(αK)

K∏
k=1

xαk−1
k . (2.16)

The parameters α = (α1, . . . , αK)T are known as concentration parameters.
They are all positive. When K = 2, the Dirichlet distribution is the beta
distribution.

Figure 2.23 shows the three dimensional Dirichlet probability density func-
tion for various values of α on the simplex. The values the density function
takes are indicated by the colour.

For α1 = · · · = αK the distribution is known as symmetric Dirichlet
distribution or flat Dirichlet distribution. The latter naming is misleading,
since it is only flat when all concentration parameters take the value 1. The
Dirichlet distribution then becomes the uniform distribution over the simplex.
In this case,

Dir(x|α) =
Γ(K)

Γ(1) · · ·Γ(1)

K∏
k=1

x0
k = (K − 1)!,

which is the inverse of the volume of the simplex. For K = 3, the triangle has
area 1/2.
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Figure 2.22: Simplex of the possible location of x due to the constraints on
its elements.

We see in Figure 2.23 that for α = (5, 5, 5)T , the probability mass is
concentrated in the centre, while for α = (5, 5, 2)T , it is concentrated towards
the edge opposite of the corner with the smallest concentration parameter.
For α = (5, 2, 2)T , the probability mass is concentrated at the corner with the
largest concentration parameter.

When one of the concentration parameters αk is less than one, then the
probability density function will tend to infinity at the corresponding edge
xk = 0. In Figure 2.23, this is visible for α = (0.8, 2, 2)T , but hardly visible
for α = (0.8, 0.8, 2)T .

Listing 2.1 provides an implementation calculating the probability density
function of the Dirichlet distribution.

We calculate the expectation of the components of x individually. Let

α0 =
K∑
k=1

αk.

Note that the integral is over the simplex in which x lies.

E[xj ] =

∫
xj Dir(x|α)dx =

Γ(α0)

Γ(α1) · · ·Γ(αK)

∫
x
αj

j

K∏
k=1
k 6=i

xαk−1
k dx

=
Γ(α0)

Γ(α1) · · ·Γ(αK)

Γ(α1) · · ·Γ(αj−1)Γ(αj + 1)Γ(αj+1) · · ·Γ(αK)

Γ(α0 + 1)∫
Dir(x|α1, . . . , αj−1, αj + 1, αj+1, . . . , αK)dx

=
αj
α0
,

where we again used the property given in Equation 2.15 of the gamma func-
tion and the fact that the integral of any probability density function over its
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function y = dirpdf(x,a)
% Dirichlet probability density function.
% y = dirpdf(x,a) returns the Dirichlet probability density
% function with concentration parameters in the row vector a
% at each row of x. x must have the same number of columns
% as a or one less. y is a column vector with the same number
% of elements as rows in x.
%

if nargin 6= 2
error('Exactly two input arguments are required.');

end

[ra,ca] = size(a);
[rx,cx] = size(x);

if ra 6=1
error('Second argument needs to be a row vector.');

end

if any(a<0)
error('Second argument needs to be positive.');

end

if ca == cx+1
% create last column of x
x(:,cx+1) = 1 − sum(x,2);
cx = cx+1;

end

if ca6=cx
error('Number of columns mismatch');

end

% find rows of x which do not sum to 1 or have elements out of bounds
xOut = sum(x,2)>1 | any(x<0|x>1,2);
xIn = ¬xOut;

% Initialize y to zero.
y = zeros(rx,1);

% Since the gamma function increases quickly it is safer to use its
% logarithm and the implementation avoiding underflow or overflow.
y(xIn) = prod(x(xIn,:).ˆ(a(1,:)−1),2).*exp(gammaln(sum(a(1,:),2))...

−sum(gammaln(a(1,:)),2));
y(xOut) = NaN;

Listing 2.1: Dirichlet probability density function.
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Figure 2.23: Dirichlet probability density function for various values of α.

range is one. The variance is given by

var[xj ] =
αj(α0 − αj)
α2

0(α0 + 1)
,

while the covariance for j 6= k is

cov[xj , xk] =
−αjαk

α2
0(α0 + 1)

.

As we have seen before with the categorical distribution, the influence is neg-
ative, since, if one component increases, another one has to decrease due to
the constraints on x.

Looking again at Figure 2.23, we see that the relative size of the concentra-
tion parameters αk to their sum α0 determines where most of the probability
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mass is concentrated within the simplex. Therefore, in some literature, the
parameters of the Dirichlet distribution are given as αµ, where

α = α0 =
K∑
k=1

αk,

µ =

(
α1

α0
, . . . ,

αK
α0

)T
.

(2.17)

In this case, α is known as the (single) concentration parameter , while µ is
the base distribution. It is also the expectation of the distribution and satisfies
the constraint

K∑
k=1

µk = 1.

With this notation,

var[xj ] =
1

α+ 1
µj(1− µj),

cov[xj , xk] =
1

α+ 1
µjµk.

We have already seen that, if α = 1, the Dirichlet distribution is the uni-
form distribution. This means all distributions x are equally likely. If α
tends to infinity, then only distributions which are themselves nearly uni-
form distributions become likely. The Dirichlet probability density func-
tion becomes infinitely peaked around the uniform distribution given by
x = (1/K, . . . , 1/K)T . In Figure 2.23, α0 = α is largest for α = (5, 5, 5)T and
the probability mass is concentrated around (1/3, 1/3, 1/3), which describes
the uniform distribution for three possible outcomes.

If α tends to zero, let µk be the component which is largest, i.e. µk > µj
for all j 6= k. Then the Dirichlet distribution tends to be peaked at this corner
of the simplex. If there are several components with the same largest value, it
tends to peaks at these corners, while it is zero everywhere else.

Both the beta distribution and the Dirichlet distribution can be illustrated
by the Pólya urn model. Imagine an urn which contains balls of K different
colours. For the beta distribution, these are two colours. Initially the urn
contains α1 balls of colour 1, α2 balls of colour 2, and so on. As given in
Equation 2.17, the total number of balls is the concentration α and the initial
proportions are given by the base distribution µ.

Now, each time a ball is drawn from the urn and replaced, but also another
ball of the same colour is added, until the urn containsN balls. Since the colour
drawn is random, the final number of balls of each colour is a random variable.
However, it is influenced by the initial proportion of balls. If initially there are
only balls of one colour, then the outcome is determined, because then the urn
will continue to contain only balls of one colour. If there are disproportionally
more balls of one colour, we would expect there also to be more balls of that
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function y = polya(alpha,N)
% Polya urn simulation function
% alpha is a vector containing the initial number of balls of
% each colour. The number of colours is the length of alpha.
% After N −sum(alpha) draws, y contains the final number of
% balls of each colour in the urn.
%
if nargin 6= 2

error('Exactly two input arguments are required.');
end

[ra,ca] = size(alpha);
if ra >1 && ca>1

error('First argument needs to be a vector.');
end

y =alpha;

for n=1:N−sum(alpha)
% calculate proportions
p = y/sum(y);
% randomly pick a ball
idx = randsample(length(p),1,true,p);
y(idx) = y(idx)+1;

end

Listing 2.2: Polya urn simulation.

colour in the final set, since it is more likely that this colour is drawn and then
it becomes even more likely, since a ball of that colour is added. This is known
as rich-get-richer . However, this is the expectation. Other proportions are also
possible, just less likely. In fact, as N approaches infinity, the possibilities for
the vector x of proportions of balls follow a Dirichlet distribution Dir(x|α).
This might seem counter-intuitive. Imagine there is initially only one black
and one white ball, K = 2 and α1 = α2 = 1. Then it is equally likely that the
urn contains exactly the same number of black and white balls in the end, as
containing only white balls apart from the initial black ball.

The function in Listing 2.2 simulates the Pólya urn experiment. It was
called 10000 times to generate the histograms in Figure 2.24, where the final
number of balls in the urn was N = 100. The horizontal line is the number
of balls of colour 1, while each bar of the histogram shows how often this
occurred in the 10000 experiments. If the bars are scaled by 100/10000, since
10000 experiments are distributed over 100 bins, the histograms agree well
with the curves in Figure 2.20.
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Figure 2.24: Histograms of Polya urn experiments for various values of
α and β.

2.5 Functions of Continuous Random Variables
If x is a continuous random variable with probability density function fx(x),
then, for a continuous function g, y = g(x) is also a continuous random vari-
able, but what is its probability density function fy(y)? We include subscripts
to be clear which random variable the probability density function and the
cumulative distribution function refer to.

We first restrict our attention to the case, when g is a one-to-one trans-
formation. That is each value of x generates exactly one value of y, and each
value of y is generated by exactly one value of x. Because of this, an inverse
function g−1 exists such that x = g−1(y). Since g is continuous, it has to be
either strictly decreasing or increasing.

Taking the strictly increasing case first, we can derive the probability den-
sity function by using the cumulative distribution functions, Fx and Fy. Given
a value y, then

Fy(y) = p(g(x) ≤ y).
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Now, since g is strictly increasing, if g(x) ≤ y, then x ≤ g−1(y) at the same
time. Hence,

Fy(y) = p(x ≤ f−1(y)) = Fx(f−1(y)) =

∫ g−1(y)

−∞
fx(x)dx.

Using integration by substitution, we get

Fy(y) =

∫ y

−∞
fx(g−1(t))(g−1)′(t)dt.

To find the probability density function, we differentiate with respect to y. By
the Fundamental Theorem of Calculus

fy(y) = fx(g−1(y))(g−1)′(y).

The derivation for the strictly decreasing case starts off in the same way.
However, g(x) is less than or equal to y, if and only if x ≥ g−1(y), due to g
being decreasing. Thus,

Fy(y) = p(x ≥ f−1(y)) = 1− Fx(g−1(y)) = 1−
∫ g−1(y)

−∞
fx(x)dx.

Again, integrating by substitution and differentiating with respect to y gives

fy(y) = −fx(g−1(y))(g−1)′(y).

Since g is decreasing, so is g−1 and thus its derivative is negative. This makes
the expression overall positive.

Since in the strictly increasing case, the derivative of g−1(y) is always
positive, both cases can be summarized as

fy(y) = fx(g−1(y))
∣∣(g−1)′(y)

∣∣ = fx(g−1(y))

∣∣∣∣dxdy
∣∣∣∣ , (2.18)

where the last expression uses a common short-hand notation. This is known
as change-of-variable technique, since in its derivation we change the variable
in the integral. Another name is method of direct transformation.

We illustrate the case, when g is not a one-to-one transformation, by an
example first. Let x follow the standard normal distribution N (0, 1) and let
y = x2. While −∞ < x <∞, we have 0 ≤ y <∞. Each value of y is generated
by two values x1 = −√y and x2 =

√
y. Taking the same approach as before

Fy(y) = p(x2 ≤ y) = p(−√y ≤ x ≤ √y) = Fx(
√
y)− Fx(−√y)

=

∫ √y
−∞

fx(x)dx−
∫ −√y
−∞

fx(x)dx

=

∫ y

−∞
fx(
√
t)

1

2
√
t
dt−

∫ y

−∞
fx(−

√
t)
−1

2
√
t
dt,
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Figure 2.25: The χ2 probability density function for various degrees of
freedom k.

where the last line is the integration by substitution, but different substitutions
are used for each integral. After differentiation with respect to y, we have:

fy(y) =
1

2
√
y

[fx(
√
y) + fx(−√y)] .

Using fx(x) = exp(−x2/2)/
√

2π = fx(−x), we get

fy(y) =
1√
2πy

exp(−y/2).

This is the chi-square(d) distribution, also denoted as χ2-distribution, with
one degree of freedom. More generally, the probability density function of the
χ2-distribution with k degrees of freedom is given by

χ2
k(x) =

1

2k/2Γ(k/2)
xk/2−1 exp(−x/2).

The mean lies at k and the variance is 2k. The previous result above for
k = 1 follows from Γ(1/2) =

√
π. Figures 2.25 and 2.26 give examples of

the probability density function and the cumulative distribution function for
various degrees of freedom.

If g is a many-to-one mapping, that is one value of y might be generated
by several values of x, the general approach to find fy(y) is:

• find all intervals (a1(y), b1(y)), . . . , (aI(y), bI(y)) of x which cause g(x)
to be less than or equal to y (note that ai could be −∞ and bi could be
+∞),
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Figure 2.26: The χ2 cumulative distribution function for various degrees of
freedom k.

• calculate Fy(y) as a sum over these intervals,

Fy(y) =
I∑
i=1

[∫ bi(y)

−∞
fx(x)dx−

∫ ai(y)

−∞
fx(x)dx

]
,

• use integration by substitution,

• differentiate Fy(y) with respect to y.

In the above example, there was only one interval with a1(y) = −√y and
b1(y) =

√
y.

This can be extended to y being a function of multiple random variables
x1, . . . , xK which are summarized as x = (x1, . . . , xK)T and follow a joint
probability distribution fx(x). The first step is to find the region R(y) where
x ∈ R(y) results in g(x) ≤ y. Then calculate

Fy(y) =

∫
R(y)

fx(x)dx,

and differentiate with respect to y. However, this task might not be straight
forward, since no closed solution for the integral involved, which is in several
dimensions, might exist. We illustrate with some examples.

Let y = g(x1, x2) = x1 + x2, where x1 and x2 are independent variables.
Because of independence, things simplify as fx(x) = fx1

(x1)fx2
(x2). The con-

dition g(x1, x2) = x1 + x2 ≤ y can written as x1 ≤ y and x2 ≤ y − x1, where
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Figure 2.27: The shaded area is where x1 + x2 ≤ y for the given y.

all inequalities have to hold at the same time. While the interval of x1 only
depends on y, the interval of x2 depends on both y and x1. The shaded area
in Figure 2.27 shows where x1 and x2 lie to have x1 + x2 ≤ y.

We can now calculate

Fy(y) =

∫ y

0

fx1
(x1)

∫ y−x1

0

fx2
(x2)dx2dx1,

where everything independent of x2 has been taken out of the inner integral.
Firstly, let x1 and x2 lie between 0 and∞ and both follow the exponential

distribution, x1, x2 ∼ Exp(β) with probability density function as defined in
2.14. For simplicity we let β = 1. Then

Fy(y) =

∫ y

0

exp(−x1)

∫ y−x1

0

exp(−x2)dx2dx1

=

∫ y

0

exp(−x1) [− exp(−x2)]
y−x1

0 dx1

=

∫ y

0

exp(−x1) [1− exp(−y + x1)] dx1

=

∫ y

0

exp(−x1)− exp(−y)dx1

= [− exp(−x1)− x1 exp(−y)]
y
0

= [1− exp(−y)− y exp(−y)] .

Differentiating with respect to y gives

fy(y) = exp(−y)− (exp(−y)− y exp(−y)) = y exp(−y).

This probability density function describes the gamma distribution for pa-
rameters α = 2 and β = 1, y ∼ Gamma(α, β). More generally, the probability
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Figure 2.28: The probability density function of the gamma distribution for
various choices of α and β. For α = 1, it is also the exponential probability

distribution.

density function of the gamma distribution is defined as

Gamma(x|α, β) =


1

Γ(α)βα
xα−1 exp

(
−x
β

)
for x ≥ 0,

0 for x < 0.

The parameter α is known as the shape parameter , while β and 1/β are the
scale parameter and rate parameter as for the exponential distribution. The
mean is given by αβ while the variance is αβ2. The exponential distribution
is a special case of the gamma distribution where α = 1. The χ2-distribution
with k degrees of freedom is also a special case with α = k/2 and β = 2.

Secondly, let x1 and x2 lie in all of R and both follow the standard normal
distribution. Then

Fy(y) =
1

2π

∫ y

−∞
exp(−x2

1/2)

∫ y−x1

−∞
exp(−x2

2/2)dx2dx1. (2.19)

The inner integral is the cumulative distribution function Fx2
(y − x1), while

the outer integral is the expectation of the function Fx2
(y − x1) with respect

to the probability density function fx1
(x1). There is no straight-forward way to

calculate this. Approximations need to be used. We will look at some general
techniques in Chapter 3 on sampling.

At the start of this section, we used the inverse of the function g. However,
there are infinitely many possibilities to get y by adding two real numbers.
Not even with splitting into regions will it be possible to generate an inverse.
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Figure 2.29: The gamma cumulative distribution function for various choices
of α and β. For α = 1, it is also the exponential probability distribution.

All is not lost however, if we introduce a further random variable. Let y1 =
g1(x1, x2) = x1 + x2 as before, and let y2 = g2(x1, x2) = x1 − x2. In vector
form this is

y = (y1, y2)T = g(x) = g(x1, x2) = (g1(x1, x2), g2(x1, x2))
T
.

We can then express x1 and x2 in terms of y1 and y2,

x1 =
y1 + y2

2

x2 =
y1 − y2

2
.

(2.20)

We might not have an inverse of the individual components of g, but we have
an inverse of g, which we denote by g−1.

Suppose we want to calculate the probability that y falls into a region
defined by Y. The set of x, which are mapped into that region by g, is given
by g−1(Y). Thus, the probability is given by∫

g−1(Y)

fx(x)dx.

Integration by substitution for multiple variables yields∫
Y
fx(g−1(y))|Jg−1(y)|dy,
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Figure 2.30: Parallelepiped spanned by the vectors a1,a2 and a3, which are
the columns of a 3× 3 matrix A.

where | · | in this case denotes the modulus of the determinant of the Jacobian
matrix Jg−1(y) of g−1 evaluated at y. In general, if f(x) is a function from
Rb to Ra, then the Jacobian matrix Jf (x) is the a × b matrix containing the
partial derivatives of all components,

Jf (x) =


∂f1
∂x1

(x) . . . ∂f1
∂xb

(x)
...

. . .
...

∂fa
∂x1

(x) . . . ∂fa
∂xb

(x)

 .

If a = b, the determinant of this matrix is called the Jacobian determinant .
Confusingly, both, matrix and determinant, are often just referred to as the
Jacobian. The matrix can be calculated for any a and b, while the determinant
is only defined for a = b.

The modulus of the Jacobian determinant gives the factor by which vol-
umes under the transformation by f shrink or expand. To visualize, the image
of the unit cube in three dimensions under a 3 × 3 matrix A is the paral-
lelepiped spanned by the columns of A. For example let

a1 =

 1
1/2
0

 ,a2 =

 0
1
−1/2

 ,a3 =

 1/2
0
1


be the columns of A as seen in Figure 2.30. The volume of this parallelepiped
is the modulus of the determinant of A, which is also the scalar triple product
(a1 × a2)Ta3 = 7/8.

We can now deduce the multivariate change-of-variable technique. If g :
RK → RK is an invertible and differentiable function, and x ∈ RK is a random
variable with probability density function fx(x), then y = g(x) ∈ RK is also
a random variable and its probability density function is

fy(y) = fx(g−1(y))|Jg−1(y)|.
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Returning to our example, the inverse g−1 is given by Equation (2.20).
The matrix of partial derivatives is( 1

2
1
2

1
2 − 1

2

)
and the modulus of its determinant is 1/2. Both x1 and x2 were assumed to
be independent and follow the standard normal distribution. Hence,

fy(y) =
1√
2π

exp

(
−
(
y1 + y2

2

)2

/2

)
1√
2π

exp

(
−
(
y1 − y2

2

)2

/2

)
1

2

=
1

4π
exp

(
y2

1 + y2
2

4

)
=

1√
2
√

2π
exp

((
y1√

2

)2

/2

)
1√

2
√

2π
exp

((
y2√

2

)2

/2

)
.

Therefore, the random variables y1 and y2 are independent. Both are normally
distributed with mean 0 and standard deviation

√
2. Or in other words the

variance is 2, which is the sum of the variances of x1 and x2.
More generally, if y is a linear combination of independent normally dis-

tributed variables, i.e. y = c1x1 + · · · cKxK , with xk ∼ N (µk, σ
2
k), then y is

normally distributed with mean

µ = c1µ1 + · · ·+ cKµK

and variance
σ2 = c21σ

2
1 + · · ·+ c2Kσ

2
K .

So far we have looked at different probability distributions and how to
derive the probability density function for functions of random variables. In
the next section we look at how to link this to data.

2.6 Conjugate Probability Distributions
The previous sections were concerned with probabilities and how to describe
them. However, we are interested in describing data with probabilities. To
this end, let us return to the experiment of flipping a coin, or more generally
an experiment with two possible outcomes following a Bernoulli distribution
Bern(x|µ), where µ is unknown. Let x1, . . . , xN be N observations of the
experiment. The probability to observe this data D = {x1, . . . , xN} is

p(D|µ) =
N∏
n=1

Bern(xn|µ) =
N∏
n=1

µxn(1−µ)1−xn = µ
∑N

n=1 xn(1−µ)
∑N

n=1(1−xn).

This is known as the likelihood of the data D. Now, xn only takes the values
0 and 1. If m is the number of times we have xn = 1 in the N trials, then

p(D|µ) = µm(1− µ)N−m.
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The value of µ can be estimated by maximizing the likelihood with respect to
µ, since we want to choose the µ which explains the data best.

The maximization is equivalent to maximizing the logarithm, which is
valid, since the logarithm is a monotonically increasing function. This is the
log likelihood :

log p(D|µ) = m logµ+ (N −m) log(1− µ).

The location of the maximum is where the derivative with respect to µ van-
ishes. The derivative is

d

dµ
p(D|µ) =

m

µ
− N −m

1− µ
.

Setting to zero, multiplying through by µ(1 − µ) and solving for µ gives the
maximum likelihood estimator

µML =
m

N
.

Returning to flipping the coin, if we happen to get tails (xn = 0) three
times in a row in three flips, then the maximum likelihood estimator is
µML = 0. The interpretation is that in all future flips we would continue
to see tails. Equally, if we happen to flip heads (xn = 1) three times in a row,
the maximum likelihood estimator is µML = 1. Both cases are realistic, but the
conclusion is not and caused by the small number of trials. In general, to get
a good maximum likelihood estimator for any parameter, many observations
are necessary.

However, in real world applications such abundance of data might be a
luxury. If we describe what we “believe” about µ, mathematically and then
use Bayes’ rule to modify our “belief”, less data is necessary to estimate the
parameter µ. It is the probability of success, and therefore µ ∈ [0, 1]. Thus,
the beta distribution Beta(µ|α, β) lends itself to describe µ, where α and β
are known as hyperparameters and set to some reasonable initial values. This
is the prior distribution. In the following, we will see how these parameters
get updated with data becoming available.

The joint probability density function of µ and m is the product of the
likelihood and the prior

f(µ,m|N,α, β) = p(D|µ)Beta(µ|α, β)

= µm(1− µ)N−m
Γ(α+ β)

Γ(α)Γ(β)
µα−1(1− µ)β−1.

(2.21)

The posterior density function of µ, f(µ|m,N,α, β), is proportional to the
joint distribution following Bayes. The constant factors can be dropped when
using the proportionality ∝, and hence

f(µ|m,N,α, β) ∝ µm+α−1(1− µ)N−m+β−1.
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It has the functional form of another, different beta distribution. Inserting the
appropriate factor to ensure the integral over the distribution is one gives

f(µ|m,N,α, β) =
Γ(N + α+ β)

Γ(m+ α)Γ(N −m+ β)
µm+α−1(1− µ)N−m+β−1.

Observing m successes and N − m failures changes the shape of the prior
distribution to arrive at the posterior distribution. The order of successes and
failures is irrelevant.

What is the probability of success after taking the data D into account,
p(x = 1|D)? The data is sufficiently specified by N and m. There is no longer
a single value for µ, but a posterior distribution over µ. All possible values are
considered by taking the integral

p(x = 1|D) =

∫ 1

0

p(x = 1|µ) f(µ|m,N,α, β)dµ

=

∫ 1

0

µ f(µ|m,N,α, β)dµ = E(µ|m,N,α, β)

=
m+ α

N + α+ β
.

(2.22)

Because of the inclusion of α and β, the probability can never become 0, even
if m = 0, or 1, even if m = N , contrary to the maximum likelihood estimator.
It incorporates the uncertainty caused by seeing only a finite set of data.

The above result no longer depends on µ. It is an example of a latent or
hidden variable.

Figure 2.31 shows how the beta distribution changes from a prior distri-
bution with α = β = 2 as more data is observed. If 0 stands for tails when
flipping a coin, the second to seventh plot illustrates a sequence of three times
tails followed by three times heads. As more tails are observed, the mean of the
distribution moves to the left, but with more observations of heads, it moves
back right towards the centre. The last plot is after 100 coin flips, where an
equal number of heads and tails are observed. The posterior distribution be-
comes more peaked around 1/2. As N increases, α and β become relatively
small compared to it, and p(x = 1|D) approaches the maximum likelihood
estimator µML for this D.

As can be seen in Figure 2.31, this approach can be used in real-time
learning, where data arrives sequentially, and predictions are updated when
more knowledge is gained. It can also be used for large data sets, where it is
not possible to load all data into memory at the same time.

The beta distribution is known as the conjugate distribution to the
Bernoulli and binomial distribution. It was motivated by choosing a suit-
able prior distribution describing an unknown parameter (µ). There is also a
mathematical motivation, since the posterior distribution arising from Bayes’
rule in this case has the same functional form as the prior and therefore can
be determined in closed form. This is not always the case. When choosing ap-
propriate distributions to describe the data, mathematical convenience should
play a subordinate role to the data and expert knowledge.
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Figure 2.31: Prior (top left) and posterior beta probability distributions after
some observations. The bottom right shows the beta distribution after an

equal number of 0 and 1.

If the data is categorical in nature, the outcomes are described using a
1-of-K representation and follow the categorical distribution as given in (2.9).
Let D = {x1, . . . ,xN} be the results of N experiments. The likelihood of this
data is then

p(D|µ) =
N∏
n=1

Cat(xn|µ) =
N∏
n=1

K∏
k=1

µxnk

k =
K∏
k=1

µ
∑N

n=1 xnk

k .

Since each xn is a 1-of-K representation, let mk be the number of times we
had xnk = 1 for n = 1, . . . , N . The likelihood then becomes

p(D|µ) =
K∏
k=1

µmk

k .
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Again an estimator for µ can be found by maximizing the likelihood, or equiv-
alently its logarithm. However, this task is not as straight-forward as before,
since µ has to satisfy the constraints

K∑
k=1

µk = 1 and 0 ≤ µk ≤ 1, k = 1, . . . ,K.

hence the task is a constraint optimization.
Let i be any index in {1, . . . ,K}. We incorporate the first constraint by

noting

µi = 1−
K∑

k=1
k 6=i

µk.

With this modification, the log likelihood is

log p(D|µ) =

K∑
k=1
k 6=i

mk logµk +mi log

1−
K∑

k=1
k 6=i

µk

 .

Let j 6= i be any other index. The parameter µj appears in both sums, and
the derivative with respect to µj is

d

dµj
log p(D|µ) =

mj

µj
− mi

1−
K∑

k=1
k 6=i

µk

=
mj

µj
− mi

µi
.

Setting to zero, we see that the ratio of µi to µj has to be the same as the
ratio of mi to mj . Since i and j were freely chosen, the ratio of any pair of
components of µ must be the same as the ratio of the corresponding pair in
m = (m1, . . . ,mk)T . The only possible choice for µk, which also satisfies the
second constraint, is the maximum likelihood estimator

µk =
mk

m1 + · · ·+mK
=
mk

N
, k = 1, . . . ,K.

As before, this can be a poor estimate, if N is not large enough.
Constraint optimization problems occur often in machine learning. A gen-

eral technique uses Lagrange multipliers, which we will encounter in Section
4.6. For more background knowledge on optimization see [2].

The vector µ of the probabilities of different outcomes needs to be esti-
mated. The Dirichlet distribution Dir(µ|α) is chosen as conjugate prior for µ,
where α is suitably chosen. The posterior density function is proportional to
the product of the likelihood and the prior (which is the joint distribution):

f(µ|m,α) ∝
K∏
k=1

µmk+αk−1
k ,
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where all constant factors were dropped due to the proportional sign. The pos-
terior has again the functional form of a Dirichlet distribution. Incorporating
the factor such that the posterior integrates to one leads to

f(µ|m,α) =
Γ(α0 +N)

Γ(α1 +m1) · · ·Γ(αK +mK)

K∏
k=1

µmk+αk−1
k = Dir(µ|m +α),

where α0 = α1 + · · ·αK .
As before with the beta distribution, the knowledge gained from the ex-

periments is given by m and modifies the location of the mean and the shape
of the distribution. The parameters α and β in the prior beta distribution
and α in the prior Dirichlet distribution can be viewed as initial guesses of
the true distribution or fictional trial runs informed by expert knowledge and
experience.

The probability of a particular outcome xk = 1 is

p(xk = 1|D) =

∫
p(xk = 1|µ)f(µ|m,α)dµ,

where the integral is over the simplex, where µ must lie. Since p(xk = 1|µ) =
µk, this becomes

p(xk = 1|D) = E[µk|m,α] =
mk + αk
N + α0

. (2.23)

As N grows, p(xk = 1|D) approaches the maximum likelihood estimator.
Again, the above result no longer depends on µ and therefore µ is a latent
variable.

We have seen two examples of conjugate probability distributions and will
see more. For example, if the mean of a normal distribution is the unknown
parameter, the conjugate prior is also a normal distribution. For a more thor-
ough treatment of conjugacy see [16].

2.7 Graphical Representations
In the previous section, the joint probability distribution followed by Bayes’
rule was used, to achieve better predictions for seeing a particular outcome. In
the following, we illustrate how the dependencies between random variables
and parameters can be visualized.

The elements of a graph are nodes, also known as vertices, and edges,
also called links or arcs. In a graphical representation, each node represents
a random variable, which could be a vector, group of random variables, or
parameter or group of parameters. If there is a relationship between nodes,
they are joined by an edge. If there is a causal relationship between nodes,
the edge has a direction indicated by an arrow. This is then a directed graph.

Let D = {x1, . . . , xn} be a set of observed, binary variables. In (2.21), the
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data D is governed by the latent variable µ, which in turn is governed by the
parameters α and β. The corresponding graph is:

µ

α β

x1 · · · · · · · · · xN

The nodes of random variables are circles, while the nodes of parameters
are clear. Random variables which are observed are shaded, while latent ones,
which are not observed, are not shaded. The observations x1, . . . , xN are of
the same nature. The graph can become very cluttered when writing these
out as individual nodes. They are summarized as a representative node xn
surrounded by a box, called a plate, labeled with N showing there are N of
these.

µ

α β

xn

N

Equation (2.22) gives the probability of x = 1 having taken the data D into
account. Graphically, this is depicted as
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µ

α β

xn

N

x

Note that the final equality in (2.22) does not involve µ, since µ is a latent
variable, but does involve N and m, which specify D. Graphically, the infor-
mation from the parameters α and β and the data D are combined in the
node µ to inform node x.

The graph for the categorical case is very similar, except we now have
a parameter vector α, µ is vector valued and x1, . . . ,xN and x are 1-of-K
representations:

µ

α

xn

N

x

The other main difference is that the underlying prior and posterior distribu-
tions are no longer beta distributions, but Dirichlet distributions.

Following the Bayesian paradigm, α, β, and α would not be parameters
to be chosen, but would also be treated as random variables with their own
prior distributions, called hyper-priors as discussed in [16]. This will grow
the graphs. Complex inter-dependencies between various random variables
and parameters can be visualized graphically. For a good introductory text
consult [24].
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C H A P T E R 3

Sampling

Sampling is necessary, since in machine learning often a closed form describ-
ing the probability distribution is not accessible, but the distribution can be
sampled. The chapter explains standard sampling techniques such as inverse
transform sampling, rejection sampling and importance sampling as well as
Markov chains and Markov Chain Monte Carlo in an intuitive way.

In the previous chapter, we have seen how data is used to estimate the
parameters of the assumed underlying distribution generating the data D
using Bayes rule. For example, let θ1 be the vector of all parameters governing
the distribution and θ2 the vector of all hyperparameters governing the prior
distributions for the parameters θ1. Then the posterior is given by

f(θ1|D,θ2) =
p(D|θ1)f(θ1|θ2)∫
p(D|θ1)f(θ1|θ2)dθ1

. (3.1)

Unless we are dealing with conjugate probability distributions, no closed so-
lution might exist. It might not be possible to evaluate the integral in the
denominator.

Note that, by the product rule, the integrand is the joint probability den-
sity function of D and θ1 conditioned on θ2, i.e. f(D,θ1|θ2). This means the
denominator is the marginal distribution f(D|θ2).

Another way of interpreting the integral is that it is the expectation of the
function p(D|θ1) with respect to the distribution described by the probabil-
ity density function f(θ1|θ2). We already encountered a similar situation in
Equation (2.19), when attempting to derive the probability density function
of a random variable which is a function of two other random variables. The
outer integral there can be interpreted as the expectation of the function given
by the inner integral with respect to the probability density function in the
outer integral.

More generally, the situation, where the expectation

E[h] =

∫
h(x)f(x)dx

63
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for some function h of x has to be calculated, arises often, but integrating
analytically is too complex. Sampling methods are used to to estimate the
expectation. Let x1, . . . , xN be samples independently drawn from the distri-
bution described by the probability density function f . The expectation is
approximated by

E[h] ≈ 1

N

N∑
n=1

h(xn).

It needs to be ensured that all samples are independent. If some are dependent,
the sample sizeN needs to be increased to counter the effect that some samples
might not give any new information.

The relative sizes of h(xn) to f(xn) can also skew the result. This happens,
for example, if h(xn) is large in areas where f(xn) is small and vice versa. Then
the expectation is dominated by the few large values of h, even though the
probability density is small in this region. Again, it is necessary to have a
sufficiently large sample size N to counter act this.

In this chapter, we introduce some general sampling methods. For a more
thorough treatment see [10].

3.1 Inverse Transform Sampling
We need to be able to generate samples of the probability density function
f(x). We assume that we have an algorithm available that generates uniformly
distributed random numbers in the interval (0, 1). The cumulative probability
density function is given by

F (x) =

∫ x

−∞
f(t)dt.

We assume that it is continuous and strictly monotonically increasing on the
interval (a, b) and 0 for x ≤ a and 1 for x ≥ b. It takes values in the in-
terval [0, 1]. Let y be drawn from the uniform distribution over (0, 1). Then
there exists a unique number in (a, b) such that F (x) = y, or in other words
x = F−1(y). Then x is a continuous random variable with cumulative dis-
tribution function F (x) and hence probability density function f(x). This
technique is known as inverse transform sampling . It is also known as in-
verse transformation, inversion sampling , inverse probability integral trans-
form, and Smirnov transform.

We need to show that for x = F−1(y), we have indeed p(x ≤ x̂) = F (x̂)
for a given value x̂. Firstly,

p(x ≤ x̂) = p(F−1(y) ≤ x̂)

by the definition for x. Next, it follows from F and subsequently F−1 being
strictly monotonically increasing that F−1(y) ≤ x̂ if and only if y ≤ F (x̂).
Lastly, since y is from the uniform distribution on (0, 1), the probability of y
being less than or equal to F (x̂) is in fact F (x̂) itself and the assertion follows.
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Figure 3.1: The probability density function of the Weibull distribution for
various choices of k and λ. For k = 1, it is the exponential probability

distribution.

As an example, consider the Weibull distribution, x ∼ Weibull(λ, k). Its
probability density function is

Weibull(x|λ, k) =


k

λ

(x
λ

)k−1

exp

(
−
(x
λ

)k)
for x ≥ 0,

0 for x < 0,

where k > 0 is the shape parameter and λ > 0 is the scale parameter. Its mean
is λΓ(1+1/k), while the variance is λ2[Γ(1+2/k)−(Γ(1+1/k))2]. Figures 3.1
and 3.2 give examples of the probability density and cumulative distribution
function respectively. For some choices of parameters the shape becomes close
to a normal distribution.

For k = 1, the Weibull distribution becomes the exponential distribution.
The Weibull distribution is used in reliability engineering and failure analysis.
There, the parameter k is interpreted in the following way. If k > 1, then the
failure rate increases with time as parts are more likely to fail as time goes
on. If k = 1, the failure rate is constant, the system is stable and there is no
aging process. If k < 1, the failure rate decreases with time. Colloquially, this
means that if it has not failed by now, it is less likely to fail in the future. For
more information on statistical quality control see [31].
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Figure 3.2: The Weibull cumulative distribution function for various choices
of k and λ. For k = 1, it is the exponential probability distribution.

Since the probability density function is only nonzero for x ≥ 0, the lower
limit of the integral is 0, when calculating the cumulative distribution function

F (x) =

∫ x

0

k

λ

(
t

λ

)k−1

exp

(
−
(
t

λ

)k)
dt

=

[
− exp

(
−
(
t

λ

)k)]x
0

= 1− exp

(
−
(x
λ

)k)
.

Setting this equal to y and solving for x leads to

x = λ [− log(1− y)]
1/k

which is a random variable drawn from the Weibull distribution, if y is drawn
from the uniform distribution over (0, 1). Now, z = 1−y is equally drawn from
the uniform distribution over (0, 1). So the transformation is often stated as

x = λ [− log z]
1/k

.

This technique can be used as long as the cumulative distribution function
is known and can be inverted. This is not always the case, the normal distri-
bution being a prime example. In the following, we derive the Box—Muller
transform to generate a pair of random variables following the standard nor-
mal distribution from a pair of uniformly distributed random variables.

We combine Equations (2.5) and (2.6) to arrive at∫ ∞
−∞

∫ ∞
−∞

exp

(
−x

2
1 + x2

2

2

)
dydz =

∫ 2π

0

∫ ∞
0

r exp

(
−r2

2

)
drdθ,
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where x1 and x2 are two standard normal random variables and x1 = r cos θ,
x2 = r sin θ. From the above we see that θ follows the uniform distribution
on the interval (0, 2π) which is the circumference of the unit circle, while r
has the probability density function r exp

(
−r2/2

)
on the interval (0,∞). To

generate r from a uniform random variable, we use the above method. First,
we calculate

F (r) =

∫ r

0

t exp

(
−t2

2

)
dt =

[
− exp

(
−t2

2

)]r
0

= 1− exp

(
−r2

2

)
.

Let q be a random variable drawn from the uniform distribution on (0, 1).
Setting F (r) = q and solving for r, gives r =

√
−2 log(1− q). Since 1 − q is

also uniformly distributed on (0, 1), it can be rewritten as

r =
√
−2 log q. (3.2)

Summarizing, we generate random variables x1 and x2 drawn from the
standard normal distribution by drawing two variables y1 and y2 from the
uniform distribution on (0, 1) and letting

x1 =
√
−2 log y1 cos(2πy2),

x2 =
√
−2 log y1 sin(2πy2).

This is the basic form of the Box—Muller transform.

function [y1,y2] = BoxMullerTrig(x1,x2)
% Transforms a bivariate uniform random variable in [0,1] x [0,1] to a
% bivariate normally distributed variable.
if nargin6=2

error('Two input arguments needed.')
elseif x1<0 | | x1>1 | | x2<0 | | x2 >1

error('Input arguments must be in [0,1].')
end
y1 = sqrt( − 2 * log(x1) ) * cos( 2 * pi * x2 );
y2 = sqrt( − 2 * log(x1) ) * sin( 2 * pi * x2 );
end

Listing 3.1: Basic Box—Muller transform.

To avoid the sine and cosine, we note that cos θ = x1/r and sin θ = x2/r.
This gives rise to the polar form of the Box—Muller transform. First, we
generate uniformly distributed random numbers z1, z2 ∈ (−1, 1) by letting
zi = 2yi−1 for variables yi uniformly distributed in (0, 1), until s = z2

1+z2
2 < 1.

We then set
cos θ =

z1√
s
,

sin θ =
z2√
s
.
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Figure 3.3: The polar Box—Muller method.

The probability p(s ≤ ŝ) is the area of the circle with radius
√
ŝ, which is πŝ,

divided by the area of the unit circle which is π. Therefore p(s ≤ ŝ) = ŝ, and
s follows a uniform distribution on (0, 1). Therefore, s can be used to generate
a random variable from the distribution of r. To summarize,

x1 =
√
−2 log s

z1√
s

= z1

√
−2 log s

s
,

x2 =
√
−2 log s

z2√
s

= z2

√
−2 log s

s

follow the required distribution. Another way of viewing this technique is
that a random point (z1, z2) within the unit circle is mapped to the point
(z1/
√
s, z2/

√
s) on the unit circle. This point is then multiplied by a radius

following the required distribution in Equation (3.2). Figure 3.3 illustrates
this.

The advantage of this method is that the calculation of the sine and cosine
is avoided. On the other hand, more random numbers need to be generated,
since a fraction of 1 − π/4 are rejected as they lie outside the unit circle.
Most software packages include implementations of random number generators
for various underlying distributions. Nevertheless, Listings 3.1 and 3.2 are
example implementations.
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function Y = BoxMuller(N)
% Generates N bivariate normally distributed variables avoiding the
% use of the trigonometric functions.
Y = zeros(N,2);
for n = 1:N

w = 1;
% Generate random number within the unit circle.
while w ≥ 1

x1 = 2.0 * rand − 1.0;
x2 = 2.0 * rand − 1.0;
w = x1 * x1 + x2 * x2;

end
w = sqrt( (−2.0 * log( w ) ) / w );
Y(n,1) = x1 * w;
Y(n,2) = x2 * w;

end

Listing 3.2: Polar Box—Muller transform.

3.2 Rejection Sampling
We now consider the case where the probability density function f is available
and can be evaluated, but the cumulative distribution function F is not, and
inverse transform sampling is not an option. Let g be a probability density
function such that f(x) ≤ cg(x) for all x for some finite constant c > 1. Let G
be the associated cumulative distribution function. We also assume that we
have a method to draw samples from the distribution given by G. That is g(x)
is a simpler probability density function and cg(x) is an envelope to f(x). Fig-
ure 3.4 shows three choices for cg(x) for a probability density function f which
has two modes. The first choice is a uniform distribution over the support of f .
That is the range of x where f(x) is non-zero. For the other two, g is normally
distributed. For the second choice the mean of g is at the same location as
one of the modes of f , while for the third choice the mean lies between the
two modes. We see that there are infinitely many possibilities for g.

Rejection sampling , also known as the acceptance-rejection method, pro-
ceeds as follows:

1. Draw a random variable x following the distribution given by g;

2. Draw a random variable u from the uniform distribution over (0, 1);

3. If

u ≤ f(x)

cg(x)
, (3.3)

accept x as a sample from the distribution given by f . Otherwise return
to 1.
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Figure 3.4: A probability density function f(x) with two modes and three
choices of enveloping functions cg(x).

Intuitively, the method samples uniformly points from the area under cg
and discards those which fall in the shaded area between the curves of cg and
f . The x-position of the retained points are samples from the distribution
governed by f . To keep the number of discarded points low, the shaded area
has to be as small as possible. Or in other words, the ratio of the areas under
cg and f needs to be as close to 1 as possible. This ratio is c, since both g and
f integrate to 1. If the area under cg is twice the size of the area under f , we
expect to discard half the samples.

This process generates samples following the probability distribution de-
fined by g conditioned on inequality (3.3). The cumulative distribution func-
tion is given by

p

(
x ≤ x̂|u ≤ f(x)

cg(x)

)
=
p
(
u ≤ f(x)

cg(x) , x ≤ x̂
)

p
(
u ≤ f(x)

cg(x)

) .
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For the denominator, we know that when fixing x = x̃

p

(
u ≤ f(x)

cg(x)
|x = x̃

)
=

f(x̃)

cg(x̃)
.

Using the product rule and marginalizing, we obtain

p

(
u ≤ f(x)

cg(x)

)
=

∫ ∞
−∞

p

(
u ≤ f(x)

cg(x)
|x = x̃

)
p(x = x̃)dx̃

=

∫ ∞
−∞

f(x̃)

cg(x̃)
g(x̃)dx̃ =

1

c
.

In the numerator, the joint probability distribution can be calculated as

p

(
u ≤ f(x)

cg(x)
, x ≤ x̂

)
=

∫ x̂

−∞
p

(
u ≤ f(x)

cg(x)
, x = t

)
dt

=

∫ x̂

−∞
p

(
u ≤ f(x)

cg(x)
|x = t

)
g(t)dt

=

∫ x̂

−∞

f(t)

cg(t)
g(t)dt =

F (x̂)

c
,

where we used the product rule. Combining these two results, we see that

p

(
x ≤ x̂|u ≤ f(x)

cg(x)

)
= F (x̂)

and the samples follow the required distribution.
How many attempts are necessary to draw a sample which we accept?

This is governed by the geometric distribution with µ = p
(
u ≤ f(x)

cg(x)

)
= 1/c.

The expectation is 1/µ = c, which agrees with the ratio of the areas under cg
and f . We therefore expect to need c draws from the distribution given by g
to generate one sample from the distribution given by f . In the examples of
Figure 3.4, the values of c are approximately 2.45, 2.09 and 1.67 from top to
bottom. Therefore the envelope at the bottom is preferable over the other two.

This process to generate samples also works in the situation arising in
Equation (3.1), where the denominator, which is the normalizing constant, is
not known. More generally, we assume that a probability density function is
given by

f(x) =
1

cf
f̂(x),

where

cf =

∫ ∞
−∞

f̂(x)dx

is the normalizing constant. Instead of finding c and g such that cg(x) is

an envelope of f , we require ĉg(x) to be an envelope of f̂ . The normalizing



72 � A Concise Introduction to Machine Learning

Figure 3.5: Illustration of adaptive rejection sampling of a concave
probability density function.

constant cf is absorbed in ĉ. The number of necessary attempts could be
estimated as ĉ/cf , would it not be for the fact that cf is unknown.

If f is concave, an envelope can be constructed iteratively as a piecewise
linear function. A function f is concave, if for any points f(x) and f(y) on
its graph the line connecting them lies under the graph. As a consequence
all tangent lines lie above the graph as shown in Figure 3.5, where three
tangent lines are drawn. The tangent lines through (x1, f(x1)) and (x2, f(x2))
form a triangle. Its area is approximately 1.2 and thus c ≈ 1.2. This already
means not many samples are rejected. However, it can be improved upon.
If x3 happens to be a sample which is rejected, then another tangent line is
drawn at (x3, f(x3)) and the area where samples are rejected is reduced by the
lightly shaded area. With every new tangent line the probability of rejection
decreases. This method is called adaptive rejection sampling (ARS).

This approach can also be taken, if the probability density function f
is log concave, i.e. log(f) is a concave function. Many probability density
functions are log concave. Assume that the function depicted in Figure 3.5
is log(f(x)). The piecewise linear envelope can be transformed back into the
space of f , by applying the exponential function. The result is shown in Figure
3.6. The envelope is a piecewise exponential function. Samples from this can be
obtained by using the exponential distribution and inverse transform sampling.

Rejection sampling is not suitable for high-dimensional problems due to the
curse of dimensionality . The number of attempts necessary to accept a sample
increases exponentially with the number of dimensions, since there simply is
more space to explore. In the following section a technique is introduced which
concentrates on the regions of space considered important.
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Figure 3.6: Illustration of adaptive rejection sampling of a log concave
probability density function.

3.3 Importance Sampling
One reason for sampling is to approximate a multidimensional expectation of
some function h of the random variable vector x by

E[h] =

∫
h(x)f(x)dx ≈ 1

N

N∑
n=1

h(xn),

where x ∈ Rd and xn ∈ Rd, n = 1, . . . , N are samples drawn from the
probability density f . However, this is not suitable when sampling is not
possible or computationally too expensive. A possible solution is not to sample,
but to weigh each evaluation h(xn) by f(xn),

E[h] ≈
N∑
n=1

f(xn)h(xn),

where now xn, n = 1, . . . , N , are selected in some way. A naive approach
would be to select them uniformly. Firstly, in this case N grows exponentially
with the number of dimensions d to achieve a good approximation. Secondly,
this neglects the fact that in many cases the regions of interest, that is where
the probability density function concentrates its mass, are relatively small.

Importance sampling uses a proposal distribution g which focuses attention
onto regions of interest and which can be easily sampled. It does not need to
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be an envelope of f . The samples x1, . . . ,xn are drawn from the proposal
distribution. Then

Ef [h] =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx

= Eg[hf/g] ≈ 1

N

N∑
n=1

f(xn)

g(xn)
h(xn),

where we used subscripts to indicate with respect to which probability density
function the expectation is taken. All generated samples, unlike rejection sam-
pling, are used. The factors f(xn)/g(xn) are known as importance weights.
They are a correction to sampling from the wrong distribution. For example,
if g follows f in a region, this factor is one and no correction is necessary. If,
however, g is large in a region where f is small, the contribution of evaluating
h there needs to be reduced. On the other hand, if g is small in a region where
f is large and we happen to sample there, the value of h there needs to be
magnified.

In the case when

f(x) =
1

cf
f̂(x) and g(x) =

1

cg
ĝ(x)

and the normalizing constants

cf =

∫
f̂(x)dx and cg =

∫
ĝ(x)dx

are unknown, the calculation becomes

Ef [h] =

∫
h(x)f(x)dx =

cg
cf

∫
h(x)

f̂(x)

ĝ(x)
g(x)dx

=
cg
cf

Eg[hf̂/ĝ] ≈ cg
cf

1

N

N∑
n=1

f̂(xn)

ĝ(xn)
h(xn).

Even though the normalizing constants are unknown, we can estimate their
ratio. Using cg = ĝ(x)/g(x) wherever g(x) is nonzero, we have

cf
cg

=
1

cg

∫
f̂(x)dx =

∫
f̂(x)

ĝ(x)
g(x)dx = Eg[f̂/ĝ] ≈ 1

N

N∑
n=1

f̂(xn)

ĝ(xn)
.

With this result, the expectation is estimated as

Ef [h] ≈ 1∑N
k=1 f̂(xk)/ĝ(xk)

N∑
n=1

f̂(xn)

ĝ(xn)
h(xn).

The importance weights are

wn =
f̂(xn)/ĝ(xn)∑N
k=1 f̂(xk)/ĝ(xk)

=
f̂(xn)/g(xn)∑N
k=1 f̂(xk)/g(xk)

, (3.4)
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since g and (̂g) only differ by a multiplicative constant. Note that if the pro-
posal distribution coincides with f , then we have wn = 1/N .

As with rejection sampling, the choice of the proposal distribution is cru-
cial. Most importantly, it should not be small in regions where f is large. The
weighting can only make a correction if an actual sample is drawn from this
region.

Sampling-importance-resampling (SIR) combines ideas from rejection sam-
pling and importance sampling. First, N samples x1, . . . ,xN are drawn from
the proposal distribution g. Instead of rejecting some of them, weights are
calculated according to (3.4). Then N samples are drawn from the discrete
set {x1, . . . ,xN} according to the probabilities given by w1, . . . , wN . Thus a
sample can feature several times in the final set, if its weight is larger than
the weights of the other samples. If g = f , then all weights will equal 1/N
and all samples are equally likely to be drawn.

3.4 Markov Chains
Markov chains are an important building block for a class of sampling algo-
rithms which can be applied to many different distributions and also scale
well with dimensionality.

A Markov chain is a series of random variables x1, . . . ,xN . The indices
are associated with a sequence in time. A Markov chain of order m satisfies
the following property

p(xn|xn−1,xn−2, . . . ,x1) = p(xn|xn−1,xn−2, . . . ,xn−m)

for n = m + 1, . . . ,M . This means the nth random variable only depends on
the m previous variables. In particular, a first-order Markov chain satisfies

p(xn|xn−1,xn−2, . . . ,x1) = p(xn|xn−1).

Each random variable only depends on its predecessor. We will only con-
sider first-order Markov chains, since any Markov chain of order m can be
transcribed into a first-order Markov chain by letting yn−m+1 be the tuple
(xn, . . . ,xn−m+1), since then p(yk|yk−1, . . . ,y1) = p(yk|yk−1).

The probability distribution of the initial variable x1 needs to be specified.
The probabilities Tn(xn−1,xn) = p(xn|xn−1) are called transition probabili-
ties. If they are the same for all n, i.e. Tn(xn−1,xn) = T (xn−1,xn) for all n,
then the Markov chain is called homogeneous.

Graphically, a first-order Markov chain can be represented as

x1 x2 · · · · · · xN
p(x2|x1) p(x3|x2) p(xN |xN−1)

The possible values of xn form a state space. We distinguish between a
discrete and countable, possibly finite state space, and a continuous state
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space, which is sometimes called general state space. Summing or integrating
over all possible states xn−1 gives the marginal probability of xn,

p(xn) =
∑
xn−1

p(xn|xn−1)p(xn−1) or p(xn) =

∫
p(xn|xn−1)p(xn−1)dxn−1.

To do so the marginal probability of xn−1 needs to be known. Starting from
the initial distribution p(x1), all marginal distributions can be calculated.

For a homogeneous Markov chain, the transition probabilities can be com-
pletely described by noting how T acts on different elements of the state space,
T (x, x̂) for all states x and x̂.

A Markov chain is called irreducible, if the probability of reaching state x
from state x̂ in a finite number of steps is non-zero for all states x and x̂. In
other words, any state can be reached from any other state in a finite number
of steps.

A distribution specified by the probability mass function or probability
density function f is called invariant or stationary with respect to the Markov
chain; if xn−1 follows the distribution, then so does xn for all n. In other
words, if x0 follows the distribution, then so does the complete chain. The
distribution remains the same after each step. Note that several distributions
can be invariant with respect to a given Markov chain. For example, in the
degenerate case where

T (x, x̂) =

{
1 if x̂ = x,
0 otherwise,

we have x1 = x2 = · · · = xN . The transformation in each step is the identity.
In this case, any distribution is invariant.

For a homogeneous Markov chain, a distribution specified by f is invariant,
if

f(x̂) =
∑
x

T (x, x̂)f(x) or f(x̂) =

∫
T (x, x̂)f(x)dx,

where the sum or integral is over the state space.
It is possible to construct a Markov chain with transition probabilities such

that a given f is invariant. To achieve this, the transition probabilities need
to satisfy the property of detailed balance, for all pairs of states x and x̂:

T (x, x̂)f(x) = T (x̂,x)f(x̂).

Note that for x = x̂, the above equation is naturally true. If detailed balance
is satisfied, the Markov chain is called reversible. Invariance is shown by∑

x

T (x, x̂)f(x) =
∑
x

T (x̂,x)f(x̂) = f(x̂)
∑
x

p(x|x̂) = f(x̂),

since the sum over the state space of the conditional probabilities is one. The
calculation for a continuous probability density function f uses integrals and
is analogous.

The transition probabilities can be constructed as linear combinations of
base transition probabilities B1, . . . , BM ,
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T (x, x̂) =
M∑
m=1

bmBm(x, x̂),

where b1, . . . , bM are known as mixing coefficients and satisfy bm ≥ 0 and∑M
m=1 bm = 1. If each of the base transitions satisfies detailed balance, then

so does the linear combination. Often, the base transitions are chosen such
that each only changes a subset of components in x.

If the state space is finite, then it can be represented by a 1-of-K vector.
That is the random variable xn taking on the kth state is a K-dimensional
vector, where exactly one element, xn,k, equals one and all the others are zero.
The transition probabilities pkl = p(xn+1,l = 1|xn,k = 1), that is that xn in
state k generates xn+1 in state l, can be represented in matrix form

P =

 p11 · · · p1K

...
. . .

...
pK1 · · · pKK

 ,

which is called the transition matrix . Each row of P sums to one. It is therefore
a right stochastic matrix as opposed to a left stochastic matrix where each
column sums to one. A doubly stochastic matrix is one where both columns
and rows sum to one. This would for example be the case, if P is symmetric,
that is the probability of transitioning from state k to l is the same as from
state l to k.

The probability of transitioning from stage k to l in m steps is the (k, l)
entry in Pm. A state k has period m, if any return to state k occurs in
multiples of m time steps. More formally the period m is the greatest common
denominator of all numbers n such that the probability p(xn+1,k = 1|x1,k = 1)
is non-zero. If m = 1, the state is called aperiodic. This happens, for example,
if the probability of transitioning to itself is non-zero. A Markov chain is
aperiodic, if every state is aperiodic. An irreducible Markov chain, i.e. where
every state can be reached from any other state, only needs one aperiodic
state to be aperiodic. This is because using this one aperiodic state, one can
return any state in a number of steps which is any prime number and the
greatest common denominator of several prime numbers is 1.

If the initial distribution p(x1) is given by p = (p1, . . . , pK), then the
distribution of xn+1 is given by pPn.

The transition matrix can be depicted in a state diagram. For example, if
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there are K = 3 states, then the diagram is

1

p11

2

p22

3

p33

p12

p21

p13 p31 p23p32

The state diagram should not be confused with the graphical representation
of the Markov chain.

If the transition probability from one state to another is zero, this arrow
is left off the state diagram. For example,

1

1
2

2

1
2

3

1
2

1
1
2

has the transition matrix

P =


1
2

1
2 0

0 1
2

1
2

1 0 0

 .

State 1 remains state 1 with probability 1/2 or changes to state 2 with prob-
ability 1/2. Similarly, state 2 remains state 2 with probability 1/2 or changes
to state 3 with probability 1/2. State 3 always changes to state 1.

The Markov chain generated by this transition matrix is irreducible, since
all states can be reached by every other state. States 1 and 2 are obviously
aperiodic, making the Markov chain aperiodic.
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To find the probability mass function f which is invariant, let fi be the
probability of state i and f = (f1, f2, f3). We need to solve fP = f ,

1
2f1 + f3 = f1,

1
2f1 + 1

2f2 = f2,

1
2f2 = f3,

which gives f1 = f2 = 2f3. The probabilities also need to sum to one, i.e. f1 +
f2 +f3 = 1. With this, f = (2/5, 2/5, 1/5) describes the invariant distribution.

The other direction, i.e. constructing a Markov chain which is invariant
for a given distribution f , has more degrees of freedom, since the transition
matrix has nine entries under the constraint that all rows have to sum to one.
Let f = (f1, f2, f3) define the probabilities of the random variable being in
state 1, 2 or 3 respectively. The property of detailed balance leads to three
equations,

p12f1 = p21f2

p13f1 = p31f3

p23f2 = p32f3.

The diagonal elements p11, p22 and p33 can be determined, once the off-
diagonal elements are chosen by using

3∑
j=1

pij = 1,

for i = 1, 2, 3.
More specifically, let f = (1/10, 2/5, 1/2). The detailed balance equations

are
1
10p12 = 2

5p21

1
10p13 = 1

2p31

2
5p23 = 1

2p32.

Because we have some freedom of choice, we can set p12 = 1. This implies
p21 = 1/4. It is not possible to set p21 = 1, since this would lead to a value
greater than 1 for p12. Since the probabilities in a row have to sum to one,
we have p11 = p13 = 0. The second equation then leads to p31 = 0 as well.
This has determined the first row and column of the transition matrix. Again
using our freedom of choice, we set p23 = 3/4, which implies p22 = 0. The last
equation determines p32 = 2(3/4)(2/5) = 3/5. Lastly p33 = 2/5, since the last
row has to sum to one, and thus

P =


0 1 0

1
4 0 3

4

0 3
5

2
5

 .
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The state diagram is

1 2

3

1

3
4

1
4

3
5

2
5

We can check the distribution of xn+1 after transitioning n times from the
initial state x1 with distribution p = (p1, p12, p33). Recall that this is given
by pPn. For n = 20, in our example, we have

P 20 ≈

 0.1006 0.3984 0.5011
0.0996 0.4012 0.4992
0.1002 0.3994 0.5004

 .

Let’s assume that Pn converges to

F =

 f1 f2 f3

f1 f2 f3

f1 f2 f3


as n converges to infinity. Then the distribution of xn+1 converges to

pF = (f1(p1 + p2 + p3), f2(p1 + p2 + p3), f3(p1 + p2 + p3)) = f ,

since p1 + p2 + p3 = 1. Thus we can generate approximate samples for a given
distribution f , by generating samples using a Markov chain for which f is
invariant irrespective of the starting distribution.

Convergence is due to the ergodic theorem, which is beyond the scope of
this text, but [33] gives a thorough treatment of Markov chains. If a finite state
Markov chain is irreducible and aperiodic, then the the distribution of xn will
tend to the invariant distribution f irrespective of the initial distribution. The
invariant distribution is then called the equilibrium.

More generally, any matrix of the form

P =


1− (α+ β) α β

α
4 1− α+4γ

4 γ

β
5

4γ
5 1− β+4γ

5
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satisfies fP = f = (1/10, 2/5, 1/2). All entries have to be valid probabilities
and thus α, β, γ ∈ [0, 1] and α+ β ≤ 1, α+ 4γ ≤ 4 and β + 4γ ≤ 5.

If any two of α, β and γ are both zero, we have a 1 on the diagonal, meaning
that it is impossible to leave that state. This state is called absorbing . If there
is a non-zero probability of every state to reach that state, then the Markov
chain is an absorbing Markov chain. This is not the case here, since the other
two states change between each other, but not to the absorbing state. This
also means that the chain is not irreducible, since the absorbing state cannot
be reached from the other two states. Thus in this case, the distribution of xn
will not converge to the invariant distribution, and the Markov chain cannot
be used to generate approximate samples.

If on the other hand at most one of α, β and γ is zero, the Markov chain
is irreducible and aperiodic and can be used to generate approximate samples
for the invariant distribution f .

An example of a Markov chain on the state space of integers is the drunk-
ard’s walk , where the drunkard starts at the pub denoted by 0 and whenever
taking a step, either steps forward (xn+1 = xn + 1) with probability 1/2, or
steps backward (xn+1 = xn−1) also with probability 1/2, independent of how
he got here in the previous step. The probabilities of all other integers are zero.
This is an example of a random walk . The transition matrix would be infinite
with zero on the diagonal and 1/2 on the subdiagonal and superdiagonal. The
state diagram is

0 1−1 2−2 · · · · · ·· · · · · ·
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

The expectation E[xn] is 0, since the expectation of each individual step
is that the drunkard stays put. On the other hand, E[x2

n] = n, which implies
that the distance traveled from the pub is of the order of

√
n. The drunkard’s

partner will find them near the pub. It also shows that this random walk is
relatively ineffective in exploring the state space of the integers.

However, if the random walk carries on indefinitely, it will reach each inte-
ger an infinite number of times. This property is known as the level-crossing
phenomenon, recurrence or gambler’s ruin. The last is due to the fact that
a gambler with a finite amount of money playing a fair game against a bank
with an infinite amount of money will eventually lose, because the amount he
has follows a random walk, and will at some point cross zero and the game is
over.

The aim is to construct a Markov chain, for which a given distribution
with probability mass function or probability density function f is invariant,
such that the elements of the Markov chain for n large enough are samples of
the given distribution.
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3.5 Markov Chain Monte Carlo
Let

f(x) =
1

cf
f̂(x)

describe the distribution we want to sample from, where the value of the
normalizing constant cf is not necessarily known. We construct a Markov
chain by using a proposal distribution g(x, x̂), which describes the probability
of drawing x̂ when x is given. That is, the next element in the Markov chain
xn+1 is drawn from the distribution g(xn,x) where xn is the current element
in the Markov chain. The Markov chain is only homogeneous, if g(x, x̂) is
independent of x.

If, in addition, the proposal distribution is symmetric, i.e. g(x, x̂) = g(x̂,x)
for all, a candidate x∗ is drawn from the proposal distribution and accepted
with probability

min

(
1,
f(x∗)

f(xn)

)
= min

(
1,
f̂(x∗)

f̂(xn)

)
.

Note that, if f̂(x∗) ≥ f̂(xn), the candidate is certain to be kept. If the candi-
date sample is accepted, then xn+1 = x∗, otherwise xn+1 = xn. This is known
as the Metropolis algorithm.

Duplicating the sample is in contrast to rejection sampling. In practical
implementations, no extra copies of the sample are stored. Instead a counter
of how often the sample was drawn is updated. This counter acts as weighting
when, for example, the expectation is calculated. As long as f̂ is non-zero over
the entire state space, there is always a non-zero probability of xn+1 = xn and
thus the Markov chain is aperiodic. If, in addition, g(x, x̂) is non-zero over the
entire state space, the Markov chain is obviously also irreducible.

The elements of the Markov chain, x1,x2, . . ., are not independent samples
in most cases, because successive samples are highly correlated, if g(x, x̂)
depends on x. In fact, the chain represents a random walk through the state
space. For practical purposes, only taking every mth element from the chain
approximates independence for m sufficiently large. This practice is known as
thinning .

Symmetry of g(x, x̂) can for example be achieved by letting g(x, x̂) describe
the normal distribution with mean x and a variance which is σ2 times the
identity matrix, since in this case

g(x, x̂) =
1√
|2πσ2I|

exp

(
1

2σ2
(x̂− x)T (x̂− x)

)
= g(x̂,x).

This choice for the proposal distribution is common, since techniques to gen-
erate samples from the standard normal distribution such as the the Box—
Muller transform are readily available, and these samples only have to be
scaled by σ2 and translated by x.
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target_mean = [2 3];
target_variance = [1 1.5; 1.5 3];
% Create function handle to unnormalized probability density.
target = @(x) exp(−0.5*(x−target_mean)/target_variance * ...

(x−target_mean)');

% The variances of the components are given by the eigenvalues
% of the variance matrix.
e = eig(target_variance);
figure;
hold on;

% Set variance of the proposal distribution to the identity matrix
% times the smallest variance of the target distribution.
proposal_variance = e(1) * eye(2);

N = 300; % Length of Markov chain.

% Set first element of the Markov chain.
start = target_mean;
samples = target_mean;
% Evaluate the target distribution for the last element.
last = feval(target,start);
counter = [1];
total = 1;
accepted = 1;
while total < N

% Generate candidate from normal distribution with mean
% samples(accepted) and variance proposal_variance.
candidate = mvnrnd(samples(accepted,:), proposal_variance);
% Evaluate the target distribution for the candidate.
new = feval(target,candidate);
% Evaluate acceptance probability.
accept = min(1, new/last);
if accept > rand

% Draw random walk.
line([samples(accepted,1) candidate(1)],...

[samples(accepted,2) candidate(2)],...
'Color','k');

% Update Markov chain.
samples = [samples; candidate];
counter = [counter; 1];
accepted = accepted +1;
% Update evaluation of target distribution for the last element.
last = new;

else
% Plot rejected candidate.
plot(candidate(1), candidate(2),'k+');
% Update counter for this state.
counter(accepted) = counter(accepted)+1;

end
total = total +1;

end
% Calculate acceptance rate.
rate = accepted/total
axis equal

Listing 3.3: Metropolis sampling example.
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We illustrate with an example generating samples of a target distribution
which is normal with mean and variance

µ =

(
2
3

)
, Σ =

(
1 3/2

3/2 3

)
.

Listing 3.3 implements the Metropolis algorithm for this example. The ques-
tion is, how should σ2 be chosen? Here the univariate variances of the distri-
bution differ a lot depending on which direction is considered. The smallest
and largest variances are given by the eigenvalues of Σ, which are σ2

min ≈ 0.2
and σ2

max ≈ 3.8. The variance of the proposal distribution, σ2, should be of
the magnitude of the smallest variance. Or in other words the standard de-
viation of the proposal distribution should be approximately the same as the
smallest standard deviation of the target distribution, σ = σmin. This choice
ensures that not too many candidates are rejected by being too far away in
the direction of the smallest standard deviation. The direction of the largest
standard deviation is explored by means of a random walk. Listing 3.3 makes
this choice for σ.

Also the start of the Markov chain needs to be chosen carefully to ensure
the state space is explored in relatively few steps. The technique known as
burn-in discards the first elements of a Markov chain and restarts the chain
from the state it reached. Strictly speaking, this is not necessary. The ele-
ments of a Markov chain will be a good set of samples as long as the chain
is long enough. Listing 3.3 sets the first element to the mean µ of the target
distribution. Of course, these choices for σ and x1 are only possible if this is
known about the target distribution. In any case, good estimates for these are
necessary.

These considerations are illustrated in Figure 3.7 which depicts the gener-
ated random walks along with the candidates which were rejected (+) and the
95% confidence ellipse of the target distribution for different choices. The con-
fidence ellipse gives the area where 95% of samples of the target distribution
are expected to lie.

Figure 3.7a used x1 = µ and σ = σmin. The state space is well explored.
About two thirds of candidates are accepted. This means that one third of
samples coincide with another sample. In Figure 3.7b the starting position
was moved to (0, 0)T . The acceptance ratio is about the same as before, but
the state space is less well explored. The algorithm needs to run for longer.
Figure 3.7c used σ = 2 ∗ σmin. About 87% of candidates are accepted, but
the algorithm moves slowly through the state space. Again it needs to run
longer to explore the state space. In Figure 3.7d the standard deviation of the
proposal distribution was doubled as compared to Figure 3.7a. The acceptance
rate dropped to 43%. This means that more than half of samples share their
location. This does not matter, if the expectation is to be calculated and the
appropriate weighting is applied. If the aim is however to explore the state
space, a higher acceptance rate is more desirable.
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(a) x1 = µ, σ = σmin. (b) x1 = (0, 0)T , σ = σmin.

(c) x1 = µ, σ = σmin/2. (d) x1 = µ, σ = 2 ∗ σmin.

Figure 3.7: Metropolis algorithm for different initialization and choices of σ.

The Metropolis–Hastings algorithm extends the Metropolis method to use
proposal distributions which are not symmetric. In this case, the acceptance
probability of a candidate x∗ is calculated as

min

(
1,
f(x∗)g(x∗,xn)

f(xn)g(xn,x∗)

)
= min

(
1,
f̂(x∗)g(x∗,xn)

f̂(xn)g(xn,x∗)

)
.

The transition probability from x to x̂ is given by

T (x, x̂) = g(x, x̂) min

(
1,
f̂(x̂)g(x̂,x)

f̂(x)g(x, x̂)

)
.



86 � A Concise Introduction to Machine Learning

We can now check whether f satisfies detailed balance. To this end,

f(x)T (x, x̂) =
f̂(x)

cf
g(x, x̂) min

(
1,
f̂(x̂)g(x̂,x)

f̂(x)g(x, x̂)

)
=

1

cf
min

(
f̂(x)g(x, x̂), f̂(x̂)g(x̂,x)

)
=

1

cf
min

(
f̂(x̂)g(x̂,x), f̂(x)g(x, x̂)

)
=

f̂(x̂)

cf
g(x̂,x) min

(
1,
f̂(x)g(x, x̂)

f̂(x̂)g(x̂,x)

)
= f(x̂)T (x̂,x).

Thus detailed balance is satisfied as required to generate approximate samples
of the distribution described by f .

The Metropolis–Hastings algorithm is an example of a class of algorithms
known as Markov Chain Monte Carlo (MCMC). In general, Monte-Carlo
methods refer to algorithms, which rely on repeated random sampling to per-
form calculations, where a closed solution is not possible or prohibitively ex-
pensive. They were first developed at the Los Alamos National Laboratory.
Since the work was secret, Monte Carlo, referring to the Casino de Monte
Carlo in Monaco, was used as code name.

Gibbs sampling is used, when it is easier to sample from the conditional
distribution of the components of x than from the distribution of x itself. Let
xn = (xn,1, . . . , xn,D)T , where d is the dimension of the state space. The next
element xn+1 is then constructed in D steps by drawing xn+1,d sequentially
from the conditional probability p(x|xn+1,1, . . . , xn+1,d−1, xn,d+1, . . . , xn,D)
for d = 1, . . . , D. This means a component is used in the next draw as soon as
it has been drawn. Another version chooses which component to update next
randomly.

The distribution described by the probability density function f of x is
invariant of each of the sampling steps for the following reasons. Firstly, the
marginal distribution of x−d = (x1, . . . , xd−1, xd+1, . . . , xD) is invariant, since
none of these components changes in the dth step. Secondly, the dth component
is sampled from the correct conditional distribution, and is therefore invariant.
Because the joint distribution (which is the distribution of x) is determined by
these marginal and conditional distributions, it is also invariant. The ergodic
theorem can be applied, if in addition none of the conditional probabilities
is zero anywhere in the state space. Thus the generated Markov chain will
produce samples from the desired distribution.

Gibbs sampling can be phrased in terms of the Metropolis–Hastings al-
gorithm. Let the current sample be x. Note, this could be an element of the
Markov chain or one of the intermediate steps. The candidate x∗ differs from
the previous sample x in only one component. Let this be the dth component.
Hence x∗−d = x−d. The dth component of x∗ is drawn from p(x|x−d). This
defines the proposal distribution

g(x,x∗) = p(x∗d|x−d).
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Figure 3.8: Random walk generated by Gibbs sampling.

To determine the acceptance probability, we need to calculate

f(x∗)g(x∗,x)

f(x)g(x,x∗)
=

f(x∗)p(xd|x∗−d)
f(x)p(x∗d|x−d)

=
f(x1, . . . , xd−1, x

∗
d, xd+1, . . . , xD)p(xd|x−d)

f(x)p(x∗d|x−d)
.

Now using the product rules

f(x) = p(xd|x−d)p(x−d)

f(x1, . . . , xd−1, x
∗
d, xd+1, . . . , xD) = p(x∗d|x−d)p(x−d)

we see that the fraction evaluates to 1. Thus every sample in the intermediate
steps is accepted.

Figure 3.8 shows the random walk generated by the steps of the Gibbs al-
gorithm for the same normal distribution as in the examples in Figure 3.7. The
samples generated by the Gibbs algorithm are highly correlated. To approxi-
mate independence between samples thinning can be used. Another technique
is blocking , where not the conditional probabilities of individual components
are used, but of sets of several components, which can be overlapping.
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C H A P T E R 4

Linear Classification

The chapter introduces linear classification as simple projections onto a linear
subspace. It develops the idea of maximizing the separation deriving Fisher’s
discriminant analysis and Linear Discriminant Analysis. This idea is extended
to multiple classes. The perceptron and online learning are explained as pulling
the separation line in different directions according to the seen data sample. It
is shown that the perceptron is a simple neural network. Lastly, the Support
Vector Machine is derived as maximizing the margin between classes.

4.1 Features
Distinguishing between objects is called classification. Already before we are
born we learn to distinguish between different sounds in the womb, and we
continue to learn and distinguish easily between different objects, different
situations and different concepts. In fact, the way we differ or are similar to
others is fundamental to our sense of self. Humans have an uncanny ability in
the area of classification. For example, despite the variety of dog breeds and
their stark visual differences, we still easily identify a dog as a dog. Domestic
cats are visually much more similar to each other. A child is not told what is
different between a cat or a dog. It is told this is a cat and that is a dog. At
most it is told, this goes meow and that goes woof. Based on these examples
it has to work out by itself how to distinguish between them. What are cat
features and what are dog features?

More formally, there are three different categories of features. Boolean or
binary features can only have two values. The relate to questions answerable
by yes or no. For example: Is it red? Is the person tall? Do we have a storm?
Discrete features take categorical also known as ordinal values. For example:
What colour is it? Is the person short, medium built or tall? What number
is the wind force on the Beaufort scale? Lastly there are continuous- that is
real-valued features. Here the questions answered are for example: What is

89
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Figure 4.1: Scatter plot of sepal length against sepal width.

the wavelength of the colour? What is the person’s height? What is the wind
speed?

There are many examples of classification in everyday life. Spam filtering
is an application of text categorization. Face detection in images and opti-
cal character recognition are examples from the field of machine vision. For
businesses, market segmentation is of great importance, while every one of
us hopes that the fraud detection algorithms of our credit card company are
effective.

Classification is not that new. One of the most used examples dates back
to 1936 when Ronald Fisher measured the petal length and width and the
sepal length and width of three different species of irises, Iris setosa, iris versi-
color, and iris virginica with 50 samples of each species. Thus there were four
continuous features.

In the following, we will first only consider two species, that is classes
which we label C0 and C1. This is also known as binary classification. Let N0

be the number of samples in class C0 and N1 the number of samples in class
C1. Hence the overall number of samples is N . It is helpful to look at a visual
representation of the data as in Figure 4.1 where we have chosen two features
to display, sepal length and sepal width. This is known as a scatter plot.
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4.2 Projections onto Subspaces
Each sample has two features and we can write these as vectors.

v1 =

(
v11

v12

)
and v2 =

(
v21

v22

)
The length of a vector is the square root of the sum of the squares of the
coordinates.

‖v2‖ =
√
v2

21 + v2
22.

This is also known as the Euclidean norm or L2 norm. Between two vectors a
inner product , also known as a scalar product or dot product can be defined:

v1 • v2 = 〈v1,v2〉 = v11v21 + v12v22.

More generally, this can be viewed as a matrix product between the transpose
of the first vector and the second vector.

v1 • v2 = vT1 v2 =
(
v11 v12

)( v21

v22

)
= v11v21 + v12v22.

A 1× 2 matrix times a 2× 1 matrix is a 1× 1 matrix.
A common technique is to reduce a higher dimensional problem to a lower

dimensional one where it can be solved more easily. In particular, we reduce
the two dimensional problem to a one-dimensional one by projecting onto a
line going through 0 and in the direction of a vector w. The formula of the
projection of a vector v onto w is given by

projw(v) =
wTv

‖w‖2
w

Figure 4.2 illustrates this.
We then seek a separation threshold b, also known as bias such that for v

• wTv < b ⇒ v ∈ C0,

• wTv > b ⇒ v ∈ C1.

In Figure 4.2 the bias happens to be 0 for v1 being in class C0 and v2 being
in class C1.

The task is to find the direction w and separation threshold b. w is also
known as the vector of weights. The line vertical to w through b should sep-
arate the classes. In three dimensions, a plane separates the data, while in
higher dimensions it is a hyperplane. Naively choosing the coordinate axes
is unsuitable as Figure 4.3 shows. One idea could be to use the line through
the sample means of each class and the midpoint between sample means as
separation threshold. The sample mean of class Ci is

µi =
1

Ni

∑
v∈Ci

v, i = 0, 1. (4.1)
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Figure 4.2: Projection of v1 and v2 onto w.

The line through the sample means is then parametrized by

l(a) = µ0 + a(µ1 − µ0).

For a ∈ [0, 1] we are on the line segment between the sample means and thus
the midpoint is given when a = 1/2, hence b = 1/2(µ0 + µ1).

This approach is illustrated in Figure 4.4 where both the projection line
and the separation line perpendicular to the projection line through the mid-
point between sample means is shown. However, it fails to take into account
the variance within each class, that is how much and in which way the samples
differ from the mean. In Figure 4.4 we have also drawn the 95% confidence
ellipses and their axes. This means that 95% of the samples lie within the
ellipses.

Naively, one could move the separation threshold to the intersection of
the confidence ellipses. However, this is subjective and a different value of the
confidence, e.g. 99%, would move this point. Also, since the two ellipses have
their axes at different angles, it means that the projections of samples of one
class are more spread out than the projections of of the samples of the other
class.

The goal is to find a line of projection such that:

• The projected means of each class are as far apart as possible,

• The projected samples of each class are as close together as possible.

In the next section we see how Fisher tackled this problem.
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Figure 4.3: Projection onto the coordinate axes.

4.3 Fisher’s and Linear Discriminant Analysis
Recall, the sample mean of Ci is

µi =
1

Ni

∑
v∈Ci

v.

To take into account the variation of the samples, we define the sample co-
variance of Ci as

Σi =
1

Ni

∑
v∈Ci

(v − µi)(v − µi)T . (4.2)

The last expression in the above is an outer product . In two dimensions it is
defined between two vectors v1 and v2 as

v1v
T
2 =

(
v11

v12

)(
v21 v22

)
=

(
v11v21 v11v22

v12v21 v12v22

)
It can be viewed as a matrix product. A 2× 1 matrix times a 1× 2 matrix is
a 2× 2 matrix.

If M is the number of features (in our example M = 2), then µi is a vector
with M elements and the jth entry is the mean of the jth feature of samples
in class Ci. On the other hand, Σi is an M ×M matrix. The (j, j) diagonal
entry is the variance of the jth feature of samples in class Ci. The variance
describes how spread the values of a feature are. The (j, k) off-diagonal entry



94 � A Concise Introduction to Machine Learning

Figure 4.4: Separation by the line vertical to the connection between the
sample means and 95% confidence ellipses.

is the covariance between the jth and kth feature of samples in class Ci. The
covariance describes how much different features influence each other.

The covariance matrix is in general positive definite, since

v̂TΣiv̂ =
1

Ni

∑
v∈Ci

v̂T (v − µi)(v − µi)T v̂ =
1

Ni

∑
v∈Ci

[
(v − µi)T v̂

]2 ≥ 0.

It is unlikely that the sum of squares equals zero, since this means that all
samples shifted by the mean lie in a space orthogonal to v̂. In this case, one of
the dimensions of the feature space is redundant, and dimensionality reduction
should be performed first. Positive definiteness implies that the matrix is non-
singular and can be inverted, a property which we will use later.

Let w be the direction of the line of projection. The location of the line of
projection can be neglected, since it cancels in the calculations. The mean of
the projected samples in class Ci is given by wTµi, while the variance of the
projected samples in class Ci is given by wTΣiw. We seek w such that

‖wTµ0 −wTµ1‖2 = wt(µ0 − µ1)(µ0 − µ1)Tw

is as large as possible. That is the projected means are as far apart as possible.
This is known as the between-class scatter of the projected samples. At the
same time, we want

wTΣ0w + wTΣ1w = wT (Σ0 + Σ1)w



Linear Classification � 95

Figure 4.5: Fisher’s Discriminant Analysis.

as small as possible, since then the projected samples are close to the projected
mean. This is known as the within-class scatter of the projected samples.

Depending on w, Fisher defined the separation w achieves by

s(w) =
wT (µ0 − µ1)(µ0 − µ1)Tw

wT (Σ0 + Σ1)w
.

This function needs to be maximized. Or in other words, we maximize the
ratio of the variance between projected classes to the variance within projected
classes.

The function s(w) takes its maximum, where the gradient vector vanishes.
The gradient ∇s(w) is the vector formed by the derivatives of s(w) with re-
spect to each of the components of w. Using the quotient rule of differentiation,
the formula given in Appendix A.2.3 and the symmetry of covariance matrices
and outer products, the gradient is given by

2
(wT (Σ0 + Σ1)w)(µ0 − µ1)(µ0 − µ1)Tw − ((µ0 − µ1)Tw)2(Σ0 + Σ1)w

(wT (Σ0 + Σ1)w)2

= 2
(µ0 − µ1)Tw

wT (Σ0 + Σ1)w
(µ0 − µ1)− 2

(
(µ0 − µ1)Tw

wT (Σ0 + Σ1)w

)2

(Σ0 + Σ1)w.

Setting this to zero and rearranging, we arrive at:

w =
wT (Σ0 + Σ1)w

(µ0 − µ1)Tw
(Σ0 + Σ1)−1(µ0 − µ1)



96 � A Concise Introduction to Machine Learning

Since we are only interested in the direction of w, the length can be chosen
freely. Thus the separation is maximal, if w is a multiple of the vector (Σ0 +
Σ1)−1(µ0 − µ1). With this choice for w the scaling factor in the formula for
w is 1.

The MATLAB code in Listing 4.1 calculates Fisher’s discriminant as spec-
ified above, and the resulting projection and separation lines are illustrated
in Figure 4.5. All samples are correctly separated with the exception of one
outlier.

The calculations simplify under the assumption Σ0 = Σ1 = Σ. This
is known as Linear Discriminant Analysis (LDA). The vector w is set to
Σ−1 (µ0 − µ1), since scaling can be neglected and the separation threshold is
the projection of the midpoint between the means:

b = wT 1

2
(µ0 + µ1) =

1

2
(µT0 Σ−1µ0 − µT1 Σ−1µ1).

In the iris example, which we considered so far, the classes do not have the
same covariance.

4.4 Multiple Classes
We now consider more than two classes, while we continue to assume that they
have the same sample covariance matrix. Let K be the number of classes. For
each class Ci we calculate the mean µi. Let µ be the mean of the class means

µ =
1

K

K∑
i=1

µi.

The between-class scatter is defined as

Σb =
1

K

K∑
i=1

(µi − µ) (µi − µ)
T
.

The separation between classes in the direction of w is given by

s(w) =
wTΣbw

wTΣw
.

To separate K classes we need to find K−1 directions w1, . . . ,wK−1 for which
s(w) is maximal. This is equivalent to maximizing

S(W) =
|WTΣbW|
|WTΣW|

,

where W denotes the matrix whose columns are the vectors w1, . . . ,wK−1

and | · | denotes the determinant of the matrix. If the number of features M
is greater or equal to the number of classes K, it can be shown that S(W)
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load fisheriris;
% meas contains the first species in rows 1 to 50, the second species
% in rows 51 to 100, and the third species in rows 101 to 150, while
% the columns give the measurements of sepal length, sepal width,
% petal length and petal width in this order.
% Extract two species and two attributes.
m = meas(1:100,1:2);
s = species(1:100);
% Calculate the mean for each species.
mean0 = mean( m(1:50,:));
mean1 = mean( m(51:100,:));
% Calculate the covariance for each species.
cov0 = cov( m(1:50,:));
cov1 = cov( m(51:100,:));
% Find the direction of the projection line.
w = ((cov0 + cov1) \ (mean0 − mean1)')';
% Find vector perpendicular to direction.
perp = transpose(null(w));
% Find midpoint between means.
mid = mean0 + 0.5 * (mean1 − mean0);
% Plot data.
figure;
h(1:2) = gscatter(m(:,1), m(:,2), s,'rg','os');
hold on;
% Plot means.
h(3) = scatter(mean0(1),mean0(2),[],'r','filled');
h(4) = scatter(mean1(1),mean1(2),[],'g','filled','s');
% Plot projection line.
temp1 = mid + 0.2 * w;
temp2 = mid − 0.2 * w;
plot([temp1(1) temp2(1)], [temp1(2) temp2(2)], 'k');
% Plot separation line.
temp1 = mid + 1.5 * perp;
temp2 = mid − 2.5 * perp;
plot([temp1(1) temp2(1)], [temp1(2) temp2(2)], 'k');
% Label graph.
legend(h,{'Setosa','Versicolor','Setosa mean','Versicolor mean'},...

'Location','Northeast')
xlabel('Sepal length');
ylabel('Sepal width');
axis([4 7.3 1.5 4.5]);

Listing 4.1: Fisher’s discriminant, projection and separation lines.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Classification using different features.

is maximal if w1, . . . ,wK−1 are the generalized eigenvectors corresponding to
the K−1 largest generalized eigenvalues of the generalized eigenvalue problem

ΣBw = λΣw.

This is implemented in MATLAB as

ClassificationDiscriminant.fit

There are also other strategies to classify multiple classes. These are based
on binary classifiers.

The first one is known as One vs Rest (OvR) or One vs All (OvA). K
binary classifiers are constructed, each giving a confidence score for a sample
belonging to the kth class, k = 1, . . . ,K. A sample is labeled with the class
with the highest confidence score. There are two disadvantages. Firstly, the
confidence scores have to be calibrated between each other. Secondly, the
binary classifiers see unbalanced distributions, since the number of samples
in the kth class is much smaller than the number of samples NOT in the kth

class.
The other one is known as One vs One (OvO). For each pair of classes,

K(K−1)/2 classifiers are trained. A sample is labeled with the class for which
the most classifiers vote. The case where two or more classes receive the same
number of votes needs to be handled.

As can be seen in Figure 4.6 some features are more useful for classification
than others. We examine this further when discussing feature selection.
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Figure 4.7: Step function sgn.

4.5 Online Learning and the Perceptron
So far we considered learning tasks where the training data is available upfront.
This is known as batch learning or offline learning . In contrast, in online
learning the training data becomes available sequentially.

Recall that we seek a direction vector w and separation threshold b such
that for sample v

• wTv < b ⇒ v ∈ C0,

• wTv > b ⇒ v ∈ C1.

By extending the vectors w to ŵ = (−b,w) and v to v̂ = (1,v) this can be
rephrased to

• ŵT v̂ = wTv − b < 0 ⇒ v ∈ C0

• ŵT v̂ = wTv − b > 0 ⇒ v ∈ C1

This way the bias b, becomes part of the vector of weights.
As depicted in Figure 4.7, we define the step function

sgn(x) =

 −1 if x < 0
0 if x = 0
1 if x > 0

Then for sample v

• sgn(ŵT v̂) = −1 ⇒ v ∈ C0

• sgn(ŵT v̂) = 1 ⇒ v ∈ C1

The Perceptron was invented in 1957 by Rosenblatt, and built in 1958 as a
physical machine for image recognition. It contained 400 photo cells, and the
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Figure 4.8: Perceptron.

weights were implemented as potentiometers which were updated by electric
motors.

Specifically, the Perceptron initializes ŵ0 = 0, and updates the vector
ŵi−1 with each new training sample vi by

ŵi = ŵi−1 +
α

2

(
ci − sgn(ŵT

i−1v̂i)
)
v̂i,

where ci is the class label of vi, that is ci = −1 if vi ∈ C0 and ci = 1 if vi ∈ C1.
The parameter 0 < α ≤ 1 is the learning rate and is set by the user. If the
learning rate is chosen too big, any changes are too radical and oscillations
occur. Note that ŵi is the same as ŵi−1, if the class label was determined
correctly. If the class label was determined incorrectly, the separation line is
pulled in the direction such that it is more likely that the sample is labeled
correctly in future. The sign of ci−sgn(ŵT

i−1v̂i) determines in which direction
the separation line is pulled. At any stage, the vector of weights, ŵi, is a linear
combination of all samples which caused a change to the separation line so
far.

The perceptron is implemented as a single layer neural network within the
neural network framework in MATLAB (Figure 4.8 and Listing 4.2). We take
a closer look at neural networks, when considering non-linear classification.

The perceptron needs to see enough examples for the separation line to
settle. An epoch is one complete presentation of the data to the algorithm.
Figure 4.9 shows the different separation lines after a certain amount of data
has been seen by the perceptron. The unseen data are marked with ×. The
learning rate is set to 1. Because of this large value, the separation line changes
position quite dramatically between seeing 90% and the complete data set.
After 100 epochs the perceptron classifies all samples correctly apart from
one outlier. It takes several hundred more epochs for the perceptron to also
classify this sample correctly. Giving a different seed to the random number
generator and thus changing the order in which the data is presented leads to
different separation lines.
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load fisheriris;
% meas contains the first species in rows 1 to 50, the second species
% in rows 51 to 100, and the third species in rows 101 to 150, while
% the columns give the measurements of sepal length, sepal width,
% petal length and petal width in this order.
% Extract two species and two attributes.
m = meas(1:100,1:2)';
s = species(1:100);
% Plot data.
figure;
gscatter(m(1,:), m(2,:), s,'rg','os');
hold on;
% Generate binary true/false class labels. First 50 samples belong to
% class zero, next 50 to class 1
s = [zeros(1,50) ones(1,50)];
% Generate random permutation matrix, so that the samples arrive in
% a random order
P = eye(100);
% Create a random stream.
st = RandStream('mt19937ar','Seed',1);
idx = randperm(st,100);
P = P(idx, :);
% Permute data.
m = m*P;
s = s*P;
% Fit a linear separation line using the Perceptron
PerceptronModel = perceptron;
PerceptronModel = configure(PerceptronModel,m(:,1),s(1));
% Use all samples for training.
PerceptronModel.divideFcn = 'dividetrain';
% Set learning rate to 1.
PerceptronModel.trainParam.lr = 1;
% Specify maximum number of epochs.
PerceptronModel.trainParam.epochs = 1000;
% Train the perceptron.
PerceptronModel = train(PerceptronModel,m,s);
% Plot separation line.
w = PerceptronModel.iw{1,1};
b = PerceptronModel.b{1};
h = plotpc(w,b);
set(h, 'Color','k');
% Label graph.
legend('Setosa','Versicolor','Location','Northeast')
xlabel('Sepal length');
ylabel('Sepal width');
axis([4 7.3 1.5 4.5]);

Listing 4.2: Perceptron.
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(a) 70% of data seen. (b) 80% of data seen. (c) 90% of data seen.

(d) Complete data seen. (e) Complete data seen
a hundred times.

(f) Convergence

Figure 4.9: Perceptron classification (unseen data is marked by ×).

4.6 The Support Vector Machine
Letting the learning rate α be a choice is crude. All should be determined by
the data. When all samples are correctly classified, that is cn = sgn(ŵT v̂n),
the margin is defined as

min
n=1,...,N

cn
ŵT v̂n
‖ŵ‖

> 0.

The Support Vector Machine (SVM) tries to maximize the margin between
the two classes.

Note that the margin is independent of any rescaling of ŵ, since we divide
by the length of ŵ. We use the freedom to rescale ŵ such that cnŵT v̂n−1 ≥ 0
for all n = 1, . . . N with equality for at least one sample. Hence we impose
some constraints on ŵ. In the case of samples, where we have equality, the
constraints are said to be active. For the other samples, they are inactive.
Subject to these constraints, maximizing the margin is equivalent to maxi-
mizing ‖ŵ‖−1. Hence, the equivalent problem is: Minimize the objective func-
tion ‖ŵ‖2/2 subject to the constraint cnŵT v̂n − 1 ≥ 0 for all n = 1, . . . N .
This is known as a quadratic programming problem. The reasons for which
will become clear below, this is called the primal optimization problem.

Figure 4.10 illustrates the quadratic programming problem. The circles
are the isolines of ‖ŵ‖2/2, that is lines where it takes a constant value. In
the white region, no constraints are satisfied, in the light gray region, one
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Figure 4.10: Objective function, constraints and gradients.

constraint is satisfied, while in the medium gray region, two constraints are
satisfied. In the dark gray region, all constraints are satisfied. This is known
as the feasible set . The minimum subject to the constraints lies at the point
within the feasible set closest to the centre of the circles. In the illustration
of Figure 4.10, two constraints are active and one is inactive. At this point,
the gradient of ‖ŵ‖2/2 is a linear combination of the gradients of the active
constraints. In Figure 4.10 the arrows perpendicular to the constraints are
the gradients of the constraints multiplied by αn. The dotted lines illustrate
that these add to form the gradient vector of the objective function at the
constrained minimum.

The Lagrangian function combines the objective function and the con-
straints into one function and is given by

L(ŵ,α) =
1

2
‖ŵ‖2 −

N∑
n=1

αn
(
cnŵT v̂n − 1

)
,

where α = (α1, . . . , αN )T are known as Lagrange multipliers which are re-
quired to be non-negative. If for a particular ŵ, the constraint cnŵT v̂n−1 ≥ 0
is satisfied as equality, it does not contribute to the sum. If it is satisfied as
a strict inequality, we subtract from the original objective function, but if it
is not satisfied, we add to it. Thus, if ŵ lies outside the feasible set, it is
penalized.

The function
L(α) = min

ŵ
L(ŵ,α)
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Figure 4.11: Weighing the relationships of training samples to a new sample.

is called the dual function of the primal optimization problem. Note that in
the feasible set, L(α) is always a lower bound of ‖ŵ‖2/2. We find the largest
lower bound by maximizing with respect to α.

We recover the original minimization problem when the multiplier αn is
zero, if the constraint is inactive, and positive otherwise. Formally, this is
written as

αn
(
cnŵT v̂n − 1

)
= 0.

This property is known as complementarity . If this is the case, the maximum
lower bound and the constrained minimum are the same. The solution is a
stationary point of L(ŵ,α), that is its derivatives vanish. Using Appendices
A.2.1 and A.2.2, the derivative of L(ŵ,α) with respect to ŵ is

d

dŵ
L(ŵ,α) = ŵ −

N∑
n=1

αncnv̂n.

Setting this to zero is equivalent to the gradient of the objective function being
a linear combination of the gradients of the constraints.

Inserting

ŵ =
N∑
n=1

αncnv̂n, (4.3)

into the Lagrangian function, we seek α that maximizes the dual function
given by

L(α) =
N∑
n=1

αn −
1

2

N∑
i=1

N∑
n=1

αiαncicnv̂Ti v̂n. (4.4)
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Figure 4.12: Support Vector Machine Classification.

subject to the constraints αn ≥ 0 and αn
(
cnŵT v̂n − 1

)
= 0, n = 1, . . . , N .

This is the dual representation of the maximum margin problem.
The samples for which αi 6= 0 in the linear combination to form the weight

vector ŵ are called the support vectors. This shaped the name under which
the technique is known now. It was invented in 1964 by Vapnik and Lerner as
the Generalized Portrait Method . The term generalized portrait refers to the
centre of a sphere which contains patterns belonging to a certain class, but no
other class. That is, it is a representative of this class.

Recall that ŵ = (−b,w) and v to v̂ = (1,v). Inserting this into (4.3) and

(4.4), the bias b is given by −
∑N
n=1 αncn, while the vector of weights is

w =
N∑
n=1

αncnvn.

The dual maximization problem becomes

L(α) =
N∑
n=1

αn −
1

2

N∑
i=1

N∑
n=1

αiαncicn
(
1 + vTi vn

)
.

Its solution depends solely on the inner product between samples. The classi-
fication is according to the sign of

ŵT v̂ =
N∑
n=1

αncnv̂Tn v̂ =
N∑
n=1

αncn
(
1 + vTnv

)
= −b+

N∑
n=1

αncnvTnv = −b+wTv.



106 � A Concise Introduction to Machine Learning

Again, this only depends on the inner products between the training samples
and the new sample weighted by αn. The inner product can be viewed as mea-
suring the relationship between the two samples. Through the multiplication
by cn, the weighted inner products from one class are added, while the others
are subtracted. Depending on where the scales are tipped (Figure 4.11), the
new sample is deemed more related to the samples of one class than the other,
and classified accordingly.

Since αn is only non-zero for the support vectors, it is only important how
the new sample relates to the support vectors. This is a major advantage of
the Support Vector Machine, since it results in a sparse model of the classes.
Only the support vectors are necessary for future classifications.

We will see the advantages of recasting the problem by examining the
relationships between samples when considering non-linear classification and
the kernel trick . Here the inner product between samples assigns a numeric
value to the relationship. The inner product is a counter-intuitive measure.
For a given sample vector, all samples lying on the line orthogonal to it are
given the value zero in this relation. Samples lying on the same side of this
line as the given sample are given a positive value, while samples on the other
side are given a negative value. The absolute values increase with the distance
from this line.

As we will see later, different measures for the relationship can be chosen.
The MATLAB code in Listing 4.3 uses the Support Vector Machine imple-

mentation to calculate the support vectors and plot the separation line. The
result can be seen in Figure 4.12.
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load fisheriris;
% meas contains the first species in rows 1 to 50, the second species
% in rows 51 to 100, and the third species in rows 101 to 150, while
% the columns give the measurements of sepal length, sepal width,
% petal length and petal width in this order.
% Extract two species and two attributes.
m = meas(1:100,1:2);
s = species(1:100);
% Fit a linear separation line using the Support Vector Machine.
SVMModel = fitcsvm(m,s);
% Retrieve support vectors.
sv = SVMModel.SupportVectors;
% Retrieve classes of support vectors.
sl = SVMModel.SupportVectorLabels;
% Retrieve Langrange multipliers.
a = SVMModel.Alpha;
% Calculate vector of weights as linear combination of support vectors
% with the coefficients being the Lagrange multipliers times the class
% labels.
w = (sl.*a)'*sv;
% Retrieve bias.
b = SVMModel.Bias;

figure
% Scatter plot of the data.
gscatter(m(:,1),m(:,2),s,'rg','os');
hold on
% Mark support vectors.
plot(sv(:,1),sv(:,2),'kx')
% Plot separation line.
h = plotpc(w,b);
set(h, 'Color','k');
% Label graph.
legend('Setosa','Versicolor',...

'support vector','separation line','Location','northeast')
xlabel('Sepal length');
ylabel('Sepal width');
axis([4 7.3 1.5 4.5]);
hold off

Listing 4.3: Support Vector Machine.
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C H A P T E R 5

Non-Linear
Classification

The chapter begins by deriving the Quadratic Discriminant analysis as the
boundary between two normally distributed classes. This is then shown to
be a line in a higher dimensional space leading to the kernel trick. Heuristic
methods such as k nearest neighbours and decision trees are covered. For the
latter impurity is defined and examples such as the Gini Diversity Index are
given. Neural networks are explored further as a set of many conditions of
the form to the left or right of a line determined by the network parameters.
The chapter concludes with boosting and cascades as a way to build strong
classifiers from weak ones and taking the cost into account.

5.1 Quadratic Discriminant Analysis
So far we assumed that the data can be separated by a straight line. However,
this assumption of linear classification is very restrictive. Before we go into
this, however, we need to recall the subtle difference between two key concepts:
probability and likelihood . Probability answers the question: How probable is
it that a sample of class Ci has these features? Likelihood, on the other hand,
answers the question: How likely is it that a sample with these features belongs
to class Ci?

Let the features of samples in class Ci be normally distributed with mean
µi and variance Σi, i = 0, 1. Let v be a feature vector. The probability of v
given that it is in class Ci is:

p(v|v ∈ Ci) =
1√

(2π)M |Σi|
exp

(
−1

2
(v − µi)TΣ−1

i (v − µi)
)
.

109
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The likelihood of v ∈ Ci given that we know its features v is:

L(v ∈ Ci|v) =
1√

(2π)M |Σi|
exp

(
−1

2
(v − µi)TΣ−1

i (v − µi)
)

It is the same formula, but a different interpretation.
A classifier can be built by assigning v to class C0 if the likelihood of

it belonging to C0 is larger than the likelihood of it belonging to C1. The
boundary between the classes is given by

L(v ∈ C0|v) = L(v ∈ C1|v).

This is often expressed as likelihood ratio

L(v ∈ C0|v)

L(v ∈ C1|v)
=

√
(2π)M |Σ1| exp

(
− 1

2 (v − µ0)TΣ−1
0 (v − µ0)

)√
(2π)M |Σ0| exp

(
− 1

2 (v − µ1)TΣ−1
1 (v − µ1)

) = 1.

Taking the logarithm, we arrive at

log
L(v ∈ C0|v)

L(v ∈ C1|v)
=

1

2
log
|Σ1|
|Σ0|

− 1

2
(v − µ0)TΣ−1

0 (v − µ0)

+
1

2
(v − µ1)TΣ−1

1 (v − µ1)

=
1

2

(
log
|Σ1|
|Σ0|

+ µT1 Σ−1
1 µ1 − µT0 Σ−1

0 µ0

)
+vT

(
Σ−1

0 µ0 −Σ−1
1 µ1

)
+

1

2
vT
(
Σ−1

1 −Σ−1
0

)
v = 0.

Thus the boundary between classes is given by a quadratic of the form

vTAv + vTb + c = 0

with

A =
1

2

(
Σ−1

1 −Σ−1
0

)
,

b = Σ−1
0 µ0 −Σ−1

1 µ1,

c =
1

2

(
log
|Σ1|
|Σ0|

+ µT1 Σ−1
1 µ1 − µT0 Σ−1

0 µ0

)
.

This is the Quadratic Discriminant Analysis (QDA).
In the special case of two features, the boundaries are conic sections, that

is a line, circle, ellipse, parabola or hyperbola. The MATLAB code in Listing
5.1 applies the Quadratic Discriminant Analysis to Fisher’s iris data and the
result can be seen in Figure 5.1.

Recall that we arrived at the Linear Discriminant Analysis by assuming
Σ0 = Σ1 = Σ. In this case,

A = 0,
b = Σ−1 (µ0 − µ1) ,

c =
1

2

(
µT1 Σ−1µ1 − µT0 Σ−1µ0

)
.
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load fisheriris;
% extract two attributes
pl = meas(:,3); % petal length
pw = meas(:,4); % petal width
figure;
h1 = gscatter(pl, pw, species,'rgb','osˆ');
legend('Setosa','Versicolor','Virginica','Location','best')
hold on;
X = [pl,pw];
cls = ClassificationDiscriminant.fit(X,species,...

'DiscrimType','quadratic');
% plot the classification boundaries
% retrieve the coefficients for the quadratic boundary between
% the first and second class (setosa and versicolor).
c = cls.Coeffs(1,2).Const;
l = cls.Coeffs(1,2).Linear;
q = cls.Coeffs(1,2).Quadratic;

% plot the curve c + [x1,x2]*l + [x1,x2]*q*[x1,x2]' = 0:
f = @(x1,x2) c + l(1)*x1 + l(2)*x2 + q(1,1)*x1.ˆ2 + ...

(q(1,2)+q(2,1))*x1.*x2 + q(2,2)*x2.ˆ2;
h2 = ezplot(f,[.9 7.1 0 1]);
set(h2, 'Color','k');
% retrieve the coefficients for the quadratic boundary between
% the second and third class (versicolor and virginica).
c = cls.Coeffs(2,3).Const;
l = cls.Coeffs(2,3).Linear;
q = cls.Coeffs(2,3).Quadratic;
% plot the curve c + [x1,x2]*l + [x1,x2]*q*[x1,x2]' = 0:
f = @(x1,x2) c + l(1)*x1 + l(2)*x2 + q(1,1)*x1.ˆ2 + ...

(q(1,2)+q(2,1))*x1.*x2 + q(2,2)*x2.ˆ2;
h3 = ezplot(f,[.5 7 0 2.5]);
set(h3, 'Color','k');
xlabel('Petal length');
ylabel('Petal width');
axis([0.8 7 0 3])
title('');

Listing 5.1: Quadratic Discriminant Analysis.
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Figure 5.1: Quadratic Discriminant Analysis.

This is exactly the equation of the line in the Linear Discriminant Analysis.
In the following section, we look at the Quadratic Discriminant Analysis

from a different angle by introducing artificial features and extending the
feature space this way.

5.2 Kernel Trick
In the quadratic

vTAv + vTb + c = 0

the matrix A is symmetric, since A is the difference of covariance matrices
which are symmetric. Assuming M = 2 and writing

A =

(
A11 A12

A12 A22

)
,b =

(
b1
b2

)
,

the boundary equation can be written as

A11x
2
1 + 2A12v1v2 +A22v

2
2 + b1v1 + b2v2 + c = 0.

Now we can rearrange this as

(
A11 2A12 A22 b1 b2

)


v2
1

v1v2

v2
2

v1

v2

+ c = 0.



Non-Linear Classification � 113

(a) (b)

Figure 5.2: Linearly inseparable data and their transformation to a higher
dimensional space.

Letting wT =
(
A11 2A12 A22 b1 b2

)
and v̌ =


v2

1

v1v2

v2
2

v1

v2

, this de-

scribes a linear boundary in a five-dimensional feature space.

wT v̌ + c = 0.

In other words, we have augmented the feature space by three artificial
features

v2
1 , v1v2, v2

2 .

This is known as the kernel trick . The features are transformed to a higher
dimensional feature space where the classes are linearly separable. We will see
below that in practice this transformation is never performed.

Figure 5.2 shows artificial data, which cannot be separated by a line, and
their transformation to a higher dimensional space, where they can be sepa-
rated by a plane. We set v3 =

√
v2

1 + v2
2 , and the plane lies at v3 = 1. Going

back to two dimensions, v2
3 = v2

1 + v2
2 = 1 is the unit circle in the v1, v2-plane.

To formalize this approach, recall that the Support Vector Machine clas-
sifies according to the sign of

−b+
N∑
n=1

αncnvTnv,

where the bias b is given by −
∑N
n=1 αncn and where ci = ±1 is the class label

of sample vi. The αi ≥ 0 for i = 1, . . . , N maximize the function

L(α) =
N∑
n=1

αn −
1

2

N∑
i=1

N∑
n=1

αiαncicn
(
1 + vTi vn

)
.
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Let φ : RM → RM̂ be the mapping from the original M dimensional
feature space to the higher M̂ dimensional feature space. We now apply the
support vector machine to the data in this higher dimensional space; i.e. we
need to maximize

L(α) =
N∑
n=1

αn −
1

2

N∑
i=1

N∑
n=1

αiαncicn
(
1 + φ(vi)

Tφ(vn)
)
.

Let k : RM × RM → R be defined as

k(x,y) = φ(x)Tφ(y).

This is known as the kernel function or kernel for short. Using this notation,
the objective function to be maximized becomes

L(α) =
N∑
n=1

αn −
1

2

N∑
i=1

N∑
n=1

αiαncicn (1 + k(vi,vn)) ,

subject to αi ≥ 0, i = 1, . . . , N .The classification is according to the sign of

−b+

N∑
n=1

αncnφ(vn)Tφ(v) = −b+

N∑
n=1

αncnk(vn,v).

We see the mapping φ never has to be evaluated, only the kernel function k
in both the maximization and classification.

The kernel trick can be applied to all linear classification methods to sep-
arate data which is not linearly separable. All methods reduce to evaluations
of the kernel function k.

The kernel function was derived from a higher dimensional inner product.
In the previous chapter, we viewed the inner product as a measure of the
relationship between different samples. A new sample is classified according
to whether it is more related to the support vectors of one class than the
other. The kernel function gives a numeric value describing the relationship
between two samples.

Such functions describing relationships between samples can be con-
structed. A necessary and sufficient condition that such a function is suitable
for our purposes is that the N × N matrix K with (m,n) entry equal to
k(xm,xn) is positive semi-definite for any N and for any set {x1, . . . ,xN}. It
is known as Gram or Gramian matrix . The constant function k(x,y) = c for
positive c is a valid kernel, since then for any vector v = (v1, . . . , vn)T

vTKv = c
(∑

n = 1Nvn

)2

≥ 0.
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We also have positive semi-definiteness of K, if the kernel function is de-
fined via an inner product in a higher dimensional space, because then

vTKv =
N∑

m,n=1

vmφ(xm)Tφ(xn)vn

=

(
N∑
m=1

vmφ(xm)

)T ( N∑
n=1

vnφ(xn)

)
= ‖

N∑
n=1

vnφ(xn)‖2 ≥ 0.

Therefore the inner product itself is a valid kernel.
If A is a symmetric, positive semi-definite, M ×M matrix, then the func-

tion defined by
k(x,y) = xTAy

is a valid kernel function, since in this case

vTKv =
N∑

m,n=1

vmxTmAxnvn =

(
N∑
m=1

vmxm

)T
A

(
N∑
n=1

vnxn

)
≥ 0.

Similarly, if f : RM → R is any function and k : RM × RM → R is a valid
kernel, then

N∑
m,n=1

vmf(xm)k(xm,xn)f(xn)vn = wTKw ≥ 0, (5.1)

where w = (f(x1)v1, . . . , f(xN )vN )T . Therefore, the function defined by
f(x)k(x,y)f(y) is a kernel function.

Multiplying a valid kernel by a positive constant is obviously a kernel,
as is the sum of two valid kernels. Also, the product of two valid kernels
is a kernel. Let {x1, . . . ,xN} be an arbitrary set. Let K denote the Gram
matrix of the product of kernels. Since the Gram matrices of the two kernels,
which are the factors, are symmetric and positive semi-definite, they can be
written as products ATA and BTB respectively. Thus, their (m,n) entries are
given by

N∑
i=1

AmiAni and
N∑
j=1

BmjBnj

respectively. Now, for an arbitrary vector v = (v1, . . . , vn)T ,

vTKv =
N∑

m,n=1

vmKmnvn =
N∑

m,n=1

vm

(
N∑
i=1

AmiAni

) N∑
j=1

BmjBnj

 vn

=
N∑

i,j=1

(
N∑
m=1

vmAmiBmj

)(
N∑
n=1

vnAniBnj

)

=
N∑

i,j=1

(
N∑
m=1

vmAmiBmj

)2

≥ 0.
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Hence, K is positive semi-definite, and the product of two kernels is a kernel.
From this we can deduce that, if p is a polynomial with non-negative coeffi-
cients, then p(k(x,y)) is a valid kernel, if k(x,y) is a valid kernel function.
Also exp(k(x,y)) is a valid kernel as the limit of a polynomial with positive
coefficients.

Since the positive semi-definiteness has to hold for any set of points, it
has to also hold for {ψ(a1), . . . , ψ(aN}, where ψ : Ra → RM is any mapping
and {a1, . . . ,aN} is any set in Ra. Therefore, if k(x,y) is a valid kernel, so is
k(ψ(a), ψ(b)) on Ra×Ra. In particular, ψ can be the restriction onto a subset
of components of x. Let xa,ya ∈ Ra and xb,yb ∈ Rb be such restrictions. They
do not necessarily need to be disjoint or use all components of x. Let ka(xa,ya)
and kb(xb,yb) be the kernels obtained by the restrictions; then

k(x,y) = ka(xa,ya) + kb(xb,yb) and k(x,y) = ka(xa,ya)kb(xb,yb)

are valid kernels on RM ×RM .
Thus, there is a multitude of possibilities to construct kernels. Some pop-

ular examples of kernels are:

Linear (trivial) kernel k(x,y) = θ2
1 + θ2

2xTy.

Quadratic kernel k(x,y) = (θ2
1 + θ2

2xTy)2.

Polynomial kernel (of degree d) k(x,y) = (θ2
1 + θ2

2xTy)d.

Hyperbolic tangent (Sigmoid) kernel k(x,y) = tanh(θ2
1 + θ2

2xTy).

Additive and multiplicative constants have to be positive. To ensure this,
squared parameters are chosen. This also helps, when the parameters are
optimized, since then this is an unconstrained optimization problem, while
otherwise it would be a constrained optimization problem.

Considering the inner product xTy for a given vector x, vectors y lying on
the line orthogonal to x are given the value zero for this relationship. Samples
lying on the same side of this line as x are given a positive value, while samples
on the other side are given a negative value. The absolute values increase with
the distance from this line. The additive constant θ1 shifts the zero line, while
the multiplicative constant θ2 controls the rate of this increase. For the linear
kernel the shift is absorbed in the bias. Hence setting θ1 to zero in this context
suffices.

The hyperbolic tangent kernel addresses the problem that absolute values
of the inner product increase with the distance from the zero line. As the
arguments of the hyperbolic tangent tend to plus or minus infinity, the result
tends to +1 or −1 respectively. The values of the hyperbolic tangent are
illustrated in Figure 5.3 for different multiplicative constants θ2, but fixed
y = (1, 1)T and θ1 = 0. For smaller θ2 the change from −1 to +1 is less rapid.
The additive and multiplicative constants are parameters which need to be
optimized or tuned for the specific application. When tuning, a validation set
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(a) θ1 = 0,y = (1, 1), θ2 = 1 (b) θ1 = 0,y = (1, 1), θ2 = 1/
√

5

Figure 5.3: Hyperbolic tangent kernel.

is used to ensure the resulting classifier generalizes well to unseen data. It is
important to note that for certain choices of θ1 and θ2, the hyperbolic tangent
is not a valid kernel. For example, for θ1 = θ2 = 1 and x1 = (0.5, 0)T and
x2 = (1, 0), the Gram matrix is

K =

(
tanh(1.25) tanh(1.5)
tanh(1.5) tanh(2)

)
and has a negative eigenvalue and therefore is not positive semi-definite. Nev-
ertheless, the hyperbolic tangent kernel is used in practice. Burges in [7] de-
rives necessary conditions for functions based on the inner product to be valid
kernels, as well as giving insight into the construction of kernels.

In some cases, it is possible to recover the mapping φ. To illustrate this let
M = 2 and we consider the quadratic kernel:

k(x,y) = (θ2
1 + θ2

2xTy)2

=
(
θ2

1 + θ2
2x1y1 + θ2

2x2y2

)2
= θ4

1 + θ4
2x

2
1y

2
1 + θ4

2x
2
2y

2
2 + 2θ4

2x1y1x2y2 + 2θ2
1θ

2
2x1y1 + 2θ2

1θ
2
2x2y2

=
(
θ2

1, θ
2
2x

2
1, θ

2
2x

2
2,
√

2θ2
2x1x2,

√
2θ1θ2x1,

√
2θ1θ2x2

)


θ2
1

θ2
2y

2
1

θ2
2y

2
2√

2θ2
2y1y2√

2θ1θ2y1√
2θ1θ2y2


= φ(x)Tφ(y).

Hence, in this case, the quadratic kernel is an implicit mapping to a six-
dimensional space.

It is more intuitive to let the relationship between samples depend on
the distance between them, that is the Euclidean norm (L2 norm) of their
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difference, ‖x − y‖. This leads to the class of radial basis function (RBF)
kernels.

Gaussian kernel k(x,y) = θ2
1 exp

(
−‖x− y‖2

2θ2
2

)
.

Exponential kernel k(x,y) = θ2
1 exp

(
−‖x− y‖

θ2

)
.

Multiquadric kernel θ2
1

(
1 +
‖x− y‖2

2θ2
2

)1/2

.

Inverse multiquadric kernel θ2
1

(
1 +
‖x− y‖2

2θ2
2

)−1/2

.

Rational quadratic kernel θ2
1

(
1 +
‖x− y‖2

2αθ2
2

)−α
, α > 0.

Thin plate spline kernel θ2
1‖x− y‖2 log(‖x− y‖+ θ2

2).

As an example, we show that the Gaussian kernel is a valid kernel. Firstly,

‖x− y‖2 = xTx− 2xTy + yTy

and the kernel can be written as

k(x,y) = θ1 exp

(
− 1

2θ2
2

xTx

)
exp

(
1

θ2
2

xTy

)
θ1 exp

(
− 1

2θ2
2

yTy

)
= f(x) exp

(
1

θ2
2

xTy

)
f(y).

This is a valid kernel, since it is the exponential of the inner product multiplied
by a positive constant and because of Equation (5.1).

The Gaussian kernel is also known as a squared exponential kernel or expo-
nentiated quadratic kernel . It is an intuitive similarity measure. If the sample
y happens to be the same as sample x, the Gaussian kernel evaluates to θ2

1,
its maximum value. θ1 is known as the signal standard deviation. With the
Euclidean distance between samples increasing, the similarity measure given
by the Gaussian kernel decreases, the rate of decrease being determined by
θ2, which is the characteristic length scale.

Figure 5.4 gives two examples of Gaussian kernels, for different choices
of θ2. The choice of θ2 is crucial in the performance of the kernel, since it
determines the width of the kernel. The larger the θ2, the wider the base of
the kernel. The kernels are centred at the support vectors. If the width is
chosen too narrow, the kernels evaluate to nearly zero for all samples except
the ones close to support vectors. If it is chosen too wide, the kernels evaluate
to values similar to each other, since the slope is at a low angle. It is then
hard to make a distinction between samples.
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(a) y = (0, 0), θ1 = θ2 = 1 (b) y = (0, 0), θ1 = 1, θ2 = 5

Figure 5.4: Gaussian kernel.

(a) y = (0, 0), θ1 = θ2 = 1 (b) y = (0, 0), θ1 = 1, θ2 = 5

Figure 5.5: Exponential kernel.

The exponential kernel is also an intuitive similarity measure. Equality of
x and y is, however, more emphasized than by the Gaussian kernel with the
exponential kernel being sharply peaked at zero. Figure 5.5 gives two examples
for different choices of θ2.

Some of the other kernels are shown in Figure 5.6. The multiquadric and
thin plate spline kernels are contra-intuitive as similarity measures, since their
value increases as the distance between x and y increases. Also their Gram
matrices are not necessarily positive semi-definite. With the addition of a
polynomial kernel, they can be made to be positive definite (see for example
[6]).

The parameter α in the rational quadratic kernel

k(x,y) = θ2
1

(
1 +
‖x− y‖2

2αθ2
2

)−α
,
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(a) Multiquadric kernel,
y = (0, 0), θ1 = θ2 = 1.

(b) Inverse multiquadric kernel,
y = (0, 0), θ1 = θ2 = 1.

(c) Rational quadratic kernel,
y = (0, 0), θ1 = 10, θ2 = 1, α = 2.

(d) Thin plate spline kernel,
y = (0, 0), θ1 = 0.1, θ2 = 1.

Figure 5.6: Radial basis function kernels.

is known as scale-mixture parameter . As α increases, the error in the approx-
imation

1 +
‖x− y‖2

2αθ2
2

= exp

(
‖x− y‖2

2αθ2
2

)
+O(α2)

decreases for fixed x and y. Therefore, as α approaches infinity, the rational
quadratic kernel becomes the Gaussian kernel. Using expansions, the rational
quadratic kernel can be viewed as an infinite sum of Gaussian kernel with
different characteristic length scales. Radial basis functions have many theo-
retical properties which can influence their performance; see for example [6].

All feature dimensions are treated equally in the kernel definitions so far.
However, one feature might be more spread out than another. One possibility
to tackle this is, instead of using the characteristic length scale θ2, to have a
separate length scale θm+1 for each feature dimension m = 1, . . . ,M . That is,
instead of ‖x− y‖2/θ2

2, we have(
x1 − y1

θ2

)2

+ . . .+

(
xM − yM
θM+1

)2

.
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Figure 5.7: Support Vector Machine classification with Gaussian kernel.

Increasing the number of parameters to be chosen is, however, better avoided.
Instead, the training data is standardized . For each feature dimension, the
training data, v1, . . . ,vN , is shifted by the mean and scaled by the standard
deviation. Writing vn = (vn1, . . . , vnM )T , for m = 1, . . . ,M we calculate

µm =
1

N

N∑
n=1

vnm and σ2
m =

1

N

N∑
n=1

(vnm − µm)2.

The standardized training data is then ṽ1, . . . , ṽN with

ṽnm =
vnm − µm

σm
.

The research on kernels is an active field with kernels being developed for
specific applications. Their usefulness lies in the fact that they do not need
to be defined over RM × RM , but can be defined over different categories of
objects. An example are string kernels [37] and graph kernels [32]. It all comes
down to defining a suitable similarity measure between objects.

The MATLAB code in Listing 5.2 applies a kernel Support Vector Machine
to Fisher’s iris data using the Gaussian kernel. The results can be seen in
Figure 5.7.
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load fisheriris
% extract two attributes
pl = meas(:,3); % petal length
pw = meas(:,4); % petal width
X = [pl,pw];

% determine classes
classes = unique(species);
% classifiers are constructed on the principle of One versus All
% as many classifier as classes are needed
SVMModels = cell(numel(classes),1);
rng(1); % seeding the random number generator for reproducibility

for j = 1:numel(classes)
% create binary classes for each classifier
indx = strcmp(species,classes(j));
% create classifier
SVMModels{j} = fitcsvm(X,indx,'ClassNames',[false true],...

'Standardize',true,... % standardize data
'KernelFunction','gaussian'); % specifying the kernel

end
% lay grid over the region
d = 0.01;
[x1Grid,x2Grid] = meshgrid(0.8:d:7,0:d:3);
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);
Scores = zeros(N,numel(classes));

% for each grid point calculate the score of each classifier
for j = 1:numel(classes)

% predict both returns the predicted class labels as well as a
% score indicating the likelihood of the negative class (false)
% and positive class (true)
[¬,score] = predict(SVMModels{j},xGrid);
Scores(:,j) = score(:,2); % second column contains positive

% class scores
end
% classify according to the maximum score
[¬,maxScore] = max(Scores,[],2);

% plot classifier regions
figure
h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...

[0.5 0.5 0.5; 0.7 0.7 0.7; 0.9 0.9 0.9]);
hold on
% plot data
h(4:6) = gscatter(pl, pw, species,'rgb','osˆ');
xlabel('Petal length');
ylabel('Petal width');
legend(h,{'Setosa region','Versicolor region','Virginica region',...

'Setosa','Versicolor','Virginica'},...
'Location','Northwest');

axis([0.8 7 0 3])
hold off

Listing 5.2: Support Vector Machine using Gaussian kernels.
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Figure 5.8: k Nearest Neighbour classification.

5.3 k Nearest Neighbours
In the previous chapter, we considered classifying samples according to their
relationship to samples in the training set. This relation was quantified using
kernels. A simple idea is to classify a new sample according to the majority
of classes to which its neighbours in the training set belong. Here neighbour
is defined as the samples closest with regards to the Euclidean norm, also
known as the L2 norm. The number of neighbours considered is denoted by
k. The classifier depends on the choice of k. If a small number of neighbours is
chosen, then the boundaries between classes are more irregular, while they are
smoother, if k is chosen larger. The technique is known as k Nearest Neighbours
(k-NN). Listing 5.3 creates a k Nearest Neighbour classifier and uses it to
classify the entire region. Adjusting the parameter specifying the number of
neighbours shows the different outcomes. Three new sample points are also
generated, their k nearest neighbours marked and ellipses drawn around the
nearest neighbours. Figure 5.8 shows the results.

5.4 Decision Trees
Another intuitive way to classify are decision trees. These are binary trees con-
sisting of nodes and leaves, also known as terminal nodes. Each non-terminal
node has two branches. A sample enters the tree at the root node at the top.
At each node, a decision is made based on the value of a single feature. If
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load fisheriris
% Extract two attributes.
pl = meas(:,3); % petal length
pw = meas(:,4); % petal width
X = [pl,pw];

% Create classifier.
k = 5;
kNNModel = fitcknn(X,species,...

'NumNeighbors',k,... % number of neighbours
'Standardize',true); % standardize data

% Lay grid over the region.
d = 0.01;
[x1Grid,x2Grid] = meshgrid(0.8:d:7,0:d:3);
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);

% For each grid point calculate the score of each class.
% 'predict' returns the predicted class labels corresponding to the
% minimum misclassification cost, the score (posterior probability)
% for each class as well as the expected classification cost for
% each class
[¬,score,¬] = predict(kNNModel,xGrid);

% Classify according to the maximum score.
[¬,maxScore] = max(score,[],2);

% Plot classifier regions.
figure
h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...

[0.5 0.5 0.5; 0.7 0.7 0.7; 0.9 0.9 0.9]);
hold on
% Plot data.
h(4:6) = gscatter(pl, pw, species,'rgb','osˆ');
xlabel('Petal length');
ylabel('Petal width');
legend(h,{'Setosa region','Versicolor region','Virginica region',...

'Setosa','Versicolor','Virginica'},...
'Location','Northwest');

axis([0.8 7 0 3])

% Plot new points with ellipses containing nearest neighbours.
newpoints = [2.5 .75;...

5 1.4;...
6 2];

plot(newpoints(:,1),newpoints(:,2),'xk','linewidth',1.5);
% Find nearest neighbours.
[idx,d] = knnsearch(X,newpoints,...

'k',k,... % number of neighbours
'Distance','seuclidean');% Euclidean distance on standardized data

% Mark neighbours.
plot(X(idx,1),X(idx,2),'ok','markersize',10);
% Plot ellipses.
for i=1:3

s = kNNModel.Sigma *d(i,end); % scale standardized coordinates
c = newpoints(i,:) − s; % corner of rectangle containing ellipse
% Draw an ellipse around the nearest neighbours.
h = rectangle('position',[c,2*s(1),2*s(2)],...

'curvature',[1 1],'Linestyle','−−');
end
hold off

Listing 5.3: k Nearest Neighbours.
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the feature is continuous, the decision is based on the question of whether the
value is larger or smaller than a threshold. The sample traverses the tree down
to a leaf. Each leaf is associated with a class. Hence, the sample is assigned
the class of the leaf it ends up in.

Decision trees are grown recursively from a training set. There are many
possible ways the tree can grow. At each node, the set of training samples
which reached that node is split in two. Each of the two subsets is passed
down one of the branches to the child nodes. At each node, we need to choose
the feature on which to base the split, and the threshold. To do so all possible
splits for every feature are considered, and the optimal split is selected. The
optimality is based on different possible criteria.

Before we discuss the criteria, we need to introduce some notation. Let
t = P,L, or R refer to quantities relating to the parent, left or right child node
respectively. For example, NP is the number of samples reaching the parent
node, while NL and NR are the number of samples reaching the left and right
child nodes. Let Ntk, be the number of samples in class k, where k = 1, . . . ,K,
reaching node t. We define ptk as the portion of samples belonging to class k
at node t. That is

ptk =
Ntk
Nt

,

and we have
K∑
k=1

ptk = 1.

The proportions of the parent node are related to the proportions of the child
nodes in the following way:

pPk =
NPk
NP

=
NLk +NRk

NP
=
NLpLk +NRpRk

NP
. (5.2)

A node is called pure, if it only contains samples of one class. This naturally
becomes a leaf. However, not all leaves are pure nodes, since a tree where the
number of samples per leaf is low is likely to over-fit the data and not generalize
well to unseen data. Therefore, in a leaf with samples from a mixture of classes,
some training samples will be misclassified.

We define the node impurity i(t) as a function of class proportions

i(t) = φ(pt1, . . . , ptk).

We will discuss later the specific choices for φ. A good decision split should
optimize the purity, or in other words minimize the impurity. Since the two
child nodes can differ in size, we define the change in impurity ∆i as the
impurity of the parent node minus the weighted average of the impurities of
the child nodes:

∆i = i(P )−
(
NL
NP

i(L) +
NR
NP

i(R)

)
.
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Figure 5.9: Different node impurities for two classes.

The best possible split maximizes the change in impurity over all possible
splits for all features. If no splits, where the change is positive, are possible,
the node is not split and it becomes a leaf.

Before considering specific choices for φ, it needs to have certain properties.
The impurity should be zero, if only one class is present. That is i(t) = 0, if
and only if ptk = 1 for some k, and zero for all others. On the other hand, the
impurity should be maximal, when all classes are mixed in equal proportions,
i.e. pt1 = . . . = ptK = 1/K. It should also be symmetric, if the classes are
re-labeled.

One popular choice for the impurity i(t) = φ(pt1, . . . , ptK) is the Gini
Diversity Index (gdi)

i(t) =
K∑
k=1

ptk(1− ptk) = 1−
K∑
k=1

p2
tk,

since
∑K
k=1 ptk = 1. It vanishes, if ptk = 1 for some k, and zero for all others.

Figure 5.9 shows, for two classes, i(t) as function of pt1 (or equivalently pt2 =
1− pt1).
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With this choice, the change in impurity is

∆i =

(
1−

K∑
k=1

p2
Pk

)
− NL
NP

(
1−

K∑
k=1

p2
Lk

)
− NR
NP

(
1−

K∑
k=1

p2
Rk

)

=
K∑
k=1

NR
NP

p2
Rk +

NL
NP

p2
Lk − p2

Pk,

where we used NL +NR = NP . Inserting (5.2), gives

∆i =
K∑
k=1

NR
NP

p2
Rk +

NL
NP

p2
Lk −

(NLpLk +NRpRk)
2

N2
P

=
1

N2
P

K∑
k=1

NR(NL +NR)p2
Rk +NL(NL +NR)p2

Lk

−N2
Lp

2
Lk − 2NLNRpLkpRk −N2

Rp
2
Rk

=
NR
NP

NL
NP

K∑
k=1

(pLk − pRk)
2
.

We see that, if the proportions in the child nodes are similar to each other,
then the change in impurity will be small. If, however, the proportions are
quite different, then ∆i will be large.

Similar to this, another possibility known as twoing chooses the split which
maximizes

∆i =
NL
NP

NR
NP

(
K∑
k=1

|pLk − pRk|

)2

.

It is commonly used if there are many classes, i.e. K is large.
Another choice for i(t) is the deviance, also known as cross-entropy

i(t) = −
K∑
k=1

ptk log ptk.

It is also plotted in Figure 5.9. In this case, we have

∆i = −
K∑
k=1

pPk log pPk +
NL
NP

K∑
k=1

pLk log pLk +
NR
NP

K∑
k=1

pRk log pRk.

Using ptk = Ntk/Nt and NPk = NLk +NRk, this can be rewritten as

∆i =
1

NP

K∑
k=1

NLk log
pLk
pPk

+NRk log
pRk
pPk

.
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If the proportions in the child nodes remain similar to the proportions in the
parent node, then the change in impurity will be small, since the fractions
are close to one and the logarithms evaluate to zero there. If, however, the
proportions are dissimilar to the ones in the parent node, and especially if
they are close to zero or one, then ∆i is larger.

One might consider the node error as a possibility for i(t). If a node is
assigned the class with the largest proportion of training samples at that
node, the node error is the fraction of misclassified samples:

i(t) = 1−max
k

ptk.

Figure 5.9 illustrates this graphically. Comparing the graphs of the gdi, de-
viance and node error, nodes where the classes have similar parity are consid-
ered as more impure under gdi and deviance than under the node error. This
has the effect that the node error does not result in a preference to create
purer child nodes. To see this, consider

∆i = (1−max
k

pPk)− NL
NP

(1−max
k

pLk)− NR
NP

(1−max
k

pRk)

= 1−max
k

NPk
NP

− NL
NP

+
NL
NP

max
k

NLk
NL
− NR
NP

+
NR
NP

max
k

NRk
NR

=
1

NP

(
max
k

NLk + max
k

NRk −max
k

NPk

)
,

where we used NL + NR = NP . Thus, the change in impurity is solely de-
pendent on the sum of the numbers of largest classes in the child nodes. This
number can be kept constant for different splits, while the purity of the child
nodes is very different. [5] gives a number example: Suppose there are only
two classes and at the parent node they have equal parity, NP1 = NP2 = 400.
One possible split is NL1 = 100, NL2 = 300, NR1 = 300, NR2 = 100, while
another one is NL1 = 200, NL2 = 400, NR1 = 200, NR2 = 0. Both result in
∆i = (600 − 400)/800 = 1/4. However, the second split is preferable, since
there the right node is pure, and thus a leaf. For the first split, both child
nodes are impure and need to grow branches.

Figure 5.10a shows our previous example where the region is this time
classified by a decision tree. Figure 5.10b displays the corresponding decision
tree. Each node corresponds to a split of a certain region. The first node splits
the entire region along a vertical line at 2.45. The region to the right of this
line is then split along a horizontal line at 1.75. The last node splits the region
below this line and to the right of the first line vertically at 4.95. It can be
seen that this decision tree could be improved by letting the horizontal split be
slightly lower, at 1.65 say. This would result in the one misclassified virginica
sample being classified correctly.

The depth of decision trees is controlled by three parameters: the maximum
number of allowed branch node splits, the minimum number of samples needed
in a node which is split, and the minimum number of samples per leaf node.
In the example in Figure 5.10 the minimum number of samples in a leaf node
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(a)

(b)

Figure 5.10: Decision tree classification.
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was first set to 2. Setting it to one results in one further split. In fact, the last
region is split horizontally at 1.65 which results in the misclassified virginica
sample being classified correctly. This increases the depth of the decision tree.
If the depth of a decision tree is not controlled, it generalizes less well to
unseen data, since it is too closely fitted to the training data.

Listing 5.4 grows a decision tree for the more challenging case when the
data is interleaved. The region is classified according to the decision tree.
Figure 5.11a shows the result when the minimum number of samples in a
node which is being split is set to 10, while for Figure 5.11b this is set to 5.
The latter results in more sub regions and the resulting tree which is shown in
Figure 5.13 is deeper than the tree resulting from when the minimum number
of samples in a split node is larger (Figure 5.12).
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load fisheriris
% Extract two attributes.
sl = meas(:,1); % sepal length
sw = meas(:,2); % sepal width
X = [sl,sw];

% Create classifier.
% The depth of a decision tree is governed by three arguments:
% Maximum number of branch node splits; a large value results in a
% deep tree.
MaxNumSplits = size(X,1) − 1;
% Minimum number of samples per branch node; a small number results in
% a deep tree.
MinParentSize = 5;
% Minimum number of samples per leaf; a small number results in a deep
% tree.
MinLeafSize = 1;
treeModel = fitctree(X,species,...

'MaxNumSplits',MaxNumSplits,...
'MinLeafSize',MinLeafSize,...
'MinParentSize',MinParentSize);

view(treeModel,'mode','graph') % visualization

% Lay grid over the region
d = 0.01;
[x1Grid,x2Grid] = meshgrid(4:d:8.2,1.5:d:4.5);
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);

% For each grid point calculate the score of each class.
% 'predict' returns the predicted class labels corresponding to the
% minimum misclassification cost, the score (posterior probability)
% for each class as well as the predicted node number and class
% number.
[¬,score,¬,¬] = predict(treeModel,xGrid);

% Classify according to the maximum score.
[¬,maxScore] = max(score,[],2);

% Plot classifier regions.
figure
h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...

[0.5 0.5 0.5; 0.7 0.7 0.7; 0.9 0.9 0.9]);
hold on
% Plot data.
h(4:6) = gscatter(sl, sw, species,'rgb','osˆ');
xlabel('Sepal length');
ylabel('Sepal width');
legend(h,{'Setosa region','Versicolor region','Virginica region',...

'Setosa','Versicolor','Virginica'},...
'Location','Southeast');

axis([4 8.2 1.5 4.5])

Listing 5.4: Decision tree.



132 � A Concise Introduction to Machine Learning

(a) Minimum number of samples per
split node set to 10.

(b) Minimum number of samples per
split node set to 5.

Figure 5.11: Decision tree classification.
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5.5 Neural Networks
It was already mentioned that the perceptron is in fact a simple, single layer
neural network. In the following, we describe neural networks more generally.
Neural networks are dynamic systems characterized by non-linear, distributed,
parallel and local processing. A neural network consists of neurons, also known
as nodes or units and synapses connecting the neurons. The neurons are or-
ganized into three types:

• Input : Each feature is an input neuron.

• Hidden: Each neuron is a (possibly complex) mathematical function
creating a predictor.

• Output : The neurons gather the predictions and produce the final result.

The synapses not only connect neurons, but also store weights.
As an example we consider data with two features, v1 and v2. Recall that

the perceptron classifies according to sgn(ŵT v̂). The corresponding neural
network is

v2
sgn(w1v1 + w2v2 − b)

= sgn(ŵT v̂)

v1

1

w2

w1

−b

Note that here the bias is implemented as the weight of a synapse connecting
a dummy input neuron which always has the value 1.

There are some differences in what is considered a layer in the neural
network literature. Sometimes, each set of hidden neurons is considered a
layer. In this context, the above has no layers. Sometimes, the sets of input
and output neurons as well as the sets of hidden neurons are counted as
layers. Then the above is a two layer neural network. However, of importance
are the weights of the synapses. We therefore follow the convention that a
layer is the connections between two sets of neurons. With this definition,
the above is a single layer neural network. The weights are updated by the
chosen learning process. We will not go into specific learning processes in this
chapter, but leave this to Chapter 9 on feature learning where we will revisit
neural networks.

The output neuron

sgn(w1v1 + w2v2 − b)
= sgn(ŵT v̂)
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consists of two elements:

• the propagation function given by ŵT v̂, which passes the information
in a weighted manner to the next neuron.

• and the activation function, also called transfer function

h(x) = sgn(x).

Sometimes the bias is modeled as part of the propagation function. In this
case there will be no dummy input neuron with the synapse having the bias
as weight. It is important to be aware of these two different conventions when
studying neural networks from different sources.

At the inception of neural networks, it was asked whether they can model
basic logical operations, since a more complex deductive system can be built
out of combinations of basic logical operators. Let 0 stand for the logical false,
and 1 for the logical true.

A neural network is capable of implementing the logical AND

v1 v2 AND

0 0 0
0 1 0
1 0 0
1 1 1

,

since this is equivalent to separating the point (1, 1) which is in the true class
from the points (0, 0), (0, 1) and (1, 0) which belong to the false class. Any of
the red lines in Figure 5.14 will do. Each line is described by w1v1 + w2v2 −
b = 0. For any of the lines, points to the right should result in output 1, while
points to the left should result in output 0.

Figure 5.14: Possible implementations of the logical AND.
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The Heaviside step function is defined by

H(x) =

{
0 if x ≤ 0
1 if x > 0

It is also known as hard-limit transfer function. Using this as the activation
function, the resulting neural network might be:

v2 H(v1 + v2 − 1.5)

v1

1

1

1

−1.5

Note, the learning process might have arrived at different choices for w1, w2

and b.
Equally, the logical OR

v1 v2 OR
0 0 0
0 1 1
1 0 1
1 1 1

,

can be implemented as illustrated in Figure 5.15. Using the Heaviside step
function again, one possibility for the resultant neural network is

Figure 5.15: Possible implementations of the logical OR.
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v2 H(v1 + v2 − 0.5)

v1

1

1

1

−0.5

.

Continuing on this theme, it is possible to implement the logical AND
NOT = NAND, for example:

v1 v2 NAND
0 0 1
0 1 1
1 0 1
1 1 0

v2 H(−v1 − v2 + 1.5)

v1

1

−1

−1

1.5

However, a simple neural network is not capable of implementing the ex-
clusive OR = XOR (one or the other, but not both).

v1 v2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

.

Figure 5.16 illustrates the region evaluating to true needs to be separated
from the region evaluating to false on two sides.

Figure 5.16: Graphically distinguishing XOR.
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One possible solution is an activation function with two steps, for example

h(x) =

 0 if x ≤ 0.25
1 if 0.25 < x < 0.75
0 if x ≥ 0.75

(5.3)

v2 h(0.5v1 + 0.5v2)

v1

1

0.5

0.5

0

Again, the learning process might have chosen different weights.
Indeed, there are many different activation functions in use. Some of these

are:

• Linear

h(x) = x (5.4)

• Logistic sigmoid

h(x) =
1

1 + exp(−a(x− c))
(5.5)

• Hyperbolic tangent

h(x) = tanh(x)
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• Gaussian

h(x) = exp

(
− (x− c)2

2a2

)

• Multiquadratics

h(x) =
√

(x− c)2 + a2

• Inverse multiquadratics

h(x) =
1√

(x− c)2 + a2

The parameters a and c have to be tuned for the task at hand.
If the sgn activation function in the perceptron is replaced by the logistic

sigmoid function, then the output is interpreted as the probability of the
sample belonging to the positive class C1. The probability of belonging to
the negative class C0 is one minus the output. This is then known as logistic
regression. While it is solving a classification task, regression is part of the
name, since it is trying to model the probability function of belonging to the
positive class over the feature space.

An activation function particularly important for classifying multiple
classes is the softmax function, also known as normalized exponential func-
tion. It is different from the other activation functions in that it takes into
account the result of the propagation functions of other neurons. Let aj be
the result of the propagation function in the jth neuron: aj = ŵT

j v̂. If the
number of neurons is K, then the softmax function maps the K-dimensional
vector a = (a1, . . . , aK)T to a K-dimensional vector σ(a) with the jth entry
of σ(a) being

σ(a)j =
exp(aj)∑K
k=1 exp(ak)

. (5.6)
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Obviously, the elements of σ(a) sum to 1. The softmax function is most often
used in the final layer, where the number of synapses is the same as the number
of classes, K. It gives a probabilistic interpretation to which class the sample,
which passed through the neural network, belongs.

However, the construction of specific activation functions as in (5.3) is not
in the spirit of machine learning, where as many tasks as possible shall be
completed by the machine. Looking at Figure 5.16, we see that the region can
actually be described as points on the right of the thin line and on the left
of the bold line shall output 1. XOR is the combination of simpler building
blocks. It can be implemented by introducing a set of hidden neurons. We
denote the hidden variables, also known as latent variables, by z1 and z2.
This is a two layer neural network, since a layer are the synapses from one set
of neurons to another.

v1

v2

1

z1 = H(w11v1 + w12v2 − b1)

z2 = H(w21v1 + w22v2 − b2)

1

H(w1z1 + w2z2 − b)

w11

w21

w12

w22

b1

b2

w1

w2

b

For example:

v1

v2

1

z1 = H(v1 + v2 − 0.5)

z2 = H(−v1 − v2 + 1.5)

1

H(z1 + z2 − 1.5)

1

−1

1

−1

−0.5

1.5

1

1

−1.5

z1 represents an OR which is equivalent to the right of the thin line in Figure
5.16, while z2 represents NAND, or equivalently to the left of the bold line.
The output neuron combines these two results with an AND, since both have
to hold at the same time.

Using several sets of hidden neurons, and therefore several layers if nec-
essary, any region can be described as a combination of on the right or left
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of several lines (or hyperplanes in higher dimensions). This makes neural net-
works particularly powerful for classification. In Chapter 9 we see how their
performance is enhanced when continuous, non-linear activation functions are
used.

The results of neural networks are sensitive to the choice of

• the number of layers,

• the connection pattern,

• the initialization of weights and

• the activation functions and their parameters.

All these are generally chosen by the user. Different choices are validated on
validation sets to arrive at a set with which the neural network generalizes
best to unseen data.

Listing 5.5 generates a neural network with a set of 10 hidden neurons.
The output layer has 3 neurons, since the number of classes is 3. The hidden
neurons use the heaviside step function as an activation function while the
output neurons use the softmax function. An illustration of the neural network
is given in Figure 5.18. The default MATLAB initialization of weights and
biases is used. This is random to a certain degree. Therefore separate runs
lead to different results. The listing contains code for both using all data
for training and using a certain percentage for training, another percentage
for validation and a third percentage for testing. The results can be seen in
Figure 5.17.

5.6 Boosting and Cascades
We distinguish between weak and strong learners. A weak learner will only
be slightly better than random guessing, while a strong learner provides the
right classification most of the time. In this section we consider the question
of whether a set of weak learners can create a single strong learner.

To simplify things we consider binary classification. We also assume that
both classes are present in equal parity. That is the number of samples in each
class is the same. The goal is to generate a classifier C where the sign of the
output determines the class, and the absolute value of the output gives the
confidence in this prediction.

The total error E of C is defined as the sum of exponential error at each
training sample

E(C) =

N∑
i=1

exp (−ciC(vi)) ,

where ci = ±1 is the class label of vi. If C predicts the class label of vi
correctly with great confidence, then ci and C(vi) will have the same sign.
Great confidence means that the absolute value of C(vi) is large, and hence
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load fisheriris
% Extract two attributes.
pl = meas(:,3); % petal length
pw = meas(:,4); % petal width
% Prepare data.
X = [pl,pw];
X = X';
classes = unique(species);
t = [];
for j = 1:numel(classes)

indx = strcmp(species,classes(j));
t = [t indx];

end
t = t';

% Create classifier.
hiddenSizes = [10]; % row vector of one or more hidden layer sizes
netModel = patternnet(hiddenSizes);
% Use all samples for training.
%netModel.divideFcn = 'dividetrain';
% Use 70% of samples for training, 15% for validation, 15% for testing.
netModel.divideFcn = 'dividerand';
netModel.divideParam.trainRatio = 0.7;
netModel.divideParam.valRatio = 0.15;
netModel.divideParam.testRatio = 0.15;
% Set transfer function of the set of hidden neurons to the hard−limit
% transfer function. This is equivalent to a particular hidden neuron
% returning whether its input lies to the left or right of the
% line given by the weights.
netModel.layers{1}.transferFcn = 'hardlim';
% By default the transfer function of the last layer is set to the
% softmax function. Depending upon on which sides of the lines produced
% in the first layer a sample lies, a probability score for each class
% is given.

netModel = train(netModel,X,t);

% Lay grid over the region.
d = 0.01;
[x1Grid,x2Grid] = meshgrid(0.8:d:7,0:d:3);
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);

% For each grid point calculate the score of each class.
score = netModel(xGrid');

% Classify according to the maximum score.
[¬,maxScore] = max(score,[],1);

% Plot classifier regions.
figure
h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...

[0.5 0.5 0.5; 0.7 0.7 0.7; 0.9 0.9 0.9]);
hold on

% Plot data.
h(4:6) = gscatter(pl, pw, species,'rgb','osˆ');
xlabel('Petal length');
ylabel('Petal width');
legend(h,{'Setosa region','Versicolor region','Virginica region',...

'Setosa','Versicolor','Virginica'},...
'Location','Northwest');

axis([0.8 7 0 3])

Listing 5.5: Neural Network.
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(a) All samples used for training.

(b) 70% of samples used for training, 15% used for validation, 15%
used for testing.

Figure 5.17: Two layer neural network classification with a set of ten hidden
neurons using the heaviside step function.
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Figure 5.18: Two layer neural network with two input neurons, ten hidden
neurons using the heaviside step function, and 3 output neurons using the

softmax function.

exp (−ciC(vi)) will contribute very little to the total error, since the exponent
is a large negative number. If C predicts the class label of vi incorrectly with
great confidence, then exp (−ciC(vi)) will contribute a lot to the total error,
since ci and C(vi) will have opposite sign and the exponent will be a large posi-
tive number. We consider C a strong classifier if it predicts correctly with great
confidence, and has little confidence in the prediction when making errors.

AdaBoost , short for Adaptive Boosting iteratively generates a series of
classifiers Cm. Each iteration improves the current classifier by concentrating
on the misclassified elements. Each classifier is stronger than its predecessor.
It is generated as a linear combination of simple, weak classifiers kj which only
return ±1. The perceptron could be one of these classifiers. The coefficients
in this linear combination are positive. Each coefficient gives the confidence
in the weak classifier.

First, C1 is initialized to the weak classifier k1(v) which misclassifies the
least number of training examples. Its coefficient α1 is chosen to minimize

E(C1) =

N∑
i=1

exp (−ciα1k1(vi))

=
∑

ci 6=k1(vi)

exp (α1) +
∑

ci=k1(xi)

exp (−α1) ,

where we used the fact that both ci and k1(vi) only have the values +1 or
−1. Differentiating with respect to α1 gives

dE(C1)

dα1
=

∑
ci 6=k1(vi)

exp (α1)−
∑

ci=k1(vi)

exp (−α1) .

Let N be the number of samples and NC be the number of correctly classified
samples. We then have

dE

dα1
= (N −NC) exp (α1)−NC exp (−α1) .
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To find the extremum, we set this to zero and solve for α1:

exp (2α1) =
NC

N −NC

α1 =
1

2
log

NC
N −NC

.

Thus α1 is half the logarithm of the ratio of the number of correctly classified
samples over the number of misclassified samples. If NC = N/2, then α1 = 0,
meaning so that we have no confidence in the classification, since it is equal
to random guessing. Note that NC cannot be less than N/2, since the weak
classifiers need to be better than random guessing, i.e. they need to classify
at least more than N/2 samples correctly. The larger the NC , the higher the
confidence.

In the mth iteration we generate Cm as Cm−1 + αmkm. The total error is

E(Cm) =

N∑
i=1

exp (−ciCm−1(vi)− ciαmkm(vi))

=

N∑
i=1

exp (−ciCm−1(vi)) exp (−ciαmkm(vi))

= exp (−αm)
∑

ci=km(vi)

wi,m + exp (αm)
∑

ci 6=km(vi)

wi,m,

(5.7)

where we defined the weights wi,m = exp (−ciCm−1(vi)). Hence the weight
wi,m is the exponential error the current classifier makes when classifying
sample vi. The total error can be rewritten as

E(Cm) = exp (−αm)
N∑
i=1

wi,m + (exp (αm)− exp (−αm))
∑

ci 6=km(vi)

wi,m.

Only the last sum depends on the the weak classifier km. To make E(Cm) small,
the weak classifier where the sum of weights over the misclassified elements is
smallest should be chosen. That is the classifier which classifies most samples
with large weights correctly.

Having chosen km, we differentiate the last line of 5.7 with respect to αm
and set to zero, solving for αm. This results in

αm =
1

2
log

∑
ci=km(xi)

wi,m∑
ci 6=km(xi)

wi,m
.

The more samples with large weights km classify correctly the larger αm and
the confidence in km. On the other hand, km classifying a sample with small
weight incorrectly has little effect, since a small weight indicates that Cm−1

classifies this sample correctly.
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The above relies on the fact that the classes are balanced. Imbalanced
classes have their own challenges. For example, if there are 9 times more
samples of one class than of the other class, a classifier which always assigns
the first class will be correct 90% of the time. However, it classifies the second
class incorrectly all the time. For more information on tackling imbalanced
classes see for example [21].

So far we have not considered the cost of acquiring features. The sources
of cost can be quite varied. For example, when considering the computational
cost, it can be the low cost associated with a simple algorithm. At the other end
of the scale are computationally intensive algorithms which require also large
storage. There is also the difference between cheap and expensive diagnostic
tools. It is easy and inexpensive to check the oil level in ones car; beyond that
however, often a car mechanic is required, whose hourly rate is a considerable
cost. Then there is also the human cost. Invasive procedures put much more
strain on a patient than a simple medical test.

A cascade is a procedural method which takes into account the cost. Each
stage of a cascade of classifiers uses features with increasing predictive power
and increasing cost. For example, in medical diagnosis a general practitioner
first does a simple inexpensive test which can exclude a diagnosis. Should
the test, however, reveal the possibility of an underlying health problem, the
patient can be referred for further tests.

Let class C0 be the negatives and class C1 be the positives. The number
of samples in C0 is commonly denoted N, while the number of samples in C1

is denoted P.
A confusion matrix visualizes the goodness of a classifier by listing the

number of samples of C0 correctly classified, known as true negatives, TN, the
number of samples of C0 misclassified, which are the false positives, FP on one
hand, and on the other hand the number of samples of C1 correctly classified,
the true positives, TP, and the number of samples of C1 misclassified, the
false negatives, FP: (

TN FN
FP TP

)
.

This concept can be easily extended to multiple classes. The (i, j) entry in the
matrix then contains the number of samples in class Cj classified as belonging
to class Ci. For example, Figure 5.19 shows the confusion matrices of the
neural networks the data depicted in Figure 5.18. The neural network using
validation and testing sets misclassifies altogether only four samples.

From these numbers we can calculate the sensitivity , also known as recall ,
true positive rate (TPR) and probability of detection, as the fraction of positive
samples correctly classified:

TPR =
TP

P
.

The specificity or true negative rate (TNR) is the fraction of negative samples
correctly identified:

TNR =
TN

N
.
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(a) All samples used for training. (b) 70% of samples used for training,
15% used for validation, 15% used for

testing.

Figure 5.19: Confusion matrices of the neural networks of Figure 5.18.

The false negative rate, also known as miss rate is given by

FNR =
FN

P
= 1− TPR.

It quantifies the percentage of time a positive sample is overlooked. Not iden-
tifying a patient who has an underlying health problem can have disastrous
consequences for that patient. Another commonly used term is the fall-out or
false positive rate (FPR):

FPR =
FP

N
= 1− TNR.

It is the percentage of time a negative sample is registered as positive. In this
case the patient worries needlessly. However, this is acceptable in some cases
as long as subsequent tests avoid needless procedures.

A perfect classifier would be 100% sensitive (all positives are correctly
identified) and 100% specific (no negatives are incorrectly classified). In a
cascade we want all stages to have high sensitivity so that as few as possible
patients with a health problem are overlooked. High specificity is desirable
so that patients are not subjected to costly (both financial and human cost)
procedures. However, in early stages a lower specificity is acceptable. Samples
classified as negative at a stage are not considered in the following stages, thus
decreasing the overall cost.



C H A P T E R 6

Clustering

Clustering is introduced as a sorting process where the criteria governing the
sort are not known. It builds from the heuristic K means clustering, explain-
ing mixture models in general and specifically Gaussian mixture models. The
Expectation-Maximization technique is shown to be a general iterative tech-
nique to maximize the data likelihood. Next Bayesian mixture models are
explored and illustrated with the Chinese Restaurant Process. The chapter
concludes with the Dirichlet process which is explained in detail and illus-
trated by examples.

So far we have looked at data which had class labels. The task was to
learn the class membership from the features of each data sample, in order
to classify unseen data in the future. In this chapter, we look at unlabeled
data. As before, we denote the vector of features by v. Let v1, . . . ,vN be the
feature vectors of N data samples. The choice of features or combination of
features is important.

Figure 6.1: Sorting sweets.

149
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For example, a popular exercise for children to apply their observation and
sorting skills is to let them sort sweets. It is immediately obvious that there
are numerous distinguishing features. Firstly, there is the size, then the colour,
or the sweet might be multicoloured. They come in all sorts of shapes. Next,
we might consider the main ingredient which may be chocolate, jelly, licorice
or something completely different, or it might be a combination of different
ingredients, or have a filling. The parents might be more interested in keeping
the overall sugar intake low, while a dentist might be interested in whether the
sweets stick to the teeth or not. Depending on their tastes and preferences,
different people will put different emphasis on each feature.

Clustering often is the first step when analyzing a new data set. If not much
is known yet about the data, it is useful to see whether the data separates
naturally into different groups. The aim is to find clusters where data samples
within one cluster are more similar to each other than to data samples in
other clusters. We will see in the following what similar means for different
algorithms.

There are many application areas. For example, clustering is used to
find news articles with similar contents or relating to the same topic. Sim-
ilarly, search engines use clustering algorithms. The suggestions we receive on
streaming sites depending on our past preferences are based on clusters as
well. Image segmentation is another application area as is lossy data compres-
sion, where it is sufficient to represent the data by the cluster it belongs to.
It is also used in bioinformatics to analyze biological data of all sorts.

6.1 K Means Clustering
K means clustering decides at the outset on the numbers of clusters denoted
by K and each data sample is assigned to exactly one cluster. This is known
as hard clustering . The aim is to find cluster centres µ1, . . . ,µK such that
the sum of the squared distances of each data sample to its nearest cluster
centre (the one it is assigned to) is minimal. Nearest here is with respect to
the Euclidean norm (L2 norm). Thus the objective function is

J =
N∑
n=1

min
k
‖vn − µk‖2.

This optimization problem is NP hard . That is, there is no known algorithm to
solve this in polynomial time. This is because as cluster centres move around,
for each sample it changes which is the nearest cluster. The algorithm finds an
approximate solution by separating this interdependency with the introduc-
tion of hidden (latent) variables zn, one for each data sample vn. The latent
variables are binary vectors, i.e. zn ∈ {0, 1}K , where only one entry can be 1
and the others have to be 0. This is known as a 1-of-K representation. A 1
in the kth entry indicates that µk is the nearest cluster centre to vn. Let zn,k
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be the kth component of zn. The objective function can then be rewritten as

J =
N∑
n=1

K∑
k=1

zn,k‖vn − µk‖2.

This is quadratic in µk. The minimum is found by differentiating with respect
to µk for each k using Appendices A.2.1 and A.2.2 and setting this to zero,

2
N∑
n=1

zn,k (vn − µk) = 0.

This gives new centre locations for all k

µk =

∑N
n=1 zn,kvn∑N
n=1 zn,k

. (6.1)

However, now that the centres have moved, the indicator vectors zn have to
be adjusted. This can be viewed as minimizing J with respect to all zn. This
in turn will cause the centres to move again. The algorithm alternates between
moving the centres µk and recalculating zn. It terminates, when after moving
the centres, none of the indicator vectors changes.

Looking at (6.1), note that
∑N
n=1 zn,k gives the number of data samples for

which µk is the closest centre, while
∑N
n=1 zn,kvn is the sum of those samples.

Thus µk is the mean of the samples assigned to this particular cluster.
The algorithm arrives at a local minimum of J . However, this is by no

means necessarily a global minimum. In fact, the solution is highly dependent
on the initialization of the cluster centres. These can be chosen randomly at
the start, or the samples can be randomly assigned clusters and the initial
cluster centers be calculated as the mean of these random assignments. To
counteract this dependency on initial values, the algorithm is run (possibly
in parallel) with many different initializations. After convergence, the result
with the lowest value of J is chosen.

The squared Euclidean norm of the difference between sample and cluster
centre was used. The algorithm can be generalized using any dissimilarity
measure between two feature vectors, just as kernels were used as similarity
measures for the kernel trick described in Section 5.2. In this case, the method
is known as K-medoids algorithm. However, the minimization with regards
to µk might be much more involved. It depends on the differentiability of the
dissimilarity measure, and whether it is possible to find where the derivative
vanishes. If this is not possible, it is common practice to require each cluster
centre to be one of the data samples. The minimization with respect to µk is
then a search among the data samples assigned to the kth cluster.

Lossy data compression is achieved by choosing a suitable number of clus-
ters and storing the feature vectors of the centres, µk. For each data sample
only the cluster it belongs to is stored. This can be applied to images. Typi-
cally images are represented by storing three values for each pixel, with each
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(a) K = 4, 8.3% compression ratio. (b) K = 16, 16.7% compression ratio.

Figure 6.2: K mean compression.

value being one byte. Since one byte is 8 bits, 24N bits are necessary to store
an image with N pixels. If instead we cluster the pixels using K clusters, we
need to store the pixel values of each cluster centre which requires 24K bits.
The cluster number can be encoded in log2K bits, and this needs to be stored
for each pixel. For example, for K = 4, two bits are necessary. The cluster
numbers are stored as 00, 01, 10, 11. When K = 16, four bits are required. Fig-
ure 6.2 illustrates this. Using 4 clusters results in an image consisting of lighter
and darker shades of brown which means the cluster centres did not stray too
far off the axis of shades of gray where the red, green and blue components
are equal. 16 clusters seem an adequate representation at a compression ratio
of 16.7%. The colours are more realistic.

Listing 6.1 reads an image of tissue stained with hemotoxylin and eosin
to make different tissue types distinguishable (Image courtesy of Alan Partin,
Johns Hopkins University). Using three clusters, one of these identifies the
nuclei.

We used K means clustering on two examples of image processing. This
is a very large area of ongoing research with algorithms tailored to specific
applications. A comprehensive overview can be found in [18].

6.2 Mixture Models
Let’s change our view point and say that the indicator variable zn does not
indicate to which cluster the sample vn belongs, but shows which process
generated that data sample, and we assume there are K distinct processes
generating the data. Let pk(v) be the probability distribution of the sam-
ples generated by the kth process. Let πk be the probability that process k
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% Read image.
original = imread('hestain.png');
% Display image.
figure;
imshow(original);
nrows = size(original,1);
ncols = size(original,2);
% Reshape the image to obtain data vector.
% The features are the red, green and blue colour values
% converted to doubles.
data_vector = reshape(double(original),nrows*ncols,3);
% Choose the number of clusters.
nClusters = 3;
% Choose the number of repetition to avoid local minima
nRepeats = 3;
% Perform the clustering using the Euclidean distance.
[cluster_labels, cluster_centres] = kmeans(data_vector,nClusters,...

'distance', 'sqEuclidean', 'Replicates', nRepeats);

% Construct segmented image finding all pixels belonging to a specific
% cluster and giving them the colour of the centre of the cluster it
% belongs to.
segmented = zeros(nrows*ncols, 3);
for i = 1:nClusters

segmented(cluster_labels == i,:) = repmat(cluster_centres(i,:),...
size(segmented(cluster_labels == i,:),1),1);

end
figure;
segmentedim = uint8(reshape(segmented, nrows, ncols, 3));
imshow(segmentedim);

% Only show specific cluster from image.
for i = 1:nClusters

removed = data_vector;
removed(cluster_labels 6= i,:) = 255;
figure;
removedim = uint8(reshape(removed, nrows, ncols, 3));
imshow(removedim);

end

Listing 6.1: Biological image processing.
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generates a sample. Thus we have

0 ≤ πk ≤ 1 and
K∑
k=1

πk = 1.

This can be interpreted as that the latent variables z1, . . . , zN are drawn
from a probability distribution p(z). Since z has a 1-of-K representation, z is
uniquely identified by specifying which component is 1. Therefore it is often
written as

p(zk = 1) = πk.

Now, the probability of a feature vector v given an indicator variable z is
the conditional probability distribution

p(v|z) = p(v|zk = 1) = pk(v).

The joint probability distribution of v and z is given by the product rule as
p(v, z) = p(v|z)p(z). We obtain the probability distribution for v by marginal-
izing over z. This means summing the joint distribution over all possible values
of z:

p(v) =
∑
z

p(v, z) =
∑
z

p(z)p(v|z)

=
K∑
k=1

p(zk = 1)p(v|zk = 1) =
K∑
k=1

πkpk(v).
(6.2)

This is called a mixture distribution. The probabilities πk are known as mixing
coefficients.

For a given feature vector v, we can calculate the probability that it was
generated by process k. This is the conditional probability p(zk = 1|v), whose
value can be calculated using Bayes’ Rule. This is given by

P (A|B) =
P (B|A)P (A)

P (B)
,

where A and B are events, P (A) and P (B) are the probabilities of A and B
without regard to each other, P (A|B) is the conditional probability of A given
that B is true, and P (B|A) is the conditional probability of B given that A is
true. Applying Bayes’ rule here leads to

p(zk = 1|v) =
p(zk = 1)p(v|zk = 1)

p(v)
= πk

pk(v)

p(v)
.

We see that for a particular v the probability that it was generated by process
k is the mixing coefficient πk adjusted by the ratio of the probability pk(v) to
the overall probability p(v). p(zk = 1|v) is known as the responsibility process
k takes for explaining the sample v.
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Using (6.2), we deduce

K∑
k=1

p(zk = 1|v) =

∑K
k=1 πkpk(v)

p(v)
= 1.

Thus the responsibilities, i.e. the probabilities of the processes generating a
particular sample, sum to one.

In particular, for the data samples vn, n = 1, . . . , N , we can now make
cluster assignments according to the values p(zn,k = 1|vn) for k = 1, . . . ,K.
This is called soft clustering , since our belief is quantified by probabilities. It
is possible that for a particular sample the probabilities are the same for two
(or even more) values of k. These are samples which lie between clusters.

Before we can however calculate any probabilities for cluster membership,
we need to determine πk and pk(v) for k = 1, . . . ,K. To this end we consider
the joint likelihood under this model of the data samples v1, . . . ,vn which is
given by

N∏
n=1

p(vn) =
N∏
n=1

K∑
k=1

πkpk(vn).

We obtain values for πk and the parameters describing pk(v), by maximizing
this likelihood, or alternatively its logarithm, known as the log likelihood

L =

N∑
n=1

log p(vn) =

N∑
n=1

log

(
K∑
k=1

πkpk(vn)

)
. (6.3)

When maximizing with respect to the mixing coefficients πk, it is important
to remember the constraint that they sum to one. This can be incorporated
into the maximization problem using a Lagrange multiplier λ. That is we
maximize

N∑
n=1

log

(
K∑
k=1

πkpk(vn)

)
+ λ

(
K∑
k=1

πk − 1

)
.

Differentiating with respect to πk and setting to zero gives

N∑
n=1

1∑K
k=1 πkpk(vn)

pk(vn) + λ = 0. (6.4)

We first solve for λ by multiplying through by πk and summing over all k.
The right hand side remains zero, while the left hand side becomes

N∑
n=1

∑K
k=1 πkpk(vn)∑K
k=1 πkpk(vn)

+

K∑
k=1

πkλ = N + λ.
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Hence, we find λ = −N . Inserting this result into (6.4) and again multiplying
by πk, we have

0 =
N∑
n=1

πkpk(vn)∑K
k=1 πkpk(vn)

−Nπk =
N∑
n=1

πkpk(vn)

p(vn)
−Nπk

=
N∑
n=1

p(zn,k = 1|vn)−Nπk.

Therefore,

πk =
1

N

N∑
n=1

p(zn,k = 1|vn). (6.5)

Thus the mixing coefficient πk is the average responsibility that all data sam-
ples are generated by process k.

We need to emphasize here that this is not a closed form solution, since
the responsibilities p(zn,k = 1|vn) depend on πk itself. However, an iterative
scheme can be derived from this, where the mixing coefficients πk and the
parameters of the probabilities pk(v) are initially estimated, then the mixing
coefficients are updated according to (6.5). The next step is to maximize with
respect to the parameters. The method alternates between these two steps.

In the following sections, we will see different techniques of maximizing
with respect to the parameters. A note of caution is however appropriate at
this point, and this is in relation to outliers in the data. Assume that K = 2
and that all data samples are roughly grouped together apart from one outlier.
In the maximization procedure π1 will tend to (N − 1)/N while π2 will tend
to 1/N . p1(v) will roughly describe the distribution of N − 1 samples. The
problem comes with p2(v). The likelihood can be increased again and again
by concentrating the probability mass of p2(v) more and more tightly around
the outlier. Hence, the evaluation of p2(v) at the outlier will tend to infinity,
while the area where p2(v) is non-zero tends to zero. This in turn leads to the
likelihood tending to infinity. Heuristics are used to identify such degenerate
cases. For example, such outliers could be identified and removed from the
data set during the maximization procedure. Or K is reduced such that it is
not possible for outliers to be assigned their own cluster.

Something else to be aware of is that any solution actually has K! equiv-
alent solutions. These arise by just relabeling the clusters by permutations of
1 . . .K. This equivalence is known as identifiability , and is important when
comparing and interpreting models. In this context, however, this is of no
importance, since just any one of the equivalent solutions needs to be found.

6.3 Gaussian Mixture Models
It is common to choose the distributions pk(v), k = 1, . . . ,K in the mixture
model given in (6.2) from the same family of distributions. As an example we
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consider normal distributions N (µk,Σk). That is

pk(v) =
1√
|2πΣk|

exp

(
−1

2
(v − µk)TΣ−1

k (v − µk)

)
, (6.6)

where |·| denotes the matrix determinant. The derivative of pk(v) with respect
to µk is given by

∂

∂µk
pk(v) = pk(v)Σ−1

k (v − µk),

where we used the chain rule, Appendix A.2.3 and the symmetry of Σk. Dif-
ferentiating (6.3) with respect to µk therefore results in

∂

∂µk
L =

N∑
n=1

1

p(vn)
πk

∂

∂µk
pk(v)

=
N∑
n=1

1

p(vn)
πkpk(vn)Σ−1

k (vn − µk)

=

N∑
n=1

p(zn,k = 1|vn)Σ−1
k (vn − µk).

To approximate the extremum, we set this to zero and multiply through by
Σk which is non-singular, since it is a covariance matrix:

N∑
n=1

p(zn,k = 1|vn) (vn − µk) = 0.

We define

Nk =
N∑
n=1

p(zn,k = 1|vn),

which is comparable to the expected number of samples in cluster k. With
this definition

µk =
1

Nk

N∑
n=1

p(zn,k = 1|vn)vn. (6.7)

We see that µk is a weighted average of all samples in the data set where the
weights are the responsibilities that the sample was generated by process k.
It is reminiscent of formula (4.1) for the sample mean.

To maximize with respect to the covariance Σk, we need the derivative of
pk(v) with respect to Σk. Using the product and chain rule and the differen-
tiation rules given in Appendices A.2.4 and A.2.8, we have

∂

∂Σk
pk(v) = −1

2
pk(v)

[
Σ−1
k −Σ−1

k (v − µk)(v − µk)TΣ−1
k

]
,
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since Σ−1
k is symmetric. From this we derive the derivative of the logarithm

of the likelihood given in (6.3) as

∂

∂Σk
L =

1

2

N∑
n=1

p(zn,k = 1|vn)
[
Σ−1
k −Σ−1

k (vn − µk)(vn − µk)TΣ−1
k

]
.

As before, we approximate the extremum by setting the derivative to zero and
multiplying through with Σk, but this time from both sides:

N∑
n=1

p(zn,k = 1|vn)
[
Σk − (vn − µk)(vn − µk)T

]
= 0.

Solving for Σk, we arrive at

Σk =
1

Nk

N∑
n=1

p(zn,k = 1|vn)(vn − µk)(vn − µk)T . (6.8)

The formula is very similar to (4.2) for the sample covariance. The main dif-
ference is that the sum is over all samples and that each summand is weighted
by the responsibility that process k generated this sample.

To summarize, the Gaussian mixture algorithm proceeds as follows

1. Choose K and convergence threshold.

2. Initialize means µk, covariances Σk, and mixing coefficients πk for k =
1, . . . ,K, and calculate the initial value of the logarithm of the likelihood
according to (6.3).

3. For n = 1, . . . , N and k = 1, . . . ,K, calculate all the responsibilities
p(zn,k = 1|vn).

4. Use these responsibilities to update means µk, covariances Σk, and mix-
ing coefficients πk for k = 1, . . . ,K according to equations (6.7), (6.8)
and (6.5).

5. Evaluate the change in the logarithm of the likelihood and terminate if
this is below the convergence threshold. Otherwise return to step 3.

Alternatively, the algorithm converges if the change in all parameters is
below the convergence threshold. It is common to use the K means algorithm
to obtain good initializations. The means are initialized to the cluster centres
obtained from the K means procedure, while the covariances are set to the
sample covariances of the clusters, and the mixing coefficients are initially the
fractions of data samples assigned to a particular cluster.
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% Number of samples to be generated.
N = 100;
% Array of means.
MU = [1 1;−4 −1; 1 −2];
% Concatenation of co−variance matrices.
SIGMA = cat(3,[2 0; 0 .5],[1 0.5; 0.5 1],[1 0; 0 1]);
% Mixing coefficients.
p = [0.4 0.5 0.1];
% Gaussian mixture model.
GMModel = gmdistribution(MU,SIGMA,p);
% Generate and display data.
rng(1); % for reproducibility
[V,idx] = random(GMModel,N);
gscatter(V(:,1),V(:,2),idx,'bgr','...',[10 10 10]);

Listing 6.2: Generating data samples from a Gaussian mixture model.

Listing 6.2 uses a two-dimensional Gaussian mixture model with three
components with mixing coefficients π1 = 0.4, π2 = 0.5 and π3 = 0.1 to
generate data samples. The means are

µ1 =

(
1
1

)
,µ2 =

(
−4
−1

)
,µ3 =

(
1
−2

)
,

while the covariance matrices are given by

Σ1 =

(
2 0
0 0.5

)
,Σ2 =

(
1 0.5

0.5 1

)
,Σ3 =

(
1 0
0 1

)
.

The result can be seen in Figure 6.3a with each data sample coloured according
to the process which generated it. This is sometimes referred to as the complete
data set, since both the samples and the latent variables are given. In Figure
6.3b the visual clue of colours has been removed. Without this, it is harder to
tell how many clusters are present. Two clusters are another possibility. When
the information about the latent variables is not given, then the data set is
sometimes called incomplete.

Listing 6.3 fits a Gaussian mixture model and gives the relevant means and
covariances. When two components are fitted, the estimates for the mixing
coefficients are π1 = 0.49 and π2 = 0.51 with means

µ1 =

(
1.09
0.43

)
,µ2 =

(
−3.98
−1.05

)
,

and covariances

Σ1 =

(
1.87 0.11
0.11 2.10

)
,Σ2 =

(
0.91 0.47
0.47 1.05

)
.

The graphical representation in Figure 6.3c is plausible.
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load('MixtureData.mat');
%Set number of components.
K = 2;
%For Gaussian mixture distribution using the EM algorithm.
GMModel = fitgmdist(V,K);
% Posterior probabilities of each data sample to be generated by
% each component.
P = posterior(GMModel,V);
% Estimated means, covariances and mixing coefficients of each
% component.
MixtureMeans = GMModel.mu;
MixtureCovariances = GMModel.Sigma;
MixtureProportions = GMModel.PComponents;
for k =1:K

k
MixtureMeans(k,:)
MixtureCovariances(:,:,k)
MixtureProportions(k)

end
% Colour coordinated plot for K=2 or K=3. The posterior probabilities
% are interpreted as red, green, blue colour proportions.
% If k=2, the blue proportion is set to zero.
if K==2 | | K==3

if K == 2
P = cat(2,P, zeros(length(P),1));

end
figure;
scatter(V(:,1), V(:,2),10,P,'filled');

end

Listing 6.3: Fitting a Gaussian mixture model.
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(a) Data samples generated by three
processes.

(b) Data without the information of
which component generated them.

(c) Two clusters fitted. (d) Three clusters fitted.

Figure 6.3: Gaussian mixture model.

For three components, we have π1 = 0.399, π2 = 0.507 and π3 = 0.093 and

µ1 =

(
1.07
1.02

)
,µ2 =

(
−3.99
−1.06

)
,µ3 =

(
1.06
−2.02

)
,

and covariances

Σ1 =

(
2.10 0.06
0.06 0.64

)
,Σ2 =

(
0.90 0.44
0.44 1.02

)
,Σ3 =

(
1.16 0.11
0.11 0.78

)
.

This is close to the Gaussian mixture which generated the data. In Figures
6.3c and 6.3d each sample is given a colour which is derived by mixing red,
green and blue according to the responsibilities. That is a sample where two
responsibilities are zero and the third is one is given a pure colour, while one
where two of the responsibilities are 0.5 and the third is 0, is given a mixture
of two primary colours, for example purple.
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6.4 Expectation-Maximization
In this section we introduce a more general technique to maximize

L =
N∑
n=1

log p(vn) =
N∑
n=1

log

(
K∑
k=1

πkpk(vn)

)
.

We start by considering the update formulae (6.7), (6.8) and (6.5) for µk, Σk

and πk in the case of Gaussian mixtures. Maximizing the function

L̂ =
N∑
n=1

K∑
k=1

p(zn,k = 1|vn) [log πk + log pk(vn)]

=

N∑
n=1

K∑
k=1

p(zn,k = 1|vn)

[
log πk −

1

2
log |2πΣk|

−1

2
(vn − µk)TΣ−1

k (vn − µk)

]
with respect to µk, Σk and πk subject to the constraint that the mixing
coefficients sum to one, arrives at the same update formulae.

To see this, we consider first the derivatives

∂

∂µk
L̂ =

N∑
n=1

p(zn,k = 1|vn)Σ−1
k (vn − µk),

∂

∂Σk
L̂ = −1

2

N∑
n=1

p(zn,k = 1|vn)
[
Σ−1
k −Σ−1

k (vn − µk)(vn − µk)TΣ−1
k

]
,

employing Appendices A.2.3, A.2.4 and A.2.8. Setting these to zero and solving
for µk and Σk respectively gives the update formulae for those parameters.

To find an optimal value for πk, we need to introduce a Lagrange multiplier:

∂

∂πk

[
L̂+ λ

(
K∑
k=1

πk − 1

)]
=

N∑
n=1

p(zn,k = 1|vn)
1

πk
+ λ.

To find λ = −N , we set the derivative to zero, multiply through by πk and sum
over k, using the fact that both the responsibilities for a particular sample and
the mixing coefficients sum to 1. The update formula for πk follows directly
then.

How are the objective functions L and L̂ related and why do the parameters
where their derivatives vanish coincide?

Rewriting

L̂ =
N∑
n=1

K∑
k=1

p(zn,k = 1|vn) log
(
p(zn,k = 1)p(vn|zn,k = 1)

)
,
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we see that L̂ is the expectation of the logarithm of the complete data likeli-
hood

N∑
n=1

log p(vn, zn),

where the expectation is taken with respect to the responsibilities, that is the
posterior probabilities of the latent variables. In the following, we will derive
a lower bound which shows the relationship between L and L̂.

Using the product rule for probabilities, the logarithm of the complete
data likelihood can also be written as

N∑
n=1

log p(vn, zn) =
N∑
n=1

log p(vn) + log p(zn|vn).

Both sides can be viewed as functions of the random variables zn, and the
expectation with respect to any distribution q(zn) can be taken. Since zn is
a 1-of-K representation, the expectation is calculated by summing over all
possible values for zn:

K∑
k=1

N∑
n=1

q(zn,k = 1) log p(vn, zn,k = 1)

=

K∑
k=1

N∑
n=1

q(zn,k = 1) log p(vn) +

K∑
k=1

N∑
n=1

q(zn,k = 1) log p(zn,k = 1|vn)

=
N∑
n=1

log p(vn)︸ ︷︷ ︸
L

+

K∑
k=1

N∑
n=1

q(zn,k = 1) log p(zn,k = 1|vn),

because of
∑K
k=1 q(zn,k = 1) = 1. Rearranging, we see that the the logarithm

of the data likelihood is given by

L =

N∑
n=1

log p(vn) =

K∑
k=1

N∑
n=1

q(zn,k = 1) log p(vn, zn,k = 1)

−
K∑
k=1

N∑
n=1

q(zn,k = 1) log p(zn,k = 1|vn).

Subtracting and adding the term

N∑
n=1

K∑
k=1

q(zn,k = 1) log q(zn,k = 1)
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on the right hand side leaves the equation unchanged, and we obtain

L =
K∑
k=1

N∑
n=1

q(zn,k = 1) log
p(vn, zn,k = 1)

q(zn,k = 1)

+
N∑
n=1

K∑
k=1

q(zn,k = 1) log
q(zn,k = 1)

p(zn,k = 1|vn)
,

(6.9)

Now, in the last line each sum over k = 1, . . . ,K is the Kullback–Leibler diver-
gence (KL divergence) from the discrete distribution p(zn|vn) to the discrete
distribution q(zn).

More generally, given two discrete probability distributions P and Q, the
Kullback–Leibler divergence from Q to P is defined as

DKL(P‖Q) =
∑
i

P (i) log
P (i)

Q(i)
.

To avoid a division by zero, it is only defined if Q(i) = 0 implies P (i) = 0.
In this case, that particular term of the sum is interpreted as zero, since
limx→0 x log x = 0. If both distributions are the same, then the Kullback–
Leibler divergence is zero. It is also non-negative, since log x ≤ x − 1 and
therefore

DKL(P‖Q) = −
∑
i

P (i) log
Q(i)

P (i)
≥ −

∑
i

P (i)

(
Q(i)

P (i)
− 1

)
= −

∑
i

Q(i) +
∑
i

P (i) = 0,

since the probabilities need to sum to 1.
The last line in (6.9) is always non-negative, and therefore the first line is

a lower bound for the logarithm of the data likelihood. We can rewrite this
lower bound as

L̃ =
K∑
k=1

N∑
n=1

q(zn,k = 1) log
p(vn, zn,k = 1)

q(zn,k = 1)

=

L̂︷ ︸︸ ︷
K∑
k=1

N∑
n=1

q(zn,k = 1) log
(
p(zn,k = 1)p(vn|zn,k = 1)

)
−

K∑
k=1

N∑
n=1

q(zn,k = 1) log q(zn,k = 1).

The lower bound has the same value as the logarithm of the data likelihood
L, if q(zn) is equal to p(zn|vn), because then the Kullback–Leibler divergence
is zero.
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The maximum of (6.9) is estimated by alternating between maximizing
the lower bound with respect to q(zn) and with respect to πk = p(zk = 1)
and the parameters of pk(v) = p(v|zk = 1), k = 1, . . . ,K. The former means
setting q(zn) to p(zn|vn), where the responsibilities are evaluated using the
current parameters of pk(v). With this choice for q(zn), however, the first

term of the lower bound becomes exactly L̂. The second term is independent
of the parameters of pk(v) and hence is irrelevant for the maximization. The

location of the maximum is the same whether maximizing L̂ or L̃.

Figure 6.4: Illustration of the maximization steps.

Figure 6.4 illustrates this. The horizontal axis stands for the space formed
by πk = p(zk = 1) and the parameters of pk(v) = p(v|zk = 1), k = 1, . . . ,K.
Generally, it has a large dimensionality. The logarithm of the joint likelihood
of the data samples, that is the objective function L is drawn in black. The
diamonds pick out particular choices for πk and the parameters of pk(v),
k = 1, . . . ,K. If q(zn) is set to the responsibilities p(zn|vn) calculated for

theses choices, L and L̂ have the same value. For two different choices of
q(zn), the lower bound L̃ is drawn in blue. Its curve touches the curve of
L at the diamond. This signifies a maximization with respect to q(zn). The

expectation of the logarithm of the complete data likelihood L̂ is in red. Note
that the locations of the maxima of both L̂ and L̃ are the same, indicated by
the vertical lines, where a maximization with respect to πk and the parameters
of pk(v), k = 1, . . . ,K, took place.

The above analysis leads to the following algorithm to maximize the log-
arithm of the data likelihood:

1. Choose K and convergence threshold.

2. Initialize all parameters of pk(v) = p(v|zk = 1) and mixing coefficients
πk = p(zk = 1).
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3. E-step: Evaluate the responsibilities p(zn,k = 1|vn) for n = 1, . . . , N
and k = 1, . . . ,K.

4. M-step: Maximize

K∑
k=1

N∑
n=1

p(zn,k = 1|vn) log
(
p(zn,k = 1)p(vn|zn,k = 1)

)
with respect to the parameters of pk(v) = p(v|zk = 1) and mixing
coefficients πk = p(zk = 1).

5. Terminate, if all changes are below the convergence threshold. Otherwise
return to step 3

This method is known as the Expectation-Maximization algorithm or EM al-
gorithm for short. Each step increases the logarithm of the data likelihood.
Listing 6.3 uses the internal implementation of the EM algorithm in MAT-
LAB within the call to fit a Gaussian Mixture. We revisit the Expectation-
Maximization technique in the context of regression where we consider con-
tinuous latent variables. The EM algorithm is widely used and has many
extensions. For an overview of those see [29].

6.5 Bayesian Mixture Models
The previous sections have treated the mixing coefficients πk and the param-
eters of the probability distribution pk of the kth process for k = 1, . . . ,K as
constant unknown parameters, whose values need to be determined by maxi-
mizing the likelihood. We now take a Bayesian approach.

The prior assumption is that the vector π = (π1, . . . , πK) follows a Dirich-
let distribution with parameter α = (α/K, . . . , α/K)T . For example, if α = K,
then α = (1, . . . , 1)T and the probability distribution is the uniform distribu-
tion over the simplex in which π lies. So all possibilities for π are equally likely.
As α increases, the resulting Dirichlet probability density functions get more
and more peaked at π = (1/K, . . . , 1/K)T with any other vectors becoming
less likely. The effect is illustrated in Figure 6.5. When α = K in Figures 6.5a
and 6.5b, the cluster sizes can be very different. As α increases (Figures 6.5c
and 6.5d), the clusters become similar in size. Their sizes approach N/K.

Similarly, the probability distributions pk are drawn themselves from a
probability distribution. It is a distribution over distributions, known as base
distribution G0. For example, if each process is a normal distribution with its
own mean µk and covariance matrix Σk, these can be drawn from the normal
inverse Wishart distribution, which has four parameters:

• the location vector m lying in the feature space,

• the mean fraction λ,
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(a) α = K = 3. (b) α = K = 3.

(c) α = 10. (d) α = 100.

Figure 6.5: Data generated for various values of α and fixed
K = 3, N = 1000.

• the inverse scale matrix Ψ, which has to be symmetric and positive
definite,

• and ν, which has to be at least the number of dimensions d of the feature
space and regulates the degrees of freedom.

The notation is (µk,Σk) ∼ NIW(m, λ,Ψ, ν).
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This way of generating the data can be represented graphically as

π

α

zn

vn

N

m, λ,Ψ, ν

µk,Σk

K

The covariance matrices Σk follow the inverse Wishart distribution given
by Ψ and ν, Σk ∼ W−1(Ψ, ν). It has the probability density function

W−1(Σk|Ψ, ν) =
|Ψ|ν/2

2νd/2Γd(
ν
2 )
|Σk|−(ν+d+1)/2 exp

(
−1

2
tr(ΨΣ−1

k )

)
, (6.10)

where | · | denotes the determinant and tr(·) denotes the trace of a matrix. Γd
is the multivariate gamma function.

The expectation of the inverse Wishart distribution is given by

E[Σk] =
Ψ

ν − d− 1
.

The variance of each element Σij of Σ is calculated as

var[Σij ] =
(ν − d+ 1)Ψ2

ij + (ν − d− 1)ΨiiΨjj

(ν − d)(ν − d− 1)2(ν − d− 3)
= var[Σji],

since Ψ is symmetric. On the diagonal, that is i = j, this simplifies to

var[Σii] =
2Ψ2

ii

(ν − d− 1)2(ν − d− 3)
.

Since ν appears several times in the denominator, it controls the variability
in the generated covariances and in turn in the different data sets which are
generated. The variability decreases as ν increases. Figures 6.6 and 6.7 show
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(a) (b)

(c) (d)

Figure 6.6: Data generated for ν = 2.

the differences in generated data sets for ν = 2 the smallest possible choice,
and ν = 10 for α = 10K, m = (0, 0)T , λ = 1 and

Ψ =

(
1 3/2

3/2 1

)
.

Looking at the ranges of the axes in Figure 6.6, the generated data sets
are indeed very different in nature. In Figure 6.7, in particular 6.7a and 6.7d,
on the other hand, the data seem to come from the base distribution specified
by m and Ψ, if it weren’t for the distinction by processes.

The inverse Wishart distribution W−1(Σ|Ψ, ν) is the conjugate prior for
the covariance matrix Σ of a multivariate normal distribution with a known
mean. We can assume that the mean of this distribution is zero, since we
can re-centre the data at zero by subtracting the mean from all samples.
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(a) (b)

(c) (d)

Figure 6.7: Data generated for ν = 10.

Let D = {v1, . . . ,vN} be draws from N (0,Σ). The likelihood of this data is
given by

N∏
n=1

1√
(2π)d|Σ|

exp

(
−1

2
vTnΣ−1vn

)
=

(2π)−dN/2|Σ|−N/2 exp

(
−1

2

N∑
n=1

vTnΣ−1vn

)
.

The posterior distribution of Σ is proportional to the product of the like-
lihood and the prior probability density function as given in (6.10) by Bayes’
rule. Because of the proportionality, we drop all multiplicative constants in
both. These are the factors (2π)−dN/2, |Ψ|ν/2, 2−νd/2 and 1/Γd(ν/2). Hence,
the posterior is proportional to

|Σ|−N/2 exp

(
−1

2

N∑
n=1

vTnΣ−1vn

)
|Σ|−(ν+d+1)/2 exp

(
−1

2
tr(ΨΣ−1)

)
.
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(a) λ = 1. (b) λ = 1/3. (c) λ = 1/5.

Figure 6.8: Data generated for various values of λ.

To simplify this expression, we use properties of determinants and traces
of matrices. The product of determinants of two matrices is the deter-
minant of the product of matrices. Therefore, |Σ|−N/2||Σ|−(ν+d+1)/2 =
|Σ|−(N+ν+d+1)/2. The expression vTnΣ−1vn is a scalar and the trace of a scalar
is the scalar itself. Further, the trace is invariant to a cyclic permutation of the
order of multiplication. Hence, vTnΣ−1vn = tr(vTnΣ−1vn) = tr(vnvTnΣ−1).
Using these identities, the posterior is proportional to

|Σ|−(N+ν+d+1)/2 exp

(
−1

2

[
N∑
n=1

tr(vnvTnΣ−1) + tr(ΨΣ−1)

])
=

|Σ|−(N+ν+d+1)/2 exp

(
−1

2
tr

(
(Ψ +

N∑
n=1

vnvTn )Σ−1

))
,

since the sum of traces of matrices is the trace of the sum of matrices. Apart
from the normalizing constant, this is exactly the probability density function
of W−1(Σ|Ψ +

∑N
n=1 vnvTn , ν +N). To summarize, after seeing the data, the

inverse scale matrix is updated to Ψ+
∑N
n=1 vnvTn and the degrees of freedom

become ν+N . Since this increases, the estimate for the distribution describing
Σ becomes tighter, the more data samples are seen. The least informative
choice for ν in the prior is ν = d.

Having drawn Σk, µk is drawn from a normal distribution with mean
m and covariance matrix 1

λΣk. The parameter λ controls the spacing of the
generated means µk. Figure 6.8 illustrates the effect of λ = 1, 1/3, 1/5 for
α = 10K, m = (0, 0)T , the previous Ψ and ν = 6. As λ decreases, the clusters
separate. As λ increases, they overlap more and more. Figures 6.5 to 6.8 were
generated by the function in Listing 6.4.

To summarize, the data is generated following the distributions:

vn|zn ∼ N (µk,Σk)

p(zn,k = 1) = πk,

π ∼ Dir(α),

µk,Σk ∼ G0 = NIW(m, λ,Ψ, ν).
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function [V,idx,MU,SIGMA] = BayesianMixture(N,K,alpha,mu0,...
lambda,Psi,nu)

% Input:
% N: number of data points to be generated,
% K: number of clusters
% alpha: concentration parameter,
% mu0: location vector,
% lambda: mean fraction,
% Psi: inverse scale matrix,
% nu: degrees of freedom.
% Output:
% V: data vector,
% idx: index vector which process generated the sample,
% MU: array of the means of all processes,
% SIGMA: array of the covariance matrices of all processes.

% Generate vector of mixture coefficients from Dirichlet
% distribution given by alpha and K using the Gamma dsitribution.
a = alpha/K*ones(1,K);
PI = gamrnd(a,1);
PI = PI/sum(PI);

% Generate latent indicator variable for cluster mambership.
idx = randsample(K,N,true,PI);

% Generate distribution for each cluster.
SIGMA = zeros(2,2,K);
MU = zeros(2,K);
for k=1:K

sigma = iwishrnd(Psi,nu);
SIGMA(:,:,k) = sigma;
MU(:,k) = mvnrnd(mu0,sigma/lambda);

end

% Generate data.
V = zeros(N,2);
for n=1:N

v = mvnrnd(MU(:,idx(n)),SIGMA(:,:,idx(n)));
V(n,:) = v;

end

Listing 6.4: Generating data from a distribution of distributions for a fixed
number of clusters.
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This can be viewed without involving the latent variables zn. Imagine a dis-
tribution G over the set of all possible pairs of (µ,Σ) which can be generated
from G0. Since there is only a finite number of clusters, G is zero everywhere
apart from the specific pairs (µk,Σk) where it has a point probability mass
of πk.

Using this distribution G, the generation of data can be described as:

vn ∼ N (µk,Σk)

π ∼ Dir(α),

µk,Σk ∼ G.

The base distribution G0 is indirectly part of the distribution G, since the
points where G is nonzero are drawn from G0, while the probability masses
at these points are drawn from Dir(α).

Having explored the way the data is generated, we now look at inferring
the cluster membership from the data. First, let D = {v1, . . . ,vN} be a set
of data samples drawn from a multivariate normal distribution with mean µ
and covariance matrix Σ, where µ and Σ are themselves drawn from a nor-
mal inverse Wishart distribution. We assume a prior normal inverse Wishart
distribution with parameters m, λ,Ψ and ν. The posterior is also a normal
inverse Wishart distribution. Let

v̄ =
1

N

N∑
n=1

vn

be the sample mean and

S =
N∑
n=1

(vn − v̄)(vn − v̄)T

the scaled sample covariance matrix. The posterior then has parameters

mpost =
λm +N v̄

λ+N
,

λpost = λ+N,
νpost = ν +N,

Ψpost = Ψ + S +
λN

λ+N
(v̄ −m)(v̄ −m)T .

In particular, if N = 1, we have one single data point v and v̄ = v and S = 0.
With this,

mpost =
λm + v

λ+ 1
,

λpost = λ+ 1,
νpost = ν + 1,

Ψpost = Ψ +
λ

λ+ 1
(v −m)(v −m)T .

(6.11)
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Thus the data samples can be considered one at a time and the posterior is
calculated sequentially.

However, the above does not consider the probabilities of a sample belong-
ing to a particular cluster which are governed by a Dirichlet prior distribution
with parameter α = (α/K, . . . , α/K)T . We start with a random assignment of
the indicator variables z1, . . . , zn. For each individual cluster k, we let Nk be
the number of samples in it with this particular assignment. We then calculate
the parameters mk, λk,Ψk and νk of the posterior, normal, inverse Wishart
distribution for each cluster and draw µk and Σk from this distribution.

Gibbs sampling is used to reassign samples to clusters in a random order.
To this end, a random sample vn is selected. Let l be its current cluster
assignment. Consider the data set without this sample, D \ {vn}. It needs to
be removed from cluster l by returning to the prior parameters of the normal,
inverse Wishart distribution for the lth cluster. Using (6.11) backwards, we
see that

mprior
l =

λlml − vn
λl − 1

,

λprior
l = λl − 1,

νprior
l = νl − 1,

Ψprior
l = Ψl −

λl
λl − 1

(vn −ml)(vn −ml)
T .

Note that this is independent of the order, in which samples were assigned
clusters. A new mean µl and covariance matrix Σl are drawn from this dis-
tribution, and Nl is replaced by Nl − 1.

We calculate for k = 1, . . . ,K the probabilities that vn belongs to cluster
k given all the other data samples and their assignments,

p(zn,k = 1|vn,D \ {vn}, α,m, λ,Ψ, ν) =

p(zn,k = 1|D \ {vn}, α)p(vn|D \ {vn}, zn,k = 1,m, λ,Ψ, ν)
(6.12)

following the product rule. Here D \ {vn} means the set of samples as well as
their assignments.

The first factor is the probability of vn belonging to cluster k which is gov-
erned by the posterior Dirichlet distribution, given the prior Dirichlet distri-
bution and all other cluster assignments. From the discussion about conjugate
distributions leading to equation (2.23), this is

Nk + α/K

N − 1 + α
.

The second factor in (6.12) is the likelihood of seeing sample vn given
D \ {vn}, zn,k = 1, and the parameters of the posterior, normal, inverse
Wishart distribution for this cluster. This is approximated by the normal
distribution with mean µk and covariance matrix Σk. Hence, p(vn|D \
{vn}, zn,k = 1,m, λ,Ψ, ν) is approximately

1√
|2πΣk|

exp

(
1

2
(vn − µk)TΣ−1

k (vn − µk)

)
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function [idx,MU,SIGMA] = InferBayesianMixture(V, K,alpha,m,...
lambda,Psi,nu,iter)

% Input:
% V: data,
% K: number of clusters
% alpha: prior concentration parameter,
% m: prior location vector,
% lambda: prior mean fraction,
% Psi: prior inverse scale matrix,
% nu: prior degrees of freedom,
% iter: number of iterations
% Output:
% idx: index vector of cluster assignments,
% MU: array of the means sampled from the posterior normal
% inverse Wishart distributions for each cluster,
% SIGMA: array of the covariance matrices sampled from the posterior
% normal inverse Wishart distributions for each cluster.

N = size(V,1);
% Start with random cluster assignments.
idx = randi(K,1,N);

% For each cluster store its size, posterior location vector,
% posterior mean fraction, posterior inverse scale matrix,
% posterior degrees of freedom.
nk = zeros(1,K);
M = zeros(2,K);
LAMBDA = zeros(1,K);
PSI = zeros(2,2,K);
NU = zeros(1,K);
% For each cluster store a draw from the posterior normal,
% inverse Wishart distribution.
SIGMA = zeros(2,2,K);
MU = zeros(2,K);
% For each cluster initialize these for the initial random cluster
% assignments and draw MU and SIGMA from that posterior normal,
% inverse Wishart distribution.
for k=1:K

v = V(idx == k,:);
nk(k) = size(v,1);
sampleM = mean(v);
sampleS = (nk(k)−1) * cov(v);
M(:,k) = (lambda*m(:) + nk(k)*sampleM(:))/(lambda +nk(k));
LAMBDA(k) = lambda + nk(k);
PSIk = Psi(:,:) + sampleS + lambda*nk(k)*(sampleM(:) − m(:))*...

(sampleM(:) − m(:))'/(lambda +nk(k));
% Store Cholesky factorization to maintain positive definiteness.
PSI(:,:,k) = chol(PSIk);
NU(k) = nu + nk(k);
SIGMA(:,:,k) = iwishrnd(PSI(:,:,k)'* PSI(:,:,k),NU(k));
MU(:,k) = mvnrnd(M(:,k),SIGMA(:,:,k)/LAMBDA(k));

end

6.5a: Bayes’ rule and Gibbs sampling determining the mixture model
for a fixed number of clusters - initialization.
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for i = 1:iter
% Consider the data in a random order.
for n = randperm(N)

v = V(n,:);
l = idx(n);
% Remove this sample from the data set and update the cluster
% it was assigned to.
priorlambda = LAMBDA(l)−1;
% Rank one update on the Cholesky factorization to preserve
% positive definiteness.
update = sqrt(LAMBDA(l)/priorlambda) * (v' − M(:,l));
PSI(:,:,l) = cholupdate(PSI(:,:,l),update,'−');
M(:,l) = (LAMBDA(l)*M(:,l) − v(:))/priorlambda;
NU(l) = NU(l)−1;
LAMBDA(l) = priorlambda;
SIGMA(:,:,l) = iwishrnd(PSI(:,:,l)'* PSI(:,:,l),NU(l));
MU(:,l) = mvnrnd(M(:,l),SIGMA(:,:,l)/LAMBDA(l));
nk(l) = nk(l)−1;
% Calculate cluster assignment probabilities.
p = zeros(1,K);
for k=1:K

p(k) = (nk(k) + alpha/K)/(N−1+alpha)*...
mvnpdf(v',MU(:,k),SIGMA(:,:,k));

end
p = p/sum(p);
% Sample new indicator variable.
l = randsample(K,1,true,p);
idx(n) = l;
% Update the cluster the sample is now assigned to.
postlambda = LAMBDA(l)+1;
% Rank one update on the Cholesky factorization to preserve
% positive definiteness.
update = sqrt(LAMBDA(l)/postlambda) * (v' − M(:,l));
PSI(:,:,l) = cholupdate(PSI(:,:,l),update,'+');
M(:,l) = (LAMBDA(l)*M(:,l) + v(:))/postlambda;
NU(l) = NU(l)+1;
LAMBDA(l) = postlambda;
SIGMA(:,:,l) = iwishrnd(PSI(:,:,l)'* PSI(:,:,l),NU(l));
MU(:,l) = mvnrnd(M(:,l),SIGMA(:,:,l)/LAMBDA(l));
nk(l) = nk(l)+1;

end
end

6.5b: Bayes’ rule and Gibbs sampling determining the mixture model for a
fixed number of clusters - iterations.
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(a) Initial random
cluster assignment.

(b) Cluster assignment
after 5 iterations.

(c) Cluster assignment
after 100 iterations.

Figure 6.9: Bayes’ rule and Gibbs sampling determining the mixture model
for a fixed number of clusters.

given D \ {vn}, the current assignments and the prior.
With these results,

p(zn,k = 1|vn,D \ {vn}, α,m, λ,Ψ, ν) ≈

Nk + α/K

N − 1 + α

1√
|2πΣk|

exp

(
1

2
(vn − µk)TΣ−1

k (vn − µk)

)
.

Since these are approximations, we have to divide by the sum of probabilities
to ensure they add to one. We use these probabilities to draw a new indicator
variable zn for vn.

Having assigned sample vn to a new cluster m, all parameters for this
cluster need to be updated following (6.11). A new mean µm and covariance
matrix Σm are drawn from this posterior distribution. Nm is increased by one.
This completes the cluster re-assignment for vn.

An iteration is complete, if all samples have been considered in a random
order. The process is repeated for a fixed number of iterations. Sometimes this
form of Gibbs sampling is called collapsed Gibbs sampling , since the cluster
assignments of the other samples are not explicitly used, when sampling zn for
vn. They are indirectly encoded in the parameters of the posterior, normal
inverse, Wishart distribution for each cluster. This reduces the parameters
influencing the sampling to a multiple of K.

Listings 6.5 is a function implementing this clustering algorithm. Some
implementations do not draw from the posterior, normal, inverse Wishart
distributions, but instead set µk = mk and Σk = Ψk.

Figure 6.9 shows the results, when the method is applied to the same data
as in Figures 6.3a and 6.3b. The algorithm was initialized with α = K, λ = 1,
ν = 2. The parameter m was set to the sample mean of all data, while Ψ was
set to the average squared distance of all samples to the mean divided by the
number of dimensions times the identity matrix.

Figure 6.9a shows the initial random cluster assignments. The clusters start
to separate after five iterations in 6.9b. 320 samples are given the wrong (up-
to re-labeling) assignment. With more iterations this number reduces. After
a hundred iterations 53 samples belong to the wrong cluster. A perfect result
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(a) Original data. (b) Final cluster assignment.

Figure 6.10: Incorrect cluster assignment.

is generally not possible, since for some samples the posterior probabilities
p(zn,k = 1|vn,D \ {vn}, α,m, λ,Ψ, ν) might be very similar for two clusters,
with there being no clear maximal probability. In these cases, it is more useful
to return the vector of posterior probabilities instead of a cluster assignment.

Even though the number of clusters is specified, this does not mean that
this number of clusters is used. It is an upper bound. Figure 6.10 shows that
the algorithm combined two clusters into one. Since all the generation of data
as well as the inference of clusters is governed by probabilities, there is always
the chance of the algorithm getting it wrong.

6.6 The Chinese Restaurant Process
In all the above, the number of clusters was fixed at the start of the algorithm.
This is, however, undesirable, since in general it is not known beforehand, how
many clusters there are. Ideally, the number of clusters should be determined
by the data.

It is helpful to revisit the assumptions we made about how the data is
generated. Previously, a new data sample was generated by choosing one of
the K processes and then generating the sample according to the probability
distribution for that process. We now take the view that there is a chance
that the sample is generated by a completely new process, which is different
from the processes which generated the previous samples.

It is more convenient to take a sequential view of the generation of samples.
For the first sample, a process and its distribution are generated. The second
sample can either be generated from the same distribution as the first sample
or from a new distribution. We need to define a probability for these two cases.
Let α be an additional parameter governing this probability. It is known as
dispersion, concentration, scaling parameter or strength. The probability that
the second sample is generated by the first process is 1/(1 + α), while the
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(a) α = 0.5

.
(b) α = 1

.

(c) α = 2

.
(d) α = 2

.

Figure 6.11: Data generated for various values of α.

probability that it is generated by a new process is α/(1 + α). If α = 1, these
two probabilities are the same and are both one half. If α is greater than 1,
then a new process is favoured, while for α < 1 the already existing process
is more likely to be used to generate the second sample.

When generating the nth sample, it is generated by
process k with probability

nk
n− 1 + α

a new process with probability
α

n− 1 + α

,

where nk denotes the number of samples generated by process k so far. When
summing the samples generated by each process over all processes, the result
is n− 1. Therefore these probabilities sum to 1.

Note that as more and more samples are generated by a particular process
k, it gets more likely that this process will generate further samples, since
nk/(n−1 +α) increases relatively to the other probabilities. This is again the
rich-get-richer phenomenon.

Listing 6.6 generates data in this fashion. The results for various values
of α are shown in Figure 6.11. The distributions for each cluster were drawn
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function [V,idx,MU,SIGMA] = CRP(N, alpha, mu0, lambda, Psi, nu)
% Input:
% N: number of data points to be generated,
% alpha: concentration parameter,
% mu0: location vector,
% lambda: mean fraction,
% Psi: inverse scale matrix,
% nu: degrees of freedom.
% Output:
% V: data vector,
% idx: index vector which process generated the sample,
% MU: array of the means of all processes,
% SIGMAS: array of the covariance matrices of all processes.

% Generate distribution of first process.
SIGMA = iwishrnd(Psi,nu);
MU = mvnrnd(mu0,lambda * SIGMA);
% Generate first sample.
V = mvnrnd(MU,SIGMA);
idx = 1;
% The vector n_k tracks the number of samples generated by the k−th
% process, where k is the vector index.
n_k = 1;
for n =2:N

% Calculate probabilities which process generates the next sample.
p = n_k/(n−1+alpha);
% Append the probability that a new process is generated.
p = cat(1,p,alpha/(n−1+alpha));
% Sample from which process the next data point is taken or
% whether a new process is created.
compidx = randsample(length(p),1,true,p/sum(p));
if compidx < length(p)

% New sample is generated from existing process indicated by
% compidx. Generate new sample from this process.
V = cat(1,V,mvnrnd(MU(compidx,:),SIGMA(:,:,compidx)));
idx = cat(1,idx,compidx);
% Update vector n_k of the number of samples generated by each
% process.
n_k(compidx) = n_k(compidx)+1;

else
% New process is generated.
sigma = iwishrnd(Psi,nu);
mu = mvnrnd(mu0,lambda * sigma);
% Generate new sample from this process.
V = cat(1,V,mvnrnd(mu,sigma));
idx = cat(1,idx,compidx);
% Append mean and covariance matrix of new process to arrays
% of means and covariances.
MU = cat(1,MU,mu);
SIGMA = cat(3,SIGMA,sigma);
% Update vector n_k of the number of samples generated by each
% process.
n_k = cat(1,n_k,1);

end
end

Listing 6.6: Generating data from a distribution of distributions
where the number of clusters is variable.
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from a normal, inverse, Wishart distribution with parameters m = (0, 0)T ,
λ = 3, ν = 6, and

Ψ =

(
1 3/2

3/2 1

)
.

They illustrate the rich-get-richer property with some clusters dominating. As
α increases, the number of clusters increases, since the probability that a new
process is generated is larger. Different runs will give data sets which can look
quite different as in Figures 6.11c and 6.11d. This last figure also shows that
two processes could have very similar distributions. Without the knowledge of
which process generated which, the data samples seem to be generated from
the same process.

This way of generating data is known as the Chinese Restaurant Process
(CRP). Many Chinese restaurants feature round tables with a centre that can
be turned. The various dishes are placed there, and the diners can share by
turning the centre. The data generation is likened to a hypothetical Chinese
restaurant with an infinite availability of tables and each table can seat as
many diners as necessary. The first customer comes, sits at the first table and
orders a variety of food. This determines the distribution. They eat what they
fancy which corresponds to a specific data sample. The second customer might
choose to sit at the same table. They will eat from the same selection of food,
but not exactly the same as the first customer. They sample a second distinct
set of food. On the other hand, they might choose to sit at a new table and
order a different set of dishes which constitutes the distribution of the second
process. As new customers arrive, they either sit at an already open table or
open a new one.

Since the final number of customers N is finite, so is the number of tables
K. Once the final configuration is reached it is unique up to the relabeling
of tables. This means there are K! equivalent ways this configuration could
have been reached. This in turn means that the order in which the customers
arrive is of no importance. If in a different ordering the first customer sits at
a different table which becomes the first table, we just relabel this table to 1
and change all subsequent labels.

6.7 Dirichlet Process
Having considered the process of how the data is generated, we need to change
our viewpoint and deduce the number of clusters and which samples belong to
which from the data. As before with Bayesian mixtures, we choose a concen-
tration parameter α and prior probability distributions, and deduce posterior
probabilities from the data using collapsed Gibbs sampling. However, now K
is the current number of clusters and is variable. The normal, inverse, Wishart
distribution with parameters m, λ,Ψ and ν is used as prior to illustrate.

At initialization stage the samples are considered in a random order. Let
v1 be the first sample considered. It also constitutes the first cluster. The
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posterior normal, inverse Wishart distribution of this cluster is calculated
from the prior as

m1 =
λm + v1

λ+ 1
,

λ1 = λ+ 1,
ν1 = ν + 1,

Ψ1 = Ψ +
λ

λ+ 1
(v1 −m)(v1 −m)T .

A covariance matrix Σ1 and mean µ1 are drawn from this distribution for
this cluster.

Let vn be the nth sample considered and let Dn = {v1, . . . ,vn−1}. That
is Dn is the set of all samples considered so far and their cluster assignments.

For k = 1, . . . ,K, where K is the current number of clusters, we calculate
the probabilities that vn belongs to cluster k given the samples in Dn and
their cluster assignments,

p(zn,k = 1|Dn, α,m, λ,Ψ, ν) =

p(zn,k = 1|Dn, α)p(vn|Dn, zn,k = 1,m, λ,Ψ, ν)

following the product rule. Now, following the Chinese Restaurant Process,

p(zn,k = 1|Dn, α) =
nk

n− 1 + α
,

where nk is the number of samples currently assigned to cluster k. On the
other hand,

p(vn|Dn, zn,k = 1,m, λ,Ψ, ν) ≈

1√
|2πΣk|

exp

(
1

2
(vn − µk)TΣ−1

k (vn − µk)

)
.

(6.13)

So the data Dn and the current cluster assignments are not used directly, but
indirectly via the current µk and Σk.

We also calculate the probability that vn belongs to a, so far unseen, empty
cluster. It is

p(zn,K+1 = 1|Dn, α,m, λ,Ψ, ν) =

p(zn,K+1 = 1|Dn, α)p(vn|Dn, zn,K+1 = 1,m, λ,Ψ, ν).

The first factor is

p(zn,K+1 = 1|Dn, α) =
α

n− 1 + α

according to the Chinese Restaurant Process. The data set Dn only influences
this probability via its current size n − 1. The other factor is the probabil-
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(a) Initial cluster
assignment.

(b) Cluster assignment
after 10 iterations.

(c) Cluster assignment
after 20 iterations.

Figure 6.12: Dirichlet process method example.

ity of vn belonging to an empty cluster. Since this cluster is still empty, its
distribution is completely determined by the prior. Hence,

p(vn|Dn, zn,K+1 = 1,m, λ,Ψ, ν) =

1√
|2πΨ|

exp

(
1

2
(vn −m)TΨ−1(vn −m)

)
.

(6.14)

Having calculated these K+1 probabilities, they are used to sample which
cluster vn belongs to, either one of the existing clusters or the empty clus-
ter. If the former, the posterior normal, inverse distribution of that cluster
needs to be updated and a new covariance matrix and mean need to be drawn
from it. If the latter, this cluster will no longer be empty and the parameters
mK+1, λK+1,ΨK+1 and νK+1 of the posterior, normal, inverse Wishart dis-
tribution need to be calculated. A covariance matrix ΣK+1 and mean µK+1

are drawn from this distribution.
Once all samples have been considered, the initialization is complete. This

phase can lead to very different results. In Figures 6.12a and 6.13a the same
initialization procedure was applied to the data from Figures 6.3a and 6.3b.
The results are very different; in Figure 6.12a three clusters dominate, while
in 6.13a two dominate.

After initialization, several iterations follow and in each iteration all sam-
ples are considered in a random order. LetK be the current number of clusters,
Nk the current number of samples in cluster k, k = 1, . . . ,K, and vn be the
sample under consideration. First, vn is removed from the data set and the
cluster it is currently assigned to following the same steps as described for
Bayesian mixtures. If this removal results in an empty cluster, this cluster is
removed completely, and K becomes K − 1.

The posterior probability that vn belongs to cluster k given the samples
in D \ {vn} and their cluster assignments is

p(zn,k = 1|D \ {vn}, α,m, λ,Ψ, ν) =

p(zn,k = 1|D \ {vn}, α)p(vn|D \ {vn}, zn,k = 1,m, λ,Ψ, ν).
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(a) Initial cluster
assignment.

(b) Cluster assignment
after 10 iterations.

(c) Cluster assignment
after 20 iterations.

Figure 6.13: Dirichlet process method example.

In this situation, we have

p(zn,k = 1|D \ {vn}, α) =
Nk

N − 1 + α
,

while p(vn|D \ {vn}, zn,k = 1,m, λ,Ψ, ν) is as in Equation(6.13).
The possibility that vn belongs to an empty cluster is

p(zn,K+1 = 1|D \ {vn}, α,m, λ,Ψ, ν) =

p(zn,K+1 = 1|D \ {vn}, α)p(vn|D \ {vn}, zn,K+1 = 1,m, λ,Ψ, ν),

where
p(zn,K+1 = 1|D \ {vn}, α) =

α

N − 1 + α

and p(vn|D \ {vn}, zn,K+1 = 1,m, λ,Ψ, ν) as in Equation(6.13).
The sample vn is assigned to either one of the existing clusters or an empty

cluster. In either case, the posterior, normal, inverse, Wishart distribution
needs to be calculated and new samples for the covariance matrix and mean
drawn for that cluster. Listing 6.7 implements this algorithm. Figures 6.12
and 6.13 are two runs on the same data.

Recall that, when K was fixed, the data generation was described as

vn ∼ N (µk,Σk)

π ∼ Dir(α),

µk,Σk ∼ G.

where G was a distribution which is zero everywhere apart from K
pairs (µk,Σk), which were generated from the base distribution G0 =
NIW(m, λ,Σ, ν) and the probability mass for these K pairs followed a Dirich-
let distribution with parameter α.
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function [idx,K,MU,SIGMA] = InferDP(V,alpha,m,lambda,Psi,nu,iter)
% Input:
% V: data,
% alpha: prior concentration parameter,
% m: prior location vector,
% lambda: prior mean fraction,
% Psi: prior inverse scale matrix,
% nu: prior degrees of freedom,
% iter: number of iterations
% Output:
% idx: index vector of cluster assignments,
% K: number of clusters
% MU: array of the means sampled from the posterior normal
% inverse Wishart distributions for each cluster,
% SIGMA: array of the covariance matrices sampled from the posterior
% normal inverse Wishart distributions for each cluster.

N = size(V,1); % Number of samples.
K = 0; % Number of clusters.
idx =zeros(N,1); % Vector cluster assignments.
nk = []; % Vector of cluster sizes.
% For each cluster:
M = []; % Posterior location vector.
LAMBDA = []; % Posterior mean fraction.
PSI = []; % Cholesky factorization of posterior inverse

% scale matrix.
NU = []; % Posterior degrees of freedom.
SIGMA = []; % Covariance matrix draw.
MU = []; % Mean draw.

% Use Cholesky factorization of Psi to ensure positive definiteness.
Psi = chol(Psi);

% Consider samples in a random order.
order = randperm(N);
% Initialize cluster assignments.
for n = 1:N

v = V(order(n),:);
% Calculate cluster assignment probabilities.
p = zeros(1,K+1);
for k=1:K

p(k) = nk(k)/(n−1+alpha)*mvnpdf(v',MU(:,k),SIGMA(:,:,k));
end
p(K+1) = alpha/(n−1+alpha)*mvnpdf(v',m',Psi);
p = p/sum(p);
% Sample new indicator variable.
l = randsample(K+1,1,true,p);
idx(order(n)) = l;

6.7a: Dirichlet process method.
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if l ≤K
% Update the cluster the sample is now assigned to.
postlambda = LAMBDA(l)+1;
% Rank one update on the Cholesky factorization to preserve
% positive definiteness.
update = sqrt(LAMBDA(l)/postlambda) * (v' − M(:,l));
PSI(:,:,l) = cholupdate(PSI(:,:,l),update,'+');
M(:,l) = (LAMBDA(l)*M(:,l) + v(:))/postlambda;
NU(l) = NU(l)+1;
LAMBDA(l) = postlambda;
SIGMA(:,:,l) = iwishrnd(PSI(:,:,l)'* PSI(:,:,l),NU(l));
MU(:,l) = mvnrnd(M(:,l),SIGMA(:,:,l)/LAMBDA(l));
nk(l) = nk(l)+1;

else
% Create new cluster.
LAMBDA = cat(2,LAMBDA,lambda+1);
update = sqrt(lambda/(lambda+1)) * (v − m)';
PSI = cat(3,PSI,cholupdate(Psi,update,'+'));
M = cat(2,M,(lambda* m' +v' )/(lambda+1));
NU = cat(2,NU,nu+1);
SIGMA = cat(3,SIGMA,iwishrnd(PSI(:,:,l)'* PSI(:,:,l),NU(l)));
MU = cat(2,MU,mvnrnd(M(:,l),SIGMA(:,:,l)/LAMBDA(l))');
nk = cat(2,nk,1);
K = K+1;

end
end

for i = 1:iter
% Consider the data in a random order.
for n = randperm(N)

v = V(n,:);
l = idx(n);
% Remove this sample from the data set and update the cluster
% it was assigned to.
nk(l) = nk(l)−1;
if nk(l) == 0

% Remove empty cluster.
nk(l) = [];
PSI(:,:,l) = [];
M(:,l) = [];
NU(l) = [];
LAMBDA(l) = [];
SIGMA(:,:,l) = [];
MU(:,l) = [];
% Adjust cluster numbering.
temp = idx>l;
idx(temp) = idx(temp)−1;
K = K−1;

6.7b: Dirichlet process method.
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else
priorlambda = LAMBDA(l)−1;
% Rank one update on the Cholesky factorization to
% preserve positive definiteness.
update = sqrt(LAMBDA(l)/priorlambda) * (v' − M(:,l));
PSI(:,:,l) = cholupdate(PSI(:,:,l),update,'−');
M(:,l) = (LAMBDA(l)*M(:,l) − v(:))/priorlambda;
NU(l) = NU(l)−1;
LAMBDA(l) = priorlambda;
SIGMA(:,:,l) = iwishrnd(PSI(:,:,l)'* PSI(:,:,l),NU(l));
MU(:,l) = mvnrnd(M(:,l),SIGMA(:,:,l)/LAMBDA(l));

end % Calculate cluster assignment probabilities.
p = zeros(1,K+1);
for k=1:K

p(k) = nk(k)/(N−1+alpha)*mvnpdf(v',MU(:,k),SIGMA(:,:,k));
end
p(K+1) = alpha/(N−1+alpha)*mvnpdf(v',m',Psi);
p = p/sum(p);
% Sample new indicator variable.
l = randsample(K+1,1,true,p);
idx(n) = l;
if l ≤K

% Update the cluster the sample is now assigned to.
postlambda = LAMBDA(l)+1;
% Rank one update on the Cholesky factorization to
% preserve positive definiteness.
update = sqrt(LAMBDA(l)/postlambda) * (v' − M(:,l));
PSI(:,:,l) = cholupdate(PSI(:,:,l),update,'+');
M(:,l) = (LAMBDA(l)*M(:,l) + v(:))/postlambda;
NU(l) = NU(l)+1;
LAMBDA(l) = postlambda;
SIGMA(:,:,l) = iwishrnd(PSI(:,:,l)'* PSI(:,:,l),NU(l));
MU(:,l) = mvnrnd(M(:,l),SIGMA(:,:,l)/LAMBDA(l));
nk(l) = nk(l)+1;

else
% Create new cluster.
LAMBDA = cat(2,LAMBDA,lambda+1);
update = sqrt(lambda/(lambda+1)) * (v − m)';
PSI = cat(3,PSI,cholupdate(Psi,update,'+'));
M = cat(2,M,(lambda* m' +v' )/(lambda+1));
NU = cat(2,NU,nu+1);
SIGMA = cat(3,SIGMA,iwishrnd(PSI(:,:,l)'* ...

PSI(:,:,l),NU(l)));
MU = cat(2,MU,mvnrnd(M(:,l),SIGMA(:,:,l)/LAMBDA(l))');
nk = cat(2,nk,1);
K = K+1;

end
end

end

6.7c: Dirichlet process method.
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A Dirichlet process extends the concept to an unknown variable number
of clusters K. The notation is

vn ∼ N (µk,Σk)

µk,Σk ∼ G,

G ∼ DP(α,G0).

The last line means that G is drawn from a Dirichlet process with parameters
α and G0. A Dirichlet process is a distribution of distributions. There are infi-
nite many possibilities for pairs (µ,Σ) and the vector π is often described as
infinite giving each pair a probability mass. Conceptually, infinity is difficult.
In practice, the number of clusters K is at most the number of samples N ,
when every cluster contains at least one sample. Therefore G gives a proba-
bility mass of Nk/(N − 1 +α) to at most N pairs (µ,Σ) drawn from the base
distribution G0, and assigns the probability of α/((N −1 +α) to the set of all
other possible pairs. G is a discrete distribution defined on a finite partition
of the space of all pairs (µ,Σ) which is denoted by S.

More formally, a distribution G is drawn from a Dirichlet process with
parameters α and G0, if for any finite, disjoint partition S1, . . . , SL of S, where
L can be any finite number, the vector (G(S1), . . . , G(SL))T follows a Dirichlet
distribution with parameters αG0(S1), . . . , αG0(SL). In our example,

G0(Sl) =

∫
Sl

NIW(µ,Σ|m, λ,Ψ, ν) dµ dΣ

=

∫
Sl

N (µ|m,
1

λ
Σ)W−1(Σ|Ψ, ν) dµ dΣ.

Similarly, G(Sl) can be calculated from the values G takes on the partition,
and we indeed have

(G(S1), . . . , G(SL))T ∼ Dir(αG0(S1), . . . , αG0(SL)).

The Dirichlet process method infersG from the data by varying the number
K of pairs (µk,Σk) and their positions. It belongs to a family of methods
known as Bayesian nonparametrics which are Bayesian models operating on
an infinite-dimensional parameter space. In our case, this is the space of all
possible pairs (µ,Σ). To delve further into Bayesian nonparametrics consult
[17].



C H A P T E R 7

Dimensionality
Reduction

While samples can be described by many features, the ones which essentially
define the sample are often few, the many features being expressions of the few
in different ways. The chapter explores techniques to find these starting with
Principal Component Analysis introducing it as geometric concept. It then
takes a probabilistic viewpoint maximizing the likelihood of the data arriving
at the same conclusion. The Expectation-Maximization algorithm is shown
to be an alternative method to maximize the data likelihood. The method
is generalized to factor analysis. Lastly, kernel principal component analysis
tackles data samples lying on a non-linear manifold.

In the previous chapters, the features were taken as given. The kernel
trick was introduced through a mapping of the feature space to a higher
dimensional space, where the data samples are more easily separable. This
higher dimensional space can be viewed as creating new features from the
given, by combining them in some way. Often, however, the data samples lie
in a lower dimensional set of the feature space.

For example in an 8-bit gray scale image, each pixel has a value between 0
(black) and 255 (white). A standard sized image of 1280 by 720 pixels there-
fore is encoded in 921, 600 bytes or approaching one megabyte. The human
visual system is, however, not too fussed over exact details. Or in other words,
humans are quite well adapted to interpret missing information in an image.
The Joint Photographic Experts group (JPEG) used this fact in 1992 to create
a standard for lossy image compression.

The image is first divided into 8×8 blocks. For the example size above, this
results into 14, 400 blocks. Instead of storing 64 pixel values for each block,
each block is built by overlaying blocks from Figure 7.1 with appropriate
weights. The weights are only allowed to have integer values. Many weights
will be zero, because few blocks in the image will have high variations; most

189
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Figure 7.1: Discrete Cosine Transform basis of the JPEG standard.

will have a moderate variation between pixels, some will be mostly one smooth
shade of gray. By changing the focus away from the individual pixel to groups
of pixels, i.e. the blocks, fewer bytes are needed to encode the image.

In mathematical terms, this represents a change of basis. When storing
the values for each pixel in a block, this is equivalent to using a basis where
all values are zero but one, and the position of this non-zero pixel transverses
the block. The weights for this basis are the individual pixel values, and most
will be nonzero. The other basis is shown in Figure 7.1. When representing
the block in this basis, only a few non-zero weights are necessary.

In this chapter, we introduce techniques to find representations of the data
samples with different, but fewer features.

7.1 Principal Component Analysis
Principal Component Analysis seeks a subspace of a given dimension K of the
feature space such that projections of the data samples onto that subspace are
as spread out as possible. If there is space between groups of data samples,
this has advantages when clustering or classifying. This subspace is known as
the principal subspace.

Let D = {v1, . . . ,vN} be a set of data samples. We first consider the
projection onto a one-dimensional subspace defined by the vector w. Just as
in the case of linear classification, only the direction of the vector is important,
not its length. The length is chosen to be ‖w‖ = 1, so that the projection of
the sample vn is calculated as wTvn.

The sample mean is given by

µ =
1

N

N∑
n=1

vn,
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while the sample covariance matrix is

Σ =
1

N

N∑
n=1

(vn − µ)(vn − µ)T , (7.1)

which is symmetric.
The variance of the projected samples is

1

N

N∑
n=1

(wTvn −wTµ)2 =
1

N

N∑
n=1

wTvnvTnw − 2wTvnµ
Tw + wTµµTw

= wT

[
1

N

N∑
n=1

(vn − µ)(vn − µ)T

]
w = wTΣw.

The objective is to maximize this, subject to the constraint ‖w‖2 = wTw = 1.
The Lagrangian function is given by

L(w, λ) = wTΣw − λ(wTw − 1).

A stationary point of L(w, λ) is a maximum of the constraint optimization.
Using Appendices A.2.3 and A.2.2, the derivative of L(w, λ) with respect to
w is

d

dw
L(w, λ) = Σw − λw.

Setting this to zero, gives
Σw = λw,

and thus w is an eigenvector of Σ.
Using wTw = 1, the eigenvalue is

λ = λwTw = wTΣw,

which is the variance of the projected data. Thus, the projected data will be
as much spread out as possible, if w is chosen to be the eigenvector of Σ with
the largest eigenvalue.

Being a covariance matrix, Σ has non-negative eigenvalues. Since Σ is sym-
metric, its eigenvectors are orthogonal to each other. Therefore the principal
space of dimension K, where the projected data has the largest variance, is
the subspace spanned by the eigenvectors of the K largest eigenvalues. These
are known as principal components.

We illustrate this on the MNIST data set of handwritten digits [26]. This
data set contains 60, 000 images of handwritten digits of size 28 × 28 pixels.
We first concentrate on distinguishing between the digits zero and one. Figure
7.2a shows some examples of these digits from the data set, while Figures 7.2b
and 7.2c show the representations of the same images using only two or three
principal components. In 7.2b the original digits can be vaguely discerned in
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(a) Original. (b) Reconstruction with
two principal
components.

(c) Reconstruction with
three principal
components.

(d) Sample locations in subspace
spanned by two principal components.

(e) Sample locations in subspace
spanned by three principal

components.

Figure 7.2: PCA for two digits.

most cases, but in 7.2c there seems to be little resemblance to the original dig-
its. Figures 7.2d and 7.2e, however, display the location of samples in the space
spanned by two or three principal components respectively. Note that the sets
of zeros and ones are separated. The objective was not the reconstruction of
the images, but the separation of digits. To reconstruct the images perfectly
in all cases 28 ∗ 28 = 784 pixels or principal components would be necessary.
Even a reasonably good reconstruction would require many more principal
components than just two or three.

Figures 7.3 and 7.4 do the same for three or four digits respectively. Three
digits could possibly be separated using two principal components as Figure
7.3d shows, but there is some overlap of the data sets. The separation is
better with three principal components in Figure 7.3e. Separating four digits
is impossible with two principal components as Figure 7.4d illustrates. Going
to three dimensions with three principal components is an improvement in
Figure 7.4e, but using a further principal component is advisable. Note, that
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(a) Original. (b) Reconstruction with
two principal
components.

(c) Reconstruction with
three principal
components.

(d) Sample locations in subspace
spanned by two principal components.

(e) Sample locations in subspace
spanned by three principal

components.

Figure 7.3: PCA for three digits.

for each of the figures 7.2, 7.3 and 7.4 the principal components are different,
since including data samples of a further digit changes the covariance matrix
Σ and thus the eigenvectors are different for different data sets.

The original dimension of the feature space is D = 784, the number of pix-
els. Let w1, . . . ,wD be the complete set of orthonormal eigenvectors of Σ with
corresponding eigenvalues λ1, . . . , λD sorted by decreasing size of eigenvalue.
This is also a basis of the feature space. Each sample vn can be expressed in
this basis as

vn =
D∑
d=1

(vTnwd)wd,

while its projection on the principal subspace is given by

K∑
d=1

(vTnwd)wd.
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(a) Original. (b) Reconstruction with
two principal
components.

(c) Reconstruction with
three principal
components.

(d) Sample locations in subspace
spanned by two principal components.

(e) Sample locations in subspace
spanned by three principal

components.

Figure 7.4: PCA for four digits.

Thus, the squared distance between a sample and its projection is

‖
D∑

d=K+1

(vTnwd)wd‖2 =

(
D∑

d=K+1

(vTnwd)wd

)T ( D∑
d=K+1

(vTnwd)wd

)

=

D∑
d=K+1

(vTnwd)
2

due to w1, . . . ,wD being orthonormal.
Summing this over all samples and dividing by N gives the average squared

distance by which a sample is moved, when restricting the representation to
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the principal subspace,

1

N

N∑
n=1

D∑
d=K+1

(vTnwd)
2 =

D∑
d=K+1

wT
d

(
1

N

N∑
n=1

vnvTn

)
wd

=
D∑

d=K+1

wT
d

(
Σ + µµT

)
wd

=
D∑

d=K+1

λd + (µTwd)
2

where we used Equation (2.10) as an alternative calculation of the covariance
matrix. The first part is the sum over the D −K smallest eigenvalues of Σ,
while the second part is the squared distance between the mean and its projec-
tion. As a consequence as more eigenvectors are used as principal components,
the average squared distance between samples and their projection becomes
smaller. This means the reconstructions become more accurate. We will revisit
this when covering principal component regression in Section 8.8.

The eigenvalues and eigenvectors of Σ can be used to perform a technique
known as whitening or sphering the data. This transforms the data to a dif-
ferent feature space where the samples have zero mean and the covariance is
the identity matrix. If measurements of different features differ in magnitude
or the variability of different features is disparate, this may become necessary.

However, after such a transformation all eigenvalues of the covariance ma-
trix are one. Principal component analysis and any other technique which
relies on distinct eigenvalues of the sample covariance matrix are no longer
applicable. For vn the transformed value is

v̂n = Λ−1/2WT (vn − µ),

where W is the orthogonal matrix formed from the eigenvectors wd as columns

and Λ−1/2 is the diagonal matrix with λ
−1/2
d on the diagonal. This is well

defined, if Σ has no zero eigenvalues, which is the case, if the data samples are
distinct and N > D. Because of the subtraction of µ, the mean of v̂1, . . . , v̂N
is zero. On the other hand, the covariance matrix of the transformed data is

1

N

N∑
n=1

v̂nv̂Tn =
1

N

N∑
n=1

Λ−1/2WT (vn − µ)(vn − µ)TWΛ−1/2

= Λ−1/2WTΣWΛ−1/2 = Λ−1/2ΛΛ−1/2 = I.

All this relies on stable and efficient methods to find eigenvalues and eigen-
vectors. For some algorithms see for example [12]. It is important to keep the
dimensionality and size of the data set in mind. To illustrate this, let V be
the matrix where the nth row is vn − µ, i.e. the data sample shifted by the
sample mean. Then

Σ =
1

N
VTV,
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and the eigenvector equation is

1

N
VTVwd = λdwd.

Multiplying through with V it becomes

1

N
(VVT )Vwd = λdVwd.

So Vwd is an eigenvector of VVT /N . If D > N , instead of finding the K
largest eigenvalues and eigenvectors of Σ, it is easier to find the K largest
eigenvalues and eigenvectors of VVT /N and then transform these eigenvectors
back and normalize them. This makes sense, if the data lies in a subspace of
much lower dimension which needs to be found.

7.2 Probabilistic View
It is helpful to think about the process which generates the data. The assump-
tion is that v ∈ RD is related to u ∈ RK via a linear mapping. More formally
we are trying to find a D ×K matrix W, which has full rank, and m ∈ RD,
such that

v = Wu + m + ε. (7.2)

We can assume that the columns of W are orthogonal to each other. If not,
orthogonal columns can be achieved by using for example the Gram–Schmidt
algorithm in [12] and a suitable basis transformation in RK . ε is normally
distributed noise with zero mean and covariance matrix σ2I. This is known as
an isotropic or spherical covariance matrix . The noise explains why the data
samples do not exactly lie in a lower dimensional subspace. Further, we assume
that u follows a normal distribution with mean m̂ and covariance matrix S.

If a more general distribution for u is assumed, then the technique arising
from this is known as Independent Component Analysis (ICA). Such a more
general distribution could be one which factorizes as

p(u) =
K∏
k=1

p(uk),

where each uk follows the distribution given by

p(uk) =
2

π(exp(uk) + exp(−uk))
.

This distribution has a larger kurtosis than the normal distribution, often
displayed in real world applications. A thorough treatment of Independent
Component Analysis is given in [23]. In this text, however, we continue to
assume that u has a normal distribution.

The linear transformation of a normally distributed variable is also nor-
mally distributed with mean m + Wm̂ and covariance matrix WSWT . Since
S is symmetric, it can be diagonalized by an orthogonal matrix Q such that
S = QDQT , where D is a diagonal matrix with positive entries, since S
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as covariance matrix is positive definite. The covariance matrix can then be
written as (WQD1/2)(WQD1/2)T . Thus we can assume without loss of gen-
erality that S = I, since this assumption only results in a different W to be
found. Since Q is an orthogonal matrix, we can continue to assume that the
columns of W are orthogonal. Equally, we can assume zero mean for u, since
any non-zero mean can be absorbed in m. With this in mind, we have

v ∼ N (m,WWT + σ2I).

Let C = WWT + σ2I. The likelihood of the data set D = {v1, . . . ,vN} is
given by

N∏
n=1

1√
|2πC|

exp

(
−1

2
(vn −m)TC−1(vn −m)

)
.

Instead of maximizing the likelihood, it is more convenient to maximize its
logarithm, known as the log likelihood ,

L = −ND
2

log(2π)− N

2
log |C| − 1

2

N∑
n=1

(vn −m)TC−1(vn −m).

Using Appendix A.2.3, the derivative with respect to m is

∂

∂m
L =

N∑
n=1

C−1(vn −m) = C−1

[
N∑
n=1

(vn −m)

]
.

This can only be zero, if

m =
1

N

N∑
n=1

vn = µ.

Hence, µ is the maximum likelihood estimate for m and we insert this back
into the expression for L.

Now (vn − µ)TC−1(vn − µ) is scalar and therefore equal to its trace. A
trace of a three term product is invariant to cyclic permutations. Therefore,

L = −ND
2

log(2π)− N

2
log |C| − 1

2

N∑
n=1

tr(C−1(vn − µ)(vn − µ)T )

= −ND
2

log(2π)− N

2
log |C| − 1

2
tr

(
C−1

N∑
n=1

(vn − µ)(vn − µ)T

)
,

since the sum of traces is the trace of the sum of matrices. Using the definition
(7.1) for the sample covariance matrix, this becomes

L = −N
2

[
D log(2π) + log |C|+ tr

(
C−1Σ

)]
.

This needs to be maximized with respect to W.
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Let w1, . . . ,w
K be the columns of W, then

C = σ2I +
K∑
k=1

wkw
T
k .

The inverse of C is

C−1 = σ−2

(
I −

K∑
k=1

wkw
T
k

σ2 + wT
k wk

)
. (7.3)

This can easily be checked by multiplying the two expressions and using the
fact that the columns of W are mutually orthogonal.

We consider the derivative with respect to the jth column wj . To this end
let

C−j = σ2I +
K∑

k=1
k 6=j

wkw
T
k .

Then C = C−j + wjw
T
j . Using both the Sherman–Morrison formula in

Appendix A.1.4 and the matrix determinant lemma in Appendix A.1.5, the
inverse and the determinant of C are

C−1 = C−1
−j −

1

1 + wT
j C−1
−jwj

C−1
−jwjw

T
j C−1
−j ,

|C| = |C−j |(1 + wT
j C−1
−jwj).

The inverse of C−j is of the same form as the inverse of C in (7.3) with
the jth term missing in the sum. Therefore, C−1

−jwj = σ−2wj , because wj is
orthogonal to the other column vectors. The above expressions become

C−1 = C−1
−j −

1

1 + σ−2wT
j wj

σ−4wjw
T
j = C−1

−j −
σ−2

σ2 + wT
j wj

wjw
T
j ,

|C| = |C−j |(1 + σ−2wT
j wj).

With this we can simplify the terms in L. First,

log |C| = log |C−j |+ log(1 + σ−2wT
j wj). (7.4)

Differentiating this with respect to wj using Appendix A.2.1 gives

∂

∂wj
log |C| = 1

1 + σ−2wT
j wj

2σ−2wj =
2

σ2 + wT
j wj

wj .

On the other hand,

tr
(
C−1Σ

)
= tr(C−1

−jΣ)− σ−2

σ2 + wT
j wj

tr
(
wjw

T
j Σ
)

= tr(C−1
−jΣ)−

σ−2wT
j Σwj

σ2 + wT
j wj

,



Dimensionality Reduction � 199

Figure 7.5: Probabilistic Principal Component Analysis for
two-dimensional data.

where we again used the cyclic permutation property of the trace. Using the
product rule, Appendices A.2.1 and A.2.3, the derivative with respect to wj

is

∂

∂wj
tr
(
C−1Σ

)
= − σ−2

(σ2 + wT
j wj)2

[
(σ2 + wT

j wj)2Σwj − (wT
j Σwj)2wj

]
.

Therefore, the derivative of the log likelihood with respect to wj is

∂

∂wj
L = − σ−2N

σ2 + wT
j wj

[(
σ2 +

wT
j Σwj

σ2 + wT
j wj

)
wj −Σwj

]
.

This vanishes, if wj is an eigenvector of Σ with eigenvalue λj and the length
of wj is such that

σ2 +
wT
j Σwj

σ2 + wT
j wj

= λj .

Using Σwj = λjwj , we arrive at wT
j wj = λj−σ2, or equivalently σ2+wT

j wj =
λj . Since Σ is symmetric, it has a set of mutually orthogonal eigenvectors and
hence this agrees with our assumption.

Figure 7.5 shows two dimensional data and the principal component w1

is drawn as the red arrow with length
√
λ1 − σ2 starting at the sample mean,

where λ1 is the larger eigenvalue of the sample covariance matrix. In the
following we will see that choosing the largest eigenvalues is the right choice
to maximize the log likelihood.

Letting all wk, k = 1, . . . ,K, be some eigenvectors of Σ with squared
length wT

k wk = λk − σ2 and inserting this into (7.4), we get
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|C| = |C−j |(1 + σ−2(λj − σ2)) = σ−2λj |C−j | = . . .

= (σ−2)K
K∏
k=1

λk|σ2I| = (σ2)D−K
K∏
k=1

λk.

Equally using this in (7.3), we arrive at

C−1 = σ2

(
I−

K∑
k=1

wkw
T
k

λk

)
,

and

tr(C−1Σ) = σ−2

(
tr(Σ)−

K∑
k=1

tr(wkw
T
k Σ)

λk

)

= σ−2

(
tr(Σ)−

K∑
k=1

wT
k wk

)
= σ−2

(
tr(Σ)−

K∑
k=1

λk

)
+K,

where we used the cyclic permutation property of the trace and the fact that
wk is an eigenvector of Σ.

With these two results, the expression for the log likelihood is

L = −N
2

[
D log(2π) + (D −K) log σ2 +

K∑
k=1

log λk + σ−2

(
D∑

k=K+1

λk

)
+K

]
,

since the trace of a matrix is the sum of its eigenvalues. We differentiate this
with respect to σ2 in order to optimize with respect to the noise variance.

∂

∂σ2
L = −N

2

(
(D −K)(σ2)−1 − (σ2)−2

D∑
k=K+1

λk

)
.

This will be zero for

σ2 =
1

D −K

D∑
k=K+1

λk.

In other words, σ2 is the average of all the other eigenvalues apart from
λ1, . . . , λK . As mentioned before, σ2 explains the data protruding beyond
the K-dimensional subspace of the feature space. This needs to be as small as
possible. Therefore λ1, . . . , λK are chosen to be the K largest eigenvalues of
Σ. The value of K itself is chosen such that σ2 is acceptably small. The log
likelihood takes the value

L = −N
2

[
D log(2π) + (D −K) log

(
1

D −K

D∑
k=K+1

λk

)
+

K∑
k=1

log λk +D

]
.
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(a) Viewing the plane spanned by two
principal components .

(b) Viewing the data along one of the
principal components.

Figure 7.6: Probabilistic Principal Component Analysis for
three-dimensional data.

Figure 7.6 illustrates the concepts. The data is viewed from two angles,
firstly looking onto the plane spanned by the two principal components and
secondly looking along one of the principal components. The latter angle shows
that not all data points lie in the plane of the two principal components. The
noise variance σ2 explains this deviation and is equal to the smallest eigenvalue
of the sample covariance matrix of this data.

7.3 Expectation-Maximization
The previous section was based on the assumption that the data samples
v1, . . . ,vN are related to vectors in a lower dimensional space via a linear
mapping given by (7.2) with additive Gaussian noise with zero mean and co-
variance matrix σ2I. Therefore, each vn follows a conditional normal distribu-
tion with mean Wun+m and covariance matrix σ2I, where un, n = 1, . . . , N ,
are hidden latent variables following the standard multivariate distribution.
The solution in the previous section effectively calculated the marginal dis-
tribution from which the vn are drawn by marginalizing the latent variables.
The likelihood of the data set was then maximized to find m, W and σ2.
The likelihood takes a maximum with respect to m, when m = µ, the sam-
ple mean which is easily obtained. The maximization with respect to W and
σ2, however, involves finding the K largest eigenvalues and eigenvectors of
the sample covariance matrix which is in itself a computationally expensive
problem. Firstly, calculating the covariance matrix is of complexity O(ND2).
The computational complexity of then finding the K largest eigenvalues is
O(KD2) (see for example [12]).

In the following, we will use the result m = µ and we employ the
Expectation-Maximization technique introduced in Section 6.4 to find W and
σ2, making use of the joint distribution of v and u and the distribution of u
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conditioned on v. Note that while in Section 6.4 the latent variables are dis-
crete, here they are continuous. The principles remain the same though.

By the product rule, the joint probability is given by

p(v,u) = p(u)p(v|u)

= (2π)−K/2 exp

(
−1

2
uTu

)
×

(2πσ2)−D/2 exp

(
−1

2
σ−2(v −Wu− µ)T (v −Wu− µ)

)
.

Gathering the terms in the exponential gives

− 1
2σ
−2
[
(v − µ)T (v − µ)− (v − µ)TWu−

uTWT (v − µ) + uT (WTW + σ2I)u
]
.

(7.5)

This can be written as

−1

2

(
v − µ

u

)T
σ−2

(
I −W

−WT WTW + σ2I

)(
v − µ

u

)
.

Hence the mean of the joint normal distribution is ( µ 0 )T , while the ma-
trix with the scalar factor σ−2 is the precision matrix , i.e. the inverse of the
covariance matrix. Therefore, using the inversion formula for a block matrix
in Appendix A.1.1, the covariance matrix of the joint distribution is(

σ2I + WWT W
WT I

)
.

Using the formula for the calculation of the determinant of a block matrix
in Appendix A.1.2, the determinant of the joint covariance matrix is (σ2)D

which agrees with the factor of the joint probability distribution.
Also the conditional distribution p(u|v) can be deduced from (7.5) by

treating v as a constant. The quadratic term in u is

−1

2
σ−2uT (WTW + σ2I)u,

and thus the covariance matrix of p(u|v) is

Σu|v = σ2(WTW + σ2I)−1, (7.6)

which is independent of v.
The linear term in u is

−1

2
σ−2

(
−2uTWT (v − µ)

)
= uTσ−2WT (v − µ).

This needs to equal uTΣ−1
u|vµu|v. Therefore, the mean of the conditional dis-

tribution is

µu|v = Σu|vσ
−2WT (v − µ) = (WTW + σ2I)−1WT (v − µ), (7.7)
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which depends on v.
The Expectation-Maximization algorithm calculates the expectation of the

logarithm of the joint data likelihood with respect to the conditional prob-
ability distribution of the latent variables u1, . . . ,uN . The logarithm of the
joint data likelihood is

L = log
N∏
n=1

p(vn,un) = −1

2

N∑
n=1

[
(K +D) log(2π) +D log(σ2) + uTnun+

σ−2(vn − µ)T (vn − µ)− 2σ−2uTnWT (vn − µ)+

σ−2uTnWTWun

]
.

When taking the expectation with respect to the latent variables, we have

E[un] = µu|vn
. (7.8)

To find the expectation of the inner product of un with itself, we use the
cyclic permutation property of the trace and the fact that the operations of
calculating the trace and expectation commute,

E[uTnun] = E[tr(uTnun)] = E[tr(unuTn )] = tr(E[unuTn ]).

Similarly,

E[uTnWTWun] = E[tr(uTnWTWun)] = E[tr(WTWunuTn )]

= tr(WTWE[unuTn ]).

We can then use (2.10) to calculate

E[unuTn ] = Σu|v + E[un]E[un]T = Σu|v + µu|vn
µTu|vn

. (7.9)

The expectation of the logarithm of the joint data likelihood is therefore

E[L] = −1

2

N∑
n=1

[
(K +D) log(2π) +D log(σ2) + tr(E[unuTn ]) +

σ−2‖vn − µ‖2 − 2σ−2E[un]TWT (vn − µ) +

σ−2tr(WTWE[unuTn ])
]
.

Now, employing the cyclic permutation property of the trace, the formu-
lae given in Appendices A.2.6 and A.2.9 and the symmetry of E[unuTn ], the
derivative with respect to W is

∂

∂W
E[L] = −1

2

N∑
n=1

[
− 2σ−2(vn − µ)E[un]T + 2σ−2WE[unuTn ]

]
.
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Setting this to zero and solving for W results in an update formula for it,

Wnew =

[
N∑
n=1

(vn − µ)E[un]T

][
N∑
n=1

E[unuTn ]

]−1

. (7.10)

Note that this is truly an update formula, since it indirectly depends on W in
the conditional mean and covariance matrix given in (7.6) and (7.7) via the
formulae given in (7.9) and (7.8).

On the other hand, differentiating with respect to σ2 results in

∂

∂σ2
E[L] = −1

2

N∑
n=1

[D
σ2
− 1

(σ2)2

(
‖vn − µ‖2

−2E[un]TWT (vn − µ) + tr(WTWE[unuTn ])
)]
.

The update formula for σ2 follows as

σ2
new =

1

ND

N∑
n=1

[
‖vn − µ‖2 − 2E[un]TWT (vn − µ) + tr(WTWE[unuTn ])

]
.

(7.11)
It is common to use the already updated value Wnew, when updating σ2.
Using (7.9), the update can be written as

σ2
new =

1

ND

N∑
n=1

‖vn − µ−WnewE[un])‖2 +
1

D
tr(WT

newWnewΣu|v).

This can be interpreted as measuring how close on average E[un] is to the
sample vn−µ under the mapping given by Wnew and how close WT

newWnew

is to the inverse of the conditional covariance matrix; that is how close it is
to the precision matrix.

Another interpretation of Equation (7.11) is as follows. Since the sum of
traces is the trace of the sum, we can sum inside the trace. Using (7.10) for
WT

new, the sum cancels with its inverse. Further, using the cyclic permutation
property of the trace and that the trace of a scalar is a scalar, the update
formula simplifies to

σ2
new =

1

ND

N∑
n=1

[
‖vn − µ‖2 − E[un]TWT

new(vn − µ)
]

=
1

ND

N∑
n=1

(vn − µ−WnewE[un])T (vn − µ). (7.12)

Thus the noise variance is the average inner product of vn − µ with the
difference of vn−µ and the image of E[un] under Wnew scaled by the number
of dimensions D. Each term in the sum is small if either WnewE[un] is close
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to vn − µ or the difference is nearly orthogonal to vn − µ. It measures, how
close on average WnewE[un] is to the orthogonal projection of vn − µ onto
the subspace spanned by the columns of Wnew.

These update formulae for Wnew and σ2
new form the M-step of the

Expectation-Maximization algorithm. They are sums of length N , where each
element in the sum can be calculated in O(KD) operations. So the overall
complexity of the M-step is O(KDN).

The E-step calculates E[un] via (7.7) and (7.8) and E[unuTn ] using (7.6)
and (7.9). The E-step needs to calculate the inverse of a matrix, but this
matrix is of size K ×K so this is O(K3). Calculating this matrix itself is of
order O(K2D). Once the inverse is found, calculating E[un] is O(KD) and
E[unuTn ] is O(K2) = O(KD), since K ≤ D. These need to be calculated
for n = 1, . . . , N and the complexity for the E-step is O(KDN). However, it
can be done in parallel for each data point, since E[un] and E[unuTn ] can be
calculated independently of each other.

While the Expectation-Maximization algorithm is an iterative procedure,
the number of operations per iteration is significantly less if K � D. This can
offset the extra time due to the iterations against the direct maximization of
the log likelihood which has complexity O(ND2).

So far in this section, K was chosen and not determined by the data. For
a Bayesian treatment of Principal Component Analysis which determines K
see [30].

7.4 Factor Analysis
So far the noise was modeled by σ2I implying that all directions are treated
equally. A more suitable model would be to let the noise variance be a diagonal
matrix D such that each direction can be treated separately. The diagonal
elements of D are known as uniquenesses, while the columns of W are known
as factor loadings.

Following a similar calculation as in the previous section, the joint distri-
bution p(v,u) is given by

(2π)−(K+D)/2|D|−1/2

exp

(
−1

2

(
v − µ

u

)T (
D−1 −D−1W

−WTD−1 WTD−1W + I

)(
v − µ

u

))
.

As before, the mean of the joint normal distribution is ( µ 0 )T , where µ
is the sample mean. The inversion formula for block matrices gives the joint
covariance matrix as (

D + WTW W
WT I

)
.

The formula in Appendix A.1.2 for calculating the determinant of block ma-
trices shows that the determinant of the joint covariance matrix is |D|.



206 � A Concise Introduction to Machine Learning

The logarithm of the joint data likelihood is

L = log
N∏
n=1

p(vn,un) = −1

2

N∑
n=1

[
(K +D) log(2π) + log(|D|) + uTnun+

(vn − µ)TD−1(vn − µ)− 2uTnWTD−1(vn − µ)+

uTnWTD−1Wun

]
.

As before, we take the expectation with respect to the latent variables un
which results in

E[L] = −1

2

N∑
n=1

[
(K +D) log(2π) + log(|D|) + tr(E[unuTn ])+

(vn − µ)TD−1(vn − µ)− 2E[un]TWTD−1(vn − µ)+

tr(WE[unuTn ]WTD−1)
]
,

where the cyclic permutation property of the trace was used.
Differentiating this with respect to W using Appendices A.2.6 and A.2.9,

gives

∂

∂W
E[L] = −1

2

N∑
n=1

[
− 2D−1(vn − µ)E[un]T + 2D−1WE[unuTn ]

]
.

Setting this to zero, multiplying through with D from the left and solving for
W results in the update formula

Wnew =

[
N∑
n=1

(vn − µ)E[un]T

][
N∑
n=1

E[unuTn ]

]−1

, (7.13)

which is exactly the same as before.
To differentiate with respect to D, we first rewrite the expression for the

expectation of the joint log likelihood using the cyclic permutation property
of the trace,

E[L] = −1

2

N∑
n=1

[
(K +D) log(2π) + log(|D|) + tr(E[unuTn ]) +

tr
([

(vn − µ)(vn − µ)T − 2(vn − µ)E[un]TWT + WE[unuTn ]WT
]
D−1

)]
.
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This way we can use the derivative formulae in Appendices A.2.4, A.2.7 and
A.2.10. The derivative with respect to D is therefore

∂

∂D
E[L] = −1

2

N∑
n=1

[ 1

|D|
|D|D−1 −D−1diag

(
(vn − µ)(vn − µ)T

−2(vn − µ)E[un]TWT + WE[unuTn ]WT
)
D−1

]
.

Setting this to zero, multiplying through by D from both left and right and
solving for D, gives the following update formula

Dnew = diag

(
1

N

N∑
n=1

(vn − µ)(vn − µ)T

−2
1

N

N∑
n=1

(vn − µ)E[un]TWT

+
1

N
W

N∑
n=1

E[unuTn ]WT

)
.

It is common to use the already updated Wnew, when updating Dnew. When
inserting formula (7.13) into the left of the last line, the sum over E[unuTn ],
n = 1, . . . , N , cancels with its inverse and the last line combines with the one
above. Hence, the update formula is

Dnew =
1

N

N∑
n=1

diag
(
(vn − µ)(vn − µ−WnewE[un])T

)
.

This can be viewed as the D-dimensional version of (7.12).
These updates depend on D and the previous W via the expectations,

which are calculated in the E-step. To this end, the conditional probability
distribution p(u|v) of the latent variable u given v has variance

Σu|v = (WTD−1W + I)−1,

which is independent of v, and mean

µu|v = Σu|vWTD−1(v − µ),

which depends on v. Therefore, the two calculations forming the E-step are

E[un] = Σu|vWTD−1(vn − µ)

and using (2.10)
E[unuTn ] = Σu|v + E[un]E[un]T .
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7.5 Kernel Principal Component Analysis
The previous three sections relied on the assumption that the data samples are
related to latent variables in a lower dimensional space via a linear mapping
as defined in (7.2). Geometrically, this means that the data lies close to a line,
plane or hyperplane as illustrated in Figures 7.5 and 7.6. This assumption is,
however, unrealistic in many practical applications.

The data samples may lie close to a K-dimensional manifold . A manifold is
a set of points which locally resembles Euclidean space. An example for a two-
dimensional manifold is the sphere. Flat-earthers succumb to the impression
that locally the Earth does look flat. The sphere resembles a plane locally.
Globally, however, it does not, because traveling continuously in one direction
will return to the starting point. This is not possible on a plane. Figure 7.7a
gives an example of data being close to the unit sphere. Lighter shaded data
points lie behind the surface of the sphere.

It is possible to choose a mapping φ : RD → RD̂ into a higher dimensional
space such that the data then is linearly related to latent variables in a K-
dimensional subspace. In Figure 7.7b, the data was first mapped to a four-
dimensional space, by letting the fourth component be the sum of squares
of the other three. Since the data lies approximately on the unit sphere, the
fourth component will be close to one for all data samples. Thus the data lies
on a hyperplane. After finding the first two principal components, the data
is projected onto the plane given by these two principal components. This is
shown in Figure 7.7b. That the two data sets are grouped towards the top or
bottom, means that they can be separated along one principal component.

However, like in the kernel trick in Section 5.2, performing the mapping
explicitly is avoided. Instead, all steps in the calculation use the kernel function
or kernel for short k : RD × RD → R defined as

k(x,y) = φ(x)Tφ(y).

Let E be the N×N matrix with each entry being equal to one. This matrix
can be used to mean centre a vector aT = (a1, . . . , aN ) by

aT (I− 1

N
E) =

(
a1 − 1

N

∑N
n=1 an, · · · , aN − 1

N

∑N
n=1 an

)
.

It can also be used to shift data samples so that their mean is zero. Let

φ(v1), . . . , φ(vN ) ∈ RD̂ be the images under the mapping φ of the data sam-
ples v1, . . . ,vN ∈ RD, which are known as the pre-images. Further let, Φ be
the D̂ ×N matrix whose columns are the vectors φ(v1), . . . , φ(vN ), then

Φ(I− 1

N
E) =

(
φ(v1)− 1

N

∑N
n=1 φ(vn), · · · , φ(vN )− 1

N

∑N
n=1 φ(vn)

)
,

since, for every element in each row of Φ, we subtract the mean of that row
of Φ.

Recall that Principal Component Analysis calculates the covariance matrix
Σ of the data samples. In this context, it means the covariance matrix of the
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(a) Data samples lying approximately
on the unit sphere in two groups.

(b) Projection onto two principal
components after a transformation to a

four-dimensional space.

Figure 7.7: Principal Component Analysis on a manifold.

shifted images, which is the average of the outer products of the nth column
of Φ(I− 1

NE) with its transpose. This can be written as

Σ =
1

N

N∑
n=1

Φ(I− 1

N
E)eneTn (I− 1

N
E)ΦT ,

where en is the nth standard unit basis vector, with all elements being equal
to zero, apart from the nth being one.

Now, Φ(I− 1
NE) and its transpose are independent of n in the summation

and can be taken outside the sum. Summing eneTn over all n = 1, . . . , N results
in the identity matrix. Further, the matrix I− 1

NE is idempotent , which means
any power of it is the matrix itself, since E2 = NE and

(I− 1

N
E)(I− 1

N
E) = I − 2

N
E +

1

N2
E2 = I− 1

N
E.

Therefore, the covariance matrix can be expressed as

Σ =
1

N
Φ(I− 1

N
E)ΦT .

We seek the largest eigenvalues λk of Σ with corresponding eigenvectors
wk, k = 1, . . . ,K. Using the above expression for Σ, these vectors satisfy

Φ(I− 1

N
E)ΦTwk = Nλkwk.

Multiplying through with (I− 1
NE)ΦT from the left and using the idempotence

of I− 1
NE, this becomes

(I− 1

N
E)ΦTΦ(I− 1

N
E)(I− 1

N
E)ΦTwk = Nλk(I− 1

N
E)ΦTwk.
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(a) Quadratic kernel,
a = 1, c = 0.1.

(b) Hyperbolic tangent
(Sigmoid) kernel, a = 5, c = 0.5.

(c) Gaussian kernel, σ = 0.3. (d) Thin plate spline kernel,
c = 1.

Figure 7.8: Kernel Principal Component Analysis.

Hence the vector

ŵk = (I− 1

N
E)ΦTwk (7.14)

is an eigenvector of the N × N , symmetric matrix (I − 1
NE)ΦTΦ(I − 1

NE)

with eigenvalue λ̂k = Nλk. Note that due to I − 1
NE being idempotent, we

have (I− 1
NE)ŵk = ŵk. Thus, the components of ŵk sum to zero.

The (i, j) entry of ΦTΦ is the inner product

φ(vi)
Tφ(vj) = k(vi,vj).

K = ΦTΦ is known as the kernel matrix . Kernel Principal Component Analy-
sis calculates the eigenvalues Nλk and eigenvectors ŵk of (I− 1

NE)K(I− 1
NE).

Multiplying Equation (7.14) from the left with Φ/N , gives

1

N
Φŵk =

1

N
Φ(I− 1

N
E)ΦTwk = Σwk = λkwk.

Hence, wk is a linear combination of the images φ(v1), . . . , φ(vN ), since

wk =
1

Nλk

N∑
n=1

ŵknφ(vn),
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where ŵkn, n = 1, . . . , N , are the components of ŵk. In practice, however,
this calculation is never done, since we are only interested in expressing any
data point v in the basis formed by the principal components, i.e. the value
of the projections

wT
k φ(v)T =

1

Nλk
ŵT
k ΦTφ(v) =

1

Nλk
ŵT
k

 φ(v)Tφ(v1)
...

φ(v)Tφ(vN )


=

1

Nλk
ŵT
k

 k(v,v1)
...

k(v,vN )

 .

It remains to specify the length of ŵk. The principal components have
length one. This translates into a condition on the length of ŵk,

1 = wT
k wk =

1

(Nλk)2
ŵT
k ΦTΦŵk

=
1

(Nλk)2
ŵT
k (I− 1

N
E)K(I− 1

N
E)ŵk =

1

Nλk
ŵT
k ŵk,

since ŵk = (I− 1
NE)ŵk is an eigenvector with eigenvalue Nλk. Thus, ŵk has

to have length
√
Nλk.

The kernel function does not need to be defined via a mapping φ and an
inner product in a higher dimensional space. Section 5.2 gives several examples
of kernel functions. Figure 7.8 shows the results of kernel Principal Component
Analysis applied to the data in Figure 7.7a for various choices of kernels.
Visually the results are quite different, but what they have in common is that
the two data sets are grouped towards the left or right. This means that they
can be separated along one principal component.
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Regression

Regression developed from interpolation and is introduced as building a model
of the process generating the data where the building blocks are chosen. The
first choice of building blocks are polynomials. Ordinary Least Squares are
introduced as the simplest method arising from assumed normally distributed
noise. The concepts of over- and under-fitting are explained using the degree
of polynomials as a descriptor for the complexity of the model space. Bias
and variance are two contributors to the expected error of the model. Cross-
validation is a method to decide the goodness of the model. If the building
blocks are too similar to each other, multicollinearity becomes a problem.
Principal component regression ensures small correlation between building
blocks, while Partial Least Squares emphasizes strong correlation with the
data at the same time. Regularization controls model complexity. The chapter
concludes with taking a probabilistic viewpoint in form of Bayesian regression
leading to Gaussian processes.

In regression, we try find the relationship between variables. Regression is
related to curve fitting, interpolation, and data prediction. As an example, we
consider colour vision. Spectral colours, as seen in Figure 8.1, are evoked by
a single wavelength. Colours change continuously as the wavelength changes.
A physical colour is a combination of pure spectral colours. Hence there are
infinitely many possibilities.

Figure 8.1: Spectral colours.

Around 1854, James Clerk Maxwell [8] showed that all colours can be
mixed by different combinations of the three primary colours, red, green and
blue. He did so by using a colour-mixing top which can be seen in Figure 8.2

213
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consisting of three coloured paper discs overlapping by different amounts. A
smaller central disc contained a wedge of a colour sample. The brightness
could be adjusted by the width of the wedge. When the top spun, the outer
colours would mix and one could adjust how much each colour contributed
until it matched the colour in the centre.

Figure 8.2: Maxwell’s colour-mixing top.
Photo courtesy of Professor John Mollon, Cambridge University.

There is a biological explanation for this. The human eye has only three
types of measuring devices to perceive colours – the cones. Figure 8.3 shows
to which wavelengths different type of cones are sensitive. The blue peak is
well separated from the red and green peaks. It is believed that the separation
between red and green is evolutionarily fairly new and that the curves will
move further apart with time. Colour blindness is in most cases due to one
type of cone missing or malfunctioning. With three measurements, the human
eye can distinguish ten million colours. This is an example of regression, and
shows how powerful our brain is. From only three measurements our brain is
able to infer millions of colours.

These are not just spectral colours, but also non-spectral ones. Magenta
is an extraordinary colour. It is a mixture of the primary colours red and
blue which lie far apart in the colour spectrum. It occurs in nature when the
green component of white light is absorbed, since it is the complementary
colour to green. In fact, magenta did not exist as a dye until 1859/60, when it
was invented by François-Emmanuel Verguin (Lyon), Chambers Nicolson and
George Maule (London). It is an anilin dye, and was named after the battle
of Magenta. It caused a fashion craze with those who could afford it, showing
off in magenta clothes some of which can be seen in the Victoria and Albert
Museum in London, England.

Different animals and insects have different numbers of cone types. Refer
to Table 8.1 gives an overview.
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Figure 8.3: Cone sensitivity.

Table 8.1: Chromacy

Chromacy Types of
cone cells

Rough number of
colours perceived

Examples

Monochromacy 1 100 Marine mammals
Dichromacy 2 10,000 Most terrestrial mammals
Trichromacy 3 10 million Humans, great apes, some

insects
Tetrachromacy 4 100 million Most reptiles, amphibians,

birds and insects, rarely
humans

Pentachromacy 5 10 billion Some insects (butterflies),
some birds (pigeons).

We cannot imagine how a butterfly sees the world. Our brain has never expe-
rienced the extra information and thus has not learned how to interpret it.

There are three primary colours: red, green, and blue. All other colours are
mixed from these. In computer imaging, they are represented in an array of
bytes taking values between 0 and 255: [r, g, b], where red = (255, 0, 0), green
= (0, 255, 0), and blue = (0, 0, 255). Linearisation means multiplications by a
number and additions are allowed. For example

• red + green = (255, 255, 0) = yellow,

• red + 0.5∗ green = (255, 128, 0) = orange,

• red + 0.5∗ blue = (255, 0, 128) = pink,

• 0.6∗ red + 0.8∗ blue = (153, 0, 204) = purple.

In regression we estimate the relationship between variables. Or in other
words, given the intensity of red, green, and blue for some samples, what
is the relationship between intensity values and the colour? Can we predict
the colour given the intensity values, as our eyes and brain do?

Regression has its applications in

• Computer Vision: e.g. image compression and restoration,
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• Engineering: e.g. machine degradation,

• Medicine: e.g. epidemiology, mammography,

• Finance: e.g. volatility prediction, pricing models,

• Econometrics: e.g. cost and benefit optimization,

• Hydrology: e.g. flow prediction, ground water level forecasting,

• Seismology: e.g. soil liquefaction, seismic surveys.

8.1 Problem Description
Given scalar measurements t1, . . . , tN , each measurement depends on param-
eters we know, x1, . . . ,xN , the intensities of red, green, blue in the previous
example. These are quantities which can be measured with more or less effort,
for example by photocells, geophones, hydrophones, PET and MRI neuro-
imaging, EEG technology, etc. They are also known as targets the machine
learning technique has to achieve in its task to create a model. In the following
it is assumed that the measurements are mean centred , i.e. 1/N(t1+· · ·+tN ) =
0. This eliminates the need for a bias in the model. The bias is a constant
which when added to all measurements makes them mean centred.

The measurements also depend on parameters we do not know. Any real
world application depends on factors which cannot be measured. Or these
measurements would be disproportionally difficult, costly or invasive.

We assume that the measurements are the result of underlying processes
following some laws. In some applications, especially physical ones, these laws
are known, and for example described by partial differential equations, but the
specific parameters are not known. Sometimes nothing is known and we have
to try to find this out. For applications which incorporate human interactions
such as the financial markets, it is inherently difficult to infer underlying
processes.

For example, the physics of waves are well understood. However, they
depend on the mixture of media the wave travels in, the materials and their
properties, as well as their interfaces. These are the unknown parameters of
the process.

If we had a solution to the underlying process, we could predict the mea-
surement from a function t(x) as

tn = t(xn),

where parameters of the function depend on the process. On the other hand, if
we had a set of candidate functions d1(x), . . . , dM (x), we could try which fits
the measurements, and thus infer the underlying process. We say the functions
d1(x), . . . , dM (x) form a dictionary and let

f(x) =
M∑
m=1

cmdm(x),
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be an approximation to t(x), where c1, . . . , cM are coefficients, which need to
be determined. The dictionary defines a model space in which ideally the true
solution t(x) lies. That is the underlying process can be described entirely by
the dictionary. In a less ideal world, the approximation f(x) obtained in the
model space shall be close enough to the true solution. We will refer to f(x)
as our model describing the data.

8.2 Linear Regression
Often the term linear regression refers to fitting a straight line to the data.
More generally, however, the term linear means that the model is a sum of
building blocks with suitable coefficients, a linear combination. This gives us
flexibility in the choice of building blocks. They can be non-linear functions.
It also gives us flexibility in the choice of noise model and in the method to
determine the coefficients.

Linear regression developed in several fields. Therefore the terminology is
varied. First there is the scalar function value t, also known as dependent ,
endogenous, response, measured , criterion variable, or regressand or target .
In the previous example this is the colour.

The d1(x), . . . , dM (x) are known as independent, exogenous, input, ex-
planatory, predictor variables or regressors. Remember dm is not a coordinate
of a vector. It is a basis function.

The coefficients c1, . . . , cM are also referred to as parameter vector or vector
of weights, also known as effects, regression coefficients. They can also be
viewed as latent variables. Regression determines these by various techniques.

The relationship to the measurements is

tn = f(xn) + εn,

where εn is noise intrinsic to the measurement process and assumed to be in-
dependent and identically distributed (i.i.d.) following the normal distribution
N (0, σ2).This is known as homoscedasticity . Note that the assumption of the
same constant noise variance for each measurement might be wrong for two
reasons. Firstly, there might be different sources of the noise with different
effects. In this case the noise should be modeled by a mixture of probabil-
ity distributions. Secondly, restrictions on the data might make different noise
distributions necessary. For example if it is known that the data is always pos-
itive, the noise variance for smaller values has to be smaller to ensure positive
predicted values.

Now

tn = f(xn) + εn =
M∑
m=1

cmdm(xn) + εn,

Let D be the matrix with entries

Dn,m = dm(xn)
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and let tT = (t1, . . . , tN ), cT = (c1, . . . , cM ) and εT = (ε1, . . . , εN ), then

t = Dc + ε.

The regression problem has become a system of linear equations. Solutions of
these have been studied extensively; see for example [12]. However, it differs
from a standard system of linear equations in that it incorporates a noise
model.

The N ×M matrix D is called the design matrix . The challenge is to find
the dictionary of basis functions and the coefficients. Once these are found,
predictions for new unseen data x can be made by

t =

M∑
m=1

cmdm(x).

Or, by defining d(x)T = (d1(x), . . . , dM (x)),

t = d(x)T c.

In the following we assume that the dictionary of basis functions and thus the
design matrix are fixed.

8.3 Polynomial Regression
Polynomial regression dates back to Lagrange (1805) and Gauss (1809). Fit-
ting a line to the data is a special case of polynomial regression, where the
polynomial is a linear one. Here t is modeled as a polynomial of degree M −1.
The dictionary is d1(x) = 1, d2(x) = x, . . . , dM−1(x) = xM−2, dM (x) = xM−1

which form a basis of polynomials of degree M − 1. The design matrix is

D =

 1 x1 · · · xM−2
1 xM−1

1
...

...
. . . · · ·

...

1 xN · · · xM−2
N xM−1

N


Assuming no noise, the solution is unique if N = M .

Figure 8.4 shows polynomial regression for y = sin(x) for various degrees of
polynomials and number of measurements which are equally spaced in [0, 2π].
In Figure 8.4a the regression solution is a horizontal line through zero. This
is because the locations of measurements are ill chosen. For N = 1 the mea-
surement point is at π, the middle of the interval where sin(π) = 0 while
for N = 2 the measurement points are at the ends of the interval and again
sin(0) = sin(2π) = 0. For N = 3, the end points and the middle of the in-
terval are used. With more measurement points and thus higher degrees of
polynomials the reconstruction improves. It seems that a fifth degree polyno-
mial describes the sine adequately, even though this is an infinite sum of odd
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(a) N = M = 1, 2, 3. (b) N = M = 4.

(c) N = M = 5. (d) N = M = 6.

Figure 8.4: Polynomial regression for y = sin(x) (red). The black curve is the
regression solution.

powers and thus lies in an infinite model space:

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

However, this is only the case because we are considering the interval [0, 2π],
where the convergence properties of the infinite sum are very good, because
the terms in the sum become small quickly due to the factorial in the denom-
inator. Already after three terms the approximation to the true value sin(x)
is adequate. If, however, when x = 20 for example, the powers first grow
much quicker than the factorial. The 26th term in the sum is the first one
with an absolute value less than one. The solution here is to use the identity
sin(x± 2π) = sin(x) to shift the argument into the area of good convergence.
However, this uses knowledge about the underlying process, which in many
real world applications is not available. Sometimes it exists in the form of
professional experience, which is difficult to quantify.
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This shows that the kind and location of measurements are an important
consideration in regression.

Could we have been more clever in the design phase by using knowledge
about the problem? Firstly, sin(0) = 0. This means that the constant 1 is not
necessary as regressor. Secondly, sin(x) is an odd function, that is sin(−x) =
− sin(x). Therefore the regressors should also be odd polynomials. Hence the
polynomials with even exponent are not required. A better choice might have
been

D =

 x1 x3
1 · · · x2M−3

1 x2M−1
1

...
...

. . . · · ·
...

xN x3
N · · · x2M−3

N x2M−1
N


Still M regressors, but possibly higher accuracy.

Therefore the choice of regressors depends on the problem.

8.4 Ordinary Least Squares
Recall that we assume the dictionary of basis functions is fixed. How best
to solve t = Dc + ε generally? One approach is to consider the probabilistic
nature of the noise. Remember, the εi are independent and identical normally
distributed random variables with zero mean and variance σ2. The likelihood
of observing t given the model specified by D, c and σ2 is

L(t|D, c, σ2) = (2πσ2)−N/2 exp

(
− 1

2σ2
(t−Dc)T (t−Dc)

)
.

The likelihood quantifies whether the difference between the predictions Dc
and the targets t can be explained by the noise.

Since the formula involves the exponential function, it makes sense to
consider the logarithm of the likelihood known as the log likelihood :

logL(t|D, c, σ2) = −N
2

log 2πσ2 − 1

2σ2
(t−Dc)T (t−Dc) (8.1)

A suitable choice for c is the one which maximizes the log likelihood. Since
the first term is independent of c, this is equivalent to minimizing

(t−Dc)T (t−Dc) = ‖t−Dc‖2 =
N∑
n=1

r2
n =

N∑
n=1

(tn − d(xn)T c)2,

where ‖ · ‖ denotes the Euclidean norm or L2 norm and where d(xn)T =
(d1(xn), . . . , dM (xn))T . The expression rn = tn − d(xn)T c is called the nth

residual . It is the difference between the nth target and the prediction for it.
Note that d(xn)T is the nth row of D. The sum is known as sum of squared
residual (SSR), error sum of squares (ESS), or residual sum of squares (RSS).
The technique is known as Ordinary Least Squares (OLS), since a sum of
squares is minimized.
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(a)

(b)

Figure 8.5: Examples of polynomial regression for y = x− 0.5.

Writing

(t−Dc)T (t−Dc) = cTDTDc− 2cTDT t + tT t,

we can differentiate with regards to c using Appendix A.2.3 and set to zero
to find the extremum,

DTDc = DT t. (8.2)

Since D is a N ×M matrix, DTD is an M ×M matrix. If the inverse
(DTD)−1 exists, then the choice for c is

c = (DTD)−1DT t.
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However, even if the inverse exists, the inversion might be ill-conditioned lead-
ing to large numerical errors. Numerical analysis provides many methods to
solve equation (8.2) safely; see for example [12].

We now have a model of the data specified by D and c. For x1, . . . ,xN
the predicted values f = (f1, . . . , fN )T are given by

f = Dc = D(DTD)−1DT t.

Geometrically, this is the projection of t onto the space spanned by the
columns of D. If t already lies in that space, then f = t. In this case, the
regressors are perfectly suited to predict the data. For the minimal value of c
the error sum of squares takes the value

N∑
n=1

r2
n = (t−D(DTD)−1DT t)T (t−D(DTD)−1DT t)

= tT t− tTD(DTD)−1DT t = tT (t−Dc).

It is the inner product between t and the error the model makes when pre-
dicting the data.

The regression problem can be viewed as finding an approximate solution
in a finite dimensional space spanned by the basis functions, which is in some
sense closest to to the true solution in a possibly infinite dimensional space. A
projection gives the closet solution with respect to the Euclidean norm ‖ · ‖,
also known as the L2 norm.

8.5 Over- and Under-fitting
Figure 8.5 shows polynomial reconstructions of various degrees using data gen-
erated from the simple line y = x−0.5 with added noise. The noise is modeled
as a mixture of two probabilities, in order to generate outliers. The MATLAB
code in Listing 8.1 gives details regarding how the data was generated.

The technique employed to fit the polynomials was ordinary least squares.
The training data are marked by ◦. A small training set of size 10 was delib-
erately chosen to illustrate various effects. Also 90 test data were generated
and are marked by +. One can see that some reconstructions are preferable
over others.

Under-fitting occurs if there are not enough explanatory variables to ex-
plain the data. This can be seen in Figures 8.5a, and 8.5b, with the polynomial
of degree 0. Note that the horizontal line is put at the mean of the training
data, which is close to 0, since this is the mean of the true solution. Since
the data comes from a linear degree polynomial, a polynomial of degree at
least 1 is necessary to describe it. If this is not the case, the predictors fail to
capture the complexity of the underlying process. The solution is to amend
the dictionary of basis functions.
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function [x,y] = data(f,x1,x2,N,s,sigma0,sigma1)
% This function creates N noisy data pairs (x,y) from a function f
% in the interval [x1,x2] with added noise where the noise is a
% mixture of zero mean normal distributions with variances sigma0
% and sigma1 with probability s and 1−s.
% Input arguments:
% f, function handle
% x1,x2, end points of interval
% N, number of data pairs to be generated
% s, mixing probability of error distributions
% sigma0, standard deviation of first error distribution
% sigma1, standard of second error distribution
x = linspace(x1,x2,N);
y = zeros(1,N);
for i = 1:N

r = rand;
if (r≤s)
y(i) = f(x(i)) + randn*sigma1;

else
y(i) = f(x(i)) + randn*sigma0;

end
end

Listing 8.1: Generating noisy data.

The question is, how complex should the dictionary we choose be? Or in
other words, what should be the dimension of the model space? With too much
complexity, other effects come into play. One known as over-fitting is modeling
noise as well as the process. In Figure 8.5, the higher order polynomials try to
follow the training data more closely, and to achieve this they sometimes have
to bend more, taking the curve away from the true solution. This is especially
noticeable with the polynomial of degree 5 in Figure 8.5b.

A further problem occurs if the regressors are not suitably chosen. For
example, high degree polynomials are unsuitable, since the solutions diverge
from the true solution, especially at the end of intervals, as Figure 8.5a shows
at the right hand side. Every training data point can be viewed as a carrier of
information. If the approximation in the middle of the interval is evaluated, it
benefits from the fact that information flowed from training data points from
both sides. At the end of the interval information can only arrive from one
side. Higher degree polynomials fan away from the true solution at the end
of the interval. The effect is more dominant, the further away from training
data one is. The approximations of degree 4 or below in Figure 8.5b benefit
from the fact that a training data point is close to each end of the interval.

In this context, the law of parsimony states that if two models explain the
data equally well, the one with less complexity should be chosen. This is also
known as Occam’s razor . William Ockham (also Occam) writes in [34]
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% This script generates noisy data from a polynomial and splits this
% into test and training data. It fits polynomials of various degrees
% to it using least squares regression. The line, training and test
% data are plotted along with the fitted polynomials. The absolute
% training and test errors together with their variances are also
% plotted.

pt = [1 −0.5]; % target polynomial
t = poly2sym(pt);
t = matlabFunction(t);
x1 = 0;
x2 = 1;
N =100; % number of data pairs
sig = 0.2; % mixing probability of error distributions
sigma0 = 0.1; % standard deviation of first error distribution
sigma1 = 0.05; % standard deviation of second error distribution
% generate data
[x,y] = data(t,x1,x2,N,sig,sigma0,sigma1);
% choose training set
K = 10; % size of training set
trainindex = randi([1 N],1,K);
trainx = x(trainindex);
trainy = y(trainindex);
% let other data be test set
testx = x;
testx(trainindex) = [];
testy = y;
testy(trainindex) = [];

figure;
plot(x, t(x), 'k', 'DisplayName','truth');
hold on;
plot(trainx, trainy, 'ko', 'DisplayName','training data');
plot(testx, testy, 'k+', 'DisplayName','test data');

D = 6; % D−1 highest degree of fitted polynomial
trainmean = zeros(1,D);
trainvar = zeros(1,D);
testmean = zeros(1,D);
testvar = zeros(1,D);
for d = 1:D

p = polyfit(trainx,trainy,d−1);% returns the coefficients for a
% polynomial p of degree i−1 that
% is a best fit (in a least−squares
% sense) for the data

trainerror = (trainy − polyval(p, trainx)).ˆ2; % squared error
trainmean(d) = mean(trainerror);
trainvar(d) = var(trainerror);
testerror = (testy − polyval(p, testx)).ˆ2;
testmean(d) = mean(testerror);
testvar(d) = var(testerror);
y1 = polyval(p,x);
plot(x,y1,'DisplayName',['degree ' num2str(d−1)]);

end
legend('show', 'Location', 'southeast');
figure;
errorbar(trainmean,trainvar, 'Displayname', 'training error');
hold on;
errorbar(testmean,testvar, 'Displayname', 'test error');
legend('show');
xticks(1:1:D);
xticklabels(0:1:D−1);
xlim([0 D+1]);

Listing 8.2: Polynomial regression.
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(a)

(b)

Figure 8.6: Mean squared test errors and their standard deviations for the
examples in Figure 8.5.

Numquam ponenda est pluralitas sine necessitate.

(Plurality is never to be posited without necessity.)

The razor refers to ‘shaving away’ unnecessary complexity. To decide what
is necessary and what is unnecessary, or perhaps even detrimental to a good
reconstruction, the test error is employed. The MATLAB code in Listing 8.2
generates the data, performs polynomial OLS regression for different degrees
of polynomials, and plots both mean squared training and test error together
with their variances.

Figure 8.6 shows the mean squared training and test errors and their vari-
ances of the examples given in Figure 8.5 against the degree of polynomials
which serves as a descriptor of the complexity. More generally, the dimension
of the model space describes the complexity. Figure 8.6a shows clearly that
introducing any further complexity beyond a linear polynomial generalizes
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Figure 8.7: Average polynomial approximations.

badly to unseen test data, while in Figure 8.6b it is not so clear whether
polynomials of degree 1, 2, 3, or 4 are best chosen.

8.6 Bias and Variance
Both example data sets in the previous section were generated from the same
underlying process. They are two different snapshots of the process. The re-
constructions are inconclusive regarding which model space should be chosen.
Taking many snapshots, the picture becomes clearer. For example, running
the experiment generating noisy data and fitting polynomials of various de-
grees 100 times results in the following average mean squared training and
test errors and variances:

degree of
polynomial

mean squared
training error

variance of
squared train-
ing error

mean
squared
test error

variance
of squared
test error

0 0.82 8.6 ∗ 10−3 1.0 13 ∗ 10−3

1 0.076 0.14 ∗ 10−3 0.1 0.24 ∗ 10−3

2 0.066 0.11 ∗ 10−3 0.15 1.3 ∗ 10−3

3 0.057 0.083 ∗ 10−3 0.62 0.27

4 0.045 0.064 ∗ 10−3 7.5 100
5 0.038 0.053 ∗ 10−3 24 156 ∗ 103
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We can see that the model space of linear polynomials generalizes best to
unseen data, since the mean squared test error is minimal there. We can also
see that the variance in the mean squared test error increases significantly
with increasing complexity that is the degree of polynomial.

Since we have averaged over 100 experiments, we can look at the average
polynomial fitted. They are shown in Figure 8.7. It can clearly be seen that
the higher degree average polynomials fan out at the edges of the interval.
The coefficients of the average polynomials are given in the following table:

degree x5 x4 x3 x2 x 1

0 0 0 0 0 0 −0.011
1 0 0 0 0 1.0 −0.501
2 0 0 0 0.079 0.92 −0.49

3 0 0 0.50 −0.61 1.1 −0.49
4 0 −1.5 4.8 −4.2 2.3 −0.61
5 −63 163 −164 81 −19 1.5

The coefficients of the linear average polynomial are nearly the correct
solution x − 0.5, and even the quadratic polynomial gets close to the true
solution with a relatively small coefficient of x2. It is worth looking at the
variance of the coefficients:

degree x5 x4 x3 x2 x 1

0 0 0 0 0 0 0.0092
1 0 0 0 0 0.011 0.0035
2 0 0 0 0.42 0.51 0.033
3 0 0 0.50 31.9 9.03 0.3
4 0 1227 5030 2869 324.1 5.36
5 338000 2016000 1829000 395848 20873 182.1

With increasing complexity of the model space, the models for given data
sets become very different, showing that the models are susceptible to small
changes in the training data. Two competing principles are at work, fitting a
model well and avoiding too much complexity which leads to over-fitting and
a large variance in the models. These can be separated formally.

We need to generalize to all possible data sets. This means looking at the
expected error that a particular model space gives rise to. Given a model
space, let f(x) be the approximation to the underlying process generating the
data which is described by t(x). It is common to look at the expected squared
error,

E
[
(t− f(x))

2
]
,

where t = t(x) + ε. In the following, this is decomposed into different error
components.

Now t(x) is a deterministic process, and thus E[t(x)] = t(x), which implies
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E[t] = E[t(x) + ε] = t(x), since the noise has zero mean. Similarly,

var[t] = E
[
(t− E[t])2

]
= E

[
(t− t(x))2

]
= E

[
(t(x) + ε− t(x))2

]
= E

[
ε2
]

= var [ε] + E [ε]
2

= σ2.

Contrary to t(x), f(x) is not deterministic, because it depends on the data
set which was used to calculate the model. However, it is independent of the
noise ε, which leads to

E
[
(t− f(x))

2
]

= E
[
t2 + f(x)2 − 2tf(x)

]
= E

[
t2
]

+ E
[
f(x)2

]
− 2E [tf(x)]

= var [t] + E [t]
2

+ var [f(x)] + E [f(x)]
2 − 2E [tf(x)]

= σ2 + t(x)2 + var [f(x)] + E [f(x)]
2 − 2t(x)E [f(x)]

= σ2 + var [f(x)] + (E [f(x)]− t(x))
2
.

The first term is the irreducible error due to the noise in the data. It is also
the minimum achievable error. The second term is the variance. It gives the
extent to which different solutions arising from different snapshots of data
vary around their mean. Or in other words, how sensitive the model is to a
particular data set. The last term is the square of the bias. The bias represents
the extent to which the average prediction over all snapshots differs from the
true process. In other words a small bias indicates that the generated models
fit the process well, while small variance indicates that the models are robust
to perturbations in the data. In general, making one of them smaller increases
the other. This is called the bias-variance trade-off

Note that the analysis so far was only concerned with one particular unseen
data point x. To make a general statement about the goodness of the model,
we need to take the expectation with regards to x.∫

E
[
(t− f(x))

2
]
p(x)dx =

∫ (
σ2 + var [f(x)] + (E [f(x)]− t(x))

2
)
p(x)dx.

This simplifies greatly, if p(x) is a uniform distribution. That is measurements
are equally likely taken everywhere.

In general, it is not possible to calculate E [f(x)] and var [f(x)]. But it
can be estimated, if for example multiple runs of the experiment are possible.
For the 100 runs above, the approximate integrated squared bias, integrated
variance and their sums are given in the following table:

degree
integrated
squared bias

integrated vari-
ance

sum

0 83.5 ∗ 103 0.047 ∗ 10−9 83.5 ∗ 103

1 2.7 ∗ 10−6 7.4 ∗ 10−9 2.75 ∗ 10−6

2 35.8 ∗ 10−6 0.78 ∗ 10−6 36.6 ∗ 10−6

3 0.23 ∗ 10−3 0.14 ∗ 10−3 0.37 ∗ 10−3

4 3.4 ∗ 10−3 0.11 0.11
5 0.23 309 309
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Figure 8.8: Average polynomial approximations.

These results also show that linear polynomials are the right model space to
choose, since the sum of integrated squared bias and variance is smallest there.

To summarize, high bias and low variance indicate that the model space
cannot capture the underlying process and is too restrictive. Low bias and
low variance show the model space is adequately describing the underlying
process, and does so for differing data sets. Low bias and high variance mean
that with a good distribution of training data, the predictions are good, but
other training data might result in poorer predictions. High bias and high
variance are altogether undesirable.

As mentioned before, the training data set was chosen deliberately small
for illustration purposes. Doubling the training data set size to 20 in our
experiments causes the average polynomial approximation of degree 1 or more
to be closer to x − 0.5 when plotted (Figure 8.8), especially in the middle of
the interval. Polynomial approximation deteriorates towards the ends of the
interval, since locally less and less information flows from one side and most
of the information flows from the other, skewing the prediction. The following
table gives the coefficients:

degree x5 x4 x3 x2 x 1

0 0 0 0 0 0 −0.006

1 0 0 0 0 1.007 −0.506
2 0 0 0 −0.011 1.017 −0.507
3 0 0 −0.118 −0.189 0.918 −0.494

4 0 0.1143 −0.103 −0.019 1.046 −0.514
5 −3.325 7.935 −6.383 1.870 0.952 −0.539
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8.7 Cross-validation
The analysis of the previous section relied on the fact that experiments are
repeatable, and thus data can easily be generated. However, often the acqui-
sition of data is associated with substantial costs, and it is essential to use
data well. In cross-validation, the available data are partitioned into comple-
mentary subsets, one for training and one validation set . Multiple rounds of
cross-validation are performed, and the results are averaged over the rounds.
This way the goodness of the model can be assessed. There are two types of
cross-validation: exhaustive and non-exhaustive. The former examines all pos-
sible ways to divide the original data set into a training and a validation set.

Leave-p-out cross-validation sets aside p samples for validation as the
names suggests. All possibilities to choose p validation samples from n samples
are considered. This means the regression algorithm has to be run n!

p!(n−p)!
times which even for moderate n and p can become computationally pro-
hibitive. Leave-one-out cross-validation is a special case of leave-p-out cross-
validation with p = 1. In this case the algorithm is run n times.

In k-fold cross-validation the data set is randomly subdivided into k equal
sized subsets. One of these is used as the validation set while the other k − 1
form the training data set. The model generation is repeated k times (the
folds) with each of the subsets being the validation set exactly once. The
k results are then averaged for assessment. All data samples are used for
both training and validation, and each sample is used exactly once for val-
idation. When k = n, k-fold cross-validation is the same as leave-one-out
cross-validation.

8.8 Multicollinearity and Principal Component
Regression

Multicollinearity is another problem which arises when one or more predictor
variables are highly correlated. In this case, one of the basis functions can
be modeled by the others. One dimension of the model space is redundant.
A high degree of correlation increases the variance in the coefficients, since
different models are equivalent. They all model the measurements, but differ
in the coefficients. As a consequence, small changes in the input data can lead
to large changes in the model. Perfect multicollinearity means the regressors
are linearly dependent, that is one can be exactly expressed by the others. In
this case (DTD)−1 does not exist.

In a good regression model, the regressors correlate minimally with each
other, but are each highly correlated with the regressand. The aim is to find
a linear combination of few regressors which summarize and explain the data
without too much loss of information. This section and the following show
how to obtain new regressors from the dictionary.
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Principal component regression uses the principal components of D as re-
gressors instead of the columns of D. In particular, let d1, . . . ,dM denote the
columns of D. That is di is the ith basis function evaluated at x1, . . . ,xn.
In the following, we assume that the columns are standardized; that is they
have mean 0 and length 1. The first assumption is valid, since the measure-
ments are mean centred, and the second assumption is valid, since regressors
are invariant to scaling. Any scaling will be absorbed in the multiplicative
coefficient.

The correlation between the ith and jth regressors evaluated at the N
measuring points is then

dTi dj .

The correlation matrix of all regressors is DTD.
A new set of regressors is generated as linear combinations of basis func-

tions from the dictionary, say

v1d1(x) + . . .+ vMdM (x).

Evaluating this at the N sampling points, we arrive at a linear combination
of the columns of D,

v1d1 + . . .+ vMdM = Dv,

where v = (v1, . . . , vM )T is chosen such that Dv 6= 0. The zero vector would
make a very poor regressor.

The correlation between two such linear combinations is

vT1 DTDv2

‖Dv1‖‖Dv2‖
,

where v1 and v2 are such that Dv1 6= 0 and Dv2 6= 0. Here we need to divide
by the lengths, since Dv1 and Dv2 no longer will have length 1.

Now, the matrix DTD is symmetric and positive semi-definite. Hence it
has M non-negative eigenvalues and corresponding orthonormal eigenvectors.
Thus choosing v1 and v2 to be eigenvectors of DTD, the new regressors are
uncorrelated, since

vT1 DTDv2 = λ2v
T
1 v2 = 0.

The eigenvectors corresponding to K nonzero eigenvalues are chosen. The
new design matrix D̂ has columns Dv1, . . . ,DvK . The corresponding func-
tions span a K-dimensional subspace of the original model space, and are
uncorrelated.

Let V be the matrix with columns v1, . . . ,vK . Then D̂ = DV. The pre-
dictions are

f = D̂(D̂T D̂)−1D̂T t = DV(VTDTDV)−1VTDT t.
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Now DTDV is the matrix with columns λ1v1, . . . , λKvK , since v1, . . . ,vK are
eigenvectors of DTD. It then follows from the orthonormality of v1, . . . ,vK
that

(VTDTDV)−1 =


1
λ1

0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 1

λK

 .

With this result, we obtain

f =

 Dv1 · · · Dvk




1
λ1

0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 1

λK


 (Dv1)T

...
(DvK)T

 t

=

K∑
k=1

(Dvk)T t

λk
Dvk.

Geometrically, this is the projection of the regressand t onto the space spanned
by the columns of the new design matrix D̂. The coefficient for the new re-
gressor Dvi is ci = (Dvi)

T t/λi in this model.
To analyze further, we decompose the regressand t into one portion lying

in the subspace spanned by Dv1, . . . ,DvK and a remainder,

t =
K∑
k=1

akDvk + a,

where a is orthogonal to Dv1, . . . ,DvK . We then have

ci =
1

λi
(Dvi)

T

(
K∑
k=1

akDvk + a

)
=

1

λi

K∑
k=1

akv
T
i DTDvk = ai,

as expected.
We can calculate the distance between t and f ,

‖t− f‖2 = tT t− 2

(
K∑
i=1

(Dvi)
T t

λi
Dvi

)T
t

+
K∑

i,j=1

(Dvi)
T t

λi

(Dvj)
T t

λj
(Dvi)

TDvj

= tT t−
K∑
i=1

((Dvi)
T t)2

λi
= ‖a‖2,
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where we used the fact that (Dvi)
TDvj = λj , if i = j and zero otherwise.

Thus the predictions are closest, if all eigenvectors with non-zero eigenvalues
are used. Using the decomposition of t, we have

(Dvi)
T t =

K∑
k=1

akv
T
i DTDvk + vTi DTa = aiλi,

where we again made use of the orthogonality. Inserting this into the distance
between t and f , we obtain

‖t− f‖2 = tT t−
K∑
i=1

a2
iλi.

If sparsity is required and not all eigenvectors can be used, those for which
a2
iλi is largest should be chosen. However, this implicitly depends on the

data t via the coefficient ai, and can cause the model to not generalize well to
unseen data. To avoid this, it is customary to choose the eigenvectors with the
largest eigenvalues. It should be noted here that determining the eigenvectors
and eigenvalues of a matrix is not a trivial matter in itself, especially if M is
large.

Note that generating new regressors is equivalent to generating new
features. These new features are linear combinations of the original
features.

Principal component regression does not address the correlation with the
regressand. The method presented in the next section does so.

8.9 Partial Least Squares
Partial Least Squares (PLS) aims to maximize the correlation between regres-
sors and regressand. This time a new set of regressors is generated iteratively
as linear combinations of the original regressors; in the first iteration say

z1d1 + . . .+ zMdM = Dz.

Without loss of generality, we can assume ‖Dz‖ = 1, since regressors are
invariant to scaling.

The matrix DT ttTD is a symmetric, positive semi-definite M×M matrix,
since

(DT ttTD)T = DT ttTD and vTDT ttTDv = (vTDT t)2 ≥ 0.

It has M non-negative eigenvalues and corresponding orthonormal eigenvec-
tors v1, . . . ,vM , where the eigenvectors are ordered with regards to the cor-
responding eigenvalues from largest to smallest.

Now z ∈ RM , and thus can be expressed as a linear combination of these
eigenvectors:

z = ẑ1v1 + . . .+ ẑMvM .
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The square of the correlation between t and the new regressor Dz is(
tTDz

‖t‖‖Dz‖

)2

=
1

‖t‖2
zTDT ttTDz =

1

‖t‖2
(
λ1ẑ

2
1 + . . . λM ẑ

2
M

)
.

This is maximal for ẑ2 = . . . = ẑM = 0, since the length of z is fixed by the
condition ‖Dz‖ = 1. Thus the first new regressor is t1 = Dv1/‖Dv1‖. We
know that Dv1 6= 0, since otherwise DT ttTD would only have zero eigenval-
ues, since λ1 is the largest of the non-negative eigenvalues.

Having generated t1, we calculate

D1 =
(
I− t1t

T
1

)
D.

Note

D1v1 =
(
I− t1t

T
1

)
Dv1 =

(
I− t1t

T
1

)
‖Dv1‖t1 = ‖Dv1‖(1− ‖t1‖2)t1 = 0.

This implies that the rank of D1 is less than the rank of D, because a vector
(v1) which previously was not mapped to zero, now is mapped to zero.

Now, let v2 with ‖v2‖ = 1 be the eigenvector corresponding to the largest
eigenvalue of DT

1 ttTD1. The second new regressor is t2 = D1v2 normalized
such that ‖t2‖ = 1. Again, the correlation is maximal.

Next
D2 =

(
I− t2t

T
2

)
D1,

and the process continues until Dr is a null matrix, i.e. its rank is zero. This
will be achieved, since Dj maps vj to zero, but Dj−1vj is non-zero, and hence
rankDj ≤ rankDj−1 − 1.

PLS can be used for multivariate regression; that is the regressand has
multiple components and measuring at x1, . . . ,xN gives rise to a matrix t
with N rows. However, this is beyond this text. More information can be
found in [20].

8.10 Regularization
Recall, we are trying to find suitable coefficients c minimizing ‖t−Dc‖2 while
avoiding unnecessary complexity which leads to over-fitting. This is achieved
by introducing a penalty term Ω(c) and minimizing

1

2
‖t−Dc‖2 + λΩ(c),

where Ω(c) ≥ 0 for all c and Ω(0) = 0.
The penalty Ω(c) is also known as the entropy measure. The parameter λ

controls the trade-off between fitting the data and reducing complexity and
has to be chosen well. Often, a model is obtained for different choices of λ,
and the goodness of the model is assessed on a validation set . Note that if



Regression � 235

λ = 0, we obtain the ordinary least squares solution, while if λ = ∞, c = 0.
The zero vector of coefficients is the least complex one. For λ in between these
two extremes, we are balancing between fitting a linear model and keeping the
model complexity small. Note that we still explore the same model space as
before, but the inclusion of Ω(c) gives preference to certain areas of the model
space. The parameter λ controls how strong this preference is.

In the following, norms which are different to the Euclidean norm (L2

norm) are distinguished by subscripts. The choices for Ω(c) are numerous:

Ω(c) Regression method

‖c‖0 =
number of

L0 regularizationnonzero
elements in c

‖c‖1 =
M∑
m=1

|cm|
L1 regularization
Least Absolute Shrinkage and
Selection Operator (LASSO)

1

2
‖c‖2 = 1

2

M∑
m=1

c2m
L2 regularization
Ridge regression

λ‖c‖1 +
1− λ

2
‖c‖2 Elastic net regularization

L0 regularization is an NP hard problem. This means there is no known
algorithm to solve this in polynomial time. The aim of L0 regularization is to
arrive at a sparse vector of coefficients, i.e. a vector where many entries are
zero. That is only a few components of c are non-zero. If it is known that c is
1-sparse, i.e. only one component is non-zero, we have

(
M
1

)
possibilities and

each needs to be checked whether it is the minimum. Similarly, if we know c
is k-sparse,

(
M
k

)
possibilities need to be checked. However, we do not know

beforehand how many components are non-zero. Hence, all M possible values
for k need to be checked. The resulting complexity is

M∑
k=1

(
M

k

)
= 2M − 1.

Since the size of the problem, M , appears in the exponent, the complexity
is exponential. The time to find the solution increases exponentially with the
size of the input. We encounter a different method to get a sparse solution
when looking at Bayesian Learning in Section 8.13.

The L0 regularization is related to the Bayesian Information Criterion
(BIC) and the Akaike Information Criterion (AIC). These criteria are used
to select the model structure, k being the model parameter to be selected. For
more information see [9].
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The L1 regularization has the disadvantage that in the case of perfect
multicollinearity there is not a unique minimum, but a continuum of minima.
For example, if two columns di and dj are the same and ci and cj are nonzero
coefficients in the minimal solution, then for any a ∈ [0, 1] replacing ci by
a(ci + cj) and replacing cj by (1− a)(ci + cj) is also minimal.

If the columns of D are orthogonal, then they are orthonormal, since we
assume they are standardized. This means DTD is the identity matrix. In this
case, the solution to L1 regularization can be found by soft thresholding . We
minimize

1

2
‖t−Dc‖2 + λ‖c‖1 =

1

2
tT t− cTDT t +

1

2
cT c + λ‖c‖1.

Since tT t is independent of the variables of interest, the first term can be
dropped. Furthermore, let cOLS be the ordinary least squares solution

cOLS =
(
DTD

)−1
DT t = DT t.

Hence the minimization is equivalent to minimizing

−cT cOLS +
1

2
cT c + λ‖c‖1 =

M∑
m=1

−cmcOLS
m +

1

2
c2m + λ|cm|,

where each summand can be minimized individually. That is, for each m, we
minimize

−cmcOLS
m +

1

2
c2m + λ|cm| = −cmcOLS

m +
1

2
c2m + λ sgn(cm)cm,

where

sgn(cm) =

 +1 if cm > 0,
0 if cm = 0,
−1 if cm < 0.

If cOLS
m = 0, then cm = 0 is minimal. Otherwise, the minimal cm has to have

the same sign as cOLS
m , since otherwise the sign could be flipped and a smaller

value could be achieved. Thus, it is equivalent to minimize

−cmcOLS
m +

1

2
c2m + λ sgn(cOLS

m )cm.

Differentiating with respect to cm and setting to zero gives

cm = cOLS
m − λ sgn(cOLS

m ) = sgn(cOLS
m )(|cOLS

m | − λ).

To ensure that cm has the same sign as cOLS
m , we set cm = 0, if |cOLS

m | < λ.
This effectively prunes the corresponding basis function. For λ = 0, we recover
the ordinary least squares solution. If λ is chosen too large, all coefficients are
set to zero.
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(a) p = 2 (b) p = 1

(c) p = 2/3 (d) p = 1/3

Figure 8.9: Contour lines of various Lp norms.

For L2 regularization we minimize

1

2
‖t−Dc‖2 +

1

2
λ‖c‖2 =

1

2
tT t− cTDT t +

1

2
cT (DTD + λI)c.

The gradient of this function is

−DT t + (DTD + λI)c.

Setting the gradient to zero, we have a minimum for

c = (DTD + λI)−1DT t, (8.3)

since the matrix DTD + λI is positive definite. If DTD is close to being
singular, adding λ to each diagonal term will move it away from singularity.
Thus ridge regression stabilizes ordinary least squares.

It is interesting to consider the case of orthonormal basis functions
(DTD = I). Then L2 regularization reduces each component of the ordi-
nary least squares solution by a factor of (1 + λ)−1. L1 regularization on the
other hand moves each component towards zero by λ. If the component is
closer to zero than λ, it is set to zero. Elastic net regularization combines the
two effects.
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Ridge regression is implemented in MATLAB as ridge, while LASSO is
implemented as lasso. The latter also incorporates elastic net regularization,
since the elastic net becomes LASSO for λ = 1.

More generally, the Lp norm is defined as

‖c‖p =

(
M∑
m=1

|cm|p
)1/p

.

Figure 8.9 shows the contour lines for various choices of p. The L2 regulariza-
tion does not favour any axes, while for decreasing p < 2, the Lp regularization
favours points closer to the axes. In the limit the L0 norm snaps the solutions
to the axis. This makes the importance of the choice of axes more apparent.
Ideally axes aligned with the principal components should be chosen. This
also makes the algorithms more stable.

8.11 Bayesian Regression
We have seen that finding suitable coefficients c to satisfy t = Dc + ε by
minimizing ‖t − Dc‖2 = ‖ε‖2 leads to the noise being modeled and over-
fitting. This can be mitigated by minimizing ‖t−Dc‖2+Ω(c) for some penalty
function Ω(c). This “tweaks” the model to favour less complex models. The
question we are asking now is whether the “tweaking” can be formalized.

To this end, we utilize Bayes’ Rule which we recall as

P (A|B) =
P (B|A)P (A)

P (B)
.

Often the relationship is expressed as P (A|B) ∝ P (B|A)P (A) where ∝ means
that the two sides are proportional to each other. Thus the division by P (B)
is suppressed.

Applying this to the setting at hand,

p(c|t) =
p(t|c)p(c)

p(t)
.

In other words, we answer the question: What is the probability of the coeffi-
cients given the observed data?

Since the noise is i.i.d. normal with mean 0 and variance σ2, we can write
for the probability of t given the design matrix D, coefficients c and noise
variance σ2

p(t|D, c, σ2) = (2π)−N/2σ−N exp

(
−‖t−Dc‖

2σ2

)
.

We define a prior distribution for c using all information apart from the
data itself, quantifying our belief about the coefficients. For example, a simple
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assumption is that each coefficient is a priori normally distributed with mean
zero and variance α−1. The multivariate distribution of c is given by

p(c|α) =
( α

2π

)M/2

exp
(
−α

2
cT c

)
.

In the absence of any other knowledge, this is one possible assumption. α is a
hyperparameter and known as the precision of the distribution. If α becomes
very large, the distribution becomes peaked at its mean and we have more
confidence in the value than if α is small and the width of the distribution
large.

After observing N samples of the dependent variable t, the posterior dis-
tribution of the coefficients c is given by

p(c|t,D, α, σ2) ∝ p(t|D, c, σ2)p(c|α).

An estimate of c could be obtained by choosing the c where the posterior
distribution or equivalently its logarithm is maximal,

log p(c|t,D, α, σ2) ∝ log p(t|D, cσ2) + log p(c|α).

The first term is exactly the log likelihood (8.1), which is maximized when

‖t−Dc‖2 is minimal. The second term is −α
2
‖c‖2 + a constant, and can be

regarded as the negative of a penalty term. In fact, taking the negative loga-
rithm of the posterior distribution and then minimizing instead of maximizing
has re-created the ridge regression.

More generally, let α contain all parameters governing the joint distribu-
tion p(t, c|D,α, σ2). We remove the dependency on the latent variables by
integrating over the coefficients c, thus averaging over all possible solutions.
This is called marginalizing over c and the result is the marginal likelihood

L(t|D,α, σ2) =

∫
p(t, c|α, σ2)dc,

which we aim to maximize. The Maximum-Likelihood Estimate (MLE) for
α are the values which maximize L(t|D,α, σ2). In the following section we
introduce a technique to find a maximum.

8.12 Expectation–Maximization
In the following, we suppress the dependency of the model on the design
matrix D. The Expectation–Maximization (EM) algorithm arrives at a max-
imum iteratively by alternating between two steps. The derivation requires
some expansion.

By the chain rule, also known as the product rule, we have

p(t, c|α, σ2) = p(c|t,α, σ2)p(t|α, σ2).
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Taking the logarithm on both sides, results in

log p(t, c|α, σ2) = log p(c|t,α, σ2) + log p(t|α, σ2).

Both sides can be viewed as functions of the random variable c and thus we
can take the expectation with regards to any distribution q(c),∫

q(c) log p(t, c|α, σ2)dc =

∫
q(c) log p(c|t,α, σ2)dc

+

∫
q(c) log p(t|α, σ2)dc

=

∫
q(c) log p(c|t,α, σ2) + log p(t|α, σ2),

since
∫
q(c)dc = 1. Rearranging gives

log p(t|α, σ2) = logL(t|α, σ2) =

∫
q(c) log p(t, c|α, σ2)dc

−
∫
q(c) log p(c|t,α, σ2)dc.

We can subtract and add the term
∫
q(c) log q(c)dc on the right hand side

and arrive at

logL(t|α, σ2) =

∫
q(c) log

p(t, c|α, σ2)

q(c)
dc−

∫
q(c) log

p(c|t,α, σ2)

q(c)
dc (8.4)

using the properties of the logarithm. logL(t|α, σ2) is also known as the log
evidence.

The second term (including the minus sign) is the Kullback–Leibler diver-
gence (KL divergence) between the distribution q(c) and the posterior dis-
tribution p(c|t,α, σ2). It is also known as the discrimination information,
information divergence, and information gain, since information is obtained
from observing t. For two probability density functions p and q, the Kullback–
Leibler divergence is defined as

DKL(p‖q) = −
∫
p(x) log

q(x)

p(x)
dx = Ep

[
− log

q(x)

p(x)

]
,

where Ep denotes the expectation with respect to the distribution p. Using
Jensen’s inequality,

DKL(p‖q) ≥ − logEp
[
q(x)

p(x)

]
= − log

∫
p(x)

q(x)

p(x)
dx = − log

∫
q(x)dx = 0,

since log 1 = 0 (for more details of the proof see for example [3]). Hence
the Kullback–Leibler divergence is always positive, and zero if and only if
p(c|t,α, σ2) = q(c) almost everywhere.
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Therefore, the first term in (8.4),∫
q(c) log

p(t, c|α, σ2)

q(c)
dc,

is a lower bound for logL(t|α, σ2). The maximization is done by maximizing
the lower bound by alternating between maximizing with respect to q(c) and
with respect to α.

Let α(k) be the current estimate of the maximal α. The lower bound is
maximal with respect to q(c), if the Kullback-Leibler divergence is zero, that
is, if q(c) = p(c|t,α(k), σ2). The next step is to find α(k+1) by maximizing∫

p(c|t,α(k), σ2) log
p(t, c|α, σ2)

p(c|t,α(k), σ2)
dc =∫

p(c|t,α(k), σ2) log p(t, c|α, σ2)dc

−
∫
p(c|t,α(k), σ2) log p(c|t,α(k), σ2)dc.

The second term is independent of α. Hence only the first term is relevant for
the maximization.

Note: The first term is the expectation of the logarithm of the joint proba-
bility with respect to the current estimate of the posterior distribution. Hence
the name Expectation–Maximization algorithm.

8.13 Bayesian Learning
As a specific example, let the prior distribution of ci be normal with mean zero
and variance α−1

i . In other words, each weight has its own hyperparameter.
Our starting point is that there is no covariance between different weights.
That is the weights do not influence each other. The multivariate prior is
given by

p(c|α) = (2π)−M/2
M∏
m=1

α1/2
m exp

(
−αmc

2
m

2

)
= (2π)−M/2|A|1/2 exp

(
−1

2
cTAc

)
,

where A is a diagonal matrix with entries Amm = αm, and |A| denotes the
determinant.

The multivariate posterior distribution p(c|t,D,α, σ2) is given by Bayes’
rule and is proportional to the product of the prior and the likelihood function:

p(c|t,D,α, σ2) =
p(c|α)L(t|D, c, σ2)∫
p(c|α)L(t|D, c, σ2)dc

. (8.5)
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Now,

p(c|α)L(t|D, c, σ2) = (2π)−M/2|A|1/2 exp

(
−1

2
cTAc

)
(2πσ2)−N/2 exp

(
− 1

2σ2
(t−Dc)T (t−Dc)

)
.

The multiplicative constants cancel in the fraction and we concentrate on
the terms in the exponential:

−1

2

[
cT
(
A + σ−2DTD

)
c− 2σ−2cTDT t + σ−2tT t

]
Considering the square term we see that the covariance matrix of the posterior
distribution has to be

Σ =
(
A + σ−2DTD

)−1
, (8.6)

which is symmetric and positive definite. We complete the square by intro-
ducing the mean µ:

−1

2

[
(c− µ)TΣ−1(c− µ) + 2cTΣ−1µ− µTΣ−1µ− 2σ−2cTDT t + σ−2tT t

]
The linear terms in cT need to cancel; that is we need Σ−1µ = σ−2DT t.
Hence the mean of the posterior distribution is

µ = σ−2ΣDT t. (8.7)

All remaining terms in the exponential are constant with respect to c.
Because of the exponential, they are multiplicative constants and cancel in the
fraction. It remains to evaluate the denominator, which after cancellations is∫

exp

(
−1

2
(c− µ)TΣ−1(c− µ)

)
dc.

However, it is known that∫
(2π)−M/2|Σ|−1/2 exp

(
−1

2
(c− µ)TΣ−1(c− µ)

)
dc

evaluates to 1, since it is the integral of the normal probability distribution
function. Thus the integral of the denominator is (2π)M/2|Σ|1/2.

To summarize, the posterior distribution is normal with

p(c|t,D,α, σ2) ∼ N (µ,Σ)

with µ and Σ given by (8.7) and (8.6).
Recall that Ordinary Least Squares calculates the coefficients as

c =
(
DTD

)−1
DT t,
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while ridge regression determines them as

c =
(
λI + DTD

)−1
DT t,

where λ is a parameter which needs to be suitably chosen. Inserting (8.6) into
(8.7) gives

µ =
(
σ2A + DTD

)−1
DT t.

The addition of σ2A guards against DTD being possibly singular. The main
distinguishing feature of Bayesian learning is that firstly, instead of returning a
specific vector of coefficients, a multivariate posterior probability distribution
is given for c. Secondly, the entries of A, i.e. the hyperparameters α1, . . . , αM
are optimized by maximizing the marginal likelihood as we will see below.

Once the posterior distribution of the coefficients is found, the measure-
ment tn for data xn can be interpreted probabilistically. Recall that we assume
tn is generated by a process,

tn = d(xn)T c + εn,

where d(xn)T is the nth row of D. Now, d(xn)T c is a linear transformation
of the normally distributed variable c and thus also normally distributed. On
the other hand, εn is normally distributed noise. Hence, tn is the sum of two
normally distributed variables. The probabilistic interpretation of tn is that
it is drawn from a univariate normal distribution with

mean mn = d(xn)Tµ,
variance σ2

n = σ2 + d(xn)TΣd(xn).

If the variance is small, it indicates that at this point the model explains the
data well. If the variance is large, the model is not adequate at this point.
This can indicate that the dictionary of basis functions is unsuitable for these
data and needs to be amended.

The most suitable values for the hyperparameters are found by maximiz-
ing the the marginal likelihood L(t|α, σ2) which is precisely the denominator
of (8.5). Keeping the multiplicative constants (which were canceled in the
previous analysis), the marginal likelihood is

L(t|α, σ2) = |A|1/2(2πσ2)−N/2|Σ|1/2 exp

(
−1

2
σ−2tT t +

1

2
µTΣ−1µ

)
.

We first consider the terms in the exponential. Inserting (8.7), this becomes:

−1

2

[
σ−2tT t− µTΣ−1µ

]
= −1

2

[
σ−2tT t− σ−4tTDΣΣ−1ΣDT t

]
= −1

2
tT
[
(σ2I)−1 − (σ2I)−1DΣD(σ2I)−1

]
t,
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where I is the N ×N identity matrix. Using Σ =
(
A + DT (σ2I)−1D

)−1
and

the Woodbury matrix identity in Appendix A.1.3, this simplifies to

−1

2
tT
(
σ2I + DA−1D

)−1
t.

Hence the mean of the marginal likelihood is zero and its covariance matrix is

C = σ2I + DA−1DT .

We need to check whether the multiplicative constants agree with this. To
this end, note

|Σ| = |Σ−1|−1 = |A + DT (σ2I)−1D|−1.

Using the matrix determinant lemma from Appendix A.1.5, we get

|Σ| = |σ2I + DA−1DT |−1|A|−1|σ2I| = |C|−1|A|−1(σ2)N .

Combining this result with the other multiplicative constants, we see

L(t|α, σ2) = (2π)−N/2|C|−1/2 exp

(
−1

2
tTC−1t

)
.

Instead of maximizing this, we maximize the logarithm of the marginal
likelihood, the log evidence. In the following, we will denote this objective
function by

L(α) = −1

2

(
N log 2π + log |C|+ tTC−1t

)
.

We want to maximize this function with respect to the hyperparameters.
To this end, we separate the contribution of a single hyperparameter out. First
note that since A is a diagonal matrix, C can be re-written as

C = σ2I +

M∑
m=1

1

αm
dmdTm.

Let

C−i = σ2I +

M∑
m=1
m6=i

1

αm
dmdTm = C− 1

αi
did

T
i

and α−i = (α1, . . . , αi−1, αi+1, . . . , αM )T . Using the Sherman–Morrison for-
mula in Appendix A.1.4, we have

C−1 = C−1
−i −

C−1
−idid

T
i C−1
−i

αi + dTi C−1
−idi

.

The matrix determinant lemma in Appendix A.1.5 on the other hand gives

|C| = |C−i|
(
αi + dTi C−1

−idi
) 1

α i
.
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Combining these two, we can write

L(α) = −1

2

(
N log(2π) + log |C−i|+ tTC−1

−i t− logαi

+ log(αi + dTi C−1
−idi)−

tTC−1
−idid

T
i C−1
−i t

αi + dTi C−1
−idi

)

= L(α−i) +
1

2

(
logαi − log(αi + dTi C−1

−idi) +
(dTi C−1

−i t)2

αi + dTi C−1
−idi

)
= L(α−i) + `(αi).

Hence we have separated the dependencies on αi into `(αi), while L(α−i)
contains the portion of the log evidence independent of αi.

We define the quantities

si = dTi C−1
−idi and qi = dTi C−1

−i t,

which are independent of αi. With this definition

`(αi) =
1

2

(
logαi − log(αi + si) +

q2
i

αi + si

)
.

The derivative of the log evidence with respect to αi is given by

∂L(α)

∂αi
=
∂`(αi)

∂αi
=

1

2

(
1

αi
− 1

αi + si
− q2

i

(αi + si)2

)
=

1

2
(αi + si)

−2

(
si − q2

i +
s2
i

αi

)
,

(8.8)

since L(α−i) is independent of αi.
If si − q2

i is non-negative, then the derivative is always positive, since αi
is positive, and `(αi) is monotonically increasing. If on the other hand si− q2

i

is negative, then equation (8.8) vanishes for

αi =
s2
i

q2
i − si

, (8.9)

where `(αi) has a maximum. Figure 8.10 illustrates these two cases. Setting
αi = ∞ in the first case and adjusting αi to the value given in (8.9) in the
second case, increases the logarithm of the marginal likelihood. For αi = ∞,
the probability density function for ci becomes infinitely peaked at zero. In
practice, this means that di(x) is regarded as not contributing to explaining
the data, and therefore can be excluded from the model. This introduces
sparsity in the model.

To avoid many different matrices C−i, it is convenient to define

Qi = dTi C−1t,

Si = dTi C−1di.
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For infinite αi, we have qi = Qi and si = Si, since in this case C = C−i.
While for finite αi,

si = dTi C−1
−idi = dTi

(
C + di(−αi)−1dTi

)−1
di

= dTi

[
C−1 −C−1di

(
−αi + dTi C−1di

)−1
dTi C−1

]
di

= Si +
S2
i

αi − Si
=

αiSi
αi − Si

.

Similarly,

qi =
αiQi
αi − Si

.

Let’s examine Qi more closely. The matrices Σ and C are related by the
Woodbury matrix identity in Appendix A.1.3,

C−1 =
(
σ2I + DA−1DT

)−1

= σ−2I− σ−2D
(
A + DTσ−2D

)−1
DTσ−2

= σ−2
(
I− σ−2DΣDT

)
.

Using this and (8.7),
C−1t = σ−2 (t−Dµ) .

However, Dµ is exactly the mean of our predictive probability distribution
for t. Thus, C−1t gives the difference between the target and the predictive
mean for each sample scaled by the noise variance. If this is small, our current
model is adequate to explain the data. If not, we consider C−1t an error which
needs to be removed. Calculating Qi = dTi C−1t checks how well aligned di is
with this error. If it is orthogonal, than di will not help in removing this error.
If it is well aligned, then the inclusion of di in the model will be beneficial.
Therefore Qi is known as the quality factor .

Si on the other hand is known as the sparsity factor, since, as we will see
below, it helps to evaluate how collinear di is to the other basis functions.
The quantity si is a penalty term associated with the basis function di. It
quantifies how well di could be modeled by the other basis functions. On the
other hand, qi is a quality term, measuring how well di would contribute to
explaining the data, given the current model. Both si and qi depend on C−i
which in turn depends on α−i. Thus the optimal value for αi changes as the
other hyperparameters α−i are adjusted.

The possibility to optimize the hyperparameters individually in turn gives
rise to the following algorithm. It initializes the model with a single basis
function and its optimal hyperparameter value, and sets the hyper-parameters
of the others notionally to infinity. At the start of the algorithm when only one
basis function is in the model, D has only one column, and Σ is a 1×1 matrix.
C is σ2I plus the outer product of that single basis function evaluated at the
sample points with itself. Its inverse is easily calculated using the Shermann–
Morrisson formula from Appendix A.1.4. Then the basis function di(x), where



Regression � 247

(a) si − q2i ≥ 0 (b) si − q2i < 0

Figure 8.10: `(αi).

setting its hyper-parameter αi to its optimal value (given the current model)
gives the largest increase in the marginal likelihood, is found and the model
updated accordingly.

The algorithm converges, if no significant increase in the logarithm of the
marginal likelihood can be achieved anymore. Since the optimal value of αi
can be finite or infinite, there are three different possible updates. If di(x) is
not in the model and the optimal αi is finite, it gets added to the model. If
di(x) is in the model and the optimal αi is infinite, it gets deleted from the
model. The third option is that di(x) is in the model and the optimal αi is
finite, in which case αi is updated to this value. Note that in the case when
the optimal αi is infinite and di(x) is already excluded from the model, no
action is necessary. In all three cases, Σ and µ have to be updated, since A
has changed.

The matrices D and Σ change in size during the run of the algorithm.
However, they stay comparatively small compared to the number M of basis
functions in the dictionary and the sample number N . The matrix C is subject
to rank 1 updates as basis functions are added, deleted or their hyperparame-
ters re-estimated. These rank 1 updates are the addition or subtraction of the
outer product of the basis function evaluated at the sample points with itself
with suitable coefficients derived from the hyperparameter updates. However,
in practice C and its inverse are not calculated.

It should be noted here that the dictionary of candidate basis functions
does not need to be static. A new candidate basis function can be created,
evaluated, and possibly added to the model at any point.

In the update formulae below, the change in the logarithm of the marginal
likelihood is denoted by ∆L and updated quantities are denoted by a tilde
(e.g. µ̃):
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Addition: In this case,

2∆L =
Q2
i − Si
Si

+ log
Si
Q2
i

,

Σ̃ =

(
Σ + σ−4ΣiiΣDTdid

T
i DΣ −σ−2ΣiiΣDTdi

−σ−2Σiid
T
i DΣ Σii

)
,

µ̃ =

(
µ− σ−2µiΣDTdi

µi

)
,

where Σii = (αi + Si)
−1 and µi = ΣiiQi.

Deletion: The index j denotes the the column of D which needs to be re-
moved, when di is removed from the current model. Σj is the jth column
of Σ and Σjj is the jth diagonal element. The jth element of µ is µj .

2∆L =
Q2
i

Si − αi
− log

(
1− Si

αi

)
,

Σ̃ = Σ− 1

Σjj
ΣjΣ

T
j ,

µ̃ = µ− µj
Σjj

Σj .

After these updates the jth row and column needs to be removed from
Σ̃ and the jth element from µ̃.

Re-estimation: Defining

κj = (Σjj + (α̃i − αi)−1)−1

with Σjj and Σj as in the case of deletion, we have

2∆L =
Q2
i

Si + (α̃−1
i − α

−1
i )−1

− log(1 + Si(α̃
−1
i − α

−1
i )),

Σ̃ = Σ− κjΣjΣ
T
j ,

µ̃ = µ− κjµjΣj .

We already noted that a new candidate basis function can be created and
evaluated for inclusion in the model at any point in time. The model can also
adapt, when a new data sample arrives. Thus, this technique is also suitable for
online learning. We can calculate the change in the logarithm of the marginal
likelihood for the current model, when a data sample (t∗,x∗) is added. This
means adding a row to the design matrix D yielding

D∗ =

(
D

d(x∗)
T

)
.
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We then have

C∗ = σ2I +

(
D

d(x∗)
T

)
A−1

(
DT d(x∗)

)
=

(
C v
vT v

)
where v = DA−1d(x∗) and v = d(x∗)

TA−1d(x∗) + σ2. Note that C∗ is
symmetric.

Using the formulae for block matrices we have

|C∗| = |C||v − vTC−1v|

and

C−1
∗ =

 C−1 +
C−1vvTC−1

v − vTC−1v
−C−1v

1

v − vTC−1v

−vTC−1 1

v − vTC−1v

1

v − vTC−1v

 .

Letting tT∗ = (t1, . . . , tN , t∗), we can calculate

tT∗C−1
∗ t∗ = tTC−1t +

1

v − vTC−1v
(vTC−1t− t∗)2

Thus the logarithm of the marginal likelihood logL(t∗|α, σ2) is logL(t|α, σ2)+
∆L, where

∆L = −1

2

[
log 2π + log |v − vTC−1v|+ 1

v − vTC−1v
(vTC−1t− t∗)2

]
.

This change can be interpreted probabilistically. Using the Woodbury ma-
trix identity from Appendix A.1.3 again, Σ is related to C−1 by

Σ = A−1 −A−1DTC−1DA−1,

The predictive distribution for t∗ has variance and mean

σ2
∗ = σ2 + d(x∗)

TΣd(x∗)

= σ2 + d(x∗)
T (A−1 −A−1DTC−1DA−1)d(x∗)

= σ2 + d(x∗)
TA−1d(x∗)

T − vTC−1v = v − vTC−1v,

m∗ = d(x∗)
Tµ = σ−2d(x∗)

TΣDT t = vTC−1t,

(8.10)

where we used the fact that DA−1DT = C−σ2I. Thus (vTC−1t− t∗)2 is the
square of the difference of the sample measurement and its mean predicted by
the current model.

Thus, the change in the log evidence is

∆L = −1

2

[
log 2π + log σ2

∗ +

(
m∗ − t∗
σ∗

)2
]

= log
1√

2πσ2
∗

exp

(
− (m∗ − t∗)2

2σ2
∗

)
.
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Hence the change is the logarithm of the likelihood of the new data value t∗
at x∗ given the predictive probability distribution N (m∗, σ

2
∗).

Since σ∗ ≥ σ, the change lies between −∞ and log(2πσ2)−1/2. It can be
positive. In this case, the new sample affirms the model. If the likelihood of
the data is small, the marginal likelihood is reduced, indicating that the model
should be improved. To do so, all quantities need to be updated first with the
new data included.

New data sample: In this case,

∆L = log
1√

2πσ∗
exp

(
− (m∗ − t∗)2

2σ2
∗

)
,

Σ̃ = Σ− 1

σ2
∗
Σd(x∗)d(x∗)

TΣ,

µ̃ = µ− m∗ − t∗
σ2
∗

Σd(x∗).

Then the algorithm can continue improving the model by considering the basis
functions in turn.

Sparse Bayesian learning infers a predictive distribution for t∗ which is
N (m∗, σ

2
∗) with mean and variance as given in (8.10). This predictive distri-

bution is heavily dependent on the model, since it depends on d(x∗) which
are the basis functions included in the model evaluated at x∗. It is customary
to choose basis functions for the dictionary which decay quickly when mov-
ing away from their centre, or basis functions with finite, compact support.
Therefore, the degenerate case is possible where d(x∗) is close to, or even
equal to zero, and in this case the predictive probability distribution becomes
N (0, σ2) which is meaningless. The confidence we place in the predictions
should only be informed by the data, and be independent of the dictionary of
basis functions.

Let S be a subset of the samples. This could be all samples or a suitable
set of neighbours of x∗. We estimate the probability distribution of t∗ to be
normal with mean and variance

m̄ = mean
xi∈S

{ti},
σ̄ = var

xi∈S
{ti}.

With this estimate,the expected change, when considering x∗, in the log evi-
dence is

E[∆L] =

∫ ∞
−∞

[
log

1√
2πσ2

∗
− (t∗ −m∗)2

2σ2
∗

]
∗

1√
2πσ̄2

exp

(
− (t∗ − m̄)2

2σ̄2

)
dt∗

= log
1√

2πσ2
∗
− σ̄2 + (m̄−m∗)2

2σ2
∗

.
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The second term is the important one. If the predictive probability distribu-
tion does not match well the probability distribution estimated from the data
in the neighbourhood, the expected change in the logarithm of the marginal
likelihood is negative. This expected change creates an uncertainty map with
the largest negative values being the most uncertain regions. The uncertainty
map can guide the data gathering, informing us about where additional sam-
ples are necessary.

Next we consider the problem of collinearity. When basis functions are
added to the model, collinearity can be introduced. In this case the columns of
D become linearly dependent or nearly linearly dependent. In practical terms,
this means that then there are infinitely many models which explain the data
equally well, since linear combinations of basis functions can be exchanged for
each other. For example, assume that the basis functions are derived from a
kernel k : Rd × Rd → R. That is

di(x) = k(x,xi).

Thus the model space is dependent on the data. If two sampling points lie
close together, then the corresponding basis functions are very similar and
the corresponding columns of D are nearly linearly dependent, since the basis
functions are evaluated at the same sampling points. In the following we derive
a technique which checks for collinearity while the algorithm is executed.

Since at initialization only one basis function is employed, the columns of D
are at initialization linearly independent. Assume that the columns of D have
remained linearly independent and that di(x) is a candidate basis function to
be added to the model. Since the columns of D are linearly independent, di
can be decomposed uniquely into two vectors, one lying in the space spanned
by the columns of D and one lying in the orthogonal complement of this space:

di = Da + b,

where DTb = 0.
If ‖b‖ > 0, then di is linearly independent of the columns of D and can

be added to the model. We also want to avoid near linear dependency, or in
other words small values of ‖b‖.

Since the decomposition was orthogonal, we have

‖di‖2 = ‖Da‖2 + ‖b‖2.

While the length of di is known, the length of Da and b, however, are un-
known.

Consider

σ2Si = σ2dTi C−1di = dTi
(
I− σ−2DΣDT

)
di

=
(
aTDT + bT

) (
I− σ−2DΣDT

)
(Da + b)

= aTDTD
(
I− σ−2ΣDTD

)
a + bTb,
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‖d i
‖ σ √

S
i

‖Da‖ ‖αDa‖

‖b‖

θ φ

Figure 8.11: Geometric illustration.

due to orthogonality. Using σ−2Σ =
(
σ2A + DTD

)−1
, we can simplify part

of the first term

I− σ−2ΣDTD

= I−
(
σ2A + DTD

)−1 (
σ2A + DTD− σ2A

)
= ΣA.

Combining the last two results, we get

σ2Si = aTDTDΣAa + ‖b‖2.

However, the first quantity on the right hand side is not known.
To overcome the unknowns, note that we can scale the vector Da by a

factor α such that
‖αDa‖2 = aTDTDΣAa.

Since αDa and b are orthogonal, the square of the length of the vector αDa+
b is

‖αDa + b‖2 = ‖αDa‖2 + ‖b‖2

= aTDTDΣAa + ‖b‖2 = σ2Si.

Figure 8.11 illustrates the relationship between the various vectors and their
lengths geometrically. By the law of sines

sin θ

sinφ
=
σ
√
Si

‖di‖
= σ

√
dTi
‖di‖

C−1
di
‖di‖

.

Since sinφ ≤ 1, σ
√
Si/‖di‖ is an upper bound for sin θ. If this value becomes

too small, di is deemed to be nearly linearly dependent to the columns of D,
and di(x) is not added to the model even if Q2

i > Si indicates that augmenting
the model with this basis function increases the logarithm of the marginal
likelihood. Since di can be closely approximated by a linear combination of the
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columns of D a similar increase can be achieved by updating the coefficients
of these.

Note that not including di(x) at this stage does not mean that it is excluded
from the model altogether. Since the algorithm also deletes basis functions
from the model the linear dependency might not be present at a later stage.

A similar collinearity check can be derived when di(x) is already in the
model and αi is finite. In this case, if σ

√
si/‖di‖ is too small, the columns

of D are deemed nearly linearly dependent. This collinearity check is used
to postpone the re-estimation of a basis function in favour of other updates,
since the near linear dependency might be resolved in the following steps of
the algorithm. This increases stability. Otherwise, the algorithm can enter a
cycle of re-estimations of linearly dependent basis functions. The hyperparam-
eters of these basis functions are typically small indicating a wide probability
distribution of the coefficients of these basis functions and thus uncertainty.
Other strategies could be updating a group of basis functions within one step
or creating a new basis function from a group of functions.

To summarize, Bayesian learning provides a framework where instead of
the model being a vector of coefficients, a posterior probability distribution
for c is obtained. This in turn leads to a predictive probability distribution
for the targets and unseen data samples. In the case of unseen data samples,
the change in the log-evidence this new data sample causes can be calculated.
If this change is positive, it affirms the model; otherwise it indicates that the
model should be improved. By using the empirical distribution of the data
samples the expectation of the change in likelihood at new points can be cal-
culated, creating an uncertainty map of the predictions which is independent
of the current model. This framework copes with new data samples arriving
through the pipeline. it also gives the possibility to add new basis functions to
the model on the fly, while incorporating a mechanism to avoid collinearity.

8.14 Gaussian Process
In the preceding sections, we have chosen the function space in which our
model lies by specifying a finite dictionary of basis functions, and the model
f(x) being a linear combination of these basis functions. This is restrictive.
The aim of this section is to look for the model in the uncountably infinite
space of functions. More specifically the model is a distribution over this space.

In the Dirichlet process, where we were confronted by infinitely many pos-
sibilities for the cluster parameters, the infinity is dealt with, because only a
finite set of data is seen. The data size gives a maximum number of the nec-
essary parameters. All other infinitely many possibilities are given one joint
probability. Similarly here, the infinitely many possibilities are manageable,
since only a finite set of data is seen.

A stochastic process is a probability distribution over functions f(x), where
x ∈ RD, such that, when evaluated at any arbitrary set of points x1, . . . ,xN ,
the values f(x1), . . . , f(xN ) follow a specific joint, multivariate probability
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distribution. If this distribution is a normal distribution, then it is a Gaussian
process. If D = 2, it is also known as a Gaussian random field .

Recall that so far the model was specified as

f(x) =
M∑
m=1

cmdm(x).

Let x1, . . . ,xN be any set of points, and denote (f(x1), . . . , f(xN ))T by f .
Then

f = Dc,

where D is the design matrix and c is the vector of coefficients as before. The
assumption is that c is normally distributed. Since f is a linear transforma-
tion of c, it also has a normal distribution. Therefore, our models so far are
Gaussian processes.

The prior assumption is that c has zero mean, and hence f has also zero
mean. We considered the two cases, where the prior covariance matrix of c is
either α−1I, that is all coefficients have the same precision α, or the diago-
nal matrix A−1, where each coefficient has its own precision. The covariance
matrix of f is then

var[f ] = E[ffT ] = E[DccTDT ] = DE[ccT ]DT =

{
α−1DDT

DA−1DT
.

Note that the covariance matrix of f depends on the set x1, . . . ,xN via
the design matrix. Therefore different sets of points will give rise to different
multivariate distributions of f . Defining d(xi)

T = (d1(xi), . . . , dM (xi)) as the
vector of all basis functions evaluated at a specific point xi, the (i, j) entry of
the covariance matrix is

α−1d(xi)
Td(xj) or d(xi)

TA−1d(xj).

The covariance matrices arising in a Gaussian process are completely spec-
ified, if the (i, j) entry is given by evaluating a kernel function at xi and xj , i.e.
k(xi,xj). The covariance matrix is then the Gram matrix and positive defi-
nite. The above are two specific choices of kernel. The choice of kernel function
depends on the application. For possible choices of kernels see Section 5.2 in
Chapter 5.

Listing 8.3 implements six kernel functions and illustrates how to generate
four draws from a Gaussian process with a given kernel. While a draw from a
Gaussian process is a function, the listing generates densely spaced point val-
ues. These are a draw from the distribution with the required covariance ma-
trix, which is the Gram matrix K for the given kernel and points x1, . . . ,xN .
Its Cholesky factorization K = LLT is calculated. A vector v of length N is
drawn from the standard, multivariate normal distribution. We set f = Lv
which is then a random vector from the multivariate normal distribution with
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x= (−5:0.1:5)'; % Each row is a sample.

k = kGaussian(x,x, [1 1]);
% Note that sometimes it is necessary to add 1e−15*eye(size(x,1))
% to k to ensure positive definiteness due to rounding errors.
L = chol(k,'lower');
figure;
f1 = L*normrnd(0,1, size(x,1),1);
plot(x,f1,'k−');
hold on;
f2 = L*normrnd(0,1, size(x,1),1);
plot(x,f2,'k−−');
f3 = L*normrnd(0,1, size(x,1),1);
plot(x,f3,'k:');
f4 = L*normrnd(0,1, size(x,1),1);
plot(x,f4,'k−.');

% Each row of x and y is one data sample. The functions below
% calculate the covariance matrix for a specific kernel.

% Constant kernel.
function k = kConst(x,y, param)
k =paramˆ2* ones(size(x,1), size(y,1));
end

% Linear kernel.
function k = kLinear(x,y, params)
% The matrix of the inner products of each row of x and each row of y
% is given by x*y'.
k = params(1)ˆ2 + params(2)ˆ2*x*y';
end

% Quadratic kernel.
function k = kQuadratic(x,y, params)
k = (params(1)ˆ2 + params(2)ˆ2*x*y').ˆ2;
end

% Gaussian kernel.
function k = kGaussian(x,y, params)
% Calculate squared distance as the sum of the inner product of one
% row of x with itself and one row of y with itself minus twice the
% inner product of these two rows.
sd = repmat(dot(x,x,2),1,size(y,1)) + ...

repmat(dot(y,y,2)',size(x,1),1) − 2*x*y';
k = params(1)ˆ2* exp(−sd/(params(2)ˆ2*2));
end

% Exponential kernel.
function k = kExponential(x,y,params)
sd = repmat(dot(x,x,2),1,size(y,1)) + ...

repmat(dot(y,y,2)',size(x,1),1) − 2*x*y';
k = params(1)ˆ2 * exp(−sqrt(sd)/params(2));
end

% Inverse multiquadric kernel.
function k = kInverseMQ(x,y, params)
sd = repmat(dot(x,x,2),1,size(y,1)) + ...

repmat(dot(y,y,2)',size(x,1),1) − 2*x*y';
k = params(1)ˆ2./sqrt(1+sd/(params(2)*2));
end

Listing 8.3: Draws from a Gaussian process with different kernels.
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(a) Constant kernel,
θ1 = 1.

(b) Linear kernel,
θ1 = θ2 = 1.

(c) Quadratic kernel,
θ1 = θ2 = 1.

(d) Gaussian kernel,
θ1 = 1, θ2 = 1.

(e) Exponential kernel,
θ1 = 1, θ2 = 1.

(f) Inverse multiquadric,
θ1 = 1, θ2 = 1.

Figure 8.12: Four draws from a Gaussian process with different kernels.

covariance matrix K. The point values of f are plotted as functions. Figure
8.12 shows the results of four draws for each of the implemented kernels.

Consider the case, when in our model d1(x) = 1 and dd+1(x) = xd, the dth

component of x for d = 1, . . . , D. This means, the model is a linear polynomial.
In this case,

α−1d(xi)
Td(xj) = α−1(1 + xTi xj).

Thus this is the linear kernel with θ1 = θ2 = α−1.
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On the other hand, if the kernel is the square of the inner product, then

k(xi,xj) = (xTi xj)
2 =

(
D∑
d=1

xi,dxj,d

)(
D∑
e=1

xi,exj,e

)

=
D∑

d,e=1

(xi,dxi,e)(xj,dxj,e)

=
D∑

d,e=1

dd,e(xi)dd,e(xj) = d(xi)
Td(xj),

if we define M = D2 basis functions as the product of any two components,
dd,e(x) = xdxe. Or in other words, the basis functions are all D-dimensional
monomials of degree 2.

More generally, including a term of the inner product to the power of a
means that monomials of degree a are part of the model space. As the number
of monomials increases quickly with their degree, the kernel is a compact way
to write these. A correspondence between kernels and basis functions is not
that straightforward in general.

If the kernel contains a positive, additive constant, then the mean of the
Gaussian process can be assumed to be zero, because a positive, additive
constant corresponds to the constant basis function, also known as the bias
being included in the model space.

This concludes the description of drawing a function from a Gaussian
process. We now turn our attention to drawing a function from the posterior
of a Gaussian process, once some data pairs (x1, t1), . . . , (xN , tN ) have been
seen. Let x∗ be arbitrary and distinct from xn, n = 1, . . . , N . Recall that the
measurements we see have additive normally distributed noise with mean zero
and variance σ2, that is

tn = f(xn) + εn as well as t∗ = f(x∗) + ε∗.

We assume that f is drawn from a Gaussian process with kernel k and mean
zero. Therefore, the vector (t1, . . . , tN , t∗) follows a normal distribution with
mean zero and covariance matrix(

C k(x∗)
k(x∗)

T c(x∗)

)
,

where the vector k(x∗) has elements k(xn,x∗) for n = 1, . . . , N , c(x∗) =
k(x∗,x∗) + σ2, and the (i, j) entry of C is

Cij = k(xi,xj) + σ2δij ,

where δij is zero for i 6= j and one for i = j and is known as the Kronecker
delta.
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Using the inversion formula for a block matrix in Appendix A.1.1, the
precision matrix of the joint distribution is C−1 +

C−1k(x∗)k(x∗)
TC−1

c(x∗)− k(x∗)TC−1k(x∗)

−C−1k(x∗)

c(x∗)− k(x∗)TC−1k(x∗)
−k(x∗)

TC−1

c(x∗)− k(x∗)TC−1k(x∗)

1

c(x∗)− k(x∗)TC−1k(x∗)

 .

We can deduce that the conditional probability of t∗ given t is normal and
has variance and mean

σ2(x∗) = c(x∗)− k(x∗)
TC−1k(x∗) = σ2 + k(x∗,x∗)− k(x∗)

TC−1k(x∗),

m(x∗) = k(x∗)
TC−1t.

(8.11)
Since x∗ is chosen arbitrarily (excluding x1, . . . ,xN ), this specifies a distribu-
tion over functions.

Let x∗1, . . . ,x
∗
N∗ be N∗ points where predictions t∗ = (t∗1, . . . , t

∗
N∗)

T are to
be made. The joint distribution of (t, t∗) has covariance matrix(

C K
KT C∗

)
,

where C is as before, K is a N × N∗ matrix with (n,m) entry given by
k(xn,x

∗
m) and the (i, j) entry of C∗ is k(x∗i ,x

∗
j ) + σ2δij . The conditional

probability distribution of t∗ given t has mean and variance

m∗ = KTC−1t,

Σ∗ = C∗ −KTC−1K.

As before, we can draw point values from this distribution and plot as func-
tions to illustrate draws from the posterior Gaussian process. Figure 8.13 il-
lustrates four draws using various kernels along with four training data points
from the function 1 + x + sinx, which is drawn in red. The mean of the
conditional distribution is drawn in blue along with a band of two standard
deviations in gray. The parameters were kept at θ1 = θ2 = 1. The noise vari-
ance was set to 0.00001. The distribution is tightened near the training data,
while the uncertainty increases away from the training data points. In the
range between two training points the uncertainty is largest in the middle. As
can be seen to the right, away from the training data the distribution becomes
the prior distribution of the Gaussian process (as for example in Figure 8.12d
for the Gaussian kernel) with added noise, since the entries of K are getting
close to zero, because the Gaussian kernel decreases as the distance between
points increases.

Comparing (8.11) to (8.10), we see that the results agree when the kernel
is chosen to be k(x,y) = d(x)TA−1d(y). In the previous section, however,
the entries of A were determined by maximizing the log evidence. Similarly,
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(a) Gaussian kernel, θ1 = θ2 = 1

(b) Exponential kernel, θ1 = θ2 = 1 (c) Inverse multiquadric kernel,
θ1 = θ2 = 1

Figure 8.13: Draws from the posterior Gaussian process for different kernels.

θ1 and θ2 can be chosen by maximizing the log likelihood of the training data,
which is given by

L = −1

2

[
log |C|+ tTC−1t +N log(2π)

]
.

Using the formulae in Appendices A.2.4 and A.2.7 for the derivatives of the
determinant and inverse of a matrix, when the entries of the matrix depend
on a variable, we arrive at

∂

∂θi
L = −1

2

[
tr

(
C−1 ∂C

∂θi

)
− tTC−1 ∂C

∂θi
C−1t

]
.

The (m,n) entry of the derivative of C with respect to θi is

∂

∂θi
(k(xm,xn) + σ2δmn) =

∂

∂θi
k(xm,xn).
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(a) Gaussian kernel,
θ1 ≈ 2.81, θ2 ≈ 2.85

(b) Exponential kernel,
θ1 ≈ 1.75, θ2 ≈ 1.66

(c) Inverse multiquadric kernel,
θ1 ≈ 3.21, θ2 ≈ 4.74

Figure 8.14: Draws from the posterior Gaussian process for different kernels.

Thus the derivative of the kernel with regards to its parameters is needed.
For the Gaussian kernel

k(x,y) = θ2
1 exp

(
−‖x− y‖2

2θ2
2

)
,

this is for example

∂

∂θ1
k(x,y) = 2θ1 exp

(
−‖x− y‖2

2θ2
2

)
=

2

θ1
k(x,y),

∂

∂θ2
k(x,y) =

‖x− y‖2

θ3
2

θ2
1 exp

(
−‖x− y‖2

2θ2
2

)
=
‖x− y‖2

θ3
2

k(x,y).

Setting the gradient of L to zero and solving for the parameters is generally
not straight forward. However, since the gradient is known, it can be used to
approximate the maximum iteratively (see for example [2]).
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Figure 8.15: Sum of linear and Gaussian kernel with optimized parameters.

Figure 8.14 shows the mean and two standard deviations of the posterior
Gaussian process for various kernels, where the parameters have been opti-
mized, as well as four draws. The fit near the data points is excellent, when
the Gaussian kernel is used. The inverse multiquadric kernel also performs
well, while the exponential kernel seems unsuitable.

The mean of the posterior Gaussian process returns to zero away from the
data points due to the choice of kernel, though it does so slower than with
the original choice of parameters. Therefore, we combine the Gaussian kernel
with a linear kernel. That is, the kernel is given by

k(x,y) = θ2
1 + θ2

2xTy + θ2
3 exp

(
−‖x− y‖2

2θ2
4

)
.

After optimization the parameters are approximately θ1 ≈ 10−5, θ2 ≈
0.90, θ3 ≈ 1.13 and θ4 ≈ 1.65. The goodness of approximation is illustrated
in Figure 8.15 over a wider range. While the mean drifts away from the true
function, the general trend is kept. A better approximation can be achieved
with more data. Which combination of kernels should be used depends on the
application and is a field of active research with new kernels being developed
for specific usages.
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C H A P T E R 9

Feature Learning

This chapter concentrates on inferring the building blocks which are essential
for an adequate model of the data. Neural networks are revisited and their
many variations explained, especially how design choices such as activation
(propagation functions) and error functions depend on the task at hand. Er-
ror backpropagation is derived in generality as the application of the chain rule
when differentiating the different error functions. Autoencoders are introduced
as very simple network architecture and illustrated with an extensive example
showing how neural networks create a model space for the data. The relation-
ships to other techniques are explored to gain an intuitive understanding of
the mechanisms at work. The chapter concludes with a Bayesian treatment of
inferring the model space, illustrated by the Indian Buffet Process.

In the previous chapter, the choice of model space was still largely governed
by the user, making a choice on basis functions or kernels to be used. The
data can inform these choices or optimize parameters of the basis functions
or kernels. If the basis functions are kernels centred at the data, the data has
influence also this way. However, the shape is still very much up to user choice.

In this chapter, we explore the possibility of the data deciding the model
space. To do so, many examples of data generated from the same process
are necessary. For example, the MNIST data set of [26], where the generating
process was people writing digits, contains 60, 000 images of size 28×28 pixels
of handwritten digits. The objective is a technique which generates a model
space where all samples are equally well represented, if reconstruction is the
objective, or separated for classification.

One drawback is that this is only possible where enough reliable data is
seen. While it is possible to have some samples, where some features are not
given or given with non-negligible error, there need to be sufficiently many
samples where these features have reliable values. This is known as veracity
and is one of the four V’s of Big Data. The other three are volume, velocity
and variety .

263
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On the one hand, large volumes of data are necessary to cope with miss-
ing or corrupted parts of the data. On the other hand, processing such large
volumes of data is a challenge in itself. The Sentinel satellites of the Euro-
pean Space Agency are expected to eventually gather four Terabytes of data
per day. These are only twelve satellites of the 4000 plus satellites orbiting
earth.

The Large Hadron Collider at CERN creates 20,000,000 collisions per
second. Thus new data arrives at extraordinary velocity. Only 400 per sec-
ond are recorded as interesting. This results in 3,000 Terabytes of data
per year.

The Electronic Control Units (ECUs) in a car record several thousands
of signals approximately every quarter of a second. These relate to many
different quantities and states, each of which has its own meaning and inter-
pretation. The essential information needs to be extracted from the variety of
data.

Sometimes this takes an unexpected form as in Figures 7.3 and 7.4 of the
principal component representation of hand-written digits from the MNIST
data set. However, there the goal was to make the digits machine identifi-
able, not recognizable for a human. We will again use this data set in this
chapter.

9.1 Neural Networks
As before we are given data pairs (x1, t1), . . . , (xN , tN ), where xn ∈ RD and
each component of xn is a feature. Also tn can be multidimensional, that is
tn ∈ RK .

Recall that a neural network consists of a set of input neurons, a set of
output neurons and possibly several sets of hidden neurons. Each component
of xn is passed to one input neuron. Therefore, the number of input neurons
is D. During training, the results of the output neurons are compared to tn.
Hence, the number of output neurons is K. The synapses connecting one set
of neurons to another are a layer.

More specifically, let L be the number of layers. This means that there are
L−1 sets of hidden neurons. The size of the lth set of hidden neurons isMl. The
latent variables of the hidden neurons are denoted by z

(l)
m , l = 1, . . . , L−1,m =

1, . . . ,Ml. In the lth layer, the weight of the synapse connecting the ith neuron

on the left to the jth neuron on the right is denoted by w
(l)
ji . This neural
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network is illustrated as

x1

...

xd

...

xD

z
(1)
1

...
z

(1)
m

...
z

(1)
M1

z
(L−1)
1

...
z

(L−1)
m

...
z

(L−1)
ML−1

y1

...

yk

...

yK

w
(1)
11

w
(1)
m1

w
(1)
M11

w
(L)
11

w
(1)
k1

w
(1)
K1

The dotted connections indicate that any combination of hidden neurons and
layers is possible.

For l 6= 1, L, the result of the propagation function is the activation

a
(l)
j =

Ml−1∑
i=1

w
(l)
ji z

(l−1)
i = w

(l)
j

T
z(l−1).

This is passed to the activation function, also called transfer function, of this
layer hl to generate the latent variable

z
(l)
j = hl(a

(l)
j ) = hl

(
w

(l)
j

T
z(l−1)

)
.

For l = 1, we have

a
(1)
j = w

(1)
j

T
x and z

(1)
j = h1

(
w

(1)
j

T
x

)
.

For l = L, the output variables y1, . . . , yK are calculated,

yk = hL(a
(L)
k ) = hL

(
w

(L)
k

T
z(L−1)

)
.

A list of possible activation functions is given in Section 5.5. The choice
depends on the problem at hand:

• For regression problems, the identity, i.e. the linear activation function
hL(x) = x is used in the output layer.
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• For binary classification, K = 1 and tn takes either the value 0 or 1
depending on whether the sample with features xn belongs to the nega-
tive or positive class respectively. There is only one output neuron and
the activation function of the final layer is the logistic sigmoid function
hL(x) = (1 + exp(−x))−1. The output is interpreted as the probability
of the input with features x1, . . . , xD belonging to the positive class.

• If there are K separate, binary classification tasks for the same
data, then tn is a vector of zeros and ones. The kth component indicates
the class membership of the kth classification task. There are K output
neurons. Each output neuron can be likened to a binary classifier using
the logistic sigmoid function.

• For multiple classes, tn is a 1-of-K representation. This means only
one of the K components of tn is one and all others are zero. A one
in the kth position indicates the sample with features xn belongs to
the kth class. The output activation function is the softmax function.
It maps the K-dimensional vector of activations a = (a1, . . . , aK)T to a
K-dimensional vector σ(a) with the jth entry of σ(a) being

σ(a)j =
exp(aj)∑K
k=1 exp(ak)

.

The kth output is interpreted as the probability of the sample with
features x = (x1, . . . , xD)T belonging to the kth class.

If the activation function in all neurons is the logistic sigmoid, then the
neural network is commonly known as a multilayer perceptron. However, this
is a misnomer, since the perceptron uses the discontinuous step function sgn
illustrated in Figure 4.7 as the activation function. In the section on backprop-
agation, we will see the advantages continuity brings. Therefore the logistic
sigmoid function is a better choice. To add to the confusion, the term mul-
tilayer perceptron is now being used, when arbitrary activation functions are
employed, and for both classification or regression tasks. Because of this di-
lution of the definition, the form of the neural network cannot be deduced, if
the term multilayer perceptron is used.

The neural network is a function mapping the input x = (x1, . . . , xD)T

to the output y = (y1, . . . , yK)T . The input passing through the network is
known as forward propagation. Cycles, where information could be passed
backwards, are not allowed. The architecture is strictly feed-forward .

As the latent variables can be relabeled, which means that neurons are
interchanged with each other, there are

∏L−1
l=1 Ml! equivalent neural networks,

which give the same mapping from input to output. Another equivalence arises
from the activation functions of the hidden neurons being even functions, i.e.
h(−x) = h(x), or odd functions, i.e. h(−x) = −h(x). If the signs of the weights
of all synapses going into a particular hidden neuron are flipped, then, if the
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activation function is even, the mapping from input to output remains the
same, while, if the activation function is odd, flipping also the sign for all
synapses going out from this hidden neuron also keeps the mapping the same.
If such sign flips are possible for all hidden neurons, then this means there
are

∏L−1
l=1 2Ml equivalent neural networks. These are known as weight space

symmetries. Altogether there are

L−1∏
l=1

2MlMl!

symmetries.
Not all possible synapses need to be present. If the number of synapses is

small, the network is known as sparse. Excluding certain synapses is a design
decision. An example is a convolutional neural network. If the weight of a
synapse becomes zero during the learning process, that is effectively it does
not contribute to the final output, this means that the information carried by
this synapse is deemed unimportant. While the resulting mapping is the same
as excluding the synapse, one is by design, the other is determined from the
data by learning. It is also possible for a synapse to stretch over two layers.
This is known as a skip-layer connection.

The larger the number of synapses, the more training data is necessary to
train the network, since we need enough information to decide the values of
the weights.

The training of the neural network consists of adjusting the weights until
the output for the training data is deemed good enough. Again, the measure
of goodness depends on the task at hand.

• Recall that for regression, we assume that the data are the result of an
underlying process with additive normally distributed noise with mean
zero and variance σ2. In this context, the process is modeled by the
neural network. That is, t is normally distributed with the mean being
the output y for input x and variance σ2I, where I is the K×K identity
matrix. The mean y depends also on the weights of all the synapses in
the network, which we denote by the vector w, in short y(x,w). The
likelihood of the data given the network can be calculated as

L =
N∏
n=1

(2πσ2)−K/2 exp

(
− 1

2σ2
‖tn − y(xn,w)‖2

)
.

The weights are determined by maximizing the likelihood. This is equiv-
alent to minimizing the negative logarithm of the likelihood

− logL =
NK

2
log σ2 +

NK

2
log(2π) +

1

2σ2

N∑
n=1

‖tn − y(xn,w)‖2.
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It is convention to state this as minimizing the error function

E(w) =
1

2

N∑
n=1

‖y(xn,w)− tn‖2

known as error sum of squares (ESS).

• For binary classification, tn is zero if the sample with features xn
belongs to the negative class, and one otherwise. Since the single output
of the neural network is interpreted as the probability of belonging to
the positive class, the likelihood function in this case is given by

L =
N∏
n=1

y(xn,w)tn (1− y(xn,w))
1−tn .

Taking the negative logarithm gives the cross-entropy error function

E(w) = −
N∑
n=1

tn log y(xn,w) + (1− tn) log (1− y(xn,w)) .

• If the network tackles K separate, binary classification tasks on the
same data, then the error function is

E(w) = −
K∑
k=1

N∑
n=1

tn,k log yk(xn,w) + (1− tn,k) log (1− yk(xn,w)) ,

where tn,k is the kth component of tn and yk(xn,w) is the output of the
kth neuron, when xn is the input. It is the sum of the errors of the K
individual binary classification tasks.

• For K multiple classes, yk(xn,w) is taken as the probability of the
sample with features xk belonging to the kth class and tn is a 1-of-K
representation. The likelihood of the data is

L =
N∏
n=1

K∏
k=1

yk(xn,w)tn,k .

As before, taking the negative logarithm leads to the error function

E(w) = −
K∑
k=1

N∑
n=1

tn,k log yk(xn,w).

This looks very similar to the one above, but now only one of tn,k,
k = 1, . . . ,K is non zero.
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We illustrate the capability of neural networks by training a two layer
neural network with three hidden neurons to represent the function 1+x+sinx.
The biases are modeled explicitly with dummy neurons which always have the
value one. The network diagram is

x

1

z1

z2

z3

1

y

w
(1)
1

w
(1)
2

w
(1)
3

b1
b2

b3

w
(2)
1

w
(2)
2

w
(2)
3

b

.

The activation function in the first layer is the hyperbolic tangent in the
form

h1(x) =
2

1 + exp(−2x)
− 1,

also known as the tan-sigmoid activation function, since this implementation
is faster. In the second layer, it is the linear activation function.

Twenty-one equally spaced training points are used. Once the neural net-
work is trained, it can be evaluated for any input x. Figure 9.1a shows the
results, the true function in red, the prediction in blue and the bias b in black.

It also displays z1w
(2)
1 , z2w

(2)
2 and z3w

(2)
3 , which are all functions of the input

x. The latent variables z1, z2 and z3 can be interpreted as basis functions the
neural network constructed from the data. The prediction is the weighted sum
of these and the bias. The error at the training points is shown in 9.1b.

Since the weights are initialized randomly and the optimization procedure
might converge in a local and not a global optimum, the training outcome
can be very different for different runs. Several runs of the script in Listing
9.1 illustrate this. Modifying the script by for example increasing the num-
ber of hidden neurons or the number and selection of training points gives
further insight. Such a two layer neural network can approximate any contin-
uous function on a finite interval to arbitrary accuracy as long as there are
sufficiently many hidden neurons and training data to calculate the weights.
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clear;
x = −5:0.5:5;
% True function.
t = 1 + x + sin(x);
% Contstruct two layer network with 3 hidden neurons.
net = fitnet(3);
% Remove normalization and de−normalization.
net.input.processFcns = { };
net.output.processFcns= { };
% Train the neural network.
[net,¬,¬,e] = train(net,x,t);
% Weights in the first layer.
IW = net.IW{1,1};
% Bias weights in the first layer.
b1 = net.b{1};
% Bias weight in the second layer.
b2 = net.b{2};
% Weights in the second layer.
LW = net.LW{2,1};

X = −5:0.1:5;
T = 1 + X + sin(X);
% Predictions.
Y = b2 + LW * tansig( b1 * ones(1,length(X)) + IW * X );
% Constructed basis functions.
Z = tansig( b1 * ones(1,length(X)) + IW * X );
figure;
% Plot true function.
plot(X,T,'r−')
hold on
% Plot predictions.
plot(X,Y,'b−')
% Plot bias.
plot(X,b2*ones(1,length(X)),'k−')
% Plot basis functions with coefficients.
plot(X,LW(1)*Z(1,:),'k:')
plot(X,LW(2)*Z(2,:),'k−.')
plot(X,LW(3)*Z(3,:),'k−−')
legend('true function', 'prediction','bias','Location','northwest')
% Plot error at training data.
figure
plot(x,e,'ko', 'MarkerFaceColor','k','MarkerSize',3)
hold on
plot(x,zeros(1,length(x)),'k−')

Listing 9.1: Two layer neural network regression.
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(a) True function, prediction, bias and constructed basis
functions.

(b) Error at training points.

Figure 9.1: Two layer neural network regression with a set of three hidden
neurons.

9.2 Error Backpropagation
For all neural networks, an error function E(w) needs to be minimized. A
necessary condition for a minimum is that the gradient∇E(w) vanishes, where
the gradient is the vector formed from the derivatives of E(w) with respect

to each component of w, that is each w
(l)
ji . Hence, one possible technique is

to calculate the gradient, set it to zero and solve for the weights. In most
cases this is not feasible. Iterative techniques on the other hand use the fact
that the gradient evaluated for a particular w points in the direction of the
steepest ascent. Thus, its negative gives the direction in which the function
decreases most rapidly. The simplest iterative technique is gradient descent
and updates the current weight vector w by a step along negative gradient,

wnew = w − η∇E(w),
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where the step size η > 0 is called the learning rate. It is also called steepest
descent . There are more sophisticated methods such as conjugate gradients
and quasi-Newton methods. Optimization is, however, not the purpose of this
text. More information on this topic can be found in [14].

The error functions all involve a sum over the training data, which can be
written as

E(w) =
N∑
n=1

En(w).

Since the derivative of a sum is the sum of derivatives, it follows

∇E(w) =

N∑
n=1

∇En(w).

There are now several possibilities to update the weight vector w.

• Calculating ∇En(w) for all n and thus using ∇E(w) in the chosen
optimization method are known as batch methods.

• When w is updated using only a subset S of training data, that is∑
S ∇E(w) is used in the optimization method, then these are mini-

batch methods. The batch size and how the mini-batches are chosen are
design choices. Often the training data is partitioned randomly several
times. If the optimization method is gradient descent, this is known as
mini-batch gradient descent .

• If only one ∇En(w) is used, when updating w, the method is online,
sequential or stochastic. The algorithm either cycles through the train-
ing data or selects training samples randomly with replacement. It is
called online gradient descent , sequential gradient descent or stochastic
gradient descent , if the optimization method is gradient descent.

Mini-batch and stochastic methods have the advantage that a local mini-
mum of an individual En(w) or a set

∑
S E(w) will generally not be a local

minimum for a different choice of n or S. Thus, it escapes from local minima.
They also are more efficient with duplicates in the training set, since only
a selection of training data is seen in each update anyway, while when all
training data are used, the duplicates add computational overhead.

To calculate ∇En(w), the chain rule is used multiple times, since the out-
put is the result of applying a chain of linear propagation functions alternating
with activation functions.

We first consider the task of regression. In this case,

En(w) =
1

2
‖y(xn,w)− tn‖2 =

1

2

K∑
k=1

(yk(xn,w)− tnk)
2

=
1

2

K∑
k=1

(
a

(L)
k (xn,w)− tnk

)2

,
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since the linear activation function is used. The dependence of the activation

a
(L)
k on xn and w is made explicit by writing a

(L)
k (xn,w).

Taking the derivative with respect to w
(l)
ji , we arrive at

∂

∂w
(l)
ji

En(w) =
K∑
k=1

(
a

(L)
k (xn,w)− tnk

) ∂

∂w
(l)
ji

a
(L)
k (xn,w)

=
K∑
k=1

(yk(xn,w)− tnk)
∂

∂w
(l)
ji

a
(L)
k (xn,w).

(9.1)

It is the weighted sum of the errors in the output neurons, where the weights

are the derivative of the corresponding activation with respect to w
(l)
ji . Note

that also in this derivative the chain rule needs to be employed, unless l = L,

in which case a
(L)
k depends directly on w

(L)
ji . We look at this in more detail

later. First, we take a look at the other possible machine learning tasks.
If the neural network performs binary classification, there is only one out-

put neuron. We resolve the last step of the forward propagation, that is the
application of the final activation function, explicitly in the nth error function,

En(w) = −tn log
1

1 + exp(−a(L)(xn,w))

−(1− tn) log

(
1− 1

1 + exp(−a(L)(xn,w))

)
= tn log

(
1 + exp(−a(L)(xn,w))

)
−(1− tn) log

exp(−a(L)(xn,w))

1 + exp(−a(L)(xn,w))

= log
(

1 + exp(−a(L)(xn,w))
)

+ (1− tn)a(L)(xn,w).

Differentiating with respect to w
(l)
ji gives

∂

∂w
(l)
ji

En(w) =
exp(−a(L)(xn,w))

1 + exp(−a(L)(xn,w))

∂

∂w
(l)
ji

(−a(L)(xn,w))

+(1− tn)
∂

∂w
(l)
ji

a(L)(xn,w)

=

(
1

1 + exp(−a(L)(xn,w))
− 1

)
∂

∂w
(l)
ji

a(L)(xn,w)

+(1− tn)
∂

∂w
(l)
ji

a(L)(xn,w)

= (y(xn,w)− tn)
∂

∂w
(l)
ji

a(L)(xn,w)

It has the same functional form as (9.1) with K = 1.
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Using the fact that the error function of K simultaneous binary classi-
fication tasks is the sum over the error functions of the individual binary
classification problems, also for this error function, the derivative of the nth

contribution with respect to w
(l)
ji takes the form of (9.1).

Lastly, we look at classifying K multiple classes, when tn has a 1-of-K
representation. Let kn be the index of the component of tn which equals one.
Since all other components are zero, the nth contribution to the error function
is

En(w) = − log
exp(a

(L)
kn

)∑K
s=1 exp(a

(L)
s )

= log

(
K∑
s=1

exp(a(L)
s )

)
− a(L)

kn
.

The derivative with respect to w
(l)
ji is

∂

∂w
(l)
ji

En(w) =

∑K
r=1 exp(a

(L)
r ) ∂

∂w
(l)
ji

a
(L)
r∑K

s=1 exp(a
(L)
s )

− ∂

∂w
(l)
ji

a
(L)
kn

=

K∑
r=1

yr(xn,w)
∂

∂w
(l)
ji

a(L)
r − tnr

∂

∂w
(l)
ji

a(L)
r

=
K∑
r=1

(yr(xn,w)− tnr)
∂

∂w
(l)
ji

a(L)
r ,

where we used the 1-of-K representation of tn. This has the same functional
form as (9.1).

The fact that the derivatives of the nth contribution of all error functions
result in (9.1) is known as the canonical link between the output activation
functions and the error function.

The chain rule needs to be employed, until we reach the layer, where there

is a direct dependency on w
(l)
ji . Let s be any layer index greater than or equal

to l. We will show by backwards induction that

∂

∂w
(l)
ji

En(w) =

Ms∑
m=1

δ(s)
m

∂

∂w
(l)
ji

a(s)
m (xn,w) (9.2)

for suitably chosen δ
(s)
m .

This is already the case for s = L, due to Equation (9.1), if we set ML = K
and define

δ
(L)
k = yk(xn,w)− tnk,

which is the error in the kth output.
We assume that (9.2) is true for some s > l and show that it is true for

s− 1. Since

a(s)
m (xn,w) =

Ms−1∑
r=1

w(s)
mrz

(s−1)
r =

Ms−1∑
r=1

w(s)
mrhs−1

(
a(s−1)
r (xn,w)

)
,
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the derivative with respect to w
(l)
ji is

∂

∂w
(l)
ji

a(s)
m (xn,w) =

Ms−1∑
r=1

w(s)
mrh

′
s−1(a(s−1)

r )
∂

∂w
(l)
ji

a(s−1)
r (xn,w),

where h′s−1 is the derivative of hs−1.
Inserting this into (9.2), we obtain

∂

∂w
(l)
ji

En(w) =

Ms∑
m=1

δ(s)
m

Ms−1∑
r=1

w(s)
mrh

′
s−1(a(s−1)

r )
∂

∂w
(l)
ji

a(s−1)
r (xn,w)

=

Ms−1∑
r=1

h′s−1(a(s−1)
r )

Ms∑
m=1

δ(s)
m w(s)

mr︸ ︷︷ ︸
δ(s−1)
r

∂

∂w
(l)
ji

a(s−1)
r (xn,w),

which is of the required form.

The errors δ
(s−1)
r are defined in terms of δ

(s)
m , the weights in the sth layer

and the derivative of the activation function in layer s − 1 evaluated at the
activations of this layer. They can be calculated by propagating backwards
through the network from one set of neurons to the next. This is known as
error backpropagation

Once we reach the lth layer, we have

∂

∂w
(l)
ji

En(w) =

Ml∑
m=1

δ(l)
m

∂

∂w
(l)
ji

a(l)
m (xn,w),

and a
(l)
m is directly dependent on w

(l)
ji via

a(l)
m =

Ml−1∑
s=1

w(L)
ms z

(l−1)
s .

Differentiation is straightforward and we arrive at

∂

∂w
(l)
ji

a(l)
m (xn,w) =

{
0 for m 6= j

z
(l−1)
i for m = j

.

The derivative of the nth contribution to the error becomes

∂

∂w
(l)
ji

En(w) = δ
(l)
j z

(l−1)
i .

It is the error in the jth neuron of the lth set of neurons (letting the output
neurons be the Lth set) multiplied by the ith variable in the previous set of
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neurons, if the synapse connects neuron i to neuron j. Note that, if l = 1,
then those variables are the input variables, while, when l > 1, they are the
latent variables.

Schematically, this is illustrated as

x1

...

xd

...

xD

δ
(1)
1

...
δ

(1)
m

...
δ

(1)
M1

δ
(L−1)
1

...
δ

(L−1)
m

...
δ

(L−1)
ML−1

δ
(L)
1

...

δ
(L)
k

...

δ
(L)
K

w
(L)
11

w
(1)
k1

w
(1)
K1

In the process of training a neural network, the weights are first initialized,
most often randomly. In forward propagation, the training samples are passed
through the neural network, calculating all intermediate activations and latent
variables, as well as the output for each. Then the errors of each training
point are calculated in a backward pass through the network. After this, the
derivative with respect to every weight in the network of the contribution
to the error function of each training sample is calculated. These form the
gradient, either batch, mini-batch or stochastic. The weights are updated by
the chosen optimization method.

To get some intuition of what is happening, consider binary classification.

We denote the weights in the last layer by w
(L)
i , since there is only one output

neuron. Because of a(L) =
∑ML

s=1 w
(L)
s z

(L−1)
s , the derivatives with respect to

the weights in the last layer of the nth contribution to the error sum are

∂

∂w
(L)
i

En(w) = (y(xn,w)− tn)z
(L−1)
i

Since y(xn, w) is interpreted as the probability of xn belonging to the
positive class, the difference lies in the interval (−0.5, 0] for tn = 1, if the
network classifies xn correctly as belonging to the positive class, and between
[−1,−0.5) otherwise. If on the other hand, tn = 0, the difference lies in (0.5, 1],
if the network incorrectly puts this sample in the positive class, and in the
interval [0, 0.5) otherwise. This means that, when the weights get updated
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Figure 9.2: Two layer neural network classification with a set of three hidden
neurons using the logistic sigmoid activation function.

by this component of the gradient vector, they are adjusted in a positive
direction, if the sample is in the negative class, and in a negative direction,

if it is in the positive class. The adjustments are weighted by z
(L−1)
i ≥ 0

and the learning rate η > 0. If the network currently classifies the sample
incorrectly, the adjustments are larger. The closer y(xn,w) is to tn, the smaller
the adjustment.

This is comparable to the perceptron updates. There a line, plane or hy-
perplane is pulled, when a sample is misclassified. The direction is such that
the sample is more likely to be classified correctly, if it is seen again. If the
hidden set of neurons employ continuous, non-linear activation functions, non-
linearity is introduced, and the adjustment of weights causes the adjustment
of a curve or manifold.

We illustrate such curves by training a two layer neural network with three
hidden neurons using the logistic sigmoid as activation function to classify the
three classes of the Fisher iris data set. The resulting boundary curves can
be seen in Figure 9.2. It is the result of running Listing 5.5 replacing the
the heaviside activation function with the logistic sigmoid and reducing the
number of hidden neurons to three. All data was used for training.

9.3 Autoencoders
In this section, we examine a group of neural networks known as autoencoders
(AE). The main feature is that the number of output neurons K equals the
number of input neurons D, i.e. K = D, and the purpose is the reconstruction
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of the input data, i.e. y ≈ x. The number of layers L is even, meaning the
number of sets of hidden neurons is odd. The first L/2 layers encode the data.
The latent variables of the set of hidden neurons numbered L/2 represent the
encoded data. The last L/2 layers decode these latent variables to arrive at
the input. The encoder function φ maps the input x = (x1, . . . , xD)T to the

latent variables z(L/2) = (z
(L/2)
1 , . . . , z

(L/2)
ML/2

)T , while the decoder function ψ

maps the latent variables z(L/2) back to x.
While it is possible to implement the bias in each layer with a dummy

neuron, which always has the value 1, it is common to denote it explicitly
as b(l) = (b1, . . . , bMl

)T . It signifies a shift after the linear transformation

given by the weights w
(l)
ji , where i = 1, . . . ,Ml−1 and j = 1, . . . ,Ml. Here

M0 = ML = D. The weights of each layer are stored in the weight matrix

W(l), the (j, i) entry being w
(l)
ji . The vector of activations a(l) = (a1, . . . , aMl

)T

is then
a(l) = W(l)z(l−1) + b(l),

where z(0) = x. The notation h(l)(a(l)) is used to denote the element-wise
application of the activation function h(l) to the entries of a(l).

The error function for the autoencoder is typically the mean squared error ,

E(w) =
1

N

N∑
n=1

‖xn − ψ(φ(xn))‖2.

There are several variants of autoencoders, which adjust the error function
with a particular goal in mind.

Firstly, there is the denoising autoencoder (DAE), where the goal is that
a good representation of the sample is still obtained, even if it is corrupted
by noise. To this end, the training samples x1, . . . ,xn first undergo a proba-
bilistic corruption process giving corrupted training samples x̃1, . . . , x̃n. The
autoencoder is then trained using the error function

E(w) =
1

N

N∑
n=1

‖xn − ψ(φ(x̃n))‖2.

The corrupted data is encoded and decoded and the results compared to the
uncorrupted data.

Secondly, we have sparse autoencoders (SAE). Here, the aim is that only a
certain number of latent variables is non-zero. One possibility is to only keep
the k largest latent variables in a particular set of hidden neurons and set
the others to zero during forward propagation. Backpropagation only passes
through the hidden neurons, whose latent variables are non-zero. This is
known as a k-sparse autoencoder .

The average activation of the mth neuron in the lth set of hidden neurons
is defined as

p(l)
m =

1

N

N∑
n=1

z(l)
m (xn).
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In other words, it averages over all the values the latent variable z
(l)
m takes,

when the samples x1, . . . ,xN pass through the network. The aim is to keep

this value low so that z
(l)
m is zero or close to zero for most inputs and has non-

negligible values for only a subset of inputs. This means the neuron only reacts,
or “fires”, to a small number of inputs, and this way identifying a subset with
common features. The error function includes a penalty term for all hidden

neurons, which is large, if p
(l)
m differs from the predefined sparsity proportion

p, small, if p
(l)
m is close to p, and zero, if they are equal. The Kullback–Leibler

divergence between p and p
(l)
m has the necessary properties.

More specifically, the sparsity regularization penalty term

Ωs =
L−1∑
l=1

Ml∑
m=1

DKL(p‖p(l)
m ) =

L−1∑
l=1

Ml∑
m=1

(
p log

p

p
(l)
m

+ (1− p) log
1− p

1− p(l)
m

)
is added to the error function with a suitable weight β. Suitable values for
both β and p can be chosen by monitoring the convergence and reconstruction
behaviour or via a validation set.

However, when adding this penalty, the latent variables might become
small, while the weights in the subsequent layer become large counteracting
the effect. In order to avoid this, another penalty term, the L2 regularization
term acting on the weights is added as well,

Ωw =
1

2

L∑
l=1

Ml−1∑
j=1

Ml∑
i=1

w
(l)
ji ,

where M0 = ML = D. As before, this is weighted by a suitable parameter λ.
This term penalizes growth in the weights.

Another variation is the contractive autoencoder . Let the encoder function
be φ(x) = (φ1(x), . . . , φML/2

(x))T . Its Jacobian matrix is

Jφ(x) =


∂φ1

∂x1
(x) . . . ∂φ1

∂xD
(x)

...
. . .

...
∂φML/2

∂x1
(x) . . .

∂φML/2

∂xD
(x)

 .

If we would have ML/2 = D, that is the Jacobian matrix is square, then
the modulus of its determinant is the factor by which volumes in RD under
the transformation by φ shrink or expand. The aim is to control this vol-
ume change favouring reductions in volume, therefore the name contractive
autoencoder. However, generally ML/2 6= D. In fact, a much smaller number
than D is desired. The Frobenius norm is a measure of change under these
circumstances.

For a general, real a× b matrix A with entries Aij , the Frobenius norm is
defined as

‖A‖F =
√

tr(ATA) =

√√√√ a∑
i=1

b∑
j=1

A2
ij .
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(a) Image of the three
dimensional unit cube and its
four space diagonals under the

action of a 3× 3 matrix A.

(b) Image of the four
dimensional unit hypercube
under the action of a 3× 4

matrix A.

Figure 9.3: Images of the unit hypercube under mappings from R3 (left) and
R4 (right) to R3. The red edges are the images of the standard basis vectors.

To motivate that this is a measure of change, consider a = b = 3. The
squared Frobenius norm is then the average of the squared lengths of the
space diagonals of the parallelepiped spanned by the columns of A. Figure
9.3a gives an example for

A =

 1 0 1/2
1/2 1 0
0 −1/2 1

 .

This parallelepiped is the image of the unit cube under the action of A. A
space diagonal is the the line segment connecting two vertices which are not
on the same face. They are given by the vectors

d1 = a1 + a2 + a3

d2 = a1 + a2 − a3

d3 = a2 + a3 − a1

d4 = a3 + a1 − a2.

Calculating (dT1 d1 + dT2 d2 + dT3 d3 + dT4 d4)/4 results in aT1 a1 + aT2 a2 + aT3 a3

which is exactly the square of the Frobenius norm of A.
Figure 9.3b illustrates the action of a 3×4 matrix on the four dimensional

hypercube. The result is a polyhedron. In particular, the matrix is

A =

 1 −1 −1 1
1 1 −1 −1
1 1 1 1

 .

The red edges are the columns of A and span the polyhedron. All other vertices
are sums of these vectors.
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For the contractive autoencoder, the penalty term

ΩF =
1

2

N∑
n=1

‖Jφ(xn)‖2F =
N∑
n=1

tr(Jφ(xn)TJφ(xn)) =
N∑
n=1

ML/2∑
m=1

D∑
d=1

[
∂φm
∂xd

(xn)]2

is added to the error function, again multiplied by a weight λ.
The autoencoders so far produce, once trained, latent variables z(L/2) de-

terministically from which the output is calculated in a deterministic way. The
variational autoencoder takes a different approach. The assumption is that the
data are sampled from some distribution p(x), where

p(x) =

∫
p
(
x|z(L/2)

)
p
(
z(L/2)

)
dz(L/2).

Further, it is assumed that p(x|z(L/2)) follows a normal distribution with mean
ψ(z(L/2)) and variance σ2I, where I is the D ×D identity matrix. The prior
probability distribution of z is the standard multivariate normal distribution.
The overall probability p(x) can be estimated by by sampling many values

z
(L/2)
1 , . . . , z

(L/2)
K and then calculating

p(x) =
1

K

K∑
k=1

p(x|z(L/2)
K ) =

1

K

K∑
k=1

(2πσ2)−D/2 exp

(
− 1

2σ2
‖x− ψ(z(L/2))‖2

)
.

The complete data likelihood is estimated as

N∏
n=1

p(xn) =

N∏
n=1

1

K

K∑
k=1

(2πσ2)−D/2 exp

(
− 1

2σ2
‖xn − ψ(z(L/2))‖2

)
.

Maximizing this is equivalent to minimizing the negative logarithm. However,
this does not result in a convenient sum of squares as before because of the
sum resulting from the estimation of p(xn) Another computational difficulty
is that K might need to be large (especially in high dimensions) to obtain a
good estimate. In addition, sampling is not a continuous operation and thus
not differentiable. So error backpropagation cannot be applied.

Variational autoencoders address these problems. The first step is to reduce
K, by choosing p(z(L/2)) such that only values of z(L/2) are sampled which are
likely to produce samples of x. In other words, the aim is to find p(z(L/2)|x).
For this, the encoder is used. To make this clear in notation the encoder gives
an estimate pφ(z(L/2)|x) as a normal multivariate distribution. The function
φ does not return z(L/2), but

(µ(x),Σ(x)) = φ(x).

To keep the number of variables manageable, Σ(x) is restricted to be diago-
nal, that is Σ(x) = diag(σ2

1 , . . . σ
2
ML/2

). Hence, φ(x) calculates 2ML/2 latent

variables.
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In order to use back propagation, the sampling is moved to the input
neurons, where a vector η = (η1, . . . ηML/2

)T is sampled from the standard
normal distribution in ML/2 dimensions. With this,

z(L/2) = µ(x) + Σ1/2(x)η =

 µ1(x) + σ1(x)η1

...
µML/2

(x) + σML/2
(x)ηML/2

 .

The schematics are

x1

...

xd

...

xD

µ1

σ1

...
µm

σm

...
µML/2

σML/2

η1

...

ηm

...

ηML/2

z
(L/2)
1

...

z
(L/2)
m

...

z
(L/2)
ML/2

ψ1(z(L/2))

...

ψd(z
(L/2))

...

ψD(z(L/2))

.

For clarity the input neurons are shaded grey. As before, the dotted lines
indicate that any combination of hidden neurons, layers and transfer functions
is possible, making use of the capability of neural networks to model any
function.

The error function is the sum over all training data xn of − log p(xn) and
the Kullback-Leibler divergence between pφ(z(L/2)|xn) and p(z(L/2)|xn). One
term of this sum is given by

En = − log p(xn) +DKL(pφ(z(L/2)|xn)‖p(z(L/2)|xn))

=

∫
pφ(z(L/2)|xn)

[
− log p(xn)− log

p(z(L/2)|xn)

pφ(z(L/2)|xn)

]
dz(L/2).

Using Bayes’ rule

p(z(L/2)|xn) =
p(xn|z(L/2))p(z(L/2))

p(xn)
,
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which simplifies to

En =

∫
pφ(z(L/2)|xn)

[
− log

p(z(L/2))

pφ(z(L/2)|xn)
− log p(xn|z(L/2))

]
dz(L/2)

= DKL(pφ(z(L/2)|xn)‖p(z(L/2)))

−
∫
pφ(z(L/2)|xn) log p(xn|z(L/2))dz(L/2).

The first term is the Kullback–Leibler divergence between the normal dis-
tribution with mean µ(xn) and variance Σ(xn) and the standard normal
distribution which is the prior of z(L/2). This is given by

DKL(pφ(z(L/2)|xn)‖p(z(L/2))) =

1

2

[
trΣ(xn) + µ(xn)Tµ(xn)−ML/2 − log |Σ(xn)|

]
=

1

2

ML/2∑
m=1

[
σ2
m(xn) + µ2

m(xn)− log σ2
m(xn)

]
−
ML/2

2
,

where the last equation is due to choosing the variance to have diagonal form.
The second term is the negative expectation of log p(xn|z(L/2)) with re-

spect to z(L/2). Now z(L/2) = µ(xn)+Σ1/2(xn)η, where η follows the standard
normal distribution and is sampled in additional input neurons. It is therefore
customary to enrich the training samples with samples drawn from the stan-
dard normal distribution to arrive at new training samples xnk = (xn,ηk)T

for n = 1, . . . , N and k = 1, . . . ,K for some suitably chosen K. The second
term is then estimated as

− log p(xn|µ(xn) + Σ1/2(xn)ηk) =

D

2
log(2πσ2) +

1

2σ2
‖xn − ψ(µ(xn) + Σ1/2(xn)ηk)‖2.

Each term in the sum over k is treated separately in the error function.
Removing constant terms the nkth term of the error function, which needs to
be minimized, is given by

Enk =
1

2

ML/2∑
m=1

[
σ2
m(xn) + µ2

m(xn)− log σ2
m(xn)

]
+

1

2
‖xn − ψ(µ(xn) + Σ1/2(xn)ηk)‖2.

This is continuous and therefore error backpropagation can be used to calcu-
late gradients to be used in the minimization as explained in Section 9.2.
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9.4 Autoencoder Example
We apply a sparse autoencoder to the MNIST data set of handwritten digits
by [26] and compare and link this method to the techniques we have already
encountered. For this data, D = 784, and the components of x are the indi-
vidual pixel values.

The simplest autoencoder has two layers. Schematically, it is represented
as

x1

...

xd

...

xD

z1

...
zm

...
zM

y1

...

yd

...

yD

w
(1)
11

w
(1)
m1

w
(1)
M1

w
(2)
11

w
(2)
d1

w
(2)
D1

In this simple case, the encoder and decoder functions are

φ(x) = h(1)(W(1)x + b(1)) and ψ(z) = h(2)(W(2)z + b(2)).

If W(2) = W(1)T , then the weights are tied . However, in this example we do
not enforce this, but let them be independent from each other.

Both h(1) and h(2) are chosen to be the logistic sigmoid applied element-
wise. Since the output range of the logistic sigmoid is [0, 1] and autoencoders
reconstruct the input, the pixel values of the input images need to be rescaled
to lie between zero and one as a pre-processing step.

Valuable insight can be gained from visualizing how the activations and
latent variables are separated spatially. This is easily possible for M = 1, 2 or
3. In the following, we show one technique of how this can be done for larger
M .

The activations in the output layer are given by

W(2)z + b = z1w
(2)
1 + . . .+ zMw

(2)
M + b,

where w
(2)
1 , . . . ,w

(2)
M are the columns of W(2). The elements of the mth column

are the weights of the synapses connecting the mth hidden neuron to the
output neurons. Since the activations are clearly a linear combination of the
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(a) Spatial separation of
activations.

(b) Spatial separation of
latent variables.

(c) First basis. (d) Second
basis.

(e) Bias.

(f) Original. (g) Reconstruction.

Figure 9.4: Autoencoder with two hidden neurons applied to two digits.

columns and the bias, the columns can be seen as the basis functions of the
model space from which the data is generated. The bias is a shift in the data
space, necessary to reconstruct all training data. If the data is mean centred ,
such a shift is unnecessary and the bias is zero. The application of the transfer
function ensures that the output lies again in the same range as the input.

The error function to minimize is

E(w) =
1

N

N∑
n=1

‖xn − ψ(φ(xn))‖2 + βΩs + λΩw,

where the sparsity regularizer Ωs and the L2 regularizer Ωw are penalty terms
to ensure sparsity and control the growth of the weights. After some trials, β
was set to 4, while λ = 0.004. Ωs also depends on the sparsity proportion p
which was chosen to be 0.15.
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While it is desirable in neural networks to choose the number of hidden
neurons smaller than the dimension of the input data, the assumption is that
it needs to be chosen large enough so that the distinguishing features in the
data are captured. However, what does large enough mean? To understand
the inner workings of an algorithm it is helpful to look at smaller problems.
In our first experiment, we therefore only consider the digits zero and one.
Since only two classes need to be distinguished, we set the number of hidden
neurons M to two. Figure 9.4 shows the results.

Firstly, in Figure 9.4a it can be seen that the activations of the training
data are separated. It is a two dimensional space, since there are two hidden
neurons. This space becomes close to the space spanned by the first two prin-
cipal components of the training data, because there the data is most easily
separated and this is the goal of the encoder. The transfer function emphasizes
this separation, which can be seen in Figure 9.4b.

Secondly, the latent space is spanned by the two bases seen in Figures
9.4c and 9.4d. The numeric values at each pixel location are indicated by the
colour bar. The first basis resembles a slanted one written over a zero, while
the second is similar to a straight one over a zero. The bias resembles a zero.
Different runs can arrive at different configurations of the bases and bias, since
the neural network is initialized randomly.

Since the autoencoder strives to reconstruct the input, the basis functions
it chooses resemble digits or over-laid digits to the human eye, while principal
component analysis focuses on the largest eigenvalues and the principal com-
ponents do not resemble digits and neither do the resulting reconstructions.

In Figure 9.5 another digit was included, but the set-up was kept the
same. The reconstructions in Figure 9.5g are discernible, which cannot be said
about Figure 7.3b where the reconstruction is done using principal component
analysis. One might imagine a two in Figure 9.5c, a one in Figure 9.5d and a
zero as the bias in Figure 9.5e. The separations in Figure 9.5b are not clear
for digits zero and two, while they are still well separated in Figure 9.5a.
This is mostly due to the position of the zero on the horizontal axis, since for
zero the logistic sigmoid function evaluates to 0.5 making both classes equally
likely. However, samples of one and two are mostly present there and these are
separated along the vertical axis. The separation can be improved by shifting
the activations right such that the zero point of the horizontal axis lies where
the digits zero and two separate.

Alternatively, the number of hidden neurons can be increased to three. The
results are shown in Figure 9.5. The reconstructions are good and the basis
functions resemble elements of digits. In Figure 9.5b, the latent variables of
the digit zero are packed at the (0, 0, 0) corner of the unit cube, while those of
the digit one lie along the edges connecting the (0, 1, 0), (0, 1, 1), (0, 0, 1) and
(1, 0, 1) corners. Hence they are separated.

To examine this further, we consider all ten digits and increase M to ten.
To visualize the separation, Figures 9.7a to 9.7j display the stacked histograms
(with one hundred bins) of the activations for each of the digits along the ten
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(a) Spatial separation of
activations.

(b) Spatial separation of
latent variables.

(c) First basis. (d) Second
basis.

(e) Bias.

(f) Original. (g) Reconstruction.

Figure 9.5: Autoencoder with two hidden neurons applied to three digits.

dimensions of the model space. While the set of digits as a whole seems to
be centred around a mean in each of the dimensions, some digits move away
from this. For example, in Figure 9.7a digits two, three and eight lie further
to the right in this dimension, while in Figure 9.7c it is digits two and six. In
Figure 9.7i the digits to the right are mostly one. Applying the logistic sigmoid
maps activations to the right close to one, while those to the left are mapped
close to zero. Figures 9.7k and 9.7l show the proportions of digits which get
mapped close to zero and one in each of the ten dimensions corresponding
to the hidden neurons. While nearly all digits are present close to zero, near
one some digits are dominant. This means these neurons “fire” for particular
digits.

The following table indicates for which digits an individual neuron “fires”.
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(a) Spatial separation of
activations.

(b) Spatial separation of
latent variables.

(c) First basis. (d) Second
basis.

(e) Third basis. (f) Bias.

(g) Original. (h) Reconstruction.

Figure 9.6: Autoencoder with three hidden neurons applied to three digits.

Neuron
Digit

0 1 2 3 4 5 6 7 8 9

1 × × ×
2 × × × ×
3 × ×
4 × ×
5 × ×
6 × × ×
7 × × × ×
8 × ×
9 × ×
10 × ×
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) Latent
variables near

zero.

(l) Latent
variables near

one.

Figure 9.7: Distributions of activations and latent variables.

The table can also be read in the other direction telling us the input from
which neurons is necessary to construct a particular digit. For example, digit
four is mostly constructed from input from the eighth neuron, digit seven
mostly from input from the tenth neuron, while digit nine is a mixture of the
eighth and tenth neuron. We can now compare this to basis functions corre-
sponding to each neuron given in Figure 9.8. In particular for these examples,
the basis functions are shown in Figures 9.8h and 9.8j and indeed digits four,
seven and nine can be seen in these. Similarly, digit one can be seen in Figures
9.8d and 9.8i. The other basis functions are not so clearly linked to a partic-
ular digit, but it has to be kept in mind that the requirement is that a digit
can be reconstructed by a linear combination of the basis functions, not that
a single basis function corresponds to a digit.

The bias is displayed in Figure 9.8k. It can be interpreted as the summary
of what all samples have in common. Since the digits are centred in the image,
the bias is this centre.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) Bias.

Figure 9.8: Basis functions and bias of an autoencoder with ten hidden
neurons.

9.5 Relationship to Other Techniques
In this section, we examine how neural networks relate to some of the tech-
niques we have seen before. We already touched on this in Section 5.5 with
regards to classification where a neural network describes different regions as
sets of points lying on different sides of a set of lines.

In Chapter 8, the assumption is that all samples are generated by an
underlying process of the form

t = Dc + ε,

where ε is additive Gaussian noise with zero mean and variance σ2, the D×M
matrix D is the design matrix, c is the vector of coefficients, which depends
on both D and t.

Recall that the prediction of the ordinary least squares solution, where D
is chosen beforehand, is

Dc = D(DTD)−1DT t.
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Schematically, this can be visualized as

t1

...

td

...

tD

(DT t)1

...
(DT t)m

...
(DT t)M

c1 = ((DTD)−1DT t)1

...
cm = ((DTD)−1DT t)m

...
cM = ((DTD)−1DT t)M

(Dc)1

...

(Dc)d

...

(Dc)D

This is reminiscent of a three layer neural network with two sets of hid-
den neurons and the linear activation function, which is the identity, in each
neuron. The weights of the synapses from the input neurons to the first set of
hidden neurons are given by the entries of the matrix DT , while the weights
of the synapses from the first to the second set of hidden neurons are given
by the entries of the matrix (DTD)−1. Lastly, the weights from the second
set of hidden neurons to the output neurons are given by the matrix D. The
variables of the second set of hidden neurons are the coefficients c1, . . . , cM .

In a neural network, however, the weights of the synapses are updated
iteratively in a learning process, until the output is similar enough to the input.
In ordinary least squares, all is entirely determined by the design matrix D,
which only depends on the chosen basis functions, but not t1, . . . , tD. However,
if a set of training data t1, . . . tN is available, they can be fed through this
neural network. The error sum of squares between the predictions and the
input is

E(D) =
N∑
n=1

(
tTn tn − tTnD(DTD)−1DT tn

)
,

since it is the ordinary least squares solution. The derivative with regards to
the entry Dij of D is

∂

∂Dij
E(D) =

N∑
n=1

(
(DTD)−1DT tn

)
j

(
D(DTD)−1DT tn − tn

)
i
,

where the subscript of the brackets denotes the component of the vector in
the brackets. It is the sum over the training data of the products of the latent
variable of the jth neuron in the second set of hidden neurons with the error
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in the ith output neuron, when the nth training sample passes through the
network. The thus obtained gradient can be used to update the entries of D.
Note that this effectively means only updating the weights in the final layer
giving a new matrix D, since the weights of the other layers are given by DT

and (DD)−1. This inverse might not exist, which is an inherent problem of
ordinary least squares, which can be addressed by ridge regression as seen in
equation 8.3. Thus the design matrix can be inferred from the data, if there
are enough data samples tn.

The matrix DDT is symmetric and positive semi-definite. It can be diag-
onalized by an orthogonal matrix Q such that DDT = QPQT , where P is a
diagonal matrix with non-negative entries. Thus the predictions are

D(DTD)−1DT t = D(QP1/2P1/2QT )−1DT t

= (DQP−1/2)(P−1/2QTDT )t

= (DQP−1/2)(DQP−1/2)T t.

This is a tied two-layer autoencoder with the linear function as activation
function. The weights of the first layer are given by the entries of (DQP−1/2)T

and those of the second layer by DQP−1/2. This illustrates again the link
of the weights of an autoencoder to the model space which was originally
defined as the columns of D being functions evaluated at the points, where
data samples are taken. The application of P−1/2 are different scalings of the
hidden variables, while Q is either a rotation or a reflection, since it is an
orthogonal matrix.

Continuing in this vein, the mean of the predictive distribution for t in
Section 8.13 is given by

Dµ = σ−2DΣDT t.

Schematically, this can be drawn as

t1

...

td

...

tD

(DT t)1

...
(DT t)m

...
(DT t)M

µ1 = σ−2(ΣDT t)1

...
µ1 = σ−2(ΣDT t)m

...
µ1 = σ−2(ΣDT t)M

(Dµ)1

...

(Dµ)d

...

(Dµ)D

Changing dynamically with the addi-
tion and deletion of basis functions
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Again, it can be viewed as a neural network with two sets of hidden
neurons. As before, the weights from the input neurons to the first set of
hidden neurons are given by the entries of DT , and from the second set of
hidden neurons to the output neurons by the entries of D. The weights be-
tween the two sets of hidden neurons are given by the entries of σ−2Σ. Since

Σ =
(
A + σ−2DTD

)−1
and since the entries of A are determined by maxi-

mizing the log evidence of t, the weights between the hidden neurons depend
on both the design matrix D and t1, . . . , tD. The number of hidden neurons in
each set, M , can change dynamically which is equivalent to the addition and
deletion of basis functions. Equally, the number of input and output neurons
can increase, if samples are taken at previously unseen locations.

As before with ordinary least squares, a set of training data t1, . . . , tN can
be used to infer the entries of D. Whenever D is updated, A needs to be
updated by maximizing the log evidence of t again.

9.6 Indian Buffet Process
The last section suggests a technique of inferring a model space with variable
dimension. In this section, we consider the data generation process similar to
the Chinese Restaurant Process in Section 6.6 where the number of clusters
is unknown. Now the dimension of the latent feature space is unknown.

As in the previous section, let t1, . . . , tN be a set of data samples in a D
dimensional space. We assume that for n = 1, . . . , N

tn = Dcn + εn,

where εn is additive Gaussian noise with zero mean and variance σ2I specific
to this data sample, the columns of the D ×M matrix D represent latent
features, and cn is the sample specific vector of coefficients.

Commonly, this is represented as

T = CDT +E,

where T is the N×D matrix of data samples with each row being one sample,
C is the N ×M matrix of coefficients, and E is a N × D matrix with each
entry being drawn from a normal distribution with zero mean and variance
σ2. In this context, D is the factor loading matrix and its columns are the
factor loadings, while C is the coordinate matrix .

From the data generation viewpoint, we allow the number of columns in
C and number of rows in DT , which is M , to be infinite. While infinity is
conceptually a difficult concept, it can be dealt with by imposing that only
a finite, small number of entries in each row of C are non-zero. In practical
terms, this means that we only see a finite amount of data and each data
sample is generated as a finite linear combination of features. Other features
from the infinite set are those which we have not yet encountered in our data.
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To this end, the matrix C is written in terms of a binary indicator matrix
Z and a weight matrix W. That is

C = Z�W,

where � denotes the element-wise, Hadamard product .
The data generation is likened to customers choosing dishes from an In-

dian Buffet, hence the name Indian Buffet Process (IBP). The customers are
indexed by 1, . . . , n, . . . , N . There are infinitely many dishes, but not all have
been chosen yet. These are the latent features indexed by m. M is the number
of different dishes chosen so far.

The number of dishes i1 the first customer chooses is drawn from a Poisson
distribution with rate λ, which is the expected number of dishes each customer
chooses. In matrix Z, the first i1 entries of the first row are set to one and
M = i1. M is the number of distinct dishes chosen so far. The amount he
takes from each dish is recorded in the first row of matrix W.

The nth customer chooses from the M dishes any of the previous customers
have already chosen with probability jm/n, if dish m was chosen jm times. In
other words, jm is the number of non-zero entries in column m above row n
in matrix Z. If he chooses a particular dish m, then a one is placed in the mth

column of the nth row of Z. He also tries in new dishes, where in is drawn from
a Poisson distribution with rate λ/n. These are indicated by ones in columns
with numbers M + 1, . . . ,M + in in the nth row. M is updated to M + in.
Again, the amount of each dish is recorded in the nth row of W.

Since λ/n decreases with every new customer, the probability that he will
choose even just one new dish decreases, but does not become zero. This means
that if our model space does not have enough features to explain the data,
there is a non-zero probability to create a feature which will help explain the
data.

In each row, the expected number of non-zero entries is λ. This is true
for the first row, since the expectation of a Poisson distribution is given by
the rate λ. Assume that the expected number of non-zero entries for rows
1, . . . , n− 1 is λ. The expected number of nonzero entries in the nth row is

E[

M∑
m=1

jm
n

] +
λ

n
=

1

n
E[

M∑
m=1

n−1∑
k=1

Zkm] +
λ

n

=
1

n

n−1∑
k=1

E[

M∑
m=1

Zkm] +
λ

n

=
(n− 1)λ

n
+
λ

n
= λ,

where Zkm denotes the (k,m) entry in matrix Z. By induction, this proves
that the expected number of non-zero entries in each row is λ.

Since the probability of choosing a particular dish depends on the number
of times it has been the choice of any of the previous customers, we again
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encounter the rich-get-richer phenomenon. Since the number of customers
N is finite, so is the final number of sampled dishes M . Those chosen by
many customers relate to features which are common in most of the data
samples. These are sometimes referred to as global features, while those dishes
chosen only by a few customers indicate local features, which can be used to
distinguish between data samples.

This process of generating the data is independent of the order the cus-
tomers arrive. A different order of customers means multiplying Z by a per-
mutation matrix from the left which changes the row order. We follow this up
with a permutation matrix from the right which swaps columns so that the
number of leading zeros in each column is increasing from left to right, be-
cause each subsequent customer can choose new dishes. Such a permutation is
equivalent to relabeling the dishes. The matrix of weights W is multiplied by
the same permutation matrices from left and right as Z. These permutations
are not performed explicitly, but serve to explain that the choice of order in
which samples are generated does not influence the final outcome.

The previous paragraph indicates a preferred order of dishes. More specif-
ically, given an order of customers (rows of Z), the columns of Z are ordered
using their binary nature. Each column is interpreted as a binary number with
the most significant bit in the first row and the least significant one in the last.
The columns are ordered in decreasing magnitude of these binary numbers.
Two columns might represent exactly the same binary number. This means
two dishes were chosen by exactly the same set of customers. In this case,
we have freedom of choice in the order of the columns representing the same
binary number. This is known as left-ordering of binary matrices.

There are M ! possible labelings of the dishes. We need to divide this by
the number of possible equivalences. Let K be the number of distinct columns
and let mk be the number of occurrences of the distinct column k for k =
1, 2, . . . ,K. That is

M =
K∑
k=1

mk.

The number of possible equivalences in relabeling is

K∏
k=1

mk!.

Hence the number of different ways the same data can have been generated is

M !∏K
k=1mk!

.

The above describes a prior distribution p(Z). Also a prior distribution
for W needs to be specified. This is done by specifying distributions for the
elements of W. Possible choices are, for example, the normal distribution as
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seen in Figure 2.2 or the Laplace distribution shown in Figure 2.18. Lastly,
prior distributions for each of the columns of D need to be defined.

The learning process updates the parameters of these distributions ac-
cording to the data, and specific instances are sampled. More specifically, D
is kept fixed while the distributions of Z and W are updated. After instances
of Z and W are sampled, they are kept fixed and the distributions of D are
updated. Several passes through the data are necessary.

The process is similar to the Dirichlet process described in Section 6.7. The
exact workings are, however, beyond the scope of this book. An introduction
and review can be found in [19]. An example in image processing is provided
by [11], where the building blocks making up the image are inferred from the
image itself in contrast to engineered blocks as shown in Figure 7.1.



Appendix A: Matrix
Formulae

A.1 Determinants and Inverses
A.1.1 Block Matrix Inversion

For an m×m invertible, square matrix A, an n× n invertible square matrix
D, an m× n matrix B and an n×m matrix C, we have(

A B
C D

)−1

=

(
A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

)
=

(
F−1 −F−1BD−1

−D−1CF−1 D−1 + D−1CF−1BD−1

)
,

where E = D−CA−1B and F = A−BD−1C need to be non-singular.

A.1.2 Block Matrix Determinant

For matrices as above,∣∣∣∣ A B
C D

∣∣∣∣ = |A||D−CA−1B| = |A−BD−1C||D|.

A.1.3 Woodbury Identity

For an m×m invertible, square matrix A, an n× n invertible square matrix
C, an m× n matrix B and an n×m matrix D, we have

(A + BCD)−1 = A−1 −A−1B(C−1 −DA−1B)−1DA−1.

A.1.4 Sherman–Morrison Formula

In particular, if n = 1 in the above Woodbury identity, then C = c is a scalar
and B = b and D = dT are vectors. The identity becomes

(A + cbdT )−1 = A−1 − 1

1/c− dTA−1b
A−1bdTA−1,

297



298 � Appendix A

known as the Sherman–Morrison formula. For this to be valid, we need 1/c−
dTA−1b 6= 0.

A.1.5 Matrix Determinant Lemma

For matrices as in the above Woodbury identity, the determinant can be cal-
culated as

|A + BCD| = |C−1 −DA−1B||C||A|.

A.2 Derivatives
A.2.1 Derivative of Squared Norm

Let x be a general vector; then the derivative of the squared Euclidean norm
is

∂

∂x
‖x‖22 =

∂

∂x
xTx = 2x.

A.2.2 Derivative of Inner Product

Let x be a general vector and a a constant vector of the same length; then
the derivative of the inner product between them is

∂

∂x
xTa =

∂

∂x
aTx = a.

A.2.3 Derivative of Second Order Vector Product

Let x be a general vector of length m and b and e constant vectors of length
n. Further let A and D be constant n×m matrices and C a constant n× n
matrix; then

∂

∂x
(Ax + b)TC(Dx + e) = ATC(Dx + e) + DTCT (Ax + b).

A.2.4 Derivative of Determinant

Let X be a square matrix and let | · | denote the determinant. Then

∂

∂X
|X| = |X|(X−1)T .

Let X depend on a variable x, then

∂

∂x
|X| = |X|tr

(
X−1 ∂X

∂x

)
,

where tr(·) denotes the trace.



Appendix A � 299

A.2.5 Derivative of Matrix Times Vectors

Let X be a m × n matrix and a and b constant vectors of length m and n
respectively. Then

∂

∂X
(aTXb) = abT .

A.2.6 Derivative of Transpose Matrix Times Vectors

Let X be a m × n matrix and a and b constant vectors of length n and m
respectively. Then

∂

∂X
(aTXTb) = baT .

A.2.7 Derivative of Inverse

Let X be an invertible matrix, where the entries depend on a variable x. Then

∂

∂x
X−1 = −X−1 ∂X

∂x
X−1.

A.2.8 Derivative of Inverse Times Vectors

Let X be an invertible n × n matrix and a and b constant vectors of length
n, then

∂

∂X
(aTX−1b) = −(X−1)TbaT (X−1)T .

A.2.9 Derivative of Trace of Second Order Products

Let X be a general m×n matrix, A,B and C constant matrices of dimensions
k ×m,n× n and m× k respectively. Then

∂

∂X
(AXBXTC) = ATCTXBT + CAXB.

A.2.10 Derivative of Trace of Product with Diagonal Matrix

Let A be a constant square matrix and X a diagonal matrix of the same
dimension. tr(· · · ) denotes the trace. Then the derivative of the trace of the
product is

∂

∂X
tr(AX) = diag(A),

where diag(A) is a diagonal matrix with the same diagonal as A.
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activation function, 133, 265
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active, 102
AdaBoost, 138
adaptive boosting, 138
adaptive rejection sampling, 72
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average activation, 278

base distribution, 44, 166
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Bayes’ law, 10
Bayes’ theorem, 10
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Bayesian Information Criterion, 235
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beta distribution, 37
beta function, 38
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binary classification, 90
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binary matrix
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binomial distribution, 23
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boosting, 138
adaptive, 138

Box—Muller transform, 66
basic, 67
polar, 67

burn-in, 84

χ2-distribution, 48, 51
CAE, 279
canonical link, 274
cascade, 138, 141
categorical, 25, 57, 89
categorical distribution, 26, 57
cdf, 18
central limit theorem, 14, 31
central moment, 19

normalized, 19
centred

mean, 216
chain rule, 239
change-of-variable technique, 47, 53
characteristic length scale, 118
chi-square(d) distribution,

48, 51
Chinese Restaurant Process, 181
classification, 89

binary, 90
linear, 89
non-linear, 109

clustering, 149
coefficients, 217
collapsed Gibbs sampling, 177
complementarity, 104
complete, 159
completion of squares, 32
concave, 71
concentration, 40, 44, 178, 181
conditional probability, 9, 154
confidence ellipse, 84, 92
confounding, 13
confusion matrix, 142
conjugacy, 59
conjugate, 56
conjugate distribution, 56
conjugate gradient, 272

constraint
active, 102
inactive, 102

constraint optimization, 58
continuous, 89
contractive autoencoder, 279
coordinate matrix, 293
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covariance, 27

sample, 93
covariance matrix

isotropic, 196
spherical, 196

criterion, 217
cross-entropy, 127, 268
cross-validation, 230

exhaustive, 230
k-fold, 230
leave-p-out, 230
leave-one-out, 230
non-exhaustive, 230

CRP, 181
crude moment, 19
cumulative distribution function, 18
curse of dimensionality, 73
curve fitting, 213

DAE, 278
decision tree, 123
deep learning, 4, 6
denoising autoencoder, 278
dependent, 8, 217
design matrix, 218
detailed balance, 76, 79
deviance, 127
dictionary, 216
dimensionality reduction, 189
directed, 59
Dirichlet distribution, 40, 58, 166

flat, 40
symmetric, 40

Dirichlet process, 188
discrete, 89
discrete variable, 7
discretize, 13
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Discriminant Analysis
Fisher’s, 93
Linear, 93, 96
Quadratic, 110

discrimination information, 240
dispersion, 178
distribution, 57

base, 44
Bernoulli, 21
beta, 37
binomial, 23
χ2, 48, 51
categorical, 26, 57
chi-square(d), 48
conjugate, 56
Dirichlet, 40, 58
exponential, 34, 50, 51, 72
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Galton, 30
gamma, 50
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geometric, 24
Laplace, 36
log-normal, 30
multinomial, 27
multivariate, 26
normal, 14
Poisson, 25, 294
standard normal, 14
symmetric Dirichlet, 40
uniform, 11
univariate, 26
Weibull, 65

dot product, 91
doubly stochastic matrix, 77
drunkard’s walk, 81
dual, 104
dual representation, 105

E-step, 166
edge, 59
effects, 217
elastic net regularization, 235
EM, 166, 239
endogenous, 217

entropy, 15
entropy measure, 234
equilibrium, 80
ergodic theorem, 80
error

exponential, 138
error backpropagation, 275
error sum of squares, 220, 268, 291
ESS, 220, 268
Euclidean norm, 91, 117, 123, 150,

220, 222, 235
evidence, 10
exhaustive cross-validation, 230
exogenous, 217
expectation, 18
Expectation-Maximization, 166, 239
explanatory, 217
exponential distribution, 34, 50, 51,

72
exponential error, 138
exponential kernel, 118
exponentiated quadratic kernel, 118

factor
normalizing, 10

factor loading matrix, 293
factor loadings, 205, 293
factorial, 22, 38
fall-out, 142
false, 133
false negative rate, 142
false negatives, 142
false positive rate, 142
false positives, 142
feasible set, 103
feature

global, 295
local, 295

feature detection, 5
feature learning, 263
features, 89
feed-forward, 266
first moment, 18
Fisher’s Discriminant Analysis, 93
flat Dirichlet distribution, 40
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fold, 230
forward propagation, 266
FP, 142
FPR, 142
Frobenius norm, 279
Fundamental Theorem of Calculus,
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Galilei
Galileo, 2

Galton distribution, 30
gambler’s ruin, 81
gamma distribution, 50
gamma function, 37
Gaussian activation function, 135
Gaussian distribution, 14
Gaussian kernel, 118
Gaussian Mixture, 156
Gaussian process, 254
Gaussian random field, 254
gdi, 126
Generalized Portrait Method, 105
geometric distribution, 24, 71
Gibbs sampling, 86

collapsed, 177
Gini Diversity Index, 126
global feature, 295
gradient, 95
gradient descent, 271

mini-batch, 272
online, 272
sequential, 272
stochastic, 272

Gram matrix, 114, 254
Gramian matrix, 114
graph

directed, 59

Hadamard product, 294
hard clustering, 150
hard-limit transfer function, 133
Heaviside step function, 133
hidden, 56, 132, 137, 150
histogram, 11
homogeneous, 75

homoscedasticity, 217
hyper-prior, 61
hyperbolic tangent, 135
hyperbolic tangent kernel, 116
hyperparameter, 239
hyperparameters, 55
hyperplane, 91
hypothesis

null, 16

i.i.d., 15, 217, 238
IBP, 294
ICA, 196
idempotent, 209
identifiability, 156
importance sampling, 73
importance weights, 73
impurity, 125
inactive, 102
incomplete, 159
independent, 8, 217
independent and identically

distributed, 15, 217
Independent Component Analysis

(ICA), 196
Indian Buffet Process, 294
Information Criterion

Akaike, 235
Bayesian, 235

information divergence, 240
information gain, 240
inner product, 91
input, 132, 217
integration by parts, 20, 21, 36, 37
interpolation, 213
invariant, 76
inverse multiquadratics, 136
inverse multiquadric kernel, 118
inverse probability integral

transform, 64
inverse scale matrix, 167
inverse transform sampling, 64
inverse transformation, 64
inverse Wishart distribution, 168
inversion sampling, 64
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irreducible, 76, 82
isolines, 102
isotropic covariance matrix, 196

Jacobian, 53
determinant, 53
matrix, 53

joint probability, 7

K means clustering, 150
K-medoids, 151
k Nearest Neighbours, 123
k-NN, 123
k-fold cross-validation, 230
k-sparse, 235
k-sparse autoencoder, 278
kernel, 114, 208

exponential, 118
exponentiated quadratic, 118
Gaussian, 118
hyperbolic tangent, 116
inverse multiquadric, 118
linear, 116
multiquadric, 118
polynomial, 116
quadratic, 116
rational quadratic, 118
sigmoid, 116
squared exponential, 118
thin plate spline, 118
trivial, 116

kernel matrix, 210
kernel trick, 4, 106, 113
KL divergence, 164, 240
Kronecker delta, 257
Kullback–Leibler divergence, 164,

240, 279, 282
kurtosis, 19, 31, 196

L0 regularization, 235
L1 regularization, 235
L2 norm, 91, 117, 123, 150, 220, 222,

235
L2 regularization, 235
Lp norm, 238
L2 regularization, 279, 285

Lagrange multiplier, 58, 103, 155
Lagrangian, 103
Lagrangian function, 191
Laplace distribution, 36
LASSO, 235
latent, 56, 59, 60, 137, 150, 217
law of parsimony, 223
LDA, 96
leaf, 123
learner

strong, 138
weak, 138

learning
deep, 4, 6
supervised, 4, 6
unsupervised, 5

learning rate, 100, 272
Least Absolute Shrinkage and

Selection Operator, 235
Least Squares

Ordinary, 220
leave-p-out cross-validation, 230
leave-one-out cross-validation, 230
left stochastic matrix, 77
left-order, 295
leptokurtic, 21
lest squares

partial, 233
level of significance, 17
level-crossing phenomenon, 81
likelihood, 10, 54, 109, 110, 220

marginal, 239
linear, 4
linear activation function, 135, 265
linear classification, 89
linear combination, 217
Linear Discriminant Analysis, 93, 96,

110
linear kernel, 116
linear regression, 217
link, 59
location parameter, 37
location vector, 166
log concave, 72
log evidence, 240, 244
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log likelihood, 55, 155, 197, 220
log-normal distribution, 30
logistic regression, 136
logistic sigmoid, 135, 266
look elsewhere effect, 17
lossy data compression, 151

m-permutation, 22
M-step, 166
manifold, 208
many-to-one, 48
margin, 102
marginal, 8
marginal likelihood, 239
marginalizing, 8, 154, 239
Markov chain, 75

absorbing, 81
aperiodic, 77
irreducible, 76

Markov Chain Monte Carlo, 86
mass function, 14
matrix determinant lemma, 198, 244,

298
maximum likelihood estimator, 55,

58
Maximum-Likelihood Estimate, 239
Maxwell

James Clerk, 213
MCMC, 86
mean, 14, 18

sample, 93
mean centred, 208, 216, 285
mean fraction, 166
mean squared error, 278
measured, 217
memoryless, 36
method of direct transformation, 47
Metropolis, 82
Metropolis–Hastings, 85
mini-batch, 272
mini-batch gradient descent, 272
miss rate, 142
mixing coefficients, 77, 154
mixture, 154
MLE, 239

mode, 33
model, 217
moment

central, 19
crude, 19
first, 18
normalized central, 19
raw, 19
second central, 18
second crude, 19
second raw, 19

monomial, 257
Monte-Carlo, 86
multicollinearity, 230

perfect, 230
multilayer perceptron, 266
multimodal, 33
multinomial coefficient, 27
multinomial distribution, 27
multiquadratics, 136
multiquadric kernel, 118
multivariate distribution, 26

NAND, 134
negatives, 141

false, 142
true, 142

neural network, 132
neuron, 132
neurons

hidden, 132
input, 132
output, 132

node, 59, 123, 132
terminal, 123

noise, 217
non-exhaustive cross-validation, 230
non-linear classification, 109
norm

Euclidean, 222
Frobenius, 279

normal distribution, 14
standard, 14

normal inverse Wishart distribution,
166
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normalized central moment, 19
normalized exponential, 136
normalizing factor, 10
NP hard, 150, 235
null hypothesis, 16

object oriented programming, 2
objective function, 102, 150, 244
Occam’s razor, 223
offline learning, 99
OLS, 220
One vs All, 98
One vs One, 98
One vs Rest, 98
one-of-K representation, 25, 266
one-to-one, 46
online, 272
online gradient descent, 272
online learning, 99
optimization

constraint, 58
OR, 134
ordinal, 89
Ordinary Least Squares, 220, 242
outer product, 93
output, 132
OvA, 98
over-fitting, 222, 223
OvO, 98
OvR, 98

Pólya urn, 44
paradox

Simpson’s, 10
parameter vector, 217
parsimony, 223
partial least squares, 233
PCA, 190
pdf, 13
Perceptron, 99
period, 77
plane, 91
plate, 60
platykurtic, 21
PLS, 233

pmf, 14
Poisson distribution, 25, 294
polynomial kernel, 116
positive definite, 94
positives, 141

false, 142
true, 142

posterior, 10, 239
pre-image, 208
precision, 239
precision matrix, 202, 258
predictor, 217
primal, 102, 104
principal component, 191
Principal Component Analysis, 190
Principal Component Regression, 230
principal components, 231
principal subspace, 190
prior, 10, 55, 238
probability, 7, 109

conditional, 9, 154
joint, 7
rules, 9, 18

probability density function, 13
probability mass function, 14
probability of detection, 142
procedural programming, 2
product

dot, 91
inner, 91
outer, 93
scalar, 91

product rule, 9, 18, 239
product rule of differentiation, 20
programming

object oriented, 2
procedural, 2

projection, 91
propagation function, 133, 265
pure, 125

QDA, 110
Quadratic Discriminant Analysis,

110
quadratic kernel, 116
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quadratic programming problem, 102
quality factor, 246
quasi-Newton, 272

radial basis function, 118
random variable, 7
random walk, 81
rate parameter, 35, 51, 72
rational quadratic kernel, 118
raw moment, 19
RBF, 118
recall, 142
recurrence, 81
regressand, 217
regression, 4, 213

linear, 217
ridge, 235, 239

regressor, 217
regularization, 234

elastic net, 235
L0, 235
L1, 235
L2, 235

rejection sampling, 69
residual, 220
residual sum of squares, 220
response, 217
responsibility, 154
reversible, 76
rich-get-richer, 45, 179, 295
ridge regression, 235, 239, 243
right stochastic matrix, 77
root, 123
RSS, 220
rule

Bayes’, 10, 18
chain, 239
product, 9, 18, 239
sum, 9, 18

rules of probability, 9, 18

SAE, 278
sample covariance, 93
sample mean, 93
sampling, 63

adaptive rejection, 72
importance, 73
inverse transform, 64
inversion, 64
rejection, 69

sampling-importance-resampling, 75
scalar product, 91
scalar triple product, 53
scale parameter, 35, 37, 51
scale-mixture parameter, 120
scaling, 178
scatter

between-class, 94
within-class, 95

second central moment, 18
second crude moment, 19
second moment

central, 18
crude, 19
raw, 19

second raw moment, 19
sensitivity, 142
separation threshold, 91
sequential, 272
sequential gradient descent, 272
shape parameter, 51, 65
Sherman–Morrison formula, 198,

244, 297
sigmoid kernel, 116
signal standard deviation, 118
simplex, 39
Simpson’s paradox, 10, 13
SIR, 75
skewness, 19
skip-layer, 267
Smirnov transform, 64
soft clustering, 155
soft thresholding, 236
softmax, 136, 266
sparse, 106, 235, 267
sparse autoencoder, 278
sparsity, 245
sparsity proportion, 279, 285
sparsity regularization, 279, 285
specificity, 142
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sphering, 195
spherical covariance matrix, 196
squared exponential kernel, 118
SSR, 220
standard deviation, 14
standard normal distribution, 14
standardize, 121
state, 75
state diagram, 77
stationary, 76
steepest descent, 272
stochastic, 272
stochastic gradient descent, 272
stochastic matrix

doubly, 77
left, 77
right, 77

stochastic process, 253
strength, 178
strong, 138
sum of squared residuals, 220
sum rule, 9, 18
supervised learning, 4, 6
support, 69
support vector, 105
Support Vector Machine, 102
survival parameter, 72
SVM, 102
symmetric Dirichlet distribution, 40
synapses, 132

tan-sigmoid, 269
target, 217
targets, 216
teaching, 2, 6
thin plate spline, 118
thinning, 82, 87
thresholding

soft, 236
tied weights, 284
TN, 142
TNR, 142
TP, 142
TPR, 142
transfer function, 133, 265

transform
inverse probability integral, 64
Smirnov, 64

transition matrix, 77
transition probabilities, 75
transpose, 91
trivial kernel, 116
true, 133
true negative rate, 142
true negatives, 142
true positive rate, 142
true positives, 142
tuple, 27
twoing, 127

under-fitting, 222
uniform distribution, 11
unimodal, 33
uniquenesses, 205
unit, 132
univariate distribution, 26
unsupervised learning, 5

VAE, 281
validation set, 230, 234
variable

confounding, 13
dependent, 8, 217
discrete, 7
endogenous, 217
exogenous, 217
explanatory, 217
hidden, 56
independent, 8, 217
input, 217
latent, 56, 217
predictor, 217
random, 7

variance, 14, 18, 92, 226, 228
variational autoencoder, 281
variety, 263
vector, 91

of weights, 217
parameter, 217

vector length, 91
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velocity, 263
veracity, 263
vertex, 59
volume, 263

weak, 138
Weibull distribution, 65
weight matrix, 294
weight space symmetries, 267

weights, 91, 217
tied, 284

whitening, 195
within-class scatter, 95
Woodbury identity, 297
Woodbury matrix identity,
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XOR, 134
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