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Preface 

This book is based on the lectures of the ECAS' 97 Course in Time Series Analysis 

held at El Escorial, Madrid, Spain, from September 15 to September 19, 1997. The 

course was sponsored by the European Courses in Advanced Statistics (ECAS). In 

accordance with the objectives of ECAS, the lectures are directed to both researchers 

and teachers of statistics in academic institutions and statistical professionals in in-

dustry and govermment, with the goal of presenting an overview of the current status 

of the area. In particular, different approaches to time series analysis are discussed and 

compared. In editing the book, we have worked hard to uphold ECAS' objectives. In 

addition, special efforts have been made to unify the notation and to include as many 

topics as possible, so that readers of the book can have an overview of the current 

status of time series research and applications. 

The book consists of three main components. The first component concern basic 

materials of univariate time series analysis presented in the first eight chapters. It 

includes recent developments in outlier detection, automatic model selection, and 

seasonal adjustment. The second component addresses advanced topics in univariate 

time series analysis such as conditional heteroscedastic models, nonlinear models, 

Bayesian analysis, nonparametric methods, and neural networks. This component 

represents current research activities in univariate time series analysis. The third and 

final component of the book concerns with multivariate time series, including vector 

A R M A models, cointegration, and linear systems. 

The book can be used as a principal text or a complementary text for courses 

in time series. A basic time series course can be taught from the first part of the 

book that presents the basic material that can be found in the standard texts in time 

series. This part also includes topics not normally covered in these texts, such as 

the extended and inverse autocorrelation function, the decomposition of the forecast 

function of A R I M A models, a detailed analysis of outliers and influential observations 

and automatic methods for model building and model based seasonal adjustment. For 

a basic course this book should be complemented with some of the excellent texts 

available. The book would be very well suited for an advanced course in which 

some of the basic material can be quickly reviewed using the first part, that skips 

many details and concentrates in the main concepts of general applicability. Then the 

xv 
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course can concentrate in the topics in Parts 2 and 3. If the scope of the course is more 

in methodological extensions of univariate linear models the material in Part 2 can 

be useful, whereas if the objective is to introduce multivariate modeling Part 3 will 

be appropriate. To facilitate the use of the book as a text, all the time series data used 

in this book can be down loaded from the web address: http://gsbwww. 

uchicago. edu/fac/ruey. tsay/teaching/ecas/ 

We are grateful to all people who have made this book possible: (1) to the 11 authors 

of the chapters of the book who have been extremely helpful in the timely revisions 

of the drafts of the chapters and have made a big effort to unify the presentation and 

(2) to the organizers of the course and all the students from many different countries 

in four continents that made this one week of lectures a very enjoyable experience for 

all the participants. We are very grateful to our host in the Monastery of El Escorial, 

father Agustin Alonso, who did his best to make our staying in the monastery an 

unforgettable experience. The success of the course was in large part due to the 

enthusiastic work in all the organization details of Ana Justel, Regina Kaiser, Juan 

Romo, Esther Ruiz, and Maria Jesus Sanchez. In the preparation of the book we are 

also grateful to Monica Benito for her help in organizing the index and the references 

in the book. 

The Editors 

A B O U T ECAS 

ECAS is a foundation of Statistical Societies within Europe that, according to its 

constitution, was founded in order to foster links and to promote cooperation between 

statisticians in Europe. In order to achieve these aims, courses on an advanced level 

covering varying aspects of statistics are organized every 2 years in different countries 

of Europe. In 1999 Statistical Societies members of ECAS belongs to the following 

countries: Austria, Belgium, Denmark, France, Finland, Germany, Italy, Portugal, 

Spain, Sweden, Switzerland, The Netherlands, and the United Kingdom. 

The first ECAS course was held in Capri, Italy, on Multidimensional Data Analysis 

in 1987. Subsequent courses were held on robustness in statistics in 1989 in the 

castle Reisenburg, Germany; on experimental design in 1991 in Sete, France; on the 

analysis of categorical data in 1995 in Leiden, The Netherlands; on longitudinal data 

analysis and repeated measures in 1995 in Milton Keynes, United Kingdom; on time 

series analysis in 1997 in San Lorenzo del Escorial, Spain; and on environmental 

statistics in 1999 in Garpenberg, Sweden. 

A Council has the overall responsibility for ECAS. Its members are nominated 

by the statistical societies of participating countries. The Presidents of ECAS have 

been Jean Jacques Debrosque (Belgium, 1987-1993) and Siegfried Heiler (Germany, 

1994-1997). The current President is Daniel Pefia (Spain, 1998-2001). 
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C H A P T E R 1 

Introduction 

Daniel Pena 
Universidad Carlos HI de Madrid 

George C. Tiao 
University of Chicago 

1.1. E X A M P L E S OF T I M E SERIES PROBLEMS 

Data in business, economics, engineering, environment, medicine, and other areas 

of scientific investigations are often collected in the form of time series, that is, a 

sequence of observations taken at regular intervals of time such as hourly tempera-

ture readings, daily stock prices, weekly traffic volume, monthly beer consumption, 

and annual growth rates. The main objectives of time series modeling and analysis 

are (1) understanding the dynamic or time-dependent structure of the observations 

of a single series—univariate time series analysis and (2) ascertaining the leading, 

lagging, and feedback relationships among several series—multivariate time series 

analysis. 

Knowledge of the dynamic structure will help produce accurate forecasts of future 

observations and design optimal control schemes. This chapter presents first a number 

of univariate and multivariate time series data sets arisen from various scientific 

disciplines. These data examples are used to introduce and illustrate the following: 

• Stationary versus nonstationary series 

• Linear versus nonlinear dynamic relationship 

• Homogeneity versus heterogeneity in variance 

• Unidirectional versus feedback relation between series 

A Course in Time Series Analysis, Edited by Daniel Pena, George C. Tiao, and Ruey S. Tsay. 
ISBN 0-471-36164-X. © 2001 John Wiley & Sons, Inc. 
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2 INTRODUCTION 

• Outlier, level shift, structural change, and intervention 

• Comovement and cointegration 

These concepts motivate many of the topics discussed in this book. 

1.1.1. Stationary series 

Figure 1.1a shows a series of the yield of 70 consecutive batches of a chemical 

process given in Box and Jenkins (1976). The observations fluctuate about a fixed 

mean level with constant variance over the observational period. In other words, the 

overall behavior of the series remains the same over time. Such a series is called a 

stationary series. A formal definition of stationarity will be given later. 

(a) Yield of Chemical Process - Box-Jenkins Series F 

0) 

0 10 20 30 40 50 60 70 

time 

(b) Monthly Changes in 90-Day T-Bill Rate 1983-1993 

1983 1985 1987 1989 1991 1993 

year 

FIGURE 1.1 Two examples of stationary series. 
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As another example of stationary series, Figure 1.1b gives a series of the month to 

month changes in the interest rates of 90-day U.S. Treasury bills (T-bills) from 1983 

to 1993. Except for the sharp dip near the end of 1984, this series appears to be quite 

stationary with a mean level close to zero over time. 

In practice, temporal changes (week to week, month to month, or quarter to quarter) 

of many economic time series often exhibit this kind of stationary behavior. Good 

examples are stock returns and changes in exchange rates. 

1.1.2. Nonstationary series 

Instead of month to month changes, if we look at the series of monthly rates of the 90-

day T-bills themselves, we see a vastly different behavior. This is shown in Figure 1.2a. 

(a) Monthly 90-day T-Bill Rate 1981-1993 

10 

1983 1985 1987 1989 1991 1993 

(b) Monthly Changes in 90-Day T-Bill Rate 1983-1993 

1983 1985 1987 1989 1991 1993 

year 

FIGURE 1.2 A nonstationary series and its first difference. 
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This series does not seem to have a mean level and exhibits a drifting or wandering 

behavior. It is clearly not a stationary series. Financial time series such as stock prices, 

prices of derivatives, and exchange rates often behave in this manner. However, by 

taking successive differences of the observations, we obtain the series of monthly 

changes in Figure 1.1b, which is reproduced in Figure 1.2b for easy comparison. 

This example shows that a drifting nonstationary series can be transformed into a 

stationary one by the differencing operation. The series in Figure 1.2b is called the 

first difference of the series in Figure 1.2a. In practice, sometimes the first difference 

series may not be stationary and it may be necessary to difference the series again to 

make it stationary. 

Figure 1.3a shows quarterly data of U.S. real GNP (gross national product) over the 

period 1946-1991. The series shows an exponential growth. By taking a logarithmic 

(a) Quarterly Real GNP 

5000 

4000 

§3000 

2000 

1000 

0 

1946 1956 1966 1976 1986 

(b) Logarithms of Quarterly Real GNP 

_ 8 
ο. 
ζ 
a 7 
c 

6 

1946 1956 1966 1976 1986 

(c) First Difference of Logarithms of Quarterly Real GNP 

1946 1956 1966 1976 1986 
year 

FIGURE 1.3 Quarterly U.S. real GNP 1946-1991. 
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υ 
c 
8 

FIGURE 1.4 Concentration readings of a chemical process: Box-Jenkins series A. 

transformation of the observations, we see a persistent linear growth in Figure 1.3b. 

The first difference series of the logged data is shown in Figure 1.3c, which is fairly 

stationary, although there appears to have some changes in the variability of the series 

over the data period. 

Figure 1.4 presents series A and Figure 1.5 shows series C of Box and Jenkins 

(1976). The first appears to lie in the gray area of a stationary or a nonstationary series. 

For the second, differencing may be called for. Both have been used in the literature 

by other authors to illustrate novel methods for modeling time series. 

1.1.3. Seasonal series 

Time series data in business, economics, environment, and other disciplines often 
exhibit a strong cyclical or seasonal behavior. Modeling and analyzing such series 

Q. 
Ε Φ 

100 150 

time 

FIGURE 1.5 Temperature readings: Box-Jenkins series C. 

200 



6 INTRODUCTION 

(a) International Airline Passenger Totals - Box-Jenkins Series G 

1950 1952 1954 1956 1958 1960 

year 

(b) Monthly Readings of Ozone at Downtown L.A. 1955-1972 

8 

6 -
CD 
c 
ο Ν Ο 

4 -

2 

1955 1960 1965 1970 

year 

FIGURE 1.6 Two examples of seasonal series. 

is an important topic in time series study. Figure 1.6a shows monthly international 

airline passenger totals in 1949-1959, which were used by Box and Jenkins (1976) 

to illustrate their innovative seasonal models. In practice, the user of the data may 

wish to remove the seasonality from the series in order to discern the "underlying 

trend," and this has led to the vast literature on seasonal decomposition and seasonal 

adjustment, which will be discussed later. 

Figure 1.6b shows monthly averages of ozone in downtown Los Angeles during 

the period 1955-1972. Ambient ozone is an indicator of air pollution and is strongly 

seasonal: high in the summer months and low in the winter. In addition to seasonal 

cycles, there appears to be a level shift in the beginning of the sixth year and a down 

trend in the last 7 years of the data. The level shift may be associated with changes in 
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φ 
S 0.3 \ 

0.1 

0.5 λ 

0.4 A 

0.2 ^ 

1958 1959 1960 1961 1962 1963 

year 

FIGURE 1.7 The Crest market share weekly data 1958-1963. 

the traffic pattern and/or changes in the composition of gasoline sold in Los Angeles, 

and the down trend may be the result of progressively more stringent air quality 

standards at that time. This series was used by Box and Tiao (1975) to motivate 

intervention analysis in time series. 

1.1.4. Level shifts and outliers in time series 

Another example of a level shift is shown in Figure 1.7, the weekly market share data 
of Crest toothpaste from January 1958 to April 1963. In August 1960, the American 
Dental Association publicly endorsed Crest, and this led to a substantial jump in its 
market share as it is clearly seen in the figure. If the timing of this event is known, as 
in this case, the intervention analysis techniques can be applied to estimate its effect. 
In practice, such interventions are often unknown to the investigator, and detection 
of level shifts, outliers, and other types of structural changes becomes an important 
problem in time series analysis. 

1.1.5. Variance changes 

Figure 1.8 shows monthly returns of value-weighted S&P (Standard and Poor) 500 

stocks from 1926 to 1991. While the mean level stayed close to zero over the entire 

period, it is clear that changes in the variance, called volatility in the finance literature, 

occurred. There has been an intense interest in modeling data of this kind in recent (at 

the time of writing) years, and some of the methods will be discussed later in the book. 

1.1.6. Asymmetric time series 

Two time series are shown in Figure 1.9. The first, in panel (a) is a series of annual 

sunspot numbers from 1700 to 1979; the other in panel (b), shows seasonally adjusted 

quarterly U.S. unemployment rates from 1948 to 1993. Both series share a common 
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FIGURE 1.8 Value-weighted S&P 500 returns 1926-1991. 
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(b) Seasonally Adjusted Quarterly US Unemployment Rates 
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FIGURE 1.9 Two nonlinear time series. 
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feature; asymmetry in the rise and fall of the observations. Another way to express this 

asymmetric behavior is to say that these series are not time-reversible. The first will 

be used to illustrate nonlinear time series models, which is one of the most important 

research topics in time series analysis. 

All the examples given above are univariate time series, and models will be intro-

duced to relate the observations to their own past history. In practice, the principal 

purpose of modeling univariate series is on forecasting future observations of the 

series using its own past values. In the following examples, we now turn to consider 

several time series jointly. 

1.1.7. Unidirectional-feedback relation between series 

Figure 1.10 shows two series given in Box and Jenkins (1976), the input gas rate and 

the output CO2 of a chemical reactor. The data were taken in 9-s intervals. These two 

(a) Input Gas Rate 

50 100 150 200 250 300 

(b) Output C02 

CO 
8 

FIGURE 1.10 The gas furnace data: Box-Jenkins series J. 
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series are clearly related; when one goes up the other comes down. The figure also 

shows that, as expected, the input series leads the output series by several periods. 

Intuitively, the input series should therefore help to produce more efficient forecasts 

of the output series than just using the past values of the output. This example was 

used by Box and Jenkins to introduce their transfer function modeling techniques, 

but has also been used by others to illustrate modeling several series together. 

The three series in Figure 1.11 are quarterly Financial Times stock, car production, 

and commodity indices over the period 1952-1967. They were first used by Coen 

et al. (1969) to establish an apparent regression relationship between stock index, 

car production index, which lagged six periods, as well as commodity index, which 

lagged seven periods. This result has led to many criticisms in the literature and 

has become a notorious example showing the importance of careful checking of the 

independence assumption of the residuals in regression of time series data. 

1.1.8. Comovement and cointegration 

Figure 1.12 gives five series, consisting of annual hog supply, hog prices, corn supply, 

corn prices and farm wages for the period 1867-1948. The data were given in Que-

nouille (1957), and all five series appear to be nonstationary. Box and Tiao (1977) 

used the data to illustrate their canonical analysis of multiple time series showing 

that linear combinations of nonstationary series can be stationary. Figure 1.13 shows 

five linearly transformed series, the first two of which are apparently stationary. This 

phenomenon has become known as "cointegration" (Engle and Granger 1986) and 

has been one of the most intensely studied topics in the econometrics literature in the 

last 10 years. 

The three series in Figure 1.14 represent monthly logged flour price indices over 

the 9-year period 1972-1980 at the commodity exchanges of Buffalo, Minneapo-

lis, and Kansas City, respectively. The example was used by Tiao and Tsay (1989) 

to illustrate their scalar component model technique in multiple time series model 

specification. The three series move in tandem as they should be, but they are not 

found to be cointegrated. This raises the interesting question as to how to characterize 

comovement in multiple time series. 

As an further example of comovement of economic time series, Figure 1.15 shows 

three monthly series of 3-month, 6-month, and 9-month interest rates on bank de-

posits in Taiwan from 1961 to 1989. Again the three series move largely in tan-

dem, but there is no cointegration. Tiao et al. (1993) employed this data set to 

illustrate the usefulness and limitations of various dimension reduction techniques 

including principal component, canonical correlation, and scalar component model 

methods. 

1.2. OVERVIEW OF THE B O O K 

The book is organized in three parts. Parts 1 and 2 concentrate on univariate time series 

models and Part 3, on multivariate models. A model for a univariate time series, zt, 
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(a) Hog Supply 
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FIGURE 1.12 Quenouille's hog data 1867-1948. 
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FIGURE 1.13 Linearly transformed hog data. 
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FIGURE 1.15 Taiwan's interest rate data 1961-1989. 

takes usually the additive decomposition form 

z, = f(z,-\, ...,n) + a, (1.1) 

where f(z,-\, • • •, Z\) is a function of the past values of the series, to be determined 
from the data, and a, is a sequence of independent and identically distributed (iid) 
variables. The time series model can be seen as a way to decompose the data into a 

(a) 3-month rate 
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systematic part (the signal part), which depends on past values and therefore can be 

forecasted, f(z,~i, . . . , Ζ ι ) , andanoise part, a,, which is independent from previous 

values and therefore it is unpredictable from its past. In some cases obtaining the 

structure of the function / is the main objective of the analysis whereas in other cases 

our interest is mostly in obtaining forecasts. 

Part 1, on basic concepts for univariate time series modeling, presents the main 

ideas and tools for building univariate time series models. The presentation empha-

sizes linear autoregressive integrated moving-average ( A R I M A ) models, in which it 

is assumed that the function / has a linear form, that is, it can be written as 

/ ( z » - i Ζ\) = ττ[Ζ,-\+ h -ΙΓ/—ΙΖ1 (1.2) 

and a key problem is how to approximate the sequences of weights (ττj, ττ2 ) by 

using a small number of parameters. This is the idea of A R I M A models studied by 

Box and Jenkins (1976) in a landmark book on time series analysis. In addition to 

A R I M A models, this part also presents a brief analysis of two alternative time series 

approaches. The first one is the spectral approach in which it is assumed that the 

function / can be represented as a sum of sine and cosine waves. The second is the 

state space approach in which the evolution of the series is assumed to be a linear 

function of some unobserved factors or states as 

ζ, = μι +a,, 

where μ, is the mean, and a, has the same interpretation as before. Then we have to 

assume some equation for the evolution of the mean as, for instance 

μΓ = μ<-ι + u,, 

where u, is another sequence of iid variables. State-space models and A R I M A models 

are closely related, but the latter provide more flexibility as we do not need to determine 

the evolution of the state variables; it is identified from the data. 

Part 2, on advanced topics for univariate time series, covers Chapters 9-13, and 

includes more sophisticated time series models. The first generalization is to assume 

that the variability of the noise process is not constant but depends on past values of 

the process. This allows for particular forms of heteroscedasticity in a, that have many 

applications in financial data. A second generalization is to assume some parametric 

nonlinear structures for the function / , and then we have nonlinear time series models. 

A third generalization is to try to estimate the function / without assuming a priori 

any parametric structure. This can be carried out by the nonparametric approach, if 

we have a large sample size, or we can try to approximate / by a general method as 

neural network models. 

The third part of the book deals with multivariate models. In the simplest case of 

a bivariate system the two components series can be split into a dependent response 

time series, y,, and an independent input series x,. The first model equation will 

describe the dynamic evolution of the response as a function of the input variable in 
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what is called a dynamic regression model 

y, = g(xt,...,xi) + / ( y r - i , ...,yi) + a, (1.3) 

where, as before, a, is a sequence of independent and identically distributed (iid) 

variables and the functions / and g are to be determined from the data. In addition 

to this equation, the time series model has to specify the model for the evolution of 

the univariate independent series x,, that will be a univariate time series model. In 

the general case, we cannot say that the variable x, causes y, or vice versa because 

there is feedback between the two variables. The time series model will describe this 

situation by two dynamic regression equations. In general, letting z, be a vector of k 

related time series, a multivariate time series model takes the form 

where now f is a vector of functions of the past values of all the components of the 

vector time series to be determined from the data and a, is a sequence of vector vari-

ables without lag dependency. This model will be equivalent to k dynamic regression 

equations, in which each series is explained as a function of the past of all the other 

series and its own past. Note, however, that the noises from different equations are 

usually correlated. If we assume that / has a linear form, we obtain the multivariate 

A R I M A models and the linear system models. A key problem in multivariate mod-

eling is finding simplifying structures in order to reduce the number of parameters 

in the model and facilitate its interpretation. An interesting structure with clear eco-

nomic meaning is that linear combinations of the components of the vector time series 

are more stable over time than the series themselves. In particular, if the vector of 

series has some stochastic trend, it is interesting to find linear combinations that are 

stable around some fixed mean. This is the idea of cointegration. Finally, multivariate 

model can be analyzed form the state-space approach and a review of the field is also 

included in this third part of the book. 

The subject matter of Part 1 is distributed into chapters as follows. Chapter 2 

introduces stationary time series models and presents the three most important 

classical approaches to analyze time series data: A R I M A models, periodicity 

analysis in the frequency domain, and state-space models. The chapter introduces 

the basic tools for each of these analysis: the autocorrelation function and the 

partial autocorrelation function for linear stationary process, the periodogram, and 

the spectrum for periodicity analysis and the dynamic linear system for the state-space 

representation. Chapter 3 considers the model specification strategy for univariate 

A R I M A models. Assuming that we have a linear process, the key problem is how 

to parametrize it in order to represent its structure with a small number of parameter 

values that can be estimated from the data. The chapter explains three statistical tools 

that can be used for this objective: the autocorrelation function, partial autocorrelation 

function, and the extended autocorrelation function. It is shown how an A R I M A model 

can be identified by these tools, and examples are given of the use of this methodology. 

Chapter 4 presents an introduction to the maximum likelihood estimation of A R M A 

z , = f(z,_,, . . . , z , ) + a, (1.4) 
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models and discusses the diagnostic checking of the fitted model. It also includes 

procedures for parameter estimation using the sample spectrum and the estimation of 

state-space models by the Kalman filter. Chapter 5 presents the prediction problem 

and concentrates in the computation of A R I M A forecasts with emphasis on under-

standing the structure of the forecasts generated by these models. It is shown that the 

forecast function can be easily understood in terms of the main parts of the A R I M A 

model. This chapter also includes an introduction to the combination of forecast from 

different sources and to the problem of model selection in time series. Time series, as 

any kind of statistical data, are often subject to outliers, and Chapter 6 discusses out-

liers and influential observations in univariate time series. Different types of outliers 

are introduced, and a methodology is presented to identify them and estimate their 

effects. It is shown that outlier analysis is related to the estimation of missing values in 

a time series, and a brief introduction to this important practical problem is presented. 

Chapter 7 presents a procedure for automatic A R I M A modeling of univariate time 

series that is implemented in the program T R A M O . This program allows a powerful 

and fast application of the methodology presented in the previous chapters. Finally, 

Chapter 8 discusses the use of A R I M A models in the important problem of seasonal 

adjustment in economic time series. The chapter shows how A R I M A models provide 

a powerful tool for decomposing the observed time series and carrying out seasonal 

adjustment and discusses this topic within the broader context of signal extraction. 

Part 2, on advanced topics, includes Chapters 9-13. Chapter 9 considers a particular 

class of nonlinear time series models with many application in finance: heteroscedas-

tic models. The chapter concentrates in the most often used ARCH and GARCH 

models and presents examples of their applications. Chapter 10 considers more gen-

eral nonlinear time series models. This chapter presents a general test to detect three 

kinds of non linearity (bilinear, exponential autorregressive, and threshold autorre-

gressive) often found in time series and discusses in more detail the fitting of threshold 

models. Chapter 11 analyzes in a common framework linear and nonlinear model by 

using the Bayesian approach. It is shown how Markov chain Monte Carlo methods 

(MCMC) provides a powerful tool for the analysis of complex models within the 

Bayesian framework. Chapter 12 presents an alternative way to analyze time series: 

the nonparametric approach. In particular, it is shown how this approach can be ap-

plied to the decomposition and seasonal adjustment of economic time series. Finally, 

Chapter 13 includes an introduction of neural network models in time series. This 

method provides a simple way to generate forecast for a time series with a minimum 

set of assumptions about the underlying structure. 

Part 3, on multiple time series analyses, includes Chapter 14-16. Chapter 14 

presents a methodology for building multivariate time series A R I M A models. The 

three stages of identification, estimation, and diagnostic are presented, and illus-

trated with examples. The chapter also discusses the important problem of model 

simplification by different types of eigenvalue analysis. A key idea in multivariate 

modeling is finding simplifying structure in the vector time series, and, in particu-

lar, this includes finding linear combination of the vector time series that are more 

stable than the observed series. This leads to the idea of cointegration, developed in 

Chapter 15, in which a general methodology is presented for testing and estimating 
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cointegration relationships. Finally, Chapter 16 presents an introduction to the multi-

variate analyses of linear system from the linear system approach. This methodology 

offers an alternative to the vector A R I M A methodology for multivariate analysis of 

time series. 

1.3. FURTHER READING 

The reader interested in a deeper analysis of the basic concepts in time series should 

consult the books by Abraham and Ledolter (1983), Anderson (1971), Box and 

Jenkins (1976), Box et al. (1994), Brockwell and Davis (1987, 1996), Gourieroux 

and Monfort (1997), Granger and Newbold (1977), Fuller (1976), Pandit and Wu 

(1983), Shumway (1988), Shumway and Stoffer (2000), and Wei (1990). The spec-

tral approach is presented in Brillinger (1975), Granger and Hatanaka (1964), Jenkins 

and Watts (1968), and Priestley (1981). Harvey (1989) discusses with detail the struc-

tural approach in time series based on the state-space representation (see Anderson 

and Moore 1979) for economic time series. Hamilton (1994) and Enders (1995) also 

emphasize economic time series and econometrics. Hendry and Clements (1998) 

concentrates on economic forecasting. 

Moving to the advanced topic section, ARCH and GARCH models are discussed 

in recent econometric texts, and the reader can find a deeper study in the books by 

Engle (1995) and Gourieroux (1997). Nonlinear models are discussed by Granger and 

Andersen (1980), Priestley (1988), and Tong (1990). Bayesian models are discussed 

by West and Harrison (1997), nonparametric regression by Hardle (1990), and neural 

networks by Ripley (1996). 

Multivariate A R M A time series models are considered by Hannan (1970), 

Lutkepohl (1993), Reinsel (1993), and Reinsel and Velu (1998). Aoki (1990) and 

Hannan and Deistler (1988) are important references for state-space modeling of 

multivariate time series. 

The limitation of space and time has made that many interesting development in 

time series have not been introduced in this text. Among them are long memory pro-

cesses (Beran 1994), wavelets (Hardle et al. 1998, Morettin 1999), and discrimination 

and clustering in time series (Karizawa et al. 1998). 
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2.1. L I N E A R TIME SERIES M O D E L S 

Figures 2.1-2.3 illustrate a variety of time series. Let us start by looking at these from 

the point of view of linear prediction. By prediction we mean estimation of one or 

more values of the series using previous values. A linear prediction is one that can 

be represented as a linear combination of the previous values. 

The simplest linear prediction method is to extrapolate a deterministic curve fit-

ted to the time series by linear regression. This curve may, for example, consist of 

polynomials for trend, sinusoids for cycles, and indicator variables for seasonality. 

Consider the monthly atmospheric carbon dioxide series shown in Figure 2. la, which 

may be modeled, for t = 1, 2 , . . . , η = 161, as the response variable z, in the linear 

regression: 

z, =c + bt + a , / u + r-a, 2 / i2, ( + e, (2.1) 

where 

_ ί 1 in each January 1 _ ί 1 in each December 1 

' · ' _ I 0 in other months J " 1 2 · ' ~ 10 in other months J " ( ' 
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(o) ATMOSPHERIC CONCENTRATION (b) DEPARTURE FROM FIXED REGRESSION 

MONTHS MONTHS 

FIGURE 2.1 Atmospheric carbon dioxide concentrations from 1974 to 1986: (a) monthly values in ppm 
showing trend and seasonal pattern; (b) variation of values around a fixed trend and seasonality. 

This represents a fixed trend and a fixed annual seasonal pattern around that trend. 

One of the indicator variables / , , , , usually the first or last, must be removed to avoid 

collinearity. 

The series in Figure 2.1a is very regular and the chosen model appears to fit very 

well, but two criticisms can be made of this approach. The first of these comes from 

considering how the prediction of the next value, obtained by extrapolating the fitted 

model, can be expressed as a linear combination 

Zn+\ = U)\Z\ Η + w„z„. (2.3) 

For this example w\ = -.0189 and w„ = .0189. This has the undesirable property 

of placing comparable weight, although of opposite sign, on the earliest and latest 

points of the data. For prediction it is desirable that much greater weight be placed 

on later data, closer in time to the values that are being predicted. 

Second, the regression is based on the simple statistical assumption that the errors 

are uncorrected, but this is not supported by the graph of the residuals from model 

(2.1) shown in Figure 2.1b on a much enlarged scale compared with the series. The 

persistence shown in these errors, specifically, the tendency for one value to be close 

to the previous value, could be used to improve the prediction. 

Various methods have been used to overcome these criticisms, notably the use of 

regression with heavier weight placed on the most recent values; the weights typically 

are discounted into the past. These ideas have been part of the development toward 

the general linear (time series) model ( G L M ) , which is the basis of the autoregressive 

integrated moving-average ( A R I M A ) models presented in the next chapter. One form 

(o) INVENTORY OF UNFILLED ORDERS (b) UK CRUDE STEEL CONSUMPTION 

0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 

MONTHS QUARTERS 

FIGURE 2.2 (a) Monthly series of unfilled orders; (b) UK quarterly consumption of crude steel. 
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(o) ENERGY LOSS OF MODEL COW (b) WIDTH OF EXTRUSION 

0 25 50 75 100 125 ISO 175 200 

DAYS Seconds 

FIGURE 2.3 (a) Daily energy loss of a model cow; (b) width of extruded plastic product. 

o f t heGLM is 
00 

z, = ^ T T * z , _ t + a, = z,-\(\) + a, (2.4) 
k=l 

where z , _ i ( l ) is the linear combination of past values that best predicts z, and a, is a 

times series of independent prediction errors. 

A particular example of this model is one for which z , _ i ( l ) is given by the widely 

used exponentially weighted moving-average ( E W M A ) predictor: 

z , _ , ( l ) = (1 - θ)ζ ,_, + θ(1 - θ )ζ ,_ 2 + θ 2 (1 - θ )ζ ,_ 3 + · · · 

= ( 1 - θ ) ζ , _ , + θ ζ , _ 2 ( 1 ) . 

Here, the coefficients ττ* are discounted by the factor θ for increasing lag k and scaled 

by (1 — Θ) to sum to unity. The second equation is the recursive form used in practice. 

We make the following remarks about the G L M (2.4): 

1. We assume the property of time invariance, that the coefficients IT* depend 

only on the lag k and not on t and that the errors or linear innovations a, have 

constant variance besides being an independent series. 

2. We consider z, to be a stochastic process for which (2.4) is just one possible 

valid representation, rather than the defining equation. Another representation 

is to express z, formally as a combination of present and past values of a,: 

00 

Z< = A> + Σ*ΜΓ-*. (2.6) 
*=1 

This is a formal expression in the sense that for some series the sum may not 

converge, but it may be extended back as far as desired to some time origin and 

the remaining terms of the sum represented by well-defined initial conditions. 

For example the E W M A model above can be expressed formally as 

00 

z, = a , + £ ( l - θ ) α , _ * (2.7) 
*=i 
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and in the well-defined form 

κ 

z,=a, + 5 (̂1 - θ)α,_* + [ζ,-κ-\ - θ α , - * . , ] . (2.8) 
t=i 

3. The two forms of the G L M as expressed in (2.4) and (2.6) are known as the 

infinite autoregressive and infinite moving-average forms, respectively. These 

are taken by Box and Jenkins (1976) as the starting point for the introduction 

of A R I M A models presented in the next chapter. Although both (2.4) and 

(2.6) involve sums into the infinite past, A R I M A modeling can be applied 

without difficulty to finite observed data sets, usually by implicitly estimating 

the contribution of the series values prior to those observed. 

The general linear model is capable of representing a wide variety of series. For 

some series, of which the carbon dioxide concentration is a good example, there may 

well be a fixed trend and seasonality, or other deterministic component, which is best 

removed before applying A R I M A modeling to the remaining variation such as that 

shown in Figure 2. lb. For most series, though not all, such a deterministic component 

consists of just a constant term, which is normally assumed as part of the A R I M A 

model. 

For other series, such as that shown in Figure 2.2a, which is a monthly series 

of unfilled orders for newspapers and magazines from 1964 to 1989, the trend and 

seasonality are clearly changing, and the G L M can represent such stochastic variations 

very well through seasonal A R I M A modeling. The series in Figure 2.2b, which is a 

quarterly series of crude steel consumption from 1953 to 1995 shows, besides a clear 

quarterly seasonality, a cyclical variation with a period of about 4 years and all these 

features can again be well represented by a general linear model. 

The main purpose of this chapter is to lay the foundations on which the appropriate 

general linear model from the A R I M A class can be determined, by describing the 

statistical summaries of the observed time series used in this task. The two series 

shown in Figure 2.3 provide further examples to illustrate the behaviour that can be 

represented by the linear model. Figure 2.3a shows the daily energy loss recorded for 

a model cow. The variations of this series about an annual cycle could be described as 

irregular rather than random; there is a slight smoothness to the pattern. Figure 2.3b is 

a series of measurements of the width of a product formed from a continuous plastics 

extrusion process. A slow but inconsistent drift of level can be seen in the very "noisy" 

measurements. 

2.2. THE AUTOCORRELATION FUNCTION 

Prediction and correlation go hand in hand. In simple linear regression the sample 

correlation coefficient provides a direct measure of predictive ability. To define a 

theoretical correlation coefficient we need a well-defined population from which 

both the explanatory variable, or predictor, and the response are jointly drawn. In a 
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FIGURE 2.4 Scatterplots of series of steel consumption against the same series values lagged by 1, 10, 
and 16 quarters. 

univariate time series context we consider that the pair of values z,-k, zt constitute 

the predictor and response. The requirement that these come from a well-defined 

population as t varies is satisfied by the assumption of stationarity. This has various 

forms and we state here the weak form, that 

1. Ε ( ζ , ) = μζ is constant for all t. 

2. Var(z,) = σ ζ

2 is constant for all t. 

3. Cov(z,_*, Zt) = yz,k depends only the separation lag k and not on t. 

The sequence yz_k is the autocovariance function of the series and, dropping the suffix 

ζ for simplicity, ρ* = γ*/·Υο is the autocorrelation function. 

We illustrate the definition of the autocorrelations by considering the scatterplots in 

Figure 2.4 between the first 100 values of the series of steel production and the values 

at, respectively, lags of 1,10 and 16 quarters. The first plot for example has the values 

Z 2 . - - . z i o o plotted vertically against ζ ι Z99 horizontally. Over the earlier period 

this series appears to be approximately stationary, although in the longer term there 

is certainly a change of structure. From these three scatterplots we obtain sample 

correlations of .673, —.018, and .660, which estimate the autocorrelations at the 

respective lags. It should be realized that these scatter plots differ in an essential 

way from the typical scatter plot of bivariate data in that the points displayed are not 

independent of one another; they come from the same record of a series of dependent 

values. This affects the sampling properties of the estimated autocorrelation, which 

at any given lag depend also on the autocorrelations at other lags. This limits the 

usefulness of formulas for the standard errors of these estimates developed by Bartlett 

(1946) and given by Box and Jenkins (1976, p. 34). Special cases, given below, are 

however very useful. The commonly used definitions of the sample mean, variance, 

autocovariances, and autocorrelations calculated from observations ζι, Z 2 . · · •, zn are 

1 " 

1 ^ 
= - J > - if 

l=\ 

(2.9) 

(2.10) 
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j n—k 

- V ( Z r - DiZt+k ~ Z) (2.11) 

(2.12) 

There are differences between the sample correlations given above, of the scatter-

plots in Figure 2.4, and those defined by (2.12), which are .662, -.014, and .570 at the 

lags of k = 1,10 and 16. Although small at low lags, the differences increase at higher 

lags. They arise partly because in (2.11) and (2.12) the series values are corrected by 

the same mean and divided by the same variance, calculated for the whole sample. 

In Figure 2.4a, for example, the correlation is calculated between the sub-samples 

Z2, Z3,zioo and z\, Z2. • · ·»Z99. correcting them by their slightly different means, 

and dividing by the product of their slightly different standard deviations. At higher 

lags an important difference arises because the divisor of η is retained in (2.11), even 

though the covariance is formed from only n — k lagged products. A divisor of η—k in 

place of η will be seen in the form of (2.11) given in some older texts, but it can result 

in a sample autocorrelation (2.12) larger than 1 at high lags. These differences arise 

also in lagged regression and other areas of time series modeling, and are generally 

referred to as end effects. 

The sample autocorrelation function (acf) provides a widely used statistical sum-

mary of the properties of an observed times series. Figure 2.5 contains four frames in 

the first of which a plot of the first 100 values of the steel consumption time series is 

shown, and in the second its sample autocorrelations. The remaining two frames show 

the sample partial autocorrelation function and sample spectral density, which will 

be described shortly. Note how the sample autocorrelation in this case summarizes 

the cyclical properties of the series with peaks at lags 4 and 16 indicating the periods 

of the cycles. 

Although we stated earlier that this series was approximately stationary, the aspect 

ratio of the first frame in this figure suggests that it might contain a trend and may 

not therefore be stationary. This is a typical problem, that from a finite sample it 

may not be evident whether slow changes in level are part of long-term variation of 

a stationary series about a fixed mean, or are best described by a trend in level that 

requires correction before stationarity can be assumed. Figure 2.6 shows a similar 

set of graphs for the energy loss series after it has been corrected, by regression, 

for a smooth annual cycle. The regressors for this cycle are defined by cos(2irr/p) 

and sin(2iTi/p), where t is the time index and ρ is the period, of 365 in this case. 

Figure 2.6 gives no indication of shorter-term cycles, but some autocorrelation at 

low lags that reflects a modest degree of persistence in successive values of the 

series. 

In these last two figures the sample autocorrelation plots have included parallel 

lines equally spaced about the horizontal axis. These are shown to indicate the range 

of sampling variability to be expected of the (low lag) sample autocorrelations when 

the series is random, that is, when its acf is zero at all lags. They are drawn at ±2/-Jn 

where η is the sample length, to give approximate two standard error limits in that case. 
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FIGURE 2.5 First 100 values of the series of steel consumption with sample statistical properties. 

This is an important case because we shall often wish to check whether there is any 

evidence of autocorrelation in a series. A series for which there is no autocorrelation 

is known as white noise. 

If the series is autocorrelated at any lags, the limits drawn in these plots un-

derestimate the sampling variability even for those lags k where p* is zero. If 

it supposed that the true autocorrelations are all zero beyond some lag q, then 

the approximate standard error of the estimated autocorrelations at those same 

lags is 

SE(rk) ~ (1 + 2p? + . . . + 2 p | ) . (2.13) 

For example, in Figure 2.6, if we take the correlations at lags 1,2, and 3 to be nonzero 
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FIGURE 2.6 Model cow daily energy loss corrected for annual cycle with sample statistical properties. 

and equal to their sample values, and assume all the remaining correlations to be 

zero, the value for the standard error of the sample correlations at lags beyond 3 is 

approximately 

V 2δο [ 1 + 2 ( 0 - 5 2 + 0 - 2 2 + ° ' 2 2 ) ] = ° 9 1 - ( 2 " 1 4 ) 

The limits of plus or minus two standard errors should therefore be taken as 
appreciably wider than those shown. The sample values close to lag 60, which lie just 
outside the limits as shown, would not then be considered extreme using the revised 
limits. 
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2.3. L A G G E D PREDICTION A N D THE PARTIAL 
A U T O C O R R E L A T I O N FUNCTION 

If a regression line is fitted to the scatterplot in Figure 2.4a, the resulting prediction 

equation is 

z, = c + 0.67ζ,_ι + a » (2.15) 

which accounts for 44.7% of the variance of z,. This provides a simple one-step ahead 

predictor for the series. The regression coefficient is very close to the first lag sample 

autocorrelation as defined in (2.12), which is .66. To explain this, consider the usual 

relationship $ = rsy/sx between the estimated coefficient <j>, say, in a regression of y 

on χ and the sample correlation coefficient r. Here sy and sx are the sample standard 

deviations of y and x, and in the time series case these are almost the same, differing 

only in the end effects described in the previous section. 

The regression of z, on a range of lagged values z,_ ι , . . . , zt~k can be expected to 

improve prediction. In a similar manner the least-squares equations of this regression 

can be approximated in terms of the sample autocorrelations up to lag k. Consider 

the example with k = 5. The lagged regression equations for the model 

Zt = C + φ ΐ Ζ / - 1 + d>2Z/-2 + Φ 3 Ζ ί - 3 + Φ4Ζ( -4 + Φ5Ζ(-5 + (2.16) 

may be written out for t = 6 , . . . , η in the standard form Y = c + Χ φ + Ε with 

(z6\ 
f Zs Z4 · • z, \ 

Y = 
Z7 

X = 
Z6 Z5 Z2 

[zj \ Z n - l Zn-2 · • Z„-5J 

(2.17) 

After correcting each column of Y and X for its mean, the least-squares equations 
Χ'Χφ = X'Y, when divided by ns\, are in large samples close to the equations 

/ I 

Γ3 

\ r 4 

r\ 

1 

r\ 

r\ 

1 

ri 

r\ r2 

1 r, 

<i>2 

Φ 3 

Φ4 
ν ψ 5 / 

/ r , \ 

W 

(2.18) 

The differences again are due to the end effects in forming the sums of products of 
lagged values. 
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TABLE 2.1. Sample Autocorrelations and Prediction Coefficients 

Sample Regression Yule-Walker Sample 

Lag Acf Coefficients Coefficients Pacf 1 - Λ 2 

1 .662 .709 .697 .662 .562 
2 .420 -.152 -.143 .033 .561 
3 .486 .116 .154 .392 .475 
4 .570 .538 .447 .208 .454 
5 .300 -.445 -.389 -.389 .385 

The residual sum of squares from the regression, Y'Y — <$X'K, expressed as a 

fraction of the raw variance Y'Y, is similarly approximated by 

1 - R2 = 1 - φ , η - Φ2Γ2 - φ > 3 - φ > 4 - Φ>5· (2.19) 

Equations (2.18) are known as the Yule-Walker equations. With the sample acf values 

r* replaced by the population quantities p* and correspondingly $ k replaced by φ*, 

they become equations for the minimum mean-square error lagged prediction coeffi-

cients. Table 2.1 shows the sample autocorrelations up to lag 5, the coefficients which 

result from carrying out the regression up to lag 5 and for comparison with those, the 

coefficients obtained from solving the Yule-Walker equations. Noticeable differences 

arise from the end effects. 

It should be appreciated that as more lags are included in this regression, the 

coefficient of a particular lag, say, the first lag, will change. Thus each coefficient 

should be doubly indexed, as φ*, ;, by the order, or maximum lag, k of the regression 

besides the lag j with which it is associated. 

Table 2.1 also shows the coefficients fykk up to lag 5. These play a valuable 

role because, just as the coefficient φι,ι is identical to the first lag acf pi, so the 

coefficients φ*,* may be interpreted as the partial autocorrelations associated with 

lags k. These measure the improvement in prediction gained from progression to the 

order k regression from the order k — 1. The value of 1 — R1 for the order 5 regression 

is obtained from that for the order 4 regression by applying the factor 1 — <f>2

 5 . 

Progressing down to the order 1 then gives 

1 - R2 = (1 - φ 2 , 5 ) ( ΐ - φ 2 , 4 ) ( ΐ - 4>3,3)(1 - ΦΙ,2)(1 - Φ2,,)· (2.20) 

The reducing sequence of values of 1 - R2 is shown as the last column in Table 2.1. We 

illustrate the direct calculation of the partial autocorrelation at lag 2. The first step is 

to correct both the regressor z, and the new predictor z , - 2 for the effects of the current 

predictor Z(-i by forming ζ, —φι,ιζ,_ι and ζ ,_ 2 — φι,ιζ,_ι. The coefficient φι,ι is the 

same in both of these because both z, and z,_ 2 have the same autocorrelation with, 

and hence the same dependence upon, z,_i. The partial autocorrelation at lag 2 is just 

the correlation between these corrected terms. Each has variance σ 2 ( 1 — φ 2 , ) and the 

covariance between them can be simplified to that between the first, ζ, — φ ^ ζ , - ι , 
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and just zt-2, giving a z

2(p2 — Φι, ι ρ ι )· The required partial autocorrelation is then the 

ratio 

Φ2.2 = ~~i 12—· (2.21) 
1 -Φ1.1 

The lag 2 predictor may be expressed by updating the lag 1 predictor: 

Φ2,1Z/-1 + Φ2,2Ζι-2 = Φΐ , ΐΖ(-1 + φ2,2(Ζ<-2 - Φΐ,ΐΖ(-ΐ) (2.22) 

from which, by comparing coefficients, we see that Φ2,ι = φι,ι — φ2,2φι,ι· This 

computation generalizes to provide an efficient means of solving the Yule-Walker 

equations which has been historically important. Display of the sample partial auto-

correlation coefficients (pacf) d ) t > t provides a valuable further insight into the lagged 

dependency of a time series, although the information it contains is in fact equivalent 

to that in the acf. In Figures 2.5 and 2.6 the third frame shows plots of these values for 

the corresponding series. The partial acf generally dies out faster than the acf because 

a limit to the predictability of the series, as measured by 1 — R2, is usually reached at 

a fairly low lag. From Figure 2.5 the gains of lagged prediction beyond lag 5 appear 

to be modest. 

As for the sample acf, approximate standard error lines are drawn for the sample 

pacf. These are appropriate forjudging the lag beyond which one might assume that 

all values of the pacf are negligible. 

Lagged prediction provides a justification for the G L M representation (2.4) of a 

stationary time series. Provided the order is sufficiently high, a minimum mean square 

error lagged predictor will approximate (2.4) with arbitrary precision. The error will 

necessarily be close to white noise and because of its derivation is known also as the 

linear innovation of the series. 

2.4. TRANSFORMATIONS T O STATIONARITY 

We have already mentioned that, for some series, correcting for a deterministic com-

ponent by regression may result in a series that appears stationary. This is illustrated 

by the examples of the atmospheric carbon dioxide series in Figures 2.1 a and 2.1 b and 

the energy loss series in Figures 2.3a and 2.6. Such series are called trend stationary; 

the only feature that is nonstationary is the variation in mean level, which is accounted 

for by the regression components. If the corrected series, namely, the errors in the 

regression, are autocorrelated, then this fact ought to be taken into account when 

fitting the regression. When trends, seasonality, and cycles are being fitted, the results 

of ordinary least-squares regression are usually quite adequate. However, it is quite 

possible to fit the regression with autocorrelated errors and, in particular, errors which 

follow the A R I M A models of the next chapter. 

It is sometimes appropriate to take logarithms of the values of a time series before 

embarking on any other analysis. This can help to improve the fit of a linear model 
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before regression or other modeling of the series. Other such instantaneous nonlinear 

transformations, such as taking the square root, can be useful for improving the linear 

modeling of stationary series. 

Differencing of a time series is a simple operation that can often transform a 

nonstationary time series to a stationary series. The simplest example arises when the 

series is a random-walk z,. This is denned by the property that its first difference Vz, 

is white noise: 

Vz, = z , - z , _ i =a,. (2.23) 

Such a process appears to be a good description of many financial time series such as 

stock prices. The series itself is then made up of the cumulative sum of independent 

successive steps: 

ζ ι = ζ ο + αι (2.24) 

Zi = Zi + « 2 = zo + a\ + ai 

zt = Z r - i +a, = zo + a\ +αι Η ha,. (2.25) 

Figure 2.7a shows an example of a process simulated in this way, and Figure 2.7b 

shows a series of daily dollar term interest rates that appears to follow such a process. 

The random walk is not stationary because the variance increases with time. It may 

however, quite simply, be represented by the GLM (2.4) with tt\ — 1 and 1T2 = 1T3 = 

• · · = 0. 

Such processes, which are formed, as shown in (2.25), by the summation of a 

stationary process, are known as integrated processes. They can show features of 

trend, seasonality, and cycles which are similar to those of trend stationary processes; 

the main distinction is that for integrated processes these features are evolving. For 

example, the trend slope may be slowly changing. These processes are also known as 

difference stationary processes. 

An integrated process that is similar to the random walk is that which is predicted 

by the E W M A (2.5). It is a short exercise to show that for this process the first 

(0) SIMULATED RANDOM WALK (b) DOLLAR TWO YEAR TERM RATES 

0 50 100 ISO 200 250 300 0 SO 100 ISO 200 250 300 

TIME DAYS 

FIGURE 2.7 (a) A simulated random-walk process; (b) series of daily 2-year term interest rates. 
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difference is 

Vz, = a, - θα,_ι (2.26) 

which is a simple stationary series. 

Of course, differencing a stationary process gives another stationary process; one 

whose autocorrelation is usually complicated by this unnecessary differencing. Such 

inappropriate differencing of an already stationary series is undesirable. There are, 

however, series for which it is not clear from a finite sample whether they are stationary 

or whether they have some features of an integrated process. It is then usual to consider 

modeling both the series and its differences, starting with inspection of the sample 

acf and pacf of both. 

Another common form of differencing is seasonal differencing. As an example, 

consider the first seasonal difference of the atmospheric carbon dioxide series de-

fined as 

Figure 2.8 shows this series together with its sample acf and pacf. This is just 

the series of annual changes (increases in this case) computed month by month. The 

effect of any fixed seasonal pattern in the series, as modeled by the indicator variables 

in (2.1), is canceled out by this difference, which generally appears to simplify such 

a series. However, just as with ordinary differencing, it is possible that seasonal 

differencing is inappropriate, and this is the case if the series is, in reality, trend 

stationary. The seasonally differenced series may then be unnecessarily complicated 

in structure, compared with the trend-corrected series. 

Although the theoretical acf p* is defined only for stationary series, the sample 

acf (and pacf) can, of course, be computed and displayed for any time series record. 

It will not have well-defined properties, such as useful large sample limiting values, 

but can generally be useful to indicate that some kind of transformation is necessary, 

whether trend correction or differencing, to produce a stationary series. For example, 

in Figure 2.5 the peaks in the sample acf at lags 4, 8, 12, . . . draw attention to the 

quarterly seasonality in the series which requires modeling by means of some such 

transformation. 

2.5. CYCLES A N D THE P E R I O D O G R A M 

Periodic or cyclic behaviour is a feature of many time series. In this section we define 

first the periodogram, which is a general tool for revealing unknown periodicities 

as well as confirming known periodicities in an observed series. The periodogram 

provides another statistical summary of an observed time series, just like the sample 

acf and pacf. It is in fact equivalent to these in its information content but complements 

them by what it can reveal as to the nature of the series. After defining the periodogram, 

we consider its properties under various modeling assumptions, and this leads us to 

the spectral representation of stationary time series. 

Vi2Zr = Zt — Z(-12- (2.27) 
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FIGURE 2.8 Series of annual changes of monthly atmospheric CO2 levels with sample statistical 
properties. 

We motivate the periodogram by considering the estimation of a deterministic 

cyclical component in a series z,. The linear model used to fit such a cycle is 

z, = R cos 2ττ ( / ί + g) + e, = A cos 2ττ// + Β sin 2ιτ / ί + e,. (2.28) 

Here R is the amplitude of the cycle and / the frequency in cycles per sampling point 

so that the period of the cycle is ρ = l / / . The phase, or fraction of a cycle completed 

at time t = 0, is g. If / is taken as known, the model is linear in A and B, from 

which the amplitude and phase can be derived from A = R cos g and Β = — R sin g. 

In particular, R2 = A2 + B2. 

Because the series is sampled at regular intervals, it is necessary to restrict the 

range of frequencies to 0 < / < 0.5; the upper frequency limit of one half a cycle 
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per sampling interval is known as the Nyquist frequency. This is because any cycle 

with a frequency greater than this, or equivalently of period less than 2, cannot be 

distinguished from a cycle with a frequency within this range. 

The least-squares equations for Λ and Β are 

(cos 2ττ/ί) 2 Σ Ϊ c o s W s i n 2 1 Γ / Λ (A\ = ( Σ Ϊ zt cos 2 π / ι \ 

Σ , 8 . η 2 ΐ Γ / ϊ α κ 2 ΐ Γ / Γ Σ ΐ ^ τ τ / ί ) 2 ) \ b ) [ς,Ί Ζ , s i n 2 i r / f ) -

(2.29) 

We can approximate, provided that / Φ 0, \, Σ " (cos It!ft)2 and Σ " ^ · 0 2 i r / i ) 2 by 

n/2 and Σ " sin2Tr/rcos2'rr/i by 0 so that these equations may be approximated 

as 

giving 

2 " 2 n 

i % - V z , c o s 2 T r / i , β « - V z , sin2ir//. (2.31) 
η t-f1 η 

The periodogram is then defined as 

/ ( / ) = in (A2 + B2) = inR2. (2.32) 

There are efficient methods of calculating the periodogram over a fine grid of fre-

quencies spanning 0 < / < { , and we shall graph it over this range. The scaling factor 

in the definition is chosen so that the area under the graph of / ( / ) is the mean square 

value of the series: 

J/=o η frf 

Usually the series is mean corrected before calculating the periodogram, so this 

becomes the sample variance. The periodogram then describes the distribution or 

analysis of the sample variance of the series over the frequency range. It is also 

common practice to scale the periodogram, dividing by the series variance so that the 

total area is unity. We shall choose a frequency grid with divisions of approximate 

width 1 /4n so that the periodogram appears continuous for most of our examples. 

Historically the frequency values were chosen to be the harmonics of the fundamental 

frequency of one cycle in the sample length, specifically, 1 /n, 2/n, 3/n, and so on. 

The periodogram can be considered as an investigative tool, a transformation 

of the data designed to reveal cyclical behaviour. We first consider its properties 
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FIGURE 2.9 Constructed series of two cycles and a random error component with sample statistical 
properties. 

assuming that the data does consist of a combination of deterministic cycles of the 

form assumed in the motivating regression. We then introduce the spectrum and 

spectral representation by considering its properties when the series is stationary and 

contains no deterministic components. In this context the periodogram is called the 

sample spectral density, and this is how it is described in the figures. 

Figure 2.9 shows the analysis of a series generated as 

z, = Ricos2TT(fit + gl) + R2cos2Tt(f2t + g2) + al (2.33) 

where the amplitudes of the cycles are R \ = 10 and R2 — 7, the periods are 1 /f\ = 4 0 

and I / / 2 = 10, the phases are g\ = 0.5 and g2 = 0-2, and the error standard deviation 

is σα = 8. 
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The graph of the series in the first frame shows some cyclical pattern but it is 

quite well masked by the white-noise errors whose standard deviation is comparable 

with the amplitudes of the cycles. The scaled periodogram in the fourth frame clearly 

reveals the evidence for the cycles with a peak at each of the two frequencies .025 and 

. 1. There are, however, smaller peaks which can only be ascribed to the white-noise 

term in the series. To understand these features, we use the approximate properties of 

the estimates, that 

A and Β are independent normal with means A and Β and variance ( 2 / η ) σ 2 . 

(2.34) 

From this the expected value of the periodogram is 

Ε [ / ( / ) ] = Ε [ ^ ( Λ 2 + β 2 ) ] ~ ^ ( Α 2 + Β2) + 2σ2 = \nR2 + 2σ2. (2.35) 

Evidence for frequencies that are present in the data, that is, for which R > 0, 

therefore appear as peaks of height proportional to n, which will become prominent 

as the series length increases. 

At frequencies for which no cycle is present (i.e., R=0), the expected value 

of the periodogram is just 2σ 0

2 whatever the length of the series; the peaks due to 

the cycles become prominent because this remains low in comparison. Furthermore, 

because A — Β — 0, the distribution of the periodogram at such frequencies is a 

scaled chi-squared variable on 2 degrees of freedom, also known as an exponential 

distribution: 

1(f) = ^ ( A 2 + Β2) ~ σ 2 χ 2

2 = exponen t ia l^ 2 ) . (2.36) 

These properties are exact if the frequencies of the cycles are exact multiples j of 

the harmonic frequency 1/n, that is, if they have an exact number j of cycles in the 

data length. The cyclical regressors are then mutually orthogonal, and the estimates 

at these frequencies are independent. This would be unusual in practice, but the 

properties are in fact very close to this. The estimates are approximately independent 

for frequencies separated by an interval greater than 1/n, and the width of the peak 

associated with a cycle in the series is approximately 1/n. 

The statistical problem of detecting cycles in the presence of white-noise observa-

tional error is illustrated by the example in Figure 2.9. We know that the two largest 

peaks are due to real cyclical components. There are other smaller peaks that we also 

know are due only to the observational noise. These are the largest of the indepen-

dent exponentially distributed periodogram values at the other frequencies. Because 

the central 90% of this distribution ranges from about ^th to 3 times its mean, the 

general picture of the periodogram at these other frequencies is very variable with 

many "peaks." These are due simply to natural statistical fluctuation but are easily 

misinterpreted as indicating regular cycles in the data. If we could increase the ob-

served series length, we could eventually discriminate with certainty between such 
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spurious peaks and peaks due to real cycles. In practice there is always the scope for 

some misinterpretation, as with all statistical modeling. 

Turning now to a real example, reconsider Figure 2.5. The scaled periodogram 

here shows peaks at frequencies .01, .06, and .25, associated with periods of 100, 

16, and 4 quarters. The first peak is typical of series that show some evidence of 

trendlike behaviour. This may be due to a real trend or a cycle with period much 

greater than the series length, which appears as a low-frequency component of the 

periodogram. It is typically accentuated as a peak centered on a frequency of 1 /n 

because mean correction of the data means that the periodogram always falls to 

zero at zero frequency. The other peaks certainly appear to be associated with real 

cycles in the data; one with frequency .06 (period 16) may be due to a business 

cycle and one with frequency .25 (period 4) is certainly associated with the annual 

cycle. 

This is a rather special example. Peaks in the periodogram are commonly much 

wider than 1/n, and there are various explanations for this. It means essentially that 

the cycle associated with this peak is irregular in some way, so that its amplitude, 

frequency, or phase may be varying. This is sometimes described as modulation of the 

cycle. There are many possible mechanisms for this. The linear autoregressive models 

described in the next chapter were proposed by Yule (1927) as one such simple linear 

mechanism. 

2.6. THE SPECTRUM 

This is a natural stage at which to put aside the deterministic sinusoidal models for 

cyclical behaviour and consider the cyclical properties of stationary time series. The 

point is that a stationary time series has a natural expression in terms of cyclical 

components but the coefficients of these components are now random quantities. 

We support this statement by showing that the periodogram defined in (2.32) can be 

expressed as a combination of the sample autocovariances ct of z,: 

(2.37) 

The derivation is as follows: 

/ ( / ) = z, sin Ittft 

η η 
(2.38) 

= - ^2 Σ [z,Zs [cos(2ir / i ) COS (2 IT /S ) + sin(2Tf/i) sin(2ir/s)]} 

η η 
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Now setting s = t + k and rearranging the sum 

cos(2ttfk) 

\k\<n 

= 2 / c 0 + 2^c*cos2-rr / : / 

(2.39) 

Provided z, is a stationary time series, we will refer to this as the sample spectrum 

S*(f) because it is the sample value of the spectrum obtained by replacing the sample 

values c* by γ*: 

S(f) = 2 | γ 0 + 2 Σ 7 * cos2ττkf j . (2.40) 

This is a well-defined quantity provided the autocovariances yk decay sufficiently as 

k increases. By analogy with the periodogram, it shows how the variance of z, is 

distributed over the range of frequencies: 

Jo 

i 
S(f)df (2.41) 

and more generally all the autocovariances can be derived from S(f): 

Ύ* = Ρ S(f)cos2itkfdf. (2.42) 
Jo 

Figure 2.10 shows the sample spectrum of the corrected energy-loss series with 
a superimposed smooth solid line, which is an estimate of the spectrum. This illus-
trates the property that, however large the sample size, the sample spectrum has an 
exponential distribution about the spectrum: 

5 * ( / ) ~ exponential[5(/)]. (2.43) 

The values are also independent at frequencies separated by more than 1 /n, resulting 

in the rapidly fluctuating values seen in the figure. The appearance is therefore similar 

to that part of the sample spectrum in Figure 2.9 that arises from the white-noise error, 

but the expected level changes with frequency. 

This distributional property follows from evaluating the mean and variance of the 

coefficients A and Β used to form the periodogram: 

A ~ normal (0, i S ( / ) ) Β ~ normal (0, J 5 ( / ) ) . (2.44) 
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FIGURE 2.10 Spectrum and sample spectrum for the corrected energy loss series. 

Then 

$*(/> = j ( Α ' + β 2 ) ~ 5 ( / ) l X 2 2 = exponentialt5(/)]. (2.45) 

The spectrum is well denned for a stationary series represented by the linear model 

(2.6) as 

W ) = 1 + £ ψ * ε χ ρ ( ί 2 ι τ * / ) 
k=l 

2σ?. (2.46) 

In this expression the constant, or uniform, spectrum Sa(f) = 2σ 2 of the white-noise 

process a,, is multiplied by a factor that is a function of / . This is the squared gain 

of the linear relationship between the series z, and a,. It is possible to interpet z, 

as being obtained by multiplying the cyclical component of a, at each frequency 
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FIGURE 2.11 (a) Superimposed sample Fourier cosine coefficients from increasing lengths of energy 
loss series; (b) superimposed cumulative sample Fourier coefficients of the same series. 

by the corresponding gain, thus transforming the uniform spectrum into one that is 

proportional to the squared gain. 

We now consider more carefully the sense in which a stationary time series can 

be considered to have well-defined cyclical components with random coefficients. 

Figure 2.11a shows the coefficients Aj calculated at the frequency intervals fj = j/N 

where Ν = 2n for, respectively, 50 and 200 central values of the energy-loss series 

(i.e., taking the 101st point to be t = 1). Figure 2.11b shows the cumulative values 

of these coefficients: 

As the sample size increases fourfold, so does the number of individual coefficients. 
The coefficient at any individual frequency splits approximately into four new inde-
pendent coefficients. As the sample size increases these do not converge because finer 
structure emerges in the graph. The cumulative coefficients do, however converge, 
but to a random function of frequency. Finer detail emerges in the cumulative plot 
as the sample size increases, but the perturbations become smaller as the graph con-
verges. This behaviour illuminates the following formal spectral representation of a 
stationary time series: 

• The autocovariances may be represented as 

Ύ* = Γ cos2TTkfdF(f) (2.48) 
Jo 

where F(f) is the nondecreasing spectral distribution function, which, in the 

case of a continuous spectrum, can be expressed as the integral of the spectral 

density: 

F(f)= [f S(f')df. (2.49) 
Jo 
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• The series values may be represented as 

z,= f coslvft da(f) + ί s in2ir/f</B(/) (2.50) 

where a ( / ) and β ( / ) are uncorrelated processes, each of which is a process with 

uncorrelated (usually termed orthogonal) increments having variances 

For a Gaussian process the increments are independent. In practice this means that, us-
ing a sufficiently fine grid of frequencies fj = j/N,a finite set of values ζ \, Zi, • • •, zn 

of a stationary Gaussian time series z, with mean μ and spectrum S(f) may be well 
approximated by the representation 

Here, Aj and Bj are zero-mean normal random variables that are independent of each 
other and for different j , and that both have variance S(fj)/N. 

An important point is the independence between all frequencies. The frequency 
division 1 /N can be as fine as desired while retaining this independence. It is for the 
estimates of these coefficients that a frequency separation of at least 1 /n is required to 
ensure independence when a sample of only length η is available. A comprehensive 
account of the subject of spectral analysis is given by Priestley (1981). 

2.7. FURTHER I N T E R P R E T A T I O N OF T I M E SERIES ACF, 

PACF, A N D SPECTRUM 

At the end of Section 2.4 we drew attention to the fact that the sample acf and 
pacf can be calculated for series that are not stationary and that these may then give 
some useful indication of possible transformation to stationarity, by correcting for 
regression components or by differencing. The sample spectrum may be of similar 
value. A trend component of a series will lead to very high values of the sample 
spectrum at low frequencies. This will often mask the other features of the spectrum; 
the values at higher frequencies are barely discernible. Sometimes the logarithms of 
the spectrum are plotted to alleviate this problem. The best remedy is to correct for 
the trend or to difference the series. 

Deterministic seasonality of large amplitude has a similar but less drastic effect, 
introducing sharp peaks in the sample spectrum at the seasonal frequency and its 
multiples. This is evident in Figure 2.5. When such features are seen, they can be 
removed by seasonal regression or seasonal differencing. 

The sample spectrum has some advantage over the sample acf in that the anomalies 
arising from certain types of nonstationary behaviour are often isolated to particular 
frequencies whereas they affect all the values of the sample acf. Thus, for the 

V a r [ o ( / ) ] = Var[3(/)] = F ( / ) . (2.51) 

(2.52) 
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random-walk model, which is not stationary, a sensible extension of the definition of 
the spectrum, called the pseudospectrum may be defined at all frequencies other than 
frequency zero, where an infinite peak occurs. The sample spectrum of a random 
walk is able to reflect the pseudospectrum values at other frequencies. The sample 
acf can be most uninformative in this case, with values close to one appearing at all 
lags. 

Both the sample acf and the sample spectrum are useful for revealing the possibility 
that a series consists of independent components that are not themselves directly 
observed. If series u, and υ, are both stationary and independent of each other with 
respective acfs and yv>k and spectra Su(f) and Sv(f), then their sum z, = u, + v, 
has acf γ„,* + y„,k and spectra Su(f) + Sv(f). Discovering such a structure may 
provide a useful simplification of, or interpretation of, the observed series. 

A simple example is that of "signal" plus "noise." Figure 2.12 shows the analysis 
of the plastic extrusion width measurement series. This is typical of a series consisting 

FIGURE 2.12 Analysis of the plastic extrusion width measurement. 
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in almost equal measure (over the sample length) of a random-walk component and a 
white-noise component. The first value of the sample acf is about .5, after which the 
values reduce slowly. This is perhaps an appropriate point to make a remark about the 
fact that the sample acf follows a typical pattern for such series, of drifting down to 
quite a long sequence of negative values. This can be explained as a consequence of 
mean correcting the series, which causes the sum of the sample acf values from lags 
1 ton - 1 to b e - J . This is just the fact that the sample spectrum is zero at frequency 
zero. Large values of the sample acf at lower lags must therefore be compensated by 
negative values at a range of higher lags. 

To return to the main point, the observed sample acf looks like the mean of two 
sample acfs; one is that of a white noise series and the other, that of a random 
walk. These together account for the sudden fall from rn = 1 to ro = 0.5 and the 
slow decay thereafter. The sample spectrum reflects the white-noise component in the 
fairly uniform values at frequencies away from zero, and the random-walk component 
in the peak close to frequency zero. 

2.8. STATE-SPACE MODELS A N D T H E K A L M A N F I L T E R 

In the last section of this chapter we use the simple signal-noise model of the previous 
section as an introduction to linear state-space models. Such models are also called 
structural models if they are believed to explain the statistical behaviour of the series 
in terms of more simple components, and a further example, of a seasonal structural 
model, is presented to illustrate this. These models contrast with the A R I M A models 
of the next chapter, which are essentially empirical, having the parametric flexibility 
to represent statistically a wide range of time series behavior. 

Applications of state-space models usually exploit the Kalman filter, which is a 
means of estimating the unobserved states or components and also, most importantly, 
of constructing predictions. Because these predictions are linear functions of past 
observations of the series, state-space models are seen to belong to the class of general 
linear models. The prediction errors or innovations a, constructed by the Kalman filter 
play a central role in the estimation of the states. 

Consider now the simple state-space model: 

z, — x, + e, (2.53) 

where 

x, = x,-\ +a,. (2.54) 

To accord with common practice, we use x, here as the state variable, which 
is typically an unobserved signal. The observed series z, is a measurement of the 
signal with observation error e, and (2.53) is known as the observation equation. The 
structure of the signal is described by the state transition equation (2.54), which in 
this example is a random walk. Both e, and a, are assumed to be white-noise series 
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and independent of each other. Their variances are parameters of this model, and their 
estimation is considered in Chapter 4. 

For the general discrete-time state-space model the corresponding equations are 

z, = Hx, + e, (2.55) 

and 

x, = Ax,-\ + a, (2.56) 

where now both z, and x, may be vector-valued so that both Η and A are matrices. The 
transition matrix A captures the dynamic structure of the model, and the observation 
matrix Η expresses how these are combined in the observations. The observation 
vector Z( typically has a small number of elements compared with the state vector x,. 
The essential property of a state model may be summarized as 

Conditional upon the state xt, the distribution of the observation z, and of any future 
observations and states, does not depend on the value of any past observations and states. 

This property allows estimation of the state xt from present and past observations, z,, 
Zt-ι, . . . , by the Kalman filter. We describe this filter now for the simple model to 
emphasize the principles. The filter equations for the general model are presented in 
Chapter 4. 

Assume that we have the estimate ί,_ι,,_ι of the state x,-\ at time t — 1 using all 
the observations up to time t — 1. The first step is prediction of the state x, for which 
we use the transition equation (2.54) to obtain simply 

• Ϊ , , , - Ι = * » - ι . / - ι . (2.57) 

Note that the second index always indicates the range of past observations that have 
been used to form the estimate. 

From the observation equation (2.53) this estimate is also the predictor of z< from 
past values: 

ζ,,,-ι = * , . , _ ! (2.58) 

When Zt is observed, the prediction error or innovation α,,,_ι = ζ, — ζ, , , - ι is known 
and may be used in the second, or correction, step, to update the estimate of the state 
xt. To see how this is done, we follow through the errors of the estimates of these 
states and observations, starting with that of the state x,-\ whose error variance we 
assume known: 

e,-\,t-\ = xt-i - xt-\,t-\\ Vare,_ l j r _i = (2.59) 
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Then the error*, — Jc,,_i of the subsequent state is 

<·,,,_! = + a,; Varc,,,_i = = ρ,-χ,,-ι + σ 2 . (2.60) 

Finally the observation prediction error, or innovation z, — z,,,_i, is 

α,,,_! = e,,(_i -f e,; Vara,,,-, = + σ 2 . (2.61) 

The regression of the state error on the known innovation then gives the 

correction to the state estimate as 

Χι,ι = Xt,t-\ + K,a,,,-\. (2.62) 

The regression coefficient K,, known as the Kalman gain, is just the ratio of the 
covariance between«?,,,_ ι and at,t-\ to the variance of the latter: 

Κ, = Ρ ' · ' " ' . . (2.63) 
Pi.t-ι + σ,2 

The reduction in the error variance that follows from this regression gives 

Pt.t = Pt,t-\ - K,p,,,-\. (2.64) 

Equations (60)-(64) provide the complete cycle of updating the estimates from time 
t — 1 to time t. Starting from the beginning of the series, taking zi as the first state 
estimate Jci,ι with error variance p\,\ = σ 2 , the Kalman gain K, soon converges to a 
constant A". In the case of this simple model the updating equation for the prediction 
can be reduced to 

Z / + U = Z r , / - I + K{Zt ~ Ζ / . / - 1 ) · (2.65) 

This is of the same form as the E W M A predictor presented in (2.5). The simple state-
space model therefore provides a structural explanation for this very widely used 
predictor. 

The seasonal structural model that we use as a further illustration is one considered 
by Harvey (1990). We apply it to the series of atmospheric carbon dioxide concentra-
tions shown in Figure 2.1. Besides the observation error, this model consists of two 
independent components to model first the trend and then the seasonality. The attrac-
tion of such a model is that it generalizes the regression model in which the trend is 
represented by a fixed straight line, and the seasonality by fixed seasonal effects using 
indicator variables. It replaces these by stochastic components that permit the trend 
and seasonality to vary through time. It is possible to recognize these components in 
the sample spectrum of the series in a similar manner to those of signal and noise in 
Figure 2.12. 
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The model for the trend involves two state variables 

μ ( = μ ( - ι + β;-
β ( = β , - 1 + ξ , 

(2.66) 

where two free parameters, σ2 and σ ξ

2 , are the variances of the white-noise disturbance 
terms η , and ξ , . If these variances are both zero, that is, if the terms η , and ξ , are 
zero in these equations, it is seen that β, then retains a constant value, β, and μ, 
increases by this constant amount at each timepoint, and thus follows a straight-line 
trend. When these variances are positive, the trend will have varying level and slope. 

The model for the seasonal component s, is 

s, = -(s,-i + J , - 2 Η Η S t - i i ) + ω , (2.67) 

where ω, is white-noise disturbance with variance σ 2 . If this is zero, the model 
specifies that any 12 successive values sum to zero, so that the next value s, must be 
equal to the value s,_i2 just one year previously, resulting in a fixed seasonal pattern 
about an average of zero. The disturbance ω, allows some variation of this pattern 
when its variance is positive. 

Together, therefore, these models encompass the regression model (2.1) for fixed 
trend and seasonality, but also extend it to allow variations in these over time. There 
are altogether, including the observation error, four variance parameters in this model 
corresponding to four different white-noise sources of variability. 

To define the state-space model, the first two states are taken to be χ\_, = μ, and 
* 2 , t = β<· The remaining states are taken as χχ, = s,, χ*,, = ..., χ\χ, = J,_IO-
The state transition equation then becomes 

x, = 

(\ 1 0 0 · · 0 0\ 
0 1 0 0 · · 0 0 i , 

0 0 - 1 - 1 · · • - 1 - 1 ω, 

0 0 1 0 · · 0 0 
X,-l + 

0 
0 0 0 1 · · 0 0 

X,-l + 
0 

0 0 0 •· 1 

(2.68) 

where the last 10 lines are merely a device for retaining the latest 10 values of s, in 
the state vector. 

The Kalman filter can again be applied to predict this series and estimate the 
states. Besides constructing the filtered state estimates from present and past obser-
vations, it is also possible to construct what are known as their smoothed estimates 
based on all available past, present, and future values. These estimates are shown in 
Figure 2.13a for the trend and Figure 2.13b for the seasonal component. Both of these 
are fairly regular for this model. The general equations for constructing such filtered 
and smoothed state estimates are presented in Chapter 4. Other methods of obtaining 
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ATMOSPHERIC C02 1974 - 1986 SEASONAL VARIATION IN C02 

FIGURE 2.13 (a) Monthly CO2 with smoothed trend line and (b) the estimated seasonal component. 

decompositions of such series into trend and seasonal components are described in 

Chapter 7. 
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C H A P T E R 3 

Univariate Autoregressive 

Moving-Average Models 

George C. Tiao 
University of Chicago 

3.1. I N T R O D U C T I O N 

Economic, engineering, environmental, and other scientific data are often taken in 
roughly equally spaced time intervals, for example, hour, day, month, quarter or year. 
Because of the inertia of the system, such time series are frequently serially dependent. 
For instances, the morning temperature of a given day tends to be correlated with the 
evening temperature of the previous day, the air pollution index at noon may be 
highly influenced by the weather conditions and traffic level in the morning, and an 
individual's spending of a given month may be highly correlated with his income and 
spending of the previous month. Dynamic relationships in time series data can often be 
represented by a linear transfer function model. Consider the simple case in which y, is 
the output and x, the input of a system at time t. A linear dynamic model takes the form 

y, = v0x, + ν.*,_ι + 1 - VjX,-j Η 

= v(B)x, 

where Β is the backshift operator such that Bx, = JC,_I , and the quantity v, measures 
the effect of on yt. The v / s are known as the impulse responses and v(B), the 
transfer function. Rather than dealing with a possibly infinite number of the v / s , in 
practice, a parsimonious representation takes the rational polynomial form 

v(B) = -τ—V (3.2) 
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where ω ( β ) = ω 0 — ωιβ u>sB
s and δ ( β ) = δο — δ]β &sB

r are 
polynomials in Β of degrees s and r, respectively, and b measures the delay or dead 
time of the system. 

3.1.1. Univariate A R M A models 

In practice, interest often centers on modeling the temporal dependence of an observ-
able time series for forecasting future observations. Since the 1970s, primarily due to 
the work of Box and Jenkins (1976), a class of mixed autoregressive moving-average 
( A R M A ) models of the form 

φ(β)ζ , =c + Q(B)a, (3.3) 

originally proposed by Yule (1927) and Slutsky (1937), has been found useful to rep-
resent the serially dependent relationship of many time series encountered in prac-
tice. In (3.3), {zA is the observable time series, [a,] is a sequence of white noise, 
identically and independently distributed as N(0, σ α

2 ) , c is a constant, φ(Β) = 1 — 
φ,# _ φρΒ

ρ is the autoregressive polynomial, Q(B) = 1 — θ)β — . . . — QqB
q 

is the moving-average polynomial, and φ ( β ) and 0(B) are assumed to have no com-
mon factor. The model (3.3) is of the form (3.1) and (3.2) where y, = z, and the input 
x, is now the white noise a,. It will be denoted as the ARMA(p,<?) model. 

The model (3.3) will be stationary if all the zeros of φ ( β ) are restricted to lie 
outside the unit circle and in this case c = (1 — φι φ ρ ) μ where μ is the mean 
of the series. Theoretically, stationarity means that the probability density functions 
of ( z ( | , . . . , z,l+k) and ( z , 2 , . . . , z<2+*) are of identical forms for any arbitrary choice 
of the integers (t\, t2, k). In practice, this is saying that the overall behavior of the 
series remains the same over time. 

Now, real-world time series data often exhibit a drifting behavior. Such nonsta-
tionary series can be modeled by allowing some of the zeroes of φ ( β ) to be equal to 
one. Thus, writing φ ( β ) = φ(β)(1 - B)d we have from (3.3) that 

φ(β)(1 - B)dz, = c + 6(B)a, (3.4) 

where the zeros of φ ( β ) = 1 — φι# §ρβ
ρ·, ρ* = p — d, are all lying outside 

the unit circle. The model (3.4) is known as the autoregressive integrated moving-
average model of order (p„d,q), or A R I M A ( p + , i i , ^ ) . Furthermore, economic and 
environmental data often exhibit an evolving cyclical or seasonal behavior, and this 
type of pattern can be modeled by letting φ(Β) to have zeros on the unit circle. Thus, 
more generally, we can write (3.3) in the form 

φ(ΒΜΒ)ζ, = c + Q(B)a, (3.5) 

where u(B) =\—u\B ujBd has all its zeroes on the unit circle. The special 

form 

= (1 - B)d(\ - Bs)d- (3.6) 
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where ί is a positive integer representing the seasonal period, has been widely used 
in practice to model seasonal time series (s = 12 for monthly data and s = 4 for 
quarterly data). 

In what follows we list some special cases of the class in (3.5) that have been 
widely used in practice: 

( Ι - φ β ) Ζ , = c + a, (3.7) 

z, =c + (l-QB)a, (3.8) 

(1 - B)z, = (1 - ΘΒ)α, (3.9) 

(1 - B')z, = (1 - θ,β)(1 - ββ*)α, (3.10) 

(1 - B)(l - B')z, = (1 - Θ,Β)(1 - W W (3.11) 

The model (3.7) is an ARMA(1 ,0 ) or AR(1 ) model and is stationary when —1 < 

φ < 1. The second model, (3.8), is a stationary ARMA(0 ,1 ) or M A ( 1 ) model. The 

third, (3.9), is nonstationary and for - 1 < θ < 1, can be written in the alternative 

form (see discussion of the rs form below) 

z, = (1 - θ)ζ,_ι + 8(1 - θ)ζ,_2 + θ 2 (1 - θ ) ζ , - 3 + • • • + α „ (3.12) 

showing that the dependence of z, on past values Zt-ι, z<-2. · · · decreases exponen-
tially as we stretch into the past. This model is commonly called the exponential 
smoothing model in the forecasting literature. The models (3.7)-(3.9) will be illus-
trated in Section 3.4 on examples later. Finally, (3.10) and (3.11) are two models most 
commonly used for seasonal time series data. 

3.1.2. Outline of the chapter 

The main purpose of this chapter is to provide the reader with an expository account 
of the class of univariate A R M A ( p , g ) models in (3.3), and some useful modeling 
specification techniques for applying these models to real data. Section 3.2 considers 
some basic properties of the models with special emphasis on autocorrelation function, 
partial autocorrelation function, and extended autocorrelation function; Section 3.3 
discusses model specification strategy, and Section 3.4 presents several illustrative 
examples. 

3.2. SOME BASIC PROPERTIES OF U N I V A R I A T E A R M A M O D E L S 

For simplicity in presenting the main results, we shall, until further notice, assume 
that c = 0. To discuss the properties of (3.3), we suppose that the series starts at 
some timepoint m. This is a realistic assumption since any real-world time series 
must begin at a fixed time origin. By making this assumption, we will obtain some 
general results covering both the stationary and the nonstationary cases. From (3.3) 
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we can then write 

where 

Όφζ = D e a + w (3.13) 

ζ 9 β = 

1 

- φ ι 

1 

- θ ι 

-φρ · · · - φ , l j 

and 

-θ, 1 

are (/ - m + 1) χ (ί - m + 1) matrices, ζ = ( z m ζ,)', a = ( a m , . . . , a , ) ' , w = 
( u ) m , . . . , u ) m + r _ i , 0 0) ' , and w m , w m + r - \ are r = max(p,q) initial values. 

The w's can be deterministic or stochastic, and in this chapter we shall suppose they 
are normally distributed and are independent of the o,'s. 

3.2.1. The ψ and π weights 

From (3.13), we have that 

z = D - 1 D „ a + D ; 1 w 

where 

1 

Φι 
; and D " ' = 

1 

ψ ; 

(3.14) 

φ r υ 
and the ψ'β can be obtained by equating coefficients of powers of Β from the relations 

φ ( β ) ψ ( β ) = θ ( δ ) (3.15) 

where ψ ( β ) = 1 + ψι5 + tyiB2 Η . It is easy to verify that, for ί > 0, the ψ'β 
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satisfy the difference equation 

Ψί = ΨιΨί-ι Η r ΨρΨί-ρ - (3.16) 

where ψη = 1, ψ; = 0 for j < 0 and θ< = 0 for ί > q. Thus for I > r, the ψ'β are 

given by 

ψί = Aia{ + --- + APoa
e 

Po 
(3.17) 

where po < p, A\, • • -,APo are polynomials in ί and aj~ , . . . ,α~ ' are the po distinct 

zeros of φ(Β). Analogous expressions can be obtained for the iji*'s. 

From (3.14), we can write z, in the ψ form as 

ζ, = α, + ^Ψ»Α,-» + Ε « Κ ω , - / , 
A = ( - ( m + r ) + l 

In a similar way, we have from (3.13) that 

D ^ ' D ( ( ) z - D e l w = a, 

(3.18) 

(3.19) 

where 

ο β-'ο φ = 

1 

- 1 Γ | 

- i r , l j 

and Dq = 
-1ΓΓ 

and the IT'S can be obtained from the relation β(Β)ττ(Β) = ψ(Β), where ir(Z?) = 

1 - ι ηβ - Tt2B
2 - so that the IT'S satisfy the difference equation 

Tfi = θιΐΤ{_ι Η h θ 9 π { _ , + φ« (3.20) 

where ττο = —1, ir,- = 0 for j < 0 and φ* = 0 for <? > p. Thus for I > r, the TT'S 

can be written 

(3.21) 

where <?o < o, G ι , . . . , Gqo are polynomials in ί and β ,~ 1 , . . . , β~ 1 are the q0 distinct 
zeros of ιτ(/3). Similar expressions can be obtained for the TT*'S. 

From (3.19), we can write z, in the ττ form as 

z, = ^TThz,-h + ]T < W « - A + a t . (3.22) 
A=<-(M+R)+L 
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Note that by supposing the series to start at a fixed timepoint m and introducing the 

initial values u ) m i < v m + r _ ι, we have obtained two alternative forms of the A R M A 

model (3.3). The ψ form (3.18) shows how the observation z, is affected by current 

and past shocks or innovations a,-j's, and the ττ form (3.22) indicates how zt is related 

to its own past values zt-j's. These two expressions are of fundamental importance in 

understanding the nature of the model. In obtaining (3.18) and (3.22), no restriction 

is made on φ(Β) and θ ( β ) . 

For illustrations, consider the models in (3.7)-(3.9). Ignoring the initial values and 

the constant c, we have that, for the AR(1) model in (3.7) 

ψ form : ζ, = a, + ψα,-\ + φ2α,_2 Η b φ'α,-j Η 
(3.23) 

Tt form : ζ, = <pzr-i + a, 

the ψ form shows that the effect of the innovations a,_ ;'s on z, decreases exponentially 

as j is increased, and the ττ form shows that z, depends only on the last value z ( - i 

apart from a,. For the MA(1) model (3.8), 

ψ form : ζ, = a, — θα,_ι 
(3.24) 

ττ form : z, = —Qzt-i θ-'ζ,-ι H a, (for - l < θ < l ) 

the ψ form shows that the effect of the innovations a,_/s cuts off after the first lag, 

and the ττ form shows that z, depends on all of its past values but with exponen-

tially decreasing weight. Note that for both models, the effects of the innovations 

eventually disappear and hence the observations will tend to fluctuate about a fixed 

mean level in a stationary manner. Finally for the A R M A ( l , l ) model with φ = l in 

(3.9) 

ψ form : ζ, = a, + ( l - θ)(α,_ι + α,_2 Η ) 
(3.25) 

ττ form : ζ, = (1 - θ)ζ,_, + θ(1 - θ )ζ ,_ 2 + θ 2 (1 - θ )ζ ,_ 3 + · · • + α, 

the ψ form shows that the effects of the innovations at-fs stay permanently in 

the system, and the ττ form gives rise to what is called 'exponential smoothing' in 

forecasting future z,'s as mentioned earlier. The permanency of the effects of the 

a,-j's means that the level of the series is changing from one time period to the next, 

underlining the nonstationarity of the series. 

3.2.2. Stationarity condition and autocovariance structure of z, 

In (3.18), since the initial values w, and the innovations a, are assumed normally 

distributed, it follows that the observations z, are also normally distributed. It is 

readily seen that, if in (3.17) 

\a.j\ < 1, j = 1 , . . . , po (3.26) 
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then as ί — τη —> co, we have that 

E(z,) - » 0, cov(z,, z,+t) (3.27) 

so that z, will be stationary in this asymptotic sense. In what follows, we shall refer 

to (3.26) as the stationarity condition of the A R M A model, which is equivalent to 

requiring that the zeros of φ ( β ) are lying outside of the unit circle. 

Let us denote 

•y(£) = cov(z,, z,+t) = cov(z„ z,-i) = -y(-i) (3.28) 

as the lag ί autocovariance of a stationary series. For an alternative expression of y (I) 

in terms of the parameters of the A R M A models, we proceed as follows. From (3.3), 

we have that 

z,-dzi - ψιζ,-ι <PPz,-P) = z,-i(a, - θ . α , _ ι 

By taking expectation on both sides of this equation and making use of (3.18), we 

obtain, for ί > 0, 

ρ 
(3.29) 

where 

gi = 
- σ 0

2 ^ ψ Α θ Λ + < , t = 0,...,q 
A=0 

0, ί > q 

and θο = - 1 . By comparing the expression for ψ* in (3.16) with that for γ (€) in (3.29), 
it is clear that there is a one to one correspondence between the ψ / s and the -y(€)'s 
and their behavior closely resembles each other. 

3.2.3. The autocorrelation function 

The autocorrelation function is defined as 

yd) 
p(€) = 

Ύ ( 0 ) ' 
£ = 0, ± 1 , ± 2 

From (3.29), we have that 

h=\ 7(0) 

(3.30) 

(3.31) 
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As in the case of the autocovariances "y(£)'s, the behavior of the p(£)'s closely re-

sembles that of the ψ<'s. In particular, for I > q, the p(€)'s satisfy the homogeneous 

difference equation 

ρ 
ρ ( « ϊ ) = £ φ η ρ ( € - Λ ) 

A=l 

the solution of which takes the form 

ρ(* ) = λ Χ + . . · + α ; Ο Ο 4 (3.32) 

Po 
where po < ρ, A\,..., Λ* ο are polynomials in I and, as before, a f 

po distinct zeros of φ ( β ) . Thus, for φ ( β ) φ 1, the ρ (£)'s are mixtures of exponentials, 

polynomials and damped sine functions of t, and converge to 0 as i increases. 

When φ ( β ) = 1, that is, when (3.3) is a moving-average model of orderg, M A ( g ) , 

then 

- θ , ( ι + θ 2 + . · - + θ 2 ) 

0, 

- ι 
l = q 

I > q. 
(3.33) 

In other words, for a M A ( ^ ) model, the autocorrelation function cuts off after 

lag q. This is an important property that will prove useful in the model building 

process. 

3.2.4. The partial autocorrelation function 

Consider first an stationary A R ( p ) model [i.e., when θ ( β ) = 1]. From the correlation 

structure in (3.31), we see that for I = 1 , t h e ρ autoregressive coefficients 

in the vector Φ<Ρ) = ( φ ι , . . . , φ ρ ) ' are related to the ρ autocorrelations in the vector 

P ( P ) = tp ( l ) . • · · . Ρ (/>)]' by t r , e system of equations 

5 < / > ) Φ ( / > ) = P ( p ) (3.34) 

where G<P) is the ρ χ ρ matrix 

G ( P ) = 

1 

P(D 

P ( - 1 ) 

1 

p ( - p + 2) p ( - p - l - l ) " 

: p(-P + 2) 

Pip - 2) 

. Ρ ( ρ - 1 ) P(P-2) 

1 

P(D 

p ( - D 
1 

Regarding this as a system of ρ equations in the ρ unknowns ( φ ι , . . . , φ ρ ) , the solution 
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of φρ is, for ρ > 1, the ratio of two determinants 

φρ = l H ( p ) l / l G ( p ) l 

where 

(3.35) 

H ( P ) = 

1 

P ( D 

P ( - D 

1 

p ( p - 2 ) 

. P ( P - 1 ) P ( P ~ 2 ) 

P ( - P + 2) 

1 

P ( D 

P ( D ' 

Ρ (2) 

P(P-D 

pip) . 

isapx ρ matrix, and of course <pp = p ( l ) for ρ = 1. This result then leads to denning 
the following function of p ( l ) , . . . , p(£) for any stationary model: 

P(t) = 
l H <«) | / l G ( i ) | 

ι = ι 

ι > ι 
(3.36) 

which is known as the partial autocorrelation function. It has the property that, for a 
stationary A R ( p ) model 

p ( t ) = 
φι, 

0, 

i = p 

e> ρ 
(3.37) 

in other words, p(l) vanishes for ί > ρ when the model is AR(p). This is akin to the 
property of the autocorrelation function p(t) with respect to the M A ( o ) model, and 
will prove to be an useful tool in model building. 

3.2.5. The extended autocorrelation function 

The "cutting off ' property of the autocorrelation function p(l) with respect to MA(q) 
models and the partial autocorrelation function p(l) with respect to AR(p) models 
will no longer hold for mixed A R M A ( p , g ) models. We now introduce the extended 
autocorrelation function (EACF), which does possess a similar property for the mixed 
models. 

Consider first the simple case of the ARMA(2 ,1 ) model. From (3.31), we see that 

P(* ) Pit -1) 

.Ptt + l ) Pit) 

Pit) Pit-I) 

Pit + D Pit) 

] [ % ] # [ p v * + 2 ) ] ' 

ΊΓφ,ΊΓρ^+Ι)] 
JL^J |_Ρ(* + 2)_Γ 

1 = 0 

ί > 1 

where it is noted that pij) = p(—j) and p(0) = 1. For a given I, let the 2 χ 1 vector 
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(ipj*1, φ^'Υ satisfies the equations 

pd) " P « + d" 

_ P « + D p(0 . f 2 . _ptt + 2)_ 

Clearly, (φ* 0 , <pf) ' / (φ,, « ^ Υ for ί = 0 and ( φ ; ι ' , < # ' ) ' = (φι, ψι)' for ί > 1. 
Letting 

If, ̂ ( ΐ - φ ^ β - φ ^ β 2 ) ; , 

it then follows that for ί > 1, the transformed series {u>, ( i )} follows a M A ( 1 ) process 
and its autocorrelation function will have the "cutting off" property. That is, the lag 
1 autocorrelation of uj f will be nonzero, but autocorrelations of higher lags will all 
be zero. 

In general, for k = 1, 2, 3 , . . . and ί = 0, 1, 2, 3 , . . . , let the it χ 1 vector 

Φ(*> = VP\ .·•·.** ) 

satisfy the system of equations 

**<*)φ(*) - p 

(*) (3.38) 

where 

*»<*) -

P « + D 

p(£ + / t - 1) 

p(* - 1) 

Ptf) 

p ( £ - * + l ) ' 

P ( « P « - D 

P « + 1 ) P ( / ) 

and 

P i i U ( p ( / + l ) ρ (€ + *) ) ' , 

and let p(fc, ί ) be the lag I autocorrelation of the transformed process {u>£)}, where 
(0 ipf 'β*)ζ,. It is readily shown that p(&, £) is a function of 

the autocorrelations p ( l ) , . . . , p(Jfc + <). Specifically 

(3.39) 

w h e r e * ' = (l,<t><f'). 



3.3. MODEL SPECIFICATION STRATEGY 63 

Now, for an A R M A ( p , o ) model, p(k, I) has the "cutting off" property such that 

for k = p, 

P ( * . 0 = -θ,Ο + θί + .-. + θ,2)-1, t = q, 
0, t> q. 

(3.40) 

which is analogous to the property of p(t) in (3.33) for the MA(q) model. Following 

the work of Tsay and Tiao (1984), we call p(Jfc, i) the Jfcth extended autocorrelation 

of lag I for z,. We shall also denote p(£) = p(0, ί) so that p(k, ί), will be defined for 

k > 0, and I > 1. It can be readily shown that for a stationary A R M A ( p , o ) model, 

when k > ρ 

p(*, I) = 
c, t = q+k- ρ 

0, ί > q+k- ρ 
(3.41) 

where - 1 < c < 1. This property for ρ (k, I) will be exploited later in the model 

building process. 

3.3. M O D E L SPECIFICATION STRATEGY 

The class of AKMA(p,q) models in (3.3) is extensive. In practice, guidelines are 
needed in selecting a member of the class to represent the time series data at 
hand. Box and Jenkins (1976) have proposed an iterative model building strategy 
that has been widely adopted by practitioners. The strategy consists of three main 
phases: 

• Tentative specification or identification of a model 

• Efficient estimation of model parameters 

• Diagnostic checking of fitted model for further improvement 

In the remainder of this chapter, we shall focus on tentative specification. 

3.3.1. Tentative specification 

The aim here is to employ statistics that (1) can be readily calculated from the data 
and (2) allow the user to tentatively select a model, that is, determine (p,q) in (3.3) 
or (p-d, d,q) in (3.4). We shall discuss three methods: 

1. The sample autocorrelation function (SACF) 

2. The sample partial autocorrelation function (SPACF) 

3. The sample extended sample autocorrelation function (SEACF) 
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SACF 
The sample autocorrelations of z, are defined as 

β ( 0 = C(€) /C(0) , £ = 1,2,. . . (3.42) 

where C(j) = Σ"Γ/(ζ , - z)(z ,+; - z ) and ζ is the sample mean of the η available 

observations ζ i , . . . . z„. It is well known that, as η - > oo, for stationary models, 

p(i) - A p(€) . (3.43) 

Also, if φ ( β ) is of the form in (3.4), then 

p ( £ ) - ^ l . (3.44) 

Thus, from (3.44), if the SACF p(i) (as a function of the lag ί) of the original series 
z, is persistently close to 1 as t increases, one then forms the first difference series 
w, = (1 — B)zt and studies its SACF to determine whether further differencing 
is called for. Once stationarity is achieved, from (3.33) and (3.43), a "cutting off" 
pattern after, say, lag q, in the SACF will then lead to tentative specification of a 
MA(q) model. 

For stationary models, the ρ (£)'s are asymptotically normally distributed, but their 
covariance structure is rather complex in general (see Bartlett 1946). For the MA(<7) 
model and ί > q, the asymptotic variance of ρ(ί) is 

Var(p(£)) = η - ι 
Ι + 2 £ Ρ 2 ( ; ) (3.45) 

By substituting p(€) for the unknown p(i) in (3.45), the estimated variances of the 
p(£)'s are often used to help specify the order q of an M A model. 

SPACF 

The sample partial autocorrelations 

p(t), € = 1,2,.. . (3.46) 

of z, are obtained by replacing the p(<?)'s in (3.36) by their sample estimates p( / ) ' s . 

For stationary models 

p{l) p(i) (3.47) 

and the p(i)'s are asymptotically normally distributed. Also, for a stationary A R ( p ) 
model, 

Var(i>(/)) = , » " ' , i>p. (3.48) 
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The properties in (3.47) and (3.48) make SPACF a convenient tool for specifying the 
order ρ of a stationary A R model in practice. For nonstationary models, where φ(Β) 
contains the factor u{B) in (3.5), the asymptotic property of p(l) is rather complex, 
however. 

In the past, the SACF and SPACF have been the most commonly used statistical 
tools for tentative model specification. Specifically, a persistently high SACF signals 
the need for differencing; a low-order moving-average model is suggested by SACF 
exhibiting a small number of large values at low lags; and a low-order autoregressive 
model, by SPACF showing a similar "cutting off" pattern. Also, for series exhibiting 
a strong cyclical behavior of period s, persistent high SACF at lags that are multiples 
of s signals, there is the need to apply the "seasonal differencing" operator (1 — Bs) 
to the data, and so on. Illustrative examples will be given in the next section. 

It should be noted that the weaknesses of the SACF and SPACF in model specifi-
cation are 

1. Subjective judgment is often required to decide on the order of differencing. 

2. For stationary mixed A R M A models, both SACF and SPACF tend to exhibit a 
gradual "tapering off" behavior, making specification of the autoregressive and 
the moving average parts difficult. 

SEACF 

Several approaches have been proposed to handle the mixed A R M A model speci-
fication problem. These include the R- and 5-array methods of Gray et al. (1978) 
and the generalized partial autocorrelations by Woodward and Gray (1981). In what 
follows, we discuss the sample extended autocorrelation function (SEACF) approach 
proposed by Tsay and Tiao (1984) for tentative specification of the orders (p,q) for 
the general nonstationary and stationary A R M A mode (3.3). The proposed procedure 
eliminates the need to difference or transform the series to achieve stationarity and 
directly specifies the values of ρ and q. 

For stationary A R M A models, the estimates ρ (it, t)\ of the EACF p(fc, t)'s as 
defined in (3.39) can be obtained on replacing the p(£)'s in the expression by their 
sample counterparts p(€)'s. In this case, the estimated p(k, i)'s will be consistent for 
the p(k, i)'s and hence the property (3.41) can be exploited for model specification. 
However, for nonstationary models, the ρ (k, £)'s will not have the asymptotic property 
given by the right-hand side (RHS) of (3.41) in general. 

Now for A R M A ( p , o ) models, one can view the SEACF approach as consisting of 

the following two steps: 

1. Find consistent estimates of the autoregressive parameters φ / s in order to 
transform z, into a moving average process. 

2. Make use of the "cutting off" property of the autocorrelation function of the 

transformed series for model identification. 

For estimating the <p7's, the following iterated regression approach has been adopted. 

First, let φ ^ } , . . . , φ ^ be the ordinary least squares (OLS) estimates from fitting the 
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AR(k) regression to the data 

ζ . = ψί?.)*-ι + · · · + φ ί ϊ ) * - * + ^ ( 3 · 4 9 ) 

where ef \ denotes the error term. The first iterated AR(&) regression is given by 

ζ . = Φ ι» )Ζ . - ι + · · · + < C * - * + C * S - i + **!ϊ ( 3 · 5 ° ) 

where ef\ = z» — fyf^Zt-i — ··· — φ ^ ζ » - * is the residual from (3.49) and e£) de-
notes the error term. This yields a new set of OLS estimates φ | | ^ , . . . , φ ^ . In gen-
eral, for ί = 1, 2 , . . . the estimates φ { ^ , . . . , φ ^ } are obtained from the iterated 
AR(ik) regression 

Zr = <Pi(t)Zr-l + · • · + <Pt(*)Z»-* + Pi(t)«*,i_i + · • · + β ^ , ^ , , , . , + ekt (3.51) 

where 4 ° , = z t - Φ,'^ζ,-ι - · · · - Φί&ζ»-* - ΣΑ=Ι ( 1 & · m e residual from 
the /'th iterated regression) and e\ \ is the error term. In practice, these iterated estimates 
Φ^'δ can be obtained from OLS estimates of the autoregressive coefficients by fitting 
A R ( f c ) , . . . , AR(£ + i) to zt, using the recursion 

<Ρλ« - *Pj(*+D : « = » ( 3 · 5 2 ) 

where φ 0 ^ = - 1 , = 1, . . . , k, k > 1, and ί > 1. 
On the basis of some consistency results of OLS estimates of autoregressive param-

eters for nonstationary and stationary ARMA(/? ,g ) models in Tiao and Tsay (1983), 
these authors show that for k — ρ 

Φ ( < ) ( />) -Α Φ(ρ), I > q (3.53) 

where 

φ ( ί ) (ρ) = (Φ^, Φ&,)'-

Now, analogously to (3.39), the SEACF p(k, ί) is defined as 

p ( M ) = P w K ' } ) (3.54) 

where (>(t)(wf') is the lag ί sample autocorrelation of the transformed series wk® = 

(1 - φ ^ Β <$k)B
k)zt. Also, we may denote p(0, ί) = p(l) for the ordinary 

sample autocorrelations, and shall call ρ (k, ί) the kth sample extended autocorrelation 
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TABLE 3 .1. The SEACF Table 

67 

0 1 2 3 4 

0 β(0.1) P(0,2) P(0,3) P(0,4) P(0,5) 
1 P ( U ) P(l,2) P(l,3) P(l,4) P(l,5) 
2 0(2,1) P(2,2) P(2,3) P(2,4) P(2,5) 
3 « 3 . 1 ) P(3,2) P(3,3) P(3,4) P(3,5) 
4 0(4,1) P(4,2) P(4,3) P(4,4) P(4,5) 

of lag I. Tsay and Tiao show that for the general A R M A(p,q) model in (3.3), stationary 

or nonstationary, when k > ρ 

p ( M ) ^ | C ' t = q + k - p (3.55) 
μ ' JO, l>q + k-p 

where \c\ < 1. 

3.3.2. Tentative model specification via SEACF 

The asymptotic property of the SEACF p(k, t) given by (3.55) can now be exploited 
to help tentatively identify A R M A ( p , o ) models in practice. For this purpose, it is 
useful to arrange the p(k, t)'s in a two-way table as shown in Table 3.1, in which the 
first row gives the SACF, the second row gives the first SEACF, and so on. The rows 
are numbered 0, 1, 2 , . . . to signify the A R order and the columns in a similar way 
for the M A order. To illustrate the use of the table, suppose that the true model is 
an A R M A ( 1,2). For the SACF, it is well known that asymptotically p(0, i) φ 0 for 
ί > 2. Now from (3.55) with ρ = 1 and q = 2, we see that 

1. When k = 1, 0(1, I) = 0 for I > 3 

2. When k = 2, ρ (2, i) = 0 for i > 4 

and so on. The full situation is shown in Table 3.2, where χ denotes a nonzero 
value, 0 is zero and * means a value between — 1 and 1. The 0's are seen to form 
a triangle with boundaries given by the two lines k = 1 and i — k = 2. The row 
and column coordinates of the vertex correspond precisely to the A R and M A order, 
respectively. 

In general, we are thus led to search from the SEACF table the vertex of a triangle 
of asymptotic 0's having boundary lines k = c\ > 0 and ί - k = c 2 > 0, and 
tentatively identify ρ = c\ and q = c 2 as the order of the A R M A model. In practice, 
for finite samples, the ρ (k, *?)'s will not be zero. The asymptotic variance of the 
p(/t, t)'s can be approximately obtained by using Bartlett's formula. As a crude but 
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0 1 2 3 4 

0 * X X X X X 
1 * X 0 0 0 0 
2 * X X 0 0 0 
3 * X X X 0 0 
4 * X X X X 0 

"Multiplication sign ( x ) denotes a nonzero value and asterisk ( * ) , a value between - I and 1. 

simple approximation, we may use the value (n—k — on the hypothesis that the 

transformed series xbk

l\ is white noise to estimate the variance of p(Jk, i). Of course, 

it is understood that this simple approximation might underestimate the variance of 

p(k, i) and further study is needed. As a preliminary but informative guide for model 

specification, the SEACF table may be supplemented by an analogous table consisting 

of indicator symbols χ denoting values beyond ± 2 standard deviations and 0 for in be-

tween values. This is shown in Table 3.2. Illustrative examples will be given in the next 

section. 

3.4. E X A M P L E S 

Example 3.1: A Generated M A ( 1 ) Example. The following data are gener-
ated from the M A ( 1 ) model: 

Z, = 5 +a, - .7α,_ι, 

where the α/s are iid #(0,1). 

5.212 5.734 3.822 6.633 4.258 4.355 6.173 
4.337 5.473 4.736 3.827 8.644 1.854 5.109 
5.318 5.293 5.331 4.462 5.437 6.309 5.149 
3.566 6.139 6.391 4.263 4.031 5.474 4.315 
5.701 2.572 4.280 5.903 5.964 5.126 5.512 
5.475 3.507 5.914 6.951 4.435 5.604 6.113 
3.568 5.885 3.148 5.054 5.783 6.228 4.621 
5.139 5.947 2.685 7.020 3.625 5.206 6.000 
5.149 3.134 5.666 3.711 5.812 5.673 1.948 
6.174 5.230 5.815 5.465 2.898 6.592 5.704 
4.472 6.062 5.690 1.988 5.424 5.713 5.610 
4.681 5.938 5.208 4.737 4.615 5.337 5.550 
2.866 5.839 4.945 4.019 6.561 4.140 5.615 
3.983 5.618 4.356 6.710 3.335 5.379 6.604 
2.209 6.389 

TABLE 3.2. Asymptotic SEACF Table for an A R M A ( U ) Model" 
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9 

11 
12 24 36 48 60 72 84 96 

time 
FIGURE 3.1 Generated Μ A ( l ) series. 

A time series plot of the data is shown in Figure 3.1. It is clear that the series 

is stationary, with the observations fluctuating tightly about the mean level of the 

series. 

In what follows we give three methods—SACF, SPACF, and SEACF—for tentative 

specification of a model for this data set. 

1. The sample autocorrelation function (SACF): 

AUTOCORRELATIONS 

1-12 -.47 -.05 .16 

ST.E. .10 .12 .12 

Q 22.5 22.7 25.6 

-1.0 -.8 

+ + -

1 -.47 

2 -.05 

3 .16 

4 -.17 

5 .11 

6 -.04 

7 -.08 

8 .08 

9 .06 

10 -.23 

11 .17 

12 -.04 

-.17 .11 -.04 -.08 

.12 .12 .13 .13 

28.6 29.9 30.1 30.7 

.08 .06 -.23 .17 -.04 

.13 .13 .13 .13 .13 

31.5 31.9 37.8 41.0 41.2 

.6 .8 1.0 

- + + + . . . + + + + + + . . . 

I 

XXXXXXX+XXXXI + 

+ XI + 

+ 1ΧΧΧΧ + 

+ ΧΧΧΧΙ + 

+ IXXX + 

+ XI + 

+ XXI + 

+ IXX + 

+ IX + 

XXXXXXI + 

+ IXXXX + 

+ XI + 
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2. The sample partial autocorrelation function (SPACF): 

PARTIAL AUTOCORRELATIONS 

1-12 -.47 -.35 -.04 -.15 -.00 -.03 -.10 -.05 .10 -.19 -.06 -.07 

ST.E. .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 
+ + + + + + + + + + + 

I 

1 -.47 XXXXXXX+XXXXI + 
2 -.35 ΧΧΧΧ+ΧΧΧΧΙ + 
3 -.04 + XI + 
4 -.15 +ΧΧΧΧΙ + 
5 -.00 + I + 
6 -.03 + XI + 
7 -.10 + XXXI + 
8 -.05 + XI + 
9 .10 + ΙΧΧ + 

10 -.19 ΧΧΧΧΧΙ + 
11 -.06 + XXI + 
12 -.07 + XXI + 

3. The sample extended autocorrelation function (SEACF): 

THE EXTENDED ACF TABLE 

( Q - - > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) -.47 -.05 .16 -.17 .11 -.04 -.08 .08 .06 -.23 .17 -.04 -.10 

(P=D - .52 -.20 .08 -.06 .08 -.03 -.10 .07 .03 -.22 .13 -.04 -.12 
(P=2) - .10 -.34 -.18 .01 -.01 -.09 -.01 -.02 -.02 -.21 -.10 -.10 .02 
(P=3) - .20 -.38 -.21 -.03 .00 -.07 -.05 -.02 -.03 -.18 .08 -.12 .04 

(P=4) - .00 -.18 -.14 .07 -.08 -.06 -.01 .02 -.01 -.15 -.09 -.15 .04 

(P=5) -.00 -.01 -.40 -.16 .09 -.05 -.01 .02 -.02 -.14 .06 -.01 -.06 
(P=6) - .24 .08 -.15 -.27 .04 .04 .15 -.00 -.05 -.13 .06 -.02 -.04 

SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL) 

( Q - - > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) X 0 0 ο Ο ο Ο Ο Ο Ο ο 0 ο 

(P=D X 0 ο ο 0 ο Ο 0 0 Ο 0 0 ο 

(P=2) 0 X ο 0 0 ο Ο 0 ο Ο 0 0 ο 

(P=3) 0 X 0 0 0 ο Ο 0 ο Ο 0 0 0 

(P=4) 0 0 0 0 ο 0 ο 0 0 Ο 0 0 0 

(P=5) 0 0 χ 0 0 0 ο 0 0 Ο ο 0 0 

(P=6) X 0 0 0 ο 0 0 0 0 Ο 0 0 0 

The SACF and SEACF clearly suggest an MA(1) model, and the SPACF indicates 

that an A R model of at least 2 would be needed. Thus, one would be led to tentatively 

specify an M A ( 1 ) model for this data set. 
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Example 3.2: A Generated A R ( 1 ) Example. The following data are generated 

from the AR(1) model: 

Zt = 1.5 + .7Zi_i +a„ 

or 

Z, - 5 = .7(Z,_! -S) + a„ 

where the a,'s are iid /V(0,1). 

5 449 6.198 5.279 6.436 6 132 5 237 5.950 
5 550 5.778 5.555 4.223 7 284 5 433 4.595 
4 540 4.847 5.343 5.017 5 292 6 710 7.400 
6 088 6.485 7.938 7.648 6 299 5 994 5.071 
5 313 2.976 1.292 1.704 3 166 4 174 5.255 
6 236 5.112 5.466 7.548 7 773 8 238 9.288 
7 985 7.962 5.833 4.768 5 050 6 412 6.573 
6 649 7.485 5.356 6.301 5 272 4 949 5.796 
6 288 4.547 4.401 3.094 3 438 4 419 1.901 
2 120 2.716 4.029 5.225 3 689 4 646 5.850 
5 836 6.815 7.822 5.049 4 109 4 442 5.265 
5 326 6.264 6.818 6.663 6 053 5 996 6.428 
4 377 4.267 4.224 3.292 4 549 4 346 4.920 
4 191 4.525 4.087 5.665 4 713 4 652 6.257 
4.140 4.569 

A time series plot of the data is shown in Figure 3.2. 

9.8 

1.0L 
12 24 36 48 60 72 84 96 

time 

FIGURE 3.2 Generated AR( 1) series. 
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Compared with the generated Μ A ( 1) series, we see that this series exhibits more 

momentum over time. 

The following are the three methods to help specify a model for this series: SACF, 

SPACF, and SEACF. 

1. SACF: 

AUTOCORRELATIONS 

1-12 

ST.E. 

Q 

ι 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

.72 

.51 

.37 

.17 

.06 
-.06 
-.16 
-.19 
-.26 
-.31 
-.24 
-.21 

.72 .51 .37 .17 .06 -.06 

.10 .14 .16 .17 .17 .17 
53.1 80.5 94.6 97.8 98.2 98.6 

-1.0 
+ -• 

-.8 -.2 .0 

-.16 -.19 -.26 
.17 .17 .17 
101 105 113 

.2 .4 .6 

-.31 
.18 
124 

.8 

-.24 
.18 
131 

1.0 
- + 

I 

1 X X X X + X X X X X X X X X X X X X 

I X X X X X X + X X X X X X 

I X X X X X X X + X 

I X X X X 

1XX 

XXI 

+ X X X X I 

+ X X X X X I 

+ X X X X X X I 

+ X X X X X X X X 1 

+ X X X X X X I 

+ X X X X X I 

-.21 
.19 
136 

2. SPACF: 

PARTIAL AUTOCORRELATIONS 

1-12 
ST.E. 

-.72 
.10 

-1.0 
+ --• 

-.00 
.10 

-.00 -.18 
.10 .10 

.01 -.14 

.10 .10 
-.04 
.10 

-.03 
.10 

-.11 -.12 .14 -.06 
.10 .10 .10 .10 

.6 .8 1.0 
+ + + 

1 .72 + I X X X X + > 

2 .00 + 1 + 
3 .00 + I + 
4 - . 1 8 X X X X X I + 
5 .01 + I + 
6 - . 1 4 + X X X I + 
7 - .04 + XI + 
8 -.03 + XI + 
9 - . 1 1 + X X X I + 

10 - . 1 2 + X X X I + 
11 .14 + 1XXXX+ 

12 - . 0 6 + XI + 
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3. SEACF: 

THE EXTENDED ACF TABLE 

( Q ~ > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) .72 .51 .37 .17 .06 -.06 -.16 - .19 -.26 -.31 -.24 -.21 -.16 

( P = D .00 .01 .22 .06 .07 -.07 -.10 .01 -.03 -.24 .06 -.06 -.13 
(P=2) -.03 -.00 .23 - .04 .15 -.02 -.12 - .05 -.00 -.25 -.10 -.03 -.13 

(P=3) -.06 -.03 .12 - .06 .14 -.01 -.12 .01 -.02 -.25 .05 -.13 -.10 
(P=4) .08 -.48 -.20 .06 .03 -.08 .02 .00 .04 -.15 -.02 -.16 -.14 

(P=5) .10 -.45 -.25 .19 .03 -.02 .01 .05 .06 -.16 -.00 -.11 .04 

(P=6) -.24 -.05 -.37 - .13 -.05 .00 -.01 .07 .08 -.13 .02 -.04 -.08 

SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL) 

( Q - - > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) X Χ Χ Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο 
( P = l ) ο Ο Ο Ο Ο Ο Ο Ο 0 Χ Ο Ο Ο 
(P=2) ο Ο χ Ο ο Ο Ο 0 ο Χ Ο 0 ο 
(P= 3) ο Ο ο ο ο Ο Ο Ο 0 Χ Ο ο ο 
(P=4) ο Χ 0 ο ο Ο Ο Ο 0 Ο Ο ο ο 
(P=5) ο Χ ο 0 ο 0 Ο Ο 0 Ο Ο 0 ο 
(P=6) χ Ο χ ο ο 0 Ο Ο 0 Ο Ο 0 ο 

The SACF shows that a low-order M A model will not be appropriate, and the SPACF 

strongly suggests an AR(1) model. This tentative specification is also supported by 

the SEACF. 

Example 3.3: A Generated A R I M A ( 0 , 1 , D Example. Here we consider 150 
observations generated from the following nonstationary model: 

Ζ, - Z,_! = a, - Λα,-ι 

where the a,'s are iid #(0,1) . The data are shown in Figure 3.3 

time 

FIGURE 3.3 Generated (0,1,1) series. 
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It is clear that the series exhibits a drifting behavior. The observations do not cling 

to any stable mean level. For tentative specification of a model, we first apply SACF 

and SPACF: 

AUTOCORRELATIONS 

1-12 
ST.E. 

Q 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

.95 

.94 

.93 

.91 

.89 

.89 

.87 

.86 

.84 

.83 

.81 

.79 

.95 .94 .93 .91 .89 .89 .87 .86 .84 .83 .81 .79 

.08 .14 .17 .20 .23 .25 .27 .29 .31 .32 .34 .35 
138 274 408 537 662 787 908 1026 1140 1251 1359 1461 

-1.0 -.6 -.4 -.2 
-+ + +--

.0 .2 .4 .6 .8 1.0 
·-+ + + + + + 

ι 
I X X X + X X X X X X X X X X X X X X X X X X X X 

I X X X X X X + X X X X X X X X X X X X X X X X 

I X X X X X X X X + X X X X X X X X X X X X X X 

I X X X X X X X X X + X X X X X X X X X X X X X 

I X X X X X X X X X X + X X X X X X X X X X X 

I X X X X X X X X X X X + X X X X X X X X X X 

I X X X X X X X X X X X X + X X X X X X X X X 

I X X X X X X X X X X X X X + X X X X X X X 

I X X X X X X X X X X X X X X + X X X X X X 

1XXXXXXXXXXXXXXX+XXXXX 

I X X X X X X X X X X X X X X X + X X X X 

1XXXXXXXXXXXXXXXX+XXX 

PARTIAL AUTOCORRELATIONS 

1-12 .95 .37 .17 .00 -.07 .12 .01 

ST.E. .08 .08 .08 .08 .08 .08 .08 

-.04 -.08 -.02 -.01 -.09 

.08 .08 .08 .08 .08 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

-1.0 -.8 
+ + - - -

-.6 
- + - - -

-.4 .0 

.95 

.37 

.17 

.00 

-.07 

.12 

.01 

-.04 

-.08 

-.02 

-.01 

-.09 

.2 
• - + - - -

.6 .8 
--+ + - - -

1.0 
-+ -+ + -

ι 
+ I X X X + X X X X X X X X X X X X X X X X X X X X 

+ I X X X + X X X X X 

+ IXXXX 

+ I + 

+ XXI + 

+ I X X X + 

+ I + 

+ XI + 

+ XXI + 

+ I + 

+ 1 + 

+ XXI + 
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3.41 

- ™ ι • •* 
12 24 36 48 60 72 84 96 108 120 132 144 

time 

FIGURE 3.4 First difference of the generated (0,1,1) series. 

We see that the sample autocorrelations stay persistently high and close to one. This 

type of behavior suggests that the series is nonstationary, calling for differencing the 

data. 

Figure 3.4 shows the differenced series and stationarity is clearly seen. The SACF 

and SPACF of the differenced series below indicate that an M A ( 1 ) model would 

be adequate so that an ARIMA(0,1,1) model would be specified for the original 

series: 

AUTOCORRELATIONS 

1-12 -.47 .02 .08 .01 -.14 .08 .03 -.03 -.04 .03 .07 -.03 
ST.E. .08 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 

Q 33.2 33.2 34.3 34.3 37.4 38.5 38.6 38.7 39.0 39.1 39.9 40.0 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 
+ + + + + + + + + + + 

ι 
1 -.47 xxxxxxxx+xxxi + 
2 .02 + ι + 
3 .08 + ixx + 
4 .01 + ι + 
5 -.14 +ΧΧΧΧΙ + 

6 .08 + ixx + 
7 .03 + IX + 

8 -.03 + XI + 

9 -.04 + xi + 
10 .03 + ix + 
11 .07 + ixx + 
12 -.03 + xi + 
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PARTIAL AUTOCORRELATIONS 

1_12 -.47 -.26 -.04 .06 -.11 -.06 .03 .05 -.03 -.06 .07 .09 
ST.E. .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 
+ + + + + + + + + + + 

ι 
1 -.47 XXXXXXXX+XXXI + 
2 -.26 XXX+XXXI + 
3 -.04 + XI + 
4 .06 + IXX + 
5 -.11 +XXXI + 
6 -.06 + XXI + 
7 .03 + IX + 
8 .05 + IX + 
9 -.03 + XI + 

10 -.06 + XI + 
11 .07 + IXX + 
12 .09 + IXX + 

Alternatively, consider the SEACF of the original series: 

THE EXTENDED ACF TABLE 

(Q-->) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) .95 .94 .93 .91 .89 .89 .87 .86 .84 .83 .81 .79 .77 
(P= 1) -.47 .01 .08 .01 -.14 .08 .03 -.03 -.04 .03 .07 -.03 -.05 
(P=2) -.44 .07 .07 .00 -.16 .08 .09 -.02 -.08 .01 .06 -.02 -.03 

(P= 3) -.14 .22 - .13 .04 -.09 .07 - .02 .01 .01 .00 .01 .03 -.04 
(P=4) .36 .01 - .22 -.23 -.04 .01 - .02 .00 .00 .01 -.01 .01 -.05 
(P=5) .46 .09 - .36 -.24 -.12 .00 - .02 .01 .03 -.01 .00 .01 -.05 
(P=6) -.37 .34 .16 -.08 -.02 .01 - .01 .00 .00 -.00 -.00 .01 -.05 

SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL) 

(Q-->) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) X X X Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ 

( P = l ) X 0 ο Ο 0 Ο ο 0 Ο 0 Ο Ο Ο 

(P= 2) X 0 ο Ο 0 0 0 ο Ο 0 Ο ο Ο 

(P=3) 0 ο ο 0 0 ο 0 ο Ο 0 Ο 0 Ο 

(P=4) X 0 χ Χ 0 0 0 0 0 0 Ο 0 Ο 

(P= 5) X 0 χ χ 0 0 ο 0 ο 0 Ο ο ο 

(P=6) X Χ 0 0 0 0 0 0 0 0 Ο ο ο 

The SEACF table suggests a mixed A R M A ( l . l ) model for the original series. 
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From the preceding discussion, we are led to consider two tentative models: an 

ARIMA(0,1,1) and an A R M A ( 1,1). 

ARIMA(0,1 ,1) : (1 - B)Z, = (1 - ΘΒ)α,, 

A R M A ( 1 , 1 ) : (1 - φ β ) Ζ , = (1 - θβ)α„ 

Details of the parameter estimation process will be given in the next chapter. The 

results are: 

ARIMA(0,1,1): θ = 0.5376(.0690*); σα = .9938 

ARMA(1 ,1 ) : φ" = 1.0043(.0031), 

θ = 0.5582(.0690); & a = .9878 

where * denotes estimated standard error. The fits are almost identical. In particular, 
for the A R M A ( l . l ) model the estimate <}> is 1.0043, which is very close to φ = 1 
corresponding to differencing the data. Thus, the use of SEACF eliminates the need 
to make decision on differencing the series at the model specification stage. 

Example 3.4: Series A of Box, Jenkins, and Reinsel. We consider here series 
A of Box et al. (1994), which consists of 197 two-hour concentration readings of a 
chemical process. A time series plot is shown in Figure 3.5. 

Z 17.18 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 

time 

FIGURE 3.5 Series A: 2-h concentration readings of a chemical process. 
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For tentative specification, we turn to SACF, SPACF, and SEACF: 

AUTOCORRELATIONS 

1-12 .57 .50 .40 .36 .33 

ST.E. .07 .09 .10 .11 .12 

Q 65.0 114 146 172 194 

-1.0 -.8 -.6 -.4 -.2 
+ + + + 

1 .57 + 

2 .50 + 

3 .40 + 

4 .36 + 

5 .33 + 

6 .35 + 

7 .39 + 

8 .32 + 

9 .30 + 

10 .25 + 

11 .19 + 

12 .16 + 

.35 .39 .32 .30 .25 .19 .16 

.12 .13 .13 .14 .14 .14 .14 

219 251 272 291 305 312 318 

.0 .2 .4 .6 .8 1.0 

-+ + + + + + 

ι 

IXX+XXXXXXXXXXX 

ΙΧΧΧ+ΧΧΧΧΧΧΧΧ 

IXXXX+XXXXX 

IXXXX+XXXX 

IXXXXX+XX 

IXXXXX+XXX 

IXXXXX+XXXX 

IXXXXXX+X 

IXXXXXX+X 

IXXXXXX+ 

IXXXXX + 

IXXXX + 

PARTIAL AUTOCORRELATIONS 

1-12 .57 .25 .07 .07 .07 .12 .16 -.03 .01 -.02 -.07 
ST.E. .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 
+ -- - - + - - - - + - - - - + - - - - + - - - -+ — - + - - - -+ — - + - - --+ -- --+ 

I 

1 .57 + ixx+xxxxxxxxxxx 

2 .25 

3 .07 

4 .07 

5 .07 

6 .12 

7 .16 

8 -.03 

9 .01 

10 -.02 

11 -.07 

12 -.02 

+ ixx+xxx 
+ IXX+ 

+ IXX+ 

+ IXX+ 

+ ixxx 

+ IXX+X 

+ XI + 

+ I + 

+ I + 

+XXI + 

+ XI + 
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THE EXTENDED ACF TABLE 

( Q - - > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) .57 .50 .40 .36 .33 .35 .39 .32 .30 .25 .19 .16 .19 

(p= υ -.39 .04 -.06 -.01 -.07 -.01 .16 -.07 .04 .04 -.04 -.06 -.00 
(P=2) -.29 -.27 -.04 .01 -.05 -.01 .17 .03 .04 .07 -.02 -.05 -.00 

(P=3) -.50 -.01 .09 -.01 -.01 -.03 .16 -.03 .11 -.02 -.01 .01 -.06 

(P=4) -.48 -.02 .08 -.02 -.01 -.04 .14 .03 .09 -.03 -.02 .00 -.08 

(P=5) -.39 -.41 -.17 .01 -.17 -.02 .10 -.01 .06 .07 -.01 .01 -.06 

(P=6) -.49 .15 -.18 -.00 -.26 -.06 .09 -.10 .05 .02 -.02 -.03 -.05 

SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL) 

( Q - - > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) X X X Χ Χ Χ Χ Χ Χ Ο ο ο 0 
(P= 1) X 0 ο ο 0 0 Ο 0 ο Ο ο ο ο 
(P=2) X X ο ο 0 0 Χ 0 0 0 ο ο ο 
(P=3) X 0 ο 0 ο ο Χ 0 ο ο ο ο 0 
(P=4) X 0 ο ο ο 0 0 ο 0 ο ο 0 0 
(P=5) X X 0 0 ο 0 0 0 0 0 ο 0 0 
(P=6) X ο 0 0 χ 0 0 0 0 ο ο ο 0 

We see from SACF and SPACF that low-order M A or A R models are not likely. On 

the other hand, the SEACF pattern suggests that an A R M A ( 1,1) might be appropriate. 

Alternatively, the apparent persistence of the sample autocorrelations might suggest 

differencing the data. The SACF and SPACF of ( l - B ) Z , are shown below: 

AUTOCORRELATIONS 

1-12 -.41 .02 -.07 -.01 -.07 -.02 .15 -.07 .04 .02 -.05 -.06 
ST.E. .07 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .09 

Q 33.9 34.0 34.9 34.9 35.9 35.9 40.3 41.2 41.5 41.6 42.1 42.9 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 

+ + + + + + + + + + + 
ι 

1 -.41 XXXXXX+XXXI + 

2 .02 + I + 

3 -.07 + XXI + 

4 -.01 + I + 

5 -.07 + XXI + 

6 -.02 + XI + 

7 .15 + IXXXX 

8 -.07 + XXI + 

9 .04 + IX + 

10 .02 + IX + 

11 -.05 + XI + 

12 -.06 + XXI + 
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PARTIAL AUTOCORRELATIONS 

1-12 -.41 -.18 -.17 
ST.E. .07 .07 .07 

,6 -1.0 
+ -

-.18 
.07 

-.8 
-+ + - - -

14 
07 

4 

-.19 
.07 

-.2 
- + - - -

-.21 
.07 

.0 
•+ - -· 
ι 

-.00 
.07 

.2 
-+- - · 

-.05 
.07 

.4 
- + - - • 

-.02 
.07 

.6 
- + - - • 

.04 -.01 -.08 

.07 .07 .07 

.8 1.0 
-+ + 

1 -.41 XXXXXX+XXXl + 
2 -.18 X+XXXI + 
3 -.17 XXXXI + 
4 -.14 +XXXI + 
5 -.19 X+XXXI + 
6 -.21 X+XXXI + 
7 .00 + 1 + 
8 -.05 + XI + 
9 -.02 + I + 

10 .04 + IX + 
11 -.01 + 1 + 
12 -.08 + XXI + 

It is clear that an M A ( 1 ) model for the differenced data might be appropriate. Thus, 

we have two choices: an A R M A ( 1,1) or an ARIMA(0,1,1) model for Z,. 

The two fitted models are 

1. Ζ, - .91Z,_, = 1.496 + a, 

2. Z, — Z,_ | = a, — J0a,-\, 

.59fl,_,, da = .312 

% = .317 

(stationary) 

(nonstationary) 

The fits are very close. It has been shown in the literature that for long horizon 

forecasts, the stationary model does a better job for this series. 

27.6 

25.2 

Ζ 22.8 

20.4 

18.0 
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 

time 

FIGURE 3.6 Series C of BJR: temperature readings. 
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Example 3.5: Series C of Box, Jenkins, and Reinsel. This series consists of 
226 temperature readings. A time series plot is shown in Figure 3.6, exhibiting ap-
parent nonstationary behavior. 

We now apply the tentative specification tools: 

AUTOCORRELATIONS - Z, 

1-12 .98 .94 .90 .85 .80 .75 .69 .64 .58 .52 .47 .41 

ST.E. .07 .11 .14 .17 .19 .20 .21 .22 .23 .24 .24 .25 

Q 219 424 612 781 931 1062 1175 1270 1350 1415 1468 1509 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 
+ + + + + + + + + + + 

ι 

1 .98 + ixx+xxxxxxxxxxxxxxxxxxxxx 

2 .94 + ixxxxx+xxxxxxxxxxxxxxxxxx 

3 .90 + ixxxxxx+xxxxxxxxxxxxxxxx 

4 .85 + ixxxxxxx+xxxxxxxxxxxxx 

5 .80 + ixxxxxxxx+xxxxxxxxxxx 

6 .75 + ixxxxxxxxx+xxxxxxxxx 

7 .69 + ixxxxxxxxx+xxxxxxx 

8 .64 + rxxxxxxxxxx+xxxxx 

9 .58 + ixxxxxxxxxx+xxx 

10 .52 + ixxxxxxxxxxx+x 

11 .47 + ixxxxxxxxxxxx 

12 .41 + ixxxxxxxxxx + 

PARTIAL AUTOCORRELATIONS - Z, 

1-12 .98 -.26 -.16 -.09 -.06 -.05 -.01 -.04 -.02 -.01 -.04 

ST.E. .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 
+ - - - - + - - - - + - - - - + - - - -+ — • - + - - - • -+ — - -+ — ·-+ — • -+ — • - + 

1 

1 .98 + ixx+xxxxxxxxxxxxxxxxxxxxx 

2 -.26 ΧΧΧΧ+ΧΧ1 + 

3 -.16 X+XXI + 

4 -.09 + XXI + 

5 -.06 + XI + 

6 -.05 + XI + 

7 -.01 + I + 

8 -.04 + XI + 

9 -.02 + XI + 

10 -.01 + I + 

11 -.04 + XI + 

12 -.04 + XI + 
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AUTOCORRELATIONS - (1 - B)Z, 

1-12 .81 .65 .53 .44 .38 .32 .26 .19 .14 .14 .10 .09 

ST.E. .07 .10 .12 .13 .13 .14 .14 .14 .15 .15 .15 .15 

Q 148 245 309 354 388 411 427 436 440 445 447 449 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 

+ ^ + + + + + + + + + 
ι 

1 .81 + IXX+XXXXXXXXXXXXXXXXX 

2 .65 + IXXXX+XXXXXXXXXXX 

3 .53 + IXXXXX+XXXXXXX 

4 .44 + IXXXXX+XXXXX 

5 .38 + IXXXXXX+XX 

6 .32 + IXXXXXX+X 

7 .26 + IXXXXXXX 

8 •19 + IXXXXX + 

9 .14 + IXXX + 

10 .14 + IXXXX + 

11 .10 + IXX + 

12 .09 + IXX + 

PARTIAL AUTOCORRELATIONS - ( l-B)Z, 

1-12 .81 .01 -.01 .05 .03 -.02 -.01 -.08 .02 .12 -.14 

ST.E. .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 

+ - - - - + - - - - + - - - - + - - - -+ — -+ + + + + - -
j 

- -+ 

1 .81 + IXX+XXXXXXXXXXXXXXXXX 

2 .01 + I + 

3 -.01 + I + 

4 .05 + IX + 

5 .03 + IX + 

6 -.02 + I + 

7 -.01 + I + 

8 -.08 +XXI + 

9 .02 + IX + 

10 .12 + IXXX 

11 -.14 XXXI + 

12 .09 + IXX+ 
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THE EXTENDED ACF TABLE - Z, 

( Q - - > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P= 0) .98 .94 .90 .85 .80 .75 .69 .64 .58 .52 .47 .41 .36 

(P= 1) .81 .66 .55 .48 .43 .38 .34 .28 .25 .25 .22 .22 .20 

(P= 2) -.04 -.03 -.12 - .06 .02 -.01 .07 -.04 -.12 .13 -.12 .08 -.08 

(P= 3) -.50 .01 -.07 - .11 -.01 -.00 .03 -.03 -.10 .01 -.05 -.03 -.06 

(P= 4) -.25 -.27 -.05 - .11 -.01 .03 .00 -.02 -.09 -.01 -.04 .02 -.06 
(P=5) -.48 .28 -.29 - .07 .04 -.05 - .00 -.01 -.08 .07 .00 -.01 -.00 

(P= 6) -.08 -.32 .14 .04 -.03 -.04 - .01 -.03 -.08 .07 .00 -.02 .00 

SIMPLIFIED EXTENDED ACF TABLE (5% L E V E L ) 

( Q — > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P=0) X X Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ 

(P=D X X χ χ Χ Χ Χ ο ο Ο Ο Ο Ο 
(P=2) ο ο ο ο Ο ο Ο ο ο 0 Ο Ο 0 
(P=3) X ο 0 ο ο 0 Ο ο ο 0 Ο Ο ο 
(P= 4) X χ Ο 0 0 0 ο 0 ο 0 Ο Ο ο 
(P=5) X χ χ ο ο 0 ο 0 ο 0 Ο Ο 0 
(P=6) 0 χ 0 ο ο ο ο 0 ο 0 Ο Ο ο 

From SACF and SPACF of Ζ, and those of ( 1 - £ ) Z „ an A R I M A ( 1,1,0) model is 

suggested. On the other hand, from the SEACF pattern an ARMA(2 ,0 ) model seems 

appropriate. The fitting results are practically identical. 

The last three examples have demonstrated the usefulness of SEACF in tentative 

model specification. Instead of judgmentally deciding whether to difference a series, 

SEACF can help specify mixed A R M A models irrespective of whether the A R poly-

nomial has zeros on the unit circle. It simplifies the job of tentative specification, 

leaving the question of differencing to the estimation stage in model building. 

Example 3.6: Monthly Changes in 3-Month T-Bill, 1/83-12/93. As a further 

example, we consider the series of monthly changes of the 90-day T-bill rates over 

the period 1/83-12/93. The data are plotted in Figure 3.7. 

.64 

12 24 36 48 60 72 84 96 108 120 132 
time 

FIGURE 3.7 Monthly changes in 90-day T-bill rates 1/83-12/93. 
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Except for a substantial dip near the end of 1984, the series appears to be stationary. 

For tentative specification of a model, we again apply SACF, SPACF, and SEACF to 

the data: 

AUTOCORRELATIONS 

1-12 .49 .05 -.01 .04 .13 .15 .08 .01 .03 -.02 -.01 .02 
ST.E. .09 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 

Q 32.4 32.7 32.7 32.9 35.2 38.4 39.2 39.2 39.4 39.4 39.4 39.5 

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 
+ + + + + + + + + + + 

ι 
1 .49 + 1ΧΧΧ+ΧΧΧΧΧΧΧΧ 

2 .05 + IX + 
3 -.01 + I + 
4 .04 + IX + 
5 .13 + IXXX + 
6 .15 + IXXXX+ 

7 .08 + IXX + 
8 .01 + I + 
9 .03 + IX + 

10 -.02 + I + 
11 -.01 + I + 
12 .02 + IX + 

PARTIAL AUTOCORRELATIONS 

1-12 .49 -.25 .11 .01 .13 
ST.E. .09 .09 .09 .09 .09 

-1.0 -.8 -.6 -.4 
+ + + + . 

1 .49 
2 -.25 
3 .11 
4 .01 
5 .13 
6 .03 
7 -.01 
8 .00 
9 .06 

10 -.11 
11 .07 
12 -.03 

.03 -.01 -.00 .06 -.11 .07 -.03 

.09 .09 .09 .09 .09 .09 .09 

-.2 .0 .2 .4 .6 .8 1.0 
— + + + + + + + 

ι 
+ IXXX+XXXXXXXX 

XX+XXXI + 

+ IXXX+ 

+ I + 

+ IXXX+ 

+ IX + 

+ I + 

+ I + 

+ IX + 

+XXXI + 

+ IXX + 

+ XI + 
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THE EXTENDED ACF TABLE 

( Q - - > ) 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P= 0) .49 .05 - .01 .04 .13 .15 .08 .01 .03 - .02 -.01 .02 - .02 

( P = D .43 .14 .01 .01 .08 .11 .08 - .02 .02 - .04 -.01 .00 .00 

( P = 2 ) .37 .13 - .04 .02 .05 .06 .07 .00 .03 .00 -.01 .00 - .00 

(P= 3) - .10 -.14 .13 - .20 .00 --.01 .07 - .00 .03 .01 -.01 - .00 .00 

( P = 4 ) - .08 - .48 .32 -.13 -.03 --.00 .08 .02 .02 .01 .00 - .00 .00 

(P=5) - .19 .05 .08 - .13 - .02 --.01 .07 - .07 - .02 .01 .01 - .02 .00 

( P = 6 ) .07 .05 .01 - .06 .16 .03 .05 -.03 - .01 .01 .01 - .01 .00 

SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL) 

( Q - - » 0 1 2 3 4 5 6 7 8 9 10 11 12 

(P= 0) X ο 0 0 Ο Ο Ο Ο Ο Ο Ο Ο 0 

(P= 1) X Ο 0 0 Ο Ο Ο Ο Ο Ο Ο Ο ο 

(P= 2) X 0 0 0 Ο Ο Ο Ο Ο Ο Ο Ο ο 

( P = 3 ) 0 Ο 0 0 ο Ο Ο 0 Ο Ο Ο Ο ο 

( P = 4 ) ο χ χ ο 0 Ο Ο 0 Ο Ο Ο Ο ο 

(P= 5) X 0 0 ο 0 Ο Ο 0 Ο Ο Ο Ο 0 

(P= 6) 0 0 0 0 0 Ο Ο 0 0 Ο Ο Ο 0 

Both the SACF and SEACF suggest that an M A ( 1 ) model might be adequate for the 

series. 
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C H A P T E R 4 

Model Fitting and Checking, and the 

Kalman Filter 

G. Tunnicliffe Wilson 
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4.1. PREDICTION ERROR A N D THE ESTIMATION CRITERION 

The estimation of the parameters of the time series models introduced in the previous 
chapter could be considered to be just a technical matter carried out by the computer. 
The aim of this chapter is to explain the criteria and methods by which parameter 
estimates are obtained. Although some of the explanation is technical, the intention 
is that it should have practical value through enabling the reader to interpret and use 
the results of estimation software intelligently. 

It is true that the more important tasks to be carried out by the modeler, which 
require understanding of the models and data, are model selection (identification) and 
checking. However, it is also important to understand 

• The model estimation criterion 

• What features of the data it captures 

• Whether the fitted model has those properties considered important in the iden-

tification stage 

This last point is important, firstly because model identification is tentative and the 
chosen model may or may not have the capability of representing the data well. 
Moreover, the estimation method is effectively one of nonlinear least squares requiring 
iterative steps. As with all such methods parameter estimation may fail to provide 
good estimates, even though the model is appropriate for the data. Such failure should 
be recognized from the results of the estimation. It can usually be avoided by providing 
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initial estimates determined by some simple and reliable scheme. The model selection 
methods described in Chapters 3, 5, and 8 generally involve methods of obtaining 
preliminary estimates, so this chapter will deal only briefly with this aspect. 

Model estimation, which is efficient in the statistical sense of making best use of 
the information in the data, is based on assumptions about the distributional properties 
of the data and makes use of standard statistical inference procedures; the important 
ones are Bayes and likelihood inference. The practical results of using either of these 
two procedures are similar and effectively lead to the following scheme: 

• Apply the model to predicting successive values of the recorded time series data. 

• Choose the parameters that minimize the sum of squares of the resulting one-

step-ahead prediction errors. 

The question of whether multi-step-ahead errors would be better used in the sum-of-
squares criterion has been well studied. Simple examples show that the answer may 
be yes, if the model does not perfectly describe the data and multistep prediction is 
the object of the modeling. Assuming that the data do arise from the chosen model, 
one-step-ahead errors are best used even if multi-step prediction is the object of the 
modeling. 

The models we consider are all members of the class of general linear models 
described by (2.4) (of Chapter 2). The prediction errors we use in the sum of squares 
would then be the innovations a, of that model except that not all past values are 
known because of the finite length of the observed time series data. This end effect is 
generally handled in one of two ways: 

• Estimation of series values previous to the observed data 

• Use of errors of predictions made using only previous observed data 

When properly computed, that is, without further approximations, the likelihoods 
calculated from these two approaches are identical, although there will be a transient 
discrepancy between the estimated errors for the early part of the data. Because 
different software may use different methods, it may be important to understand how 
and why the results from one package may differ from another. 

Chapter 7 of Box and Jenkins (1976) covers most aspects of the first approach. 
It provides a detailed description of the backforecasting scheme that they devised to 
estimate the series values previous to the observed data. That scheme was important 
to the early widespread application of A R I M A models and is still widely used. In 
the appendix to that chapter they also present methods for directly calculating the 
exact likelihood function and extensions of these methods are used increasingly. The 
following presentation concentrates on these exact methods. 

The simplest distributional assumption to make, and the one that underlies all the 
estimation methods described in this chapter, is that the series being modeled is Gaus-
sian, that is, the joint distribution of any sample is multivariate normal. Equivalently, 
and more usefully, the errors from the linear prediction of each term on previous 
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terms are independent normal. Estimation methods based on this assumption have 
good properties even if the assumption is not a perfect description of the data. Provided 
the errors are independent with zero mean, zero skewness and finite fourth moment it 
is safe to rely on the "asymptotic" standard errors provided by estimation packages. 

Before estimation we assume that any transformation, differencing or trend cor-
rection, including correction for a constant mean, has been carried out so that the 
resulting series w, is stationary with zero mean. The observed sample of this series is 
assumed to be from a multivariate normal distribution whose covariance structure is 
specified by the autocovariances implied by the model. Placing the observations in a 
column vector (w\, wi,..., wn)', the covariance structure of this sample is described 
by the symmetric η χ η matrix V„ with elements 

Vjj = Cov(u),, wj) = γ, ·_ ; (4.1) 

The likelihood of the observations is then derived from the joint pdf (probability 
density function), which apart from a constant factor is 

f(wuw2,...,wn) = \V„ril'2)exp{-iw'V-]w\ (4.2) 

where | V„| is the determinant of V„. For A R M A models the innovation variance σ 2 

is a natural scale parameter for V„; thus we write 

V„ = σ2Μη (4.3) 

where M„ depends only on the A R M A model parameters β = (φι, ( f o , . . . , φ ρ , 

θι, & 2 , . . . , %). Then the log likelihood is 

- i j l o g | A / n | + n l o g o - f l

2 + ^ j (4.4) 

where we have replaced the quadratic form w'M~l w by S in recognition of the fact 
that, as we show later, it can be expressed as a sum of squares of prediction errors, 
although possibly with a small correction for the end effect. 

The value of this is that we can "concentrate out" the scale parameter σ 2 , speci-
fically, maximize the log likelihood with respect to σ 2 . This is done by setting 
σ 2 = σ 2 = S/n. A similar result is obtained using Bayes procedures by integrating 
out σ 2 in the posterior density for the model parameters. Omitting additive constants 
involving η and the factor — j , we obtain the conventional criterion, minus twice the 
concentrated likelihood: 

-2Ζ . (β ) = « 1 ο 8 { | Λ ί η | ( Ι / η ) 5 } . (4.5) 

Maximizing the likelihood with respect to the remaining parameters β is therefore 
equivalent to minimizing either this quantity or, more simply, \M„\(l/n)S. The factor 
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\M„\^/n) is associated with the end effect of estimating series values previous to the 
observed data, as examples will illustrate. As the series length η increases, this effect 
becomes relatively small and \M„\(l/n) in fact tends to 1 for all values of the parameters 
as η increases. In large samples it could therefore be omitted, but experience suggests 
that it is best retained in the criterion. We shall show in examples how, together with S, 
it is calculated with numerical efficiency, without explicitly inverting V„ or evaluating 
its determinant. 

After substituting the parameter estimates, — 2L(|3) is useful as a criterion for 
comparing different models by methods considered in the next section. The in-
verse Hessian of — Ι ( β ) at 0 provides asymptotic standard errors of β. For a pair 
of nested models the difference in — 2L may be used as a statistic to test the null 
hypothesis that the smaller model is adequate. The statistic is referred to its null chi-
squared distribution with degrees of freedom equal to the difference in the number of 
parameters. 

To illustrate these points, there follows an extract of the results of fitting an 
A R M A ( 1,1) model to the time series of extruded plastic width measurements il-
lustrated in Figure 2.12 (of Chapter 2). This was produced by the GENSTAT package 
(Payne 1993). The quantity called the deviance is \M„\i,/n)S; it is this to which the 
nonlinear least-squares procedure is actually applied. 

Cycle 

Convergence Monitoring 

Deviance Current Parameters 

910763815 
96815440. 
15775966. 
13882433. 
13860649. 

0. 
806.00 

1379.0 
1550.7 
1594.4 

0. 
0.24723 
0.83408 
0.95365 
0.94433 

0. 
-0.24723 

0.38535 
0.69431 
0.67700 

Convergence at cycle 5: 

Parameter Estimates 

Seasonal Difference 
Model Period Order Delay Parameter Lag Ref Estimate SE t 

Noise 1 0 - Constant - 1 1590.5 58.6 27.14 
Phi(AR) 1 2 0.9434 0.0243 38.90 

Theta(MA) 1 3 0.6759 0.0536 12.61 

Correlations 

1 1.000 
2 0.025 1.000 
3 0.008 0.674 1.000 

1 2 3 



90 MODEL FITTING AND CHECKING, AND THE KALMAN FILTER 

When an AR( 1) model was fitted to the same series, the deviance value was 16373064. 

The series length is η = 351, so the test statistic for comparing these nested models is 

There is no doubt about the significance of this statistic referred to the χ 2 distribution. 

The t value of 12.61 for the moving-average parameter also gives a clear indication of 

this, but the likelihood ratio test is held to have more reliable properties. The standard 

error of the parameter can be used to supply approximate confidence limits. 

In this example the initial parameter values were zero, the usual values when no 

attempt is made to supply helpful initial estimates. At this point the first derivatives of 

the deviance with respect to the autoregressive parameter φ and the moving-average 

parameter θ are of opposite sign and the approximation used for the Hessian is singular. 

If one or the other parameter alone were to be estimated, the results after one step 

would be approximately φ = r\ or θ — —r\, where r\ is the first lag sample acf 

(autocorrelation function). When both parameters are included, the second derivative 

approximation is singular at this point and the nonlinear least-squares procedure 

generates a constrained step to the point φι = jri and θ = — Jri. From that point 

both parameters increase toward their final values, except for a slight overshoot toward 

the end. 

This is discussed to illustrate some of the difficulties that arise particularly in the 

estimation of models with both autoregressive and moving-average terms. Conver-

gence may fail in the sense that the iterates reach a poor local optimum rather than 

the best overall parameter estimates. Note also the fairly high correlation between the 

A R I M A parameter estimates. This is another feature of time series model estimation; 

the regression "design" is generated by the model itself. High correlations between 

parameter estimates are often unavoidable and should not necessarily be taken as 

evidence of model overparameterization, although when that does occur, one expects 

to find the same symptoms as of multicollinearity in linear regression. Then at least 

one of the model orders ρ or q should be reduced. 

4.2. T H E L I K E L I H O O D OF A R M A MODELS 

We use examples to illustrate the various aspects of A R M A model parameter esti-

mation of which it is useful to have some understanding. The emphasis is on the 

calculation of the sum of squares S and the determinant \M„\, which appears in the 

criterion (4.5), with a brief outline of how the criterion may be minimized. 

We start with the simple AR(1) model: 

In this case we can calculate the prediction errors a, for t = 2, 3 , . . . , η from the 

w, = φω,_ι + a,. (4.6) 
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data w, as 

a, = w, — φνυ,. (4.7) 

Because a,, for t = 2, 3 , . . . , n, are independent of each other, and of w\, we can use 

this relationship to obtain the pdf of the data as 

f(wu u>2, · · · , w„) = f(wi)f(a2)f(a3) • • • f(a„) 

1 
oc / ( ι υ ι ) σ β

 ( n u e x p -
2σ„2 

(4.8) 

It is possible to consider w \ as a fixed quantity that, considered alone, does not 
contribute to the information needed to estimate φ. This is to condition on the value 
KJI, which is appropriate if it is possible that w\ is not a typical value from the 
stationary distribution of the series. Then we obtain the concentrated likelihood as 
-2Ζ . (φ) = (η - l ) l og (S ) where 

(4.9) 

1=2 

Minimizing S is then the standard least-squares problem of regressing w2, n>3, · •, 
wn on w\, W2, • •., wn-\. This lagged regression is a rather obvious way to estimate 
autoregressive models of all orders. 

In order to obtain the likelihood exactly as defined by (4.8), we need to take into 
account the information from w\, which has the variance σ α

2 / ( 1 — φ 2 ) of the stationary 
series. Then, including the term 

f(u>i) oc 
(1 - Φ 2 ) (1 ~ Φ2) 2 

exp j - j - u , , (4.10) 

in the likelihood (4.8), and writing a, = w, — φιο,_ι, we obtain the expression in 
(4.5) as 

\Mn\
l/nS = (l - φ 2 Γ ( 1 / η ) ( Ι - φ ^ + ^ ί ω , - φ κ ; , . , ) 2 

1=2 

(4.11) 

This requires minimization by a nonlinear least-squares procedure, but the departure 

from linear least squares is small and convergence is usually rapid. It provides an 

estimate of φ that necessarily satisfies the stationarity requirement. The method readily 

generalizes to the A R ( p ) model. 

We next consider the simple M A ( 1 ) model: 

w, = a, — θα,_ι. (4.12) 
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To put the estimation of θ into context, consider a series of observations zi, z2, • • •, zn 

for which the E W M A predictor is appropriate. The first differences w2 = z2-Z\, 
Wi — Z3-z2 w„ = zn - zn-\ then follow the MA(1) model above. The param-
eter θ is the smoothing parameter of the predictor (2.5) (in Chapter 2). The situation 
is similar to that of the AR( 1) model in that we can calculate the prediction errors 

a, from the data w,, for t = 2, 3 n, but only by assuming a value for a\. The 

calculation is recursive: 

a, = w, + θα,_ι for / = 2, 3, (4.13) 

The pdf of the data together with the assumed value of a\ is 

fifty, w2, wi w„) = f(ai)f(a2)f(a3)f(in)... f(an) 

(4.14) 

where 

S = (4.15) 

A simple strategy for dealing with the fact that a.\ is unknown is to set it to zero. 
This is equivalent to starting off the E W M A by using z\ as the predictor for z2, quite 
a common practice. If, however, the series has a slowly varying level with a lot of 
scatter about it, this strategy could distort the predictions for several early timepoints. 
As soon as a few series values were observed, it would make sense to go back and 
use a better "predictor" in place of z\, constructed as an E W M A of these early series 
values, discounting into the future. 

This is an application of the backforecasting method, which in this case leads to 
the estimate 

-(θιι>2 + θ2ιι>3 + Θ 3 ω 4 - Γ - · · ·)· (4.16) 

This method should take account of the finite range of future series values, and 

Box and Jenkins (1976) do this by suggesting a repeated process of forecasting and 

backforecasting. A direct approach is to construct ά\ as a least-squares estimate, by 

minimizing 5 above wrt a\. The other terms a2, 03 , . . . a„ all depend linearly on a\ 

so that 

a\ = 
(θα 2 + 8 2 a 3 + θ 3 α 4 + · • · + 6"- 'a , ) 

(4.17) 

where a2, «3 , . in this expression are the values obtained by the strategy of setting 
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« ι = 0, and 

Κ = 1 + θ 2 + θ 4 + · · · + θ 2 ( " - 1 ) . (4.18) 

The sum of squares can be decomposed as S = K(a\ — ά\Ϋ + 5 where S is the 

minimum value of S got by using ά\ to start up the calculations for a2, 0 3 , . . . in 

(4.13). What this exercise actually gives us is the conditional mean δι and conditional 

variance σ2/Κ of a\ given 1x12, W 3 , . . . , w„. Then the pdf (4.14) can be factored: 

f(a\ I u>2, w3,..., w„)f(w2, tu 3 , . . . , w„) (4.19) 

where 

K^2 ί Κ } 
f(a\ 1102, w3,..., w„) oc exp I - — τ (αι. - ά ι ) 2 | (4.20) 

and consequently 

f(wi, m w„) oc A : - ( 1 / 2 V ( " " " e x p j - ^ ^ J . (4.21) 

Comparing this with the likelihood expression (4.5), we can now identify the required 
values of \M„ \ with Κ and S with S. 

The terms a, that contribute to S in (4.15) do not depend linearly on Θ, so iterative 
nonlinear least-squares methods must be used to obtain the maximum likelihood 
estimates. 

To complete our illustrations, we now derive the likelihood for the ARMA(1 ,1 ) 
model: 

w, = φιυ,_ι +a, — Bat-\. (4.22) 

Similar principles are applied. The residuals are regenerated, for / = 2 , 3 , . . . , η using 

a, = w, — φιυ,-ι + θα,_ι (4.23) 

using an initial value for αι. We shall need to use E(u>\ | α ι ) = αι andVar(iui | « i ) = 
σ Λ

2 / δ 2 where δ 2 = (1 — φ 2 ) / ( φ — θ ) 2 . These are obtained by expressing w, =a, + 
(φιυ,-ι - θα,_ι) . The pdf of the data together with the assumed value of a\ may then 
be expressed: 

/ ( a 1, wu w2 w„) = f(w\ \a[)f(a\)f(a2)f(ai)- • • f(a„) 

oc cxra " exp - (4.24) 
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where 

η 

S = h2(Wl - α , ) 2 + \Σα} (4.25) 

Minimizing S with respect to a\ now gives 

b2Wi - θα 2 - θ 2 α 3 - θ 3 α 4 ,η-1 a, 
(4.26) 

Κ 

where α 2 , «3 , • · · in this expression are the values obtained using the initial setting of 

a\ = 0, and 

Using a similar argument as for the Μ A ( 1) case we therefore identify, in the likelihood 
expression (4.5), \Mn \ with Κ β2 and S with 5 calculated using ά\. A small technical 
point is that in the case when φ = θ, the ratios shown above can be rearranged to 
avoid division by φ - θ. 

The backforecasting method mentioned in connection with the MA(1) model can 
be extended to calculate S for all A R M A models and is still widely used. However, 
it does in theory require convergence of cycles of forecasting and backforecasting to 
obtain correct results. It will not give the "correct" value of S as in the procedures 
discussed above if the series is short and the moving-average parameter is close to 1. 
This problem is more severe for seasonal models. 

4.3. L I K E L I H O O D S C A L C U L A T E D USING O R T H O G O N A L ERRORS 

The methods of the previous chapter were based on the calculation of estimates of the 
innovations a, in the A R M A model. These are the errors of prediction using all past 
values. We overcame the problem that we do not have all these values by estimating 
a, using the series values actually observed. 

Another approach is based on the errors of prediction using only the available past 
values. These are called orthogonal errors. The first step is to express the joint pdf of 
the observed series as 

f(m, W2 Wn) = / ( U > l ) / ( U > 2 I W\)f(m \w2,Wi)... f(w„ | W\, W2, . . . , W„-,). 

Κ = δ 2 + 1 + θ 2 + θ 4 + · · · + θ 2 * " - 1 » . (4.27) 

(4.28) 

Let the error of prediction be 

w, - E(w, \w\,w2, . . . , ι υ , _ ι ) = α Μ _ ι , (4.29) 
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indicating that it differs from a, by using only the previous t - 1 values. Letting its 

variance be σ 2 , the joint pdf is proportional to 

1 a, 2 
Ί,Ι-Ι Π - e x p l - j (4.30) 

As t increases, so that more past information is available, α,,,_ι -*• a, and σ 2 - > σ 2 . 
As before, take σ 2 as a scale factor, writing σ 2 = Λ 2 σ α

2 . The factor h2 is a function 
of the A R M A parameters β = (φ, θ) only, and h, -*• 1 as t increases. The likelihood 
expression (4.5) may then be calculated by identifying \M„\ with \\h2 and S with 
the weighted sum of squares Σα?ι-ι/nh 

For an AR(p) model the innovations and orthogonal errors are the same provided 
t > p, so that h, = 1 and 

α,,,_ι =a, = w, - φιΐυ,-ι - faw,-2 Φ Ρω,_ ρ. (4.31) 

For t = 1, 2 , . . . , ρ formulas for α,,,_ι are readily obtained in terms of the partial 

autocorrelations of the model. For example, if ρ = 2 with A R model parameters φι 

and Φ2, we need only the values φ2,2 = Φ2 and φι,ι = pi = φ ι / (1 — Φ2) to derive 

a\fi = w\\ Vara 1,0 = Var w\ = 
σ2 

a2j = w2 - φι , ιωι ; Vara 2,i = , 
1 - φ 

( ι - Φ 2 , ) ( ι - Φ ΐ , 2 ) 
σ 2 

(4.32) 

2,2 

For the general A R M A model two methods of generating orthogonal errors are 
widely used. We illustrate these for the A R M A ( 1,1) model. 

The first uses Choleski factorization of a band matrix. Orthogonalized residuals 
can be obtained by Choleski factorization of the covariance matrix V„ of the data, or 
equivalently the scaled matrix Af„, but in general this requires extensive computation. 
This is reduced for an M A ( o ) model because then Mn is zero except for the diagonal 
and the adjacent q diagonals above and below. For an A R M A ( p , a ) model it is a simple 
matter to transform to data with a similar covariance structure. For the A R M A ( 1,1) 
case, let u, = w, — φ ω ( - ι for t = 2, 3, . . . , η and consider the variables uvi, u2, 
M 3 , . . . u„. The orthogonal prediction errors from these are the same as those for the 
original series. Moreover, their covariance matrix is fully specified by the nonzero 
values, which we express as 

V a r u ^ l + j ^ a 2 

COV(MJ!, u2) = COV(M, , u i + \ ) = — θσ2 

Var κ, = ( 1 + θ 2 ) σ α

2 · ( 4 · 3 3 ) 
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The first orthogonal error is just «ι,ο = w\ so that h\ = 1 + (φ — θ ) 2 / ( 1 — φ 2 ) . 
The statistical interpretation of Choleski factorization is that each orthogonal error is 
created by subtracting from u, its regression on the previous error. This is very similar 
to the regeneration of residuals for the M A ( 1 ) model but with a changing coefficient. 
To reinforce the similarity with (4.13), we write this as 

α,,,_ι = u, +θ,β,_ι, ,_2 (4.34) 

where the regression coefficient is actually -Θ, and is given, using COV(M,, α,_ι, ,_2) = 
COV(M,, u,-i) = - θ σ α

2 and Var(a2_, ( _ 2 ) = h]_xa
2, as 

(4.35) 

Further, the new error variance ratio is given by 

Λ 2 = (1 + Θ 2 ) - Θ 2 Λ 2 _ , . (4.36) 

The likelihood is thus readily calculated. 

The other widely used method uses a state-space representation of the model and 
the Kalman filter. The results are exactly the same as for the Choleski factorization, 
but the principles and computations do differ. 

The formulation of the state transition and observation equations in the state-
space representations differs somewhat from that illustrated in Chapter 2 for the 
simple structural model. The state-space representation of an A R M A model is a way 
of rewriting it that still has only one white noise contribution, the innovations a,, 
rather than separate white-noise contributions to the state transition and observation 
equations. 

The standard approach is to use for state variables at time t quantities that are 
sufficient to form all future predictions of the series. For an AR(1) model this is just 
the value ιυ,; for an AR(2) model w, and u>,-i would suffice and these are known at 
time t. A general formulation for the ARMA(/>, q) model is given in Section 4.7. We 
consider here the A R M A ( 1,1) model for which only one state variable x, is needed 
at time t. This is the prediction of wl+\ made at time t: 

χ, = φω, - θα,. (4.37) 

This is not known completely at time / from the finite record w\, u> 2 , . . . , w,. The 
Kalman filter provides a means of calculating the best estimate χΙΛ of x, given this 
finite record. The orthogonal residual at time i + 1 is then given by α,+ι,, = wl+\— x,,. 

Because the state is now designed to predict the next observation rather than the 
current one, the observation equation is different from that used in the illustration at 
the end of Chapter 2. The procedure for estimation of the states is slightly different, 
but the basic principles are the same and we illustrate them for the A R M A ( 1,1) model. 
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With the state variable defined in (4.37) the observation equation for w, is then 

w, =x,-i+a,. (4.38) 

The state transition equation follows by substituting w, in (4.37): 

χ, =φχ,-ι + ( φ - θ ) α , . (4.39) 

We begin the cycle of updating by assuming that we have an estimate Jc,-i,r-i of x,-\. 

From this we obtain a prediction of the next state: 

= φί,_ι,/-ι (4.40) 

and a prediction of the next observation: 

ώ (,,_ι = * , _ u _ | . (4.41) 

Let the error in x,-\,,-\ and its variance be 

Var = ρ,_ι,,_ισ α

ζ. 

The respective errors in predictions (4.40) and (4.41) and their variances are then, for 

the state error 

= χ, - χ,,,-\ = φί,_ι,,_ι + (φ - θ)α, . 

V a r e w _ , = ρ,,,_,σ α

2 = [ φ 2 Ρ < - . , ( - . + (Φ - θ ) 2 ] σ (

2 ^ } 

and for the orthogonal residual 

« ( , r - i = w, - = e,_i,,_i + a, 
V a r = h]o2

a = ( />,_, . ,_ , + 1)σ α

2. 1 

The regression of the state error on the orthogonal error again gives the correction to 

the state estimate as 

x,,t =x,,,-\ + Κ,α,,,-]. (4.45) 

The regression coefficient K, is again just the ratio of the covariance between the 

state error (4.43) and the orthogonal error (4.44) to the variance of the latter: 
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The corrected state error e u = eu-\ — K,aul-\ has its variance reduced to 

This completes the cycle of updating, which provides both the orthogonal residual 

α,,,_ι and its variance factor « , . The cycle is started by setting Jfo,o = 0 and ρ υ,ο = 

The state-space approach may appear a little more complicated than the Choleski 

factorization, but that is due in part to the transformation of the series w, to the 

M A ( 1 ) process u, before applying Choleski factorization. This same transformation 

could be used before applying the state-space approach, and the resulting calculations 

can be seen by setting φ = 0 in the state-space and estimation equations. These are 

almost identical to the Choleski method for this simple model. In general the state-

space approach as presented here has the advantage of being easily adapted to handle 

missing values of the series w,. There are also improvements to the Kalman filter that 

exploit the special nature of the A R M A equations. Both the Choleski factorization 

and the state-space methods are widely used and methods for the general A R M A 

model are given by Ansley (1979) and M61ard (1984). 

4.4. PROPERTIES OF ESTIMATES A N D PROBLEMS IN ESTIMATION 

Consider first the estimation of the coefficient φ in the stationary AR(1) model 

by simple lagged regression of w2, u>3 , . . . . w„ on w\, w2,..., wn-\. The results 

given by this regression are generally valid; the estimates and the standard errors pro-

vided by the ordinary least-squares procedure provide reliable and efficient inference 

for φ. The properties in the case of the general A R ( p ) model are presented by An-

derson (1971). These properties apply in theory for large samples but are reasonable 

for most applications except when the value of φ is close to unity. A problem would 

be indicated if the usual 95% confidence interval for φ included unity. It is worth 

looking more closely at the estimate and its properties, in order to understand how 

the situation differs from standard regression. The estimate is 

(4.47) 

ν 3 τ χ 0 / σ 0

2 = ( φ - θ ) 2 / ( 1 - Φ2)· 

w, = φιυ,_ι + a, (4.48) 

(4.49) 

Substituting for w, = φιυ,-ι -I- a, gives 

Φ = Φ + 
ΣΊ=2 a ' w l - l (4.50) 
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If this were standard linear regression, we would treat the values ιυ,_ι of the regression 
(4.49) as fixed quantities, that is, condition, on them, so that the ratio in (4.50) would 
be a linear combination of the normally distributed model errors a2, a$,...an. Its 
mean and variance would then be directly evaluated, giving 

\ 2-1 = 1 W t - \ ) 

φ ~ normal φ, ^ _ , . (4.51) 

This argument cannot be applied in the context of time series regression, because 
fixing the values of would also fix the values of a,. The sampling properties of 
the ratio in (4.50) are therefore usually derived by first considering the numerator. 
Its mean and variance can be readily verified to be respectively 0 and (η - 1 ) c r 2 o 2 

and the central limit theorem extended to establish its large sample normality. The 
denominator in large samples may be replaced by (η - 1 ) σ 2 with a small relative 
error. Using the fact that σ α

2 = (1 — φ 2 ) σ 2 then gives the large sample property: 

φ* ~ normal ( φ , (4.52) 

For most practical purposes the standard linear regression result (4.51) is close enough 
to (4.52) for it to be generally used. 

An important exception arise if an AR(1 ) model is estimated when in reality the 
series is not stationary but follows a random walk (i.e., φ = 1). Then the preceding 
large sample formulas fail. Inference can no longer be made as if the lagged regression 
had the properties of simple linear regression. In particular, the distribution of the 
estimate is no longer normal and distributional results developed by Dickey and 
Fuller (1979) must be used. 

The estimation of the parameter θ in the M A ( 1 ) model 

w, — a, — %a,-\ (4.53) 

is a nonlinear regression problem. From the foregoing derivation of the likelihood, 
the sum of squares to be minimized is obtained by the recursive regeneration of 

a, = w, + %a,-\ for t = 2, 3 , . . .,n. (4.54) 

We assume for simplicity that a\ is set to some fixed value. The derivatives a? of the 
"residuals" a, with respect to the parameter θ may also be recursively generated by 
differentiating (4.54) to give 

α,θ = α , _ , + θ α /

θ _ 1 . (4.55) 

The obvious fact that this derivative depends also on the value of θ demonstrates that 
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the residuals are not linear functions of Θ. Note that we may write 

a? = b,.\ (4.56) 

where, in a parallel manner to (4.54), 

/>, = α , + ΘΖ>,_ι· (4.57) 

Taking an initial parameter estimate to be % with corresponding residuals α,,η and 

derivatives έ>,_ι,ο, we can produce a local linear approximation 

a, ~ β,,ο + (θ - θο)ί>,-ι.ο (4.58) 

which we write so as to appear like a linear regression for estimating the parameter 

correction δθ = θ — θη: 

α,,ο = -δθί>,_,, 0 + α, (4.59) 

giving 

δθ = - Σ ^ ^ , - ι , ο ( 4 6 0 ) 

The old parameter is then corrected by this estimate to give the new parameter 9j = 

θο + δθ and the process repeated to convergence. It is possible for a value of θ to be 

generated outside the range —1 < θ < 1 in which case only a fraction of the parameter 

correction is applied. This method appears to be quite reliable even when extended 

to MA(q) models with high order q. 

We gain insight into the properties of the parameter estimate obtained in this way 

by adding θο^,-ι,ο to both sides of (4.59) and using (4.57) to obtain the regression: 

*,.ο = (βο-δθ)*,_ι ,ο + β«. (4.61) 

This is now an autoregressive equation with parameter θο — δθ = 2θη — θ. Given any 

value of θο sufficiently close to the true value θ for the linear approximation (4.58) to 

be good, this tells us that the sampling properties of 2θο — θ are the same as those of an 

autoregression with the same parameter. In particular, considering θο to be the true (al-

though unknown) parameter value θ leads to the parallel large sample result to (4.51): 

θ ~ normal ( θ , (4.62) 

A similar approach may be applied in the case of A R M A models. For the 

A R M A ( 1,1) model the parameter corrections - δ θ and δφ are determined by a 

regression similar to (4.59), of α,,ο on έ>,_ι,ο, which is generated again by (4.57), 

and on c,_io, which is similarly generated by c, = w, + Qc,-\. Provided convergence 

to the global minimum of the sum of squares occurs, the standard errors generated 

by this regression may be used reliably in large samples as the standard errors of the 
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parameter estimates. For A R M A models, however, such convergence may not take 

place if the initial parameter values are not close to the global minimum. 

One of many possible methods for obtaining preliminary parameter estimates, 

proposed by Durbin (1960) and developed by Hannan and Rissanen (1982), uses two 

steps of linear regression. First, a relatively high-order A R model is fitted to the series 

using simple lagged regression. For the example above of the plastic extrusion width 

measurements, a lag of 10 is used. The order should be about that at which the sample 

pacf dies out, so that the residuals a, from this linear regression are reasonably good 

estimates of the series innovations. Use too low an order of autoregression, and the 

residuals are not uncorrelated; use too high an order, and they suffer from estimation 

error. An automatic order selection criterion could be used. 

Next, the regression of w, on ω,_ι , tu,_2,..., w,-p and —ά,-ι, — ά,_2, . . . , — a,-q 

is fitted to obtain estimates of the coefficients φι , Φ 2 , . . . , φ ρ and θι, θ 2 , . . . , %• 

For the A R M Α ( 1,1) model for the width measurements, this method gave estimates 

of φ = 0.9271 (SE 0.0697) and θ = 0.6921 (SE 0.0889) with correlation between 

the estimates of 0.782. When these were used as starting values in the linearized 

regressions for the least squares (maximum likelihood) estimates described above, 

convergence took just two cycles, to the values $ = 0.9436 (SE 0.0242) and θ = 

0.6763 (SE 0.0535) with correlation 0.673. Note that the standard errors and the 

correlation were reduced for the maximum likelihood estimates. 

This is a very useful method, but the reduction of efficiency of the preliminary 

estimates is greatest when the need for good preliminary estimates is greatest, so 

that less direct methods based on visual inspection of the sample acf and spectrum 

can still be valuable. The problems arise when fitting an A R M A model with one or 

more "signal" components with substantial added noise, and particularly when the 

signals are cyclical, for example, business cycles. In this case the autoregressive and 

moving-average parts of the model can have near-canceling factors with roots close 

to the boundary of stationarity and invertibility. The example used in this chapter is 

nearly, but not quite, in this category. It is then important to have ways of checking 

the fit of models fitted by the iterative non-linear least-squares procedure. 

4.5. C H E C K I N G T H E F I T T E D M O D E L 

An estimated model needs to be checked to discern whether it provides a good fit to 

the data. The estimated model may not fit the data for one of two reasons: because it 

was not well chosen and cannot provide a good fit to the data or because it was poorly 

estimated, even though it is capable of a good fit to the data. 

We consider four aspects of model checking. The first is to check the basic as-

sumption that the residuals, which are estimates of the innovations, show no evidence 

of autocorrelation. Due consideration must be given to the fact that their estimation 

will have some effect on their statistical properties even if the estimated model does 

fit the data well. 

This check requires simply that we look at the residuals and their sample statistical 

properties, just as we inspected the original series. Figure 4.1 shows the plots for 

the residuals from the ARMA(1,1) model fitted to our example series. These are 
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FIGURE 4.1 Analysis of residuals from an ARMA( 1,1) model fitted to the series plastic extrusion width 
measurements. 

generally consistent with the residuals being white noise. In particular, the sample 
autocorrelations rk lie mostly within the plotted limits about zero. A formal test of 
whether the series is white noise uses the statistic 

where η is the series length. This is based on the large sample properties of rk ~ 
normal[0, (1 /n) ] . Under the assumption that the model fits the data the large sample 
distribution of X is chi-squared on Κ — ρ - q degrees of freedom, the reduction in 
the degrees of freedom allowing for the small extent to which estimating the model 
"overwhitens" the residuals. A modification to this statistic to improve its properties 
in smaller samples is presented by Ljung and Box (1978). A choice must be made, 
regarding the number Κ of autocorrelations included in the statistic. Evidence for 
lack of fit generally comes from patterns of larger values of low lag correlations, and 
choosing Κ too large could dilute this evidence. When very long series are modeled 
even very slight deficiencies in the fitted model can be revealed by this statistic because 

κ 

(4.63) 
k=\ 
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a good fit requires the sample autocorrelations to be very small. A judgment must 

then be made as to whether the lack of fit justifies effort further to improve the model. 

For our example, using Κ = 40, the value of X is 50.48, which is exceeded with 

probability .0847 by a chi-squared variate with 38 degrees of freedom. For compar-

ison, when an AR(2) model is fitted to the same series, the value of X is 73.11 and 

the probability is .0005. The A R M A ( 1,1) model therefore appears acceptable and the 

AR(2) model most definitely not. 

The second aspect of model checking is comparison of the properties of the fitted 

model with those features of the series and its sample statistical properties that had 

been considered important at the stage of model identification. We focus on the sample 

spectrum rather than the autocorrelations. Figure 4.2 shows the sample spectrum of 

our example data with the spectra of two fitted models overlaid. The line which 

passes through the sample spectra, rising with it sharply at low frequencies, is that of 

the A R M A ( 1,1) model, which captures well the low-frequency peak. The other line 

is the spectrum of the AR(2) model, which fails to fit this peak and also compromises 

the fit to the higher frequencies. The residual spectrum is in fact the ratio of the 

sample spectrum of the series to the fitted model spectrum. Inadequacies tend to 

be more evident when comparing the series and model spectra than when simply 

inspecting the residual spectrum. 

A third aspect of model checking is validation by forecasting out-of-sample values 

of the series. Forecast construction is described in Section 5.4 (of Chapter 5). A 

proportion of data at the end of the series is withheld and various forecasts of this data 

produced using the model fitted to the earlier part. We look for consistency between 

the forecast limits and the data. This in itself does not demonstrate a good fit, but lack 

of consistency is clear evidence of model inadequacy—assuming, of course, that the 

series does have the stationary properties that permit forecasting of future values. 

Finally it is suggested that a model that fits well by the foregoing criteria should 

also be tested by fitting an extended model; one usually in which the autoregressive 

or moving average order is increased. Formal tests can then be used to check that no 

significant improvement in fit can be achieved by such an extension. 

Series and model spectra 

1500000 

1000000 

500000H 

FIGURE 4.2 Sample spectrum of the series of plastic extrusion width measurements with superimposed 
model spectra. 
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4.6. E S T I M A T I O N BY F I T T I N G T O T H E S A M P L E SPECTRUM 

In the previous section we showed the model spectrum set against the sample spectrum 

of the series. It is possible to obtain estimates of the model parameters by fitting 

the model spectrum to the sample spectrum. These estimates are, in large samples, 

equivalent to the maximum likelihood estimates. The values of the sample spectrum 

at the grid of frequencies fj = j/n can be considered as equivalent to the time 

series data for this purpose. We stated in Chapter 2 the distributional property on 

which estimation may based, that these these values are independent with 

S*(fj) ~ exponential[5(/ ;)]. (4.64) 

An expression for the model spectrum S(f) in terms of the A R M A model param-

eters is required. The ARMA(1,1) example in Figure 4.2 illustrates this. Using the 

backward shift operator the model is written 

(1 - φ Β ) 
w, = 7 — ~ a , = ψ ( Β ) α , . (4.65) 

The spectrum may now be obtained from the expression given in (2.46), rewritten in 
the form 

5 ( / ) = ψ ( Β ) ψ ( Β - ' ) 2 σ (

2 (4.66) 

with the value of Β set to exp(i'2ir/). Then 

c / « ( 1 - Θ Β ) ( 1 - 8 Β - ' ) „ 2 1 + θ 2 - θ ( Β + Β - ' ) „ 2 

S ( / ) = ( Ι - φ Β Η Ι - φ Β - Λ = Ι + φ ^ ^ Β + Β - ) ^ · ( 4 6 7 ) 

This can be expressed using Β + B~" = 2cos(2ir/) in either of the two equivalent 
forms: 

= Μ + Ν cos 2ττ/ Q _ 
J 1 + P C O S 2 T T / 1 + P C O S 2 T T / 

In the case that Q > 0 and R > 0 the second of these forms corresponds to the inter-

pretation of the series as the sum of an AR(1) signal and an independent white noise 

component. 

Estimation is then a matter of fitting the curve S(f) to the data S * ( / ) . Suppose 

that the value of φ, and hence P, is specified; then (4.68) is a linear spectrum model 

with coefficients Q and R for components 5 i ( / ) = 1/(1 + Ρ cos2ir /) and 5 2 ( / ) = 

1. Because the distribution of the data S*(f) about the mean S(f) is exponential, 

the methods of generalized linear modeling (McCullagh and Nelder 1983) can be 

used to obtain the maximum likelihood fit. This is iterative. Supposing that the best 

estimate of the fitted function at any stage is 5 ( / ) , a regression of the scaled response 

S*(f)/S(f) on the scaled regressors S, if)/S(f) and S2(f)/S(f) is used to determine 

new values of the coefficients Q and R and the new S(f). Carrying out this procedure 
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to convergence gives a fit identical to that shown in Figure 4.2 for the ARMA(1 ,1 ) 

model, if the MLE estimate of φ is used. 

The class of A R I M A models having spectra that can be expressed as linear com-

binations of known components includes many frequently used models. For these 

models estimation using the spectrum is particularly useful. There is no difficulty, 

in principle, in extending the abovementioned method to fit all the parameters M, 

N, and Ρ in the AR(1) model spectrum as expressed in the first part of (4.68). That 

expression illustrates the general point, that A R I M A model spectra are ratios of poly-

nomials in COS(2TT/) , a fact that explains the flexibility of the A R I M A model for fitting 

a wide range of shapes of spectra. It also gives insight into the problem of estimation 

when the orders of both autoregressive and moving-average parts are large. Iterative 

methods are required. If the initial parameter estimates are poor so that the initial 

spectrum poorly matches the shape of the sample spectrum, the estimation procedure 

will find it difficult to "latch on" to the best parameters. Using the spectrum for model 

estimation does have the advantage of all curve-fitting methods, that the goodness of 

fit can be appreciated visually. 

4.7. ESTIMATION OF STRUCTURAL M O D E L S B Y THE 

K A L M A N FILTER 

In the final section of Chapter 2 the Kalman filter was used to estimate the states for 

two examples of structural models, and its derivation was given for a simple model. 

We now present the Kalman filter equations for state estimation and prediction of 

the general state-space model. These are required for application to more general 

structural models such as the seasonal example in the same section. A very important 

point is that the prediction errors (innovations) from the Kalman filter can again be 

used to form the likelihood for estimation of free model parameters, such as the four 

variances in that example, using (4.30). The section concludes by explaining some of 

the important relationships between A R I M A and state-space models. 

In the general state-space model the state and observation equations are assumed to 

be linear with independent Gaussian disturbance or errors. We can extend the models 

given in the last section of Chapter 2 to allow time-varying coefficients. Following a 

slightly different convention for time indexing, we write the state equation as 

χ,+ι = A,x, + a, (4.69) 

where A, are known, square, transition matrices and a, is an independent sequence 

of zero mean multivariate normal variables: 

α, ~ MN(0, W,). (4.70) 

The covariance matrix W, may be singular. This happens when a, is specified as a 

combination of a smaller number of disturbance terms. 
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The observation equation we write as 

z, = H,x, +€, (4.71) 

where H, are known observation matrices and e, is also an independent sequence of 

variables: 

e, ~ MN(0, V,) . (4.72) 

The sequences e, and a, are generally assumed to be completely independent of each 
other. 

We start by assuming that we know the conditional distribution of x, given the col-
lection, Z, say, of all current and all past observations z\, zt, • • •, z,. This is specified 
by a conditional mean and variance in the form 

χ, ~ M N ( B I „ / > , ) . (4.73) 

The Kalman filter is the steps by which we update this estimate to the next timepoint. 
The first step is that of prediction. From the state equation (4.69) the conditional 
distribution of x,+\ given Z, may then be obtained as 

x f + , ~ M N ( r f + 1 , G , + i ) (4.74) 

where 

E(x,+i I Z , ) = r,+i = A,m, 
Var(x l + , I Ζ , ) = β ,+ , = A,P,Aj + IV, ^ ' ^ 

using the "sandwich rule" of multivariate normal distributions. Similarly, from the 
observation equation (4.71) at the next timepoint t + 1, we obtain the conditional 
mean and variance Gl+l of ζ,+i given Z,. We also need the covariance matrix 
C,+i between ζ,+i and xl+\ in their joint conditional distribution: 

E(z,+i I Z , ) = s,+i = Ht+\rl+i 
Var(z,+1 I Z , ) = G , + 1 = Hl+l Q,+l / / , r

+ 1 + V r + 1 (4.76) 
Cov(z,+I,x,+i | Z , ) = C,+i = H,+iQ,+i 

so that the joint distribution of z,+i and χ,+i given Z, is 

(tl+l)~Ms\(',+l),(G?1 C ' + r 

\xl+iJ V'+i/ \C!+i Ql+i 
(4.77) 

The prediction step is completed. The correction step derives, from this joint distribu-
tion, the conditional distribution of xt+\ given z,+i and Ζ,, that is, given Z , + i , thereby 
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incorporating into the state estimate the information in the new observation as well 

as the past. The standard formula for the regression of x,+\ on zt+\ is used: 

x,+i ~ M N ( m , + 1 , />,+,) (4.78) 

where 

E(x , + i I Z , + i ) = m,+\ = r,+\ + Cf^G^^Zt+i — s,+\) = r,+\ -f Kl+\a,+\ 

Var(x, +i I Z,+\) = Pt+\ = Q,+\ - Cj+{G~lxC,+\ = Q,+\ - A T / + i C / + i 

(4.79) 

and Kl+\ is known as the Kalman gain, which is applied to the prediction error a,+i 

of zt+\. This completes the recursive cycle of the filter. Other versions of the filter 
have been developed. In particular, the square-root filter is widely used. Rather than 
updating the variance matrix P, of the state estimate, it updates its triangular Choleski 
factor. The advantage is that it avoids the possibility of negative variances that can 
otherwise occur through rounding errors when some states may be very accurately, 
or possibly perfectly, estimated from the observations. 

The smoothed estimates of the states x, are their expectations given the whole of 
the observed series, specifically, Z „ , not just the present and past values Z, . There are 
various forms of the smoothing equations by which these may be constructed. The 
ones presented here do not require the observed series, only the filtered and predicted 
state estimates m, and r,+\ and their variances P, and Q,+\, which are saved after 
applying the Kalman filter. The following equations are applied in reverse time order 
to obtain the mean μ, and variance Σ, of x, conditional on Z „ , the whole set of 
observations: 

J, = P,Aj+l (2 ( +\ 

μ, = m, + Λ ( μ ( + ι - η+ι) (4.80) 

Σ, = Ρ,+ΜΣ,+ι - Q,+\)JJ-

Smoothed estimates are valuable in applications such as trend extraction. 
There are several other considerations when applying the Kalman filter. Firstly, the 

state-space model should be miminal. That means that no state-space model with a 
lower state dimension can provide an exactly equivalent stochastic description of the 
observed series. Conditions for this are set out in many texts such as Harvey (1990). 
The initial state distribution also requires specification of its mean and variance and a 
common solution is to specify a very disperse distribution with a large initial variance 
for the states. 

In many time series applications the coefficients of the state-space model are 
assumed to be unchanging, rather than time-varying. In that case the Kalman gain 
matrix K, typically converges to a fixed value Κ as time increases. This happens even 
if the state process is not stationary but is just time-invariant. It was pointed out for the 
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simple example in Chapter 2. It is accompanied by convergence of the state variance 
matrices Q, and P, to values Q and P, although, of course, the estimated state vector 
does not converge. 

Note then that, on convergence, it is possible to express the filter equations as 

r,+i = Ar, + AKa, 
(4.81) 

z, = Hr, + a, 

which have an appearance very similar to that of the original state transition and ob-
servation equations. These equations provide an innovations representation in which 
zt has exactly the same stochastic properties as those implied by the original state-
space model. It may be used as an equivalent state-space model for the purposes of 
forecasting. The main distinction is that the states r, in this representation are known 
constructs of the Kalman filter. They are obtained by using the second equation to 
obtain the innovation from the new observation as a, = z, — Hr,, then the first equa-
tion to update rt+\. Similar equations arise for models of multivariate time series, and 
they have a central role in the systems approach to time series modeling presented in 
Chapters 15 and 16. 

For univariate time series a direct equivalence between constant coefficient state-
space models and A R I M A models can be derived from the innovation representation 
(4.81). The state-space model will always have an A R I M A representation in which the 
maximum of the generalized autoregressive and moving average orders is the state di-
mension. Similarly, an A R I M A model always has an innovations representation (4.81) 
where the state dimension is the maximum A R I M A order. An example was given in 
Section 4.3 for the application of the Kalman filter to ARMA(1,1) model estimation. 
For the general ARMA(/>,g) model with q < p, the representation is given by taking 
the state at time t to be the vector of forecasts ζ, — (ζ,,,-ι, zt+i,t-i, • • • z,+p-\,,-\)' 
made at time t — 1 of the values ζ,, z , + i , . . . z,+p~\• The observation equation is then 
simply 

z,=i,,,-i+a, = (\ 0 · · · 0 ) 

/ Z M - I \ 

\z,+p-\,,-l J 

+ a,. (4.82) 

The state transition equation is constructed from the updating rules for A R I M A model 
forecasts which are presented in the next chapter: 

2/+2.» 

/ 0 1 

ο ' · . ' · . 

ο . . . 0 

\4>p Φρ-1 · • · 

0 \ (ii.t-\ \ 
0 + 

ψ 2 

1 

\ Z f + p - i , r - i / UP/ 

(4.83) 
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The moving average parameters enter indirectly through the coefficients ψ* of the 
model representation z, = ψ(Β)α,. 

From the innovations representation (4.81) it is possible to derive the forecasts 
of z, for a general state-space model as linear combinations of the state vector at 
time t: 

z,+k,t-i = HAkr, = dkr, (4.84) 

so that the vector of forecast values ζ, = ( ζ , , , _ ι , ζ ,+ ι , ι - ι , · · · , Z / + P - u - i ) ' > where ρ 
is here the state dimension, may be written 

zt = Dr, (4.85) 

in which the rows of D are the vectors dk. If this relationship is inverted and the 
substitution r, = D~xz, is made, the innovations representation (4.81) is trans-
formed to have the appearance of (4.83). The autoregressive coefficients and the 
coefficients ψ* in the A R I M A representation of the state-space model are then ob-
tained directly by inspection. The moving average coefficients may be derived from 
these. 

For example, taking the seasonal state-space model of Chapter 2 with 

and 

gives 

/ l 1 0 0 · · 0 o \ 

0 1 0 0 · · 0 0 

0 0 - 1 - 1 · · • - 1 --1 

A = 0 0 1 0 ·• 0 0 

0 0 0 1 · · 0 0 

\ o 0 0 0 · · 1 Oy 

Η = ( i 0 1 0 · • 0 0 ) 

< j 0 1 0 · 0 o \ 

1 1 - 1 - 1 · • - 1 --1 
1 2 0 0 · 0 1 

D = 1 3 0 0 · 1 0 

1 4 0 1 · 0 0 

.1 12 1 0 · 0 0 / 

(4.86) 

(4.87) 

(4.88) 
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The first row of D is H, Each following row is obtained by postmultiplying the one 
above by A. 

Substituting r, = D~lz, in (4.81) gives z, = DAD~lz,-\ + DAKa,. The matrix 
DAD~l has the form of the transition matrix in (4.83), where the last row is 

This shows that the (generalized) autoregressive operator in the A R I M A represen-

tation is 

The elements of DAK would give the values of ψι, ψ 2 , . . . , ψ η in that represen-
tation. The transition and observation matrices in a state-space model therefore deter-
mine the autoregressive part of its A R I M A representation. Its moving-average part 
depends on the Kalman gain matrix Κ. 
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Prediction and Model Selection 

Daniel Pena 
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5.1. I N T R O D U C T I O N 

This chapter deals with prediction of univariate time series models. We assume that 
we have observed a sample (ζ ι , . . . , ZT ) of a time series and we want to find a method 
to generate predictions of future values of the time series given the observed values. 
A key question in forecasting, as well as in estimation, is to measure the uncertainty 
of the predictions. Without this information, the forecasts are not useful because we 
do not have an idea of their precision. A usual way to express the uncertainty in 
our forecast is to compute a prediction confidence interval, that is, an interval that 
will contain the future value we are forecasting with high probability, as .95 or .99. 
Finally, forecasting is a dynamic task: when new data are available, forecasts need to 
be updated taking into account the new information. 

A linear time series model provides a straightforward way to compute these three 
components. For nonlinear time series the specification of the forecasting system 
can be a difficult task, and in this chapter we concentrate on linear time series. The 
chapter is organized as follows. First the properties of minimum mean-squared error 
forecasts are analyzed. Second, we discuss the generation of predictions for A R I M A 
model and the interpretation of the structure of the forecasts. It is shown that the 
forecast function can be decomposed into components associated with the trend, the 
seasonality and the transitory component. Third, we show how to build prediction 
confidence intervals and how to update the forecast when new data are available. 
Fourth, a general rule is introduced for combining forecasts from several sources. 
Finally, we present two criteria for automatic model selection that are based on the 
model forecasting performance: the Akaike AIC and Schwarz's BIC criterion. 
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5.2. PROPERTIES OF M I N I M U M MEAN-SQUARE E R R O R P R E D I C T I O N 

5.2.1. Prediction by the conditional expectation 

We assume first that we have observed the values Zj = (z\,. • •, Zr) ' of a zero mean 
stationary time series and we want to forecast a future value, ζτ+k - In order to com-
pare alternative forecasting procedures we need to introduce a criterion of optimally. 
Obviously we want to have forecast errors as small as possible, and a useful way to 
establish this condition is by choosing the forecast as the value that minimizes the 
mean of the squares forecast errors. Forecasts obtained by this criterion are called 
minimum mean-square error forecasts (MMSEF), and they can be computed as fol-
lows. Let gr(k) be the forecast we want to generate, where Τ is the forecast origin 
and k the forecast horizon. This forecast must minimize 

MSE(zT+k, g) = E[zT+k - gr(k)]2, (5.1) 

where the expected value is taken over the joint distribution of ζτ+k and Zr • Using the 
well-known property of conditional expectations, E(y) = ExEy/x[y), we can take 
first the expected value with respect to the distributions of zr+k/Ζτ and afterward 
with respect to the distribution of Zj. In the first step we consider the sequence Zj 
as fixed, and we obtain 

MSE(zl+k \ZT) = E [z2

T+k I ZT] + gT(k)2 - 2gAk)E [zT+k I ZT] 

and taking the derivative of this equation with respect to g we obtain 

gT(k) = E[zT+k I ZT] = zT(k). (5.2) 

This result indicates that, conditioning to the observed sample, the MMSEF is obained 
by computing the conditional expectation of the random variable we want to forecast 
given the available information. It is easy to see that this result holds for any sequence 
ZT and is, therefore, general. To show this, consider any other predictor, zj-ik), and let 
us call, as before, MSE to the mean-square forecast error of zr(k) as defined by (5.2), 
and MSE* = E[zr+k — ij(k)]2 to the mean-square forecast error of Zj(k). Adding 
and substracting zr(k) in this last expression we have that 

MSE* = MSE+E[ir(k) - zT(k)]2 

because the double product is zero, as it can be easily seen by taking first the expecta-
tion with respect to the distributions of zr+k/Ζτ-Then, it is clear that MSE* > MSE, 
and they will be equal if zf (k) — Ε [ζτ+k I Zj\. 
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5.2.2. Linear predictions 

Conditional expectations can be, in same cases, difficult to compute. However, if we 
restrict our search to forecasting functions that are linear functions of the observations, 
we can easily obtain the best linear predictor minimizing the MSE. The general 
equation for a linear predictor is 

Zr(.k) = bkoZr Η 1- bk(T-\)Z\ = b'kZr 

and calling MSEL to the mean square error of a linear forecast 

MSELUr+k I ZT) = E[zT+k - b'kZT]
2. (5.3) 

Minimizing this expression with respect to bk, we have 

E[(zT+k ~ b'kZT)Zr] = 0 

which implies that the best linear forecast must be such that the forecast error 
Ζτ+k — Zr(k) is uncorrected with (orthogonal to) the set of observed variables. 
This property suggests the interpretations of linear predictors as projections. Calling 
Γ> = E(ZTZ'T) to the covariance matrix of the vector ZT and yk = E(zr+kZr) = 
(y(k), y(k + 1 ) , . . . , y(k + T))' to the covariance vector between zt+k and Zj, the 
coefficients for the best linear predictor will be given by 

b* = I V V (5.4) 

This expression assumes that Γ> is nonsingular, and a sufficient condition for this is 
that γ (0) > 0 and y(h) -*• 0 when h - > oo. 

It is clear that 

MSE(z,+k\ZT) <MSEL(zl+k\ZT) 

and as for gaussian processes the best predictor is always linear, both concepts coincide 
in normal models. 

Although the previous results have been established for stationary process, they 
also hold for non stationary processes. Note that the proof of (5.2), which says that the 
prediction that minimizes the MSE given an information set /, is the expectation of 
the variable conditional to / , , requires only that the conditional expectation as well as 
the conditional variance be finite. Therefore, the result holds for any random variable 
Zt+k such that the second moments conditional to the information set /, are finite. For 
nonstationary process (5.4) will not be valid, because the autocovariance function is 
not defined in this case, although the orthogonality property of the forecast error does 
hold. 
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5.3. THE C O M P U T A T I O N OF A R I M A FORECASTS 

Suppose that we want to forecast a time series ZT = ( z i , . . . , ζτ) which follows an 

ARIMA(/?, d, q) model. We will work in the general case and so seasonal models 

are just particular cases with high-order values for the A R I M A parameters. Let us 

assume first that the parameters of the model are known. Suppose that we have data 

until time Τ and we want to compute the one step ahead forecast for ζτ+\> defined 

by 

zT+\ = C + φ,ζτ Η h φ / , ζ τ -Λ + ι + « r+ ι - M r %aT-q+i (5.5) 

where h = ρ + d and the operator φ(Β) = φ(β)(1 - B)d includes the unit roots. 

The one step ahead forecast from time Τ will be the conditional expectation of this 

random variable given the available information. Calling z r ( l ) = Ε[ζτ+\ I Ζτ] to this 

conditional expectation, we have 

z r ( l ) = c + φιζτ Η 1 - Ψ Α Ζ Γ - Λ + Ι - M r %aT-q+\, (5.6) 

because the expected value for the observed sample data or the errors are themselves, 

and the only unknown random variable in (5.5) is ατ+\ that has an expected value 

equal to zero. Note that as we are assuming that the parameters are known, the errors 

are also known, because we can compute them recursively from the observations 

given some starting values. This implies that, comparing (5.5) and (5.6) 

« r + i = ZT+\ — 2 rO) 

which means that the perturbations a, can be interpreted as the one step ahead forecast 
errors of the model. 

Let us consider now the multiple steps ahead forecast. As before, the MSE forecast 
of ζτ+k given the data until time Τ will be the expectation of this variable conditional 
to the observed data. We will assume that this conditional expectation exits, and we 
will call 

Ζτϋ) = E[zT+j \ ZT] j = \,2,...,k 

aT(j) = E[aT+j\ZT] 7 = 1 ,2 , . . . ,* 

where Τ is the origin and j is the horizon of the forecast. The unobserved random 

variable that we want to forecast, ζτ+k, is generated by 

Ζτ+k = C + <f\ZT+k-l Η r φι,Ζτ+k-h + <*T+k - M r + t - i - • • · - Qqar+k-q 

and taking conditional expectations given Ζτ we obtain 

zr(k) = c + φ ι ζ Γ ( * - 1) Η h Φ Λ Ζ Γ ( Α - h) 

- Θ | 3 Γ ( * - 1 ) %aT(.k-q). (5.7) 
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This expression has two parts. The first one, which depends on the AR coefficients, 
will determine the form of the long-run forecast. The second one, which depends 
on the moving-average coefficients, will disappear for k > q. Note that for j > 0, 
z r ( - y ' ) = Ζτ-jy that is, conditional to the sample the expected values of the data 
that have already been observed are the observed sample data. In the same way 
^T(-J) = ατ-j, but arU) = 0» because the expectation of a future perturbation is 
zero. Therefore, the forecasts generated from (5.6) for k > q satisfy the equation 

(1 - φ , β <phB
h)zT(k)-c = 0 

where now the backshift operator Β is operating over it, and the origin of the forecast, 
T, is fix. This equation is called the eventual forecastfunction and defines the long-run 
forecast generated from the A R I M A model. We will study this function in the next 
section, but here we illustrate it in two simple but important cases. 

1. Suppose the simplest stationary model, the AR(1) model. The one-step-ahead 
forecast is 

Z T - ( I ) = C + φιΖΓ 

the two-steps-ahead forecast is 

z r (2) = c + Φ , Ζ Γ ( Ι ) = c(l + φ, ) + φ 2 ζ Γ 

and, in the same way, for any it > Owe have 

zT(k) = c + Φ Ι Ζ Γ ( ^ - 1) = c ( l + φι + · · · + φ | _ 1 ) + tfzT-

Note that, for large k, as |φι| < 1, the term φ^ζτ will go to zero, and the sum of the 
rest of the terms will go to c / ( l — φι) , the mean of the process. We will see in the 
next section that this result is general, that is, for large k the long-run forecast for any 
stationary A R M A ( p , o ) model is the mean of the process, μ = c / ( l — φι φ ρ ) . 
Note that if c = 0, the long-run forecast will go to zero, again the process mean. 

2. Now consider a nonstationary process as the random walk. Then the one-step-

ahead forecast is 

z > ( l ) = C + ZT 

for the next period 

z r ( 2 ) = c + z r ( l ) = 2c- |-zr 

and, for any k > 0 

ζ Γ ( Λ ) = c + zT(k - 1) = kc + ZT-



116 PREDICTION AND MODEL SELECTION 

We see that all the forecasts are following a straight line with slope c. Also, if 
c = 0, all forecasts are constant and equal to the last observed value. Note the key 
importance of the constant in the forecast function for nonstationary models. When 
d = 1, the long-run forecast will be a straight line but the constant determines the 
slope of this line. Also note that the long-run forecasts depend on the last observed 
points, whereas in the stationary case it is always equal to the mean. In the next section 
we will show that this property applies to all nonstationary series. 

5.4. I N T E R P R E T I N G THE FORECASTS F R O M A R I M A MODELS 

5.4.1. Nonseasonal models 

Let us start first with the case of nonseasonal models. We have seen in the previous 
section that the eventual forecast function of a nonseasonal A R I M A model verifies 
for k > q 

< K f l ) ( V 2 r ( * ) - μ) = 0 (5.8) 

where we have introduced the mean of the stationary series, μ instead of the constant 
c = φ(1)μ. Remember that Β in this equation operates over the horizon k, and the 
origin Τ is fixed. As the polynomials φ ( β ) and V d do not have roots in common, 
it was proved by Espasa and Pefia (1995) that the general solution of (5.8) can be 
written, for k > max(0, q - d — p) as 

zT(k) = PT(k) + tT(k) (5.9) 

where the first term, called the permanent component, is the solution of 

VdPT(k) = ix, (5.10) 

and the second term, called the transitory component, is the solution of 

dXB)r r (*) = 0. (5.11) 

It is straightforward to verify that (5.9) is a solution of (5.8). Let us now analyze 
the form of each component. 

The permanent component 
The permanent component is the solution of (5.10) and it will be given by 

Pnk) = &T) + β< Γ ) * + · · · + fak" (5.12) 

where fa = μ/d! is determined by the mean of the stationary process, whereas the rest 
of the parameters in this function, β- r > , depend on the initial values and change with the 
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forecast origin. It is straightforward to check that (5.12) verifies the condition (5.10). 
When d = 0, the permanent component is Pr(k) = μ, and so it will be a constant 
equal to μ for all horizons. When d = 1, the permanent component is Pr(k) = β ό Γ ) + 
μ&, and we have a deterministic linear trend with slope μ; if μ = 0, then the solution 
is Pr(k) = $0

T) and the permanent component is just a constant. When d = 2, the 
solution is Pr(k) = β ^ ' + β{ Γ ) & + μ& 2 /2 and the model has a quadratic trend with 
the leading term determined by the mean of the stationary process μ; if μ = 0, the 

(T\ (7"\ 
equation reduces to a linear trend Pr(k) = β 0 + β| k, but now the slope will not 
be constant and will depend on the origin of the forecast. 

It is interesting to compare the straight-line forecasts generated by a 1(1) model 
with a constant term μ and by the model 1(2) without constant. Let βι be the slope 
in the straight line generated by the forecasts from the 1(1) model. This slope is the 
mean of the stationary series w, = (1 — B)z, = Vz , and so it is estimated by 

η — 1 η — 1 

which means that the increase in the forecast for one period to the next is the average 
of the observed growths, Vz , , in the sample. Let us compare this forecast with the 
one generated by a model with two differences and a M A ( 1 ) part, the often used 
ARIMA(0,2,1) model, V2ZT = (1 — θ73) ay, that also generates forecasts following 
a straight line. Then 

Ζτ-(Ι) — 2ζτ - Z T - \ - Gar = ζτ + 02 

where we have called 

β2 = Ζτ - Z T - \ - baT. (5.13) 

It is easy to see that for any k > 0 the forecasts are 

ir(k) = ZT + *&> 

and therefore they will follow a straight line with slope β 2 . Let us analyze how this 
slope incorporates the sample information. As ατ = (1 — Θ/J) - 1 V 2 z r we obtained 
from (5.13) that the slope is estimated by 

β 2 = V z r - θ(1 - QB)-\VzT - V z r - i ) 

which can be written as 

i=T-l 

02 = 0 - Θ ) £ VVzr-i-
/ = 0 
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This expression shows that the slope is a weighted mean of the observed growths with 
weights decreasing with the lag. In general, it can be shown that 7(2) models compute 
the slope, β 2 , as a weighted average of the observed growth values but given more 
weight to the last observed growths and less to the most remote ones. 

We conclude that although both models, the 7(1) model with constant and the 7(2) 
without, generate forecasts by making some weigthed average of past growth, they 
do so in a different way. The 7(1) model with constant makes a simple average; that 
is, past growths are as relevant as the latest growths to forecast the next growth. The 
1(2) model makes a weigthed average with weights that decrease exponentially with 
time, so that past growths have smaller weights than do the latest growths. Note also 
that forecasts from the 7(2) model without constant are adaptive, because they are 
always a weighted function of all observed growths, whereas those from model 7(1) 
with a constant are not, because the forecast growth is the sample mean, and unless 
we reestimate this parameter when new observations are available, it will be constant 
for different forecasts. This is an important advantage of models without constant; 
they are more adaptive than models that include a constant. A practical implication 
of this analysis is that, when in doubt, it is better to differentiate in order to have a 
model without a constant to make the model more robust and flexible. Sdnchez and 
Pefia (2000) have presented a rigorous proof of the advantages of overdifferencing in 
limiting cases. 

The two integrated models compared above incorporate the time information in the 
sample in an intuitively sensible way. This is an important difference with respect to 
nondynamic models, as linear regression. Suppose, for instance, that we had followed 
the naive approach of fitting a straight line by least squares to the data. Then we will 
have again a model that generates forecasts following a straight line as 

zT(k) = a+bR(T + k) 

where bn is the estimated slope by least squares. In order to compare this model with 
the previous ones, suppose, to simplify the analysis, that we have five observations, 
Τ = 5, and let us write t = ( - 2 , - 1 , 0 , 1, 2) so that / = 0, and the sample points 
are ( z _ 2 , z~\,zo,z\, z 2 ) . Then, the slope of the regression model is computed by 
least squares as 

-2z-i - Z - l +Z\ + 2Z2 

which can be expressed as 

bR = .2(z_, - z-2) + .3(z 0 - Z - i ) + .3(z, - z 0 ) + ·2(ζ 2 - z i ) 

that is, the slope is a weigthed average of the observed growths but giving minimum 

weight to the last observed values. In fact, it can be shown (Pefia 1995) that the slope 
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in a regression line can be written as 

i=T 

bR = ^ w , V z , 
1=2 

where Σ w, = 1 and the weights, w,, are symmetric and take the minimum value 

at the beginning and the end of the sample and the maximum value in the middle. 

This leads to the not very convincing result that if you use a regression model to 

forecast next year sales using a sample of, for instance, 10 years, you are giving the 

minimum weight to last year sales and the maximum to the increase 5 years ago. On the 

other hand, an 7(2) model always gives more weight to the last growths showing the 

advantage of forecasting with time series models over naive deterministic regression 

ones. 

In summary, the long-run forecast from an A R I M A model is the mean if the series 

is stationary and a polynomial for nonstationary models. In this last case, the leading 

term of the polynomial is a constant if μ φ 0, whereas it depends on the forecast 

origin (and so it is adaptive) if μ = 0. 

Note that if θ —> 1, this model will be very close to the previous random walk with 

drift. 

The transitory component 

The transitory component is the solution of (5.11) and so it will be given by 

ρ 
tT{k)=YjAiG) 

i = l 

where G~x are the roots of the autoregressive polynomial and A, are coefficients 
depending on the forecast origin. As | G, | < 1, this term will disappear for large 
horizons, which justifies the name of transitory term. Note that if ρ > 1, two complex 
roots will determine a damped sine wave. Therefore, in the general case, the transitory 
part will be a combination of exponential terms and sine waves. 

For instance, consider the model (1 - d>/i)Vz, = a,. Then G \ — φ and the forecasts 
must have the form 

zT(k) = cT + Α,φ* 

where cr, the constant that appear as the solution of V / Y (k) = 0, and A \, the constant 

in the transitory equation, must be determined from the initial conditions. The two 

equations required to determine the two unknowns can be obtained by computing the 

two first forecasts (one and two steps ahead). Then 

Z>(1) = cT + Α ι φ = ζτ + Φ ( Ζ Γ - Z r - i ) 
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and 

z>(2) = cT + Ai<\>2 = ζτ + Φ(ΖΓ - z r - i ) + Φ 2 (Ζ7 · - z r - i ) 

and the solution of these two equations is 

φ(ζτ· - ζτ-ι) 

and 

. φ(ζτ-Ζτ-ι) 
Λ ι = — ϊ η γ - · 

These results indicate that the forecasts for Γ + 1 , . . . , Τ + k are slowly approach-
ing the long-run forecast cT. Note that as A ι φ 1 goes to zero, the adjustment made 
by the transitory component on the permanent forecast decreases geometrically. If 
φ is small, the long-run forecast is close zr, and the adjustment of the transitory 
components plays a small role. However, if φ is close to one, the long-run forecast 
can be much larger than the last observed value, ζτ, and the transitory part is very 
important to define the way in which the forecast move from ζτ to the final forecast 
value cj. 

5.4.2. Seasonal models 

For seasonal processes the forecast will satisfy the equation 

Φ ( β ί ) φ ( β ) ( ν ^ ν ' ζ , ( « ) - μ) = 0. 

This equation can also be decomposed into a term associated to the nonstationary part 
and another linked to the stationary part. However, here it is interesting to decompose 
further these two terms into the part due to the regular operators and the one due to 
the seasonal ones. This is especially useful for the permanent component, which now 
can be split into a term linked to the trend and another linked to the seasonal structure. 

Let us assume the usual case of D = 1. Then, the seasonal difference can be written 

as 

(1 - B") = (1 + Β + Β2 + • • • + Bs~l)(l - Β) 

and calling 

S,(B) = 1 + Β + • • • + Β*-1 
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to the term without the real root equal to one, the forecast equation can be written as 

<J>(Bs)4>(B)(Ss(B)Vd+1zT(k) - μ) = 0, (5.14) 

which has the property that all the operators involved do not share roots in common. 

The solution of this equation for k > max(0, q+sQ —d — s — p — sP) is given by 

zT(k) = TT(k) + ET(k) + tT(k) (5.15) 

where now the permanent component has been split into two terms; the first one is 

the trend component, and it is the solution of 

V + 1 7r(Jfc) = - (5.16) 
s 

and the second is the seasonal component, that is, the solution of 

Ss(B)ET(k) = 0. (5.17) 

Finally, the transitory component is now the solution of 

<t>(Bs)<WB)tT(k) = 0 (5.18) 

and will die out for large horizon. 
It is straightforward to check that (5.15), as defined by (5.16) to (5.22), is the 

solution of (5.14). The trend component has the same form as for non seasonal data 
and is given by (5.12). Note, however, that for seasonal models the order is d + 1 and 
also pd+i = μ/s^d + 1 ) ! . 

Seasonal component 
The seasonal component will be given by 

s Is 

and the solution of this equation is a function of period s and values summing zero 
each s lags. The coefficients of this function are called seasonal coefficients, and they 
will be changing over time because they depend on the forecast origin. The long-run 
forecast will be determined by the permanent component, and it will have the structure 

zT(k) = TT(k) + ET(k) 

where the coefficients of both the polynomial trend component and the seasonal 
component are changing over time, depending on the forecast origin. 
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The airline model. Let us analyze the forecast structure of one of the models most 
often used with economic and business monthly data. The model is 

V V | 2 z , = ( 1 - θ β ) ( 1 -ΘΒι2)α, 

and was used by Box and Jenkins (1976) to fit the time series of airline international 
traffic presented as an example in this chapter. Since then the IMA(0, 1, 1) χ (0, 1, l ) s 

is called the airline model. The equation of the forecast generated by this model is 

z,(k) = i,(k - 1) + i,(k - 12) - z ,(* - 13) - Qa,(k - 1) 

-®a,(k - 12) + Θ Θ ό , ( * - 13) 

and according to the previous analysis, we know that this equation can be written for 

k > 0 as 

^ , ( * ) = Β 0

: ' ) + Β Ί ' ) * + S<' , 

that is, a linear trend plus a seasonal component with coefficients that are changing 
over time. In order to determine the parameters, we need to know the initial conditions. 
As we can write, for j = 1 13 

i,U) = W + + 

with Sj = Sjli2> w e obtain that the slope is given by 

tfl.Mn)^MI) ( 5 1 9 ) 

and calling 

z, 

we have that 

tf'-Sr-yW" (5-20) 

The seasonal coefficient are 

s(;] = z,u) - β 0

( " - β Τ ; (5.2D 

and will be given by the deviations of the forecast from the trend component. 
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5.5. P R E D I C T I O N CONFIDENCE I N T E R V A L S 

5.5.1. Known parameter values 

The uncertainty of the forecast when the parameters are known is easy to compute 
from the M A ( o o ) representation of the process. Let us write 

Ζ, = ψ ( β ) α , 

where the ψ, parameters are obtained by using the relationship 

φ(β)(1 - B)dty(B) = Q(B). 

Then, we can write 

oo 

ζτ+k = ] ζ ψ , α 7 · + * - ί (Ψο = 1) 
ο 

and taking expected values conditional to the observed data, we have that 

00 

0 

The forecast error is 

eT(k) = ζτ+k - zrik) = aT+k + ψ \ a T + k - \ + 1- Ψ*-ια?+ι 

with variance 

Var (e r (* ) ) = σ 2 (1 + ψ 2 + · · • + ψ 2 _ , ) 

Note that this equation indicates that the uncertainty of the long-run forecasts is 
different for stationary and nonstationary models. For a stationary model ψ* - > 0 
when A: - > oo, so that the series converge. For instance for an AR(1 ) model ψ* = φ* 
and Var(^r(*)) = σ 2 / ( 1 — φ 2 ) . As we have seen, the long-run forecast goes to the 
mean, and the uncertainty of this forecast is finite. Note that although this uncertainty 
can be much larger than σ 2 , the uncertainty of the one-step-ahead forecast, it remains 
bounded. However, when φ goes to one, that is, when we are close to the nonstationary 
case, the variance of the forecast grows without bounds. This means that we cannot 
make useful long-run forecasts for nonstationary models because the uncertainty will 
go to infinite. 

If the distribution of the forecast error is known, we can compute confidence 
intervals for the forecast or prediction confidence intervals. For instance, assuming 
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normal errors, the 95% confidence interval for the random variable ζτ+k >s 

zT(k) ± 1, 96σ ( 1 + ψ, 2 + • · • + ψ ^ _ , ) 1 / 2 . 

Sometimes we are interested in forecasting a vector of future values (zr+i , · · · . 
ζτ+ύ· Then we have to take into account that these forecasts are going to be correlated, 
that is when we observe ζτ+ι the forecasts for the rest of the observations have to be 
updated. We will see in Section 5.6 how this is done. We can anticipate here that the 
updating will depend on the covariances between the forecasts. From (5.22) we see 
that for h > 0 

i - l 

cov(zT(i), zT(i + «)) = E(eT(i), eT(i + h)) = σ 2 ^2^h+s\\is, 
5=0 

and in particular if h = 1, COV(ZT(0, ZT(> + 1)) = Ψισ 2 . 

5.5.2. Unknown parameter values 

In real applications the parameters are unknown. However, it can be shown that the 
uncertainty introduced in the forecast for this additional source of uncertainty is small 
for moderate sample size, and can be ignored in practice. We will illustrate the problem 
for k = 1 in the zero mean AR(1) case [more general analysis can be found in Box 
and Jenkins (1976)]. Then the forecast is 

z r ( l ) = ΦΖΓ 

and the true forecast error, βγ(\) = αγ, is related to the observed forecast errror, 

4 (1 ) = ζτ+ι-ΦΖΓ. by 

Β-Γ(1) = 4 (1 ) + (Φ-Φ)ζτ· 

Assuming to simplify that ζτ is fixed, and using that Var(<j>) = o- 2 /VJz 2 _ | we 
have that 

Var(4( l ) ) = σ 2 ( ΐ +z2

T/ns2

z) 

where ns2 = Σζϊ-ι· This equation indicates that the forecast error has two com-
ponents. The first one, σ 2 , is the uncertainty due to the random behavior of the 
observation we want to forecast. This uncertainty will be present even if we knew 
the parameters of the model that generates the observations. The second component 
measures the parameter uncertainty because the parameters are estimated from the 
sample. Note that this second term is of order 1 /n, and it can be safely ignored for 
medium or large sample size. A similar result can be proved in the general case. 
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5.6. FORECAST UPDATING 

5.6.1. Computing updated forecasts 

Let us show how forecasts are adapted when new observations become available. 

By (5.22) 

zT(k) - ψ*α Γ + Ψλ+ιατ-ι Η 

Zr+\(k - 1) = ψ*_ιατ+ι + ψ*α Γ Η 

which leads to 

Ζ Γ + Ι ( Λ - 1) - Zr(k) = ψ*_ιατ·+ι 

where 

flr+i = Zr+i - 2 r ( l ) 

and so the forecasts are adapted by 

zr+i(k - 1) = z r ( A ) + ψ 4 _ ι α Γ + ι (5.23) 

Note that the forecasts are updated by adding some part of the observed last fore-

cast error to the previous forecast, and the coefficients for forecast updating are the 

{ψ,} weights. This equation has a straightforward interpretation. Given the data until 

time Γ , the two random variables ζτ+ι and ζτ+k follow jointly a normal distribution 

with expected values z > ( l ) and zr(k), variances σ 2 and σ 2 ( 1 + ψ, 2 + · · · + Ψ2_|). 

and covariance σ 2 ψ*_ι . Then the best estimate of ζτ+k given zr+i will be the con-

ditional expectation, which is given by the standard regression equation (5.23). This 

analysis provides immediately with the updating equation for any possible situation: 

we compute the linear regression (conditional expectation) of the new forecast given 

the observed values. 

5.6.2. Testing model stability 

A test for model stability was developed by Box and Tiao (1976). If the model is 

correct and we call άτ+j to the one-step-ahead forecast errors computed from the 

estimated parameter values, we have that the statistic 

T h , a 2 · 

will be distributed as a χ 2 distribution with h degrees of freedom. As σ 2 will be 
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estimated by the sample residual variance σ σ 2 , the statistic 

Q* - (5.24) 

will be distributed as an F distribution with h and η — ρ - q degrees of freedom, 
where η is the sample size and ρ + q the number of estimated parameters. HQ* is 
large, we can conclude that the model is not adequate. 

An example 
We will make forecast using the airline data from Box and Jenkins (1976). The 
data include 12 years of monthly data of the log of the number of passengers in 
thousand international flights between January 1949 and December 1960. We will 
start assuming that we have just the first 6 years of data, which are plotted in Figure 
5.1. The following model is estimated for this sample 

and the residual standard deviation is .0185. 
Figure 5.2 plots the data and the forecasts for 1955,1956, and 1957 generated from 

this model. It can be seen that the forecast of every year follows the same structure: 
a linear trend and a set of seasonal factors. For instance, the forecasts for the first 2 
years (1955 and 1956) are presented in Table 5.1. 

We can compute the trend and the seasonal factors estimates easily as follows. 
The forecast for January 1955 from December 1954 is Z72U) = 2.3671, with a 

V V 1 2 z , = (1 - .405)(1 - .67Bn)a, 

2.56 

X 

2.42 

2.14 

2.28 

2.00 
12 24 36 48 60 72 

time 

FIGURE 5.1 First 6 years of data (1949-1954) for the airline data. 
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TABLE 5.1. Forecasts for 1955 and 1956 from Sample Data for 1949-1954 

J F Μ A Μ J J A S Ο Ν D 

2.3671 

2.4176 

2.3656 

2.4161 

2.4378 

2.4883 

2.4211 

2.4716 

2.4214 

2.4719 
2.4689 
2.5194 

2.5140 

2.5645 

2.5160 

2.5665 

2.4648 

2.5153 

2.4119 
2.4624 

2.3559 

2.4064 

2.4110 

2.4615 

standard error of .0185, and for January 1956 is 272(B) = 2.4176, with a standard 

deviation of .0446. This corresponds to a rate of growth (the data is in logs) of 

2.4176 - 2.3671 = .0505, that is of 5.05%. The same growth is forecasted for all the 

following years. For instance, Z72(25) = 2.4681, with a standard deviation of .0694. 

Note that the uncertainty in the forecast increases with the horizon. In the first forecast 

for January 1955 the standard deviation is 1.85% and it goes up to 6.94% for January 

2 years later. 

The forecasted montly growth is .0505/12 = .00042. The forecasted seasonal 

factors can be obtained by substracting for each forecast the trend effect (see 5.21) as 

follows. We first compute βο by (5.20) as 

2.3671 + 2.3656 + · · · + 2.3559 + 2.4110 

12 - η -

.0505 \ 
= 2.4022 

and then the trend for each month. Table 5.2 shows the computations requiered to get 

the seasonal factors. For instance, the first trend is 2.4022 + .0004 = 2.4026 and the 

difference with the forecast gives the seasonal effect. It can be seen that the lowest 

month for the seasonal effect is November (9% below the average) and the highest 

July and August (8% above the average). 

2.64 

2.48 

2.32 

2.16 

2.00 

FIGURE 5.2 First 6 years of data (1949-1954) and 3 years of forecasts (1955-1957) for the airline data. 
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TABLE 5.2. Computation of Seasonal Forecasts Using (5.21) 

J F Μ A Μ J J A S 0 Ν D 

Trend 2.406 2.411 2.415 2.419 2.423 2.428 2.432 2.436 2.440 2.444 2.449 2.453 

Forecast 2.367 2.366 2.438 2.421 2.421 2.469 2.514 2.516 2.465 2.412 2.356 2.411 

Seasonal -.039 -.045 .023 .002 -.002 .041 .082 .080 .025 -.032 -.093 -.042 

We can check for model changes when more data are available. For instance, 

suppose that once we have observed one year more of data we compute the forecast 

errors and the Q statistics presented in Section 5.6.2. In this case β(12) = 21.186 

and (2(12) = 1.765. Also with 2 years of data 0(24) = 61.916 and (3(24) = 2.58. 

These values indicate that the model seem to be adequate. 

Computing the rate of growth and seasonal factors from different origins can be 

useful to monitor slow changes of the components of the model over time. Suppose 

for instance that we forecast having 4 more years of data. Then the fitted model to the 

sample of 120 data point (1949-1958) is 

V V 1 2 z , = (1 - .34fl)(l - .54/3 Ι 2)α, 

Figure 5.3 plots the assumed observed time series with 10 years of data and the 

two forecasted years. Table 5.3 shows the first 13 forecasts generated with origin 

Τ = 120 and the computation of the trend and seasonal factors from this new origin. 

It is clear from the plot that the rate of growth has slowed down in the last period. The 

yearly forecasted growth is (2.572 — 2.542) = .03, which corresponds to a monthly 

growth of .0025. Table 5.3 shows the computation of the trend for each month and the 

Forecast Plot of X1 

2.80 

12 24 36 48 60 72 84 96 108 120 132 144 

time 

FIGURE 5.3 Ten years of data plus two forecasted years (1959, I960). 
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TABLE 5.3. Seasonal Factors for the Last 2 Years 

J F Μ A Μ J J A S Ο Ν D J 

F 2.542 2.521 2.583 2.571 2.583 2.656 2.7052 2.709 2.633 2.576 2.516 2.560 2.572 
Τ 2.583 2.585 2.588 2.590 2.593 2.595 2.597 2.600 2.602 2.605 2.607 2.610 2.613 
S -.041 -.065 -.004 -.019 -.009 .061 .108 .109 .031 -.029 -.091 -.050 -.041 

seasonal factor. Comparing Tables 5.2 and 5.3 we see that the seasonality has changed 
a little during the period. In fact, July and August are becoming more important and 
are accounting for a larger proportion of passengers. 

5.7. T H E C O M B I N A T I O N OF FORECASTS 

In many forecasting problems in addition to the forecasts generated by the A R I M A 
time series model, we have the possibility to consider additional information. An 
important problem is how to combine different sources of infomation. These problem 
was studied first by Newbold and Granger (1974), who provide some very useful 
rules for combining forecasts. The problem of combining information from different 
sources has been in the last years subject to a large amount of research (see Draper 
etal. 1992). 

We assume here that the additional information available may come from different 
sources. It may correspond to forecasts generated by a model with different level of 
aggregation; for instance, we have forecasts for monthly data but also a forecast for 
the total of the year made from a model with yearly data. In other cases, the forecasts 
come from a model that includes several explanatory variables. Also we may have 
subjective information we want to take into account to adjust the A R I M A forecasts 
together with a measure of the precision of this information with respect to the time 
series forecast. These examples can be put in the following setup—we have two or 
more independent forecasts of a given random variable, Z , and we want to combine 
them in order to have a better forecast. 

A general rule to carry out this combination is as follows. Given η independent 
forecast Z, of an unknown vector random variable Ζ of dimension ρ such that E(Zt) = 
E(Z) with covariance matrices V,, that may be singular, the best unbiased forecast 
(minimizing the trace of the error covariance matrix) is given by 

where V~ is the Moore-Penrose generalized inverse of V,, and where we have 
assumed that V~ is nonsingular. The covariance matrix of Zj is then easily seen 
to be 

η 

νγ-' Σ V,". (5.26) 
ι = Ι 
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The proof of this rule can be found in Pefia (1997). For instance, suppose that we 
have generated a vector of forecasts Zh from an A R I M A model for the future obser-
vations of a time series Zh = (z r+ i > · · • . Ζ Γ + Λ ) and we know the variance covariance 
matrix of the forecasts (see Section 5.5), which we will call Vh. Suppose that we know 
something about some linear combination of these forecasts, that is, we have a set of 
m restrictions on variable Ζ as 

Y = CZ (5.27) 

but these restrictions have some uncertainty because Y is a random variable that 
we assume comes from a multivariate normal distribution with mean C £ ( Z ) and 
covariance matrix Σγ. For instance, suppose that we have a model for monthly data 
and other for yearly data. Then the restriction is that the sum of the monthly forecasts 
should be equal to the forecast for the year. That is, m = 1, C = (1, 1 , . . . , 1), and 
Vy — σ 2 is the variance of the yearly forecast. 

Equation (5.27) implies a new forecast for Z. Any vector of the form 

ZR = AC'(CAC')~lY 

where we assume that the square matrix (C AC) has full rank, provides a forecast from 
the restriction equation. As we may choose any of them we take the corresponding to 
A = I. The covariance matrix of this forecast vector is singular and is given by 

VR = C\CC'TlVy(CC')-{C. 

In order to apply rule (5.25) to obtain the MMSEF, we need a generalized inverse 
of VR. It can be checked that V^" , the Moore-Penrose generalized inverse of VR, is 
given by 

ν Λ- = c'v;xc 

and so the MMSEF will be 

Z r = (C'Vy-
lC + Vn)~

lC'Vy-
lCZR + (C'V^C + Vh)~

lVh-
lZn 

or, in more simple way we can write this as 

zT = zh + ( c ' v - ' c + vhy
lc'vy-\Y - CZh) 

which indicates how to adjust the difference between Y and CZn in order to improve 
the forecast. 

A particular interesting case of this rule is when Vy = 0, that is, when the restriction 
is exact. For instance, we are forecasting monthly expenses that are subject to a budget 
constraint, so that we know that the sum of the monthly forecast must be equal to 
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some given constant. These types of problems have been studied by Guerrero and 
Pena (2000). It is interesting to note that the general rule (5.25) provides a direct 
solution for many forecasting time series problems. For instance, the Kalman filter 
introduced in Chapter 4 can be easily derived by applying this rule (see Pena 1997). 

5.8. M O D E L S E L E C T I O N C R I T E R I A 

Several criteria have been proposed for selecting time series models since the seminal 
work of Akaike (1969,1974). Among them are the Bayesian information criteria BIC 
of Schwarz (1978) and Akaike (1979), the penalty methods of Hannan and Quinn 
(1979), the predictive least-squares criterion of Rissanen (1986), extended by Lai 
and Lee (1997), and the modified AIC of Hurvich and Tsai (1989) and Cavanaugh 
and Shumway (1997). Surveys on the performance of these criteria for A R M A order 
selection can be found in Bhansali (1993) and Postcher and Srinivasan (1994). 

In this section we present the FPE and AIC criteria introduced by Akaike and the 
Schwarz (1978) proposal, which seems to be overall the one to be recommended for 
time series model selection (Koreisha and Yashimoto 1991). 

5.8.1. The FPE and A I C criteria 

Suppose that we want to select the order of an AR(p) model in such a way that 

the out-of-sample one-step-ahead prediction mean-squared error is minimized. This 

MSE is given by 

MSE(ZT+I) = E[ZT+I-^'ZP]
2 

where now ZP = (ζτ, · · ·. ζτ-ρ) and the expectation is taken with respect to the joint 
distribution of the variables (zr+i. ΦΛ Zp). The forecast error can be decomposed as 

eT+\ = ζτ+ι - Φ'Ζρ + (Φ - Ψ)'ΖΡ, 

and so 

MSE(zT+i) = σ2 + £ [ ( φ - $)'ΖρΖ'ρ(φ - φ)] (5.28) 

which decompose the forecast error as the sum of the variable uncertainty and the 
parameter uncertainty. We can assume, to simplify, that the variables (zr+ι, Zp) are 
independent of <j>. This is equivalent to assuming that the parameters are computed 
from a sample Zo = (zi , . . . , ζτ-Ρ-ι) that does not include the values that enter 
into the forecasting equation. This is a reasonable assumption for large sample size. 
First, Ζ ρ and φ will have then a small correlation because the estimated parameter is 
computed by using all the sample and ZP will be a small fraction of the total sample. 
For instance, if η = 500 and the model is AR(1), we do not expect that knowing 
that the parameter vector has been understimated is informative for guessing the 
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last observed value. Second, the correlation between ζτ+\ and φ will also be small 

because, although ζτ will depend obviously on ZP, given this last value, it may have 

an insignificant relationship with the other data used to compute the estimate. 

Using this assumption, we can compute the expectation Ε[(φ — φ ) ' Ζ ρ Ζ ρ ( φ — $ ) ] 

with respect to (Zo, ZP) by first taking the expectation with respect to the distribution 

of ZP, which leads to E(ZPZ'P) = ΓΡ, and afterward by taking the expectation with 

respect to Zq. The first step produces 

MSE(zT+l/Z0) = σ2 + Ε[(φ - φ ) ' Γ „ ( φ - φ ) ] . 

Now, in order to compute the expectation with respect to Zo, we first note that this 

function depends on the sample only through φ, and so we can compute the expecta-

tion with respect to this variable. As *Jn(ty — 4>) has a normal asymptotic distribution 

with zero mean and covariance σ 2 Γ ~ ' , the quadratic form (φ— $)'ΓΡ(§ — <|>)η/σ2 is 

asymptotically a x 2 distribution, and the expectation (5.28) can be approximated by 

MSE(zT+\) = σ 

An unbiased estimate of σ 2 is « σ 2 / ( η — ρ ) , where σ 2 is the MLE estimate. Inserting 

this estimate in the last equation, we have an estimation of the out-of-sample forecast 

error. If we want to minimize this value, it implies that the order ρ of the A R model 

should be chosen by minimizing 

FPE=&2(n + P ) . 
η- ρ 

This criterion, final prediction error (FPE), combines fitting, as given by σ 2 , with 

parsimony, due to the penalty introduced by the term (n + p)/(n — p) for increasing 

the order p. An equivalent form for this criterion is 

l o g F P £ = l o g < 7 2 + l o g n ^ l + - l o g n ^ l - ^j, 

and using that log(l + * ) χ for χ small this expression can be approximated for 

large η by log σ 2 + 2p/n. Multiplying the equation for n, we obtain the AIC criterion 

AIC — η log « τ 2 + 2p. 

This Akaike information criterion can be derived using entropy considerations 

(Akaike 1974). The AIC chooses the model that gives the best approximation to 

the true model asymptotically with the Kullblack-Leibler measure of distance. It is 

obtained by substituting the out-of-sample mean-squared criterion by —2(log maxi-

mized likelihood), which is a more general measure of model fitting. The estimation 
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of this quantity leads to the AIC criterion that has the general form 

AIC = —2(log maximized likelihood) + 2(number of parameters) (5.29) 

and for A R M A models this reduces, dropping constants, to 

AIC = η log σ 2 + 2(p + q) (5.30) 

where (p + q) is the number of parameters in the model. 

The problem with AIC is that tends to overestimate the number of parameters, even 
asymptotically. This problem was noticed by a number of authors, including Schwarz 
(1978). More recently, Hurvich and Tsai (1989) have shown that in small samples or 
when the number of fitted parameters is a moderate to large fraction of the sample 
size, it can drastically overfit the data. To solve this problem, Akaike (1979) proposed 
a modification of this criterion that he called BIC and that is equivalent, for large 
samples, to the Schwarz criterion presented in the next section. On the other hand, 
Shibata (1980) proved that if the predictor is selected by AIC, it is asymptotically 
efficient, in the sense of minimizing the one-step-ahead mean squared prediction error. 

5.8.2. The Schwarz criterion 

Schwarz (1978) presented a Bayesian way to estimate the dimension of a model. He 
assumed that we have a set of models Mj with prior probabilities p(Mj) with param-
eters θ 7 , and we want to select the model which maximizes the posterior probability 
of the model given the data, p(Mj/T). This probability is computed by 

p(MjlY) = cp(Mj) Jp(Y/Qj)p(.Qj/Mj)dQj 

where p(Y/Qj) is the likelihood of the data and p(Qj/Mj) the prior for the parameters. 
Making an asymptotic approximation to this integral, he showed that the model to 

be chosen is the one that minimizes 

BIC = —2(log maximized likelihood) + (log n)(number of parameters). (5.31) 

In this criterion the penalty for introducing new parameters is greater that AIC, so 
that BIC tends to select simpler models than those chosen by AIC . The difference 
between both criteria can be very large if η is large. It can be proved that the BIC 
criterion has asymptotic consistency under general conditions 

5.9. C O N C L U S I O N S 

Forecasting methods are conditional to the given model and do not take into account 
the model uncertainty. This point has been stressed by several authors. A way to 
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overcome this problem is by using a linear combination of models with weights given 
by the relative probability of each model. In this way the forecasts will be generated 
by 

h 

i = l 

where u;, are the weights and y , r (* ) the forecast generated by model ith. This app-
roach has been mainly used from a Bayesian perspective under the name of Bayesian 
model averaging ( B M A ) . Several strategies to implement this approach from the 
Bayesian point of view can be found in Madigan and Raftery (1994). 

Finally, some authors have proposed to adapt the estimation criterion to the ob-
jective of the forecast. This means that if we want to generate forecasts for lead time 
y = 1 w e could estimate J values for the parameters of the model minimizing 
the j steps ahead forecast (j = 1 , . . . , J). This approach was advocated by Findley 
(1983) and is discussed in Tiao and Xu (1993), Tiao and Tsay (1994), Hurvich and 
Tsai (1997), and Bhansali (1998), among others. 
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C H A P T E R 6 

Outliers, Influential Observations, 

and Missing Data 

Daniel Pena 
Universidad Carlos III de Madrid 

6.1. I N T R O D U C T I O N 

Time series data, as all types of statistical data, are often subject to outliers or discor-
dant observations. Their study has been approached from two points of view. The first 
is the diagnostic approach, in which diagnostic methods are applied to the residuals 
of the estimated model to identify possible outliers that are tested afterward. Once 
the outliers are identified, a model that incorporates them is proposed, and the outlier 
effects and the parameters of the model are estimated jointly. In this way we obtain 
both the effect of the outliers, which can be in some cases the main objective of 
the analysis, and a robust parameter estimate. The second is the robust approach, in 
which the estimation method is modified so that the estimates are not contaminated 
by the presence of outliers. Once we have a robust parameter estimate, the outliers 
can be easily identified and tested. Both methodologies complement each other, and 
ideas from one approach can be used to improve the other. In this chapter we will 
concentrate on the diagnostic approach, which seems to be the most widely used in 
applications. 

Outliers in time series data can be represented within the framework of A R I M A 
models or state-space models. As there is a well-known relationship between both 
representations (see Chapter 4), the results from one model can be transferred to the 
other, and in this chapter we will use the A R I M A representation. Thus, we assume 
that the outliers happen on a time series, y,, which can be modelled by 

φ ( β ) ν " ν , = β(Β)α, (6.1) 
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where Β is the backshift operator such that By, = y , _ i , φ ( β ) = 1 — φι Β — · · · — 
φρΒ

ρ, and θ ( β ) = 1 — θ] Β — • • • — QqB
q, are polynomials in Β of degrees ρ and q, 

respectively, with roots outside the unit circle, ν = 1 — Β is the difference operator, 
\jdy, is a stationary series, and a, is a white-noise sequence of iid N(0, σ α

2 ) variables. 
The model can also be written in the AR(oo ) form as 

v(B)y, = a, (6.2) 

where τ τ ( β ) = νάφ(Β)/β(Β) = 1 - ττ, Β - ττ2Β
2 or in the M A ( o o ) form as 

y, = Φ(β)β, (6.3) 

where ψ ( β ) = 9(Β)/#.Β)ν*. 
Fox (1972) defined the additive and innovative outliers in time series and proposed 

the use of maximum likelihood ratio tests for detecting them. Guttman and Tiao 
(1978), Miller (1980), Chang (1982), and Chan (1995) studied the effect of outliers 
in the autocorrelation of the series. Chang and Tiao (1983) and Chang et al. (1988) 
extended the results of Fox (1972) to A R I M A models and proposed a likelihood 
ratio test and an iterative procedure for detecting outliers and estimating the model 
parameters. Score test were proposed by Abraham and Yatawara (1988). Tsay (1988) 
generalized the Chang-Tiao-Chen procedure to include the detection of level shifts 
and temporary changes. Random level shifts were studied by Chen and Tiao (1990). 
Balke (1993) proposed a modification to Tsay's procedure for solving the confusion 
between level shift and innovative outliers using an additional search of outliers with a 
white-noise model. Chen and Liu (1993) presented an outlier detection and parameter 
estimation procedure for A R I M A models that seems to be widely used. 

Abraham and Chuang (1989) considered deletion statistics based on influence 
measures in regression for outlier identification. Pena (1986, 1987, 1990) proposed 
a missing-value approach to the study of influence in time series, presented statis-
tics to measure the influence of different types of outliers, and discussed the link 
between outliers and missing data. Bruce and Martin (1989) studied the identi-
fication of outlier patches in A R I M A models using ideas of influential observa-
tions in time series. Lefrancois (1991) proposed a deleted one influence measure 
for the autocorrelation function. Abraham and Chuang (1993) applied the EM 
algorithm to the estimation of outliers. Ljung (1982, 1989, 1993) studied the likeli-
hood function of A R M A models with missing data and its relation to outlier analysis. 

This chapter is organized as follows. In Section 6.2 different types of outliers are 
reviewed. In Section 6.3 some procedures for outlier identification and robust esti-
mation are discussed. Section 6.4 is dedicated to a review of influential observations 
in A R I M A models. Section 6.5 discusses the problem of multiple outliers. The re-
lationship between outliers, influential observations and missing-value estimation is 
discussed in Section 6.6. Section 6.7 includes some brief comments about forecasting 
with outliers. 
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6.2. TYPES OF OUTLIERS IN T I M E SERIES 

6.2.1. Additive outliers 

An additive outlier corresponds to an external error or exogenous change of the 

observed value of the time series at a particular timepoint; that is, instead of observing 

the series y , , we observe a new series, z,, which is related to the original one by 

z, = , t T (6.4) 

An additive outlier can be interpreted in general terms as a measurement error at 

time Τ, 1 < Τ < η, or as an impulse effect due to exogenous causes. For instance, 

when the original series describes the output from some system, an additive outlier 

corresponds to a particular unexpected event that happens at time T, such as a strike, 

an accident or a breakdown, and which modifies the output of the system at this point 

of time, without further effects on the future values of the time series. 

An alternative representation to (6.4) of the relationship between the original series, 

y , , and the observed series, z,, is given by the model 

ζ, = ω Λ / , ( η + ψ(β)α, (6.5) 

where / , ( Γ ) is a dummy variable which is zero at all lags except at time / = Τ in which 

/, = 1. An equivalent way to write (6.5) is 

τ τ ( β ) ( ζ , - ω Α / , ( 7 ) ) = α , . 

For instance Figure 6.1 shows an AR(1) simulated time series with parameter .8 

and the same time series with an additive outlier at time t = 20 of size equal to seven 

times the standard deviation of the series. The figure also shows the autocorrelation 

function of the original and contaminated series, and it can be seen that this function 

is seriously affected by a single AO. 

An additive outlier can have very serious effects on the properties of the observed 

time series. It will affect (1) the estimated residuals and also (2) the estimates of the 

parameter values. In order to show the first effect, let us assume that the parameters 

of the model are known and let us write the A R I M A model followed by y, in the 

AR(oo) representation (6.2). If an additive outlier happens at t = T, the residuals of 

the observed time series for ί > Τ will be computed in the usual way by 

er+j — Ζτ+j — T*\ZT+J-\ - ^PZT+J-P · 

Before the AO occurred, these residuals will have been identical to the residuals from 

the original process, computed by 

ατ+j = yr+j ~ T T i y r + j - i TtpyT+j-p -
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plot of original series acf original series 

FIGURE 6.1 A simulated AO on a AR(1) series. 

However, after time T, they will be different from the white-noise perturbations, a,, 

and the relationship between them will be 

e T + j = aT+j - TTjOiA j > 0 (6.6) 

where ττο = - 1 . This means that the ρ posterior residuals will be affected. For 
instance, a 10% proportion of outliers will contaminate 10p% of the residuals. If 
the sample size is 100, and the model is AR(5) , the presence of 10% of additive 
outliers will contaminate half of the residuals. 

Additive outliers can also have a strong effect on the estimation of the model 
parameters. For instance, consider a simple AR(1) model, and let us assume for 
simplicity that it has zero mean so that the only parameter to be estimated is the φ 
parameter. Then the least-squares estimate is given by 

Σ Λ 

Suppose now that an additive outlier occurs at time T. Then instead of observing 

y, we observe z, given by (6.4), and the parameter estimate is obtained by 

(6.8) 
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Replacing in (6.8) y, by z, as given in (6.4), the parameter estimate can be written 

as 

φ _ $Ο + Λ~1&Λ(9Τ-Ι+9Τ+\) ( 6 9 ) 

1 -I- 2<bAyT + n~*&\ 

where = and y, = yt/sy are respectively the size of the additive outlier 
and the observed values standardized by the sample variance of the true process 
i 2 = VJ yf/n. It is clear that for any fixed sample size 

if ω Α - > oo, = » φ - * 0. 

Thus, a large additive outlier will bias the estimated parameter toward zero. This effect 
is shown in Figure 6.1, in which the autocorrelation coefficients of the contaminated 
series are smaller that the one in the original series. 

It can be proved in general that a large additive outlier will push all the autocor-
relation coefficients toward zero. Note also that the effect on the parameter estimate 
of a finite additive outlier depends on the previous and posterior values of the series. 
Finally, as one would expect, the effect of the outlier decreases for large sample size. 

For instance, Figure 6.2 shows the scatterplots to compute the first three autocorre-
lation coefficients for the series of Figure 6.1. It can be seen that the outlier generates 
two outliers in the scatterplot. The first outlier is not influential, but the second one 
is a high leverage outlier with strong effect on the computation of the correlation 
coefficient between the two variables. 

FIGURE 6.2 Scatterplots for the first three lags for the contaminated AO series. 
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6.2.2. Innovative outliers 

The second type of outlier introduced by Fox (1972) is called innovative or an in-
novational outlier (10). It can be generated by some internal change or endogenous 
effect on the noise of the process. The model for an IO is built by adding an impulse 
effect to the noise of the original process, as follows 

ζ, = ψ ( Β ) ( ω , / , ( Γ ) + α Ι ) (6.10) 

where z, is the observed time series, u>/ is the outlier size, and ήΤ) is a dummy variable 

that is zero at all lags except at time t = Τ in which /, = 1. This model is called the 

innovation outlier (10) model. It can also be written as 

π (Β)ζ , = ω,ήΤ)+α,. (6.11) 

From this definition we obtain that the original process, y,, is related to the observed 

process, z,, for 

Ζ' = { ί + ω , ψ , . 'ttl + l j > 0 . ( 6 1 2 ) 

where the coefficients ψ j come from the M A ( o o ) representation of the A R I M A pro-
cess. This result shows that the effect on the observed time series of an innovative 
outlier depends on the A R I M A model. 

Note that the noise of an A R I M A model represents the joint effect of all the 
nonsystematic changes on the variables that are causing the time series, y,. From this 
point of view an IO can be interpreted as an outlier effect on the time series which 
are causing y,. 

Figure 6.3 shows an example of an IO on a simulated AR(1) with parameter .8. 
The figure also shows the autocorrelation function of the original and contaminated 
process, and it can be seen that the effect of the 10 is smaller than in the case of 
the AO. In general terms, innovative outliers have less damaging effects on the time 
series than do additive outliers. (Compare Figures 6.1 and 6.3.) 

Let us analyze the effect of an 10 on the residuals and on the estimation. Assuming 
first that the parameters of the model are known, considering the case of an AR(p) and 
using the same notation than in the case of additive outliers, the relationship between 
the observed contaminated residuals, e,, and the true residuals, a,, is 

er = aj — ω/ 

but for any j > 0 
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and the rest of the residuals will not be affected. Thus, only the residual at time Τ 

would be affected. 

As shown in Figure 6.3, innovative outliers are expected to produce a small effect 

on the autocorrelation and hence on the parameter estimates. To see this, suppose the 

AR(1) model. Then, using the same notation than in (6.9), replacing z, by y, 4- ω / φ ; ϊ η 

and after some straightforward algebra, it is easy to show that 

φο + η - 'S , + Λ - » ώ ? ( φ / ( 1 - φ 2 ) ) 
Φ = 

1 + n~12S2 + / ι - ' ώ 2 / ( 1 - φ 2 ) 

where $η = (£ y2) 1 YJ y,y,-u ώ/ = to , /Ay S{ = ώ, Σ]=ο(9τ-\+] + yT+i+jW 

and S 2 = ώ/ Σ ; = ο 5'r+;(t>J- Then, for fixed sample size 

if ω/ - > oo, => φ ->• φ 0 , 

and we obtain a consistent estimate of the parameter value. Therefore, for large sample 

size the effect of 10 on the parameter values can be neglected. To illustrate this point, 

Figure 6.4 shows the scatter plots of the values of the 10 contaminated AR(1) time 

series and the three first lags. 

It can be seen that now we have several large leverage points, but these are located 

in the directions indicated by the relationship, and so the distortion of the correlation 

coefficient is small. 
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FIGURE 6.4 Scatterplots for the first three autocorrelation coefficients for a series with an IO. 

Note that additive and innovational outliers are equivalent for a white-noise time 
series. For a random walk the effect of an innovative outlier is a level shift, which 
will be studied in the next section. 

An alternative way to introduce innovative outliers is to assume that the noise of 
the process follows a normal contaminated distribution (see, e.g., Abraham and Box 
1979). In this way the distribution of a, is 

( 1 - a)N(0, σ Λ

2 ) + aN (0, * σ 2 ) 

where k is greater than 1. This model assumes again an outlier on the distribution of the 
noise of the process and the analysis is equivalent to the one presented in this section. 

6.2.3. Level shifts 

A level shift (LS) corresponds to a modification of the local mean or level of the 
process starting from a specific point and continuing until the end of the time period 
observed. For a stationary process, a level shift implies a change in the process mean 
after some point, and therefore the process is transformed into a nonstationary one. 
When a level shift appears, the observed series is related to the original series by 

* - | \ ( 6 . 1 3 ) 
[y,-\-o>L t>T 

and so the level shift can be seen as a sequence of additive outliers of the same size 
starting at some point of time and lasting until the end of the observed time period. 
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The model for this type of outlier is 

z, = c o L - S i 7 " ' + ψ(β)α, 

where 5, ( T ) is a step function that takes the value 0 before Τ and 1 by t > T. This 
function is related to the impulse function used in the previous sections by 

S< r ) = 1/(1 - Β)ήΤ) 

because if we apply a difference to the step function, we obtain the impulse function. 

This model can also be written as 

ττ(β)(ζ, - ω ζ Λ ( Γ ) ) =β , . (6.14) 

Sometimes a LS can appear as the effect of an 10 on a nonstationary time series. 

Consider the effect of an innovative outlier on a random-walk process 

(1 -B)z, = ω / , ( Γ , + α„ (6.15) 

and as the inverse of the difference operator is the sum operator this model can be 
written as 

1 
z, =o>slT) + J2aj 

j=0 

which implies a LS on the time series. 
The effect of a LS on the residuals and on the parameter estimates can be strong. 

Assuming the parameters known, the observed residuals, e, = rn(B)zt are related to 
the true residuals or perturbations, a, = ττ(Β)(ζ, — co£.S,(r)) by 

e,=a,+ T T ( / 3 ) c o L S , ( r ) = a, + / ( 5 ) o > z . / (

( r ) 

where /,· = 1 - ττ\ ττ; are the coefficients of 1(B) = (1 + 1 \ Β + l2B
2 Η ) = 

ττ(β)/(1 - Β). Then we have 

« = ί\ ι \ < T t + - <6-16> \a,+u>Llj t = T+j. 

This means that all residuals after the LS can be affected. If the original model is a 

stationary AR(p), we have 

ej = aj + c o i . 

eT+j = aT+j + tui.(l - φι φ; ) j = 1 , . . . , ρ 

eT+j = aT+j + coi.(l - φι φ ρ ) j > ρ + 1 
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and after time Τ + ρ + 1 all the residuals are affected by the same amount. For a 
nonstationary process, so that ττ( 1) = 0, the residuals from Τ to Τ + h, where h is the 
order of the A R approximation of the stationary part, are affected, but the residuals 
after Τ + h are not. For instance, for a random walk only one residual will be affected. 
Therefore, the effect of a level shift depends on (1) the model and is expected to be 
larger for stationary than for nonstationary processes (2) the distance between the 
period in which the LS appears, T, and the last observation. For instance, if the LS 
happens on the last observation, the LS over the time series z, is equivalent to an 
additive outlier, and so only the last residual will be affected. 

The effect of a LS on the autocorrelation coefficients can be studied as before. 
Assuming again an AR(1) model and calling rz(l) = ( Σ ζ 2 ) - 1 Σζ,ζ,-ι to the first 
autocorrelation coefficient for the observed series z, and r , ( l ) the corresponding to 
y,, using that now z, = y, + ω/., it is easy to show that 

τ,(1) + η-%+η-*&1(η-Τ) 
Γ ζ 1 + n- '2S 4 + η - ' ώ | ( Β - Τ + 1) 

where 5 3 = d j L ( j r _ , + yT + 2yT+l Η h 2y„) and S4 = G>L £ , = 0 y T + j . Then if 

η — Τ is not too small 

if ώ/. -*• oo, => rz(l)-*- 1. 

That is, the effect of a level shift is to push the first autocorrelation coefficient to one. 
It is easy to show that this effect will also appears at all lags if η — Τ is large and, 
therefore, when a stationary series suffers a level shift the series will seem to have a 
unit root. An intuitive explanation of this effect can be obtained from Figure 6.5, in 
which the scatterplots of the values of the series and some lags are presented. It can 
seen that the effect of the LS is to increase the autocorrelation coefficients. 

FIGURE 6.5 Scatterplot for the first three autocorrelation coefficients for a series with a LS. 
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6.2.4. Outliers and intervention analysis 

The types of outliers studied can be considered as particular cases of interventions or 
deterministics effects in a time series. Intervention analysis is a procedure introduced 
by Box and Tiao (1975) to model the effect of a dynamic change on a time series at a 
known point of time. For instance, these authors studied the series of pollution level in 
downtown Los Angeles and investigated whether a known intervention, the diversion 
of traffic due to the opening of the Golden Gate freeway, has had an effect on the time 
series. Calling z, to the observed time series the intervention analysis model is 

z, = t o V ( B ) / , ( 7 ) + ψ(Β)α, (6.17) 

in which ω is a constant and V(B) = (1 + υ\Β + v2B
2 + • • ·) is the transfer 

function of the intervention at time T, which, in general, will be represented by 
a polynomial operator in the backshift operator Β obtained as a rational ratio of 
two finite operators V(B) = a(B)/b(B). Box and Tiao (1975) analyzed different 
structures for the dynamic intervention effect given by V(B) and studied the fitting 
of the model by maximum likelihood. 

As indicated by Chang et al. (1988), the additive outlier is a particular case of 
equation (6.17), in which Vi(B) = 1. In this case the intervention does not have any 
dynamics, and the result is called an AO of size ω. The innovational outlier appears 
if Vi(B) = 1 / τ τ ( β ) ; that is, when the dynamic of the intervention is the same as the 
dynamic of the original process, we have an 10 at time T. The intervention analysis 
approach suggests other types of outliers that might be considered. For instance, 
we may assume that the effect of a LS decreases with time and after some time it 
disappears. A way to model this is with a transitory change, introduced by Tsay 
(1988), as a LS that dies out in an exponential way. This effect is defined as an 
intervention effect in which V(B) = (1 - hB)~{: 

Note that if δ = 1, the transitory change is identical to the LS, whereas if δ = 0, it is 
an additive outlier. Other interesting type of outlier is the ramp shift outlier (Chen and 
Tiao 1990). In the same way as integrating (summing) an additive outlier to obtain a 
LS, we may integrate the level shift to obtain a ramp shift. The model for this outlier 
will be 

ζ, = ω ί . Λ , ( Γ , + ψ(β)α ( 

where R(P is a ramp effect, that is, Λ , ( η = 0 for t < Τ and Λ , ( Γ ) = jfort = T + j , 
j = 1,2, Then the outlier will produce a change in the slope of the series after 
T. This model can also be written as a LS over the first difference 

(1 -B)z, = ω ί Λ ( Γ ) + ψ(Β)α,. 
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In the same way we can define a temporary ramp shift by 

Zt = r^Es> +«F)a' 

which indicates a transitory change in the slope of the process. These outliers can be 
useful in models 7(1) with constant or in models 7(2), as both of them show a linear 
trend behavior. 

We may also consider the possibility of several outliers at the same period. This 
possibility has been present since the seminal paper by Fox (1972), and in the case 
of additive and innovational outliers was studied by Muirhead (1986), Chang et al. 
(1988), and Abraham and Yatawara (1988), among others. For stationary models, 
adding innovative and additive outliers will lead to a more general form of intervention 
effect. For nonstationary models, the innovative outlier always has a LS component, 
and it will lead to the consideration of level shifts and additive outliers at the same 
time. However we can also obtain a bad parametrization of the data that may lead to 
a lack of identification problem. For instance, an additive outlier plus a LS at Τ are 
equivalent to an additive outlier at Τ and a LS at Τ + 1. Kaiser (1995) has studied 
mixed outliers of the form 

ζ, = ΜΒ)(ω,ήΤ) + ψ 2 ( β ) α , ) (6.19) 

where the model ψ(73) is factorized into two terms, ψ ι ( 5 ) and ψ 2 ( β ) ; the first one 
defines the transfer function of the intervention model. In this way the outlier is not 
a complete innovative outlier neither an additive one. These types of outliers can be 
useful to define effects on different components of the A R I M A model. 

6.3. PROCEDURES FOR O U T L I E R IDENTIFICATION 
A N D ESTIMATION 

In order to eliminate the effect of an outlier in a given time series it is necessary to 
(1) detect the time at which the outlier happens; (2) identify the type of outlier, and 
(3) remove its effect by estimating a model in which the outlier is incorporated. The 
problem is complicated because we know neither the location nor the outlier type. An 
ingenious procedure proposed by Chang and Tiao (1983) and Chang et al. (1988) is 
as follows. At each sample point, we analyze what, if any, will be the most likely type 
of outlier. This is done by studying at each time the likelihood ratio for the types of 
outliers considered. We can compute the ρ value in the test for each type of outlier and 
take as more likely outlier at each point the one that leads to a smaller />-value. This 
will produce a sequence of most likely outliers at each timepoint, for instance, (IO, AO, 
I O , . . . , LS, A O ) and a time series of ρ values. Then we can choose as the candidate 
outlier timepoint the one that has associated the smallest ρ value, and as outlier type 
the corresponding outlier effect. Once the location and the type of outlier are defined, 
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the effect of the outlier can be removed by fitting the appropriate intervention analysis 

model. We study in the following sections the implementation of this idea. 

6.3.1. Estimation of outlier effects 

Suppose first that the parameters of the A R I M A model are known, and let us analyze 
how to estimate the outlier size at a given time Τ when the type of outlier AO, 10, 
LS, orTC is known. The model from the observed series z, is given by (6.17), where 
V(B) is 1, 1/TT(B), 1/(1 - B), or 1/(1 - hB), depending on the type of outlier. Let 
e, = ττ(Β)ζ, be the residuals from the observed series given the true values for the 
model parameters. We can write the model as 

where for additive outliers ω, = ωΑ&ηάχ, = τ τ ( β ) / , , for innovational outliers ω, = 

ω/ and χ, = / , < Γ ) , for level shift ω, = o)L and χ, = ττ (β) / (1 - Β), and for transitory 

changes ω, = U>TC and χ, = τ τ ( 5 ) / ( 1 — 85) . As the model parameters are assumed to 

be known, ω, can be estimated by least squares, leading to ώ, = YJ e,x,/ YJ JC2, with 

variance σ 2 (Σ
 xf)~l-

In the AO case the estimation leads to 

where F is the forward operator defined by Fz, = ζ,+ i, and p\ = (1 + ττ 2 + · · · + 
τ τ 2 _ Γ ) - 1 . Note that this result is consistent with the property that all the residuals after 
Τ are affected by the outlier and therefore all of them have information about it. For 
instance, for an AR(1) the estimate is 

Note that from (6.6) eT is an unbiased estimate for ωΑ with variance σ 2 . However, 
again from (6.6), —βτ+\/φ is also an unbiased estimate for ωΑ with variance σ 2 / φ 2 . 
The least-squares estimate combines this two sources of information and as they are 
independent (because they depend on the errors ay and αγ+ι that are independent) 
they should be weighted by their relative precisions (the inverse of their variances). 
In this way we will have to write 

e, = ω,*, + a, (6.20) 

&A = pATr(F)eT 

(6.21) 

ωΑ = 
^eT + ^ ( - e r + ι / φ ) 

and we go back to (6.22). In the general case, as βτ+j = —ttjU>A + ατ+j, where 
the a, are iid, we may build for each residual after Τ an estimate of the parameter 
by ώ (

Λ

Γ + 7 ) = —er+j/TTj. This set of estimates is (eT, —eT+}/Tr\,..., —er+j/ttj), 
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and all of them are unbiased and independent, with variance ο- 0

2/ττ 2 . Therefore the 
estimate (6.21) is just a linear combination of the available estimators with weights 
proportional to their relative precision. The variance is Var(o>A) = p\o2. 

For innovational outliers the only residual that has information about the outlier 
size is the one at T, and so, as one would expect, the estimate is 

<*>/ = e-f 

and the variance is Var(a>/) = σ2. 

In the LS case, all the residuals after the shift have information, and we would 
expect that the estimate combines all of them in some optimal way. The estimate is 

&L = p\l(F)eT 

where 1(B) = π(Β)/(1 - Β) and p2

L = (1 - I -1 \ + l\ + · • • + l2

n_TT
l, where /, are 

the coefficients of 1(B). Note that, by the definition of level shift, we can obtain an 
unbiased estimate of its size at each time after Τ by er+j/lj with variance σ 2 / / 2 . 
Then, as in the previous cases, the estimate is a linear combination of the unbiased 
estimates that can be obtained from the residuals, with weights that are equal to 
their relative precision. It can also be shown (Cheng and Tiao 1990) that this statistic 
measures the difference of levels before and after time T. The variance of the estimate 
is ν(ώί.) = p2

La
2. 

Finally, in the TC case 

ώτ-c = p\$(F)eT 

where p\ = (1 + β 2 + Bf + · • · + β 2 _ Γ ) _ 1 , in which β, are the coefficients of 
β ( β ) = π(Β)/(1 - δ β ) and V(&TC) = ΡτσΙ· This estimate has an interpretation 
similar to that in the previous ones. 

6.3.2. Testing for outliers 

In order to test whether one outlier of known type has occurred at time Τ, the standard 

test is 

H0: ω , = 0 

Hf. ω ^ Ο 

where j — I, A, L, TC. When the parameters are known we can use the e, given by 
(6.20) and the test is equivalent to testing the slope in a simple regression model. 
As it is well known, the likelihood ratio criterion leads to comparing the estimated 
parameter to its standard error, and so the test statistic is 

W o v s / i j : (6.23) 
Pj.t<*a 
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where p1T = 1, and the distribution of \y i ( is student t. When the location of the 
outlier is unknown, Fox (1972) suggested to use the likelihood ratio test η, = 
maxi<,<„{X ; ,} . However, the sample distribution of η, is complicated due to the 
correlation between the λ ; , . The percentiles of the distribution can be found by sim-
ulation, and they were obtained by Chang et al. (1988). Ljung (1993) have suggested 
some approximations to this distribution. 

When the parameters are unknown, the likelihood ratio test requires the estima-
tion of them under both hypothesis. The estimation under the alternative hypothesis 
must be carried out at every T, which makes the testing process computationally 
very lengthy. Chang and Tiao (1983) proposed an iterative procedure in which the 
parameters are only estimated at each iteration under Wo- They showed by Monte 
Carlo that if the parameters are substituted by their consistent estimates under Hq, the 
\jT (j = A, I, L, TC) statistics are asymptotically distributed as N(0, 1). Abraham 
and Yatawara (1988) obtained similar results using the score test. This procedure was 
generalized by Tsay (1988) to include LS and TC and runs as follows. 

• In the first stage a model is fitted by maximum likelihood ( M L ) to the time series 
assuming that there is no outliers. Using the estimated parameters, the residuals 
e,, its variance estimate (which may be a robust estimate, as the median of 
the absolute value of the residuals), and the likelihood ratios using the initial 
estimates as values for the parameters are computed at each timepoint. 

• For all t = 1 , . . . , η the statistic 

is computed. If max η, = | \A,T\ C, where C is a predetermined constant, we 
assume an AO in t = Τ; if max η, = Γλ/,Η > C, we assume an 10 in ί = T; 
and so on. The value of C is usually 3.5 or 4. When an outlier is detected, the 
residuals are corrected taking into account the type of outlier. For instance, if an 
10 is identified, a new residual is defined at this point by et=ej — ώ / , if an AO 
is detected, the residual is defined as e, = e, — ωΑττ(Β)Ι, , for t > T, and if an 
LS (or T C ) is detected, we have e,=e,- S)usg(B)IjT\ where g(B) = 1(B) for 
LS and P( /3)forTC. 

• Using these new residuals, a new variance estimate σ 2 is obtained, and the 
likelihood ratios \ , t , are again computed by using the new residuals e, and their 
variance & } . The identification of outliers and the computation of new residuals 
is repeated until no further points appear as outliers. 

• In the second stage the sizes of the identified outliers and the parameters are 
jointly estimated. Let us assume that k possible outliers have been identified in 
positions T\, T2,..., 7*. Then the following model is estimated: 

η, = max{| λ,-,,Ι, ί' = A , / , L, TC\}. 

(6.24) 
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where VTj(B) = 1 for AO, VTJ(B) = ψ(Ζ?) for IO, and so on. Using these new 
parameters estimates the process is repeated until no new outliers are found. The 
authors showed in a simulation study that this procedure seems to work very 
well when we have isolated outliers. Kabaila (1994) has shown that the optimal 
invariant detector of a single additive outlier in an unknown position performs 
closely to this likelihood ratio procedure. 

An example 
We will aply this procedure to the airline data considered in the previous chapter. 
The model fitted for the whole period from January 1949 to December 1960 (144 
observations) is 

V V 1 2 z , = (1 - .402B)(1 - .56fi 1 2)a, 

and the residuals of the fitted model are displayed in Figure 6.6. 

The application of the outlier detection procedure using the SCA software leads 

to the following results: 

Time Estimate TValue Type 

29 .041 4.07 AO 
54 - .042 -3.50 LS 

62 -.035 -3.43 AO 

135 -.045 -3.85 AO 

.052 

-0.0601 , , , , , , , , , , , , , , , , , , , ,—.—.—.—J 
12 24 36 48 60 72 84 96 108 120 132 144 

time 

FIGURE 6.6 Residuals from the airline model. 
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The estimation of the model once we have cleaned the data for outliers is 

V V 1 2 z , = (1 - .315)(1 - .505 1 2)a, 

and it can be seen that the effect on the parameter estimates is not large in this case. 

6.4. I N F L U E N T I A L OBSERVATIONS 

6.4.1. Influence on time series 

It is well known that in a regression model we may have points that are not identified 
as outliers by the usual likelihood ratio tests for mean shift or variance shift and 
that have a strong influence on the parameter values of the model and hence on the 
forecast. These points have been called influential observations (Cook 1977, Cook and 
Weisberg 1982). The detection of influential observations is important to understand 
the sensitivity of the parameter values to a small fraction of the data. 

Influential observations are found in static models in two ways. In the global ap-
proach each observation is deleted from the computations and a measure of the change 
that this deletion produces in some properties of the model (as the parameters or the 
forecast) is computed. In the local approach, (Cook 1986), the observation is assumed 
to have more variance (less weight) than the others. Several authors have proposed 
measuring the influence on an observation by the same idea as in regression, that is, 
deleting it from the computation of the correlations or the parameter estimates. For 
instance, Lefrancois (1991) proposed a measure of influence of an observation on the 
autocorrelation coefficient by computing the difference between the it-autocorrelation 
coefficient with and without observation Γ, that is, the observation is made equal to 
its unconditional mean so that the terms {yT - y) are zero. A similar approach is 
proposed by Abraham and Chuang (1989), who used as measure of influence and 
outlier detection for an AR(/>) model the Draper and John (1981) statistic for regres-
sion. Again this measure is equivalent to substituting a value in the time series for its 
unconditional mean. 

Pena (1986) and Brillinger (1987) proposed studying the global influence of an 
observation by making it a missing value. In this way the observation is substituted by 
its conditional expectation given the rest of the data instead of its unconditional mean. 
The difference can be quite strong if the correlation is high. Pefia (1987) suggested a 
measure of influence on the parameter values of an A R I M A model as follows. First 
write the A R I M A model in the AR(n) approximation, that is, the A R I M A model is 
written as in (6.2): 

Then measure of the influence of observation Τ on the parameter values is 

h 

(•ft — -frjr)) ))'£;•(*-%·)) 
ha2 

(6.25) 
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where -fr is the maximum likelihood estimate of the parameter vector IT assuming no 

outliers, ττ^τ) is the M L estimation assuming that observation at / = Τ is missing, 

Στσ% i s the variance-covariance matrix of the ττ estimated vector, and h is the number 

of parameters. Note that this measure is general and can be used for stationary as well 

as for nonstationary processes. It is straightforward to show that calling Ζ = Χζπ and 

Z(D = Χ ζ·ίΤ(Γ) to the estimated vectors of forecasts computed from the two parameter 

vectors (with all the data and assuming that the observation in t = Τ is missing) and 

X, to the matrix 

Zh 

Zh+l 

Zh-i 

Zh 

\Z,-l Zt-2 

Z l 

Z2 

Ζι-h ) 

since(Z - Z^))'(Z — Ζ(τ)) = (ττ - 'ft(r))'(X^Xz)('fT - % • > ) , the influence measure 
(6.25) can be written as 

( Z - Z ( r ) ) ' ( Z - Ζ ( Γ ) ) 

ha} 
(6.26) 

and the advantage of this expression is that it can be computed by the A R I M A 
representation of the model and the A R approximation is not required. In this last 
expression h = ρ + q, the number of parameters used to compute the vector of 
forecasts. 

Pena (1987) also proposed to measure the change on the variance by 

DAT) = 0 s 2 ~
 &IT) 

Λ.2 
(6.27) 

σ <T) 

where corresponds to a model in which observation Τ is assumed to be missing. 
He stressed that this last measure is a measure of outlyness of the point, and so its use 
is equivalent to an outlier test. This statistic has also been used by Bruce and Martin 
(1989) and by Ledolter (1990), who derive it by studying local influence measures in 
time series, and by Ljung (1993). 

6.4.2. Influential observations and outliers 

A simple way to measure the influence of an additive outlier at a given point over 
the parameters of a time series is to compute the Mahalanobis distance between the 
vector of M L estimated parameters assuming no outliers in the series and the same 
vector estimated by assuming an additive outlier at this point. In this way we obtain 
the effect that an additive outlier can have at each point of the sample. The same idea 
can be applied for other types of outliers. 
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Pena (1990) showed that the M L estimation of the parameters when an additive 

outlier is assumed at time Τ is carried out by considering the observation at time Τ 

as a missing value, which leads to substitute it by its conditional mean given the rest 

of the data. However, the M L estimation when an innovational outlier is assumed at 

time Γ is carried out by deleting the observation from the computations, which leads 

to substitute it by its marginal mean as in the static case. Since additive outliers have 

more influence on the parameters than innovative outliers, this author proposed as a 

standard measure of influence the statistic (6.25), where π(τ) is estimated by assuming 

that the observation is a missing data. 

In (6.26) the value of the series at time Γ is not completely disregarded because 

it appears in the forecast vector Z ( r ) . An alternative measure of influence that avoids 

this can be built by looking directly to the change in the forecast vectors with and 

without the additive outlier. This measure is 

( z - z (

r

W T ) ) ' ( z - z ( / " T ) ) 
Dt(T) = * - {-± - '- (6.28) 

where h is the order of the A R I M A model or number of parameters, <ra

2 is the estima-

tion of the white-noise variance, Ζ is the vector of forecasts assuming no outliers, and 
"(INT) 

ZT is the vector of forecasts computed by assuming an additive outlier at t = T. 

This vector of forecasts is provided by the intervention model 

τι(Β){ζ, - ω „ / , ( Γ ) ) = a , (6.29) 

where T T ( B ) , U>A and / , ( r ) are as defined previously. 

Note that in linear regression models a measure of influence based on the change 

in the parameter estimates is always equivalent to one based on the change in forecast, 

whereas in time series this equivalence is lost, because (6.25) and (6.28) are different. 

In fact, it is proved in Sanchez and Pena (1997) that they are related by 

X 2 

Dt(T) ~ Pt(T) + -ψ- (6.30) 

so that D Z ( T ) can be interpreted as the effect of the change of the parameters plus 

the effect of the additive outlier. Monte carlo studies have shown that (6.28), which 

includes the outlier size, seems to be more effective in detecting outliers that have a 

strong influence on the model than is (6.25). 

6.5. M U L T I P L E O U T L I E R S 

6.5.1. Masking effects 

The method presented in the previous section works very well when the series has a 

single outlier or a few isolated outliers. However, sometimes the series is subject to 
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patches of outliers that may produce masking. The generalization of the outlier model 
(6.17) for k outliers is 

k 

ζ, = Σ^ν*™™ + yi (6-31> 

Assuming first, to simplify the presentation, that the parameters are known, and cal-

ling e, = Tt(B)zt, model (6.31) can be written as 

e, = χ'β + a, (6.32) 

where β' = (α>ι , . . . , ω*) and x't = ( x \ t , x k l ) , with xit = TT(B)Vi(B)IjTl). 

Outlier identification methods based on estimating the effects of the outliers one 
by one use model (6.17) instead of model (6.31). These procedures are expected to 
work well when the matrix xtx',)~l is roughly diagonal, but may lead to se-
rious biases when the series have patches of additive outliers and level shifts. Note 
that for an innovational outlier xit = IJT'\ and therefore the estimation of its effect 
is typically uncorrelated with other effects. However, for additive outliers xit = 
ττ(Β)1^τ'\ and the correlation between the effects of consecutive additive outliers 
can be very high. This is expected to happen when we have patches of outliers, an 
empirical fact found by Bruce and Martin (1989). 

For instance, suppose that we have two consecutive additive outliers of magnitudes 
ω, and 0)2 at times Τ and Τ + 1. Then k = 2 and the expected value for the estimator 
of u>i using model (6.17), and assuming that it is the only outlier, which will be called 
ώ' 1*, is given by 

£ [ ω , ) = ω, + ω 2 — Γ 2 — , 
L , = o •",· 

where ττ η = — 1. As an example, if ω, = α>2 = ω and the process is a random walk, 
the estimation assuming a single outlier at t = Τ will be half of the true outlier 
value, and the variance will be σ 2 / 2 , and so the expected value for the likelihood 
ratio will be ω / ( \ / 2 σ ) . On the other hand, in the correct model the expected value for 
the estimation is ω and has a variance of 2 σ 2 / 3 leading to a expected likelihood ratio 
of N/3<U/(V2O-). We see in this simple case, where the parameters are assumed to be 
known, that the presence of the second outlier is producing a masking effect that can 
lead to wrong outlier identification. 

When the parameters are unknown, the problem is still more serious because a 
sequence of additive outliers can produce important biases on the parameter estimates. 

For instance, suppose that we have a sequence of k outliers of sizes ta\ ω*, at 
times Τ, Τ + 1 , . . . , Τ + k — 1. It is shown in the appendix that calling rz(h) to the 
computed autocorrelation coefficients and ry(h) to the true autocorrelation coefficients 
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without outliers effects, we have 

rzih) = 
ry(h) + η [S\ +n , -ι Γν^*-Α k2 

+ " [Σ,=ι ω,ω,·+Α -
 κ -

(6.33) 
1 +η - ι 

where y, = (y, - y)/sy, ώ , = ω / ^ , ώ = Σώ,·/*, ns2=^yj ~ « ί 2 . Si = 
ώ, (5>7·_ι + ί _ Α + 5 > Γ - Ι + Λ + Ι ) . and 5 2 = Σ ΰ>$τ-ι+ί· w e may consider the two fol-

lowing cases: 

1. All outliers have the same sign and similar size. Then, if ω oo, rz{h) -> 

(k — h)/k for k > h, and rz(h) -*• 0 for k < h. This implies that if k is small 

(1 or 2) the series will seem to be white noise, whereas if k is large, it will seem 

a nonstationary process. 

2. Outliers have large random values. For instance, suppose they are drawn from 

a distribution of zero mean and very large variance. Then rz(h) - » 0 and the 

series will seem to be white noise. 

In the general case of patches of outliers of arbitrary size, the effect depends on 
the relative size of the patch and the sizes and length of the other patches and can be 
obtain from (6.33). In any case, if the outliers were correctly identified, the problem 
of the possible bias in their size can be overcome by a step of joint estimation of 
all the outlier candidates. However, the bias may be so strong that some outliers are 
masked and remain unidentified. 

6.5.2. Procedures for multiple outlier identification 

The first procedure for outlier patches detection is due to Bruce and Martin (1989). 

These authors generalized the method by Pena (1987) for measuring influential 

observations in time series to consecutive groups of influential data and proposed 

to identify outliers by using (6.27). They show that for A R ( p ) models with an iso-

lated outlier the influence measure (6.25) may indicate as influential ρ values before 

the outlier and ρ values after and called this effect the smearing effect. They proposed 

a procedure based on computing (6.27) for groups oik = 1, 2, 3 . . . but it is difficult 

to apply and does not seem to work well in general. 

Chen and Liu (1993) extended the procedure of Chang et al. (1988) and Tsay 

(1988) to avoid masking in time series. They recognize that outliers may produce 

initial biases in the parameter estimates that affect all the procedure and that some 

outlier will not be identified because of a masking effect. These authors proposed a 

modification of previous procedures is as follows. 

Stage 1. Initial parameter estimates are computed, and outliers are detected one 

by one by using the likelihood ratio criterion until no further outliers are 

found. 
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Stage 2. The size of the identified outliers are estimated jointly. Then a backward 
elimination procedure is applied; that is, the minimum likelihood ratio for the 
detected outliers is computed, and if this value is smaller than the critical value 
C used to detect outliers, the point is eliminated of the set of outlier candidates. 
After any point is eliminated, the remaining outliers and the parameter values 
are again estimated by maximum likelihood, and the backward deletion is again 
applied. 

Stage 3. Stages 1 and 2 are repeated until no further outliers are found. 

This method has three main problems. The first one is the confusion between level 
shift and innovative outliers (in favor of the latter) when a level shift is present in a time 
series. This situation was pointed out by Balke (1993) with respect to Tsay (1988) 
procedure, but it can be applied as well to the procedure by Chen and Liu (1993). 
Balke indicated that (1) the presence of level shifts causes serious problems in the 
initial specification and estimation of the model; and (2) the use of the maximum 
likelihood ratio to distinguish between level shifts and innovation outlier does not 
work, because the expected value of the likelihood ratio for an innovative outlier 
exceeds the expected value of the likelihood ratio for level shifts. Thus, level shifts 
will be often wrongly identified as innovative outliers. 

The second is the biased estimation of the initial parameter values. This problem 
arises because the initial estimation of the parameters is made under the hypotheses 
of no outliers in the data, which may lead to begin the search for outliers by using a 
very biased set of parameters and, as a consequence of this, the procedure may fail. 
This situation is spatially important, as shown by Balke (1993), when the series has a 
level shift, but it can also appear for patches of outliers of similar size that, as shown 
before, produce a similar effect to a level shift. 

The third problem is masking. It appears mainly when there is a sequence of 
consecutive additive outliers, because the usual procedures based on the identification 
of outliers one by one may fail in the identification of some of the members of the 
group. 

We analyze with more detail these problems and some possible solutions in the 
next sections. The proposed solutions have been implemented in a procedure for 
multiple outlier identification and robust estimation proposed by Sanchez and Pena 
(1997). 

Confusion between innovative outliers and level shifts under Ha 
Suppose that we have a LS on a A R ( 1) stationary series. Then the estimated parameter 
will be close to one and the series will seem to follow a random walk. As in a random 
walk an IO is identical to a LS, there is a clear possibility of confusion between both. 
In the general case, the larger A R root will go to one, and the problem will be similar. 
The problem is complicated because when choosing between an IO and a LS by the 
likelihood ratio test the distribution of these statistics under the null hypothesis makes 
it very easy to identify a LS as an IO. This problem was identified by Balke (1993), 
who proposed to add an additional search for outliers using a white-noise model. 
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However, this idea has two problems. First the white noise model does not allow to 

distinguish additive from innovative outliers, and second, it may lead to spurious level 

shifts that will be not easy to detect. 

Let us show that the distribution of both statistics is different under the null. The 

statistics for testing for an 10 is 

λ / , Γ = 

whereas for an LS is 

-"I—Τ ϊ « 

* - 0 + c : . T ? ) ' 

where h = - 1 + τη, ?2 = - } + *i + *h. · · •, ?„-r = - 1 + Σ"=\ · Then t h e 

relationship between λ/,r andX/,,r is: 

Λ/.7" Η A 

Λζ. τ = = — 5 - T r t • (6-34) 
ο + ς ^ η + ς , = 1 * , ) 2 ) 1 / 2 

For A R ( p ) models, the closer to unity each of the elements of the sequence φι , 

Φι + ΦΣ. . Σ Γ = ι Φ' a r e ' t n e nearer the LS critical values will be to the 10 critical 

values. For an invertible A R M A model, under Ho (no outliers), when t = Τ is not 

close to the end of the series, for large η the second term will go to zero and the 

likelihood ratio for level shifts, \L,T, is expected to be smaller than the likelihood 

ratio for innovational outliers, X/,r. 

This result suggests that for invertible A R M A models the statistics for level shift 

and innovative outliers should not be compared together, because the critical values 

under the null hypothesis can be quite different. In order to check this result in finite 

samples Sanchez and Pena (1997) carried out a simulation study of the distribution of 

these two statistics. These authors obtained the critical values for the likelihood ratio 

statistics confirming that the detection method based on η, = max( {| X,, ( | ) seems to be 

inadequate, because the sampling behavior of the maximum value of the statistic for 

the LS is different to the corresponding ones for 10 and AO. The confusion between 

LS and 10 can be avoided by, on the one hand, comparing IO versus AO, and, on the 

other, dealing with LS alone. 

Improving the initial parameter estimates 

The possible bias in the initial search for outliers can cause the procedure to fail. It 

would be convenient to start the search with parameter estimates that are not strongly 

affected by some data points that may be outliers. A way to detect the observations 

which have the strongest effects on the parameter estimates is to use the measure 

of influence defined in the previous section. We can assume then that the influential 
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observations are missing (which is equivalent to assume additive outliers at these 
points) and compute the parameters under these hypothesis. Sanchez and Pena (1997) 
checked that this idea works well with isolated outliers but when the time series 
has a LS or a sequence of consecutive additive outliers of a similar size, which 
produces a behavior similar to a LS, the influence measure (6.28) detects as influential 
observations a low percentage of the observations affected by the LS or included in 
that sequence. This is the masking effect. Then, if we delete observations according 
only to D z (7") several outliers will be undetected, and will biased the initial parameter 
estimates. To avoid this situation these authors define an influence measure for LS 
or sequences of outliers which can be used jointly with (6.28) to carry out the initial 
cleaning of the sample data. 

The following measure is proposed to check the effects of patches of observations 

(z-z(iLS))'(z-zfS)) 
DL(T) = ± Z— 1 " (6-35> 

Λ σ 2 

where Ζ is the vector of forecasts assuming no outliers effects ever the series and 
ZT

ILS) is the vector of forecasts assuming a level shift at time Τ that is estimated by 
the intervention model. 

As in the case of additive outliers, we could have measure the influence of LS by 
analyzing the change in the parameter estimates. Calling % to the M L E of ττ supposing 
no outliers, and ττ», to the MLE considering that there exists a LS in t = Τ we could 
use the Mahalanobis distance between these estimates as in (6.25) to build a measure 
of the change in the parameters. Sanchez and Pena (1997) showed that 

\ 2 

DUT) ~ PUT) + (6.36) 
η 

and, as in the additive outlier case, DL(T) can be interpreted as the effect of the 
change of the parameters plus the effect of a level shift. 

In summary, we can improved the initial estimation of the parameters by using 
the influence measures (6.28) and (6.35) to correct the series of all the points, which 
seems to have a strong effect on the parameter estimates, and then compute the initial 
estimated parameters from this corrected series. 

Outlier patches 
As indicated before, patches of outliers are very difficult to detect when searching 
for outliers one by one. As an example of this consider three consecutives AO at 
times Τ, Τ + 1, and Τ + 2 of the same size ω in the process (1 — φ β ) ζ , = α,. 
It is straightforward to show using (6.6) and (6.22) that when we know the true 
parameter value, the estimation of the size of the outlier at these three position will 
be ω ( 1 - φ ( 1 - φ ) ) / ( 1 + φ 2 ) , ω( 1 - φ ) 2 / ( 1 + φ 2 ) , and ω( 1 - φ( 1 - φ ) ) / ( 1 + φ 2 ) . For 
instance, if φ = .7, these estimates will be .53 ω, .06 ω, and .53 ω. It is clear that we 
may hope to identify the beginning and the end of the sequence, but it is very unliky 
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that we can identify the outlier in the middle. The problem is more serious if the 
parameter is estimated from the data. Then φ will be close to one and the estimated 
values will be ω/2 , 0, and ω/2 . 

Note that a set of k consecutive outliers of size ω from Τ to Τ + k — 1, or an 
outlier patch of size k, is equivalent to two level shifts. The first at time Γ and size 
ω and the second at time Τ + k — 1 of size - ω . Therefore outlier patches can be 
eliminated approximately by cleaning the series of level shifts. More flexibility is 
obtained by allowing the possibility of more than one outlier at any given period. 
Then the possibility of different sizes in an outlier patch is taken into account by 
incorporating additive outliers at some points of the level shift period. Justel et al. 
(1998) have studied alternative procedures for patches of outlier detection in the 
Bayesian framework. 

6.6. MISSING-VALUE ESTIMATION 

The study of additive outliers and influential observations in time series is closely 
related to missing-value analysis because an outlier at Τ implies that the true value 
at this point is not observed. Thus we have a missing-value problem. For that reason 
we will review briefly some of the most important results in this area. 

6.6.1. Optimal interpolation and inverse autocorrelation function 

Suppose first that we have a stationary time series with a missing observation at time 
T. Then the estimation of the missing value is called the interpolation problem and 
it is solved by computing the expectation of the unobserved random variable given 
the rest of the data. Grenander and Rosenblatt (1957) showed that this expectation is 
given by 

oo 

E(zT/ZiT)) = -J2 ^T+i + zr-i) (6.37) 
1 = 1 

where δ, are the inverse autocorrelation coefficients, and Z ( r ) includes all the data but 
the missing value. Brubacher and Tunniclife-Wilson (1976) obtained also this result by 
a least-squares approach. A simple way to define the inverse autocorrelation function 
is as follows (Pena and Maravall, 1991). Define the dual process of an invertible 
A R I M A model (6.1) as the A R M A process 

θ (β)ζ , = φίΒ,νν (6.38) 

that is, the dual process is built by interchanging the role of the AR and M A op-
erators. Then the autocorrelation function of the dual process (6.38) is the inverse 
autocorrelation function ( IAF) of the original process (6.1). For instance, the AR(1) 
process (1 — φΒ)ζ, = a, will have an inverse autocorrelation function ( IAF) that is 
the autocorrelation function of the MA(1) process z, = (1 — φΒ)α,. Therefore the 
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IAF has the first autocorrelation coefficient equal to - φ / ( 1 + φ 2 ) and all the other 
values are equal to zero. Using (6.37), the optimal interpolator for a zero mean A R ( 1) 
process is 

E(zT/ZlT)) = T ^ i z r + i + z r - i ) . (6.39) 

Note that the dual process of an invertible one is stationary and therefore the 
inverse autocorrelation function always exits. Pena and Maravall (1991) showed that 
the result (6.37) can be used for stationary as well as nonstationary processes. The 
optimal interpolator has a simple interpretation. Let us write the time series in the 
general A R ( o o ) representation 

oo 

z, - ^ i r / z , - , + a , . (6.40) 
1 = 1 

Then, if the value zj is missing, we can obtain an unbiased estimate of it by using 

00 

= (6.41) 

and this estimate, which is built from the previous observations to the missing value 
will have variance σ2. However, we have more information zr - This information is 
contained on all observations after the missing value. That is, we can write for all j 
such that ttj φ 0 

Ζτ = itj'^ZT+j - Σ i r / Z r + , - i ) " ^ (6.42) 

and, therefore, we can obtain additional "backward" unbiased estimates of zj from 

this equation by 

ζψ = τ τ - 1 ^zj+j - Σ (6.43) 

with variance O ^ / T T 2 . As all these estimates are conditionally unbiased and indepen-

dent given the observed data, the best linear unbiased estimate of the missing value 

Zr will be 

^ = Σ Α ^ (6-44) 
; = 0 L 71j 

where ττη = - 1 . It is easy to show that this estimate is equivalent to the well known 
expression for the missing value estimation in a Gaussian stationary time series given 
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by (6.37). An advantage of formulation (6.44) is that it provides a clear understanding 

of how to proceed when the missing value is near the extremes of the series so that 

the two-sided symmetric filter (6.37) has to be truncated. Then, we have to combine 

forward estimates with the η — Τ backward estimates that are available, and the exact 

formula for the finite sample interpolator is 

j=0 Σο Τ ; 

The previous results are easily generalized to groups of missing observations. We 

will illustrate the computation of the optimal interpolator for more than one missing 

data by a simple example: suppose we have an AR(1) process in which the values 

ZT and ζτ+\ are missing. Then, we can compute the optimal interpolators as follows. 

For ZT we have the forward estimate: 

zf = ΦΖΓ-Ι (6.46) 

with error variance σ 2 , and now, as ζτ+2 = Φ2ΖΓ + φατ+ι + α τ + 2 . we can compute 

the backward estimate 

if = φ-2

Ζτ+2 (6.47) 

with variance σ2(\ + φ 2 ) / φ 4 . Therefore, the best linear unbiased estimate will be 

. Φ ( 1 + φ 2 ) Φ2 

" = 1 + φ 2 + φ 4 ^ - ' + 1 + φ 2 + φ 4 2 Γ + 2 ( 6 ' 4 8 ) 

which agrees with the general formula obtained by a different approach in Pena and 

Maravall (1991). The estimate of Ζτ+ι will be similar to (6.48) but with the roles of 

ζτ-ι and ζτ+2 reversed. 

6.6.2. Estimation of missing values 

The previous analysis suggests the following procedure for computing missing values 

in time series: (1) performed a first interpolation of the missing values, identify 

the A R I M A model and estimate its parameters by M L in the completed series and 

(2) obtain the inverse autocorrelation coefficients, that are straightforward given the 

model, and compute the optimal interpolators of the missing values by (6.37). This 

procedure can be iterated, that is once the series have been completed by the optimal 

interpolators we can compute another set of parameter estimates, which will lead 

to new missing-value interpolation and so on. The iteration is important when the 

number of missing values is large, because the first parameter estimation based on 

some crude interpolation may lead to biased parameter estimates. 

If our objective is to estimate the model parameters, we can apply maximum 

likelihood directly to the observed data. In order to undestand the procedure, we will 

illustrate it in the simple case of an AR(1) . The likelihood function computed by the 
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prediction error decomposition assuming that ζτ is missing is easy to obtain using 
that 

f(Z\, . . . Ζ 7 · _ ι Ζ 7 · + ι . . . Z „ ) = 

f(Z\)f(Z2/Z\)- · • f(,ZT+\IZT-\)f(Z,+l/ZT+\)- • • f(Zn/Zn-l). 

Assuming normality and that the process has zero mean and conditioning on the 
first observation, the conditional loglikelihood function can be easily obtained by 
noting that for all t > 2 but t φ Τ we have that f(z,/z,-\) is Ν(φζ,-\, σ 2 ) , and the 
distribution / ( z r + i / z r - i ) is also normal with parameters Ν(φ2ζτ-\, σ 2 ( 1 + φ 2 ) ) . 
Thus the conditional loglikelihood function to be maximized is 

. . . 2 / χ ( " - 2 ) , 2 1 , / , , . 2 n ^ (Zt ~ ΦΖ,-Ι)2 

/ (φ, σ 2 / ζ ι ) = — Ι η σ 2 - - 1η(1 + φ 2 ) - ^ — 2 

1 1 teA Ζ σ 

_ ( Ζ Γ + , - Φ ^ Γ - . ) 2 

2σ 2 (1 + φ 2 ) ( ' 

where the set A is { 1 , 2 , . . . , Τ — 1, Τ + 2,..., η). Let us compare this function with 
one obtained for a series without missing values but that has an additive outlier at 
time T. Then the model can be written as 

ζ, = φζ , - ι + ω / , - φ ω / ( _ ; + a, 

and the conditional loglikelihood function is 

.. , 2 L . ( M - 1 ) . 2 (ζ, - Φ ζ ( - ι ) 2 (zr - Φ ζ τ - ι - ω ) 2 

/ ( ω . φ . σ ι / ζ . ) = 2 - 1 η σ - £ — 2 — — 2 

_ (zT+i - φ ( ζ Γ - ω ) ) 2 

2 σ 2 

The estimation in (6.50) can be carried out in two steps. In the first one, conditioning 
on φ and obtain the estimate for ω given φ. Differentiating (6.50) with respect to ω 
and setting the result equal to zero we obtain 

(zr - ΦΖΓ-1 - ω ) = (ζτ+ι - Φ(ΖΓ - ω ) )φ 

which leads to 

Φ 
ώ = Ζ Γ - , . , ,-,Λζτ+ι + Ζ Γ - Ι ) · (6.51) 

(1 + V) 

Note that this estimate can be interpreted as the difference between the observed value 
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and its optimal interpolator by using the AR(1) , as given by ( 6.39). Inserting this 

equation in (6.50), we obtain 

ux. 2 , χ ( " - I ) , 2 τ Μ ζ , - φ ζ / - ι ) 2 (zr+i - Φ 2 Ζ Γ - Ι ) 2 „ . 
/ ( φ , σ Λ ι ) = - _ , „ σ 2 σ 2 ( 1 + ^ (6-52) 

and it is clear that (6.50) and (6.52) will be equivalent for large n. Note that this 
function does not depend on ζτ· 

We have shown in this simple example that for moderate sample size the likelihood 
function for estimating the parameters of a series with missing values will be similar 
to the likelihood function of a model that fills the hole in the series with any arbitrary 
value and then assumes an additive outlier at this point. This relationship was first 
found by Pena (1987). This relationship suggests a simple procedure to estimate 
missing values in time series. Fill the holes with arbitrary values (e.g., equal to zero) 
and assume that this complete time series has AOs at the missing value positions. The 
parameters estimates obtained form the intervention analysis model are the parameter 
estimates for the series with missing values, and the estimation of the missing values 
are the AO sizes estimates with opposite sign. Note that we can generalize (6.51) 
as 

ώ = ζτ - ZT/R 

where ZT/R = Ε(ζτ/ζ\,..., ζτ-\,ζτ+ι. · · ·. z„) is the optimal interpolator. There-
fore, if ZT = 0, we have that ώ = — ZT/R- Gomez et al. (1999) have shown that when 
the number of missing values is small this additive outlier approach can be faster 
and as accurate as the direct computation of the likelihood with missing values by 
the Kalman filter. Nieto and Martinez (1996) have presented an alternative recursive 
method based on restricted forecast to compute the missing values. Related work 
can be found in Shumway and Stoffer (1982), Harvey and Pierce (1984), Kohn and 
Ansley (1986), Battaglia and Bhansali (1987), Abraham and Chuang (1993), Ljung 
(1993), Gomez and Maravall (1994), and Pena and Tiao (1991). 

6.7. F O R E C A S T I N G W I T H O U T L I E R S 

It has been often stressed that the prediction intervals computed from A R I M A models 
are too short, that is, forecasts are out of the bounds more often than it will be expected 
(see, e.g., Draper 1995). It is clear that the usual measures of forecast uncertainty take 
into account two sources of variability. The first is the probabilistic uncertainty due to 
the presence of noise in the model, which implies some uncertainty even if the model 
were known exactly. The second is the sample uncertainty, which is due to the fact 
that parameters are unknown and must be estimated. However, no attention is given 
to model uncertainty, which implies that the structure of the model is unknown and 
it has been either assumed or selected form the data by some criterion. This last 



6.7. FORECASTING WITH OUTLIERS 165 

source of uncertainty is, in many cases, the most important of the three source of 

uncertainty. 

For instance, real-time series data quite often have outliers and this source of 

uncertainty can be taken into account by forecasting from a model that allows for this 

possibility. Suppose that we have data ( 1 , — 1) and we assume that the future 

value of the time series, z,, may be affected by an outlier of unknown type. This 

implies that the model for this observation is 

4 

ζ, = £ ω „ ν , ( β ) Μ , , + ψ ( β ) α „ 
ι = 1 

where the terms V; ( / i ) correspond to the four outliers types defined before [see (6.17)] 

and the sizes are given by random variables o>„ with some specified distribution. The 

variables are Bernoulli variables independent of the ω „ indicating the probability 

for each type of oulier, so that P ( M „ = 1) = a, and P(m, = 0) = 1 - α,, and £ a,• = a 

gives the probability of any type of outlier affecting the series. We assume for simplic-

ity (although this assumption can be dropped without much trouble) that at each time 

only a type of outlier can happen and so P(uit = 1, Uj, = 1) = 0 for any pair ij, i φ j . 

The sequence of variables { M „ , t = n,...} will have a covariance matrix Af,-, and, as 

particular cases, we can consider (1) independence, so that this matrix is diagonal, or 

(2) some kind of dependency as a Markov chain. The specification of the probabilities 

and the distribution for the outliers sizes can be done by looking at the past history 

of the series. 

To illustrate the behavior of a model of this type, let us consider the simplest case in 

which we allow for the possibility of additive outliers with probability α = P(u, = 1) 

with a size ω coming from some distribution with mean η σ and variance λ σ 2 , where 

σ 2 is the variance of the noise. Suppose that we have data until time n. Then for 

t > η 

Ζ, - ω ,Η, + y, 

where y, = ty(B)a, represent the model without outliers. The one-step-ahead forecast 
will be 

Ζ , ( ] ) = η α σ + )>,(1). 

The mean square forecast error (MSFE) will be 

MSFE(l) = E(z,+i - 2,(1)) 2 = σ 2 ( 1 + λα + o ( l - α ) η 2 ) 

where we have used the independence of ω , + ι and u,+\ and that E[<af+l] = σ 2 ( λ + η 2 ) 

and E[u2

+l] = a. For instance, suppose that α = .1, η = 5, and λ = 2. Then the 

variance of the one-step-ahead forecast will increase more than 3 times, due to the 

small uncertainty of the presence of an additive outlier. We also see that the main 

source of increase in uncertainty comes from the mean and no for the variance of the 

distribution of the outlier size. 
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This analysis is related to Hamilton (L989), who used Markov chains to model 
changes in regime in economic time series, and to McCulloch and Tsay (1994), who 
use a Bayesian LS model to improve prediction in AR models. 

6.8. OTHER APPROACHES 

A comparison of several robust estimation procedures can be found in Schick and 
Mitter (1994). A Bayesian approach to deal with outliers can be seen in Albert and 
Chib (1993), McCulloch and Tsay (1994), and Justel et al. (1998). Multivariate outliers 
have been study by Tsay et al. (2000). 

6.9. APPENDIX 

Suppose that we have the sequence of outliers u > i , . . . , ω* at time T,..., Τ + k — 1. 
Then 

Σζ,ζ,-h-nl2 A 
rz{h)=-—-2 — - - . 

Σ Zt - nz Β 

The components of the numerator are 

* k-h 

i = l i = l 

and 

k2 

nz2 = ny2 -\ ώ2 + 2yku) 
η 

leading to 

a = ^ y , y , - h ~ n y 2 + Σωί^τ-ι+ί->> ~ y + yr-\+h+i - 50 

W k2 

+ > ^ ω , · ω ί + Α ω 2 

,= .
 n 

In the denominator, we have 

Σ Ζ 2 = Σ ^ 2 + Σ Ω « 2 + 2 Σ Ω ' ^ -
l+i 
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and 

k2 

Β = Σ yf - ny2 + £ ω,2 - - ώ 2 + 2 £ ω , ( ν Γ - ι + 1 - y). 

Then, calling y, = (y, - y)/sy, ώ = a>/sv, ω = £ ώ , , η ί 2 = £ y 2 - ny 2 , 

Si = Σ ώ - Ο Υ - Ι - Η - Λ + 5 ' Γ - Ι + Λ + Ι ) ' 5 2 = Σ&ί9τ-ι+ί we have 

r , (A) + n- 'S , + η " 1 [ E ? = f ώ / ώ ι + Λ - £ ώ 2 1 
Γ Ζ ( Λ ) = Ρ - τ - . 

1 + " - , [ Σ ώ , 2 - ^ ώ 2 ] + 2 η - > 5 2 

Suppose now that all the outliers have the same size, ώ, = ω, then 

ry(h) + η - ' ω Σ 5, + , T 1 [(it - Λ ) ω 2 - f ω 2 1 
r (Λ) = - . 

1 + η - ' [ * ω 2 - £ ω 2 ] + 2 η - ' ω Σ S 2 

If ω —• oo 

k - h - £ k-h 
lim Γ , ( Λ ) = — Τ Γ ^ - > - τ - , * > Λ. 

ω - κ » £ _ £_ Κ 
π 

On the other hand, for k < h 

- η - ' ^ ω 2 £ 
lim rz(h) = = ^ — = - — - * 0. 

η - ' [ * ω 2 - £ ω 2 ] * - k -

When the outliers are different, calling Σ*·*2 - kd>2 = fci2, and kCo\(h) — 

Σ ώ,ώ,+ζ, — * ω 2 , we have that 

ry(h) + / i - ' S , + n~lkCo\(h) + n^ka2 (^) 
Γ ζ ( Η ) ~ 1 + n- ' i t i 2 + η - ' * ώ 2 (==*) + 2n- 'S 2 
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In this chapter, a unified approach to automatic modeling for univariate series is 
presented. First, A R I M A models and the classical methods for fitting these models 
to a given time series are briefly reviewed. Second, some automatic methods for 
model identification are described and an algorithm for automatic model identifica-
tion is proposed. Third, outliers are incorporated into the model and an algorithm 
for automatic outlier detection and correction is proposed. Fourth, combining the 
proposed algorithms for automatic model identification and automatic outlier detec-
tion and correction, an algorithm is proposed for automatic model identification in 
the presence of outliers. Finally, the previous algorithm is extended to cope with 
missing observations, trading day and Easter effects, and intervention and regression 
effects. 

7.1. CLASSICAL M O D E L IDENTIFICATION METHODS 

The modeling procedure for A R I M A models proposed by Box and Jenkins (1976) 
presented in Chapter 3 was by no means a process that could be fully automated 
with the help of computers. In particular, model identification was rather an art that 
required an expert in time series analysis to carry it out. In spite of the advances that 
have taken place since the late 1970s, it continues to be the most difficult part of the 
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model building process. Besides, we have to be aware of the fact that the majority of 
time series encountered in practice usually have outliers, which makes the modeling 
procedure even more difficult. 

Later we will briefly review the most important methods for automatic detection 
and correction of outliers that are currently in use. As far as A R I M A model identi-
fication is concerned, the presence of outliers can make it very difficult due to the 
important biases induced by the outliers in the parameter estimates and in the sam-
ple autocorrelation and partial autocorrelation functions. For this reason, any good 
strategy for A R I M A model identification has to account for the presence of outliers. 

There are many reasons why one should try to automate as much as possible 
the A R I M A model identification stage, but they can be basically reduced to two. 
The first one is that one should eliminate as much as possible all mundane and 
mechanical chores, which can be performed by the computer, thus increasing the 
analyst's productivity. Users who are accomplished analysts may invest more of their 
precious time on troublesome data sets that they have to model. On the contrary, those 
who are not experts in time series models, can use a powerful methodology that they 
couldn't even dream of using before. The second reason has to do with the objectivity 
of the identification stage, since it is desirable that this stage not be subject to heuristic 
methods and ad hoc procedures that vary with each time series expert. For example, 
if a National Statistical Office has to produce some statistical data that require the 
modeling of some time series data sets and an expert is involved in the production 
process who uses subjective techniques, it may be criticized for publishing data that 
are neither objective nor reproducible. 

7.1.1. Subjectivity of the classical methods 

The Box-Jenkins method for model identification relies heavily on the inspection of 
plots of data over time and the inspection of the graphs of the sample autocorrelation 
and partial autocorrelation functions. These last tools can be effective to identify 
pure autoregressive or pure moving-average models, but no so effective with mixed 
A R M A models. Besides, the determination of the stationary transformation, that is, 
the numbers d and D in the general seasonal multiplicative A R I M A model 

φ(β)Φ(β ί )ν < ί ν / ) ζ, = C + Q(B)@(B')a, (7.1) 

where C is a constant, s is the number of seasons, V = 1 - Β is a regular difference, 
Vj = 1 - Bs is a seasonal difference, and Β is the backshift operator, Bz, — Zt-\, can 
be very difficult. 

With the exception of very few cases in which the data show a very distinctive 
pattern it is usually rather difficult to identify a model for the series at hand. For 
example, given a sample of finite length, it may be extremely difficult to distinguish 
between the nonstationary model (1 - JB)Vz,=a, and the process (1 - 1.704B + 
.706f i 2 )z , '=( l - .715B)(1 - .989B)z, =a„ which has very similar coefficients but 
for which the autoregressive polynomial has all its zeros outside the units circle. 
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Therefore, it is most probable that several time series experts who use the Box-
Jenkins method, when confronted with the same data, will specify different models. 
This makes the whole process of classical model identification dependent on the 
person who applies the techniques. More experienced individuals are more likely to 
select an adequate model for the series. This subjectivity is inherent in the classical 
model identification methods. 

7.1.2. The difficulties with mixed A R M A models 

Assume that in (7.1) the degrees of the autoregressive polynomials φ ( Β ) and Φ(Β) 
are ρ and Ρ and those of the moving average polynomials θ(73) and Θ(Β) are q and 
Q. It was mentioned in the last section that the sample autocorrelation and partial 
autocorrelation functions can effectively identify pure moving-average (ρ + Ρ = 0) 
and pure autoregressive (q + Q = 0) models. On the other hand, when both the degrees 
of the autoregressive polynomial (ρ + P) and the moving-average polynomial (q + Q) 
are not 0, the previous functions are much more difficult to interpret. In this case, other 
model identification methods, different from the classical methods, are called for. 

The difficulty of identifying mixed A R M A models is further increased when sea-
sonality is also present in the time series at hand. Several major advances have been 
made since the late 1970s to identify A R I M A models for nonseasonal time series. 
Among these, we can mention the extended autocorrelation function and the small-
est canonical correlation methods developed by Tsay and Tiao (1984, 1985). These 
methods are very informative in the identification of A R I M A models for nonseasonal 
time series, but they are less successful when they are directly applied to seasonal time 
series. It is to be noted that these methods can also be used with nonstationary series. 

Since the early 1970s, some penalty function methods have been proposed for 
A R M A model identification. These methods can be used with seasonal time series 
and their popularity is constantly increasing. The reason for this is that they are 
automatic and can be effective and computationally cheap. However, although some 
results have been extended to nonstationary series, these methods are in principle 
only applicable to stationary series. 

7.2. A U T O M A T I C M O D E L I D E N T I F I C A T I O N M E T H O D S 

In this section, we deal with automatic model identification methods, in contrast to the 
classical model identification methods considered in the last section. First, in order 
to obtain the degrees d and D of the stationary transformation in (7.1), we can use 
unit root tests. Then, several methods can be applied to identify an A R M A model 
for the stationary (differenced) series. We review in this section the penalty function 
and the pattern identification methods. Both of these methods are automatic and can 
be regarded as objective. However, there is always some degree of subjectivity also 
in these methods, such as when selecting the highest orders, ρ, P, q, and Q, to 
be considered for model (7.1). For this reason, we prefer to use the term automatic 
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rather than objective when we refer to them. A good reference for A R M A model 
identification is the book by Choi (1992). 

7.2.1. Unit root testing 

In the Box-Jenkins methodology, the decision concerning the need for differencing 
is based on the characteristics of the plot of the data and of its sample autocorrelation 
function. For example, failure of this last function to die out sufficiently quickly 
indicates that differencing is required. 

There has been a growing interest in more formal inference procedures concerning 
the appropriateness of differencing operators in the model. Since all the roots of the 
differencing operators V = 1 - Β and V , = 1 - Bs lie on the unit circle, testing for 
differencing is usually referred to as unit root testing. 

It is interesting to note that, as Dickey and Pantula (1987) point out, the results 
obtained by several authors suggest that overdifferencing is not a problem as far 
as forecasting is concerned. However, there appear to be uses for unit root tests in 
investigating some economic hypothesis. The practical implication of this is that when 
one is interested in the routine treatment of many series for forecasting purposes, one 
should not care very much about whether some of the series are overdifferenced. It is 
our practical experience that much the same thing happens with regard to model based 
seasonal adjustment. We can say that overdifferencing is compensated by moving 
average parameters that go to unity. 

We will not review here the vast amount of existing literature concerning unit 
root testing. The reader can consult, for example, Reinsel (1997) and the references 
therein. We will content ourselves with making a few remarks on existing procedures. 

The two "classical" unit root tests of Dickey-Fuller and Phillips-Perron tend to 
exhibit rather poor behavior in the presence of certain types of serial correlation. See 
the Monte Carlo analysis by Schwert (1989). 

When there is no seasonality in the series at hand and only regular differences, 
that is, differences of the form V d , are considered, it seems that the sequential testing 
procedure suggested by Dickey and Pantula (1987) is the best strategy to follow. 
According to these authors, only tests that compare a null hypothesis of k unit roots 
with an alternative of k - 1 unit roots are considered. In the sequential procedure, one 
should start with the largest k under consideration and work down, that is, decrease 
k by one each time the null hypothesis is rejected. 

The situation is different for seasonal time series. In this case, further research is 
needed and no general agreement exists on how to proceed as far as unit root testing 
is concerned. It seems that a generalization of the Dickey-Pantula (1987) approach 
to the seasonal case would be an interesting topic to investigate. 

7.2.2. Penalty function methods 

In the identification stage, once the differencing orders d and D in (7.1) have been 

obtained for the nonstationary series { z ( } , the problem remains of finding an A R M A 

model for the differenced series w, = VdV^Zi-
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Since the early 1970s, some procedures to determine the orders k and i of an 
ARMA(fc, i) model have been proposed that minimize a function of the form 

P(k, i) = In&li +(k +O^p. k<K, i <I (7.2) 

where & k j is the maximum likelihood estimate of the variance of the white noise 
variance, C(n) is some function of the number of observations η of the series, and Κ 
and / are upper bounds for the orders, usually imposed a priori. Because & kdecreases 
as the orders increase, it cannot be a good criterion to select the orders by minimizing 
it. This is the reason why the penalty term (k + i)C(n)/n is included. 

If C(n) in (7.2) is replaced with 2, we obtain the famous AIC criterion, which 
stands for Akaike's information criterion. Other possible choices are C(n) = \nn, 
which corresponds to the BIC (Bayesian information criterion), and C(n) = 2 ln(ln n), 
which gives the HQ criterion (Hannan and Quinn). The BIC criterion imposes a 
greater penalty term than does AIC. 

One criterion for selection of A R ( p ) models is the FPE (final prediction error) 
criterion, which is given by FPE(p) = {1 + (ρ/η)}σ2. 

The BIC criterion estimates the orders of an A R M A model consistently, whereas 
the AIC does not. However, this is not a reason to prefer BIC instead of A I C because 
consistency is based on the assumption that there is a "true" A R M A model for the 
series and this is a doubtful proposition. Models are artificial constructs and probably 
there is no such a thing as a true model. 

The FPE, AIC, and BIC criteria have been described in more detail in Chapter 5. 

It is our practical experience and also the experience of some other authors, like, 
for example, Lutkepohl (1985), that the BIC criterion works better in practice than 
AIC, in terms of selecting more often the original model when working with simulated 
series and selecting models with a better fit when working with real series. 

Although the penalty function methods are in principle computationally expensive, 
because they need maximum likelihood estimates for all possible A R M A models, 
there are methods, like the Hannan-Rissanen method described later in this chapter, 
which use cheaper estimates based on linear regression techniques only. Also, in 
the case of multiplicative seasonal A R M A models, it will be seen that it is possible 
to further reduce the computational burden by proceeding sequentially. That is, by 
iterating between selections of the regular and of the seasonal parts. 

The penalty function methods can also be used to identify vector A R M A models 
(Reinsel 1997). The penalty functions to use with multivariate data are direct gener-
alizations of the ones for the univariate case. This is a great advantage, not shared by 
many of the other identification methods. 

7.2.3. Pattern identification methods 

Since the early 1980s, some methods have been applied for determining the or-
ders of an A R M A process that use the extended Yule-Walker equations. For the 
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A R M A ( p , q) process 

ζ, + φιζ , - ι Η V φρΖ,-ρ = C + α, + θ|α,_ι Η h %α, >q"t-q 

these last equations are given by 

7 j = - Φ Ι Ύ ; - Ι ΦΡΎ;-Ρ. j =q + l,q +2,... 

where γ , , j = 0, 1 , . . . , is the autocovariance function of the process. These methods 
are often called pattern identification methods (Choi 1992). It is to be noted that, 
contrary to Choi's remark about penalty function methods being computationally 
exorbitant and pattern identification methods being computationally cheap, it will be 
shown later in this chapter that the proposed sequential application of the Hannan-
Rissanen method, which is based on the BIC criterion, for stationary seasonal models 
is computationally cheap and can be very effective. 

The pattern identification methods are so called because they are based on cer-
tain functions that give rise to two-way arrays with distinctive patterns. For each 
A R M A ( / J , q) model, the corresponding two-way array shows a unique pattern. Us-
ing the sample analog of this two-way array, an A R M A model is identified by looking 
for a theoretical pattern that is closely resembled by the sample one. Among the many 
pattern identification methods that have been proposed in the literature, we can men-
tion the R and S array method by Gray et al. (1978), the Corner method by Beguin 
et al. (1980), the extended sample autocorrelation method by Tsay and Tiao (1984), 
and the smallest canonical correlation method by Tsay and Tiao (1985). These last 
two methods can be effective with nonseasonal time series and can also be used with 
nonstationary series. However, the R and S array method and the Corner method, 
which can be used only with stationary series, do not seem to be very useful even 
for data with no seasonality. The Corner method has been applied to identification of 
transfer function models by Liu and Hanssens (1982). 

7.2.4. Uniqueness of the solution and the purpose of modeling 

In the identification stage of model building, it is often the case that there are several 
models for which the fit is acceptable. For example, if the BIC criterion is used, there 
may be a very small difference between the BIC of an AR(2) model and the BIC of an 
A R M A ( 1 , 1) model. In this case, we can probably use any of these two competitive 
models to model the data. 

When some competitive models exist, one should try to select the more parsimo-
nious one, that is, the one with less parameters. On occasion, it may be useful to select 
models that are also balanced. This means that the degree of the autoregressive part, 
included the nonstationary transformation, equals the degree of the moving average 
part. Balanced models are useful when one is going to perform model-based seasonal 
adjustment. 
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In summary, models should be considered as artificial constructs, which are useful 
for certain purposes, but are only a crude approximation to reality. In this respect, the 
criteria used to select models, especially when some competing models exist, depend 
on the applications. Some criteria may be good for forecasting, but not so good for 
signal extraction, for example. One should always have in mind that usually there is 
not a unique solution to the identification problem. 

7.3. TOOLS FOR A U T O M A T I C M O D E L IDENTIFICATION 

In this section, some practical procedures will be described for automatic model 
identification. The emphasis is on the word "practical," so that the methods presented 
will aim at simplicity, efficiency and speed when applied to real data. 

We will start with a test that we propose for the log-level specification. The test 
is based on the maximum likelihood principle applied to a series that is supposed 
to follow the model (0, 1, 1)(0, 1, l ) s . This is the airline model of Box and Jenkins 
(1976). The reason why we select that model in this and other tests later in this 
chapter is that it encompasses many other models and is a model very often found in 
practice. 

We will then review the two-stage method proposed by Gomez (1998) to estimate 
unit roots. After that, the Hannan-Rissanen method, hereafter referred to as the HR 
method, will be reviewed. This method is used to identify an A R M A model for the 
stationary (differenced) series. It is based on the BIC criterion and is computationally 
cheap. Some improvements to the HR method, proposed by Gomez (1998), will be 
described. 

7.3.1. Test for the log-level specification 

The test for the log-level specification is based on the maximum likelihood estimation 
of the parameter λ in the Box-Cox transformation. We fit an airline model with mean 
to the data, first in logs (λ = 0) and then without logs ( λ = 1). Let w = (w\,..., w„)' 
be the differenced series and let Τ be a transformation of the data, which can be 
any of the Box-Cox transformation. Assuming for simplicity that T(w) is normally 
distributed with mean 0 and Var(r(uv)) = σ 2 Σ , the logarithm of the density function 
f(w) of w is 

where k is a constant and J(T) is the Jacobian of the transformation. Considering the 
parameter λ in the Τ transformation fixed, the previous density function is maximized 
first with respect to the other model parameters. It is easy to see that σ 2 can be con-
centrated out of this function by replacing it with the maximum likelihood estimator 

1 η ( / ( ω ) ) = k - - η 1η(σ 2) + In | Σ | + T(w)'T,-xT(w)/a2 + In 
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σ 2 = r(u))'E xT(w)/n. The concentrated function is 

! η \n(T(w)'H-xT{w)) + In | Σ | + In 1(*) = - \ 0(Ό) 

where the dots indicate terms that do not depend on the model parameters. Af-
ter having maximized with respect to all model parameters different from λ, we 
maximize with respect to λ. Let Σ = LL', where L is a lower triangular ma-
trix, be the Cholesky decomposition of Σ . Then, the expression Τ(ιυ)'Σ~χΤ(χυ) χ 
I Σ I = IL11 T(w)'Σ " 1 Γ( ιυ) | L \l/" is a nonlinear sum of squares that we denote by 
S(w, T). The maximum likelihood principle leads to the minimization of the quantity 
S O , T)(l/J(T))2'". It is easy to see that (l/J(T))l'n is the geometric mean in the 
case of the logarithmic transformation, and unity in the case of no transformation. 
Therefore, the test compares the sum of squares of the model without logs with the 
sum of squares multiplied by the square of the geometric mean in the case of the 
model in logs. Logs are taken in case this last function is the minimum. 

7.3.2. Regression techniques for estimating unit roots 

Let the observed series {z ,} follow the A R I M A ( / J , d, q) model 

φ ( β ) ( δ ( β ) ζ , - μ) = θ(β)α, (7.3) 

where φ ( β ) = 1 + φ ,β + • · · + φρΒ
ρ, δ ( β ) = 1 + δ,β + · · · + hdB

d and θ ( β ) = 
1 + θι β + • · · + %Bq are polynomials in the backshift operator Β of degrees p, d 
and q, {a,} is a iid. N(0, σ 2 ) sequence of random variables and μ is the mean of the 
differenced process. The roots of δ ( β ) are assumed to lie on and those of φ ( β ) outside 
the unit circle, so that the process w, = δ (β ) ζ , follows a stationary A R M A ( p , q) 
process. As mentioned earlier, most economic series follow so-called multiplicative 
seasonal models, where 

δ ( β ) = v ' v , 0 , 

φ ( β ) = φ Γ ( β ) φ 5 ( β ί ) (7.4) 

θ ( β ) = fy(B)Qs(B
s) 

s is the number of observations per year, V r f = (1 - Β)d, and V* = (1 - Bs)D. In prac-
tice, for economic time series, the inequalities 0 < d < 2 and 0 < D < 1 hold. 
For simplicity, we will use in the rest of the section the notation (7.3), even for 
multiplicative seasonal models. We will make specific reference to these models 
when necessary. 

In the following, a procedure to obtain the differencing orders is reviewed which 
is based on the estimation of unit roots. This last procedure is the first step of an 
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automatic model identification method which has been proposed by Gomez (1998) 
and is implemented in programs T R A M O and SEATS, see Gomez and Maravall 
(1997). The estimation of the unit roots is done by first estimating autoregressive 
models of the form 

(1 + Φ , Β + φ 2 β 2 ) ( 1 + Φ Α ' Μ ζ , - μ ) = α„ (7.5) 

where ( ζ , } is the observed series, s is the number of observations per year, μ in the 

mean of the process, and {a,} is a sequence of iid. N(0, σ 2 ) random variables. Then, 

the series is differenced using the differencing orders given by the unit roots obtained 

after estimating (7.5) and an A R M A ( 1, 1) χ (1, 1 ) s model with mean, that is, a model 

of the form 

(1 + φβ)(1 + ΦΒ5)(νυ, - μ ) = (1 + θ/3)(1 + ΘΒ*)α„ (7.6) 

is fitted to the differenced series [w,}.lf any new unit roots appear after estimating 
(7.6), the differencing orders are properly increased and a new model (7.6) is fitted. 
The process is continued until no more unit roots are found. Then, the residuals of 
the last estimated model are used to decide whether to specify a mean for the model 
or not. The choice of models (7.5) and (7.6) will be justified later. 

Suppose that the series { z , } follows model (7.3), where it is assumed μ = 0 to 
simplify matters. Then, by Theorems 3.2 and 4.1 of Tiao and Tsay (1983), the ordinary 
least squares (OLS) estimators obtained from an AR(k) regression, where k > d, 
asymptotically verify 

δ » ( Β ) = δ (Β )Φ \ , (Β) 

where = denotes asymptotic equivalence in probability, m = k — d and Φ * ( β ) , S(B) 
and φ^,(β) are, respectively, the polynomials estimated by OLS in the autoregressions 

Φ * ( Β ) ζ , = a, 

δ(Β)ζ , = a, 

9m(B)w, = a, 

where w, = h(B)z, is a stationary process that follows the A R M A ( p , q) model 
φ(Β)ιυ, = θ ( β ) α , and the subindex in Φ*(β ) and φη(Β) denotes the polynomial 
degree. In addition, the equality δ ( Β ) = δ ( Β ) + O p ( « _ 1 ) holds, where η is the series 
length. 

The practical implication of this result is that if we perform an autoregression of 
order greater than or equal to the (unknown) degree of the polynomial δ ( Β ) , we obtain 
a consistent estimate of b(B) as a component of Φ*(/3). If we specify a model of the 
form AR(2) χ (\)s for Φ*(Β) , we cover the cases b(B) = 1, δ ( Β ) = V , b(B) = Vs, 
δ ( Β ) = V V j and δ ( β ) = V 2 V s , which are the ones of most applied interest. 



180 AUTOMATIC MODELING METHODS FOR UNIVARIATE SERIES 

In the case of non-seasonal models, where h(B) = Vd and 0 < d < 2 is assumed, 

if we specify an AR(2) model, all important cases are covered. 

Based on the previous considerations, the algorithm used to identify the differenc-

ing polynomial is as follows: 

1. Specify a model of the form AR(2) χ (l)s with mean, given by equation (7.5) if 

the process is multiplicative seasonal, or an AR(2) model with mean, also given 

by (7.5) but without the second factor, if the process is regular. This autoregres-

sive process is estimated using the HR method, which will be described later, 

unless the user decides to use unconditional least squares. If the roots estimated 

with the HR method lie outside the unit circle, the autoregression is estimated 

again using unconditional least squares. A root is considered to be a unit root if 

its modulus is greater than a specified value, which by default is .97. Go to step 2. 

2. In addition to the differencing degrees identified in step 1 as a result of the 

estimated unit roots, a model of the form A R M A ( 1 , 1) χ (1, l ) s with mean 

for seasonal series, or a model A R M A ( 1 , 1) with mean for non-seasonal 

series, is specified. Letting w, be the series that results from differencing zt 

with the differencing polynomial obtained after the estimation of the initial 

autoregression, the equations for these models are given by (7.6) in the 

seasonal case, and by (7.6) without the factors involving Bs in the regular case. 

The model is estimated using the HR method or exact maximum likelihood, 

depending on the option selected by the user, and if any of the estimated 

autoregressive parameters is close to 1, the degree of differencing is increased 

accordingly. A parameter is considered to be close to 1 if its modulus is greater 

than a specified value, which by default is .88. To avoid cancellation of terms 

in the model, the absolute value of the difference between each autoregressive 

parameter and its corresponding moving average parameter should be greater 

than .15. For multiplicative seasonal models, it is not possible to pass from 0 

differencing to V V , directly. If this happens, the roots of the autoregressive 

polynomial obtained in step 1 are considered again, the one with greatest 

modulus is selected, and the series is differenced accordingly. If the series has 

been differenced in this step, repeat this step (2). Otherwise, go to step 3. 

3. Using the residuals of the last estimated model, it is decided whether to specify 

a mean for the model of the series or depending on the significance of the 

estimated residual mean. Stop. 

The A R M A ( 1 , 1) χ (1 , 1), model used in step 2 is very flexible and constitutes a 

generalization of the airline model of Box and Jenkins (1976). For stationary series, 

it approximates well many of the A R M A models encountered in practice. When it 

is used with nonstationary series, it can detect autoregressive unit roots that have not 

been detected by the autoregressive model used step 1. Imagine, for example, a model 

of the form (1 — B)z, — μ = (1 — .8S)a,, where the autoregressive and the moving 

average part almost cancel out. In this case, an A R M A ( 1 , 1) model would probably 

estimate the unit root better than an AR(2) model. 
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Now consider the case of a regression model with A R I M A errors. The question 
naturally arises as to whether the previous analysis is still valid and if, in consequence, 
the procedure just described is also applicable in this case. By the results of Tsay 
(1984, pp. 119-120), it is possible, under very general conditions, to work with the 
original series in order to identify the differencing polynomial. 

7.3.3. The Hannan-Rissanen method 

After having obtained the stationary transformation, the next step in the model building 
process is the identification of an A R M A ( p , q) model for the differenced series, 
possibly corrected for outliers and other regression effects. We will start by assuming 
that there are neither outliers nor other regression effects and we will extend the results 
later in this chapter to the general case. 

In the following, the HR method and a procedure to identify A R M A ( p , q) 
models based on it are reviewed. This last procedure is the second step of an au-
tomatic model identification method proposed by Gomez (1998) and is implemented 
in programs T R A M O and SEATS; see Gomez and Maravall (1997). The HR method 
is a penalty function method based on the BIC criterion, where the estimates of 
A R M A model parameters are computed by means of linear regressions. Therefore, 
these estimates are computationally cheap, although it can be shown that the estima-
tors have similar properties to those obtained by maximum likelihood (see Hannan 
and Rissanen 1982). 

Let ζ = ( z i , . . . , z n ) ' the observed series, which follows model (7.3), where we 
assume μ = 0 for simplicity. After δ ( 5 ) has been identified, we can compute the 
differenced series w, = δ(/3)ζ,, t = d + 1 , . . . , n, which follows the A R M A ( p , q) 
model 

φ(Β)ιν, = θ(Β)α, (7.7) 

where φ(/3), Q(B) and [a,) are like in (7.3). If the model is multiplicative seasonal, the 
decomposition (7.4) holds. In order to avoid notational problems, let the differenced 
series be w = (wi,..., wn-d)'. If the orders of the fitted model (7.7) are (p, q), the 
BIC statistic is 

BIC, . , = log(r> 2

 q) +(p + q) l og (« - d)/(n - d), (7.8) 

where σ 2 , is the maximum likelihood estimator of σ 2 . The BIC criterion estimates 
the orders (p, q) by selecting (p, q), which minimizes (7.8). 

The method just described to select the orders, which is based on the traditional 
BIC criterion, is computationally expensive because one has to perform a nonlinear 
optimization for each (p, q) to compute σ 2 . For this reason, Hannan and Rissanen 
(1982) propose to perform the estimation using linear regression techniques in three 
steps, although the third step is used to compute estimators of the A R M A model 
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selected by the BIC criterion with properties similar to those of maximum likelihood 

estimators. Therefore, only the first two steps are used to select the orders (p, q). 

Computation of BICPA 

In the first step of the HR method, which takes place only if there is a moving-average 

part (q > 0), estimates a, of the innovations a, in (7.7) are obtained by fitting a long 

autoregressive model to the series. That is, given a big positive integer N, the a, are 

computed using 

Ν 

at = 5 3 Φ * 0 > » - / , Φ/ν(0) = 1. t > 1 

where w, = 0 if t < 0 and the <$>N(j) Me computed using the Durbin-Levinson algo-
rithm. This last algorithm consists of first estimating the sample autocovariances 

j n-d-t 

C, = " V WSWS+, 

n-d *—! 
s=l 

and then recursively computing the fyN(j) using the equations 

Φ \ ( Λ 0 = - £ *N-1}2

J)CN-J, $N(j) = a>„_,(;) + ίΝ(ΝύΝ_χ{Ν - j), 
j=0 

CO 

In the procedure proposed by Gomez (1998), the value of Ν is selected to be Ν = 

max{[log 2(n — d)], 2max{p, q}}, where (p , q) are the orders of the A R M A model for 

which the BIC is being computed and [log 2(n - d)] is the integer part of l o g 2 ( « — d). 

This choice is based on the fact that Hannan and Rissanen (1982, p. 88) assume that 

η is greater than log(« - d), but not greater than log*(w — d), for some b < oo. 

In the second step of the HR method, given the orders (p , q), first the parameters 

of model (7.7) are estimated by minimizing 

n-d 

S(p,q) = J2 
Ρ 9 λ2 

Σ > ω ' - ; - Σ θ Α - , (7-9) 
j=0 7=1 

where m = max{p +l,q + 1} and φο = 1. Then, the estimator σ 2 ^ is computed by 

the formula σ 2

 q = S(p, q)/(n - d) and the BIC^,, statistic is computed using (7.8). 

The use of an efficient numerical method, like, for example, the application of the 

QR algorithm based on Housholder transformations, to minimize (7.9) is important 

to avoid singularity problems when both ρ and q are overspecified. 
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In the procedure proposed by Gomez (1998), the following modifications are made. 
If there is no moving average part (q = 0), the estimation of the parameters of the 
A R M A model finishes here. Note that, in this case, the estimates obtained for the 
autoregressive part coincide with the ones obtained by OLS. 

If there is a moving average part (q > 0), the estimators <j>; and obtained by 
minimizing (7.9), are consistent but have a bias and, therefore, they are not asymp-
totically efficient. In order to obtain bias-corrected, consistent and asymptotically 
efficient estimators, see Zhao-Guo (1985), first form 

where η , = 0 and ξ , = 0 if t < 0. Finally, regress a, on — η , - j , j = l,...,p, and 
ξ , _ ; , j = 1 , . . . , q. The estimated regression coefficients are added to the estimators 
<p; and θ ; to obtain the desired estimators <j>, and Θ,. 

When there are a moving average (q > 0) and an autoregressive (p > 0) part, 
Gomez (1998) proposes to obtain better estimates of the moving average part by re-
peating the previous procedure with the series filtered with the autoregressive filter. 
That is, the series is first filtered with the autoregressive filter φ(Β) estimated in the 
two previous steps to obtain the series x, = <$>(B)w,. Then, the series χ,, which asymp-
totically follows the model x, = Q(B)a, and, therefore, does not have an autoregressive 
part, is subject to the two previous steps. 

Once the parameter estimates of model (7.7) have been obtained for some orders 
(p, q), the estimator &jq is needed to compute the B I C P > ? statistic. In the procedure 
proposed by Gomez (1998), the residuals r,, / = 1, . . . , η = max{/?, q] of the series 
w, are first computed using a fast Kalman filter routine based on the algorithm of Morf 
et al. (1974). Then, the rest of the residuals r,, t = η + 1 , . . . , η — d are recursively 
obtained using the difference equation (7.7). Finally, the estimator σ 2 is computed 
by the formula 

a, = - £ θ , ά , _ , + J2$J 
; = 1 j=0 

t > 1, 

where a, = 0 and w, = 0 if t < 0. Then put 

n-d 

and the B I C M statistic is computed using (7.8). 

Optimization of BICp,q 

After having described the algorithm to compute B I C P i 9 for each (p, q), we now 
review the algorithms used by the HR method and the procedure proposed by Gomez 
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(1998) to obtain the optimal model of the form (7.7). In the HR method, the model 
is selected as that ARMA(/5, q) model for which BIC P,$ is minimum among all 
ARMA(/? , q) models satisfying ρ < Ρ and q < Q, where Ρ and Q are fixed upper 
bounds. These authors recommend to search first among models with ρ = q and 
refine the search later. 

To describe the procedure proposed by Gomez (1998), suppose the general case, 
where the series follows a multiplicative seasonal model given by (7.4). In practice, 
it is assumed that the orders of the A R M A ( p r , qr) χ (ps, qs)s model followed by 
the series verify 0 < pr, qr < 3 and 0 < ps, qs < 2, and the BIC statistic should be 
computed for all these combinations. Since the resulting number of combinations is 
high, the search is performed sequentially. The algorithm is 

1. First specify an ARMA(3 , 0) model for the regular part. Then, compute the BIC 
statistic for models where the seasonal part verifies 0 < ps, qs < ms, and select 
the minimum. The number ms is selected by the user; the default value is 1. 

2. Fix the seasonal part to that selected in step 1, compute the BIC statistic for mod-
els where the regular part verifies 0 < pr, qr < mr, and select the minimum. 
The number mr is selected by the user; the default value is 3. 

3. Fix the regular part to that selected in step 2, compute the BIC statistic for models 
where the seasonal part verifies 0 < ps,qs < ms, and select the minimum. The 
number ms is that of step 1. 

The a justification for the previous algorithm is as follows. In step 1, the regular part 
is assumed to be an ARMA(3 , 0) model. This is usually a good approximation to many 
regular models found in practice, so that step 1 amounts to first filtering the series 
with the approximate regular model and then finding a seasonal model for the filtered 
series. This seasonal model will probably be a good approximation to the seasonal 
part. In step 2, we filter the series with the seasonal model found in step 1 and find an 
appropriate regular model. In step 3, we filter the series with the regular model found 
in step 2 and look for an appropriate seasonal model. Clearly we could iterate this 
procedure further, but usually the three steps are enough to find a satisfactory model. 

The previous algorithm allows for a substantial reduction in computing time and, 
however, the results obtained with it are very satisfactory. Once the previous algorithm 
has finished, and in order to avoid the tendency of BIC to overparametrize, especially 
in the seasonal part, the smallest five BIC are first ordered in ascending order. Then, 
the first one is compared to the other four and if the difference in absolute value is 
less than a certain number and the biggest of the two BIC corresponds to a more 
parsimonious seasonal part, this last one is selected. Among all the BIC that satisfy 
this condition, the one that corresponds to the more parsimonious part is selected, 
provided that the seasonal part exists (ps > 0 or qs > 0). The procedure also favors 
balanced models (models where the degrees of the autoregressive and the moving 
average parts coincide). 

In the previous algorithm, if the parameters estimated for an A R M A model are 
such that the roots of the autoregressive or the moving-average polynomials lie within 
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the unit circle, this fact is considered as an indication of model inadequacy and the 
model is rejected. 

The tentative model A R M A ( 3 , 0 ) specified in step 1 of the previous algorithm 
seems to be robust and the sequential search of the algorithm has given very satisfac-
tory results in all performed tests of the proposed procedure, with real and simulated 
series. 

If there is a mean or other regression effects in model (7.7), the procedure proposed 
by Gomez (1998) obtains first OLS estimators of the regression parameters. Then, 
these effects are subtracted from the differenced series before computing the parameter 
estimates of model (7.7) and also before computing the residuals r, needed in the 
computation of a2 and the BIC statistic. 

7 .3 .4 . Liu's filtering method 

The SCA software package has incorporated a module for automatic A R I M A model 
identification, called "SCA-Expert." This module uses a procedure based on the fil-
tering method proposed by Liu (1989) and certain heuristic rules. Briefly, this method 
consists of the following: 

1. Examine first the sample autocorrelation functions (SACF) of ζ,, (1 - B)zt, 
(1 — Bs)zt and (1 — B)(l — Bs)z, to assert the differencing orders and to see 
whether seasonality is present. After that, examine the SACF of the properly dif-
ferenced series. If an obvious seasonal A R I M A model can be specified from the 
SACF, stop. Otherwise, go to the following step. Denote by w, the differenced 
series. 

2. If an obvious tentative model cannot be deduced from the SACF of w,, estimate 
an intermediate model of the type A R M A ( 1 , 1) x (1, 1),. If no one of the 
autoregressive parameters is close to 1, generate the series R, and S,, which are 
the result of filtering w, with the A R M A ( 1 , \)s and A R M A ( 1 , 1) models that 
make up the intermediate model. 

If any of the autoregressive parameters is close to 1, then difference properly. 
After differencing, a new intermediate model of the same type is estimated and 
new R, and S, series are generated. 

3 . Use the SACF and sample partial autocorrelation functions, as well as the 

extended sample autocorrelation function, of R, to identify an A R M A model 

adequate for the R, series. 

4. In order to identify a model for S,, the SACF of S, can be used. If a model is 
not clear for S,, examine also the estimated parameters for the seasonal part in 
the intermediate model and use them to specify a model for S,. 

One problem with the previous algorithm is that the computerized specification 
of either the differencing orders or a seasonal or regular model from the SACF or 
the sample partial autocorrelation function does not seem at all clear. On the other 
hand, the idea of filtering the series with an approximate regular or seasonal model 
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to find the other part of the model is a good one and usually gives satisfactory results 
in practice. 

7.4. A U T O M A T I C M O D E L I N G METHODS 
IN THE PRESENCE OF O U T L I E R S 

Many time series encountered in practice have outlying observations. These may be 
due to errors in the data, strikes, changes in regulations, etc. The presence of outliers 
can make extremely difficult the process of model identification. For this reason, 
any automatic model identification method has to incorporate some kind of outlier 
treatment. 

In the rest of this chapter, we will make use of the notation and definitions intro-
duced in Chapter 6 in connection with outliers. In this section, after examining some 
algorithms for outlier treatment, we first review the method proposed by Gomez 
(1998) for automatic outlier detection and correction. It is pointed out that in the 
previous algorithms an exact filter should be used, instead of the inverse of the model, 
which is the filter usually applied in practice. Second, some estimation and filtering 
techniques are reviewed which are used to speed up the algorithms of the previous 
methods. Third, some reasons are given for the need to robustify automatic modeling 
methods. Finally, an algorithm is proposed for automatic model identification in the 
presence of outliers. 

7.4.1. Algorithms for automatic outlier detection and correction 

We will start by considering that there is only one outlier. After having described 
how the effect of the outlier can be estimated and adjusted for, the case of multiple 
outliers will be considered. Finally, the algorithm proposed by Gomez (1998) will 
be reviewed. The emphasis here will be on exact filtering, as opposed to the usual 
practice of filtering with the inverse of the model followed by the series. 

Estimation and adjustment for the effect of an outlier 

Suppose that the parameters in model (7.3) are known, the observed series is 
z* = ( z * , . . . , z*) ' , the outlier free series is ζ = ( z i , . . . , z „ ) ' and put Y = (v(B)lf, 
. . . , v ( B ) / „ r ) ' , where v(B) = θ ( β ) / ( δ ( β ) φ ( β ) , for an IO, v(B)=l for an AO, 
v(B) = 1/(1 - cB) for a TC (usually c = .7), and v ( B ) = 1/(1 - B) for an LS. Then, 
the model is 

which is a regression model with A R I M A errors and can be rewritten in more 
compact notation as 

ζ* = ων ( /3 ) / , Γ + ζ, (7.10) 

ζ* = Yw + z. (7.11) 
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To simplify the exposition, we will assume that ζ in (7.11) follows an A R M A model 
or, what amounts to the same thing, 8(/J) = 1 in (7.3). If this is not the case, we would 
work with the series obtained by differencing ζ*, ζ and Y in (7.11). Let Var(z) = σ 2 Ω 
and Ω = LL', with L lower triangular, the Cholesky decomposition of Ω. Premulti-
plying (7.11) by L _ 1 , the following ordinary least squares model is obtained: 

L~lz* = L~lYw + L~lz. (7.12) 

Letting r — L~xz, the equality Var(r) = σ 2 / „ holds and vector r is the residual vector 
of the series (not observed). If we let the estimated residuals be r* = L~lz* and write 
X = L~XY, we can write (7.12) as 

r* = Xw + r. (7.13) 

If Κ is 0 in (7.11), the model would be ζ* = ζ and if we applied the Kalman filter 
to this model, we would obtain L~lz*. This result, which a standard result of control 
theory, allows us to see the Kalman filter as an algorithm that, applied to any vector 
ν instead of z*, yields L~]v. Therefore, if we apply the Kalman filter to the vector 
of observations z* and to the vector Y, we can move from (7.11) to (7.12) or, what 
amounts to the same thing, from (7.11) to (7.13). 

We can estimate ω by OLS in (7.13) to obtain 

ώ = (X'X)-lX'r* (7.14) 

where the estimator variance is Var(<I>) = (Χ'Χ)~ισ2. To test the null hypothesis that 

there is no outlier at ί = Τ , we can use the statistic 

τ = « Ξ ^ 5 . ( 7 , 5 ) 
σ 

which is distributed N(0, 1) under the null. 
In practice, the parameters of model (7.3) will not be known and they will have to 

be estimated. Under these circumstances, the usual procedure consists of estimating 
first the parameters of model (7.3) by exact maximum likelihood, as if there were no 
outliers, and then using instead of (7.14) and (7.15), their sample counterparts 

σ 

which are obtained by replacing in (7.14) and (7.15) the unknown parameters with 
their estimates. It can be shown that f is asymptotically equivalent to τ (see Chang et al. 
1988, p. 196). Each matrix X and, therefore, X'X, depends on the type of the outlier. 

Up to now, we have assumed that r* and X were computed by means of an 
"exact" filter, which was the Kalman filter. This is the correct thing to do, since 
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the number of observations in a time series is always finite and we cannot apply 
the semiinfinite filter, given by the inverse of the series model τ τ ( β ) = 1 + ττ\Β + 
τι2Β

2 + ••• = φ { β ) δ ( β ) / θ ( β ) , to (7.10) to obtain 

instead of (7.12). In practice, the usual procedure consists of truncating the filter 
τ τ ( β ) and disregarding some observations at the beginning of the series (see Chen 
and Liu 1993, p. 285). In the procedure proposed by Gomez (1998), the residuals are 
filtered with an exact filter to obtain r* and the filter ττ(Β) is used to filter the vector 
Y in (7.11). Note that using the Kalman filter to filter the vector Y for each possible 
combination of outliers would be computationally burdensome. 

The case of multiple outliers 

When multiple outliers are present, we should use instead of (7.10) the model 

As shown by Chen and Liu (1993), the estimators of the ω, obtained simultaneously 
using (7.16), can be very different from the ones obtained by an iterative process using 
the results of the previous section—that is, by obtaining first ώι , then ώ 2 , and so on. 
For this reason, it is important that every algorithm for outlier detection perform 
at some point multiple regressions to detect spurious outliers and correct the bias 
produced in the estimators sequentially obtained. 

In order to estimate the parameters in the multiple regressions, when the parameters 
of the A R I M A model (7.3) are assumed to be known, the algorithm proposed by 
Gomez (1998) uses first the Kalman filter like when we moved from (7.11) to (7.12). 
Then, the estimators of the ω, and the corresponding statistics are computed using 
(7.14) and (7.15). This is done in an efficient manner, using the QR algorithm and 
Housholder transformations. A more detailed description will be given at the end of 
this section. 

Estimation of the standard deviation σ of the residuals 
When outliers are present in the series, the usual sample estimator can overestimate 
σ . For this reason, it is advisable to use a robust estimator. In the procedure proposed 
by Gomez (1998) the estimator used is the M A D estimator, defined by 

ττ(β)ζ,* = ω[ττ(Β)ν(Β)ΐΤ] +a„ t = 1 n, 

k 

(7.16) 
i=l 

σ = 1.483 χ median[|r(* -

where r* is the median of the estimated residuals r* = L~lz*. The parameters of the 
model were assumed to be known in the previous formula. If they were unknown, 
they would be replaced with their estimates, as usual. 
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For outlier treatment, the procedure proposed by Gomez (1998) assumes that the 
orders (p, d, q) of model (7.3) are known and it proceeds iteratively. In the first stage, 
outliers are detected one by one and the model parameters are modified after each 
outlier has been detected. When no more outliers have been detected, the procedure 
goes to the second stage, where a multiple regression is performed. The outliers 
with the lowest f-value is discarded and the procedure goes back to the first stage to 
iterate. 

The procedure used to incorporate or reject outliers is similar to the stepwise 
regression procedure for selecting the "best" regression equation. This results in a 
more robust procedure than that of Chen and Liu (1993), which uses "backward elim-
ination" and may therefore detect too many outliers in the first stage of the procedure. 

Up to now, we have supposed that there were no regression effects, but it is easy 
to incorporate these effects into the procedure. Let the series follow the regression 
model with A R I M A errors 

ζ, = > , ' β + ν „ t=l,...,n, (7.17) 

where β = ( β ι , . . . , β*)' is the vector containing the regression parameters, which 
may include the mean as the first component, { z , } is the observed series, {y,} are the 
vectors containing the regression variables and { v , } follows the A R I M A model (7.3) 
with μ = 0. Then, the algorithm proposed by Gomez (1998) for automatic detection 
and correction of outliers, described in detail, is as follows: 

Initialization. If there are any regression variables in the model, including the mean, 

the regression coefficients are estimated by OLS and the series is corrected for their 

effects. Go to stage I. 

Stage I: detection and estimation of outliers one by one. 

1.1. The A R I M A parameters are estimated, using the HR method, and the series 
is corrected for all regression effects present at the time, including the outliers 
so far detected. If desired by the user, exact maximum likelihood can be used 
for estimation, instead of the HR method. 

1.2. Considering the estimates of the A R I M A parameters obtained in 1.1 as fixed, 
the regression coefficients are estimated by GLS and their t statistics are 
computed. To this end, the fast algorithm of Morf et al. (1974) is used, followed 
by the QR algorithm. New estimated residuals are obtained. 

1.3. With the estimated residuals obtained in 1.2, the robust M A D estimator of the 

standard deviation of the residuals is computed. 

1.4. If w = ( U V J + I , . . . , w„)', where d is the degree of the differencing opera-
tor, denotes the differenced series, the statistics f ' / 0 , τ'ΛΟ, T'LS and f ' r c 

are computed for / =rf 4- 1, . . . , n. To this end, the residuals computed in 
1.2 and the M A D obtained in 1.3 are used. Let, for each t =d + 1, . . . ,n, 
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λ, = m a x { | f ' / 0 | , | f ' A 0 | , \T'TC\, \^'LS\)- If λ = max, λ, = | τ , Γ

ρ | > C, where C is 
a preselected critical value, then there is a possible outlier of type tp at T. 
The subindex tp can be IO, AO, TC, or LS. If no outlier has been found the 
first time the algorithm passes through this point, then stop. The series is free 
from outlier effects. If no outlier has been found, but it is not the first time that 
the algorithm passes through this point, then go to II. If, on the contrary, an 
outlier has been found, then correct the series for all regression effects, using 
the estimates obtained in 1.2 and the last outlier coefficient estimate obtained 
while computing λ, and go back to 1.1 to iterate. 

Stage II: multiple regression. Using the estimates of the multiple regression and their 
/ statistics obtained the last time the algorithm passed through 1.2, check whether 
there are any outliers with a t statistic < C, where C is the same critical value than in 
1.4. If there aren't any, stop. If, on the contrary, there are some, then remove the one 
with the lowest absolute t value and go back to 1.2 to iterate. 

7.4.2. Estimation and filtering techniques to speed up the algorithms 

To estimate the regression parameters in model (7.16), when the autoregressive and 
moving-average parameters of the A R I M A model are assumed to be known, the 
procedure proposed by Gomez (1998) uses the following algorithm. Let the observed 
series ζ = ( z i , . . •, zn)' follow the regression model with A R I M A errors 

where β = ( β ι , . . . , β*)' is the vector containing the regression parameters, which may 
include the mean as the first component, Y is an η χ k matrix of full column rank and 
u follows the A R I M A model (7.3) with μ = 0, which is supposed to be known. After 
differencing z, the columns of Y and u in (7.18), it is obtained that 

where w = (w<j+1,.... wn)', X is an (n-d)xk matrix, the components of v = 
(Vd+ι,... v„)' follow the A R M A model φ(Β)υ, = Q(B)a, and it is assumed that 
the degree of the differencing polynomial δ ( β ) is d. 

If Var(u) = σ 2 Ω and Ω = LL', with L lower triangular, is the Cholesky decompo-
sition of Ω, then, premultiplying ( 7.19) by L~\ it is obtained that 

z = Y£ + u, (7.18) 

ω = Χβ + υ (7.19) 

L~lw = L - ' Χ β + Ζ Γ ' υ (7.20) 

which is an OLS model. As described in Section 7.4.1, the Kalman filter can be applied 
to w and the columns of the X matrix to move from (7.19) to (7.20). The Kalman 
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filter algorithm used is the fast algorithm of Morf et al. (1974). β can now efficiently 
estimated in (7.20) by means of the QR algorithm. This last algorithm produces an 
orthogonal matrix Q such that Q'L~lX = (/?', 0) ' , where Λ is a nonsingular upper 
triangular matrix. Partitioning Q' = (Q\, Q2)' conforming to (/?', 0) ' , one can move 
from (7.20) to 

Q\L~lw = R$ + Q\L-lv 

Q'2L-lw= + Q2L~lv, 

fromwhichfj = / T 1 Q\L~xw and σ 2 = w'iL'1)'Q2Q'2L-lw/(n-d-k)are easily 

obtained. The Q matrix is obtained by means of Housholder transformations. 

7.4.3. The need to robustify automatic modeling methods 

The presence of outliers in the series can affect tremendously all automatic model 
identification procedures, starting with the specification of unit roots and ending 
with the identification of an A R M A model for the differenced series. For this reason, 
there is a need to robustify automatic modeling methods. This can be achieved by the 
following scheme. Specify first a robust model for the series. This model could be the 
airline model, since, as mentioned earlier, it encompasses many models and is a model 
very often found in practice. Then, use this model to detect and correct the series for 
outlier effects. The critical value at this stage should not be low because we want to 
correct the series for the effects of the biggest outliers, which are the outliers that can 
distort most the automatic model identification procedure. With the series corrected 
for the outlier effects detected with the airline model, apply the automatic model 
identification procedure. With the model identified by this last procedure, specify a 
lower critical value and detect and correct the series for outliers. This cycle can be 
repeated several times until a satisfactory model is found. Usually, two iterations are 
enough. 

7.4.4. An algorithm for automatic model identification 
in the presence of outliers 

Taking into account the procedure proposed by Tsay (1986) and the previous con-
siderations on how it could be improved, we propose an algorithmical procedure 
[implemented in programs T R A M O and SEATS; see Gomez and Maravall (1997)], 
which, briefly described, is the following: 

1. Preliminary tests. If desired by the user, the procedure can test for the log-level 

specification, trading day, and Easter effects. These last two tests are performed 

using the default model (airline model). 

2. Initialization. If the user wants the series to be corrected for outliers, accept the 

model specified by the user (the default model is the airline model) and go to 
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step 3. Otherwise, go to step 1. The critical value C for outlier detection can 
be either entered by the user or specified by the procedure. In this last case, the 
value of C is selected depending on the length of the series. 

3. Step 1. If the user has specified the differencing orders and whether there should 

be a mean in the model, go to step 2. Otherwise, the series is first corrected for 

all regression effects, if any. Then, using the corrected series, the differencing 

orders for the A R I M A model are automatically obtained and, also automatically, 

it is decided whether to specify a mean for the series or not. Go to step 2. 

4. Step 2. Perform automatic identification of an A R M A ( p , q) model for the dif-
ferenced series, corrected for all outliers and other regression effects, if any. If 
the user wants to test for trading day and Easter effects and any of these effects 
was specified in the preliminary tests, check whether the specified effects are 
significant for the new model. If the user wants to correct the series for outliers, 
go to step 3. Otherwise, stop. 

5. Step 3. Assuming the model known, perform automatic detection and correction 
of outliers using C as critical value. If a stop condition is not satisfied, perhaps 
decrease the critical value C and go to step 1. 

In the previous algorithm, the procedures for obtaining the differencing orders, 
automatic model identification and automatic detection and correction of outliers are 
the ones proposed by Gomez (1998), which have been described in previous sections. 
The test for the log-level specification is the one considered in the previous section. 
The trading day and Easter effects, as well as tests for their presence in the model, 
will be described in detail in the next section. 

7.5. A N A U T O M A T I C PROCEDURE FOR THE G E N E R A L 
R E G R E S S I O N - A R I M A M O D E L I N T H E PRESENCE OF O U T L I E R S , 
SPECIAL EFFECTS, A N D , POSSIBLY, MISSING OBSERVATIONS 

In this section, the algorithm for automatic model identification in the presence of 
outliers of last section is extended to the case in which there are missing observations. 
The algorithm was seen to handle any kind of regression effect. Special effects, such 
as trading day and Easter effects, are considered in detail, as well as intervention and 
other regression effects. Tests for the presence of trading day and Easter effects are 
given. 

7.5.1. Missing observations 

The procedure proposed in the last section for automatic model identification in 
the presence of outliers can be extended easily to the case of missing observations. 
Missing observations are treated as additive outliers. This implies that we can work 
with a complete series, because the missing values are first assigned tentative values. 
Then, after the model has been estimated, the difference between the tentative value 
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and the estimated regression coefficient is the interpolated value. See Gomez et al. 
(1998) for details. 

Since we work with a complete series (there are no holes in it), we can use the same 
algorithms described previously for automatic model identification and for automatic 
detection and correction of outliers. The tentative values assigned to the missing 
observations are the semisum of the two adjacent values. 

7.5.2. Trading day and Easter effects 

Traditionally, six variables have been used to model the trading day effect; These 
are: (N Mondays) — (N Sundays), .. .,(N Saturdays) — (N Sundays) (where Ν = 
number of ) . 

The motivation for using these variables is that it is desirable that the sum of the 
effects of each day of the week cancel out. Mathematically, this can be expressed by 
the requirement that the trading day coefficients β7·, j = 1, . . . 7, verify J j ]= i β; = u > 
which implies β 7 = — Σ > = ι β ; · 

Sometimes, a variable, called the length-of-month variable, is also included. This 
variable is defined as m, — m, where m, is the length of the month (in days) and 
m = 30.4375 is the average month length. 

Another variable that can be used is the leap-year variable. This variable is equal 
to 0 for all months different from February. In February, it takes the value —.25 if 
February has 28 days, and .75 if February has 29 days (which is a leap year). 

There is the possibility of considering a more parsimonious modeling of the trading 
day effect by using one variable instead of six. In this case, the days of the week are first 
divided into two categories: working days and non-working days. Then, the variable 
is defined as (Ν (Μ, T, W, Th, F)) - (N (Sat, Sun) χ 5/2). 

Again, the motivation is that it is desirable that the trading day coefficients β ; , 
j = 1, . . . , 7 verify £ j = 1 β; = 0. Since β, = β 2 = · · • = β 5 and ββ = βν, we have 
5 β ι = - 2 β 6 . 

The Easter variable models a constant change in the level of daily activity during 
the d days before Easter. The value of d is usually supplied by the user. 

The variable has zeros for all months different from March and April. The value 
assigned to March is equal to pM — mM, where PM is the proportion of the d days 
that fall on that month and is the mean value of the proportions of the d days that 
fall on March over a long period of time. The value assigned to April is ρ A — ntA, 
where pA and mA are defined analogously. Usually, a value of mM =niA = 1/2 is a 
good approximation. 

Since pA — mA = 1 — PM — (1 — tnst) = —(pin — ΉΛ/Χ t n e s u m o r " t n e effects of 
both months, March and April, cancel out, a desirable feature. 

Since trading day and Easter effects are modeled by means of regression variables, 
a possible test for these effects is the following. If no model has been identified, 
specify an airline model with mean. Otherwise, use the identified model. Then, using 
the differenced series w, apply first the Kalman filter to move from model (7.19) to 
model (7.20), where β is the vector of regression parameters, that includes the trading 
day and/or Easter parameters. Since model (7.20) is an OLS model, we can use an 
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ordinary F test to test if all trading day parameters are zero or not. A student t test 

can be used to test if the Easter parameter is zero. 

7.5.3. Intervention and regression effects 

Intervention variables are regression variables that are used to model certain abnormal 

effects, like strikes, major changes in economic policy, natural disasters (Box and Tiao 

1975). 

Examples of intervention variables are 

• Impulses 

• Level shifts 

• Temporary changes 

• Ramps 

These variables usually consist of sequences of ones and zeros. Other regression 

effects, like economic variables thought to be related to the observed series, can also 

be incorporated. 

7.6. E X A M P L E S 

The automatic model identification procedure proposed by Gomez (1998) and de-

scribed earlier in this chapter was applied to 35 series that follow models covering 

a very broad spectrum. The T R A M O program, which, as mentioned earlier, imple-

ments the automatic model identification and automatic outlier detection procedures 

proposed by Gomez (1998), was applied with the parameters ' 7 D / F = 3 , 1 N 1 C = 3" 

specified in the input file. This means that "the program will search first for reg-

ular differences up to order 2 and for seasonal differences up to order 1. Then, it 

will continue with the identification of an A R M A model for the differenced series, 

searching for regular polynomials up to order 3 and for seasonal polynomials up to 

order 1". The test for the log-level specification was not applied, so that the parame-

ter "LAM" was set to 1 (no logs) whenever necessary. The default value of "LAM" 

is 0 (logs). Also, the parameter "MQ," which is the seasonal period, was set to the 

appropriate value whenever the seasonal period was different from 12, the default 

value. 

The results are reported in Section 7.7. Of the 35 series, 13 are series which have 

appeared in published articles and for which an A R I M A model has been identified 

by some expert in time series analysis. The rest are simulated series. For the sim-

ulated series, the identified models coincide with the models from which the series 

were generated. For the real series, T R A M O identifies either the same model as 

the one identified by the time series expert or an also acceptable, sometimes better, 

model. 
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In order to illustrate the use of the algorithm proposed by Gomez (1998) for 
automatic detection and correction of outliers, we consider the example of the ozone 
(O3) mean levels in Los Angeles city during the period of January 1955 to December 
1972. This series was analyzed by Box and Tiao (1975) as an example of a series for 
which intervention analysis could be applied. 

Box and Tiao (1975) identified three intervention variables and a multiplicative 
moving-average model for the series differenced with seasonal difference. More 
specifically, the model is 

z(t) = ω , /ΛΤ1( ί ) + - j - ^ / 7 v T 2 S ( f ) 

ω 3 (1 + θ ι β ) ( 1 + θ . 2 β 1 2 ) 
+ Y^INTIWit) + Κ- a(f) 

where INTl is 1 in January 1960 and the following months and 0 otherwise, INT2S 
is 1 in the summer months, starting in June 1966, and 0 otherwise, and INT2W is 1 
in the winter months, starting in 1966, and 0 otherwise. 

The series, together with its intervention variables, was subject to the procedure 
proposed by Gomez (1998) for automatic detection and correction of outliers. The 
T R A M O program was applied with the parameters "IATIP= 1, IMVX= l,VA = 3" 
specified in the input file. This specification means the following: (1) the automatic 
outlier detection procedure will search for outliers of the three types, LS, AO, and 
TC; (2) exact maximum likelihood will be used to estimate the parameters of A R I M A 
models during the outlier detection stage; and (3) the critical level 3, will be used for 
the identification of outliers. 

The results are displayed in Table 7.1. Four outliers have been identified. Two 
outliers of type AO, at t = 11 and t = 21, and two outliers of type TC, at t = 39 and 
f = 4 3 . 

To illustrate the algorithm of Section 7.4.4, we consider the example of the monthly 
variety stores sales considered by Hillmer et al. (1983). For the logged series, these 
authors identified the A R I M A model 

™»z(t)=TT^^ait)- ( 7 2 1 ) 

TABLE 7.1. Outliers Identified for the Ozone Series 

Outlier Estimate t Value Type 

t = 11 3.2773 4.82 AO 
f = 39 -1.9287 -3.45 TC 
t = 2l 2.4878 3.71 AO 
t =43 -1.8824 -3.36 TC 
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TABLE 7.2. Outliers Identified for the Variety Store Sales Series 

Outlier Estimate t Value Type 

/ = 45 
ί = 96 
r = 112 

.096 

.084 
-.176 

5.23 
-4.38 

-10.18 

TC 
AO 
LS 

The T R A M O program was run with the parameters "LAM = — 1, ITRAD = — 1, 
IEAST = - 1 , IDIF = 3, INIC = 3, IATIP = 1," specified in the input file. The first 
three parameters tell the program to perform the test for the log-level specification, 
trading day and Easter effects, respectively. The last parameter is used to specify 
automatic outlier detection. When this parameter is used in conjunction with IDIF=3 
and INIC = 3, the program will apply the algorithm of Section 7.4.4. 

To implement the algorithm of Section 7.4.4, after performing the tests for the log-
level specification, trading day and Easter effect, the T R A M O program can go through 
up to three rounds. In the first round, it uses the default model and default critical 
value C, or the model and critical value entered by the user, and detects and corrects 
the series for outliers. As mentioned earlier, the default model is the airline model of 
Box and Jenkins (1976). The default critical value C depends on the series length. 
In the second round, using the outlier corrected series, the program automatically 
identifies a model and, with that model, it performs a second automatic detection and 
correction of outliers. Usually, these two rounds are sufficient to identify a model 
with a good fit. If this is not the case, the program iterates. After the third round, it the 
fit is still not acceptable, the program specifies a general model. This general model 
is an A R M A ( 3 , 1)(0, 1), for the differenced series, where the differencing orders are 
the same of the last round. At some point of the procedure, the identified model is 
compared to the airline model and the model with the best fit is selected. This is done 
because the airline model is a robust model and departures from this model can be 
unstable. 

Using the T R A M O program in the manner just described, the following results were 
obtained for the variety stores sales series. The test for the log-level specification 
specified the logarithmic transformation for the data. Neither trading day nor Easter 
effect were detected. In the first round, using the default model (the airline model) 
and a critical value C = 3.5, the program detected outliers at t = 45, of type TC, at 
t =96 , of type AO and at t = 112, of type LS. After correcting the series for the 
outlier effects, the program identified first the differencing polynomial δ ( # ) = V V ^ , 
without specifying a mean for the differenced process. Then, the program identified 
model (7.21). With this model, the program detected the same outliers than before, 
as can be seen in Table 7.2. 

7.7. T A B U L A R S U M M A R Y 

Automatic model identification is summarized in Table 7.3. 
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TABLE 7.3. Summary of the Automatic Model Identification for 35 Real 
or Simulated Series 

Series 
Simulated Models or Manually 

Identified Models 
Model Obtained by 

TRAMO 

1 Maddala(1972): 
Grunfeld's 
inversion series 
(B=20) 

2 Hillmer et al. 
(1983): clothing 
sales (n = 153) 

3 Hillmer etal. 
(1983): hardware 
sales (n = 155) 

4 Hillmer et al. 
(1983): variety 
stores sales 
(n = 153) 

5 Box and Tiao 
(1975): ozone series 
(n=216) 

6" Box and Tiao 
(1975): CPI 

series (n = 234) 

7* Chatfield and 
Prothero(1973): 
monthly sales 

series (n = 77) 

8C Hamilton and Watts 
(1978): weekday 
coffee data 

(/j = 178) 

Ψ1 Box and Jenkins 
(1976): series A 

(TI = 197) 

lfy Box and Jenkins 
(1976): series C 

(,j=226) 

11* Box and Jenkins 
(1976): series Ε 
(η = 100) 

12 Box and Jenkins 
(1976): series F 
(n=70) 

( 1 + φ ι β + φ 2 β 2 ) ζ ( / ) 
= C + a(t) 

Same as left 

V V i 2 z ( f ) = ( l + θ ι Α + θ2Β 2 ) Same as left 

x ( l + θ , 2 β 1 2 ) α ( / ) 

V V | 2 z ( f ) = (1 + θιΒ) Same as left 

x ( l + θ , 2 β 1 2 ) α ( » 

(1 + φ ι Β + φ 2 β 2 ) ν ν ) 2 ζ ( ί ) Same as left 
= (1 + θ , β ) α ( ί ) 

Vi2Z (0 = C + (l + θ ι β ) 
x ( l + θ , 2 β 1 2 Μ Ο 

Vz(i) = C + (l + θ ι β ) « ( 0 

(1 + φ ι β ) ν ν , 2 ζ ( / ) 
= (1 +θ ι 2 β )«ω 

(1 + Φ ι β ) ν ζ ( / ) 
= (1 +β5Β

5)α(0 

Vz(/) = 

(1 + Φ ι 
= C 

CI -t- Φι 
V 2 z(r) 

= d 

(1 + Φ ι 
= C 

( 1 + Φ ι 
= c 

( 1 + Φ ι 

= (1 + θι β ) α ( / ) , or 

+ (1 + θ , β ' ) α ( ί ) 

β ) ν ζ ( ί ) = a(t\or 

+ θ , β ' + θ 2 β 2 ) α ( / ) 

β + φ 2 β 2 ) ζ « ) 
+ a(t), or 

β + φ 2 β 2 + φ 3 β 3 ) ζ ( ί ) 
+ (1 + θ , β , ) α ( ί ) 
B)z(t) = C + α(ι) 

Same as left 

W i 2 z ( f ) = ( l + θ , β ) 
χ ( 1 + θ | 2 β 1 2 ) α ( ί ) 

Vi2z(r) = C + ( l + e i f l 
+ Θ2β 2)α0) 

Vz( / ) = C + (1 + θ , β ) 
χ ( 1 + θ 5 β 5 ) α ( 0 

Vz(/) = (1 + θ | β ) α ( / ) 

(1 + φ ι β ) ν ζ ( ί ) = α ( 0 

(1 + φ , β + φ 2 β
2 ) ζω 

= C + ( 1 + θ ι ) α ( ί ) 

Same as left 

(Continues) 
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TABLE 7.3. (Continued) 

Series 
Simulated Models or Manually 

Identified Models 
Model Obtained by 

TRAMO 

13 Box and Jenkins 
(1976): series G 
(n = 144) 

14 Ljung and Box 
(1979): simulated 
series (n = 75) 

15 Tsay and Tiao 
(1984): simulated 
series with AR 
complex unit roots 
(n = 100) 

16 Box and Tiao: 
simulated series R1 
(n = 150) 

17 Box and Tiao: 
simulated series R2 
(n= 162) 

18 Box and Tiao: 
simulated series R3 
(n = 147) 

19̂  Box and Tiao*: 
simulated series R4 
(n = 161) 

20 Box and Tiao*: 
simulated series R5 
(n = 155) 

21 Box and Tiao*: 
simulated series R6 
(n = 178) 

22 Box and Tiao*: 
simulated series R7 
(n = 149) 

23 Box and Tiao*: 
simulated series R8 
(n = 148) 

24 Box and Tiao*: 
simulated series R9 
( « = 151) 

25 Box and Tiao*: 
simulated series RIO 
(n = 146) 

VV, 2 z(r ) = (l + θ , β ) 

χ ( 1 + θ , 2 β
1 2 ) α ( 0 

ζ (0 = (1 +θ ,β )α ( ί ) 

( 1 + Φ ι Β + φ 2 β
2 ) ν 2 ζ ( 7 ) 

= ( 1 + 9 , 5 ) 0 ( 0 

z(/) = C + (l +Θ, +e2B
2)a(t) 

(1 + φ , + φ 2 β
2 )ζ(7) 

= C+a(t) 

Vz(/) = C + (1 +θ ,β )α (0 

ν ζ ( ί ) = ( 1 + θ , β + θ 2 δ
6 )α ( ί ) 

(1 + φ , β + φ 2 β 2 ) ν ζ ( 0 = α(/) 

(\+4>iB)z(t) = C + a(t) 

(1 + φ ι β ) ν ζ ( / ) = < : + α ( Γ ) 

Vz(r) = (1 + θ , β ) β ( / ) 

Same as left 

Same as left 

Same as left 

Same as left 

Same as left 

Same as left 

( 1 + φ 6 β 6 ) ν ζ ( 0 
= ( 1 + θ , β ) α ( / ) 

V 2 z(r) = (1 + θ,β + θ 2 β
2 )α ( ί ) Same as left 

Same as left 

Same as left 

Same as left 

Same as left 

Vz(r) = C + (1 + θ, Β + &2B2)a(t) Same as left 

(Continues) 
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TABLE 7.3. (Continued) 

Simulated Models or Manually Model Obtained by 

Series Identified Models TRAMO 

26 Box and Tiao*: ν ν Ι 2 Ζ ( 0 = (1 + θιΒ) Same as left 

simulated series SI x ( l + θ 2 Β 1 2 Μ 0 

(n = 150) 

27 Box and Tiao*: ( l + < M ) V i 2 z ( 0 Same as left 

simulated series S2 = (1 + θ ιδ 1 2 )α( ί ) 

(n = 162) 

28 Box and Tiao*: Vz(/) = (1 + e 1 S 1 2 ) « ( r ) Same as left 

simulated series S3 

(n = 147) 

29 Box and Tiao*: ( 1 + φ , β 1 2 ) ζ ( ? ) Same as left 

simulated series S4 = C + (l + Q\B)a(t) 

(τι = 161) 

30 Box and Tiao*: ( l + ^ B ) V 1 2 z ( 0 = C + e ( f ) Same as left 

simulated series S5 

(n = 155) 

31 Box and Tiao*: VV 4 z( t ) = (l +0\B)a(t) Same as left 

simulated series S6 

(n = 178) 

32 Box and Tiao*: V 2 ( l + φ , β 6 ) ζ ( ί ) = α ( 0 Same as left 

simulated series S7 

(τι = 149) 

33 Box and Tiao*: (1 + φ , β + φ 2 β 2 ) ζ ( 0 Same as left 

simulated series S8 = C + (l+eiB6)a(t) 

(n = 148) 

34 Box and Tiao*: V i 2 z ( 0 = C + (l +θιΒ)α( ί ) Same as left 

simulated series S9 

(TI = 151) 

35^ Box and Tiao*: VV,2Z(I) ν ν , 2 ζ ( / ) = ( 1 + θ ι β ) 

simulated series S10 = (1 +Θι5 + θ 2 β | 2 ) α ( 0 x ( l + θ 2 β | 2 ) α ( ί ) 
(τι = 146) 

"The model obtained by TRAMO is also acceptable. The seasonality is rather stable (Θ12 = -.92223). 
Using the SEATS program, it can be verified that the seasonality is also small and may be neglected. 
*The model obtained by TRAMO is better. The model used in the original article is overdifferenced. 
cThe model obtained by TRAMO is better, although the original model is also acceptable. 
dln the original book, two alternative models were considered. TRAMO obtains the best one. 
'In the original book, two alternative models were considered. TRAMO obtains a model better than any 
of them. 
^TRAMO uses, in its automatic option, multiplicative models because their simplicity and that they have 
less problems with nonstationarity and noninvertibility. However, by selecting a nonautomatic option, the 
analyst may use nonmultiplicative models if he prefers to do so. 
*A11 of these series are documented in Scientific Computing Associates Corp. (1984). 
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8.1. I N T R O D U C T I O N 

Seasonal adjustment has a long and well-documented tradition; see, for example, 
Nerlove et al. (1979), Zellner (1978), Moore et al. (1981), Den Butter and Fase (1991), 
and Hylleberg (1992). In essence, it consists in the removal of the seasonal variation 
from a time series. Since neither the seasonally adjusted (SA) series nor the seasonal 
component are directly observed, both can be seen as "unobserved components" (UC) 
of the series, and seasonal adjustment becomes a problem of UC estimation. Because 
the SA series is supposed to provide a cleaner signal of the underlying evolution of 
the variable, seasonal adjustment can also be viewed as a signal extraction problem 
in a "signal plus noise" decomposition of the series, where the noise is the seasonal 
component. 

The widespread use of seasonal adjustment reflects powerful reasons. The most 
basic one is simply the need to understand better our present situation and to adjust 
our forecasts. As an example, in Cervantes (1605), Sancho Panza, overwhelmed 
by the disasters that befall on them, asks (the senior) Don Quijote whether their 
misfortunes occur randomly or at periodic, forecastable, intervals. Of course, seasonal 
adjustment is also performed because of more sophisticated purposes. For example, 
in the preamble of the Federal Reserve Act of 1913, the U.S. Congress sets as one 
of the main objectives of the Federal Reserve to accommodate seasonal variations 
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in credit so as to maintain interest rates stable (Federal Reserve Board 1915). The 
fact is that seasonal adjustment of economic series has become a nearly universal 
practice and millions of series are routinely adjusted. Moreover, economic analysis 
and research make heavy use of SA series, in the belief that they help interpretation 
and simplify modelling. 

This chapter is not an attempt to summarize some of the last research developments, 
still at an early testing stage, but to present what we see as the state of the art concerning 
seasonal adjustment methods that satisfy two general constraints: (1) that the method 
be of general availability and (2), that they can be, at present, reliably and efficiently 
used in large-scale applications by data-producing agencies. An implication of these 
two general requirements is that they restrict us to a world of univariate analysis. 
Multivariate extensions are few, still of limited capacity, and at an experimental stage 
[an interesting example is contained in the program STAMP; see Koopman et al. 
(1996)]. 

It is a fact that the methods used to estimate UC in applied research often have little 
to do with the methods used by official data producing agencies, and this is a source 
of problems. The method presented in this chapter provides a relatively powerful tool 
that can be of interest in both cases. But, first, a word of caution may be appropriate. 

The idea of living in a S A world is somewhat dangerous. It would, of course, cure 
Seasonal Auto Depression afflictions. But for a family of colibris whose brain size 
varies seasonally (enlarging for the winter, so as to be able to remember the places 
where food was stored,) seasonal adjustment of the brain size would prove disastrous. 
Within the economic field, the economics of seasonality (and some implications for 
seasonal adjustment) has attracted some attention; see, for example, Ghysels (1993a), 
Maravall (1983), Plosser (1978), Canova (1992), and Miron (1986). We shall not 
pursue this issue further, except to stress an important conclusion that will also emerge 
from our discussion, namely, that, as was the case with the brain of colibris, data 
used in econometric models should not be, as a rule, seasonally adjusted. [Further 
arguments that favour this conclusion can be found, e.g., in Wallis (1974), Osborn 
(1988), Ghysels and Perron (1993), Maravall (1995), and Findley et al. (1998).] 

There are several seasonal adjustment methods that satisfy the two general require-
ments mentioned above [see, e.g., Fisher (1995) and Balchin (1995)]. We shall not 
survey them, but center on a particular class whose origins can be found in Nerlove 
et al. (1979), Cleveland and Tiao (1976), Engle (1978), Harrison and Stevens (1976), 
Box et al. (1978), Piccolo and Vitale (1981), Burman (1980), Hillmer and Tiao (1982), 
Harvey and Todd (1983), and Gersh and Kitagawa (1983), to quote some important 
contributions. This class of methods is based on parametric models for the series and 
components, and computes the latter as the minimum mean-squared error (MMSE) 
estimators given the observations (this is the "signal extraction" procedure). The 
models used are linear stochastic processes, often parametrized in the ARIMA-type 
format (Box and Jenkins 1976). The methods that fall into this class will be called 
model-based signal extraction (MBSE) methods. 

A linear stochastic process is understood to mean a linear filter of gaussian inno-
vations. Therefore, we shall not deal with nonlinear extensions, such as the ones in 
Harvey et al. (1992), Kitagawa (1987), Nelson (1996), and Sheppard (1994), among 
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others. Since what we have in mind is monthly (or lower-frequency) data, nonlin-
earity is seldom a serious problem and, as seen in Fiorentini and Maravall (1996), 
proper outlier correction seems powerful enough to linearize most of those series. 
Moreover, one of the convenient features of the MBSE approach is that it permits to 
solve, in an internally coherent way, additional problems that might be relevant for 
the correct extraction of the signal. Examples are outlier correction, interpolation of 
missing values, trading day and Easter effect correction, incorporation of regression 
or intervention variable effects, and, of course, forecasting; see, for example, Hillmer 
et al. (1983) and Harvey (1989). 

8.2. SOME R E M A R K S ON T H E E V O L U T I O N OF SEASONAL 

ADJUSTMENT METHODS 

8.2.1. Evolution of the methodologic approach 

The crucial problem underlying the evolution of seasonal adjustment methods is the 
lack of a precise answer to the question regarding what is seasonality. The absence of 
a well-defined and generally accepted definition has fostered proliferation of proce-
dures, and made it difficult to find common grounds for comparison. We shall briefly 
review some basic features of some approaches that provide the evolutionary line of 
the MBSE approach. In so doing, we leave aside important methods such as, for ex-
ample, the Bayesian BAYSEA procedure developed by Akaike and Ishiguro (1980), 
or the nonparametric SABL and STL procedures of the Bell Laboratories (Cleveland 
et al. 1978, 1990). Description and/or discussion of various of these methods can 
be found in Zellner (1978, 1983), Den Butter and Fase (1991), Hylleberg (1992), 
Ghysels (1993b), and Eurostat (1998a). 

It will prove helpful to establish first some simple definitions. One is that of a 
deterministic model, which is meant to denote a model that can be forecast without 
error if the parameters are known. The second is the concept of white noise, which will 
denote a zero mean, finite variance, normally identically independently distributed 
(niid) variable. Finally, a moving-average ( M A ) filter applied to the observations will 
mean a linear combination of the latter. 

The simplest way to model the seasonal component is as a deterministic function 
with seasonal dummy variables, as in (for monthly data) s, = Σ]=ι &dn, where 
dj, = 1 for month i and 0 otherwise, and the β coefficients satisfy βι + · · · + 
βΐ2 = 0. An equivalent formulation uses cosine functions with the seasonal harmonics 
as frequencies. What characterizes these deterministic components is that 

s, + * , _ , + · · · + 5 ,- ι ι = 0 (8.1) 

that is, their sum over 12 consecutive months is zero. The SA series may be further 
decomposed into a deterministic function of time (the trend) and a noise or irregular 
component. The trend (p,) may be some polynomial in time, in its simplest form 
p, = a + bt, which would imply 

Pt - Pt-\ = b, (8.2) 
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or 

( ρ , - ρ , - ι ) - ( ρ , - ι - A - 2 ) = 0. (8.3) 

The performance of these deterministic models proved unsatisfactory. The esti-

mators of the β parameters were typically unstable and did not seem to converge as 

observations increased. Residual seasonality could often be detected, and the out-

of-sample forecasting performance of the overall model was poor. Although some 

extensions of the deterministic regression model have been developed (see, e.g., 

Stephenson and Farr 1972, Nourney 1986, Statistisches Bundesamt 1997) attention 

moved in a different direction. Fixed deterministic components seemed to be inade-

quate because components "move" in time (an obvious example of a moving seasonal 

component is the weather, precisely one of the major causes of seasonality). Atten-

tion shifted to M A filters, which seemed capable of capturing some of the moving 

features of the components. M A filters could be rationalized in several ways: (1) as 

"local" approximations to deterministic functions of time (see, e.g., Kendall 1976); 

(2) since the moving features can be seen as the result of randomness, a natural way 

to think about the components is in the frequency domain. Obviously, the spectrum 

[by this term we also refer to the pseudospectrum when unit autoregressive roots 

are present; see Harvey (1989)] of a seasonal component would basically consist 

of peaks for the seasonal frequencies. The trend component, in turn, would be a 

peak around the zero frequency and, in general, a peak in the spectrum of the series 

for a cyclical frequency would indicate the presence of a periodic cyclical compo-

nent. It follows that one could design "bandpass" filters in the frequency domain 

that would only capture the variation of the series within a specific frequency band. 

M A filters are also obtained as the time domain representation of bandpass filters 

(see, e.g., Oppenheim and Schaffer 1989). Since proper timing of events, and in 

particular of turning points requires that the complete filter induces a zero-phase 

effect in the adjusted series, and this, in turn, implies symmetric and centered fil-

ters, for now, we shall restrict our attention to this type of filters; and (3) symmetric 

M A filters are also derived from optimizing some criterion that attempts to bal-

ance a tradeoff between fitting and smoothness (see, e.g., Gourieroux and Monfort 

1990). 

As we shall see later, the three rationalizations of M A filters are closely linked, 

and the design of the filter requires, in all cases, a priori decisions. For example, what 

function should be used as local approximation? Which width should be selected 

for the frequency band? Which should be the penalty function? Once these a priori 

decisions have been taken, a so-called ad hoc M A filter can be derived. The filter will 

have a fixed structure, independent of the structure of the series to which it is being 

applied. 

In the field of seasonal adjustment, the most important filter designed has been 

unquestionably the one in the program XI1 (Shiskin et al. 1967). Program X I 1 

basically consists of a linear filter, to which some additional features (e.g., possible 

trimming of presumed outliers) and options (mostly the selection of a few alternatives 

concerning the length of the filters) have been added. Program X I 1 has generated a 

family of programs [XI1 A R I M A and X12 A R I M A ; see Dagum (1980), Bureau of 
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(a) GAIN OF X11 QUARTERLY FILTER (b) GAIN OF X11 MONTHLY FILTER 
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FIGURE 8.1 Gain of X11 filter and selected series spectra. 

the Census (1997), and Findley et al. (1998)], where the basic seasonal adjustment 

filter still is the linear filter in X I 1 ; we shall refer to the default value of this filter as 

the X11 filter. Figures 8.1 a and 8. lb display the gain of the XI1 filter, specifically, the 

way XI1 filters the frequencies of the series spectrum, for a quarterly and monthly 

series, respectively. When the gain is 1, the frequency is fully transmitted; when the 

gain is 0, the frequency is ignored. If applied to a series with the spectrum of Figure 

8.1c, the filter removes the variation around the seasonal frequencies, and provides a 

SA series with the spectrum of Figure 8. Id. 

The empirical fact that many economic series have a similar dynamic structure 

and that this structure is broadly adequate for the XI1 filter, evidences the ingenuity 

of the XI1 designers and explains the success of the XI1 program. But as the number 

of series treated increased and experience accumulated, the limitations of the filter 

became more apparent. The main limitation, in essence, is the rigidity implied by its 

fixed character. For some series, spurious results will be obtained, in particular those 

associated with under and overadjustment. 

For a series containing a highly stochastic seasonal component, as evidenced by 

the width of the seasonal peaks in the series spectrum of Figure 8.2a, the width of the 

dips in the squared gain of the XI1 filter seem too narrow. Application of the filter to 

the series yields a SA series with the spectrum of Figure 8.2b. The underadjustment 

causes the awkward peaks for frequencies that are in the neighborhood of the seasonal 

ones. On the other hand, for a series containing a close-to-deterministic seasonal 
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(A) SPECTRUM OF SERIES WITH A HIGHLY 
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(B) SPECTRUM OF ADJUSTED SERIES: 
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FIGURE 8.2 Under and over adjustment produced by X I 1 filters. 

component, as evidenced by the narrow peaks in the spectrum of Figure 8.2c, the 
width of the dips in the filter gain are too wide and, as seen in Figure 8.2d, X I 1 
removes variance that is not a associated with the seasonal peaks of the series. In this 
case the result is overadjustment. 

Clearly, the filter to seasonally adjust white noise should simply be 1, since there 
is no seasonality. Alternatively, the filter to seasonally adjust a purely seasonal series 
(perhaps a seasonal component produced by X I 1 ) should simply be zero. The con-
clusion that the filter should depend on the structure of the series seems obvious. The 
MBSE approach solves this problem by tailoring the filter according to the model fit 
to the series. 

8.2.2. The situation at present 

Although, as mentioned before, we do not review seasonal adjustment methods, it is 

of interest to make a brief reference to the main ones currently used by data-producing 

agencies. First, there are some isolated uses of several methods at specific institutions, 

which are in the process of being replaced sometime in the near future. Examples are 

the program GLAS, based on a spectral polishing of the series and used at the Bank of 

England (see Balchin 1995), program SABL and program DAINTIES, the latter based 
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on one-sided moving regressions (see Eurostat 1998a), both still used at some sections 
of Eurostat, and program BAYSEA used at the Bank of Japan. Statistics Germany uses 
the moving-regression type method Berlin BV4 (see Statistiches Bundesamt 1997), 
although this is not the case for the Bank of Germany, which, as the vast majority 
of agencies and institutions, uses a member of the XI1 family of programs. In many 
cases the standard X11 is used; in many other cases, the Statistics Canada modification 
XI1 A R I M A is used; in some cases (Organization of National Statistics and Bank 
of Germany, e.g.) XI1 with some added modifications is used. The U.S. Bureau of 
the Census has just made available a new member of the family, X12 A R I M A , which 
presumably will replace in many cases the older members of the family. Besides 
incorporating additional tools for diagnosis in both cases, XI1 A R I M A improved 
on XI1 by incorporating A R I M A forecasts and backcasts, so as to obtain better 
estimates at both ends of the series. X12 A R I M A has added a preadjustment program 
(REGARIMA) , which deals with outliers and special effects (such as trading day) 
by means of a regression-ARIMA-type model. Further, the number of ad hoc filters 
available is larger, and the selection of the appropriate filter should depend on the 
particular series being adjusted. We mentioned before that, over the 40 years of the 
XI1 empire, awareness of its limitations had inevitably increased. The extensions of 
XI1 are attempts at solving some of the main limitations. It is worth noticing that 
the basic tools employed are ARIMA-model-based tools, often reflecting the need to 
adjust the filter to the structure of the particular series. 

During the 1990s work was done on developing methods based on the (so-called) 
model-based approach. This work followed the basic methodology of Burman (1980), 
Hillmer and Tiao (1982), and Harvey and Todd (1983). Two directions emerged: one 
that begins by directly specifying the model for the components, which has been 
termed the structural time series (STS) approach (see Engle 1978, Harvey 1989); the 
other approach, termed the ARIMA-model-based ( A M B ) method, starts by identifying 
a model for the observed series, and derives from that the appropriate models for 
the components (see Box et al. 1978, Bell and Hillmer 1984). The models are linear 
stochastic processes, often parametrized in the A R I M A format. Fruit of that work are, 
within the STS approach, program STAMP, and, within the A M B approach, the pair 
of programs TRAMO-SEATS [ T R A M O is a preadjustment program; part of SEATS 
emerged from an original program of Burman; see Gomez and Maravall (1996)]. 
Their use has spread beyond academic and research applications to the production of 
official statistics. On a small scale, STAMP is used at some agencies (examples are 
the ONS and the Statistical Institute of Cantabria, Spain). T R A M O and SEATS have 
been used routinely on large data sets at Eurostat since 1994, and their use extends 
at present to various european countries. The simultaneity of the appearance of X12 
A R I M A and of the first large-scale experiences with an AMB method has fostered a 
renewed interest in the topic of seasonal adjustment (interest now extends to trend-
cycle estimation and to preadjustment of the series). This interest has been further 
reinforced by the effort of European countries to harmonize the production of data. 
The outcome of this interest has concentrated mostly on comparisons of X I 2 A R I M A 
with TRAMO-SEATS, and considerable amount of information on this work can be 
found at the internet site http://europa.eu.int/en/comm/eurostat/research/noris4/. Two 
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recent task forces created for the purpose of reaching a recommendation concerning 

seasonal adjustment methods presented their reports at two conferences, in June 

1998, in Rome, organized by the Italian Statistical Institute, and in October 1998 

in Bucharest, organized by Eurostat and the International Statistical Institute. The 

first task force ("Seasonal Adjustment Research Appraisal" committee) was formed 

by representatives from different fields of professional activity and institutions; the 

second one was a Eurostat task force on seasonal adjustment policy. Both committees 

recommended the use of the A M B (TRAMO-SEATS) method; see Eurostat (1998b) 

and SARA (1998). Although the issue of selecting a seasonal adjustment method is far 

from being universally settled, a trend seems discernable. The model-based method 

has come of age and this may eventually lead to the replacement of the X I 1 paradigm. 

8.3. T H E NEED F O R P R E A D J U S T M E N T 

The model used, as already mentioned, is that of a linear stochastic process. Before 

this assumption can be made, some modifications to the series often are needed, that 

is, the series needs preadjustment. Some of these modifications are 

• Interpolation of missing values. 

• Outlier correction. 

• Removal of special effects, such as trading day and easter effects. The first refers 

to the difference in the number of weekdays per month; the second, to the location 

of the easter period in different years. 

• Correction for special events known a-priori. These effects will be referred to as 

"intervention variable" effects (Box and Tiao 1975). 

• Correction for the effect of other variables (examples can be national and regional 
festivities, or some indicator whose effect one wishes to remove). 

Those types of effects (including missing values), traditionally neglected or dealt 

with by some empirical procedure, can all be expressed as regression variables. In 

the MBSE approach, a convenient tool is the regression A R I M A model 

y, = νν,β+χ, (8.4) 

where y, is the observed series, W, is the matrix with rows the regression variables, 

β is a vector of coefficients, and x, follows a possibly nonstationary (NS) A R I M A 

model. [For the case of missing observations, an equivalent procedure is to leave 

them out of the likelihood, and estimate them with a fixed-point smoother; see Gomez 

et al. (1999)]. The series x, — y, — IV, β is the "linearized" series, in the sense that it 

can be assumed to be generated by a linear process. 

For the general case of possible missing observations and possibly NS x, series, 

estimation of model (8.4) has been discussed in previous chapters (see also Gomez 

and Maravall 1994). For this type of preadjustment to be operational in large-scale 
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use, it requires an automatic model identification and outlier correction procedure. 
At present, these requirements can be met in a straightforward manner. (Chapter 7). 
Two programs that perform preadjustment based on models of the type (8.4) are the 
programs REG A R I M A and T R A M O . 

In presenting the MBSE method we shall assume that the A R I M A model is known 
and that the observed series is a linear series. 

8.4. M O D E L SPECIFICATION 

We consider the additive decomposition (perhaps for the log of the series) 

x, = s, + n, (8.5) 

where s, denotes the SA series (the "signal") and n, the seasonal component (the 

"noise"). Often, the SA series is expressed as 

s, = p, + u, 

where p, is denoted the trend (or trend cycle) and u, is the irregular component. This 
last component is supposed to absorb highly erratic variation, often simply white 
noise. In so far as the main purpose of removing seasonality is to obtain a better 
signal of the underlying evolution of the series, and since the addition of white noise 
will hardly improve the signal, for the rest of the paper, we assume that the irregu-
lar component u, is white noise. Proceeding in this way, the trend is defined as the 
residual after removal of the seasonal and the white-noise components. It follows 
that an AR(2) factor associated, for example, with a 2-year cycle would be part of 
the trend, as would be an AR factor with a relatively small modulus. These factors, 
which cause short-term and transitory movements in pt can be separated from the 
trend, as in p, = m,+c,, where c, represents a stationary transitory component 
and m,, the smoother trend. What should enter c, and how smooth the trend should 
be depends on the analyst horizon. Until Section 8.11, our perspective will be a 
short-term use, and hence we consider short-term trends, also called trend-cycle com-
ponents. We shall refer to them simply as trends; their aim is to provide a smoothed 
SA series; the smoothing removes the noise and perhaps some, relatively small, 
autocorrelation. 

In the MBSE approach, the components are modeled as parametric linear stochastic 
processes, chosen so as to capture the spectral peaks associated with each component. 
Denote by Β the backward operator (such that B'x, = * , _ , , ) and let V = 1 — Β and 

S = \ + B-\ h β τ _ 1 denote the differencing and the annual aggregation operators, 
respectively ( τ = number of periods per year). The parametric model expressions can 
be rationalized as follows. 

A stochastic trend can be seen as the equilibrium relationships (8.2) or (8.3), 
that characterize a deterministic trend, perturbated every period by some random 
disturbance with zero mean and moderate variance. Thus (8.2) may become the 
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random walk-plus-drift trend model 

Vp, - μ + apl, ap, ~ niid(0, σ 2 ) 

while (8.3) could become the model V 2 /? , = apt or, more generally, the I M A (8.1) 
model V 2 p , — (1 + %pB)apt, all of them well-known models for the trend (see, e.g., 
Stock and Watson 1988, Gersch and Kitagawa 1983, Harvey and Todd 1983). More 
generally, one can think of models for the trend of the type 

φ ρ(Β) Vp, = %{B)ap, (8.6) 

where φ ρ (ΖΪ) and QP(B) are low-order polynomials, with all roots of QP(B) real, 
positive, and stable, and d = 1, 2, or, very occasionally, 3 (see Maravall 1993). 

Concerning the seasonal component, n,, condition (8.1), satisfied by a determin-
istic seasonal component, can be restated as Sn, = 0. Perturbating every period this 
equilibrium with zero-mean random shocks of moderate variance, a stochastic com-
ponent is obtained, with model 

Sn, = w, (8.7) 

where w, is a stationary process, often a finite M A . Examples can be found in Harvey 
and Todd (1983), Burridge and Wallis (1984), Gersch and Kitagawa (1983), Aoki 
(1990), and Kohn and Ansley (1987). More generally, one can think of models of the 
type 

φ „ ( β ) 5 η , = θ„ (β)α„„ αη, ~ niid(0, σ 2 ) (8.8) 

where the roots of φ „ ( β ) are associated with seasonal frequencies (see Maravall 1989). 
The irregular component is assumed to be white noise. When a separate stationary 

transitory component is included, we shall simply assume an A R M A expression 

<bc(B)c, - Qc(B)acl, ac, ~ niid(0, σ 2 ) . 

On some relatively rare occasions, the polynomial φ ε ( β ) has roots associated with 
a fixed-period cyclical component [examples are found in Crafts et al. (1989) and 
Jenkins (1979)]. In economics, however, the term cycle is often used to denote the 
seasonally adjusted and detrended series (see, e.g., Stock and Watson 1988). What 
is relevant to our purpose is that, while the very concepts of trend and seasonality 
imply a persistence or a regularity associated with nonstationarity, the transitory and 
irregular components are associated with stationary behavior. 

In general, if k components are present, the model will consist of the set of equations 

X l = X u + . . . + X k l (8.9) 

k(B)Xi, = θ , (β)α„ , i = l , . . . , * (8.10) 
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where φ , ( β ) and θ,(β) are finite polynomials in Β of orders p, and q-x, respectively, 

with no root in common and with all roots on or outside the unit circle, and the variable 

an is a (0, af) white noise. The following assumptions are made: 

Assumption A: The variables ait and α,,, i Φ j, are uncorrected for all values of 

( ' / ) . 

Assumption B: The φ, polynomials are prime. 
Assumption C: The Θ, polynomials do not share unit roots in common. 

Assumption A is based on the a priori belief that what causes, for example, seasonal 
fluctuations (weather, holidays) has little to do with what causes the evolution of the 
trend (productivity, technology). Of course, the assumption may be questioned on 
some applications [as an example, Ghysels (1994) finds possible correlation between 
seasonality and cycle for U.S. GNP] . Assumption Β seems sensible given that different 
components are associated with different spectral peaks [violation of the assumption, 
besides, would produce estimators with unbounded MSE; see Pierce (1979)]. Finally, 
assumption C guarantees invertibility of the model for x,. This last assumption could 
be relaxed, but it is rather innocuous and simplifies considerably notation. 

Since aggregation of A R I M A models yields A R I M A models, the series x, will 
also follow an A R I M A model, say 

φ ( β ) χ , = θ(β)α, (8.11) 

where a, is white noise with variance σ α

2 and φ(/3)—but not θ(β)—may contain unit 
roots. From (8.9)—(8.11), it is straightforward to show that the A R polynomial in the 
model for x, satisfies 

φ ( β ) = φ , ( β ) φ 2 ( β ) · · φ * ( β ) (8.12) 

and the M A one can be obtained from the relationship 

k 

θ(β)α, = Σ φ η ι ( β ) θ , ( β ) α „ (8.13) 
1 = 1 

where φη / (β ) is the product of all φ ; ( β ) , y = not including φ , ( β ) . [Thus, 

for example, φ„ ι (β) = φ 2 ( β ) • · · Φ*(#)·] 
The model consisting of equations (8.9) and (8.10), together with assumptions A , 

B, and C will be referred to as an unobserved component ARIMA ( U C A R I M A ) model. 
It will prove convenient to express the U C A R I M A model also in a more compact way, 
as the signal-plus-noise model (8.5), where s, is the signal of interest and n, groups 
all other components. 

The specification of the UCARIMA model has followed two main directions. 
As mentioned earlier, the STS approach starts by directly specifying the models for 
the components, thus avoiding identification problems; as a counterpart, it assumes 
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a particular structure for the time series at hand. (Identification of a component is 
typically ensured by restricting the order of its M A polynomial, , to be smaller than 
that of its A R polynomial, p , . ) 

To avoid possible misspecification problems, the A M B approach starts by identi-
fying the A R I M A model for the observed x,, and derives the components from the 
structure of that model. For the "trend + seasonal + irregular" components case, 
the A M B approach, in essence, does the following. Given the A R I M A model for 
the observed data (8.11), factorization of the A R polynomial yields the A R polyno-
mials for the component models, which are of the type (8.6) and (8.8). Most often, 
the model for the seasonal component is given by (8.5) with w, an M A process 
of order ( τ — 1), which is exactly the structure a seasonal component should have 
according to Roberts and Harrison (1984). If the spectra of all components are non-
negative the decomposition is called admissible. For a given observed A R I M A model 
(8.11), in general there is not a unique U C A R I M A representation that can gener-
ate it. The A R polynomials can be obtained from the factorization of φ ( β ) , but the 
Θ, polynomials and the innovation variances (σ? ) are not identified. The A M B ap-
proach solves this underidentification problem by, first, assuming q, < p,. Then it 
can be seen that the different (admissible) decompositions differ in the way white 
noise is allocated among the components (Hillmer and Tiao 1982, Bell and Hillmer 
1984). By adding all additive white noise to the irregular component, a unique de-
composition is achieved. This decomposition is termed canonical and, in it, all com-
ponents except the irregular have a spectral minimum of zero, and are thus nonin-
vertible. Hillmer and Tiao (1982) show that the canonical decomposition maximizes 
the variance of the irregular and minimizes the variance of the other component in-
novations, providing thus components as stable as possible given the model for the 
series. 

Although the specifications vary, the models in the STS and the A M B approaches 
are both UCARIMA-type models and are closely related (Maravall 1985). Table 8.1 
contains some examples of model specification for monthly series. Whereas in the 
STS approach the models for the components are parsimonious and the A R I M A 
model for the observed model is not, the inverse is true for the A M B approach. For 
the rest of the paper only the U C A R I M A structure is of relevance; the additional 
assumptions made to identify the particular models used for the components play no 
role. 

8.5. E S T I M A T I O N OF T H E C O M P O N E N T S 

Using the two-component representation of the U C A R I M A model, let s, be the signal 

of interest and n, the rest of the series ("the noise"). The model is given by equation 

(8.5), the models 

φ,(Β)ί , = Qs(B)a: (8.14) 

φ „ ( β ) η , = θ„(β)α, 'nl (8.15) 
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where asl and aM are white noises with variances σ 2 and σ 2 , plus assumptions A , B, 
and C of the previous section. 

The model for the observed series is given by (8.11) and the aggregation relation-
ships (8.12) and (8.13) become 

Our purpose is, given Χγ, a particular realization of the time series χ,, to obtain the 
estimator s, such that E [ ( J , - s,)2 | Xr ] is minimized, that is, the MMSE estimator of 
s,. Under the joint normality assumption, s, is also equal to the conditional expectation 
E(s, I XT), and hence, a linear function of the elements in Xj. 

The model-based signal extraction (MBSE) procedure consists of estimating the 
signal by its MMSE estimator with the U C A R I M A framework described above. Since 
nonnormality should have been dealt with at the preadjustment level, in this chapter we 
shall stick to the normality assumption. (When the series is not normal, the estimators 
remain the best linear projections.) 

8.5.1. Stationary case 

Rewrite the models in their M A expression as s, = (J j i (B)a J / ,n , = <i?„(B)ant, and 

x, = MB)a,, where ψ , ( β ) = β5(Β)/φ5 (Β), and similarly for ψ „ ( β ) and ψ ( β ) . 

Projection on a complete realization χ = [JC_OO · · · * « · · · * < » ] 

Let j , denote one of the components (hence j = s,n,p,u). For the rest of the chapter 
the ratio of variances σ? /σ^ will be denoted fc, (i.e., k, = σ2/σ2). Denote by F the 
"forward" operator, F = B~\ such that F>xt =x,+j. As shown in Whittle (1963), s, 
is obtained with the symmetric filter 

The filter ν (Β, F) is the so-called Wiener-Kolmogorov ( W K ) filter. 
Let ACGF(z) denote the autocovariance-generating function of the variable z, and 

gz(u>) its associated spectrum ( ω is measured in radians and defined in the interval 
- τ τ < ω < ττ). The filter can be expressed as 

φ ( Β ) = biBftAB) 

Q(B)a, = <\>„(B)es(B)as, + φ5(Β)%„(Β)αηι. 

. « M B ) i M F ) 

. ' Ψ(Β)ψ(Ε) 

(8.16) 

v(B,F) = 
ACGFiA) 

ACGF(x,) 
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or, in the frequency domain, as 

ΰ ( ω ) = 
g*(o>Y 

The function ΰ(ω) is also referred to as the gain of the filter. Thus, for the spectrum 
of the estimator of the signal 

& ( ω ) = 
& ( ω ) Ί 2 

* χ ( ω ) (8.17) 

so that the squared gain of the filter determines how the variance of the series con-
tributes to the variance of the signal for the different frequencies. Note that since 
gx(a>) = gs(i») + 2?π(ω), the gain can also be expressed as 

ΰ ( ω ) = ( l + - V ) 

where τ ( ω ) = g ί ( ω ) / f n ( ω ) is the signal-to-noise ratio. When for some frequency the 
signal dominates the noise, ΰ approaches 1; when the noise dominates the signal, ΰ 
approaches zero. 

For the two-component model we consider, the W K filter can be expressed, after 
simplification, as 

v ( B , F ) = kW)*n(B)»AFHn(F) 

HB)Q(F) 

Notice that invertibility of the model for x, guarantees convergence of the filter (in Β 
and in F) irrespective of the φ polynomials. 

Projection on a finite realization XT = [xi, *2> · · · . XT] 
Having already s,, the projection of s, onto X, we can now project s, onto the subset 
[ Λ : ι XT]- One way to do it (Cleveland and Tiao 1976) is by extending XT with 
backcasts and forecasts, and then applying the W K filter to the "extended series." 
The Burman-Wilson algorithm (Burman 1980) allows for the full projection to be 
efficiently computed with just a few forecasts and backcasts. Proceeding in that way 
yields s,]T =E( s , \XT). 

An alternative way of computing S,\T is by means of the Kalman filter (KF) ; see, 
Harvey (1993) or Anderson and Moore (1979). First, the model is put into a state-
space representation (many are available,) consisting of an observation equation, say, 
χ, = H'zi, and a transition equation of the type z , + ] = Fz, + Gv,, where the vectors 
zt and v,, and the matrices H, F, G have been appropriately defined. Then the KF 
is run with starting conditions derived from the marginal distribution of the variables 
in the model. Finally a smoother is applied (fixed point or fixed interval smoother) 



8.5. ESTIMATION OF THE COMPONENTS 217 

to obtain E(s, \ Χτ)- For stationary series, proofs of the equivalence between the 

W K filter and the KF can be found in Kailath (1976) and in Burridge and Wallis 

(1988). 

8.5.2. Nonstationary series 

Concepts such as a trend or seasonality inherently imply a time-varying mean as-

sociated with NS series. For example, the sum of the seasonal component over 12 

consecutive months should not be far from zero. The model-based expression of this 

condition is given by an expression of the type (8.7), which implies the presence of 

the S operator in the A R part of the model for the seasonal. The type of nonstationary 

we consider is the one associated with unit roots (UR) in A R polynomials, such as the 

ones implied for example by a Wi2(= V25) differencing. These roots will capture 

the NS behavior of trends and of seasonal components. 

Bell (1984) shows that under standard assumptions for computing A R I M A fore-

casts for NS series (Brockwell and Davis 1987), the W K filter given by (8.18) still 

provides the optimal (MMSE) estimator of the signal s, for the oo realization X in 

the NS case. For a finite realization Χγ, since Χτ is a subset of X, it follows that 

Ε(ί , \XT) = Ε[Ε(ί , IX) I X T ) ] = E(i, I X T ) , and the MMSE estimator of s, for the finite 

realization can be obtained by projecting s, onto Xj. This is equivalent to replacing 

the unknowns x, in X by their forecasts or backcasts (given the observations in XT). 

Further, the projection onto the finite series Χτ can still be obtained following the 

Burman-Wilson algorithm (Gomez 1999). 

The frequency domain representation of the filter remains also valid, with g(u>) 

denoting the pseudospectrum. Despite the oo peaks of g s ( io ) corresponding to UR 

in φ ι ( # ) , ϋ ( ω ) is everywhere well defined. In fact, (8.18) shows that υ ( β , F) is the 

ACGF of the stationary (finite variance) A R M A model. 

Q(B)y, = [ θ ί ( β ) φ „ ( β ) ] ^ , 

where b, ~ white noise (0, ks). The gain ΰ ( ω ) is thus the spectrum of this model. 

Extension of the Kalman filter approach to signal extraction in NS series poses 

a problem with starting conditions, since nonstationarity prevents the use of the 

marginal distributions. Several solutions have been developed; see for example, 

Harvey (1993), Ansley and Kohn (1985), de Jong (1991), and de Jong and Chu-

Chun Lin (1994). Very broadly, starting conditions are modeled as a random vector 

( a ) with an unknown distribution. A modified KF and a modified smoother is applied 

to the first observations to get rid of the starting conditions, after which the filter 

collapses to the ordinary KF and smoother. In brief, if ά denotes an assumed value 

for the starting conditions, the KF provides the estimator E(s, | XT, a). By assuming 

α be fixed and letting ά be a GLS projection of α onto Χτ, the conditional expec-

tation stated above becomes simply Ε( ί , | Χτ), that is, the estimator provided by the 

W K filter. Thus extension to NS components (and hence NS series) is, under both 

approaches, straightforward. As in the stationary case, if properly applied, the W K 

filter and the KF yield the same result [for a general proof, see Gomez (1999)]. The 
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W K approach is enforced, for example, in the programs PROPHET (Burman 1995) 

and SEATS. The KF approach is enforced, for example, in the program STAMP. 

8.6. HISTORICAL OR FINAL ESTIMATOR 

The W K filter given by (8.18) is symmetric and centered, convergent in Β and in F 
and, unless the observed model is a pure AR, the filter will extend from - c o to +oo . 
Convergence, however, guarantees that it can always be approximated by a finite 
two-sided filter. Although estimation uses the full filter, its finite approximation is 
useful for discussion. We assume that the W K filter (8.18) can be approximated by 
the (2L + 1) - term centered and symmetric filter: 

L 

v(B,F)=v0 + J2vj(BJ+Fj). (8.19) 

;'=i 

In practice, for seasonal adjustment, L typically expands between 3 and 5 years; 
trends usually converge faster. Therefore, when Τ > 2L + 1, final estimators can be 
assumed for the central observations of the series. 

8.6.1. Properties of final estimator 

From (8.16), (8.18), and (8.11), it is obtained that 

k(B)s, = ksQs(B) RR-RR a, (8.20) 
6 ( F ) 

or, in short 

φ , (β)5 , = es(B)as(F)at. (8.21) 

Thus the model generating s, is known. It will prove helpful to write (8.21) in the 
(symbolic) representation 

5, = &B, F)a, (8.22) 

where the weights of %S(B,F) can be obtained from the identity 

fciBWF) MB, F) = kA(BMF) 4>„(F) (8.23) 

see Maravall (1994). The filter £ j ( 5 , F ) is divergent in B, and convergent in F; only 
the part in F will be of relevance. 
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8.6.2. Component versus estimator 

As pointed out in Nerlove et al. (1979), the shape of the spectrum of the MMSE esti-
mator of a component in U C A R I M A models is different from that of the component. 
This is a consequence of the fact that, whereas the component s, follows model (8.14), 
its MMSE estimator s, follows model (8.21). Comparison of the two models shows 
that, although they share the same polynomials in Β and the same stationarity induc-
ing transformation, their ACGFs and spectra will be different. The most noticeable 
differences are the following. First, expression (8.17) can be rewritten as 

ft(a>) = ί^{) * , ( ω ) . (8.24) 

Since & ( ω ) / £ χ ( ω ) < 1, the estimator will always underestimate the variance of the 
component. Relatively more stochastic components will imply smaller underestima-
tion, and hence the estimator displays a bias toward stability. 

The second noticeable difference between the component and estimation spectra is 
the presence of "dips" in the spectrum of the estimator. In the usual case of a seasonal 
component satisfying (8.7), from (8.15) and (8.21), 

QS(F)S(F) 
as(F) = ks . 

Q(F) 

Thus the unit roots in 5 will show up as unit M A roots in the model generating s, and 
will produce spectral zeroes for the associated seasonal frequencies. The frequency 
domain derivation also explains the appearance of the spectral zeroes in the estimator 
model. Consider the case where the signal s, is the SA series and the noise is a NS 
seasonal component. Let ω 0 denote a seasonal frequency; then GJ(too) is finite, while 
GN(t»o) —> oo, and from (8.17) 

. . gsM2 

£s(f>o) = 
£Ί(ωο) + £ „ ( ω 0 ) 

will be zero. These spectral zeros are the frequency counterpart of the unit M A roots. 
More generally, the spectral zeros in the spectrum of the estimator of the SA series 
will be a feature of any method that removes a nonstationary seasonal component. 

The difference between the models for the signal and for its estimator has some 
relevant implications. The first one has to do with the standard practice of building 
models on seasonally adjusted data. This practice is based on the belief that, by 
removing seasonality, model dimensions can be reduced. Yet this belief is unjustified. 
While the model for the SA series s, is of the type (8.15), the estimator of the SA 
series, s,, has the structure (8.21), more complicated than the one for s, or x,. Table 8.2 
compares the M A expansions (the stationary transformation) of the three variables χ,, 
s,, and s, for the model V V I 2 J C , = (1 - AB)( \-.6Bn)a,,& relatively common model, 
and one for which A M B seasonal adjustment yields results similar to those of XI1 
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TABLE 8.2. MA Weights 

Lag Original Series SA SA Series 

1 -.4 -1.37 -1.33 
2 0 .39 .38 

12 -.6 0 -.40 
13 .24 0 .53 
14 0 0 -.15 
24 0 0 -.24 
25 0 0 .32 
26 0 0 -.09 

(Cleveland and Tiao 1976). As seen in Table 8.2, which lists only the lags for which 
there are some nonzero coefficients, relatively high coefficients may appear for large 
lags [as was actually detected in Ghysels and Perron (1993)]. Hence no reduction in 
dimension can be expected from using the SA series. 

As for the second implication, consider the difference between (8.14) and (8.21), 
that is, the factor as(F). Direct inspection shows that when n, is NS or J, noninvertible, 
as(F) will induce unit M A roots, and hence the estimator will be a noninvertible series. 
In particular, the estimator s, is nonivertible if n, is NS, and ht is noninvertible if s, is 
NS. Hence in a standard trend + seasonal + irregular decomposition, with NS trend 
and NS seasonality, the estimators of the three components, as well as that of the SA 
series, will be nonivertible. An important consequence of the previous result is that 
the estimators of the SA series, trend, seasonal and irregular components will not 
accept, in general, an A R (or VAR) approximation to its Wold representation. 

The third implication is that, in the MBSE approach, knowledge of the theoretical 
model for the optimal estimator offers a natural tool for additional diagnostics. To 
illustrate the point, we use as example the white-noise (0, σ2) irregular component. 
Proceeding as before, the model for its MMSE estimator it, is found to be the "inverse" 
model of the A R I M A model for the series (Bell and Hillmer 1984): 

e(F)u, = 4>{F)a'r (a',=kua,). (8-25) 

In practice, u, is obtained as the residual, once the other components have been 
estimated. If, in an application, the irregular is to be used for residual diagnostics, 
however, its ACF and variance should not be compared to those of the component u,, 
but to those of the theoretical estimator, given by model (8.25). Large departures from 
white noise in the ACF of ΰ, may be acceptable. Significant differences, however, 
between the theoretical and empirical ACF of w, would indicate misspecification. The 
structure of the differences, besides, may provide a clue as to the type of misspeci-
fication. For example, if the theoretical ACF of the stationary transformation of the 
trend has pi = - .4, positive autocorrelation for low lags in the empirical ACF would 
clearly point towards underestimation of the trend (Maravall 1987). 
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8.6.3. Covariance between estimators 

The models for s, and h, can also be used to derive the joint distribution of the 
estimators. In particular, the cross-covariance generating function (CCGF) for a sta-
tionary series is straightforward to obtain from (8.20) and the equivalent expression 
for <}>n(F)n,. It is seen that CCGF (s,, h,) is the ACF of the A R I M A model 

WB)y, = Qs(B)%(B)b, (8.26) 

with b, white noise, and σ£ = ksk„. Thus the CCGF is symmetric and the lag 0 co-
variance between the estimators will always be positive, despite the fact that the 
theoretical components are orthogonal. This positive covariance between the esti-
mators is the time domain explanation of the underestimation of the components 
covariance mentioned in Section 8.6.2. 

Expression (8.26) does not contain the A R polynomials φ5(Β) and φ„(Β). If, say 
, the first polynomial contains one (or more) unit root, we proceed as follows. First, 
replace this root by one with the same frequency and modulus m < 1, and denote by 
s,(m) the estimator obtained after having replaced the root. By defining 

CCGF(s,,n,) = lim CCGF(s,(m),ht), 
m - » l 

expression (8.26) is once more obtained. In this sense, in the standard case of NS 
trend and seasonal components, since the two estimators cannot be cointegrated (the 
unit A R roots are different), they will diverge in time, each one with a NS variance, 
but their covariance will remain stationary. In practice, thus, the crosscorrelation 
between the estimates of NS components will typically be small. Finally, as was 
the case with the autocovariances, comparison between the crosscovariances of the 
theoretical estimators and of the estimates actually obtained may provide an additional 
tool for diagnostics. 

8.7. ESTIMATORS FOR RECENT PERIODS 

The properties of the estimators have been derived for the final (or historical) estima-
tors. For a finite (long enough) realization, they can be assumed to characterize the 
estimators for the central observations of the series, but for periods close to the be-
ginning or the end, the filter cannot be completed and some preliminary estimator has 
to be used. Let the observed series be XT = [x\ • • • x, • • • χγ]- As shown by Cleveland 
and Tiao (1976), the MMSE signal estimator (given Χγ) can be expressed as 

ί,ΐτ· = v(B,F)xe

t]T 

where v(B,F) is the W K filter (8.18), and jc,^ denote the series extended with 

forecasts and backcasts. Seasonal adjustment of the time series Χτ = [Χ\,·-·, Χτ] 

yields the SA series [S\\T, -• • ,§τ\τ], where §J\T denotes the estimator of i , 
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obtained with XT. Using the finite filter approximation (8.19), assume that Τ >2L 

+ 1, so that the estimator for the central observations of the series can be considered 

final, and that the part in Β of the filter can be completed when applied to the last 

observation. (Thus, for the second half of the series we can ignore starting conditions 

and the estimator of the signal can be seen as the projection onto the semiinfinite 

realization [χοο,...,χΤ-\,χτ]·) This projection will be represented by the opera-

tor E,. 

We center on preliminary estimators for recent periods. Let k = T —1,0 < k < L; 

applying ET to expression (8.19), we obtain 

h-k\T - VLXT-L-k Η h VkXT + V k + 1 XT+\\T Η h VLXT+L-k\T 

or, since XT+J\T = T\J)XT + ^2)χτ-ι Η > m terms of the observations 

ST-k\T = 

L-k 

y'=i 

XT + 

L-k 

xT-i + · • 

and hence the preliminary estimator can be expressed as 

k 

sT-k\T =vk(B,F,k)xT-k = Σ vjkxT-k+j, 
j=-L 

where vk (B,F,k) is finite and asymmetric, of degree L in Β and k in F. The coef-
ficients vjk depend on k, as does the length of the filter. It follows that the models 
that generate the different preliminary estimators (S,\,, st\t+i> · · · . % + ί , - ι ) will all be 
different, different also from the model for the final estimator, given by (8.21), and 
from the model for the component, given by (8.14). Bell (1995) shows, for example, 
that the model for the concurrent estimator is always of the form 

φ!(Β)$φ = λ(Β)α, 

where the order of λ ( β ) = max(ps - \,qs).lt is worth noticing that estimators and 

component share the A R polynomial φ ^ Β ) , and hence the same stationary transfor-

mation. They differ in the M A part. 

As a consequence, the SA series available at a certain time, [ S n r , . . . , 

S,\T hir], are nonhomogenous. The elements at the beginning, at the end, and 

in the middle of the series are generated by different models; the SA series has a non-

linear structure, with time-varying parameters [for other nonlinearities in SA series, 

see Ghysels et al. (1996)]. 

As a simple example, consider the UCARIMA model with Vs, = as, and n, white 

noise (a "random walk-plus-noise" model). Trivially the model for x, is Vx, = 

(1 4- ΘΒ)α,, — 1 < θ < 0, and the parameters θ and σ β

2 are determined from 

(1 - ) - %B)a, =as, + Vn,. The model for the component s, is an IMA(l .O) ; the model 
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for the final estimator is, from (8.20), the A R I M A ( 1,1,0) model 

(1 + 9 F ) V i , =ksa, (8.27) 

while for the concurrent estimator the model is also an I M A (1,0), with the innovation 

a constant fraction of a,. 

8.8. REVISIONS IN THE ESTIMATOR 

8.8.1. Structure of the revision 

Starting with the concurrent estimator, s,\,, as new observations become available, 
the estimator of s, is revised, yielding the sequence (5,|,, s,\,+i,..., % + * , . . . ) . As 
k - > oo (in practice, k > L), ί, | , +* converges to st, the final or historical estimator. 
To look at the revision that the concurrent estimator will undergo, write expression 
(8.22) as 

S , = UB)-al + UF)+at+l. (8.28) 

When x, is the last observation, the first term in (8.28) contains the effect of the 
starting conditions and of the present and past innovations in the series. The second 
term reflects the effect of future innovations. Taking conditional expectations at time 
t, % = £,s(B)~a, and the revision in the concurrent estimator (s, - s,\,) is given by 

r, =UF)+al+l, (8.29) 

a zero mean stationary process. Hence the distribution of r, can be derived. Similar 
derivation applies to other preliminary estimators, st+k\t, including forecasts; see 
Pierce (1980). 

For the random walk-plus-noise example, from the identity 

1 1 

V ( l - f - e F ) 1 + Θ 

we can write, considering (8.27), 

\ \ - B \ + %F) 

s, = c 

1 6F 

1 - Β ~ 1 +0F 

where c = ks/(l + Θ). Therefore 
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and, from (8.29) 

(1 -I- QF)r, = a,, a', = -cQal+l. (8.31) 

Hence the revision r, has the ACF of a stationary AR(1) process. 

8.8.2. Optimality of the revisions 

Revisions in preliminary estimators are implied by the use of a two-sided filter, as in 

s, = r-ui*,_i +v0x, +t>|jr,+i +v2x,+2 -I · (8.32) 

Starting with the concurrent estimator, if the observations are [JCI , . . . , x,], then 

S,\, = •••+V0X, +ViXl+m+V2Xl+2\, + ••• (8.33) 

and when the new observation (x,+\) arrives, the revised estimator is 

+ l = · · · +VoX, + Υ Ι . Τ , + ι + V2*r+2 | l + L + · • · 

and so on. Two-sided filters are necessary to avoid phase effects; they are also implied 
by MMSE ("optimal") estimation of the components. Of course, to revise series is 
always disturbing and an inconvenience, and revisions can indeed be large [for a 
case study, see Maravall and Pierce (1983)]. But revisions simply reflect the fact that 
knowledge of the future will help in understanding the present, a very basic fact of life. 
(Concurrent estimators are, like "first impressions," usually insufficient for forming 
an accurate judgment.) Thus revisions are necessary, and to suppress them is to ignore 
relevant information, to refuse to improve our knowledge, and to distort our timing 
of events. 

From (8.32) and (8.33), the revision r, = s, - % can be expressed as 

00 

r, = υι(χ, + ι - xl+l\,) + V2(x,+2 - x,+2\i) Η = X ^ ^ e , ( j ) (8.34) 

where e, (j) is the j th-period-ahead forecast error of the series. This expression shows 

that the revision depends on the forecast errors and the weights of the W K filter. This 

justifies the interest in "small" forecast errors (in essence, the rationale behind the 

XI1 A R I M A modification of X I 1 ) , but revisions still depends on the vjs, which 

depend, in turn, on the stochastic structure of the series (i.e., on the A R I M A model). 

For some series, the revisions should be large; for other series, they should be small. 

Also, for some series the revisions will last long; for others, they will disappear 

quickly. Thus, for a given series, there is an appropriate amount of revision. The 

revision should not be larger than that, nor should it be smaller. 
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In the MBSE approach, the revisions are "optimal" (in terms of both, size and du-

ration) in the following way. They are implied by optimal (MMSE) forecasting, and 

optimal (MMSE) estimation of the components. Since the former implies minimum 

forecast errors, revisions will tend to be small. But the vague (and often made) rec-

ommendation of "small revisions" should be replaced by that of "optimal revisions," 

associated with optimal estimation of the components. 

8.9. INFERENCE 

8.9.1. Optimal forecasts of the components 

Similarly to the case of preliminary estimation, the it-periods-ahead forecast is given 

by 

h+k\T = · · VkXT +Vk-lXT+l\T -\ r V Q X T + k \ T Η + ViXf+k+L\T 

hence, in practice, one simply needs to further extend the series with some additional 

A R I M A forecasts. The properties of the forecast error «r+t - * Γ + * | Γ can be obtained 

in exactly the same way as the error in the preliminary estimator that we discuss in the 

next section. Since, on occasion, one may wish to forecast the trend rather than the 

original series, a convenient feature of the MBSE method is that it provides optimal 

forecasts of the components, as well as their associated MSE. 

8.9.2. Estimation error 

An issue of considerable applied concern has been to obtain a measure of the precision 

of the component estimator, in particular of the SA series (Bach et al. 1976, Moore 

et al. 1981; Bank of England 1992). This need is especially felt for key variables that 

are (explicitly or implicitly) being subject to some type of targeting (e.g., a monetary 

aggregate or a consumer price index). In these cases, intrayear monitoring and policy 

reaction is based on the SA series (e.g., see Maravall 1988). We consider now the 

precision of the concurrent, successively revised, and final estimators, and of the 

forecasts. Bell and Hillmer (1984), Burridge and Wallis (1985), and Hillmer (1985) 

have shown how to obtain standard errors for the component MMSE estimators in 

U C A R I M A models of the type we consider. Here we sketch how, under the semi-

infinite realization assumption, the models for the errors can be obtained and used in 

inference. 

Because of the stochastic nature of st, its final estimator s, contains an error, 

e, = s, — S, (=/5 — n,), to be denoted "final estimation error." Although e, is unob-

servable, it can be seen (Pierce 1979) as the output of the stationary A R M A model 

(8.26). Therefore the distribution of e, is easily obtained. Since the ACGF of e, is 

identical to the CCGF of the estimators s, and the final estimation error variance 

is equal to the lag 0 covariance between the estimators. 
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For the concurrent estimator, the one of most applied relevance, let rr = i r — $T\T 

denote the "revision error"; we already saw how its distribution can be obtained. The 

total estimation error, 8 7 - , is 

Since er and rr are orthogonal (Pierce 1980), the model for zT is immediately ob-

tained. The derivation of the model for the error in any preliminary estimator or 

forecast, e,|r = s, — s,\T can be done in an identical manner. From this model, the 

variance and ACF of the error can be obtained. 

For a given A R I M A model for the observed series, analytical expressions for the 

component estimation error as a function of the particular decomposition chosen is 

found in Maravall and Planas (in press). 

8.9.3. Growth rate precision 

Short-term analysis of the evolution of economic variables, as well as the setting of 

targets, is often based on rates of growth, rather than levels. Assume that we wish 

to obtain the MSE of the error in the concurrent estimator of the rate of growth 

over the last m months of a SA series. Since more often than not, A R I M A mod-

els are appropriate for the log of macroeconomic time series, let S, = SA series and 

s, = \og(St). The rate of growth of the SA series over the last m months is given by 

R, = (Si — St-m)/S,-m. Using the linear approximation Rt=s, — s,_m, the concur-

rent estimator of R, is R,\, = s,\, — s,_m|,. To compute the estimation error variance, 

consider the identity 

The left-hand side (LHS) is the difference between two concurrent estimators. Let 

ε, and e,_m be the associated estimation errors. We saw how to derive their variance 

and ACF. As for the RHS, the first term is A?,|,, and the second term is the m-period 

revision in the concurrent estimator. 

Replacing / by t - m in (8.28), letting i(F)+ = Y°°=o^jF^ a n d a Pp!y i n g t h e 

operators £,_m and Et yields, after simplification, 

ε Γ = sT - h\T = (sr - h) + (ST - $τ\τ) = eT +rT. 

— (Sl\t — 5 | _ M | ( ) + ( I , _ M | , — Si-m\t-i •m (8.35) 

m 

( = 1 

and the identity (8.35) can be rewritten as 

m 

(8.36) 
i = l 

Denote the error of interest by D, = R,\, - R,. Subtracting s, - s,-m from both sides 
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of (8.36) yields 

m 

h-m+i · (8.37) 

Because D, is a function of at+j, j > 0, the two terms on the RHS of (8.37) are 

orthogonal, and hence 

where p^, denotes the wi-lag autocorrelation of ε ; . Expression (8.38) can be derived 

from the U C A R I M A model; in the A M B approach, simply from the A R I M A model 

for the series. 

As an example, consider the random walk-plus-noise model, and assume that 

we are interested in σ 2 (£>,) for m = 1, namely, in the variance of the error in the 

measurement of the signal rate of growth for the last period. 

To compute (8.38), we need σ ε

2 , p^, and ξη· The models for the uncorrected r, 

and e, processes are (8.31) and, from (8.26), (1 + QF)e, =b,, with σ£ = kskn. From 

these two AR(1) models one trivially obtains σ 2 , y\, σ 2 , γ [ , where y* and y\ 

are the lag 1 autocovariances of e, and r,, respectively. Thus σ 2 = σ 2 + σ 2 , ρ*; = 

(yf + γ , Γ ) / σ 2 , and ξη is the coefficient in the expansion of (8.30), that is ξη = 

8.9.4. The gain from concurrent adjustment 

A point of concern for data-producing agencies is the frequency at which seasonal 

adjustment should be performed. Since concurrent adjustment is costly and implies 

changing the data frequently, seasonal adjustment is often performed once a year 

(or twice a year), and forecasted seasonal factors are used until the next seasonal 

adjustment is done. 

Naturally, the use of forecasted factors increases the MSE of the SA series, and the 

question of what would be gained in practice moving from a once-a-year adjustment 

to a concurrent one is important. The MBSE approach provides a simple answer to 

the question. From (8.28), it is seen that 

m 
(8.38) 

i=l 

- θ * , / ( 1 + β ) . 

MSE(s,+k]l-s,i,) = a^t>-j 
j=0 

where ξη, • . •, are the first k coefficients in the polynomial ^ (B)+. Thus the 

loss in precision due to the use of forecasted factors can be easily measured. 
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8.9.5. Innovations in the components (pseudoinnovations) 

If the UCARIMA model parameters are known and the semiinfinite realization is 
considered, then at, the 1 -period-ahead forecast error of χ, (= χ, — χ,\, _ ι ) , is eventually 
observed. But since s, and n, are never observed, neither will be as, and anl, the 
innovations in the components of the models (8.14) and (8.15). We refer to them as 
"pseudoinnovations" [Harvey and Koopman (1992) use the term "cuasi-residuals"). 
Although unobservable, their MMSE estimators can be obtained. Taking conditional 
expectations in (8.14) yields 

φ , (β ) ί ( = Qs(B)as, (8.39) 

where as, = Ε (a J ( \X) . Using (8.20), (8.39) can be expressed as 

. e , (F)4>,(F) 
as,=ks a,. (8.40) 

6 ( F ) 

Compared to (8.18), expression (8.40) shows that the filter that provides the MMSE 
estimator of the standarized pseudoinnovation ά5,/σ5 is the one-sided W K filter for 
obtaining st. In other words, ACF (as,/σ,) = vs(B, F ) ; therefore, although as, is white 
noise, the estimator ast can be highly correlated. Care should be taken thus when 
interpreting the series ast, for example, when testing for randomness of ast or for 
detecting outliers. For the semiinfinite realization, applying E j to (8.40) yields 

E ( F ) a i ( | T = ksQs(F)4>„(F)al]T 

where ά,\τ =a, when Τ > t, and 0 otherwise. Therefore, the concurrent estimators 
are given by aJ (|, = ksa,, and anl\, =k„at, so that both are a fraction of the series 
innovation. It is worth noticing that the models for the final estimation error, the 
revision error, the irregular estimator, and the p-innovation estimator, all have 6 ( F ) 
as the AR polynomial. As a consequence, as a general rule, large M A roots in the 
model for the observed series are associated with slowly converging revisions, and 
highly autocorrelated irregular and p-innovations. 

8.10. A N E X A M P L E 

We consider, as an example, the quarterly series of the Spanish industrial production 
index (IPI) for the period 1981/1-1997/1 (in reverse order, i.e., difference, from 
January 1997 to January 1981); the series is displayed in Figure 8.3a. To specify the 
UCARIMA model following the A M B approach we start with the A R I M A model for 
the observed series. A good fit is provided by the model 

V V 4 J C , = ( 1 - . 1 1 B ) ( 1 - . 9 6 Β 4 ) α , , (σα = 2 . 0 3 ) . 
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SPECTRUM 

FREQUENCY P' 

(C) TREND SPECTRUM (d) SEASONAL COMPONENT SPECTRUM 

FIGURE 8.3 IPI series and associated spectra. 

Direct inspection of the M A parameters indicates the presence of a fairly stochastic 

trend and a very small or very stable seasonality. In the factorization of the A R 

polynomial 

V V 4 = V 2 5 (S = 1 + Β + Β2 + Β3), 

the factors V 2 and S imply the presence of a trend and a seasonal component, respec-
tively. Therefore we can decompose the series into 

Xt = Pi + n, + u, 

where φρ(Β) = V 2 , φη(Β) = S, u, is white noise, and9p(B) ande„(B) are polynomials 

in Β of degrees 2 and 11, respectively, which satisfy the identity 

(1 - .11β)(1 - .965 4 )α, = 9p(B)Sapl + %(B)V2aM + V V 4 I I , . 

A simple and efficient procedure to obtain the canonical decomposition (with non-
invertible trend and seasonal components) is given in Burman (1980), using a partial 
fraction expansion of the model in the frequency domain. Easy procedures to compute 
the ACGF of an A R M A model and to factorize the spectrum of an M A model are given 
in Box et al. (1978) and Maravall and Mathis (1994), respectively. The U C A R I M A 
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model obtained is given by 

V2p, = (1 + .01Β - .99B2)ap, (kp = .19) 

Sn, = (1 + 50B - 35B2 - . 94β 3 )α„„ (*„ = .0001) 

and for, the irregular component^ = .30. Notice that θ ρ ( Β = —1) = 0, which implies 
a spectral zero for the trend at the IT (twice-a-year) frequency, while the seasonal 
component displays a spectral zero for a frequency between the two seasonal ones. 
Looking at the variance of the component innovations, it is clear that seasonality will 
be very stable, the trend fairly stochastic, and the irregular relatively important. The 
SA series, equal to (p, + u,), follows the model 

V 2 i , = ( 1 - 1.1Οβ + . 1 1 β 2 ) 0 1 ( (* , = .97), (8.41) 

which can be expressed as 

V 2 i , = (1 - .11B)(1 - .99B)asl 

and hence the model is seen to be very close to the random walk-plus-drift process. 
Further, since ks is close to 1, seasonal adjustment will not reduce much the stochastic 
nature of the series. The spectra of the series, the trend, and the seasonal component 
are displayed in Figures 8.3a-8.3d. 

From (8.18), the W K filters to obtain the final estimators of the SA series and 
seasonal component are given by 

v 1.(a,F) = . 9 7 I K , - , 1 ° B + n f i W 

v„(B, F) = .0001 

1 - . l l f i ) ( l - . 96 f i 4 ) | | 2 

||(1 + .5Qg - .35B 2 - . 9 4 g 3 ) V 2 | | 2 

||(1 - . l l f l ) ( l - . 96B 4 ) | | 2 

where, if ρ(Β) denotes a polynomial in Β , | | ρ ( β ) | | 2 = Q ( B ) Q ( F ) . The two filters and 
the associated squared gains are displayed in Figure 8.4. The narrowness of the dip 
for the gain function of the SA series and of the peak for the gain of the seasonal 
component reflects the fact that the seasonality in the series is of a highly stable nature. 

Using expression (8.20), the process generating the estimator of the SA series is 
given by 

(1 - .11F)(1 - ,96F 4 )V 2 s , = .97(1 - 1.10B + .1 I B 2 ) 

x ( l - 1.10F + . 11 F 2 ) S ( F ) a , . (8.42) 

The spectra of the SA series (* , ) and its estimator (s,) are shown in Figure 8.5a. It is 
seen how estimation induces spectral zeros for the seasonal frequencies, and hence 
noninvertibility of the estimator. The associated spectral dips imply a very small 
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(a) S E A S O N A L A D J U S T M E N T FILTER 

(b) S Q U A R E D G A I N O F S E A S O N A L 

A D J U S T E M E N T FILTER 

-0.01 

•0.02 

ι ι ι ι ι ι ι ι ρ 

lags frequency p l 

(c) F ILTER F O R S E A S O N A L C O M P O N E N T 

(d) S Q U A R E D G A I N O F F ILTER 
F O R S E A S O N A L C O M P O N E N T 

frequency P' 

FIGURE 8.4 Selected filters for the IPI series. 

underestimation of the variance of the seasonal component. In particular, from (8.41) 
and (8.42), Var(V 2 s,) = 2.17σ α

2, while Var(V 2 s ,) = 2.12σΛ

2. 

The spectrum of the irregular component estimator is shown in Figure 8.5b. Given 
that the theoretical irregular component is white noise, MMSE is seen to consider-
ably distort its spectrum. The variance underestimation is now more pronounced and 
Table 8.3 also exhibits the value of the lag 1 and lag 4 autocorrelations (pi and p 4 ) 
for the irregular component, its theoretical MMSE estimator, and the estimate actu-
ally obtained. (One year has been removed at both end of the series to decrease the 
distortion due to preliminary estimators.) 

MMSE estimation induces a negative and large lag 1 autocorrelation. Comparison 
of the theoretical estimator of the irregular with the estimate actually obtained (com-
puted as the residual) can be used as a diagnostic tool; the close agreement between 
estimator and estimate points toward validation of the results. 

T A B L E 8.3. Irregular Component: Comparison of Second Moments 

Component MMSE Estimator Estimate 

P I 0 -.44 -.52 

P 4 0 .02 .07 
Variance (in units of σ 2 ) .30 .16 .15 



232 SEASONAL ADJUSTMENT AND SIGNAL EXTRACTION 

(a) SPECTRUM OF MMSE ESTIMATOR OF 
ADJUSTED SERIES 

spectrum of estimator 
spectrum of component 

frequency '̂ 

(b) SPECTRUM OF MMSE ESTIMATOR 
OF IRREGULAR COMPONENT 

0.05 

0.025 

frequency 

FIGURE 8.5 Select spectra for the IPI series. 

Expression (8.26) can be used to derive the covariance between the component es-

timators. Table 8.4 displays the correlations between the (stationary transformations) 

of the estimators and of the estimates actually obtained. The correlations are, in all 

cases, negligible, the estimator and estimate provide, again, similar results. 

As for the estimation errors, the variance of model (8.26), particularized for the 

three components, yields the variance of the final estimation error. To look at the 

revision errors, the weights of the filter ξ ( θ , Ρ ) can be obtained through (8.23). 

Table 8.5 presents the estimation error variances of the trend and SA series, for the 

final and concurrent estimators. 
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Trend and Seasonal Seasonal and Irregular Trend and Irregular 
Component Components Component 

Estimator -.06 .03 -.04 
Estimate -.09 .08 .01 

Because of the close-to-deterministic nature of the seasonal component, the es-

timation error of the SA series, be that the final estimation error or the revision, is 

very small. The error in estimating the trend is larger because a relatively important 

irregular component has been removed. Still, the revision is of a moderate size, and 

the variance of the error in the concurrent estimator is approximately 20% of the 

innovation variance of the series. Concerning convergence of the revision, as is typ-

ically the case, the very small revision in the concurrent estimator of the SA series 

converges very slowly, while in just one year the trend has practically converged to the 

final estimator. The slow convergence of the SA series estimator to the final estimator 

suggests that very little would be gained from moving from a once-a-year adjustment 

to a concurrent one, and in fact the average decrease in root MMSE would be 1.5%. 

For this series, infrequent adjustment would imply little loss in precision for the SA 

series. 

Figure 8.6a displays the last 2 years of observations for the series and the next 2 

years of forecasts, with the associated 95% confidence intervals. Figures 8.6b and 8.6c 

exhibit for the trend and seasonal component, the estimates for the last 2 years and the 

forecasts for the next 2 years, together with the 95% confidence interval. Seasonality 

is seen to be highly significant and stable, and its forecast is fairly precise. As for the 

trend, although the forecasts are more precise than those of the original series, they 

deteriorate fast and would only be useful for short-term horizons. 

Finally, analysis of the short-term evolution of the series is based mostly on 

changes, not on levels. Expressions (8.29) and (8.26) permit us to obtain the ACGF of 

the revision and final estimation errors, from which, proceeding as in Section 8.9.3, it 

is straightforward to find that, for example, 90% confidence intervals for the quarterly 

change implied by the last observation are equal to (± .47) when the trend is used, and 

to (± .19) when the SA series is used. Further, if the present rate of annual growth is 

measured as the rate of change over a one-year period centered at the present month 

T A B L E 8.5. ESTIMATION ERROR VARIANCE (IN UNITS OF aj) 

Concurrent % Reduction in 
Final Estimation Revision Estimation Revision SE° after 

Error Error Error 1 Year of Data 

Trend .13 .08 .21 91 
SA series .01 .01 .02 4 

"Standard error. 

T A B L E 8.4. CORRELATION BETWEEN ESTIMATORS 
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FIGURE 8.6 Selected forecasts for the IPI series. 
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(a measure that uses two forecasts), the standard error of the annual rate of growth 

is 3.64 when measured with the original or the SA series, and 3.46 when mea-

sured with the trend. For longer spans, thus, the trend signal turns out to be more 

precise. 

8.11. R E L A T I O N S H I P W I T H FIXED FILTERS 

The MBSE approach we have outlined provides a rich procedure for the derivation of 
linear filters to estimate signals of interest, and fixed-type filters can often be seen as 
the result of a particular MBSE application, at least to a reasonable approximation. A 
well-known case is the approximation to the XI1 filter developed by Cleveland and 
Tiao (1976) and Burridge and Wallis (1984). The model found in these approximations 
for the aggregate observed series is broadly similar to a class of A R I M A models often 
found in practice, namely, those of the type VV| 2 -c , = θ(Ζ?)α,, where θ ( β ) displays 
moderately large negative values of pi and pi 2 . The spectral shape of this type of 
model presents the stylized features of the typical spectra of economic time series, as 
noticed by Granger (1966). Other model-based interpretations of some ad hoc filters 
can be found in Tiao (1983), Tiao and Hillmer (1978), King and Rebelo (1993), and 
Watson (1986). 

To illustrate this relationship, we consider a family of fixed filter of the low-pass 
type (aimed at capturing low-frequency signals, i.e., long-term trends), namely, the 
Butterworth family of filters, popular in electrical engineering (often in the one-sided 
expression). For the two-sided filter, the gain is defined by 

when based on the sine function (BFS), and by the same expression (8.43), with "sin" 
replaced by "tan," when based on the tangent function (BFT) . The filter depends on 
two parameters: coc, the frequency for which G(a> c )= j , and d = 1,2,3 . . . , where 
larger values of d produce sharper filters. 

The time domain expression of (8.43) has been obtained by Gomez (Gomez 2000). 
Using the identity 2 s in 2 (o/2) = (1 - β~' ω )(1 - eia), and replacing eia by Β yields 

where k = [2 sin 2(<i> c/2] - , i . It is easily seen that g(B,F) is the W K filter for estimating 
s, in the decomposition (8.5), with Vds, = as, and n, white noise (k = σ 2 / & 2 ) . For the 
BFT version of the filter, using tan2(co/2) = (1 - β - ' ω ) (1 - 0 / ( 1 + ί Τ ' ω ) ( 1 + <?'ω), 

(0 < ω < ττ) (8.43) 

g(B,F) = 
I + k[(l - Β)(ϊ - F)]d 
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the time domain expression becomes 

η 
— I 

g(B,F)=\l+k 
(1 - g ) ( l - F) 

(1 +B)(\ + F) 

which is the W K filter to estimate s, in the decomposition (8.5), with V ' i , = 
(\+B)dasl and n, white noise. Therefore, both versions of the Butterworth filter 
accept simple MBSE interpretations. Notice that the signal provided by the BFT will 
be "canonical" in the sense of displaying a spectral zero for ω = ττ. 

When d = 1, the BFS yields the "random walk-plus-noise" decomposition. When 
d = 2, from results in King and Rebelo (1993), the BFS yields the popular Hodrick-
Prescott (HP) filter (Hodrick and Prescott 1980). Since the HP was derived originally 
from the minimization of a function that attempts to balance the tradeoff between 
fitting and smoothness criteria, the example also illustrates the relationship between 
M A filters derived in this way and the MBSE method. It is worth noting that, although 
the same filter is obtained with the different approaches, only the MBSE one provides 
MSE of the estimators as well as forecasts, [for a more complete discussion, see 
Gomez (1999)]. 

8.12. SHORT-VERSUS L O N G - T E R M TRENDS; 
MEASURING E C O N O M I C CYCLES 

In the MMBE approach we have followed, the trend can be seen as a smoothed SA 
series, since it is obtained by removing additive white noise and perhaps some highly 
transitory effect as described in Section 8.4. As a consequence, the trend will, in 
general, have power over the range of cyclical frequencies (i.e., the range between 
the zero and the fundamental seasonal frequency). Trends of this type are also called 
trend-cycle components or short-term trends. 

From a long-term perspective, short-term trends are of little use since they will not 
separate the long-term growth from cyclical oscillations. In economics, the study of 
cycles is an important field, and a simple and standard way to estimate cycles has been 
by using some low-pass fixed filter, often the HP filter, to detrend an X I ISA series. 
As mentioned in the previous section, the HP filter can be seen as the minimization 
of an ad hoc function that attempts to balance fitting versus smoothing. It can also be 
seen as an optimal signal extraction filter in the U C A R I M A model 

where c, and b, are mutually orthogonal white-noise variables, with variances σ 2 

and o f t

2; the standard application of the filter to quarterly series sets σ 2 = 1600σ^. 
Algorithms to obtain the filter based on the minimization approach and on the Kalman 
filter estimation of the signal can be found in Danthine and Girardin (1989) and 

x, = m, + c, (8.44) 

V 2 /n, = b, (8.45) 
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(a) S Q U A R E D GAIN: HP FILTER 

frequency 

(b) SQUARED GAIN: CONVOLUTION O F HP A N D SA 
FILTER 

- H P and M B SA filters 
- H P and M B trend filters 

H P a n d X 1 1 S A filters 

frequency p i 

FIGURE 8.7 Squared gains of HP and SA Filters. 

in Harvey and Jaeger (1993), respectively. An alternative algorithm estimates the 
signal through the W K filter. First, it is straightforward to find that (8.44) and (8.45) 
imply that the observed series follows the model V2x, = QH(B)at, where QH = 1 — 
1.7771Β + .7994S 2, and σ 2 = 2000of. Denoting the HP filter to estimate the trend 
by HP(B,F) and applying expression (8.18), it is found that 

HP(B,F) = 
1 1 1 

2000 θ „ ( « ) 9H(F) 
(8.46) 

Trivially, the detrended series are obtained through the filter HC(B,F) = 1 — Hp(B,F). 
The squared gain of this last filter is displayed in Figure 8.7a. The filter is seen to 
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remove the variation associated roughly with the interval ωε[0, ττ/20], and hence will 
remove cycles with periods of 10 or more years. The numerical results obtained with 
the three algorithms are indistinguishable (Gomez 1999); the W K procedure is faster 
than the KF and considerably faster than the Danthine-Girardin procedure. The W K 
representation (8.46) is convenient for analytical discussion. 

The HP filter to compute the cycle cannot be applied to the observed series, since 
the seasonality would be included in the cycle. It needs to be applied to either the SA 
series or the (short-term) trend. Therefore, in general, the two-step estimator of the 
cycle can be written as 

c, = HC(B,F) v(B,F)x, = -n(B,F)x, (8.47) 

where HC{B,F) denotes the HP filter; v(B,F), the W K filter that provides the SA 
series or the trend; and r\(B,F), the convolution of the two. This last filter will be 
symmetric and centered, and using the model for χ,, given by (8.11), one can proceed 
with model-based analysis in a straightforward manner. 

The squared gain of the r\(B,F) filter that estimates the cycle is given by the 
continuous line in Figure 8.7b when the SA series are used, and by the discontinuous 
line when the trend is considered. The dotted line in the figure displays the squared 
gain of the convolution of the XI1 and HP filters. It is seen that the filter based on the 
trend is considerably more concentrated around the cyclical frequencies and ignores 
variation in the series of no cyclical interest. On the contrary, this variation would 
contaminate the cycle if the SA series is used as input. 

As seen in expression (8.17), if the previous squared gain is applied to the spectrum 
of χ,, given in Figure 8.3b, the spectrum of the cycle estimator is obtained. Figure 8.8a 
displays the spectra obtained with the three inputs; the dotted line corresponds to 
the one based on the X I I S A series, while the continuous and discontinuous lines 
correspond to the ones based on the model-based SA series and trend, respectively. 
They are seen to be similar in shape and the peak is associated, in the three cases, with 
a (roughly) 8-year cycle. The spectrum of the difference between the two cyclical 
components computed with the model-based SA series and trend is displayed in 
Figure 8.8b; it is close to a white-noise spectrum, and hence the cycle computed 
using the SA series is approximately equal to the cycle computed using the trend plus 
some additional noise. 

Figure 8.9a compares the cycle estimates obtained with the three inputs ( X l l 
was applied, in the XI1 A R I M A spirit, to the series extended at both ends with 3 
years of forecasts and backcasts). The difference between using the X I ISA series 
or the model-based SA one is seen to be minor. The difference between using the 
SA series or the trend cycle is, on the contrary, remarkable; the cycle estimator ob-
tained from the trend is considerably smoother. During the 65 quarters considered, 
the cycle based on the SA series crosses the zero ordinate line 21 times. The cy-
cle estimator based on the short-term trend behaves in a more sensible manner; it 
crosses the zero line only 7 times and cyclical periods are neatly defined. Figure 8.9b 
plots the MB short-term trend of Section 8.10 (equal to the seasonally adjusted and 
noise clean series) and the long-term trend obtained by applying the HP filter to the 
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FIGURE 8.8 Spectra associated with the cyclical component. 

previous short-term trend; the figure illustrates well the difference between the two and 

clearly indicates that the short-term trend is the signal of interest when looking at the 

quarter-to-quarter underlying growth of the series (i.e., the growth that results once 

the seasonal component and the noise have been removed). The long-term trend is of 

interest for a much larger horizon. 

The model-based structure can be useful in more ways, as seen in Kaiser and 

Maravall (in press). But even if analysts using an ad hoc filter have no model for 

the component in mind, they will still worry about revisions in the estimator (im-

plied by the two-sided structure of the filter). Because it considers a larger informa-

tion set, the final estimator will be more accurate than the concurrent one, and the 
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FIGURE 8.9 Trend and cycle estimated with different methods. 
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difference between the two estimators (i.e., the revision) can be considered an estima-
tion error. Proceeding as in Section 8.8, and assuming that the HP filter is applied to the 
short-term trend, from (8.46), (8.18), and (8.11), expression (8.47) can be rewritten 
in terms of the observed series innovations, as 

θ „ ( β ) 6 P ( F ) ( 1 - F 4 ) ( l - F) 
c,=k - - - a, = HB,F)a, (8.48) 

θ Η ( / 3 ) QH(F)HF) 

where k = .7994kp. It is straightforward to see that the revision in the preliminary 
estimator c,_^|, can then be expressed as 

dk,t =c, —c,-k\, = y^hk+ji 'l+j 

where invertibility of the denominator of (8.48) implies that the variance of dk,t 

can be computed using a finite number of terms. For the IPI example, the standard 
deviation of the revision error was computed for the estimator of the cycle based on 
the model-based trend. The 95% confidence intervals are shown in Figure 8.9c, from 
which two clear facts emerge: (1) even for a series with only 65 quarterly observations, 
historical estimation of the cycle is fairly precise; and (2) estimation for recent periods 
is unreliable. This poor performance is due mostly to the large revisions implied by 
the HP filter. One could exploit the model-based structure to obtain forecasts of the 
cycle (in a manner similar to that used in Section 8.9.1), but considering the size of 
the associated standard errors, these forecasts are of little interest. 
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role. Here volatility means conditional variance of the underlying asset return. There 
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3-month Treasury bills plays an important role in studying the term structure of U.S. 
interests. This non-uniqueness in definition is highly related to the fact that there 
is no direct measurement of volatility available. It also makes the evaluation of the 
accuracy of volatility forecasts difficult. 

In options markets, if one accepts the idea that the prices are governed by a statistical 
model such as the Black-Scholes formula, then one can use the actual prices to obtain 
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which in tum is based on some assumptions that might be hard to justify in practice. 
For instance, the well-known Black-Scholes formula is derived under the normality 
assumption. The implied volatility might be quite different from the actual volatility. 

In this chapter, we define volatility as the conditional variance of an asset return 
and discuss econometric and statistical models available in the literature to model the 
evolution of volatility over time. The models discussed include the conditional het-
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(GARCH) model of Bollerslev (1986), the exponential GARCH (EGARCH) model 
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model of Nicholls and Quinn (1982), and the stochastic volatility ( S V ) models of 
Melino and Turnbull (1990), Harvey et al. (1994), and Jacquier et al. (1994). We shall 
also discuss advantages and weaknesses of each volatility model. 
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Although volatility is not directly measurable, it has some basic properties that are 
commonly seen in asset returns: (1) there are volatility clusters, that is, volatility may 
be high for certain time periods and low for other periods; (2) volatility evolves over 
time in a continuous manner, that is, there does not appear to have volatility jumps; 
(3) volatility does not diverge to infinity, that is, volatility varies within some fixed 
range—in statistical terms, this means volatility is stationary; and (4) volatility seems 
to react differently to a big positive return and a big negative return. These properties 
play an important role in the development of volatility models. Some of the volatility 
models were proposed specifically to correct the weaknesses of the existing models. 
For example, the EGARCH model was developed to capture the asymmetry between 
big "positive" and "negative" asset returns. 

Let z, be the return series of an asset, specifically, ζ, = ln(/?,) — ln(/?,_i), where 
p, is the price of the underlying asset at time t. If the asset is a stock with dividend 
payment d,, then the return becomes z, = ln(p, + d,) — l n ( / 7 , _ i ) . Other definitions 
of return can also be used. Treating z, as a time series, it is informative to consider 
the conditional mean and conditional variance of zt given F,_i: 

μ, = £ ( z , | F , _ , ) , h, = Var(z,|F,_i) = £[(z , - ^,)2\F,-\] (9.1) 

where F, _ ι denotes the information set available at time t — 1. Typically, F, _ ι consists 
of all linear functions of the past returns. For simplicity, we assume that μ, = 0. In 
practice, if μ, φ 0, then one should obtain a time series model for z, and consider 
the mean-removed process ζ* = ζ, — μ,. 

All volatility models mentioned above are models for h, of (9.1). These models can 
be classified into two categories. The models in the first category use a deterministic 
function to govern the evolution of h,, whereas those in the second category use 
a stochastic equation to describe h,. The stochastic volatility models belong to the 
second category. 

9.1. T H E A R C H M O D E L 

The first model that provides a systematic framework for volatility modeling is the 
ARCH model of Engle (1982). The basic idea of ARCH models is that (1) the asset 
return z, is serially uncorrected, but dependent and (2) the dependence of z, can be de-
scribed by a simple quadratic function. Specifically, an ARCH(r ) model assumes that 

zt = \fh,tt, h, = an + « ι ζ 2 - ι Η r « / - z 2 _ r (9.2) 

where {e ,} is a sequence of independent and identically distributed (iid) random 
variables with mean zero and variance 1, a 0 > 0 and α, > 0 for ι > 0. The coefficients 
a, must satisfy some regularity condition to ensure that the unconditional variance 
of Zt is finite. In practice, e, is often assumed to follow the standard normal or a 
student-/ distribution. 
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(a) Percentage changes in exchange rate 

251 

time index 

(b) Squared series 

time index 

FIGURE 9.1 (a) Time plot of 10-min returns of exchange rate between the German deutsche mark and 
the U.S. dollar; (b) Squared returns. 

From the structure of the model, it is seen that large past squared return [z2_iYi=i 

imply a large conditional variance h, for the return z,. Consequently, z, tends to as-
sume a large value (in modulus). This means that, under the A R C H framework, 
large returns tend to be followed by another large return. Here I use the word 
"tend" because a large variance does not necessarily produce a large variate. It 
only says that the probability of obtaining a large variate is greater than that of a 
smaller variance. This feature is similar to the volatility clustering observed in asset 
returns. 

To see the ARCH effect, Figure 9.1 shows the time plots of (1) the percentage 
changes in deutsche mark/U.S. dollar exchange rate measured in 10-min intervals 
from June 5,1989 to June 19,1989 for 2488 observations and (2) the squared series of 
the percentage changes. Some significant percentage changes occurred occasionally, 
but there exist certain stable periods. Figure 9.2a shows the sample autocorrelation 
function (acf) of the percentage change series. Clearly, the series has no serial cor-
relation. Figure 9.2b shows the sample partial autocorrelation function (pacf) of the 
squared series of percentage changes. It is seen that there are some big spikes in the 
pacf. Such spikes suggest that the percentage changes are not independent and have 
some ARCH effects. 
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FIGURE 9.2 (a) Sample autocorrelation function of the return series of exchange rate and (b) sample 

partial autocorrelation function of the squared returns. 

9.1.1. Some simple properties of A R C H models 

To understand the ARCH models, it pays to study carefully the A R C H ( l ) model 

Zt = s/h~t€t, h, = an + ctiz2_, 

where oto > 0 and cti > 0. First, the unconditional mean of z, remains zero, because 

Ε ( ζ , ) = Ε [ Ε ( ζ , | ^ _ , ) ] = 0. 

Second, consider the unconditional variance of z,: 

Var(z r) = E(z, 2 ) = Ε [ Ε ( Ζ , 2 | F , _ , ) ] 

= E ( a 0 + Q t | Z 2 _ , ) = a 0 + a . E ( z 2 _ , ) . 

Because z, is a stationary process, E ( z 2 ) = E (z 2 _ , ) = Var(z f). Therefore, we have 

Var(z,) = α 0 + αϊ Var(z (), and Var(z,) = o t o / ( l — a j ) . Because variance must 

be positive, we need 0 < αϊ < 1. Third, in some cases, we need the higher-order 

moments of z, to exist and, hence, a t must also satisfy further constraints. For instance, 
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to study its tail behavior, we require that the fourth moment of z, is finite. Under the 

normality assumption of e, in (9.2), we have 

E(z 4 I = 3E(z 2 I F,-i) = 3 ( a 0 + « i Z 2 _ , ) 2 . 

Therefore 

E ( z 4 ) = E[E(z 4 I F , _ , ) ] = 3E(a 0 + a , z 2 _ , ) 2 = 3E[a 2 + 2a 0 a ,z 2 _ 1 + a 2 z 4 _ , ] 

from which, if z, is fourth-order stationary with /714 = E ( z 4 ) , we have 

/n 4 = 3 [a 2, + 2a 0 ai Var(z,) + α 2 / η 4 ] 

= 3α2, ( l + 2 y ^ - ) + 3a 2 m 4 . 

Therefore 

_ 3 o t g ( l + a i ) 
W 4 - ( 1 _ a i ) ( i _ 3 a 2 ) -

This result has two important implications: (1) since the fourth moment is positive, 

we see that αϊ must also satisfy the condition 1 — 3ct2 > 0; that is, 0 < a 2 < | ; and 

(2) the unconditional kurtosis of z, is 

E # ) = 3 α ο ( 1 + α ι ) χ d - « i ) 2

 = 1 - a 2

 > 

[Var(z,)] 2 ( 1 - α ! ) ( ΐ - 3 α 2 ) α 2 1 - 3α 2 

Thus, the tail distribution of z ( is heavier than that of a normal distribution. In other 

words, the z, under an ARCH( 1) model is more likely than under normality to produce 

"outliers". This is in agreement with the empirical finding that outliers appear more 

often in asset returns than that implied by an iid sequence of normal random variates. 

The above properties continue to hold for the general A R C H models, but the 

formulas become more complicated for higher-order A R C H models. The condition 

a, > 0 in equation (9.2) can be relaxed. It is a condition to ensure that the conditional 

variance h, is positive for all t. In fact, a natural way to achieve positiveness in 

conditional variance is to rewrite an A R C H ( r ) model as 

zt = y/h~,e,, h, = α 0 + Ζ ^ ; _ , Ω Ζ Λ , _ ι (9.3) 

where Z r , _ i = ( z r - i , . . . , z,~r)' and Ω is an r χ r non-negative definite matrix. 

The ARCH(r ) model in (9.2) requires that Ω be diagonal. Thus, Engle's model uses 

a parsimonious approach to present a quadratic function. A simple way to achieve 

equation (9.3) is to employ a random coefficient model for z,; see the C H A R M A and 

RCA models discussed later. 
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9.1.2. Weaknesses of A R C H models 

The advantages of ARCH models include properties discussed in the previous sub-
section. The model also has several weaknesses: 

1. The model treats "positive" and "negative" returns in the same manner, because 
it depends on the square of the previous returns. In practice, it is well known that 
for financial time series the prices respond differently to positive and negative 
returns. 

2. The ARCH model is rather restrictive. For instance, for the A R C H ( l ) model 
a 2 must be between [0, i ] if the series is to have a finite fourth moment. The 
constraint is even stronger for higher-order ARCH models. 

3. The ARCH model does not provide any new insight for understanding financial 

time series. They only provide a mechanical way to describe the behavior of the 

conditional variance. It says nothing about what causes such behavior to occur. 

4. ARCH models often over-predict the volatility, because they respond slowly to 

isolated large shocks to the return series. 

9.1.3. Building A R C H models 

A simple way to build an ARCH model consists of three steps. First, an A R I M A 
model is built for the observed time series to remove any serial correlations in the 
data. For most asset return series, this step amounts to remove the sample mean from 
the data if the sample mean is statistically significant. For simplicity, we continue to 
denote the mean-adjusted series by z,. Then, examine the squared series zf to check 
for conditional heteroscedasticity. Two tests are available here. The first test is to 
check the usual Ljung-Box statistics of z]\ see McLeod and Li (1983). The second 
test for conditional heteroscedasticity is the Lagrange multiplier test of Engle (1982). 
This test is equivalent to the usual F statistic for testing α, = 0 (i = 1 , . . . , it) in the 
linear regression 

where e, denotes the error term, k is a prespecified positive integer, and η is the 

sample size. Let SSRo = ΣΊ^+Μ2
 ~ V-)2< where μ is the sample mean of zf, 

and SSR\ = ΣΊ=ιί+\*η where e, is the least-squares residuals of the above linear 

regression. Then, we have 

which is asymptotically distributed as a chi-square distribution with k degrees of 
freedom. If the test is statistically significant, then conditional heteroscedasticity is 
detected. The third step of modeling is to use the pacf of zj to determine the ARCH 
order and to perform maximum likelihood estimation of the specified model. Using 

zf = a 0 + αιζ 2 _, Η + <*kZ2_k + e,, t = k + 1, 

F = 
(SSR0-SSR^/k 

SSRJin-lk- 1) 
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a pacf of zj to select the ARCH order can be justified as follows. From the model in 

(9.2), we have 

For a given sample, zj is an unbiased estimate of h,. Therefore, we expect that zf 
is related to z 2 _ , , . . . , zj_r in a manner similar to that of an autoregressive model of 
order r. Note that a single z 2 is generally not a good estimate of ht, but it can serve 
as an approximation that could be informative in specifying the order r. 

Under the normality assumption, the likelihood function of an A R C H ( r ) model is 

/ ( z i , . . . , z„ I a ) = f(z„ I Fn-\)f{z„-\ I F „ _ 2 ) . . . / ( z r + i | Fr)f(z\,..., zr I a ) 

where the marginal density function f(zi, • • ., zr I α ) is rather complicated. For sim-
plicity, one may drop the last term from this likelihood function, especially when the 
sample size is sufficiently large. This results in a conditional likelihood function as 

where h, can be evaluated starting with ft, as the sample variance of z, for ι < r. We 
refer to estimates obtained by maximizing the likelihood function shown above as the 
conditional maximum likelihood estimates (MLEs). 

9.1.4. An illustrative example 

In this subsection, we analyze the percentage changes of exchange rate between the 
deutsche mark and dollar in 10-min intervals. The data are shown in Figure 9.1a. As 
shown in Figure 9.2a, the series has no serial correlations. However, pacf of the squared 
series zj shows some big spikes, especially at lags 1 and 3. There are some large pacf 
at higher lags, but the lower-order lags tend to be more important. Following the 
procedure discussed in the previous subsection, we can specify an ARCH(3) model 
for the series. Using the RATS program with conditional MLE, we obtain a fitted 
model as 

where all the estimates are statistically significant at the 5% significant level, and 
the standard errors of the parameters are 0.46 χ 10~8, 0.0162, 0.0160, and 0.0147, 
respectively. 

h, = a0 + α ιζ 2 _, -I h a r z
2 _ r . 

h, = .22 χ 10" 6 + .328z2_, + .073z,2_2 + .103z2 

7 - 3 
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9.2. THE G A R C H M O D E L 

provided that the denominator of the above fraction is positive. 

The strengths and weaknesses of GARCH models can easily be seen by focusing 

on the simplest GARCH(1,1) model with 

Α ^ α ο + ο ι ζ , ^ , + β ι Λ , - ι , 0 < α,, β, < 1, (α, + β,) < 1. (9.6) 

First, a large z2_y or Λ,_ι gives rise to a large h,. This means that a large z 2 _ ι tends to 

be followed by another large z 2 , creating, again, the well-known behavior of volatility 

The ARCH model has another disadvantage as it often requires many parameters to 
adequately describe the evolution of volatility of an asset return. For instance, for 
the monthly return series of S&P 500 index, one needs an ARCH(9) model for the 
volatility. An alternative model must be sought. One such an alternative is called the 
generalized ARCH (GARCH) model of Bollerslev (1986). A time series z, follows a 
pure GARCH(r, s) model if μ, = 0 and 

r s 

z, = y/ΊΓ,ί,, h, = αο + Σ α,ζ 2_, + Σ Pjh.-j (9.4) 

ι = 1 j=\ 

where, again, (e,} is a sequence of iid random variables with mean 0 and variance 1.0, 
αο > 0 . « / > 0- β; > 0. and Y^r's\ai + β,) < 1. Here it is understood that a, = 0 
for i > r and β ; = 0 for / > s. The latter constraint on a, + β;· implies that the 
unconditional variance of z, is finite whereas its conditional variance h, evolves over 
time. In practice, e, is often assumed to be a standard normal or student t distribution. 
Equation (9.4) reduces to a pure ARCH(r ) model if s = 0. 

It is easier to understand properties of GARCH models by using the following 
representation. Let η, = ζ 2 - h, so that h, = ζ 2 - η,. By plugging = z 2_, - η,-,· 
(ι =0,...,s) into equation (9.4), we can rewrite the GARCH model as 

max(r. j) s 

ζ) = α 0 + Σ ( α < + ft^-i + Τι - Σ Μ<-;· (9-5) 

i=l j=\ 

It is easy to check that {η,} is a martingale difference series, that is, Ε(η,) = 0 
and Cov( t | , , η ( _ ; ) = 0 for j > 1. However, {η,} is in general not an iid sequence. 
Equation (9.5) is an A R M A form for the squared series z 2 . Thus, a GARCH model 
can be regarded as an application of the A R M A idea to the squared series z 2 . It is 
then clear that 
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clustering in the financial time series. Second, it can be shown that if 1 — 2a.2 — (αϊ + 
β , ) 2 > 0, then 

E ( z 4 ) = 3[1 - (a, + β , ) 2 ] _ 3 

[E(zj)f 1 - ( α , + β , ) 2 - 2 α 2 > 

Consequently, similar to A R C H models, the tailed distribution of a GARCH(1,1) 
process is heavier than that of a normal distribution. Third, the model provides a 
simple parametric form that can be used to describe the evolution of volatility. 

The literature on GARCH models are enormous [see Bollerslev et al. (1992,1994)], 
and the references cited therein. The model encounters the same weaknesses as the 
ARCH model. For instance, it responds equally to big positive and negative inno-
vations. In addition, recent empirical studies of high-frequency financial time series 
indicate that the tailed behavior of GARCH models remains too short, even using 
student t innovations. 

9.2.1. An illustrative example 

The identification of GARCH models in practice is not simple. Only lower-order 
GARCH models are used in most applications, say, GARCH(1,1), GARCH(2,1), and 
GARCH(1,2) models. The estimation of GARCH models can be done in the same 
ways as A R C H models. We use the RATS program to performance estimation. 

Example 9.1. In this example, we consider the monthly excess returns of S&P 
500 index for 792 observations, starting from 1926 (see Fig. 9.3). Denote the return 
series by z,. Figure 9.4 shows the sample acf of z, and the sample pacf of z 2 . The z, 
series has some serial correlations at lags 1 and 3, but the key feature is that the pacf 
of z,2 shows strong linear dependence. If an M A ( 3 ) model is entertained, we obtain 

Ζ, = βο + a, - θ ι α , _ ! - θ 3 θ , _ 3 

for the series. However, due to the program constraint in RATS, we shall use instead 
an AR(3) model 

Ζι = φΐΖ/_ι + φ2Ζ,-2 + φ 3 Ζ ί - 3 + βθ +<*,. 

The fitted AR(3) model is 

z, = .088z,_, - .023z,_2 - ·123ζ,_3 + .0066 + a„ σ2 = .00333. (9.7) 

For the GARCH effects, we shall use the GARCH(1,1) model 

h, = ot0 + βιΛι-ι + otia,2.,. 
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time index 

FIGURE 9.3 Time series plot of monthly S&P 500 excess returns. 
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FIGURE 9.4 (a) Sample acf of the monthly excess returns of S&P 500 index; (b) sample pacf of the 

squared monthly excess returns. 
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A joint estimation of the AR(3)-GARCH(1,1) model gives 

z, = .021z,_i - -034z,_2 - .013z,_3 + -0085 + a, 

h, = .000099 + .8476Λ,-, + .1219α,2_,. 

From the 2nd equation, the implied unconditional variance of a, is 

.000099 
= .00325 

1 - .8476- .1219 

which is very close to that of equation (9.7). However, t ratios of the parameters in 

the first equation suggest that all A R coefficients are insignificant at the 5% level. 

Therefore, we refine the model by dropping all A R coefficients. The refined model 

is 

z, = .0083 + a, 

h, = .00010 + .8470A,_i + .1221a2_,. 

The standard error of the parameter in the mean equation is .0015 whereas those 

of parameters in the 2nd equation are .00002, .0190 and .0201, respectively. The 

unconditional variance of a, is t _ g ^ ' ^ i = 00326. This is a simple stationary 

GARCH( 1,1) model. Note that the fitted model shows άι + β\ = .9691, which is close 

to 1. This phenomenon is commonly observed in practice and it leads to imposing the 

constraint cti + βι = 1 in a GARCH(1,1) model, resulting in an integrated GARCH 

(or IGARCH) model. 

Finally, to forecast the volatility of monthly excess returns of S&P 500 index, we 

can use the second equation. For instance 

h,+i = .0001 + .847Λ, + .1221a,2 

where a, is the residual of the first equation and h, is obtained from the 2nd equation, 

starting with ho = 0. 

9.2.2. Remarks 

An I G A R C H ( l . l ) model can be written as 

Z l =Ae„ Α, = α ο + βιΑ,_ι + (1 - β ι )ζ 2 _. 

where {e ,} is defined as before and 1 > βι > 0. For the monthly excess returns of 
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S&P 500 index, an estimated I G A R C H ( l . l ) model is 

z, = .0067 + a„ h, = .000119 + .8059Λ,_ι + .1941α,2_, 

where the standard errors of the estimates are .0017, .000013, and .0144, respectively. 
The parameter estimates are close to those of the GARCH(1,1) model shown above, 
but there is a major difference between the two models. The unconditional variance 
of at, hence of zt, is not defined under the IGARCH(1,1) model. This seems hard to 
justify for an excess return series. 

9.3. THE E X P O N E N T I A L G A R C H M O D E L 

To overcome some weaknesses of GARCH models in handling financial time series, 
Nelson (1991) proposes the exponential GARCH (EGARCH) model. In particular, to 
allow for asymmetric effects between positive and negative asset returns, he considers 
the weighted innovation 

*(€,) = θ€, + Ύ [ | 6 , | - Ε ( | € , | ) ] (9.8) 

where θ and -γ are real constants. Both e, and |€, | -E ( | € , | ) are zero-mean iid sequences 
with continuous distributions. Thus, E[g(e,)] = 0. The asymmetry of g(e , ) can easily 
be seen by rewriting it as 

, (* \ - ί ( θ + Ύ)ε, - Ύ Ε ( | € , | ) if e , > 0 
g ^ ' } } ( Θ - Ύ ) € , - - / E ( | e , | ) if e, < 0. 

An EGARCH(r, s) model can then be written as 

1— l + B i f i H b$sB
s 

l, = y/h,tt, 1η(/ι,) = α ο + , Ρ ' g ( e , _ , ) (9.9) 
1 - a.\B - • • · — arB

r 

where αο is a constant, Β is the back-shift (or lag) operator such that Bg(e,) = 
g(e ,_! ) and 1 + βι Β Η (- % Bs and 1 - aj Β arB

r are polynomials with 
all zeros outside the unit circle and have no common factors. Again, equation (9.9) 
uses the usual A R M A parameterization to describe the evolution of the conditional 
variance of ζ,, and some properties of the EG ARCH model can be obtained in a similar 
manner as that of GARCH models. For instance, the unconditional mean of Ιη(Λ,) 
is ao / ( l — Y^i=\ α <) · However, it differs from the GARCH model in several ways. 
First, it uses logged conditional variance to relax the positiveness constraint of model 
coefficients. Also, the use of g(e , ) enables the model to respond asymmetrically to 
positive and negative lagged values of z,. Some further properties of the EG ARCH 
model can be found in Nelson (1991). 
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To better understand the EGARCH model, let us consider the simple 

EGARCH(1,0) model 

(1 - o B ) l n ( A , ) = a 0 + g(6l_,) (9.10) 

where €,'s are iid standard normal and the subscript of α is omitted. In this case, 

E( |e , | ) = >/2/TT and the model for Ιη(Λ,) becomes 

(1 - a / ? ) l n ( A , ) = 
α . + ( θ + " / ) € , _ , if €,_i > 0 

α. + (θ - γ)6,_, if e,_i < 0 (9.11) 

where a, = cto — V(2/Tr)-y. This is a nonlinear function similar to that of the threshold 

autoregressive model ( T A R ) ofTong( 1978,1990). It suffices to say that for this simple 

EGARCH model the conditional variance evolves in a nonlinear manner depending 

on the sign of z,-i • Specifically, we have 

h, = Λ" , , exp(a.) 
exp [ (θ + Ύ ) ^ = ] if z,-i > 0 , 

ε χ ρ [ ( θ - γ ) ^ ] if z,_, < 0 . 

The coefficients (θ + Ύ ) and (θ — ·γ) show the asymmetry in response to positive 

and negative z,-\- Cao and Tsay (1992) use nonlinear models, including EGARCH 

models, to obtain multi-step-ahead volatility forecasts. 

9.3.1. An illustrative example 

Nelson (1991) applies an EGARCH model to the daily excess returns of the value-

weighted market index from the Center for Research of Security Prices for July 1962 

to December 1987. The excess returns are obtained by removing monthly Treasury 

bill returns from the value-weighted index returns, assuming that the Treasury bill 

return was constant for each calendar day within a given month. There are 6408 

observations. Denote the excess return by z,. The model used is as follows: 

z, - Φο + Φιζ(-ι + ch, +a, (9.12) 

1 + β β 
Ιη(Α,) = α 0 + ln(l + N,w) + -Ζ r r g ( e , _ , ) 

1 — α ϊ « — αιΒ1 

where A, is the conditional variance of a, given Λ', is the number of nontrading 

days between trading days t — 1 and t, ct0 and w are real parameters, and €, follows 

a generalized error distribution with probability density function 

i ; e x p [ - ( l / 2 ) | * / X n 
f M = χ2Ρ+'/»>Γ(1/υ) ' - ° ° < x < ^ 0<v<oo 
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T A B L E 9.1. ESTIMATED A R ( 1 ) - E G A R C H ( 2 , 1 ) MODEL FOR DAILY EXCESS RETURNS OF 

VALUE-WEIGHTED MARKET INDEX OF C R S P (JULY 1962-DEC. 1987) 

Parameter cto vu Ί Ot] c<2 β θ Φο Φι c υ 

Estimate -10.06 .183 .156 1.929 -.929 -.978 -.118 3.5-10-4 .205 —3.361 1.576 
Error .346 .028 .013 .015 .015 .006 .009 9.9· ΙΟ" 5 .012 2.026 .032 

where Γ ( . ) is the gamma function and 

_ r2< - 2 / "> r ( l / u ) l ' / 2 

λ L Γ(3 /υ ) . ' 

The parameter c in (9.12) is called the risk premium parameter. Table 9.1 gives the 
parameter estimates and their standard errors. The first equation of model (9.12) has 
two features that are of interest: (1) it uses an AR(1) model to take care of possible 
serial correlations in the excess returns and (2) it uses the volatility h, as a regressor to 
account for risk premium. This latter feature is related to the ARCH-M model, where 
" M " denotes that the mean of z, depends on its volatility. 

9.4. THE C H A R M A M O D E L 

Many other models have been proposed in the literature to describe the evolution of 
conditional variance h, in (9.1). We mention a model called conditional heteroskedas-
tic ARMA ( C H A R M A ) model that uses random coefficients to produce conditional 
heteroscedasticity; see Tsay (1987). The CHARMA model is not the same as the 
GARCH model, but the two models have similar second-order conditional proper-
ties. The C H A R M A model can be generalized to the multivariate case in a rather 
parsimonious manner. A simple C H A R M A model is defined as 

<KB)(z, - μ ) = HB)a„ h,(B)a, = η, (9.13) 

where φ ( β ) and Q(B) are the A R and M A polynomials of the usual stationary A R M A 
model, μ is the mean of ζ,, η,'β are iid N(0, σ 2 ) and δ , (β) = 1 - δ ] , β cV,,fir 

is a purely random coefficient polynomial in B. The random coefficient vector 8, = 
( δ ι , , , . . . , δγ,,)' is a sequence of iid random vectors with mean zero and nonnegative 
definite covariance matrix Σ. In addition, (δ,} is independent of { η , } . For r > 0, the 
conditional variance of a, in (9.13) is 

h, = σ 2 + ( α , _ ι , . . . , α , _ Γ ) Σ ( α , _ ! , . . . , α ,_ Γ ) ' , 

which is equivalent to that of an ARCH(r ) model if Σ is a diagonal matrix. Because Σ 

is a covariance matrix, it is nonnegative definite and, hence, ht > σ 2 > 0. For financial 

time series, it is common to see that d)(g) = θ ( β ) = 1 so that ζ, = μ-f a,. An obvious 
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difference between ARCH and C H A R M A models is that the latter uses cross-products 
of the lagged values of z, in the variance equation. The cross-product terms might 
be useful in some applications. For example, in modeling asset returns, the cross-
product terms denote interations between previous returns. However, the number 
of cross-product terms increases quickly and some constraints are often needed to 
keep the model simple. From a theoretical point of view, higher-order properties of 
C H A R M A models are harder than those of GARCH models, because it is harder to 
handle random coefficients than constant coefficients. 

For illustration, we employ the C H A R M A model 

ζ,=φο + α,, ( 1 - δ 1 , β - δ 2 , β 2 ) α , = η , 

for the monthly excess returns of S&P 500 index used before in GARCH( 1,1) study. 

The fitted model is 

zt = .00635 +a„ h, = .00179 + ( α , _ 1 ( α ,_ 2 )Σ(α ,_ ι , α , _ 2 ) ' 

where 

Σ = 
.1417(.0333) -.0594(.0365) 

-.0594(.0365) .3081(.0340) 

where the numbers in parentheses are standard errors. The cross-product term of Σ 

has a ί ratio of -1.63, which is marginally significant at the 10% level. If we refine 

the model to 

Zt = φ ο + α„ (1 -buB-b2,B
2-b},B

3)al = η, 

but assume that 83, is uncorrected with (δι,, hn), then we obtain the fitted model 

zt = .0068+a, , h, = .00136 + (α,_ι, α,_ 2, α ,_3)Σ(α,_ι , « , _ 2 , « , _ 3 ) ' 

where the elements of Σ and their standard errors, shown in parentheses, are 

Σ = 
.1212(.0355) -.062200283) 0 

-.062200283) .191300254) 0 

0 0 .298800420) 

All the estimates are now statistically significant at the 5% level. 

9.5. R A N D O M C O E F F I C I E N T A U T O R E G R E S S I V E ( R C A ) M O D E L 

In the literature, the RCA model is introduced to account for variability among differ-
ent subjects under study, similar to panel data analysis in econometrics and hierachical 
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models in statistics. We classify the RCA model as a conditional heteroskedastic 
model, but historically it is used to obtain a better description of the conditional mean 
equation of the process by allowing for the parameters to evolve over time. A time 
series x, is said to follow a R C A ( p ) model if it satisfies 

ρ 

z,=c + ]Γ(φ, + δ,,)ζ,_, + a, (9.14) 
i=l 

where ρ is a positive integer, (δ,) = { ( δ | , , . . . , δ ρ , ) ' } is a sequence of independent 
random vectors with mean zero and covariance matrix Eg, and (δ,} is independent 
of [a,}. See Nicholls and Quinn (1982) for further discussions of the model. The 
conditional mean and variance of the RCA model in (9.14) are 

ρ 
μ, = E(z, I F,_i) = ^ φ , ζ , - , 

I = l 

σ 2 = h, = σ 2 + ( ζ , - ι , . . . , ζ , _ ρ ) Σ δ ( ζ , - ι , . . . , ζ,-ρ)' 

which is similar to that of a C H A R M A model. 

9.6. S T O C H A S T I C V O L A T I L I T Y M O D E L 

An alternative approach to describe the evolution of volatility is to introduce an 
innovation to the conditional variance equation of z,. (Melino and Tumbull 1990, 
Harvey et al. 1994, Jacquier et al. 1994). The resulting model is referred to as a 
stochastic volatility (SV) model. Similar to EGARCH models, to ensure positiveness 
of the conditional variance, SV models use Ιη(Λ,) instead of h,. A simple SV model 
is defined as 

z, = y/h,it, ( l - α , Β (xrB
r)\n{h,) = a0 + v, (9.15) 

where e,'s are iid A/(0, 1), v,'s are iid N(0, σ 2 ) , {e ,} and {υ,} are independent, αο 
is a constant, and all zeros of the polynomial 1 — ΣΊ=ι a>^' a r e o u t s i d e the unit 
circle. Introducing the innovation v, makes the SV model more flexible in describing 
the evolution of A,, but it also increases the difficulty in parameter estimation. A 
quasi-likelihood method with Kalman filterting or Monte Carlo method is needed to 
estimate a SV model. Jacquier et al. (1994) provide some comparison of estimation 
results between quasi-likelihood and Monte Carlo Markov chain methods. 

The appendix of Jacquier et al. (1994) provide some properties of the SV model 
when r = 1. For instance, with r = 1, we have 

1η(/ι,) ~ Ν (γ-^—, 7~^~l) ~ N ( ^ ' " ( T h ) 
\ \ - αϊ 1 -<x\J 
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and E{z2) = βχρ[μΑ + 1/(2σΛ

2)], E(zf) = 3εχρ[2μ 2 + 2σ Α

2 ] , and corr(z 2, z, 2_,) = 
[exp(oA

2a',) - l ] / [ 3 e x p ( a A ) - 1]. Limited experience shows that SV models often 
provided improved fit in finite samples, but their contributions in forecasting volatility 
received mixed results. 

9.7. L O N G - M E M O R Y S T O C H A S T I C V O L A T I L I T Y M O D E L 

More recently, the S V model is further extended to allow for long memory in volatility, 
using the idea of fractional difference. A process is said to have long memory if its 
autocorrelation function decays at a hyperbolic, instead of an exponential, rate as 
the lag increases. The extension to long memory in volatility study is motivated 
by the fact that the autocorrelation function of the squared or absolute-value series 
of an asset return often decays slowly, even though the return series itself has no 
serial correlations; see Ding et al. (1993). A simple long-memory stochastic volatility 
( L M S V ) model can be written as 

z,=y/h,t1, s[ht = a e x p ^ , (1 - B)du, = η, (9.16) 

where σ > 0, e,'s are iid 7V(0, 1), η,'β are iid Λ/(0, σ 2 ) and independent of e,, and 
0 < d < 0.5. For such a model, we have 

In (ζ2) = 1η(σ 2 ) + u, + In ( e 2 ) 

= [ l n ( o 2 ) + £ ( l n € 2 ) ] + u, + [ i n ( e 2 ) - E(\nef)] 

= μ 4- u, + e,. 

Thus, the ln(z 2 ) series is a Gaussian long-memory signal plus a non-Gaussian white 
noise (Breidt et al. 1998). For applications, Ray and Tsay (2000) studied common 
long-memory components in daily stock volatilities of groups of companies classi-
fied by various characteristics. They found that companies in the same industrial or 
business sector tend to have more common long-memory components, such as large 
U.S. national banks and financial institutions. 
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C H A P T E R 10 

Nonlinear Time Series Models: 

Testing and Applications 

Ruey S. Tsay 
University of Chicago 

10.1. I N T R O D U C T I O N 

Nonlinear time series analysis has gained much attention in recent years, due primar-
ily to the fact that linear time series models have encountered various limitations in 
real applications and modern computers have provided advanced computational power 
which makes possible the nonlinear analysis. In addition, the development in nonpara-
metric regression has established a solid foundation for nonlinear time series analysis. 

Many nonlinear time series models have been introduced in the literature and 
shown to be useful in some applications. Consider parametric models. Granger and 
Andersen (1978) introduced bilinear models. Tong (1978, 1990) proposed the thresh-
old autoregressive model and demonstrated that the model is capable of describing 
the asymmetric limit cycle of the annual sunspot number. Haggan and Ozaki (1981) 
considered the exponential autoregressive model and showed that the model is useful 
in modeling sound vibration. Priestley (1980) considered state-dependent models as a 
general framework for nonlinear analysis. Hamilton (1989) proposed Markov switch-
ing models to model the business cycles of macroeconomic time series. The above 
models employ explicit parametric forms that can, at best, be regarded as rough 
approximations to the underlying nonlinear characteristics of interest. It is usually 
hard to justify a priori the appropriateness of such an explicit model in real applica-
tions. To overcome this justification problem and to make use of recent developments 
in nonparametric regression, researchers in nonlinear time series analysis begin to 
explore the possibility of using data-driven methods such as nonparametric density 
estimation to identify the underlying characteristics of a time series. For example, 
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Robinson (1983) investigates asymptotic properties of nonparametric density estima-

tion for time series data; Auestad and Tjcpstheim (1990) apply a multivariate kernel 

smoothing method to estimate the conditional mean and conditional variance of a 

nonlinear autoregression; Lewis and Stevens (1991) use the multivariate adaptive 

regression splines (MARS) of Friedman (1991) to build adaptive spline threshold 

autoregressive models; Chen and Tsay (1993a) employ an arranged local regres-

sion procedure to construct functional-coefficient autoregressive models; Chen and 

Tsay (1993b) use nonparametric techniques to build nonlinear additive autoregressive 

models. 

In the econometric literature, Engle (1982) proposes the conditional heteroscedas-

tic autoregressive (ARCH) model to capture the serial dependence in conditional 

variance of a time series. The model has attracted much attention since 1985 or so, 

and several generalizations of the model are available in the literature, such as the 

generalized ARCH (GARCH) model of Bollerslev (1986), the exponential GARCH 

model of Nelson (1991), and the conditional heteroscedastic autoregressive moving-

average model of Tsay (1987). These models have been discussed in Chapter 9. 

Even confined to nonlinearity in the conditional expectation, it is impossible to 

review and summarize available results in a single chapter. The goal of this chapter 

is, therefore, to focus on nonlinear models that I have used. In Section 9.2, we briefly 

review some nonlinearity tests. In Section 9.3, we focus on the threshold autore-

gressive models with some applications. Finally, we briefly discuss advantages and 

disadvances of some nonlinear models in Section 9.4. 

10.2. N O N L I N E A R I T Y TESTS 

On the basis of available results in the literature both in real data analysis and in simu-

lation study (e.g., Chan and Tong 1986b, Luukkonen et al. 1988), one can draw some 

conclusions concerning the performance of existing nonlinearity tests: (1) the idea of 

Lagrange multiplier tests seems to be powerful in detecting finite-order nonlinearity 

such as nonlinearity involving quadratic terms, (2) the idea of arranged autoregression 

is useful in spotting threshold nonlinearity, and (3) a test that uses the ideas (1) and 

(2) separately seems to suffer from power loss in detecting some types of nonlinear 

models. Consequently, it appears that we should combine ideas (1) and (2) in testing 

nonlinearity of a univariate time series. Such a combined test not only can overcome 

the weaknesses but is also able to retain the advantages of the individual tests. Moti-

vated by this observation, we suggest next a procedure for a nonlinearity test in time 

series analysis that uses added variables to detect nonlinearity of bilinear (BI) , expo-

nential autoregressive (EXPAR), and smooth threshold autoregressive (STAR) models 

and employs arranged autoregression to detect threshold nonlinearity (see Tsay 1991). 

10.2.1. The test 

Consider an autoregression of order m 

ζ, = Φο + <t>i2f-i Η V<bmZ,-m+at, f = l , 2 , ( 1 0 . 1 ) 
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where [a,} is a sequence of martingale difference with mean zero and variance σ α

2 > 0. 
It is well known that the ordinary least-squares estimates <i>, are consistent for φ, if z, is 
an AR(p) process such that ρ <m and the innovation process satisfies E(\ a, \h) < oo 
for some δ > 2, see Lai and Wei (1982). Therefore, the associated residual {a,} is 
asymptotically a white-noise process if z, is a linear AR(p) process. On the other hand, 
if z, is bilinear, then a, is related to y,_,a,_, for some ϊ and j . Consequently, to detect 
the possibility of bilinearity in zt one may apply the technique of added variables 
to the autoregression (lO.l)with some suitably chosen variables such as { z , _ , 5 , _ , } 
and {α,_,ά,_ί_ι ) for /' = 1 , . . . , m. The same idea applies to the EXPAR and STAR 
models. More specifically, for the EXPAR model, we consider the added variables 
zt-i exp(—zf_i/y) where γ is a normalization constant, such as y = max{| z,_i | } . 
For the STAR model of Chan and Tong (1986a) with delay parameter d, we use 
the added variables G(y,-d) and z,_,G(y,_d) where y,-d = (zt-d - zd)/Sd with z d 

and Sd the sample mean and standard deviation of z,-d, respectively, and G ( . ) is the 
cumulative distribution function (cdf) of the standard normal random variable. 

Consider next the self-exciting threshold autoregressive (SETAR) models of Tong 
(1978). Since the models are piecewise linear in the domain of the threshold variable 
zt-d, the traditional way of fitting an AR(/n) model is not useful, because the estimates 
φ, 's tend to show substantial fluctuation as data from different regimes are mixed to-
gether. To overcome this difficulty, the idea of arranged autoregression is useful. 
Roughly speaking, in an arranged autoregression the observed values of the "depen-
dent variable" and the associated "design matrix" are sorted according to the values 
of the threshold variable. By so doing, we effectively transform a SETAR model into 
a linear regression model with model changes at the threshold values. This makes the 
technique of sequential estimation useful. In particular, the (normalized) predictive 
residuals can be used to detect the threshold nonlinearity. For instance, Petruccelli and 
Davies (1986) use normalized predictive residuals to derive a CUSUM test, and Tsay 
(1989) employs the predictive residuals to obtain an F test for threshold nonlinearity. 
We refer to this F test as a TAR-F test. 

Putting the above two ideas together, we consider the following procedure for 

testing nonlinearity of a univariate time series: 

1. For a given delay parameter d, fit recursively an arranged autoregression of order 
m to z,, and calculate the normalized predictive residuals at fori = ft+1,..., n, 
where b is chosen so that the X'X matrix involved in the initial estimation is 
invertible. 

2. Regress a, on the regressors { 1 , z , - i , z , - m ] , { z » - i 5 r _ , - , άΓ_,ά,_,_ι | 1 < i < 
m), and { z , _ , exp ( - z 2 _ , / "y ) , G(y,-d), z,-\G(y,-d)}, where γ , y,-d and G ( . ) 
are defined as before, and compute the associated F statistic F. 

If zt is a stationary linear A R ( p ) process of order p<m, F follows asymptotically a 
F distribution with degrees of freedom 3(m + 1) and η — b — 3(m + 1). This result 
can be established along the same lines as in Tsay (1989). 

Some remarks on the proposed testing procedure are in order. First, like many 
Lagrange multiplier tests, the selection of the added variables is somewhat arbitrary. 
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For example, we use only one added variable specifically for EXPAR models and 
two for STAR models. We believe that these three variables should be sufficient for 
reasonable EXPAR and STAR models because the second-order terms used can also 
detect certain nonlinearity of EXPAR and STAR models. In applications, one may 
choose the added variables based on the substantive information of the process under 
study. Also, other cumulative distribution functions can be used in lieu of the cdf of 
the standard normal random variable. Second, the selection of order m can be done 
in various ways such as via the Akaike information criterion [AIC (Akaike 1974)] or 
via an inspection of the sample partial autocorrelation function. Third, the number of 
observations b used to start the recursive estimation may depend on the order m and 
the sample size n. Fourth, the recursive estimation can be done via various algorithms 
such as the recursive least-squares method and the Kalman filter. The Kalman filter 
appears to be preferable when there are missing observations in the data (e.g., Tong 
and Yeung 1991). Fifth, the normalization constant -y is not critical so long as the 
resulting exponents are not too large for most of the data points. Finally, when the 
delay parameter is unknown, one may apply the test to some predetermined values 
oid. 

10.2.2. Comparison and application 

We now apply the test of the previous subsection to various real and simulated data 
so that its performance can be compared with other tests. This comparison serves 
several purposes. First, it is intended to show that the proposed test can, indeed, detect 
nonlinearity of various models such as BI, EXPAR, STAR, and SETAR. Second, for 
a given alternative nonlinear models, it shows that the proposed test performs well as 
compared with other existing tests that are known to work well. Third, it illustrates 
the application of the new test to real data. 

Simulation 

All the simulation results reported are based on 1000 replications each with 100 
observations. Also, the A R order m is selected by AIC among {1,2,3,4}, b= 10 + m, 
and the delay parameter d = 1. For each realization of a given model, we generated 
3100 data points with zero starting values, that is, setting zt and a,, the innovation, 
equal to zero for t < 0; but only the last 100 points were used as observations. The 
a, 's are standard normal random variates obtained from the RNNOR subroutine of 
the IMSL package. 

Tables 10.1-10.5 give the empirical frequencies of rejecting a linear time series 
when the generating models are BI, EXPAR, logistic STAR, SETAR, and concurrent 
nonlinear, respectively. By concurrent nonlinear models, we meant models involving 
cross-products of the innovation a,. The nonlinearity tests used in the simulation 
are the original F test (Ori-F) of Tsay (1986), the augmented F test (Aug-F) of 
Luukkonen et al. (1988), the TAR-F test, the CUSUM test, and the proposed new 
F test (New-F). Notice that Ori-F and Aug-F are based on least-squares estimates 
of the full data set whereas the remaining tests are based on recursive estimates 
of an arranged autoregression of order m. From the results we make the following 
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T A B L E 10.1. EMPIRICAL FREQUENCIES OF REJECTING A LINEAR MODEL BASED ON 5% AND 

10% CRITICAL VALUES" 

Model β CV 6 Ori-F Aug-F TAR-F CUSUM New-F 

a -.6 5% 872 980 987 391 976 

10% 906 987 994 497 991 

a 0. 5% 50 53 52 61 44 

10% 100 106 98 113 83 

a 0.6 5% 859 970 924 949 968 

10% 898 982 953 973 991 

b -.6 5% 471 913 791 931 780 

10% 575 951 872 960 865 

"The generating models are bilinear given by (a) z< = 0.5ζ,_ι +βζι- ια<-ι +βι ; (b) Zi = α, -|-0.5α,_ι + 

'Critical value. 

T A B L E 10.2. EMPIRICAL FREQUENCIES OF REJECTING A LINEAR MODEL BASED ON 5 % AND 

10% CRITICAL VALUES" 

Φ β CV* Ori-F Aug-F TAR-F CUSUM New-F 

0.3 10.0 5% 126 283 269 826 999 

10% 203 422 367 951 999 

0.3 20.0 5% 196 395 208 903 991 

10% 267 506 277 956 993 

0.3 100.0 5% 90 189 183 976 784 

10% 115 258 244 984 833 

"The generating models are exponential AR given by ζ, = [ φ + ββχρ(—z?_,)ki-i +at. 

'Critical value. 

T A B L E 10.3. EMPIRICAL FREQUENCIES OF REJECTING A LINEAR MODEL BASED ON 5 % AND 

10% CRITICAL VALUES" 

βο Pi α CV* Ori-F Aug-F TAR-F CUSUM New-F 

-4.0 -.4 2.0 5% 620 886 338 374 566 

10% 722 934 473 497 696 

-2.0 0. 2.0 5% 78 496 191 326 373 

10% 152 664 293 479 644 

2.0 -.4 2.0 5% 736 675 738 594 501 

10% 830 783 821 696 642 

0.0 0. 2.0 5% 46 43 46 51 51 

10% 79 89 96 97 99 

"The generating models are logistic STAR given by z, = 1.0 — 0.5z,_i + (βο + β ι ζ ( _ ι ) 0 ( α ζ , _ ι ) -Ι-

'Critical value. 
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T A B L E 10.4. EMPIRICAL FREQUENCIES OF REJECTING A LINEAR MODEL BASED ON 5% AND 

10% CRITICAL VALUES" 

Φη Φι βο βι ω CV* Ori-F Aug-F TAR-F CUSUM New-] 

1.0 -.5 -1.0 -.5 0.0 5% 62 567 121 275 461 
10% 119 680 209 397 607 

2.0 0.5 0.5 -.4 1.0 5% 931 985 983 978 989 
10% 962 993 990 994 998 

0.0 0.5 0.0 0.5 0.0 5% 47 45 35 43 37 
10% 89 98 69 94 88 

0.0 0.5 0.0 -.5 0.0 5% 53 136 560 199 412 
10% 103 230 679 302 557 

"The generating models are SETAR given by z, = 

'Critical value. 

Φο +ΦΐΖ;-ι +a, if Z / - i < ω 
βο + βιζ,-ι +a, if ζ,-) < ω. 

observations: 

1. As expected, the New-F test appears to work well for all the cases considered. 

On the other hand, each of the other tests shows certain weakness. For example, 

Table 10.2 shows that TAR-F test is not powerful in detecting EXPAR models. 

This is in agreement with the finding of Luukkonen et al. (1988). 

2. The Aug-F, TAR-F and New-F tests all have good power in detecting bilinear 

nonlinearity. 

3. The CUSUM and New-F test work well for the EXPAR alternatives. 

4. The nonlinearity of logistic STAR models employed is relatively hard to detect 

(see Table 10.3). This is true for all the tests considered. 

5. The Aug-F test seems to work well when the nonlinearity is caused mainly 

by the difference in the constant terms (see row 1 of Tables 10.3 and 10.4). 

However, the test has relatively low power when the nonlinearity is not caused 

by constant terms (see the last row of Table 10.4). 

6. All the tests seem to have reasonable type I errors (see the case of linear models 

in Tables 10.1, 10.3, and 10.4). 

T A B L E 10.5. EMPIRICAL FREQUENCIES OF REJECTING A LINEAR MODEL BASED ON 5% AND 

10% CRITICAL VALUES" 

Model CV* Ori-F Aug-F TAR-F CUSUM New-F 

a 5% 211 209 76 135 216 
10% 306 295 138 234 288 

b 5% 239 308 453 154 447 
10% 331 403 554 213 537 

"The generating models are concurrent nonlinear given by (a) z, = a, + 0.5o,_i — 0.6a,a,-\; (b) z, = 
0.5z,_i -0.6ζ,_ια, +a,. 
'Critical value. 
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TABLE 10.6. Ρ values of Nonlinearity Tests on Real Data" 

Data TR η Ρ OF AF 

d = 1 d = 2 d = 3 or 8 

Data TR η Ρ OF AF TF CU NF TF CU NF TF CU NF 

Sunspot Raw 280 II .000 .000 .000 .000 .002 .000 .607 .000 .000 .573 .000 
Lynx Log 114 9 .003 .001 .015 .107 .062 .012 .000 .085 .041 .000 .015 
Lynx Raw 114 3 .000 .000 .002 .007 .000 .000 .009 .000 .000 .016 .000 
Blowfly Log 159 3 .000 .000 .000 .008 .002 .009 .018 .035 .000 .000 .000 
Blowfly Raw 159 2 .000 .000 .000 .064 .000 .000 .396 .006 .000 .000 .000 
Series A Raw 197 7 .828 .953 .455 .441 .244 .366 .597 .938 .746 .835 .504 
Series Β Diff. 368 1 .003 .001 .007 .039 .038 .842 .925 .861 .000 .750 .001 
Series C Raw 226 2 .700 .019 .983 .869 .455 .890 .976 .000 .747 .996 .007 

"In this table, OF, AF, TF, CU, and NF denote Ori-F, Aug-F, TAR-F, CUSUM, and New-F tests, respectively; 
TR stands for transformation; and ".000" indicates that the corresponding p-value is less than .001. The 
delay parameter d = 8 is used for the blowfly series. 

7. All the tests have relatively low power in detecting concurrent nonlinearity, 

which suggests that further investigation is needed in order to handle this type 

of nonlinearity. 

Applications 
We now apply the tests discussed earlier as well as the bispectrum test of Hinich 
(1982) and the DBS test of Brock et al. (1987) to some data sets that have been widely 
analyzed in the literature. Since the delay parameter is often unknown in applications, 
the set {1,2,3} or {1,2,8} was used as the possible values for d. These values have 
been used in the literature for the processes employed. Also b = [η/10] + ρ with ρ 
the A R order used and [h] the integer part of h. Table 10.6 gives the results of the 
tests. There ".000" denotes that the corresponding ρ value is less than .001. The data 
employed are (1) the annual sunspot series from 1700 to 1979, (2) the Canadian lynx 
series, (3) the observations from t = 48 to 206 of the blowfly population data used in 
Tong (1983) and Tsay (1988), and (4) series A - C of Box and Jenkins (1976). From 
the table we conclude the following: 

1. The results of the CUSUM test depend very much on the threshold variable z, -d • 

Consider, for instance, the sunspot series. The CUSUM test suggests linearity 

for d = 2 or 3, whereas the other tests indicate nonlinearity. 

2. All the F tests suggest that series A is linear, whereas sunspot, lynx, and blowfly 

series are nonlinear. 

3. For the first difference of series B, the use of delay parameter d = 2 fails to 

detect any nonlinearity. This is conceivable given the fact that the differenced 

series of a stock price is close to white noise. 

4. The Aug-F test and New-F test with d = 2 or 3 seem to suggest some nonlin-
earity in series C whereas all of the other tests suggest linearity. We interpret 
this as an indication that the nonlinearity is caused either by difference in 
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BDS Test Bispectrum 

Data TR η Ρ m = 2 m = 3 Normal Linear 

Sunspot Raw 280 11 NL NL NG L 
Lynx Log 114 9 L NL NG L 
Lynx Raw 114 3 NL NL NG L 
Blowfly Log 159 3 L L NG NL 
Blowfly Raw 159 2 NL NL G L 
Series A Raw 197 7 NL L G L 
Series Β Diff. 368 1 NL NL NG NL 
Series C Raw 226 2 NL NL G L 

"The parameters used in this table were given in the text; L and NL denote linear and nonlinear, respectively, 
G and NG denote normality and nonnormality, respectively, and TR stands for transformation. 

constant terms or by some STAR-type structure in the series, because both 

Aug-F and New-F tests are more sensitive to these two types of nonlinearity 

(see the simulation results of Tables 10.3 and 10.4). In fact, the outlier and level 

shift techniques of Chang et al. (1988) suggest that there are two level shifts at 

t = 58 and t = 61, respectively, and an innovational outlier at t = 60. After 

adjusting for these disturbances, all the tests fail to detect nonlinearity at the 

5% level. 

Table 10.7 gives the results of the Bispectrum and BDS tests by using 5% asymp-

totic critical values. For the Bispectrum test, the smoothing parameter Μ was deter-

mined by max{10, [v/n - 1]}, where η is the sample size, and the 80% fractile test 

was used. These values were used based on Hinich's suggestion. For the DBS test, 

each data set was properly filtered by fitting a linear A R ( p ) model before applying 

the test. The parameter m was 2 or 3, and e was set equal to one standard deviation 

of the prefiltered process. The simulation results of Hsieh and LeBaron (1988) suggest 

that these choices often give the best performance of the test. From the table, the BDS 

test tends to suggest nonlinearity whereas the bispectrum test indicates non-normality 

over nonlinearity for several series. 

More recent development in testing for threshold nonlinearity can be found in 

Hansen (1996) and the references cited therein. 

10.3. THE T A R M O D E L 

Next, we consider a specific nonlinear model with interesting applications. A TAR 

model is a piecewise linear autoregressive model. However, it is piecewise linear in 

the space of the threshold variable, not piecewise linear in time. See Tiao and Tsay 

(1994) for further details. A simple TAR model of a time series z, with threshold 

TABLE 10.7. Results of BDS and Bispectrum Tests on Real Data Using Asymptotic 5% 
Critical Values" 
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variable zt-d is denned as follows, where d is a positive integer and is referred to as 
the threshold lag. Partition the space of z ,_ d , the real line, by 

— OO = ro <
 r \ < · · ' <

 rg < rg+\ — OO, 

where the rn's are referred to as the thresholds and g is a positive integer. Then, an 
TAR model of order ρ for z, is defined as 

z, = dpo'0 + φ*Λ )ζ,_, Η + Φ ^ ζ , - ρ + e*,, for r » _ , < z ( _ r f < r*. Λ = 1 g 
(10.2) 

where the φ^ ' β are real numbers and {e* , ,} is a sequence of independently and 
identically distributed Gaussian random variates with mean zero and variance σΑ

2. For 
model(10.2), {€/,,,} and {€*,,} are independent if Λ φ k. The partition rj,_i < y,-d < rh 

is referred to as the h regime of the model. This model was first proposed in Tong 
(1978) and Tong and Lim (1980). It has gained some popularity because the model is 
capable of producing limit cycle, time irreversibility, and asymmetric behavior of a 
time series. For example, Potter (1995) applies the model to U.S. quarterly real GNP 
and finds that the threshold nonlinearity of the series cannot be completely explained 
by oil shocks, political business cycle, and discrete changes in Federal Reserve policy; 
Geweke and Terui (1991) consider a Bayesian analysis of the model. 

It is interesting to note that the stationarity of z, in (10.2) does not require all of 

the zeros of the polynomial φ ( Α ) ( β ) = 1 - φ, ΦΡ

Η)ΒΗ to be outside of the 
unit circle. On the contrary, limit cycles of an TAR model tend to result from certain 
alternations between explosive and contractive regimes. For necessary and sufficient 
conditions of stationarity for simple TAR models, see Petruccelli and Woolford (1984) 
and Chen and Tsay (1991). 

The TAR model in (10.2) is a self-exciting model because the model uses its own 
lagged value z,-d as the threshold variable. A general TAR model in fact can use other 
variable as threshold or use more than one threshold variables. Such generalizations 
are straightforward. 

10.3.1. U.S. real G N P 

To illustrate the usefulness of TAR models, we consider the series [Z,} of quarterly 
U.S. real GNP (in 1982 dollars) from the first quarter of 1947 to the first quarter of 
1991, a total of 177 observations. The data are obtained from the Citibase database 
and are seasonally adjusted. In our analysis, we focus on the growth rate, namely 

zt = I o g ( Z , ) - l o g ( Z , _ i ) 

so that there are 176 data points in the series. For simplicity, we shall not consider the 
minor seasonal behavior of the data commonly encountered in seasonally adjusted 
series published by the government. The growth series is shown in Figure 10.1. 
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1950 1960 1970 
year 

1980 1990 

FIGURE 10.1 Growth of U.S. quarterly real GNP from 1947.11 to 1991.1. The original GNP data were 
seasonally adjusted and in 1982 million dollars. 

For linear models, it is easily obtained that the AR(2) model 

fits the data well, where the standard errors of the parameters are .001, .075, and .076, 

respectively, and the residual standard deviation is .00986. The residuals of model 

(10.3) give the Box-Ljung statistic (2(12) = 10.1, indicating no serial correlations in 

the residuals. There are two possible outliers at t = 12 and t = 133. The magnitudes 

of these two possible outliers, however, are not substantial. 

In what follows, we adopt the TAR modeling approach of Tsay (1989) to specify a 

model for z,. To specify tentatively the threshold lag d, Table 10.8 gives the results of 

a threshold nonlinearity test based on arranged AR(2) autoregressions with possible 

threshold d e { 1 , . . . , 6 } . For each value of d, the data are arranged according to 

the order of zt-d- Then, predictive residuals from the arranged autoregression are 

regressed against the predictor variables, giving rise to an asymptotic F test for 

independence between the residuals and the predictors that would be consistent with 

TABLE 10.8. Threshold Nonlinearity Tests of U.S. Real GNP 

d 1 2 3 4 5 6 

Ftest 0.37 3.16 2.55 2.65 1.70 1.80 
ρ value .778 .026 .058 .051 .169 .150 

z, = .0041 + .33z,_! + .13z,_2 + e, (10.3) 
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linearity. From the table, it is seen that the linear model hypothesis seems untenable 

and that d = 2 is reasonable for the series as the corresponding ρ value is the smallest. 

To determine the number of regimes and the threshold values r/,'s, Figure 10.2 

shows the sequential t ratio of lag 2 A R estimate plotted against the threshold variable 

Zt-d in an arranged autoregression of order 2 and d = 2. Major changes in the slope 

of the t ratios suggest regime partitions. Thus, this plot indicates that the data can be 

partitioned into two regimes with a threshold at zt-i = 0.0. Therefore, we tentatively 

specify an TAR(2) model with two regimes separated by this threshold. Alternatively, 

Tsay (1998) uses information criteria such as the Akaike information criterion or 

the Bayesian information criterion (Schwarz 1978) to select the thresholds of a T A R 

model. With such a specification, we obtained the model 

( j ^ + c t f V . H | V 2 + t,,, i f Z , - 2 < 0 . 0 
z < = f 2 1 m m ( 1 0 · 4 ) 

l Φο2* + Φί 2 )Ζ.-1 + Φ ^Ζ ι - 2 + €2,, if Ζ,-2 > 0.0, 

where the numbers of observations are 37 and 137, respectively, and the parameters 

are 

Α Φ Π δ ί ά ) ΦΓ(βίά) 4>2'(std) Σ Ή 

1 -.0039(.0033) .44(.18) - .79(.33) .0120 
2 .0038(.0014) .31008) .20( . l l ) .0087 
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The TAR model in (10.4) fits the data very well. The normalized residuals, by taking 

into account the difference in residual standard deviations of the two regimes, give 

Q( 12) = 5.8. This model is close to that of Potter (1995), who uses a slightly different 

data span and includes an additional term z,-s in the model, which presumably is 

caused by the minor seasonal behavior mentioned earlier. 

The most striking feature of the TAR(2) model in (10.4) is that, by treating a 

negative growth in GNP as "contraction" and a positive growth as "expansion," we 

see that the economy behaves differently after "contraction" and "expansion." For 

example, the A R polynomial of the first regime has a pair of complex roots, indicating 

some cyclical behavior of the GNP after a contraction. On the other hand, the A R 

polynomial of the second regime has two real roots, showing that the economy tends 

to decay exponentially to some mean level after an expansion. 

To facilitate further discussion and to gain insight into the structure of the GNP 

data, we refine the TAR model in (10.4) by incorporating the relative size of z,_ ι with 

respect to z,-i, the threshold variable of the model. More specifically, we generalize 

the TAR(2) model in (10.4) to a four-regime TAR model with regimes shown in 

Figure 10.3. These four regimes have straightforward meaning: 

• Regime I: z,-\ < z<-2 < 0. This regime denotes a recession period in which the 

economy changed from contraction to an even worse one. 

• Regime II: z,-\ > z,-i but z,-2 < 0. Here the economy was in contraction, but 
improving. 

• Regime III: z,_i < z,-2 but z,-2 > 0. This regime corresponds to a period in 
which the economy was reasonable, but declining. 

z(t-2) 

in 
Regime III 

Regime IV 

S z(t-1i 

Regime 1 

Regime II 

—ι ι 1 1 1 

-1.0 -0.5 0.0 0.5 1.0 

FIGURE 10.3 Regimes of a TAR model for the growth series of U.S. quarterly real GNP: 47.11-91.1. 
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• Regime IV: z,_i > z,_2 > 0. This is an expansion period in which the economy 

was reasonable and became stronger. 

The resulting TAR model is 

- . 0 1 5 - 1.076z,_i + e,,, 

_ - .006 + .630z,_, - .756z,_2 + «2,/ 
Z t ~ .006 + .438z,_i + e 3 , , 

.004+ .443z,-i + e 4 , , 

where all the parameters have a / ratio greater than 2 in modulus except for the constant 

terms in regimes II and IV, for which the / ratios are — 1.35 and 1.32, respectively. The 

residual standard deviations are σι = .0062, σ2 — .0132,σ3 = .0094, and 04 = .0082. 

The numbers of observations in each regime are 6, 31, 79, and 58, respectively. It 

is gratifying to see that there were only six cases in the recession period, regime I. 

Furthermore, it was even more reassuring to see the negatively explosive nature of the 

model in regime I, which indicates that the economy usually recovers quickly from the 

recession period. In fact, there were only three occasions in which we had more than 

two consecutive negative growth in quarterly real GNP during the entire data span. 

The model of regime II is also interesting. Since zt-i > ζ , - 2 , ζ»-2 < 0 and the 

constant term is not statistically significant at the usual 5% critical value, the model 

tends to have positive conditional means, suggesting that the economy is more likely 

to grow continuously out of recession once a recovery has started. The two models in 

regimes III and IV are relatively close. They indicate a general positive mean level for 

the U.S. GNP during expansion periods. Also, with an autoregressive coefficient of 

about .44, these two models imply an average growth rate of approximately between 

2.9 and 4.3% per year. 

10.3.2. Postsample forecasts and discussion 

To compare the linear and the TAR models in (10.3)—(10.5) for describing the GNP 

growth, we consider out-of-sample forecasts of these three models. The comparison is 

based on mean-squared errors of forecasts and is performed according to the following 

procedure: 

1. Consider the 60 subseries (z\,..., Ze) for i = 104, . . . , 163 of the data. 

2. For each subseries, estimate the parameters and compute out-of-sample fore-

casts of 1 to 12 steps ahead and the associated forecast errors. For the TAR 

models, multi-step ahead forecasts are obtained via simulation of 2000 reali-

zations at each step. The mean of these 2000 realizations is treated as a point 

forecast. 

3. For 1-12-step-ahead forecasts, compute the mean-squared errors of forecast 

according the regimes of the TAR models. 

regime I 

r e g i m e " (10.5) 
regime III 

regime IV 
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Regime I Ratio, Reg. 1,14 pts 

d 1 2 3 4 5 6 7 8 9 1011 12 1 2 3 4 5 6 7 8 9 1011 12 

FIGURE 10.4 Mean-squared error of out-of-sample forecasts for a two-regime TAR model and linear 

AR(2) model. 

Figure 10.4 shows the comparison between the two-regime TAR model in (10.4) and 
the linear AR(2) model in (10.3), where both the mean-squared errors of forecasts and 
their ratio (TAR/linear) are given. For mean-squared errors the solid line corresponds 
to the linear AR(2) model. From the plot, it is seen that the two-regime TAR model 
performs better than the linear model, especially in Regime 1 and the cases of 2-4-
step-ahead forecasts. The gain of TAR model in the second regime is rather small. 
Figure 10.5 gives the corresponding comparison between the four-regime TAR model 
in (10.5) and the linear model in (10.3). From the plots, it is clear that the TAR 
model outperforms the linear model by a substantial margin in short-term forecasts 
at regimes I and II. The ratio of the 1-step-ahead forecast in regime I is as low as 
.25. This result shows strongly that the TAR model describes the dynamic behavior 
of the real GNP much better than does the linear model when the U.S. economy is 
declining. 

Discussion 

The comparisons presented above suggest that the TAR models, by their piecewise 

linear nature, can capture the asymmetric behavior of the real GNP during recession 

and expansion periods whereas the linear A R model can reflect properties of only 

the "majority" of the data. In this particular instance, the case of z,-2 > 0 has most 

of the data points (137 out of 176) so that the linear model built is close to that of 

the second regime of the TAR(2) model in (10.4). Consequently, the TAR model 

can gain forecast accuracy when the GNP is in the first regime. This also appears 

to be the reason underlying the success of the 4-regime TAR model in (10.5). Such 



10.3. THE TAR MODEL 281 

Reg. 1,2 pts Reg . I, T A R / L I N 

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 

Reg. I I , 12 pts Reg . I I , T A R / L I N 

= 1 2 3 4 5 0 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 1 2 

Reg. IV, 21 pts Reg . IV, T A R / L I N 

1 2 3 4 5 6 7 8 9 10 11 12 ° 1 2 3 4 5 6 7 8 9 10 11 12 

FIGURE 10.5 Mean squared error of out-of-sample forecasts for a four-regime TAR model and linear 
AR(2) model. 

a conclusion appears to be obvious; nevertheless, it highlights the contribution of 
nonlinear time series analysis. Further, the success of T A R models in describing 
the real GNP data indicates clearly that the economy does not follow a simple linear 
model. The explosive model in regime I of model (10.5) provides convincing evidence 
that there is asymmetry in the economy. This result has various implications: 

1. By considering the implied predictive distributions (or simply the conditional 

distributions) of the TAR model in (10.5), we see that the probability of growing 

out of a recession is different from that of getting into one. Thus, the model via 

a different route supports the finding of Hamilton (1989), who uses a Markov 

switching model to show that the transition probability from recession to ex-

pansion is different from that from expansion to recession. 

2. The regime partition of the TAR model in (10.5) enables one to use it to provide 

probability assessment of turning points in the U.S. economy. This point might 

be of interest in its own right. 

3. Since only the model of regime II in model (10.5) has a pair of complex roots, 

the model suggests that business cycles, if any, in quarterly real U.S. GNP are 

rather weak. 
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4. The TAR result obtained in this chapter is in agreement with Diebold and Rude-

busch (1990), who investigate duration dependence in the American business 

cycle. 

5. Our analysis enhances the finding of Potter (1995) that linear models can easily 

overlook certain dynamic behavior of an economic time series. 

6. It is interesting to see that all except one of the six points in regime I of the 

four-regime TAR model are in the second quarter. The fact that those data in 

the second quarter behaved differently from the others might explain the result 

obtained in Ghysels (1991). 

7. Finally, TAR models similar to those used in this chapter were employed more 

recently by Martinez and Espasa (1998) to compare behavior of quarterly gross 

demostic product (GDP) between the United States and Spain with interesting 

and insightful results. 

10.4. C O N C L U D I N G R E M A R K S 

In this chapter, we considered a general test procedure for detecting nonlinearity in a 

univariate time series and demonstrated nonlinear application by using the threshold 

autoregressive models. As mentioned in the introduction, many other nonlienar mod-

els are available. See Tong (1990) for a good summary of nonlinear models. Here 

we shall discuss advantages and disadvantages of some nonlinear models. First, the 

GARCH models and stochastic volatility models are widely used to describe the evo-

lution of conditional variance of a security return. See Bollerslev et al. (1992) for a 

review of GARCH models and Jacquier et al. (1994) for stochastic volatility models. 

These models can produce the heavy tails commonly seen in financial time series. 

The stochastic volatility models often provide better fit in applications. However, no 

definite conclusions can be drawn between the two classes of model in out-of-sample 

forecasting comparison. A somewhat unsatisfactory feature of these models is that 

a fitted model may depend heavily on a small number of data points. Second, bi-

linear models are basically symmetric models in the sense that they cannot produce 

asymmetric limit cycles. The threshold models, on the other hand, are capable of 

modeling asymmetric business cycles. The Markov switching models of Hamilton 

(1989) can also produce asymmpetric cycles. However, maximum likelihood esti-

mation of the Markov swiching models can be difficult. My own experience shows 

that in most applications a three-state switching model is needed. The probability 

transition matrix then involves many parameters, making the model even harder to 

estimate. Third, there is substantial interest in using smooth transition autoregressive 

(STAR) models, especially among econometricians. These models have a continuous 

conditional expectation and can also describe asymmetric limit cycle (Granger and 

Terasvirta 1993). However, it is hard to obtain efficient estimates of the transition 

parameters. Most, if not all, examples shown in the literature have large standard 

errors for the estimated transition parameters. The threshold model can be modified 

to have a continuous expectation. The modification raises some interesting features 



REFERENCES 283 

between discontinuous and continuous threshold models. See Chan (1993) and Chan 
and Tsay (1998) for asymptotic properties of conditional least-squares estimators of 
the threshold. Fourth, the state-dependent model of Priestley (1980) is general, but 
not easy to use in practice. 
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Bayesian Time Series Analysis 

Ruey S. Tsay 
University of Chicago 

11.1. I N T R O D U C T I O N 

Estimation and model selection are two main components of time series analysis. 
There are many results available in the literature that concern parameter estimation of 
a given model and model selection within a specified class of models. For example, 
the exact maximum likelihood method was widely investigated in the 1980s for 
autoregressive moving-average ( A R M A ) models (e.g., Ansley 1979, Jones 1980, 
Hillmer and Tiao 1979), and the conditional least-squares approach was proposed for 
nonlinear models (e.g., Tong 1990 and references cited therein). For model selection, 
some popular model selection criteria such as AIC and its variants are commonly used 
to select the order of an autoregressive process or a threshold autoregressive models 
(see, e.g., Priestley 1981, Brockwell and Davis 1991, Tong 1990). 

There is, however, no unified approach or program that can be used to estimate 
most of the linear and nonlinear models considered in the literature. For example, 
special packages are needed to apply bilinear models, threshold models or Markov 
switching models. Furthermore, there is little discussion of model selection across 
different classes of nonlinear models. Much work on model selection in the literature 
focuses on nested models for which the traditional maximum likelihood ratio tests 
or Largange multiplier tests or information criterion functions apply. For non-nested 
models, model discrimination becomes much more involved, especially when the 
competing models are nonlinear. In the time series literature, Li (1993) adopts the 
idea of separate families of hypotheses of Cox (1962) and proposes a test statistic 
for discriminating bilinear and threshold models. The test statistic has an asymptotic 
chi-squared distribution with one degree of freedom. However, Li's test is closely 
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related to the method of selecting a model with smaller residual variance and is not 

applicable to other nonlinear models. 

The purpose of this chapter is to consider a unified Bayesian approach that can be 

used to estimate most of the univariate time series models available in the literature 

and to select an appropriate model for a time series when the candidate models may 

be nonnested, nonlinear (Chen et al. 1997). More specifically, our objective is to 

consider an approach that is widely applicable in univariate time series analysis. 

The models can be linear or nonlinear, and the approach can discriminate between 

nonnested nonlinear models. The approach used is based on Gibbs sampling and 

requires some prior specification. In particular, our approach to model selection allows 

each observation to select one of the candidate models. The key prior specification 

here is the probability that an individual observation is generated by a given model 

given that both observations adjacent in time are generated by that same model [see 

equation (11.7).] Sensitivity analysis of prior specification will be discussed later. 

Because the approach considered uses Gibbs sampling, it may require substantial 

computing time in some applications. Our goal is not to develop the most efficient 

approach for univariate time series analysis, but a unified approach that is applicable 

to most parametric models. In a given application where the entertained models are 

specified, it is often possible to reduce the computing time by some special algorithm 

or theoretical derivation. However we shall not focus on those special issues. 

Fully Bayesian analysis of time series data have been considered in Monahan 

(1983), West and Harrison (1986), and some chapters in Spall (1988). Many of the 

analyses can only entertain simple models in real applications because they require 

prohibitive computation. This limitation is largely overcome by using the Gibbs sam-

pler. The main differences between this chapter and the abovementioned Bayesian 

analyses include that (1) we use a general framework consisting of a mixture of sev-

eral models, (2) we treat initial conditions of a time series as parameters so that the 

analysis is applicable to unit-root nonstationary series as well as nonlinear series, and 

(3) we make use of the recent developments in Markov chain Monte Carlo ( M C M C ) 

methods so that the computation is greatly simplified. As such the Bayesian analysis 

considered is very general and widely applicable. 

The chapter is organized as follows. In Section 11.2, we give the general framework 

of models considered in this chapter and show that many time series models considered 

in the literature are special cases of our model. Section 11.3 considers model estima-

tion via the Gibbs sampling. In particular, we treat starting values of the time series and 

the innovational series as parameters and consider the conditional likelihood function 

of a parameter given the others. We also discuss methods for implementing the Gibbs 

sampler when the parameter under study is nonlinear, such as the moving-average 

parameters in an A R M A model. Consequently, the Bayesian analysis considered 

can handle nonlinear models as well as unit-root nonstationary models. Section 11.4 

is devoted to model discrimination. Here a simple switching framework is used in 

which the competing non-nested nonlinear models become submodels of a mixture. 

Under this framework, each individual observation can select its own model from the 

mixture. The posterior probability that particular observations are associated with a 
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particular model can then be used to select an appropriate model for the whole series. 
Advantages of the this model selection method are discussed. This idea for model dis-
crimination was used in McCulloch and Tsay (1994), George et al. (1996), and Chen 
et al. (1997). Finally, we consider some simulated and real examples in Section 11.5. 

11.2. A G E N E R A L UNIVARIATE T I M E SERIES M O D E L 

The model considered in this chapter is 

zt = / ( ζ , - ι , . . . , Ζ / - ρ ; α ί - ι , . . . , α , - 9 ; β / ) + α/ 

a, = g,e, (11.1) 

gt = g(zt-\,..., ζ , _ „ ; α , - ι , . . . , a,-v;g,-U g,-w; β^) 

where z, is a univariate time series; / ( . ) and g ( . ) are two known functions with 
finite-dimensional parameter vectors β/ and β^, respectively; p, q, u, v, and w are 
nonnegative integers; and {e,} is a sequence of independent and identically distributed 
random variables with mean zero and variance one. The function g ( . ) is assumed to 
be positive; it governs the evolution of the volatility (i.e., conditional variance) of the 
innovational series a,. For simplicity, we focus on the case that e, 's are standard normal 
random variables, that is, that a, is conditionally normal. However, it is easily seen 
that e, can be any continuous random variables with a well defined density function. 

Model (11.1) is a general model, because it encompasses many commonly used 
models in the literature. Some specific examples are 

1. If g ( . ) = 3i, which is a positive constant, and / ( . ) = Σϊ=ι ΦιΖ»-; — 

Σ?=ι θ,-α,-,-, then model (11.1) reduces to the well-known A R M A of Boxetal. 
(1994). 

2. If / ( . ) = 0 and g 2 ( . ) = 7 0 + ΣΧι Ύ/α,2-,-. where 7 0 > 0 and γ,- > 0, then the 
model becomes the well-known conditional autoregressive heteroscedastic 
(ARCH) model of Engle (1982). The ARCH model and its variants are widely 
used in finance to model the volatility of a security return. 

3. If / ( . ) = 0 and g 2 ( . ) = 7 0 + Σ/-ι "ft«?-i + ΣΓ-ι λ / * 2 - / · w h e r e Ίο > 0, γ, > 0 
and λ,· > 0, then we have the generalized ARCH (GARCH) model of Bollerslev 
(1986). 

4. If / ( . ) = 0 and g ( . ) = e x p ( 7 0 + £Γ=ι β,· ζ,-, + Σ%ι Ί&-]), *en model (11.1) 
becomes a stochastic volatility model in which the conditional variance of the 
series is related to past observations and past innovations. This model is similar 
to that in Tsay (1987) and can be extended to include models that allow for 
asymmetric responses to positive and negative innovations. 

5. If g ( . ) = β, > 0, a constant, and / ( . ) = ΣΧ, φ,ζ,_, - £? = 1 θ,α,_,· + £?=i 
Σ)=\ βθ'Ζ/-/ α »-;> then model (11.1) becomes the bilinear model of Granger 
and Andersen (1978) and Subba Rao (1981). 



11.3. ESTIMATION 289 

6. If / ( . ) = φ (

0° + Σ ; = 1 φ<°Ζ,-, and g(.) = σ<" > 0 for r,_, < z,-d < η, where 
d is a positive integer and r,'s are real numbers satisfying —oo = r 0 < r\ < 
• • • < rk = oo, then model (11.1) becomes the threshold autoregressive (TAR) 
model of Tong (1978, 1990). 

Model (11.1) also provides a framework to combine different time series models. 
For example, if / ( . ) = φη + φιΖ(-ι — Θ Ι Α , _ ι and g(.) = ωη + ωια,_ι > 0 almost 
surely, then ζ, is an A R M A process with a concurrent bilinear innovation. Such an 
innovational series also shows stochastic volatility as that of an A R C H model. In Sec-
tion 11.4, we use model (11.1) to develop a switching model for model discrimination 
of nonnested nonlinear models. 

11.3. ESTIMATION 

In this section, we discuss a general approach to parameter estimation of model (11.1). 
The approach is Bayesian and makes use of the Gibbs sampling. In particular, we 
assume that the time series z, starts at time t = 1 with unknown starting values, lagged 
innovations, and lagged g values. We treat these initial values as unknown param-
eters of the model and estimate them jointly with other parameters. This marks a 
major difference between the approach and many existing estimation methods, be-
cause those existing methods assume either the starting values are zero or the process 
under study is stationary (see, e.g., Brockwell and Davis 1991). The idea of treating 
starting values and innovations of a time series process as unknown parameters has 
been used previously in the literature primarily for A R M A models. For example, 
in exact likelihood estimation of A R M A models, those starting values and innova-
tions are estimated by using the dynamic structure of the data. Chen et al. (1997) 
apply the idea to nonlinear models and Li and Tsay (1998), to multivariate A R M A 
models. 

Consider model (11.1). Let p*=max[p,u], q* = maxfg, υ], ζο = ( ζ - ρ · + ι , 
ζ~Ρ·+2, ••·, Zo)' be the starting values of ζ,, a0 = ( α - , .+ ι , a-q-+2,..., a0)' be the 
starting innovations, and/jo = (g-w+i, · · · , go)' the starting lagged g values. Finally, 
let " = (ZQ, a^, | » Q , β^·, Bp' be the set of all parameters of model (11.1). For η obser-
vations { z , } " = 1 , let Z , = ( z i , . . . , zt)'- It is easily seen that the conditional mean and 
variance of z, given Z ,_ i and ~ are 

E(z, | Z , _ i , ~ ) = / ( z , _ i , . . . , ζ,-ρ-,α,-ι,..., α ,_ 9 ) Ξ / , 

Var(z, | Z , _ i , ~ ) = g 2 ( z , _ i , . . . , z , - u ; a , - i , . . . , a,-v;g,-. g,-w) = gf. 

Therefore, the log-likelihood function of the data can be written as 

η 
L(Zn, ~ ) = £ l n / 7 ( z , | Z , _ , , " ) , 

I = L 
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which under normality becomes 

L(Z η .->=τέΓ,η(2ΐΓ*'2)+ ( ζ , - / , ) 2 ~ 

e2 

61 
Given prior distribution p( ~ ) , the log of the joint posterior distribution function for 

the model is 

The ability to evaluate this posterior function plays a key role in our Bayesian 
approach. For the general model in (11.1), this posterior function involves many pa-
rameters and might be difficult to handle. Some methods are available in the literature 
to overcome this difficulty, especially when special cases of model (11.1) are enter-
tained. For example, the Kalman filter can be used to evaluate this posterior function 
recursively for linear Gaussian A R M A models with a flat prior (Jones 1980). The 
EM algorithm can be used if model (11.1) is in the form of a component model 
(Shumway and Stoffer 1982). More recently, the Gibbs sampler has been shown 
to be useful in obtaining the joint posterior distribution of " for some time series 
models. For example, the Gibbs sampler with the Metropolis algorithm is found to 
be useful in modeling linear Gaussian A R M A models with conditionally conjugate 
priors. Here the Metropolis algorithm is used primarily to handle nonlinear parame-
ters for which no closed-form formulas are available to simplify the Gibbs draw. In 
Carlin et al. (1992a), the Gibbs sampler in conjunction with scale mixtures of nor-
mal distributions was used to analyze nonlinear state-space models. An advantage of 
the Gibbs sampler is that the joint posterior distribution of the model parameters in 
(11.2) can be obtained iteratively by using lower-dimensional conditional posterior 
distributions. As a special case, one may consider all one-dimensional conditional 
posterior distributions in implementing the sampler. The one-dimensional posterior 
distributions obtained from (11.2) are easy to evaluate. Another advantage of the 
Gibbs sampler is that only conditional prior specification is needed. Other Bayesian 
analyses of time series models using Markov chain methods include those by Mar-
riott et al. (1996), Chib and Greenberg (1994), and Li and Tsay (1998), among many 
others. 

In this chapter, we also use the Gibbs sampler. However, we shall not use the 
Metropolis algorithm to handle nonlinear parameters. Instead, we follow the work 
of Chen et al. (1997) and employ the griddy Gibbs approach of Tanner (1991) for 
those parameters that do not have closed-form formulas to facilitate the Gibbs draws. 
Advantages of the griddy Gibbs include simplicity and wide applicability. The com-
putational burden of the griddy Gibbs, however, may be heavy. The Gibbs sampling 
and griddy Gibbs used are given below. 

l(Q \Z„) oc ln[p( 1 - - ^ In (2-ngj) + 
. ι 

(z, ~ / . ) ' 

gf 
( Π . 2 ) 
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11.3.1. Gibbs sampling 

For simplicity, we consider the case of three parameters (θι, 0 2 , Θ3) and assume that 

subroutines are available to draw samples from the three full conditional posterior 

distributions 

/ , ( θ , | Θ 2 , Θ 2 , Ζ ) , / 2 ( θ 2 | θ 3 , θ , , Ζ ) , / 3 ( Θ 3 | Θ , , Θ 2 , Ζ ) (11.3) 

whereZ = (ζ\, Zi, • • •, ζη)' denotes the vector of η consecutive observations observed 

at equally spaced time-intervals. In our applications, we use mainly well-known 

distributions so that the random drawings were carried out by subroutines in the N A G 

package. This, however, is not a necessity for the general use of the sampler. 

The Gibbs sampler employed in this chapter works as follows: 

1. Consider an arbitrary set of starting values for the three parameters, say, 

Θ10. Θ20. Θ30· 

2. Generate Μ sets of random observations drawn iteratively from the full condi-

tional posterior distributions in (11.3). More specifically, the first set of random 

observations (θι ι, Θ21, Θ31} is obtained as follows: 

θι ι is drawn from f\ (θι | θ 2 υ , θ 3 υ , Ζ ) 

θ 2ι is drawn from / 2 ( θ 2 | Θ30, θπ, Ζ ) 

Θ31 is drawn from 73(631 θπ, θ 2 ι , Ζ ) . 

The second set of random observations (θι 2 , θ 2 2 , θ 3 2 } is obtained as follows: 

Θ12 is drawn from / ι (θ ι | θ 2 ι , Θ31, Z ) 

Θ 2 2 is drawn from / 2 ( θ 2 | Θ31, θ ] 2 , Z ) 

θ 3 2 is drawn from fi(Q3 | θι 2 , θ 2 2 , Ζ ) 

and so on. 

3. Generate another Ν sets of random observations as in step 2 above to form a 

random sample of size Ν for (θι, θ 2 , θ 3 ) . Denote the random sample by 

( θ { 1 ) , θ*1», 6™), (θ<2>, θ<2

2), θ (

3

2 ) ) , . . . , (θ , ( Λ , ) , θ ^ ' , θ ™ ) · (11.4) 

4. Estimate the posterior marginals from the random sample in (11.4). 

Tiao and Tsay (1994) use Gibbs sampling to perform a Bayesian analysis of random 

variance shift model. For properties of Gibbs sampling, see Tierney (1994), Raftery 

and Lewis (1992), and the references cited therein. 
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11.3.2. Griddy Gibbs 

Letu), be the ith element of " and[bn. bi] be the support of ω,. In practice, the support 

is determined by properties of the entertained model. For example, if ω, denotes the 

lag 1 coefficient of an AR(1) model, namely, ζ, = ω,ζ,_ι + e , , then [bo, b\] = [—1, 1] 

so that the process is not explosive. The conditional posterior distribution function of 

ω, given the data, all the other parameters and prior distribution ρ ( ω , ) is 

η 

ρ(ωί I Ζ „, " „ ) ) cx ρ ( ω , | ~ ( 0 ) ]~ [ N(f„ gf) (11.5) 
( = 1 

where denotes all the parameters in " except ω, and / , and g, are functions 

of ω,. The griddy Gibbs draws a realization of ω, by the following procedure: 

• Select a grid of m points in the support [bo, b\] or for a subset of [bo, b\]. 

• For each grid point, evaluate the conditional posterior distribution function of ω, 

in (11.5). 

• Draw a random realization of ω, from the selected grid based on the values of 

the conditional posterior distribution function. 

From this procedure, it is clear that the actual value of the normalization constant of the 

conditional posterior function is not needed in implementing the griddy Gibbs. The 

prior distribution ρ(ω,1 ~ ( ( ) ) may assume many forms depending on the substantive 

information of the problem under study. It is clear, however, that a uniform prior 

simplifies the computation involved. 

11.3.3. An illustrative example 

Let us consider in details the Gibbs sampler used for the following simple bilinear 

model 

ζ, = φο + φ ι ζ , - ι - θα,_ι + βζ,_ια,_, + a,, a, = σε, 

whereo > 0 is the standard deviation of the innovation series a,. The parameters 

of this model are " = (φο, φι , θ, β, zo, αο. σ ) ' , where zo is the starting value of the 

series and αο is the starting innovation. The Gibbs samples of these parameters can 

be drawn as follows: 

• The two A R coefficients φο and φι can be drawn easily because they are lin-

ear parameters and have a closed-form formula when conjugate prior is used. 

Specifically, conditional on the other parameters, we can express the two A R 

parameters in a linear regression setup in a manner similar to that of an M A ( 1 ) 

model. Let m\ = θ — βζο,-Χπ = 1 and^2i =zo-Forr > 1, define recursively m, = 

(θ - βζ,_ι),π,_ι, xu = 1 + (θ - βζ , - ι ) * , , , _ , , and*2, = ζ , - ι + ( θ - βζ , - ι ) ^2 . ( - ι · 
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Furthermore, define z* = z, —m,. Then, we have 

ζ* = φ0Χ\, +Φ\Χ2ι + at, t = l , . . . , n . 

Therefore, φ ο and φ ι can be drawn jointly by using the usual result of Gibbs 

sampling for linear regression model with conjugate prior. 

• The variance parameter σ 2 can also be drawn by using the usual technique, be-

cause conditional on other parameters σ 2 has an inverted chi-square distribution 

under the normality assumption and conjugate prior. 

• The starting value zo can be drawn again by using results of linear regression 

analysis. Specifically, define z* = Z i — Φο + θ α 0 - x* = Φ ι + β α ο , and ζ* = 

ζ, - φ ο - φ ι ζ , - ι + ( θ - β ζ , _ ι ) ζ * _ | and χ* = ( θ - βζ,-\)χ*_ι for / > l.Then, 

we have 

ζ* = χ*Ζο + α,, t = 1, . . . , η 

and the result of Gibbs sampler for simple linear regression applies. 

• Similarly, the starting innovation ao can be drawn by using the result of linear 

regression analysis. Define ζ * = z\ — Φο — Φ ι Ζ ο . x* = —θ + β ζ ο and ζ * = 

ζ , - φ ο - φ ι ζ , - ι + ( θ - β ζ , - ι ) ζ , * _ , and*,* = ( θ - βζ,-\)χ*_^ for / > l.Then, 

we obtain 

ζ* = x*a0 +a,, r = 1, . . . , η, 

which is a simple linear regression. 

• Finally, the M A coefficient θ and the bilinear parameter β are nonlinear, and 

there exist no closed-form formulas to simplify the Gibbs draw. One possible 

approach to overcome this difficulty is to use the Metropolis algorithm. In this 

chapter, we use the griddy Gibbs approach. As mentioned before, for these two 

parameters, the individual conditional posterior distribution functions can be 

evaluated easily over a grid of finite points. For the M A coefficient Θ, the support 

is [—1, 1] whereas that of the bilinear parameter β must satisfy the condition 

φ 2 -(- σ 2 β 2 < 1. See Liu (1989) for the stationarity condition of the bilinear 

model. 

Note that in theory all parameters can be drawn by using the griddy Gibbs. However, 

it is desirable to use closed-form formulas whenever available and to draw several 

parameters jointly whenever possible. Drawing one parameter at a time using the 

griddy Gibbs could result in slow convergence of the sampler. 

In the illustration above, all techniques used are not limited to the bilinear model. 

On the contrary, the estimation procedure used is widely applicable in linear and 

nonlinear time series analysis. Only the closed-form formulas and the likelihood 

function need to be changed when other models are entertained. 
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A potential weakness in using the griddy Gibbs is the specification of parameter 

support. For simple models, one can use the theoretical properties of the model such 

as stationarity, invertibility, or existence of some moments to select the supports. 

However, for high-dimensional models, the interdependence of the parameters may 

complicate the specification. In our implementation of the griddy Gibbs, we use an 

iterative method. We start with a relatively wide interval for a given parameter and 

refine the interval after some Gibbs iterations. In practice, this means one needs to 

run the Gibbs sampler several times in order to obtain estimates of a model. Given 

the advance in computing facilities and the gains in understanding the series over the 

iterations, we believe that this is not a serious drawback for the estimation method 

used. Furthermore, when the number of parameters is large, one can start with a 

sparse grid in the initial Gibbs iterations to reduce the computation in refining the 

specification of parameter supports. 

11.4. M O D E L D I S C R I M I N A T I O N 

In this section we consider the problem of model selection in nonlinear time se-

ries analysis, especially when the competing models are not nested. Such a model-

selection problem is important because many classes of nonlinear models have been 

proposed in the literature and there exists no simple method to effectively discriminate 

one class of models from another. For example, both the TAR and bilinear models 

have been used to analyze the annual sunspot data with proponents claiming better 

fit for their model (Tong 1990, Gabr and Subba Rao 1981). Another example is that 

many ARCH-type models have been used to describe and predict the volatility of the 

monthly S&P 500 excess returns, and there is no agreement on which model is most 

appropriate. 

Our approach to model discrimination is to let individual observations make their 

own choice of model. Consider the case of two competing nonnested nonlinear mod-

els. We use these competing models to define the functions / ( . ) and g(.) of model 

(11.1) and introduce a simple switching scheme that allows each individual observa-

tion to select its own model. Thus, under the approach adopted, the two competing 

models become submodels of a mixed model, and each individual observation can 

select its own submodel. In real applications, the dynamic structure of a time series 

cannot change abruptly over time. A structural change tends to occur gradually over 

a period of time. Therefore, it is reasonable to assume that the model selection of in-

dividual observations evolves over time in a smooth fashion. This consideration leads 

us to employ a simple switching scheme to govern the model selection. The selection 

results of individual observations provide information about which submodel is more 

appropriate for the data. This information can then be used to make model selection. 

The idea behind the mixed model is simple. We believe that the issue of model 

discrimination exists only when the two competing nonnested nonlinear models fit the 

data well; otherwise, the selection is clear. Consequently, a better way to discriminate 

between models is to let each individual observation select its own model. Moreover, 

it is conceivable that certain portions of the data fit one model nicely whereas the 
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remaining data fit the other model better. In this situation, the mixed model considered 
appears to be more appropriate. 

One can also treat the mixed-model approach as a generalization of the odds ratios 
commonly used in Bayesian inference. In computing an odds ratio, we assume that 
all of the data points belong to the candidate model. On the other hand, under the 
mixed model, observations can belong to different models. Thus, the method used 
provides another level of flexibility over the odds ratio. 

The switching scheme for model discrimination has been used in McCulloch and 
Tsay (1994) to test for "trend stationarity" versus "difference stationarity" of a linear 
time series and in George et al. (1996) to distinguish between fixed-coefficient versus 
random-coefficient autoregressive models. However, these two papers use Markov 
switching and only consider linear models for which closed-form formulas are avail-
able. The approach of Chen et al. (1997) is much more general as it can handle a 
wide range of linear and nonlinear models. It improves the procedure by treating 
starting values and innovations as parameters. This improvement could be significant 
in applications because it relaxes the assumption that the starting values and innova-
tions are either fixed or equal to their expectation. For nonstationary series to which 
most real-world time series belong, the unconditional expection of a series might not 
exist. 

The probabilistic mechanism of the mixed model can give rise to a large number 
of possible submodel configurations; for a given time series of length n, the possible 
number of submodel configurations is 2". In applications, these configurations might 
require intensive computation in model estimation. However, as illustrated in George 
and McCulloch (1993), McCulloch and Tsay (1994), and George et al. (1996), this 
computational difficulty can be overcome by using Gibbs sampling. 

11.4.1. A mixed model with switching 

The framework used for discriminating between two competing models is the two-
state switching model: 

{ f\,i+a\,, au = g| if s, = 1 , , , , , 

fit + a2l, a2, = g2.t*t if s, =2 

where g,,, and α,·, are defined as in (11.1) and [s,] is a sequence of states. The 
state switching is governed by 

P(sl=i\s,-1=st+l=i) = T\, P(s, = i | ί ,_ , φ s,+i) = 0.5. (11.7) 

Thus the switching depends on the two nearest neighbors of the observation in time. 
Each observation has a conditional probability η to stay with the same model as its 
neighbors. When the two adjacent neighbors are in different states, the probability of 
model switch is neutral at .5. Because structural changes tend to occur gradually over 
a period of time, a large η seems to be more realistic in application. If η = 1, then all 
observations come from one of the two competing models. In this chapter, we use η 
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close to 1. We consider values of η in the interval [.95, .9999] to study the sensitivity 

of model selection with respect to the choice of η . Alternatively, one could put a 

hyperprior on η that has most of the probability mass on values close to 1. Including 

the large set of parameters s, in model (11.6) makes it very flexible. In application 

strong prior information (large η ) is needed to get reasonable results. 

One way to appreciate the implication of η is to consider the independence case 

in which model change is independent over time. In this case, there are 8 possible 

model configurations for every three consecutive observations and the probability that 

all three observations belong to the same model is only η/4, which is less than .25. 

Thus, the chance of model change is substantial when η is not large. Of course, the 

independence assumption is an extreme case and is often unrealistic in application. 

Our discussion is meant only to justify the use of a large value for η . 

There are many ways to describe the transition of model selection from one obser-

vation to another, ranging from independent Bernoulli trials to complicated dynamic 

mechanism. Our choice of (11.7) is based on several considerations. First, the transi-

tion is very flexible; it covers a wide range of possibilities by varying η . For example, 

η — 0.5 corresponds to independent Bernoulli trials with probability .5, and η = 1 

implies that change can occur only when two neighbors belong to different models. 

Second, it is easy to use because the user only needs to specify a single parameter. In 

the traditional two-state Markov switching model, one needs to specify two parame-

ters for the probability transition matrix. Third, the equation is intuitively appealing. 

It easily reflects the common sense of smooth model change. Fourth, the scheme can 

be extended to involve other neighboring systems, including two observations prior 

and after the observation. Such a specification would provide an alternative way to 

specify strong prior information that nearby observations are likely to come from the 

same model. 

11.4.2. Implementation 

Model selection is based on the posterior distribution of the parameters 5, in model 

(11.6). This posterior is computed in the obvious way by using Gibbs sampling and 

drawing the s, 's given the parameters of both models and then drawing the parameters 

of the individual models given the s, values in a manner similar to that outlined in 

Section 11.3. 

To use our method for model discrimination, we consider the following procedure: 

1. For each submodel we specify prior distributions for the model parameters 

and then use all the data and the estimation method of Section 11.3 to obtain 

estimates (typically posterior means). 

2. Choose a value for η and perform a Gibbs estimation of the mixed model in 

(11.6). Initial values for the submodel parameters are obtained from step 1. 

Step 1 also provides an initial choice of the support and grid for each parameter 

drawn using the griddy method. 
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3. Check the convergence of Gibbs sampler. Refine and iterate Gibbs sampler if 

necessary. 

4. Use the posterior distribution of model selection of individual observations to 

make inference. 

Once the posterior distribution of individual selection is available, one can make 

inference of model selection based on the objective of the analysis. For example, if 

the objective is forecasting, one may pay more attention to the model selection of 

observations close to the forecast origin. If the objective is the dynamic structure 

of the data, then posterior mean or median can be used for overall selection. It is 

conceivable that the data might not have sufficient information to distinguish one 

competing model from another. In this case, one might search for more data or for 

ways to further improve the model. It would be unwise to assume that a statistical 

method can always distinguish two competing models based on a finite sample of 

observations. 

Finally, it is important in practice to study the sensitivity of model selection with 

respect to prior specification such as η and to check the convergence of the Gibbs 

sampler. By varying priors and the number of iterations and starting values of the 

Gibbs sampler, one can learn the stability of model selection. 

11.5. E X A M P L E S 

We illustrate the unified approach to estimating and modeling time series by some 

simulated and real examples. For the simulated examples, we consider A R versus 

M A models and TAR versus bilinear models. We analyse two real data sets. We 

compare TAR and bilinear models for the annual sunspot numbers and ARCH(2) 

and GARCH(1,1) models for monthly excess returns of the S&P 500 stock market 

portfolio. 

Example 11.1. Figure 11.1a shows a time plot of 300 observations generated 

from the model 

. 8 ζ , _ ! + α , if t = 101 200 

a, + .3α,_, + Λα,-2 if t = 1 , . . . , 100; 2 0 1 , . . . , 300 

where a, = .5e,, αο = α_ι = 0 and zn = 0. This is a mixed model with two change 

points at/ = 101 and/ = 201. The model change at / = 201 can be seen in Figure 11.1a, 

but that at / = 101 is not obvious. Our goal here is to illustrate the performance of 

the approach adopted in estimation and model selection. For the A R model, the 

parameter vector is ~ι = (φι , zo, o"i)', where φι is the lag 1 A R coefficient and σι 

is the standard deviation of the A R innovation. For the M A model, the parameter 

vector is "2 = (θι, Θ2, an, a_i, 02)', where Θ, are M A coefficients, a, are starting 

innovations and σ 2 denotes the standard deviation of the M A innovation. 
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FIGURE 11.1 Time plot and posterior probabilities for Example 11.1. 

Following the procedure in Section 11.4.2, we began with Gibbs samples for 

each model, assuming that all of the data belong to that model, to obtain initial 

parameter estimates and the initial parameter supports for the griddy Gibbs. The 

prior for any parameter drawn by griddy Gibbs is the uniform distribution over its 

interval support. The initial Gibbs samples used 300 iterations. Using results of the 

initial Gibbs samples and a given η for conditional switching probability, we ran 

2500 Gibbs iterations to obtain posterior distribution of individual model selection. 

The estimated posterior probabilities are based only on the last 2000 iterations. This 

step of ignoring the first 500 Gibbs iterations was taken to reduce the effect of initial 

parameter specification. Figure 11.1b shows the posterior mean of selecting the M A 
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model for each individual observation for η = .95, .99, .995, respectively. The solid 

line is for η = .995 and the dotted line for η = .99. The effect of η on model selection 

is seen from the three posterior probabilities. As expected, η > .99 works better and is 

preferred. For this example, it is seen that the adopted model selection method works 

reasonably well. It points out clearly the two change points and is able to identify 

the generating model. For estimation, the posterior distributions of the parameters are 

well behaved and are centered roughly around the true values. 

Example 11.2. In this example, we generated 300 observations from the mixed 

model 

where zo = an = 0, a\t =0.5e, , and a2, =0.3e, . This is a mixture of TAR and bilinear 

models with two change points at t = 101 and r = 201. The TAR model has two 

regimes separated by the threshold variable zt-\ at threshold r = 0. In each regime, 

the model is A R ( 1). The bilinear model used contains a single bilinear term .2z,-1 a,_ ι 

and is referred to as a "diagonal" bilinear model. A special feature of such a bilinear 

model is that the mean of the series is nonzero, even though there is no constant term 

in the model. Properties of diagonal bilinear models are more complicated than those 

of nondiagonal bilinear models. (Guegan 1994). 

The data of this example are shown in Figure 11.2a. Even a careful reading of 

the plot cannot reveal the two change points easily. In our analysis, we assume that 

the threshold variable zt-\ is known, but the threshold r is unknown. Thus, the pa-

rameter vector for the TAR submodel is ~ ι = (r, φ',", φ (, 2 ), σι , zo)' where r denotes 

the threshold, φ',0 is the AR(1) coefficient of the f'th regime, and σι is the innova-

tional standard deviation. For the bilinear submodel, the parameter vector is ~ 2 = 

(φ, β, σ 2 , zo, αο)Ί where φ and β are the A R and bilinear coefficient, respectively; σ 2 

denotes the standard deviation of innovations; and zo and « o denote the starting value 

and innovation, respectively. In sum, there are 10 parameters in the mixed model used 

for model selection. 

Following the procedure of Section 11.4.2 and using essentially the same Gibbs 

steps and numbers of iterations as those of Example 11.1, we obtain the posterior 

probability of selecting the bilinear model for each observation. These probabilities 

are shown in Figure 11.2b for η = .95, .99, .999. It is seen that the procedure works 

well for the data, especially for η = .999. The two change points and the generating 

model are clearly identified. The result for η = .95 given by the dashed line in 

Figure 11.2b shows some model uncertainty at some patches of observations. This is 

reasonable because the prior probability for model change in this case is substantial. 

z, = 

ί .8z,_i + α » i f z , - i > 0 

j - .8z,_i +au ifz,_i < 0 

.5z,_i + .2z,_ia 2,f-i +ait 

if t = \ 100; 2 0 1 , . . . , 300 

if / = 101 , . . . , 200 

Example 11.3. In this example, we generated 300 observations all from the T A R 

submodel of Example 11.2. However, we assume that the bilinear submodel is another 
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competing model and apply the procedure to discriminate between these two models. 

Figure 11.3a shows the data, whereas Figure 11.3b gives the posterior probabilities of 

selecting the bilinear model by the individual observations. These probabilities were 

obtained by using the same starting values, the same Gibbs steps and iterations as 

those of Example 11.2, except that the probability of conditional model switching is 

set at η = .99, .999, and .9999, respectively. From the probability plot, it is seen that 

the adopted procedure indeed selects the generating model for the data, especially 

when η is close to 1. The case of η = .99 shows some model uncertainty, even though 

only some isolated points have posterior probability greater than .5 for the bilinear 

model. This example thus shows that the prior specification of η should be close to 1 

in applications, say, η > .99. 
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FIGURE 11.3 Time plot and posterior probabilities for Example 11.3. 

Example 11.4. In this example, we consider the annual Wolf sunspot number 

from 1700 to 1979 for 280 observations. The data shown in Figure 11.4a are listed 

in Tong (1990) and have been widely used in nonlinear time series analysis. It is 

generally believed that this series is nonlinear, but there is no agreement on which 

nonlinear model is most appropriate for the data. When the subsample from 1700 

to 1921 was used, Gabr and Subba Rao (1981) identified a bilinear model for the 

series whereas Tong (1990) specified a two-regime TAR model. Li (1993) applied a 

test statistic, which uses the idea of separate families of hypotheses of Cox (1962), 

to the subsample and concluded that the bilinear model of Gabr and Subba Rao is 

more appropriate. However, from a theoretical viewpoint, bilinear models do not 

possess the asymmetric feature between rise and fall of the cyclical pattern observed 
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FIGURE 11.4 Time plot and posterior probabilities for annual sunspot numbers. 

in the sunspot number. On the other hand, the TAR is capable of producing asymmetric 

cycle, but it has larger residual variance in the subsample. The issue of model selection 

remains. 

Our analysis here is to apply the model discrimination procedure to the full sam-

ple, assuming that the bilinear model of Gabr and Subba Rao (1981) and the TAR 

of Tong (1990) as two competing models. The bilinear model considered assumes 

the form 

ζ, = a 0 + a iz ,_ , + a 2 z , - 2 + a 9 z , - 9 + β 2 ι ζ , - 2 α ( - ι + ββ ιΖ , - βΟι - ι + βΐ3Σ/-ι«ι-3 

+ β 4 3 Ζ ( - 4 α ( - 3 + βΐ6Ζ /- ΐΟ;-6 + ^Zt-l^-A + β32Ζ(-3α<-2 + α , (11.8) 
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where a, = σε , . Besides the 12 parameters shown in equation (11.8), this bilin-

ear model also needs 9 starting values zo, Z - i z~% and 6 starting innovations 

a0, . . . , f l - 5 . In total, estimation of this bilinear model considers 27 parameters 

some of which are highly nonlinear. As shown by the simpler bilinear example of 

Section 11.3, we can estimate this bilinear model via the Gibbs sampler considered. 

The Gibbs draws of the nonlinear parameters can be done by the griddy Gibbs. 

The threshold model built by Tong (1990) is 

Zi -
Φο' + Σ ί ^ Φ ί ν , + α , 0

 if z , _ 3 < r 

Φ(o2) + Σ,= 1Φ
<,V,·+«ί 2 ,

 if z , - 3 > r 
( Π . 9 ) 

where α,·, = σ, e,. Including innovational standard deviation, this TAR model contains 

5 parameters in regime 1 and 13 parameters in regime 2. Counting the threshold r 

and 11 starting values zo,z~\,..., Z-io. we are effectively estimating 30 parameters 

for the TAR model. Except for the threshold r, all of the parameters has closed-form 

formulas and can be drawn easily. Conditioned on other parameters, the threshold r 

becomes a change point of the data. Gibbs draws of r, therefore, can be done by either 

the griddy Gibbs or the method in Carlin et al. (1992a). 

Again, we follow the procedure in Section 11.4.2 to carry out the model selection. 

Because of the large number of parameters involved, we used 3500 Gibbs iterations 

for this example, but discarded results of the first 500 iterations in computing the 

posterior probabilities. Figure 11.4b shows the posterior probabilities of selecting 

the TAR model by the individual observations, where the solid, dashed, and dotted 

lines are for η = .99, .999, and .9999, respectively. In our analysis, we carried out 

many Gibbs samples and found that the posterior probability plot is stable. From the 

plots, it is seen that the data do not strongly favor a single model. For certain periods, 

the TAR was preferred. But for other periods, the bilinear model was selected. It 

seems that the data are not sufficiently informative to discriminate between these two 

competing models. However, the TAR model appears to be the choice of model by the 

most recent observations. This is in good agreement with the results of forecasting 

comparison in Tong (1990, Section 7.3) who showed that the TAR model produced 

better out-of-sample forecasts of the sunspot numbers for the latter part of the data. 

The fact that the data were not very informative in choosing a single model is un-

derstandable. First, the two competing models entertained contain many parameters, 

making them rather flexible and capable of providing good fit in finite samples. In this 

circumstance, one might need a large number of observations to distinguish one model 

from the other. Second, there exists the possibility that neither of the two competing 

models is appropriate for the data. This is evident in the posterior probability plot of 

Figure 11.4b where the TAR model was preferred when the sunspot number was high 

and the bilinear model was chosen when the sunspot number was low. In addition, our 

residual analysis shows that the normalized residuals of the mixed model has lag 1 

serial correlation, even though the correlation is relatively weak. 

In summary, the procedure used does not pinpoint a single model for the annual 

sunspot number from 1700 to 1979. However, it produces results that are reasonable 
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FIGURE 11.5 Time plot and posterior probabilities for monthly S&P 500 returns. 

and in agreement with those available in the literature. It would be unwise to expect 

that a model selection method can always select a single model based on a finite 

number of observations. One must take into consideration the possibility that there 

exists no true model for a real-world time series. When the data are not sufficiently 

informative, a good model-selection procedure should be able to reveal it. In this 

sense, the adopted model-discrimination method appears to be reasonable. 

Example 11.5. Figure 11.5a is a time plot of monthly excess returns of the S&P 

500 portfolio from January 1926 to December 1991 giving 792 observations. This 

series has been widely analyzed in volatility studies, but there is little agreement on 
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what is the most appropriate model for the data. Our goal here is to compare between 
ARCH(2) and G A R C H ( l . l ) models for the data. The model considered is 

_ θ 0 + au, au = gi,,e,, g\, = γ 0 + 7 ι α 2 , , _ ι + 72<i 2 , _ 2 if 5, = 1 

| β ο + α 2 Μ a2, = g2,,€,, g\, - a 0 + ct|g 2,,_, + β ι « | . / - ι if*/ = 2. 

The state switching is governed by equation (11.7) with η = .999. Figure 11.5(b) plots 
the posterior probability of the ARCH(2) model based on the Gibbs sampler with 500 
initial iterations and 4000 general iterations. The mean of the posterior probabilities is 
.65, so that the overall fit is slightly in favor of the ARCH(2) model. On the other hand, 
by comparing Figures 11.5a and 11.5b, the GARCH( 1,1) model was selected by most 
observations that appear to be volatile. Thus, our result indicates that the evidence of 
GARCH( 1,1) model reported in the literature is due largely to the few visibly volatile 
periods of the U.S. economy. While such a conclusion is understandable, the analysis 
used does highlight the influential periods for using GARCH( 1,1) model. This shows 
that the adopted model discrimination procedure can be used to monitor the evolution 
of the time series under study. 

In the estimation, we used various constraints to ensure that the two submodels have 
proper unconditional variances. For instance, we require ao > 0, 0 < αϊ + βι < 1, 
αϊ > 0, and βι > 0 so that the GARCH( 1,1) model is not integrated. Such constraints 
are easy to implement under the adopted unified approach. 

A C K N O W L E D G M E N T 

This research is supported in part by the National Science Foundation and the Graduate 

School of Business, University of Chicago. 

REFERENCES 

Ansley, C. F. (1979). An algorithm for the exact likelihood of a mixed autoregressive moving 

average process. Biometrika 66, 59-65. 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. J. Econo. 31, 
307-327. 

Box, G. E. R, Jenkins, G. M , and Reinsel, G. C. (1994). Time Series Analysis: Forecasting 
and Control, 3rd ed. Prentice-Hall, Englewood Cliffs, NJ. 

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer-
Verlag, New York. 

Carlin, B. P., Gelfand, A. and Smith, A. F. M. (1992a). Hierarchical Bayesian analysis of change 

point problems. Appl. Stat. 41, 389-405. 

Carlin, B. P., Poison, N. G., and Stoffer, D. S. (1992b). A monte carlo approach to nonnormal 
and nonlinear state-space modeling. J. Am. Stat. Assoc. 87, 493-500. 



306 BAYESIAN TIME SERIES ANALYSIS 

Chen, C. W. S., McCulloch, R. E., and Tsay, R. S. (1997). A unified approach to estimating 
and modeling linear and nonlinear time series. Statistica Sinica 7,451-472. 

Chib, S. and Greenberg, E. (1994). Bayes inference in regression models with ARMA(p.q) 
errors. J. Econo. 64, 183-206. 

Cox, D. R. (1962). Further results on test of separate families of hypotheses. J. Roy. Stat. Soc. 
Β 24, 406-424. 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance 

of United Kingdom inflation. Econometrica SO, 987-1007. 

Gabr, Μ. M. and Subba Rao, T. (1981). The estimation and prediction of subset bilinear time 

series models with applications. J. Time Ser. Anal. 2, 155-171. 

George, Ε. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. J. Am. Stat. 
Assoc. 88, 881-889. 

George, Ε. I., McCulloch, R. E., and Tsay, R. S. (1996). Two approaches to Bayesian model 
selection with applications. In D. A. Berry, Κ. M. Chaloner, and J. K. Geweke, (eds.), 
Bayesian Analysis of Statistics and Econometrics, Wiley, New York. 

Granger, C. W. J. and Andersen, A. P. (1978). Introduction to Bilinear Time Series Models. 
Vandenhoeck & Ruprecht, GSttingen. 

Guegan, D. (1994). Series Chronologiques Nonlinear a Temps Discret. Economica, Paris. 

Hillmer, S. C. and Tiao, G. C. (1979). Likelihood function of stationary multiple autoregressive 
moving average models. J. Am. Stat. Assoc. 74, 652-660. 

Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing 
observations. Technometrics 22, 389-395. 

Li, H. and Tsay, R. S. (1998). A unified approach to identifying multivariate time series models. 
Jo. Am. Stat. Assoc. 93, 770-782. 

Li, W. K. (1993). A simple one degree of freedom test for non-linear time series model dis-
crimination. Statistica Sinica 3, 245-254. 

Liu, J. (1989). A simple condition for the existence of some stationary bilinear time series. 

J. Time Ser. Anal. 10, 33-39. 

Marriott, J., Ravishanker, N., Gelfand, Α., and Pai, J. (1996). Bayesian analysis of ARMA 
processes: complete sampling-based inference under exact likelihoods. In D. A. Berry, 
Κ. M. Chaloner, and J. K. Geweke (eds.), Bayesian Analysis of Statistics and Econometrics. 
Wiley, New York. 

McCulloch, R. E. and Tsay, R. S. (1994). Bayesian inference of trend- and difference-

stationarity. Econo. Theory 10, 596-608. 

Monahan, J. F. (1983). Fully Bayesian analysis of ARMA time series models. J. Econ. 21, 
307-331. 

Priestley, Μ. B. (1981). Spectral Analysis and Time Series. Academic Press. Orlando, FL. 

Raftery, A. E. and Lewis, S. M. (1992). One long run with diagnostics: implementation strategies 

for Markov chain Monte Carlo. Stat. Sci. 7,493-497. 

Shumway, R. H. and Stoffer, D. S. (1982). An approach to time series smoothing and forecasting 

using the EM algorithm. J. Time Ser. Anal. 3, 253-264. 

Spall, J. C. (1988), Bayesian Analysis of Time Series and Dynamic Models. Marcel Dekker, 
New York. 

Subba Rao, T. (1981). On the theory of bilinear time series models. J. Roy. Stat. Soc. Β 43, 
244-255. 



REFERENCES 307 

Tanner, Μ. Α. (1991). Tools for Statistical Inference. Springer-Verlag, New York. 

Tiao, G. C. and Tsay, R. S. (1994). Some advances in nonlinear and adpative modeling in time 

series. / Forecasting 13, 109-131. 

Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Stat. 22, 1701-
1762. 

Tong, H. (1978). On a threshold model. In C. H. Chen (ed.), Pattern Recognition and Signal 

Processing. Sijhoff & Noordhoff, Amsterdam. 

Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford Univ. Press, 
Oxford. 

Tsay, R. S. (1987). Conditional heteroscedasticity in time series analysis. J. Am. Stat. Assoc. 
82, 590-604. 

West, M. and Harrison, P. J. (1986). Monitoring and adaptation in Bayesian forecasting models. 
J. Am. Stat. Assoc. 81, 741-750. 



C H A P T E R 12 

Nonparametric Time Series Analysis: 

Nonparametric Regression, Locally 

Weighted Regression, Autoregression, 

and Quantile Regression 

Siegfried Heiler 
Universitat Konstanz 

12.1. I N T R O D U C T I O N 

In this chapter we discuss the application of some nonparametric techniques to time 
series. There is indeed a long tradition in applying nonparametric methods in time 
series analysis, and this holds true not only for certain test situations, such as runs 
tests for randomness of a stochastic sequence, permutation tests, or certain rank 
tests. 

In Chapter 2 of this book the periodogram is introduced. Although the periodogram 
is an asymptotically unbiased estimate of the spectral density of an underlying sta-
tionary process, it is well known that it is not consistent. Therefore, as early as the 
1950s, smoothing the periodogram directly with a so-called spectral window or using 
a system of weights, according to a lag window with which the empirical autoco-
variances are multiplied in the calculation of the Fourier transform, was introduced. 
Quite a number of different windows were proposed, and with respect to the win-
dow width similar rules hold for achieving consistent estimates, such as the ones 
we will shortly discuss in the context of nonparametric regression later in this text. 
Nonparametric spectral estimation is extensively treated in many textbooks on time 
series analysis, to which the interested reader is referred. It will not be treated in this 
chapter. 
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Another area where nonparametric ideas have been applied for a long time is 

smoothing and decomposing seasonal time series. Local polynomial regression can be 

traced back to 1931 (Macaulay 1931). Fisher(1937) and Jones(1943)discussedalocal 

least-squares fit under the side condition that a locally constant periodic function (for 

modeling seasonal fluctuations) be annihilated, and later Bongard (1960) developped 

a unified principle for treating the interior and the boundary part (with and without 

seasonal variations) of a time series derived from a local regression approach. These 

ideas will be taken up later again in Section 12.8, since they represent an attractive 

alternative to smoothing and seasonal decomposition procedures based on linear time 

series models. 

The aim of this chapter is to present some basic concepts of nonparametric regres-

sion, including locally weighted regression with special emphasis on their application 

to time series. Nonparametric regression has now become an area with an abundance 

in new methodological proposals and developments. It is therefore impossible to give 

a comprehensive survey on the subject in a chapter of a general textbook on time 

series. We will hence concentrate on the basic ideas only. The reader interested in 

more details may be refered to a survey paper by Hardle, et al. (1997), where more 

specific areas, proposals, and further references can be found. 

The A R M A model is a typical linear time series model. In Chapters 10, 11, and 

13, we encounter specific nonlinear models. A R C H type models and their variants 

are also of a very specific nonlinear type to capture volatility phenomena. In contrast 

to that in nonparametric regression, no assumption is made about the form of the 

regression function. Only some smoothness conditions are required. The complexity 

of the model will be determined completely by the data. One lets the data speak for 

themselves, thereby avoiding subjectivity in selecting a specific parametric model. 

But the gain in flexibility has a price. One has to choose bandwidths. We return 

to this later. In addition, a higher complexity in the mathematical argumentation is 

involved. However, asymptotic considerations will not be discussed in detail in this 

chapter. 

Because of their flexibility, nonparametric regression techniques may serve as a first 

step in the process of finding an adequate parametric model. If no model can be found 

that describes the underlying structure adequately, then the results of nonparametric 

estimation may be used directly for forecasting or describing the characteristics of 

the time series. 

12.2. N O N P A R A M E T R I C REGRESSION 

Since forecasting is an important objective of many time series significant analyses, 

estimating the conditional distribution or some of its characteristics plays a consider-

able role. For point prediction the conditional mean or median is of particular interest. 

In order to obtain confidence or prediction intervals, estimates of conditional vari-

ances or conditional quantiles are needed. The latter are also of interest in studying 

volatility in financial time series. The first step is therefore to look at nonparametric 

estimation of densities and conditional densities. Let χ € R be a random variable 
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TABLE 12.1. Selected Kernel Functions 

Name Kernel 

Uniform ϊΠ[_ι,υ(Μ) 

(1 - |Η| )Π ( - Ι . Ι ] (« ) 

| ( l - K 2 ) n r - i . i ] ( i i ) 

| | ( 1 - 2 μ

2 + « 4)Π 1_Ι,Ι ](Μ) 

g ( l -3Μ2 + 3 Η 4 - « 6 ) Π [ _ Ι , Ι ] ( « ) 

Triangle 

Epanechnikov 

Bisquare 

Triweight 

Gaussian * « p ( - i « 2 ) 

whose distribution has a density / , and let * i , . . . , x„ be a random sample from x. 
Then a kernel density estimator for / is given by 

Here AT is a so-called kernel function, which is a symmetric density assigning weights 
to the observations that decrease with the distance between χ and Λ, . Some popular 
kernel functions are listed in Table 12.1 and exhibited in Fig. 12.1. The first five have 
the interval [—1, 1] as support, whereas the Gaussian kernel has infinite support. The 
term h„ is the bandwidth which drives the size of the local neighborhood included 
in the estimation of / at x. The bandwidth depends on the sample size η and has to 
fulfil h„ - » · 0 and nh„ -*• oo for η - > oo as necessary condition for consistency. But 
for practical applications this asymptotic condition is not very helpful. A very small 
bandwidth will lead to a wiggly course of the estimated density, whereas a large 
bandwidth yields a smooth course but will possibly flatten out interesting details. 
Bandwidth selection will be dealt with in Section 12.7. 

A kn nearest-neighbor (kn — NN) estimator of / is obtained by substitut-
ing the fixed bandwidth h„ in (12.1) by the random variable H„jcn(x) measuring 
the distance between χ and the kn nearest observation among the * , · , / = 1 , . . . , η. 
Nearest-neighbour estimators have the property that the number of observations used 
for the local approach is fixed. This is an advantage if the χ space shows a greatly 
unbalanced design. On the other hand, the bias varies from point to point because of 
the variable local bandwidth. 

For χ eRp a kernel Κ : R p - > R is needed in (12.1). In this case either product 
kernels 

(12.1) 

d 
K(u) = \ \ Kj(uj) 

with kernels Kj and Kj; : R -*• R , bandwidth hj in coordinate j , and h„ = h \ · • -hp 
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FIGURE 12.1 Some popular kernel functions in practice. 

or norm kernels 

K(u)= K(\\u\\) 

with a suitable norm on K p are used. In connection with time series applications 
frequently product kernels are applied, 

and hj = σ)•,· h with an estimated standard deviation in the y'th coordinate is a popular 

choice for the bandwidths. 

Now let (y,x) with y e Κ , χ e Rp be a random vector with joint density 

f(y, x) and let fx(x) be the marginal density of x. Then the conditional density 
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g(y I x) = f(y< x)lfx(x) can be estimated by inserting a kernel density estimator or 
a corresponding nearest-neighborhood estimator in the nominator and denominator 
of g{y I x). With the choice of a kernel function 

Κ = Rp+l -+ R , K(y, x) = Ki(y)K(x) 

and bandwidths h ι resp. (respectively) h we obtain the kernel estimator for the con-

ditional density 

gn(y\x)= Σ"_|Λ:(^£) · <12·3) 

An estimator for the conditional mean m(x) = yg(y \ x)dy is obtained when 

we replace g in the integral by its estimator g„. For K\ a symmetric density this 

immediately yields 

, . Σ"=ι y>Kinr1) ... 
m M = < 1 Z 4 ) 

This is the well-known Nadaraya-Watson nonparametric regression estimator ( N W 
estimator), (Nadaraya 1964, Watson 1964). We see that it can be written as a weighted 
mean 

η 
m„(x) = ^ y i U ) n , f ( j : ; j C | , ...,x„) (12.5) 

;=i 

where the random weights depend on the point χ and the random variables x\,.. .,xn. 

Apart from conditional means, conditional quantiles are also of interest in various 

time series applications. Let 

y 

F(y\x)= j g(y\x)dy (12.6) 

denote the conditional distribution function of y given x. Then the conditional α 

quantile at x, qa(x) is defined as 

qa(x) = inf{y eR\F(y\x)>a], 0 < α < 1 . (12.7) 

If g(-1 x) is strictly positive, then, of course, qa(x) is the unique solution of F (y | JC) = 

a, that is, qa(x) = F _ 1 ( c t | x). One possible procedure for estimating qa is to take the 

empirical α quantile of an estimator F„ = (· | x) according to (12.7). 

Let F\(z) = / f K\(u)du be the distribution function pertaining to the kernel K\. 

Then the estimated conditional distribution, obtained by integrating g„(- \x) from 
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- o o to y, is given by 

Fn(y\x) = 
E T - , * m f i ( y ) 

(12.8) 

Let us assume that K\ has support [—1, 1]. Then we have 

1 for y, < y — h\ 

0 for y,- > y + hi 

so that in this case 

F„(y\x) -oo,y-h,](yi)K 

η Hy-h\,y+h\ (12.9) 

i = l 

One can see that the estimation contains only observations in the regressor space 
laying in a band around x. The first sum on the RHS includes observations, whose y 
values are less than or equal to y — hi. The second sum contains observations with y, 
values in a neighborhood of y. In contrast to a usual empirical distribution function 
here, observations greater than y obtain a positive weight. 

Of particular interest may be the median regression function qi/2 for asymmetric 
distributions as an alternative to ordinary regression based on the mean. Another inter-
esting application may be the estimation of qa/2 and qi-a/2 in order to get predictive 
intervals. These can be compared with intervals obtained from parametric models, 
which lack the possibility to evaluate the bias due to misspecification of the model. 

Taking some boundary corrections into account, for a not-too-unbalanced design 
the second sum in (12.9) can be approximated by Σ"=ι l(y-h,,y)K[(Xi — x)/h)], so 
that the conditional distribution function is estimated by 

This estimator was for* e R considered by Horvath and Yandell (1988), who proved 

asymptotic results for the iid case. Abberger (1996) derives from (12.10) the empirical 

quantile function 

Fn(y\x) = ς ? - , * m 
(12.10) 

qn,a(x) = inf{y € R | F„(y | χ) > a } , 0 < a < 1 (12.11) 

and investigates the behavior of F„ and q„_a in applications to stationary time series. 
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12.3. K E R N E L E S T I M A T I O N IN T I M E SERIES 

When a kernel or nearest-neighbor ( N N ) estimator is applied to dependent data, as is 
the case in time series, it is affected only by the dependence among the observations 
in a small window and not by that between all data. This fact reduces the dependence 
between the estimates, so that many of the techniques developed for independent 
data can be applied in these cases as well. This fact was called "the whitening by 
windowing principle" by Hart (1996). A typical situation for an application to a time 
series | z , } is that the regressor vector χ consists of past time series values 

with [a,} a white-noise sequence. Of course x, might also include time series values 
of other predictive variables such as leading indicators. 

An indispensable requirement for proving asymptotic properties of kernel esti-
mates in this and related situations is that the underlying processes are stationary. 
Another condition is that the memory of these underlying processes decreases with 
distance between events and that the rate of decay can be estimated from above by 
so-called mixing conditions. So-called strong mixing conditions are used by Robin-
son (1983, 1986). Collomb (1984, 1985) worked with so-called φ or uniform mixing 
conditions. We will not present these fairly complicated asymptotic considerations 
here. But we would like to remark that these mixing conditions are hard to check in 
practice. 

In Chapter 3 we encountered the linear autoregressive model ζ, = φ|Ζ,_ι -I h 
ΦρΖ,-ρ + a,, and in Chapter 10 threshold autoregression is discussed where the au-
toregressive parameters vary according to some threshold variable. In contrast to these 
examples, the model (12.13) is much more general and flexible, and its estimation may 
lead to insights that can be helpful in choosing an appropriate parametric (possibly 
nonlinear) model afterward. 

For χ eRp,x, as in (12.12) and weights 

Xt = ( z » - i . · · · ι Zt-p), (12.12) 

which leads to the very general nonparametric autoregression model 

zt = m(zt-\,. ..,z,-p) + a,, t = ρ + 1, ρ + 2 , . . . (12.13) 

the Nadaraya-Watson estimator in model (12.13) is given by 

(12.14) 
s=p+\ 
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For χ equal to the last observed pattern, χ = ( z „ , ζ π - ι , · · · . zn-P+\)' this provides a 
one-step-ahead predictor for zn+\ that allows a very intuitive interpretation. Given the 
course of the time series observed over the last ρ instants, the predictor is a weighted 
mean of all those time series values in the past, which followed a course pattern that 
is similar to the last observed one. The weights depend on how close the pattern 
observed in the past comes to the pattern given by ( * „ , . . . , xn-P+\)'• 

A k-step-aheadpredictor is given if z, in (12.14) is replaced by zt-k+\'• 

This predictor does not use the variables zn+i >· · · •> z n +t , which are unknown, but may 
contain information about the conditional expectation E(zn+k I ( z „ , • · , ζπ-Ρ+ι)'). 
They might be replaced by estimates in a multistep procedure that consists in a 
succession of one-step-ahead forecasts. This procedure can lead to a smaller mean-
squared error than the multistep procedure (12.15). For a different proposal, see Chen 

Up to now we have considered only the autoregressive case where the regressor 
vector contains past time series values. The case of vector autoregression, where 
for each individual (scalar) time series past values of related time series or leading 
indicators are also included in the regression vector, can be treated in a similar way as 
nonparametric autoregression, although the number of components in χ is restricted 
due to the curse of dimensionality, which we discuss later. 

If the regressor vector x, = ( z , _ i , z t - P ) ' is used in estimating conditional 
distribution functions and conditional quantiles, such as in (12.10) and (12.11), then 
we arrive at quantile autoregression. The median autoregression q„,\/2 may serve 
as an alternative to the mean autoregression (12.14). In financial data one is often 
interested in the behavior of quantiles in the tails. For instance, the value at risk of a 
certain asset is measured by looking at low quantiles (a = 0.01 or a = 0.05) of the 
conditional distribution of the corresponding series of returns. 

Abberger (1996) applied quantile autoregression to time series of daily stock re-
turns. In order to assess such models, forecast error cannot serve as a criterion, since 
quantiles are not observable. Abberger proposed the criterion 

n-k+l 

k = 1,2, . . . . (12.15) 
l=p+l 

(1996). 

1 ~ Σ"=1 Ρα(Ζ' ~1α(Χΐ)) 

Σ"=1 Pa (Ζ/ - ία ) 
(12.16) 

where 

Pa(u) = a l [ 0 , o o ) ( M ) « + (Ot - Dli-oo.ojitOM (12.17) 

is the loss function introduced by Koenker and Bassett (1978) in their seminal paper 
on quantile regression and qa is the unconditional ot-quantile of the corresponding 
distribution. 
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1 1 1 ι Γ 

0.2 0.4 0.6 0.8 1.0 
χ 

r(x, y) = -0.002 

FIGURE 12.2 Simulated heteroskedastic data, n=500. 

0.0 

The term ξ α is constructed according to the R2 criterion in ordinary regression. It 
assumes values between zero and one, where ξ α = 0 if qa(x,) = qa for all x, and 
ξ α = 1 if Zi = qa(xt) for all t and all a, that is, if the distribution of [ζ \ x] is a 
one-point distribution. Figure 12.2 and Table 12.2 illustrate the behavior of ξ α with a 
simulated conical data set of 500 observations. 

The observations are heteroscedastic and have mean zero. The correlation between 
χ and y is —0.002. In Table 12.2 empirical ξ α values for different α are exhibited. 
They are calculated by replacing in (12.16) qa(xt) by its kernel estimator q„,a(xt) and 
qa by the empirical unconditional quantile of the first t — 1 data values z\,.. .,zt-\. 
The latter can be interpreted as a naive forecast of qa(xi)-

The findings of Abberger (1996, 1997) for several German stock returns were ξ α 

values close to zero for the median and increasing in a U-shaped form toward the 
boundary areas around α = .01 resp. α = .99. 

In Chapter 9 ARCH and GARCH models are introduced. They represent a very spe-
cific kind of parametric modeling for studying the phenomenon of volatility. A flexible 
alternative to the combination of an A R M A model with ARCH or GARCH residu-
als is given by the conditional heteroscedastic autoregressive nonlinear (CHARN-) 

TABLE 12.2. ξ „ Values for the Data in Figure 12.2 

oc 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99 
ξ α 0.43 0.36 0.27 0.10 0.01 0.11 0.26 0.34 0.41 
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model 

z, = m(x,) + σ(χ,)ξ, (12.18) 

studied by Hardle and Yang (1996) or Hardle et al. (in press). Here x, = 
(Zt-\,..., Zi-p)' is again the autoregressive vector (12.12), ξ, is a random variable 
with mean zero and variance one; σ2(χ) is called the volatility function. Given an 
estimator for m, e. g. the N W estimator mn according to (12.14), it was suggested 
that σ2(χ) can be estimated by 

Since the estimator (12.19) is based on a difference, a negative variance estimator 
may occasionally result. This can be avoided if the volatility function is estimated on 
the basis of residuals. See (12.51), the discussion in text surrounding it, and Feng and 
Heiler (1998a). 

In the context of time series analysis not only past values of the time series itself 
or of related series may occur as regressor variables, but also the time index itself, in 
which case xt = t, or some functions of the time index like polynomials or trigonomet-
ric functions. This leads to smoothing approaches. In the case m(xt) = m(t) the N W 
estimator at t consists in a weighted mean of the time series values in a neighborhood 
[t — h, t + h] of zt with nonrandom weights. Polynomials and trigonometric functions 
in / are used in decomposing a seasonal time series into trend-cyclical and seasonal 
components according to an unobserved components model. This application will be 
studied in Section 12.8 after the discussion of locally weighted regression. 

In the area of quantile estimation the regressor x, = t leads to quantile smoothing. 
This technique was used by Abberger (1996,1997) in order to compare the results of a 
nonparametric procedure for stock returns with those of a GARCH model, evaluated 
with an S-Plus package under the standard assumption of an underlying Gaussian 
distribution. As an example, we take daily discrete D A X returns, defined as z, = 
(price, — price,_i)/pn'ce,_1, exhibited in Figure 12.3. 

Since the Gaussian distribution is completely determined by mean and variance, 
conditional quantiles can easily be calculated from the outcomes of the GARCH 
model estimation. The results are depicted in Figures 12.4 and 12.5 for the lower and 
upper quartiles and for the . 1 and .9 quantiles, respectively. Two messages can be 
learned from the results. The first is that the asymmetric behavior of volatility, which 
is revealed by the nonparametric approach, will remain completely hidden by the 
choice of a wrong parametric model that is being offered as the default option by the 
package. In the presented example, which is not untypical for stock returns, volatility 

rf(Xt) = gn(xt) ~ m2

n(x,) (12.19) 

where 

(12.20) 
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FIGURE 12 J Time series of daily DAX returns from Jan. 2, 1986 to Aug. 13, 1991. 

is a phenomenon that has mainly to do with movements in the lower tails of the 
conditional distributions. The second finding in the figures is that kernel smoothing is 
very robust toward aberrant and erratic observations in the course of the time series, 
whereas GARCH models react very sensitively to them. 
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FIGURE 12.4 Estimation of 0.25 and 0.75 quantiles of daily DAX returns. 
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FIGURE 12.5 Estimation of 0.10- and 0.90-quantiles of daily DAX returns. 

12.4. P R O B L E M S OF S I M P L E K E R N E L E S T I M A T I O N A N D 
R E S T R I C T E D A P P R O A C H E S 

The nonparametric approaches we have treated so far suffer from two drawbacks. One 
is the so-called curse of dimensionality; the other is increased bias in cases of a highly 
clustered design density and particularly at the boundaries of the χ space. Curse of 
dimensionality describes the fact that in higher-dimensional regression problems the 
subspace of Rp+l spanned by the data is rather empty, that is, there are only few 
observations in the neighborhood of a point χ e f . In practice, this happens to be 
the case already for ρ > 2. 

Several proposals have been made to cope with the curse-of-dimensionality prob-
lem. We will describe only two of them very shortly. The first consists in decomposing 
Rp into a class of J disjoint course patterns, A j , j = 1 , . . . , J, with the aid of a 
non-hierarchical cluster analysis. These J disjoint sets serve then as the states of a 
homogeneous Markov chain. In the model 

m ( x t ) = E [ z t I x t e A j ] for x , e A j , j = 1 , . . . , J 

where x , is the autoregressive vector (12.12), m is estimated by 

η 

s=l 
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where Nj is the number of course patterns of length ρ from the time series in Aj. 
Here the estimator is an unweighted mean of all values following courses in pattern 
class Aj. Markov chain models of this type were first used by Yakowitz (1979b) for 
analyzing time series of water runoff in rivers. Asymptotic properties for this type of 
model are discussed by Collomb (1980, 1983). 

Gourieroux and Monfort (1992) examined a corresponding model for economic 
time series by incorporating volatility. They called their model 

j J 

ζ, = ΣαΜχ') + ΣΡΜχ'Χι 
j=\ j=l 

a qualitative threshold ARCH model. For further discussion of Markov chain models 
we also refer to Chapter 12. 

Another proposal in order to cope with the curse of dimensionality is given by 
the so-called generalized additive models, studied by Hastie and Tibshirani (1990), 
which are defined as 

ρ 

ζ, =m0 + '^t

mj^i-ij) + at-
J = l 

The components ntj are again of a general form. For estimation, the so-called back-
fitting algorithms such as the alternating conditional expectation algorithm (ACE) 
of Breiman and Friedman (1985) or the BRUTO algorithm of Hastie and Tibshirani 
(1990) may be used. The main idea of backfitting goes as follows. In the model above, 
E[z, — mo — mj(z,-iJ)] = » u ( z , _ , t ) . Hence the variable in square brackets can 
be used to obtain a nonparametric estimate for mt(z,_, t ) . Of course, the other m ; are 
unknown as well, so that the estimation procedure has to be iterated until all the m„j 
converge. For a more detailed study of generalized additive models, the reader is re-
ferred to the book by Hastie and Tibshirani as well as to the two interesting papers by 
Chen and Tsay (1993) (1993a, 1993b). For further discussion and other approaches, 
see also Hardle et al. (1997). Quite a few proposals can be found in the literature 
dealing with the bias problem of N W estimators close to the boundary and in cases 
of an unbalanced design in the χ space. Gasser and Miiller (1979, 1984) suggested 
for the case ρ = 1 a system of variable weights, Gasser et al. (1985) developed 
asymmetric boundary kernels, and Messer and Goldstein (1993) suggested variable 
kernels that automatically become deformed and thus reduce the bias in the boundary 
area. 

Yang (1981) and Stute (1984) suggested a symmetrized A C - N N estimator, and 
Michels (1992) proposed boundary kernels for bias reduction that can be carried 
over to the case ρ > 1. We do not discuss the abovementioned proposals in more 
detail since the disadvantages mentioned earlier can be repaired by using locally 
weighted regression. 
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12.5. L O C A L L Y W E I G H T E D REGRESSION 

Locally weighted respectively local polynomial regression was introduced into the 

statistical literature by Stone (1977) and Cleveland (1979). The statistical properties 

were investigated since then in papers by Tsybakov (1986), Fan (1993), Fan and 

Gijbels (1992, 1995), Ruppert and Wand (1994), and many others. A detailed de-

scription may be found in the book of Fan and Gijbels (1996). 

For the sake of simplicity we start with the assumption that the regressor Λ: is a 

scalar. For a better understanding we regard the data as being generated by a location-

scale model 

y = m(x) + σ(χ)ξ (12.21) 

akin to the one considered in (12.18), where the ξ are independent with Ε ( ξ ) = 

0, Var(£) = 1 and m(xo) = E(y \ χ = XQ). m is assumed to be smooth in the sense 

that the (p + 1 )th derivative exists at J C O , so that it can be expanded in a Taylor series 

around XQ 

m(x) = m(x0) + (x - x0)m'(x0) Η h (x - xo)' 
rm^\x0) 

+ Rr(x) (12.22) 

with the remainder term 

Rr(x) = (x- x0)
r+lmir+l\x0 + Q(x - x0))/(r - 1)!, 0 < θ < 1. (12.23) 

With 

m(J\x0) 
β;(*ο) = 

β. 
7 = 0 , l , . . . , r (12.24) 

we arrive at a local polynomial representation for m: 

m(x) « Σ β;(*ο)(* - XQ)1 (12.25) 

This approach motivates the nonparametric estimation of m as a local polynomial by 

solving the least-squares problem: 

min p e H r 

i' = l 

With the design matrix Xx having the η rows [1, Λ, —*,...,(*,- — x)r], the diagonal 

weight matrix Wx = diag{tf[(jc/ - x)/h]} and the vector y = ( y i , . . . , y „ ) ' , the 
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solutions at χ is given by 

fa) = (X'xWxXxr
lX'xWxy, (12.26) 

and where e y is the jth unit vector in R r + I . We see immediately that 

m(x) = f j 0 = e\(X'xWxXxT'X'xWxy (12.27) 

and that with 

mu\x) = = j\e'j+x(XxWxXxr
xX'xWxy, j = 1 , . . . , r (12.28) 

an estimator for the jth derivative of m is given. 

Thecaser = 0 yields the Nadaraya-Watson estimator (12.14). Let u = (/ · Γ (χι))"_, 

be the residual vector containing the remainder terms according to (12.23) at the data 

points. Then the conditional bias of β ( x ) is given by 

B($(x)) = (X'xWxXx)-
,XxWxu 

and with = W(jt) 2diag(a 2(jt ,)), its conditional covariance matrix is 

Var(PW) = (Χ'χ\νχΧχΓ\Χ'χΣχΧχ)(Χ'χ\νχΧχ)-
1. 

These last two expressions cannot be used directly since they contain the unknown 
vector u of remainder terms and the unknown diagonal matrix . 

A first-order asymptotic expansion of the variance and the bias term uses the 
moments of Κ and K2, denoted by 

μ, = ju' K(u)du and v, = j u'K2(u)du, 

which are contained in the matrices 

S = ( " · ; ' + / ) Ο < ; , / < γ . 5 = ( μ ; + ; + ι ) ο<; · , ;<Γ . S* = (v/- /)o<;, i<r 

and the vectors cr = (μ Γ +ι . · · · . μ2ι ·+ ι ) . c, = ( μ Γ + 2 . · · · , μ 2 Γ + 2 ) · For an iid sample 
(yi , x\),..., (y„, x„) with the marginal density f(x) > 0 and with / , m ( r + 1 ) and 
σ 2 continous in a neighborhood of x, we obtain for h — • 0 and nh„ — * oo the 
asymptotic conditional variance 

^ U ) ( , ) ) - e i + I 5 - » r 5 - ' e J + I i ( ^ + 0 , ( ^ ) . (12.29) 
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For the asymptotic conditional bias we have to distinguish between the cases where 

r — j is odd and where r — j is even. For r — j odd, we have 

Bias ( i f t W ) (x) ) = e',S-lcr~^—m(r+l\x)hr+l-j + op(h
r+i-j). (12.30) 

For (r — j) even, the asymptotic bias is 

B i a s ( m W w ) = ^ + i 5 - i f r _ A _ . 

mir+2\x) + (r + 2)m ( r + 1 >(jt)4^ 1 Α γ + 2 - ; + ο Ρ ( Λ Γ + 2 - ; ) (12.31) 

/ ( * ) J 
provided that / ' and m ( r + 2 ) are continuous in a neighborhood of χ and nh3 — • oo. 
As a very interesting fact, we notice the difference in asymptotic bias between r — j 
odd and r — j even. For instance, we have for the N W estimator (r = 0, j = 0) 

,i[m"(x) m'f'(x)~\ ,2 

B(mn(x)) = η 2 \ - γ ^ + + °P<-h )· 

whereas for the local linear approach we obtain 

A 2m"(;c)a2 , 
Β ( Λ ( * ) ) = 

We see that the bias of the local linear estimator has a simpler structure. The linear 
term in the bias expansion vanishes, whereas the expression for the variance is the 
same in both cases and given by voa2{x)/nh. The bias of the N W estimator does not 
only depend on m', but also on the score function — / ' / / · This is the reason why an 
unbalanced design leads to an increased bias. 

Similar considerations hold for higher-order polynomials. In practice, this means 
that for estimating m it is sufficient to consider r = 1 or r = 3, and for m' only r = 2 or 
r = 4 should be considered. In many applications r = j + l suffices. Fitting a higher-
order polynomial will possibly reduce the bias, but on the other hand the variance 
will increase since more parameters have to be estimated locally. 

If the regressor χ is a vector rather than a scalar, in most cases a local linear 
approach is chosen since in this case the step from r = 1 to r = 3 leads to a strong 
increase of parameters to be estimated locally, which entails an inacceptable increase 
in variance. Since 

β > ) = e'J+£ = e'j+y(X'xWxXxy
xX'xWxy = £ (12.32) 
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for estimating PJ(JC) = m(i){x)/j\, we have a similar expression as a weighted mean 

such as that for the N W estimator (12.14). The weights depend on the observations 

Xi and on the location of χ in the design space. 

It can be seen easily that the weights w'nj(u,) = wJ

ni[(Xi — x)/nh] satisfy the 

discrete moment conditions 

£>, - xywl, {^J1^ = °y, with 0 < j , q < r. 

As a consequence of this, the sample bias for estimating a polynomial with degree 

less than or equal to r is zero. 

The variance of m^\x) is given by 

The kernel with the weights w'ni(ut) is called the active kernel. 

A first-order approximation to the wJ

nj is given if (X'XWXXX) is replaced by the 

kernel moments matrix S. The corresponding kernel 

KU\u) = e'j+lS~\\, ur)'K(u) (12.33) 

is called the equivalent kernel. It satisfies the corresponding moment conditions 

J uqK(j)(u)du = hjq 0<j,q<r. (12.34) 

For instance, for the case r = 1, j = 0, we have K(u) = K(u), and for r = 2, j = 1 

(estimation of m'), Kw(u) = μ ^ Ή κ Χ κ ) . This means that for estimating m itself in 

the interior of the χ space the effective kernel is equal to the chosen symmetric kernel 

function itself, whereas for estimating the first derivative, ΛΓ ( 1 ) is a skew function. As 

a general result, K^j) is symmetric for j even and skew for j odd. 

In terms of equivalent kernels, the asymptotic conditional variance and the asymp-

totic conditional bias (for r — j odd) are 

Var(m^ 'U)) = f Rw(u)du + ^ ( n A " 1 ^ ) . (12.35) 

Bias i / f t^M) = J ' ! mir+i\x)hr+]-j f ur+lK(j)(u)du + op(h-r-1+J). 
(r + 1)! J 

(12.36) 

The major advantage of local polynomial regression over other smoothing methods 



consists in the automatic adaptation of the active resp. equivalent kernel to the esti-

mation situation in the boundary area. If χ is scalar and xt = mint*/), x* = max(;c,), 

then for a given bandwith h the interior of the χ space is given by all observations 

in the interval [x, + h,x* — A] . For all χ in this interval the equivalent kernels Kij) 

have the abovementioned symmetry resp. asymmetry property. In the left boundary 

part [xt, x* + h] the number of left neighbors in a local neighborhood of a point χ 

will be small compared to the number of right neighbors, and for χ = χ» , we have 

only right neighbors. Corresponding considerations hold for the right boundary part 

[x* — h, x*]. For χ e Rp, (p > 1) the boundary area will often cover an important 

part of the whole design space. For (r — j) odd, the active resp. equivalent kernels 

automatically adapt to the skew data situation in the boundary area. The situation 

in the right boundary area is illustrated in Fig. 12.6 for the Epanechnikov kernel 

K(u) = | ( 1 — u2)+ for a local linear estimation of m(r = 1, j = 0) and a local 

quadratic estimation of m'(r = 2, j = 1). 

We see how the weighting systems become deformed toward the boundary. The 

pictures for the left boundary area are symmetric with those in Figure 12.6. Since 

the size of the local neighborhood shrinks toward the boundary, the bias part of the 

mean-squared error (MSE) will be lower in the boundary area than in the interior. On 

the other hand, the variance part will increase since fewer observations are included in 

the local estimation and also because of the increasing deformation of the weighting 

system toward the boundary. Usually, the increase in variance overcompensates for 

the reduction of the bias, particularly if m" remains roughly the same in the boundary 

area. As a conseqence, the MSE will increase toward the boundary. The increase will 

be even more pronounced for higher-order polynomials. 
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For* e K p the local linear fit is given as the solution of the least-squares criterion 

£ [ ν , - β 0 - β ^ - * ) ] 2 κ ( ^ ) 
ι = 1 

where Κ is a p-variate kernel. With the design matrix Xx with rows ( 1 , ( J C , I — 
J C I ) , . . . , (XiP - xp)) the solution has the same form as in (12.27). Let AT be a product 
kernel composed of the same univariate kernel and bandwidth h in each coordinate, 
and let Hm{x) be the Hessian matrix of the second derivatives of m. Then we get an 
asymptotic expression for the variance and the bias in the interior (Ruppert and Wand, 
1994) 

Var(mU)) = "ff.™ + op{nh») (12.37) 
f(x)nhP 

and 

Bias(»i(jr)) = -\X2tr\Hm(x)\ + op(ph2). (12.38) 

These considerations about the advantage of a local linear approach compared to 
the local constant estimation, about its design adaptation property and its automatic 
boundary adaptation, hold for the multivariate case in a similar way. 

Up to now we have considered local least-squares regression to estimate the mean 
function m. But the idea of locally weighted regression turns out to be a very versatile 
tool for estimation in a variety of situations. 

Yu and Jones (1998) consider the estimation of the conditional distribution func-
tion F(y I x). Let F\(u) = f" K\(v)dv be the distribution function pertaining to a 
symmetric kernel density K\, and let h 2 be a bandwidth. Yu and Jones consider a 
local linear approach for F(y \ x) that is motivated by the approximations 

E[F,(^?)U°] *F(yolXo) 

and 

F(yo I xo) % F(y01 x) + F(y0 | x)(x - x0) = β 0 + β Ί ( χ - *o) 

where F(yo | x) = 3F(y 0 1 x)/dx. This suggests the least-squares approach 
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where Κ is a second kernel with bandwidth h \. The solution 

Fh]M(y\x) = βο = e\(X'xWxXxT
xX'xWxy (12.39) 

with y = (F i [ (y i - y)//t2], · · · , /*Ί[(ν η - y)//i2])' is called a local linear double-
kernel smoothing by the authors. The estimator is continuous and has zero as left 
boundary value (for y — • - o o ) and 1 as right boundary value. It can happen that the 
estimator ranges outside [0, 1]. But this does not, as the authors say, create problems 
in estimating qa by 

qa(x) = F^M(a\x). 

This estimator involves the problem that two bandwidths h ι and h2 have to be chosen. 
For a possible procedure with h2 < h\ we refer the reader to the paper by Fan et al. 
(1996) considering a related idea for estimating the conditional density itself. 

Ε [ έ * ' ( ^ τ ) ^ 8 ( y o l x ) + i i y o l x ) ( x ~ X o ) 

= β 0 + β'ί* - Xo) 

where g{y \ x) = dg(y | x)/dx, leads to the least squares criterion 

40) 

with the solution g(y \ x) = |3o as in (12.39), where now the vector y is 

>-iH*?) '•(¥))'• 
The local constant approach leads to the traditional estimator (12.3). Fan et al. also 
consider the case of a local quadratic approach for estimating the first derivative. We 
will not pursue this case further here, since for the quadratic term p(p + l ) / 2 more 
parameters have to be estimated. 

In all local regression approaches we used so far, we used the least-squares criterion. 
Let us now look at cases where instead of the square function, another convex loss 
function, ρ : R -*• R , is used, which has a unique minimum at zero, and let mp(x) = 
argminp0 Ε [p(y - βο) I x]. Then p(w) = u2 yields the conditional expectation that 
we analyzed mostly so far, and p ( « ) = \u \ yields the conditional median. This is just a 
special case for α = | of the loss function p a (u) = \u\+(2a—\)u, already mentioned 
in (12.17). The term p„ was introduced by Koenker and Bassett for parametric quantile 
estimation. The function 2 ρ α ( κ ) for various α values is exhibited in Figure 12.7. 
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• 2 - 1 0 1 2 3 - 3 - 2 - 1 0 1 
υ υ 

alpha = 0.75 alpha = 0.90 

FIGURE 12.7 2*p a(u) according to Koenker and Basset for several a. 

In robustness considerations ρ functions were introduced, which increase less 
rapidly than the square function and for which p' is the so-called ψ function. (Huber 
1981,Hampel etal. 1986). 

A local constant estimator for m p is 

mp(x) = argmin P o ]f]p(y, - βο)Κ^Χ' ^ * 

The known drawbacks of a local constant approach is that it cannot adapt to unbal-
anced design situations and that it has adverse boundary effects that require boundary 
corrections. This idea leads to the estimator 

W p ( j c ) = βο 

where 

(^o,0) = a r g m i n ( } o , p ^ p ( y i _ β 0 _ β'(* ^ ί _ £ ° ^ . (12.41) 

For a ρ function belonging to a robustness class, such as Huber's M-type estimators, 
known methods for robust estimation can be applied in order to solve the minimum 
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problem (12.41). We would like to remark that the use of kernels automatically 
safeguards against large deviations in the design space. For nonparametric robust M , 
L, and R estimation in a time series setting, see Michels (1992). 

For a local α-quantile regression with the p a function (12.17), the local solution 
in (12.38) can be evaluated by solving a linear programming problem, as was shown 
in the paper of Koenker and Bassett (1978). An algorithm for evaluating this can be 
found in Koenker and Dorey (1987). 

For the case of a general convex ρ function and iid observations, asymptotic 
normality is proved in Fan et al. (1994). The α-quantile estimation according to 
(12.41) is also considered by Yu and Jones (1998) and compared with the estimator 
(12.39). For reasons of practical performance, the authors prefer the double-smoothing 
approach (12.39). They also give an asymptotic expression for the mean-squared error 
for χ scalar, which for the solution of (12.41) is given by 

MSE(qa(x)) = Bias2(qa(x)) + Var(qa(x)) 

1 1 . 4 2 a, , , ν 0 α(1 - a ) 
4 a nhf(x)f(qa(x) | xf 

These expressions are used for suggestions of bandwidth choice. 

The cases of robust locally linear regression and of quantile regression are also 

considered in Fan and Gijbels (1996). 

12.6. A P P L I C A T I O N S OF L O C A L L Y W E I G H T E D REGRESSION 

T O T I M E SERIES 

Local linear or higher-order polynomial regression, originally considered mainly for 
independent data, can be applied in the same way to stationary processes with certain 
memory restrictions. The reasons are the same as those mentioned at the beginning of 
Section 12.3. Given two (dependent) random variables xs and x, and a point χ in the 
design space, the random variables (l/h)K[(xs —x)/h] and (\/h)K[(x, — x)/h] are 
nearly uncorrelated as h -*• 0. This is the whitening by windowing principle and it is 
worthwile mentionening that this property is not shared by parametric estimators. To 
handle memory restrictions in the proofs of consistency and asymptotic normality, 
mixing conditions (strong mixing, uniform mixing, or φ mixing) are used. They give a 
bound to the maximal dependence between events being at least k instants apart from 
each other. Short-term dependence does not have much effect on local regression. But 
local polynomial techniques are also applicable under weak dependence in medium 
or long term. If suitable mixing conditions are fulfilled, local polynomial estimators 
for dependent data have the same asymptotic properties as for independent data. Of 
course, the bias is not influenced by dependence, whereas the variance terms are 
affected. In proving asymptotic equivalence, then, the task consists in showing that 
the additional terms due to nonvanishing covariances between the variables are of 
smaller order asymptotically. 
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For a local linear estimation of m(x) = m(x\,..., xp) in the autoregressive model 
(12.13), the design matrix and the vector y have the form 

and with (χ, — χ)' = (z,~\ —x\,..., z,-p - xp)' the esimator can be evaluated as in 

(12.27). For* = xn+\ = (z„ zn-P+\Y 

yields the one-step ahead predictor. A direct it-step-ahead predictor is given if y = 

(zp+k zn)' and if the last row of the Xx matrix is (z„-k - z„,..., zn-k-P+i -
zn-p+\). But in this case a succession of one-step ahead predictions seems preferable, 
as mentioned in Section 12.3. 

Asymptotic normality results for locally linear autoregression can be found in 
Hardle et al. (in press) and Fan and Gijbels (1996). 

For the CHARN model zt = m(x,) + σ ( * , ) ξ , , the function g(xt) according to 
(12.20) can be estimated in a way similar to that shown above, where only in the 
vector y the time series values are replaced by the squares. Asymptotic normality for 
this case is shown in Hardle and Tsybakov (1997). For a residual-based estimator of 
σ2(χ), see (12.51) or Feng and Heiler (1998a). 

The local linear estimation of a conditional density in a time series setting with the 
abovementioned double-smoothing procedure as in (12.39) is considered in Fan et al. 
(1996) and in Fan and Gijbels (1996), where asymptotic results can also be found. 

For the estimation of the conditional distribution function according to the proposal 
of Yu and Jones (1998) as in (12.39) and for a general solution of (12.41) asymptotic 
results are known for independent data. See the papers of Yu and Jones (1998), 
Hardle and Gasser (1984) and Tsybakov (1986). For dependent data, we have not 
found yet formally puplished proofs. But considering the whitening by windowing 
effect makes it clear that for these cases consistency results will hold under suitable 
mixing conditions. 

12,7. P A R A M E T E R SELECTION 

One of the first questions to be answered in the application of kernel smoothing is 
which type of kernel to use for different choices of r and j . It is well known that for 
r — j odd in the interior of the χ space, the Epanechnikov kernel K(u) = | ( 1 - w 2 )+ 
is the one that minimizes the mean-squared error in the class of all nonnegative, 
symmetric, and Lipschitz continuous functions and that for the endpoints χ* and x*, 
the triangular kernels (1 — W ) 1 [ O , I ] ( M ) resp. (1 + i/)l[_i,o] are optimal. For other points 

m(x„+i) •-- βο 
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in the boundary area, optimal solutions are not known. It is easy to see that when 

*1 looking at variance, only the uniform kernel i is the one minimizing the 

variance. 
It is well known that in practice the choice of the kernel is not very important 

compared to the choice of the bandwidth. The Epanechnikov kernel will therefore 
be a good choice in many cases. Nonetheless, in practice often higher-oder kernels 
such as the bisquare or the triweight are preferred. This has to do with the degree 
of smoothness, since the kernel estimates inherit the smoothness properties of the 
kernel. According to the degree of smoothness as introduced by Miiller (1985), the 
uniform kernel has degree zero (not continuous), the triangle and the Epanecknikov 
kernel have degree 1 (continuous, but first derivate not continuous), the bisquare and 
the triweight kernels have degrees 2 and 3, respectively, and the Gaussion kernel has 
degree oo. 

The most crucial task in kernel smoothing is bandwidth selection. Much ink has 
been spoiled on papers concerning this problem. It is hence impossible to give a 
comprehensive survey here. Instead, we will discuss only a few basic ideas. The aim 
is to choose bandwidths such that the conditional mean-squared error, given by 

MSE(mU)(x)) = B i a s 2 ( m 0 ) ( A : ) ) + V a r ( m 0 ) ( x ) ) (12.42) 

becomes minimal. We have to distinguish between a locally optimal banwidth and a 
globally optimal, constant banwidth. 

It is clear that a large bandwidth will lead to a low variance, but a high bias. 
Decreasing the bandwidth will increase the variance, but reduce the bias. An optimal 
bandwidth is achieved when the changes in bias and variance balance. 

Using the asymptotic expressions (12.35) and (12.36) for the conditional variance 
and bias, then minimizing (12.42) with respect to h yields for the (asymptotically) 
optimal bandwidth at χ for a scalar χ 

h*n = cr,j(K) 
σ\χ) 1 

{m«+Hx)ffix) n 

l / ( 2 r + 3 ) 

(12.43) 

where the constant 

Crj(K) = 
\(r + mH2j + \)fK<%fdu^,/<2f+3) 

2(r + 1 - j)[fur+*KU\u)du}2 

(12.44) 

depends only on r, j and the used kernel and can be calculated beforehand. 

In time series applications we are mainly interested in a constant, global bandwidth, 
for which the integrated mean squared error (IMSE) 

j [ B i a s ( m 0 ) ( ; 0 ) 2 + Var(m{j\x))]w(x) dx 
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is chosen as a criterion, where w is a weight function going to zero at the boundaries 
to avoid boundary effects. Minimizing the IMSE with respect to h yields the optimal 
global bandwidth 

Κ = crJ(K) 

f°-$w(x)dx 
- | l / (2r+3) 

1 

f{m^+lKx)\ w(x)dx η 
(12.45) 

For local linear estimation of m when ;c is a ρ vector and the same bandwidth is 
chosen in each coordinate, a similar expression can be derived (see Feng and Heiler 
1998a). Here 

l / (p+4) 

where 

vo σ 2 ( * ) 

μ 2 f(x)tr{Hm(x)} 

l/(/>+4) 

and Hm(x) is the matrix of second derivatives of m. All these expressions con-
tain quantities that are unknown and are therefore not amenable in practice. "Plug-
in techniques" substitute these quantities by pilot estimates. For more details, see 
Ruppert et al. (1995). 

A simple procedure of bandwidth selection for independent data, first developed 
to find the smoothing parameter in spline smoothing, is cross-validation. Let m„.i(xi) 
be the so-called leave-one-out estimator of m at where the observation (y,, *,·) is 
not used in the estimation procedure. Then the criterion is 

CV(h) = n-lYt[yi-mh,i(xi)]
2 (12.46) 

1 = 1 

and hCv = argminCV(/t) is the cross-validation bandwidth selector. The idea can 
also be used for JC e Rp and for estimating derivatives. See Hardle (1990) for details. 
It can be shown that it converges almost surely to the IMSE optimal bandwidth, but the 
convergence rate is with n~ 1 / 1 0 very low. The cross-validation idea was developed for 
independent data. In a time series setting it is suggested to replace the leave-one-out 
estimator by a leave-block-out estimator, where for estimating at jr, not only the ith 
observation is omitted, but a whole block of data around (y,, * , ) . This idea was used 
by Abberger (1996, 1997) in smoothing the conditional α quantile, where the square 
function is replaced by the p a function (12.17). 

Let σ 2 be the variance of the residuals in an iid sample and in the time series case, 
the unconditional variance of the stationary process. Rice (1983, 1984) proposed a 
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criterion R that for a general linear smoother is given by 

R(h) = RSS(h) - σ 2 + 2σ2η~ι uv„,(*,) (12.47) 
i '=l 

2 ic on o c t i m o f d f/-\f r r ^ where the tum are the actual weights for estimating m(jt,), σ2 is an estimate for σ 

and 

RSS(h) = η " 1 Σ [y, - m A f c ) ] 2 (12.48) 
1 = 1 

is the mean residual sum of squares. Under the assumption that σ 2 is a consis-
tent estimator, Rice (1984) showed that the proposed estimator ha = argminR(h) is 
asymptotically optimal in the sense that ( Λ « - ho)/ho -* 0 in probability, where Λη 
is the minimizer of the mean averaged squared error 

MASE(h) = n~lE ^ [ m f c ( * , ) - m ( * , ) ] 2 

i= l 

The rate of convergences of hR is the same low rate n _ 1 / l ° as for the cross-validation 
solution hcv- The main differences between the two is that R involves an estimate of 
σ 2 , whereas C V does not. 

For r>2 Rice proposed an estimator based on first differences, whereas Gasser et al. 
(1986) suggested taking second differences (since they annihilate a local linear mean 
value function); 

n-2 r j 

& G = 3(w - 2) ^ ^ ' y ' + ] ~ ^ + y i + l ) 

2 

(12.49) 

An estimator based on a general difference sequence Dm = {do, d\,..., dm} such that 
£ o dj = 0 and Y% d) = 1 was considered by Hall et al. (1990). The variance 
estimator based on Dm is then 

a 2 = ( n - m y l y \ y d j y j + i ) . (12.50) 
n—m / m \^ 

i = i \j=o I 

Fan and Gijbels (1995) suggest the residual sum-of-squares criterion (RSC), which 

is based on a local estimator of the conditional variance derived under a local homo-

geneity assumption: 
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With this the RSC is defined as 

RSC(x;h) = σ2(χ)[\ + (r + \)V] (12.52) 

where V is the first diagonal element of the matrix (X'XWXXX)~\X'XW
2XX) 

(X'xWxXx)~
l; V - 1 reflects the effective number of local data points. RSC admits 

the following interpretation. If h is too large, then the bias is large and hence also 
&2(x). When the bandwidth is too small, then V will be large. Therefore RSC protects 
against extreme choices of h. 

The minimizer of E[RSC(x; h)] can be approximated by 

h„o(x) -
apo (•*) 

2Crtf+inf(x) 

l / ( 2 r + 3 ) 

(12.53) 

where αο denotes the first diagonal element of the matrix S lS*S ' , that is, αο = 

/ K2(u)du andC r = μ 2 Γ + 2 —<^S _ 1 c r , with the definitions given in Section 12.5 and 

β Γ + ι = m ( r + 1 ) ( ; r ) / ( r + 1)!. The value h„o(x) differs from the optimal bandwidth in 

(12.44) by an adjusting constant that depends only on r, j, and the kernel used. Hence 

the latter one can be evaluated, 

h*n(x) = Adj,rh„0(x), (12.54) 

where 

Adj,r 

(2j + l)Crf(k
u\u)Ydu 

l(r + 1 - j){ J « r + l
 KU\u)du Y f K(u)2du J 

l / ( 2 r + 3 ) 

For the Epanechnikov and the Gaussian kernel these constants are tabulated for various 
r and j in Fan and Gijbels (1996). 

For a global bandwidth the minimizer h of the integrated RSC 

IRSCih) -J RSC(x;h)dx 

is taken, which in practice breaks down to evaluating a mean over certain grid points 

χ , · , , . . . , xim. h is also selected from among a number of grid points in an interval 

[Amin. A,™*]. Tb-e g l 0 D a l bandwidth is then given by 

hj,r = Adj/h. (12.55) 

The RS criterion suffers also from having a low convergence rate. Therefore 
the following refined bandwidth selection procedure is suggested. It is a double-
smoothing (DS) procedure. The pilot smoothing consists in fitting a polynomial of 
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order r + 2 and selecting hhr as above. With the bandwidth A r + i , r + 2 estimates of 

p \ + i j B r + 2 and σ2(χ) are evaluated^With these pilot estimates in_a second stage 

the MSE(jj)(x\h) = B i a s j r ( j c ) + Var,, r(;c) is evaluated,^where Bias ; , r(;c) denotes 

the (j + l)th element of the estimated bias vector and Var (y , r )(x) is the (j + l)th 

diagonal element of the matrix (X'^X.r^X^WfX^X'^W.X.r^Hx). With 

Snj = Σϊ=\ ^ t ( J t i — x)/h](xi — x)1, the bias vector is estimated by 

Br(x) = (X'WXXX) -1 

k r ^ r + l 5 n i 2 r + l + \%r+lSn,2r+2 / 

In order to avoid collinearity effects, modification of the vector on the right side is 

suggested by putting Sn,r+i = • •• = S„,2r+2 = 0, which yields 

br(x) = (X'V/xXxy 

/ Pr+\Sn,r+\ + 3 r + 2 ^ n , r + 2 \ 
3r + lSfl ,r+2 

0 

The global refined bandwidth selector is then given by the minimizer h^r of 

/ MSEjr(x;h)dx. (12.56) 

This refined technique leads to an important improvement over the RSC bandwidth 
selector. 

For a balanced design, that is, for equally spaced χ values, Heiler and Feng (1998) 
propose a simple double-smoothing procedure, where in the pilot estimation step the 
R criterion is used. In Feng and Heiler (1998b) a further improvement of this proposal 
can be found, where a variance estimator based on the bootstrap idea is used. Equally 
spaced χ values are given in a time series setting, for instance, where the regressor 
is the time index or a function of the time index. This kind of smoothing will be 
discussed in the next section. 

For order selection in a time series autoregression model with x, = ( z , _ i , . . . , z,-p) 
and m,(x) as the leave-one-out estimator according to (12.27), Cheng and Tong (1992) 
use the cross-validation criterion 

CV(p) = (n-r + I ) " " 1 - Α,(χ,)]2ιν(χ,). (12.57) 

where w is a weight function to avoid boundary effects. 
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Because of the curse-of-dimensionality problem it may be advisable not to take all 
lagged values z , _ i , . . . , z,-p into account but to look for a subset of lagged values that 
yields the best forecasts. For a lag constellation x,(i) = ( ζ , - , · , , . . . , zt-ip)' Tj0stheim 
and Auestad (1994b) propose using the final prediction error 

FPE(x,(i)) = n" 1 £ [z» - Λ ( * ι ( 0 ) ] 2 / ( « ) (12.58) 

where the factor 

1 +(nh"rlvobp(i) 
f(i) = 

1 - ( Λ Λ Ρ ) - ' [2KP(o)-v^]bp(i) 

ί vli \ j u /'\ - 1 V " 1 " ^ ( Χ , Ο ' ) ) 

v0= I K\u)du, bp(i) = n > . 

i / ( * r ( 0 ) 
where / ( x , (i)) is a multivariate kernel density estimator. FPE in (12.57) is essentually 

a sum of squares of one-step-ahead prediction errors multiplied by a factor that 

penalizes small bandwidths and a large-order p. 

12.8. T I M E SERIES D E C O M P O S I T I O N W I T H L O C A L L Y 
W E I G H T E D REGRESSION 

As mentioned in Section 12.3, if*, is the time index itself or a polynomial in t, then 
we arrive at trend smoothing. In a simple trend model 

zt = m(t) + a, 

the considerations at the beginning of Section 12.5 deliver an estimator of the smooth 

trend function or its derivatives. Now the matrix X, has the rows (1, s—t,..., (s—t)r) 

foTs = 1 , . . . , η and Wt = diag(AT[(s - t)/h}). As an interesting fact, one can easily 

see that in the interior of the time series, that is, for h < t < η — h, the weights given 

in (12.28), 

< , ( s ) = e'j+x(X\W,X,r\\, s - t ( J - t)r)K 

are shift-invariant in the sense w J

n l + ] ( s + 1) = wJ„,(s). This means that in the interior 
of the time series the local polynomial fit works like a moving average. But the main 
advantage over other trend smoothing techniques lies in the automatic boundary 
adaptation of the procedure. This property makes the idea of extending the local 
regression approach to so-called unobserved components models very appealing. 
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Nonparametric estimation of trend-cyclical movements and of seasonal variations 

and their separation by local regression represents an interesting alternative to proce-

dures based on parametric models like X -12 or TRAMO-SEATS. (See Chapter 8.) 
These involve extrapolation methods on either end of the time series in order to be 

able to estimate the components also in the boundary parts of a time series. This can 

lead to serious problems if unusual observations in the end parts of time series yield 

grossly erroneous forecasts. The latter problem will not appear with a local regression 

approach. Note also that with a data-driven parameter selection the procedure works 

in a fully automatic way. 

The decomposition of a time series into trend-cyclical and seasonal components 

by /ocally weighted scatterplot smoothing (LOWESS) was suggested by Cleveland 

et al. (1990). The procedure discussed here is different from their procedure in essen-

tial features. 

We consider the additive (unobserved) components model 

Z l = T(t) + S(t) + a„ t = 1, 2 , . . . (12.59) 

For the sake of simplicity we assume that [a,} is a white-noise sequence with mean 

zero and constant variance σ 2 . T(t) represents the trend cyclical and S(t), the seasonal 

component. The usual assumption with respect to Τ is that it has certain smoothness 

properties so that the considerations at the beginning of Section 12.5 apply, leading to 

a local polynomial representation of order r. With respect to the seasonal variations, 

the usual assumption is that they show a similar pattern from one seasonal period to 

the next, but they are allowed to vary slowly in the course of time. Hence a natural 

assumption is that they can be approximated locally by a Fourier series, containing 

the seasonal frequency and its harmonics, 

ι 
S(s) = ^ [ a ; ( i ) c o s 2 T r X ; ' ( 5 - t) + 7 , ( i ) s i n 2 T r \ , ' ( i - f)] (12.60) 

where λ is the seasonal frequency, λ = l/P, and Ρ is the period of the season. Of 

course, kq < j (and for \ = { the last sine term has to be omitted). 

Let 

u,(s) — (cos 2TT\(J — / ) , sin 2TT\(S — r ) , . . . , cos 2q-n\(s — / ) , sin 2οττλ(Λ — / ) ) ' 

θί(ί) = ( α , ( ί ) , 7 , ( 0 , · · · , a , ( f ) , 7 , ( f ) ) ' . 

Then S(s) = a(t)'u,(s). 

With the local polynomial representation for the trend-cyclical part 

Γ 

r ( j ) = Σ β ; ( ί ) ( * - ty = β ( ο ' * / ω 
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where β ( ί ) = ( β 0 ( ί ) , · . . , β Λ Ο / , x,(s) = (1, s - t,..., (s - t)r)', the local least-
squares criterion is 

X > - β(0'*,(ί) - a{t)'u,(s)\2K (S-^-) • (12.61) 

With the design matrices Xu with rows x,(s)', X2i with rows ut(s)', X, = (Χι,:Χ2ι), 
the composed vector γ ( / ) ' = ( β ( / ) ' , α ( ί ) ' ) , and the weight matrix W, = diag(K[(s — 
t)/h], the solution is 

^(t) = (X'lWlX,)-lX',W,y (12.62) 

? ( f ) = e\(X',W,X,)-xX',W,y (12.63) 

S(t) = (ο ' , φ^ίΧ, ' ΐν ,ΑΤ,Γ'Χ, 'νν ,ν (12.64) 

where o' is a row of zeros of length r + 1 and φ£ is a row vector of length 2q with 
entries φ, = (1 0 1 0 · · • 1 0). It picks out the ά , ( ί ) , pertaining to the cosine 
terms in 5(f)- The estimator for the jth derivative T(i) of Τ is 

f 0 ) = jlSj+iiX'WX^X'Wy. (12.65) 

All these estimators work as moving averages in the interior part of the time se-
ries and have for r — j odd the simple boundary adaptation property discussed in 
Section 12.5.The decomposition m(t) = T(t) + S(t) is not unique, since the matrix 
X',WtXt is not block diagonal. This could, of course, be achieved by an orthogonal-
ization procedure but seems not to be compelling for practical purposes. We call such 
decomposition a natural decomposition. 

For parameter selection first a decision has to be made about the degree of the trend 
polynomial Τ and the trigonometric polynomial S. Since the seasonal variations are 
involved in the local approach, the bandwidths should be such that at least three to 
five periods of the season are included. In order to achieve this, the modelization of 
Τ should be rather flexible. Hence, for the interior part of the time series, the polyno-
mial degree r = 3 may be preferable to the choice r = 1. A data-driven choice for a 
joint selection of r and bandwidth A is a very difficult task since the two parameters 
are highly correlated. A higher r allows a larger bandwidth and vice versa. In our 
experience collected so far a data-driven procedure for the interior part always opted 
for the highest allowed degree r m a x that was put beforehand even if the MSE criterion 
included a penalty term for overparameterization. As far as the trigonometric polyno-
mial is concerned, all harmonic terms should be included, unless an inspection of the 
periodogram or the estimated spectrum reveals that one or even more of the seasonal 
frequences can be omitted. 

After this preselection of parameters, a procedure for bandwidth selection is 
needed. Since for an equidistant time series the "design density" / is a constant, 
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the procedure is somewhat simpler than in the general situation discussed in 
Section 12.7. 

A variant of a double-smoothing procedure is recommended. In the pilot stage 
a polynomial of degree r + 2 is fitted and the bandwidth is selected with the Rice 
criterion with respect to m = T + S. But because of seasonal variations, the difference 
based variance estimator (12.49) has to be altered. Heiler and Feng (1996) and Feng 
(1998) propose a seasonal difference-based variance estimator of the form in (12.50), 
where not only a local linear function but also a local periodic function is allowed for. 

An example for monthly data (P = 12) is 

£ > 2 6 , 1 2 = c~1 { - 1 , 2, - 1 , 0,0, 0, 0,0,0, 0, 0, 0, 2, 

- 4 , 2, 0,0,0, 0, 0,0, 0, 0,0, - 1 , 2, - 1 } , 

where c is determined such that £J=o^ 2 = 1· The term I > 2 6 , i 2 annihilates a local 
linear trend and a local periodic function with periodicity Ρ — 12. Similar sequences 
can easily be constructed. 

Let be the resulting estimator and let g be the minimizer of the R criterion 
(12.47). With mg = tg + Ss, the resulting estimator is denoted. For an arbitrary 
h, the weights w*(s) for estimating 7),(f) + Sn(t) are the components of the vector 
(1 0 , . . . , 0, φ;χχ;Ψ,Χ,Γ^Χ',Ψ,, where for W, a kernel with bandwidth h is taken. 
Using the pilot estimates mg(t), the bias part of the MSE at ί for an estimator with 
bandwidth h is estimated by 

Bias(m/,(i)) = ^ w^Wrhgis) — mg(t) 
s = \ 

which yields for the bias part of the mean averaged squared error MASE(h): 

η 

B(h) = « _ l J ] B i a s 2 ( , M A ( 0 ) 

=
 Μ " ' έ{έ" ; < Λ ( Ί ) 'Μ Ί ) - 'Μ' ) } · (12.66) 

The variance is estimated by 

V(h) = η - ' σ 2 ^ ^ ι υ , Α ( ί ) 2 (12.67) 

;=1 

η π 

f=l j=l 

where σ 2 should be a suitable root-η consistent estimator of σ 2 . 

After the first pilot step a minimizer h of the criterion 

MASE(h) = B(h)+ V(h) (12.68) 
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is evaluated over a grid, where, in the second step, the estimator &Q is used in V(h). 
This second step leads to a considerable improvement over the simple R criterion, but 
the estimator &Q is still not very good. Hence an improved estimation with a lower 
polynomial degree and a bandwith gv larger than g is proposed. For details, see Feng 
and Heiler (1998b). According to considerations therein an estimatorfor gv can easily 
be found by multiplying the minimizer h of (12.68) with a correction factor. This 
factor depends only on the used kernel and on the polynomial degree r,gv — CFrh. 
For instance, we get for the Epanechnikov kernel CF\ = 1.431, and C F 3 = 1.291, 
for the bi-square kernel CF\ = 1.451,andCF3 = 1.300, and for the Gaussian kernel 
CF, = 1.489 and C F 3 = 1.305. See Table 5.1 in Miiller (1988) or Table 1 in Feng 
and Heiler (1998b). 

Now let mgi> = tgv + Sgv be an estimator with bandwidth gv. Then an improved 
variance estimator is obtained by taking the mean-squared residuals 

In a third step this variance estimator is plugged into (12.69) for σ 2 , and with this 
again a minimizer h* of the MASE (12.68) is evaluated. In principle, this procedure 
can be iterated several times; in the next step, with a polynomial of degree r + 2, a 
new bias estimator is evaluated. 

The abovementioned procedure yields a bandwidth h* for the interior part of the 
time series, where, after the selection of h*, the interior is given by [h* +1, η - h*]. As 
described in Section 12.5, the procedure automatically adapts toward the boundaries. 
But as also described there, because of increasing variance, the MSE will increase as 
well, particularly if r — 3 is chosen, as was recommended at the beginning of this 
section. 

One possibility to at least partly compensate for this is to switch to a nearest-
neighbor estimator in the boundary area, that is, to keep the total bandwidth hT = 
2h* + 1 constant at both ends of the time series. This means that for estimating from 
/ = η — h* + 1 to t = n, the same local neighborhood is used (and similarly for the 
left boundary). 

Instead of or in addition to that, a switch from a local polynomial of order 3 to 
a local linear approach (for T) may be recommended whenever the MSE for r = 1 
becomes smaller than that for r = 3. In order to do that, for the given bandwidth and 
the asymmetric neighborhood situation at each timepoint in the boundary area with 
the corresponding active weighting systems, the MSEs for r = 3 and r = 1 have to 
be evaluated according to the procedure described above. As soon as MSEi < MSE3, 
a local linear approach is chosen for Τ and maintained to the endpoint. According to 
practical experience collected so far, such a switch occurred close to the endpoints in 
almost all cases. 

In Figures 12.8 and 12.9 we present two examples where the decomposition pro-
cedure discussed above is applied. The first time series is the quarterly series of the 
German GDP from 1968 to 1994. In the top panel in Figure 12.8 the time series 

(12.69) 
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itself and the estimated trend-cyclical component are exhibited. The middle panel 

shows the estimated seasonal component, and in the bottom panel the first deriva-

tive of the trend-cyclical is exhibited. This latter picture shows clearly the temporary 

boom after German reunification. The double-smoothing procedure with bootstrap 

variance estimator selected h = 11 as bandwidth. The polynomial degree was 2 

for estimating the first derivative and 3 for the other estimations. The second exam-

ple presented in Fig. 12.9 shows corresponding results for the monthly series of the 

German unemployment rates (in percent) from January 1977 to April 1995. Here the 

selected bandwidth is h = 21. The polynomial degrees are the same as in the previous 

example. 

Cleveland (1979) proposed an iterative robust locally weighted regression in a 

general regression context and later (Cleveland et al. 1990) this idea in time series 

decomposition. It can easily be adapted to the procedure discussed here, although in 
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their proposal the subseries of equal weeks, month, quarters, and so on are treated 
separately. The idea consists in looking at the residuals r, = z, — m(r) of a first, 
nonrobust procedure and to evaluate a robust scale measure δ for the residuals. Cleve-
land suggests to take the median of the |r,|. Since in many time series variability is 
different for different periods within the season depending on the size of the seasonal 
component, it seems reasonable to evaluate different scale measures for the different 
periods of the season. 

For ί = 1 , . . . , η let j = [(f - 1 ) / P ] + 1 be the year index, = 1 , . . . . 7 = 
[(n — \)/P] + 1, where [.] denotes the integer part and let i = t — P(j — 1) be the 
season index, that is, z, — > z, 7. Then for all / = 1 P a robust scale measure 

δ, = median j (|r,-y|) 
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is evaluated. From this so-called robustness weights are derived, which according to 

Cleveland's proposal are given by 

where Κ is a kernel function (the bisquare kernel is suggested). 
In a second step the local estimation procedure is repeated, where the neighborhood 

weights kst = K[(s — t)/h] in the diagonal weight matrices Wt are multiplied with 
the corresponding robustness weights β,·;, where / and j are the season and year 
index corresponding to J. Of course, with the time-dependent robustness weights, the 
procedure is no longer shift-invariant, so the least-squares solution must be evaluated 
for each t explicitely. Starting with the new residuals, the procedure can be iterated 
until the estimates stabilize. Since the robustness weights will change the active 
kernels, different bandwidths should be used in each iteration step. Cleveland (1979) 
claimed that two robust iterations should be adequate for almost all situations. Feng 
(1998) reported a stability criterion occuring in a higher number of iteration steps in 
most cases. 
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C H A P T E R 13 

Neural Network Models 

Kurt Hornik and Friedrich Leisch 
Technische Universitat Wien 

Certainly, everyone has heard success stories about the use of "neural networks" in 
a variety of tasks, including the recognition of speech, speakers, fingerprints, and 
handwritten characters (zip codes), the classification of medical images, decision 
support for loan applications, and in particular the forecasting of electric load and 
financial time series. In fact, there are now two conferences (Neural networks in 
the capital markets and Computational intelligence in financial engineering) dealing 
mostly with the use of neural networks for the processing of financial data. 

In this chapter, we shall provide a brief introduction to neural networks and indicate 
how they can be used for temporal processing. We shall only outline the basic ideas, 
which will definitely not suffice for building moneymaking machines right away. 

13.1. I N T R O D U C T I O N 

To start with, there is no generally applicable definition of the term neural network 
( N N ) . Here, we shall not be concerned with biological neural networks (such as the 
human brain or nervous system), but artificial neural networks ( A N N s ) , although the 
term computational neural networks would be more appropriate, (Bezdek 1992). The 
following two characteristics are of key importance: 

• NNs are built from simple processing elements (PEs) called nodes, units, or 

neurons, and contain certain adjustable parameters ("weights"). 

• NNs use rules to modify these parameters upon the presentation of data, specif-

ically to "learn from the environment." 
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This characterization is rather vague, and clearly applies also to many traditional 
learning systems, such as a linear regression model. On the other hand, it emphasizes 
the fact that an N N paradigm (model) is always a combination of rules for doing 
computations and rules for adapting (learning). In other words, neural networks are 
adaptive computational models. 

The terminology used in the field of neurocomputing is oriented toward machine 
learning and biology, and may at first be rather confusing to statisticians and econo-
metricians. For example, variables are called "features"; independent and dependent 
variables are referred to as "inputs" and "targets"; respectively, and the process of 
parameter estimation is called "learning" or "training." For that reason, publications 
that explain neural networks from a statistician's point of view have enjoyed great 
popularity (see, e.g., Ripley 1993, Cheng and Titterington 1994, Sarle 1994). In fact, 
there is even a dictionary for translating between neurocomputing and statistics (URL: 
ftp://ftp.sas.com/pub/neural/jargon). As this chapter is meant as a starting point 
for further reading, we have chosen to use the standard N N terminology. 

13.2. T H E M U L T I L A Y E R P E R C E P T R O N 

The most popular processing elements used in neurocomputing are the McCulloch-
Pitts units, which compute functions of the form 

X r-*- g(OLX + δ) 

where χ and α are vectors,' denotes transpose so that a'χ is the inner product of α 
and JC, δ is a scalar, and g is some (typically nonlinear) function. 

The original McCulloch-Pitts neuron as introduced in McCulloch and Pitts (1943) 
had integer weights α and δ and the Heaviside function as its activation function g 
(see Fig. 13.1): 

,.\ ί 0, f < 0 

* ( , ) = l i . / > o -

This special case is also called threshold units. It is an oversimplified model for bio-
logical neurons; the components of χ can be interpreted as the outputs of other neurons 
that provide information to the neuron, the components of α as the synaptic coupling 
strengths, so that a'χ is the actual input into the neuron, and —δ as the threshold above 
which the neuron "fires." McCulloch and Pitts showed that by suitable combination of 
such units with suitably chosen a's and δ'β one can implement all Boolean functions, 
but failed to provide a rule for constructing such N N implementations. 

A first learning rule was introduced by Rosenblatt(1958). His perceptron is a 
threshold neuron for binary classification (similar to Fisher's discriminant analysis), 
where the parameters are fitted from a collection of training patterns with the aid of the 
so-called perceptron algorithm. In some sense, the perceptron was the first learning 
machine. 
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FIGURE 13.1 Activation functions: Heaviside (top left), ramp (top right), logistic (bottom left), and 
arctangent (bottom right). 

The perceptron can solve problems only where the discriminant function is a 
hyperplane. For example, it cannot implement the XOR (exclusive OR) function 
where 

X y 

0 0 0 
0 1 Η » 1 
1 0 1 
1 1 l - > 0 

Although it was clear that combinations of threshold units should be used because they 
offer more computational power (Rosenblatt 1962), no appropriate rule for adjusting 
the parameters of such a model was available for a long time (credit assignment 
problem). 

The real breakthrough was the introduction of the MLP/BP paradigm in 
Rumelhart et al. (1986) based on two innovations: 

• Use of the multilayer perceptron ( M L P ) with sigmoidal and typically differen-
tiable activation functions g. MLPs are obtained by combining processing units 
in a layered feedforward manner. Sigmoidal functions are nondecreasing with 
finite limits at infinity, and hence are very similar in appearance to the Heaviside 
function in high-gain situations. Popular examples include the "ramp" function 
[the cdf (cumulative distribution function) of the uniform distribution on [0, 1]], 
the logistic function g(t) = 1/(1 + e~'), or the arctangent (see Fig. 13.1). 
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Hidden Layer 

Output Layer 

Input Layer 

FIGURE 13.2 A single (hidden) layer perceptron with three inputs, five hidden units, and one output. 

• (Re)introduction of the backpropagation (BP) learning algorithm [formerly intro-

duced by Bryson and Ho (1969) and Werbos (1974)], which, given a new input 

pattern χ and desired output pattern y, modifies the adjustable weights w of the 

M L P according to the rule 

where f(x,w) is the output of the M L P with input χ and weights w. 

The combination of generalized McCulloch-Pitts units in layers yields a rather 
powerful computational model. For example, perceptrons with one intermediate ("hid-
den") layer and one linear output unit (Fig. 13.2) implement functions of the form 

where h is the number of hidden units, g their common activation function and w the 
vector of all parameters of the model ( a y , β 7 , y,...). The ay's are vectors and define 
the weights corresponding to the links between the input layer and the y'th hidden 
unit. The β 7 's are scalars corresponding to the links between the hidden layer and the 
output unit. 

Let Q(g\Α, Θ ) be the set of all such function with the a ; and δ, in A and Δ , 

respectively. The following result is Theorem 2 in Hornik (1993). 

Theorem 13.1. Let g be essentially bounded and nonpolynomial on some non-
degenerate compact interval Δ , and let A contain a neighborhood of the origin. Then 
for all compactly supported finite measures μ on the input space and 1 < ρ < oo, 
Q(g; Α, Θ ) contains a subset that is dense in Ζ / ( μ ) . 

Aw oc gradjly - f(x, w)f 

h 

f(x,w) = y + ^ β ^ ( α ; Λ + δ 7 ) 

Similar results can be given for uniform approximation of continuous functions on 
compacta. This is the famous universal approximation property of the M L P model, 
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which states that almost "arbitrary" functions can be approximated using an MLP. 
Other classes of universal approximators that are commonly used include polynomials 
(Taylor series) and sine/cosine (Fourier series). 

We now know that it makes sense to use an MLP for approximating an unknown 
function; however, we need rules to find the correct parameters of the model (or at 
least an estimate). As mentioned above, in N N jargon parameter estimation is called 
"learning" and backpropagation is such a learning algorithm. 

Assume that we are given a sample { ( * ' , y ' ) , . . . , (xN, yN)} of examples and let 
L(x, y, w) = (y — f(x, w))2 denote the usual square loss. Backpropagation is an 
on-line gradient rule for the minimization of 

Ν Ν 

Σ i ( x ' , y , u ; ) = j ] ( y - / ( * · ' , ω » 2 

i = l 1 = 1 

with respect to the network weights w. Its name stems from the fact that (by a 
simple application of the chain rule), the gradient can be efficiently computed by first 
propagating the input forward and then the error signal backwards through the net. 

If we use the logistic activation function, we get 

d d 1 

dt dt I + e ' (1 + e ') 

Gradient descent amounts to iteratively adapting the weight vector w proportional 
to the gradient of loss L. The gradient is given by the partial derivatives of L with 
respect to the components of w, see a standard textbook on numerical optimization 
for details. 

Let Uj — g(hj 4- OLijXi) denote the output of the y'th hidden unit such that 

f(x,w) = y+J2PjUJ 
i 

and by simple application of the chain rule, we get 

2(y - f(x, W))UJ 

2(y - f(x, wWjitjd - uj) 

2(y - fix, w))$jUj(\ - uj)Xi 

The gradient contains only inputs x, targets y, the network output f(x, w), and acti-

vations Uj of the hidden units and can therefore be computed very efficiently. 

3L 

Wj 
dL_ 

Wj 

dL 

3 a,, 
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Backpropagation starts with some initial random weight vector w , and iteratively 

updates the weights according to 

uv' + l = w' - Tiigrad^LCx', y ' , w') 

where η , is a decreasing learning rate and (χ', y') is a pattern randomly drawn from 
the training patterns. 

At least if the training patterns are iid, the g thus obtained should be a good 
approximation to the conditional expectation E(y|.x). For classification tasks, one can 
choose the targets as Cartesian unit vectors indicating the class numbers (one-in-& 
coding); the M L P should then approximate the posterior class probabilities and hence 
the Bayes decision given uniform loss. 

Of course, nothing prevents us from restricting the above approach to situations 
with iid training patterns. In time series applications, the "input" at time t would 
contain lagged targets y(t - 1 ) , . . . , y(t - p), such that in the simplest case "using 
an N N " amounts to fitting a model 

y~t = / ov - i . · · •. yi-p) + a, 

where the unknown / is implemented by an M L P with a certain architecture; see 

Section 13.3. 
The actual use of the above general recipe is hampered by at least the following 

two facts: 

• Backpropagation is a gradient descent algorithm that typically converges rather 
slowly and in general only finds local minima of the error function. As initial 
values for parameters are typically chosen at random, the training process seldom 
results in unique solutions for different initializations. 

• The choice of a "suitable MLP architecture" (i.e., the specification of the con-
nection patterns of the units, and in particular of the numbers of units and layers 
employed) is extremely difficult. Intuitively speaking, if the MLPs are too small, 
then it may not be possible to approximate the unknown E(y|jc) to a satisfactory 
degree of accuracy; on the other hand, if they are too large, the out-of-sample 
performance may be bad ("bias-variance dilemma"). 

Therefore, there is a huge number of papers dealing with improvements of the ba-
sic MLP/BP model, ranging from the introduction of ad hoc strategies (pruning, 
"quickprop," "weight decay," "optimal brain damage," etc.) to the systematic use of 
superior numerical methods for parameter estimation (conjugate gradient, Newton-
type methods, etc.) and the application of model selection and regularization methods 
(effective number of units, network information criterion, Bayesian approaches, cross-
validation, bootstrapping, etc.). The "frequently asked questions" (FAQs) of the news-
group comp.ai.neural-nets (URL: ftp://ftp.sas.com/pub/neural/FAQ.html) con-
tains a large number of corresponding references. 
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13.3. AUTOREGRESSIVE N E U R A L N E T W O R K M O D E L S 

Probably the most popular way of using ANNs for time series analysis is to generalize 

the standard AR(p) model 

yi = $\y<-i + \-4>py,-p + a, (13.1) 

to nonlinear models of form 

y, = f(y,-i,...,y,-p;w) + a, (13.2) 

where a, is an iid noise process. If / ( • · · ; w) is a feedforward neural network with 
parameter ("weight") vector w, we call equation (13.2) an autoregressive neural net-
work process of order p, in short, A R - N N ( p ) , in the following. If Eo, = 0, then / 
equals the conditional expectation E ( y , | y , _ i , . . . , y , _ p ) and / ( y , _ i , . . . , y , _ p ; w) is 
the natural predictor for y, in the mean square sense. 

The following two (closely related) MLP architectures are provided with most N N 
software packages: 

Single-hidden-layer perceptrons: 

h 

/ ( y , - i y , - p ; w) = y0 + ^ p , g ( 8 , -r-a,iy,-i Η <*iPyt-P) (13.3) 
i = l 

where h is the number of hidden units, δ,, β; and -yo are scalar weights, o t , . are 
p-dimensional weight vectors, and σ ( · ) is a bounded sigmoid function such as 
tanh(-) (see Fig. 13.3). 

FIGURE 13.3 Single hidden layer perceptron with ρ = two inputs, h = four hidden units, and one 
output. The left figure shows a network without shortcut connections [equation (13.3)1; the right figure, a 
network with shortcut connections [equation (13.4)]. 
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Single-hidden-layer perceptrons with shortcut connections: 

fiy,-\ y t - P \ w) = Ύο + Φιν,-ι + · • ·ΦΡ^Ι-Ρ (13.4) 

Λ 

+ Σ β;£(δ|· + a.nyt-\ + ••• dipy,-p) 

;=i 
where φ is an additional weight vector for shortcut connections between inputs 

and output. In this case we define the characteristic polynomial Φ ( ζ ) associated 

with the linear shortcuts (see Fig. 13.3) as 

To check the stationarity of such models, we can use the following theorem 

(Leischetal. 1999). 

Theorem 13.2. Let [y,] be defined by (13.2); further let Έ\α, \ < oo and the den-

sity of at be positive everywhere in K . Then 

1. If f is a network without linear shortcuts as defined in (13.3), then { y , } is 
asymptotically stationary. 

2. If f is a network with linear shortcuts as defined in (13.4) and additionally 

c(z) Φ 0, Vz € C : \z\ < 1, then {y,} is asymptotically stationary. 

The time series {y,} remains stationary if we allow for more than one hidden layer 
[-*• multilayer perceptron ( M L P ) ] or nonlinear output units, as long as the overall 
mapping has bounded range. An MLP with shortcut connections combines a (possibly 
nonstationary) linear AR(p) process with a nonlinear stationary N N part. Thus, the 
N N part can be used to model nonlinear fluctuations around a linear process like a 
random walk. 

The only part of the network that controls whether the overall process is stationary 
is the linear shortcut connections (if present). If there are no shortcuts, then the 
process is always stationary. With shortcuts, the usual test for stability of a linear 
system applies. 

13.3.1. Example: Sunspot series 

As an example, we demonstrate how to fit an A R - N N ( p ) model to the well known 

sunspot series. The series gives the mean number of sunspots in the years 1700-

1988; hence we have 289 obervations. As mentioned above, there currently exist 

no analytical model selection methods for A N N models such as the AIC for linear 

models. We will therefore rely on cross-validation techniques. 

Φ ( ζ ) = 1 - φι ζ - φ 2 ζ 2 Vzp, ζ e C . 
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FIGURE 13.4 The sunspot series. 

The sunspot series is shown in Figure 13.4. Suppose that we are interested in one-

step predictions; for instance, at time t we want to predict value y,+i using y i , . . . , y,. 

To get a valid estimate for the performance of our model, we can split the sample 

into three independent subsamples, use the first one to get parameter estimates, use 

the second subsample to choose the order of the model, and finally use the third 

subsample to get an independent estimate for the mean prediction error. Of course, 

this approach is valid only if the data generating process are unchanged between 

the three periods of time—an assumption that should be reasonable for the sunspot 

series. 

In neural network language this is called splitting the available data into a training 

set, a test set, and a validation set. Only the training set is used for training the network; 

the test set is used for model selection, and the validation set is reserved to get an 

independent estimate for the performance. In our case we use observations 1-200 

(corresponding to years 1700 to 1899) as training set, observations 201-250 (years 

1900-1949) as test set and the remaining observations (years 1950-1988) as test set. 

First we estimate linear A R ( p ) models with ρ = 1 , . . . , 15 as benchmark, using 

only the training set for parameter estimation. Figure 13.5 shows the error on the test 

set, indicating that an AR(9) model is best with a mean square error (MSE) of 226. 

This result is consistent with previous findings in the literature (Tong 1990). 

Then we train neural networks with h = 2 and h = 4 hidden units using also lags of 

ρ = 1 , . . . , 15. Figure 13.5 shows that the NNs do better on the test set than does the 

standard A R model for smaller lags (including the best linear model). The increase 

in error for larger lags is due to overfitting; an MLP with 15 inputs and 4 hidden units 

has almost 100 free parameters, which cannot be estimated from only 200 training 

samples. The best network with h = 2 hidden nodes uses ρ = 6 inputs and has a test 

set error of 213; the best network with h = 4 hidden nodes uses ρ = 1 inputs and 

has a test set error of 207. 

The validation set errors are 653 for the AR(9) compared to 387 of the 6-2-1 

MLP and 454 for the 7-4-1 MLP. Note that neural networks must be seen as "black-
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FIGURE 13.5 Model selection for the sunspot series. Mean square error on a test set versus lag ρ of 
the model for a standard AR model (solid line), NN with two hidden nodes (dashed line), and four hidden 
nodes (dotted line). 

boxes" for function approximation (but very powerful ones), and any "interpretation" 

of the models chosen above other than the number of lags used is only of limited 

value. 

13.4. THE RECURRENT PERCEPTRON 

Recurrent neural networks differ from feedforward nets in that feedback connections 
among units are permitted. This provides them with dynamic properties that allow 
for dealing with time, which is important in many tasks where time plays a role (such 
as the analysis of economic or financial time series, but also for speech, vision, and 
control). For these and many other reasons, recurrent nets were the subject of broad 
research interest in the late 1990s. 

In this section we shortly present three popular recurrent network models as an 
introduction to this field. Parameter estimation is essentially harder in the recurrent 
case such that a detailed treatment is beyond the scope of this introduction to NNs 
for time series analysis. For details, especially on applications and network training, 
we refer to the neural network literature. 

13.4.1. Examples of recurrent neural network models 

Elman and Jordan networks 

The so-called Elman network (Elman 1990) and Jordan network (Jordan 1986,1992), 
enhance the standard two-layer (i.e., one hidden layer) perceptron architecture by 
providing previous hidden unit activations and outputs, respectively, as additional 
inputs. 
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FIGURE 13.6 Elman network (left) and Jordan network (right). 

Elman (1990) was interested in learning sequential patterns in linguistics such as 
the syntactic or semantic features of words. In such applications, it is useful to "mem-
orize" internal states, namely, hidden unit activations, of the net, thereby encoding the 
temporal properties of sequential inputs. The structure of an Elman network is shown 
in Figure 13.6. The three units on the righthand side (RHS) depict a time delay, namely, 
the activations of the hidden units at time t—1 are used as additional inputs at time /. Let 

denote the activation of the jth hidden unit at time /. Then an Elman network 
amounts to using a model of form 

On the other hand, Jordan (1986,1992) was concerned with the control and learning 
of robot movements. There, it is desirable to have the neural net "memorize" previous 
positions of the robot, suggesting to use them as additional inputs. More generally, 
the Jordan network is particularly suitable when the serial order of the outputs is 
important. Using a Jordan network amounts to fitting models of form 

where y, = y, — a, denotes the output of the network at time t. This is a nonlinear 
generalization of the A R M A ( p , l ) model, because using both y,_i and y,_i is equiva-
lent to using y,_i and α,_ι as inputs (remember that the hidden nodes compute linear 
combinations of the inputs). 

y, = / ( y , _ i , . . . , ν , _ ρ ; κ ι ( ί - 1 ) , . . .,uh(t - \);w) + a, 

y, = / ( y / _ i , . . . , y , _ p ; y , _ i ; u ) ) + fl/ 
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Both Elman and Jordan networks have in common (as do all recurrent networks) 
that the parameters cannot be estimated using standard backpropagation. The gradient 
of the error function at time t depends on the gradient at time t — 1 because of the recur-
sive definition of the model, such that at time t all gradients back to / = 0 must be used. 

Language recognition 
Language recognition is a typical task where the correct classification of temporal 
patterns of arbitrary (finite) length is required. The following model for recognizing 
formal languages L, that is, families of 0-1 strings, is considered and rigorously 
analyzed in Siegelmann and Sontag (1992, 1994). The net evolves according to 

u(t + \) = g(Au(t) + By(t) + c), 

where u(t) and y( f ) are the network activations and inputs at time t, respectively, and g 
performs coordinatewise application of the saturated linear function (ramp function) 

g(ot) = 
0 i f o t < 0 
α if 0 < α < 1 
1 if α > 1. 

There are two binary inputs, one representing the data line over which the patterns are 
presented, and the other the validation line, which takes the value " 1 " when an input 
is applied, and "0" otherwise. Similarly, two units are taken as output units for data 
and validation. The initial state of the net is always taken to be a zero equilibrium. 
The network classifies an input word ω = α>ι · • · ω* in time τ if the output sequences 
are of the form 

"data = 0^_0 η(ω)0 · · · , "validation = 9_^J_2 ' ^ " 

τ - 1 τ-1 

where η(ω) , the network's "final response" to the input pattern ω, is either 0 or 1. 

13.4.2. A unifying view 

Recurrent neural networks can be described as dynamical systems of the form 

M(f + 1) = / ( « ( / ) , * ( > ) ) 

perhaps with an additional observation equation of the form o(t) = g(u(t)), or in 
continuous time by a differential equation of the form it = f(u,x) (the dot denotes 
the derivative with respect to time). In the simplest recurrent perceptron case, this gives 

u(t + 1) = O - ( A M ( / ) + Bx(t) + c) 

which is obviously closely related to nonlinear state-space models. 
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Given the familiar universality of approximation results for two-layer perceptrons 

(e.g., Hornik 1993), it is rather straightforward to show that, for instance, recur-

rent two-layer perceptrons with output feedback (i.e., the Jordan networks of Exam-

ple 13.1) can uniformly approximate arbitrary dynamical systems on compact time 

intervals (of course, under suitable regularity conditions). Rigorous theorem are given, 

for example, in Chen and Chen (1993, 1995). 

The idea of adjusting the parameters of a (general nonlinear) dynamical system by 

gradient descent on some performance functional is neither new nor specific to the 

neural network field. (Nevertheless, similar to the derivation of the backpropagation 

learning algorithm for feedforward perceptrons, the development of gradient-based 

learning algorithms for recurrent neural networks has been rather ad hoc and and 

lacking a unifying general perspective for quite a while.) Such methods have been 

successfully employed in systems theory and control for a considerable amount of 

time (although the emphasis in these areas has clearly been on linear systems). 

For sake of notational simplicity, we shall base our derivations on continuous-time 

systems; discrete-time systems can be dealt with analogously. 

Hence, consider a dynamical system of the form 

with initial condition u(to) = κη· Here, u is the /V„-dimensional vector of state 

variables, and w is a /vVdimensional vector of parameters ("weights") that is to be 

adjusted to achieve a certain "suitable" behavior of the system. The exact form of / 

is irrelevant for the derivation of the basic equations, but may heavily influence their 

actual implementation. Note that the "f" in / can also represent external inputs x(t) 

applied to the system. 

We have already encountered different possible tasks that such a system could be 

used for. In Example 13.2, the object of interest was the equilibrium state u(oo). In 

language recognition (Example 13.3), the network's "final" classification response 

« d a t a ( ' / ) to the presented input should be correct. In trajectory learning (Example 

13.4), the system should approximate a target trajectory as well as possible on some 

time interval [ίο, ' / ] · Note that in the N N literature, "trajectory learning" is typically 

contrasted to "fixed-point learning." But clearly, the latter concept only adequately 

characterizes the situations where performance is measured in terms of a static equi-

librium reached by the system for ί —• oo, as is appropriate when training a network 

to be an associative memory, for instance, but not the state-based cases where such 

an equilibrium is not reached or finite time horizons are of interest (e.g., in language 

recognition). 

Let l(t) = l(t, u(f)) be the instantaneous performance of the system at time t. In 

typical cases, l(t) is proportional to the (prediction) error 

it = f(t, u; w) (13.5) 

ieO(t) 
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where 0(t) and y(t) are the set of output units and the target, respectively, employed 

at time t. Note that u and hence also ί are, of course, functions of the adjustable 

parameters w as well, although this dependence is not made notationally explicit. 

Then in all examples above, the overall performance of the system is of the form 

Trajectory learning is obtained with i(tf) = 0, and conversely the final state-based 

cases correspond to l(t) = 0 for ίο < t < tf. In fact, the general form of Λ might, 

for instance, be used in a control application where a desired final state is to be 

approximated with as little cost as possible. 

Clearly, gradient descent learning simply amounts to modifying the parameters w 

according to 

where Vwi denotes the gradient of ί with respect to w. For efficient methods to com-

pute this gradient such as "backpropagation through time," we refer to Haykin(1994), 

for example. 
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C H A P T E R 14 

Vector A R M A Models 

George C. Tiao 
University of Chicago 

14.1. I N T R O D U C T I O N 

Business, economic, engineering and environmental data are often collected in rough-
ly equally spaced time intervals, such as hour, week, month, or quarter. In many pro-
blems, such time series data may be available on several related variables of interest. 
Two of the reasons for analyzing and modeling such series jointly are: 

1. To understand the dynamic relationships among them. They may be contem-

poraneously related, one series may lead the others or there may be feedback 

relationships. 

2. To improve accuracy of forecasts. When there is information on one series 

contained in the historical data of another, better forecasts can result when the 

series are modeled jointly. 

In addition, one may be interested in the structure of the relationship among the series. 
In particular, there may be hidden factors responsible for the dynamic movement of 
the component series. For examples, there may be combinations that underline the 
growth of all the components, and there may also be combinations which are more 
stable than each individual series. 

Let 

[zul • • • Azk,), t = 0 , ± 1 , ± 2 , . . . (14.1) 

be k series taken in equally spaced time intervals. Writing 

* = ( ζ ΐ ι . · . . . ζ * / ) ' (14-2) 
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we shall refer to the k series as a ̂ -dimensional vector time series. Models that are of 
possible use in representing such multiple time series, considerations of their proper-
ties and methods for relating them to actual data have been extensively discussed in 
the literature. See in particular, Quenouille (1957), Whittle (1963), Hannan (1970), 
Zellner and Palm (1974), Brillinger (1975), Dunsmuir and Hannan (1976), Box and 
Haugh (1977), Parzen (1977), Wallis (1977), Chan and Wallis (1978), Deistler et al. 
(1978), Hallin (1978), Jenkins (1979), Hsiao (1979), Akaike (1980), Hannan (1980), 
Hannan et al. (1980), Quinn (1980), and Granger and Newbold (1986). The issue of 
multivariate linear structure has been given by Hannan and Kavalieris (1984), Hannan 
and Deistler (1988), Lutkepohl (1991), Reinsel (1993), Reinsel and Velu (1998), and 
many others. 

The principal objective of this chapter is to describe the approach to analyzing mul-
tiple time series that have been initiated by Tiao and Box (1981). Our main goal will 
be on motivating, describing and illustrating the methods used in an iterative model 
building process with special emphasis on tentative model specification. Much, if 
not all, of the underlying theory can be found in the references given and, therefore, 
will not be repeated. Section 14.2 presents a short review of the widely used transfer 
function models as developed in Box et al. (1994). Section 14.3 discusses a class of 
vector autoregressive moving-average models. Model building procedures are dis-
cussed in Section 14.4 and applied to three actual examples in Section 14.5. We then 
move on to provide a discussion of issues involved in structural analysis of multivari-
ate time series. The canonical analysis method proposed by Box and Tiao (1977) is 
discussed in Section 14.6, and finally an introduction to the scalar component model 
(SCM) approach proposed by Tiao and Tsay (1989) for structural analysis is given in 
Section 14.7. 

14.2. TRANSFER F U N C T I O N O R U N I D I R E C T I O N A L MODELS 

When k = 1 we shall write z, = z,. First, recall from equation (3.3) (of Chapter 3) 
that a widely used linear model for discrete univariate time series is the A R M A ( p ^ ) 
model 

<p(B)z,=c + HB)a,. (14.3) 

This model can be alternatively written as 

z, = c*+ ψ (β )α„ ψ ( β ) = θ ( β ) / φ ( β ) . (14.4) 

When k series {zi,}> · · · > { ζ * ( } are of interest, relationships sometime exist that can 
be represented by a linear transfer function or unidirectional model of the form 

Zi, = Li(B)au 

z2l = v2l(B)zu + L2(B)a2t (14.5) 

zu = vk](B)z\, -I h v t ( j t _ i ) ( B ) z ( t _ i ) , + Lk(B)ak, 
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where, for convenience the constant terms are suppressed, the v(B)'s and L(B)'s are 
polynomials in B, and { c t i , } , . . . . {a*,} are it independent white noise processes with 
zero means and variances σ,2 ak

2. Often the polynomials v(B)'s and L(B)'s can 

be parsimoneously represented as ratios of polynomials of the form 

ω(Β) h Q(B) 

δ ( β ) φ(Β) 

where b is a nonnegative integer, and 

ω ( β ) = ω υ - ω , β ω5Β\ δ ( β ) = 1 - δ,Β δ Γ B r 

Θ(Β) = 1 - θιΒ θ, Β", φ ( β ) = 1 - φι Β φρΒ
ρ. 

It will be understood that the polynomials ω ( β ) , δ ( β ) , θ ( # ) , φ(Β) and the exponent 
b will in general be different for the different v(Z?)'s and L(B)'s. 

For k = 2, the model in (14.5) reduces to the transfer function model for the output 
variable y, = zit with one stochastic input variable x, = zu, as discussed in detail 
in Box et al. (1994). Their model building procedure has been widely adopted, but 
it becomes cumbersome to apply to situations when there are more than one input 
variable. Their procedure is compared with an alternative method using the vector 
A R M A model later in the chapter. It is also worth noting that if the input series is 
deterministic, the model for the output series is of the same form used in intervention 
analysis (Box and Tiao, 1975). 

Transfer function models of the form (14.5) assume that the k series, when suitably 
arranged, possess a triangular unidirectional relationship; that is to say, for example, 
that ζ ι depends only on its own past, zi depends on its own past and on the present 
and past of z\, Z3 on its own past and on the present and past of zi and z\, and so on. 
A graphical illustration of the model (14.5) fork = 3 is given in Figure 14.1. On the 
other hand, if z\ depends on the past of zi, and also zi depends on the past of z\, then 
we must have a model which allows for this feedback. 

FIGURE 14.1 A trivariate transfer function model. 
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14.3. THE V E C T O R A R M A M O D E L 

For k series {z,), the vector autoregressive moving average model takes the form 

Φ(β)ζ, = c + 6( f i )a , (14.7) 

where Φ(Β) = Ι - Φ , β ΦρβΡ, Θ(β) = Ι - Θ , β Θ 9 β« are matrix poly-

nomials in Β, the Φ'β and 0's are it χ it parameter matrices, c is a it χ 1 vector of con-

stants, and {a,} with a, = (a\„ . . . , a*,)' is a series of random shock vectors normally, 

identically and independently distributed with zero mean vectors and covariance ma-

trix Ω. We shall suppose that the zeros of the determinantal polynomials |Φ(β)| and 

| Θ(β)| are on or outside the unit circle. The series (z,} will be stationary when the ze-

ros of |Φ(β)| are all outside the unit circle, and will be invertible when those of |Θ(β)| 
are all outside the unit circle. The model in (14.7) will be denoted as ARMA(/>,^) . 

The k χ k covariance matrix Ω may either be positive definite or positive semidef-

inite. In what follows we shall use the notation Ν*(0, Ω ) to denote a it-dimensional 

multivariate normal distribution with mean vector 0 and covariance matrix Ω. 

In the literature, the vector A R M A model in (14.7) has been extensively studied 

by a large number of researchers. Properties of the model have been discussed, for 

example, in Hannan (1970), Anderson (1971), and Granger and Newbold (1986). 

The parameter estimation for a given model has been investigated by Tunnicliffe 

Wilson (1973), Phadke and kedem (1978), Nicholls and Hall (1979), Hillmer and 

Tiao (1979), and Solo (1984). The problem of model building has been discussed by 

Akaike (1976), Chan and Wallis (1978), Parzen (1977), Jenkins and Alavi (1981), 

Cooper and Wood (1982), Tiao and Tsay (1983), and others. Various applications of 

model (14.7) can be found in Zellner and Palm (1974), Anderson and Moore (1979), 

and many others. 

14.3.1. Some simple examples 

To illustrate the behavior of observations from these models, Figure 14.2 shows two 

series with 250 observations generated from the bivariate it = 2 first-order moving-

average MA(1) or ARMA(0,1) model 

z, = c + (I - 0B )a , (14.8) 

with 

«-[£]· ,3,] - °-[ϊ !]• 
Figure 14.3 shows two series with 150 observations generated from the bivariate first 

order autoregressive AR(1) or A R M A ( 1,0) model, 

( Ι - Φ β ) ζ , = c + a, (14.9) 
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FIGURE 143 Data generated from a bivariate AR(1) model with parameter values in (14.9). 
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with 

c = 
5 
10 

Φ 
.3 
1.1 

and Ω = 
4 1 
1 1 

Although in both cases the series are seen to be stationary, observations from the 
autoregressive model are seen to have more "momentum" than those from the moving 
average model. 

In practice, time series often exhibit nonstationary behavior. When several such 
series are considered jointly, nonstationarity may be modeled by allowing the zeros of 
| Φ ( β ) | in (14.7) to lie on the unit circle. A particular example is the model (1 — Β)τ, = 
( I — 0f i )a , ; after differencing each series we obtain a vector MA(1) model. This is 
a vector analog of the commonly used univariate nonstationary model (1 — B)z, = 
(1 — QB)a,. However, it should be noted here that for vector time series, linear com-
binations of the elements of z, may often be stationary and simultaneous differencing 
of all series can lead to unnecessary complications in model fitting, see, for instance 
the discussions in Box and Tiao (1977) and Hillmer and Tiao (1979). 

14.3.2. Relationship to transfer function model 

For the vector model in (14.7), in general, all elements of z, are related to all elements 
of z,-j (j = 1,2, . . . ) and there can be feedback relationships between all the series. 
However, if the z*,'s can be arranged so that the coefficient matrices Φ'β and 0's are 
all lower triangular, then (14.7) can be written as a transfer function model of the form 
(14.5). 

More generally, if the Φ'β and 0's are all lower block triangular, then we obtain a 
generalization of the transfer function form of (14.5) in which both the input vector 
series and the output vector series are allowed to have feedback relationships. We note 
here that relationships between the vector transfer function model and the econometric 
linear simultaneous equation model have been discussed in Zellner and Palm (1974), 
and Wallis (1977). 

14.3.3. Cross-covariance and correlation matrices 

For a stationary vector time series (z,} with mean vector 0, let 

Γ ( * ) = Ε ( ζ , _ £ ζ ; ) = {Ίυ(1)), / , ; = 1 , . . . , k; I = 0, ± 1 , ± 2 , . . . (14.10) 

be the lag t cross-covariance matrix and p(£) = {p,y(€)} be the corresponding cross-
correlation matrix. When the vector A R M A model in (14.7) is stationary, explicit 
expressions for the r(£)'s can be obtained as follows. First, assuming without loss of 
generality that E ( Z / ) = 0, we can write the model for z, in the Ψ form 

ζ, = Ψ ( β ) β „ Ψ ( β ) = Ι + Ψ , β + ψ 2 β 2 + (14.11) 
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where the Ψ'β are obtained by equating coefficients from the relation Φ ( β ) Ψ ( β ) = 

Θ ( β ) . Now, from (14.7) 

- Φ , β ΦΡΒ")ζ,}' = z , _ t { ( I - Θ , Β Θ9β")8,}'. (14.12) 

Taking expectation on both sides of (14.12), and making use of the fact from (14.11) 

that E(z,aJ_y) = Ψ,-Ω, where Ψη = I. it is straightforward to verified that 

Γ(ί) = 

r-l 
Σ Γ ( ; ) Φ ; _ ; · - Σ Ψ ; Ω Θ ; + < ' * = ( > , . . . , Γ 

j=l-r J = 0 
(14.13) 

Σ Γ ( £ - ; ) Φ ; , > r 

where Θη = —I, r = max(p,q) and it is understood that ( i ) if ρ < q, Φρ+\ = · • · = 

ΦΓ — 0, and (ii) ifq<p, Θ ί + ι = • · • = Θ Γ = 0. In particular, when ρ = 0, i.e. we 

have a vector MA(<?) model, then 

q-l 

ΣΘ,ΩΘ;+ί, ^ ο , . , . , ί 
j = 0 

(14.14) 

o, ί > q. 

Thus, Γ(£) φ 0 for ί = q but all auto- and cross-correlations are zero when I > q. 
On the other hand, for a vector autoregressive model, the auto- and cross-correlations 
in general will decay gradually to zero as \l\ increases. 

14.3.4. The partial autoregression matrices 

From the moment equations in (14.13) for a stationary A R M A ( p , ^ ) model, we see 

that, form > q, the autocovariance matrices r(£)'s and the autoregressive coefficient 

matrices Φ'8 are related as follows: 

A(p, m) b(p, m) 

g 'ip, m) r (m) 

where 

k(p,m) -

Ά(ρ-\)' c(p, m) 

_Γ(ρ+ηι)_ 

) Γ ( ΐ « -- ί ) 

Γ(ηι + 1) r (m) 

r ( w + ρ - 2) 

m = q,q + 1, 

(14.15) 

Γ(/η - ρ+ 2)' 

Γ(ηι) Γ(ηι - 1) 

Γ(ηι + 1) T(m) 
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Hp, m) = 
r ( m - p + \ ) 

Γ ( , η - 1 ) 

g(p, m) = 

c(p, m) — 

rXm + p-l) 

T'(m + 1) 

Γ(,η 4-1) 

f ( m + ρ - 1) 

and A'(p - 1) = [Φ, , Φ ρ _ , ] . 
In the special case m = q = 0, (14.15) is a multivariate generalization of the 

Yule-Walker equations for autoregressive models in univariate time series. In par-
ticular, by partitioning inversion, and on writing A(p) = A(/?,0) , b(p) = b(p ,0) , 
c(p) = c(/>,0), g(p) = g(p ,0) , we have that 

Φ; = [Γ(0) - g'(p)A-\pMp)]-l[r(p) - g'(p)A'\p)c(p)] (14.16) 

Motivated by this result, we may define a partial autoregression matrix function p(l), 

which is analogous to the partial autocorrelation function for the univariate case, such 

that 

p'd) = 
Γ - ' ( 0 ) Γ ( 1 ) , I - 1 

[ [ Γ ( θ ) - g W A - ' w b w r ' t r w - gftOA-'iOciO], ί > ι . 

This function has the property that for a vector A R ( p ) model 

(14.17) 

= 
Φι, i = P 

0, I > p. 
(14.18) 

14.4. M O D E L B U I L D I N G S T R A T E G Y F O R M U L T I P L E T I M E SERIES 

In this section we sketch an iterative approach consisting of (1) tentative specification 
(identification), (2) estimation, and (3) diagnostic checking for the vector A R M A 
models in (14.7). 

14.4.1. Tentative specification 

The aim here is to employ statistics that (1) can be readily calculated from the data 

and (2) facilitate the choice of a subclass of models worthy of further examination. 

Sample cross-correlations. The sample cross-correlations 

[Uzi.-UYlZizj.-ZjYY12 
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FIGURE 14.4 Sample auto- and cross-correlations for the data in Figure 14.2. 

where z, is the sample mean of the ith component series of z,, are particularly useful 
in spotting low-order vector moving average models since from (14.14) p , ; (0 = 0 
for i > q. 

For the data shown in Figure 14.2 generated from a bivariate MA(1) model, 
Figures 14.4a-14.4c show, respectively, the sample autocorrelations pn(l) and ρ 2 2 ^ ) . 
and the sample cross-correlations ρ 1 2 ( ί ) . The large values occurring at \l\ = 1 would 
lead to tentative specification of the model as an MA(1). However, graphs of this kind 
become increasingly cumbersome as the number of series is increased. Furthermore, 
identification is also not easy from a listing of sample cross-correlation matrices ρ ( I ) 
like that in Table 14.1 (a), particularly when k is greater than 4 or 5. 

In this circumstance, we have found the following simple device of great practical 
value. Instead of the numerical values, a plus sign " + " is used to indicate a value 
greater than 2n~l/z, a minus sign " - " for a value less than -2n~l/2 and a dot "•" 
to indicate a value in between -2n~l/2 and 2n~l/2. The motivation is that if the 
series were white noise, the p,j(£)'s would, for large n, be normally distributed with 
mean 0 and variance n _ 1 . The symbols can be arranged either as in Table 14.1 (b) 
or as in Table 14.1 (c) , both of which clearly suggest a vector MA(1) model for the 
data. 

We realize that the variances of the p y (£ ) ' s can be considerably greater than 
n _ l when the series are highly autocorrelated, so that these "indicator symbols," if 
taken literally, can lead to over parameterization. However, we do not interpret these 
"indicator symbols" in the sense of formal significance tests but as a rather crude 
"signal-to-noise ratio" guide. Taken together they can give useful and assimilable 
indicators of the general correlation pattern. 

Table 14.2 shows sample cross correlation matrices in terms of these "indica-
tor symbols" for the series (Fig. 14.3) generated from a bivariate AR(1) model. The 
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T A B L E 14.1. SAMPLE CROSS-CORRELATION MATRICES FOR DATA IN FIGURE 14.2 

3 7 5 

Γ- .28 

L-.21 -

(a) Sample Cross-Correlation Matrices ρ (I) 

Lags 1-6 

28 .37 

19 

-.11 . o n Γ -
-.17 - .06 

Κ .03 .08] Γ .04 - . 0 3 ] Γ - . l l .04] Γ- .02 - . 0 9 ] Γ.10 .01] 

.02 .01 J [ - . 01 -.08J [ - .03 -.09J [ - . 0 2 -.08J [.01 -.00J 

Lags 7-12 

Η -.09 - . 1 2 ] Γ.01 - . 0 6 ] Γ- .00 .02] Γ .03 .00] Γ .06 .04] 

-.03 —. 16J [.08 .10J [ .01 -.04J [.08 .08J [ - . 01 .01 J 
(b)p(l) in Terms of Indicator Symbols 

Lags 1-6 

[::}[. :][: :][: :][: :][: :] 
Lags 7-12 

[::][::][: :][: :][: :][: :] 
(c) Pattern of Correlations for Each Element in Matrix Over All Lags 

Zl Z2 
ι 

Zl 

Z2 

persistence of large sample auto- and cross-correlations indicates that the data are 
not likely to have come from a low-order M A model, and suggests the possibil-
ity of autoregressive behavior. In general, the pattern of indicator symbols for the 
cross correlation matrices makes it very easy to identify a low-order moving-average 
model. 

T A B L E 14.2. SAMPLE CROSS-CORRELATION MATRICES P ( L ) 

FOR DATA IN FIGURE 14.3 IN TERMS OF INDICATOR SYMBOLS 

Lags 1-6 

[::][;:][; ;][: 0 
Lags 7-12 

[: :][: :][: :][: :][: :][: :] 
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Sample partial autoregression and related summary statistics 
For an A R ( / » ) process the partial autoregression matrices p(l) in (14.17) are zero for 
I > p. They are particularly useful, therefore, for identifying an autoregressive model. 
Estimates of p(i) and their standard errors can be obtained by fitting autoregressive 
models of successively high-order 1,2... by standard multivariate least squares. 

It is well known (see, e.g., Anderson 1971) that for a stationary AR(p) model, 
asymptotically the estimates Φ ι , . . . , Φρ are jointly normally distributed. A useful 
summary of the pattern of the partials is obtained by listing indicator symbols, as-
signing a plus (minus) sign when a coefficient in p(i) is greater (resp. less) than 2 
(resp.—2) times its estimated standard errors, and a dot for in between values. 

To help determine tentatively the order of an autoregressive model, we may also 
employ the likelihood ratio statistics corresponding to testing the null hypothesis 
Φι = 0 against the alternative Φι φ 0 when an AR(£) model is fitted. Let 

η 

S ( i ) = Σ < ζ ' - *'*<-> - Φιζ , - ι Φ£Ζ,-ί) ' (14.20) 
ι=ί+\ 

be the matrix of residual sum of squares and cross-products after fitting an AR(£) . 
The likelihood ratio statistic is the ratio of the determinants 

t/ = | S ( O I / | S ( i - l ) | . (14.21) 

Using Bartlett's (1938) approximation, the statistic 

Μ (I) = - ( / V - .5 - Ik) log, U (14.22) 

is, on the null hypothesis, asymptotically distribute.d as χ 2 with k2 degrees of freedom 
where Ν = η — ρ — 1 is the effective number of observations, assuming that a constant 
term is included in the model. 

Finally, a measure of the extent to which the fit is improved as the order is increased 
is provided by the diagonal elements of the estimated residual covariance matrices Ω 
corresponding to the successive A R models. 

For illustration, for the series in Figure 14.3 generated from a bivariate AR(1) 
model, the matrices of summary symbols, the M(l) statistics and the diagonal 
elements of the residual covariance matrices are shown in Table 14.3 for ί = 1 , . . . , 
5. They indicate that a bivariate AR(1) or at most an AR(2) would be adequate for the 
data. 

For the series shown in Figure 14.2, the pattern of the partials and related statistics 
are given in Table 14.4. Notice here that if we had confined attention to autoregressive 
models as is advocated in many econometric textbooks, we would have needed ρ to 
be as high as 7. This is not surprising since with the bivariate MA(1) model of (14.8) 
written in the autoregressive form (ignoring the constant term c) 

( Ι - Θ Β ) 'z, = a,, or ζ, = Π|Ζ,_ι + Yliit-i -\ ha, 
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T A B L E 14.3. INDICATOR SYMBOLS FOR PARTIAL AUTOREGRESSION AND RELATED 

STATISTICS FOR DATA IN FIGURE 14.3 

Lagi Indicator Symbols 
Diagonal Elements 

of Ω 

1 356.96 5.30 
1.08 

2 7.04 5.16 
1.03 

3 2.63 5.07 
1.03 

4 

t :] 
4.38 5.01 

1.02 

5 2.42 4.95 
1.01 

means approximately distributed as. 

T A B L E 14.4. PATTERN OF PARTIAL AUTOREGRESSION AND RELATED STATISTICS 

FOR DATA IN FIGURE 14.2 

Lag Pattern of ρ (t) 

123.2 

Diagonal Elements 
of Ω 

4.78 
1.88 

75.9 

35.2 

4.75 
1.43 

4.63 
1.23 

27.5 4.63 
1.08 

16.6 4.61 
1.04 

1 

13.5 

16.5 

8.1 

4.53 
.98 

4.38 
.94 

4.31 
.91 
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we find 

Π , = 
-.2 - . 3 

.6 -1.1 

_ Γ . 1 4 - .39 1 Γ.23 - . 2 5 ' 
2 _ [ . 7 8 - 1 . 0 3 J ' " " 6 - [ . 4 9 - . 5 1 _ 

(14.23) 

| Π , | = .4, | Π 2 | = . 1 6 , . . . , | Π 6 | = .0041. 

Thus, although the determinants | Π, | decrease rapidly towards zero as j increases, 

the elements of Π, converge to zero very slowly so that many autoregressive terms 

would be needed to provide an adequate approximation. 

In general, the pattern of the partial autoregression matrices, the M(l) statistic, 

and the diagonal elements of the residual covariance matrix are useful to distinguish 

between moving-average and low-order autoregressive models and, for the latter to 

tentatively select the appropriate order. 

14.4.2. Estimation 

Once the order of the model in (14.7) has been tentatively selected, efficient estimates 

of the associated parameter matrices Φ = ( Φ ι , . . . , Φ ρ ) and Θ = ( Θ ι , . . . , Θ 9 ) are 

then determined by maximizing the likelihood function. Approximate standard errors 

and correlation matrix of the estimates of elements of the Φ/s and Θ/s can also be 

obtained. 

Conditional likelihood 

For the ARMA(p,<?) model in (14.7), we can write 

a, = z , - c - Φιζ,_ι Φρΐ,-ρ + ©ia,_i Η h &qa,-q. (14.24) 

As in the univariate case discussed in Box et al. (1994), the likelihood function can 

be approximated by a "conditional" likelihood function as follows. The series is 

regarded as consisting of the n-p vector observations z p + i , . . . , z „ . The likelihood 

function is then determined from a p + i , . . . , a„ using z i , . . . , z p as preliminary values 

and conditional on zero values for a p a p _ i + i . Thus, as shown in Tunnicliffe-

Wilson(1973) 

£ c o n ( c , Φ, Θ, Ω I ζ ) α I Ω I " ^ exp J - ^ / Γ [ Ω - 1 5 ( c , Φ, Θ) ] J (14.25) 

where 

η 

s ( c ^ , © ) = J2 a ' a ! -

/=p+l 
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Properties of the maximum likelihood estimates obtained from (14.25) have been 
discussed in Nicholls (1976, 1977) and Anderson (1980). 

It has been shown in Hillmer and Tiao (1979) that this approximation can be 
seriously inadequate if η is not sufficiently large and if one or more zeros of | Θ ( 5 ) | 
lie on or close to the unit circle. Specifically, this would lead to estimates of the 
moving-average parameters with large bias. 

Exact likelihood function 

For univariate A R M A models, the exact likelihood function has been considered 
by Tiao and Ali (1971), Newbold (1974), Dent (1977), Ansley (1979), and others. 
For vector models, this function has been studied by Osborn (1977) for the pure 
moving-average case, and by Phadke and Kedem (1978), Nicholls and Hall (1979), 
and Hillmer and Tiao (1979). It takes the form 

t(c, Φ , Θ , Ω | ζ ) oc i c o n ( c , Φ, Θ , Ω | z)rli(c, Φ, Θ , Ω | z ) (14.26) 

where depends (1) only on. z i , . . . , zp if q = 0, and (2) on all the data vectors 

z i , . . . , z„ if q φ 0. For the general vector ARMA(p ,o ) model, it has been shown 

that a close approximation to the exact likelihood can be obtained by considering the 

transformation w, = Φ(Β)ζ, so that 

w, = 0 (B)a , (14.27) 

and then apply the exact likelihood results for vector MA(q) model to w,, t = ρ + 
Ι , . , . π . 

Because estimation of moving-average parameters using the exact likelihood is 
computationally rather complex, we propose to employ the conditional method in the 
preliminary stages of iterative model building and switch to the exact method toward 
the end. 

14.4.3. Diagnostic checking 

To guard against model misspecification and to search for directions of improvement, 
a detailed diagnostic analysis of the residual series {&,} where 

a, = z, - c - Φιζ,_, Φρζ,-Ρ + Θ,δ,_ι + · · · + Θ , β , - , . (14.28) 

is performed. Useful diagnostic checks include (1) plots of standardized residual 
series against time and/or other variables and (2) cross-correlation matrices of the 
residuals a,'s. As before, the structure of the correlations is summarized by indicator 
symbols. Hosking (1980) and Li and McLeod (1981) have proposed overall χ 2 tests 
based on the sample cross-correlations of the residuals. However, as noted in Box et al. 
(1994), such overall tests are not substitutes for more detailed study of the correlation 
structure. 
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14.5. ANALYSES OF T H R E E E X A M P L E S 

(I - Φ)ζ , = c + (I - 9 B ) a , (14.29) 

We now apply the model building approach introduced in the preceding section to 
the following three sets of data: 

1. The Financial Times ordinary share index, U.K. car production and the Fi-

nancial Times commodity price index: quarterly data 3/1952-4/1967, obtained 

from Coen et al. (1969). This will be referred to as the SCC data. (See Fig. 

1.11.) 

2. The gas furnace data given in Box et al. (1994). (See Fig. 1.10.) 

3 . The census housing data (Hillmer and Tiao 1979). 

14.5.1. The SCC data 

Let 

Z i , = Financial Times ordinary share index 

Zi, = U.K. car production index 

Z3, = Financial Times commodity price index 

The authors of the original study were interested in the possibility of predicting z\, 
from lagged values of zn and zj, using a standard regression analysis in which z\, was 
treated as a dependent variable and ζ 2(1-6) and ΖΜ,-Τ) as regressors or independent 
variables. For a critical evaluation of this approach, see Box and Newbold (1970). Here 
we consider what structure is revealed by the present multiple time series analysis, in 
which the three series are jointly modeled. 

Tentative specification 
We see in Table 14.5 that the original series show high and persistent auto- and 
cross-correlations. Examination of the partials and related statistics in Table 14.6 
shows that for ί > 2, most of the elements of p(i) are small compared with their 
estimated standard errors, and the Μ{£) statistic fails to show significant improvement. 
Table 14.7 shows that the pattern of the cross correlations of the residuals after AR(2) 
is consonant with estimated white noise. However, note that there is one large residual 
correlation at lag 1 after the AR( 1) fit, suggesting also the possibility of an A R M A ( 1,1) 
model. 

Estimation 
Both an AR(2) model and an ARMA(1,1) model were fitted using the exact likeli-
hood method but results are given only for the A R M A ( 1,1) model which produced a 
marginally better representation. For this model, 
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Zi Stocks 

Zi Stocks 

Z 2 Cars 

Z 3 Commodities 
I I I I I 

Z2 Cars Z 3 Commodities 

I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I t 

I I I I I I • • 

I I t I I I I I I I I I 

I I I I I · · · 

T A B L E 14.6. PARTIAL AUTOREGRESSION AND RELATED STATISTICS: S C C DATA 

Lag 
Indicator Symbols 

for Partials 
M(i) Statistic 

301.3 

18.6 

9.6 

3.6 

11.9 

Diagonal Elements 
of Ω χ 10 

.44 

.89 
1.62 

.40 

.84 
1.23 

.37 

.81 
1.21 

.36 

.79 
1.19 

.32 

.70 
1.11 

T A B L E 14.7. PATTERN OF CROSS-CORRELATION MATRICES OF RESIDUALS: S C C DATA 

Lag 1 2 3 4 5 6 7 8 

(a) AR(1) Model 

(b) AR(2) Model 

T A B L E 14.5. PATTERN OF SAMPLE CROSS-CORRELATIONS FOR THE S C C DATA 
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c 

" 1.11 " 
(.64) 
1.74 
(.82) 
4.08 

(1.47) 

Φ Θ Ω 

.12' 
(.08) 
.24 

(.10) 
2.76 

(1.07) 

(a) Full Model 

' .13 " 
(.09) 
.59 

(.05) 
2.48 

(1.10) 

.81 

-.07 

-.32 

.90 

.15 - .06" "-.29 .23 .06 
(.07) (.04) (.15) (.11) (.07) 
.98 -.09 -.45 .20 -.15 

(.10) (.05) (.22) (.17) (.11) 
.30 .76 -.79 .57 -.44 

(.17) (.08). (.28) (.21) (.13) 

(b) Restricted Model (Intermediate) 

.08 - "-.22 .15 
(.06) (.14) (.10) 
.92 -.02 -.31 

(.04) (.04) (.17) 
.85 -.55 .22 -.44 

(.07) (.23) (.15) (.12) 

(c) Restricted Model (Final) 

' .98 
(.03) 

.93 
(.04) 

.83 
(.06) 

-.40 
(.23) 

-.41 
(.12) 

.037 

.022 .078 

.013 .022 .129 

.042 

.022 .079 

.017 .021 .131 

.045 

.024 .085 

.019 .023 .134 

"For this example, estimates from the conditional likelihood for the ARMA( 1,1) case are very close to the 
exact results. 

Table 14.8 shows the initial unrestricted fit and also the fits for two simpler versions 

obtained by setting to zero those coefficients whose estimates were small compared 

to their standard errors. 

Diagnostic checking 
Table 14.9 suggests that the restricted ARMA(1,1) model provides an adequate rep-
resentation of the data. 

Implication of the model 
The final model implies that the system is approximately 

(1 

(1 

(1 

- MB)Zlt = au 

- .93 B)z2l = .2 + a2l 

- .83J3)z3, = 2.8 + .40ο | (,_ΐ) + (1 + A\B)a3l. 

(14.30) 

TABLE 14.8. Estimation Results for the Model (14.29): SCC Data (Exact Likelihood)" 
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TABLE 14.9. Pattern of Residual Cross-Correlations 
after Final Restricted ARMA(1,1) Model Fit: SCC Data 

a\ 02 « 3 

a\ 
02 

« 3 

Thus, the ordinary share {z\,} series behaves like a random walk and does not depend 

on the lagged values of the other two series. The same can roughly be said about the 

car production index [z2i] series. From (14.30) we can make use of the first equation 

to write the model for z-st as 

(1 - .83B)z 3, = 2.8 + .40(1 - .98B)z 1 ( ,_„ + (1 + A\B)a3l (14.31) 

which implies that the ordinary share z\, is a leading indicator at lag 1 of the com-
modity index Z 3 , . The impact of z\, is, however, small, as can be seen, for example, 
by the improvement achieved over the corresponding best fitting univariate model for 
Z 3 , , which was 

(1 - .78β)ζ 3 ( = 3.6 + (1 + .53B)a,. (14.32) 

The estimated residual variance σ 2 = .151 from the univariate model is not much 
larger than the value .134 for the estimated variance of a3, obtained from the final 
vector model. 

In conclusion, we see that the three series zi», Z 2 / , and z 3/ are essentially not dy-
namically related. Although the multiple time series analysis fails to reveal anything 
very surprising for this example, it shows what is there and does not mislead. 

14.5.2. The gas furnace data 

The two series shown in Figure 1.10 consist of (1) input gas rate and (2) output C O 2 
concentration at 9-s intervals from a gas furnace. We shall let ZM — gas rate -f- .057 
and Z21 — C 0 2 — 5.35. This set of data was employed in Box et al. (1994) to illustrate 
a procedure of tentative specification, fitting, and checking transfer function model of 
the form (14.5) for k = 2 relating two time series, one of which is known to be input 
for the other. Using this approach, the following models were found for the input z\, 
and the output z 2 , 

(1 - 1.97J3 + 1.37S2 - . 3 4 β 3 ) ζ „ = α „ , σ 2 = .0353 

(14.33) 

Ζτ, = ^ f^zw + Ψ~'(Β)α2„ »l = .0561 



384 VECTOR ARMA MODELS 

T A B L E 14.10. TENTATIVE IDENTIFICATION FOR THE GAS FURNACE DATA 

(a) Pattern of Cross-Correlations of Original Data 

2\, Z2, 

Z\, 111111111111 

2 2 , 111111111111 

(b) Μ Statistic for Partial Autoregression 

Lagi 1 2 3 4 5 6 7 8 9 10 11 
M(t) 1650 665 31.7 22.5 5.6 12.9 1.8 8.0 3.5 0 2.0 

(c) Pattern of Cross-Correlations of Residuals after AR(6) Fit 

Α Ϊ , άι, 

au I -

ai, 

where ω ( β ) = - ( .53 + .375 + . 5 I B 2 ) , δ ( β ) = 1 - .57β, φ ( β ) = 1 - 1.53β + 
.63β 2 , and the {αϊ,} and {021) series are assumed independent. 

Particularly when we are dealing with econometric rather than engineering models, 
feedback relationships may not be known a priori, and it is of interest, therefore, to 
analyze the data using the present multivariate approach where no distinction is made 
between an input and output variable, and the fact that no feedback could occur in 
the system is not used. 

Tentative specification 
In Table 14.10, we see that the auto- and cross-correlations of the original data in part 
(a) are persistently large in magnitude, ruling out low-order moving-average models, 
the Μ (ί) statistic in part (b) suggests that an AR(6) model might be appropriate, and 
the residual cross-correlation pattern after an AR(6) fit in part (c) seems to verify the 
appropriateness of this model. 

Estimation results 
Estimation results corresponding to an unrestricted AR(6) model 

(I - Φι β Φ 6 Β 6 ) ζ < = a, (14.34) 

are as follows: 

Φι = 

1.93 - .05 
(.06) (.05) 
.06 1.55 

(.08) (.06) 

<t>2 = 

-1.20 .10 

(.13) (.08) 
- .14 - .59 

(.16) (.11) 

φ . 

.17 - .08 

(.15) (.09) 

- .44 - .17 

(.19) (.11) 
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<t>4 = 

Ω -

If we let 

- .16 .03 

(.15) (.09) 
.15 .13 

(.19) (.11) 

.0345 

-.0023 .0566 

.38 - .04 
(.14) (.08) 
- .12 .06 
(.18) (.10) 

Φ 6 = 

- . 22 .03 

(.08) (.03) 
.25 - .04 

(.11) (.04) 

and ρ β | ι β 1 ( 0 ) = .045. 

φ. = 
$i 44a J 

(14.35) 

then we see that a r e small compared with their standard errors over all lags 
i, confirming (as in this case is known from the physical nature of the apparatus 
generating the data) that there is a unidirectional relationship between z\, and zn 
involving no feedback. Also, tyff is small for I = 1,2, and the residuals ά\, and a2t 

are essentially uncorrelated, implying a delay of three periods. It should be noted in 
addition, that the estimated variances for a\, and ait are very close to those for au 

and fl2t in (14.33), and their correlation is negligible. 
To facilitate comparison with (14.33), we set 

φ} ί , ) = 0 , ί > 3 ; φ{? = 0, all t; φ ^ = 0 , 1 = 1,2; φ ^ = 0, ί = 5,6. 

Estimation results for this restricted AR(6) model are then 

Φι = 

1.98 
(.06) 

1.53 
(.06) 

φ 2 = 

-1.38 
(.10) 

- .58 

(.11) 

φ 3 = 

.35 
(.06) 
- .53 
(.07) 

- .14 

(.10) 

(14.36) 

φ 4 = 
.11 

(.16) 

.12 
(.04) 

. Φ5 = - .04 

(.17) 

Φ6 = .21 

(.11) 

.0359 

Ω β - . β 2 ( 0 ) = ο. 

-.0029 .0561 

Examination of the pattern of the cross-correlations of the residuals suggests that the 
model is adequate. 
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Implication of the bivariate model 

The final AR(6) model (14.36) can be written 

Φι ι (β) 

φ 2 , ( β ) φ 2 2 ( Β ) 

Zli α\,' 

_Ζ2ι. 
(14.37) 

whereφ , , (β ) = (1 - 1MB + 1.38Β2 - . 3 5 Β 3 ) , φ 2 , ( β ) = ( . 5 3 - M B - . 2 \ Β 3 ) Β 3 , 

andφ22(β) = (1 - 1.53Β + .58£ 2 + .145 3 - MB4). Assuming that a„ anda 2 ( are 

uncorrelated, the input model φ|\(B)z\, = a\, with Var(oi,) = .0359 is essentially the 

same as that in (14.33). Now the model relating the output Z2t to the input z\, is 

φ 2 1 ( β ) 1 
Ζ 1 ' Φ 2 2 ( β ) ' " Φ22(β) 

«2ί (14.38) 

with Var(a 2,) = .0561. The noise model φ 2 2 ( 5 ) α 2 , is not very different from the 

corresponding one φ _ 1 ( β ) α 2 , in (14.33), but the dynamic model - φ 2 2 ( Β ) φ 2 ι ( β ) ζ ι ( 

at first sight appears markedly different from the first term on the RHS of the output 

model in (14.33). The reason is that in the form (14.38) the denominators of the 

dynamic model and that of the noise model are constrained to be identical. This 

restriction is not present in the transfer function model (14.33). This less restrictive 

form can however be written in the form of (14.38) if we set 

φ 2 2 ( β ) = <p(«); - φ 2 1 ( β ) = ω ( β ) β 3 { φ ( β ) δ - 1 ( β ) } · 

For this example, the factor φ(β)δ~ ' (Β) = 1 — .96B and it is then seen that the models 
are in fact very similar. This may be confirmed by comparing the impulse response 
weights in Table 14.11, where 

ω ( β ) θ 3 δ - ' ( β ) = ΣνιΒ]< - Φ 2 ΐ ( β ) Φ 2 " 2 ( β ) = £ V ; B J . 

7 = 0 j=0 

Implications on general time series model building 

The relative merit of the vector A R M A procedure and the transfer function modeling 

of the system will depend on how much is known or we are prepared to assume. In some 

applications, particularly in engineering and most examples of intervention analysis, 

T A B L E 14.11. IMPULSE RESPONSE WEIGHTS FOR THE GAS FURNACE DATA 

j ο 2 3 4 5 6 7 8 9 10 11 12 

VJ 
VJ 

- .53 

- .53 

- .67 

- .70 

- .89 

- .77 

- .51 

- .48 

- .29 

- .26 

- .17 

- .09 

- .09 

- .01 

-.05 

.01 

- .03 

.00 

- .02 

- .01 
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an adequate initial specification may be possible from knowledge of the nature of the 
problem. This may allow a flow diagram showing the feedback structure to be drawn 
and likely orders to be guessed for the various dynamic components. The resulting 
models can then be directly fitted in the manner described and illustrated in Box and 
MacGregor (1974, 1976) and Box and Tiao (1975). For a single input with feedback 
known to be absent, a prewhitening method is given in Box et al. (1994) for identifying 
an unknown dynamic system but extension of this identification method to multiple 
inputs is rather complex. 

Particularly for economic and business examples, however, the feedback structure 
and orders of the multiple system are seldom known. The present multiple time series 
procedure has the great advantage that it allows identification of the feedback and 
dynamic structure. Furthermore 

1. A one-sided causal relationship, if it exists, will emerge in the identification 

process, and the stochastic structures of the input as well as the transfer function 

relationship between input and output will be modeled simultaneously. 

2. Stochastic multiple input and multiple output situations are readily handled. 

3. A useful method is provided for seeking leading indicators in economic and 
business applications. In this context it should be noted that a unidirectional 
dynamic relationship may not exist between two time series even when one vari-
able is known to be the input for the other. One reason for this phenomenon is the 
effect of temporal aggregation. As shown in Tiao and Wei (1976), pseudofeed-
back relationships could occur because of this temporal aggregation effect, and 
it would be a mistake to impose a transfer function model in such a situation; 

4. However, when a simple transfer function structure of the form (14.5) is ap-
propriate, the present multiple time series approach could rarely reproduce it 
directly [see, e.g., (14.33) and (14.38)], and some analysis of the fitted form 
might be necessary to reveal a more parsimonious and more easily understood 
structure. 

14.5.3. The census housing data 

As an further example, we illustrate the modeling and analysis of seasonal time se-
ries by considering the monthly single-family housing starts z\, and houses sold Z21 
for the period January 1965 through May 1975. The data were obtained from the 
"survey of current business," and are plotted in Figure 14.5. Because of the strong 
seasonal behavior in these series, one might well be led to consider the seasonally 
difference data uit — (1 — Bu)zn, i — 1,2. The seasonally differenced series are 
shown in Figure 14.6. 

Models for individual series 

In Hillmer and Tiao (1979), it is found that each series individually can be adequately 

represented by a univariate multiplicative model of the form 

(1 - B)( l - Bn)z, = (1 - M X 1 - θ 1 2 β | 2 ) α , (14.39) 
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(a) Single Family Housing Starts (in thousands) 

1 9 6 5 1 9 6 7 1 9 6 9 1 9 7 1 1 9 7 3 1 9 7 5 

(b) Single Family Houses Sold (in thousands) 

. — - τ 1 1 1 1 1 — 

1 9 6 5 1 9 6 7 1 9 6 9 1 9 7 1 1 9 7 3 1 9 7 5 

year 
FIGURE 14.5 The census housing data for January 1965-May 1975. 

Table 14.12 compares the parameter estimates obtained by employing the exact (E) 

likelihood (14.26) with those from the conditional (C) likelihood (14.25), where the 

numbers in the parentheses are the associated estimated standard errors. 

We observe that for both series the estimates θ ι 2 of the seasonal moving average 

parameter are appreciably smaller and the corresponding estimates σ 2 larger for C 

TABLE 14.12. Parameter Estimates for Individual Models: 
Census Housing Series 

θι §12 *.2 

Housing starts z\, Ε .28 (.09) .91 (.06) 41.61 
C .30 (.09) .75 (.07) 50.49 

Houses sold zi, Ε .16 (.10) 1.00 (.06) 11.93 
C .24 (.10) .72 (.08) 16.46 
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(a) Single Family Housing Starts (in thousands) 

1966 1968 1970 1972 1974 

(a) Single Family Housing Starts (in thousands) 

—ι 1 1 1 1 — 

1966 1968 1970 1972 1974 

year 
FIGURE 14.6 The seasonally differenced series: January 1966-May 1975. 

than for E. It appears that Θ12 is close to unity, especially for the "houses sold" series 
Z21, implying a possibly deterministic seasonal structure: 

(1 - B)z, = S, + (1 - QB)a, (14.40) 

where (1 - Bl2)S, = 0 . Such a structure, however, would not be detected if the con-
ditional likelihood method were employed. 

Bivariate model 

Part (a) of Table 14.13 shows the pattern of the sample cross correlations of u, = 
( « ι , , W2/ ) ' indicating that low order vector M A model would not be appropriate. Part 
(b) of the same table gives the M(£) statistics for I = 1 , . . . , 5, and part (c) shows 
the pattern of the cross correlations of the residuals after a bivariate AR(1) fit. These 
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T A B L E 14.13. TENTATIVE IDENTIFICATION FOR THE SEASONALLY 

DIFFERENCED HOUSING DATA Ut 

(a) Pattern of Cross-Correlations 

Uu 

Uu 

Uu 

I I I I I I I I I I •• I I I I I I I I • 

11 I I I I I I I I •· I 1111 I 11 • 

(b) M(l) Statistics Corresponding to Partial Autoregression Matrices 
Lag£ 1 2 3 4 5 
M(l) 218.6 3.5 2.3 4.7 5.4 

(c) Pattern of Residual Cross-Correlations after AR(1) Fit 

ait 

au 

an 

summaries suggest the tentative model 

(I - ΦΒ)(1 - Bl2)z, = (I - 9 f l 1 2 ) a , (14.41) 

Estimation and checking 
Table 14.14 summaries the estimation results corresponding to 

1. The full bivariate model in (14.41) using the conditional likelihood method 

2. The full bivariate model using the exact likelihood method 

3. The restricted model by setting "small" parameter estimates to zero 

Table 14.15 shows the pattern of the sample cross-correlations of the residuals 
corresponding to the restricted case, showing that the model gives an adequate rep-
resentation of the series. 

Interpretation 
For the full bivariate model, comparing the results of the conditional likelihood with 
those from the exact likelihood, we see that 
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& = 

Likelihood Likelihood Likelihood 

" .47 .89 " " .46 .95 " " .42 1.03 ' 
(.07) (.13) (.07) (.14) (.07) (.13) 
.14 .69 .10 .76 .93 

.(•05) (.08). .(•05) (.09). (.04) _ 

" .75 .06 " "1.01 - .04" " .94 
(.07) (.11) (.07) (.12) (.06) 
.07 .69 .05 .99 1.00 

.(•05) (.08). .(.05) (.07). (.06) 

"37.51 1 F "28.09 1 '29.75 
6.29 15.15 4.98 11.13 5.89 11.83 

ρ(αι ,α 2 ) = .31 

1. There is a substantial increase in the estimated values of the diagonal elements 
of Θ to near unity, and a corresponding decrease in the estimated variances of 
the residuals, when the exact method is used 

2. In contrast, little change occurs in the estimates of the elements of Φ 

Now from the restricted model, we can write, for the "houses sold" series zi, 

(1 - .93B)(1 - Bn)zi, = (1 - B]2)a2, (14.42) 

which means that 

( l - . 9 3 f l ) z 2 , = S2l+a2l, 0 2 2 = 11.8 (14.43) 

where 5 2 » satisfies the relation S2l = S2(,-\2). Thus, z2t behaves nearly like a random 
walk with a deterministic seasonal component and does not depend on the past of 
Z i , . We note that this result is essentially the same as the individual model, shown in 
Table 14.12, for the "house sold" series fitted using the exact likelihood. 

TABLE 14.15. Residual Cross-Correlations for 
the Restricted Model: Census Housing Data 

a\t ait 
a\t I + 

ait 

TABLE 14.14. Estimation Results for the Model (16 .41) : Census Housing Data 

(1) Full Model Conditional (2) Full Model Exact (3) Restricted Model Exact 
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On the other hand, for the "housing starts" series z i , , we have that 

(1 -A2B)(] -B]2)zu = 1.03(1 - Βη)ζ2«-ΐ) + (\ - . 9 4 β , 2 ) α „ (14.44) 

so that the seasonal differencing operator (1 - Bu) again nearly cancels yielding 
approximately 

( 1 - . 4 2 β ) ζ „ = SU + 1.03z2(,-i) + fl|„ σ , , = 2 9 . 8 (14.45) 

where Si, = S | ( , - i 2 ) - Thus, housing starts z i , depends not only on its own past, ζ κ , _ υ 
but also on the past of houses sold, zm - 1 ) · From Table 14.12 the appropriate individual 
model for z i , is 

(1 - β)(1 - β ι 2 ) ζ „ = (1 - .28β)(1 - .91β , 2 )α, (14.46) 

or approximately 

(1 - β ) ζ „ = Su + (1 - .28β)α„ σ2 = 41.61 (14.47) 

We see from (14.45) that the difference operator(l — β ) in (14.47), indicating that zu 
is nonstationary, arises because of the dependence of z\, on Z 2 ( , - i ) . Also, by comparing 
the estimated variance σ α

2 in (14.47) with the corresponding estimated variance &u 
in (14.45), a substantial reduction occurs when the information Z 2 ( , - n is utilized. 

In summary, this example shows that (1) the existence of a deterministic seasonal 
component can be detected when the exact likelihood method is employed, (2) an 
appreciable reduction in the one step ahead forecast variance can occur by modeling 
several series jointly, and (3) although individually both z i , and Z2, are nonstationary, 
there is really only one nonstationary component Z2, since nonstationarity of zu 
stems from its dependence on Z 2 ( , - n - The last point is closely related to the concept 
of cointegration discussed below. 

14.6. STRUCTURAL ANALYSIS OF MULTIVARIATE TIME SERIES 

In modeling and analysis of multivariate time series, it is of interest, and often critical, 
to examine the structure of the relations among the component series. The vector 
A R M A model (14.7) is a straightforward generalization of the univariate A R M A 
model (14.3). This direct generalization, however, creates a number of difficulties. In 
particular, each A R or M A term in the vector model contains k2 number of parameters 
so that even for a moderate k, there will be an overflow of parameters whose estimates 
are often highly correlated. This will make it difficult, if not impossible, to comprehend 
the fitting result. For univariate A R I M A models, parsimony is achieved by making the 
orders ρ and q as small as possible, but this is not sufficient for the multivariate case. 
Here we need to simplify the structure of the parameter matrices <l>'s and 0's, and a 
possible way to achieve this is by considering linear transformations of the original 
component series. In addition, in many problems it is also of interest to explore the 
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existence of possibly simpler underlying structures which explain important features 

of the observed series. For example, there may exist a linear combination of the 

component series which is responsible for most of the variation of the data, or another 

combination responsible for the dynamic growth of a number of the components. In 

this and the next sections, we discuss some useful types of linear transformations for 

structural analysis. 

As an illustration of the usefulness of linear transformations, consider the bivariate 

time series ζ, = (ζ\,,Ζ2ιϊ of 150 observations shown in Figure 14.7, generated from 

the following ARMA(1,1) model 

(I - ΦΒ)ζ , = (I - 0B )a , (14.48) 

where 

Φ -
3 - 1 

6 - 2 
Θ = 

.5 .5 

1 1 
and Ω = 

1 .3 

.3 1 

The matrices Φ and Θ contain a total of eight non-zero parameters. Both series appear 

to be nonstationary and move in tandem. It is easily shown that individually each 

component in ζ, = (Ζί,,ζΐιϊ follows a nonstationary ARIMA(0 ,1 ,1 ) model. Consider, 

however, the linear transformation 

y, = T z , where T ' = [ ν 0

υ , v 0

2 ) ] = ^ " j 1 j . (14.49) 

The transformed bivariate series y, = ( y i , , y 2 , ) ' is shown in Figure 14.8, where y\, 
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t i m e 

FIGURE 14.8 Transformed bivariate ARMA( 1,1) series. 

is clearly seen to be stationary and y2t, nonstationary. It is easily shown that the 

transformed process y, has the bivariate A R M A ( 1,1) model 

( I - Φ*Β)Γ, = ( I - © * B ) b , (14.50) 

where 

Φ * = Τ Φ Τ - ' = 
0 0 
2 1 

β* = Τ Θ Τ - ' 

b, = Ta, = 

ο 

.5 
and 

bu 

From the model for y, in (14.50), we see that 

1. Φ * and Θ* together contain only three nonzero parameters. 

2. The first component y\, = b\, is simply a white-noise process. 

3. There is only one nonstationary component y2t. 

4. The nonstationarity of the original components zu and z2l, is due to this common 

component y2l. 

For this example, the linear transformation Tz, produces not only parsimony in pa-

rameterization but also components whose structure can be substantively meaningful. 

In the analysis of economic time series, it can happen that a linear combination of 
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several individually nonstationary time series becomes stationary, implying a stable 
relationship among the component series. The basic idea is discussed in Box and Tiao 
(1977) and was later popularized by Engle and Granger (1987) in the econometric 
literature in what has since been called cointegration. 

14.6.1. A canonical analysis of multiple time series 

Here we discuss the linear transformation method proposed by Box and Tiao in their 
1977 paper. The basic objective is to assess linear combinations of the observed series 
z, according to their dynamic dependence on the past history of the series. The vector 
A R M A ( p , g ) model in (14.7) can be written as 

z, = £ , _ , ( l ) + a, (14.51) 

where z , _ i ( l ) is the one-step-ahead forecast of z, made at time t — 1. Now, z , _ i ( l ) 
is a linear function of the past observations (z ,_ i , z , _ 2 , . . . ) and is independent of a,. 
When the model is invertible, we have that 

z , _ , ( l ) = [ Ι - Π ( Β ) ] ζ , . (14.52) 

where U(B) = I - Πι Β - Π2Β
2 and Π(Β) satisfies the relation Θ(Β)Π(Β) = 

For stationary series with zero mean vector, let 

Γ , (0) = E ( z , Z ; ) and Γ»(0) = E ( i , _ , ( l ) i < _ 1 ( l ) ' ) , (14.53) 

Consider the linear transformation y, — h'z, where h is a k χ 1 vector of constants. 

The variance of y, is hT z (0 )h where 

hT z (0 )h = η 'Γί(0)Ιι + η'Ωη (14.54) 

Thus, an appropriate measure of the dynamic dependence of y, on the past history 
(z,_i, z , _ 2 , . . . ) is the variance ratio 

ν h T * ( 0 ) h

 M i W λ = (14.55) 
hT , (0)h 

It follows from standard canonical correlation analysis that the combination y, which 
maximizes this ratio is such that λ is the largest eigenvalue and h the corresponding 
eigenvector of 

Γ - ' ( 0 ) Γ * ( 0 ) (14.56) 

After the largest eigenvalue and the corresponding eigenvector, it may be of interest 

to consider the next largest, and so on. In general, let 

0 < λ ι < • • · <Xk < 1 and M ' = [ m i , . . . , mk] (14.57) 
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be the k (ordered) eigenvalues and the corresponding matrix of eigenvectors. Consider 

the linear transformation y, = Mz, . Then 

y, = y , - i O ) + b, (14.58) 

where y , - i ( l ) = M z , _ i ( l ) , and b, = M a , , y , - i ( l ) , and b, are independent, and it can 

be readily shown that the covariance matrices of y,, y , _ i ( l ) and b, are all diagonal. 

In particular, if the eigenvectors are nomalized so that all the components of y, = 

(yi, ykt)' have unit variance, then the covariance matrix of y r - i ( l ) will be Λ = 

d i a g { \ i , . . . , λ*} and that of b,, I - Λ . 

These results highlight the characteristics of the canonical transformation (14.58). 

First, the transformed component yu is the least dynamically dependent linear com-

bination of z, and y*, is the most dynamically dependent linear combination. The 

dynamical dependency of the y„ series ranges from λι to \ K . If λι = 0 , y\, =b\, 

so that yu is a white noise process with a constant variance. Since yi, is a linear 

combination of z,, this implies that there exists a very stationary contemporaneous 

relationship among the k original series. On the other extreme, when λ*—> 1, it can be 

shown that yt, will approach a series with a root on the unit circle in its model so that 

z, will contain a nonstationary component. Thus, one may also regard the \ 's as mea-

sures of the stationarity of the transformed components, with small values signifying 

the existence of very stationary components and values close to unity, nonstationart 

components. The idea here is, of course, closely related to cointegration. 

For illustration, Box and Tiao have applied the canonical transformation method 

to the hog data given in Quenouille (1957) consisting of annual observations of hog 

supply, hog prices, corn supply, corn prices, and farm wages for the period 1867-1948. 

Individually, all five series are apparently nonstationary. (See Fig. 1.12 of Chapter 1.) 

By fitting a vector AR(1) model to the data, they have found that 

X , = .0232, X 2 = .1421, X 3 = .5061, X 4 = .6901, X 5 = .8868. 

The five transformed series are shown in Figure 14.9. The first two transformed series 

corresponding to the two smallest eignvalues are seen to be very stable over time, and 

the last series corresponding to the largest eigenvalue underlines much of the growth 

in the data. Out of the originally five nearly nonstationary series, there seem to exist 

two linear combinations that are very stationary. For further details of the analysis 

and substantive interpretation, see the 1977 paper. 

14.7. S C A L A R C O M P O N E N T MODELS I N M U L T I P L E T I M E SERIES 

This section introduces an approach for modeling vector time series proposed by Tiao 

and Tsay (1989). The goal is to find 

1. An overall parsimonious model 

2. Possibly simplifying structures that may not be obvious by direct modeling of 

the observed data 
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This is achieved at the model specification stage by investigating linear combinations 
of the observed series. 

As mentioned earlier, while the vector ARMA(p,«7) model (14.7) is a straight 
forward generalization of the univariate A R I M A model (14.3), this direct gener-
alization creates a major difficulty that, for moderate or large k, there will be an 
overflow of parameters whose estimates are often highly correlated. Another major 
difficulty in this generalization is the lack of identifiable models. To illustrate, con-
sider again the bivariate A R M A ( l . l ) model in (14.48) and its transform in (14.50). 
Since yi(,-n = £>i((-i)> the model fory, in (14.50) can alternatively be written as 

(I - Φ**B)y, = (I - Θ** B)b, (14.59) 

where 

• " - [ S ? ] · - 5 ] · 
The two bivariate A R M A ( 1,1) models, (14.50) and (14.59), are exchangeable in 
the sense that they have different parameter values for the autoregressive ( A R ) and 
moving-average ( M A ) matrices but yield the same probabilistic structure of the pro-
cess y,. In general, the vector A R M A model representation allows for exchangeable 
models because it opens the possibility of parameterization in both the A R and the 
M A parts. The possibility of multiple-model representations gives rise to the prob-
lem of identifiability of the vector A R M A model. This identifiability problem has 
been discussed extensively in the literature. See Hannan (1969), Akaike (1976), Solo 
(1986), and the references cited therein. Here, we shall not discuss the theory of iden-
tifiability or the sufficient conditions for a unique model representation, but consider 
methods that can recognize exchangeable models when they exist. 

In what follows we first introduce the idea of scalar component models (SCMs) to 
describe a components structure in a multivariate framework. Some issues concerned 
with exchangeable models are then discussed. Finally we present an example illus-
trating the use of canonical correlation analysis to specify scalar component models. 
For details, see the paper by Tiao and Tsay. 

14.7.1. Scalar component models 

To introduce the concept of SCMs, we begin with another simple example. Suppose 

that z, follows the bivariate A R M A ( 1,1) model 

(I - ΦΒ)ζ, = (I - ΘΒ)α, (14.60) 

where 

- [ 5 3 - -
.25 .175 
.5 .35 
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containing eight nonzero parameters. Consider the linear transformation 

y , = T z , where Τ" = [ ν 0

υ , v™] = [*] " j 3 ] · 

Premultiplying expression (14.60) by Τ we have that 

T z , + Gz,_i = T a , + Ha,_, (14.61) 

where 

Γ _ Γ-3 ·2Ί „ _ Γ 0 0 • 
[ θ 0_|* " " [ . 2 5 .175 

and it is seen that G and Η each contains a row of zero values. By inserting Τ 'Τ in 

front of z,_i and a,_i, the model for y, is 

( Ι - Φ * Β ) ν , = ( Ι - Θ * β ) Ι > , (14.62) 

where 

Φ* = 
.9 . 7 ] 

0 0 J and Θ* = 
0 

.775 

Now for the transformed y, process, the component yu does not need any non-zero 
M A coefficient and the component y 2 / has no A R coefficient. In other words, corre-
sponding to the zero rows of G and Η, Φ* and Θ* each contains a row of zero values. 
This is the type of simplification that we intend to capture in this approach. 

To describe the structure of yu, we say that it follows an SCM of order (1,0). 
The order (1,0) signifies that, within the bivariate ARMA(1,1) framework, yu needs 
A R parameters at lag 1, but it does not require any nonzero M A coefficient. This is 
because the vector v 0 ° has the property that ν 0

υ 'Φ = - ( . 3 , .2) φ 0' but ν 0

υ Θ = 0'. 
More generally, given the vector A R M A ( / ? , o ) model (14.7) we say that a non-zero 
linear combination y, = v'Qz, follows an SCM of order (p\,q\) if vn has the properties 

ν 0 Φ Ρ ι φ 0', 0 < ρ, < ρ 

ν'0Φι=0', ί = Ρ \ + \,...,ρ 

ν 0 Θ 9 ι φΟ', 0<q,<q 

v'0®e=W, l=q\+l,...,q. 

Since ν 0 Φ(β)ζ , = v'0®(B)a,, the structure of y, can be written as 

P\ 1l 

(14.63) 

(14.64) 

where g'e = —ν0Φ( and = — ν0Θ(. We shall denote the model structure of y, 
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as SCM(/?i, <7i). Thus, by allowing v 0 to be an arbitrary nonzero vector, the SCM 

is a direct generalization of the model of each component z,, in the vector A R M A 

framework so that the model structure can be simplified. 

The SCM is a device designed to capture the structure of a component within 

a vector model. It is not a univariate A R M A model. Thus, the fact that y, has an 

SCM(pi, q\) structure in a vector model does not necessarily imply that y, follows 

an univariate A R M A ( p i , q\) process. For example, y\, in model (14.48) follows an 

SCM(1,0) structure but it is not a univariate A R M A ( 1,0) process, because the SCM 

structure of y\, involves nonzero coefficients of y2o-r)-

Given a /t-dimensional vector A R M A process z,, let y, = T z , , where T = 

[VQ \ . . . . V Q ^ ] ' is a k χ k nonsingular matrix, be the transformed process associ-

ated with k SCMs of orders (p,-,?,), i = 1 , . . . , k. Such a transformation can lead 

to considerable parsimony in parameterization of the transformed model. As a fur-

ther illustration, suppose that the observed process z, follows a four dimensional 

ARMA(2,1) model and that the transformation Tz, produces four scalar component 

models of orders (0,0), (0,1), (1,0), and (2,1). We then have, for the transformed 

process y,, the ARMA(2,1) model 

( Ι - Φ , β - Φ 2 β 2 ) ^ = ( I - 0 , J 3 ) b , (14.65) 

where (suppressing the superscript * ) 

Φι = 

0 0 0 0 

0 0 0 0 

X X X X 

X X X X 

φ 2 = 

0 0 0 0 

0 0 0 0 
0 0 0 0 
X X X X 

Θ, 

0 0 0 0 

X X X X 

0 0 0 0 
X X X X 

with 0 and χ denoting zero and nonzero parameters, respectively. In this particular 

instance then, modeling the transformed series yr would involve 20 parameters in the 

coefficient matrices instead of 48, a saving of 28 parameters in estimation. As will 

be shown in the next section, because of the structure of the first and the third SCMs, 

we may further set the (4,1 )th and the (4,3)th elements of Θ ι to zero, achieving a total 

reduction of 30 parameters. The reduction could be even more substantial when the 

dimension k is relatively large. In view of the possibility of high correlations among 

the unconstrained 48 parameter estimates, the reduction could drastically simplify 

the complexity in estimation. 

14.7.2. Exchangeable models and overparameterization 

Exchangeable models are a special feature of vector time series that does not occur 

in the univariate case. In what follows, we discuss two issues: 

1. Models with exchangeable structures 

2. Elimination of redundant parameters 
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Models with exchangeable structures 
Two vector A R M A models are exchangeable if they are of finite order and give the 

same probability distribution of z,. This can happen, for instance, when |Φ(β) | or 

\Θ(Β)\ is a constant. A simple example is that a bivariate AR(1) model ζ, = Φζ,_ι + a, 
can be written exactly as a bivariate MA(1) model z, = — ©a,_i 4- a, if 

Here the lack of identifiability exists because Z21 = an so that Z 2 « - \ ) and a2(/-n can ap-

pear as alternatives in the model structure of zu : Zu — 2z2(/-i) + αχ, = 2«2(ί—ο + a\, 

and generally zu = (2 — δ)Ζ2(,_ΐ) + δ α ^ - υ +a\, so that we can also write the model 

structure for z, in the form of a bivariate A R M A ( l . l ) model. In general, when the 

A R matrix polynomial Φ(Β) and the M A matrix polynomial ®(B) of model (4.7) 

are left coprime and if Φ(Β) can be written as the product Φ(Β) = α(Β)Λ(Β) where 

Ξ ( β ) and A ( B ) are two nontrivial matrix polynomials such that | a(B)\ is a non-zero 

constant, then Φ(β)ζ, = 0 (B)a , is equivalent to A(B)z, — Ξ,~1(Β)Θ(Β)Λ,, which 

is also of finite order. A similar condition applies to Θ ( β ) . 

Existence of exchangeable vector A R M A models leads to alternative specifications 

of the structure of some associated SCMs. Consider again the simple exchangeable 

bivariate A R ( 1) and Μ A ( 1) model corresponding to (14.66). For the scalar component 

Z U = VQZ, where v o = ( l , 0 ) ' , the structure will be SCM ( l .O) with gi = ( 0 , - 2 ) ' for 

the bivariate AR(1) representation, and it becomes SCM(0,1) with hi = ( 0 , 2 ) ' for 

the bivariate M A ( 1 ) model. In this case, we shall say that v'0z, follows an SCM 

of exchangeable orders (1,0) and (0,1). As a further illustration, consider the two 

exchangeable models (14.50) and (14.59). For the second scalar component y2/» the 

structure is S C M ( l . l ) for both model (14.50) and model (14.59) but the coefficients 

are different. 

Since exchangeable models have the same probability distribution, they give the 

same covariance structure and provide the same inference. For this reason, we shall not 

discuss the conditions needed for unique model representation. Since exchangeable 

models are synonymous with exchangeable SCMs, we focus instead on methods that 

can point out the existence of exchangeable SCMs. 

Redundant parameters 

Redundant parameters are one of the most troublesome features in fitting vector 

A R M A models. One type of redundant (or unidentifiable) parameters may be elimi-

nated by a careful study of the SCM structure. Consider, for example, the transformed 

ARMA(2,l)model(14.65).Lety, = ( y „ , . . . , y 4 , ) ' , b , = (bu, brf, θ*,0 and <b<f 
be the (/ , j )th elements of ®t and Φ(, respectively. For the component y 4 , , we have that 

4 4 4 

= Σ < V - i > + Σ Φ«Λ(«-2) + °*,-Σ C * ; e - » - ( 1 4 · 6 7 > 
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Now, since yu is white noise, y\u-\) = b\«-\)- It is clear that in (14.67) Θ4/ - φ 4 1 

is a constant, and we may set either θ^' or φ '̂,' to zero. Next, from the structure of 

y 3 , we have 

4 

Λ α - η - t>x,-\) = ^ φ ( 3 1 . ν , · ( , _ 2 ) . 
i = l 

Since y / ( , - 2 ) . for 1 = 1, . . . ,4, are already in (14.67), it is clear that either y 3 ( ( - u or 

& 3 ( , _ U can be eliminated and we may set θ^' to zero. 

In general, the structure of SCMs for a vector A R M A model makes it particularly 
convenient to spot redundant parameters. More specifically, consider a transformed 
vector A R M A ( p , o ) model for y, such that yu has an SCM(p\,q\) structure and y2l 

has an SCM(p2,q2) structure where p2 > p\ and q2>q\. In this case, we can write 
the SCMs for y\, and y2i as 

yit - {φ<"β + · · • + φ<" 'V< } y , = bit - {θ<'>β + ••• + e (

t e ) B * } b , (14.68) 

where ί = 1, 2 and φί° and Θ,Κ) are the 1 th rows of the matrices Φι and Θι, respectively. 
Now for i = 2 we see from (14.68) that y2, is related to y i ( , - o , . . . , y i ( , _ P 2 ) and 

... ,b\(,-qi) via 

($}B + ••• + tf^B^yu - ( θ ^ β + · · · + $?B«)bu. (14.69) 

Since 

Bs(yu - bu) = { φ | υ β + · · · + φ ^ β " }y,-s - { θ , ( 1 ) β + · · • + θ, ( 9 ι )β*' }b,.„ 

(14.70) 

it is clear that, if all the y's and the b's on the RHS of (14.70) are in the component 
model for y 2 / , then either the coefficient of ym-S) or that of b\a-S) is redundant 
given that the other is in the model. Therefore, if p2 > p\ and q2> q\, then for each 
pair of parameters ( φ ^ , ) in (14.69) s = 1 , . . . , min(^2 — Pi, 92 — 9i)> only one 
parameter is needed. For convenience, we refer to this rule of spotting redundant 
parameters as the rule of elimination. 

In general, by considering a vector A R M A model in its SCM form, and applying 
the rule of elimination in a pairwise fashion, all such redundant A R or M A parameters 
can be eliminated. 

14.7.3. Model specification via canonical correlation analysis 

Tiao and Tsay use canonical correlation analysis to search for SCMs of minimal 
orders at the model specification stage. The basic idea of the procedure is as follows. 
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First, for m > 0 let 

V i = ( ^ <-J (14.71) 

From (14.63), a SCM of order (pi,q\) implies that there exists a linear combi-
nation of Z p , , , which is independent of a,_,_i, and hence of z r _ 7 _ i , for j>q\. 
Thus, corresponding to a SCM(/?i, q\), there will be a zero canonical correlation 
between the two processes z P l i , and z„,,-j-\ for j >q\ and h > 0 . In general, for 
m = 0,1, . . . ; . / = 0 , 1 , . . . ; and fixed h, the procedure searches for k linearly in-
dependent SCMs of minimal orders by examining the number of zero canonical 
correlations (and corresponding eigenvectors) between z m , , and Zh,t-j-\. The dis-
criminating criteria involve the choice of lags of sample autocovariance matrices and 
associated χ 2 test statistics. For further details, the reader is referred to the Tiao and 
Tsay (1989) paper. 

14.7.4. An illustrative example 

To illustrate, consider again the 5-series U.S. hog data discussed earlier in Section 14.6. 

Following the SCM search procedure, an overall ARMA(2,1) model for the trans-

formed process with five SCMs of orders (0,0), (0,1), (1,0), (1,1) and (2,0) is tentatively 

specified: 

( Ι - Φ ι β - Φ 2 β 2 ) ν , = c - r - ( I - @ i B ) b , (14.72) 

where the detailed structure of Φ] , Φ 2 , and Θι after applying the rule of elimina-

tion is 

"0 0 0 0 0" "0 0 0 0 0" 

0 0 0 0 0 0 0 0 0 0 

Φ, = X X X X X Φ 2 
— 0 0 0 0 0 

X X X X X 0 0 0 0 0 

X X X X X χ χ χ χ χ 

"0 0 0 0 0" 
X X χ χ χ 

θ , = 0 0 0 0 0 

0 X χ χ χ 

0 0 0 0 0 

There are 29 parameters in the coefficient matrices. In contrast, an unconstrained 
5D ARMA(2 ,1 ) model would have 75 parameters in these matrices. This illustrates 
the usefulness of structural specification in multiple time series analysis. In fact, 
after further simplification in the estimation stage of the transformed model, there 
are only 16 nonzero coefficients in the final model. For further details; see the 1989 
paper. 
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The five transformed series are shown in Figure 1.13 (in Chapter 1). The first 
two series are quite stable, while the other three show certain nonstationary behav-
ior. In particular, the third series capture much of the growth of the original data. 
These features are broadly similar to the first two and the last transformed series in 
Figure 14.9 using the canonical analysis method of Box and Tiao (1977). Note that 
the last transformed component in Figure 1.13 seems to capture the periodic behavior 
of the observed processes. This feature was discussed in Quenouille (1957) but seems 
less apparent in Figure 14.9. 

14.7.5. Some further remarks 

In the structural analysis discussed in this and the preceding sections, the method of 
canonical correlation analysis has been employed. This method is commonly used 
in statistics for extracting information in a multivariate problem (Hotelling 1936, 
Anderson 1984). Its potential for time series analysis has long been recognized. See, 
for instance, Robinson (1973), Akaike (1976), Brillinger (1975, 1981), Cooper and 
Wood (1982), Jewell and Bloomfield (1983), Jewell et al. (1983), Tsay and Tiao 
(1985), Velu et al. (1986) and Pena and Box (1987). 

Finally, it is worth noting that apart from the two methods presented in this chapter, 
the principal component analysis is also of value in structural simplification. In par-
ticular, it should be applied to the sample covariance of the original series to eliminate 
redundant series that are exact linear combinations of the other components. It should 
also be applied to the sample covariance matrics of the residuals after vector autore-
gressive fitting to uncover exact lagged linear relationship among the series. Apart 
from finding exact linear relations, principal component analysis can also help achieve 
structural simplification in multiple time series, as illustrated in Tiao et al. (1993). 
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Cointegration in the VAR Model 

S0ren Johansen 
European University Institute 

15.1. I N T R O D U C T I O N 

This chapter contains a survey of some of the results on cointegration in the vec-
tor autoregressive model. The presentation is based on the papers by Johansen and 
Juselius (1990,1992,1994), where the theory was developed, as well as Johansen 
(1996). The theory is developed as a careful study of the mathematical structure of 
the error correction model and its solution, followed by an analysis of the Gaussian 
likelihood function that allows one to derive estimators and test statistics. 

The introductory section contains the basic definitions and some simple examples 
which illustrate the theory. In Section 15.2 the autoregressive equations are solved 
using a general result about the inversion of a matrix polynomial. This leads to 
Granger's representation theorem. In Section 15.3 the statistical model is defined 
and various hypotheses of interest are discussed. Next the problem of estimation and 
calculation of test statistics is discussed by an analysis of the Gaussian likelihood. In 
Section 15.4 the asymptotic theory is given, both the basic results on weak convergence 
and the asymptotic distribution of the estimator of the cointegrating relations, and the 
relevant test statistics. The final section includes a few applications of the cointegrated 
VAR to formulate models of economic interest. 

The notion of cointegration has become one of the more important concepts in 
time series econometrics since the papers by Granger (1983) and Engle and Granger 
(1987). The topic of cointegration has found widespread applications in the analysis 
of economic data as published in the econometric literature. The special issues of the 
Oxford Bulletin of Economics and Statistics, 54(3) (1992) and Journal of Policy Mod-
elling, 14(3,4) (1992) contain many papers where the method is applied and extended. 
The book of readings by Engle and Granger (1991) contains a collection of papers 
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that have been important for the development of the topic. Many text books contain 

the basic aspects of cointegration: see, for instance, Reinsel (1991), Hamilton (1994), 

Liitkepohl (1993), or Cuthbertson et al. (1992). The books by Banerjee et al. (1993) 

and Johansen (1996) and Hansen and Johansen (1998), are systematic treatments of 

the topic of cointegration. 

Economic insight is used in formulating the problem of interest, and therefore in 

the choice of variables, as well as in the discussion of which economic relations we 

expect to find. The statistical model is then used as a description of the nonstationary 

statistical variation of the data. The cointegrating relations are used as a tool for 

discussing the existence of long-run economic relations, and the various hypotheses 

are then tested in view of the statistical variation of the data. The interpretation of the 

cointegrating relations require a thorough understanding of the underlying economic 

problem, and the purpose of the statistical modeling is to provide a platform on which 

to discuss the economic questions of interest. We sometimes find that economic theory 

is rejected by the data. This can be because the theory is not developed enough, but of 

course also because the choice of variables for testing the theory may be inadequate. 

Throughout this presentation we focus on the autoregressive models. This is be-

cause they are easy to analyse and often offers a good description of the variation of 

economic data. Moving-average models or A R I M A models form an extremely useful 

class of models and the structure theory in Section 15.2 also holds for such models. 

The likelihood function does not yield to the same simple explicit solutions, however, 

and this is the reason for not treating them here. 

15.1.1. Basic definitions 

In this section we give the basic definitions and a discussion of the concepts, and 
we start by defining the class of stationary and nonstationary processes we want to 
investigate: Let ε, denote a doubly infinite sequence of p-dimensional iid stochastic 
variables with mean zero and finite variance. From these we construct a linear process 
X, = Σ°^ο C / E r - i , where the coefficient matrices C, decrease exponentially fast, so 
that the series converges almost surely. This implies that the power series 

oo 

C(z) = J2c^ 
is convergent for \z\ < 1 + δ , forsomeo > 0. For the analysis of the likelihood function, 

we need a further condition that the e's are Gaussian. For the asymptotic analysis, 

however, this condition is not needed, and we only need conditions under which the 

central limit theorem holds, and for which we get convergence to certain stochastic 

integrals; see Section 15.4. We do not go into detail with the asymptotics and the 

probability assumptions in this presentation. 

In the following we define the concept of 7(0) and 7(1) . The purpose is to define 

a class of nonstationary processes, 7(1), which become stationary after differencing, 

and a class of stationary processes, 7(0), which become nonstationary when summed, 

thus mimicking the relation between a random walk and its increments. 
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Definition 15.1. A linear p-dimensional process X, = Σ,ΐο^Ί'ε'-ί ' s called 

integrated of order zero, 1(0), ifY^Lo^i Φ υ· 

Example 15.1. Consider the stationary univariate autoregressive process that 
satisfies ζ, = ρζ,_ι + ε, with |p| < 1. This is clearly a linear process since z, = 
Σ.ΐο Ρ' ε ' -<< a n d s i n c e ΣΖο C, = (1 - ρ Γ ' # 0, it follows that it is also 1(0). The 
reason that we want this condition is that the cumulated z, 's satisfy 

which shows that it is the condition £Xo Ρ' Φ 0< which guarantees that the cumulated 
process is nonstationary. 

The process y, = Az, = z, — z ( - i , however, is stationary, but not 1(0) since the 
coefficients add to zero. If this process is summed we get 

which is nonstationary although asymptotically stationary. By insisting on the condi-
tion that the coefficients of the linear process add up to something nonzero, we make 
sure that the nonstationarity in its cumulated values is of the type we want to describe. 

The process composed of both y, and Ay,, however, is an 1(0) process, since its 
coefficient matrices add to something nonzero. 

Using the concept of 1(0) we now define the main concept for the analysis of 
cointegration, namely integration of order 1,1(1), and integration of order 2,1(2) . 

Definition 15.2. A p-dimensional stochastic process X, is called integrated of 

order 1, 1(1), if AX, is 1(0), and 1(2) if AX, is 1(1). 

The simplest example of an / ( 1 ) process is a random walk, but any process of the 
form 

is also an 1(1) process, at least if C Φ 0. Note that an l(\) process is nonstationary, 

but that the nonstationarity can be removed by differencing. 

1 = 1 i = l 

x, = c Σε·^+Ec,e'-" 
1 = 1 1 = 0 
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Example 15.2. We define a three-dimensional process by 

ι 

Xu ΣΕ>< + Ε 2 ' 
t = 1 η 

Χι, 

Xi, 64,. 

It is seen that X, is nonstationary and that AX, is stationary and 7(0). Thus X, is 
an 7(1) process, which can be made stationary by differencing. It is also seen that 
X\, — 2X2, is stationary, and we say that X, is cointegrated with (1, —2,0) as a 
cointegrating vector, and the process VJJ_, ει, is called a common stochastic trend. 
Thus stationarity can be achieved either by taking differences or by taking suitable 
linear combinations. 

This example illustrates the definition of cointegration: 

Definition 15.3. If X, is integrated of order 1 but some linear combination, 
β'Χ,, β φ 0, can be made stationary by a suitable choice ο /β 'Χη. then X, is called 
cointegrated and β is the cointegrating vector. The number of linearly independent 
cointegrating vectors is called the cointegrating rank, and the space spanned by the 
cointegrating vectors is the cointegration space. 

The definition of 7(1) is in terms of differences, and nothing is said about the levels 
of the process. Thus one cannot expect in general that anything can be said about the 
linear combinations of the levels Q'X,, unless they are started properly, that is, unless 
the initial values of β ' Χ 0 are chosen from the invariant distribution. 

Note that the definition of 7 ( 1 ) is invariant under nonsingular linear transformations 
in the sense that if X, is 7(1) and A is of full rank, then AX, is also 7(1). Even if one 
of the components of X, is 7(0), we call the multivariate process 7(1). In this way 
stationarity of a single component becomes a special case of cointegration. 

The idea behind cointegration is that sometimes the lack of stationarity of a multi-
dimensional process is caused by common stochastic trends, which can be eliminated 
by taking suitable linear combinations of the process, thereby making the linear com-
bination stationary. 

In econometrics the autoregressive processes have long been applied to describe 
stationary phenomena and the idea of explaining the process by its past values has been 
very useful for prediction. If, however, we want to find relations between simultaneous 
values of the variables in order to understand the interactions in the economy, one 
would get a lot more information by relating the value of a variable to the value of other 
variables at the same timepoint, rather than relating it to its own past. One can say that 
if we want to discuss relations between variables, then we should take combinations of 
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simultaneous values, and if we want to discuss dynamic development of the variables, 

we should investigate the dependence on the past. 

Cointegration has been so popular in econometrics because classical macro eco-

nomic models are often formulated as simultaneous linear relations between variables 

following the Cowles commission tradition. The theory of such equations was de-

veloped for stationary processes despite the fact that many (or even most) economic 

variables are nonstationary. If we think of the classical economic relations as long-run 

relations one can easily imagine that such relations can be stationary even if the vari-

ables themselves are nonstationary. Cointegration is the mathematical formulation of 

this phenomenon, and we shall treat it in the framework of the vector autoregressive 

model in the next section. 

15.2. SOLVING AUTOREGRESSIVE EQUATIONS 

The main result of this section is how to express the stochastic properties of the solution 

of the autoregressive equations under various assumptions on the parameters, that is, 

the so-called Granger representation. The autoregressive equations are given in the 

reduced-form error-correction form 

where D, are deterministic dummies and the ε, are iid Np(0, Ω ) . The equations 
determine the process X, as a function of initial values Xn, · · , X - * , the ε,, and the 
dummies D, that can contain a constant, a linear term, or seasonal dummies. Before 
we give the general solution of (15.1), we discuss some examples. 

15.2.1. Some examples 

Example 15.3. For the bivariate process 

AX, = ΠΧ,_ , + £ ] Γ , Δ Χ , _ , + Φ Ο , + ε „ / = 1, (15.1) 
i = l 

Χ\ι = Xif - i + ει ( 

X2, = pX2,-l + E2i 
/ = 1, . . . , 7 l 

the solution is given by 

\ 

X, = 
i = l 

1-1 
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We see that the first component cannot be made stationary, but the second can. We 

choose to represent such a process as 

X, = 

X\o + Σ Ε" 
i = l 

oo 

T V 6 * -
V to / 

where we have kept part of the initial value to start the random walk correctly, but 

assume that X 2 o is given by its initial distribution. 

Example 15.4. A more complicated example is the autoregressive equations 

Δ Χ „ = α , ( Χ „ _ ι - Χ 2 ( - ι ) + ε „ 

Δ Χ 2 ι = a2(X\,-\ - X2,-\) + ε 2 , ' 
t = 1, 

The way to solve the equations is to consider the linear combinations a2 X1, — oti X2, 

and Xu — Xit- The equations for the first are 

Δ ( α 2 Χ ι , - αιΧ2ι) = α 2 ει , - α ιε 2 , 

which shows that α 2 Χ ι , — αϊ X 2 , is a random walk and hence the initial values have 
to be kept fixed. The process Xu — X2, satisfies the equations 

Δ ( Χ „ - X 2 , ) = (α, - α 2 ) ( Χ „ - , - X 2 , _ , ) + ( ε „ - ε 2 , ) 

and for —1 < 1 + (aj — a 2 ) < 1 the process Xu — X2l can be made stationary, and 
we get the representation of the two processes 

α 2 Χ ι , - a i X 2 , = α 2 Χ [ 0 - a i X 2 0 + ^_^(<χ2ε ) ( - a ^ 2 l ) 
1=1 

00 

Xu ~ Xit = Σ ( \ + ( « ι - ο ί 2 ) ) ' ( ε „ _ , - ε 2 , ^ , ) 
ι = 0 

From these relations it is not difficult to solve for the processes X ] , and X 2 , and obtain 
a special case of Granger's representation theorem; see below. 
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15.2.2. An inversion theorem for matrix polynomials 

We let A(z) denote the ρ χ ρ matrix polynomial derived from (15.1) 

A ( z ) = (1 - z)IP -Πζ-Σ Π ζ ' Ο - ζ) 
i = l 

and let \A(z)\ denote the determinant, and adjA{z) the adjoint matrix, so that 

, adj(A(z)) 
A ( z ) = l ι · ( 1 5 · 2 ) 

Assumption 15.1. The polynomial A(z) satisfies the condition 

\A(z)\ — 0 implies either \z\ > lor z= 1. 

Thus the coefficients should be so chosen that the roots of | A(z)\ = 0 are either unit 
roots or stationarity roots. We are concerned with the power series expansion for the 
function A ~ ' ( z ) . This function will have a power series expansion in a neighborhood 
of the origin, since A(0) = lp, which implies that | A ( z ) | φ 0 for ζ sufficiently small. 
The power series will only converge for |z| < 1 if ζ = 1 is a root. 

We now give a theorem that summarizes the Granger representation theorems for 
1(0), 1(1), and 7(2) variables given in Johansen (1992). We give the results a purely 
analytic formulation without involving any probability theory, since the basic structure 
is then more transparent. The result allows a direct identification of the relevant 
coefficients of the inverse function in terms of the coefficients of the matrix function, 
and gives conditions for the presence of poles of order 0, 1, and 2, respectively. The 
result can be applied to derive the autoregressive representation from the moving 
average representation and vice versa, and the results can be generalized to give the 
representation of seasonally cointegrated processes; see Hylleberg et al. (1990) and 
Johansen and Schaumburg (1998). 

We expand the function A(z) around ζ — 1 and define the coefficients A(l)and A ( l ) 
by 

A(z) = A(l) + (z- l ) A ( l ) + l-(l - z)2A(l) + ••• 

Thus 

dA(z) 
A(\)= - Π , A(\) = 

A(l) = 

dz 

d2A(z) 

= - / , - Π + £ Γ Ϊ 

I = 1 

d2z = 2 £ / Γ , 
2=1 ί = 1 
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For any ρ χ m matrix a of full rank m < /?, we denote by a±_ a ρ χ (ρ — m) matrix 
of rank ρ - m such that a'a± = 0. We define ά = α ( α ' α ) - 1 , such that a'a = Im, 
and ad is the projection of Rp onto the space spanned by the columns of a. For 
notational convenience we let a± = Ip if a = 0, and if α = lp we define a± = 0. If 
a' = (ai, 0 2 ) . where a\(m χ m) is of full rank, we can take 

a_L = 
/ 

The choice of αχ is not unique, and if a\± and 0121 are any two choices there exists 
a full rank matrix ξ (p - m) χ (p - m), such that a n = c<2±?- This implies that 
the conditions and formulae below do not depend on the choice of the orthogonal 
complement. 

Theorem 15.1. Let A{z) be a matrix polynomial that satisfies Assumption 15.1. 
Then the following results hold for the function A - 1 ( z ) : 

/. If 'z = 1 is not a root, so that all roots are outside the unit disk, then A~l (z) is 

a power series with exponentially decreasing coefficients. 

2. If ζ = 1 is a root, then Λ(1) is of reduced rank r < p, and — A ( l ) = Π = αβ', 

where a and β are of dimension ρ χ r and rank r. If further 

| β ί Α ( 1 ) α ± | ? έ 0 , (15.3) 

then 

A-\z) = C-l—+C*(z), 
1 - ζ 

where C*(z) is a power series with exponentially decreasing coefficients, and 
where 

C = - β χ ( α ΐ Α ( 1 ) β ± Γ ' α 1 . 

3. If ζ = 1 is a root, so that A ( l ) = αβ' , and if 

α χ Λ ( 1 ) β χ = φζ ' , 

is of reduced rank, where φ and ζ are (p — r) χ s matrices of rank s < ρ — r, 
and if 

Φ ί α ± Α ' ( 1 ) - Α ( 1 ) η ξ ' Α ( 1 ) # 0 , (15.4) 
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then 

A~l(z) = C2——5 + C, — ^ + C"(z), 
( 1 - z ) ( 1 - z ) 

w/iere C**(z) w α power j e n « with exponentially decreasing coefficients. Ex-
pressions for the coefficients C\ and C2 can be found in Johansen (1992), where 
also the proof can be found. 

A few comments are relevant here. If ζ = 1 is a root, then A~'(z) will have a pole 

at the point ζ = 1, since |A(1) | = 0, see (15.2). 

The / ( l ) condition (15.3) is necessary and sufficient for the pole to be of order 1. 
The function C1 /(1 - z) has a pole of order 1 at ζ = 1 and the theorem says that 
the difference between A~'(z) and CT/(1 — z) is a convergent power series. Thus 
the pole can be removed by subtracting the function CT/(1 - z). The 7(2) condition 
(15.4) is necessary and sufficient for the pole to be of order 2, in which case it can be 
removed by subtracting the function C21 /(1 - z)2 + C\ 1/(1 — z), which also has a 
pole of order 2. 

A similar result can be derived using the so-called Smith-McMillan form; see 
Engle and Yoo (1991) and Haldrup and Salmon (1998). The advantage of the present 
approach is the explicit expression for the coefficients matrix of the poles, which 
helps in the interpretation of the model and facilitates the construction of algorithms 
for calculation of maximum likelihood estimators and likelihood ratio test statistics. 

In order to apply this result in the autoregressive model (15.1), we note that the 
coefficients in the expansion for A~](z) gives the solution of the equations, that is, 
they determine X, as a function of the errors ε,. The translation is via the lag operator, 
such that for a function C(z) = XXo^<2' a n c * a sequence of iid variables ε,, we 
define the stationary process 

(Γ(β)ε, = £ c , e , _ / . 
i = 0 

For the expression 1/(1 - z), we use the interpretation 

( 1 - Β Γ ' ε , = Δ - ' ε , = £ ε „ 
ι = 1 

and 1/(1 - ζ ) 2 is translated into 

' j 

( l - f i r 2 E , = A - 2 E , = £ £ e , , 
i=\ 1=1 

For a more precise formulation, one has to take into account the initial values. 
The result of Theorem 15.1 can be used to check whether a given example of an 
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autoregressive process is 1(0), / ( l ) , or 1(2). The theorem is the fundamental tool in 
building 7(1) and 7(2) models for autoregressive processes as we shall show below. 

15.2.3. Granger's representation 

First we give the classical result about the representation of stationary solutions. 

Theorem 15.2. IfX, is given by (15.1) and if Assumption 15.1 holds, then X, can 

be given an initial distribution such that it becomes 7(0) if and only if A(l) = —Π 

has full rank, that is, \A(z)\ has no unit roots. In this case X, can be given the 

representation 

oo 
Xt = } ] C,6(_(-, 

where the coefficients are given by C (ζ) = Σί=ο C/z' = A (z)~l, |z| < 1 + δ for 

some δ > 0. 

This result shows that if \A ( z ) | has all roots outside the unit disk then the process 
generated by (15.1) is stationary or rather can be made stationary by a suitable choice 
of the initial distribution. Thus we have to allow other roots of \A (z)\ for X, to be 
nonstationary. 

If unit roots are allowed we can prove Granger's representation theorem. 

Theorem 15.3. If X, is given by (15.1) and if Assumption 15.1 holds, then X, is 

1(1) if and only if 

Π = α β ' (15.5) 

where α, β ρ χ r are of full rank r < p, and 

a'± (lp - Σ Γ ' ) β - ί has full rank. (15.6) 

In this case AX, — E(AX,) and β'Χ, — Εφ'Χ,) can be given initial distributions 

such that they become 7(0), and the process X, has the representation: 

X, = Cjjbi + D,) + C(L)(e, + D,) + A, t = l,...,n, (15.7) 
i = l 
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where 

(15.8) 

and A depends on initial conditions such that β'Λ = 0. 

Thus the cointegrating vectors are β and the common trends are α'λ Σ/=ι ε ί · The 
representation (15.7) is also called the common-trends representation of the solution 
of the autoregressive model and shows that the nonstationarity in the variables is 
created by the cumulated unanticipated shocks in the process, but not all these shocks 
appear. They are multiplied by the matrix a'±, which shows that only ρ — r random 
walks give rise to the nonstationarity. Since the matrix C contains the factor β ι , 
we find β'Ο = 0, such that the linear combinations β'Χ, are not influenced by the 
random walks and become stationary. 

The processes generated by (15.1) contain deterministic terms. It follows from 
the representation of Granger (15.7) that for an 7(1) process, a constant term in the 
equations will generate a linear term in the process, but only in the nonstationary part 
of the process, that is, the process \3'X, has no trend. 

It is an important property that cointegration is invariant to the extension of the 
information set; that is, if more variables are included in the analysis, we will still find 
the cointegrating vectors expanded by a zero for the new variables, but the common 
trends change character completely since what is unanticipated for the small system 
may not be unanticipated for the large system. 

It is obvious that what is sometimes called the permanent shocks are the shocks 
α'±ε, since they cumulate in the system. We propose to call the shocks α Ώ " ' ε , the 
transitory shocks. The reason will be apparent in the discussion of the asymptotic 
distribution of β, here we just note that the definition implies that the transitory 
shocks are independent of the permanent shocks. 

The results of Theorem 15.1 can also be used to represent the 7(2) solutions of 
(15.1). 

Theorem 15.4. IfX, is given by (15.1) and if Assumption 15.1 holds and 

Π = α β ' (15.9) 

where α, β are ρ χ r matrices of full rank r < p, and 

(15.10) 

where φ and ζ are (p — r) χ s of rank s, then Δ 2 Χ , and β'Χ, + (α 'α ) ' α ' (7 ρ — 

Σ,·=ι Γ , ) Δ Χ , corrected for their mean can be given initial distributions such that 
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they become 1(0), and the process X, has for t = 1 , . . . , n, the representation 

I S I 

X, = C2 Σ ( Ε' + D , ) + CL Σ ( Ε' + D i ) + C ( L ) ( ε ' + A ) + A + Bt, 

i = l i = l i = l 

where the matrices C\ and C2 can be expressed in terms of the coefficients in the 

model and A and Β depend on the initial conditions. 

15.2.4. Prediction 

A different way of solving the equations (15.1) is found by fixing all initial values. If 

we take the model with lag 1 the formulas become very simple. We find 

f - l 

X, = ( / „ + α β ' ) ' Χ 0 + Σ{ΙΡ + αβ ' ) ' ε , - , , 
/ = 0 

or equivalently 

<x'±X, = a'±Xo + ct'± Σ
 Ε< 

;=i 

t - l 

β'Χ, = (lr + β ' α ) ' β ' Χ 0 + £ ( / , + β 'α) 'β 'ε , - , . 
ι = 0 

These relations show that the prediction of X,+n given the history of the process is 

Ε ( α 1 Χ , + Λ | Χ 0 , . . . , Χ , ) = α 1 Χ „ 

Ε ( β ' Χ , + Λ I X 0 , . . . , Χ , ) = (Ir + β 'α) 'β 'Χ, . 

Thus the random-walk part of the process is simply predicted by its current value and 
the stationary part by the discounted current value. Note, however, that 

V a r ( a x X , + A \Χ0,...,Χ,) = ha'^a^ 

( - 1 

ν 3 Γ ( β ' Χ , + Λ I X 0 , . . . , X , ) = £ ( / r + β ' α ) ' β ' Ω β ( / Γ + α 'β ) ' , 
ι = 0 

such that the random walk component is predicted with a variance that tends to 
infinity whereas the stationary part is predicted with a variance that converges to the 
unconditional variance. For a process with more lags similar results can be proved by 
considering the companion form of the process. 
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15.3. THE S T A T I S T I C A L M O D E L F O R / (1) VARIABLES 

If model (15.1) is used to describe a cointegrated 7(1) process we should restrict the 
parameters as given by conditions (15.5), (15.6), and Assumption 15.1. Assumption 
15.1, which says that the roots are outside the unit disk or at 1, is very difficult to 
handle analytically. Fortunately it rarely turns out that the roots are inside the unit 
disk, and if they are, it is more important to know where they are than to force them 
to the boundary of the unit disk. Hence we do not restrict the parameters in the 
model by Assumption 15.1, but check that it is satisfied by the estimates. Condition 
(15.6) is easily satisfied, since matrices with full rank are dense in the space of all 
matrices. Thus, even without the restriction that a'x(Ip — Σ*=ι Γ,)βχ has full rank, 
the estimator derived has full rank with probability 1. Thus only condition (15.5), 
Π = αβ', is included in the formulation of the parameter space of the model. 

Definition 15.4. The reduced form error-correction model Hr is described by 
the equations 

k 

Δ Χ , = αβ'Χ,_ι + ^ Γ , Δ Χ , _ , + <J>D, + ε,, t = 1 η (15.11) 
i = l 

where a and $ are ρ χ r, and ε ι , . . . , ε„ are independent Gaussian Np (0, Ω ) , and 
the variables D, are deterministic terms. The freely varying parameters in the model 
are (α, β, Γ, Γ*, Φ, Ω) . 

We assume that the errors are Gaussian in order to be able to work with a likelihood 
function. Note that in model Hr the parameters α and β are not identified, since 
Π = αβ' = α ξ ~ ' ( β ξ ' ) ' for any r χ r matrix ξ of full rank, but that one can estimate 
the spaces spanned by a and β respectively, and the parameters in β can be estimated 
if they are identified or normalized suitably. 

Thus cointegration analysis is formulated as the problem of making inference on 
the cointegration space, βρ(β), and the adjustment space, sp(ot). If we want to estimate 
individual coefficients, it is necessary to normalize β or impose restrictions so that 
the parameters become identified. 

The above allows one to formulate a nested sequence of hypotheses 

H0 C · · · C 77, C · · · C Hp, 

and the test of Hr in Hp, is then the test that there are (at most) r cointegrating 
relations. Thus 770 is just a vector autoregressive model for X, in differences and Hp 

the unrestricted autoregressive model for X, in levels, and the models in between, 
H\,..., Hp-i, give the possibility to exploit the information in the reduced-rank 
matrix Π, and contain information about the long-run relations in the economy. 

Thus instead of analyzing nonstationary processes by differencing them to ob-
tain stationarity and then analyze the differences by an autoregressive model, we 
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choose to leave the variables in levels and draw inference from the cointegrating 
relations. 

Note that the model we get by fitting a vector autoregressive model to the differ-
ences is just HQ, the adequacy of which can be tested if we start with the general 
model Hp, by testing Ho in Hp. 

The corresponding model for 7(2) variables is analyzed in Johansen (1997). 

15.3.1. Hypotheses on cointegrating relations 

Once the cointegrating rank has been determined we can test hypotheses about the 
coefficients α and β, and we next give examples of such hypotheses. 

In order to make the discussion of hypotheses more concrete, we consider the 
example of five series: the log consumer price index in Australia and the United 
States, p\ and p2, and the log exchange rate, exch,, as well as the bond rate in both 
countries i\ and i2. The data is analysed in Johansen (1996) from the point of view 
of a cointegration analysis. 

The hypothesis that only relative prices enter the cointegrating relations, can be 
expressed as the hypothesis that the coefficients to p\ and p2 sum to zero, or as 
the restriction (1, 1, 0, 0, 0) β = 0. This is the same restriction on all cointegrating 
relations that can also be expressed as a direct parametrization 

β = 7Υφ (15.12) 

where Η — (1 , 1, 0, 0, 0)'± is known and φ (4 χ r ) is unknown. This hypothesis on 
β does not depend on β being identified uniquely, since it is the same set of restrictions 
on all the relations. If β satisfies (15.12) then so does βξ for any matrix ξ (r χ r ) . 
Hence (15.12) is a testable hypothesis on the cointegrating space despite the fact that 
β is not identified. 

The hypothesis that some cointegrating vectors are known can be formulated as 

β = (*>,ψ) (15.13) 

where b(p χ r\) is known and ψ ( ρ χ r2) is unknown, r\ + r2 = r. An example 
of this is, for instance, (1, - 1 , —1, 0,0) corresponding to PPP, or (0, 0, 0, 1, —1), 
corresponding to UIP. In particular the test that an individual variable is stationary 
can be expressed in the form (15.13) for b equal to a unit vector. Thus the stationarity 
of a single component of X, is a special case of cointegration. 

A more general linear hypothesis can, for r = 2, say, be formulated as 

β = ( 7 7 ι φ ι , / 7 2 φ 2 ) , (15.14) 

where 77, (ρ χ j , - ) are known and φ, (ί, χ r ,) are unknown and r\ + r2 = r; see 
Johansen and Juselius (1994). 

An example of (15.14) is given by the hypothesis that p\, p2, and e\2 cointegrate 
and that the interest rates cointegrate. In this case we are looking for two relations 
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of the form (a, b, c, 0, 0) and (0, 0,0, d, e), which clearly form a set of uniquely 

identified equations even though they also need a careful economic interpretation. 

The hypothesis has the form (15.14) with 

H, = 

(\ 0 0 \ 

0 1 0 

0 0 1 

0 0 0 

V> 0 V 

H2 = 

(0 0\ 
0 0 

0 0 

1 0 

\0 V 

Thus we are, in the econometric language, testing for the over-identifying restric-

tions that there is a cointegrating relation between the variables that has two zeros as 

coefficients to the interest rates and another one with zeros as coefficients for the prices 

and exchange rates. It is a common econometric formulation that one wants to identify 

linear relations of econometric relevance by linear restrictions on the coefficients, in 

particular zero restrictions. 

Thus linear restrictions are formulated on individual relations in the hope that they 

are sufficiently distinct so that identification is in fact possible. 

15.3.2. Estimation of cointegrating vectors and calculation of test statistics 

This section contains a brief description of the regression estimators of the cointegrat-

ing vectors and then discusses how the estimation problem of the various hypotheses 

from Section 15.3.1 can be solved by analyzing the Gaussian likelihood function. 

Regression estimates 
A time honored procedure for finding linear relations between two variables y, and 
Z,, of dimension 1 and m, respectively, is to regress y, on Z, and then to discuss the 
properties of the estimator 

(15.15) 

under various assumptions on the processes. This was, of course, the first to be used by 

Engle and Granger (1987) in their fundamental paper. The problem with the analysis 

is that since the regressor Z, in general is a nonstationary process the usual simple 

asymptotic normality does not hold for the estimator. 

Stock (1987) proved the, at first sight, rather surprising result that one gets a 

superconsistent estimator in the sense that 

η 1 _ δ ( β ο ΐ $ - β ) 0, δ > 0 

under the assumption that the regressor is an / (1) process, and that (y,, Z , ) cointegrates 

with cointegrating vector (1, - β ' ) ; that is, y, - β'Ζ, is stationary. Behind this result 
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is the following very simple idea. In the regression model 

y , = β'Ζ, + ε „ 

where ε, are independent Gaussian variables with mean zero and variance σ 2 and 

the Z's are deterministic one finds that $0is is Gaussian with mean β and variance 
σ 2 ( Σ " = ι Ζ , Ζ , ' ) - 1 . If Ζ, is stationary and mixing with finite variance, then the sum 

will increase like η and usual asymptotics hold in the sense that 

η ^ ( β - β ) 

is asymptotically Gaussian or equivalently 

ΣΖ<Ζ?Ι $ - β > σ _ 1 Λ * ( ° · / - ) · ( 1 5 1 6 > 

If Ζ, is deterministic and grows like t, say, then Σ"=ι ζ<Ζι g r °ws like n 3 and 
η 1 (β - β ) is asymptotically Gaussian, but again we find the result (15.16) and that β 
is superconsistent. 

If Z, is a nonstationary variable, it is of the order of / 5 which shows that YJ" = , Z, Z\ 
is of the order of n2, which again implies superconsistency. The limit distribution is 
rather complicated and will be discussed more in Section 15.4. 

Inference for the remaining parameters θ = ( Γ ι , . . . , Γ*, α, Φ, Ω ) is relatively 
simple since superconsistency of the estimator for β implies that inference on θ can 
be conducted as if β were known and equal to β, in which case model (15.11) only 
involves the stationary observables 0'X,-i and the differences of X,. 

This type of result has created a very large literature. See, for example, Stock 
and Watson (1988) for the estimation of the cointegrating rank and the cointegrating 
relations, Chan and Wei (1988) for inference in unstable processes, and the work of 
Phillips (1987, 1991), Phillips and Durlauf (1986), Phillips and Ouliaris (1990), and 
Park and Phillips (1988, 1989), on how to do regression with integrated regressors. 
The result has lead to a new class of limit distributions, which are combinations of 
mixed Gaussian and the so called unit root distributions. 

A variant of the regression procedure was given by Stock and Watson (1988), who 
suggested using principal component analysis of the matrix Σ"=\ Χι^Ί t o find t n e 

linear combinations of the process with the smallest variation as candidates for the 
cointegrating relations. Box and Tiao (1977) suggested using canonical correlation 
analysis of X, with respect to X,_i to pick out the linear combinations that are most 
easily predicted from the past. 

It turns out, however, that the limit distribution for the regression estimator, as well 
as the estimators involving principal components and canonical correlations of the 
levels, is very complicated and this makes inference and hypothesis testing difficult. 
There are ways of eliminating the nuisance parameters by modifying the regression 
method; see Park (1992) and Phillips and Hansen (1990). 
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Unrestricted maximum likelihood estimation 

Another way of approaching the estimation problem is to analyze the Gaussian like-

lihood function and use that as a tool for generating estimators under the various 

hypotheses investigated in this section. The rationale is that a set of restrictions would 

change the parameter set and hence the maximization problem to be solved. Thus 

restrictions on the parameter set imply a modification of the estimator. 

One would expect that if any estimator would have a simple limit distribution, it 

would have to be the maximum likelihood estimator. Similarly, one would expect that 

the likelihood ratio test statistic has simple limit distribution, even if it turns out that 

it is only sometimes that we get the χ 2 distribution. 

Model (15.11) gives rise to a reduced-rank regression and the solution is available as 

an eigenvalue problem. It was solved by Anderson (1951) in the regression context and 

runs as follows. First we eliminate the parameters Γ ι , . . . , Γ*, Φ by regressing AX, 

and X,-\ on Δ Χ , _ ι , . . . , AX,-k, and D,. The residuals are Ro, and Rlt respectively. 

Next form the sums of squares and products 

η 

Sij = n-xYjRitR'jr /, ; = 0 , 1 . 
(=1 

Then the likelihood function maximized with respect to the parameters 

Γ ι , . . . , Γ*, Φ, and Ω is given by 

^ P ) = ( 2 ^ | 5 b , | | p , ( 5 Y p ^ , 5 b ' ) P | . 

This is minimized with respect to β by solving the eigenvalue problem 

\\SU - S i r A o ' S o i I = 0 . (15.17) 

The solution of this equation gives eigenvalues 1 > X i > · · > λ ρ > 0 and eigenvectors 

V = ( Ο ι , . . . , Vp), which satisfy 

λ,5ι|0, = 5ιο%'5οι0,, i = ] , . . . , p, 

and V'SnV = Ip. 

A maximum likelihood estimator for β is then given by 

β = ( 0 , , . . . , ( > , ) , (15.18) 

and an estimator for α is 

ά = Soi0 . 
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The maximized likelihood function is given by 

r 

Lmli" = (2ttey\Sao\ Y\(\ - λ , ) . (15.19) 
ι = 1 

See Johansen and Juselius (1990) for details and applications. One can interpret λ, 
as a squared canonical correlation between AX, and X,-\ conditional on the lagged 
differences Δ Χ , _ ι , . . . , Δ Χ , _ * + ι . Thus the estimate of the "most stable" relations 
between the levels are those that correlate most with the stationary process AX, 
corrected for lagged differences and deterministic terms. 

Since only sp(Q) is identifiable without further restrictions, one really estimates the 
cointegrating space as the space spanned by the first r eigenvectors. This is seen by 
the fact that if β is given by (15.18), then also maximizes the likelihood function 
for any choice of ξ (r χ r ) of full rank. The identification of β as eigenvectors is 
convenient from a mathematical and numerical point of view but not necessarily from 
en economic point of view. 

This solution provides the answer to estimation of all the models Hr, r = 0 , . . . , p. 
By comparing the likelihoods (15.19), one can test Hr in Hp, that is, test for r 
cointegrating relations, by the likelihood ratio statistic 

ρ 
- 2 I n Q(Hr I Hp) = -n £ log(l - X , ) . (15.20) 

( = r + l 

The estimator (15.18) is an estimator of all cointegrating relations, and it is some-
times convenient to normalize (or identify) the vectors by choosing a specific coordi-
nate system in which to express the variables in order to facilitate the interpretation 
and in order to be able to give an estimate of the variability of the coefficients. If c is 
any ρ χ r matrix, such that β'ο has full rank, one can normalize β as 

β, = β ί /βΓ' , 

which satisfies c'$c = Ir provided that \c'Q\ Φ 0. A particular example is given by 
c' = (lr, 0) and β' = (βι, β 2), where βι is r χ r of full rank, in which case β'ο = βι 
and β̂  = ( / r , β , - ^ ) · This corresponds to solving the cointegrating relations for the 
first r variables. The maximum likelihood estimator of β,: is 

β, = β (Γ 'βΓ' . 

This then gives the normalization or just identification of β that allows one to give an 

estimate of the variability of the estimator of the individual coefficient of 0. 
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15.3.3. Estimation of β under restrictions 

If one wants to estimate β under restrictions, this can sometimes be done by the same 
analysis. Consider the hypothesis (15.12), where β = Ηφ. In this case 

α β % = αφ'Η'Χ, 

which shows that the cointegrating relations are found by reduced-rank regression of 

AX, on Η'Χ,-ι corrected for the lagged differences and D,, that is, by solving the 

eigenvalue problem 

\\H'SUH - H'SwS^S0iH\ = 0. (15.21) 

Under hypothesis (15.13) there are some known cointegrating relations and in this 
case αβ'Χ, = a\b'X, + ο^φ'Χ,, which shows that the coefficient c*i to the observable 
b'X,-\ can be eliminated together with the parameters ( Γ ι , . . . , Γ*, Φ) , so that the 
eigenvalue problem that has to be solved is 

|λ5|ΐ.ί, - •Sio.fcSnrASoi.il = ^ (15.22) 

where 

Sij.b = Sij - Snb(b'S\]b)~lb'S\j, i, j = 0, 1. 

The maximal value of the likelihood function is given by expressions similar to 
(15.19) and the test of hypotheses (15.12) and (15.13) consists of comparing the 
r largest eigenvalues under the various restrictions, since the factor (2'ne)p \Soo\ 
cancels. 

The hypothesis (15.14) is slightly more complicated, but can be solved by a switch-
ing algorithm, where each step involves an eigenvalue problem; see Johansen and 
Juselius(1994). 

Thus it is seen that a number of interesting hypotheses can be solved provided one 
has an eigenvalue routine and this algorithm has been implemented in many statistical 
packages. 

15.4. A S Y M P T O T I C T H E O R Y 

This section contains a description of the asymptotic theory of the processes and their 
product moments, as well as a discussion of how the results can be applied to conduct 
inference about the cointegrating rank and the cointegrating vectors. 
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15.4.1. Asymptotic results 

The basic asymptotic results can be summarized in the following three limit theorems, 
which we give for iid ε, with mean zero and variance Ω. 

, [««1 

n - ^ E , 4 f f ( i ( ) , (15.23) 
i = l 

where W (u) is Brownian motion, and A denotes weak convergence of the whole 

process. The continuous mapping theorem (Billingsley 1968) immediately gives 

whereas the result 

η " 1 Σ (ΣΕ')Ε'' Λ f0

 W(-dW)' (15·25) 

is much more complicated and involves a stochastic integral (Karatzas and Shreve 

1988, Chan and Wei 1988). 

An 7(1) process X, behaves asymptotically like a random walk [see ( 15.7)], and 

we find 

n-iXlnu] Λ CW(u) 

with C as given by (15.8). Thus results similar to (15.24) and (15.25) can be formu-

lated. 

« " Τ Χ , - Ι ^ - Λ / CW(u)W(u)'C'du (15.26) 
,=i J o 

η " 1 Υ ] χ , _ , ε , ' Λ / CW(dW)'. (15.27) 
7=ΐ Jo 

The order ( n 2 ) of the product moments implies that one gets superconsistency of 
the regression estimator [see (15.15)]. The random limit (15.26) applied to Z, implies 
that the limiting distribution is not Gaussian, but a rather complicated mixture of 
Gaussian distributions involving Brownian motion and nuisance parameters. 

15.4.2. Test for cointegrating rank 

The reason that inference for nonstationary processes is interesting and widely studied, 

is that it is nonstandard, in the sense that estimators are not asymptotically Gaussian 
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and test statistics are not in general asymptotically χ 2 . This was systematically ex-
plored by Dickey and Fuller (see Fuller 1976) in testing for unit roots in univariate 
processes. 

As an example consider the simple model of an autoregressive process of order 1 

ζ, = pz,-[ + ε „ 

where ε, are independent Gaussian variables with mean zero and variance σ 2 . The 
null hypothesis of interest is that ρ = 1, which implies that z, is a random walk, that 
is, a nonstationary process. Dickey and Fuller found among other results that when 
ρ = 1, a nonstandard limit distribution is obtained, and this can be expressed as 

„ ( R η_η-'Σ!=ιΖ,-ιε, u, /ρ W W ) 
( P ) _ »-2ΣΓ-.*?-. / > 2 Λ · 

where W (u) is a univariate Brownian motion on [0, 1] with variance σ 2 , and the 
stochastic integral can in this special case be calculated as / „ ' WdW = \(W ( l ) 2 - 1 ) . 
The results follow from (15.23)—(15.25). The implication is that the likelihood ratio 
test statistic is asymptotically distributed as 

(/„' W W ) ) 2 

This distribution is often called the "unit root" or Dickey-Fuller distribution, and its 
multivariate version plays an important role in asymptotic inference for cointegration. 
We give the main results obtained for likelihood inference, and refer to Johansen 
(1988, 1991) and Ahn and Reinsel (1990) for technical details. 

Theorem 15.5. Under model (15.1) with Φ = 0 and r cointegrating relations 

the likelihood ratio statistic (15.20) satisfies 

- 2 In Q(Hr I Hp) A tr\£ B(dB)'[f0

1 BB'du]~l /„' B(dB)'}, 

where the process Β is a (p — r)-dimensional Brownian motion with covariance 

matrix equal to lp-r. 

This result follows by a Taylor expansion of the likelihood function and the three 
limit results above. Thus the limit distribution depends only on the number of common 
trends of the problem. It is seen that the distribution is a multivariate generalization 
of the unit root distribution. This is not surprising, since one can think of the test for 
ρ = 1 in the univariate model as a test for no cointegration (i.e., of r = 0) when 
ρ = 1 and k = 1. 
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Although the limit distribution given in Theorem 15.5 depends only on the degrees 
of freedom or the dimension of the Brownian motion, it turns out that if a constant 
term or a linear term is allowed in the model, then the limit distribution changes. 
If, however, the highest-order term is restricted to the cointegrating space, the limit 
distribution does not contain nuisance parameters. The various limit distributions are 
tabulated by simulation, (Johansen 1996). 

15.4.3. Asymptotic distribution of β and test for restrictions on β 

It is quite satisfactory, however, that the other test statistics described in Section 15.3 
for hypotheses on α and β all have asymptotic χ 2 distributions. Thus the only non-
standard test is the test for cointegrating rank. The reason for this is that the asymptotic 
distribution of the estimator of β is a mixed Gaussian distribution. We give the result 
for β Γ , that is, β normalized so that τ 'β = Ir. 

Theorem 15.6. The asymptotic distribution ο / β Γ is given by 

jf BxB[du^ jf B\dB'2 (15.28) 
• i 

Πφο ~ B r ) Up ~ β ^ ' ) β ± ' 

where B\ and B2 are independent Brownian motions of dimension ρ — r and r, 

respectively. The asymptotic conditional variance matrix is 

(Ip - β ^ ' ) β ± [jf BxB\du 

— I 

β Κ / , - φ ^ β ^ Ω - ν Γ ' (15.29) 

which is consistently estimated by 

n(Ip - &c')SulUp - c & ) ® ( δ ^ - ' φ - 1 . (15.30) 

The result follows by going to the limit in the likelihood equations and applying 

the three limit results above. For given value of B\ the limit distribution of β is just 

a Gaussian distribution with mean zero and variance given by (15.29), since we can 

approximate / 0 ' B\(dB2)' by 

i = l 

which for fixed B\ is Gaussian with mean zero and variance 

Ν 

Σ Βι( / / )«ι( / , · ) ' ίΛ+ι - ti) IS Κ Ω - V r ' 
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which converges to 

f Bx(u)Bi(u)'du®(al.n-iacy - 1 

Jo 

It is this result that implies, by a simple conditioning argument, that the likelihood ratio 
test statistics for hypotheses about restrictions on β are asymptotically distributed as 
χ 2 variables, which again makes inference about β very simple if likelihood based 
methods are used. 

Another way of reading the results (15.28)—(15.30) is that since c'(|3 c — β,;) = 0, 
we need only consider the coefficients c±(0c - β Γ ) . It now follows from (15.30) that 
we can act as if these are asymptotically Gaussian with a variance matrix given by 

in the sense that this matrix gives the proper normalization of the deviations n($c —β 0 ) . 
Despite the complicated formulation, the result is surprisingly simple, since it only 
states that if β is estimated as identified parameters, then the asymptotic variance of β 
is given by the inverse information matrix, which is the Hessian used in the numerical 
maximization of a function. This result is exactly the same as the result that holds for 
inference in stationary processes. The only difference is the interpretation of (15.30), 
which for a stationary process would be an estimate of the asymptotic variance, but for 
1(1) processes is a consistent estimator of the asymptotic conditional variance. The 
basic property, however, is the same in both cases, namely, that it is the approximate 
scale parameter to use for normalizing the deviation fi - β. 

Example 15.5. As an example of the result in Theorem 15.6, consider the simple 
case where the model is given by 

We normalize β on the vector c = ( l , 0 ) ' , and write $c = (l,-Q)' with θ = 
- β2/βι· Then y, = θζ, + κ,. The corresponding normalization of α is given by 
etc = (oti, α2)β, _ 1 . The asymptotic distribution of θ - θ follows from Theorem 15.6. 
We find 

- 1 

Ay, = α ι ( β , ^ _ ι + β 2 ζ , _ ι ) + ει, 

Δ ζ , = α 2 ( β ι ^ _ ι + β 2 ζ , _ ι ) + ε 2 ( . 

and 

β χ Λ „ = 9y,_, + ζ,-ι = (1 + θ 2 )ζ ,_ ι + Θ Μ , _ , . 
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Theorem 15.6, states that the vector 

* - * = ( β - θ ) 

can be treated as asymptotically Gaussian with variance given by 

where 

6 
-1 

σ 2 = (1 + Θ 2 ) 2 ;(f3y,_, + Ζ , _ , ) 2 Ά ; Ω - ' Ο Ν 

« , - i ) 2 e £ f i - ' ) 
- ι 

Thus the hypothesis that βι + β 2 = 0 or equivalently that θ = 1 can be tested 

using the statistic 

which is asymptotically χ 2 ( 1 ) . 

The Brownian motions B\ and B2 that enter the limit result of Theorem 15.6 can 

be descibed as follows 

That is, βι represents the limit of the common trends or cumulated permanent 

shocks, whereas B2 represents the limit of the cumulated transitory shocks. Hence 

the determination of cointegrating rank is determined by the permanent shocks and 

inference on the coefficients on β is conducted conditional on the permanent shocks 

and the variation is measured by the variation of the transitory shocks. 

One can now discuss why inference about β becomes difficult when based on 

the simple regression estimator. This is because the limiting distribution of β 0ι 8 is 

expressed as an integral as in Theorem 15.6, but with dependent B\ and B2. This 

η 

(=1 

\nu\ 
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again implies that for given B\ the limit distribution of the estimator does not have 
conditional mean zero, which implies that the test statistics based on the regression 
estimator will have some noncentral distribution with nuisance parameter given by 
the canonical correlation coefficients between B\ and B2. 

Inference for the remaining parameters θ = (ot, Γ ι , . . . , Γ*, Ω ) is different. This 
is explained by Phillips (1991), and the idea is roughly the following. The second 
derivative of the log likelihood function with respect to β tends to infinity as n 2 [see 
(15.27)], whereas the second derivative with respect to θ and the mixed derivatives 
tend to infinity like n. This means that β — β has to be normalized by η and -& — θ 
by η 2 . This, on the other hand, requires a normalization of the mixed derivatives by 
n 3 / 2 and makes them disappear in the limit. Thus in the limit the information matrix, 
which is used to normalize (β - β, θ - θ ) , is block diagonal with one block for β 
and one block for the remaining parameters 

Although the asymptotic distributions are simple to handle, they rarely are good 
approximations, and one can improve the approximation by calculating a so-called 
Bartlett correction factor to the the likelihood ratio test. As an example of this consider 
the simple model 

in dimension ρ and r = 1 cointegrating relation. Suppose that we want to test a 

simple hypothesis HQ : β = βη· One can show (Johansen 1998), that (if α is known) 

The idea is, that by estimating the RHS and dividing it into the likelihood ratio statistic, 
approximation to the χ 2 ( ρ - 1) distribution is greatly improved. 

15.5. VARIOUS A P P L I C A T I O N S OF T H E C O I N T E G R A T I O N M O D E L 

The concept of cointegration and long-run relations can be found in many models 
of economic interest, since data are often nonstationary and the cointegrating rela-
tions correspond to the relations that have the smallest variance or that are the most 
stationary. 

15.5.1. Rational expectations 

A typical rational expectation model is given by the present-value model in Campbell 
and Schiller (1987), which states that the present value of a variable z, is a linear 
function of the discounted future values y, 

AX, — αβ'Χ,_ι + ε,, r = ! , . . . , « 

E[-2\ogLR] 
~ 1 + -

l p p + l _ α'β[(2 + α ' β ) ( ρ - 2 ) + 4(1 + α ' β ) ] ' 

n|_ 2 β ' Ω β α ' Ω - ' α 

00 

ζ, = 7 ( 1 - 8 ) £ o V £ , y , + ; + c . 
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If we let X, = (z,, y,) we can write the equations on the form 

E,(c\X,+l +c'QXt) + c = 0. 

If we assume that X, is given by the autoregressive model 

AX, = ΠΧ,-ι + μ + ε, 

the parameters must satisfy the restrictions 

c',n = - ( c 0 + c , ) ' , c > + c = 0 

which together with the cointegrating restriction Π = αβ ' give a set of restrictions 
on the parameters that can be tested. The idea is first to determine or test for the 
cointegrating rank, and next to estimate the model under the preceding restrictions 
and compare the likelihoods obtained using a likelihood ratio test (Johansen and 
Swensen 1999). 

15.5.2. Arbitrage pricing theory 

The arbitrage pricing theory often describes a one period model for asset prices and 
derives a restriction on the mean return by assuming that there should be no arbitrage 
opportunity by creating a portfolio with positive excess mean return and no risk. The 
exact factor model does not allow this possibility but the lack of the restriction opens 
an approximate arbitrage opportunity by diversification over many assets. 

If, however, we consider a multiperiod model and instead of the asset returns 
consider the cumulated asset returns or the log prices, then these variables are found 
to be nonstationary. If we fit a cointegration model with a linear term restricted to the 
cointegrating relations, we get a model for a rebalanced portfolio. The no arbitrage 
condition is then that any portfolio with linearly increasing mean and constant risk 
must have the same mean return (Johansen and Lando 1996). Thus the A P T hypothesis 
is a restriction on the deterministic terms and the cointegrating vectors. 

15.5.3. Seasonal cointegration 

A phenomenon that is not directly covered by the above model (15.1) is the seasonal 
variation of time series, see Hylleberg et al. (1990). It turns out that the basic result 
about inversion of matrix polynomials can be extended to cover this case as well, with 
the result that we get an error-correction formulation and the possibility for testing for 
cointegrating rank at the various complex frequencies. The asymptotics are roughly 
the same as for the usual model but involves the complex Brownian motion, as a 
consequence of allowing roots at complex frequencies (Johansen and Schaumburg 
1998). 
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Linear Dynamic 

Multiinput/Multioutput Systems 

Manfred Deistler 
Technische Universitat Wien 

16.1. I N T R O D U C T I O N A N D P R O B L E M STATEMENT 

In this contribution a survey on identification of linear dynamic systems is given. 
The intention is to present the main ideas underlying identification and to give a 
clear picture of the structure of the basic theoretical results. For most of the material 
covered here, for a more detailed presentation and in particular for proofs, we refer 
the reader to Hannan and Deistler (1988). Alternative main references are Reinsel 
(1991) and Lutkepohl (1993). For a general statistical analysis of dynamic systems, 
emphasizing nonlinear systems, the reader is refered to Potscher and Prucha (1997). 
For the sake of brevity of presentation, we do not give reference even to important 
original literature, if it is cited in the books listed above; for this reason important and 
seminal papers by Akaike, T. W. Anderson, Hannan, Kalman, and others will not be 
found in the list of references for this chapter. 

In general terms, system identification is concerned with finding a good model from 
(in general) noisy data, namely, with data-driven modeling. The task of identification 
is often so complex that it cannot be performed in a naive way with the naked eye. 
In addition, many identification problems share common features. For these reasons, 
methods and theories have been developed, which make system identification a subject 
on its own; this is the case despite the fact, that problems of identification are treated 
in different communities such as in system theory, signal processing, statistics, and 
econometrics. 
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There is a wide range of areas of application for system identification, from speech 
processing to control of chemical processes and forecasting models for economic data. 

In identification the following has to be specified: 

• A model class, that is, the class of all a priori feasible candidate systems to be 

fitted to the data. The model class incorporates the a priori information about 

the phenomenon under consideration. Specification of the model class typically 

includes the selection of the variables, their classification into inputs and out-

puts, assumptions on the relation between the variables and the modelling of 

noise. 

• A class of feasible data. 

• An identification procedure, which is a set of rules (in the fully automatized 

case a function) attaching to every feasible data string a system from the model 

class. The theory of identification is mainly concerned with the development and 

evaluation of algorithms for identification. 

Of course, identification has many different aspects and features. Here we only 
deal with discrete-time (equally spaced) time series data, yt, t = 1 , . . . , n;y, e W; 
and with linear dynamic systems. 

In this contribution in addition we restrict ourselves to mainstream theory (Deistler 
1989), where the following assumptions are imposed: 

• The model class consists of linear, finite-dimensional, constant-parameter, 
causal, and stable systems only. The classification of the variables into inputs 
and outputs is given a priori. Here finite-dimensional means a finite-dimensional 
state and causal means that present outputs are not influenced by future inputs. 

• Noise is modeled by stochastic models, in particular by stationary ergodic pro-
cesses with rational spectra. 

• The observed inputs are assumed to be free of noise and are uncorrelated with 
the noise. 

• Criteria for goodness of fit are of the Gaussian likelihood type. 

• Seminonparametric identification: data-driven model (subclass) specification 
and estimation of finite-dimensional real-valued parameters. 

• Emphasis is placed on asymptotic properties of estimators such as consistency 
and asymptotic normality. 

In general, the identification problem may be decomposed into three modules as 
follows: 

• Structure theory. In a certain sense there an idealized identification problem 
is treated so far, as we commence from the population second moments of the 
observations or from the ("true") transfer functions, rather than from data. In more 
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general terms, here the relation between "external behavior" (as described, e.g., 

by transfer functions) and "internal parameters," such as A R M A or state-space 

parameters is investigated. The main problems here are observational equivalence 

and identifiability, realization, and parametrization. 

• Estimation of real-valued parameters. By real-valued parameters we mean pa-

rameters that may vary, such as in an open set of an Euclidean space (such as 

"ordinary" A R M A parameters) as opposed to integer-valued parameters (such 

as maximum lag lengths for A R M A systems), which are used for dynamic speci-

fication (and thus for the specification of a model (subclass)). In this step the 

dynamic specification is assumed to be known, and the real-valued parameters 

(which under this assumption are contained in an Euclidian space) are estimated 

by procedures such as by maximum likelihood estimators. 

• Estimation of the dynamic specification such as order estimation: This can be 

done, for instance, by test procedures or using information criteria. 

In system identification elements of system theory, the theory of stationary pro-
cesses, and of the statistical analysis of time series are dovetailed. 

The main emphasis here is on multiinput/multioutput (ΜΙΜΟ) systems. This case 
is significantly more difficult compared to the single-input/single-output (SISO) case; 
the main difference is in the more complicated structure theory, in particular, in 
parametrization, for the ΜΙΜΟ case, rather than in the statistical analysis in the 
narrow sense. Accordingly these points will be emphasized in the presentation. 

16.2. REPRESENTATIONS OF L I N E A R SYSTEMS 

16.2.1. Input/output representations 

A system is a relation between functions of time, which in our case are stochastic pro-
cesses. As has been stated above, here we only consider linear, discrete-time (where 
time is running over the integers Z ) , causal, stable, time-invariant (constant param-
eters), and finite-dimensional (finite-dimensional state vector) systems. In addition, 
for simplicity of presentation, we restrict ourselves to the case where the inputs are 
unobserved white noise only. 

The input/output representation of a linear system is of the form 

where y, are the ί-dimensional outputs, ε, are the Λ-dimensional white noise inputs 
(i.e., Εε, = 0, Εε^,' = δ,, Σ ) , and Kj G R i X i are the weighting matrices. 

Throughout we assume that y, and ε, are random vectors over an underlying 
probability space ( Ω , Λ, P) with finite first and second moments. Limits such as 
the limit on the RHS of (16.1) are understood in the mean-squares sense, unless the 

t G Ζ (16.1) 
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contrary is explicitly stated. We impose the stability assumption 

oo 

Σ ho" < c x> 

which in particular implies that for arbitrary (weakly) stationary inputs the infinite sum 

in (16.1) always exists and that the process (y , ) is stationary. The function defined by 

00 

κζ) = Σ κ ^ ' z € < c ( 1 6 - 2 ) 

is in one-to-one relation with (Kj \j e Z + ) and is called the transfer function of the 
system. Finite-dimensional systems are characterized by rational transfer functions, 
specifically, k = a~l.b, where a and b are polynomial matrices; that is, they are of 
the form 

« ω = Σ A^'Mz) = Σ bJZJ' A ; < BJ E R , X ' 

j=0 j=0 

From now on, unless the contrary has been stated explicitely, we will assume that 
k(z) is rational. 

If, in addition in (16.1) ε, can also be expressed as a linear combination or a limit 
of linear combinations of the ys, s < t, (i.e., in a causal way), or equivalently, if we 
assume that 

det*(z)g6 0, |z| < 1 

holds, (where "det" denotes "determinant o f " ) , then (16.1) is called the Wold repre-
sentation of the process ( y , ) . 

Clearly 

Ey, = 0 

holds. Let 7 : Ζ Wxs: γ, = Ey,y'0 denote the (population) covariance function of 
( y , ) . The spectral density (spectrum) / : [ - τ τ , IT] - » Csxs exists and is given by 

1 0 0 1 
/ ( λ ) = τ ~ Σ I'"''" = = - Α ( « _ , ' χ ) · Σ . * · ( β - ' λ ) (16.3) 

where * denotes the conjugate-transpose. As is well known, / and 7 are in a one-to-
one relation. We will always assume that 

Σ > 0 and ifc(O) = K0 = I 

hold. 
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If, on the other hand, we commence from a stationary process with a spectral 
density / which is rational and nonsingular λ - a.e. (almost everywhere), then (see 
Hannan and Deistler 1988, Section 1.3) / may be uniquely factored as in (16.3), 
where ifc(z) is rational in z, analytic within a circle containing the closed unit disk, 
detit(z) φ 0, |z| < 1 and k(0) = I, and where Σ > 0. This k{z) then corresponds 
to the Wold decomposition. Let us repeat that under the assumptions above, (k, Σ ) is 
unique from the population second moments of (y , ) . For this reason we will represent 
the external behavior by k(z) (and Σ ) . 

16.2.2. Solutions of linear vector difference equations (VDEs) 

Consider a linear VDE 

ρ ι 

Σ Ajy>-j = Σ BJu<-j-1 e z ( 1 6 · 4 ) 

j=0 j=0 

where y, and u, are outputs and stationary inputs, respectively, and Aj € R I X S and 
Bj e Rsxm are the associated parameter matrices. We use ζ to denote a complex 
variable as well as the backshift operator on Z: 

z ( y , | / 6 Z ) = (y f _, | r e Z ) 

Then (16.4) can be written as 

a(z)y, - b(z)u, 

where 

P 9 

α(ζ) = Σ Α ί ζ ' ' Μ.ζ) = Σ Β Ι ζ ' 

j=0 j=0 

As is easy to see, the set of all solutions of (16.4) can be represented as the set of all 
solutions to the homogeneous equation a(z)y, = 0 plus a particular solution of (16.4). 
We are interested only in causal, stable, steady-state (i.e., stationary) solutions: 

Theorem 16.1. Assume that the stability condition 

det[e(z)] φ 0, |z| < 1 (16.5) 

holds. Then the causal, stable, steady-state solution of (16.4) is given by 

y, = k(z)u, 
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where the transfer function is given by 

OO , 

k(z) = Τ Kjz
i = a~l(z)b(z) = ad}[a(z)Mzl \z\ < 1 (16.6) 

P 5 det[a{z)] 

Here "adj" denotes the adjoint of a matrix. 

Theorem 16.1 describes a simple method, the z-transform, to obtain the steady-
state solution of a VDE: The polynomial matrix a(z) in the shift operator ζ is inverted 
in the same way as the polynomial matrix a(z), ζ e C and premultiplying both sides of 
(16.4) with a _ l ( z ) gives the solution. For actually determining the Kj, the following 
block recursive linear equation system 

AQKQ = Bo 

A0Kt + AiKo = Bx 

obtained from a comparison of coefficients in a.k = b, may be used. 

Condition (16.5) implies that 

00 

holds and thus, for arbitrary stationary inputs (κ , ) , the outputs exist and ("j) is jointly 

stationary. Clearly k(z) is rational. 

16.2.3. A R M A and state-space representations 

As has been stated already, we will restrict ourselves to the case where we have no 
observed inputs. An ARMA system is a VDE of the form 

a(z)y, = b(z)e, (16.7) 

where ( ε , ) is s-dimensional white noise and where we in addition always assume that 
the stability condition (16.5) and the (strict) miniphase condition 

detb(z) ΦΟ, \z\ < 1 (16.8) 

hold. The miniphase condition implies that ε, is obtained by a causal linear trans-
formation from ( y , ) , since we then can solve the system for ε, in a causal way. The 
transfer function (and thus the solution) of (16.7) is given by k(z) = a~x(z)Mz) and 
by the miniphase condition corresponds to the Wold representation. W.r.g. we also 
assume k(0) — I. Because of this assumption, and due to the miniphase condition, 



442 LINEAR DYNAMIC MULTIINPUT/MULTIOUTPUT SYSTEMS 

ε, is the one-step-ahead prediction error for the best linear least-squares prediction 
y(t\t- 1)of y, given (ys,s < t). 

The spectrum of the A R M A process is given by 

/ ( λ ) = ( 2 τ ; ) - 1 α - 1 ( β - ' λ ) / ! > ( β - , λ ) Σ / ? * ( ί - , λ ) α - 1 * ( ^ - , λ ) (16.9) 

Remember that we assume throughout that Σ > 0 holds. Then, under our as-
sumptions, the transfer function k and Σ are uniquely defined from the population 
second moments / of ( y , ) . It can be shown that every stationary process (y , ) with 
a rational spectral density / satisfying / ( λ ) > 0, V \ e [-ir , ττ] can be represented 
by an A R M A system (16.7) satisfying our assumptions. The importance of A R M A 
systems can also be seen from the fact that every stationary process with a Wold rep-
resentation (16.1) (i.e., every linearly regular stationary process) can be approximated 
with arbitrary accuracy by an A R M A process. 

Restricting ourselves to the case of unobserved white-noise inputs only, we con-
sider linear state-space systems of the form (the prediction error form) 

xt+l = Ax, + B E , (16.10) 

y, = Cx, +z, (16.11) 

where x, is the m-dimensional state and A e R m x m , Β e Rmxs, C e R i x m are 
parameter matrices. In addition we assume that the stability condition 

I W A ) | < 1 (16.12) 

where denotes λ™* an eigenvalue of maximum modulus, and the (strict) miniphase 
condition 

| X m a x ( A - BC)\ < 1 (16.13) 

hold. The (steady state) solution of (16.10), (16.11) is given by 

y, = C ( / z _ l - Λ Γ ' 5 ε , + ε , (16.14) 

Thus the transfer function coefficients are of the form Kj — CAJ~l Β for j > 0 and 
K0 = I. 

We have the following result relating the system representations considered (see 
Hannan and Deistler 1988, Section 1.2): 

Theorem 16.2. Under our assumptions, we have 

1. Every ARMA system (16.7) satisfying (16.5) and (16.8) and every state space 
system (16.10) and (16.11) satisfying (16.12) and (16.13) has a rational transfer 
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function k(z) that is analytic in a disk containing the closed unit disk (and thus 

causal and stable) and satisfies det[k(z)] φ 0, \z\ < 1. 

2. Conversely, for every rational transfer function k(z) that is analytic in a disk 

containing the closed unit disk and that satisfies det[k(z)] Φ 0, \z\ < 1, there 

is a stable and miniphase ARMA and a stable and miniphase state space rep-

resentation. 

Thus, in particular A R M A or state-space representations are two alternative ways 
to describe the same (class o f ) input/output behaviors k(z). Thus, in a certain sense, 
it is a question of taste whether A R M A or state systems are used. 

16.3. T H E S T R U C T U R E OF STATE-SPACE SYSTEMS 

An important problem, in particular for identification, is the relation between internal 
characteristics (parameters) of a system and its external behavior. 

For state-space systems (16.10), (16.11) internal parameters are, for instance, the 
entries of ( A , B, C) which are real-valued and the integer-valued parameter m (i.e., 
the state dimension). In addition Σ is of interest. The external behavior is described 
by k(z) and Σ . Note that under our assumptions (k(z), Σ ) and / are in a one-to-
one relation. For state-space systems the relation between internal characteristics and 
external behavior is given by [see (16.14)] 

Two state-space systems [(A, B, C) and (A, B, C)] are called observationally 
equivalent, if they have the same transfer function. A state-space system (A, B, C) is 
called minimal, if the statevector x, has minimal dimension (or equivalently if A is of 
minimal dimension) among all state-space systems with the same transfer function. 
Nonminimal systems provide a "redundant" description of the external behavior and 
thus should be excluded. A state-space system is called reachable, if the matrix 

oo 

(16.15) 

(Β, AB,. , Am~lB) 

has full rank m and observable, if the matrix 

Om = (C, A'C,.. . ( A ' f ' C ) ' 

has full rank m. 

We have the following simple "test" for minimality. 

Theorem 16.3. A state-space system (A, B, C) is minimal if and only if it is 
reachable and observable. 
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The equivalence classes of minimal state space systems are described by the fol-

lowing theorem. 

Theorem 16.4. Two minimal state-space systems (A, B, C) and ( Α , 7Ϊ, C) are 
observationally equivalent if and only if there exists a nonsingular matrix Τ such that 

A = TAT~X,B = TB,C = CT~x (16.16) 

hold. 

The next theorem shows that the minimal dimension m of the state can be seen 

from the transfer function. Note that 

Η™ = 

(K\ K2 K3 
K2 Κτ, K4 

\ • ) 

( c \ 
CA 
CA2 

V · 

(Β,ΑΒ,...) 

holds; here Η,χ, is called the (block) Hankel matrix of the transfer function k. By Hm 

we denote the submatrix consisting of the first m block rows and block columns of 
Hoc. Then the following holds. 

Theorem 16.5. Let(A, B, C) be a state-space system with A e Rmxm. ThenH^ 
and Hm have rank smaller than or equal to m.If(A, B, C) is minimal, then equality 
holds. 

For the proofs of the theorems above, see Hannan and Deistler (1988, Section 2.3). 
Then the rank of Η,χ, is called the order of the transfer function k(z). 

16.4. T H E STRUCTURE OF A R M A SYSTEMS 

In the following we state results (see Hannan and Deistler, 1988, Section 2.1) anal-
ogous to those in the previous subsection, now for A R M A systems. These results 
are somewhat more complicated, essentially since we are dealing with polynomial 
matrices (a, b) rather then with matrices with real entries ( A , B, C). 

Two A R M A systems, (a, b) and (a, b), are called observationally equivalent, if 
they have the same transfer function, that is, if a~x .b = a~xb holds. 

Next we introduce a notion for A R M A systems, which is analogous to mini-
mality for state-space systems. An A R M A system (a, b) is called left coprime, if 
(a(z) , b(z)) e Csx2s has rank s for all ζ e C. A polynomial matrix u is called uni-
modular if the polynomial det[n] is a constant unequal to zero. The interpretation 
of left coprimeness for (a, b) is that there exist no nontrivial (i.e., nonunimodular) 
common left factors in a and b. For the case of s = 1 (where a and b are scalar polyno-
mials), this means that a and b have no common zeros. In this case the interpetation 
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of having no common zeros as nonredundant is easy to understand as it coincides 
with the postulate of a and b having minimum degree. 

For the equivalence classes of left coprime A R M A systems we have: 

Theorem 16.6. Two left coprime ARMA systems (a, b) and ( a , b,) are observa-

tionally equivalent, if and only if there exists a unimodular polynomial matrix u such 

that 

From Theorem 16.2. we see that there is a one-to-one relation between A R M A and 

state-space equivalence classes. 

16.5. THE R E A L I Z A T I O N OF STATE-SPACE SYSTEMS 

16.5.1. General structure 

The problem of realization is concerned with the construction of a state-space system 
from the process (y , ) or from its second moments fy or from the transfer function 
k(z). Consider a process (y , ) with rational nonsingular spectral density fy. As is well 
known, such a process has a Wold representation 

where ( ε ( ) are white noise innovations. We assume KQ = I and Εε,ε{ = Σ > 0. The 
system (16.17) can be rewritten as an infinite-dimensional state-space system 

(a, b) = u(a, b) 

holds. 

00 
(16.17) 

χ,+ι = Ax, + Βε, 

y, = Cx, + ε, 

(16.18) 

(16.19) 

where 

x, 

( y(t\t-\) \ 
y(t + 111 - l ) 
y(t + 2 \ t - l ) 

K\ K.2 Ki 

K2 K4 (16.20) 

V ' 0 0 
Ί - 1 
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where y(t | r ) is the best linear least-squares predictor of y, based on ys, s < r, 

Ε,"ί, = (ej_,e j_ 2 , ) and where 

Ό, /, 0 · · Λ (Kx 

A = I 0, 0, / , 0 · , Β = \ K2 I , C = ( / , 0 , 0 , . . ) 

This infinite-dimensional state space-system, which, to repeat, is just an other way of 

writing (16.17), is of pedagogical use only for the understanding of the construction 

described below. 

Since 

00 

j 

is rational, then Hoo must have finite rank, m, say. Now let S e R m x o ° be a matrix 

such that the rows of 5 / /^ form a basis for the row space of H^. Then from (16.20) 

K2, /C3, Λ (Κι 

xl+l = Sx,+i = SHKE; = 51 K3, K4, • • \ £ - , + S \K2 j ε, (16.21) 

Now determine (A, B, C) from 

(K2, K3, \ 
S\ K3, ΚΛ, • • · = ASHoo (16.22) 

Β = S(K[, K'2...)' (16.23) 

(KUK2,...) = CSH00 (16.24) 

Note that the rows of the LHS in (16.22) are spanned by the rows of SHX and that 

the rows of SHoo are linearly independent; thus, for given S, the matrix A is uniquely 

defined. We thus obtain from the following from (16.21)—(16.24): 

χ,+ι = Ax, + Be, (16.25) 

y, = Cx, + ε, = CtfooE- , + ε, = CSHocE^ +t, = Cx, + ε, (16.26) 

In this way we have obtained a minimal state-space representation (16.25M 16.26) 

from the Wold representation (16.17). As is easily seen, the minimal state x, defined 
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via 5 is unique only up to premultiplication with a nonsingular matrix T. The basis 
change x, = Tx, corresponds to the parameter transformation (16.16). 

The construction described above has also a nice interpretation in the Hubert space 
of square integrable random variables spanned by the one-dimensional components 
of ( y , ) . From (16.20) we see that the state x, is obtained by projecting the future of 
( y , ) , namely, the components of y,, y , + ) , . . . onto the space spanned by the past 
y,_i, y ,_2 Note that by the assumption Σ > 0, the linear dependence structure 
of the rows of Hoo and of the one-dimensional components in xt, respectively, is 
identical. In particular, the state space, that is, the Hubert space spanned by x,, then, 
is m-dimensional and a minimal state is a random vector whose elements form a 
basis for the state space. A state makes the future and the past of (y , ) conditionally 
orthogonal. (This is the so-called splitting property of the state.) 

16.5.2. Echelon forms 

If we have no additional a priori restrictions on the model class (this will be always 
assumed here, unless the contrary is stated explicitely), then we are free to choose 
representatives from the equivalence classes from the point of view of mathematical 
convenience, for instance. One example of such a choice is the so-called echelon 
form, which will be the concrete and "prototypical" example for this contribution. 
Thus we will now describe a special realization procedure leading to echelon forms 
for state-space systems: We commence from the (block) Hankel matrix 

of the transfer function k(z). We know that / / o o has rank m if and only k(z) has a 
minimal state-space representation ( A , B, C) of dimension m. Let A(i\ j) denote the 
7-th row in the ith block of rows in the matrix Η ^ . Now, let us select a special basis 
for the row space of / / o o , namely, the basis consisting of the first rows of / / o o , which 
form a basis of Hoo. Because of its Hankel structure, this basis is, after a suitable 
permutation of the rows, of the form 

for a suitability chosen multiindex α = (m,..., ns). The n \... ns are uniquely 

denned by the selection procedure from Hoo- They are called the Kronecker 

indices of k(z). Clearly n\ + ·•·-)- ns =m holds. Now define Ha = ( A ' ( l , 1 ) , 

. . . , Λ ' ( « ι , 1 ) , . . . A ' ( l , s)- • h' (ns, s))', and let 5 denote the corresponding selector 

matrix such that 

( A ( l , 1)' A ( « i , l ) ' , . . . A ( l , s ) ' . . . A ( n s , i ) ' ) ' 

Ha — SH( •00 
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Then, for this specific choice of the basis for the row space of Ηχ and thus also for 
the specific selector matrix S, by the realization procedure described in Section 16.5.1, 
a unique state-space system ( A , B, C) called echelon form is defined. In this case a 
part of the equations in (16.22) express the respective first linear dependent rows as 
linear combination of the preceding basis rows, thus they are of the form 

S "ij 

h(n, + 1, i ) = Σ Σ - α φ - 1)Λ(«. j);i = 1.. .s (16.27) 
; = 1 u = l 

where 

min(n ; + 1 , « ; ) 

min(n,, η ; ·) 
for 
for 

J < ' 

and the other equations in (16.22) describe the shifting of the basis rows. The matrix 

A then is of the form A = (AJJ)JJ-\...S where 

An = 

( 0 

o / „ , _ , 

- f l i i ( O ) , • · · , - α , , ( η , - ι ) 

V 

\ 

A l J ~ ( -au ( 0 ) . . . -Su ( « , ; ) , 0. .0 ) ' Φ j 

Analogously, Β is defined form (16.23). For n, > 0, / = 1.. s, the matrix C contains 
only zeroes and ones [see Hannan and Deistler (1988, Section 2.5) for details]. In 
particular, we see that in this form not all entries in ( A , B, C) are free. The nonfree 
parameters are prescribed to be zero or one (this is, of course, a convenient property of 
echelon forms), and the positions of the free parameters in ( A , B, C) are determined 
by the Kronecker indices a. The vector τ of free parameters clearly is in a one-to-one 
relation with ( A , B, C ) , and therefore we may identify τ and ( A , B, C) for the given 
choice of Kronecker indices a. Let τ = (τ ι , Τ 2 ) , where τ ( are the free parameters 
contained in A and τ 2 are the free parameters contained in B. 

16.6. THE R E A L I Z A T I O N OF A R M A SYSTEMS 

Here we restrict ourselves to echelon forms for A R M A systems. For details, see 
Hannan and Deistler (1988, Section 2.5). 

For purely technical reasons we commence from a transfer function 

00 

Hz) = * ( z _ 1 ) - / = Σ KJZ~J = δ " ' ( ζ ) · έ ( ζ ) < 1 6 · 2 8 ) 
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where a(z) = ΣΡ=ο AjZ', Hz) = Σ]=ϋ BjZj, are polynomial matrices, rather than 

from k(z) = Ef=o Kjzj. 
Now from b = a.k using a comparison of coefficients corresponding to negative 

powers of z, we get 

(A0 Α , , 0 · · · ) # ο ο = 0 (16.29) 

For given Kronecker indices a, if we express the rows A(«,- + 1, i ) , i = 1, . . . s, 
(multiplied by — 1) as linear combinations of their preceding basis rows, then (16.29) 
is the same as (16.27) and thus defines a unique a(z) and thus also a unique Hz)- The 
a , j ( « ) in (16.27) are the /, j elements of Au. The degree of the diagonal element a,, 
of a, which is the degree of the /th row of (ά, b), is equal to the ith Kronecker index 
n, and the degree of det[a] is equal to m. Finally we define the A R M A system in 
echelon from by 

(a(z), b(z)) = d i agU - 'Kafc- 1 ) , Hz~l) + ά(ζ~1)) 

Then (a, b) can be shown to be left coprime. Again, the free parameters are in certain 
positions (determined by the Kronecker indices a ) in the coefficient matrices and the 
nonfree parameters are zero or one. For given a, the free parameters may be identified 
with (a, b). Note that the free parameters for echelon forms contained in A and in a(z), 
respectively, both are given by (16.27) and thus are the same (up to sign change); also 
for the other free parameters [i.e., those contained in Β and b(z), respectively], there 
is a bijective (i.e., one-to-one), homeomorphic (i.e., continiuous in both directions) 
relation. In this sense, the free parameters for echelon state space and for echelon 
A R M A systems may be identified. 

16.7. P A R A M E T R I Z A T I O N 

In this section we are concerned with the analysis of the mapping attaching system 
parameters to transfer functions. 

Let UA denote the set of all rational s χ s transfer functions k(z) that are analytic 
in a disc containing the closed unit disk and where det k(z) Φ 0, \z \ < 1 holds and that 
satisfy it(0) = / . Let Τ A denote the set of all state-space systems ( A , B, C) (satisfying 
our assumptions) where s is fixed, but m is arbitrary or the set of all A R M A systems 
(a, b) (satisfying our assumptions) where s is fixed but ρ and q are arbitrary. Then 
by Theorem 16.2, the mapping 

ττ : Τ A ->• υ A 

such that 

I R ( A , B, C) = C(Iz~l -A)B + 1 
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or 

π(α, b) = a~l .b 

is surjective (i.e., onto). 

Remember that in structure theory we are dealing with an idealized identification 

problem, in the sense that we want to conclude from k(z) to the internal characteristics 

( Λ , B, C) or (a, b). In this context now the following problems are discussed: 

The first problem is identifiability. From Theorems 16.4 and 16.6, respectively, we 

know that in general, even imposing minimality or left coprimeness respectively, the 

classes of observationally equivalent state-space or A R M A systems are no singletons. 

Thus additional restrictions have to be imposed in order to get identifiability, that is, 

uniqueness of the state space or A R M A representations. A set TA c TA is called 

identifiable if IT restricted to TA is injective (i.e., for instance for state-space systems 

ττ(Α, B, C) = ττ(Α, B, C) implies ( A , B, C) = ( A , B, C ) ) , thus in the identifiable 

case we have a bijective (i.e., a one-to-one) mapping 

Ψα : Tt(TA) -> TA, ί . ί . ψ α ( ι τ ( Α , Β, Ο ) = ( Α , β, C ) 

attaching to every transfer function the corresponding state space (or A R M A ) system. 
The mapping ψ α is called a parametrization of UA = -n(TA). In the following we 
will not distinguish between TA as a set of systems [e.g., ( Α , β, C ) ] and as a set of 
corresponding free parameters τ . 

In particular, if we consider the case of our concrete example, namely of echelon 
forms, then let UA C UA denote the set of all transfer functions such that α are their 
Kronecker indices (i.e., the n\,..., ns determine the first basis for the row space of 
/ / o o ) . Then, by the procedures described in Section 16.5, a parametrization 

ψ α : UA - » TA c R " 4 

attaching the free parameters τ to every k e UA, has been defined. Here da denotes 

the dimension of the vector τ of free parameters. 

After identifiability has been achieved, a second desirable property of a parametri-

zation is its continuity. This is important, for example, for statistical analysis. It is 

important to note that in general, there does not exist a continuous parametrization 

for the set UA. This is a main reason why UA has to be broken into bits UA, which 

allow for a continuous parametrization. First, however, let us be more specific about 

topologies. Sets TA c R d ° of free parameters are endowed with the corresponding 

relative topology of the Euclidean space. Let us identify k(z) with (Kj \ j e N ) . Then 

UA is endowed with the so-called pointwise topology, which corresponds to the 

relative topology of the product topology of ( R I X f ) N for (Kj | j e N ) . 

Now let us return to the special case of echelon forms. By TA we mean the set 

of vectors τ e R d ° of free parameters corresponding to k e UA where α are the 

Kronecker indices. Since the free parameters for echelon state-space and A R M A 
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forms are in a bijective and homeomorphic relation, we do not have to distinguish 

between these two forms. We have the following result: 

Theorem 16.7. The parametrization ψ α : Ua —*• Ta c Rd" corresponding to 
echelon forms has the following properties: 

1. [Ua I α e Zs

+] is a (disjoint) partition ofUA-

2. Ta is an open subset ofRda. 

3. For given m, the dimension of Ta is smaller than or equal to 2ms. For one a, 
( « ι Η l·ns = m), namely, where the h(n\, 1 ) , . . , h (ns, s)form a contin-
uous string in H o o , da = 2ns, holds. In this case Ua is generic (i.e. open and 
dense) in the set M(m) C UA of all transfer functions of order m. 

4. ψ α is continuous and thus a homeomorphism. 

Let us comment on these results: First note that the Kronecker indices α serve 
as a specification parameter. For given specification α we have identifiability for the 
parameter space Ta defined above, which is contained in an Euclidean space and in 
addition the problem is well posed in the sense that kr k,kr,k e Ua implies 
ψα (kr) -*• Ψα (k); thus, for Ua the internal characteristics are not only unique but 
also depend continuously on the external behavior. In addition, for every transfer 
function k e UA there exists an α such that k e Ua. 

For a detailed description of this parametrization and its further properties the 
reader is refered to Hannan and Deistler (1988, Section 2.5). We have listed only 
the most important properties; of course, there are other ways of parametrizing by 
state-space or A R M A systems. In general, a mapping attaching to every k e UA a 
unique state space or A R M A system, respectively, is called a (state-space or A R M A , 
respectively) canonical form. As an alternative to echelon canonical forms, recently 
the so-called balanced canonical forms [see, e.g., Bauer and Deistler (1999)], which 
may be defined via a singular value decomposition of / / o o , have been proposed. 
Balanced forms relate only to state-space systems and have no A R M A counterpart. 

It can be shown that M(m), the set of all transfer functions of order A M , is a real 
analytical manifold of dimension 2ms. This manifold may be parametrized by local 
coordinates, which are also derived via the choice of a basis for the row space of 
H o o , by using (16.22)-(16.24) or (16.29) respectively. For a detailed description see 
Hannan and Deistler (1988, Section 2.6). 

The approaches described above all relate to the case where there is no additional 
a priori information available, in the sense that we are free to choose mathematically 
convenient representatives from the equivalence classes. The situation is different, if 
additional a priori restrictions, coming from theories, for instance, are available. This 
leads to problems of structural identifiability (Hannan and Deistler 1988, Section 7.1), 
which have been intensively discussed in econometrics. 

For a rather general framework for the treatment of different parametrizations, see 
Deistler and Wang (1989). 
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16.8. E S T I M A T I O N OF R E A L - V A L U E D P A R A M E T E R S 

As has been stated earlier, the main complications of the multivariate, compared to the 
univariate case, arise in the structure theory. Given our knowledge of structure theory, 
Gaussian maximum likelihood ( M L ) estimation, for example, can be generalized quite 
straightforwardly from the univariate case: 

For the sake of simplicity of presentation, we restrict ourselves to echelon forms 
Ψ α : U a -*• Ta for given Kronecker indices α and with τ e Ta the free parameters. It 
should be mentioned however, that e.g. the consistency result below holds for rather 
general sets Ua and for all continuous parametrizations of such a set (see Hannan 
and Deistler 1988, Section 4.2). One nice aspect of the theory is that the statistical 
results concerning parameter estimators only depend on such general properties of the 
parametrizations and can be shown to hold independently of the special choise of the 
parametrization. Let y ( « ) = ( y j , . . . y'n)' denote the stacked sample, let fy(\, τ , Σ ) 
denote the spectrum of a process ( y , ) corresponding to the parameters τ and Σ , and 
finally let 

Γ η ( τ , Σ ) = ( J e-a(r->fy(\, τ , Σ Μ λ ) 

denote the ns χ ns section of the variance-covariance matrix of the process (y , ) 
corresponding to τ and Σ . 

Thus (—2n~' times) the log-likelihood function is given by 

L „ ( T , Σ ) = logdet Γ „ ( τ , Σ ) + η-
ι/(η)Γ;ι(τ, Z )y (n ) (16.30) 

The ML estimators τ „ , Σ„ then are defined as the minimizers of L„ over Ta and 
the set Σ of all s χ s nonsingular covariance matrices: 

( T „ , l : n ) = arg min L „ ( T , Σ ) (16.31) 
Τ € Γ „ . Σ € Ε 

Note that Γ „ ( τ , Σ ) and thus the likelihood function L„ depend only on τ via the 
transfer function k. In other words, we can define a "coordinate free" M L estimator 
(k„, Σ „ ) , which does not depend on the specific parametrization under consideration. 
We have the following consistency result. 

Theorem 16.8. Let a. be given and assume that the true transfer function ko is 
contained in Ua. Then 

δη,!Σο a.s. for s > 0 
,=i 



16.8. ESTIMATION OF REAL-VALUED PARAMETERS 453 

implies 

k„ ->· k0 a.s; τ „ - > τ 0 = ψ α (*ο) a.e; Σ„ - > Σ 0 a.e 

Note that, by the continuity of ψ α , the parameter consistency τ „ - > το, is an 

immediate consequence of the consistency for transfer functions. 

For a central-limit theorem for τ „ and Σ„ , see Hannan and Deistler (1988, Sec-

tion 4.3). In a certain sense the maximum likelihood estimators are asymptotically 

efficient. 
As in the univariate case, also in the multivariate case, a specific difficulty for M L 

estimation in this context is that there is no explicit expression for the estimators τ „ and 
Σ„ as a function of the sample y(n). Thus the M L estimators usually are obtained by 
numerical optimization procedures, which typically consist of an initial estimator and 
a Gauss-Newton step. As in the univariate case, M L estimation is plagued by the prob-
lem of multiple (relative) optima of the likelihood function. In addition, particularly 
in the multivariate case, the "curse of dimensionality" may create severe problems. 

A modern alternative to M L estimation based on numerical optimization or more 
generally to estimators obtained from optimizing a criterion of goodness of fit, are the 
subspace state-space system identification procedures (4SID) (Larimore 1983, van 
Overschee and De Moor 1996, Deistler et al. 1995, Bauer 1998, Bauer et al. 1999). 
4SIDs relate to state space, rather than to A R M A representations. We will describe 
only a particular 4SID called CCA or Larimore's procedure. The basic idea there is 
as follows: 

1. In a first step an estimator x, of the state x, is constructed: As has been stated in 
Section 16.5, the state space, that is, the Hubert space spanned by the state variables, 
is obtained by projecting the space spanned by the future y , + = (y'r y,+\ • • •)' of the 
process ( y , ) onto the space spanned by its past Y~ = (y,'_,, y',_2, • • •)• Let us assume 
that the dimension of the state space is already known, and let us denote the projection 
of Y,+ on the past, [i.e., the LSH in (16.20) by Ρ Y~, where Ρ is an infinite-dimensional 
matrix. From the results of Section 16.5 and from the fact that has rank m, it is 
easy to see that Ρ e R ° ° x c o has rank m. Every decomposition Ρ = OooK where 
O o o e K ° ° x n , Κ e R " x ° ° and where and Κ both have rank m, then fixes a basis 
for the state space and χ, = Κ Y~ defines a minimal state. The matrix Κ then is 
estimated as follows. Let Y + f = (y'r y'l+f_])', and let Y~ = ( y , ' _ , , . . . , y't_ )' 
where / , ρ > m holds. Then estimate β e R s ^ x s p which is the northwest corner of 
Ρ in the "truncated" form 

by ordinary least squares to obtain an estimate 0, say. Now, typically β has rank min 

(fs.ps), whereas β has rank m. In order to obtain an estimate of β of rank m, we 

proceed as follows. Let — (t^)~l/2 be a square root (e.g., a Cholesky factor) of 

the inverse of the sample estimator of the covariance matrix of Y*f and define Wp as 
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a square root of the sample estimator of the covariance matrix of Y~ . (For other 4SID 

procedures, other choices of these weighting matrices may be made). Now consider 

the singular-value decomposition 

wf$Wp- = UAV' = U m A m v ' m + R (16.32) 

where A m is the matrix consisting of the m largest singular values of Wf β Wp (i.e., the 

largest elements at the diagonal of A ) and U m e R f s x m , V„ e R p s x m are the matrices 

consisting of the corresponding left and right, respectively, singular vectors. The 

matrix R corresponds to the neglected smaller singular values. In this way, we define 

the rankm approximation to β as Ofkp where Of = ( W f ) - ] U m ( A m ) l / 2 e R / i X m 

and Kp = (Am)
l'2v'jW~)-1

 e R m x p s and the state estimator is Jc, = kpY~p 

2. Given the state estimator x,, an estimator for C [see (16.11)] is derived from 

the least-squares formula 

We estimate ε, by έ, = y, — Cnx, and then we use the least-squares formula to estimate 

A and Β from [cf (16.10)] 

x,+ i = Ax, + Bi, + p, 

Subspace identification methods (generically) give unique estimators A„, B„, C„\ 

however, they do not use canonical forms, or, more generally, no a priori prescribed 
representations form the equivalence classes. For ρ —> oo, consistency and asymp-
totic normality of the CCA method have been proved in Deistler et al. (1995), Peternell 
et al. (1996), Bauer (1998), and Bauer et al. (1999). All simulations indicate that (for 
the case of no oberserved inputs) CCA is comparable to M L estimators in precision. 

The advantage of 4SID methods compared to methods based on optimizing a 

criterion function such as the likelihood function lies in the substantial reduction of 

the computational effort. 

16.9. D Y N A M I C SPECIFICATION 

Here the focus is on the estimation of the Kronecker indices α = ( « l t . . . , ns) by 

information criteria of the form 

A„(a) = logdet Σ „ ( α ) + da— (16.33) 
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where Σ „ ( α ) is the M L estimator of Σ over Ta χ Σ , da is the dimension of the space 
Ta c R d " of the free parameters of the echelon form and c(n) is a prescribed function 
of sample size. In particular, the AIC criterion is obtained by the choice c(n) — 2; 
and the BIC criterion, by the choice c(n) = log n. An information criterion (16.33) 
formulates a tradeoff between the measure for fit, log det Σ „ ( α ) , and the measure da 

for the complexity of the model class Ta. The estimator of α is obtained as 

a„ = min Λ ( a ) 
a 

It can be shown (see, e.g., Hannan and Deistler 1988, Section 5.5) that BIC gives 

consistent estimators of the true Kronecker indices a: 

lim &„ — a, a.e. 
η—κχ> 

AIC does not give consistent estimators of α however has other optimality properties. 
Again, dynamic specification with the use of information criteria can be applied for 
certain other parametrizations as well. 

For 4SID procedures, analogous considerations may be used to estimate the order 
η from the singular values of A in (16.32); see Bauer (1998). 
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