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Preface

Philosophy
The evolution of the differential equations course I described in the prefaces to the
first two editions of this book has progressed nicely. In particular, the quantitative,
graphical, and qualitative aspects of the subject have been receiving increased atten-
tion, due in large part to the availability of technology in the classroom and at home.

As did the previous editions, this new edition presents a solid yet highly accessible
introduction to differential equations, developing many concepts from the perspective
of dynamical systems and employing technology to treat topics graphically, numer-
ically, and analytically. In particular, the book acknowledges that most differential
equations cannot be solved in closed form and makes extensive use of qualitative and
numerical methods to analyze solutions.

The text includes discussions of many significant mathematical models, although
there is no systematic attempt to teach the art of modeling. Similarly, the text intro-
duces only the minimum amount of linear algebra sufficient for an analysis of systems
of equations.

This book is intended to be the text for a one-semester ordinary differential equa-
tions course that is typically offered at the sophomore or junior level, but with some
differences. The prerequisite for the course is two semesters of calculus. No prior
knowledge of multivariable calculus and linear algebra is needed because basic con-
cepts from these subjects are developed within the text itself. This book is aimed
primarily at students majoring in mathematics, the natural sciences, and engineer-
ing. However, students in economics, business, and the social sciences who have
the necessary background should also benefit from the material presented in this
book.

Use of technology
This text assumes that the student has access to a computer algebra system (CAS)
or perhaps some specialized software that will enable him or her to construct the
required graphs (solution curves, slope fields, phase portraits, etc.) and numerical
approximations. For example, a spreadsheet program can be used effectively to im-
plement Euler’s method of approximating solutions. Although I have used Maple®

in my own teaching, no specific software or hardware platform is assumed for this
book. To a large extent, even a graphing calculator will suffice.

xi
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Pedagogical features and writing style
This book is truly meant to be read by the students. The style is accessible without
excessive mathematical formality and extraneous material, although it does provide a
solid foundation upon which individual teachers can build according to their taste and
the students’ needs. (Feedback from users of the first two editions suggests that stu-
dents find the book easy to read.) Every chapter has an informal Introduction that sets
the tone and motivates the material to come. I have tried to motivate the introduction
of new concepts in various ways, including references to earlier, more elementary
mathematics courses taken by the students. Each chapter concludes with a narra-
tive Summary reminding the readers of the important concepts in the chapter. Within
the sections there are figures and tables to help the students visualize or summarize
the concepts. There are many worked-out examples and exercises taken from biol-
ogy, chemistry, and economics, and from traditional pure mathematics, physics, and
engineering. In the text itself I lead the students through qualitative and numerical
analyses of problems that would have been difficult to handle before the ubiquitous
presence of graphing calculators and computers. The exercises that appear at the end
of each content section are divided into A, B, and C problems to indicate a range from
the routine to the challenging, the later problems often requiring some sophisticated
exploration and/or theoretical justification. Some exercises introduce students to sup-
plementary concepts. I have provided answers to the odd-numbered problems at the
back of the book, with detailed solutions to these problems in the separate Student
Solutions Manual.

I wrote the book in the same way that I have taught the course, using a colloquial
and interactive style. The student is frequently urged to “Think about this,” “Check
this,” or “Make sure you understand.” In general there are no proofs of theorems ex-
cept for those mathematical statements that can be justified by a sequence of fairly
obvious calculations or algebraic manipulations. In fact, there is no general labeling
of facts as theorems, although some definitions are stated formally and key results
are italicized within the text or emphasized in other ways. Also, brief historical re-
marks related to a particular concept or result are placed throughout the text without
obstructing the flow. This is not a mathematical treatise, but a friendly, informative,
modern introduction to tools needed by students in many disciplines. I have enjoyed
teaching such a course, and I believe my students have benefited from the experience.
I sincerely hope that the users of this book also gain some insight into the modern
theory and applications of differential equations.

Key content features
Chapters 1–3 introduce the basic concepts of differential equations and focus on the
analytical, graphical, and numerical aspects of first-order equations, including slope
fields, phase lines, and bifurcations. In the later chapters these aspects (including the
Superposition Principle) are generalized in natural ways to higher-order equations
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and systems of equations. The numerical approximation of solutions is explored via
variants of Euler’s method and more sophisticated techniques such as the Runge–
Kutta–Fehlberg methods.

Chapter 4 starts with methods of solving important second-order homogeneous
and nonhomogeneous linear equations with constant coefficients and introduces ap-
plications to electrical circuits and spring-mass problems. In this chapter the standard
methods of undetermined coefficients and variation of parameters are explained and
applied to second-, third-, and fourth-order equations.

Chapter 5 presents the Laplace transform and its applications to the solution of
differential equations and systems of differential equations. This is one of the more
traditional topics in the book; it is included because of its usefulness in many applied
areas. In particular, students can deal with nonhomogeneous linear equations and
systems more easily and handle discontinuous driving forces. The Laplace transform
is applied to electric circuit problems, the deflection of beams (a boundary-value
problem), and spring-mass systems. There is a new section on the application of the
Laplace transform to linear equations with variable coefficients.

Chapter 6 begins with the important demonstration that any higher-order differ-
ential equation is equivalent to a system of first-order equations. This is followed by
an existence and uniqueness result for systems and the extension of first-order equa-
tion numerical methods to systems. Phase portraits of planar systems are introduced
as an entree to the qualitative analysis of systems. There is a brief introduction to
the matrix algebra concepts needed for the systematic exposition of two-dimensional
systems of autonomous linear equations. (This treatment is supplemented by Ap-
pendix B.) The importance of linearity is emphasized, and the Superposition Prin-
ciple is discussed again. The stability of these systems is completely characterized
by means of the eigenvalues of the matrix of coefficients. Spring-mass systems are
discussed in terms of their eigenvalues. There is also a brief introduction to the com-
plexities of nonhomogeneous systems. Finally, via 3 × 3 and 4 × 4 examples, the
student is shown how the ideas previously developed can be extended to nth-order
equations and their equivalent systems. Among the examples treated in this chapter
are predator-prey systems, an arms race illustration, and spring-mass systems (in-
cluding one showing resonance).

Chapter 7 provides an introduction to systems of nonlinear equations. The stabil-
ity of nonlinear systems is analyzed. The important notion of a linear approximation
to a nonlinear equation or system is developed, including the use of a qualitative re-
sult due to Hartman and Grobman. Some important examples of nonlinear systems
are treated in detail, including the Lotka–Volterra equations, the undamped pendu-
lum, and the van der Pol oscillator. There is a new section on bifurcations in linear
and nonlinear systems. The book concludes with a discussion of limit cycles and the
Hopf bifurcation.

Appendices A–C present important prerequisite or corequisite material from
calculus (single-variable and multivariable), vector-matrix algebra, and complex
numbers, respectively. Appendix D supplements the text by introducing the series
solutions of first- and second-order differential equations.
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New to the Third Edition
• Enhanced treatment of bifurcations for first-order equations.
• A brief discussion of bistability and hysteresis.
• A treatment of the backward Euler method.
• A sketch of the Picard iteration method and a proof of a uniqueness theorem for

solutions of first-order equations.
• Improved flow of Chapters 4–6 (second-order and higher-order equations, Laplace

transforms, systems of linear equations) via reorganization of the material.
Laplace transforms have been placed earlier in the text, and there is a new section
on Laplace transforms of linear equations with variable coefficients.

• Expanded treatment of the Hartman–Grobman theorem (referred to as the
Poincaré–Lyapunov theorem in the Second Edition).

• New material on bifurcations in linear and nonlinear systems, including a treat-
ment of the Hopf bifurcation.

• New examples, figures, and exercises. The text now has more than 160 examples,
130 figures (some with multiple graphs), 16 tables, and 940 exercises (many with
multiple parts).

• Improved numbering of exercises.
• Updated and more detailed Index.

Supplements
• Instructor’s Resource Manual—http://textbooks.elsevier.com/web/Manuals.

aspx?isbn=9780128182178—Contains solutions to all exercises in the text,
section-by-section teaching comments and suggestions, additional examples and
problems, references to books and journal articles, and links (including hyper-
links) to Internet resources for differential equations. A link to a web page contain-
ing errata (if any) and updated supplementary material is provided. This manual
is available free to instructors who adopt the text.

• Student Solutions Manual—https://www.elsevier.com/books-and-journals/book-
companion/9780128182178—Provides complete solutions to the odd-numbered
exercises in the text.

http://textbooks.elsevier.com/web/Manuals.aspx?isbn=9780128182178
http://textbooks.elsevier.com/web/Manuals.aspx?isbn=9780128182178
https://www.elsevier.com/books-and-journals/book-companion/9780128182178
https://www.elsevier.com/books-and-journals/book-companion/9780128182178
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1
CHAPTER

Introduction to differential
equations

Introduction
What do the following situations have in common?

• An arms race between nations
• The rate at which HIV-positive patients come to exhibit AIDS
• The dynamics of supply and demand in an economy
• The interaction between two or more species of animals on an island

The answer is that each of these areas of investigation can be modeled with dif-
ferential equations. This means that the essential features of these problems can be
represented using one or several differential equations, and the solutions of the math-
ematical problems provide insights into the future behavior of the systems being
studied.

This book deals with change, with flux, with flow, and, in particular, with the rate
at which change takes place. Every living thing changes. The tides ebb and flow over
the course of a day. Countries increase and diminish their stockpiles of weapons. The
price of oil rises and falls. The proper framework of this course is dynamics—the
study of systems that evolve over time.

The origin of dynamics/dynamical systems (originally an area of physics) and of
differential equations lies in the earliest work by the English scientist and mathemati-
cian Sir Isaac Newton (1642–1727) and the German philosopher and mathematician
Gottfried Wilhelm Leibniz (1646–1716) in developing the new science of calculus
in the 17th century. Newton in particular was concerned with determining the laws
governing motion, whether of an apple falling from a tree or of the planets moving
in their orbits. He was concerned with rates of change. In the late 19th century Henri
Poincaré and others analyzed the positions, motion, and stability of the planets using
a powerful geometric approach to the analysis of dynamical systems. The develop-
ment of these methods, aided by technology, continues to this day. However, you
mustn’t think that the subject of differential equations is all about physics. The same
types of equations and the same kind of analysis of dynamical systems can be used
to model and understand situations in biology, chemistry, engineering, economics,
sociology, and medicine, for example. Applications to various areas of the physical,
biological, and social sciences will be found throughout this book.

A Modern Introduction to Differential Equations. https://doi.org/10.1016/B978-0-12-818217-8.00008-7
Copyright © 2021 Elsevier Inc. All rights reserved.
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2 CHAPTER 1 Introduction to differential equations

In the words of the great Norwegian mathematician Sophus Lie (1842–99),

Among all of the mathematical disciplines, the theory of differential equations is
the most important... It furnishes the explanation of all those elementary manifes-
tations of nature which involve time.

1.1 Basic terminology
1.1.1 Ordinary and partial differential equations
Ordinary differential equations

Definition 1.1.1
An ordinary differential equation (ODE) is an equation that involves an unknown function of a
single variable, its independent variable, and one or more of its derivatives.

Example 1.1.1 An Ordinary Differential Equation
Here’s a typical elementary ODE, with some of its components indicated:

unknown function, y ↓
3
dy

dt
= y

independent variable, t ↑

This equation describes an unknown function of t that is equal to three times its own derivative.
Expressed another way, the differential equation describes a function whose rate of change is pro-
portional to its size (value) at any given time, with constant of proportionality one-third.

The Leibniz notation for a derivative, d( )
d( )

, is helpful because the independent
variable (the fundamental quantity whose change causes other changes) appears in
the denominator, the dependent variable in the numerator. The three equations

dy

dx
+ 2xy = e−x2

x′′(t) − 5x′(t) + 6x(t) = 0

dx

dt
= 3t2 + 4t + 2

2(x − 1)

leave no doubt about the relationship between the independent and dependent vari-
ables. But in an equation such as (w′)2 + 2t3w′ − 4t2w = 0, using Lagrange’s
notation (prime marks), we must infer that the unknown function w is really w(t),
a function of the independent variable t .
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In many dynamical applications the independent variable is time, represented by t ,
and we denote the function’s derivative using Newton’s dot notation,1 as in the equa-
tion ẍ + 3t ẋ + 2x = sin(ωt). You should be able to recognize a differential equation
no matter what letters are used for the independent and dependent variables and no
matter what derivative notation is employed. The context will determine what the
various letters mean, and it’s the form of the equation that should be recognized. For
example, you should be able to see that the two ordinary differential equations

(A)
d2u

dt2
− 3

du

dt
+ 7u = 0 and (B)

d2y

dx2
= 3

dy

dx
− 7y

are the same—that is, they describe the same mathematical or physical behavior. In
Eq. (A) the unknown function u depends on t , whereas in Eq. (B) the function y

is a function of the independent variable x, but both equations describe the same
relationship that involves the unknown function, its derivatives, and the independent
variable. Each equation is describing a function whose second derivative equals three
times its first derivative minus seven times itself.

Partial differential equations
If we are dealing with functions of several variables and the derivatives involved
are partial derivatives, then we have a partial differential equation (PDE) (see
Section A.7 if you are not familiar with partial derivatives). For example the par-

tial differential equation ∂2u

∂x2 − 1
c2

∂2u

∂t2 = 0, which is called the wave equation, is of
fundamental importance in many areas of physics and engineering. In this equation
we are assuming that u = u(x, t), a function of the two variables x and t . However,
in this text, when we use the term differential equation, we mean an ordinary dif-
ferential equation. Often we just write equation if the context makes it clear that an
ordinary differential equation is intended.

The order of an ordinary differential equation
One way to classify differential equations is by their order.

Definition 1.1.2
An ordinary differential equation is of order n, or is an nth-order equation, if the highest derivative
of the unknown function in the equation is the nth derivative.

The equations

dy

dx
+ 2xy = e−x2

1 In this notation, ẋ = dx/dt , ẍ = d2x/dt2, and
...
x = d3x/dt3.
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(w′)2 + 2t3w′ − 4t2w = 0

dx

dt
= 3t2 + 4t + 2

2(x − 1)

are all first-order differential equations because the highest derivative in each equa-
tion is the first derivative. The equations

x′′(t) − 5x′(t) + 6x(t) = 0

and

ẍ + 3t ẋ + 2x = sin(ωt)

are second-order equations, and e−xy(5) + (sinx)y′′′ = 3ex is of order 5.

A general form for an ordinary differential equation
If y is the unknown function with a single independent variable x, and y(k) denotes
the kth derivative of y, we can express an nth-order differential equation in a concise
mathematical form as the relation

F
(
x, y, y′, y′′, y′′′, . . . , y(n−1), y(n)

)
= 0,

where F is a real-valued function of the n + 2 variables x, y(x), y′(x), . . . , y(n)(x).
The normal form of an nth-order differential equation involves solving for the

highest derivative and placing all the other terms on the other side of the equation:

y(n) = G
(
x, y, y′, y′′, y′′′, . . . , y(n−1)

)
.

The next example shows what these forms look like in practice. However, it may not
be easy (or even possible) to solve a general form explicitly for the highest derivative.
We will deal only with equations that can be expressed in normal form.

Example 1.1.2 General Form for a Second-Order ODE

If y is an unknown function of x, then the second-order ordinary differential equation 2 d2y

dx2 +
ex dy

dx
= y + sinx can be written as 2 d2y

dx2 + ex dy
dx

− y − sinx = 0 or as

2y′′ + exy′ − y − sinx︸ ︷︷ ︸
F(x,y,y′,y′′)

= 0.

Note that F denotes a mathematical expression involving the independent variable x, the un-
known function y, and the first and second derivatives of y.

Alternatively, in this last example we could use ordinary algebra to solve the original differential
equation for its highest derivative and write the equation as y′′ = 1

2 sinx + 1
2 y − 1

2 exy′︸ ︷︷ ︸
G(x,y,y′)

.
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Linear and nonlinear ordinary differential equations
Another important way to categorize differential equations is in terms of whether
they are linear or nonlinear.

Definition 1.1.3
If y is a function of x, then the general form of a linear ordinary differential equation of order n is

an(x)y(n) + an−1(x)y(n−1) + · · · + a2(x)y′′ + a1(x)y′ + a0(x)y = f (x). (1.1.1)

What is important here is that each coefficient function ai , as well as f , depends
on the independent variable x alone and doesn’t have the dependent variable y or any
of its derivatives in it. In particular, Eq. (1.1.1) involves no products or quotients of y

and/or its derivatives.

Example 1.1.3 A Second-Order Linear Equation
The equation x′′ + 3tx′ + 2x = sin(ωt), where ω is a constant, is linear. We can see the form of this
equation is as follows:

a2(t)︷︸︸︷
1 · x′′ +

a1(t)︷︸︸︷
3t · x′ +

a0(t)︷︸︸︷
2 · x =

f (t)︷ ︸︸ ︷
sin(ωt) .

The coefficients of the various derivatives of the unknown function x are functions (sometimes
constant) of the independent variable t alone.

The next example shows that not all first-order equations are linear.

Example 1.1.4 A First-Order Nonlinear Equation (an HIV Infection
Model)
The equation dT

dt
= s + rT

(
1 − T

Tmax

)
− μT models the growth and death of T cells, which are

important components of the immune system.2 Here T (t) is the number of T cells present at time t .

If we rewrite the equation by removing the parentheses we get dT
dt

= s + rT −
(

r
Tmax

)
T 2 − μT ,

and we see that there is a term involving the square of the unknown function. Therefore the equation
is not linear.

In general, there are more systematic ways to analyze linear equations than to
analyze nonlinear equations, and we will look at some of these linear methods in
Chapters 2, 4, 5, and 6. However, nonlinear equations are important and appear
throughout this book. In particular, Chapter 7 is devoted to the analysis of nonlin-
ear systems of equations.

2 E.K. Yeargers, R.W. Shonkwiler, and J.V. Herod, An Introduction to the Mathematics of Biology: With
Computer Algebra Models (Boston: Birkhäuser, 1996): 341.
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1.1.2 Systems of ordinary differential equations
In earlier mathematics courses, you had to deal with systems of algebraic equations,
such as

3x − 4y = −2

−5x + 2y = 7.

Similarly, in working with differential equations, you may have found yourself con-
fronting systems of differential equations, such as

dx

dt
= −3x + y

dy

dt
= x − 3y

or

ẋ = −sx + sy

ẏ = −xz + rx − y

ż = xy − bz

where b, r , and s are constants. (Recall that ẋ = dx
dt

, ẏ = dy
dt

, and ż = dz
dt

.) The second
system arose in a famous study of meteorological conditions.

Note that each of the two systems of differential equations has a different number
of equations and that each equation in the first system is linear, whereas the last two
equations in the second system are nonlinear because they contain products—xz in
the second equation and xy in the third—of some of the unknown functions. Natu-
rally, we call a system in which all equations are linear a linear system, and we refer
to a system with at least one nonlinear equation as a nonlinear system. In Chap-
ters 5, 6, and 7, we’ll see how systems of differential equations arise and learn how
to analyze them. For now, just try to get used to the idea of a system of differential
equations.

Exercises 1.1
A
In Problems 1–12, (a) identify the independent variable and the dependent variable of
each equation; (b) give the order of each differential equation; and (c) state whether
the equation is linear or nonlinear. If your answer to (c) is nonlinear, explain why
this is true.

1. y′ = y − x2

2. xy′ = 2y

3. x′′ + 5x = e−x
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4. (y′)2 + x = 3y

5. xy′(xy′ + y) = 2y2

6. d2r

dt2 = 3 dr
dt

+ sin t

7. y(4) + xy′′′ + ex = 0

8. y′′ + ky′(y2 − 1) + 3y = −2 cos t

9.
...
x − 2 ẍ + 4t ẋ − etx = t + 1

10. x(7) + t2x(5) = xet

11. ey′ + 3xy = 0

12. t2R′′′ − 4tR′′ + R′ + 3R = et

13. Classify each of the following systems as linear or nonlinear:

a. dy
dt

= x − 4xy

dx
dt

= −3x + y

b. Q′ = tQ − 3t2R

R′ = 3Q + 5R

c. ẋ = x − xy + z

ẏ = −2x + y − yz

ż = 3x − y + z

d. ẋ = 2x − ty + t2z

ẏ = −2tx + y − z

ż = 3x − t3y + z

14. If y(x) = ∫ x

1 sin t dt , calculate y′′′(x) + y′(x). (See Section A.4 of Ap-
pendix A.)

B
15. For what value(s) of the constant a is the differential equation

d2x

dt2
+ (a2 − a)x

dx

dt
= te(a−1)x

a linear equation?

16. Rewrite the following equations as linear equations, if possible.
a. dx

dt
= ln(2x)

b. x′ =
{

x2−1
x−1 for x �= 1

2 for x = 1

c. x′ =
⎧⎨
⎩

x4−1
x2−1

for x �= 1

2 for x = 1.
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C
17. If f is a function whose arc length over an interval [a, x] is equal to the

area under the curve y = f (t) and above the horizontal axis on the same in-
terval, show that [f ′(x)]2 = f 2(x) − 1 for all values of x. (See the end of
Appendix A.4.)

1.2 Solutions of differential equations
1.2.1 Basic notions
In past mathematics courses, whenever you encountered an equation you were proba-
bly asked to solve it, or find a solution. Simply put, a solution of a differential equation
is a function that satisfies the equation. When you substitute this function into the dif-
ferential equation, you get a true mathematical statement—an identity.

Definition 1.2.1
A solution of an nth-order differential equation F(x, y, y′, y′′, y′′′, . . . , y(n−1), y(n)) = 0, or y(n) =
G(x,y, y′, y′′, y′′′, . . . , y(n−1)), on an interval (a, b) is a real-valued function y = y(x) such that all
the necessary derivatives of y(x) exist on the interval, and y(x) satisfies the equation for every value
of x in the interval. Solving a differential equation means finding all the possible solutions of a given
equation.

A subtlety to be aware of is that solutions of differential equations, including
their domains, can be different according to which form of the differential equation—
general or normal—is used (see Section 1.1). For example, the differential equations
dy/dx = (y + 1)/x and x(dy/dx) = y + 1 are different equations! No solution of
the first equation can contain x = 0 in its domain, but the solution y = −2x − 1 does
satisfy the equation x(dy/dx) = y +1 for all real values of x. This is analogous to the
fact that the algebraic equations (x2 − 1)/(x − 1) = x and x2 − 1 = x(x − 1) are not
the same. The first equation has no solution, while the second has x = 1 as a solution.
Even before we begin learning formal solution methods in Chapter 2, we can guess
the solutions of some simple differential equations. The next example shows how to
guess intelligently.

Example 1.2.1 Guessing and Verifying a Solution to an ODE
The first-order linear differential equation dB

dt
= kB, where k is a given positive constant, is a simple

model of a bank balance, B(t), under continuous compounding t years after the initial deposit. The
rate of change of B at any instant is proportional to the size of B at that instant, with k as the constant
of proportionality—a rate of growth, an interest rate. This equation expresses the fact that the larger
the bank balance at any time t , the faster it will grow.

You can guess what kind of function describes B(t) if you think about the elementary functions
you know and their derivatives. What kind of function has a derivative that is a constant multiple of
itself? You should be able to see why B(t) must be an exponential function of the form aekt , where
a is any constant. By substituting B(t) = aekt into the original differential equation, you can verify
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that you have guessed correctly. The left-hand side of the equation becomes d(aekt )
dt

, which equals

kaekt , and the right-hand side of the equation is k(aekt ). The left-hand side equals the right-hand
side for all values of t , giving us an identity.

Anticipating an idea that we’ll discuss later in this section, we can let t = 0 in our solution
function to conclude that B(0) = aek(0) = a—that is, the constant a must equal the initial deposit.
Finally, we can express the solution as B(t) = B(0)ekt .

Note that in Definition 1.2.1 we say “a” solution rather than “the” solution. A dif-
ferential equation, if it has a solution at all, usually has more than one solution. Also,
we should pay attention to the interval on which the solution may be defined. Later
in this section and in Section 2.8, we will discuss in more detail the question of the
existence and uniqueness of solutions. For now, let’s just learn to recognize when a
function is a solution of a differential equation and determine what the domain of a
solution is.

Example 1.2.2 Verifying a Solution and Its Domain
For each constant c, the function x = ce1/t is a solution of the differential equation t2 dx

dt
+ x = 0.

We see that

dx

dt
= ce1/t d

dt

(
1

t

)
= − c

t2
e1/t , t2 dx

dt
= −ce1/t , t2 dx

dt
+ x = −ce1/t = 0.

Now we determine the (maximum) domain of the solution.
First note that the constant function x ≡ 0 is a solution (corresponding to c = 0) for all real

values of t . But the right side of the equation in the form dx/dt = −x/t2 is undefined at the origin,
so we must restrict the solution in this normal form to either −∞ < t < 0 or 0 < t < ∞. If c �= 0, we
can’t have t = 0 in our domain. This means that we can choose either of the two intervals (−∞,0)

and (0,∞).

Example 1.2.3 Intervals of Validity
Suppose we want the solution of the equation x′ = 2tx2 that satisfies the additional condition
x(0) = 1. This suggests that there may be many solutions of the equation, but we want to find the
unique solution (we hope) passing through the point (t, x(t)) = (0,1).

We can easily verify that x(t) = 1/(1 − t2) is a solution of x′ = 2tx2 such that x(0) = 1. Since
the solution is not defined for t = ±1 and since we want t = 0 to be in the domain of the solution,
the only interval possible is (−1,1). On the other hand, if we want a solution of the equation such
that x(0) = −1, then x(t) = −1/(1 + t2) is such a solution (Check this), and this solution has the
whole real number line as its domain.

Example 1.2.4 Verifying a Solution of a Second-Order Equation
Suppose that someone claims that x(t) = 5e3t −7e2t is a solution of the second-order linear equation
x′′ − 5x′ + 6x = 0 on the whole real line—that is, for all values of t in the interval (−∞,∞). You
can prove that this claim is correct by calculating x′(t) = 15e3t − 14e2t and x′′(t) = 45e3t − 28e2t

and then substituting these expressions into the original equation:
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x′′(t) − 5x′(t) + 6x(t) =
x′′(t)︷ ︸︸ ︷

(45e3t − 28e2t )−5

x′(t)︷ ︸︸ ︷
(15e3t − 14e2t )+6

x(t)︷ ︸︸ ︷
(5e3t − 7e2t )

= 45e3t − 28e2t − 75e3t + 70e2t + 30e3t − 42e2t

= −30e3t + 42e2t + 30e3t − 42e2t = 0.

Because x(t) = 5e3t − 7e2t satisfies the original equation, we see that x(t) is a solution. But this
is not the only solution of the given differential equation. For example, you can check that x2(t) =
−πe3t + 2

3 e2t is also a solution. We’ll discuss this kind of situation in more detail a little later.

Implicit solutions
Think back to the concept of implicit function in calculus. The idea here is that
sometimes functions are not defined cleanly (explicitly) by a formula in which the
dependent variable (on one side) is expressed in terms of the independent variable
and some constants (on the other side), as in the solution x = x(t) = 5e3t − 7e2t of
Example 1.2.4. For instance, you may be given the relation x2 + y2 = 5, which can
be written in the form G(x,y) = 0, where G(x,y) = x2 + y2 − 5. The graph of this
relation is a circle of radius

√
5 centered at the origin, and this graph does not repre-

sent a function. (Why?) However, this relation does define two functions implicitly:
y1(x) = √

5 − x2 and y2(x) = −√
5 − x2, both having domains [−√

5,
√

5].

Definition 1.2.2
A relation F(x, y) = 0 is said to be an implicit solution of a differential equation involving x, y,
and derivatives of y with respect to x if F(x, y) = 0 defines one or more explicit solutions of the
differential equation.

More advanced courses in analysis discuss when a relation actually defines one
or more implicit functions. This involves a result called the Implicit Function The-
orem. For now, just remember that even if you can’t untangle a relation to get an
explicit formula for a function, you can use implicit differentiation to find derivatives
of any differentiable functions that may be buried in the relation.

When trying to solve differential equations, often we can’t find an explicit solution
and must be content with a solution defined implicitly.

Example 1.2.5 Verifying an Implicit Solution
We want to show that any function y that satisfies the relation G(x,y) = x2 + y2 − 5 = 0 is a

solution of the differential equation dy
dx

= − x
y .

First, we differentiate the relation implicitly, treating y as y(x), an implicitly defined function
of the independent variable x:

(1)
d

dx
G(x, y) = d

dx
(x2 + y2 − 5) = d

dx
(0) = 0
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(2) 2x +

Chain Rule︷ ︸︸ ︷
2y

dy

dx
− d

dx
(5) = 0

(3) 2x + 2y
dy

dx
= 0.

Now, assuming that y �= 0, we solve Eq. (3) for dy
dx

, getting dy
dx

= −2x
2y

= − x
y and proving that any

function defined implicitly by the relation above is a solution of our differential equation.

1.2.2 Families of solutions I
Next, we discuss how many solutions a differential equation could have. For example,
the equation (y′)2 +1 = 0 has no real-valued solution (Think about this), whereas the
equation |y′| + |y| = 0 has exactly one solution, the function y ≡ 0. (Why?) As we
saw in Example 1.2.4, the differential equation x′′ − 5x′ + 6x = 0 has at least two
solutions.

The situation gets more complicated, as the next example shows.

Example 1.2.6 An Infinite Family of Solutions
Suppose two students, Joshua and Ellie, look at the simple first-order differential equation
dy
dx

= f (x) = x2 − 2x + 7. A solution of this equation is a function of x whose first derivative

equals x2 − 2x + 7. Joshua thinks the solution is x3

3 − x2 + 7x, and Ellie thinks the solution is
x3

3 − x2 + 7x − 10. Both answers seem to be correct.
Solving this problem is simply a matter of integrating both sides of the differential equation:

y =
∫

dy =
∫

dy

dx
dx =

∫
x2 − 2x + 7dx.

Because we are using an indefinite integral, there is always a constant of integration that we mustn’t

forget. The solution to our problem is actually an infinite family of solutions, y(x) = x3

3 − x2 +
7x + C, where C is any real constant. Every particular value of C gives us another member of the
family. We have just solved our first differential equation in this course without guessing! Every time
we performed an indefinite integration (found an antiderivative) in calculus class, we were solving
a simple differential equation.

When describing the set of solutions of a first-order differential equation such as
the one in the previous example, we usually refer to it as a one-parameter family of
solutions. The parameter is the constant C. Each definite value of C gives us what
is called a particular solution of the differential equation. In the preceding example
Joshua and Ellie produced particular solutions, one with C = 0 and the other with
C = −10. A particular solution is sometimes called an integral of the equation, and
its graph is called an integral curve or a solution curve.

Fig. 1.1 shows three of the integral curves of the equation dy
dx

= x2 − 2x + 7,
where C = 15, 0, and −10 (from top to bottom).

The curve passing through the origin is Joshua’s particular solution; the solution
curve passing through the point (0,−10) is Ellie’s.
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FIGURE 1.1

Integral curves of dy
dx

= x2 − 2x + 7 with parameters 15, 0, and −10

Exercises 1.2

In Problems 1–10, verify that the indicated function is a solution of the given differ-
ential equation. The letters a, b, c, and d denote constants.

A
1. y′′ + y = 0; y = sinx

2. x′′ − 5x′ + 6x = 0; x = −πe3t + 2
3e2t

3. 1
4

(
dy
dx

)2 − x
dy
dx

+ y = 0; y = x2

4. t dR
dt

− R = t2 sin t ; R = t (c − cos t)

5. d4y

dt4 = 0; y = at3 + bt2 + ct + d

6. dr
dt

= at + br; r = cebt − a
b
t − a

b2

7. xy′ − 2 = 0; y = ln(x2)

8. y′′ = a
√

1 + (y′)2; y = eax+e−ax

2a

9. xy′ − sinx = 0; y = ∫ x

1
sin t

t
dt [Hint: Think of the Fundamental Theorem of

Calculus. See Section A.4]

10. y′′ + 2xy′ = 0; y = ∫ x

3 e−t2
dt [Hint: Think of the Fundamental Theorem of

Calculus. See Section A.4]

11. For each function, find a differential equation satisfied by that function:
a. y = c + x

c
, where c is a constant

b. y = eax sinbx, where a and b are constants

c. y = (A + Bt)et , where A and B are constants

d. y(t) = e−3t + ∫ t

1 uy(u)du
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In Problems 12–15, assume that the function y is defined implicitly as a function of
x by the given equation, where C is a constant. In each case, use the technique of
implicit differentiation to find a differential equation for which y is a solution.

12. xy − lny = C

13. y + arctany = x + arctanx + C

14. y3 − 3x + 3y = 5

15. 1 + x2y + 4y = 0

16. Is a function y satisfying x2 + y2 − 6x + 10y + 34 = 0 a solution of the
differential equation dy

dx
= 3−x

y+5 ? Explain your answer.

B
17. Verify that y = x2

2 + x
2

√
x2 + 1 + ln

√
x + √

x2 + 1 is a solution of the equa-
tion 2y = xy′ + ln(y′).

18. Write a paragraph explaining why B(t) in Example 1.2.1—a solution of the
differential equation dB

dt
= kB—can’t be a polynomial, trigonometric, or log-

arithmic function.

19. a. Why does the equation (y′)2 + 1 = 0 have no real-valued solution?

b. Why does the equation |y′| + |y| = 0 have only one solution? What is the
solution?

20. Explain why the equation dx
dt

= √−|x − t | has no real-valued solution.

21. If c is a positive constant, show that the two functions y = √
c2 − x2 and y =

−√
c2 − x2 are both solutions of the nonlinear equation y

dy
dx

+ x = 0 on the
interval −c < x < c. Explain why the solutions are not valid outside the open
interval (−c, c).

22. a. Verify that the function y = ln(|C1x|) + C2 is a solution of the differential
equation y′ = 1

x
for each value of the parameters C1 and C2 and every x

in the interval (0,∞).

b. Show that there is only one genuine parameter needed for y. In other
words, write y = ln(|C1x|) + C2 using only one parameter C.

23. Find a solution of dy
dx

+ y = sinx of the form y(x) = c1 sinx + c2 cosx, where
c1 and c2 are constants.

24. Find a second-degree polynomial y(x) that is a particular solution of the linear
differential equation 2y′ − y = 3x2 − 13x + 7.

25. Show that the first-order nonlinear equation (xy′ − y)2 − (y′)2 − 1 = 0 has a
one-parameter family of solutions given by y = Cx ± √

C2 + 1, but that any
function y defined implicitly by the relation x2 + y2 = 1 is also a solution—
one that does not correspond to a particular value of C in the one-parameter
solution formula.

26. Consider the equation xy′′ − (x + n)y′ + ny = 0, where n is a nonnegative
integer.
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a. Show that y = ex is a solution.

b. Show that y = 1 + x + x2

2! + x3

3! + · · · + xn

n! is a solution.

C
27. Find a differential equation satisfied by the function

y(t) = cos t +
∫ t

0
(t − u)y(u)du.

28. Show that the function y defined by y(x) = ∫ π

0 sin(x cos t) dt satisfies the lin-
ear ordinary differential equation of order two

xy ′′ + y′ + xy = 0.

[Hint: Use Leibniz’s Rule. See Appendix A.7.]

1.3 Initial-value problems and boundary-value problems
Now suppose that we want to solve a first-order differential equation for y, a function
of the independent variable t , and we specify that one of its integral curves must pass
through a particular point (t0, y0) in the plane. We impose the condition y(t0) = y0,
which is called an initial condition, and the problem is thus called an initial-value
problem (IVP). Note that we are trying to pin down a particular solution this way.
We find this solution by choosing a specific value of the constant of integration (the
parameter).

Example 1.3.1 A First-Order Initial-Value Problem
Suppose that an object is moving along the x-axis in such a way that its instantaneous velocity at
time t is given by v(t) = 12− t2. First, we find the position x of the object measured from the origin
at any time t > 0.

Because the velocity function is the derivative of the position function, we can set up the first-
order differential equation dx

dt
= v(t) = 12 − t2 to describe our problem.

A simple integration of both sides yields

x(t) =
∫

dx =
∫

dx

dt
dt =

∫
12 − t2 dt = 12t − t3

3
+ C.

This last result tells us that the position of the object at an arbitrary time t > 0 can be described

by any member of the one-parameter family 12t − t3

3 + C, which is not a very satisfactory conclu-
sion. But if we have some additional information, we can find a definite value for C and end the
uncertainty.

Suppose we know, for example, that the object is located at x = −5 when t = 1. Then we can
use this initial condition to get

−5 = x(1) = 12(1) − 13

3
+ C, or − 5 = 35

3
+ C.
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This last equation implies that C = −50
3 , so the position of the object at time t is given by the

particular function x(t) = 12t − t3

3 − 50
3 = 12t − (t3+50)

3 .
We selected the initial condition x(1) = −5 randomly. Any other choice of x(t0) = x0 would

have led to a definite value for C and a particular solution of the problem.

1.3.1 An integral form of an IVP solution
If a first-order equation can be written in the form y′ = f (x)—that is, if the right-hand
side is a continuous (or piecewise continuous) function of the independent variable
alone—then we can always express the solution to the IVP y′ = f (x), y(x0) = y0 on
an interval (a, b) as

y(x) =
∫ x

x0

f (t) dt + y0 (1.3.1)

for x in (a, b). Note that we use the x value of the initial condition as the lower
limit of integration and the y value of the initial condition as a particular constant
of integration. We use t as a dummy variable. Given Eq. (1.3.1), the Fundamental
Theorem of Calculus (FTC) (Section A.4) implies that y′ = f (x), and we see that
y(x0) = ∫ x0

x0
f (t) dt +y0 = 0+y0 = y0, which is what we want. This way of handling

certain types of IVPs is common in physics and engineering texts. In Example 1.2.6
the solution of the equation with y(−1) = 2, for example, is

y(x) =
∫ x

−1
t2 − 2t + 7dt + 2

=
(

t3

3
− t2 + 7t

)∣∣∣∣
t=x

−
(

t3

3
− t2 + 7t

)∣∣∣∣
t=−1

+ 2

=
(

x3

3
− x2 + 7x

)
−

(−25

3

)
+ 2 = x3

3
− x2 + 7x + 31

3
.

You could also solve this problem the way we did in Example 1.3.1—that is, without
using a definite integral formula.

1.3.2 Families of solutions II
Although we have seen examples of first-order equations that have no solution or
only one solution, in general we should expect a first-order differential equation to
have an infinite set of solutions, described by a single parameter.

Extending the discussion in Section 1.2, we state that an nth-order differential
equation may have an n-parameter family of solutions, involving n arbitrary con-
stants C1,C2,C3, . . . ,Cn (the parameters). For example, a solution of a second-order
equation y′′ = g(t, y, y′) may have two arbitrary constants. By prescribing the initial
conditions y(t0) = y0 and y′(t0) = y1, we can determine specific values for these
two constants and obtain a particular solution. Note that we use the same value, t0,
of the independent variable for each condition.
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The next example shows how to deal with a second-order IVP.

Example 1.3.2 A Second-Order IVP
We will show in Section 4.1 that any solution of the second-order linear equation y′′ +y = 0 has the
form y(t) = A cos t + B sin t for arbitrary constants A and B. (You should verify that any function
having the form indicated in the preceding sentence is a solution of the differential equation.) If a
solution of this equation represents the position of a moving object relative to some fixed location,
then the derivative of the solution represents the velocity of the particle at time t . If we specify, for
example, the initial conditions y(0) = 1 and y′(0) = 0, we are saying that we want the position of
the particle when we begin our study to be 1 unit in a positive direction from the fixed location
and we want the velocity to be 0. In other words, our particle starts out at rest 1 unit (in a positive
direction) from the fixed location.

We can use these initial conditions to find a particular solution of the original differential equa-
tion:
1. y(0) = 1 implies that 1 = y(0) = A cos(0) + B sin(0) = A;
2. y′(0) = 0 implies that 0 = y′(0) = −A sin(0) + B cos(0) = B.
Combining the results of (1) and (2), we find the particular solution y(t) = cos t .

Definition 1.3.1
Finding the particular solution of the nth degree equation

F
(
t, y, y′, y′′, y′′′, . . . , y(n−1), y(n)

) = 0

such that y(t0) = y0, y′(t0) = y1, y′′(t0) = y2, . . . , and y(n−1)(t0) = yn−1, where y0, y1, . . . , yn−1
are arbitrary real constants, is called solving an initial-value problem (IVP). The n specified values
y(t0) = y0, y′(t0) = y1, y′′(t0) = y2, . . . , and y(n−1)(t0) = yn−1 are called initial conditions.

Right now we can’t be sure of the circumstances under which we can solve such
an initial-value problem. We will discuss the existence and uniqueness of solutions
of single equations in Section 2.8. Then in Section 6.2 we will consider IVPs for
systems of differential equations.

Boundary-value problems
For differential equations of second order and higher, we can also determine a partic-
ular solution by specifying what are called boundary conditions. The idea here is to
give conditions that must be satisfied by the solution function and/or its derivatives at
two different points of the domain of the solution.

Definition 1.3.2
A boundary-value problem (BVP) is a problem of determining a solution to a differential equation
subject to conditions on the unknown function specified at two or more values of the independent
variable. These conditions are called boundary conditions.

The points chosen depend on the nature of the problem you are trying to solve and
on the data you are given about the problem. For example, if you are analyzing the
stresses on a steel girder of length L whose ends are embedded in concrete, you may
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want to find y(x), the bend or “give” at a point x units from one end if a load is placed
somewhere on the beam (Fig. 1.2). Note that the domain of y is [0,L]. In this problem
it is natural to specify y(0) = 0 and y(L) = 0, reasonable values at the endpoints, or
boundaries, of the solution interval. Graphically, we require the solution y to pass
through the points (0,0) and (L,0). (See Problem 20 in Exercises 1.3 for an applied
problem of this type.)

FIGURE 1.2

A solution y(x) satisfying the boundary conditions y(0) = 0 and y(L) = 0

The next example shows, just as in the case of an initial-value problem, that with-
out further analysis we can’t be sure whether there are solutions of a particular BVP
or whether any solution we find is unique. In general, BVPs are harder to solve than
IVPs. Although BVPs will appear in this book from time to time, we focus most of
our attention on initial-value problems.

As the next example shows, some boundary-value problems have no solution,
others have one solution, and some have infinitely many solutions.

Example 1.3.3 A BVP Can Have Many, One, or No Solutions
We’ll use the second-order differential equation from Example 1.3.2, y′′ + y = 0, which has the
two-parameter family of solutions y(t) = c1 cos t + c2 sin t .

Now let’s see what happens if we impose the boundary conditions y(0) = 1, y(π) = 1. The first
condition implies that 1 = y(0) = c1 cos(0) + c2 sin(0) = c1, and the second condition tells us that
1 = y(π) = c1 cos(π) + c2 sin(π) = −c1. Because we can’t have c1 equaling 1 and −1 at the same
time, this contradiction says that the boundary-value problem has no solution.

On the other hand, the boundary conditions y(0) = 1, y(2π) = 1 lead to a different conclusion.
If we use the first condition, we get 1 = y(0) = c1 cos(0) + c2 sin(0) = c1. The second condition
yields the result 1 = y(2π) = c1 cos(2π) + c2 sin(2π) = c1. The fact that we can’t pin down the
value of c2 tells us that any value is all right. In other words, the BVP has infinitely many solutions
of the form y(t) = cos t + c2 sin t .

Finally, if we demand that y(0) = 1 and y(π/4) = 1, we find that 1 = y(0) = c1 cos(0) +
c2 sin(0) = c1 and

1 = y
(π

4

)
= c1 cos(π/4) + c2 sin

(π

4

)
= c1

(√
2

2

)
+ c2

(√
2

2

)

=
√

2

2
+ c2

(√
2

2

)
,

which implies that c2 = √
2 − 1. Therefore, this BVP has the unique solution y(t) = cos t + (

√
2 −

1) sin t .
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You should realize that for a general nth-order equation (or for a system of equa-
tions), there are many possible ways to specify boundary conditions, not always at
the endpoints of solution intervals. The idea is to have a number of conditions that
will enable us to solve for (or specify) the appropriate number of arbitrary constants.

The following example shows how boundary conditions occur naturally in the
solution of an interesting problem.

Example 1.3.4 A Cool BVP
The Car and Driver magazine website (August 30, 2018) reports that the 2018 Lamborghini Hu-
racán Performante Spyder (base price $314,654) goes from 0 to 60 mph in 2.4 seconds. Assuming
constant acceleration, we ask how far the car travels before it reaches 60 mph.

If s(t) denotes the position of the car after t seconds, then we must calculate s(2.4) − s(0),
the total distance covered by the car in the 2.4-second interval. We know the acceleration can be

described as a(t) = d2s

dt2 , which in this problem equals some constant C; and we know that s(0) =
s′(0) = 0; that is, our initial position is considered 0, and the velocity when we first put our foot
on the gas pedal is also 0. The last bit of information we have is that s′(2.4), the velocity at the

end of 2.4 seconds, is 60 mph. Thus, we have a second-order differential equation d2s

dt2 = C, initial

conditions, and some boundary conditions, and we must solve for the unknown function s(t).
Now the basic rules of integral calculus tell us that when we find the antiderivative of each side

of the differential equation in the last paragraph, we get

∫
d2s

dt2
dt =

∫
C dt = Ct + C1,

where C1 is a constant of integration. But
∫

d2s

dt2 dt = ds
dt

, so ds
dt

= Ct + C1. Integrating each side
of this last equation gives us

s(t) = Ct2

2
+ C1t + C2.

Thus, we have an expression for s(t), but it contains three arbitrary constants. Now we can use the
condition s(0) = 0 to write

0 = s(0) = C(0)2

2
+ C1(0) + C2,

which boils down to 0 = C2, so we can say

s(t) = Ct2

2
+ C1t.

Because s′(0) = 0, we can see that 0 = s′(0) = (Ct + C1)|t=0 = C1, and thus s(t) = Ct2

2 .
We still have one unknown constant, C, in our formula, but we know that at the end of 2.4 sec-

onds the velocity is 60 miles per hour. We have to be careful of our units here. We don’t want to mix
seconds and hours. To make all our units consistent, we convert 2.4 seconds to 1/1500 (= 2.4/3600)

of an hour. Then we can claim that 60 = s′(1/1500) = C · (1/1500), so we have

C = 60(1500)

7
= 90,000 (miles/hr2),

s(t) = Ct2

2
= 45,000t2,



1.3 Initial-value problems and boundary-value problems 19

and

s

(
1

1500

)
= 45,000

(
1

1500

)2
= 0.02 . . . mile ≈ 106 feet.

We have shown that in going from 0 to 60, the Lamborghini will travel approximately 106 feet.

General solutions
If every solution of an nth-order differential equation F

(
x, y, y′, y′′, y′′′, . . . , y(n−1),

y(n)
) = 0 on an interval (a, b) can be obtained from an n-parameter family by choos-

ing appropriate values for the n constants, we say that the family is the general
solution of the differential equation. In this case, we will need n initial conditions
or n boundary conditions (or a combination of n conditions) to determine the con-
stants.

A particular solution of an nth-order differential equation is any solution that
does not contain an arbitrary constant. For example, this solution may be the result
of choosing specific values for all the parameters of a general solution.

Sometimes, however, we can’t find every solution among the members of an
n-parameter family. For example, you should verify that the first-order nonlinear dif-
ferential equation 2xy′ + y2 = 1 has a one-parameter family of solutions given by
y = Cx−1

Cx+1 . However, for all values of x the constant function y ≡ 1 is also a solution,
but it can’t be obtained from the family by choosing a particular value of the param-
eter C. Suppose we could find a value of C such that Cx−1

Cx+1 = 1. Cross-multiplication
gives us Cx − 1 = Cx + 1, so that −1 = 1!

Also, y(x) = kx2 is a solution of x2y′′ − 3xy′ + 4y = 0 for any constant k and for
all values of x, but y(x) = x2 ln |x| is also a solution for all x. (Check these claims.) Of
course, because the equation is second-order, we should realize that a one-parameter
family can’t be the general solution.

A particular solution of an nth-order differential equation that can’t be obtained
by picking specific values of the parameters in an n-parameter family of solutions
is called a singular solution. We’ll see in Chapter 2 that some of these singular
solutions are created when we perform certain algebraic manipulations on differential
equations.

1.3.3 Solutions of systems of ODEs
For a system of two equations with unknown functions x(t) and y(t), a solution on an
interval (a, b) consists of a pair of differentiable functions x(t), y(t) satisfying both
equations that make up the system at all points of the interval. Initial conditions are
given as x(t0) = x0 and y(t0) = y0.

Example 1.3.5 A System IVP
Later, when we study systems in more depth, we will see why the only solution of the linear system

dx

dt
= −3x + y
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dy

dt
= x − 3y

satisfying the conditions x(0) = 0 and y(0) = 7 is
{
x(t) = 7

2 e−2t − 7
2 e−4t , y(t) = 7

2 e−2t + 7
2 e−4t

}
.

We can verify that these functions constitute a solution and accept the uniqueness as a fact for now.
We calculate

dx

dt
= −7e−2t + 14e−4t and

dy

dt
= −7e−2t − 14e−4t .

Then −3x + y = −3
(

7
2 e−2t − 7

2 e−4t
)

+
(

7
2 e−2t + 7

2 e−4t
)

= −7e−2t + 14e−4t = dx
dt

and x −
3y =

(
7
2 e−2t − 7

2 e−4t
)

−
(

21
2 e−2t + 21

2 e−4t
)

= −7e−2t − 14e−4t = dy
dt

.

You can think of the solution pair in the preceding example as coordinates of
a point (x(t), y(t)) in two-dimensional space, R2. As the independent variable t

changes, the points trace out a curve in the x-y plane called a trajectory. The positive
direction of the curve is the direction it takes as t increases. Fig. 1.3a shows the curve
in the x-y plane corresponding to the system solution in Example 1.3.5, together
with arrows indicating its direction. The initial point (x(0), y(0)) = (0,7) is indi-
cated. Looking at the solution formulas for x(t) and y(t), we see that limt→∞ x(t) =
0 = limt→∞ y(t), so that the curve tends toward the origin as t increases.

FIGURE 1.3a

Plot of (x(t), y(t)) = ( 7
2 e−2t − 7

2 e−4t , 7
2 e−2t + 7

2 e−4t
)

in the x-y plane, −0.1 ≤ t ≤ 4

Fig. 1.3b shows x plotted against t , and Fig. 1.3c shows y plotted against t .
A very important, dynamical way of looking at the situation in the preceding

example is to think of the curve in Fig. 1.3a as the path (or trajectory) of an object or
quantity whose motion or change is governed by the system of differential equations.
Initial conditions specify the behavior (the value, rate of change, and so on) at a
single point on the path of the moving object or changing quantity. The proper graph
of the solution of the system in Example 1.3.5 is a space curve, the set of points
(t, x(t), y(t)). Boundary conditions also determine certain aspects of the path of the
phenomenon under study.
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FIGURE 1.3b

Plot of x(t) = 7
2 e−2t − 7

2 e−4t , −0.1 ≤ t ≤ 4

FIGURE 1.3c

Plot of y(t) = 7
2 e−2t + 7

2 e−4t , −0.1 ≤ t ≤ 4

Similarly, each solution of the nonlinear system

ẋ = −sx + sy

ẏ = −xz + rx − y

ż = xy − bz

where b, r , and s are constants, is an ordered triple (x(t), y(t), z(t)), and initial con-
ditions have the form x(t0) = x0, y(t0) = y0, and z(t0) = z0. Boundary conditions in
this situation can take various forms. The trajectory in this case is a space curve, a
path in three-dimensional space. The true graph of the solution is the set of points
(t, x(t), y(t), z(t)) in four-dimensional space. These geometrical points of view, es-
pecially the idea of a trajectory, are very useful, and we’ll follow up on these concepts
in Chapters 6 and 7.
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Exercises 1.3
A
1. Consider the equation and solution in Problem 4 in Exercises 1.2. Find the

particular solution that satisfies the initial condition R(π) = 0.
2. Consider the equation and solution in Problem 5 in Exercises 1.2. Find the

particular solution that satisfies the initial conditions y(0) = 1, y ′(0) = 0,
y′′(0) = 1, and y′′′(0) = 6. [Hint: Use the initial conditions one at a time,
beginning from the left.]

3. Consider the equation and solution in Problem 6 in Exercises 1.2. Find the
particular solution that satisfies the initial condition r(0) = 0. (Your answer
should involve only the constants a and b.)

4. Consider the equation and solution in Problem 8 in Exercises 1.2. Find the
particular solution that satisfies the initial conditions y(0) = 2, y ′(0) = 0.

5. Find constants A, B, and C such that 1
8 − 1

4x + 11
296e6x + Ax2 + B sinx +

C cosx is a solution of the IVP y′′′ − 6y′′ = 3 − cosx, y(0) = 0, y′(0) = 0,
y′′(0) = 1.

6. A class of functions is described by the formula y = Ct/
√

C2 − t2 for each
real number. Is there a function in this family such that y = 2 when t = 1?
Such that y = 1 when t = 2?

B
7. A particle moves along the x-axis so that its velocity at any time t ≥ 0 is given

by v(t) = 1/(t2 + 1). Assuming that the initial position of the particle is the
origin, show that it will never get past x = π/2.

8. Show that the functions y1(x) ≡ 0 and y2(x) = (x − x0)
3, each defined for

−∞ < x < ∞, are both solutions of the initial-value problem

dy

dx
= 3y2/3, y(x0) = 0.

9. Show that y = ex2 ∫ x

1 e−t2
dt is a solution of the IVP y′ = 1 + 2xy, y(1) = 0.

10. The differential equation of a family of curves in the x-y plane is given by

y ′′′ = −24 cos(πx/2).

a. Find an equation for the family and give the number of parameters in-
volved.

b. Find a member of the family that passes through the points (0,−4) and
(1,0) and that has a slope of 6 at the point where x = 1.

11. Is it possible for the differential equation corresponding to a three-parameter
family of solutions to be of order four? Explain.

12. Given the first-order nonlinear equation (y′)2 + xy′ = y, verify the following
statements.
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a. Each member of the one-parameter family of functions y(x) = cx + c2,
where c is a real constant, is a solution of the differential equation.

b. The function y(x) = − 1
4x2 can’t be obtained from y(x) = cx + c2 by any

choice of c, yet it satisfies the given differential equation. (Thus y = − 1
4x2

is a singular solution.)

13. A 727 jet needs to be flying 200 mph to take off. If the plane can accelerate
from 0 to 200 mph in 30 seconds, how long must the runway be, assuming
constant acceleration?

14. An automobile website reported that a 2008 Mercedes-Benz SLR McLaren
went from 0 to 62 mph in 3.8 seconds.
a. Assuming constant acceleration, how far did the car travel before it

reached 60 mph?
b. The car’s “carbon ceramic” brakes were applied when the car was going

62 mph. Assuming constant deceleration, how long did it take the car to
stop if it stopped (according to the report) in 114 feet?

15. a. Show that the functions x(t) = (A+Bt)e3t and y(t) = (3A+B +3Bt)e3t

are solutions of the system

x′ = y

y′ = −9x + 6y

for all values of the parameters A and B.
b. Find the solution to the system in part (a) with x(0) = 1 and y(0) = 0.

16. Show that the functions x(t) = e−t/10 sin t and y(t) = 1
10e−t/10(−10 cos t +

sin t) are solutions of the initial value problem

dx

dt
= −y

dy

dt
= (1.01)x − (0.2)y; x(0) = 0, y(0) = −1.

17. A mathematical model of an idealized company consists of the equations

du

dt
= kau, u(0) = A

dw

dt
= a(1 − k)u, w(0) = 0.

Here u(t) represents the capital invested in the company at time t , w(t) denotes
the total dividend paid to shareholders in the period [0, t], and a and k are
constants with 0 ≤ k ≤ 1.
a. Solve the first equation for u(t). (See Example 1.2.1.)
b. Substitute your answer for part (a) in the differential equation for w and

integrate to find w(t). (Distinguish between w(t) for 0 < k ≤ 1 and for
k = 0.)
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18. The general solution of the differential equation x′′ = −x is x(t) = C1 sin t +
C2 cos t . Find the solution that satisfies the initial conditions x(0) = 2,
x ′(0) = −1.

C
19. Let W = W(t) denote your weight on day t of a diet. If you eat C calories per

day and your body burns EW calories per day, where E represents calories per
pound, then the equation dW

dt
= k(C − EW) models your change in weight.3

(This equation says that your change in weight is proportional to the difference
between calories eaten and calories burnt, with constant of proportionality k.)
a. Show that W = C

E
+ (

W0 − C
E

)
e−kEt is a solution of the equation, where

W0 = W(0), your weight at the beginning of the diet.
b. Given the solution in part (a), what happens to W(t) as t → ∞?
c. If W0 = 180 lb, E = 20 cal/lb, and k = 1/3500 lb/cal, then how long will

it take to lose 20 lb? How long for 30 lb? 35 lb? What do your answers
seem to say about the process of weight loss?

20. Solve the equation EI
d4y

dx4 = −W
L

, with the boundary conditions y(0) = 0,
y′(0) = 0; y(L) = 0, y′(L) = 0. (This problem arises in the analysis of the
stresses on a uniform beam of length L and weight W , both of whose ends
are fixed in concrete. The solution y describes the shape of the beam when a
certain type of load is placed on it. Here, E and I are constants, and the prod-
uct E I is a constant called the flexural rigidity of the beam.) [Hint: Integrate
successively, introducing a constant of integration at each stage. Then use the
boundary conditions to evaluate these constants of integration.]

21. The logistic equation dy
dt

= ky(t)
(

1 − y(t)
M

)
is used to describe the growth of

certain kinds of human and animal populations. Here, k and M denote con-
stants describing characteristics of the population being modeled.
a. Show that the function y(t) = M

1+Ae−kt satisfies the logistic equation with

y(0) = M
1+A

.
b. Analysis of U.S. population data for the years 1800, 1900, and 2000 in-

dicates that the solution given in part (a) provides a good fit if M =
333.2361, A = 61.7743, and k = 0.0290784. Using technology, plot the
graph of y(t) using these values of M , A, and k. (Here, t denotes the time
in years since 1800, the year of the second U.S. census.)

c. In 1800 the U.S. population was 5,308,483. In 1980 the figure was
226,542,199, while for 2000 the population was 281,421,906. By evalu-
ating the function plotted in part (b) at t = 0, 180, and 200, compare the
values (in millions) given by y(t) to the actual populations. (Check the
official website of the Bureau of the Census for additional information:
www.census.gov.)

3 A.C. Segal, “A Linear Diet Model,” College Mathematics Journal 18 (1987): 44–45.

http://www.census.gov
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d. According to the model with parameters as given in part (b), what happens
to the population of the U.S. as t → ∞?

22. The equations

dT ∗

dt
= kV1T0 − δT ∗

dV1

dt
= −cV1

are used in modeling HIV-1 infections.4 Here, T ∗ = T ∗(t) denotes the num-
ber of infected cells, T0 = T (0) is the number of potentially infected cells at
the time therapy is begun, V1 = V1(t) is the concentration of viral particles
in plasma, k is the rate of infection, c is the rate constant for viral particle
clearance, and δ is the rate of loss of virus-producing cells.
a. Imitate the analysis shown in Example 1.2.1 and solve the second equation

for V1(t), expressing your solution in terms of V0 = V1(0).

b. Using the solution found in part (a), show that the solution of the differen-
tial equation for T ∗ can be written as

T ∗(t) = T ∗(0)e−δt + kT0V0

c − δ
(e−ct − e−δt ).

c. What does the solution in part (a) say about the number of infected cells
as t → ∞?

23. Consider the linear equation x2y′′ +xy′ −4y = x3 (∗). Let yGR be the general
solution of the “reduced” (or “complementary”) equation x2y′′ +xy′ −4y = 0
and let yP be a particular solution of (∗). Show that yGR + yP is the general
solution of (∗). (For this problem, define the general solution of a second-order
ODE as a solution having two arbitrary constants. A particular solution, of
course, has no arbitrary constants.)

Summary
The study of differential equations is as old as the development of calculus by Newton
and Leibniz in the late 17th century. Originally, motivation was provided by important
questions about change and motion on earth and in the heavens.

An ordinary differential equation (ODE) is an equation that involves an un-
known function, its independent variable, and one or more of its derivatives:

F
(
x, y, y′, y′′, y′′′, . . . , y(n−1), y(n)

)
= 0.

4 A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, and D.D. Ho, “HIV-1 Dynamics in
Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time,” Science 271 (1996):
1582–1586.



26 CHAPTER 1 Introduction to differential equations

Such an equation can be described in terms of its order, the order of the highest
derivative of the unknown function in the equation.

Differential equations can also be classified as either linear or nonlinear. Linear
equations can be written in the form

an(x)y(n) + an−1(x)y(n−1) + · · · + a2(x)y′′ + a1(x)y′ + a0(x)y = f (x),

where each coefficient function ai(x) depends on x alone and doesn’t involve y or
any of its derivatives. Nonlinear equations usually contain products, quotients, or
more elaborate combinations of the unknown function and its derivatives.

A solution of an ODE is a real-valued function that, when substituted in the equa-
tion, makes the equation valid on some interval. A given nth-order ODE may have
no solutions, only one solution, or infinitely many solutions. An infinite family of so-
lutions may be characterized by n constants (parameters). These arbitrary constants,
if present, may be evaluated by imposing appropriate initial conditions (usually n

of them, involving the behavior of the solution at a single point of its domain) or
boundary conditions (at two or more points). Solving a differential equation with
initial conditions is referred to as solving an initial-value problem (IVP). Solving a
differential equation with boundary conditions is referred to as solving a boundary-
value problem (BVP). In general, BVPs are harder to solve than IVPs. The result
of solving either an IVP or a BVP is called a particular solution of the equation or
an integral of the equation. The graph of a particular solution is called an integral
curve or solution curve. In later chapters, we’ll discuss the question of existence and
uniqueness for IVPs: Does the equation or system have a solution that satisfies the
initial conditions? If so, is there only one solution?

If every solution of an nth-order ODE on an interval can be obtained from an
n-parameter family by choosing appropriate values for the n constants, then we say
that the family is the general solution of the differential equation. In this case we
need n initial conditions or n boundary conditions to determine the constants. A par-
ticular solution is one containing no arbitrary constant. However, sometimes there
are singular solutions that can’t be found just by choosing particular values of the
constants.

Just as high school or college algebra introduces systems of algebraic equations,
the study of certain problems often leads to systems of differential equations. These
systems, in turn, can be classified as either linear systems or nonlinear systems. We
can specify initial or boundary conditions for systems. Whether we’re considering
single equations or systems of equations we are dealing with dynamical situations—
situations in which objects and quantities are moving and changing. For certain
systems of two equations involving the unknown functions x and y, it is often useful
to look at a trajectory, the set of points (x(t), y(t)) where x and y are solutions of
the system.
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CHAPTER

First-order differential
equations

Introduction
The various examples in the preceding chapter should have convinced you that there
are different possible answers to the question of what the solution or solutions to a
differential equation look like. In this chapter, we’ll examine first-order differential
equations from the analytic and the qualitative points of view.

First, we’ll learn analytic solution techniques for two important types of first-
order equations, separable and linear. For these kinds of equations, we’ll come up
with explicit or implicit formulas for their solution curves. This method of solution
is often referred to as integrating a differential equation.

Next, there is a qualitative way of viewing differential equations. This is a neat
geometrical way of studying the behavior of solutions without actually solving the
differential equation. The idea is to examine certain pictures or graphs derived from
differential equations. Although we can do some of this work by hand, computer al-
gebra systems, specialized programs, and many calculators can produce these graphs,
and you’ll be expected to use technology when appropriate. (Follow your instructor’s
guidance in using technology.)

After the analytic and qualitative treatments in this chapter, Chapter 3 will focus
on some numerical solution methods concerned with approximating values of solu-
tions. As we’ll see, qualitative and numerical methods are both necessary because it is
often impossible to represent the solutions of differential equations—even first-order
equations—by formulas involving elementary functions.1

2.1 Separable equations
The simplest type of differential equation to solve is one in which the variables are
separable. Formally, a first-order differential equation dy

dx
= F(x, y) is called sepa-

rable if it can be written in the form dy
dx

= f (x)g(y), where f denotes a function of

1 In general, “elementary functions” are finite combinations of integer powers of the independent variable,
roots, exponential functions, logarithmic functions, trigonometric functions, and inverse trigonometric
functions.

A Modern Introduction to Differential Equations. https://doi.org/10.1016/B978-0-12-818217-8.00009-9
Copyright © 2021 Elsevier Inc. All rights reserved.
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the independent variable x alone and g denotes a function of the dependent variable
y alone. For example, the equation dy

dx
= exy2 is separable.

If y(x) is a nonconstant solution of the equation dy
dx

= f (x)g(y) and g(y(x)) is
nonzero on an interval (a, b), we can divide both sides of the equation by g(y(x))

(a process called separation of variables) to get

1

g(y(x))

dy

dx
= f (x).

If F(x) is an antiderivative of f (x) and G(y) is an antiderivative of 1
g(y)

, we can
integrate both sides of the preceding equation with respect to the independent variable
x to obtain ∫

1

g(y(x))

dy

dx
dx =

∫
1

g(y)
dy =

∫
f (x)dx,

or G(y(x)) = F(x) + C, where the constants of integration associated with G and
F have been combined in the single constant C. Note how we use the Chain Rule in
working with G(y(x)):

d

dx
G(y(x)) = G′(y(x))

dy

dx
= 1

g(y(x))

dy

dx
.

There are three things to be careful about: (1) not every first-order differential equa-
tion is separable; (2) even after you have separated the variables and integrated, it
may not be possible to solve for one variable (say y) in terms of the other (say x)—
you may have to express your answer implicitly; (3) you may not be able to carry
out the integration(s) in terms of elementary functions. We’ll see examples of these
situations later on.

Also, note that in a separable equation, for example y′ = f (x)g(y), a solution of
g(y) ≡ 0 is also a solution of the differential equation—possibly a singular solution
(see Section 1.3). If g(y) = 0, then y′ = 0, implying that y is a constant. Conversely,
if y(x) = c is a constant solution, then y′ = 0, which implies that g(y) = 0 because
f (x) ≡ 0 is unlikely in a physical problem. This says that the zeros of g are constant
solutions and, in general, they are the only constant solutions.

The preceding analysis can be refined by considering three cases for a separable
differential equation dy

dx
= f (x)g(y): (1) g(y) ≡ 1; (2) f (x) ≡ 1; (3) neither (1)

nor (2). In case 1 the equation takes the simple form dy
dx

= f (x). If f (x) is continuous

on some interval a < x < b, then the initial-value problem (IVP) dy
dx

= f (x), y(x0) =
y0 has a unique solution on (a, b) given by y(x) = y0 + ∫ x

x0
f (t) dt . [See Eq. (1.3.1).

The uniqueness of this solution will be discussed in Section 2.8.]

Example 2.1.1 A Separable Equation: Case 1
The IVP dy

dx
= −x3 + cosx, y(1) = 1 is a case 1 situation with f (x) = −x3 + cosx, a continuous

function for all real values of x. We can solve the IVP by integrating both sides of the equation to
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obtain the general solution and then substituting the initial condition. Alternatively, we can use the
simple solution formula

y(x) = 1 +
∫ x

1
(−t3 + cos t) dt = −x4

4
+ sinx +

(
5

4
− sin 1

)
.

In case 2, we have dy
dx

= g(y). We can rewrite the equation as 1
g(y)

dy
dx

= 1,

or more accurately as 1
g(y(x))

dy
dx

= 1. Integrating both sides with respect to x, we

get
∫ 1

g(y(x))
dy
dx

dx = ∫
1dx. If we make the substitution y = y(x), then dy =

y′(x) dx = dy
dx

dx, and we have
∫ 1

g(y)
dy = ∫

1dx = x + C. This gives us a solu-
tion (possibly implicit) to our case 2 ordinary differential equation (ODE). Letting
G(y) = ∫ 1

g(y)
dy, we can express the solution of the ODE in the form G(y) = x +C.

If we are given the initial condition y(x0) = y0, we choose the constant of inte-
gration C such that G(y0) = x0 + C. Finally, if G has an inverse, we can write
y(x) = G−1(x + C) = G−1(x + G(y0) − x0).

The next example, illustrating case 2, showcases a simple differential equation
with important applications to problems involving growth and decline (decay). In
Example 1.2.1, we guessed at the solution and then verified that our guess was cor-
rect. In this example we use the fact that the logarithmic and exponential functions
are inverses of each other.

Example 2.1.2 Solving a Separable Equation, Case 2
The principle here is that the rate of growth (or decline) of a quantity Q is directly proportional to

the quantity at a given time: Q(t) = dQ
dt

= kQ, where k is a positive constant in a growth situation
and k is negative when the quantity is decreasing over time.

Separating the variables, we can write dQ
Q

= k dt , so that
∫ dQ

Q
= ∫

k dt and ln |Q| = kt + C.

Then we exponentiate: eln |Q| = ekt+C = ekt eC , or |Q| = Mekt , where M = eC , a positive con-
stant. Since we can reasonably assume that Q is positive, we can just write Q(t) = Mekt , with
M > 0. Finally, we see that Q(0) = Me0 = M , so that our final solution is Q = Q(t) = Q(0)ekt .

Case 3, dy
dx

= f (x)g(y), where neither f nor g is a constant function, is the most
interesting case. Now we can separate the variables to write

1

g(y)

dy

dx
= f (x),

∫
1

g(y(x))

dy

dx
dx =

∫
f (x)dx, and

∫
1

g(y)
dy =

∫
f (x)dx.

The case 3 example that follows adds the use of technology.

Example 2.1.3 A Separable Equation and the Graph of a Solution
Suppose that an insect population P shows seasonal growth modeled by the differential equation
dP
dt

= kP cos(ωt), where k and ω are positive constants. (The cosine factor suggests periodic fluc-
tuation.)

We see that the equation is separable: dP
dt

= f (P )g(t), where f (P ) = P and g(t) = k cos(ωt).
(We could have left the constant k with the factor P , but if we think ahead, we’ll realize that there’s
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one less algebraic step if we keep the constant with the cosine term.) Separating the variables, we
get dP

P
= k cos(ωt) dt , so that

∫
dP
P

= k
∫

cos(ωt) dt , or ln |P | = k
ω sin(ωt) + C.

Exponentiating, we see that P(t) = Re
k
ω sin(ωt), where R > 0. (This is a population problem,

so R > 0 is a realistic assumption.) Letting P0 = P(0) denote the initial insect population, we have

P(t) = P0e
k
ω sin(ωt) as the solution.

FIGURE 2.1

The solution of the IVP dP
dt

= 2P cos(πt); P (0) = 100

Graphing the solution curve for P0 = 100, k = 2, and ω = π (Fig. 2.1), we can see that the

population varies periodically, fluctuating from a minimum value of 100e− 2
π (approximately 53) to

a maximum value of 100e
2
π (approximately 189).

Sometimes, as the next example shows, it may not be easy to find an explicit
solution for a separable differential equation.

Example 2.1.4 A Separable Equation with Implicit Solutions
The equation dy

dx
= x2

1+y2 can be written as dy
dx

= f (x)g(y), where f (x) = x2 and g(y) = 1
1+y2 .

Separating the variables, we get (1 + y2) dy = x2 dx.

Integrating both sides, we find that y + y3

3 = x3

3 + C, or x3

3 −
(

y + y3

3

)
= C. This gives the

solution implicitly. To get an explicit solution, we must solve this last equation for y in terms of x

or for x in terms of y. Either way is acceptable, although solving for x as a function of y is easier
algebraically. But even if we don’t find an explicit solution, we can plot solution curves for different
values of the constant C. (This may be a good time to find out how to graph implicit functions using
your available technology.) In Fig. 2.2 we use (from top to bottom) C = −7, −5, −3, 0, 3, 5, and 7.

The third concern we mentioned earlier is that you may not be able to integrate
one or both of the sides after you have separated the variables. We will address this
problem next.
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FIGURE 2.2

Implicit solutions of dy
dx

= x2

1+y2 : the curves x3

3 −
(
y + y3

3

)
= C; C = −7, −5, −3, 0, 3, 5,

and 7; −4 ≤ x ≤ 4, −4 ≤ y ≤ 4

Example 2.1.5 A Function with No Explicit Integral
The differential equation dy

dt
= ey2

t is clearly separable—we can write e−y2
dy = t dt . However,

we can’t carry out the integration
∫

e−y2
dy on the left-hand side because there is no combination

of elementary functions whose derivative is e−y2
. Consequently, we are forced to write the family

of solutions as ∫
e−y2

dy = t2

2
+ C, or 2

∫
e−y2

dy = t2 + K,

where K = 2C.

Integrals of the form
∫ b

a
e−y

2

dy have many applications in mathematics and sci-
ence, especially in problems dealing with probability and statistics. For instance, the
error function erf (x) = 2√

π

∫ x

0 e−y2
dy appears in many applied problems and can

be evaluated easily by any computer algebra system (CAS).

Example 2.1.6 An Equation with Infinitely Many Singular Solutions
The differential equation dy

dx
= − x cot y√

x+1
is separable and we can write tany dy = − x√

x+1
dx, or∫

tany dy = −∫
x√
x+1

dx. Writing
∫

tany dy as
∫ sin y

cos y dy or, transferring the negative sign to the

left side of the equation,
∫ − sin y

cos y dy, suggests the logarithmic nature of the integral:
∫ − sin y

cos y dy =
ln | cosy|. The integral

∫
x√
x+1

dx suggests a substitution to eliminate the radical sign. If we let

x + 1 = u2 for x > −1, we have dx = 2udu. This gives us the equation ln | cosy| = ∫ (u2−1)
u ·

2udu = 2
∫

u2 − 1du = 2
(

u3

3 − u
)

+ C = 2
(

(x+1)
√

x+1
3 − √

x + 1
)

− 2
3 (x − 2)

√
x + 1 + C.

The implicit solution to the original differential equation is given by the one-parameter family of
solutions ln | cosy| − 2(x−2)

3

√
x + 1 = C for x > −1 and y �= ±π/2,±3π/2,±5π/2, . . . . (We

avoid these values of y because cosy = 0 and ln 0 is not defined. However, the constant functions
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y = ±π/2,±3π/2,±5π/2, . . . are also solutions of the differential equation (Check this.) that can-
not be obtained from the one-parameter family.

Dealing with separable equations often requires some algebraic skills and some
integration intuition, although technology can help in tough situations. The next ex-
ample introduces a common algebraic challenge.

Example 2.1.7 Using Partial Fractions
The equation dz

dt
+ 1 = z2 looks simple enough, but it requires some algebraic manipulation

to get a neat solution. Separating the variables, we get dz

z2−1
= dt . Using the method of par-

tial fractions (see Section A.5), we can write 1
z2−1

as 1
2

(
1

z−1 − 1
z+1

)
, so integration gives us∫ 1

2

(
1

z−1 − 1
z+1

)
dz = ∫

1dt , or 1
2 (ln |z − 1| − ln |z + 1|) = t +C1. Multiplying both sides of this

last equation by 2 and then simplifying the logarithmic expression, we get ln
∣∣∣ z−1
z+1

∣∣∣ = 2t + C2. Ex-

ponentiating, we find that z−1
z+1 = Ke2t . Finally, solving this last equation for z (Try this—it’s a bit

tricky.), we conclude that z = 1+Ke2t

1−Ke2t , a one-parameter family of solutions.

Note that in going through the process of separating the variables, we divided by z2 − 1, im-
plicitly assuming that this expression was not zero. Coming back to this, we see that the constant
function z ≡ 1 corresponds to K = 0 in our one-parameter family, whereas z ≡ −1 is a singular
solution. (Why?)

As simple as separable equations may seem, they have some very important appli-
cations. The calculations and manipulations involved in the next example may seem
tedious, but they should remind you of things you have seen in previous classes. The
analysis at the end of the example should convince you that a graphical approach can
be enlightening.

Example 2.1.8 A Model of a Bimolecular Chemical Reaction
Most chemical reactions can be viewed as interactions between two molecules that undergo a change
and result in a new product. The rate of a reaction therefore depends on the number of interactions
or collisions, which in turn depends on the concentrations (in moles per liter) of the two types of
molecules. Consider the simple (bimolecular) reaction A + B → X in which molecules of substance
A collide with molecules of substance B to create substance X.

Let’s designate the concentrations at time 0 of A and B by α and β, respectively. We’ll assume
that the concentration of X at the beginning is 0 and that at time t it is x = x(t). The concentrations of
A and B at time t are, correspondingly, α − x and β −x. Note that α −x > 0 and β −x > 0 (Why?).
The rate of formation (the velocity of reaction or reaction rate) is given by the differential equation
dx
dt

= k(α − x)(β − x), where k is a positive number called the velocity constant. The product on
the right-hand side of the equation reflects the interactions or collisions between the two kinds of
molecules. We want to determine x(t).

Separating the variables and integrating, we get

∫
dx

(α − x)(β − x)
=

∫
k dt.
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To simplify the integrand 1
(α−x)(β−x)

, we use the technique of partial fractions so that we can write

∫
dx

(α − x)(β − x)
= 1

β − α

∫
dx

α − x
+ 1

α − β

∫
dx

β − x
=

∫
k dt,

or

− 1

β − α
ln(α − x) − 1

α − β
ln(β − x) = k t + C,

which simplifies to

1

α − β
ln

(
α − x

β − x

)
= k t + C.

The initial condition x(0) = 0 leads us to conclude that

C = 1

α − β
ln

(
α

β

)
.

Then

1

α − β
ln

(
α − x

β − x

)
= k t + 1

α − β
ln

(
α

β

)
,

so

ln

(
α − x

β − x

)
= (α − β)k t + ln

(
α

β

)
,

or

α − x

β − x
= α

β
e(α−β)k t .

A few more algebraic manipulations lead to the solution

x = x(t) =
αβ

(
1 − e(α−β)k t

)
β − αe(α−β)k t

. (2.1.1)

Eq. (2.1.1) does not seem very informative as far as understanding the nature of the chemical
reaction goes, but Problem 31 of Exercises 2.1 suggests some useful ways of analyzing the solution.
A CAS generated graph of a solution (Fig. 2.3) of the equation with α = 250, β = 40, and k = 0.0006
is more informative, and shows the steady rise in the concentration of molecule X to what is called
an equilibrium value of 40. (We’ll explore the idea of an equilibrium value in Section 2.6.) The
particular solution shown corresponds to x(0) = 0.

Of course, as we noted previously, the right-hand side of the original differential equation is
positive, so we know ahead of time that the concentration function is increasing. Also, you can

calculate d2x

dt2 from the original differential equation to see why the graph of x is concave down.
Remember that k > 0 and 0 ≤ x < α, 0 ≤ x < β.
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FIGURE 2.3

Solution of the IVP dx
dt

= 0.0006(250 − x)(40 − x); x(0) = 0, 0 ≤ t ≤ 35, 0 ≤ x ≤ 40

Exercises 2.1
A
Solve the equations or IVPs in Problems 1–9 by separating the variables. Be sure to
describe any singular solutions where appropriate.

1. dy
dx

= A−2y
x

, where A is a constant

2. dy
dx

= −xy
x+1

3. y′ = 3 3
√

y2; y(2) = 0

4. dy
dx

= (y−1)(y−2)
x

5. (cotx)y′ + y = 2; y(0) = −1

6. x′ = − sin t cos2 x

cos2 t
; x(0) = 0

7. x2y2y′ + 1 = y

8. xy′ + y = y2; y(1) = 0.5

9. z′ = 10x+z

10. Solve the equation y′ = 1 + x + y2 + xy2. [Hint: Factor cleverly.]

11. Solve the equation (y′)2 + (x + y)y′ + xy = 0. [Hint: Solve this quadratic
equation for y ′ by factoring or by using the quadratic formula, and then solve
the two resulting differential equations separately.]

An equation of the form dy/dx = f (ax + by) can be transformed into an
equation with separable variables by making the substitution z = ax + by or
z = ax + by + c, where c is an arbitrary constant. For example, the equa-
tion y′ = (y − x)2 is not separable, but the substitution z = y − x leads to the
separable equation z′ + 1 = z2, which was solved as Example 2.1.7. Then sub-
stitute the original variables for z. Use this technique to solve the equations in
Problems 12–14.
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12. y′ − y = 2x − 3

13. (x + 2y)y′ = 1; y(0) = −1

14. y′ = √
4x + 2y − 1

A homogeneous equation has the form dy/dx = f (x, y), where f (x, y) can
be expressed in the form g(y/x) or g(x/y)—that is, as a function of the
quotient y/x or the quotient x/y alone. For example, by dividing numera-

tor and denominator by x2, we can write the equation dy
dx

= 2x2−y2

3xy
in the form

dy
dx

= 2−(y/x)2

3(y/x)
= g

( y
x

)
. Any such equation can be changed into a separable

equation by making the substitution z = y/x (or z = x/y). Making the sub-
stitution z = y/x in our example, we have dy

dx
= d

dx
(x z) = 1 · z + x

(
dz
dx

)
,

so that our equation becomes x dz
dx

+ z = 2−z2

3z
or, separating the variables,(

3z

2−4z2

)
dz = 1

x
dx. After integrating, remember to replace z by y/x (or x/y).

Use this technique to solve the equations in Problems 15–18. [This use of the
term “homogeneous” differs from that found in Section 2.2.]

15. y′ = x+y
x−y

16. ẋ = t−3x
3t+x

17. y′ = x
y

+ y
x

18. dy
dx

= y2+2xy−x2

x2+2xy−y2

19. Under continuous compounding the balance B of a bank account demonstrates
the “snowball” effect: The larger the balance at a given time, the greater the
rate of growth: dB

dt
= rB, where r is the annual interest rate (expressed as a

decimal). If you invest one thousand dollars at 4% interest compounded con-
tinuously for six years, how much will be in your account?

20. The Malthusian growth model is named after Thomas Malthus (1766–1834),
who wrote one of the earliest and most influential books on population. This
model postulates that the rate of growth is proportional to the actual population
at any time t : dP

dt
= rP , where P = P(t) denotes the population at time t and

r is the population growth rate (usually the net result of birth rate minus death
rate), which could be negative. If the growth rate of a population is 0.0125
per year and the initial population (t = 0) is six million, what is the projected
population in ten years?

21. The phenomenon of radioactive decay was studied at the turn of the 20th
century by many scientists, including Marie and Pierre Curie. As a result of
this research and their own experiments, Frederick Soddy and Ernest Ruther-
ford formulated the radioactive decay law given by the equation dm

dt
= −km,

where m(t) denotes the mass of a radioactive substance at time t and k is a
positive constant (called the decay constant of the substance). If k = 0.0256
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and the time is in years, what is the mass of the radioactive substance after two
years?

22. Newton’s law of cooling states that the time rate of change of the temperature
of a body is proportional to the temperature difference between the body and
its surrounding medium. Using Newton’s law of cooling, derive a differential
equation for the cooling of a hot body surrounded by a cool medium.

B
23. Suppose that f is a function such that f (x) = ∫ x

0 f (t) dt for all real num-
bers x. Show that f (x) ≡ 0. [Hint: Use the Fundamental Theorem of Calculus
to get a differential equation. Then think of an appropriate initial condition.]

24. Consider the equation ẋ = x2+x
t

.
a. Find a one-parameter family of solutions.
b. Can you find a solution satisfying the initial condition x(0) = −1? If so,

give it. If not, give a reason.
c. Find a singular solution.

25. a. Solve the IVP ẋ = x2, x(1) = 1.
b. If the solution in part (a) is valid over an interval I , how large can I be?
c. Use technology to draw the graph of the solution x(t) found in part (a).
d. Solve the IVP ẋ = x2, x(0) = 0.

26. The equation
dQ

dP
= − cQ

1 + cP

is one model used to estimate the cost of national health insurance,2 where
Q(P ) represents the quantity of health services performed at price P , P rep-
resents the proportion of the total cost of health services that an individual
pays directly (“out of pocket expenses,” or coinsurance), and c is a constant.
a. Solve the equation for Q.
b. If Q(0)/Q(1) is approximately 2, what is the value of c?
c. Using the value of c found in part (b), determine Q(0.20) in terms of

Q(0). What does your answer tell you about the effect of a 20% coinsur-
ance (versus no coinsurance)?

27. A quantity y varies in such a way that dy
dt

= − ln 2
30 (y − 20). If y = 60 when

t = 30, find the value of t for which y = 40.

28. In analyzing the change in the percentage of red blood cells in a hospital pa-
tient undergoing surgery, the following equation has been used3

2 A.J. Kroopnick, “Estimating the Cost of National Health Insurance Using Three Simple Models,” Math.
and Comp. Ed. 30 (1996): 267–271.
3 M.E. Brecher and M. Rosenfeld, “Mathematical and Computer Modeling of Acute Normovolemic
Hemodilution,” Transfusion 34 (1994): 176–179. See also “Calculus in the Operating Room” by P. Toy
and S. Wagon, Amer. Math. Monthly 102 (1995): 101.
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dH

dVL
= − H

EBV
,

where H denotes the hematocrit (percentage of red blood cells in the total
volume of blood), VL represents the volume of blood loss, and EBV is the
patient’s estimated total blood volume.
a. Solve the differential equation for H .
b. If the patient’s total blood volume of 5 liters is maintained throughout

surgery via the injection of saline solution, and the initial value of H is
0.40, what is the patient’s volume of red blood cells at the end of the
operation?

29. The volume V of water in a particular container is related to the depth h of the
water by the equation dV

dh
= 16

√
4 − (h − 2)2. If V = 0 when h = 0, find V

when h = 4.

30. The slope m of a curve is 0 where the curve crosses the y-axis, and dm
dx

=√
1 + m2. Find m as a function of x.

31. Consider Eq. (2.1.1), the solution to Example 2.1.8.
a. If α > β, factor e(α−β)kt from the numerator and denominator and show

that x(t) → β as t → ∞.
b. If α < β, explain what happens to e(α−β)k t as t → ∞ and show that

x(t) → α as t → ∞.

32. Solve the IVP dQ
dt

= Q3+2Q

t2+3t
, Q(1) = 1 explicitly for Q(t), and state the inter-

val for which the solution is valid.

33. The number of bacteria in a Petri dish is observed to grow at a rate proportional
to the number of cells present. At the beginning of an experiment, there are
10,000 cells, and after three hours there are 500,000.
a. How many bacteria will there be after one day of growth if this unlimited

growth continues? (Be consistent with your units!)
b. What is the doubling time of the bacteria—that is, how many hours will it

take for the initial population to double?

34. A bacteria culture is known to grow at a rate proportional to the amount
present. Find an expression for the approximate number of bacteria in such
a culture if the initial number is 300 and if it is observed that the population
has increased by 20% after two hours.

35. A certain radioactive material is known to decay at a rate proportional to the
amount present. If after one hour it is observed that 10% of the material has
decayed, find the half-life of the material—that is, the time it takes for one-half
of the material to decay.

36. After two days, 10 grams of a radioactive chemical is present. Three days later
5 grams is present. How much of the chemical was present initially, assuming
that the rate of disintegration is proportional to the amount present?
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C

37. A police department forensics expert checks a gun by firing a bullet into a bale
of cotton. The friction force resulting from the passage of the bullet through
the cotton causes the bullet to slow down at a rate proportional to the square
root of its velocity. It stopped in 0.1 second and penetrated 10 feet into the bale
of cotton. How fast was the bullet going when it hit the bale?

38. The relationship between the velocity v of a rifle bullet and the distance L

traveled by it in the barrel of the gun is established in ballistics by the equation
v = aLn

b+Ln , where v = dL
dt

and n < 1. Find the relationship between the time t

during which the bullet moves in the barrel and the distance L covered.

39. In trying to determine the shape of a flexible nonstretching cable suspended
between two points A and B of equal height, we can analyze the forces acting
on the cable and get the differential equation

d2y

dx2
= k

[
1 +

(
dy

dx

)2
]1/2

,

where k > 0 is a constant.
a. Use the substitution p(x) = dy/dx to reduce the second-order equation

to a separable first-order equation.
b. Express the general solution of the equation in terms of exponential func-

tions. (You may need a table of integrals here. Your CAS may evaluate
the more difficult integral in an awkward way.)

40. When the drug theophyllin is administered for asthma, a concentration in the
blood below 5 mg/liter of blood has little effect, while undesirable side effects
appear if the concentration exceeds 20 mg/liter. Suppose a dose corresponding
to 14 mg/liter of blood is administered initially. The concentration satisfies the
differential equation dC

dt
= −C

6 , where the time t is measured in hours.
a. Find the concentration at time t .
b. Show that a second injection will need to be given after about 6 hours to

prevent the concentration becoming ineffective.
c. Given that the second injection also increases the concentration by

14 mg/liter, how long is it before another injection is necessary?
d. What is the shortest safe time that a second injection may be given so that

side effects do not occur?
e. Sketch graphs of the situations in parts (b), (c), and (d).

41. One method of administering a drug is to feed it continuously into the blood-
stream by a process called intravenous infusion. This process can be modeled
by the separable (and linear) differential equation dC

dt
= −μC + D, where C

is the concentration in the blood at time t , μ is a positive constant, and D is
also a positive constant, the rate at which the drug is administered.
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a. Find the equilibrium solution of the differential equation such that
dC
dt

= 0.
b. Given C = C0 when t = 0, find the concentration at time t . What limit

does the concentration approach as t → ∞? Compare with your answer
to part (a).

c. Sketch the graph of a typical solution.

42. Let dP
dt

= P(1 − P).
a. Find all solutions by separating the variables. (You will have to integrate

by using partial fractions.)
b. Let P(0) = P0. Suppose 0 < P0 < 1. What happens to P(t) as t → ∞?
c. Let P(0) = P0. Suppose P0 > 1. What happens to P(t) as t → ∞?

43. Consider the following model for the growth of a city. The shape of the city
remains roughly circular. The maximum travel time is proportional to the di-
ameter of the city. The population is proportional to the area of the city. The
rate of increase of the city’s population is inversely proportional to the maxi-
mum travel time. If the population of the city was 5000 in 1945 and 20,000 in
1985, what is the predicted population for 2025?

44. The equation dy
dx

= 6x2−5xy−2y2

6x2−8xy+y2 is not separable, but it can be solved by mak-
ing the substitution v = y/x.
a. Make the suggested substitution to get a separable equation using the vari-

ables x and v.
b. Solve the equation obtained in part (a) and change the variables to x and y.
c. Letting any constant found in part (b) equal 1, graph the implicit solution

found in part (b).

2.2 Linear equations
We introduced the idea of a linear differential equation in Section 1.1. Now let’s see
what we can do when the order of the differential equation is 1.

Definition 2.2.1
A linear first-order differential equation is an equation of the form

a1(x)
dy

dx
+ a0(x)y = f (x),

where a1, a0, and f are functions of the independent variable alone.

After dividing through by a1(x)—being careful to note where this function is
zero—we can write the equation in the standard form

dy

dx
+ P(x)y = Q(x), (2.2.1)
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where P(x) = a0(x)/a1(x) and Q(x) = f (x)/a1(x) are functions of x alone. In this
standard form, if the function Q(x) is the zero function, we call Eq. (2.2.1) homo-
geneous. Otherwise, we say that the equation is nonhomogeneous. (Don’t confuse
this terminology with the use of the term homogeneous as explained just before Prob-
lem 15 in Exercises 2.1.) In certain applied problems, Q(x) �≡ 0 may be referred to
as the forcing term, the driving term, or the input. The solution y can be called the
output.

For example, dy
dx

+ sin(x)y = e−x is linear with P(x) = sinx and Q(x) = e−x .

The equation x
dy
dx

+ y2 = 0 is not linear, because even when we divide by x (assum-

ing that x is nonzero), we get dy
dx

+ ( y
x

)
y = 0. The function Q(x) can be taken as

Q(x) ≡ 0, but the coefficient of y, y
x

, is not a function of x alone.
However, even the equation 2tz3 +3t2z2 dz

dt
= t5z2, which looks complicated, can

be made linear. Just divide by 3t2z2 to get dz
dt

+
(

2
3t

)
z = 1

3 t3, so that P(t) = 2
3t

and

Q(t) = 1
3 t3. Of course, we must consider the cases t = 0 and z ≡ 0 separately.

2.2.1 The superposition principle
In some applications it is useful to think of a linear first-order equation in terms of
an operator, or transformation, L, that changes a differentiable function y into the
left-hand side of Eq. (2.2.1): L(y) = dy

dx
+ P(x)y. Then Eq. (2.2.1) can be expressed

simply as L(y) = Q(x). For example, if the nonhomogeneous linear equation in stan-
dard form is dy

dx
− y = x, then we have the operator L defined as L(y) = dy

dx
− y. If

y(x) = x2, for instance, then L(y) = 2x − x2. A solution y of the differential equa-
tion dy

dx
− y = x would have to satisfy L(y) = x. (We can see that y = x2 is not a

solution.)
In this general context, suppose y1 is a solution of L(y) = Q1(x), y2 is a solution

of L(y) = Q2(x), and c1, c2 are arbitrary constants. Then c1y1 + c2y2 is called a
linear combination of y1 and y2, and we have

L(c1y1 + c2y2) = d

dx
(c1y1 + c2y2) + P(x) (c1y1 + c2y2)

= c1
d

dx
y1 + c2

d

dx
y2 + c1P(x)y1 + c2P(x)y2

= c1

(
d

dx
y1 + P(x)y1

)
+ c2

(
d

dx
y2 + P(x)y2

)
= c1Q1 + c2Q2 = c1L(y1) + c2L(y2).

Any operator that satisfies the condition L(c1y1 + c2y2) = c1L(y1) + c2L(y2)

is called a linear operator. Otherwise, it is called nonlinear. We can describe this
situation by saying that adding two inputs (Q1 and Q2) of a linear equation gives us
an output that is the sum (y1 + y2) of the individual outputs.

The general form of this last observation is called the Superposition Principle
and, as we will see later, it applies to linear equations of any order. In particular, when
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f (x) ≡ 0, we see that any linear combination of solutions to a homogeneous linear
equation is also a solution.

Superposition Principle for Homogeneous Equations
Suppose y1 and y2 are solutions of the homogeneous linear first-order differential equation

a1(x)
dy

dx
+ a0(x)y = 0

on an interval (a, b). Then the linear combination c1y1(x) + c2y2(x), where c1 and c2 are arbitrary
constants, is also a solution on this interval.

The next two examples should clarify the difference between linear and nonlinear
operators.

Example 2.2.1 A Linear Operator
We can check that y1 = e−x is a solution of the homogeneous linear equation L(y) = y′ + y = 0 =
Q1 and that y2 = sinx is a solution of L(y) = y′ + y = cosx + sinx = Q2. Note that we have the
same left-hand side, but different right-hand sides. You should see that y1 + y2 = e−x + sinx

is a solution of the equation y′ + y = Q1 + Q2 = 0 + cosx + sinx = cosx + sinx—that is,
L(y1 + y2) = Q1 + Q2 = L(y1) + L(y2).

However, not every operator defined by a first-order equation is linear.

Example 2.2.2 A Nonlinear Operator
Now consider the operator defined as T (y) = xy′ + y2 and suppose that T (y1) = 0 and T (y2) = 0.
Then

T (y1 + y2) = x (y1 + y2)′ + (y1 + y2)2

= xy′
1 + xy′

2 + y2
1 + y2

2 + 2y1y2

=

T
(
y1

)︷ ︸︸ ︷(
xy′

1 + y2
1

)
+

T
(
y2

)︷ ︸︸ ︷(
xy′

2 + y2
2

)
+2y1y2

= 0 + 0 + 2y1y2 = 2y1y2 �= T (y1) + T (y2) .

The equation T (y) = xy′ + y2 = 0 is nonlinear, and the operator T is not a linear operator.

2.2.2 Variation of parameters and the integrating factor
As a first step in finding the general solution of Eq. (2.2.1), let’s consider the case
Q(x) ≡ 0: dy

dx
+ P(x)y = 0. This homogeneous equation is separable, so we can see

that

dy

dx
= −P(x)y,

dy

y
= −P(x)dx, ln |y| = −

∫
P(x)dx, y = Ce− ∫

P(x) dx.
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Recognizing y = Ce− ∫
P(x) dx as the general solution of the homogeneous linear

equation, several important figures in the early history of calculus—notably Leib-
niz, Euler, and Lagrange—are credited with devising a clever way to solve the
nonhomogeneous Eq. (2.2.1), the method of variation of constants, or variation of
parameters. The idea is to look for a solution similar to y = Ce− ∫

P(x) dx in form.
Clearly something has to change since the differential equation has changed. The key
is to replace the constant C in Ce− ∫

P(x) dx with a function C(x), so that we have
y = C(x)e− ∫

P(x) dx . We assume that a solution of the nonhomogeneous equation
has this form, and we try to determine what C(x) is.

Differentiating using the product and chain rules, we find that

dy

dx
= dC(x)

dx
e− ∫

P(x) dx − C(x)P (x)e− ∫
P(x) dx

and

dy

dx
+ P(x)y = dC(x)

dx
e− ∫

P(x) dx.

Consequently, our nonhomogeneous equation becomes

dC(x)

dx
e− ∫

P(x) dx = Q(x), or
dC(x)

dx
= Q(x)e

∫
P(x) dx.

Integrating this last equation, we find that

C(x) =
∫

Q(x)e
∫

P(x) dx dx + K.

Putting the pieces together, we see that the general solution of Eq. (2.2.1) is given by

y(x) = e− ∫
P(x) dx ·

(∫
Q(x)e

∫
P(x) dx dx + K

)

= e− ∫
P(x) dx

∫
e
∫

P(x) dxQ(x)dx + Ke− ∫
P(x) dx.

This is an explicit formula for the general solution of any first-order linear differen-
tial equation in standard form. Even if the integrals involved can’t be evaluated in
closed form, they can still be approximated by numerical methods usually learned in
a calculus course. (Do not bother memorizing this formula. Just remember that any
linear first-order equation has an explicit general solution and understand how to use
variation of parameters to find it.)

There is a closely related method using something called an integrating fac-
tor—a special multiplier function that has been used to solve first-order linear equa-
tions since the late 1600s. The idea is that if we take Eq. (2.2.1) and multiply through
by a nonzero function μ(x) to get μ(x)

dy
dx

+ μ(x)P (x)y = μ(x)Q(x), the left-hand
side looks as if it could be a derivative obtained via the product rule:

d

dx
(μ(x)y) = μ(x)

dy

dx
+ dμ(x)

dx
y. (2.2.2)
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If we can find a function μ such that dμ(x)
dx

= μ(x)P (x) in Eq. (2.2.2), this leads to
the relation

d

dx
[μ(x)y] = μ(x)Q(x),

and we can integrate both sides to get

μ(x)y =
∫

μ(x)Q(x)dx, or y = 1

μ(x)

∫
μ(x)Q(x)dx.

It is easy to see that the equation dμ(x)
dx

= μ(x)P (x) is separable with solution

μ(x) = Ce
∫

P(x) dx , where C is an arbitrary constant. (Check this.) For convenience,
we take C = 1, but you should see that any nonzero constant produces the same result
ultimately. The general solution of Eq. (2.2.1) is

y = 1

μ(x)

∫
μ(x)Q(x)dx = e− ∫

P(x) dx

(∫
e
∫

P(x) dxQ(x)dx + K

)

= e− ∫
P(x) dx

∫
e
∫

P(x) dxQ(x)dx + Ke− ∫
P(x) dx.

Some people find it easier to memorize the formula for the integrating factor μ

than to use the method of variation of parameters. Ultimately, these methods use
the same calculations, but the variation of parameters is a powerful technique that
will prove its utility in Chapter 4, when it is applied to the solutions of higher-order
differential equations. For now, we will demonstrate both methods.

Example 2.2.3 Solving a Linear Differential Equation
Suppose we want to solve the linear nonhomogeneous equation y′ + xy = 2x, which is already in
standard form with P(x) = x, Q(x) = 2x. The solution of the homogeneous (separable) equation is

y = Ce− ∫
x dx = Ce−x2/2. Replacing the constant C by a function C(x), we have y = C(x)e−x2/2

and calculate

y′ = C′(x)e−x2/2 − xC(x)e−x2/2

and

y′ + xy = C′(x)e−x2/2 = 2x.

This gives us C′(x)e−x2/2 = 2x, from which we derive C′(x) = 2xex2/2 and C(x) = 2ex2/2 + K .

Finally, variation of parameters gives us y = C(x)e−x2/2 =
(

2ex2/2 + K
)

= 2 + Ke−x2/2.

Alternatively, we can reach into our sleeve and pluck out the magic integrating factor μ(x) =
e
∫

P(x) dx = ex2/2 for this equation. Now we get an equivalent differential equation by multiplying
each side of the original equation by μ(x):

ex2/2y′ + xex2/2y = 2xex2/2.

Note that if we assume that y = y(x), an implicit function of x, the Product Rule gives us(
ex2/2y

)′ = xex2/2y + ex2/2y′, the left-hand side of our new differential equation. This obser-
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vation tells us that the left side is an exact derivative and enables us to write the differential equation

in a more compact form:
(
ex2/2y

)′ = 2xex2/2. (Be sure that you see this.) Now we can integrate

each side with respect to x to get ex2/2y = ∫
2xex2/2 dx = 2ex2/2 + C. Solving for y by multiply-

ing each side of this last equation by e−x2/2, we get y(x) = 2 + Ce−x2/2, valid for −∞ < x < ∞.
We see from either closed-form solution that all solutions approach 2 as x → ±∞: If y(x) is

any solution of the differential equation y′ + xy = 2x, then limx→∞ y(x) = 2 = limx→−∞ y(x).
Fig. 2.4 shows five solutions of this linear equation.

FIGURE 2.4

Solutions of the IVP y′ + xy = 2x; y(0) = −2, 0, 2, 4, and 6; −6 ≤ x ≤ 6, −2 ≤ y ≤ 6

From top to bottom, the five particular solutions plotted correspond to C = 4,2,0,−2, and −4.
The choice C = 0 gives us the asymptotic solution y ≡ 2.

Finally, you may have recognized that our original equation is actually a separable equation.
You should solve by separating the variables and then compare your solution to the one we gave.

Let’s see another example of these two techniques.

Example 2.2.4 Solving a Linear Equation
The linear equation x

dy
dx

− 2y = x3e−2x can be written in standard form as dy
dx

−
(

2
x

)
y = x2e−2x .

The related homogeneous equation has the solution y = Cx2.
Now let y = C(x)x2 be our experimental solution. Then

dy

dx
= dC(x)

dx
· x2 + C(x)(2x).

The equation

dy

dx
− 2y = dC(x)

dx
· x2 = x2e−2x

implies dC(x)
dx

= e−2x and C(x) = − 1
2 e−2x + K . Finally, we have y(x) = C(x)x2 =(

− 1
2 x2e−2x + K

)
x2 = − 1

2 x2e−2x + Kx2 as our general solution.

Now let’s try the integrating factor technique on the linear equation dy
dx

−
(

2
x

)
y = x2e−2x . Our

integrating factor is μ(x) = e
∫ − 2

x dx = e−2 ln |x| = x−2.
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Multiplying both sides of the equation by this factor, we get x−2 dy
dx

− 2x−3y = e−2x . Rec-

ognizing the left side as the derivative of the product μ(x)y = x−2y, we can write the differential

equation as d
dx

(
x−2y

)
= e−2x .

Integrating both sides, we find that x−2y = ∫
e−2x dx = − 1

2 e−2x + C. Now we solve for y

and see that y = − 1
2 x2e−2x + Cx2.

The next example, an important application of linear differential equations to elec-
trical network theory, shows that the details of using an integrating factor may get
messy.

Example 2.2.5 A Circuit Problem
As a consequence of one of Kirchhoff’s laws in physics, suppose we know that the current
I flowing in a particular electrical circuit satisfies the first-order linear differential equation
LdI

dt
+ RI = v0 sin(ωt), where L, R, v0, and ω are positive constants that give information about

the circuit. Let’s try to find the current I (t) at time t , for t > 0, given that I (0) = 0. This initial
condition says that at the beginning of our analysis (t = 0), there is no current flowing in the circuit.

First, we divide both sides of the differential equation by L to put our equation into standard

form: dI
dt

+
(

R
L

)
I = ( v0

L

)
sin(ωt). Now, in terms of the standard form [Eq. (2.2.1)], we make the

identifications P(t) ≡ R/L, a constant function, and Q(t) = (v0/L) sin(ωt). In this problem the
forcing term Q(t) represents an (alternating) electromotive force supplied by a generator. Next, we
compute the integrating factor

μ(t) = e
∫

P(t) dt = e

∫
R
L

dt = e
R
L

t
.

Multiplying each side of the equation in standard form by μ(t), we get

e
R
L

t dI

dt
+ e

R
L

t
(

R

L

)
I =

( v0

L

)
e

R
L

t sin(ωt), or
d

dt

(
e

R
L

t
I

)
=

( v0

L

)
e

R
L

t sin(ωt).

Integrating each side yields e
R
L

t
I = ( v0

L

) ∫
e

R
L

t sin (ωt) dt .
To evaluate this last integral, we have three choices: (1) integrate by parts twice, (2) use a table

of integrals, or (3) submit the integral to a computer algebra system capable of integration. In all
three cases we get

e
R
L

t
I =

( v0

L

)⎡
⎣ Re

R
L

t sin(ωt)

L
(

R2

L2 + ω2
) − ωe

R
L

t cos(ωt)(
R2

L2 + ω2
)

⎤
⎦ + C

=
( v0

L

) e
R
L

t(
R2

L2 + ω2
) ·

[
R

L
sin(ωt) − ω cos(ωt)

]
+ C.

To find the general solution, we multiply each side of this last equation by e
− R

L
t to get

I (t) =
( v0

L

)(
R2

L2 + ω2
) ·

[
R

L
sin(ωt) − ω cos(ωt)

]
+ Ce

− R
L

t
.
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Now we use the initial condition I (0) = 0:

0 = I (0) =
( v0

L

)(
R2

L2 + ω2
) ·

[
R

L
sin(ω · 0) − ω cos(ω · 0)

]
+ Ce0

= −ω
( v0

L

)(
R2

L2 + ω2
) + C,

so that C = ω
(

v0
L

)
(

R2

L2 +ω2
) , and we have (finally!)

I (t) =
( v0

L

)(
R2

L2 + ω2
) ·

[
R

L
sin(ωt) − ω cos(ωt)

]
+ ω

( v0
L

)(
R2

L2 + ω2
) e

− R
L

t

=
( v0

L

)(
R2

L2 + ω2
) ·

[
R

L
sin(ωt) − ω cos(ωt) + ωe

− R
L

t
]

.

In the preceding example, we call the term ωe− R
L

t (or its constant multiple) in the
formula for I (t) a transient term because it eventually goes to 0. “Eventually” means
as t → ∞. The trigonometric terms make up the steady-state part of the solution and
have the same period as the original forcing term. (Can you see that this last claim is
true?)

Exercises 2.2
A
For Problems 1–18, solve each equation or initial-value problem using both variation
of parameters and integrating factors.

1. y′ + 2y = 4x

2. y′ + 2xy = xe−x2

3. ẋ + 2tx = t3

4. y′ + y = cosx

5. ty′ = −3y + t3 − t2

6. dx
ds

= x
s

− s2

7. y = x(y′ − x cosx)

8. (1 + x2)y′ − 2xy = (1 + x2)2

9. t (x′ − x) = (1 + t2)et

10. Q′ − (tan t)Q = sec t ; Q(0) = 0

11. xy′ + y − ex = 0; y(a) = b [a and b are constants.]

12. (xy′ − 1) lnx = 2y
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13. y′ + ay = emx [Consider two cases: m �= −a and m = −a.]

14. y′ +
(

1−2x

x2

)
y = 1

15. tx′ −
(

x
t+1

)
= t ; x(1) = 0

16. y = (2x + y3)y′ [Hint: Think of y as the independent variable, x as the depen-
dent variable, and rewrite the equation in terms of dx/dy.]

17. x(ey − y′) = 2 [Use the hint from Problem 16.]

18. y(x) = ∫ x

0 y(t) dt + x + 1 [Use the Fundamental Theorem of Calculus to get
an ODE.]

B

An equation of the form y′ +a(x)y = b(x)yn is called a Bernoulli equation, named
for Jakob Bernoulli (1654–1705), one of a family of noted Swiss scientists and
mathematicians. Note that if n = 0 or n = 1, we have a linear equation. Now if n

is not equal to 0 or 1 and we divide both sides of the equation by yn, we can let
z = y1−n and get a linear equation in the variable z. We solve the linear equation for
z in terms of x and then return to the original variables x and y. This substitution
method was found by Leibniz in 1696. For example, y′ − y = xy2 is a Bernoulli
equation with a(x) ≡ −1, b(x) = x, and n = 2. Divide by y2 and the equation be-
comes y−2 y′ − y−1 = x. Letting z = y−1, we get the linear equation −z′ − z = x,
or z′ + z = −x. Solving for z, we find that z = 1 − x + ce−x . Since z = y−1, we
conclude that y = (

1 − x + ce−x
)−1. Note that we divided by y2 and that y ≡ 0 is

a singular solution. Find all the solutions for each Bernoulli equation in Problems
19–24.

19. y′ = 4
t
y − 6ty2

20. ẋ = 1
t
x + √

x

21. dy
dx

+ y = xy3

22. y′ + xy = √
y

23. y′ = 2ty + ty2

24. y′ = x3y2 + xy

25. In trying to regulate fishing in the oceans, international commissions have been
set up to implement controls. To understand the effect of these controls, math-
ematical models of fish populations have been constructed. One stage in this
modeling effort involves predicting the growth of an individual fish. The von
Bertalanffy growth model is reflected in the Bernoulli equation (see above):

dW

dt
= αW 2/3 − βW,

where W = W(t) denotes the weight of a fish and α, β are positive constants.
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a. Find the general solution of the equation.
b. Calculate W∞ = limt→∞ W(t), the limiting weight of the fish.
c. Using the answer to part (b) and the initial condition W(0) = 0, write the

formula for W(t) free of any arbitrary constants.
d. Sketch a graph of W against t .

26. Show that if a linear first-order differential equation is homogeneous, then the
equation is separable.

27. When a switch is closed in a circuit containing a resistance R, an inductance L,
and a battery that supplies a constant voltage E, the current I builds up at a rate
described by the equation LdI

dt
+RI = E. [In Example 2.2.5 the electromotive

force on the right-hand side of the equation is not constant. Instead of a battery,
there is a generator supplying an alternating voltage equal to (v0/L) sin(ωt).]
a. Find the current I as a function of time.
b. Evaluate limt→∞ I (t).
c. How long will I take to reach one-half its final value?
d. Find I if I0 = I (0) = E/R.

28. In an electrical circuit, when a capacitor of capacitance C is being charged
through a resistance R by a battery that supplies a constant voltage E, the
instantaneous charge Q on the capacitor satisfies the differential equation

R
dQ

dt
+ Q

C
= E.

a. Find Q as a function of time if the capacitor is initially uncharged—that
is, if Q0 = Q(0) = 0.

b. How long will it be before the charge on the capacitor is one-half its final
value?

29. In Problem 28, determine Q if Q0 = 0 and if the battery is replaced by a
generator that supplies an alternating voltage equal to E0 sin(ωt).

30. In analyzing the effect of advertising on the sales of a product, we can extract
the following model from work done by the economists Vidale and Wolfe4:

dS

dt
+

(
rA

M
+ λ

)
S = rA.

Here, S = S(t) denotes sales, A = A(t) indicates the amount of advertising,
M is the saturation level of the product (the practical limit of sales that can
be generated), and r and λ are positive constants. Clearly, the solution of this
linear equation depends on the form of the advertising function A.

4 M.L. Vidale and H.B. Wolfe, “Response of Sales to Advertising,” in Mathematical Models in Marketing,
ed. Robert G. Murdick (Scranton, PA: Intext Educational Publishers, 1971): 249–256.
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a. Solve the equation if A is constant over a particular time interval and zero
after this:

A(t) =
{

A for 0 < t < T

0 for t > T .

(You will have to solve two equations and then combine the solutions
appropriately.)

b. Sketch a typical graph of S against t . (Choose reasonable values for any
constants in your solution.)

31. In the study of population genetics, biological units called genes determine
what characteristics living things inherit from their parents. Suppose we look
at a gene with two “flavors” A and a that occur in the proportions p(t) and
q(t) = 1 −p(t), respectively, at time t in a particular population. Suppose that
we have the relation dp

dt
= ν − (μ + ν)p, where μ is a constant describing a

“forward mutation rate” and ν is another constant representing the “backward
mutation rate.”
a. Determine p(t) and q(t) in terms of p(0), q(0), μ, and ν.
b. Show that limt→∞ p(t) = ν/(μ + ν) and limt→∞ q(t) = μ/(μ + ν).

These are called the equilibrium gene frequencies.

32. Prove that any Bernoulli differential equation y′ + a(x)y = b(x)yn, where
n �= 0,1, can be converted into a linear equation by the special substitution
y = u1/(1−n). (See the paragraph at the beginning of the B exercises.)

C
33. If V = V (t) represents the value of a bond at time t , r(t) is the interest rate,

and K(t) is the coupon payment, then dV
dt

+ K(t) = r(t)V describes the value
of the bond at a time before maturity.
a. If T is the time to the bond’s maturity and V (T ) = Z, show that

V (t) = e− ∫ T
t r(x) dx

(
Z +

∫ T

t

K(u)e
∫ T
u r(x) dx du

)
.

b. What does V (t) look like if you have a zero-coupon bond—that is, if
K(t) ≡ 0?

34. A disease has spread throughout a community. The number of infected indi-
viduals I in the community at any time t > 0 is given by dI

dt
− k(P0 + rt)I =

−kI 2, where I (0) = I0, P0 is the population of the community at t = 0, r is
the constant growth rate of the community, and k is a constant. Show that

I = ekP0t+(1/2)krt2
[

1

I0
+ k

∫ t

0
ekP0u+(1/2)kru2

du

]−1

.
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[Hint: The differential equation is a Bernoulli equation, as discussed in Prob-
lem 32.]

35. Suppose you have a linear first-order differential equation in the standard form
dy
dx

+ P(x)y = Q(x), where Q(x) is not the zero function.
a. Looking at the general solution given by Eq. (2.2.2), show that the term

Ce− ∫
P(x) dx is the general solution, yGH, of the homogeneous equation

you get by setting Q(x) ≡ 0.
b. Show that the term e− ∫

P(x) dx · ∫ e
∫

P(x) dxQ(x)dx is a particular so-
lution, yPNH, of the original nonhomogeneous equation. (Thus, we can
express the general solution, yGNH, of the nonhomogeneous equation as
follows: yGNH = yGH + yPNH.) (See Problem 23 of Exercises 1.3.)

c. Examine the result of part (b) in light of the Superposition Principle.

36. If x �= 0, x �= 1, y > 0, and y �= 1, find y as a function of x provided that

y′ + y(lny)2 − 1

x(x − 1)
y lny = 0.

(Hint: Let y = e1/z, where z = z(x) is nonzero and differentiable for all real
values of x.)

2.3 Compartment problems
In analyzing certain systems in biology and chemical engineering, researchers en-
counter a class of problems called mixing problems or compartment problems.

Suppose we have a single container, or compartment, containing some substance.
Now think of some other substance entering the compartment at a certain rate, and
imagine that a mixture of the two substances leaves the compartment at another rate.
For example, we could be talking about a tank of water into which some chemical
is introduced via a pipe. What emerges from the tank through another pipe will be a
mixture of the water and the chemical. In biology and physiology the compartment
may be the bloodstream or a particular organ, such as the kidneys. In fact, mathe-
matical analyses in these research fields often regard the organism under study as a
whole collection of individual components (compartments). In the human body these
could be different organs or groups of cells, for example.

To get our bearings, we can start with a simple one-compartment model (Fig. 2.5).
We have a single tank with a certain amount of material in it. The amount of

substance (or the concentration of the substance) that is added to the tank is called
the inflow, and the amount (or concentration) of substance leaving the tank is called
the outflow. We assume that there is a thorough mixing process taking place in the
tank—an almost instantaneous uniform blending of the two substances. To model
this process using a differential equation, it is important to focus on three different
rates associated with this situation: (1) the rate of inflow, (2) the net rate at which
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FIGURE 2.5

A one-compartment model

some aspect of the mixture in the tank is changing, and (3) the rate of outflow of the
mixture.

The basic principle we will use in solving compartment problems is the Balance
Law (or Balance Equation):

Net Rate of Change = Rate of Inflow − Rate of Outflow. (2.3.1)

As our first example, let’s look at a simple model of medicine in the bloodstream.

Example 2.3.1 Medicine in the Bloodstream
Intravenous infusion is the process of administering a substance into the veins at a steady rate (see
Problem 41 of Exercises 2.1). Suppose a patient in a hospital is receiving medication through an
intravenous tube that drips the substance into the bloodstream at a constant rate of I milligrams (mg)
per minute. Also suppose that the medication is dispersed through the body and is eliminated at a
rate proportional to the concentration of the medication at the time. In this problem, concentration
is defined as

Quantity of medication

Volume of blood plus medication
,

where we assume that the volume V of blood plus medication remains constant. The problem is to
find the concentration of the medication in the body at any time t . To do this, we can consider the
bloodstream as a single compartment and examine a differential equation that models the process.

If we let C = C(t) denote the concentration of the medication at time t (in mg/cm3), then the
Balance Law (2.3.1) leads us to the relation

V
dC

dt
= I − kC,

where k is a positive constant of proportionality that depends on the specific medication and the
physiological characteristics of the patient.

Note that the left-hand side of the differential equation is in units of cm3 × (mg/cm3) ×
(1/min) = mg/min and that the right-hand term I is also in mg/min. Because C is expressed in
units of mg

cm3 , we see that the appropriate unit for k, representing a removal rate, must be cm3/min.
(Be sure that you understand this “dimensional analysis.”)

This is a linear equation that we can write in the standard form

dC

dt
+

(
k

V

)
C = I

V
.
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An integrating factor for this equation is μ = e

∫
kt
V

dt = e
k t
V . Multiplying each side of this last

differential equation by μ gives us

e
k t
V

dC

dt
+ k

V
e

k t
V C =

(
I

V

)
e

k t
V ,

or

d

dt

(
e

k t
V C

)
=

(
I

V

)
e

k t
V ,

so that integrating each side gives us

e
k t
V C =

∫ (
I

V

)
e

k t
V dt,

yielding

C(t) = e
− k t

V

∫ (
I

V

)
e

k t
V dt = e

− k t
V

[
V

k

(
I

V

)
e

k t
V + α

]
= I

k
+ αe

− k t
V .

Using the implied initial condition C(0) = 0, we find that α = − I
k

, so that we can write our solution
as

C(t) = I

k
− I

k
e
− k t

V = I

k

(
1 − e

− k t
V

)
.

Note what happens as time goes by. Analytically, limt→∞ C(t) = I
k

. This says that the con-

centration of medication in the patient’s body reaches a threshold, or saturation level, of I
k

. Fig. 2.6
is a graph of the concentration when I = 4, V = 1, and k = 0.2, showing a saturation level of 20
mg/cm3.

FIGURE 2.6

C(t) = 20
(
1 − e−0.2t

)
, 0 ≤ t ≤ 30, 0 ≤ C ≤ 20

In compartment model problems, it is often important to determine how long it
may take for a certain result to occur.
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Example 2.3.2 Air Pollution
By 10:00 P.M. on a lively Friday night, a club of dimensions 30 feet by 50 feet by 10 feet is full of
customers. Sadly, many of these customers are smokers, so cigarette smoke containing 4% carbon
monoxide is introduced into the room at a rate of 0.15 cubic feet per minute. Suppose that this rate
does not vary significantly during the evening. Before 10:00 there is no trace of carbon monoxide in
the club; fortunately, this club is equipped with good ventilators. These ventilators allow the forma-
tion of a uniform smoke-air mixture in the room, and they provide for the ejection of this mixture to
the outside at the rate of 1.5 cubic feet per minute—that is, at a rate 10 times greater than that of the
arrival of pollutants.

You want to dance and socialize, but you also want to preserve your health. A prolonged expo-
sure to a concentration of carbon monoxide greater than or equal to 0.012% is considered dangerous
by the Health Department. Knowing that the club closes its doors at 3 A.M., will you allow yourself
to stay until the end? To be more precise, you want to find the time when the concentration of carbon
monoxide reaches the critical concentration of 0.012%.

The key to this type of single-compartment problem is the fundamental relation we saw used in
the preceding example:

Net rate of change = rate of inflow − rate of outflow.

Let C(t) be the concentration of carbon monoxide in the club (the grams of carbon monoxide
per cubic foot of air, abbreviated g/ft3) at any time t , where t = 0 represents 10 P.M. Then Q(t), the
amount of pollutant in the room at time t , is described by the equation Q(t) = (volume of room) ×
C(t). Because the room is 30 × 50 × 10 = 15,000 cubic feet, this expression for the amount of
carbon monoxide in the room at time t becomes Q(t) = 15,000C(t).

Now the rate at which carbon monoxide is entering the room is given by

(
0.15

ft3

min

)(
0.04

g

ft3

)
= 0.006

g

min
.

Similarly, the rate at which carbon monoxide is leaving the room (via the ventilators) is(
1.5 ft3

min

)
· C(t).

The Balance Law (2.3.1) tells us that the rate of change of the amount of carbon monoxide in
the room is equal to the rate at which the pollutant is introduced minus the rate at which it leaves:

dQ(t)

dt
= d

dt
{15,000C(t)} = rate of inflow − rate of outflow

=
(

0.15
ft3

min

)(
0.04

g

ft3

)
−

(
1.5

ft3

min

)
C(t)

= 0.006 − 1.5C(t) g/min

and we have the differential equation

15,000
d

dt
C(t) = 0.006 − 1.5C(t).

This is a linear equation, and we can write it in the form

d

dt
C(t) + (0.0001)C(t) =

(
4 × 10−7

)
.
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An integrating factor is μ(t) = e
∫
(0.0001) dt = e0.0001t , so the last equation has the form

d

dt

{
e0.0001tC(t)

}
=

(
4 × 10−7

)
e0.0001t .

Integrating, we find that

C(t) =
(

4 × 10−7
)

e−0.0001t
∫

e0.0001t dt

=
(

4 × 10−7
)

e−0.0001t

(
e0.0001t

0.0001
+ k

)

= 0.004 + α · e−0.0001t ,

where α = (
4 × 10−7)k.

Because we are told that C(0) = 0, we have 0 = C(0) = 0.004 +α, which gives us the informa-
tion that α = −0.004. Therefore, we can write the solution of our differential equation as

C(t) = 0.004
(

1 − e−0.0001t
)

.

Because we want to know the time t at which the concentration equals 0.012%, we must solve the
equation C(t) = 0.00012 for t . Hence, we must have

0.00012 = 0.004
(

1 − e−0.0001t
)

0.03 = 1 − e−0.0001t

e−0.0001t = 1 − 0.03 = 0.97

−0.0001t = ln(0.97)

t = ln(0.97)

(−0.0001)

so t = 304.59 minutes ≈ 5.08 hours ≈ 5 hours, 5 minutes. Therefore, the critical concentration of
carbon monoxide is reached at 3:05 A.M. That’s cutting it too close!

The next example shows a different sort of compartment and alerts us to the fact
that not all compartments have constant “volumes.”

Example 2.3.3 Fairness in Employment
Suppose that a government agency has a current staff of 6000, of whom 25% are women. Employees
are quitting randomly at the rate of 100 per week. If we know that replacements are being hired at
the rate of 50 per week, with the requirement that half be women, what is the size of the agency staff
in 40 weeks, and what percentage is then female?

This is a compartment problem, with the agency as the compartment. We note that, in contrast
to the previous examples, our compartment size (agency staff size) varies with time. Let W(t) be the
number of women at time t , with W(0) = 25% of 6000 = 1500. Now the net change in total staff
is 50 − 100 = −50 people/week, so that the staff size at time t is 6000 − 50t people. Summarizing
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this information, we have

dW

dt︸︷︷︸
rate of change

in no. of women

= 25 women/week︸ ︷︷ ︸
rate of inflow of women=50% of all replacements

−
(

100 people/week︸ ︷︷ ︸
rate of people leaving

· W(t)

6000 − 50 t
women/people︸ ︷︷ ︸

proportion of women on staff
at time of leaving

)

︸ ︷︷ ︸
rate of women leaving

or
dW

dt
+

(
100

6000 − 50 t

)
W = 25.

The integrating factor is μ(t) = (6000 − 50 t)−2, so we get W(t) = 1
2 (6000 − 50 t) + C(6000 −

50 t)2. Because W(0) = 1500, we find that C = −1/24,000. Thus, W(t) = 1
2 (6000 − 50 t) −

1
24,000 (6000 − 50 t)2, and when t = 40 we get a staff total equal to 6000 − 50(40) = 4000 and

W(40) = 2000 − 2000/3, so that the staff is about (2000 − 2000/3)/4000 = 1/3 or 33 1
3 % female.

After we’ve treated systems of equations in Chapter 6, we’ll be able to solve
multicompartment problems.

Exercises 2.3
A

1. Suppose a population has a constant per capita birth rate b > 0 and a constant
per capita death rate d > 0. Using the Balance Law (2.3.1), write a differential
equation for the population p(t) at time t . (Do not solve this equation.)

2. In Problem 1, suppose the per capita death rate d is not constant, but is in-
stead proportional to the population p(t). Write (but do not solve) a differential
equation for the population p(t).

3. In Problem 1, suppose the per capita birth rate b is not constant, but is in-
stead proportional to the population p(t). Write (but do not solve) a differential
equation for the population p(t).

4. Suppose a country with constant per capita birth and death rates b and d , re-
spectively, has an influx of immigrants at a constant rate I (not a per capita
rate, but a constant rate). Write a differential equation for the size of the pop-
ulation p(t).

B
5. A study of the population of Botswana from 1975 to 1990 leads to a model

for the country’s growth rate, dP
dt

= kP − αt , where t denotes time in years
with 1990 corresponding to t = 0, P(0) = 1.285 (million), k = 0.0355, and
α = 1.60625 × 10−3. (The term kP reflects births and immigration, while the
term αt captures deaths and emigration.)
a. Find a formula for P(t).
b. Estimate Botswana’s population in the year 2025.
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6. A tank with a capacity of 100 gallons is half full of fresh water. A pipe is
opened which lets treated sewage enter the tank at the rate of 4 gal/min. At
the same time, a drain is opened to allow 3 gal/min of the mixture to leave the
tank. If the treated sewage contains 10 grams per gallon of usable potassium,
what is the concentration of potassium in the tank when it is full? (Be careful
of your units!)

7. A tank with a capacity of 100 gallons is initially full of water. Pure water is
allowed to run into the tank at the rate of 1 gallon per minute. At the same time,
brine (a mixture of salt and water) containing 1/4 pound of salt per gallon flows
into the tank at the rate of 1 gallon per minute. (Assume that there is perfect
mixing.) The mixture flows out at the rate of 2 gallons per minute. Find the
amount of salt in the tank after t minutes.

8. Suppose you have a 200-gallon tank full of fresh water. A drain is opened that
removes 3 gal/s from the tank and, at the same moment, a valve is opened that
lets in a 1% solution (a 1% concentration) of chlorine at 2 gal/s.
a. When is the tank half full and what is the concentration of chlorine then?
b. If the drain is closed when the tank is half full and the tank is allowed to

fill, what will be the final concentration of chlorine in the tank?
9. A tank contains 50 gallons of fresh water. Brine (see Problem 7) at a concen-

tration of 2 lbs/gal (i.e., 2 lbs of salt per gallon) starts to run into the tank at
3 gal/min. At the same time the mixture of fresh water and brine runs out at
2 gal/min.
a. How much liquid is there in the tank after 50 minutes?
b. How many pounds of dissolved salt is in the tank after 50 minutes?

10. In a large tank are 100 gallons of brine containing 75 pounds of dissolved salt.
Water runs into the tank at the rate of 3 gal/min, and the mixture runs out at
the rate of 2 gal/min. The concentration is kept uniform by stirring. How much
salt is there in the solution after 1.5 hours?

11. A swimming pool holds 10,000 gallons of water. It can be filled at the rate
of 100 gal/min and emptied at the same rate. Right now the pool is filled, but
there are 20 pounds of an impurity dissolved in the water. For the safety of
the swimmers, this must be reduced to less than 1 pound. It would take 200
minutes to empty the pool completely and refill it, but during part of this time
the pool could not be used. How long will it take to restore the pool to a safe
condition if at all times the pool must be at least half full?

12. Assuming the information in Example 2.3.3, what would be the percentage of
female staff members after 40 weeks if all the new employees were required
to be women?

C
13. Suppose that the maximum concentration of a drug present in a given organ

of constant volume V must be cmax. Assuming that the organ does not contain
the drug initially, that the liquid carrying the drug into the organ has constant
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concentration c > cmax, and that the inflow and outflow rates are both equal
to r , show that the liquid must not be allowed to enter for a time longer than

V

r
ln

(
c

c − cmax

)
.

14. A tank that holds 100 gallons is half full of a brine solution with a concen-
tration of 1

3 pound of salt per gallon. Two pipes lead into it at the top, one
supplying a brine solution of 1

2 lb/gal and the other pure water. Each pipe has
a flow of 4 gal/min. One pipe leads out at the bottom and removes the mixture
at 3 gal/min. What is the concentration of the mixture that first flows out the
overflow pipe at the top? Assume uniform mixing.

15. Using the data in Example 2.3.2, determine the rate at which the ventilators
should operate if the concentration of carbon monoxide is never to reach the
lethal level. Explain your reasoning.

2.4 Slope fields
Now that we have become familiar with the basic concepts of ordinary differential
equations (ODEs) and have learned how to solve separable and linear equations, we
can consider a qualitative approach to understanding solutions of first-order equa-
tions. This is a graphical approach to an equation that provides insights into the
behavior of solutions, even when we may not know the techniques for solving the
equation.

Let’s look at first-order equations in normal form:

dy

dx
= y′ = f (x, y).

For example, we could have dy
dx

= f (x, y) = 3y − 4x, y′ = g(x, y) = √
xy, y′ =

F(x) = 2x3 − 1, or y′ = G(y) = 2 − y2. Now remember what a first derivative tells
us. One interpretation of a derivative is as the slope of the tangent line drawn to a
curve at a particular point. The equation y′ = f (x, y) means that at the point (x, y)

of any solution curve of the differential equation, the slope of the tangent line is given
by the value of the function f at that point—that is, the slope is given by f (x, y).
Remember that there may be a whole family of solution curves in addition to the
singular solutions.

For a first-order differential equation, a set of possible tangent line segments
(sometimes called lineal elements), whose slopes at (x, y) are given by f (x, y),
is called a slope field (or direction field) of the equation. Visually, this establishes
a flow pattern for solutions of the equation. A slope field includes tangent line seg-
ments for many solutions of the equation, but the general shapes of the integral curves
should be clear. You can think of these outlines as the “ghosts” of solution curves,
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and they may reveal certain qualitative aspects of the solutions, even if a closed form
solution is difficult or impossible to find.

Our first example will indicate how to generate a slope field.

Example 2.4.1 A Slope Field
To get a feeling for these ideas, let’s get a piece of graph paper and plot some tangent line segments
for the first-order linear equation y′ − y = x, which we can write as y′ = f (x, y) = x + y. To make
things a bit easier, we can construct a table (Table 2.1).

Table 2.1 Slopes at Points (x, y) for y′ = x + y

Point y′ = x + y

x y (x,y) Slope at (x,y)

−3 3 (−3, 3) 0
1 −1 (1, −1) 0
0 0 (0, 0) 0
0 1 (0, 1) 1
1 0 (1, 0) 1
2 −1 (2, −1) 1
−1 2 (−1, 2) 1
0 −1 (0, −1) −1
−1 0 (−1, 0) −1
2 −3 (2, −3) −1
.
.
.

.

.

.
.
.
.

.

.

.

We’ve made things even easier for ourselves by choosing points at which the slopes are 0, 1,
and −1. Now we can draw some tangent line segments corresponding to these slopes (Fig. 2.7a).

Note that we have drawn the little tangent line segments so that the midpoint of each segment
is the point (x, y). We have used portions of the slope field given by f (x, y) = 0 and f (x, y) =
±1. Fig. 2.7b is a computer-drawn direction field for the same ODE, with some solution curves
superimposed on the slope field.

Note that as x → −∞, the solution curves seem to be approaching a straight line as an asymp-
tote. The solution curves seem to be veering away from this line as x → +∞. If you look very
closely, you may be able to guess that the straight line is x + y = −1, or y = −1 − x. In Sec-
tion 2.2 we learned how to find the general solution, y = −x − 1 + Cex , for this linear equation.
The straight line y = −1 − x is the particular solution of the ODE corresponding to C = 0, a solu-
tion of the IVP y′ − y = x, y(0) = −1. Also note that if y is the general solution and C �= 0, then
limx→+∞ y(x) = ∞ if C > 0 and limx→+∞ y(x) = −∞ if C < 0.

Although the slope field suggests some features of the solution curves, we have to
be careful not to read too much into this picture. In the preceding example, without
the analytic form of the general solution or some sound numerical evidence, we can’t
be sure that y doesn’t have vertical asymptotes, so that y → ±∞ as x approaches
some finite value x0.

Note that in Example 2.4.1 we used portions of the slope field given by
f (x, y) = 0 and (x, y) = ±1. For any first-order equation y′ = f (x, y), if we look at
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FIGURE 2.7a

Some lineal elements for y′ − x + y

FIGURE 2.7b

Slope field for y′ = x + y, −6 ≤ x ≤ 6, −10 ≤ y ≤ 10, and five computer-generated solution
curves

the set of points (x, y) such that f (x, y) = C, a constant, we get an isocline—a curve
along which the slopes of the tangent lines are all the same. (The word isocline is
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made up of parts that mean “equal” and “inclination” or “slope.”) Isoclines are used
to simplify the construction of a slope field; once you draw the isoclines, you can
quickly and easily draw, for each C, a series of parallel line segments of slope C, all
having their midpoints on the curve f (x, y) = C. In Example 2.4.1 the isoclines are
the curves x + y = C, which are straight lines through (0,C) and (C,0) with a slope
of −1.

It is important to realize that an isocline is usually not a solution curve, but that
through any point on an isocline a solution to the differential equation passes with
slope C. However, as we’ll see in Section 2.5, isoclines corresponding to C = 0—
called nullclines—turn out to be important solutions (equilibrium solutions) of equa-
tions in which the independent variable does not appear explicitly—that is, equations
of the form y′ = f (y).

The next example has something important to say about the difference between
equations of the general form y′ = f (x, y) and equations of the special form y′ =
f (y).

Example 2.4.2 A Special Slope Field
The slope field (Fig. 2.8) corresponding to the equation x′ = f (x) = −2x reveals something in-
teresting about certain kinds of equations and their corresponding slope fields. (Don’t be confused
by the labeling of the axes.) Here, we are assuming that t is the independent variable and x is the
dependent variable: x = x(t).) First of all, note that algebraically we can write the equation in the
form F(x, x′) = x′ + 2x = 0, or x′ = f (x) = −2x. In other words, we have a first-order equation in
which the independent variable t does not appear explicitly. This says that the slopes of the tangent
line segments making up the slope field of this equation depend only on the values of x.

FIGURE 2.8

Slope field for x′ = −2x, −4 ≤ t ≤ 4, −6 ≤ x ≤ 6
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In the slope field plot given in Fig. 2.8, if you fix the value of x by drawing a horizontal line
x = C for any constant C, you will see that all the tangent line segments along this line have the
same slope, no matter what the value of t . Another way to look at this is to realize that you can
generate infinitely many solutions by taking any one solution and translating (shifting) its graph left
or right. (See Problem 33 of Exercises 2.4.)

2.4.1 Autonomous and nonautonomous equations
A differential equation, such as the one in the preceding example, in which the in-
dependent variable does not appear explicitly is called an autonomous equation. If
the independent variable does appear, the equation is called nonautonomous. This
definition is valid for an equation of any order.

For example, y′ = y2 − t2 is nonautonomous because the independent variable
t appears explicitly, whereas y′ = 3y4 + 2 sin(y) is autonomous because the inde-
pendent variable (t , x, or whatever) is missing. Note that the independent variable is
always present implicitly (in the background), but if you don’t see it “up front,” the
equation is autonomous. Example 2.4.1 discusses a nonautonomous equation. If we
look carefully at its slope field (Fig. 2.7b), we see that the slopes change as we move
along any horizontal line.

Autonomous equations arise frequently in physical problems because the physical
components generally depend on the state of the system, but not on the actual time.
We can define the state of a system loosely as the set of values of the dependent vari-
ables in the system. For example, according to Newton’s Second Law of Motion, an
object of mass m falling under the influence of gravity satisfies the autonomous equa-
tion ẍ = −g, where x(t) is the position of the mass measured from the Earth’s surface
and g is the acceleration due to gravity. Gravity is considered time-independent be-
cause the mass follows the same path no matter when the mass is dropped.

Now let’s see how to recognize the correspondence between first-order differential
equations and their slope fields.

Example 2.4.3 Matching Equations and Slope Fields

(A)
dx

dt
= x2 − t2 and (B)

dx

dt
= x2 − 1

Looking at the two differential equations and the accompanying slope fields 1–4, let’s try to match
each equation with exactly one of the slope fields (Figs. 2.9a–d).

We can start with Eq. (A) and note that it is a nonautonomous equation. This tells us that
we should not expect equal slopes along horizontal lines. As we move horizontally—that is, if
we fix the value of x and vary the value of t—the value of the slope changes according to the
formula x2 − t2. This analysis eliminates slope fields 2 and 3 because the inclinations of the tangent
line segments clearly remain constant along horizontal lines. Now if we write Eq. (A) in factored
form, dx

dt
= (x + t)(x − t), we can see that the tangent line segments must be horizontal where

x = t or x = −t because that’s where the slope dx
dt

equals 0. (These are the nullclines—isoclines
corresponding to C = 0.) Looking carefully at slope fields 1 and 4, we see that field 4 exhibits a
series of horizontal “steps” forming an X through the origin. If we look closely, it seems that these
horizontal line segments lie on the lines x = t and x = −t , so we conclude that Eq. (A) corresponds
to slope field 4.
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FIGURE 2.9a

Slope field 1

FIGURE 2.9b

Slope field 2

Eq. (B) is autonomous because the independent variable t does not appear explicitly. The cor-
responding slope field must show equal slopes along any horizontal line. Only fields 2 and 3 exhibit
this behavior. What else can we look for? Well, if we factor Eq.(B) to get dx

dt
= (x + 1)(x − 1), we

realize that the slope field must show horizontal line segments when dx
dt

equals 0—that is, where
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FIGURE 2.9c

Slope field 3

FIGURE 2.9d

Slope field 4

x = 1 or x = −1. Slope field 2 has horizontal tangents at x = 1 but doesn’t have them at x = −1.
Only slope field 3 shows zero slopes along both horizontal lines x = 1 and x = −1, so we conclude
that Eq. (B) must match up with slope field 3.
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The next example shows an advantage—and a possible drawback—of using slope
fields.

Example 2.4.4 A Slope Field for an Autonomous Equation
The first-order nonlinear autonomous equation y′ = y4 + 1 looks innocent, but (Surprise!) it has the
one-parameter family of implicit solutions:

√
2

8
ln

(
y2 + √

2y + 1

y2 − √
2y + 1

)
+

√
2

4

{
arctan

(
y
√

2 + 1
)

+ arctan
(
y
√

2 − 1
)}

= t + C.

(The equation is separable, but the integration required to solve it is tricky. Use your CAS to evaluate
the integral, but don’t be surprised if your answer doesn’t look exactly like the one given here.)
Without looking at the solution formula, you can see immediately that the differential equation
has no constant function as a solution: If y is constant, then y′ = 0; but the right-hand side of the
differential equation, y4 + 1, can never be zero. This simple analysis shows that any solution y must
be an increasing function. (Why?)

The fearsome formula describing a family of implicit solutions gives little useful information.
However, let’s take a look at the equation’s slope field (Fig. 2.10). First of all, the autonomous
nature of the equation is clear because along any horizontal line the inclinations of the tangent line
segments are equal.

FIGURE 2.10

Slope field for y′ = y4 + 1, −4 ≤ t ≤ 4, −3 ≤ y ≤ 3

Furthermore, it should be evident that any solution curve is increasing. In fact, any solution
curve has vertical asymptotes bounding it on the left and on the right. Of course, we can’t tell
whether this last statement is true by merely looking at the slope field. A purely graphical analysis
can’t reveal this. But the slope field does give us an idea of what to expect when we try to solve the
equation analytically or to approximate a solution numerically.
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As we will see in later chapters, a type of slope field can help us analyze certain
systems of differential equations as well.

Exercises 2.4
A
In Problems 1–14, first sketch the slope field for the given equation by hand, and
then try using a computer or graphing calculator to generate the slope field. Sketch
several possible solution curves for each equation.

1. y′ = x

2. dx
dt

= t

3. dr
dt

= t − 2r

4. dx
dt

= 1 − 0.01x

5. Q′ = |Q|
6. y′ = y − x

7. r dr
dt

= −t

8. dy
dx

= 1
y

9. dy
dx

= 2y
x

10. y′ = max(x, y), the larger of the two values x and y

11. y′ = x2 + y2

12. x′ = 1 − tx

13. dy
dt

= ty

t2−1

14. dP
dt

= 2P(1 − P)

15. Use technology to determine the slope field for the equation y′ = cos x
cos y

. De-
scribe the nullclines of the equation.

16. In any way your instructor tells you, manually or using technology, sketch the
slope field for each of the following equations and then sketch the solution
curve that passes through the given point (x0, y0).
a. dy

dx
= x2; (x0, y0) = (0,−2)

b. dy
dx

= −xy; (x0, y0) = (0,3)

17. The German physiologist Gustav Fechner (1801–87) devised the model ex-
pressed as dR

dS
= k

S
, where k is a constant, to describe the response, R, to a

stimulus, S. Use technology to sketch the slope field for k = 0.1.
18. Describe the isoclines of the equation dy

dt
= y+t

y−t
.

19. Which of the equations in Problems 1–15 are autonomous? If you have done
some of these problems, look at their slope fields to confirm your answers.

20. Which of the following differential equations would produce the slope field
shown below?
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A. dy
dx

= |y − x|
B. dy

dx
= |y| − x

C. dy
dx

= y − |x|
D. dy

dx
= |y + x|

E. dy
dx

= |y| − |x|

Slope field for Exercise 20

B
21. A bimolecular chemical reaction is one in which molecules of substance

A collide with molecules of substance B to create substance X. The rate of
formation (the velocity of reaction) is given by a differential equation of the
form dx

dt
= k(α − x)(β − x), where α and β represent the initial amounts of

substances A and B, respectively, and x(t) denotes the amount of substance X
present at time t . (See Example 2.1.8.)
a. Use technology to plot the slope field when α = 250, β = 40, and k =

0.0006.
b. If x(0) = 0, what seems to be the behavior of x as t → ∞?

22. The one-parameter family y = c
t

represents a solution of dy
dt

= f (t, y). Sketch
(by hand) the slope field of the differential equation.

23. Describe the isoclines of the equation y′ = 1√
1+t2+y2

.

24. Describe the nullclines of the equation xy
dy
dx

= y2 − x2.

25. Describe the nullclines of the equation in Problem 21.

26. In your own words, explain the important differences in the slope fields for the
following forms of first-order differential equations:
a. y′ = f (t, y)
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b. y′ = f (t)

c. y′ = f (y)

27. Match each of the equations a–c with one of the accompanying slope fields.
a. dy

dt
= y + 1

b. dy
dt

= y − t

c. dy
dt

= t + 1

Slope field 1 for Exercise 27

Slope field 2 for Exercise 27



68 CHAPTER 2 First-order differential equations

Slope field 3 for Exercise 27

Slope field 4 for Exercise 27

28. Match each of the equations (A)–(C) with one of the accompanying slope
fields.

A. dy
dt

= ln |t − 1|
B. dy

dt
= (y − 1)(y + 3)

C. dy
dt

= t/(t − 2)
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Slope field 1 for Exercise 28

Slope field 2 for Exercise 28
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Slope field 3 for Exercise 28

Slope field 4 for Exercise 28
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29. By looking at the slope field for each of the following equations, describe the
behavior of the solutions of each equation as t → ∞. How do your answers
seem to depend on the initial conditions in each case?

a. y′ = 3y

b. dP
dt

= P(1 − P)

c. y′ = e−t + y

d. y′ = 3 sin t + 1 + y

30. Examine the slope field for the first-order nonlinear equation dy
dx

= e−2xy .
Based on this examination, what can you say about the solutions to this equa-
tion? (You may want to look at parts of the various quadrants more closely.) In
particular, what can you say about the behavior of the solutions as x → ±∞?
(Be careful: Some solutions become infinite as x approaches finite values.)

31. Consider the autonomous equation dx
dt

= x(1 − x)(x + 1).

a. Use technology to determine the slope field of this equation.

b. Describe the behavior of a solution satisfying x(0) = 0.7.

c. Describe the behavior of a solution satisfying x(0) = 1.3.

d. Describe the behavior of a solution satisfying x(0) = −0.7.

e. Describe the behavior of a solution satisfying x(0) = −1.3.

32. Consider the equation dy
dx

= 2y − 4x.

a. The slope field for the differential equation is shown below. Make a copy
(or recreate the slope field using a CAS) and sketch the solution curve that
goes through the point (0,−1).

b. There is a value of b for which y = 2x + b is a solution of the differential
equation. Find this value of b and justify your answer.

c. Let g be the function that satisfies the given differential equation with
the initial condition g(0) = 0. It appears from the slope field that g has a
local maximum at the point (0,0). Using the differential equation, prove
analytically that this is so.

C

33. a. If ϕ(t) is a solution of an autonomous differential equation x′ = f (x) and
k is any real number, show that ϕ(t + k) is also a solution. [Hint: Use the
Chain Rule.]

b. Use the result of (a) to show that if sin t is a solution of an autonomous
differential equation x′ = f (x), then cos t is also a solution. [Hint: How
are the graphs of sine and cosine related?]

c. Let φ(t) be a nonzero solution of the nonautonomous differential equation
x′ = tx. Is φ(t + c) also a solution for c �= 0? Prove your answer.
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2.5 Phase lines and phase portraits
2.5.1 The logistic equation
The slope fields introduced in the last section are useful for viewing two-dimensional
information. When we deal with an autonomous first-order equation, say ẋ = f (x),
there is no explicit dependence on the variable t , and so we find ourselves in a situa-
tion where the relevant data is one-dimensional. Thus, we can hope to use a simpler
graphical representation of the information. As we’ll see, this new method of qualita-
tive analysis can be used quite effectively to provide useful information about solution
curves.

We’ll begin to examine this new analysis technique by using an important popula-
tion growth model, first studied by the Belgian mathematician Pierre Verhulst in 1838
and later rediscovered independently by the American scientists Raymond Pearl and
Lowell Reed in the 1920s.

Example 2.5.1 The Qualitative Analysis of the Logistic Equation
The autonomous differential equation dP

dt
= P(1 − P), a particular example of something called

a logistic equation, is useful, for instance, in analyzing such phenomena as epidemics. (We dealt
with this equation in another way in part (b) of Problem 29 in Exercises 2.4.) In an epidemiological
situation, P could represent the infected population (or the percentage of the total population that is
infected) as a function of time. We’ll work more with this kind of model later, but for now let’s ig-
nore the fact that this is a separable equation that we can solve explicitly and see what basic calculus
can tell us.

First of all, the right-hand side represents a derivative, the instantaneous rate at which P is
changing with respect to time. From calculus we know that if the derivative is positive, then P is
increasing, and if the derivative is negative, then P is decreasing. Now when is dP/dt positive?
The answer is when P(1 − P) is greater than zero. Similarly, dP/dt is negative when P(1 − P) is
less than zero. Finally, we see that dP/dt = 0 when P(1 − P) = 0—that is, when P = 0 or P = 1.
These two critical points split the P -axis into three pieces (Fig. 2.11): −∞ < P < 0, 0 < P < 1,
and 1 < P < ∞.

What is the sign of dP/dt when P satisfies −∞ < P < 0? Well, for these values of P , P is
negative and 1 − P is positive, making the product dP/dt = P(1 − P) negative. This means that
P is decreasing. When P is between 0 and 1, we see that P is positive and 1 − P is positive, so
dP/dt is positive and P is increasing. Finally, when P is greater than 1, we see that P is positive
and 1 − P is negative, so dP/dt is negative and P is decreasing.

FIGURE 2.11

P -axis divided by critical points

We can redraw Fig. 2.11 with arrows indicating whether P is increasing or decreasing on a par-
ticular interval for P . The direction of any arrow shows the algebraic sign of dP/dt in a subinterval
and so indicates whether P is increasing or decreasing: → means “positive derivative/increasing P ”
and ← means “negative derivative/decreasing P .” Fig. 2.12 is called the (one-dimensional) phase
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portrait of the differential equation dP
dt

= P(1 − P). The horizontal line itself is called the phase
line.

FIGURE 2.12

Phase portrait of dP
dt

= P (1 − P )

We can actually do a little more in this situation. If we differentiate each side of our original
differential equation with respect to t , we get

d2P

dt2
= dP

dt
· (1 − 2P) = P(1 − P)(1 − 2P),

where we have replaced dP/dt by the right-hand side of the original differential equation. (Check all
this!) Remember that the second derivative of a function tells us about the concavity of the function:
P is concave up when d2P/dt2 > 0 and P is concave down when d2P/dt2 < 0. Using the critical

points 0, 1
2 , and 1 of d2P

dt2 as a guide, we can construct the table of signs (Table 2.2).

Table 2.2 Table of Signs

P Interval P 1 − P 1 − 2P P ′′ = P(1 − P)(1 − 2P) Concavity
(−∞,0) − + + − Down(

0, 1
2

)
+ + + + Up(

1
2 ,1

)
+ + − − Down

(1,∞) + − − + Up

We have to remember that t is the independent variable in this problem and P is the dependent
variable. It’s easy to lose sight of this because the (autonomous) form of this differential equation
makes us focus on P alone.

On the basis of our analysis of dP
dt

and d2P

dt2 , let’s take a look at what the graph of P could look
like in the t − P coordinate plane (Fig. 2.13). We’ll focus on the first quadrant because t ≥ 0 and
P ≥ 0 are realistic assumptions when dealing with a population growth model. Note that the phase
line (representing the P -axis) is now drawn vertically and placed next to the graph and that we’ve

marked the important values from our previous investigation of dP
dt

and d2P

dt2 .

The graph indicates the change of concavity at P = 1
2 . Notice how each of the three solutions

we have sketched seems to approach P = 1 as an asymptote as t increases. In terms of a realistic
scenario, this says that if the initial population is below 1 (the unit could be thousands or millions),
the population will increase to 1 asymptotically. On the other hand, any population starting above
1 will eventually decrease toward 1. If we had drawn the rest of the phase line (for P < 0) and
solutions in the fourth quadrant (t ≥ 0, P < 0), we would have seen these solutions moving away
from the t-axis. We’ll say more about this phenomenon in the next section.

The logistic equation, which is commonly used to model population growth when
resources (such as food) are limited, is usually written as dP

dt
= rP (1 − P

k
), where r
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FIGURE 2.13

Sketch of three solutions of dP
dt

= P (1 − P), based on the phase portrait and concavity.
Initial conditions are P (0) = 0.2, 2, and 5; 0 ≤ t ≤ 4, 0 ≤ P ≤ 5

is a per capita growth rate balancing births and deaths and k represents the theoretical
maximum population that a given environment (forest, Petri dish, etc.) can sustain.
The value k is called the carrying capacity. This model will reappear from time to
time in this text.

Sometimes an autonomous differential equation will contain a parameter whose
possible values affect the behavior of solutions.

Example 2.5.2 An Equation with a Parameter
Consider the equation x′ = x2 − ax = x(x − a), where a is a constant. There are two apparent
critical points: x = 0 and x = a. The first challenge is to position the critical points properly on the
x-axis.

First, let’s assume that a > 0. Then the phase line is

If x < 0, then x − a < 0 and x′ = x(x − a) > 0. If 0 < x < a, then x > 0 and x − a < 0, so
x(x − a) < 0. Finally, if x > a, we have x > 0 and x − a > 0, so x(x − a) > 0. Thus, if a > 0, the
phase portrait is as shown in Fig. 2.14.

FIGURE 2.14

Phase portrait of x′ = x2 − ax, a > 0
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Now suppose a < 0. The phase line is

If x < a, then x < 0 and x − a < 0, so x′ = x(x − a) > 0. When a < x < 0, we have x < 0 and
x − a > 0, so x(x − a) < 0. If x > 0, then x − a > 0, so x(x − a) > 0. For a < 0 the phase portrait
is as shown in Fig. 2.15.

FIGURE 2.15

Phase portrait of x′ = x2 − ax, a < 0

There is one last case: a = 0. Now there is only one critical point, and it is easy to see that the
phase portrait is as shown in Fig. 2.16.

FIGURE 2.16

Phase portrait of x′ = x2 − ax, a = 0

In summary, we see that the presence of parameters in a differential equation may affect the
behavior of its solutions. Sketches of typical solution curves corresponding to a > 0, a < 0, and
a = 0 are left as an exercise (see Problem 16 of Exercises 2.5).

Since differential equations with parameters occur in many important applica-
tions, we give an additional, slightly more complicated example.

Example 2.5.3 Another Equation with a Parameter
If we analyze the nonlinear differential equation ẋ = μx − x3 = x(μ − x2), where μ is a real
parameter, we see how the behavior of solutions varies depending on the value of μ.

First of all, we note that x = 0 is a critical point (ẋ = 0) no matter what the value of μ is. On
the other hand, the two symmetric critical points x = ±√

μ exist only for μ > 0.
Assume that μ > 0. If x < −√

μ, then μ − x2 < 0 (Check this.) and x(μ − x2) > 0. If −√
μ <

x < 0, then μ − x2 > 0 and x(μ − x2) < 0. If 0 < x <
√

μ, we have x2 < μ, so μ − x2 > 0 and
x(μ − x2) > 0. Finally, if x >

√
μ, we see that μ − x2 < 0 and x(μ − x2) < 0. Thus, for μ > 0 the

phase portrait is shown in Fig. 2.17.

FIGURE 2.17

Phase portrait of ẋ = μx − x3, μ > 0
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If μ ≤ 0, there is only one critical point, x = 0. It is easy to see that the phase portrait is shown
in Fig. 2.18.

FIGURE 2.18

Phase portrait of ẋ = μx − x3, μ ≤ 0

In the next section, we will refine the phase line and phase portrait analyses.

Exercises 2.5
A
Draw phase portraits for each of the equations in Problems 1–13.

1. dy
dt

= y2 − 1

2. y′ = y2(1 − y)2

3. x′ = (x + 1)(x − 3)

4. ẋ = cosx

5. y ′ = ey − 1

6. y′ = y(1 − y)(2 − y)

7. ẏ = siny

8. x ′ = 1 − x
1+x

9. y′ = yey−1

10. ẏ = siny cosy

11. x′ = −3x(1 − x)(3 − x)

12. y′ = y(y2 − 4)

13. x′ = x(1 − ex)

14. The equation in Problem 11 could represent a model of a population that can
become extinct if it drops below a particular critical value. What is this critical
value?

15. Consider the equation ẋ = 1 + 1
2 cosx.

a. Draw the phase portrait of this equation.

b. What does your qualitative analysis tell you about solutions of this equa-
tion?
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16. Consider the equation x′ = x2 − ax of Example 2.5.2. For the cases a > 0,
a < 0, and a = 0, sketch solution curves that illustrate Fig. 2.14, Fig. 2.15, and
Fig. 2.16, respectively.

B
17. Using one of Kirchhoff’s laws in physics, we find that the current, I , flowing

in a particular electric circuit satisfies the equation 0.5 dI
dt

+ 10I = 12. (The re-
sistance is 10 ohms, the inductance is 0.5 henry, and there is a 12 volt battery.)

a. Sketch the phase portrait of the equation.

b. If the initial current, I (0), is 3 amps, use part (a) to describe the behavior
of I for large values of t .

18. Example 2.1.8 and Problem 21 of Exercises 2.4 indicated that a type of chem-
ical reaction can be modeled by the equation dx

dt
= k(α − x)(β − x).

a. If α = 250, β = 40, and k is a positive constant, produce the phase portrait
of the equation.

b. If x(0) = 0, how does x behave as t → ∞?

19. Consider the equation y′ = y3 − 4y.

a. If y(0) = −1, what happens to y(t) as t increases?

b. Describe the behavior of y(t) as t → ∞ if y(0) = π .

20. Consider the equation dy
dt

= (1 + y)2.

a. What happens to solutions with initial conditions y(0) > −1 as t in-
creases?

b. Describe the behavior of solutions with initial conditions y(0) < −1 as t

increases.

21. Consider the equation dP
dt

= (
1 − P

15

)3 (
P
7 − 1

)
P 5, with P(0) = 3.

a. Use the phase portrait for this equation to give a rough sketch of the solu-
tion P(t).

b. What happens to P(t) as t becomes very large?

22. For each of the phase portraits shown below, write down a corresponding first-
order equation of the form x′ = f (x).

a.

b.

c.
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23. Given the following phase portrait for dy
dt

= f (y), make a rough sketch of the
graph of f (y) assuming that y = 0 is in the center of the phase line.

24. Given the following phase portrait, find a first-order ODE that is consistent
with this phase portrait.

C
25. Consider the equation x′ = (2α−1)x+1, where α is a parameter. Describe the

behavior of solutions x(t) of this equation as t → ∞, noting how this behavior
depends on the value of α.

26. Consider the equation x′ = (α2 −1)x+1+α, where α is a parameter. Describe
the behavior of solutions x(t) of this equation as t → ∞, noting how this
behavior depends on the value of α.

27. The Landau equation arises in the analysis of the dynamics of fluid flow. It
is dx

dt
= ax − bx3, where a and b are positive real constants.

a. Draw the phase portrait of Landau’s equation.

b. What happens to x as t increases if x(0) =
√

a
b

+ ε, where ε is a small

positive quantity?
c. What happens to x as t increases if x(0) = 0?

d. How does x behave as t increases if x(0) =
√

a
b

− ε?

28. If we consider Problem 7 in a different way, we can see the difference between
a traditional treatment of a differential equation and a qualitative analysis.
a. Without using technology, solve the differential equation in Problem 7

with initial condition y(0) = y0.
b. Suppose that y0 = π/2. Using the solution found in part (a), can you de-

scribe what happens as t → ∞?
c. For an arbitrary initial condition y0, what is the behavior of y(t) as

t → ∞?
d. Comment on the contrast between the insight obtained from the phase

portrait (Problem 7) and the information obtained from the solution found
in part (a).

2.6 Equilibrium points: sinks, sources, and nodes
Let’s take another look at Fig. 2.13 and focus on the critical points—the places
where dP

dt
= 0. Geometrically, these are the horizontal lines P = 0 and P = 1, which
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represent the functions P(t) ≡ 0 and P(t) ≡ 1, constant solutions of the differential
equation dP

dt
= P(1 − P). These values of P are called equilibrium points or sta-

tionary points of the autonomous differential equation. We also say that P(t) ≡ 0
and P(t) ≡ 1 are equilibrium solutions or stationary solutions of the equation.
Assuming that the solutions of an autonomous differential equation describe some
physical, economic, or biological system, we can conclude that if the system actu-
ally reaches an equilibrium point P , it must always have been at P —and will always
remain at P . (Think about this. You have dP

dt
= 0 at an equilibrium point.)

We can go further in this analysis and classify equilibrium points for autonomous
first-order differential equations. There are three basic kinds of equilibrium points:
sinks, sources, and nodes.

If we look at the equilibrium point P = 1 in Example 2.5.1, we see from Fig. 2.13
that the solution curves near the line P = 1 seem to swarm into (or converge to) the
horizontal line. We call P = 1 a sink. Sinks are also called attractors or asymptot-
ically stable solutions. A little more accurately, an equilibrium solution P ≡ k is a
sink if solutions with initial conditions sufficiently close to P ≡ k are asymptotic to
P ≡ k as t → ∞. This idea of being “sufficiently close” can be made mathematically
precise: Suppose x∗ is an equilibrium solution of the autonomous equation ẋ = f (x).
Then x∗ is called asymptotically stable if there exists a value for δ > 0 such that if
a solution x = ϕ(t) satisfies |ϕ(t0) − x∗| < δ, then limt→∞ ϕ(t) = x∗. However, we
will just consider the situation intuitively. An asymptotically stable equilibrium solu-
tion has long-term behavior that is insensitive to slight (or sometimes large) variations
in its initial condition. The term sink is meant to suggest the drain of a bathroom or
kitchen sink: Along the sides, water that is close enough will flow into the drain.

On the other hand, we see different behavior near P = 0. As we look along solu-
tion curves from left to right, they seem to be moving away from the line P = 0. The
equilibrium point P = 0 is called a source. In other words, an equilibrium solution
P ≡ k is a source if solutions with initial conditions sufficiently close to P ≡ k are
asymptotic to P ≡ k as t → −∞ (i.e., as we go backward in time). A source is also
called a repeller or an unstable equilibrium solution. Such a solution is extremely
sensitive to even the slightest variations in its initial condition. Here, we can think of
a faucet discharging water or a hand-held hair dryer putting out streams of hot air.

If we have another equilibrium point such that nearby solutions show any other
kind of behavior—perhaps somewhat like a sink and somewhat like a source at the
same time—we call that equilibrium point a node. (See Example 2.6.2 and Fig. 2.16
for instance.) More technically, we can refer to a node as a semistable equilibrium
solution.

2.6.1 A test for equilibrium points
We can test equilibrium points/solutions for autonomous first-order equations by us-
ing a criterion that is reminiscent of a basic calculus result for determining maximum
and minimum values of a function.
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The First Derivative Test
Suppose that f and f ′ are continuous. If x∗ is an equilibrium point for the autonomous equation
dx
dt

= f (x), it is true that (1) if f ′ (x∗) > 0, then x∗ is a source; (2) if f ′ (x∗) < 0, then x∗ is a sink;
and (3) if f ′(x∗) = 0, the test fails—that is, we can’t tell what sort of equilibrium point x∗ may be
without further investigation.

In Example 2.5.1, we saw that P = 0 and P = 1 were equilibrium points. Because
f (P ) = P(1 − P), we have f ′(P ) = 1 − 2P , so f ′(0) = 1 > 0 indicates that P = 0
is a source and f ′(1) = −1 < 0 shows that P = 1 is a sink.

We can understand why the First Derivative Test works by using the concept of
local linearity: Near an equilibrium solution x∗, we can approximate f (x) by the
equation of its tangent line at x∗. (See Section A.1 if necessary.) Therefore, if x is
close enough to x∗, we can write

dx

dt
= f (x) ≈ f (x∗) + f ′(x∗)(x − x∗) = f ′(x∗)(x − x∗)

because f (x∗) = 0 when x∗ is an equilibrium solution. Note that if we form the
approximate differential equation dx

dt
≈ f ′(x∗)(x −x∗), we can separate the variables

and integrate to see that

|x − x∗| ≈ Kef ′(x∗)t ,

where K is a positive constant. Thus, if f ′(x∗) > 0 the distance between x∗ and x

increases exponentially as t → ∞, whereas if f ′(x∗) < 0 the difference |x − x∗|
decays.

We can also use Table 2.3 to compare the signs of f ′(x∗) and (x − x∗).

Table 2.3 Signs of dx
dt

(x − x∗) f ′(x∗) dx
dt

+ + +
+ − −
− + −
− − +

The first row of signs in Table 2.3, for example, tells us that if (x − x∗) is positive,
such that a solution x is slightly above the equilibrium solution, and f ′(x∗) > 0, then
dx
dt

> 0, which means that the solution x is moving away from x∗. This last statement
says that x∗ must be a source. Similarly, the third row of signs indicates that if x

starts out below x∗ and f ′(x∗) > 0, then x falls away from x∗ as t increases, so x∗ is
a source. The remaining two rows describe a sink.

The next two examples show us the power and the limitations of the First Deriva-
tive Test.
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Example 2.6.1 Using the First Derivative Test
If we examine the autonomous equation dx

dt
= x − x3 = x(1 − x2), we see that the equilibrium

points are x = 0, x = −1, and x = 1. Can we determine what kinds of equilibrium points these are
without any kind of graph?

Yes, we just apply the First Derivative Test. First of all, we have dx
dt

= f (x), where f (x) =
x − x3, so f ′(x) = 1 − 3x2. Because f ′(0) = 1 > 0, we know that x = 0 is a source. The fact that
f ′(−1) = −2 < 0 tells us that x = −1 is a sink. Finally, because f ′(1) = −2 < 0, we see that x = 1
is another sink.

FIGURE 2.19

Phase portrait of dx
dt

= x − x3

The phase portrait shown in Fig. 2.19 reflects this information. Finally, the slope field (Fig. 2.20)
confirms our analysis.

FIGURE 2.20

Slope field for dx
dt

= x − x3

Example 2.6.2 Failure of the First Derivative Test
Let’s look at the first-order nonlinear equation dx

dt
= f (x) = (1−x)2. The only equilibrium solution

is x ≡ 1, and we have f ′(x) = 2(1 − x)(−1) = 2(x − 1). Because f ′(1) = 0, the First Derivative
Test doesn’t allow us to draw any conclusions. However, we can examine the behavior of f ′(x) near
x = 1 to get an idea of what’s going on.

We can see that f ′(x) is greater than zero for values of x greater than 1, so x ≡ 1 looks like
a source, but values of x just below 1 give us negative values of the derivative, so x ≡ 1 looks
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like a sink. This ambivalent behavior leads us to conclude that x ≡ 1 is a node. Fig. 2.21 shows
the phase portrait of this equation. Fig. 2.22 shows the slope field with some particular solutions
superimposed.

FIGURE 2.21

Phase portrait of dx
dt

= (1 − x)2

Notice that solution curves starting above the line x = 1 seem to flow away from the line x = 1,
whereas those starting below the equilibrium solution flow toward the line x = 1. In other words,
the point x = 1 is neither a sink nor a source. It is a node.

FIGURE 2.22

Solutions of dx
dt

= (1 − x)2: x(0) = − 1
2 , 1

2 , and 2

In the event that f ′(x∗) = 0, where x∗ is an equilibrium solution of an equation
dx
dt

= f (x), we can sometimes determine the nature of the equilibrium by using these
criteria:

a. The equation ẋ = f (x) has a sink at x = x∗ if f (x) changes sign from positive to
negative at x = x∗.

b. The equation ẋ = f (x) has a source at x = x∗ if f (x) changes sign from negative
to positive at x = x∗.

Note that in Example 2.6.2 the function f (x) does not change sign at x = 1.
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Example 2.6.3 Another Example of the First Derivative Test
Let’s find and classify the equilibrium solutions of ẏ = 1

2 y(y − 2)2(y − 4).
It is easy to see that the equilibrium solutions are y = 0, y = 2, and y = 4, and we have (after

some simplification) f ′(y) = 2(y −2)(y2 −4y +2). Now we apply the First Derivative Test to each
of the equilibrium points.

We see that f ′(0) = −8 < 0, so we conclude that y = 0 is a sink. Then f ′(4) = 8 > 0, so y = 4
is a source. We’ve saved the solution y = 2 for last because the First Derivative Test fails: f ′(2) = 0.
However, we can use criteria a and b above to examine changes in sign of f (y) near x = 2.

For values of y a little less than 2 (try y = 1, for example), we have f ′(y) > 0 (source-like be-
havior), while for values of y slightly greater than y = 2, we see that f ′(y) < 0 (sink-like behavior).
We thus conclude that y = 2 is a node, and we can construct the phase portrait (Fig. 2.23).

FIGURE 2.23

Phase portrait of ẏ = 1
2 y(y − 2)2(y − 4)

In analyzing an autonomous first-order differential equation dx
dt

= f (x), it is use-
ful to sketch the phase line using the graph of f (x). First of all, equilibrium points
are the zeros of f . Furthermore, regions where f is positive and regions where f is
negative correspond to parts of the phase line where the arrows point to the right and
to the left, respectively.

FIGURE 2.24

f (x) = x − x3 compared to the phase line of dx
dt

= x − x3



84 CHAPTER 2 First-order differential equations

Example 2.6.4 Using the Graph of f (x) to Sketch the Phase Portrait
Let’s return to the equation in Example 2.6.1, dx

dt
= x − x3, this time focusing on what the graph

of f (x) = x − x3 reveals. Fig. 2.24 shows the graph of f (x) aligned with the phase portrait of the
differential equation.

Note the equivalence between equilibrium points and the zeros of f and the correspondence
between regions of positivity and negativity for f (x) and the directions of the arrows on the phase
line.

FIGURE 2.25

f (y) = 1
2 y(y − 2)2(y − 4) compared to the phase line of ẏ = 1

2 y(y − 2)2(y − 4)

Similarly, we can show the graph of f (y) from Example 2.6.3 aligned with the phase portrait
(Fig. 2.25) of the differential equation.

Equilibrium solutions and their nature will be particularly useful when we discuss
qualitative aspects of systems of linear and nonlinear equations in Chapters 6 and 7.

Exercises 2.6
A
For Problems 1–15, find the equilibrium point(s) of each equation and classify it as
sinks, sources, or nodes.

1. y′ = y2(1 − y)2

2. ẋ = cosx

3. y ′ = ey − 1

4. y′ = y2(y2 − 1)

5. ẋ = ax + bx2, a > 0, b > 0
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6. ẋ = x3 − 1

7. ẋ = x2 − x3

8. ẏ = 10 + 3y − y2

9. ẋ = x(2 − x)(4 − x)

10. ẋ = −x3

11. ẋ = x3

12. ẏ = y ln(y + 2)

13. ẋ = x − cosx [Hint: Either use technology to find the equilibrium point ex-
plicitly (via a CAS solve command) or graph y = x and y = cosx together on
the same set of axes to estimate the graphs’ point of intersection.]

14. ẋ = x − e−x (Use technology—see the preceding exercise.)

15. x′ = x(x + 1)(x − 0.5)6

16. A lake has two rivers flowing into it, one discharging a certain amount of water
containing a concentration of pollutant and the other discharging an amount
of clean water per day. Assuming that the lake volume is constant, the total
amount of pollution in the lake, Q(t), can be modeled by the balance equation
dQ
dt

= D(Q∗ − Q), where D is a positive constant involving the two rates of
flow into the lake and the lake’s volume and Q∗ is a positive constant involving
volume, rates of flow, and the pollutant concentration.
a. What is the equilibrium solution of this equation?
b. Is the solution found in part (a) stable or unstable? (For example, a sink

would indicate that the clean river input reduces the long-term amount of
pollution in the lake.)

17. Give an example of an autonomous differential equation having no real-valued
equilibrium solution.

18. Give an example of an autonomous differential equation having exactly n equi-
librium solutions (n ≥ 1).

B
19. The following equation has been proposed for determining the speed of a row-

boat5: M du
dt

= 8P
u

− bSu2, where u(t) denotes the speed of the boat at time t ;
M its mass; and P , S, and b are positive constants describing various other
aspects of the boat and the person rowing it.
a. Determine the equilibrium speed of the boat.
b. Determine whether the speed found in part (a) is a sink or a source.
c. Interpret the result of part (b) physically.

20. Given dx
dt

= f (x) and the following graph of f (x),
a. Sketch the phase portrait of the equation.

5 M. Mesterton-Gibbons, A Concrete Approach to Mathematical Modelling (New York: John Wiley &
Sons, 1995): 32–34; 53–56; 130–132.
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b. Identify all equilibrium points and classify each as a sink, a source, or a
node.

21. Given dx
dt

= f (x) and the following graph of f (x),
a. Sketch the phase portrait of the equation.
b. Identify all equilibrium points and classify each as a sink, a source, or a

node.

22. The velocity v(t) of a skydiver falling to the ground is given by mv̇ =
mg − kv2, where m is the mass of the skydiver, g is the acceleration due to
gravity, and k > 0 is a constant related to the amount of air resistance. Assume
v(0) = 0. Without solving the equation, determine the limit of v(t) as t → ∞.
(This limit is called the terminal velocity.)

23. A population growth model that is fairly simple yet amazingly accurate in
predicting tumor growth is described by the Gompertz equation, dN

dt
=

−aN ln(bN), where N(t) > 0 is proportional to the number of cells in the
tumor and a, b > 0 are parameters that are determined experimentally. [Ben-
jamin Gompertz (1779–1865) was an English mathematician and actuary.]
a. Sketch the phase portrait for this equation.
b. Sketch the graph of f (N) against N .
c. Find and classify all equilibrium points for this equation.
d. For 0 < N ≤ 1, determine where the graph of N(t) against t is concave up

and where it is concave down. (You may want to review Example 2.5.1.)
e. Sketch N(t).



2.7 Bifurcations 87

24. Find an equation ẋ = f (x) with the property that there are exactly three equi-
librium points and all of them are sinks.

C
25. A population of animals that follows a logistic growth pattern is harvested at

a constant rate—that is, as long as the population size, P , is positive, a fixed
number, h, of animals is removed per unit of time. The equation modeling the
dynamics of this situation is

dP

dt
= rP (1 − P

k
) − h

for P > 0.
a. Show that if h < rk

4 , there are two nonzero equilibrium solutions.
b. Show that the smaller of the equilibrium solutions in part (a) is a source,

whereas the larger of the two is a sink.

26. Consider the equation ẋ = −x3 + (1 + α)x2 − αx, where α is a constant.
a. If α < 0, find all equilibrium solutions of this equation and classify them.
b. If 0 < α < 1, find all equilibrium solutions and classify them.
c. If α > 1, find all equilibrium solutions and classify them.
d. Describe the equilibrium solutions if α = 0.
e. Describe the equilibrium solutions if α = 1.

2.7 Bifurcations
2.7.1 Basic concepts
To get an idea of what this topic is all about, let’s go back to elementary algebra and
look at the quadratic function f (x) = x2 + x + c, where c is a constant. We should
realize that the zeros of this function depend on the parameter c. To see this, let’s
write

x2 + x + c =
(

x + 1

2

)2

+
(

c − 1

4

)
. (2.7.1)

Clearly, the term
(
x + 1

2

)2
is always nonnegative, so that if c > 1

4 the expres-

sion (2.7.1) is always strictly greater than zero, and the quadratic equation x2 + x +
c = 0 has no real solutions. If c = 1

4 , then the equation has x = − 1
2 as its only root,

a repeated root. Finally, if c < 1
4 we have two solutions, x = − 1

2 ±
√

1
4 − c. (Verify

all the assertions in this paragraph). Fig. 2.26 shows the graph of y = x2 + x + c for
three values of c.

The important point in this example is that 1
4 is the value of the parameter c at

which the nature of the solutions of the quadratic equation changes. We say that
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FIGURE 2.26

Graphs of y = x2 + x + c

c = 1
4 is a bifurcation point because as c decreases through 1

4 the solution x = 0
splits into two solutions. (The word bifurcation refers to a splitting or branching.)

We can see the effect of the bifurcation most clearly by plotting the solution x

against the parameter c in our example, showing the graph of the relationship x =
− 1

2 ±
√

1
4 − c (Fig. 2.27). This graph showing the dependence of a solution on a

parameter is called the bifurcation diagram for the equation x2 +x + c = 0. Be sure
you understand what this diagram tells you. Note, in particular, what happens as c

passes through the value 1
4 .

FIGURE 2.27

Bifurcation diagram for x2 + x + c = 0

2.7.2 Application to differential equations
Most continuous dynamical systems involving differential equations contain parame-
ters. In analyzing such a system, you may observe that a slight change in a parameter
value can have a significant impact on the behavior of the system. A parameter, for
example, may be a function of time: the mass of a rocket changes as it burns fuel, the
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load of an electricity power grid fluctuates during the day, and so forth. Bifurcation
analysis has a large number of applications in science and engineering.

This sort of qualitative change caused by a change in parameter value is partic-
ularly interesting when we observe it in an autonomous differential equation. What
changes for such an ODE at a bifurcation point is the number and/or nature of the
equilibrium solutions.

Definition 2.7.1

Given a family of autonomous differential equations dx
dt

= f (x,λ) containing a parameter λ, a bifur-
cation point (or bifurcation value) is a value λ0 of the parameter for which the qualitative nature
of the equilibrium solutions changes as λ passes through λ0. The actual change in the equilibrium
solutions is called a bifurcation.

For a family of autonomous differential equations dx
dt

= f (x,λ), a bifurcation
diagram is a diagram that summarizes the change in qualitative behavior of the
equation as the parameter λ is varied. We construct the bifurcation diagram by plot-
ting the parameter value λ against all corresponding equilibrium values y∗. Typically,
λ is plotted on the horizontal axis and y∗ on the vertical axis. A “curve” of sinks is
indicated by a solid line and a curve of sources is indicated by a dashed line. The
examples in this section should clarify the process.

The real significance of bifurcations was first revealed by Leonhard Euler
(1707–83), the great Swiss mathematician who has been called “the Shakespeare
of mathematics,” in his work published in 1744 on the buckling of an elastic straight
beam or a column under a compressive force. The normal upright position repre-
sents an equilibrium position. The parameter here is the force F exerted on the top of
the column. For certain values of F , say F < F ∗, the column maintains its vertical
position, but if the force is too great, say F > F ∗, the vertical equilibrium position
becomes unstable, and the column may buckle. The critical force F ∗ is the bifurca-
tion point. The equilibrium situation changes as the size of the force passes through
the value F ∗.

There are many types of bifurcations (some of whose names haven’t been stan-
dardized yet), but the examples discussed in this section will introduce us to three
common types for autonomous first-order equations:

1. Transcritical Bifurcation: In this scenario, there will be an equilibrium solu-
tion for all values of the parameter and such a solution never disappears. Both



90 CHAPTER 2 First-order differential equations

before and after the bifurcation point, there will be an equilibrium solution—
one stable and one unstable—and their stability is exchanged from stable to
unstable or vice versa as the parameter passes through the bifurcation point.

2. Saddle-Node Bifurcation: In this situation, two equilibrium solutions collide
and annihilate each other. One of the solutions is unstable (the saddle), while
the other (the node) is stable.

3. Pitchfork Bifurcation: This kind of bifurcation is characterized by the system
transitioning from one equilibrium solution to three equilibrium solutions.

These descriptions will make sense once we have studied the following examples.
The first example reveals the bifurcation point for a simple first-order equation that
we discussed earlier.

Example 2.7.1 A Transcritical Bifurcation
The equation dy

dt
= ay expresses the fact that at any time t , some quantity y grows at a rate pro-

portional to its size at time t . The parameter a is the constant of proportionality that captures some
growth characteristic of the quantity.

Setting dy
dt

= 0, we find that the equilibrium solutions are described by ay = 0. If a = 0, then
every value of y is an equilibrium point. If a �= 0, then y ≡ 0 is the only equilibrium point. For the

equation dy
dt

= ay = f (y), we have f ′(y) ≡ a; we use the First Derivative Test from Section 2.6 to
conclude that if a > 0, then y ≡ 0 is a source, and if a < 0, then y ≡ 0 is a sink. Clearly, a = 0 is
a bifurcation point because the number and nature of the equilibrium solutions change as a passes
through 0. Fig. 2.28 shows graphs of f (y) against y for the three possibilities for a and the corre-
sponding phase portraits.

FIGURE 2.28
dy
dx

= f (y) = ay vs. y

Note how the conditions for a transcritical bifurcation are satisfied. Equilibrium solutions exist
for all values of a and the stability of the equilibrium solution y ≡ 0 changes when the parameter a

crosses the origin.
We can show the dependence of the equilibrium points on a by drawing a bifurcation diagram,

plotting y(t) against a (Fig. 2.29). The y-axis itself represents all the solutions y = C, where C is
any constant for a = 0. It is usual in bifurcation diagrams to use solid curves to indicate stable equi-
librium solutions (sinks) and dashed lines to denote unstable solutions (sources). Arrows indicate
the directions of change of some solutions with time.
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FIGURE 2.29

Bifurcation diagram for dy
dt

= ay

Example 2.7.2 A Pitchfork Bifurcation
Let’s look at the first-order nonlinear equation dy

dx
= αy −y3 = f (y). This is the Landau equation,

a variant of which appeared in Problem 27 of Exercises 2.5; it arises in the study of one-dimensional
patterns in fluid systems. Here y = y(t) gives the amplitude of the patterns, and α is a small, dimen-
sionless parameter that measures the distance from the bifurcation. [L.D. Landau (1908–1968) was
a Russian physicist who won the Nobel Prize in 1962.]

We see that dy
dx

= 0 implies that αy − y3 = y(α − y2) = 0, so y = 0, y = √
α, and y = −√

α

are the only equilibrium points. Looking at these points, we can see (because of the radical sign)
that we have three cases to consider: (1) α = 0, (2) α > 0, and (3) α < 0.

When α = 0, there is the single equilibrium point y = 0. Then we have f ′(y) = α − 3y2 =
−3y2, so f ′(0) = 0 and we can’t determine the nature of the equilibrium solution y = 0 from the

First Derivative Test. However, we can see that when α = 0 the differential equation is dy
dx

= −y3,
a separable equation whose solution tends to zero as x becomes infinite in the positive direction.
(Solve the equation to see for yourself.) Thus, y = 0 is a sink.

If α is less than zero, then y = 0 is the only equilibrium point because
√

α and −√
α are

imaginary numbers. For this case, we see that f ′(0) = α < 0, so y = 0 is a sink.

FIGURE 2.30

f (y) = αy − y3 vs. y
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However, if α is greater than zero, then the equation has three distinct equilibrium points: y = 0,
y = √

α, and y = −√
α. We see that f ′(0) = α > 0, so y = 0 is a source; f ′(√α) = −2α < 0, so

y = √
α is a sink; and f ′(−√

α) = −2α < 0, so y = −√
α is also a sink. This behavior clearly

describes a pitchfork bifurcation, based on the characterization given above.
Note how the value of α determines the number and the nature of the equilibrium solutions of

our equation. Clearly, α = 0 is the only bifurcation point for our original equation. Fig. 2.30 shows
two representations for each set of values of α: graphs of f (y) against y for the three descriptions
of α considered above and corresponding phase portraits.

We can show this dependence of the equilibrium points on α also by means of a bifurcation
diagram, in which we plot y against α (Fig. 2.31). This diagram shows that we have a pitchfork
bifurcation in an obvious geometric way.

FIGURE 2.31

Bifurcation diagram for dy
dx

= αy − y3

A laser—the word stands for light amplification by stimulated emission of
radiation—is a marvelous device that produces a beam of intense, concentrated pure
light that can be used to cut diamonds, destroy cancerous cells, perform eye surgery,
and enhance telecommunications when used in fiber optics. Basically, an external
energy source is used to excite atoms and produce photons (light particles) that have
the same frequency and phase. A. Schawlow and C. Townes received a patent for the
invention of the laser in 1960, and the first laser was built by the American physi-
cist T.H. Maiman in the same year. The mathematical model of a laser that follows
is an important scientific example that illustrates another type of bifurcation. It is
more complicated than the previous two examples because the bifurcation behavior
depends on the values of two parameters.

Example 2.7.3 A Transcritical Bifurcation in a Laser Model
A simplified model of the basic physics behind a laser is given by the equation

ṅ = f (n) = Gn(N0 − n) − kn = (GN0 − k)n − Gn2.

In this equation, n = n(t) represents the number of photons at time t , N0 is the (constant) number
of “excited” atoms (in the absence of laser action), and G and k are positive parameters related to
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the gain and loss, respectively, of photons that have the same frequency and phase. We emphasize
that we have two parameters in our equation, and we will see that our bifurcation analysis depends
on the value of N0 in relationship to them.

We can write the equation as ṅ = n(GN0 − k − Gn), so setting ṅ equal to zero gives us n ≡ 0 or
GN0 − k − Gn ≡ 0. This tells us that the equilibrium solutions are n ≡ 0 and n = (GN0 − k)/G =
N0 − (k/G), where N0 �= k/G.

Looking at the first equilibrium solution, n ≡ 0, we see that this equilibrium solution is a
sink when N0 < k/G—that is, when GN0 − k < 0. From the original equation, we have f (n) =
(GN0 − k)n − Gn2, so f ′(n) = (GN0 − k)− 2Gn. Then f ′(0) = GN0 − k < 0, so n ≡ 0 is indeed
a sink by the First Derivative Test. Physically, this means that there is no stimulated emission and
no photons are produced that have the same frequency and phase. The laser device functions like a
light bulb. Similarly, we can determine that n ≡ 0 is a source when N0 > k/G.

Focusing on the second equilibrium point, n = N0 − (k/G), where N0 �= k/G, we see that

f ′
(

N0 − k

G

)
= (GN0 − k) − 2G

(
N0 − k

G

)
= −GN0 + k.

If N0 < k/G, then −GN0 + k > 0 and therefore n = N0 − (k/G) is a source. If N0 > k/G, then
−GN0 + k < 0 and therefore n = N0 − (k/G) is a sink. The physical interpretation of this last fact
is that the external energy source has excited the atoms enough so that some atoms produce photons
that have the same frequency and phase. The device is now producing coherent light.

Finally, if N0 = k/G, then our original equation reduces to ṅ = −Gn2, so we get only one
equilibrium solution, n ≡ 0, which is a sink if we consider only positive values of n. Because of
this change in the nature and number of equilibrium solutions, we can interpret N0 = k/G as our
bifurcation point (called the laser threshold). The bifurcation diagram (Fig. 2.32) summarizes this
model.

FIGURE 2.32

Bifurcation diagram for the laser model6

The physical interpretation is that when the amount of energy supplied to the laser exceeds
a certain threshold—that is, when N0 > k/G—the light bulb turns into a laser. Notice that at the
bifurcation value N0 = k/G the two equilibrium solutions merge, and when they split apart, they
have interchanged stability. For N0 > k/G the equilibrium solution n ≡ 0 becomes unstable by
transferring its stability to another equilibrium solution, n = N0 − (k/G), the straight line with a
slope of 1 in Fig. 2.32. This is the defining characteristic of a transcritical bifurcation.

6 Adapted from Fig. 3.3.3 in S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering (Second Edition) (Boulder, CO: Westview Press, 2015): 56.
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The next example demonstrates the behavior of a saddle-node bifurcation, and the
analysis resembles that of the quadratic function at the beginning of Section 2.7.1.

Example 2.7.4 A Saddle-Node Bifurcation
Consider the nonlinear autonomous differential equation ẋ = r + x2, where r is a real parameter.
The equilibrium solutions satisfy the equation r + x2 = 0, so we have x = ±√−r .

If r < 0, then −r > 0 and there are two equilibrium solutions, x = √−r and x = −√−r . If
r = 0, we have ẋ = x2, so that x = 0 is the only equilibrium solution. With f (x) = x2, we see that
f ′(0) = 2(0) = 0, so the First Derivative Test fails to reveal the nature of this equilibrium point.
However, for values of x just below 0, we see that f ′(x) < 0, suggesting that x = 0 could be a sink,
but for values of x above 0, f ′(x) > 0, so that x = 0 looks like a source. We conclude that x = 0 is
a node.

If r > 0, then −r < 0, and there are no equilibrium solutions.
Clearly r = 0 is a bifurcation point because the number and nature of the equilibrium solutions

change as r passes through zero.
Fig. 2.33 shows the graphs of f (x) against x and the corresponding phase portraits.

FIGURE 2.33

f (x) = r + x2 vs. x

What happens here is that as r passes from less than zero to greater than zero, the two equi-
librium solutions −√−r and

√−r collide and cancel each other out. (Picture the parabola rising
rigidly, forcing the x-intercepts to fuse into one point, the origin.) As the parabola continues to rise,
it eventually avoids any contact with the x-axis—that is, there are no longer any equilibrium points.

The bifurcation diagram is shown in Fig. 2.34.

The bifurcation examples we have seen so far have involved a change in stability
in equilibrium solutions or a disappearance of solutions as the parameter crosses a
bifurcation point. Stranger behavior is possible.

Example 2.7.5 Bistability
Let’s look at the equation ẋ = f (x) = αx + x3 − x5, where α is a real parameter. First we find the
equilibrium solutions and determine their stability.

The solutions of αx+x3 −x5 = x(α+x2 −x4) = 0 are x = 0 and x equal to the solutions of the
polynomial equation α+x2 −x4 = 0. Letting y = x2, we determine the solutions of y2 −y −α = 0,
which are y1 = (1 + √

1 + 4α)/2 and y2 = (1 − √
1 + 4α)/2, provided that 1 + 4α ≥ 0—that is,

α ≥ −1/4. Since we have y = x2, we can only use y1 and y2 when they are nonnegative.
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FIGURE 2.34

Bifurcation diagram for ẋ = r + x2

Now y1 = (1 + √
1 + 4α)/2 is always positive when α ≥ −1/4. But y2 = (1 − √

1 + 4α)/2 is
nonnegative only when 1 ≥ √

1 + 4α—that is, when −1/4 ≤ α ≤ 0.
In summary, when α < −1/4, there is only one equilibrium solution: x = 0. Since d

dx
f (x) =

α + 3x2 − 5x4 = α < 0 at x = 0, the First Derivative Test shows us that x = 0 is a sink. When
−1/4 ≤ α ≤ 0, there are five equilibrium solutions. The solution x = 0 is valid and is still a sink;
and the four other equilibrium solutions are ±√

y1 and ±√
y2. The First Derivative Test shows

that the two equilibrium solutions ±
√

(1 − √
1 + 4α)/2 are sources, while ±

√
(1 + √

1 + 4α)/2

are sinks. (Verify that f ′
(

±
√

(1 − √
1 + 4α)/2

)
= −4α − 1 + √

1 + 4α > 0 for −1/4 < α < 0

and f ′
(

±
√

(1 + √
1 + 4α)/2

)
= −4α − 1 − √

1 + 4α < 0 for −1/4 < α < 0.)

For α > 0, only three equilibrium solutions remain because the solutions ±
√

(1 − √
1 + 4α)/2)

no longer exist: α > 0 implies that 1 + 4α > 1, giving us 1 − √
1 + 4α < 0, so that we have a square

root of a negative number. The equilibrium solution x = 0 is now a source since α > 0, while the

solutions ±
√

(1 + √
1 + 4α)/2 are still sinks.

In the interval [−1/4,0], several stable solutions (sinks) co-exist. We say that there is bistability
between the solutions. The choice between x = 0 and one or the other of the symmetric stable
solutions (sinks) depends on the history of the system the differential equation describes, for example
initial conditions. The bifurcation diagram for this example is given in Fig. 2.35.

Let’s step back and examine a modified version (Fig. 2.36) of the last example’s
bifurcation diagram of ẋ = αx + x3 − x5. We have seen that for α < −1/4 the equi-
librium solution x = 0 is stable (a sink). The system will remain in this state as α

moves slowly toward 0. As α is increased through 0, the system loses its stability
by jumping to one of the stable equilibrium branches near ±1. Which one of these
symmetric states occurs is not determined by the system, but will depend on external
asymmetries such as noise or imperfections in the system. As α is increased further
the equilibrium solution remains on the same stable equilibrium branch. However, if
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FIGURE 2.35

f (x) = r + x2 vs. x

α is decreased from large values the solution will not jump back to 0 at α = 0. In-
stead, it will remain on the branch until α = −1/4, at which point the system jumps
back to x = 0.

FIGURE 2.36

f (x) = r + x2 vs. x

This phenomenon in the last example, involving a jump and irreversible behav-
ior, is referred to as hysteresis in various applications. The arrows in Fig. 2.36
indicate a hysteresis loop. The term was introduced by the physicist J.A. Ewing
in 1881 and refers to a phenomenon in which a temporary change in one factor
causes a permanent change in another. Applications exhibiting hysteresis (from the
Greek word for “remaining”) have traditionally been found in physics—for example,
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ferromagnetism—but this word also conveys the idea that the choice of the stable
equilibrium solution by a system depends on the past history of the system. When an
external magnetic field is applied to a ferromagnetic material such as iron the mate-
rial is magnetized. But even when the imposed magnetizing field is removed, part of
the magnetization will be retained. This property of ferromagnetic materials is useful
as a magnetic “memory,” and hysteresis forms the basis for the element of memory
in a tape recorder, a computer hard disk drive, and a credit card.

In recent years the effects of hysteresis have been studied in various areas ranging
from physics to biology, from material science to mechanics, and from electronics
to economics. (For a very readable (non-mathematical) discussion of hysteresis, see
Section 6.4 of Six Sources of Collapse by Charles R. Hadlock (Washington, D.C.:
Mathematical Association of America, 2012).)

Exercises 2.7
A
For each of the following equations in Problems 1–6, (1) sketch all the qualitatively
different graphs of f (x) against x as the parameter c is varied; (2) determine the
bifurcation point(s); and (3) sketch the bifurcation diagram of equilibrium solutions
against c.

1. dx
dt

= x2 − c

2. dx
dt

= 1 + cx + x2

3. dx
dt

= x − cx(1 − x)

4. dx
dt

= x2 − 2x + c

5. dx
dt

= x(x − c)

6. dx
dt

= cx − x2

B
7. Consider the logistic equation (see Example 2.5.1) with a constant rate of har-

vesting (hunting, fishing, reaping, etc.) h : dP
dt

= P(5 − P) − h. Is there a
maximum harvest rate h∗ beyond which the population will become extinct
for every initial population P0 = P(0)?

8. Construct the bifurcation diagram for the equation x′ = α−e−x2
, where α > 0.

9. Construct the bifurcation diagram for dx
dt

= x(c − x2), where c is a parameter.

10. Construct the bifurcation diagram for dx
dt

= x(x2 − 1 − α), −∞ < α < ∞.

11. Construct the bifurcation diagram for the equation x′ = 3x − x3 − α, where α

is a parameter.
12. Determine what kind of bifurcation the system represented by the equation

ẋ = (2 + μ)x − 5x2 undergoes by finding the bifurcation value and draw-
ing the bifurcation diagram, complete with arrows indicating the nature of the
equilibrium solutions.
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C
13. The Landau equation in the form ẋ = (R − Rc)x − kx3, where k and Rc are

positive constants and R is a parameter that may take on various values, is
important in the field of fluid mechanics.
a. If R < Rc, show that there is only the equilibrium solution x = 0, and that

it is a sink.
b. If R > Rc, show that there are three equilibrium solutions, x = 0, x =√

(R − Rc)/k, and x = √
(R − Rc)/k, and that the first solution is a

source while the other two are sinks.
c. Sketch a graph in the R-x plane showing all equilibrium solutions and la-

bel each one as a sink or a source. How would you describe the bifurcation
point R = Rc?

14. The following equation occurs in the study of gene activation:

dx

dt
= α − x + 4x2

1 + x2
.

Here x(t) is the concentration of gene product at time t .
a. Sketch the phase portrait for α = 1.
b. There is a small value of α, say α0, where a bifurcation occurs. Estimate

α0 and sketch the phase portrait for some α in the open interval (0, α0).
c. Draw the bifurcation diagram for this differential equation.

*2.8 Existence and uniqueness of solutions7

This is the time to acknowledge that we have been avoiding a very important question.
When we’re trying to solve a differential equation, how do we know that there is a so-
lution? We could be looking for something that doesn’t exist—a waste of time, effort,
and (these days) computer resources. As strange as it may seem when we think about
it, those who investigated differential equations, from Newton’s time through the late
nineteenth century, were concerned for the most part about solution techniques, not
the general question of existence and uniqueness of solutions.

We already noted in Section 1.2 that the equation (y′)2 +1 = 0 has no real-valued
solution. You can easily check that the IVP y ′ = 3

2y1/3, y(0) = 0 has three distinct
solutions: y ≡ 0, y = −x3/2, and y = x3/2.

Calculators and computers can mislead. They may present us with a solution
where there is none. If there are several possible solutions, our user-friendly device
may make its own selection, whether or not it is the one that we want for our problem.
A skeptical attitude and a knowledge of mathematical theory will protect us against
inappropriate answers.

7 ∗ Denotes an optional section.
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First, let’s look at what can happen when we try to solve first-order IVPs. Then
we’ll discuss an important result guaranteeing when such IVPs have one and only
one solution.

Example 2.8.1 An IVP with a Unique Solution on a Restricted Domain
We’ll see that for each value of x0 the IVP x′ = 1+x2, x(0) = x0 has a unique solution, but that this
solution does not exist for all values of the independent variable t . The slope field for this equation
(Fig. 2.37) gives us some clues.

FIGURE 2.37

Slope field for x′ = 1 + x2; −3 ≤ t ≤ 3, −3 ≤ x ≤ 3

To see things clearly, we can focus on the initial condition x(0) = 0. There seems to be only
one solution satisfying this condition, but the direction field suggests that the solution curve may
have vertical asymptotes. Separating the variables, we see that

∫
dx

1+x2 = ∫
1dt , which gives us

arctanx = t +C, or x(t) = tan(t +C). The initial condition x(0) = 0 implies that C = 0, so that the
solution of the IVP is x(t) = tan t . But this solution’s domain is the open interval (−π/2,π/2). Re-
call that the function approaches ±∞ as t → ±π/2 (we say the function “blows up in finite time”);
therefore, the unique solution of our IVP doesn’t exist outside the (time) interval (−π/2,π/2).

Now even if we have determined that a given equation has a solution, a second
important concern is whether there is only one solution. This question is usually asked
about solutions to IVPs.

Example 2.8.2 An IVP with Infinitely Many Solutions
The nonlinear separable differential equation x′ = x2/3 has infinitely many solutions satisfying
x(0) = 0 on every interval [0, β]. To prove this claim, we actually construct the family of solutions
of the IVP.
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For each number c such that 0 < c < β, we can define the function

xc(t) =
{

0 for 0 ≤ t ≤ c

1
27 (t − c)3 c ≤ t ≤ β.

You should verify that each such function satisfies the differential equation with x(0) = 0. You
should even be able to show that such a function is differentiable at the break point c. Because there
are infinitely many values of the parameter c, our IVP has infinitely many solutions. Fig. 2.38 shows
a few of these solutions with β = 7.

FIGURE 2.38

Solutions of the IVP x′ = x2/3, x(0) = 0. The functions xc(t) for c = 1
2 , 1

4 , 1, 2, and 3; β = 7;
−1 ≤ t ≤ 7

2.8.1 An Existence and Uniqueness Theorem
For first-order differential equations the answers to the existence and uniqueness
questions we have just posed are fairly easy. We have an Existence and Unique-
ness Theorem—simple conditions that guarantee one and only one solution of an
IVP.

Existence and Uniqueness Theorem
Let R be a rectangular region in the x-y plane described by the two inequalities a ≤ x ≤ b and c ≤
y ≤ d. Suppose that the point (x0, y0) is inside R. Then if f (x, y) and the partial derivative ∂f

∂y
(x, y)

are continuous functions on R, there is an interval I centered at x = x0 and a unique function y(x)

defined on I such that y is a solution of the IVP y′ = f (x, y), y(x0) = y0.

This statement may seem a bit abstract, but it is the simplest and probably the
most widely used result that guarantees the existence and uniqueness of a solution of
a first-order IVP. Using this theorem is simple. Take your IVP, write it in the form
y′ = f (x, y), y(x0) = y0, and then examine the functions f (x, y) and ∂f

∂y
, the partial

derivative of f with respect to the dependent variable y. (Section A.7 has a quick
review of partial differentiation.)



2.8 Existence and uniqueness of solutions 101

Fig. 2.39 gives an idea of what such a region R and interval I in the Existence and
Uniqueness Theorem may look like.

FIGURE 2.39

Region of existence and uniqueness: R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}

It’s important to note the following comments about this fundamental theorem:

1. If the conditions of our result are satisfied, then solution curves for the IVP can
never intersect. (Do you see why?)

2. If f (x, y) and ∂f/∂y happen to be continuous for all values of x and y, our result
does not say that the unique solution must be valid for all values of x and y.

3. The continuity of f (x, y) and ∂f/∂y are sufficient for the existence of solutions,
but they may not be necessary to guarantee their existence. This means that you
may have solutions even if the continuity condition is not satisfied.

4. This is an existence theorem, which means that if the right conditions are satisfied,
you can find a solution, but you are not told how to find it. In particular, you may
not be able to describe the interval I without actually solving the differential
equation.

The significance of these remarks will be explored in some of the following exam-
ples and in some of the problems in Exercises 2.8. First, let’s apply the Existence and
Uniqueness Theorem to IVPs involving first-order linear ODEs. In the last section of
this chapter we’ll sketch a proof of this important result.

Example 2.8.3 Any “Nice” Linear IVP Has a Unique Solution
Because linear equations model many important physical situations, it’s important to know when
these equations have unique solutions. We show that if P(x) and Q(x) are continuous (“nice”) on

an interval (a, b) containing x0, then any IVP of the form dy
dx

+P(x)y = Q(x), y(x0) = y0, has one
and only one solution on (a, b).

In terms of the Existence and Uniqueness Theorem, we have

f (x, y) = −P(x)y + Q(x) and
∂f

∂y
(x, y) = −P(x).
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But both P(x) and Q(x) are assumed continuous on the rectangle R = {(x, y)|a ≤ x ≤ b, c ≤
y ≤ d} for any values of c and d, and f (x, y) is a combination of continuous functions. (There are
no values of x and y that give us division by zero or an even root of a negative number, for example.)
The conditions of the theorem are satisfied, and so any IVP of the form described previously has a
unique solution.

In Section 2.2 we showed how to find a solution of a linear differential equation explicitly. Now
we see, given an appropriate initial condition, that we have learned how to find the unique solution.

Now let’s go back and re-examine some examples we discussed earlier.

Example 2.8.4 Example 2.8.1 Revisited
Assume that x is a function of the independent variable t . If we look at the IVP x′ = 1 + x2,
x(0) = x0, in light of the Existence and Uniqueness Theorem, we see that f (t, x) = 1 + x2, a func-

tion of x alone that is clearly continuous at all points (t, x), and ∂f
∂x

= 2x, also continuous for all
(t, x).

The conditions of the theorem are satisfied, and so the IVP has a unique solution. But even

though both f (t, x) and ∂f
∂x

are continuous for all values of t and x, we know that any unique
solution is limited to an interval

(
(2n − 1)π

2
,
(2n + 1)π

2

)
, n = 0, ±1, ±2, ±3, . . . ,

separating the consecutive vertical asymptotes of the tangent function. (Go back and look at the
one-parameter family of solutions for the equation, and see comment 2 that follows the statement of
the Existence and Uniqueness Theorem.)

Next, we reexamine Example 2.8.2 in light of the Existence and Uniqueness The-
orem.

Example 2.8.5 Example 2.8.2 Revisited
Here, we have the form x′ = x2/3 = f (x), with x(0) = 0, so we must look at f (x) and ∂f

∂x
. But

∂f
∂x

= f ′(x) = 2
3 x−1/3 = 2

3 3√x
, which is not continuous in any rectangle in the t-x plane that in-

cludes x = 0 (that is, any part of the t-axis). Therefore, we shouldn’t expect to have both existence
and uniqueness on an interval of the form [0, β]—and in fact we don’t have uniqueness, as we have
seen.

However, if we avoid the t-axis—that is, if we choose an initial condition x(t0) = x0 �= 0—then
the Existence and Uniqueness Theorem guarantees that there will be a unique solution for the IVP.
Fig. 2.40a shows the slope field for the autonomous equation x′ = x2/3 in the rectangle −1 ≤ t ≤ 5,
0 ≤ x ≤ 3. This rectangle includes part of the t-axis, and it is easy to visualize many solutions
starting at the origin, gliding along the t-axis for a little while, and then taking off. Fig. 2.38 shows
some of these solution curves.

Fig. 2.40b, on the other hand, shows what happens if we choose a rectangle that avoids the
t-axis. It should be clear that if we pick any point (t0, x0) in this rectangle, there will be one and
only one solution of the equation that passes through this point.
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FIGURE 2.40a

Slope field for x′ = x2/3, −1 ≤ t ≤ 5, 0 ≤ x ≤ 3

FIGURE 2.40b

Slope field for x′ = x2/3, −1 ≤ t ≤ 5, 1 ≤ x ≤ 3

2.8.2 A sketch of a proof of the Existence and Uniqueness Theorem
The proof of the Existence and Uniqueness Theorem is due to Émile Picard
(1856-1941), who used an iteration scheme that guarantees a solution under the con-
ditions specified.

We begin by recalling that any solution to the IVP dy
dx

= f (x, y), y(x0) = y0 must
also satisfy the integral equation

y(x) = y0 +
∫ x

x0

f (t, y(t)) dt. (I)
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The converse is also true: If y(x) satisfies the integral equation, then dy
dx

= f (x, y(x))

and y(x0) = y0. This means that the IVP may be replaced by Eq. (I) and we can
implement Picard’s method.

In the integrand in Eq. (I), replace y(t) by the constant y0, then integrate and call
the resulting right-hand side of Eq. (I) y1(x):

y1(x) = y0 +
∫ x

x0

f (t, y0) dt. (II)

This starts the process (also called successive approximation). To keep it going, we
use the iterative formulas

yn+1(x) = y0 +
∫ x

x0

f (t, yn(t)) dt. (III)

A rigorous proof of Picard’s theorem consists of showing that this process produces
a sequence of functions {yn(x)} that converges to a function y(x) that satisfies the
IVP dy

dx
= f (x, y), y(x0) = y0 for values of x sufficiently near x0. The convergence

follows from the continuity assumptions in the Existence and Uniqueness Theorem.
Another technicality in the proof involves ensuring that the graph of each function
y = yn(x) lies within the rectangle R of the theorem for appropriate values of x.

Let’s look at a simple example of how Picard’s method works. In many situations
the actual computations are rather tedious.

Example 2.8.6 Picard’s Iteration Method
Suppose we have the very simple IVP dy

dx
= y, y(0) = 1, or y(x) = 1 + ∫ x

0 y(t) dt . Then
f (x, y) = y, and Eq. (II) becomes

y1(x) = 1 +
∫ x

0
1dt = 1 + x.

Using Eq. (III) with n = 1, we get

y2(x) = 1 +
∫ x

0
f (t, y1(t)) dt = 1 +

∫ x

0
(1 + t) dt = 1 + x + x2

2! .

The next iteration, with n = 2, gives

y3(x) = 1 +
∫ x

0

(
1 + t + t2

2

)
dt = 1 + x + x2

2! + x3

3! .

Spoiler alert: y4(x) = 1 + x + x2

2! + x3

3! + x4

4! , y5(x) = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! , . . . , yn(x) =∑n
k=0

xk

k! . At this point, you should recognize that the limit of the sequence {yn(x)} as n → ∞ is

the infinite Taylor series for ex : limn→∞
∑n

k=0
xk

k! = ∑∞
k=0

xk

k! = ex . This, of course, is a solution
of the IVP. (It would be interesting to graph ex , y1(x), and y2(x), for example, on the same set of
axes to get a sense of the approximation.)
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A rigorous proof that Picard’s iterates converge to a solution of an IVP also shows
that y(x) = limn→∞ yn(x) is uniquely determined, but we can sketch an independent
proof of uniqueness.

Suppose that the hypotheses of the Existence and Uniqueness Theorem hold and
that Y1(x) and Y2(x) are two solutions of the IVP dy

dx
= f (x, y), y(x0) = y0. We want

to show that these solutions are equal—that is, |Y1(x) − Y2(x)| = 0. Now we have

d

dx
[Y1(x) − Y2(x)] = f (x,Y1(x)) − f (x,Y2(x)), x0 < x < x0 + a. (IV)

Since the function Y1(x)−Y2(x) is continuous on I and has a value of zero at x = x0,
we can integrate each side of Eq. (IV) from x0 to some x ∈ I to see that

Y1(x) − Y2(x) =
∫ x

x0

[
f (t, Y1(t)) − f (t, Y2(t))

]
dt, x ∈ I

If we fix the value of x, the function f can be regarded as a function of y alone. Since
∂f
∂y

is continuous in the rectangle R, the Mean Value Theorem and the Extreme Value
(Maximum/Minimum) Theorem for continuous functions of a single variable imply
that there is a positive constant M such that

|f (x,Y1) − f (x,Y2)| ≤ M|Y1 − Y2| for (x,Y1(x)), (x,Y2(x)) ∈ R. (V)

Taking absolute values of each side of inequality (V), denoting |Y1(x) − Y2(x)| by
Z(x), estimating the integral, and using inequality (V), we get the integral inequality

0 ≤ Z(x) ≤
∫ x

x0

|f (t, Y1(t)) − f (t, Y2(t))|dt ≤ M

∫ x

x0

Z(t) dt, t ∈ I. (VI)

Now we show that the only nonnegative solution Z(x) of inequality (VI) is the zero
function, Z(x) = 0 for all values of x.

Let

W(x) =
∫ x

x0

Z(t) dt for all x ∈ I.

Since W ′(x) = Z(x) on I by the Fundamental Theorem of Calculus (Appendix A.4),
we can rewrite Eq. (VI) as the inequality W ′(x) − MW(x) ≤ 0, all x ∈ I . But the
left-hand side of this inequality resembles a first-order linear differential equation.
Multiplying this inequality by the integrating factor e−Mx , we get

d

dx

[
W(x)e−Mx

]
≤ 0, x0 ≤ x ≤ x0 + a.

This means that W(x)e−Mx is a nonincreasing function of x for x0 ≤ x ≤ x0 + a.
This implies that

W(x)e−Mx ≤ W(x0)e
−Mx, x0 ≤ x ≤ x0 + a.
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But W(x0) = ∫ x0
x0

Z(t) dt = 0 and so W(x) ≤ 0 for all x ∈ I . On the other hand, since

W(x) = ∫ x

x0
Z(t) dt for x > x0 and Z(x) ≥ 0, we know that W(x) ≥ 0 for all x ∈ I .

Since W(x) ≤ 0 ≤ W(x), we see that W(x) = 0 for all x, so W ′(x) = Z(x) = 0 for
all x as well—and we have shown that Y1(x) = Y2(x) for all x ∈ I . Therefore, our
IVP can’t have more than one solution on I .

Exercises 2.8
A
For each of the following IVPs 1–8, determine a rectangle R in the appropriate plane
(x-y, t-x, etc.) for which the given differential equation would have a unique solution
through a point in the rectangle. Do not solve the equations.

1. d x
d t

= 1
x

, x(0) = 3

2. d y
d t

= 5
4y1/5, y(0) = 0

3. t dx
dt

= x, x(0) = 0

4. y ′ = − t
y

, y(0) = 0.2

5. y′ = t
1+t+y

, y(−2) = 1

6. x ′ = tanx, x(0) = π
2

7. (1 + t)
dy
dt

= 1 − y

8. y′ = v
x+y
x−y

9. What is the length of the largest interval I on which the IVP y′ = 1 + y2,
y(0) = 0 has a solution?

10. Show that y ≡ −1 is the only solution of the IVP y′ = t (1 + y), y(0) = −1.
11. What is the solution to the IVP dx

dt
= x2/3, x(0) = x0 if x0 < 0? Compare your

answer to the answer(s) in Example 2.8.2. What has changed?
12. What is the largest interval I on which the IVP dy

dx
= ey , y(0) = c (a constant)

has a solution?

B
13. Look at the IVP Q′ = |Q − 1|, Q(0) = 1.

a. Explain why the conditions of the Existence and Uniqueness Theorem do
not hold for this equation.

b. Guess at a solution of this IVP.
c. Explain why the solution you found in part (b) is unique.

14. Consider the equation ẏ = √|y| + k, where k is a positive constant.
a. Solve the equation. (You will get an implicit solution.)
b. For what initial values (t0, y0) does the equation have a unique solution?
c. For what values of k ≤ 0 does the equation have unique solutions?
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15. The parabola y = x2 and the line y = 2x − 1 are both solutions of the equa-
tion y′ = 2x − 2

√
x2 − y and satisfy the initial condition y(1) = 1. Does this

contradict the Existence and Uniqueness Theorem?

16. Consider the equation dy
dx

+ x2y3 = cosx.
a. Does this equation have a unique solution passing through any point

(x0, y0)?
b. Try to solve the equation using the ODE solver in your CAS. Comment

on the result.

17. Consider the IVP dy
dx

= P(x)y2 +Q(x)y, y(2) = 5, where P(x) and Q(x) are
third-degree polynomials in x. Does this problem have a unique solution on
some interval |x − 2| ≤ h around x = 2? Explain why or why not.

18. Consider the nonlinear equation dx
dt

= (α − x)(β − x), where α and β are
positive constants. (See Example 2.1.8.) Without solving the equation, show
that the solution of any IVP involving this equation is unique.

C
19. Consider the equilibrium solution P ≡ b of the logistic equation (Section 2.5)

dP
dt

= k P (b − P), where k and b are positive constants. Is it possible for a
solution near P ≡ b to reach (i.e., equal) this solution for a finite value of x?
[Hint: Use the uniqueness part of the Existence and Uniqueness Theorem.]

20. Why can’t the family of curves shown in the following be the solution curves
for the differential equation y′ = f (t, y), where f is a polynomial in t

and y?

21. Example 2.8.3 indicates that the linear IVP y′ = y, y(0) = 1 has a unique
solution. Ignoring the fact that you can actually solve this equation, prove the
following properties of y(t):
a. For all real values of t , y(t) · y(−t) = 1.
b. y(t) > 0 for all real numbers t .
c. For all real numbers t1 and t2, y(t1 + t2) = y(t1) · y(t2).

22. Suppose that a differential equation is a model for a certain type of chemical
reaction. Could the fact that the equation does not have a solution indicate that
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the reaction cannot take place? Would the fact that the equation has a solution
guarantee that the reaction does take place?

Summary
An easy type of first-order ODE to solve is a separable equation, one that can
be written in the form dy

dx
= f (x)g(y), where f denotes a function of x alone and

g denotes a function of y alone. “Separating the variables” leads to the equation∫ dy
g(y)

= ∫
f (x)dx. It is possible that you cannot carry out one of the integrations in

terms of elementary functions or you may wind up with an implicit solution. Further-
more, the process of separation of variables may introduce singular solutions.

Another important type of first-order ODE is a linear equation, one that can be
written in the form a1(x)y′ +a0(x)y = f (x), where a1(x), a0(x), and f (x) are func-
tions of the independent variable x alone. The standard form of such an equation is
dy
dx

+ P(x)y = Q(x). The equation is called homogeneous if Q(x) ≡ 0 and nonho-
mogeneous otherwise. Any homogeneous linear equation is separable.

After writing a first-order linear equation in the standard form dy
dx

+ P(x)y =
Q(x), we can solve it by the method of variation of parameters or by introducing
an integrating factor, μ(x) = e

∫
P(x) dx .

A typical first-order differential equation can be written in the form dy
dx

= f (x, y).
Graphically, this tells us that at any point (x, y) on a solution curve of the equation,
the slope of the tangent line is given by the value of the function f at that point.
We can outline the solution curves by using possible tangent line segments. Such a
collection of tangent line segments is called a direction field or slope field of the
equation. The set of points (x, y) such that f (x, y) = C, a constant, defines an iso-
cline, a curve along which the slopes of the tangent lines are all the same (namely, C).
In particular, the nullcline (or zero isocline) is a curve consisting of points at which
the slopes of solution curves are zero. A differential equation in which the indepen-
dent variable does not appear explicitly is called an autonomous equation. If the
independent variable does appear, the equation is called nonautonomous. For an au-
tonomous equation the slopes of the tangent line segments that make up the slope
field depend only on the values of the dependent variable. Graphically, if we fix the
value of the dependent variable, say x, by drawing a horizontal line x = C for any
constant C, we see that all the tangent line segments along this line have the same
slope, no matter what the value of the independent variable, say t . Another way to
look at this is to realize that we can generate infinitely many solutions by taking
any one solution and translating (shifting) its graph left or right. Even when we can’t
solve an equation, an analysis of its slope field can be very instructive. However, such
a graphical analysis may miss certain important features of the integral curves, such
as vertical asymptotes.

An autonomous first-order equation can be analyzed qualitatively by using a
phase line or phase portrait. For an autonomous equation the points x such that
dy
dx

= f (x) = 0 are called critical points. We also use the terms equilibrium points,
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equilibrium solutions, and stationary points to describe these key values. There
are three kinds of equilibrium points for an autonomous first-order equation: sinks,
sources, and nodes. An equilibrium solution y is a sink (or asymptotically stable
solution) if solutions with initial conditions “sufficiently close” to y approach y as
the independent variable tends to infinity. On the other hand, if solutions “sufficiently
close” to an equilibrium solution y are asymptotic to y as the independent variable
tends to negative infinity, then we call y a source (or unstable equilibrium solu-
tion). An equilibrium solution that shows any other kind of behavior is called a node
(or semistable equilibrium solution). The First Derivative Test is a simple (but not
always conclusive) test to determine the nature of equilibrium points.

Suppose that we have an autonomous differential equation with a parameter α.
A bifurcation point α0 is a value of the parameter that causes a change in the nature
of the equation’s equilibrium solutions as α passes through the value α0. There are
three main types of bifurcation for a first-order equation: (1) pitchfork bifurcation;
(2) saddle-node bifurcation; and (3) transcritical bifurcation.

When we are trying to solve a differential equation, especially an IVP, it is im-
portant to understand whether the problem has a solution and whether any solution
is unique. The Existence and Uniqueness Theorem provides simple sufficient con-
ditions that guarantee that there is one and only one solution of an IVP. A standard
proof of this result involves successive approximations, or Picard iterations.
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CHAPTER

The numerical
approximation of
solutions

Introduction
Historically, numerical methods of working with differential equations were de-
veloped when some equations could not be solved analytically—that is, with their
solutions expressed in terms of elementary functions. Over the past 300 years, math-
ematicians and scientists have learned to solve an increasing variety of differential
equations. However, today there are still equations that are impossible to solve in
closed form (for instance, Example 2.1.5). In fact, very few differential equations that
arise in applications can be solved exactly and, perhaps more importantly, even solu-
tion formulas often express the solutions implicitly via complicated combinations of
the solution and the independent variable that are difficult to work with. Take a look
back at the solution in Example 2.4.4, for instance. In this chapter we will describe
some ways of getting an approximate numerical solution of a first-order initial-value
problem (IVP) y ′ = f (x, y), y(x0) = y0. This means we will be able to calculate ap-
proximate values of the solution function y by some process requiring a finite number
of steps, so that at the end of this step-by-step process we are reasonably close to the
“true” answer. Graphically, we want to approximate the solution curve with a simpler
curve, usually a curve made up of straight line segments.

The very nature of what we will be trying to do contains the notion of error, the
discrepancy between a true value and its approximate value. Error is what stands
between reality and perfection. It is the static in our telephone line, the wobble in
a kitchen chair, a slip of the tongue. Although there are various ways to measure
error, we will focus on absolute error, which is defined by the quantity |true value −
approximation|, the absolute value of the difference between the exact value and the
approximate value. We’ll have more to say about error in the following sections.

Let’s see how all this applies to a first-order IVP y′ = f (x, y), y(x0) = y0.

3.1 Euler’s method
One of the easiest methods of obtaining an approximation to a solution curve is
attributed to the mathematician Euler. He used this approach to solve differential
equations around 1768. A modern way of expressing his idea is to say that he used
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local linearity. Geometrically, this simply means that if a function F is differen-
tiable at x = x0 and we “zoom in” on the point (x0,F (x0)) lying on the curve
y = F(x), then we will think we’re looking at a straight line segment. Numerically,
we’re saying that if we have a straight line tangent to a curve y = F(x) at a point
(x0,F (x0)) = (x0, y0), then for a value of x close to x0, the corresponding value on
the tangent line is approximately equal to the value on the curve. In other words, we
can avoid the complexity of dealing with values on what may be a complicated curve
by dealing with values on a straight line. (See Section A.1 for more details on this
topic.)

Using the familiar point-slope formula for the equation of a straight line, we can
derive the equation of the line T tangent to the curve y = F(x) at the point (x0, y0)

T (x) = F ′(x0)(x − x0) + F(x0) = y′(x0)(x − x0) + y0. (3.1.1)

Now we can express the idea of local linearity by writing

y(x)︸︷︷︸
value on the curve

≈ y′(x0)(x − x0) + y0︸ ︷︷ ︸
value on the tangent line

,

where the symbol ≈ means “is approximately equal to.” Fig. 3.1 shows what we are
saying.

FIGURE 3.1

Local linearity

Note that because the curve we’re using as an illustration is concave down near
the point (x0, y0), the tangent line lies above the curve here, so the value T (x) given
by the tangent line is greater than the true value y(x) for x near x0.

Now let’s look at an IVP y′ = f (x, y), y(x0) = y0 so that we can write y′
0 =

y′(x0) = f (x0, y0). In what follows, we assume that there is a unique solution ϕ
in some interval containing x0. Suppose we want to know the height of the solution
curve corresponding to a value x1 that is close to x0, but to the right of x0. We can
describe this new value of the independent variable as x1 = x0 + h, where h > 0 is
the size of a small “step.” Now let’s try to approximate ϕ(x1), a value on the actual
solution curve, by some value y1 on the tangent line to y = ϕ(x) at x0:
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ϕ(x1) ≈ y1 = ϕ′(x0)(x1 − x0) + y0

= f (x0, y0)(x0 + h − x0) + y0

= f (x0, y0) ·h + y0.

Therefore, we can write

ϕ(x1) ≈ y1 = f (x0, y0) ·h + y0

and we have a good local linear approximation of ϕ(x) at x = x1 if we choose a value
of h that is small enough. Fig. 3.2 illustrates what’s going on.

FIGURE 3.2

A local linear approximation of a solution

We can repeat the process using (x1, y1) as our jumping-off point, realizing that
the value y1 is only an approximation. Using Eq. (3.1.1) again, with (x0, y0) replaced
by (x1, y1), we see that the line through (x1, y1) with slope equal to f (x1, y1) has y

values given by

f (x1, y1)(x − x1) + y1. (3.1.2)

We should realize that the point (x1, y1) is not expected to be on the actual solution
curve, so in general f (x1, y1) �= f (x1, ϕ(x1)), the slope of the actual solution at x1.

For convenience, suppose that we want to approximate the height of a solution
curve corresponding to a value x2 that is the same distance from x1 as x1 is from
x0—that is, we take a step to the right of size h : x2 = x1 +h = (x0 +h)+h = x0 +2h.
We can approximate ϕ(x2), the actual value of the solution function at x = x2, by
using Eq. (3.1.2):

ϕ(x2) ≈ y2 = f (x1, y1) ·h + y1.

Similarly, for x3 = x2 + h = (x0 + 2h) + h = x0 + 3h we approximate ϕ(x3) as
follows:
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ϕ(x3) ≈ y3 = f (x2, y2) ·h + y2.

Fig. 3.3 shows what we are doing.

FIGURE 3.3

A three-step linear approximation

Continuing in this way, we generate a sequence of approximate values y1, y2, y3,

. . . , yn for the solution function ϕ at various equally spaced points x1, x2, x3, . . . , xn:

yk+1︸︷︷︸
new approx. value

= yk︸︷︷︸
old approx. value

+ h︸︷︷︸
step size

·f (xk, yk), (3.1.3)

where xk = x0 + kh, k = 0,1, . . . , n. If you go back through the derivation, you’ll
realize that Eq. (3.1.3) is also valid for h < 0. Note that if the points xk are equally
spaced with step size h and we want to get from (x0, y0) to (x∗, y∗) along the ap-
proximating polygonal curve, then we must have n = x∗−x0

h
steps. For example, if

we start at x0 = 2 and want to approximate ϕ(2.7) using steps of size h = 0.1, we can
reach x∗ = 2.7 by taking n = 2.7−2

0.1 = 7 steps. In practice, once we have chosen the
step size h, the number of steps needed, n, will be obvious.

If we stand back from all these equations and look at Figs. 3.2 and 3.3 again,
we can see that what we are doing is using the slope field for our IVP as a set of
stepping stones. We “walk” on a tangent line segment for a short distance, stop to look
forward for the next step, jump to that step, and so on. We are approximating the flow
of the solution curve by using flat rocks set into the “stream.” If you play “connect
the dots” with the points (x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn), you see a polygonal
line (called the Euler polygon or the Cauchy–Euler polygon) that approximates the
actual solution curve. Fig. 3.4 shows this for the IVP y′ = x2 + y, y(0) = 1, where
we try to approximate y(1) with different step sizes h = 1, 0.5, and 0.25.

We can look at this approximation process, Eq. (3.1.3), in another geometrical
way. Suppose we have the differential equation y′ = f (x, y). Then the Fundamental
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FIGURE 3.4

The actual solution of the IVP y′ = x2 + y, y(0) = 1, and three Euler approximations (h = 1,
0.5, and 0.25) on the interval [0,1]

Theorem of Calculus tells us that

yk+1 − yk ≈ y(xk+1) − y(xk) =
∫ xk+1

xk

y′(x) dx =
∫ xk+1

xk

f (x, y) dx.

But Eq. (3.1.3) requires us to replace yk+1 − yk by h · f (xk, yk). This means
that we are approximating

∫ xk+1
xk

f (x, y) dx with h · f (xk, yk). Fig. 3.5 shows the
geometry of the situation in the interval [xk, xk+1].

FIGURE 3.5

Approximation of an integral using a rectangular area

We have approximated the area under the curve Y = f (x, y(x)) with the area
of the shaded rectangle—a rectangle formed by using the height of the curve at the
left-hand endpoint of the interval. Thus, Euler’s method amounts to using a left-hand
Riemann sum approximation of the area under a curve.

If y is the solution of the equation y ′ = f (x, y), we can view Euler’s method
in yet another way by considering the Taylor expansion of y(x) about x = xk (see
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Section A.3):

y(xk+1) = y(xk) + y′(xk)h + y′′(ξk)
h2

2
= y(xk) + f (xk, y(xk))h︸ ︷︷ ︸

yk+1

+y′′(ξk)
h2

2

with xk < ξk < xk+1. Assuming that y(x) has a bounded second derivative and re-
alizing that h2 < h for small values of h, we see that Euler’s method is essentially
using a first-degree Taylor polynomial to approximate the solution curve:

y(xk+1) ≈ y(xk) + f (xk, y(xk))h.

The approximation processes we have been describing (and will describe later in
this chapter) are subject to two basic kinds of error: truncation error, which occurs
when we stop (or truncate) an approximation process after a certain number of steps,
and propagated error, the accumulated error resulting from many calculations with
rounded values. (See Section A.3 for additional remarks about these types of errors.)
We must be aware that there is usually a trade-off in dealing with error. If we try
to reduce the truncation error and increase the accuracy of our approximation by
carrying out more steps (for example, by taking more terms of a Taylor series or more
steps in the Euler method), we are increasing our calculation load and consequently
running the risk of increasing propagated error. Fig. 3.6 shows the trade-off in general
terms.

FIGURE 3.6

Total error = round-off error + truncation error

Clearly, at each stage of Euler’s method, we choose to round off the entries in a
certain way. Even if we assume for the sake of simplicity that the round-off error is
negligible, our use of local linearity—using straight lines to approximate curves—
introduces truncation error. Now suppose that we are given the value, y(x0), of a
solution at an initial point and want to approximate the value, y(b), at some later
point b = x0 + nh. First, there is a local truncation error at each step, defined as
y(xk+1) − yk+1 for each k (k = 0,1,2, . . . , n − 1). This is the error introduced when
computing the value yk+1 from the value yk , assuming that yk is exact. Then we
have the cumulative truncation error, defined as y(b) − yn = y(xn) − yn, which
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is the total actual error in the value of y(x0 + nh), or y(b), caused by all the previ-
ous approximations—that is, by the cumulative effect after n steps of the local errors
from previous steps. (This is not just the sum of all the local truncation errors. Life
isn’t that simple.)

In any case, a mathematically rigorous analysis of the errors produced shows
that the local truncation error at any step of Euler’s method behaves like a constant
multiple of h2, which is smaller than h when h is small:

|local truncation error at step k| = |y(xk+1) − yk+1| ≤ M

2
h2,

where M = maxxk<x<xk+1 |y′′(x)|. This follows easily from the Taylor series expan-
sion

y(xk+1) = y(xk) + f (xk, y(xk))h︸ ︷︷ ︸
yk+1

+y′′(ξk)
h2

2

given previously.
It is also true that for Euler’s method, the cumulative truncation error is no greater

than a constant multiple of the step size h:

|true value − approximation| = |y(b) − yn| ≤ K · h,

where K is independent of h, but depends on |y′′(x)| and the interval [x0, b]. Because
the cumulative error is bounded by a constant multiple of the first power of the step
size h, we say that Euler’s method is a first-order method. (The number K is a
maximum bound. In practice, the actual error incurred in a problem will usually be
less than this bound.) Intuitively, we can reason as follows: There are n = b−x0

h
steps

in the Euler method approximation, each having a local error that is less than or equal
to some multiple of h2. If K∗ is the largest of the multipliers, then the cumulative
error is less than or equal to b−x0

h
· K∗h2 = Kh.

Therefore, if we ignore the round-off error as essentially a statistical problem
outside our range of interest right now, we can make the total error as small as we wish
by making h sufficiently small—that is, by making the number of steps sufficiently
large. This is not very satisfactory because a larger number of steps does require more
calculating time by hand or by computer, and in real-life problems the larger number
of steps often leads to a “snowball effect” of round-off errors. Take another look at
Fig. 3.6.

If you want to understand and improve the accuracy of your approximations, here
are two rules of thumb you can use: (1) Start your calculations with many more
decimal places than you need. (2) Keep on redoing your calculations with a step size
h equal to one-half its previous value. If you reach a stage at which the new result
agrees with the previous one to d decimal places after appropriate rounding, then you
can assume that you have d decimal place accuracy. (Look at Example 3.1.4 for a
slight variation of this rule.)
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Euler’s method is not very accurate and is not used widely in practice. But the
method is simple and displays the essential characteristics of more sophisticated
methods. In the next section we discuss an improved method, one that uses Euler’s
basic idea in a more efficient way.

This is enough theory for now. Let’s see how Euler’s method of using tangent
lines works with a simple IVP.

Example 3.1.1 Euler’s Method with Error Analysis
Suppose we’re given the IVP dx

dt
= t2 +x, x(1) = 3. We want to use Euler’s method to approximate

x(1.5).
This is a first-order linear equation whose particular solution for the initial condition x(1) = 3

is x(t) = −t2 − 2t − 2 + 8et−1. (Verify this.) Thus the actual value of x(1.5) is −(1.5)2 − 2(1.5) −
2 + 8e(1.5)−1 = 5.939770 . . . . We’ll use the actual value to see how good an approximation Euler’s
method gives us.

In our problem f (t, x) = t2 + x, so Euler’s formula (3.1.3) becomes

xk+1 = xk + h · (t2
k + xk), (3.1.4)

where tk = t0 + kh, k = 0, . . . , n, t0 = 1, and x0 = 3. (By now you should be comfortable with the
switch from the traditional x-y coordinates to t-x coordinates.) Suppose we take h = 0.1—that is,
our step size is one-tenth of a unit. Because our target t = 1.5 is 0.5 units away from our initial point
t = 1, we’ll need n = 5 steps of size h = 0.1 to reach this with Euler’s process (Fig. 3.7).

FIGURE 3.7

A five-step approximation

Using formula (3.1.4), let’s generate our approximate values, stepping from t = 1 to t = 1.5:

x1 = x0 + (0.1)(t2
0 + x0) = 3 + (0.1)(12 + 3) = 3.40

x2 = x1 + (0.1)(t2
1 + x1) = 3.40 + (0.1)(1.12 + 3.4) = 3.861

x3 = x2 + (0.1)(t2
2 + x2) = 3.861 + (0.1)(1.22 + 3.861) = 4.3911
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x4 = x3 + (0.1)(t2
3 + x3) = 4.3911 + (0.1)(1.32 + 4.3911) = 4.99921

x5 = x4 + (0.1)(t2
4 + x4) = 4.99921 + (0.1)(1.42 + 4.99921) = 5.695131.

Thus, Euler’s method gives the approximation 5.695131 for the value x(1.5). In this example, the
absolute error is |true value − approximation| = |5.939770 − 5.695131| = 0.244639.

If we try again, using a step size only half the size of the step we used before—that is, using a
step size h = 0.05—it will take twice as many steps to bridge the gap between the initial value t = 1
and the final value t = 1.5. Table 3.1 shows the result of a spreadsheet calculation of Euler’s method
for this new sequence of steps. If you have access to a spreadsheet program, you’ll find it fairly easy
to use it to set up Euler’s method.

Table 3.1 Euler’s Method for dx
dt

= t2 + x, x(1) = 3, with h = 0.05

k tk xk True Value Absolute Error
0 1 3.000000 3.000000 0.00000
1 1.05 3.200000 3.207669 0.00767
2 1.1 3.415125 3.431367 0.01624
3 1.15 3.646381 3.672174 0.02579
4 1.2 3.894825 3.931222 0.03640
5 1.25 4.161567 4.209703 0.04814
6 1.3 4.447770 4.508870 0.06110
7 1.35 4.754658 4.830040 0.07538
8 1.4 5.083516 5.174598 0.09108
9 1.45 5.435692 5.543997 0.10831
10 1.5 5.812602 5.939770 0.12717

Note that the number of calculations (steps) has doubled, but the absolute error has been cut
almost in half. Also note the cumulative growth of the error in the last column.

If we cut the step size in half again, working with h = 0.025 this time (Table 3.2), we can see a
pattern emerging.

Note that the absolute error increases as a function of k, the number of steps. Furthermore, the
differences between successive errors are increasing slightly. For example, if you subtract the error
for k = 9 from the error corresponding to k = 10, you get 0.0030, whereas subtracting the k = 10
error from the k = 11 error yields 0.0032.

If this error pattern seems vaguely familiar, it may be because you have seen error analysis
applied to left- and right-hand Riemann sum approximations in calculus.

Let’s try another problem. Practice makes perfect—or at least we can approximate
perfection.

Example 3.1.2 Euler’s Method with Error Analysis
Consider the IVP dy

dt
= 1

t , y(1) = 0, and suppose we want to approximate y(2).
You should recognize the solution of this IVP as y = ln t , so we’re really trying to approx-

imate ln 2 = 0.69314718056 . . . . (Hint: If you check this “exact” answer on your calculator or
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Table 3.2 Euler’s Method for dx
dt

= t2 + x, x(1) = 3, with
h = 0.025

k tk xk True Value Absolute Error
0 1 3.000000 3.000000 0.0000
1 1.025 3.100000 3.101896 0.0019
2 1.05 3.203766 3.207669 0.0039
3 1.075 3.311422 3.317448 0.0060
4 1.1 3.423098 3.431367 0.0083
5 1.125 3.538926 3.549563 0.0106
6 1.15 3.65904 3.672174 0.0131
7 1.175 3.783578 3.799345 0.0158
8 1.2 3.912683 3.931222 0.0185
9 1.225 4.046500 4.067957 0.0215
10 1.25 4.185178 4.209703 0.0245
11 1.275 4.32887 4.356620 0.0277
12 1.3 4.477733 4.508870 0.0311
13 1.325 4.631926 4.666620 0.0347
14 1.35 4.791615 4.830040 0.0384
15 1.375 4.956968 4.999306 0.0423
16 1.4 5.128158 5.174598 0.0464
17 1.425 5.305362 5.356098 0.0507
18 1.45 5.488761 5.543997 0.0552
19 1.475 5.678543 5.738489 0.0599
20 1.5 5.874897 5.939770 0.0649

computer algebra system (CAS), realize that these devices use very sophisticated approximation
methods themselves!)

If we take h = 0.05, we’ll need 20 steps to stretch from t = 1 to t = 2. In our example, Euler’s
method gives us the formula

yk+1 = yk + 0.05

tk

for tk = 1 + 0.05k (k = 0, . . . ,20). Table 3.3 gives the results.
The solution curve y = ln t is concave down, so the approximating tangent lines all lie above

the solution curve, leading to an approximation of ln 2 that’s too large. Just as in Example 3.1.1, the
errors increase with the value of k, but this time, if you subtract successive errors (corresponding to
successive values of k), you’ll see that the differences are decreasing. (To gain some insight into this
phenomenon, compare f (x, y) in Examples 3.1.1 and 3.1.2.)

Changing to h = 0.025 and n = 40 yields the approximate value 0.699436, whereas setting
h = 0.01 and n = 100 gives us an approximation of 0.695653. Of course, technology (a spreadsheet)
was used to obtain the last two approximations.

Next, we’ll see what happens when we are given an equation whose solution we
don’t know.
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Table 3.3 Euler’s Method for dy
dt

= 1
t
, y(1) = 0, with h = 0.05

k tk yk True Value Absolute Error
0 1 0.000000 0.000000 0.00000
1 1.05 0.050000 0.048790 0.00121
2 1.1 0.097619 0.095310 0.00231
3 1.15 0.143074 0.139762 0.00331
4 1.2 0.186552 0.182322 0.00423
5 1.25 0.228219 0.223144 0.00507
6 1.3 0.268219 0.262364 0.00585
7 1.35 0.306680 0.300105 0.00658
8 1.4 0.343717 0.336472 0.00724
9 1.45 0.379431 0.371564 0.00787
10 1.5 0.413914 0.405465 0.00845
11 1.55 0.447247 0.438255 0.00899
12 1.6 0.479506 0.470004 0.00950
13 1.65 0.510756 0.500775 0.00998
14 1.7 0.541059 0.530628 0.01043
15 1.75 0.570470 0.559616 0.01085
16 1.8 0.599042 0.587787 0.01126
17 1.85 0.626820 0.615186 0.01163
18 1.9 0.653847 0.641854 0.01199
19 1.95 0.680162 0.667829 0.01233
20 2 0.705803 0.693147 0.01266

Example 3.1.3 Euler’s Method—Unknown Exact Solution
Suppose we’re given the IVP y′ = √

x + y, y(5) = 4, and we want to find y(4).
The first thought that should occur to us is that the equation is neither separable nor linear. Are

we in trouble here? No, not if we understand Euler’s method.
In our problem f (x, y) = √

x + y, so Eq. (3.1.3) takes the form

yk+1 = yk + h
√

xk + yk,

where xk = 5 + kh, k = 0,1, . . . , n. As usual, n denotes the number of steps we choose.
Let’s start off by choosing five steps to get us from the initial point x = 5 to our destination

x = 4. Each step has to have length 0.2, and because we are moving backward from the initial point,
we must take h = −0.2 in the formula. We’ll carry out this first attempt at approximation by hand
and then use a spreadsheet when the calculations become more numerous (and more tedious).

The formula gives us

y1 = y0 + h
√

x0 + y0 = 4 + (−0.2)
√

5 + 4 = 3.4

y2 = y1 + h
√

x1 + y1 = 3.4 + (−0.2)
√

4.8 + 3.4 = 2.82728716

y3 = y2 + h
√

x2 + y2 = 2.82728716 + (−0.2)
√

4.6 + 2.82728716 = 2.28222616
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y4 = y3 + h
√

x3 + y3 = 2.28222616 + (−0.2)
√

4.4 + 2.28222616 = 1.76522612

y5 = y4 + h
√

x4 + y4 = 1.76522612 + (−0.2)
√

4.2 + 1.76522612 = 1.27674987.

These calculations tell us that y(4) ≈ 1.27674987. The true answer is 1.34042895566892. . . .1

Therefore, when we round the “true” answer to eight places, the absolute error is |1.34042896 −
1.27674987| = 0.06367909. If we choose h = −0.01 and use 100 steps, a spreadsheet calculation
gives us an approximation of 1.337296, with an absolute error of 0.0031.

So far we’ve been cheating a bit, discussing the numerical solutions of equations
for which we were able to find an analytic solution (even if implicit). Knowing the
exact solution allowed us to analyze the error—the gap between the true solution
value and the approximate value of a solution at a point. However, it’s time to consider
a more typical example.

Example 3.1.4 Euler’s Method—A Completely Unknown Solution
The IVP dy

dt
= y2 − t2, y(0) = 1

2 , cannot be solved by any of the methods we have discussed so

far, although this special type of Riccati equation2 does have a series solution in terms of Bessel
functions (see Section D.3). Nevertheless, we can approximate the solution at t = 1 (for example)
so that it is accurate to, say, three decimal places.

“Without the exact answer as a guide, how do we know that these three decimal places are
accurate?” you may be asking. Let’s skip the detailed formula and see what happens for different
step sizes (Table 3.4). We have rounded the approximations in the last column to six decimal places.

Table 3.4 The IVP dy
dt

= y2 − t2, y(0) = 1
2 : Approximate Values

of y(1) for Various Step Sizes

Step Size Number of Steps Approximate Value
1/100 100 0.512113
1/1000 1000 0.506106
1/2000 2000 0.505769
1/4000 4000 0.505600
1/8000 8000 0.505515
1/16,000 16,000 0.505473
1/20,000 20,000 0.505464

1 This answer is obtained by making a substitution to transform the given equation into a separable
equation (see the explanation that precedes Problem 12 of Exercises 2.1), solving the equation to get
an implicitly defined solution to the IVP, and then solving for the value of y when x = 4. Solving the im-
plicit relation for y requires a calculator or CAS with a “solve” function for general equations. Even this
“true” answer is only an approximation (although presumably a very accurate one) because the algebraic
equation can’t be solved exactly.
2 See Chapter 2, Section 5 of Ordinary Differential Equations: A Brief Eclectic Tour by David Sánchez
(Washington, D.C.: Mathematical Association of America, 2002) for an informative discussion of this
important class of differential equations.
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We have reached a stage where the first three digits of the approximate values do not seem to
be changing. The last approximate value agrees with the previous one to three decimal places after
appropriate rounding, so we can assume that the approximation is 0.505, accurate to three significant
digits. The idea—a rule of thumb based on mathematical analysis—is to keep on using smaller step
sizes until there are changes only past the decimal place we are interested in. Then we can be sure
of those decimal places that do not change.

*3.1.1 Stiff differential equations3

We can encounter difficulty applying Euler’s method (and some other methods) to
approximate solutions when these solutions have components whose timescales differ
widely. Another way of saying this is that stiffness occurs when some components
of the solution decay much more rapidly than others. For instance, the solution of
the circuit problem in Example 2.2.5 had two components: (1) a transient term of
the form Ce−at , with C > 0 and a > 0, that decreased rapidly to zero as t → ∞ and
(2) a steady-state term of the form A sin(ωt) + B cos(ωt) that oscillated with time.
Instead of approximating the steady-state part of the solution, Euler’s method may
allow the error associated with the transient part to dominate, producing meaningless
results.

Equations exhibiting this characteristic behavior include many that arise in electri-
cal circuit theory and in the study of chemical reactions. The term stiff is used because
these numerical difficulties occur when analyzing the motion of spring-mass systems
with large spring constants—that is, systems with “stiff” springs. (The stiffness of
a spring depends on the materials it is made of and on the specific manufacturing
processes used.) In Chapter 6, we’ll discuss spring-mass problems in greater detail.

For now, let’s look at an example that highlights the difficulty.

Example 3.1.5 A Stiff Differential Equation
Suppose we look at the IVP dI

dt
+ 50I = sin(πt), I (0) = 0, which is just the equation in Exam-

ple 2.2.5 with L = 1, R = 50, ν0 = 1, and ω = π . According to that example, the solution is

I (t) = 1(
2500 + π2

) {
50 sin(πt) − π cos(πt) + πe−50t

}
.

(Check this for yourself.) Note both the transient component and the steady-state part.
Now suppose that we want to approximate the solution at t = 2. To understand the accuracy of

the approximation, we can first use the solution formula to find the exact answer,

I (2) = −π

2500 + π2

(
1 − 1

e100

)
= −0.001251695566 . . . .

For further comparison with approximations, here are some actual values of I at intermediate points
between 0 and 2:

3 ∗ Denotes an optional section.
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I (0.5) = 0.01992135365 . . . I (1.0) = 0.001251695566 . . .

I (1.5) = −0.1992135365 . . . .

Euler’s method yields the formula ik+1 = ik + h(sin(πtk) − 50ik). Table 3.5a displays the
results of using Euler’s method with h = 0.1, Table 3.5b shows the results when h = 0.05, and
Table 3.5c shows what happens when h = 0.01. We omit the error column in each table because the
discrepancies or agreements between the actual values of I and the approximate values are fairly
obvious in each table.

Table 3.5a h = 0.1

k tk ik

0 0 0
5 0.5 −1.26575
10 1.0 1316.73504
15 1.5 −0.13483 × 107

20 2.0 0.13807 × 1010

Table 3.5b h = 0.05

k tk ik

0 0 0
10 0.5 0.09262
20 1.0 4.18748
30 1.5 241.37834
40 2.0 13,920.24471

Table 3.5c h = 0.01

k tk ik

0 0 0
50 0.5 0.01994
100 1.0 0.00125396
150 1.5 −0.01994
200 2.0 −0.00125396

You can see that the errors in approximating I (2) are unacceptably large for h = 0.1 and h =
0.05, whereas there is very little error when we have reduced h to 0.01. Comparing the graph of the
actual solution curve for I (t) with the graphs of the approximation curves given by Euler’s method
for these three values of h is a real eye-opener (see Figs. 3.8a, 3.8b, and 3.8c). In each graph, the
blue line is the actual solution curve, and the black line is the approximation. Note that the scales
are different from graph to graph.

Fig. 3.8c shows that you can hardly distinguish between the actual solution curve and its Euler
method approximation when h = 0.01. The choice of the interval [0, 0.35] for t was made after
some experimentation. Using the technology available to you, you should look at the graphs of the
approximations on larger intervals. For larger values of t , beginning around t = 1, you will find that
the approximation curves are rather alarming distortions of the steady-state solution.
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FIGURE 3.8a

h = 0.1

FIGURE 3.8b

h = 0.05

FIGURE 3.8c

h = 0.01

In general, the solution of a stiff differential equation is impractical with numer-
ical methods not designed specifically for such problems. As we have seen, Euler’s
method (also called the forward Euler method) can fail to approximate the solution
of a stiff equation.

Now let’s look at a simple IVP, dy
dt

= ay, y(0) = y0, that is often used as a test case
for numerical methods. This can be considered a problem with a transient term and a
zero steady-state term. Given t0 = 0 and y(0) = y0, we can apply Euler’s algorithm
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with step size h,

yn+1 = yn + hf (tn, yn),

so

y1 = y0 + h(ay0) = (1 + ha)y0,

y2 = y1 + h(ay1) = (1 + ha)y1 = (1 + ha)2y0,

. . .

. . .

yn = yn−1 + h(ayn−1) = · · · = (1 + ha)ny0.

If we’re trying to approximate y(T ), where T is some value of t other than 0, then
h = T/n since we are dividing the interval [0, T ] into n equal subintervals. Thus we
can write

yn = y0

(
1 + aT

n

)n

.

Recalling that limn→∞(1 + 1/n)n = e, we can let m = n/aT to see that

lim
n→∞y0

(
1 + aT

n

)n

= y0 lim
m→∞

(
1 + 1

m

)maT

= y0 lim
m→∞

[(
1 + 1

m

)m]aT

= y0e
aT .

Going back to our original notation, this says that yn = (1 + ha)ny0 converges to
y0e

aT as h → 0. Since Euler’s method is a first-order method, the error decreases
as a multiple of h: |eaT − (1 + ha)n| ≤ Mh for some constant M . HOWEVER, if
a < 0, then not only will the error be large if the value of h is too large, but the
numerical approximation will grow exponentially instead of decaying exponentially
like the true solution.

For example, consider a = −500, which should lead to a rapidly decaying so-
lution. Then if we take h = 0.01, we see that yn = (1 − 500/100)ny0 = (−4)ny0,
which is a rapidly growing approximation oscillating between positive and negative
values. In order to guarantee a decaying solution, h must satisfy |1 + ha| < 1 (so
that (1 + ha)n → 0), or 0 < h < −2/a. If, for example, a = −500, we must have
h < −2/(−500) = 1/250.

Euler’s procedure is called an explicit method because in equation (3.1.3) the
value yk+1 is given explicitly in terms of known quantities such as yk and f (xk, yk).
In contrast, the backward Euler method is an implicit scheme that finds the solution
by solving an equation involving the current state of a system and the later one. More
precisely, we have the new algorithm

yk+1 = yk + hf (xk+1, yk+1). (3.1.5)

This is not a typo. The new approximation yk+1 appears on both sides of equation
(3.1.5) and must be solved for yk+1—that is, expression (3.1.5) is not a formula for
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yk+1, but an equation for yk+1. It expresses yk+1 implicitly. In some applications of
this method we may have to solve nonlinear equations to find yk+1. This can be done,
for example, by using an algorithm such as Newton’s method (the Newton–Raphson
method) or simply by using a CAS solve command. Like Euler’s forward procedure,
Euler’s backward method is a first-order method. Its cumulative error is bounded by
a constant multiple of the first power of the step size h.

The reason for using a method with such a high computational cost is that im-
plicit techniques are stable. Loosely speaking, errors introduced in the course of such
a procedure remain bounded (possibly even die out) and the numerical approxima-
tion of a solution will mimic the actual solution. Another aspect of stability is that
solutions resulting from changes (“perturbations”) in initial value remain close to the
original solution.

Let’s try this new algorithm on our last IVP, contrasting the accuracy and stability
of Euler’s forward and backward methods.

Example 3.1.6 Euler’s Backward Method
Let’s tackle the IVP dy

dt
= −10y, y(0) = 1 and use both Euler methods to approximate y(2).

Using Euler’s forward process with h = 0.5, which is larger than the value of h recommended
in our previous analysis (h < −2/(−10) = 0.2), we get Table 3.6a.

Table 3.6a h = 0.5

k tk yk

0 0 1
1 0.5 −4
2 1.0 16
3 1.5 −64
4 2.0 256

We can’t help noticing the chaotic behavior since yn = (1+hk)n = (1+(0.5)(−10))n = (−4)n.
Now let’s see what Euler’s backward method gives us.

We have

y1 = y0 + hf (t1, y1) = 1 + (0.5)(−10)y1, or y1 = 1

6

y2 = y1 + hf (t2, y2) = 1

6
− 5y2, or y2 = 1

36

y3 = y2 + hf (t3, y3) = 1

6
− 5y3, or y3 = 1

216

y4 = y3 + hf (t4, y4) = 1

6
− 5y4, or y4 = 1

1296
.

Table 3.6b shows the values for the backward Euler method.
First of all, we notice that the approximate values yn, n = 1,2,3,4, are decreasing rapidly, as

they should. Next, the exact value of y(2) is e(−10)(2) = e−20 ≈ 2.061153622 × 10−9, so Euler’s
backward method gives a better (but not superb) approximation. With a better choice of h, we would
expect Euler’s backward method to yield a much more accurate approximation.
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Table 3.6b h = 0.5

k tk yk

0 0 1
1 0.5 0.1667
2 1.0 0.0278
3 1.5 0.0046
4 2.0 0.0008

See Section A.3 for a further discussion of approximation error. In the subsequent
sections of this chapter, we will investigate improved algorithms.

Exercises 3.1
In the following problems, being asked to do a problem “by hand” or “manually”
means that each step should be written out and although calculators may be used to
do arithmetic, no calculator routine or CAS program for Euler’s method should be
used. This is the opposite of being allowed to “use technology.”

A
For Problems 1–3, use Euler’s method by hand with the given step sizes to ap-

proximate the solution to the given IVP over the specified interval. Include a table
of values, and give a sketch of the approximate solution by plotting the values you
have calculated.

1. dy
dt

= t2 − y2, y(0) = 1; 0 ≤ t ≤ 1, h = 0.25

2. dy
dt

= e(2/y), y(0) = 2; 0 ≤ t ≤ 2, h = 0.5

3. dy
dt

= e(2/y), y(1) = 2; 1 ≤ t ≤ 3, h = 0.5

4. Compare your answers to Problems 2 and 3 and explain what you see.
5. If y is the solution of the IVP dy

dt
= cos t , y(0) = 0, use Euler’s method manu-

ally with h = π/10 to approximate y(π/2). What is the absolute error?
6. Approximate y(1.4) by hand if y is the solution to the IVP dy

dx
= x3, y(1) = 1.

Use h = 0.1.
7. Given dy

dx
= x

y
, y(0) = 1, use h = 0.1 to approximate y(1) manually.

8. Given the IVP y ′ = y sin 3t , y(0) = 1, use technology to approximate y(4)

using 20 steps.
9. Given y′ = 1/(1 + x2), y(0) = 0, use h = 0.1 to approximate y(1) manually.

How can you use your result to compute π?
10. Consider the IVP y ′ = x2 +y, y(0) = 1. By hand, approximate y(0.1), y(0.2),

and y(0.3) using both h = 0.1 and h = 0.05 for each approximation.
11. Consider the IVP y′ = y2, y(0) = 1.

a. Using h = 0.2, approximate the solution y over the interval [0, 1.2] by
hand.



3.1 Euler’s method 129

b. Show that the exact solution is given by y = 1
1−t

.

c. Compare the values found in part (a) with values given by the formula in
part (b). Explain any strange numerical behavior. [Hint: A slope field or
solution graph may help.]

12. Consider the IVP dy
dt

= sin y
t

, y(2) = 1. Using h = 0.1, approximate the solu-
tion y over the interval [2,3] by hand.

B
13. In Problem 5 of Exercises 2.3, you were given the following model for the

population of Botswana: dP
dt

= 0.0355P − 0.00160625 t , with P(0) = 1.285
(million). The value t = 0 corresponds to 1990.
a. Use technology and Euler’s method with h = 0.01 to approximate P(1),

the population in 1991.

b. Using the approximation for P(1) found in part (a) as your starting point
and h = −0.01, approximate P(0).

14. In the area of pharmacokinetics, the Michaelis–Menten equation, dx
dt

= −Kx
A+x

,
describes the rate at which a body processes a drug. Here x(t) is the concen-
tration of the drug in the body at time t , and K and A are positive constants.
[The equation was developed by the biochemical/medical researchers Leonor
Michaelis (1875–1949) and Maud Menten (1879–1960).]
a. For a particular controlled substance, let A = 6, K = 1, and x(0) =

0.0025. Use technology and Euler’s method with h = 0.1 to evaluate x

for t = 1,2,3,10, and 20. Estimate how long it takes for the concentra-
tion to be half of its initial value.

b. For alcohol, let A = 0.005, K = 1, and x(0) = 0.025. Use technology and
Euler’s method with h = 0.01 to evaluate x for t = 0.01, 0.02, 0.03, 0.04,
and 0.05. Estimate how long it takes for the concentration to be half its
initial value.

15. In modeling aircraft speed and altitude loss in a pull-up from a dive, the basic
laws of physics yield the differential equation

dV

dθ
= −gV sin θ

kV 2 − g cos θ
,

where θ denotes the dive angle (in radians), V = V (θ) is the speed of the
plane, g = 9.8 m/s2 is the acceleration constant, and k is a constant related to
the wing surface area. For a particular plane, k = 0.00145, θ0 = −0.786, and
V (θ0) = V0 = 150 m/s. Use h = 0.006 (which divides θ0 evenly) and n = 131
to estimate V (0), the plane’s speed at the completion of its pull-up—that is,
when it levels out to θ = 0. (Use technology, of course!)

16. Consider the IVP y′ = 1 − t + 4y, y(0) = 1. Using technology and h = 0.1,
approximate the solution on the interval 0 ≤ t ≤ 1. What error is made at t =
1/2 and t = 1?
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17. Use Euler’s method manually with both h = 0.5 and h = 0.25 to approximate

x(2), where x(t) is the solution of the IVP dx
dt

= 3t2

2x
, x(0) = 1. Solve the

equation exactly and compare the absolute errors you get with the different
values of h.

18. Consider the IVP y′ = y(1 − y2), y(0) = 0.1. Note that the equation has three
equilibrium solutions.
a. Use a phase portrait analysis or a direction field to predict what should

happen to the solution.
b. Use technology and Euler’s method with h = 0.1 to step out to x = 3.

What happens to the numerical solution?

19. Suppose x′ = x3.
a. Find an expression for x′′ in terms of x, assuming that x is a function of t .
b. Suppose x(0) = 1. Is the solution curve concave up or concave down?

Use the result in part (a) to justify your answer.
c. Does Euler’s method overestimate or underestimate the true value of the

solution at t = 0.1? Explain. (Don’t actually carry out Euler’s method.)

20. Consider the IVP y′ = yα , α < 1, y(0) = 0.
a. Find the exact solution of the IVP.
b. Show that Euler’s method fails to determine an approximate solution to

the IVP.
c. Show what happens if the initial condition is changed to y(0) = 0.01.

21. a. Sketch the direction field for y′ = √
1 − y2.

b. Verify that a solution for this equation satisfying the initial condition
y(0) = 0 is given by

y =
⎧⎨
⎩

sin t 0 ≤ t < 1
2π

1 1
2π ≤ t

.

c. Describe the behavior of Euler’s method when h = 0.4. Could you have
predicted this behavior without any calculations?

22. Consider the IVP dy
dx

= x − y, y(0) = 1.
a. Find the exact solution of this IVP.
b. Use Euler’s forward method with h = 0.5 to approximate y(2).
c. Approximate y(2) using the following algorithm (Euler’s backward

method) with h = 0.5: yn+1 = yn + hf (xn+1, yn+1). [Note that this de-
fines yn+1 implicitly, so you have to solve for yn+1 at each stage.]

C
23. Describe a class of differential equations for which Euler’s method gives a

completely accurate numerical solution—that is, for which yk exactly equals
the true solution ϕ(xk) for every k. [Hint: Try to think of differential equations
for which all solution curves coincide with the tangent line segments.]
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24. Consider the stiff differential equation dy
dt

= −100y + 1, with y(0) = 1.
a. Solve this IVP and calculate the exact value of y(1).

b. Use technology and Euler’s method to approximate y(1) with h = 0.1,
0.05, and 0.01.

c. Use technology to plot the exact solution and an approximate solution of
the equation over the interval [0,0.03] on the same set of axes. Do this for
each of the three values of h mentioned in this problem.

25. The equation y′ = −50(y − cosx) is stiff.
a. Use software to solve the equation with the initial condition y(0) = 0.

Then calculate the exact value y(0.2).

b. Use Euler’s method and technology to approximate y(0.2) with step size
h = 1.974/50. What is the absolute error?

c. Use Euler’s method and technology to approximate y(0.2) with step size
h = 1.875/50. What is the absolute error?

d. Use Euler’s method and technology to approximate y(0.2) with step size
h = 2.1/50. What is the absolute error now?

e. Using technology, plot the three approximation curves found in parts (b),
(c), and (d) on the same axes. Use the interval [0,1]. Would you call the
Euler method solution of the equation “sensitive to step size”?

26. The second-order IVP y′′ = F(x, y, y′), y(a) = c1, y′(a) = c2 can be writ-
ten as two simultaneous first-order equations: y′ = u, u′ = F(x, y,u), where
y(a) = c1, u(a) = c2.
a. Devise a procedure for approximating y and y′ when x = a + h.

b. Use the method found in part (a) to approximate the solution of the IVP
y′′ = x + y, y(0) = y′(0) = 0 at x = 1.

c. Given that the exact solution of the IVP in part (b) is y = 1
2ex − 1

2e−x −x,
compare the approximate value of y(1) found in part (b) to the exact
value.

3.2 The improved Euler method
In Euler’s original method, the slope f (x, y) over any interval xk ≤ x ≤ xk+1 of
length h is replaced by f (xk, yk), so that x always takes the value of the left endpoint
of the interval. (If y′ = f (x), a function of x alone, then Euler’s method is equivalent
to using a left-hand Riemann sum to approximate a definite integral.)

Now instead of always using the slope at the left endpoint of the interval
[xk, xk+1], we can think of using an average derivative value over the interval. The
improved Euler method involves two stages that will be combined into one ap-
proximation formula. The first stage involves moving tentatively across the interval
[xk, xk+1] using Euler’s original method, thereby producing a guess, or trial value,
ŷk+1 = yk + h · f (xk, yk). Note that the values f (xk, yk) and f (xk+1, ŷk+1) approxi-
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mate the slopes of the solution curve at (xk, y(xk)) and (xk+1, y(xk+1)), respectively.
Now the second stage looks at the average of the derivative f (xk, yk) and the guess
f (xk+1, ŷk+1) = f (xk+1, yk + hf (xk, yk)) and uses this average to take the real step
across the interval.

Guess (tentative step): ŷk+1 = yk + h · f (xk, yk)

Real step: yk+1 = yk + h

{
f (xk, yk) + f (xk+1, ŷk+1)

2

}

= yk + h

{
f (xk, yk) + f (xk+1, yk + h · f (xk, yk))

2

}

= yk + h

2
{f (xk, yk) + f (xk+1, yk + h · f (xk, yk))} .

(3.2.1)

Formula (3.2.1) describes the improved Euler method (or Heun’s method,
named for Karl Heun (1859–1929), a German applied mathematician who devised
this scheme around 1900). It is an example of a predictor-corrector method: We
use ŷk+1 (via Euler’s method) to predict a value of y(xk+1) and then use yk+1 to
correct this value by averaging.

Look carefully at Eq. (3.2.1). If f (x, y) is really just f (x), a function of x alone,
then solving the IVP y′ = f (x, y), y(x0) = x0 amounts to solving the equation y′ =
f (x), which is a matter of simple integration. In Section 1.3 [Eq. (1.3.1)] we saw that
we can write the solution as

y(x) =
∫ x

x0

f (t) dt + y0 =
n−1∑
k=0

∫ xk+1

xk

f (t) dt + y0,

where xn = x. In this case formula (3.2.1) reduces to

yk+1 = yk + h

2
{f (xk) + f (xk+1)}

and the Fundamental Theorem of Calculus tells us on the interval [xk, xk+1] that

∫ xk+1

xk

y′︷︸︸︷
f (t) dt = y(xk+1) − y(xk) ≈ yk+1 − yk = h

2
{f (xk) + f (xk+1)} .

In other words, in this situation we are using the Trapezoid Rule from calculus to
approximate each integral on [xk, xk+1].

Next, we see some illustrations of why this method is called “improved.”

Example 3.2.1 The Improved Euler Method
Let’s use the improved Euler formula (3.2.1), to calculate an approximate value of the solution of
the IVP y′ = y, y(0) = 1 at x = 1. (Of course you realize that this is just a roundabout way of asking
for an approximation of that important mathematical constant e, right?)
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Let’s start with h = 0.1, so we’ll need 10 steps to reach x = 1 from the initial point x = 0.
Thus, in formula (3.2.1) we have x0 = 0, y0 = 1, h = 0.1, xk = 0 + kh = kh (k = 0, . . . ,10), and
f (x, y) = y. When we put all this information together, we see that the formula takes a simplified
form:

yk+1 = yk + h

2
{yk + (yk + hyk)}

= yk + h

2
{(2 + h)yk} = yk + (0.05)(2.1)yk = 1.105yk.

Therefore the calculations are

y1 = 1.105y0 = 1.105(1) = 1.105

y2 = 1.105y1 = (1.105)2 = 1.221025

y3 = 1.105y2 = (1.105)3 = 1.349232625

.

.

.
.
.
.

y10 = 1.105y9 = (1.105)10 =2.71408084661.

Comparing this approximation to the actual value 2.71828182846 (rounded to 11 decimal
places), we find that the absolute error is 0.00420098185. (In Problem 4 of Exercises 3.2 you’ll
be asked to try this with the original Euler method.)

Using 20 steps, a CAS gives the approximate value 2.71719105435, so the absolute error is now
0.00109077410. Note that when we doubled the number of steps from 10 to 20, the result was that
the absolute error was roughly one-fourth what it was before.

Now let’s revisit Example 3.1.1 to see how the improved method compares with
the original process of approximation.

Example 3.2.2 The Improved Euler Method—Example 3.1.1 Revisited
We want to approximate x(1.5), given the IVP dx

dt
= t2 + x, x(1) = 3. The actual value is

5.939770 . . . . We’ll start with h = 0.1, so we’ll need five steps to stretch between t = 1 and t = 1.5.
For this problem, the improved Euler formula is

xk+1 = xk + h

2

{(
t2
k + xk

)
+ t2

k+1 + xk + h
(
t2
k + xk

)}

= xk + h

2

{
t2
k+1 + (1 + h)t2

k + (2 + h)xk

}

= xk + (0.05)
{
t2
k+1 + 1.1t2

k + 2.1xk

}
,

where t0 = 1, t1 = 1.1, t2 = 1.2, t3 = 1.3, t4 = 1.4, and t5 = 1.5. Therefore,

x1 = 3 + (0.05){(1.1)2 + 1.1(1)2 + 2.1(3)} = 3.4305

x2 = 3.4305 + (0.05){(1.2)2 + 1.1(1.1)2 + 2.1(3.4305)} = 3.9292525

x3 = 3.9292525 + (0.05){(1.3)2 + 1.1(1.2)2 + 2.1(3.9292525)}
= 4.5055240125

x4 = 4.5055240125 + (0.05){(1.4)2 + 1.1(1.3)2 + 2.1(4.5055240125)}
= 5.16955403381
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x5 = 5.16955403381 + (0.05){(1.5)2 + 1.1(1.4)2 + 2.1(5.16955403381)}
= 5.93265720736.

To five decimal places we have x(1.5) ≈ 5.93266. The absolute error is 0.00711. When we employed
Euler’s method in Example 3.1.1, the error was 0.244639.

If we use 10 steps in the improved Euler method, then we get x(1.5) ≈ 5.943455, with an
absolute error of 0.00369, compared to the Euler method’s error of 0.12717.

Now let’s go back and redo another earlier example with the new method.

Example 3.2.3 Improved Euler Method—Example 3.1.3 Revisited
In Example 3.1.3 we discussed the IVP y′ = √

x + y, y(5) = 4 with the goal of approximating y(4).
If we apply the improved method to the problem, with five backward steps each of length 0.2—that
is, with h = −0.2—we get the values shown in Table 3.7.

Table 3.7 Improved Euler Method with h = −0.2

k xk yk True Value Absolute Error
0 5.0 4.000000 4.000000 0.000000
1 4.8 3.413644 3.413384 0.000260
2 4.6 2.854277 2.853750 0.000527
3 4.4 2.322249 2.321444 0.000805
4 4.2 1.817952 1.816857 0.001100
5 4.0 1.341827 1.34043 0.00140

Thus, y(4) ≈ 1.341827 by the improved method, compared to the “true” answer 1.34042895566892
and the original Euler method approximate value 1.27674987.

An analysis of error shows that the local truncation error at any stage of the im-
proved Euler method behaves like a constant multiple of h3 and that the cumulative
truncation error is no greater than a constant multiple of the square of the step size h:
|true value − approximation| ≤ K · h2, where K is a constant that depends on the
function f (x, y), on its partial derivatives, and on the interval involved, but does not
depend on h. We say that the improved Euler method is a second-order method.

In the next section, we’ll look at a fourth-order method and a powerful combina-
tion of fourth- and fifth-order techniques.

Exercises 3.2
A

Use the following table to enter the data from Problems 1 and 2.

TRUE
VALUE

Euler’s
Method

Absolute
Error

Improved
Euler Method

Absolute
Error

h = 0.1
h = 0.05
h = 0.025
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1. Use the improved Euler method to redo Example 3.1.1 with h = 0.1, 0.05, and
0.025.

2. Use the improved Euler method to redo Example 3.1.2 with h = 0.1, 0.05, and
0.025. (You’ll also have to use Euler’s method for h = 0.1.)

3. a. Find the exact solution to the IVP dx
dt

= t + x, x(0) = 1.

b. Apply the improved Euler method with step size h = 0.1 to approximate
the value x(1).

c. Calculate the absolute error at each step of part (b).

4. Using technology, redo Example 3.2.1 with both Euler’s method and the
improved Euler method, using a step size of h = 0.01—that is, using 100
steps. For each method calculate the absolute errors incurred in approximating
y(0.01), y(0.02), . . . , y(0.99), y(1.0). (A spreadsheet program can be particu-
larly useful here.)

B
5. Redo Problem 13 in Exercises 3.1 using the improved Euler method.

6. Redo Problem 15 in Exercises 3.1 using the improved Euler method.

7. Redo Problem 20 in Exercises 3.1 using the improved Euler method.

8. Consider the stiff IVP (see Section 3.1.1) dy
dx

= −50(y − cosx), y(0) = 0.
a. Use a CAS and apply the improved Euler method (Heun’s method) with

h = 0.5, 0.1, and 0.01 to approximate the value of y(1).

b. Find the exact solution of the (linear) IVP by hand and use this to calculate
y(1).

c. Plot the solution found in part (b) from x = −0.01 to x = 7.

C
9. Redo Problem 24 in Exercises 3.1 using the improved Euler method.

3.3 More sophisticated numerical methods: Runge–Kutta
and others

Modern computers (and even hand-held calculators) have many algorithms for solv-
ing differential equations numerically. Some of these are highly specialized and are
meant to handle very particular types of ordinary differential equations (ODEs) (such
as stiff equations; see Section 3.1.1) and systems of ODEs. Euler’s method and its im-
proved version are useful for illustrating the idea behind numerical approximation,
but they are not very efficient in terms of approximating a solution of an IVP very
accurately and with a minimum number of steps.

A very good method, implemented in many CASs and in calculator firmware, is
the fourth-order Runge–Kutta method (RK4), which was developed in an 1895
paper by Carl Runge (1856–1927), a German mathematician, and was generalized
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to systems of ODEs in 1901 by M. Wilhelm Kutta (1867–1944), a German mathe-
matician and aerodynamicist. As the description indicates, in this method the total
accumulated error is proportional to h4, so reducing the step size by a factor of 1/10
produces four more digits of accuracy—for example, reducing the step size from
h = 0.1 to h = 0.01 generally decreases the total error by a factor of 0.0001. (The
local truncation error behaves as h5.) There are also second- and third-order Runge–
Kutta methods. (Euler’s method can be called a first-order Runge–Kutta method.)

Now suppose we have an IVP y′ = f (x, y), y(x0) = y0. The RK4 formula looks
a bit strange, but not if we realize that it is approximating the value y(xk+1) by a
weighted average, yk+1, of values of f (x, y) calculated at different points in the
interval [xk, xk+1]. For each interval [xk, xk+1], we calculate the following slopes in
the order given:

m1 = f (xk, yk)

m2 = f

(
xk + h

2
, yk + h

2
m1

)

m3 = f

(
xk + h

2
, yk + h

2
m2

)

m4 = f (xk + h,yk + hm3) = f (xk+1, yk + hm3). (3.3.1)

Then the classical RK4 formula is

yk+1 = yk + h

6
(m1 + 2m2 + 2m3 + m4), (3.3.2)

where the sum (m1 + 2m2 + 2m3 + m4)/6 is a weighted average of slopes.
The value m1 is the slope at xk calculated by Euler’s method. Then m2 is an

estimate of the slope at the midpoint of the interval [xk, xk+1], where Euler’s method
has been used to estimate the y value there. Now m3 is a value for the slope at the
midpoint of [xk, xk+1] using the improved Euler’s method. Finally, m4 is the slope at
xk+1 calculated by Euler’s method, using the improved slope m3 at the midpoint to
step to xk+1.

Perhaps this formula won’t be so alarming if we look at the simplified situation
when f (x, y) is independent of y in the equation y′ = f (x, y). If f (x, y) = g(x),
then the set of equations (3.3.1) for m1, m2, m3, and m4 reduces to

m1 = g(xk)

m2 = g

(
xk + h

2

)

m3 = g

(
xk + h

2

)

m4 = g(xk + h) = g(xk+1)

so formula (3.3.2) becomes
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yk+1 = yk + h

6

{
g(xk) + 2g

(
xk + h

2

)
+ 2g

(
xk + h

2

)
+ g(xk+1)

}

= yk + h

6

{
g(xk) + 4g

(
xk + h

2

)
+ g(xk+1)

}

and you may recognize the expression h
6

{
g(xk) + 4g

(
xk + h

2

) + g(xk+1)
}

as a form
of Simpson’s Rule for approximating

∫ xk+1
xk

g(x) dx. (Note that xk + h
2 in the expres-

sion is the midpoint of the interval [xk, xk+1] because h = xk+1 − xk .)
To get a feel for the calculations, let’s choose an example that we’ve seen before.

Example 3.3.1 RK4—Example 3.1.1 Yet Again
Let’s approximate x(1.5) by the Runge–Kutta method if we are given the IVP dx

dt
= t2 +x, x(1) = 3.

We’ll use h = 0.1, so we need five steps.
Just to get the idea, let’s focus on the interval [t0, t1] = [1,1.1]. We calculate

m1 = f (t0, x0) = f (1,3) = (12 + 3) = 4

m2 = f

(
t0 + h

2
, x0 + h

2
m1

)
= f (1 + 0.05,3 + 0.05(4))

= 1.052 + 3.2 = 4.3025

m3 = f

(
t0 + h

2
, x0 + h

2
m2

)
= f (1 + 0.05,3 + 0.4317625)

= 1.052 + 3.215125 = 4.317625

m4 = f (t0 + h,x0 + hm3) = f (t1, x0 + hm3) = f (1.1,3 + 0.4317625)

= 1.12 + 3.4317625 = 4.6417625

so

x(1.1) ≈ x1 = 3 + 0.1

6
(4 + 2(4.3025) + 2(4.317625) + 4.6417625)

= 3 + 0.1

6
(25.8820125) = 3.431366875.

The actual value of x(1.1) (from the solution formula x(t) = −t2 − 2t − 2 + 8et−1) is
3.4313673446. . . . Here, the absolute error is 0.0000004696. (This is an amazingly close approx-
imation!)

Table 3.8 shows, for the same value h = 0.1, the exact values and the approximate values given
for this problem by Euler’s method, the improved Euler method, and the Runge–Kutta method. We
can see how accurate the Runge–Kutta method is at each step.

As accurate as the classical Runge–Kutta method is, improvements are possible.
For example a very popular method, the Runge–Kutta–Fehlberg algorithm, com-
bines fourth-order and fifth-order methods in a clever way announced by E. Fehlberg
in 1969. The rkf45 method, as its computer implementation is known, uses variable
step sizes, choosing the step size at each stage to try to achieve a predetermined de-
gree of accuracy. Such clever numerical techniques are called adaptive methods.
They may be useful, for example, in handling stiff differential equations (Subsec-
tion 3.1.1).
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Table 3.8 Comparison of Methods with h = 0.1

tk True Value
of x(tk)

Euler’s
Method

Improved
Euler Method

Runge–Kutta
Method

1 3.00000 3.00000 3.00000 3.00000
1.1 3.43137 3.40000 3.43050 3.43137
1.2 3.93122 3.86100 3.92925 3.93122
1.3 4.50887 4.39110 4.50552 4.50887
1.4 5.17460 4.99921 5.16955 5.17460
1.5 5.93977 5.69513 5.93266 5.93977

A more dramatic problem that can be handled by adaptive methods is that of
calculating a flight path from the Earth to the Moon and back,4 which involves solving
a system of differential equations numerically. In deep space, the driving force (the
gravitational potential gradients of the Earth, Venus, and the Sun) varies slowly, so a
relatively large step size can be used in solving the system. However, near the Earth
or the Moon a relatively small step size is needed to achieve the same accuracy. (If
this small step size is used for the entire flight, the calculation will be unnecessarily
long, but if the spacecraft gets too close to the earth and the step size is too large,
the calculation gives the craft too much kinetic energy and the craft zips out of the
Earth–Moon system at the speed of light.)

Exercises 3.3
In the problems that follow, it is assumed that you have versions of the Runge–Kutta
fourth-order method (RK4) and Runge–Kutta–Fehlberg (rkf45) method available to
you. Use the following table to enter the data from Problems 1 and 2. You may go
back to earlier examples to find the needed values.

A

TRUE
VALUE

Euler’s
Method

Improved
Euler Method

RK4
Method

h = 0.1
h = 0.05
h = 0.025

1. Use the RK4 method to redo Example 3.2.1 with h = 0.1, 0.05, and 0.025.
(Using the improved Euler method, the cases h = 0.1 and h = 0.05 were done
for you in the example.)

4 The astronauts of Apollo 13, whose engine failed on the flight to the moon, had to follow such a flight
path. The spacecraft had to be swung around by the gravity of the moon and returned to the vicinity of the
Earth without further thrusts from its rocket motors.
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2. Use the RK4 method to redo Example 3.2.2 with h = 0.1, 0.05, and 0.025.

3. Use the rkf45 method to approximate the solution of y ′ = y, y(0) = 1, at t = 1,
with h = 0.1. (That is, approximate the value of the constant e. See Exam-
ple 3.2.1.)

4. a. Find the exact solution of the IVP dx
dt

= t + x, x(0) = 1.

b. Apply the rkf45 method with step size h = 0.1 to approximate x(1), cal-
culating the absolute error at each step.

5. a. Find the closed-form solution of the equation dx
dt

= −tx2.

b. Using the rkf45 method with h = 0.1, approximate the value x(1) if x is
the solution of the IVP dx

dt
= −tx2, x(0) = 2.

6. Approximate y(0.8) using the rkf45 method with h = 0.01 if y is the solution
of the IVP dy

dx
= sin(xy), y(0) = 0.

B
7. A daredevil named Ellie goes skydiving and jumps from a plane at an initial

altitude of 10,000 feet. At time t her velocity v(t) satisfies the IVP dv
dt

= f (v),
v(0) = 0, where

f (v) = 32 − (0.000025) · (100v + 10v2 + v3).

If she does not open her parachute, she will reach terminal velocity when the
forces of gravity and air resistance balance.
a. Use the rkf45 method to approximate her velocity at times t = 5, 10, 15,

16, 17, 18, 19, and 20, and so guess her terminal velocity (accurate to
three decimal places).

b. Use technology to graph Ellie’s velocity over the interval [0,30].
8. In 1927, British scientists Kermack and McKendrick laid the foundations for

the theory of epidemiology by presenting data on the number of deaths result-
ing from a plague spread by rats in Bombay (now Mumbai) during the period
from December 1905 to July 1906. They gave the following equation for the
total number of deaths as of week t :

dR

dt
= 890 sech2(0.20t − 3.4),

where sech t denotes the hyperbolic secant function.
a. Assuming that R(0) = 0, use the rkf45 method to fill in the following

table.

t (weeks) Actual Deaths Predicted Deaths
1 4
5 68
10 425
20 6339
30 9010
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b. According to the Kermack–McKendrick model, what is the asymptotic
value of R—that is, limt→∞ R(t)?

9. When using the Runge–Kutta methods (including Euler’s method and Heun’s
method), it is important to realize that the error depends on the form of the
equation and on the solution itself. To see an example of this, note that y(x) =
(x + 1)2 is the solution to each of the two problems

y′ = 2(x + 1), y(0) = 1

y′ = 2y/(x + 1), y(0) = 1.

a. Show that Heun’s method is exact for the first equation.

b. Show that the method is not exact when applied to the second equation
even though it has the same solution as the first equation.

10. Consider the IVP dx
dt

= x2, x(0) = 2.
a. Use Euler’s method with h = 0.1 to approximate x(1). Does your answer

seem strange?

b. Use the rkf45 method with h = 0.1 to approximate x(1). Compare your
answer to the answer in part (a) if your calculator or CAS gives you a
meaningful answer in both cases.

c. To help explain your difficulties in parts (a) and (b), find the closed-form
solution of the IVP.

d. Use your answer to part (c) to explain why your answers to parts (a) and
(b) are both wrong.

e. How do you think you may be able to avoid the difficulty uncovered in
part (d)? Maybe by changing step size? Try to solve the problem again
using the rkf45 method.

C
11. Consider the generalized logistic equation

dP

dt
= kP α

(
1 − P β

M

)
.

a. Let k = 1, M = 5, and P(0) = 1. Find numerical approximations to
the solution in the range 0 ≤ t ≤ 10 for the parameter pairs (α,β) =
(0.5,1), (0.5,2), (1.5,1), (1.5,2), (2,2).

b. Estimate a parameter pair (r, q) that approximately yields the values
P(0) = 1, P(2) = 2.4, P(4) = 2.9.

Summary
Even if we can solve a first-order differential equation, we may not be able to find a
closed-form solution. This difficulty has led to the development of numerical methods
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to approximate a solution to any degree of accuracy. Leaving aside input error, there
are two main sources of error in numerical calculations done by hand, calculator,
or computer: round-off error and truncation error. Round-off error is the kind of
inaccuracy we get by taking a certain number of decimal places instead of taking the
entire number. In particular, remember that a calculator or computer is limited in the
number of decimal places it can handle. Truncation error occurs when we stop (or
truncate) an approximation process after a certain number of steps. Finally, we must
be aware that there is usually a trade-off when dealing with error. If we try to reduce
the truncation error and increase the accuracy of our approximation by carrying out
more steps (for example, by taking more terms of a Taylor series), we increase the
calculation load and consequently run the risk of increasing propagated (cumulative)
error. (See Section A.3.)

Euler’s method uses the idea that values near a point on a curve can be approx-
imated by values on the tangent line drawn to that point. If we want to approximate
the solution of the IVP y′ = f (x, y), y(x0) = y0 on an interval [a, b], we first par-
tition [a, b] by using n + 1 equally spaced points xi , where xi+1 − xi = b−a

n
= h

for i = 0,1, . . . , n − 1. Then if yi is an approximate value for y(xi), we can define
the sequence of approximate solution values as yk+1 = yk + hf (xk, yk). Generally
speaking, we can increase the accuracy of the approximation (reduce the error) by
making the step size h smaller—that is, by making the number of steps n larger. For
Euler’s method, a first-order method, the cumulative truncation error is bounded by
a constant multiple of the step size: |true value − approximation| ≤ K · h, where K

is independent of h but depends on |y′′(x)| and the interval [x0, b]. In practice, the
actual error incurred in a problem will usually be less than this bound.

Euler’s method (sometimes called the forward Euler method) does not work well
for stiff differential equations. Stiffness occurs when some components of the so-
lution decay much more rapidly than others. The Euler backward method does a
better job in these cases, but is still not ideal for stiff equations. The sequence of
approximate solution values is defined by the equation yk+1 = yk + hf (xk+1, yk+1).
Since you must solve for yk+1 each time you use this equation, it is called an implicit
method.

An improvement on Euler’s method called Heun’s method guesses a value of
y(xk) and then uses yk to correct this guess by an averaging process. The algorithm
can be expressed as follows:

Guess (tentative step): ŷk+1 = yk + h · f (xk, yk)

Real Step: yk+1 = yk + h

{
f (xk, yk) + f (xk+1, ŷk+1)

2

}

= yk + h

{
f (xk, yk) + f (xk+1, yk + h · f (xk, yk))

2

}

= yk + h

2
{f (xk, yk) + f (xk+1, yk + h · f (xk, yk))} .
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For the improved Euler method, the cumulative truncation error is no greater than
a constant multiple of the square of the step size h: |true value − approximation| ≤
K · h2, where K is a constant that depends on the function f (x, y), on its partial
derivatives, and on the interval involved, but not on h. We say that the improved
Euler method is a second-order method.

There are many more sophisticated algorithms for solving differential equations
numerically. Two very effective methods implemented in many CASs and even some
calculators are the fourth-order Runge–Kutta method and the Runge–Kutta–
Fehlberg algorithm. The rkf45 method, as the computer implementation of this last
algorithm is known, uses variable step sizes and chooses the best step size at each
stage to achieve a predetermined degree of accuracy. Such clever numerical tech-
niques are called adaptive methods.
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CHAPTER

Second- and higher-order
equations

Introduction
In Chapters 2 and 3, we analyzed first-order equations graphically, numerically, and
analytically and introduced qualitative concepts that will be useful in later chapters.

In this chapter, we will make the jump from first-order equations to higher-order
equations, especially second- and third-order equations. We’ll start by investigating
types of second-order linear equations that occur frequently in science and engineer-
ing applications. These equations have a fully developed theory that generalizes to
higher-order equations of the same type.

This chapter will close with a discussion of existence and uniqueness of solutions
for higher-order differential equations.

4.1 Homogeneous second-order linear equations with
constant coefficients

A very important application of differential equations is the analysis of an RLC circuit
containing a resistance R, an inductance L, and a capacitance C. (We have already
seen some first-order examples in Chapter 2.) In electrical circuit theory, if I = I (t)

represents the current, Kirchhoff’s Voltage Law leads to the equation Ld2I

dt2 + R dI
dt

+
1
C

I = 0 when the voltage applied to the circuit is constant (for example, when a
battery is used). We describe any equation of the form ay′′ + by′ + cy = 0, where a,
b, and c are constants and a �= 0, as a homogeneous second-order linear equation
with constant coefficients. In this section, we will develop a technique for solving
any equation of this type.

Extending the way we considered a first-order linear equation in Section 2.2, we
see that a linear second-order equation with constant coefficients can be viewed in
terms of an operator L transforming functions that have two derivatives: L(y) =
ay′′ + by′ + cy. To solve a homogeneous equation, we must find a function y such
that L(y) = 0. There is a natural extension of the Superposition Principle (see Sec-
tion 2.2) for homogeneous equations:
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Superposition Principle for Homogeneous Equations
Suppose y1 and y2 are solutions of the homogeneous second-order linear differential equation

ay′′ + by′ + cy = 0

on an interval I . Then the linear combination c1y1(x) + c2y2(x), where c1 and c2 are arbitrary con-
stants, is also a solution on this interval.

(You’ll be asked to prove this in Problem 15 of Exercises 4.1.)
If we consider a homogeneous first-order linear equation with constant coeffi-

cients, ay′ + by = 0, where a �= 0, we know that the general solution is y = Ce− b
a

t .
In 1739, aware of this solution, Euler1 proposed solving an nth-order homogeneous
linear equation with constant coefficients by looking for solutions of the form y = eλt ,
where λ is a constant to be determined. Let’s see how this works for the equation

ay′′ + by′ + cy = 0, (4.1.1)

where a, b, and c are constants.
If we assume that y = eλt is a solution of Eq. (4.1.1), then y′ = λeλt and

y′′ = λ2eλt . Substituting these derivatives into (4.1.1), we get a
(
λ2eλt

)+ b
(
λeλt

)+
c
(
eλt
)= 0, which simplifies to

(
aλ2 + bλ + c

)
eλt = 0. Because the exponential fac-

tor is never zero, we must have aλ2 + bλ + c = 0.

4.1.1 The characteristic equation and eigenvalues
We have just concluded that if y = eλt is a solution of Eq. (4.1.1), then λ must satisfy
the equation aλ2 +bλ+c = 0, which is called the characteristic equation (or auxil-
iary equation) of the differential Eq. (4.1.1). The roots of this characteristic equation
will reveal to us the nature of the solution(s) of (4.1.1). Note that we can go straight
from the ordinary differential equation (ODE) to the characteristic equation:

ay′′︸︷︷︸
a·2nd derivative

+ by′︸︷︷︸
b·1st derivative

+ cy︸︷︷︸
c·0th derivative

= 0

� � �
a·2nd-degree term︷︸︸︷

aλ2 +
b·1st-degree term︷︸︸︷

bλ +
c·0th-degree term︷︸︸︷

c = 0

Because the characteristic equation of our second-order ODE is a quadratic equation,
we know that there are two roots, say λ1 and λ2.

1 In a letter to John (Johannes) Bernoulli, who first solved the important type of differential equation
devised by his brother Jakob. See the start of the “B” problems in Exercises 2.2.
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There are only three possibilities for these roots:

1. The roots are both real numbers with λ1 �= λ2
2. The roots are real numbers with λ1 = λ2
3. The roots are complex numbers: λ1 = p + qi and λ2 = p − qi, where p and q

are real numbers (called the real part and the imaginary part, respectively) and
i = √−1.

In the third case, we say that λ1 and λ2 are complex conjugates of each other. (See
Appendix C, especially Section C.3, for more information about complex numbers.)

4.1.2 Real but unequal roots
In case (1), where λ1 and λ2 are unequal real numbers, then both y1(t) = eλ1t

and y2(t) = eλ2t are solutions of Eq. (4.1.1). By the extension of the Superpo-
sition Principle given earlier in this section, any linear combination of the form
y(t) = c1e

λ1t + c2e
λ2t is also a solution, where c1 and c2 are arbitrary constants.

It can be shown (see Section 4.2 for the details) that this is the general solution of
Eq. (4.1.1)—that is, if the roots of the characteristic equation (4.1.1) are real and dis-
tinct, then any solution of (4.1.1) must have the form y(t) = c1e

λ1t + c2e
λ2t for some

constants c1 and c2. The next example shows how to solve equations of the form
(4.1.1) using these roots.

Example 4.1.1 The Characteristic Equation—Unequal Roots
Let’s solve the homogeneous linear second-order equation with constant coefficients 6y′′ + 13y′ −
5y = 0. We find that the characteristic equation of this ODE is 6λ2 + 13λ − 5 = 0:

6y′′︸︷︷︸
6·2nd derivative

+ 13y′︸︷︷︸
13·1st derivative

+ −5y︸︷︷︸
−5·0th derivative

= 0

� � �
6·2nd-degree term︷︸︸︷

6λ2 +
13·1st-degree term︷︸︸︷

13λ +
−5·0th-degree term︷︸︸︷

(−5) = 0

Using the quadratic formula, we find

λ = −13 ±
√

132 − 4(6)(−5)

2(6)
= −13 ± √

289

12
= −13 ± 17

12
= 1

3
and − 5

2
,

so that we have two distinct real roots, λ1 = 1
3 and λ2 = − 5

2 , and we can write the general solution

of our equation as y(t) = c1e
t
3 + c2e

− 5t
2 .

4.1.3 Real but equal roots
Next, we consider possibility (2), that the roots of the characteristic equation are real
numbers with λ1 = λ2. In this situation, we get only one solution, y = eλt , where
λ is the value of the repeated root. To obtain the general solution in this case, we
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have to find another solution that is not merely a constant multiple of eλt (or else
the “two” solutions can be merged into a single solution requiring only one arbitrary
constant). Again, Euler comes to the rescue (this time in 1743). He suggested that an
independent2 second solution might be found by considering functions of the form
y2(t) = u(t)eλt , where u(t) is an unknown function that must be determined. This
may remind you of the method of variation of parameters discussed in Section 2.2.2.

Rather than deriving the consequences of Euler’s assumption in the general case
(see Problem 25 in Exercises 4.1), we’ll illustrate his ingenious technique with an
example.

Example 4.1.2 The Characteristic Equation—Equal Roots
The equation y′′ − 4y′ + 4y = 0 has the characteristic equation λ2 − 4λ + 4 = (λ − 2)2 = 0, so
λ = 2 is a repeated root. We know that y1 = e2t is one solution of the differential equation. Taking
Euler’s suggestion, we consider y2(t) = u(t)e2t .

Now the Product Rule and the Chain Rule yield y′
2 = 2ue2t +u′e2t and y′′

2 = 4ue2t + 4u′e2t +
u′′e2t . Substituting y2 and its derivatives into our original differential equation, we obtain

y′′
2 − 4y′

2 + 4y2 =
(

4ue2t + 4u′e2t + u′′e2t
)

− 4
(

2ue2t + u′e2t
)

+ 4
(
ue2t

)
= u′′e2t = 0.

Therefore, we must have u′′(t) = 0, and two successive integrations give us u′(t) = A and u(t) =
At +B, where A and B are arbitrary constants. Our conclusion is that y2(t) = u(t)e2t = (At +B)e2t

is a solution of the original ODE that is not a constant multiple of y1 = e2t . The Superposition
Principle tells us that the general solution is given by

y(t) = c1y1(t) + c2y2(t) = c1e2t + c2(At + B)e2t = (C1t + C2) e2t ,

where C1 = c2A and C2 = c1 + c2B are arbitrary constants.

4.1.4 Complex conjugate roots
When the roots are complex numbers—λ1 = p + qi and λ2 = p − qi, where p and q

are real numbers—the two corresponding solutions of the differential equation ay′′ +
by′ + cy = 0 are y1(t) = e(p+qi)t and y2(t) = e(p−qi)t . At this point, a crucial fact
to know is Euler’s formula,3 which defines the exponential function for complex
values of the argument (exponent):

ep+qi = ep (cosq + i sinq) .

2 Two functions f1 and f2 are called (linearly) independent on an interval I if one is not a constant
multiple of the other. Equivalently, if c1 and c2 are constants, then the only way for c1 f1 + c2f2 to be
the zero function on I is if c1 = c2 = 0. It can be shown that Euler’s technique produces a new solution
independent of the first.
3 Euler discovered this formula in 1740 while investigating solutions of the equation y′′ + y = 0. For a
marvelous account of this formula and its consequences, see Dr. Euler’s Fabulous Formula: Cures Many
Mathematical Ills by Paul J. Nahin (Princeton: Princeton University Press, 2006).
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(If we let p = 0 and q = π , we get a particularly elegant formula connecting five
of the most significant constants in all of mathematics: eπ i + 1 = 0. See also Ap-
pendix C.4.)

Using Euler’s formula, we can write the solutions as

y1(t) = e(p+qi)t = ept e(qt)i = ept (cos(qt) + i sin(qt))

and

y2(t) = e(p−qi)t = ept e−(qt)i = ept (cos(−qt) + i sin(−qt))

= ept (cos(qt) − i sin(qt)) ,

where we have simplified y2(t) by recognizing that the cosine is an even function and
the sine is an odd function: cos(−x) = cos(x), sin(−x) = − sin(x). If we combine
these complex-valued solutions carefully (see Problem 23 in Exercises 4.1), we find
that

y(t) = ept (C1 cos(qt) + C2 sin(qt)) ,

a real-valued function, is a solution of ay′′ +by′ +cy = 0 for all constants C1 and C2.
In fact, y(t) = ep t (C1 cos (qt) + C2 sin (qt)) is the general solution of the homo-
geneous equation when the characteristic equation has complex conjugate roots
p ± qi.

Now let’s practice with complex roots of a characteristic equation.

Example 4.1.3 Complex Conjugate Roots
The equation ẍ + 8ẋ + 25x = 0 models the motion of a steel ball suspended from a spring, where
x(t) is the ball’s distance (in feet) from its rest (equilibrium) position at time t seconds. Distance
below the rest position is considered positive, and distance above is considered negative. We want
to describe the motion (position) of the ball by finding a formula for x(t).

The characteristic equation is λ2 + 8λ + 25 = 0. The quadratic formula gives us

λ = −8 ±
√

82 − 4(1)(25)

2
= −8 ± √−36

2
= −8 ± 6i

2
= −4 ± 3i,

so the roots are λ1 = −4 + 3i and λ2 = −4 − 3i. Using the solution formula derived previously,
with p = −4 and q = 3, we see that x(t) = e−4t (C1 cos(3t) + C2 sin(3t)) for arbitrary constants
C1 and C2.

Suppose that we specify initial conditions, say x(0) = 0 and ẋ(0) = 4. These conditions tell
us that the ball is at its equilibrium position at the beginning of our investigation and that the ball
is started in motion from its equilibrium position with an initial velocity of 4 ft/s in the downward
direction. Applying these conditions, we have

x(0) = e−4(0) (C1 cos(0) + C2 sin(0)) = C1 = 0

and

ẋ(0) = e−4(0) (−3C1 sin(0) + 3C2 cos(0)) − 4e−4(0) (C1 cos(0) + C2 sin(0))

= 3C2 − 4C1 = 4.
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Therefore, C1 = 0, C2 = 4
3 , and the solution of our initial-value problem (IVP) is x(t) =

4
3 e−4t sin(3t). The graph of this solution (Fig. 4.1) shows that the motion is dying out as time
passes—that is, x → 0 as t → ∞. Another way of saying this is that the ball eventually returns to
its equilibrium position.

FIGURE 4.1

Graph of 4
3 e−4t sin(3t), the solution of the IVP ẍ + 8ẋ + 25x = 0; x(0) = 0, ẋ(0) = 4;

0 ≤ t ≤ 1.5

As we’ll see in Chapter 6, the differential equation has a term in it that represents air resistance,
and this results in what is called damped motion.

4.1.5 The amplitude-phase angle form of a solution
In working with a differential equation part of whose solution is a linear combination
of cosωt and sinωt , where ω is a parameter, we can use a basic identity to write the
trigonometric part of the solution as a single trigonometric function. This will enable
us to “read” the solution more clearly and visualize its graph more easily.

Specifically, we show that

c1 cos ωt + c2 sin ωt = M cos (ωt − φ), (4.1.2)

where M is a constant depending on c1 and c2 and φ is an angle depending on c1 and
c2, where not both c1 and c2 are zero. To see this, we write

c1 cosωt + c2 sinωt =
√

c2
1 + c2

2

⎡
⎢⎣ c 1√

c2
1 + c2

2

cosωt + c2√
c2

1 + c2
2

sinωt

⎤
⎥⎦ . (4.1.3)

We note three things about the right-hand side of (4.1.3): (1)
∣∣∣ c1√

c2
1+c2

2

∣∣∣ ≤ 1 and∣∣∣ c2√
c2

1+c2
2

∣∣∣≤ 1; (2)
(

c1√
c2

1+c2
2

)2 +
(

c2√
c2

1+c2
2

)2 = 1; and (3) the right-hand side resembles

the trigonometric identity cos(A−B) = cosA cosB + sinA sinB, where B = ωt . To
see the similarity indicated in (3) more clearly, we choose an angle φ (measured in
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radians) such that cosφ = c1√
c2

1+c2
2

and sinφ = c2√
c2

1+c2
2

. We may be tempted to define

φ = tan−1
(

c2
c1

)
, but as we’ll see in Example 4.1.4(b) the value of the quotient c2/c1

does not determine the quadrant in which φ lies. The range of the inverse tangent is
assumed to be the open interval (−π/2,π/2), which may not be consistent with the
true location of φ. The necessary adjustments are indicated in the summary later in
this section.

The angle φ, called the phase angle, always exists because of properties (1)

and (2). The quantity M =
√

C2
1 + C2

2 is the amplitude. The expression M cos(ωt −
φ) is called the amplitude-phase angle form of the solution C1 cosωt + C2 sinωt .

We see that M cos(ωt −φ) = M cos
(
ω
[
t − φ

ω

])
has period 2π/ω and that the graph

of M cos(ωt − φ) is the graph of M cos(ωt) shifted φ/ω units to the right.

FIGURE 4.2

Amplitude-phase angle

Fig. 4.2 illustrates the situation for a first-quadrant point (C1,C2).

Example 4.1.4 The Amplitude-Phase Angle Forms of Solutions
(a) The IVP ẍ + 256x = 0, x(0) = 1/4, x′(0) = 1 has the solution x(t) = 1

4 cos 16t + 1
16 sin 16t .

To write this solution in the amplitude-phase angle form M cos(16t − φ), we first calculate

M =
√

c2
1 + c2

2 =
√(

1
4

)2 +
(

1
16

)2 =
√

17
16 . Next we note that (c1, c2) = (1/4,1/16) is in the

first quadrant, and we determine the phase angle φ by the equations cosφ = 1/4√
17/16

= 4
√

17
17 and

sinφ = 1/16√
17/16

=
√

17
17 , which indicate that φ = 0.2450 radian. Therefore, we can write the solution

as
√

17
16 cos(16t − 0.2450).
(b) The solution of the IVP y′′ + 9y = 0, y(0) = −0.3, y′(0) = 1.2 is y(t) = −0.3 cos 3t +

0.4 sin 3t . The amplitude of this solution is M =
√

c2
1 + c2

2 =
√

(−0.3)2 + (0.4)2 = 0.5. The
point (c1, c2) = (−0.3,0.4) lies in the second quadrant, and the unique solution of the equations
cosφ = −0.3

0.5 = −0.6 and sinφ = 0.4
0.5 = 0.8 is approximately 2.2143 radians (= π − sin−1(0.8)).

Thus, y(t) = 0.5 cos(3t − 0.2143). Note that in this example tan−1 (c 2/c 1) = tan−1 (0.4/−0.3) =
−0.9273, an incorrect answer that places φ in the fourth quadrant. However, φ can be calculated
correctly as tan−1 (0.4/ − 0.3) + π .
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We can summarize the process of expressing a solution in amplitude-phase angle
form as follows:

Amplitude-Phase Angle Form

c1 cosωt + c2 sinωt = M cos(ωt − φ)

M =
√

c2
1 + c2

2

tanφ = c2

c1

φ =
{

tan−1(c2/c1) if c1 ≥ 0

tan−1(c2/c1) + π if c1 < 0

Using this technique, you can express a linear combination of sines and cosines
as a single sine term as well: c1 cos ωt + c2 sin ωt = R sin(ωt − φ).

4.1.6 Summary
We can summarize the situation for homogeneous linear second-order equations with
constant coefficients as follows:

Suppose that we have the equation ax′′ + bx′ + cx = 0, where a, b, and c are
constants, a �= 0, and λ1 and λ2 are the roots of the characteristic equation aλ2 +
bλ + c = 0. Then

1. If there are two distinct real roots—λ1, λ2, with λ1 �= λ2—corresponding to our
equation, the general solution is

x(t) = c1e
λ1t + c2e

λ2t .

2. If there is a repeated real root λ, the general solution has the form

x(t) = c1e
λt + c2t eλt = (c1 + c2t) eλt .

3. If the roots form a complex conjugate pair p ± qi, then Euler’s formula can be
used to show that the real-valued general solution has the form

x(t) = ep t (c1 cos(qt) + c2 sin(qt)) .

Exercises 4.1
A
Find the general solution of each of the equations in Problems 1–10.

1. y′′ − 4y′ + 4y = 0

2. ẍ + 4ẋ − 5x = 0

3. x′′ − 2x′ + 2x = 0
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4. x′′ + 5x′ + 6x = 0

5. ẍ + 2ẋ = 0

6. ẍ − x = 0

7. y ′′ + 4y = 0

8. 6ẍ − 11ẋ + 4x = 0

9. r̈ − 4ṙ + 20r = 0

10. y′′ + 4ky′ − 12k2y = 0 (k is a parameter)

11. Solve the IVP ẍ − 3ẋ + 2x = 0; x(0) = 1, ẋ(0) = 0.

12. Solve the IVP y ′′ − 2y′ + y = 0; y(0) = 0, y′(0) = 0.

13. Solve the IVP y′′ − 4y′ + 20y = 0; y(π/2) = 0, y′(π/2) = 1.

14. Write each of the following functions in amplitude-phase angle form:
a. x(t) = 3 cos 5t − 7 sin 5t

b. y(t) = √
3 cos 14t + sin 14t

c. x(t) = −6 cos 5t + 6 sin 5t

d. y(t) = √
3 cos 6t − sin 6t

B

15. a. Show that if a, b, and c are constants and y is any function having at least
two derivatives, then the differential operator L defined by the relation
L(y) = ay′′ + by′ + cy is linear: L(c1y1 + c2y2) = c1L(y1) + c2L(y2)

for any twice-differentiable functions y1 and y2 and any constants c1
and c2.

b. Show that if y1 and y2 are two solutions of L(y) = 0, then the function
c1y1 + c2y2 is also a solution of L(y) = 0.

As we noted at the beginning of Section 4.1, if I = I (t) represents the cur-
rent in an electrical circuit, then Kirchhoff’s Voltage Law gives us the equation

Ld2I

dt2 + R dI
dt

+ 1
C

I = 0 when the voltage applied to the circuit is constant. In this
equation, L is the inductance, R is the resistance, and C is the capacitance. Use this
equation in Problems 16 and 17.

16. An RLC circuit with R = 10 ohm, L = 0.5 henry, and C = 0.01 farad has a
constant voltage of 12 volt. Assume no initial current and that dI

dt
= 60 when

the voltage is first applied. Find an expression for the current in the circuit at
time t > 0.

17. An RLC circuit with R = 6 ohm, L = 0.1 henry, and C = 0.02 farad has a
constant voltage of 6 volt. Assume no initial current and that dI

dt
= 60 when

the voltage is first applied.
a. Find an expression for the current in the circuit at time t > 0.

b. Use technology to graph the answer found in part (a) for 0 ≤ t ≤ 0.5.
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c. From the graph in part (b) estimate the maximum value of I , and find
the exact value by calculus techniques applied to the expression found in
part (a).

d. At what time is the maximum value found in part (c) achieved? (You can
use a calculator or a CAS for this.)

According to Newton’s Second Law of Motion, if an object with mass m is
suspended from a spring attached to the ceiling, then the motion of the object is
governed by the equation mẍ + aẋ + kx = 0. In this equation, x(t) is the object’s
distance from its rest (or equilibrium) position at time t seconds. Distance below
the rest position is considered positive, while distance above is considered negative.
Also, a is a constant representing the air resistance and/or friction present in the
system and k is the spring constant describing the “give” in the spring. (Recall that
mass = weight/g, where g is the gravitational constant: 32 ft/s2, or 9.8 m/s2.) Use
this equation to do Problems 18–21.

18. An object of mass 4 slugs (= 128 lb/32 ft/s2) is suspended from a spring
having spring constant 64 lb/ft. The object is started in motion, with no initial
velocity, by pulling it 6 inches (Be careful of the units!) below the equilibrium
position and then releasing it. If there is no air resistance, find a formula for
the position of the object at any time t > 0. (Note that the problem statement
contains two initial conditions.)

19. A 20 g mass hangs from the end of a spring having a spring constant of
2880 dyn/cm and is allowed to come to rest. It is then set in motion by stretch-
ing the spring 3 cm from its equilibrium position and releasing the mass with
an initial velocity of 10 cm/s in the downward (positive) direction. Find the
position of the mass at time t > 0 if there is no air resistance.

20. A 1
2 kg mass is attached to a spring having a spring constant of 6 lb/ft. The

mass is set in motion by displacing it 6 inches below its equilibrium position
with no initial velocity. Find the subsequent motion of the mass if a, the con-
stant representing air resistance, is 4 lb.

21. A 1
2 kg mass is attached to a spring having a spring constant of 8 N/m (new-

ton per meter). The mass is set in motion by displacing it 10 cm above its
equilibrium position with an initial velocity of 2 m/s in the upward direction.
a. Find the subsequent motion of the mass if the constant representing air

resistance is 2 newton.

b. Graph the function x(t) found in part (a) for 0 ≤ t ≤ 3, 2 ≤ t ≤ 3, and
3 ≤ t ≤ 4. Describe the motion of the mass in your own words.

c. Estimate the greatest distance of the mass above its equilibrium position.

22. The equation θ ′′ = −4θ − 5θ ′ represents the angle θ(t) made by a swinging
door, where θ is measured from the equilibrium position of the door, which is
the closed position. The initial conditions are θ(0) = π

3 and θ ′(0) = 0.
a. Determine the angle θ(t) as a function of time (t > 0).
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b. What does your solution tell you is going to happen as t increases?

c. Use technology to graph the solution θ(t) on the interval [0,5].

C
23. We know that y1(t) = ept (cos(qt) + i sin(qt)) and y2(t) = ept (cos(qt) −

i sin(qt)) are complex-valued solutions of Eq. (4.1.1) when the roots of the
characteristic equation are complex conjugate numbers p ± qi. In what fol-
lows, you may assume that complex constants are valid in the Superposition
Principle.
a. Calculate Y1 = y1+y2

2 and show that Y1 is a real-valued solution of (4.1.1).

b. Calculate Y2 = y1−y2
2i

and show that Y2 is a real-valued solution of (4.1.1).

c. Calculate Y = c1Y1 + c2Y2 and conclude that Y is a real-valued solution
of (4.1.1) for arbitrary real constants c1 and c2.

24. Given the equation Ld2I

dt2 + R dI
dt

+ 1
C

I = 0,
a. For what values of R will the current subside to zero without oscillating?

[Hint: Oscillation is equivalent to having trigonometric functions in the
solution.]

b. For what values of R will the current oscillate before subsiding to zero?

25. Suppose that we have a constant-coefficient equation ay′′ + by′ + cy = 0
whose characteristic equation has a repeated root r . Then we know that y1(t) =
ert is a solution of the equation. If we form the new function y2(t) = u(t)ert ,
where u(t) is unknown, we want to determine u(t) so that y2 is a solution of
the differential equation, but is not a constant multiple of y1.
a. Show that any constant-coefficient equation ay′′ + by′ + cy = 0 whose

characteristic equation has a double root r must have the form y′′ −2ry′ +
r2y = 0.

b. Find y′
2 and y′′

2 and then substitute y2 and these derivatives into the equa-
tion y′′ − 2ry′ + r2y = 0. Simplify the result.

c. Solve the equation you get in part (b) for u(t).

26. Consider the equation ay′′ + by′ + cy = 0. Another approach to the situation
in which the characteristic equation has a double real root λ∗ was developed
by the French mathematician d’Alembert (1717–83). He proposed (in c. 1748)
splitting this root into two “neighboring” roots λ∗ and λ∗ + ε, where ε is small
(but not zero).

a. Show that both eλ∗t , e
(
λ∗+ε

)
t and the combination yε(t) = e

(
λ∗+ε

)
t−eλ∗ t

ε
are

solutions of the “perturbed” equation ay′′+(b − εa)y′+(c + εaλ∗) y = 0.
[Use the result of Problem 25a.]

b. Show that as ε → 0, yε(t) becomes the function teλ∗t , which is a solution
of the original equation.
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4.2 Nonhomogeneous second-order linear equations with
constant coefficients

4.2.1 The structure of solutions
If we take the same RLC circuit that we considered at the beginning of the preceding
section and hook up a generator supplying alternating current to it, Kirchhoff’s Volt-

age Law will now take the form Ld2I

dt2 + R dI
dt

+ 1
C

I = dE
dt

, where E is the applied
nonconstant voltage. An equation of this kind is called a nonhomogeneous second-
order linear equation with constant coefficients. (The nonzero right-hand side of
such an equation is often called the forcing function or the input. The solution of
the equation is the output. See Section 2.2.)

To get a handle on solving a nonhomogeneous linear equation with constant co-
efficients, let’s think a bit about the difference between a nonhomogeneous equation

ay′′ + by′ + cy = f (t) (4.2.1)

and its associated homogeneous equation ay′′ + by′ + cy = 0. If y is the general
solution of the homogeneous system, then y doesn’t quite “reach” all the way to f (t)

under the transformation L(y) = ay′′ +by′ +cy. It stops short at 0. Perhaps we could
enhance the solution y in some way so that operating on this new function does give
us all of f . We have to be able to capture the “leftover” term f (t).

For nonhomogeneous second-order equations with constant coefficients, the
proper form of the Superposition Principle is the following:

If y1 is a solution of ay′′ + by′ + cy = f 1(t) and y2 is a solution of ay′′ +
by′ + cy = f 2(t), then y = c1y1 + c2y2 is a solution of ay′′ + by′ + cy =
c1f 1(t) + c2f 2(t) for any constants c1 and c2.

From the Superposition Principle follows a fundamental truth about the solu-
tions of linear equations with constant coefficients:

The general solution, yGNH, of a linear nonhomogeneous equation ay′′ + by′ + cy = f (t) is
obtained by finding a particular solution, yPNH, of the nonhomogeneous equation and adding it
to the general solution, yGH, of the associated homogeneous equation: yGNH = yGH + yPNH.

We can prove this easily using operator notation, in which L(y) = ay′′ +by′ +cy:

1. First note that L(yGH) = 0 and L(yPNH) = f (t) by definition.
2. Then if y = yGH + yPNH, we have L(y) = L(yGH + yPNH) = L(yGH) +

L(yPNH) = 0 + f (t) = f (t), so y is a solution of Eq. (4.2.1).
3. Now we must show that every solution of Eq. (4.2.1) has the form y = yGH +

yPNH. To do this, we assume that y* is an arbitrary solution of L(y) = f (t) and
yPNH is a particular solution of L(y) = f (t). If we let z = y∗ − yPNH, then

L(z) = L
(
y∗ − yp

)= L
(
y∗)− L

(
yp

)= f (t) − f (t) = 0,
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which shows that z is a solution to the homogeneous equation L(y) = 0. Because
z = y∗ − yPNH, it follows that y∗ = z + yPNH. Since y∗ is an arbitrary solution
of the nonhomogeneous equation, the expression z + yPNH includes all solutions.
(See Problem 23 of Exercises 1.3 and Problem 35 of Exercises 2.2 for related
results.)

Let’s go through a few simple examples to develop some intuition for the solutions
of nonhomogeneous equations.

Example 4.2.1 Solving a Nonhomogeneous Equation
If we are given the nonhomogeneous equation y′′ + 4y′ + 5y = 10e−2x cosx, the general solution
will be made up of the general solution of the associated homogeneous equation and a particu-
lar solution of the nonhomogeneous equation: yGNH = yGH + yPNH. The characteristic equation
λ2 + 4λ + 5 = 0 has roots −2 ± i, so we know that yGH = e−2x (c1 cosx + c2 sinx). We can verify
that a particular solution of the nonhomogeneous equation is 5xe−2x sinx. Therefore, the general
solution of the nonhomogeneous equation is y = e−2x (c1 cosx + c2 sinx) + 5xe−2x sinx.

In the preceding example, a particular solution appeared magically. The next ex-
ample hints at how we may find yPNH by examining the forcing function on the
right-hand side of the equation. Sections 4.3 and 4.4 will provide systematic proce-
dures for determining a particular solution of a nonhomogeneous equation.

Example 4.2.2 Solving a Nonhomogeneous Equation
Suppose we want to find the general solution of y′′ + 3y′ + 2y = 12 et . Because the characteristic
equation of the associated homogeneous equation is λ2 + 3λ + 2 = 0, with roots −1 and −2, we
know that the general solution of the homogeneous equation is yGH = c1e−t + c2e−2t .

Now we look carefully at the form of the nonhomogeneous equation. In looking for a partic-
ular solution yPNH, we can ignore any terms of the form e−t or e−2t because they are part of the
homogeneous solution and won’t contribute anything new. But somehow, after differentiations and
additions, we have to wind up with the term 12et . We guess that y = cet for some undetermined
constant c. Substituting this expression into the left-hand side of the nonhomogeneous equation, we
get (cet ) + 3(cet ) + 2(cet ) = 6cet . If we choose c = 2, then yPNH = 2et is a particular solution of
the nonhomogeneous equation.

Putting these two components together, we can write the general solution of the nonhomoge-
neous equation as yGNH = yGH + yPNH = c1e−t + c2e−2t + 2et .

The intelligent guessing used in the preceding example can be formalized into the
method of undetermined coefficients, which will be discussed in the next section.
But, as we’ll see, this method is effective only when the forcing function f (t) in the
equation ay′′ + by′ + cy = f (t) is of a special type.

Exercises 4.2
A
For each of the nonhomogeneous differential equations in Problems 1–5, verify that
the given function yp is a particular solution.
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1. y′′ + 3y′ + 4y = 3x + 2; yp = 3
4x − 1

16

2. y′′ − 4y = 2e3x ; yp = 3
5e3x

3. 3y′′ + y′ − 2y = 2 cosx; yp = − 5
13 cosx + 1

13 sinx

4. y′′ + 5y′ + 6y = x2 + 2x; yp = 1
6x2 + 1

18x − 11
108

5. y′′ + y = sinx; yp = − 1
2x cosx

6. If x1(t) = 1
2et is a solution of ẍ + ẋ = et and x2(t) = −te−t is a solution of

ẍ + ẋ = e−t , find a particular solution of ẍ + ẋ = et + e−t and verify that your
solution is correct.

7. Given that yp = x2 is a solution of y′′ + y′ − 2y = 2
(
1 + x − x2

)
, use

the Superposition Principle to find a particular solution of y′′ + y′ − 2y =
6
(
1 + x − x2

)
and verify that your solution is correct.

8. If y1 = 1 + x is a solution of y′′ − y′ + y = x and y2 = e2x is a solution of
y′′ − y′ + y = 3e2x , find a particular solution of y′′ − y′ + y = −2x + 4e2x .
Verify that your solution is correct.

B
9. Find the general solution of the equation given in Problem 1.

10. Find the general solution of the equation given in Problem 2.

11. Find the general solution of the equation given in Problem 3.

12. Find the general solution of the equation given in Problem 4.

13. Find the general solution of the equation given in Problem 5.

14. Find the general solution of the equation y′′ + y′ − 2y = 6
(
1 + x − x2

)
given

in Problem 7.

15. Find the general solution of the equation ẍ + ẋ = et + e−t given in Problem 6.

16. Find the form of a particular solution of y′′ − y = x by intelligent guessing
and use this information to solve the IVP y′′ − y = x, y(0) = y′(0) = 0.

C
17. Suppose x(t) satisfies the IVP

ẍ + π2x = f (t) =
{

π2, 0 ≤ t ≤ 1

0, t > 1

with x(0) = 1 and ẋ(0) = 0. Determine the continuously differentiable so-
lution for t ≥ 0. (This means that the solution has a continuous derivative
function. Note that it will have a discontinuous second derivative at t = 1.)

4.3 The method of undetermined coefficients
As we saw in Section 4.2, to find the general solution of a linear nonhomogeneous
equation with constant coefficients ay′′ + by′ + cy = f (t), we must find a particular
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solution yPNH of this equation and add it to the general solution yGH of the associated
homogeneous equation ay′′ + by′ + cy = 0.

The method of undetermined coefficients is the systematic version of the “intel-
ligent guessing” discussed in the preceding section. It was developed by Euler in his
1753 study of the motion of the Moon. This technique uses the forcing function f (t)

on the right-hand side of the differential equation to suggest a form for yPNH. This
trial solution (guess) will contain undetermined constants that can be evaluated by
substituting the suggested function yPNH into the nonhomogeneous equation. (Look
back at Example 4.2.1 and Example 4.2.2.)

For example, if the forcing function f (t) is a polynomial of degree n, it is rea-
sonable to suspect that yPNH is also an nth degree polynomial ant

n + an−1t
n−1 +

· · · + a1t + a0 whose coefficients an, an−1, . . . , a1, a0 we must determine. As we’ll
see, sometimes it’s more intelligent to assume the degree of the trial solution is n + 1
or n + 2.

Example 4.3.1 Finding yPNH by the Method of Undetermined Coeffi-
cients
Consider the equation y′′ − y′ − 2y = 3x2 − 2x + 1. The characteristic equation of the associated
homogeneous equation is λ2 −λ−2 = 0, with roots λ1 = −1 and λ2 = 2, so yGH is c1e−x + c2e2x .
Because the forcing function is 3x2 − 2x + 1, we guess that

yPNH = a2x2 + a1x + a0.

Then we calculate y′
PNH = 2a2x + a1 and y′′

PNH = 2a2. Substituting these derivatives into the dif-
ferential equation, we get

2a2 − (2a2x + a1) − 2
(
a2x2 + a1x + a0

)
= 3x2 − 2x + 1,

or, after collecting like terms,

−2a2x2 + (−2a2 − 2a1) x + (2a2 − a1 − 2a0) = 3x2 − 2x + 1.

Equating the coefficients of like powers of x, we find

−2a2 = 3, −2a2 − 2a1 = −2, 2a2 − a1 − 2a0 = 1.

The first equation yields a2 = −3/2. Substituting this value for a2 into the second equation
gives a1 = 5/2. Finally, we solve the third equation for a0 in terms of a1 and a2 to find a0 =
(1 + a1 − 2a2)/(−2) = −13/4.

Now that we have determined the coefficients of our polynomial yPNH, we see that yPNH =
− 3

2 x2 + 5
2 x − 13

4 . Thus, the general solution of the nonhomogeneous equation is

yGH + yPNH = c1e−x + c2e2 x − 3

2
x2 + 5

2
x − 13

4
.

The guesswork involved in the preceding example was a bit misleading. We as-
sumed that the degree of the undetermined polynomial was less than or equal to the
degree of the polynomial on the right-hand side of the equation. (It is possible that
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some of the coefficients were zero.) This assumption was valid in this example be-
cause the left-hand side of the differential equation y′′ − y′ − 2y = 3x2 − 2x + 1
contained a term of the form cy. If we suppose that y is an nth degree polynomial,
then the calculation of y′′ reduces the degree of y by 2, but the term −2y restores a
polynomial of degree n to the result. However, if this constant multiple of y is miss-
ing (that is, if c = 0), we should guess that y is a polynomial of degree n + 1. If the
y′ term is also missing, then the degree of our trial solution should be n + 2.

If the equation is ay′′ + by′ + cy = ant
n + an−1t

n−1 + · · · + a1t + a0, assuming
that a �= 0, Table 4.1 summarizes our choice of a polynomial trial solution.

Table 4.1 Degree of Polynomial Trial Solutions

Degree of Trial Solution
b �= 0, c �= 0 n

b = 0, c �= 0 n

b �= 0, c = 0 n + 1

b = 0, c = 0 n + 2

Please don’t memorize this table. It’s just an aid to help develop your intuition.

Example 4.3.2 A Particular Solution of ay′′ + by′ + cy = f (t) When
c = 0
If we want to find a particular solution of the equation y′′ −7y′ = t2 +2t +3, we realize that choos-
ing a trial solution of the form a2t2 +a1t +a0 won’t work. Substituting a second-degree polynomial
into the left-hand side of the equation yields a linear result because of the differentiations. There-
fore, we guess (see Table 4.1) that yPNH = a3t3 +a2t2 +a1t +a0. Then y′

PNH = 3a3t2 +2a2t +a 1
and y′′

PNH = 6a3t + 2a2. Substituting yPNH into the equation and collecting terms, we find

−21a3t2 + (6a3 − 14a2) t + (2a2 − 7a1) = t2 + 2t + 3.

Equating coefficients of equal powers of t , we have

−21a3 = 1, 6a3 − 14a2 = 2, 2a2 − 7a1 = 3.

Solving this system of equations, we conclude that a3 = −1/21, a2 = −8/49, and a 1 = −163/343,
so yPNH = − 1

21 t3 − 8
49 t2 − 163

343 t . We can take a0 to be zero because it is a “free” variable and

cannot be determined. (Also, noting that yGH = c1e7t + c2, we see that any nonzero value of a0
would be absorbed by c2 in assembling yGNH.)

In general, the key idea behind the method of undetermined coefficients is that all
the derivatives of the forcing function f (t) should have the same form as f (t) itself.
If this is true, the method will work. If this is not true, we should not use the method.

If we think about functions whose derivatives have the same forms as themselves,
we realize that we are limited to polynomials, exponential functions, linear com-
binations of sines and cosines, or combinations of the sums and products of these
functions. For example, the method of undetermined coefficients applies to equations
whose forcing terms are
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−3,

−2 t5 − 6 t3 + 4,

2 cos 4t − 7

3
sin 4t,

25et sin t,

t2e3t + (1 − t3) cos 5t.

To state this more concisely, the forcing function f (t) must be a sum of terms
of the general form P(t)ekt cos(mt) or P(t)ekt sin(mt), where P(t) is a polynomial
and k, m are constants. We should be aware that these possible functions f include
sinhx (the hyperbolic sine) and cos3 x due to identities from algebra and trigonome-
try. Specifically excluded are functions such as ln |x|, |x|, ex2

, and rational functions
such as x/(1 + x2). Table 4.2 provides suggestions for the forms of the particular
solutions.

Table 4.2 Trial Particular Solutions for Nonhomogeneous Equations

f (t) Form of Trial Solution
c �= 0, a constant K, a constant
Pn(t) = ant

n + an−1t
n−1 + · · · + a1t + a0 Qm(t) = cmtm + cm−1t

m−1 + · · · + c1t + c0
(See Table 4.1)

ceat K ea t

a cos rt + b sin rt α cos rt + β sin rt

eRt (a cos rt + b sin rt) eRt (α cos rt + β sin rt)

Pn(t)e
at Qm(t)eat

By the Superposition Principle (see Section 4.2), the forcing functions that are
linear combinations of the forms on the left side of Table 4.2 require the same linear
combinations of the corresponding trial solutions. If forcing function f 1(t) sug-
gests a trial solution of form F 1(t), and forcing function f 2(t) suggests a trial
solution of form F 2(t), then a forcing function of the form c1f 1(t) + c2f 2(t)
requires a trial solution of the form c1F 1(t) + c2F 2(t). This result generalizes to
any finite linear combination c1f1(t) + c2f2(t) + · · · + ckfk(t) of forcing functions.
However, as we shall see after Example 4.3.5, we must modify this neat scheme
if the forcing function f is a solution of the homogeneous equation.

Example 4.3.3 Undetermined Coefficients with an Exponential Forcing
Function
We can easily verify that xGH = c1 cos 2t + c2 sin 2t for the equation ẍ + 4x = 3e2t . To find a
particular solution of the nonhomogeneous equation, we choose a function of the form x = Ke2t ,
where K is an undetermined constant. We calculate ẋ = 2Ke2t , ẍ = 4Ke2t ; a substitution into the
nonhomogeneous equation gives us 4Ke2t + 4Ke2t = 4e2t , or 8Ke2t = 4e2t , so K = 1/2.

Thus, a particular solution is xp(t) = 1
2 e2t , and the general solution of the nonhomogeneous

equation is x(t) = c1 cos 2t + c2 sin 2t + 1
2 e2t .
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Example 4.3.4 Undetermined Coefficients with a Trigonometric Forcing
Function
A 2560 lb car supported by a MacPherson strut (a particular type of suspension system for shock
absorption) is traveling over a bumpy road at a constant velocity v. The equation modeling the
motion is

80ẍ + 10,000x = 2500 cos

(
πvt

6

)
,

where x represents the vertical position of the car’s axle relative to its equilibrium position, and the
basic units of measurement are feet and feet per second where appropriate. (Note that the coefficient
of ẍ is 2560/g = 2560/32 = 80, the mass of the car.) We want to determine how the velocity affects
the way the car vibrates.

The general solution of the associated homogeneous equation is xGH = c1 sin
(

5
√

5t
)

+
c2 cos

(
5
√

5t
)

. Table 4.2 suggests we choose a trial solution of the form xP = A sin
(
πvt

6

) +
B cos

(
πvt

6

)
. If we examine the left-hand side of the differential equation, we can simplify our work.

We notice that if the trial solution x contains a sine term, then ẍ yields a sine term and 10,000x con-
tributes another sine. Because there is no multiple of sin

(
πvt

6

)
in the forcing function, we conclude

that A = 0, giving the trial solution the simpler form B cos
(
πvt

6

)
.

Now ẋP = −πv
6 B sin

(
πvt

6

)
and ẍP = − (πv

6

)2
B cos

(
πvt

6

)
. Substituting these derivatives into

the nonhomogeneous equations and collecting terms, we find[
10,000 − 80

(πv

6

)2
]

B cos

(
πvt

6

)
= 2500 cos

(
πvt

6

)
,

so B = 2500/
[
10,000 − 80

(
πv
6

)2]. Therefore, xPNH = 2500

10,000−80
(

πv
6

)2 cos
(
πvt

6

)
and the general

solution of our equation of motion is

x(t) = c1 sin
(

5
√

5t
)

+ c2 cos
(

5
√

5t
)

+ 2500

10,000 − 80
(
πv
6

)2 cos

(
πvt

6

)
.

Clearly, the first two trigonometric terms help describe the bumpy ride, but they have fixed am-
plitudes |c1| and |c2|, so the ride can’t get alarmingly bumpy. However, the amplitude of the
last term is given by 2500

10,000−80
(

πv
6

)2 , which grows larger and larger as the denominator ex-

pression 10,000 − 80
(
πv
6

)2 gets closer and closer to zero. Thus, we get unbounded vibrations

when 10,000 − 80
(
πv
6

)2 = 0—that is, when v =
√

4500
π2 ≈ 21.35 ft/s. The dimensional equation

mile
h = mile

ft · ft
s · s

h allows us to express our answer as 1
5280 · 21.35

1 · 3600
1 ≈ 14.56 miles per hour.

Assuming the initial conditions x(0) = 0 and ẋ(0) = 0, Fig. 4.3 shows two graphs of x(t)

against t , the solid graph having v = 15 ft/s and the dashed line graph using v = 21 ft/s. You can see
that the car’s vibrations become wilder over time for a speed close to 21.35 feet per second.

The preceding example illustrates the phenomenon of resonance, the presence of
oscillations of unbounded amplitude. We will encounter resonance again and discuss
it further in Chapter 6.

As indicated earlier, the Superposition Principle allows us to handle more com-
plicated combinations of basic forcing functions.
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FIGURE 4.3

x(t) = c1 sin
(

5
√

5t
)

+ c2 cos
(

5
√

5t
)

+ 2500
10,000−80

(
πv
6

)2 cos
(

πvt
6

)
; x(0) = 0, ẋ(0) = 0;

0 ≤ t ≤ 5, v = 15 (solid curve); v = 21 (dashed curve)

Example 4.3.5 Undetermined Coefficients with a Linear Combination of
Forcing Functions
Suppose we have the equation y′′ + y′ − 2y = x2 + 2 sinx − cosx + e3x . In this case, the forcing
function is a linear combination of familiar terms from the left-hand side of Table 4.2, so we choose
a trial solution yp that is a combination of the second, third, and fourth entries of Table 4.2 (second
column):

yP = (Ax2 + Bx + C) + (D sinx + E cosx) + Fe3x .

Consequently, y′
P = 2Ax +B +D cosx −E sinx +3F e3x and y′′

P = 2A+B −D sinx −E cosx +
9F e3x . When we substitute these derivatives in the nonhomogeneous equation and collect terms,
we get the equation

−2Ax2 + (2A − 2B)x + (2A + B − 2C) + (−3D − E) sinx + (−3E + D) cosx + 10F e3x

= x2 + 2 sinx − cosx + e3x .

Matching the coefficients of like terms on each side, we get the system
1. −2A = 1 [The coefficients of x2 must be equal.]
2. 2(A − B) = 0 [The coefficients of x must be equal.]
3. 2A + B − 2C = 0 [The constant terms must be equal.]
4. −3D − E = 2 [The coefficients of sin x must be equal.]
5. −3E + D = −1 [The coefficients of cos x must be equal.]
6. 10F = 1 [The coefficients of e3 x must be equal.]
Working from the top down, we find A = −1/2, B = A = −1/2, C = −3/4, D = −7/10, E = 1/10,
and F = 1/10. Therefore,

yPNH = − 1

2
x2 − 1

2
x − 3

4
− 7

10
sinx + 1

10
cosx + 1

10
e3x .

The general solution of the associated homogeneous equation is c1ex + c2e3x , so the general solu-
tion of the nonhomogeneous equation is

y(x) = c1ex + c2e3x − 1

2
x2 − 1

2
x − 3

4
− 7

10
sinx + 1

10
cosx + 1

10
e3x .
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There is an exception to the neatness of Table 4.2, however. If any term of the
initial trial solution is also a term (or a multiple of a term) of yGH(t), then the trial
solution must be modified by multiplying it by tm, where m is the smallest positive
integer such that the product of tm and the trial solution has no terms in common with
yGH(t). The next example illustrates this change of strategy.

Example 4.3.6 Undetermined Coefficients—An Exception to the Gen-
eral Rule
Let’s solve the equation y′′ + 4y = 3 cos 2x + 2x2. The general solution of the homogeneous equa-
tion y′′ + 4y = 0 is c1 sin 2x + c2 cos 2x. Ordinarily we would choose a trial solution of the form
A sin 2x + B cos 2x + Cx2 + Dx + E. However, the expression A sin 2x + B cos 2x duplicates the
terms of yGH. To deal with this, we choose a modified trial solution of the form

yP = x (A sin 2x + B cos 2x) + Cx2 + Dx + E,

noting that the second-degree polynomial does not have to be changed. Then y′
P = x(2A cos 2x −

2B sin 2x) + (A sin 2x + B cos 2x) + 2Cx + D and

y′′
P =x (−4A sin 2x − 4B cos 2x) + (2A cos 2x − 2B sin 2x)

+ (2A cos 2x − 2B sin 2x) + 2C.

Substituting these derivatives in the nonhomogeneous equation and collecting terms, we get

−4B sin 2x + 4A cos 2x + 4Cx2 + 4Dx + (4E + 2C) = 3 cos 2x + 2x2.

Equating coefficients of equal terms gives us the equations −4B = 0, 4A = 3, 4C = 2, 4D = 0, and
4E + 2C = 0, with solutions A = 3/4, B = 0, C = 1/2, D = 0, and E = −1/4. Therefore, after
some simplification, yPNH = 3

4 x sin 2x + 1
2 x2 − 1

4 and yGNH = c1 sin 2x + c2 cos 2x + 3
4 x sin 2x +

1
2 x2 − 1

4 .

Exercises 4.3
A
For each of the equations in Problems 1–10, find yGH and the expression in terms of
undetermined coefficients that you would use to find yPNH. Do not actually deter-
mine the coefficients.

1. y′′ + 3y′ = 3

2. y′′ − 7y′ = (x − 1)2

3. y′′ + 7y′ = e−7x

4. y′′ − 8y′ + 16y = (1 − x)e4x

5. y′′ + 25y = cos 5x

6. y′′ + y = xe−x

7. y′′ + 6y′ + 13y = e−3x cos 2x

8. y′′ − 4y′ + 3y = 3ex + 2e−x + x3e−x



4.3 The method of undetermined coefficients 163

9. y′′ + k2y = k, where k is a parameter

10. 4y′′ + 8y′ = x sinx

Find the general solution of each of the equations in Problems 11–20 by using the
method of undetermined coefficients.

11. y′′ − 2y′ − 3y = e4t

12. ẍ − 3ẋ + 2x = sin t

13. x ′′ − 2x′ + 2x = et + t cos t

14. x′′ + x′ = 4t2et

15. ẍ + ẋ = 4 sin t

16. ẍ − x = 2et − t2

17. y′′ + 10y′ + 25y = 4e−5x

18. 6ẍ − 11ẋ + 4x = t

19. ẍ + 3ẋ + 2x = t sin t

20. y ′′ + 5y′ + 6y = 10(1 − x)e−2x

B
21. Solve the IVP y′′ − 3y′ − 4y = 3e4x ; y(0) = 0, y′(0) = 0.

22. Solve the IVP y′′ + ω2y = t (sinωt + cosωt); y(0) = 0, y′(0) = 0.

23. Solve the IVP y′′ + y′ + y = t2e− t cos t ; y(0) = 1, y′(0) = 0 using a CAS.
[Warning: Serious mental injury may result from attempting to do this manu-
ally.]

As mentioned at the beginning of Section 4.2, if I = I (t) represents the current
in an electrical circuit, then Kirchhoff’s Voltage Law gives us the nonhomogeneous

equation Ld2I

dt2 + R dI
dt

+ 1
C

I = dE
dt

, where E is the applied nonconstant voltage. In
this equation, L is the inductance, R is the resistance, and C is the capacitance. Use
this equation in Problems 24–26.

24. An RLC circuit has a resistance of 5 ohm, an inductance of 0.05 henry, a capac-
itor of 0.0004 farad, and an applied alternating voltage of 200 cos(100 t) volt.
a. Without using technology, find an expression for the current flowing

through this circuit if the initial current is zero and dI
dt

(0) is 4000.

b. Check your answer to part (a) by using technology.

25. Look for a particular solution of y′′ + 0.2y′ + y = sin(ωx) and investigate its
amplitude as a function of ω. Use technology to graph the particular solution
for values of ω that seem significant to you and describe the behavior of this
solution.

26. In her dorm room, a student attaches a weight to a spring hanging from the
ceiling. She starts the mass in motion from the equilibrium position with an
initial velocity in the upward direction. But during this experiment, there is
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rhythmic stomping (dancing or pest control?) from the student upstairs that
causes the ceiling and the entire spring-mass system to vibrate. Taking into
account air resistance and this “external force,” she determines that the equa-
tion of motion is ẍ + 9ẋ + 14x = 1

2 sin t , with x(0) = 0 and ẋ(0) = −1.
a. Solve this equation for x(t), the position of the weight relative to its rest

position.

b. Use technology to graph x(t) for 0 ≤ t ≤ 10.

27. Consider the equation

y ′′ + y = F(t), where F(t) =
{

t 0 ≤ t ≤ π,

0 t > π

y(0) = y′(0) = 0, and y and y′ are continuous at π .
a. Plot the forcing function against t .

b. Solve the IVP for 0 ≤ t ≤ π .

c. Solve the IVP for t > π , and determine the constants from the continuity
conditions at t = π .

d. Combine your answers to parts (b) and (c) into a single solution Y to the
original IVP and plot Y against t .

28. Find the solution of the IVP y′′ − 3y′ + 2y = 6e−x ; y(0) = 1, y′(2) = 2.

C
29. Find the general solution of y′′ − 3y′ + 2y = 4 sin3 3x. [Hint: Use trigonomet-

ric identities to reduce the forcing function to a linear combination of functions
in Table 4.2.]

30. Find the general solution of y′′ + 4y = sin4 x. (See the hint for the preceding
problem.)

31. Find the general solution of y′′ + 4y = cosx cos 2x cos 3x. (See the hint for
Problem 29.)

32. Find the general solution of y′′ + λ2y =∑N
k=1 ak sin kπt , where λ > 0 and

λ �= kπ for k = 1,2, . . . ,N .

33. Consider the equation ay ′′ + by′ + cy = g(t), where a, b, and c are positive
constants.
a. If Y1(t) and Y2(t) are solutions of the given equation, show that Y1(t) −

Y2(t) → 0 as t → ∞. [Hint: Show that
√

b2 − 4ac ≤ b.]

b. Is the result of part (a) true if b = 0?

c. If g(t) = K , a constant, show that every solution of the given equation
approaches K/c as t → ∞. What happens if c = 0? What if b = 0 as
well?

A special type of second-order differential equation with variable coefficients is the
Cauchy–Euler equation (or Euler’s differential equation): x2y′′ +axy′ +by = 0,
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where a and b are real constants. The substitution x = ez reduces the equation to a
second-order linear ODE with constant coefficients. Use this method to transform
each of the following equations and then solve the resulting constant-coefficient
equation.

34. x2y′′ + xy′ + 4y = 1

35. x2y′′ + 5xy′ − 6y = 4
x2 − 12

36. x2y′′ − 2xy′ + 2y = x2 + 4

37. x2y′′ − xy′ + 2y = x lnx

4.4 Variation of parameters
There are various techniques for finding a particular solution of the nonhomogeneous
equation. The method of variation of parameters (or variation of constants) was
developed by the French-Italian mathematician Joseph Louis Lagrange (1736–1813)
in 1775. We’ve already seen this technique for first-order linear equations (Sec-
tion 2.2.2).

Let’s look at the nonhomogeneous equation ay′′ + by′ + cy = f (t) and as-
sume that y1(t) and y2(t) are two known solutions of the homogeneous equation
ay′′ + by′ + cy = 0 that are independent of each other. (Footnote 2 in Chapter 4 de-
fines the notion of ‘independence.’) Then we know that c1y1(t) + c2y2(t) is also a
solution of the homogeneous equation for any constants c1 and c2. Lagrange’s idea
was to look for a particular solution of the nonhomogeneous equation of the form
c1(t)y1(t) + c2(t)y2(t), where c1(t) and c2(t) are unknown functions that must be
determined. By substituting this trial solution into the original nonhomogeneous dif-
ferential equation, we will obtain one equation that must be satisfied by c1(t) and
c2(t); however, because we have two unknown functions, this single equation is
not enough. We need two equations to determine these functions completely, and
Lagrange’s method imposes an additional condition to simplify the calculations in-
volved. If you carefully look at Eq. (*) in each of the three examples below, you’ll
realize that we have chosen C1 and C2 such that the first derivative of y will be the
same, as if C1 and C2 were constants (although they are functions).

Rather than go through this method in complete generality, we’ll illustrate the
technique via specific examples.

Example 4.4.1 Using Variation of Parameters
Suppose we want to solve y′′ + 3y′ + 2y = 3e−2x + x. The characteristic equation of the associ-
ated homogeneous equation is λ2 + 3λ + 2 = 0, with roots −2 and −1. Then y1(x) = e−2x and
y2(x) = e−x are two independent solutions of the homogeneous equation, and the general solution
of the homogeneous equation is yGH = c1e−2x + c2e−x , where c1 and c2 are arbitrary constants.
Now we assume that y = C1y1 + C2y2 = C1e−2x + C2e−x is a particular solution of the nonho-
mogeneous equation, where C1 = C1(x) and C2 = C2(x) are unknown functions. Differentiating,
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we obtain

y′ = −2C1e−2x + C′
1e−2x − C2e−x + C′

2e−x

=
(
−2C1e−2x − C2e−x

)
+
(
C′

1e−2x + C′
2e−x

)
.

To avoid messy higher derivatives (and being aware that we’re looking for a particular solution),
Lagrange’s method requires that we impose the condition

C′
1e−2x + C′

2e−x = 0. (*)

Accepting this condition, we have y′ = −2C1e−2x − C2e−x , from which we calculate y′′ =
4C1e−2x − 2C′

1e−2x + C2e−x − C′
2e−x . Substituting these expressions for y, y′, and y′′ into

the equation y′′ + 3y′ + 2y = 3e−2x + x, we find that(
4C1e−2x − 2C′

1e−2x + C2e−x − C′
2e−x

)
+ 3

(
−2C1e−2x − C2e−x

)
+ 2

(
C1e−2x + C2e−x

)
= 3e−2x + x,

or

−2C′
1e−2x − C′

2e−x = 3e−2x + x. (**)

Eqs. (*) and (**) form a system of equations that we must solve for C′
1 and C′

2:

C′
1e−2x + C′

2e−x = 0 (*)

−2C′
1e−2x − C′

2e−x = 3e−2x + x. (**)

Adding (*) and (**) gives us −C′
1e−2x = 3e−2x + x, so that C′

1 = −3 − xe2x .

Integrating (manually or using a CAS) yields C1(x) = −3x − x
2 e2x + 1

4 e2x . When using vari-
ation of parameters, we make all constants of integration 0 because we want only a particular

solution. Next we use (*) to find that C′
2 = ex

(
−C′

1e−2x
)

= ex
(

3e−2x + x
)

= 3e−x + xex . Inte-

grating gives us C2(x) = −3e−x + xex − ex .
Finally,

yPNH = C1y1 + C2y2 =
(

−3x − x

2
e2x + 1

4
e2x

)(
e−2x

)
+ (−3e−x + xex − ex

) (
e−x

)
= −3xe−2x − x

2
+ 1

4
− 3e−2x + x − 1 = −3xe−2x − 3e−2x + x

2
− 3

4
,

so that yGNH = c1e−2x + c2e−x + x
2 − 3

4 − 3xe−2x is the general solution of the original nonho-

mogeneous equation. (Note that the term −3e−2x in yPNH has been absorbed by the term c1e−2x

in yGH.)

Example 4.4.2 Using Variation of Parameters
The equation ẍ + x = tan t cannot be solved by using the method of undetermined coefficients be-
cause the forcing function f (t) = tan t cannot be expressed as a linear combination of one of the
basic forms given in Table 4.2. However, Lagrange’s method works.

The general solution of the associated homogeneous equation ẍ + x = 0 is yGH(t) = c1 sin t +
c2 cos t , where c1 and c2 are arbitrary constants. Therefore, we try to find functions C1 = C1(t) and
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C2 = C2(t) such that xP (t) = C1(t) sin t + C2(t) cos t is a particular solution of the nonhomoge-
neous equation. To do this, we must first calculate

ẋ = C1 cos t + Ċ1 sin t − C2 sin t + Ċ2 cos t

= (C1 cos t − C2 sin t) + (Ċ1 sin t + Ċ2 cos t
)
.

Before calculating ẍ and increasing the complexity of the expressions we have to use, we impose
the condition

Ċ1 sin t + Ċ2 cos t = 0. (*)

In particular, this condition ensures that ẍ will contain no second derivatives of C1 or C2.
Now differentiating the simplified expression for ẋ gives us ẍ = −C1 sin t + Ċ1 cos t −

C2 cos t − Ċ2 sin t . Substituting for x and ẍ in our original equation yields

ẍ + x = (−C1 sin t + Ċ1 cos t − C2 cos t − Ċ2 sin t
)+ (C1 sin t + C 2 cos t) = tan t,

or

Ċ1 cos t − Ċ2 sin t = tan t. (**)

Now (*) and (**) give us a system of simultaneous equations for Ċ1 and Ċ2:⎧⎨
⎩Ċ1 sin t + Ċ2 cos t = 0

Ċ1 cos t − Ċ2 sin t = tan t

⎫⎬
⎭ .

Multiplying the first equation by sin t and the second by cos t and then adding, we find

Ċ1

(
sin2 t + cos2 t

)
= tan t cos t , or Ċ1 = sin t . Thus, because we need only a particular solu-

tion, we can take the constant of integration to be zero and get C1 = − cos t . Using Eq. (*), we

derive Ċ2 = −Ċ1 sin t/cos t = −sin2 t/cos t =
(

cos2 t − 1
)
/cos t = cos t − 1/cos t . Then C2 =∫

(cos t − 1/cos t) dt = sin t − ∫ sec t dt = sin t − ln |sec t + tan t |.
Therefore, a particular solution of our original nonhomogeneous equation is given by

xPNH = C1(t) sin t + C2(t) cos t = − cos t sin t + (sin t − ln |sec t + tan t |) cos t = − cos t sin t +
(sin t − ln |sec t + tan t |) cos t = − ln |sec t + tan t | cos t , and yGNH(t) = c1 sin t + c2 cos t −
ln |sec t + tan t | cos t . (Note that because the last term is not a constant multiple of cos t , it doesn’t
get absorbed by the term c2 cos t .)

Example 4.4.3 Using Variation of Parameters
We cannot use the method of undetermined coefficients to solve the equation y′′ − 3y′ + 2y =
sin
(
e−x

)
because the forcing function f (x) = sin

(
e−x

)
does not fit any of the patterns in Table 4.2.

So we try variation of parameters.
We find that yGH = c1ex + c2e2x , so we assume that a particular solution of the nonhomoge-

neous equation has the form yP = C1ex + C2e2x , where C1 and C2 are undetermined functions of

x. Then y′
P =

(
C1ex + 2C2e2x

)
+
(
C′

1ex + C′
2e2x

)
and, assuming

C′
1ex + C′

2e2x = 0, (*)

y′′
P = C1ex + C′

1ex + 4C2e2x + 2C′
2e2x . Substituting in the nonhomogeneous equation, we get

[(
C1 + C′

1
)
ex + (4C2 + 2C′

2
)
e2x
]
− 3

[
C1ex + 2C2e2x

]
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+ 2
[
C1ex + C2e2x

]
= sin

(
e−x

)
or, simplifying,

exC′
1 + 2e2xC′

2 = sin
(
e−x

)
. (**)

Subtracting Eq. (*) from (**) gives us e2xC′
2 = sin

(
e−x

)
, or C′

2 = e−2x sin
(
e−x

)
. Then,

from Eq. (*), C′
1 = e−x

(
−e2xC′

2

)
= −ex

(
e−2x sin

(
e−x

)) = −e−x sin
(
e−x

)
. Therefore, C1 =∫

sin
(
e−x

) (−e−x
)

dx and C2 = −∫ e−x sin
(
e−x

) (−e−x
)

dx. Making the substitutions u =
e−x , du = −e−x dx in each integral, we find C1 = − cos

(
e−x

)
and C2 = − sin

(
e−x

) +
e−x cos

(
e−x

)
. Therefore, yPNH = C1ex + C2e2x = [− cos

(
e−x

)]
ex + [− sin

(
e−x

) +
e−x cos

(
e−x

)]
e2x = −e2x sin

(
e−x

)
, and the general solution is

yGNH = yGH + yPNH = c1ex + c2e2x − e2x sin
(
e−x

)
.

The preceding three examples involved quite a bit of algebra and calculus, but the
method of variation of parameters is guaranteed to work. Even if the integrations of
C′

1(x) and C′
2(x) can’t be done in closed form, we can still use numerical methods

such as Simpson’s Rule to approximate the solution. The next example illustrates this
kind of integration difficulty.

Example 4.4.4 Variation of Parameters—No Closed Form Solution
Let’s solve the equation y′′ + y′ − 2y = lnx. The characteristic equation of the associated homo-
geneous equation is λ2 + λ − 2 = 0, with roots −2 and 1, so we know that yGH = c1e−2x + c2ex ,
where c1 and c2 are constants.

Next, we consider y = C1e−2x + C2ex , where C1 and C2 are unknown functions of x. Differ-
entiating, we get

y′ =
(
−2C1e−2x + C2ex

)
+
(
C′

1e−2x + C′
2ex
)

= −2C1e−2x + C2ex

because we must assume that

C′
1 e−2x + C′

2ex = 0. (A)

Then y′′ = 4C1e−2x − 2C′
1e−2x + C2ex + C′

2ex .
After substituting these expressions for y, y′, and y′′ into the equation y′′ + y′ − 2y = lnx, we

get

−2C′
1e−2x + C′

2ex = lnx. (B)

Now we must solve the following system for C′
1 and C′

2:

C′
1e−2x + C′

2ex = 0 (A)

−2C′
1e−2x + C′

2ex = lnx. (B)

Subtracting (B) from (A) gives us 3C′
1e−2x = − lnx, so that C′

1 = − 1
3 e2x lnx and C1(x) =

− 1
3

∫
e2x lnx dx = − 1

6 e2x lnx + 1
6

∫
e2x

x dx. This integration was done manually (integration by

parts: u = lnx, dv = e2x dx, etc.). A CAS might give an answer in terms of the “exponential inte-

gral,” which you may not recognize. In any case, the integral
∫

e2x

x dx cannot be expressed in closed
form.



4.4 Variation of parameters 169

Eq. (A) tells us that C′
2 = e−x

(
−C′

1e−2x
)

= −e−3x
(
− 1

3 e2x lnx
)

= 1
3 e−x lnx, and an inte-

gration by parts leads to the conclusion that C2(x) = − 1
3 e−x lnx + 1

3

∫
e−x

x dx.
The next to last step is to calculate

yPNH = c1y1 + c2y2 =
(

− 1

6
e2x lnx + 1

6

∫
e2x

x
dx

)(
e−2x

)

+
(

− 1

3
e−x lnx + 1

3

∫
e−x

x
dx

)(
ex
)

= − lnx

2
+ e−2x

6

∫
e2x

x
dx + ex

3

∫
e−x

x
dx.

Finally, the general solution is given by the formula

yGNH = yGH + yPNH = c1e−2x + c2ex − lnx

2
+ e−2x

6

∫
e2x

x
dx + ex

3

∫
e−x

x
dx.

Another important feature of variation of parameters is that the method remains
valid for a linear equation whose coefficients are continuous functions of the inde-
pendent variable.

Suppose p(t) and q(t) are continuous functions and f (t) is continuous or
piecewise continuous. If yGH = c1y1(t) + c2y2(t) is the general solution of
y′′ + p(t)y′ + q(t)y = 0, then we can express the general solution of y′′ +
p(t)y′ + q(t)y = f (t) as y = yGH + C1(t)y1(t) + C2(t)y2(t), where C1(t)

and C2(t) can be found by the method of variation of parameters.

The last paragraph extends the formula yGNH = yGH + yPNH of Section 4.2 to
the situation where the coefficients of y and y′ are continuous functions rather than
constants. Of course, in the context of an equation with nonconstant coefficients, find-
ing linearly independent functions such that yGH = c1y1(t)+ c2y2(t) can be difficult.
Rather than focus on specialized techniques, we will be content to illustrate what to
do once we have yGH.

Example 4.4.5 Variation of Parameters—Nonconstant Coefficients
It is easy to see that y1(x) = x and y2(x) = 1/x are linearly independent solutions of the differential
equation x2y′′ + xy′ − y = 0. If we suppose the functions are not independent, then x = c/x for
some constant c and every x �= 0. Now let x = 1 and x = 2, forcing the contradiction that c must be
equal to both 1 and 4. Thus, the functions are independent and yGH = c1x + c2/x.

Now we use the method of variation of parameters to find the general solution of x2y′′ + xy′ −
y = x, x �= 0.

We start with a trial solution yP = C1x + C2/x, where C1 = C1(x) and C2 = C2(x). Then

y′
P = C1 +C′

1x−C2/x2+C′
2/x =

(
C1 − C2/x2

)
+(C′

1x + C′
2/x
)
, where we impose the condition

C′
1x + C′

2
x

= 0 (*)

before calculating the next derivative.
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Now y′′
P = C′

1 + 2C2/x3 − C′
2/x2. Substituting in the nonhomogeneous equation, we get

x2
[
C′

1 + 2C2/x3 − C′
2/x2

]
+ x

[
C1 − C2/x2

]
− [C1x + C2/x

]= x,

or

x2C′
1 − C′

2 = x. (**)

Eqs. (*) and (**) must be solved for C′
1 and C′

2. Multiplying (*) by x gives us x2C′
1 + C′

2 = 0,

and adding this result to (**) yields 2x2C′
1 = x, from which it follows that C1(x) = 1

2 ln |x|. Then

Eq. (**) yields C′
2 = x2C′

1 − x, or C′
2 = x2(1/(2x)) − x = −x/2, so C2 = −x2/4.

Therefore, yPNH = C1x + C2/x = (x/2) ln |x| − x/4 and yGNH = c1x + c2/x + (x/2) ln |x|,
where the term −x/4 of yPNH has been absorbed into the term c1x from yGH.

In summary, the method of variation of parameters works for all second-order
linear differential equations provided that the coefficients are continuous func-
tions of the independent variable. In those limited situations in which the method
of undetermined coefficients (Section 4.3) can be used, that method is usually
easier than variation of parameters.

Exercises 4.4
A
Find the general solution of each of the equations in Problems 1–10 by using the
method of variation of parameters.

1. x′′ − 2x′ + x = et

t

2. y′′ + 4y = 2 tanx

3. r̈ + r = 1
sin t

4. y′′ + 2y′ + y = e−x

x

5. y′′ + 4y′ + 4y = 3xe−2x

6. y′′ + y = sec x

7. y′′ + 2y′ + y = e−x lnx

8. y′′ − y = sin2 x

9. y′′ − 3y′ + 2y = cos
(
e−x
)

10. y′′ + 3y′ + 2y = 1
1+ex

B
Find the general solution of each of the equations in Problems 11–16. Linearly

independent solutions for the associated homogeneous equation are shown next to
each nonhomogeneous equation.

11. x2y′′ − xy′ + y = x; y1 = x, y2 = x lnx
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12. 2x2y′′ + 3xy′ − y = 1
x

; y1 = √
x, y2 = 1

x

13. y′′ − 2
x
y′ + 2

x2 y = x lnx; y1 = x, y2 = x2

14. y′′ + 2
x
y′ + y = 1

x
, x �= 0; y1 = sin x

x
, y2 = cos x

x

15. y′′ − 2(tanx)y′ = 1; y1 = C (a constant), y2 = tanx

16. x2y′′ + xy′ − y = x, x �= 0; y1 = x, y2 = 1/x

17. Consider the equation x2y′′ − 4xy′ + 6y = 0.
a. Show that the general solution of this equation is y = c1x

3 + c2x
2.

b. Use the result of part (a) to find the general solution of

x2y′′ − 4xy′ + 6y = x4.

18. Find the general solution of x2y′′ − 4xy′ + 6y = x4 [part (b) of the previous
problem] by reducing this Cauchy–Euler equation to one with constant coef-
ficients via the substitution x = ez. (See the paragraph between Problems 33
and 34 of Exercises 4.3.)

C
19. Show that the solution of the IVP y′′ + a2y = F(x), a �= 0, y(0) = y′(0) = 0,

is

y = 1

a

∫ x

0
F(u) sina(x − u)du.

20. Suppose y′′ + a(x)y′ + b(x)y = 0 has continuous coefficient functions a(x)

and b(x) on an interval I . Assume y1(x) is a solution of the equation and is
nonzero on a subinterval J of I .
a. Let y2(x) = y1(x)u(x), where u(x) is a nonconstant function. Assuming

that y2(x) is a solution of the differential equation, show that

u(x) = c1

∫
e− ∫ a(x) dx

y2
1(x)

dx + c2,

where c1 and c2 are arbitrary constants.

b. Show that y2(x) = y1(x)
∫

e− ∫ a(x) dx

y2
1 (x)

dx defines a solution on J that is

independent of y1(x).

21. If the solution of y′′ + p(x)y′ + q(x)y = 0 is αy1(x) + βy2(x), show that the
general solution of y′′ + p(x)y′ + q(x)y = r(x) is

y = c1y1(x) + c2y2(x) + y2(x)

∫
r(x)y1(x)

W (y1, y2)
dx − y1(x)

∫
r(x)y2(x)

W (y1, y2)
dx,

where W (y1, y2) = y1(x)y′
2(x)− y2(x)y′

1(x) is called the Wronskian of y1(x)

and y2(x) and is not the zero function. Discuss the case in which W (y1, y2) is
identically equal to zero.
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22. An alternative method of solving a Cauchy–Euler differential equation x2y′′ +
axy′ + by = 0 (see Section C of Exercises 4.3), where a and b are real con-
stants, requires the substitution y = xr , where x > 0.
a. If y = xr , calculate y′ and y′′ and show that for y to be a solution of the

Cauchy–Euler equation, r must satisfy the indicial equation

r2 + (a − 1)r + b = 0.

b. Show that if the indicial equation has real roots r1 �= r2, then y1 = xr1 and
y2 = xr2 are linearly independent solutions of the differential equation.

c. Show that if the indicial equation has complex conjugate roots r1 = α +
βi and r2 = α − βi, then y1 = xα cos(β lnx) and y2 = xα sin(β lnx) are
solutions. [Note: xα±βi = xαe±iβ ln x for x > 0.]

4.5 Higher-order linear equations with constant coefficients
Linearity is such a marvelous property that we can generalize our work in the pre-
ceding few sections in a very natural way. The details may get a bit complicated, but
the theory is crisp and clear.

If y is a function that is n-times differentiable and a0, a1, a2, . . . , an are constants,
an �= 0, then we can define the nth-order linear operator L as follows:

L(y) = any
(n) + an−1y

(n−1) + · · · + a2y
′′ + a1y

′ + a0y.

Any nth-order linear differential equation with constant coefficients can be expressed
concisely as L(y) = f (t). If f (t) ≡ 0, then the equation is called a homogeneous
nth-order linear equation with constant coefficients. If f (t) is not the zero func-
tion, then we have a nonhomogeneous n th-order linear equation with constant
coefficients.

An important property of such nth-order equations is the extended Superposition
Principle:

Superposition Principle
If yj is a solution of L(y) = fj for j = 1,2, . . . , n, and c1, c2, . . . , cn are arbitrary constants, then
c1y1 + c2y2 + · · · + cnyn is a solution of L(y) = c1f1 + c2f2 + · · · + cnfn—that is,

L(c1y1 + c2y2 + · · · + cnyn) = c1L(y1) + c2L(y2) + · · · + cnL(yn)

= c1f1 + c2f2 + · · · + cnfn.

First, let’s look at an nth-order homogeneous linear equation with constant coef-
ficients:

any
(n) + an−1y

(n−1) + · · · + a2y
′′ + a1y

′ + a0y = 0.
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For such an equation, there’s a neat algorithm for finding the general solution, a
generalization of the procedure we’ve already seen. First, find the roots of the char-
acteristic equation anλ

n + an−1λ
n−1 + · · · + a1λ + a0 = 0. (You should see how to

form this equation.)
Focus on the fact that the characteristic equation of an nth-order linear equation

is an nth-degree polynomial equation. Realize that once a polynomial has degree
greater than or equal to 5; there is no longer a general formula that gives the zeros.
(Even the formulas that exist for the zeros of third- and fourth-degree polynomials
are very unwieldy.) In general, the only practical way to tackle these equations is
to use approximation methods. A CAS or a graphing calculator should have vari-
ous algorithms implemented to solve (or approximate the solutions of) polynomial
equations.

Next, group these roots as follows:

1. Distinct real roots
2. Distinct complex conjugate pairs p ± qi

3. Multiple real roots
4. Multiple complex roots

Then the general solution is a sum of n terms of the forms

1. cie
λi t for each distinct real root λi

2. ept (c1 cosqt + c2 sinqt) for each distinct complex pair p ± qi

3.
(
c1 + c2t + · · · + ckt

k−1
)
eλi t for each multiple real root λi , where k is the multi-

plicity of that root
4. ept (c1 cosqt+c2 sinqt)+ t ept (c3 cosqt+c4 sinqt)+· · ·+ tk−1ept (c2k−1 cosqt

+ c2k sinqt) for each multiple complex pair of roots p ± qi, where k is the mul-
tiplicity of the pair p ± qi

Now let’s see how to use this procedure to solve some higher-order homogeneous
linear equations with constant coefficients.

Example 4.5.1 Solving a Fourth-Order Homogeneous Linear Equation
Let’s find the general solution of the fourth-order equation

x(4) − 3x′′ + 2x′ = 0.

The characteristic equation is λ4 − 3λ2 + 2λ = λ(λ3 − 3λ+ 2) = 0, whose roots are 0, 1, 1, and −2.
(Verify this.) Thus, we have two distinct real roots and another real root of multiplicity 2.

According to the process described previously, the general solution is

x = c1e0·t + c2e−2t + (c3 + c4t) e1·t = c1 + c2e−2t + (c3 + c4t) et .

(You should check that this is a solution, manually or by using a CAS.)
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Example 4.5.2 Solving an Eighth-Order Homogeneous Linear Equation
The equation 64y(8) + 48y(6) + 12y(4) + y′′ = 0 should be interesting to tackle. The characteristic
equation is 64λ8 + 48λ6 + 12λ4 + λ2 = 0. A CAS gives the roots 0, 0, i/2,−i/2, i/2,−i/2, i/2,
and −i/2. Grouping them, we see that 0 is a real root of multiplicity 2, whereas the complex con-
jugate pair ±i/2 (= 0 ± i/2) has multiplicity 3. Therefore, the form of the general solution of this
eighth-order equation is

y(t) = (c1 + c2t) e0·t + e0·t
(

c3 cos

(
t

2

)
+ c4 sin

(
t

2

))
+ te0·t

(
c5 cos

(
t

2

)
+ c6 sin

(
t

2

))
+ t2e0·t

(
c7 cos

(
t

2

)
+ c8 sin

(
t

2

))

= c1 + c2t +
(
c3 + c5t + c7t2

)
cos

(
t

2

)
+
(
c4 + c6t + c8t2

)
sin

(
t

2

)
.

For the nonhomogeneous case once again the theory is simple:

The general solution, yGNH, of an nth-order linear nonhomogeneous equation
any(n) +an−1y

(n−1) +···+a2y
′′ +a1y

′ +a0y = f (t) is obtained by finding a
particular solution, yPNH, of the nonhomogeneous equation and adding it to
the general solution, yGH, of the associated homogeneous equation: yGNH =
yGH + yPNH.

As before, the challenge is to find a particular solution of the nonhomogeneous equa-
tion. But once again we can use the method of variation of parameters or the method
of undetermined coefficients (“educated guessing”).

If we look back at Section 4.4 to see the number of calculations required to
implement variation of parameters, we realize that the work can be formidable for
equations of order 3 and above. But there is no need to do problems of higher order
manually because any CAS will use the appropriate method efficiently to give us a
general solution or solve an IVP. (One of the best methods for handling single lin-
ear equations and systems of linear equations is the Laplace transform, which we’ll
study in Chapter 5.) For now we’ll just give an example of solving a higher-order
linear equation, with some of the gory details left out.

Example 4.5.3 Solving a Nonhomogeneous Third-Order Equation
Suppose we want to find the general solution of y′′′ − y′′ − 6y′ = 3t2 + 2. The first thing to do is to
find the general solution of the associated homogeneous equation y′′′ −y′′ −6y′ = 0. The character-
istic equation is λ3 − λ2 − 6λ = λ(λ2 − λ − 6) = λ(λ − 3) (λ + 2) = 0, with roots 0, 3, and −2, so
the general solution of the homogeneous equation is c1e0·t +c2e3t +c3e−2t , or c1 +c2e3t +c3e−2t .

Next, we look for a particular solution of the original nonhomogeneous equation. Examining
the right-hand side of the equation, we can guess that a particular solution will be a polynomial in t .
If the degree of the polynomial we guessed at is n, then the three individual derivative terms making
up the differential equation will leave behind polynomials of degrees n − 3, n − 2, and n − 1. In
order for the combination y′′′ −y′′ −6y′ to produce the second-degree polynomial 3t2 +2, we must
have n − 1 = 2—that is, the polynomial we’re looking for must be a third-degree polynomial, say
y(t) = At3 +Bt2 +Ct +D, where A, B, C, and D are undetermined coefficients. (Think about the
reasoning that led to this form for y.)
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Substituting this guess into the nonhomogeneous equation, we find that

−18At2 − (12B + 6A)t + (6A − 2B − 6C) = 3t2 + 2.

Equating coefficients of terms of equal degree on both sides, we get the algebraic equations

−18A = 3 [Second-degree terms must match.]
−(12B + 6A) = 0 [First-degree terms must match.]

6A − 2B − 6C = 2 [Constant terms must match.]

Starting from the top, we can solve the equations successively to obtain A = − 1
6 , B = 1

12 , and

C = − 19
36 .

Therefore, yPNH = − 1
6 t3 + 1

12 t2 − 19
36 t and the general solution of the nonhomogeneous equa-

tion is given by

y = yGNH = yGH + yPNH = c1 + c2e3t + c3e−2t − 1

6
t3 + 1

12
t2 − 19

36
t.

As we might suspect from the discussion at the end of Section 4.4, variation of
parameters can be used for all higher-order linear differential equations, pro-
vided that the coefficients are continuous functions of the independent variable.

Exercises 4.5
A
Find the general solution of each of the higher-order equations in Problems 1–10,
using a graphing calculator or CAS only to solve each characteristic equation.

1. y′′′ − 2y′′ − 3y′ = 0

2. y′′′ − 3y′′ + 3y′ − y = 0

3. y′′′ + 2y′′ + y′ = 0

4. y′′′ + 4y′′ + 13y′ = 0

5. y′′′ − 12y′′ + 22y′ − 20y = 0

6. y(4) + 2y′′ + y = 0

7. y(4) − 13y′′ + 36y = 0

8. y(4) + 13y′′ + 36y = 0

9. y(4) − 3y′′ + 2y′ = 0

10. y(5) + 2y′′′ + y′ = 0

B
11. Find the general solution of the following equation, using technology only to

solve a characteristic equation:

y(7) − 14y(6) + 80y(5) − 242y(4) + 419y(3) − 416y′′ + 220y′ − 48y = 0.
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12. Apply your CAS solver to find the general solution of the equation in the
preceding problem.

13. The author of a classic differential equations text4 once wrote
In preparing problems and examinations . . . teachers (including the author)
must use some restraint. It is not reasonable to expect students in this course
to have computing skill and equipment necessary for efficient solving of equa-
tions such as

4.317
d4y

dx4
+ 2.179

d3y

dx3
+ 1.416

d2y

dx2
+ 1.295

dy

dx
+ 3.169y = 0.

Demonstrate that technology has advanced in the past six decades by feeding
this equation into your CAS and obtaining the general solution. (You may have
to use some “simplify” commands to get a neat answer.)

14. Solve the IVP 3y′′′ + 5y′′ + y′ − y = 0; y(0) = 0, y′(0) = 1, y′′(0) = −1.

15. A uniform horizontal beam sags by an amount y = y(x) at a distance x from
one end. For a fairly rigid beam with uniform loading, y(x) typically satisfies
an equation of the form d4y/dx4 = R, where R is a constant depending on
the load being carried and on the characteristics of the beam itself. If the ends
of the beam are supported at x = 0 and x = L, then y(0) = y(L) = 0. The
extended beam also behaves as though its profile has an inflection point at
each support so that

y ′′(0) = y′′(L) = 0.

a. Use the multiple root of the associated homogeneous equation’s charac-
teristic equation to find the general solution of the homogeneous equation.

b. Show that the sag (vertical deflection) at point x is

1

24
R
(
x4 − 2Lx3 + L3x

)
, 0 ≤ x ≤ L.

16. Solve the IVP y(5) = y′; y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1,
y(4)(0) = 2.

17. For all positive integers n ≥ 2, find the general solution of the equation x(n) =
x(n−2).

18. Find the general solution of the equation y′′′ − 2y′′ − y′ + 2y = ex .

19. Find the general solution of the equation
...
y + 5ÿ − 6ẏ = 9e3t .

20. Find the general solution of the equation y′′′ + 6y′′ + 11y′ + 6y = 6x − 7.

21. Find the general solution of y′′′ − 5y′′ − 2y′ + 24y = x2e3x .

22. Solve the IVP y′′′ + 5y′′ − 6y′ = 3ex ; y(0) = 1, y′(0) = 3/7, y′′(0) = 6/7.

4 Ralph P. Agnew, Differential Equations, 2nd ed. (New York: McGraw-Hill, 1960): 176.
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C
23. Use the method of undetermined coefficients to solve the equation

y(4) + y′′ = 3x2 + 4 sinx − 2 cosx.

24. Consider the IVP y(4) + 8y′′ + 16y = 0, with y(k)(0) given for k = 0,1,2,3.
For what initial values y′′(0) and y′′′(0) will the solutions of this equation be
periodic?

25. Consider a third-order differential equation y′′′ +p y′′ + q y′ + r y = g, where
p, q, r , and g are continuous functions. Suppose yGH = c1y1 + c2y2 + c3y3
is known.
a. Write down a form for yPNH in terms of the known solutions of the ho-

mogeneous problem and unknown coefficient functions C1, C2, and C3.

b. Derive a system of equations that determines C1, C2, and C3. This system
should involve C′

1, C′
2, C′

3, yi , y′
i , and y′′

i , i = 1,2,3.

c. Solve y′′′ − 2y′′ − y′ + 2y = ex by using the results of parts (a) and (b).

26. Find a formula involving integrals for a particular solution of the equation

x3y′′′ − 3x2y′′ + 6xy′ − 6y = g(x), x > 0.

[Hint: Verify that x, x2, and x3 are solutions of the homogeneous equation.]

*4.6 Existence and uniqueness5

Once again it’s time to ask that important question we first considered in Section 2.8
in the context of first-order equations: How do we know that a given higher-order
equation has a solution—and do we know that any such solution is unique?

We don’t want to waste human and computer resources searching for a solution
that may not exist or that may merely be one of many solutions. If the differential
equation is supposed to model some real-life situation, having no solution or multi-
ple solutions is not satisfactory. For now we’ll focus on second-order equations. In
Chapter 6 we’ll look at generalizations to systems of equations.

The first example shows that when there is one solution of a second-order equa-
tion, there may be many.

Example 4.6.1 A Second-Order IVP with Many Solutions
Let’s look at the IVP

t2ẍ − 2t ẋ + 2x = 0, with x(0) = 0 and x′(0) = 0.

5 ∗ Denotes an optional section.
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Then x(t) ≡ 0 and any function of the form x(t) = Kt2 (where K is any constant) are solu-
tions of the original IVP. (Verify this.) What we are saying here is that our IVP has infinitely many
solutions.

In contrast to the IVP in the preceding example, we can have a second-order

differential equation with no solution.

Example 4.6.2 A Second-Order IVP with No Solution
Let’s look at the IVP xy′′ + y′ + y = 0, with y(0) = 1, y′(0) = 2. If we try to solve this problem
with a CAS, we should get a blank result. This says that there is no solution to this IVP.

What we want in most real-life situations is one and only one solution to an IVP.

The next example shows such a case.

Example 4.6.3 A Second-Order IVP with a Unique Solution
The IVP d2x

dt2 − x = 0; x(0) = 1, x′(0) = 0 has the unique solution x(t) = 1
2

(
et + e−t

)
. You may

recognize x as the hyperbolic cosine (cosh).

4.6.1 An Existence and Uniqueness Theorem
At this point we have seen that the possibilities for second-order IVPs are similar to

those we saw in Section 2.8 for first-order IVPs. We can have no solution, infinitely

many solutions, or exactly one solution. Once again we would like to determine when

there is one and only one solution of an IVP.

The simplest Existence and Uniqueness Theorem (EUT) for second-order differ-

ential equations is one that is a natural extension of the result we saw in Section 2.8.

Existence and Uniqueness Theorem (EUT)

Suppose we have a second-order IVP d2y

dt2 = f (t, y, ẏ), with y(t0) = y0 and ẏ(t0) = ẏ0. If f , ∂f
∂y

, and
∂f
∂ẏ

are continuous in a closed box B in three-dimensional space (t-y-ẏ space) and the point (t0, y0, ẏ0)

lies inside B, then the IVP has a unique solution y(t) on some t-interval I containing t0.

4.6.2 Many solutions
We can write the equation in Example 4.6.1 in the form ẍ = f (t, x, ẋ) = 2t ẋ−2x

t2 , so

we see that f does not exist in any box in which t = 0. Therefore, we should not

expect exactly one solution, and, in fact, although there is a solution to the IVP with

initial conditions x(0) = 0 and ẋ(0) = 0, any such solution is not unique.
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4.6.3 No solution
In Example 4.6.2, we can write the equation in the form y′′ = f (x, y, y′) = − 1

x
y′ −

1
x
y. Then ∂f

∂y
= − 1

x
and ∂f

∂y′ = − 1
x

, neither of which is continuous in any region
containing the point x = 0. This says we are not guaranteed a unique solution—and
indeed there is no solution.

4.6.4 Exactly one solution
Finally, if we examine the IVP in Example 4.6.3, we should see that in this situation
we are guaranteed the existence of one and only one solution of the IVP. (Check this.)

The nice thing about these questions is that in most common applied problems, the
functions and their derivatives are well behaved (continuous, etc.), so that we do have
both existence and uniqueness. In particular, under reasonable conditions any IVP
involving a second-order linear differential equation will have a unique solution.

Existence and Uniqueness Theorem
Consider the initial-value problem

y′′ + p(t)y′ + q(t)y = f (t); y(t0) = y0, y′(t0) = y1.

If the functions p, q, and f are continuous on the interval I : a < t < b containing the point t = t0,
then there is a unique solution y = φ(t) of the IVP, and this solution exists throughout the interval I .

Under the given continuity conditions, this theorem guarantees that the given IVP
will always have (existence) exactly one (uniqueness) twice-differentiable solution on
any interval containing t0. In particular, any IVP involving a second-order equation
with constant coefficients is certain to have a unique solution valid on (−∞,∞).
Conversely, neither existence nor uniqueness is guaranteed at a discontinuity of p, q,
or f .

As we saw in Section 2.8, it is important to determine the largest interval on which
a unique solution is guaranteed to exist.

Example 4.6.4 A Maximal Interval
Let’s look at the IVP

(t + 2)ẍ + t ẋ + (cotx)x = t2 + 1; y(2) = 11, y′(2) = −2.

Writing this in standard form—so that the coefficient of the second derivative is one, as in the
theorem—we have

ẍ +

p(t)︷ ︸︸ ︷
t

t + 2
ẋ +

q(t)︷ ︸︸ ︷
cos t

(t + 2) sin t
x =

f (t)︷ ︸︸ ︷
t2 + 1

t + 2
,

with t0 = 2.
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The functions p and f are discontinuous at t = −2, whereas the function q is discontinuous at
t = −2 and t = 0,±π,±2π,±3π, . . . . Thus, the largest interval containing t0 = 2 but none of the
discontinuities is (0,π).

Exercises 4.6
A
1. In Example 4.6.3 you saw the IVP x′′ − x = 0, or x′′ = x, with x(0) = 1 and

x′(0) = 0. Using the technique in Section 4.1, show that x(t) = 1
2

(
et + e−t

)
is

the solution of the IVP.

2. For each of the following IVPs, find the largest interval in which the solution is
certain to exist, assuming that initial conditions are given at t = 0. Do not try to
find the solution.
a. ẍ + 2ẋ + 6x = et sin t

b. x′′ + (tan t)x′ + 1
1−t

x = 0

c. (1 − t2)x′′ − 2tx′ + 6x = 0

d. x′′ + (sec t)x′ + 1
t−3x = sec t

3. For each of the following IVPs, find the largest interval in which the solution is
certain to exist. Do not try to find the solution.
a. (x − 2)(x + 1)y′′ + xy′ + y = 0; y(0) = 1, y′(0) = 2

b. y′′ + 2xy′ + ln(1 − x) = 0; y(0) = 1, y′(0) = 0

c. (x − 2)y′′ + y′ + (x − 2)(tanx)y = 0; y(3) = 1, y ′(3) = 2

d. (t2 − 3t)ÿ + t ẏ − (t + 3)y = 0; y(1) = 2, y ′(1) = 1

B
4. Find all solutions of the IVP

ÿ + p(t)ẏ + q(t)y = 0; y(t0) = 0, ẏ(t0) = 0,

where p and q are continuous on an open interval I containing t0.

5. a. Determine the guaranteed interval of existence for the IVP

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0; y(0) = 1,

dy

dx
(0) = 0

without solving the problem.

b. Are there initial conditions for which a unique solution is not guaranteed?

c. For each value of n = 0,1,2,3, find a polynomial of degree n that solves

the IVP (1 − x2)
d2y

dx2 − 2x
dy
dx

+ n(n + 1)y = 0; y(1) = 1.

d. Is there a contradiction between theory and the actual result for the solu-
tions in part (c)?



Summary 181

C

6. Think of the natural extension of the EUT for an nth-order differential equa-
tions. Consider the equation

5x2y(5) − (6 sinx)y′′′ + 2xy′′ + πx3y′ + (3x − 5)y = 0.

Suppose that Y(x) is a solution of this equation such that Y(1) = 0, Y ′(1) = 0,
Y ′′(1) = 0, Y ′′′(1) = 0, Y (4)(1) = 0, and Y (5)(1) = 0. Why must Y(x) be equal
to 0 for all values of x?

7. The EUT for second-order linear equations tells us that the IVPs

(1) S ′′ + S = 0; S(0) = 0, S′(0) = 1

(2) C′′ + C = 0; C(0) = 1, C′(0) = 0

define unique functions S and C, respectively, for all real numbers x. Forgetting
for the sake of this exercise that you can find the actual solutions of these IVPs,
carry out the following tasks:
a. Suppose ϕ is a solution of y′′ + y = 0. Show that ϕ′ is also a solution of

this equation.

b. Use the EUT to show that S′ is actually the function C—that is, if S is the
unique solution of IVP (1), then S′ = C, where C is the unique solution of
(2). Also, show that C′ = −S.

c. Show that if ϕ(x) is any solution of y′′ + y = 0, then ϕ(−x) is also a
solution. Use this to show that C is an even function—that is, C(−x) =
C(x) for all real values of x.

d. Show that S2(x) + C2(x) is a constant, and determine this constant by
using initial conditions. [Hint: Let f (x) = S2(x) + C2(x) and calculate
f ′(x), using part (b) of this exercise to simplify.]

e. What familiar functions behave the way S and C behave? Verify your guess
by solving each of the IVPs using the method given in Section 4.1.

Summary
For second-order homogeneous linear equations with constant coefficients—equa-
tions of the form

ax′′ + bx′ + cx = 0,

where a, b, and c are constants, a �= 0—we can describe the solutions explicitly in
terms of the roots of the associated characteristic equation aλ2 + bλ + c = 0 as
follows:
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1. If there are two distinct real roots—λ1, λ2 with λ1 �= λ2—then the general solu-
tion is

x(t) = c1e
λ1t + c2e

λ2t .

2. If there is a repeated real root λ, then the general solution has the form

x(t) = c1e
λt + c2te

λt = (c1 + c2t) eλt .

3. If the roots form a complex conjugate pair p ± qi, then the (real) general solution
has the form x(t) = ept (c1 cos(qt) + c2 sin(qt)). Here, we need Euler’s formula
to deal with complex exponentials.

The general solution, yGNH, of a linear nonhomogeneous system is obtained by
finding a particular solution, yPNH, of the nonhomogeneous system and adding it to
the general solution, yGH, of the homogeneous system: yGNH = yGH + yPNH. A par-
ticular solution can be found using the method of undetermined coefficients or
variation of parameters.

For a linear equation of any order, we have the Superposition Principle. If yj is
a solution of L(y) = fj for j = 1,2, . . . , n, and c1, c2, . . . , cn are arbitrary constants,
then c1y1 + c2y2 + · · ·+ cnyn is a solution of L(y) = c1f1 + c2f2 + · · ·+ cnfn. That
is,

L(c1y1 + c2y2 + · · · + cnyn) = c1L(y1) + c2L(y2) + · · · + cnL(yn)

= c1f1 + c2f2 + · · · + cnfn.

As a consequence of the Superposition Principle, the formula yGNH = yGH +
yPNH is valid for a linear equation of any order n. We have an algorithm to find the
general solution, yGH, of the associated nth-order homogeneous equation any

(n) +
an−1y

(n−1) + · · · + a2y
′′ + a1y

′ + a0y = 0, where y is a function of the independent
variable t and an, an−1, . . . , a1, a0 are constants.

First, find the roots of the characteristic equation

anλ
n + an−1λ

n−1 + · · · + a1λ + a0 = 0.

Use a CAS to solve the equation if n is greater than or equal to 3. Next, group these
roots as follows: (a) distinct real roots; (b) distinct complex conjugate pairs p ± qi;
(c) multiple real roots; (d) multiple complex roots. Then the general solution is a sum
of n terms of the forms

1. cie
λi t for each distinct real root λi

2. ept (c1 cosqt + c2 sinqt) for each distinct complex pair p ± qi

3.
(
c1 + c2t + · · · + ckt

k−1
)
eλi t for each multiple real root λ, where k is the multi-

plicity of that root
4. ept (c1 cosqt + c2 sinqt) + tept (c3 cosqt + c4 sinqt) + · · · +

tk−1ept (c2k−1 cosqt + c2k sinqt) for each multiple complex pair of roots p±qi,
where k is the multiplicity of the pair p ± qi



Summary 183

To find a particular solution of the nth-order nonhomogeneous equation, we can
use the method of undetermined coefficients or variation of parameters as we did
in the second-order case (although more work is involved).

Before getting too immersed in trying to solve higher-order equations, we should
determine when solutions exist and whether existing solutions are unique. A use-

ful result applies to a second-order IVP, d2y

dt2 = f
(
t, y,

dy
dt

)
with y (t0) = y0 and

dy
dt

(t0) = ẏ0. If f , ∂f
∂y1

, and ∂f
∂ẏ

are continuous in a closed box B in three-dimensional
space (t-y-ẏ space) and the point (t0, y0, ẏ0) lies inside B, then the IVP has a unique
solution y(t) on some t-interval I containing t0.

For second-order linear differential equations, the IVP y′′ + p(t)y′ + q(t)y =
f (t); y(t0) = y0, y′(t0) = y1 will have a unique solution if the functions p, q, and
f are continuous on the interval I : a < t < b containing the point t = t0, and this
solution exists throughout the interval I .
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CHAPTER

The Laplace transform

Introduction
The idea of a transform, or transformation, is a very important one in mathematics
and problem solving in general. When you are faced with a difficult problem, it is
often a good idea to change it in some way into an easier problem, solve that eas-
ier problem, and then take your solution and apply it to your original problem. One
of the first examples of this process that you have seen involves the idea of a loga-
rithm. When John Napier and others developed logarithms in the early 1600s, they
served as an aid to calculation. Given a difficult multiplication problem, you could
transform it into an addition problem, perform the addition, and then transform the
answer back into the answer to the original problem. For example, if you wanted
to multiply 8743 by 2591, you could apply the natural logarithm to this product,
getting the sum ln(8743) + ln(2591) = 9.07600865918 . . . + 7.85979918056 . . . =
16.9358078397 . . . . Then you would reverse the process by determining the number
whose natural logarithm is 16.9358078397 . . . . That number, 22,653,113, should be
the original product. The process of going from the sum of logs back to the original
product is called an inverse transformation. Of course, we recognize that the inverse
of the logarithmic transformation is the exponential transformation:

In elementary calculus, you evaluated certain integrals by changing variables—
transforming an integral in terms of x, say, to what you hope is a simpler integral in
another variable, say u. Back in Section 2.2 you encountered a transformation when
you introduced an integrating factor into a linear equation. By multiplying the equa-
tion by the appropriate exponential factor, you transformed the left-hand side into
an exact derivative, which could then be integrated to yield the unknown function.
You solved the equation by changing it into an equivalent form that was easier to
deal with. The entire philosophy of using transformations in solving problems can be
stated simply: I. TRANSFORM; II. SOLVE; and III. INVERT.

The important mathematical tool known as the Laplace transform is named for
the great French mathematician Pierre-Simon de Laplace (1749–1827) who studied

A Modern Introduction to Differential Equations. https://doi.org/10.1016/B978-0-12-818217-8.00012-9
Copyright © 2021 Elsevier Inc. All rights reserved.
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its properties, but it was probably used earlier by Euler. This transformation will be
useful to us because it removes derivatives from differential equations and replaces
them with algebraic expressions. In this way, differential equations are replaced by
algebraic equations. This transformation turns out to be particularly powerful when
we are dealing with initial-value problems (IVPs), nonhomogeneous equations with
discontinuous forcing terms, and systems of differential equations. The downside is
that the use of the Laplace transform is restricted to the solution of linear differential
equations and linear systems of differential equations.

5.1 The Laplace transform of some important functions
We start by assuming that f (t) is a function that is defined for t ≥ 0. The Laplace
transform of this function, L[f (t)], is defined as

L
[
f (t)

]=
∫ ∞

0
f (t)e−st dt, (5.1.1)

when this improper integral exists. Note that after we’ve integrated with respect to t ,
the result will have the parameter s in it—that is, this integral is a function of the
parameter s, so we can write L[f (t)] = F(s). We have transformed our function in t

to a function in s.
Before we give some examples, let’s just examine the integral in (5.1.1). From ba-

sic calculus, we know that the improper integral is defined as limb→∞
∫ b

0 f (t)e−st dt

when this limit exists. There are two important requirements here. First, the ordinary
Riemann integral

∫ b

0 f (t)e−st dt must exist for every b > 0; and then the limit must
exist as b → ∞. Both requirements are taken care of if we stick to continuous or
piecewise continuous functions f (t) for which there are constants a, M , and T such
that |f (t)| < Mea t for all t ≥ T . (Here we want M and T to be positive.) This says
that the function f doesn’t grow faster than an exponential function, so the integrand
f (t)e−st in (5.1.1) behaves like the function Mea t · e−s t = Me−(s−a) t for values
of s greater than a and for t large enough. These functions are called functions of
exponential order a. The improper integral of this kind of function converges. (See
Section A.6 for basic definitions and examples.) To summarize,

Let f (t) be piecewise continuous on every finite interval in [0,∞) and satisfy
|f (t)| < Mea t for some constants M and a. Then L[f (t)] exists for s > a and
lims→∞ L[f (t)] = 0.

The limit statement is easily justified.
Suppose f is a piecewise continuous function of exponential order a. Then

F(s) = limN→∞
∫ N

0 f (t)e−s t dt . Our discussion in the previous paragraphs estab-
lishes that the integrals exist for every N > 0. Now∣∣∣∣
∫ N

0
f (t) e−s t dt

∣∣∣∣≤
∫ N

0
|f (t)| e−s t dt ≤

∫ N

0
Mea te−s t dt = M

∫ N

0
e−(s−a) t dt.
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Therefore, for s > a we can take the limit as N → ∞ to see that

|F(s)| = |L[f (t)]| ≤ lim
N→∞

∣∣∣∣
∫ N

0
f (t)e−s t dt

∣∣∣∣≤ M

∫ ∞

0
e−(s−a) t dt = M

s − a
.

Thus, lims→∞ F(s) ≤ lims→∞ |F(s)| ≤ M · lims→∞
(

1
s−a

)
= 0.

Although being of exponential order is sufficient for a function to have a Laplace
transform, it is not necessary.

Example 5.1.1 A Function Not of Exponential Order Whose Laplace
Transform Exists
Consider the function f (t) = d

dt
sin(et2

) = 2tet2
cos(et2

). The factor et2
is the key to seeing that

the function is not of exponential order. (Supply the details.) Fig. 5.1 shows the graph of f (t).

FIGURE 5.1

Graph of f (t) = d
dt

sin(et2
) = 2tet2

cos(et2
)

Integrating by parts, we see that

∫ R

0
f (t)e−st dt =

∫ R

0
e−st d

dt
sin(et2

) dt = e−sR sin(eR2
) − sin 1 + s

∫ R

0
sin(et2

)e−st dt.

The function sin(et2
)e−st is continuous on the interval [0,R] and is therefore integrable on [0,R]

for s > 0. Moreover, for s > 0 we can write∣∣∣∣∣
∫ R

0
sin(et2

)e−st dt

∣∣∣∣∣≤
∫ R

0
| sin(et2

)|e−st dt ≤
∫ R

0
e−st dt = 1 − e−sR

R
,

and limR→∞
∫ R

0 sin(et2
)e−st dt < limR→∞ 1−e−sR

R
= 1

s .

Therefore for s > 0,
∫∞

0 sin(et2
)e−st dt exists as a finite improper Riemann integral—that is,∫∞

0 2tet2
cos(et2

)e−st dt =L[f (t)] also exists and is finite as an improper Riemann integral. Note
that lims→∞ F(s) = 0.
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Now suppose that f (t) ≡ 1. Then

F(s) = L[1]
∫ ∞

0
1 · e−st dt = lim

b→∞

∫ b

0
e−st dt = lim

b→∞
e−st

−s

∣∣∣∣
b

0

= 1

−s

(
lim

b→∞

(
e−sb − 1

))
= 1

s
.

From this we can see that the Laplace transform of a constant function f (t) ≡ C is
C
s

for s > 0. (Yes?)
Next, we can find L[t] by using integration by parts and the value of L[1]. For

s > 0,

L[t] =
∫ ∞

0
te−st dt = lim

b→∞

∫ b

0
te−st dt

= lim
b→∞

{
te−st

−s

∣∣∣∣
b

0
−
∫ b

0

e−st

−s
dt

}
= 0 + 1

s
L[1] = 1

s2
.

Similarly, we can show that L[t2] = 2
s3 and L[t3] = 6

s4 for s > 0. (See Problems 1
and 3 in Exercises 5.1.) In general, for all integers n ≥ 0, it can be shown that

L
[
tn
]= n!

sn+1
(s > 0), (5.1.2)

where 0! is defined to be 1.
From the basic properties of integrals, we can see that

L
[
c · f (t)

]= cL
[
f (t)

]
,

where c is any real constant, and that

L
[
f (t) + g(t)

]= L
[
f (t)

]+L
[
g(t)

]
,

whenever the Laplace transforms of both f and g exist. Any transformation that sat-
isfies the last two properties is called a linear operator or a linear transformation.
(See Section 2.2.) If c1 and c2 are constants, then we can combine the two properties
to write

L
[
c1f (t) + c2g(t)

]= c1L
[
f (t)

]+ c2L
[
g(t)

]
. (5.1.3)

Extending (5.1.3), we can see how to calculate the Laplace transform of any polyno-
mial function:

L
[
c0 + c1t + c2t

2 + · · · + ckt
k + · · · + cnt

n
]

= L [c0] +L [c1t] +L
[
c2t

2
]
+ · · · +L

[
ckt

k
]
+ · · · +L

[
cnt

n
]
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= c0 L [1] + c1L [t] + c2L
[
t2
]
+ · · · + ckL

[
tk
]
+ · · · + cnL

[
tn
]

= c0

s
+ c1

s2
+ 2c2

s3
+ 6c3

s4
+ · · · + k!ck

sk+1
+ · · · + n!cn

sn+1
(s > 0).

If a is a real number, let us find the Laplace transform of f (t) = ea t , an important
function for us because of its frequent appearance in differential equations. By defi-
nition,

L
[
eat
]=

∫ ∞

0
eat e−st dt = lim

b→∞

∫ b

0
e(a−s)t dt

= lim
b→∞

e(a−s)t

(a − s)

∣∣∣∣
b

0
= 1

a − s

(
lim

b→∞

(
e(a−s)b − 1

))
= − 1

a − s

= 1

s − a
for s > a.

(In what step is the assumption about s crucial?)
To have the tools with which to handle a variety of differential equations, we have

to stock our warehouse with different Laplace transforms. Another basic function we
need to deal with is sin at , where a is a real number. This transform requires two
integrations by parts:

For s > 0,

L[sinat] =
∫ ∞

0
sinat e−st dt = lim

b→∞ sinat
e−st

−s

∣∣∣∣
b

0
−
∫ ∞

0
a cosat

e−st

−s
dt

= a

s

∫ ∞

0
cosat e−st dt

= a

s

(
lim

b→∞ cosat
e−st

−s

∣∣∣∣
b

0
−
∫ ∞

0
−a sinat

e−st

−s
dt

)

= a

s

(
1

s
− a

s
L [sinat]

)
,

so that

(
1 + a2

s2

)
L [sinat] = a

s2
and L [sinat] = a

s2 + a2
.

Using one of the steps from this result, we can easily show that L [cos at] = s

s2+a2 .
(See Problem 4 in Exercises 5.1.)

To help set the stage for a type of applied differential equation problem that can
be handled neatly by using the Laplace transform, let’s find L[f (t)] for the piecewise
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continuous function defined as follows:

f (t) =
⎡
⎢⎣

t for 0 ≤ t ≤ 2

4 − t for 2 ≤ t ≤ 4

0 for t ≥ 4.

We can sketch the graph of this function. All we have to do is split the integral in
definition (5.1.1) into three pieces, one corresponding to the interval [0, 2], another
corresponding to [2, 4], and the last matching [4, ∞):

L
[
f (t)

]=
∫ 2

0
te−st dt +

∫ 4

2
(4 − t)e−st dt +

∫ ∞

4
0 · e−st dt

= 1 − e−2s − 2se−2s

s2
+ e−4s − e−2s + 2se−2s

s2

= 1 + e−4s − 2e−2s

s2

for s > 0. (Carry out all the integrations yourself!)
Finally, before we can apply Laplace transforms to the solution of differential

equations, we have to know the transforms of f ′, f ′′, and higher-order derivatives.
So suppose that F(s) = L[f (t)] exists for s > c. Then we have, for s > c,

L
[
f ′(t)

]=
∫ ∞

0
f ′(t)e−st dt

= lim
b→∞f (t)e−st

∣∣∣∣
b

0
+
∫ ∞

0
s f (t)e−st dt = −f (0) + sL

[
f (t)

]
,

which we can write as

L
[
f ′(t)

]= sL
[
f (t)

]− f (0). (5.1.4)

Note that in this derivation, we are assuming that f (b)e−sb → 0 as b → ∞.
Now if we assume that f

(
be−sb

)
also tends to 0 as b → ∞, we can apply for-

mula (5.1.4) twice, first with f replaced by f ′, to get

L
[
f ′′(t)

]= −f ′(0) + sL
[
f ′(t)

]= −f ′(0) + s
[
sL

[
f (t)

]− f (0)
]

= −f ′ (0) + s2L
[
f (t)

]− s f (0),

so we can write

L
[
f ′′(t)

]= s2L
[
f (t)

]− s f (0) − f ′(0) (for s > c) . (5.1.5)

In general, for any positive integer n, if the nth derivative is continuous (or piece-
wise continuous), and all the lower-order derivatives are continuous and have the
proper growth rate, then
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L
[
f (n)(t)

]
= snL

[
f (t)

]−
n∑

i=1

sn−if (i−1)(0)

= snL
[
f (t)

]− sn−1f (0) − sn−2f ′(0) − · · · − s f (n−2)(0) − f (n−1)(0). (5.1.6)

It is important to note that this last formula implies that a linear differential equation
with constant coefficients will be transformed into a purely algebraic equation—that
is, an equation without derivatives. (Recognize that f (k)(0) is a number for k ≥ 0.)

As a hint of what we’ll be doing in the next few sections, we’ll convert a differ-
ential equation into an algebraic expression by using the Laplace transform.

Example 5.1.2 The Laplace Transform of a Differential Equation
Let’s look at the IVP

x′′ + 3x′ + 2x = 12e2t ; x(0) = 1, x′(0) = −1.

We’re going to apply the Laplace transform to both sides of the equation and substitute the
initial conditions where appropriate,

L
[
x′′ + 3x′ + 2x

]=L
[
12e2t

]
,

or by using the linearity of the transform (5.1.3),

L[x′′] + 3L[x′] + 2L[x] = 12L
[
e2t

]
.

We have already calculated the Laplace transform of an exponential function. This, together with
formulas (5.1.4) and (5.1.5), allows us to write

{
s2L[x(t)] − sx(0) − x′(0)

}
+ 3 {sL[x(t)] − x(0)} + 2L[x(t)] = 12

s − 2
.

Now we substitute the given initial conditions to get

{
s2L[x(t)] − s + 1

}
+ 3 {sL[x(t)] − 1} + 2L[x(t)] = 12

s − 2
.

Finally, collecting like terms, we find that

(
s2 + 3s + 2

)
L[x(t)] = 12

s − 2
+ s + 2 = s2 + 8

s − 2
,

so we can solve for L[x(t)]:

L[x(t)] = s2 + 8

s − 2
· 1

s2 + 3s + 2
= s2 + 8

(s − 2)
(
s2 + 3s + 2

)
= s2 + 8

(s − 2)(s + 2)(s + 1)
.

Now what? We have an unknown function, the solution of an IVP, whose Laplace transform is
known. If we can reverse the process and figure out what function has this Laplace transform, we
can solve our original IVP. This is what we’ll focus on in the next section.
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Exercises 5.1
A
Use the definition and properties of the Laplace transform to find the Laplace trans-
form of the functions in Problems 1–16 and specify the values of s for which each
transform exists.

1. f (t) = t2

2. g(t) = t2 − t

3. f (t) = t3

4. h(t) = cosat , where a is a real number

5. F(t) = t ea t , where a is a real number

6. s(t) = 2 cos 3t

7. u(t) = 10 + 100 e2 t

8. G(t) = ea t−eb t

a−b
, where a and b are real numbers, a �= b

9. H(t) = 2t3 − 7t2 + 5t − 17

10. r(t) = 3 sin 5t − 4 cos 5t

11. U(t) = 2et − 3e−t + 4t2

12. S(t) = 3 − 5e2t + 4 sin t − 7 cos 3t

13. F(t) =
{
t for 0 < t < 4
0 for t > 4

14. fa(t) =
{
t/a for t < a

1 for t ≥ a
, where a ≥ 0

15. A(t) =
⎧⎨
⎩

1 for 0 ≤ t ≤ 1
2 − t for 1 ≤ t < 2
0 for 2 ≤ t

16. B(t) =
⎧⎨
⎩

1 for 0 ≤ t ≤ 2π

cos t for 2π ≤ t ≤ 7π/2
0 for 7π/2 ≤ t < ∞

In Problems 17–26, find the Laplace transform of the solution of each IVP, as-
suming that the Laplace transform exists in each case. (Do not try to solve the IVPs.)

17. y′ − y = 0; y(0) = 1

18. y′ + y = e−x ; y(0) = 1

19. y′ = −y + e−2t ; y(0) = 2

20. y′ = −y + t2; y(0) = 1

21. y′′ + y = 0; y(0) = 1, y′(0) = 0

22. y′′ + 4y′ + 4y = 0; y(0) = 1, y′(0) = 1
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23. y′′ − y′ − 2y = 5 sinx; y(0) = 1, y′(0) = −1

24. 2y′′ + 3y′ − 2y = 1; y(0) = 0, y′(0) = 1/2

25. y′′′ − 2y′′ + y′ = 2ex + 2x; y(0) = 0, y′(0) = 0, y′′(0) = 0

26. y(4) − y′′′ + y = 1 + sin(2t) − 2e3t ; y(0) = 0, y′(0) = 1, y′′(0) = 2,
y′′′(0) = 3

B
27. Recall that the hyperbolic sine and hyperbolic cosine are defined as sinh(at) =

(eat − e−at )/2 and cosh(at) = (eat + e−at )/2, respectively. Find the Laplace
transform of these two functions and give the values of s for which the trans-
forms exist.

28. Consider the IVP y′′ + 3y = w(t); y(0) = 2, y ′(0) = 0, where

w(t) =
{

t for 0 ≤ t < 1

1 for t ≥ 1.

a. Find L[w(t)].
b. Find L[y(t)].

29. Find the Laplace transform of the following periodic function.

30. Determine L[sin a t] using the fact that sin a t satisfies the differential equa-
tion y′′ + a2y = 0. Do the same for L[cos a t].

31. Apply formula (5.1.4) to the function f ′′(t) to show that

L[f ′′′(t)] = s3L[f (t)] − s2f (0) − s f ′(0) − f ′′(0).

32. If L[f (t)] exists for s = α, prove that it exists for all s > α.
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33. If f (t) = et2
for t ≥ 0, show that there are no constants M and K such that

|f (t)| < eM t for all t ≥ K . Thus, show that the Laplace transform of f (t)

doesn’t exist. [Hint: et2
<eM t implies that t2 < M t for t large enough.]

34. Prove that L
[
e

3√t
]

exists, but L
[
ee t

]
does not exist.

35. Show that f (t) = 1 for t > 0 and g(t) =
{

5 for t = 3
1 for t �= 3

have the same

Laplace transforms, namely 1/s for s > 0. Can you think of other functions
with the same Laplace transform? Explain your answer.

36. Define

f (t) =
{

1 for t = 0

t for t > 0.

a. Find L[f (t)] and L[f ′(t)].
b. Is it true for this function that L[f ′(t)] = sL[f (t)] − f (0)? Explain.

C
37. Use definition (5.1.1) and the fact that

∫∞
0 e−x2

dx =
√

π

2 to find the Laplace

transform of f (t) = 1√
t
= t− 1

2 . [Hint: Make the substitution t = u2

s
.]

38. Suppose f (t) is a periodic function with period T —that is, f (t + T ) = f (t)

for all t—such that L[f (t)] exists.
a. Show that

L[f (t)] = 1

1 − e−sT

∫ T

0
f (t) e−s T dt.

[Hint: Make a substitution and recall geometric series.]

b. Use the result of part (a) to find the Laplace transform of the function
given in Problem 29.

39. Suppose that a is any real number and that F(s) = L[f (t)]. Show that

L
[
ea tf (t)

]= F(s − a) for s > a.

[This is usually called the First Shift Formula. See formulas (5.3.1a) and
(5.3.1b) for the Second Shift Formula.]

5.2 The inverse transform and the convolution
5.2.1 The inverse Laplace transform
Recall that in Example 5.1.2 we took an IVP, applied the Laplace transform, and
then wound up with the Laplace transform of the solution of the IVP. Now we would
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like to reverse the transformation process so that, given L[f (t)] as a function of
the parameter s, we can find f (t). This involves the idea of the inverse Laplace
transform, L−1.

Now think back to the concept of inverse of a function. When you first encoun-
tered the inverse in precalculus or calculus, you may have worked with both the
formal definition and the graphical interpretation in terms of a “horizontal line test.”
In any case, the important idea is that to have an inverse function f −1 we must guar-
antee that for any element in the range of the original function f , there is one and
only one corresponding element in the domain of f . Another way of saying this is
that a function has an inverse if and only if it is a one-to-one function.

For our purposes, the important fact is that if the Laplace transforms of the contin-
uous functions f and g exist and are equal for s ≥ c (c is a constant), then f (t) = g(t)

for all t ≥ 0. This says that a continuous function can be uniquely recovered from its
Laplace transform. (Compare Problem 35 in Exercises 5.1.) Letting L[f (t)] = F(s),
we can express the definition of the inverse Laplace transform as

L−1[F ] = f if and only if L[f ] = F. (5.2.1)

We can easily verify (see Problem 11 in Exercises 5.2) that the inverse Laplace trans-
form is a linear transformation:

L−1 [c1F(t) + c2G(t)] = c1L−1[F(t)] + c2L−1[G(t)]. (5.2.2)

Now how do we find the inverse Laplace transform in practice? It turns out that the
relationship between calculating a Laplace transform and determining its inverse is
similar to that between differentiation and integration.

This means that in calculus, the indefinite integral of a function f answers the
question, What is a function whose derivative is f ? (Note that in calculus the answer
to this question is not unique.) Just as a list of differentiation formulas helps us to con-
struct a list of antidifferentiation formulas (indefinite integrals), so a table of Laplace
transforms aids us in finding inverses. In the examples that follow, we will use the in-
formation in Table 5.1. Some of these transforms were derived in Section 5.1; others
were given as exercises.

Now let’s return to Example 5.1.2 and solve the IVP using Laplace transforms
and the inverse Laplace transform.

Example 5.2.1 Solving an IVP Using the Inverse Laplace Transform
The IVP was x′′ + 3x′ + 2x = 12e2t , x(0) = 1, x′(0) = −1, and we found that

L[x(t)] = s2 + 8

(s − 2)(s + 2)(s + 1)
.

If we try to work with the given expression for the transform (the single rational expression in s), we
would have a tough time figuring out what function x(t) might have this as its Laplace transform.
This expression doesn’t seem to correspond to any of the forms in the second column of Table 5.1.
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Table 5.1 Some Laplace Transforms

f (t) F (s) = L[f (t)]
1 tn(n = 0,1,2, . . .) n!

sn+1 , s > 0

2 eat 1
s−a

, s > a

3 sinat a

s2+a2 , s > 0

4 cosat s
s2+a2 , s > 0

5 eat sinbt b

(s−a)2+b2 , s > a

6 eat cosbt s−a
(s−a)2+b2 , s > a

7 t sinat 2as
(s2+a2)2 , s > 0

8 t cosat s2−a2

(s2+a2)2 , s > 0

9 f ′(t) sF (s) − f (0)

10 f ′′(t) s2F(s)− sf (0)−f ′(0)

11 eatf (t) F (s − a), s > a

However, we can use the partial fractions technique to express the transform as the sum of three
simpler terms, each of which matches an entry in the table:

s2 + 8

(s − 2)(s + 2)(s + 1)
= 1

s − 2
+ 3

s + 2
− 3

s + 1
.

We should be able to see, for example, that the term 3
s+2

(
= 3

s−(−2)

)
is the Laplace transform of

3e−2t . Applying the inverse transform to each side of

L[x(t)] = 1

s − 2
+ 3

s + 2
− 3

s + 1

and using (5.2.1) and the linearity of L−1, we see that

x(t) = L−1[L[x(t)]] =L−1
[

1

s − 2
+ 3

s + 2
− 3

s + 1

]

= L−1
[

1

s − 2

]
+ 3L−1

[
1

s + 2

]
− 3L−1

[
1

s + 1

]

= e2t + 3e−2t − 3e−t ,

where we have used formula 2 from Table 5.1 three times.

The alternative to using the Laplace transform to solve the IVP in the preceding
example is to go back to the method first explained in Section 4.2. First, find the gen-
eral solution of the homogeneous equation x′′ + 3x′ + 2x = 0; then find a particular
solution of the nonhomogeneous equation x′′ + 3x′ + 2x = 12e2t ; finally, add these
two solutions together to get the general solution of the original nonhomogeneous
equation. And even then we would not be finished, because we would have to use
the initial conditions to determine the two arbitrary constants in the general solution.
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Note that the Laplace transform method enables us to handle the nonhomogeneous
equation and initial conditions all at once.

Now let’s see what the Laplace transform method does in an important applied
problem that we first saw as Example 2.2.5.

Example 5.2.2 Solving a Circuit Problem via the Laplace Transform
The current I flowing in a particular electrical circuit can be described by the IVP L dI

dt
+ RI =

v0 sin(ωt), I (0) = 0. Here, L, R, v0, and ω are positive constants.
First, we apply the Laplace transform to each side of the differential equation

L
[
L

dI

dt
+ R I

]
= L

[
v0 sin(ωt)

]
LL

[
dI

dt

]
+ RL [I (t)] = v0 L [sin(ωt)]

s LL [I (t)] − LI (0) + RL [I (t)] = v0

(
ω

s2 + ω2

)

(L s + R)L [I (t)] − LI (0) = v0

(
ω

s2 + ω2

)

L

(
s + R

L

)
L [I (t)] = v0

(
ω

s2 + ω2

)
,

so that we have L[I (t)] = ( v0
L

) ·ω · 1(
s+ R

L

)(
s2+ω2

) . To find the inverse Laplace transform, we have

to use the method of partial fractions on the right-hand side:

1(
s + R

L

)(
s2 + ω2

) = A(
s + R

L

) + Bs + C

s2 + ω2
.

With a little effort, we find that

1(
s + R

L

)(
s2 + ω2

) =

1(
R2

L2 +ω2
)

s + R
L

+
− 1(

R2

L2 +ω2
) s +

(
R
L

)
(

R2

L2 +ω2
)

s2 + ω2

and

L [I (t)] =
( v0

L

)
· ω · 1(

s + R
L

)(
s2 + ω2

)
=
( v0

L

)
· ω(

R2

L2 + ω2
)
{

1

s + R
L

+ −s

s2 + ω2
+

R
L

s2 + ω2

}
.

(Check the last three equalities.) The final step is to apply the inverse Laplace transform to both
sides of this last equation and then use formulas 2, 3, and 4 from Table 5.1:

I (t) =
( v0

L

) ω(
R2

L2 + ω2
)
{
L−1

[
1

s + R
L

]
−L−1

[
s

s2 + ω2

]
+ R

L
L−1

[
1

s2 + ω2

]}
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=
( v0

L

) ω(
R2

L2 + ω2
) {e

− R
L

t − cos (ωt) + R

L

1

ω
sin (ωt)

}

=
( v0

L

) 1(
R2

L2 + ω2
) {ωe

− R
L

t − ω cos (ωt) + R

L
sin (ωt)

}
.

Compare this solution to the one obtained in Example 2.2.5.

Example 5.2.3 Solving an IVP Using the Inverse Laplace Transform
Let’s look at the IVP ẍ − 2ẋ = et (t − 3); x(0) = 2 = ẋ(0). As before, we take Laplace transforms
of both sides and use the table. Letting L[x(t)] = X(s), we get

{
s2X(s) − sx(0) − ẋ(0)

}
− 2 {sX(s) − x(0)} = L

[
et (t − 3)

]
. (*)

To evaluate the right-hand side, first note that

L[t − 3] = 1

s2
− 3

s
= F(s),

so if we use entry 11 in Table 5.1 (with a = 1), we get

L
[
et (t − 3)

]= F(s − 1) = 1

(s − 1)2
− 3

s − 1
= 4 − 3s

(s − 1)2
.

If we return to (*) and put in our initial conditions, we get

s(s − 2)X(s) = 2s − 2 + 4 − 3s

(s − 1)2

= 2(s − 1)3 + (4 − 3s)

(s − 1)2
=

(s − 2)
(

2s2 − 2s − 1
)

(s − 1)2
.

Therefore, we conclude that

X(s) = 2s2 − 2s − 1

s(s − 1)2
= 3

s − 1
− 1

(s − 1)2
− 1

s
.

We go to the table to find the function x(t) = L−1[X(t)], where we have to use entries 1 and 11 for
the second term. The solution of the IVP is x(t) = 3et − tet − 1. (Check that this is the solution.)

5.2.2 The convolution
In each of the preceding three examples, applying the Laplace transform yielded an
expression for L[f (t)] that seemed to involve the product of two or more transforms.
Because we didn’t know a way to find the inverse transform of such products, we had
to resort to the messiness of a partial fraction decomposition. This, at least, enabled
us to use the linearity of the inverse transform.
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There is, however, a way to deal with this problem—a method that involves a
special product of functions.

The convolution of two functions f and g is the integral

(f ∗ g)(t) =
∫ t

0
f (r)g(t − r) dr,

provided that the integral exists for t > 0.

For example the convolution of cos t and t is

(cos t) ∗ t =
∫ t

0
(cos r) (t − r) dr =

∫ t

0
t cos r dr −

∫ t

0
r cos r dr

= t

∫ t

0
cos r dr −

∫ t

0
r cos r dr = 1 − cos t

after using integration by parts for the last integral. For this example we should verify
that (cos t) ∗ (t) = (t) ∗ (cos t).

Convolution has important algebraic properties (see Problem 15 in Exercises 5.2),
but the most significant property for us right now is that the Laplace transform of a
convolution of two functions is equal to the product of the Laplace transforms of
these two functions. More precisely, suppose that f and g are two functions whose
Laplace transforms exist. Let F(s) = L[f (t)] and G(s) = L[g(t)]. Then the Convo-
lution Theorem says that

L
[
(f ∗ g)(t)

]= L
[∫ t

0
f (r)g(t − r) dr

]
= L[f (t)] ·L[g(t)] = F(s) · G(s).

Now let’s revisit part of Example 5.2.2 to see how the convolution property helps
us.

Example 5.2.4 (Example 5.2.2 Revisited)

How can we find L−1

[
1(

s+ R
L

)(
s2+ω2

)
]

?

The expression inside the brackets is the product of two transforms F and G:

F(s)G(s) =
⎡
⎣ 1(

s + R
L

)(
s2 + ω2

)
⎤
⎦ ,

where F(s) = 1(
s+ R

L

) and G(s) = 1
(s2+ω2)

. Entries 2 and 3 of Table 5.1 tell us that f (t) =

L−1[F(s)] = e
− R

L
t and g(t) = L−1[G(s)] = 1

ω sin(ωt). Then the Convolution Theorem leads us
to conclude that

L−1 [F(s)G(s)] =
∫ t

0
f (r)g(t − r) dr,
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or

L−1

⎡
⎣ 1(

s + R
L

)(
s2 + ω2

)
⎤
⎦=

∫ t

0
e
− R

L
r 1

ω
sinω(t − r) dr

= 1

ω

∫ t

0
e
− R

L
r sinω(t − r) dr.

A computer algebra system evaluates this integral as

L

(
ωLe

(
− LR

t

)
− ωL cos (ωt) + R sin (ωt)

)
(
R2 + ω2L2

)
ω

.

A bit of algebra will show you that this corresponds to the inverse transform found in Exam-
ple 5.2.2 via partial fractions. (Do the work.)

*5.2.3 Integral equations and integro-differential equations1

The Convolution Theorem is certainly useful in solving differential equations, but
it can also help us solve integral equations, equations involving an integral of
the unknown function, and integro-differential equations, those involving both a
derivative and an integral of the unknown function.

Example 5.2.5 The Convolution Theorem and an Integral Equation
A store manager finds that the proportion of merchandise that remains unsold at time t after she has
bought the merchandise is given by f (t) = e−1.5t . She wants to find the rate at which she should
purchase the merchandise so that the stock in the store remains constant.

Suppose that the store starts off by buying an amount A of the merchandise at time t = 0 and
buys at a rate r(t) subsequently. Over a short time interval u ≤ t ≤ u + �u, an amount r(t) · �u is
bought by the store, and at time t the portion of this remaining unsold is e−1.5(t−u)r(u)�u. Then
the amount of previously purchased merchandise remaining unsold at time t is given by

Ae−1.5t +
∫ t

0
e−1.5(t−u)r(u)du.

Because this is the total stock of the store and the store manager wants it to remain constant at its
initial value, we must have

A = Ae−1.5t +
∫ t

0
e−1.5(t−u)r(u)du,

and the required restocking rate r(t) is the solution of this integral equation.
If we look carefully at the integral on the right-hand side of this last equation, we should recog-

nize something familiar about its form. It looks like a convolution—in fact, it is e−1.5t ∗ r(t). Now
we can rewrite the integral equation in the form

A = Ae−1.5t +
(
e−1.5t ∗ r(t)

)
.

1 ∗ Denotes an optional section.
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Taking the Laplace transform of each side and letting R(s) = L[r(t)], we get

L[A] = AL
[
e−1.5t

]
+L

[
e−1.5t ∗ r(t)

]
= A

s + 1.5
+ 1

s + 1.5
· R(s),

A

s
= A

s + 1.5
+ 1

s + 1.5
· R(s),

(s + 1.5)

(
A

s
− A

s + 1.5

)
= R(s),

1.5A

s
= R(s).

Applying the inverse Laplace transform to each side, we find that r(t) = 1.5A. That is, the restocking
rate should be a constant one and a half times the original amount bought. (Check that this is a
solution of our original integral equation.)

Example 5.2.6 An Integro-Differential Equation
The following integro-differential equation can also be solved using the properties of the Laplace
transform:

dx

dt
+ x(t) −

∫ t

0
x(r) sin(t − r) dr = − sin t, x(0) = 1.

As in the preceding example, we recognize that the integral in our equation represents a convolution,
this time (x ∗ sin)(t). Therefore, taking the Laplace transform of each side of the equation, we get

L[dx/dt] +L[x(t)] −L [(x ∗ sin) (t)] =L[− sin t],

or, using formula 10 in Table 5.1 and the Convolution Theorem,

[sL [x(t)] − x(0)] +L[x(t)] −L[x(t)] ·L[sin t] = − 1

s2 + 1
,

which becomes

[sL [x(t)] − 1] +L[x(t)] −L[x(t)] · 1

s2 + 1
= − 1

s2 + 1
.

This simplifies to

(
s3 + s2 + s

s2 + 1

)
L[x(t)] = s2

s2 + 1
,

so we wind up with L [x(t)] = s2

s3+s2+s
= s

s2+s+1
.

A bit of clever algebra shows us that

s

s2 + s + 1
= s + 1

2(
s + 1

2

)2 +
(√

3
2

)2
−

1
2(

s + 1
2

)2 +
(√

3
2

)2

=
s −

(
− 1

2

)
(
s −

(
− 1

2

))2 +
(√

3
2

)2
− 1√

3

√
3

2(
s −

(
− 1

2

))2 +
(√

3
2

)2
.
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Using formulas 5 and 6 from Table 5.1 to invert this transform, we find that

x(t) = e−t/2 cos

(√
3t

2

)
− 1√

3
e−t/2 sin

(√
3t

2

)
.

(Checking that this is the solution involves a bit of work, but try it!)

5.2.4 The Laplace transform and technology
Most computer algebra systems have built-in Laplace transform and inverse trans-
form capabilities. In particular, some systems (for example, Maple) have sophisti-
cated differential equation solvers with a “laplace” option for IVPs. If you have such
an option at your command, learn to use it. However, realize that the process of how
it works is hidden, so you have to develop an understanding of what the system is
really doing.

Be aware that some computer algebra systems can find Laplace transforms and
their inverses, but have no direct way of solving a linear IVP with these tools. In this
case you have to apply the Laplace transform to the differential equation, solve for
the transform L[x(t)] of the solution algebraically (via a solve command or by hand),
use technology to find the inverse transform L−1[L[x(t)]], and finally substitute the
initial conditions.

Determine what your options are in using technology to solve IVPs via the
Laplace transform. Some of the exercises that follow will help you do this.

Exercises 5.2
A

1. Find the inverse Laplace transform of 1
s2+9

.

2. Find the inverse Laplace transform of s

s2−a2 .

3. Find the inverse Laplace transform of s

s2+2
.

4. Find the inverse Laplace transform of a

s2(s2+a2)
.

5. Find the inverse Laplace transform of 1
s(s2+2s+2)

.

6. Find the inverse Laplace transform of 2s−10
s2−4s+20

.

7. Find the inverse Laplace transform of 4
s−2 − 3s

s2+16
+ 5

s2+4
.

8. Find the inverse Laplace transform of 3s+7
s2−2s−3

.

9. Find the inverse Laplace transform of 2s2−4
(s+1)(s−2)(s−3)

.

10. Find the inverse Laplace transform of

1

s − 4
+ 1

(s − 1)(s − 4)
.
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B

11. If F(t) and G(t) are the Laplace transforms of f (t) and g(t), respectively, and
c1 and c2 are constants, show that

L−1[c1F(t) + c2G(t)] = c1L−1[F(t)] + c2L−1[G(t)].

12. Suppose y1(t) is the solution of the IVP y′′ + ay′ + by = f1(t); y(0) =
y′(0) = 0, where a and b are constants.
a. Compute an expression for L[y1].
b. Suppose y2(t) is the solution of the IVP

y′′ + a y′ + b y = f2(t); y(0) = y′(0) = 0

for a different forcing function f2(t). Show that

L [f2]
L [y2] = L [f1]

L [y 1] .

c. Show that L [y2] = L [f 2] · L [y 1]
L [f 1] . (This says that we can use the solution

with any forcing function and zero initial conditions to compute solutions
of other forcing functions.)

13. a. Show that the Laplace transform of tnf (t) is (−1)nF (n)(s), where
F(s) = L[f (t)].

b. Use the result of part (a) and the derivative of the function F(s) = ln(2 +
3
s
), s > 0, to find its inverse Laplace transform.

14. Find the convolution f ∗ g of each of the following pairs of functions:
a. f (t) = t2, g(t) = 1

b. f (t) = t , g(t) = e−t for t ≥ 0

c. f (t) = t2, g(t) = (t2 + 1) for t ≥ 0

d. f (t) = e−at , g(t) = e−bt (a, b constants)

e. f (t) = cos t , g(t) = cos t

[Hint: For part (e) you need some trigonometric identities.]

15. Prove the following properties of the convolution of functions:
a. f ∗ g = g ∗ f [Commutativity]

b. (f ∗ g) ∗ h = f ∗ (g ∗ h) [Associativity]

c. f ∗ (g + h) = f ∗ g + f ∗ h [Distributivity]

d. f ∗ 0 = 0, but f ∗ 1 �= f and f ∗ f �= f 2 in general. (In particular,
1 ∗ 1 �= 1.)

16. a. Using property (b) of Problem 15, find 1 ∗ 1 ∗ 1.

b. Find 1 ∗ t ∗ t2.
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17. Use the Convolution Theorem to find the Laplace transform of

f (t) =
∫ t

0
cos(t − r) sin r dr.

18. Find the Laplace transform of

h(t) =
∫ t

0
et−v sin v dv.

19. Find the solution of the IVP y′′ + 3y′ + 2y = 4t2; y(0) = 0, y′(0) = 0.

20. Solve the IVP y′′ + 4y′ + 4y = e−2 x ; y(0) = 0, y′(0) = 1.

21. Solve the IVP y′′′ − 2y′′ + y′ = 2 ex + 2x; y(0) = 0, y′(0) = 0, y′′(0) = 0.

22. Solve the IVP y′′ + 6y′ + 9y = H(x); y(0) = 0, y′(0) = 0, where H(x) is a
known function of x. [Hint: Use the Convolution Theorem.]

23. An electrical circuit that is initially unforced but is plugged into a particular
alternating voltage source at time t = π can be modeled by the IVP

Q′′ + 2Q′ + 2Q =
{

0 for 0 ≤ t < π

− sin t for t ≥ π,

with Q(0) = 0 and Q′(0) = 1. Solve the IVP for Q(t), the charge on the ca-
pacitor at time t .

24. The equation v dv
ds

= v cos(2 s)−v2 describes the velocity v of a piston moving
into an oil-filled cylinder under a variable force. Here, s is the distance moved
in time t .
a. Rewrite the given equation as a linear equation with constant coefficients.

b. Assuming that v(0) = 0, use the Laplace transform to solve for v as a
function of s. Is there a singular solution?

c. Use technology to graph the nontrivial solution found in part (b) for 0 ≤
s ≤ 20.

25. Solve the integral equation for f : f (t) = 4t + ∫ t

0 f (t − r) sin r dr .

26. Solve for g: g(t) − t = − ∫ t

0 (t − r) g(r) dr .

C
27. Solve for x : ẋ(t) = 1 − ∫ t

0 x(t − r) e−2 r dr , x(0) = 1.

28. Solve the integro-differential equation

ẏ + y +
∫ t

0
y(u)du = 1, with y(0) = 0.

29. Solve the equation ẋ − 4x + 4
∫ t

0 x(u)du = t3 e2 t , with x(0) = 0.

30. Solve the equation f ′′(x) + ∫ x

0 e2 (x−y)f ′(y) dy = 1; f (0) = 0, f ′(0) = 0.
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5.3 Transforms of discontinuous functions
Differential equations are often used to model complex systems. In some situations,
models have to deal with abrupt changes in these systems. In the circuit problem
described in Example 2.2.5 (or Example 5.2.2), we have the equation L dI

dt
+ RI =

v0 sin(ωt), where the right-hand side (the forcing term) represents a continuous al-
ternating current source. Now suppose that the voltage E(t) were applied for only
a short period of time and then discontinued. Mathematically, this means that the
forcing term would have the form

f (t) =
{

E(t) for 0 ≤ t ≤ a

0 for t > a.

Perhaps we have a switch that we can open and close so that the voltage is applied,
removed, and then applied again:

g(t) =

⎧⎪⎨
⎪⎩

E(t) for 0 ≤ t ≤ a

0 for a < t < b

E(t) for t ≥ b.

Problem 30 in Exercises 2.2, in which advertising expenditure is terminated after a
certain period of time, is another illustration of this kind of behavior. The common
element here is abrupt change. In mathematical terms, we are dealing with piecewise
continuous functions.

5.3.1 The Heaviside (unit step) function
In Section 5.1 we saw a simple example of the Laplace transform applied to a piece-
wise continuous function. We computed the transform directly from the definition,
breaking the integral into two parts. This can be tedious if there are several intervals
involved in the definition of the function. Now we will see how these kinds of func-
tions can be expressed in such a way that the Laplace transform method doesn’t have
to consider separate intervals.

We start with the unit step function U defined by

U(t) =
{

0 if t < 0

1 if t ≥ 0.

(This is sometimes called the Heaviside (unit step) function, named for the English
electrical engineer Oliver Heaviside (1850–1925) who developed many of the ap-
plications of Laplace transforms that we will see.) We can say that the function U

is “off” (= 0) for negative values of t and “on” (= 1) for values of t greater than or
equal to 0. This “switching” aspect makes U an important building block in modeling
abrupt changes.
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It follows that

U(t − a) =
{

0 if t < a

1 if t ≥ a.

The function has a jump discontinuity at t = a. Fig. 5.2 shows U(t − 3) for t ≥ 0.

FIGURE 5.2

Graph of U(t − 3), t ≥ 0

The nice thing is that these step functions can be used to express a piecewise
continuous function in terms of a single formula. For example, if

f (t) =
{

A(t) for t < a

B(t) for t ≥ a,

then we can see that f (t) = A(t)+U(t −a)[B(t)−A(t)]: If t < a, then U(t −a) = 0,
so f (t) = A(t); whereas if t ≥ a, then we have U(t − a) = 1, so f (t) = A(t) +
[B(t) − A(t)] = B(t). (Is that clear?)

This technique can be extended to functions such as

g(t) =

⎧⎪⎨
⎪⎩

A(t) for a ≤ t < b

B(t) for b ≤ t < c

C(t) for c ≤ t < d.

We can write g(t) = U(t −a)A(t)+U(t −b)[B(t)−A(t)]+U(t − c)[C(t)−B(t)].
(Make sure that you see how this works.)

When we are solving differential equations that model abrupt changes, the fol-
lowing result comes in handy:

If L[f (t)] exists for s > c and if a > 0, then

L [f (t − a)U(t − a)] = e−asL[f (t)] for s > c.
(5.3.1a)
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This result is usually called the Second Shift Formula—see Problem 39 in Exer-
cises 5.1 for the First Shift Formula.

Alternatively, we can write (5.3.1a) as

f (t − a)U(t − a) = L−1
[
e−a sL[f (t)]]. (5.3.1b)

Formula (5.3.1a) follows from a straightforward calculation:

L
[
f (t − a)U(t − a)

]=
∫ ∞

0
f (t − a)U(t − a)e−s t dt =

∫ ∞

a

f (t − a)e−s t dt

=
∫ ∞

0
f (u)e−s (u+a) du = e−s aL[f (t)],

where we have made the substitution t − a = u in the last integral.
The next example shows how to use the Laplace transform of a unit step function

to solve an IVP.

Example 5.3.1 An IVP with a Discontinuous Forcing Term
Let’s look at the IVP

x′(t) + x =
{

t for 0 ≤ t < 4

1 for 4 ≤ t
; x(0) = 1.

Using the unit step function, we can write the differential equation as

x′(t) + x = t + (1 − t)U(t − 4) = t − (t − 4)U(t − 4) − 3U(t − 4).

[Note that in order to use formula (5.3.1b) later, we have to use algebra to convert the term (1 −
t)U(t − 4) into the form f (t − a)U(t − a).] Now we apply the Laplace transform to both sides of
the equation to get

L[x′(t)] +L[x(t)] =L[t] −L [(t − 4)U(t − 4)] − 3L[U(t − 4)],

or, using entry 9 in Table 5.1 and then formula (5.3.1a) twice,

sL[x(t)] − 1 +L[x(t)] = 1

s2
− e−4 sL[t] − 3e−4 sL[1],

so

(s + 1)L[x(t)] = 1 + 1

s2
− e−4 s

(
1

s2
+ 3

s

)
.

Therefore,

L [x(t)] = 1

s + 1
+ 1

s2(s + 1)
− e−4 s

(
3s + 1

s2(s + 1)

)

= [
by partial fractions

] 2

s + 1
− 1

s
+ 1

s2
− e−4 s

(
2

s
+ 1

s2
− 2

s + 1

)
.
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Finally, applying the inverse transform to both sides and using (5.3.1b), we get

x(t) = 2e−t − 1 + t −L−1
[
e−4 s

(
2

s
+ 1

s2
− 2

s + 1

)]

= 2e−t − 1 + t −
[
U(t)L−1

(
2

s
+ 1

s2
− 2

s + 1

)]

(where t must be replaced by t − 4 within the brackets before we’re finished)

= 2e−t − 1 + t − [
U(t)

(
2 + t − 2e−t

)]
= 2e−t − 1 + t − U(t − 4)

(
t − 2 − 2e−t+4

)

=
⎧⎨
⎩

2e−t + t − 1 for 0 ≤ t < 4

2e−t + 2e−t+4 + 1 for 4 ≤ t.

The next example shows the application of the Laplace transform and the unit
step function to an important type of applied problem.

Example 5.3.2 A Cantilever Beam Problem
A wooden beam, whose ends are considered to be at x = 0 and x = L on a horizontal axis, will
“give” (that is, bend) when a vertical load, given by W(x) per unit length, acts on the beam (Fig. 5.3).
(Compare Problem 20 in Exercises 1.3.)

FIGURE 5.3

A loaded beam

It is known that y(x), the amount of bending, or deflection, in the direction of the load force at

the point x, satisfies the differential equation d4y

dx4 = W(x)
EI

for 0 < x < L.

Here, E and I are constants that describe characteristics of the beam. The graph of y(x) is called
the deflection curve or elastic curve.

Now suppose that we have a cantilever beam (like a diving board)—clamped at the end x = 0
and free at the end x = L—and that this beam carries a load per unit length given by

W(x) =
⎧⎨
⎩W0 for 0 < x < L

2

0 for L
2 < x < L.

Engineering mechanics shows that finding the deflection amounts to solving the boundary-value
problem (BVP)

d4y

dx4
= W(x)

EI
(for 0 < x < L) ; y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0.
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(In physics terms, the quantities y′′(L) and y′′′(L) are called the bending moment and the shear
force, respectively.)

First of all, note that so far we have applied the technique of Laplace transforms only to IVPs,
not to BVPs. Second, to use the Laplace transform, we must assume that y(x) and W(x) are defined
on the interval (0, ∞) rather than just on (0,L). This means that we should extend the definition of
W(x) as follows:

W(x) =
⎧⎨
⎩W0 for 0 < x < L

2

0 for x > L
2 .

We can write this function in terms of the unit step function as

W(x) = W0

{
U(x) − U

(
x − L

2

)}
.

Now take the Laplace transform of each side of our fourth-order equation, letting Y = Y (s) =
L[y(x)] for convenience. Using (5.1.6), we find that

s4Y − s3y(0) − s2y′(0) − sy′′(0) − y′′′(0) = W0

EI

{
1 − e−sL/2

s

}
.

Note that in formula (5.1.6) the second and third derivatives of y are evaluated at 0. However,
our BVP gives us the values of these derivatives at L. Letting y′′(0) = C1 and y′′′(0) = C2, we

can use all the boundary conditions as given and solve the last equation for Y : Y = C1
s3 + C2

s4 +
W0

EIs5

{
1 − e2s L/2

}
. Using the inverse transform, we find that

y(x) = C1x2

2! + C2x3

3! + W0

EI

x4

4! − W0

EI

(
x − L

2

)4

4! U

(
x − L

2

)
,

which is equivalent to

y(x) =

⎧⎪⎪⎨
⎪⎪⎩

C1x2

2 + C2x3

6 + W0
24EI

x4 for 0 ≤ x < L
2

C1x2

2 + C2x3

6 + W0
24EI

x4 − W0
24EI

(
x − L

2

)4
for x ≥ L

2 .

Now we use the conditions y′′(L) = 0 and y′′′(L) = 0 to find that C1 = W0L2

8E I
and C2 = −W0L

2E I
.

(Be sure to go through the calculations for yourself.)
Finally, we can write our deflection function as

y(x) =

⎧⎪⎪⎨
⎪⎪⎩

W0L2

16EI
x2 − W0L

12EI
x3 + W0

24EI
x4 for 0 ≤ x < L

2

W0L2

16EI
x2 − W0L

12EI
x3 + W0

24EI
x4 − W0

24EI

(
x − L

2

)4
for L

2 ≤ x < L.

Exercises 5.3
A
In Problems 1–6, (a) sketch the graph of each function f (t) and (b) write each func-
tion as a sum of multiples of the unit step function U(t).
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1. f (t) =
{

1 for 1 ≤ t < 2
0 elsewhere

2. f (t) =
{

t2 for 0 < t < 2
4t for t > 2

3. f (t) =
⎧⎨
⎩

1 for 1 ≤ t < 2
−2 for 2 ≤ t < 3

0 elsewhere

4. f (t) =
⎧⎨
⎩

t for 0 ≤ t < 2
4 − t for 2 ≤ t < 4
0 elsewhere

5. f (t) =
⎧⎨
⎩

t for 0 ≤ t < 2
t − 2 for 2 ≤ t < 4
0 elsewhere

6. f (t) =
⎧⎨
⎩

sin t for 0 < t < π

sin 2t for π < t < 2π

sin 3t for t > 2π

7. Show that L [t U(t − a)] = (1 + a s) s−2e−as for a > 0.

8. Calculate L [t2U(t − 1)].
9. Show that L

[
t2 U(t − 2)

]= 2
s3 − 2 e−2s

s3

(
1 + 2 s + 2 s2

)
, s > 0.

10. Use formula (5.3.1a-b) to compute the Laplace transform of the function in
Problem 1.

11. Use formula (5.3.1a-b) to compute the Laplace transform of the function in
Problem 2.

12. Use formula (5.3.1a-b) to compute the Laplace transform of the function in
Problem 3.

13. Use formula (5.3.1a-b) to compute the Laplace transform of the function in
Problem 4.

14. Consider the function

F(t) =
{

e−t for 0 < t < 3

0 for t > 3.

a. Show that F(t) can be written as e−t [1 − U(t − 3)].

b. Use formula (5.3.1a) to find L[F(t)].
B
15. Solve the IVP

y ′′ + 4y = U(t − π) − U(t − 3π); y(0) = 0, y ′(0) = 0.

16. Solve the IVP

y(4) + 5y′′ + 4y = 1 − U(t − π); y(0) = y′(0) = y′′(0) = y′′′(0) = 0.
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Solve each of the IVPs in Problems 17–24 by writing each discontinuous forc-
ing function as a linear combination of unit step functions and then using the
Laplace transform.

17. 4y′ − 5y =
⎧⎨
⎩

0 for t < 0
−30t for 0 ≤ t < 1

0 for t ≥ 1
; y(0) = 2

18. 4y′ + 5y =
⎧⎨
⎩

0 for t < 0
sin 8t for 0 ≤ t ≤ 2

0 for t > 2
; y(0) = 1

19. y′′ + y =
{

1 for 0 ≤ t < π/2
0 for t ≥ π/2

; y(0) = 0, y′(0) = 1

20. y′′ + y =
{
t/2 for 0 ≤ t < 6
3 for t ≥ 6

; y(0) = 0, y′(0) = 1

21. y′′ + 5y′ + 2y =
⎧⎨
⎩

0 for t < 0
8 for 0 ≤ t ≤ 1
0 for t > 1

; y(0) = 0, y′(0) = 0

22. 3y′′ + 3y′ + 2y =
⎧⎨
⎩

0 for t < 0
5 for 0 ≤ t ≤ 5
0 for t > 5

; y(0) = 0, y′(0) = 0

23. y′ − 3y = f (t); y(0) = 0, where the graph of f (t) is

24. y′ + y = g(t); y(0) = 0, where the graph of g(t) is
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25. Suppose that the population of fish in a large lake is growing too rapidly and
the local authorities decide to give out fishing licenses that allow a total of h

fish to be caught per day over a 30-day period. A model for such a situation
could be

P ′(t) = k P (t) −
{

h for 0 ≤ t ≤ 30

0 for t > 30

}
,

where P(t) denotes the number of fish in the lake at time t (in days) and k is a
positive constant describing the natural growth rate of the fish population.
a. Use technology and the Laplace transform to find an expression for P(t)

if P(0) = A.

b. Find a relation among A, h, and k that guarantees that exactly 330 days
after the end of the 30-day fishing season, the fish population will once
more be at the level A.

26. Problem 5 of Exercises 2.3 concerns the population of Botswana from 1975 to
1990 under certain basic assumptions. Now consider the situation that occurs if
we start with a population of 0.755 million people in 1975 (t = 0) and assume
that births and deaths, immigration and emigration balance each other until
1977 (t = 2). In 1977, an emigration pattern begins in such a way that the
population P(t) can be described by the equation

P ′ − k P =
{

0 if 0 < t < 2

−a(t − 2) if t ≥ 2

with P(0) = 0.755, k = 0.0355, and a = 1.60625 × 10−3.
a. Express the discontinuous function on the right-hand side of the equation

in terms of the unit step function.

b. Use technology and the Laplace transform to solve for P(t), expressing
the answer as a step function.

c. Graph the solution on the interval 0 ≤ t ≤ 35 and explain what the graph
means in terms of the population of Botswana.

C
27. The IVP y′′ + 3y′ + 2y = W(t); y(0) = 0, y′(0) = 0 represents a damped

spring-mass system subjected to a square wave forcing term given by

W(t) = U(t − 1) − U(t − 2).

a. Graph W(t).

b. Without using technology, solve the IVP when W(t) ≡ 0.

c. Without using technology, solve the given IVP (that is, with W(t) �≡ 0 as
the forcing term).
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d. Use technology to graph the solutions to parts (b) and (c) on the same set
of axes. What difference does the forcing term make?

28. Solve the following IVP, and find a formula for y(t) that does not involve step
functions and represents y on each interval of continuity of f :

y′′ + 2y′ + 2y = f (t); y(0) = 0, y ′(0) = 0;
f (t) = (m + 1)(sin t + 2 cos t), 2mπ ≤ t < 2(m + 1)π for m = 0,1,2 . . . .

(You may need the formula 1+r +r2 +· · ·+rm = (1−rm+1)/(1−r), r �= 1.)

5.4 Transforms of impulse functions—the Dirac delta
function

In the preceding section we dealt with situations in which some abrupt change oc-
curred. To describe this scenario in general terms, we were dealing with systems
acted on by some external force that was applied suddenly. Although the change was
sudden, the force was assumed to have been applied for some measurable period of
time. Now we want to examine problems in which there is an external force of large
magnitude applied suddenly for a very short period of time. For example, think about
a baseball being hit by a major-league player. The time of contact of ball with bat is
very brief, but enough force can be applied to send the sphere soaring into the stands.
More dramatic instances of this phenomenon include an electrical surge caused by a
power line that is suddenly struck by lightning and a population that is growing at a
certain rate until some sudden disaster strikes the community.

Mathematically, we can start to approach this idea by considering a piecewise
continuous function that looks like

δb(t) =
{

1
b

for 0 ≤ t ≤ b

0 for t > b.

Here, we must assume that δb(t)—pronounced “delta sub b of t”—does not exist if
b = 0. This function can represent a force of magnitude 1/b applied for a time period
of length b (see Fig. 5.4).

First of all, note that
∫∞

0 δb(t) dt = ∫ b

0
1
b
dt = 1 for all values of b > 0. Now look

at what happens as we allow the value of b to get smaller and smaller. This situation
describes a force whose magnitude 1/b is getting larger and larger over a shorter and
shorter interval of time (0, b). (Can you see what’s going on?) More precisely, the
unusual nature of this discontinuous function led various physicists, mathematicians,
and engineers to consider the limiting behavior of δb(t) as b → 0. In particular, they
defined δ(t) as

δ(t) = lim
b→0

δb(t) =
{

∞ for t = 0

0 for t �= 0.
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FIGURE 5.4

The graph of δb(t)

This “function” δ is called the unit impulse function or the Dirac delta function
(named for the English-Belgian theoretical physicist Paul A.M. Dirac (1902–84),
who won the Nobel Prize in 1933 with E. Schrödinger for his work on quantum
theory). More generally, we can define

δ(t − a) = lim
b→0

δb(t − a) =
{

∞ for t = a

0 for t �= a.

In the mathematically precise sense of the word, this limit does not exist and so does
not define a function. However, such generalized functions, or distributions, can be
put on a firm mathematical foundation and are very useful in modern physics and
engineering theory. Before we look at examples of the use of the delta function in
solving differential equations, we should try to calculate its Laplace transform. The
only reasonable way to do this is to make the formal assumption that

L [δ(t − a)] = lim
b→0

L [δb(t − a)] .

(Mathematically, this raises an important theoretical question of whether

lim
b→0

L [δb(t − a)] = L
[

lim
b→0

δb(t − a)

]
.

This question is beyond the scope of this text and will be ignored.)
Now let’s write δb(t −a) in terms of the unit step function, as we did for functions

in Section 5.3:

δb(t − a) = 1

b
[U(t − a) − U(t − (a + b))] .
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If we use the linearity of the Laplace transform together with formula (5.3.1a)—
taking f (t − a) ≡ 1—we get

L [δ(t − a)] = lim
b→0

L [δb(t − a)]

= lim
b→0

1

b

{
e−sa

s
− e−s(a+b)

s

}
= lim

b→0
e−sa

{
1 − e−s b

bs

}

= e−s a lim
b→0

{
1 − e−s b

bs

}
= e−s a,

where we have used L’Hôpital’s Rule to evaluate the indeterminate form in this last
limit. (Alternatively, we could have used the series expansion of

(
1 − e−sb

)
/b s about

the point b = 0.) Because we have shown that

L [δ(t − a)] = e−s a, (5.4.1a)

it seems reasonable to take a = 0 and conclude that

L [δ(t)] = 1. (5.4.1b)

Now let’s see how to solve a differential equation involving an impulse function.

Example 5.4.1 Solving an ODE That Involves the Dirac Delta Function
A mass attached to a spring is released from rest one meter below the equilibrium position for the
spring-mass system and begins to move up and down. After three seconds, the mass is struck by a
hammer in a downward direction. We suppose the undamped system is governed by the IVP

d2x

dt2
+ 9x = 3δ(t − 3); x(0) = 1,

dx

dt
(0) = 0,

where x(t) denotes the displacement from equilibrium at time t , and we want to determine a formula
for x(t). (Note that the impulse force applied at t = 3 has magnitude 3.)

Let X = X(s) = L [x(t)]. Then, taking the Laplace transform of both sides of our ordinary
differential equation (ODE) and using (5.1.5) and (5.4.1a) with a = 3, we get

s2X − s + 9X = 3e−3s ,

so we can solve for X:

X = s

s2 + 9
+ e−3s 3

s2 + 9
.

Applying the inverse transform yields

x(t) = cos 3t + sin 3(t − 3)U(t − 3)

=
{

cos 3t for t < 3

cos 3t + sin 3(t − 3) for 3 ≤ t.

Fig. 5.5 is the graph of x(t), where the solid curve shows the displacement of the mass if the
hammer had not hit it.
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FIGURE 5.5

Graph of x(t) =
{

cos 3t for t<3
cos 3t+sin 3(t−3) for 3≤t

Exercises 5.4
A

1. Evaluate the integral
∫∞
−∞ δ(t − 3π/2) cos 2t dt .

2. Evaluate the integral
∫ 1

0 t3 δ
(
t + 1

3

)
dt .

3. Evaluate L
[
δ(t − π) cos t3

]
.

Solve the IVPs in Problems 4–14:

4. y′′ = δ(t − a); y(0) = 0, y′(0) = 0

5. y′ + 8y = δ(t − 1) + δ(t − 2); y(0) = 0

6. y′′ + y = δ(t − 2); y(0) = 0, y′(0) = 0

7. y′′ + 2y′ − 8y = δ(t); y(0) = 0, y′(0) = 0

8. 2y′′ + y′ + 2y = δ(t − 5); y(0) = 0, y′(0) = 0

9. y′′ + 2y′ + y = 2δ(t − 1); y(0) = 1, y′(0) = 1

10. y′′ + 6y′ + 109y = δ(t − 1) − δ(t − 7); y(0) = 0, y′(0) = 0

11. y′′ + y = 1 + δ(t − 2π); y(0) = 1, y′(0) = 0

12. y′′ + y = 4δ
(
t − 3

2 π
)

; y(0) = 0, y′(0) = 1

13. y(i v) − y = δ(t − 1); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

14. y′′ + y′ = et + 3δ(t − 6); y(0) = −1, y′(0) = 4

B
15. A uniform beam of length L carries a load W concentrated at x = L/2. The

beam is embedded at its left end and is free at its right end. The deflection

y(x) is governed by the equation E I
d4y

dx4 = Wδ
(
x − L

2

)
, where y(0) = 0,

y′(0) = 0, y′′(L) = 0, and y′′′(L) = 0. Use the Laplace transform to determine
the deflection y(x).
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16. If a, b, and c are constants, show that the solution x(t) of the linear IVP

x′′(t) + ax′(t) + b x(t) = δ(t − c); x(0) = 0, x ′(0) = 0

is x(t) = k(t − c)U(t − c), where k(t) = L−1
[

1
s2+a s+b

]
.

17. Suppose we have the equation y′′ + ay′ + b y = f (t), where a and b are
constants and f is a piecewise continuous function whose Laplace transform
exists. Show that the effect of replacing f (t) by f (t) + c δ(t), where c is a
constant, is the same as increasing the initial value of y′(0) by the constant c.

18. a. Show that L[δ(t − a)f (t)] = e−a s f (a).

b. Use the result in part (a) and the result of Problem 20 to solve the IVP

y′′ + 2y′ + y = δ(t − 1) t; y(0) = 0, y ′(0) = 0.

C
19. If, at time t = a, the upper end of an undamped spring-mass system is jerked

upward suddenly and then returned to its original position, the equation mod-
eling the situation is mx′′ + k x = k H δ(t − a); x(0) = x0, x′(0) = x1, where
m is the mass, k is the spring constant, and H is a constant.
a. Solve the IVP manually, with x(0) = 0 = x′(0).

b. Use the solution found in part (a) to explain the significance of the con-
stant H .

c. Choose a value for H so that the mass achieves a prescribed displacement
from equilibrium A for t ≥ a.

20. If the function g(t) is continuous at a, show that
∫∞

0 δ(t − a)g(t) dt = g(a).
[Hint: Use the Mean Value Theorem for integrals (Appendix A.4).]

21. Consider the IVP y′′ + 2y =∑∞
n=1 δ(t − n); y(0) = 0, y′(0) = 0.

a. Find the Laplace transform of the solution of the IVP.

b. Solve the IVP.

c. What happens to the solution of the IVP as t → ∞?

5.5 Transforms of systems of linear differential equations
We have seen what the Laplace transform does to a single linear equation with con-
stant coefficients. It should be easy to see that when the initial conditions are given,
the Laplace transform converts a system of linear differential equations with constant
coefficients into a system of simultaneous algebraic equations. Then we can solve
the algebraic equations for the transformed solution functions. Finally, applying the
inverse transform to these functions gives us the solutions of the original system of
linear ODEs.
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Conceptually, this process is easy. The algebraic details, however, may not be
quite so simple. Problems of this kind make us appreciate the availability of technol-
ogy.

Example 5.5.1 Solving a Linear System via the Laplace Transform
Let’s start with the system

dx

dt
= −3x + y

dy

dt
= x − 3y,

where we want the solutions x(t) and y(t) that satisfy x(0) = 2 and y(0) = 3. (This system was
discussed briefly in Example 1.3.5.)

Applying the Laplace transform to each side of each equation gives us the system

sL[x(t)] − x(0) = −3L [x(t)] +L[y(t)]
sL[y(t)] − y(0) =L[x(t)] − 3L[y(t)].

Inserting the initial conditions and simplifying the resulting equations, we get the system

(s + 3)L[x(t)] −L[y(t)] = 2

(s + 3)L[y(t)] −L[x(t)] = 3.

Now we solve the preceding system for L[x(t)] and L[y(t)] just as we would solve any algebraic
system of two equations in two unknowns. (To simplify things, you could let L[x(t)] = X and
L[y(t)] = Y .) For instance, we can eliminate the variable L[y(t)] by multiplying the first equation
by (s + 3) and then adding the result to the second equation. When the dust settles, we get

{
(s + 3)2 − 1

}
L[x(t)] = 2(s + 3) + 3,

and we find that

L[x(t)] = 2s + 9

(s + 3)2 − 1
= 2s + 9

[(s + 3) + 1][(s + 3) − 1]

= 2s + 9

(s + 4)(s + 2)
= − 1

2
s + 4

+
5
2

s + 2
= − 1

2
s − (−4)

+
5
2

s − (−2)

and

x(t) = − 1

2
L−1

[
1

s − (−4)

]
+ 5

2
L−1

[
1

s − (−2)

]

= − 1

2
e−4t + 5

2
e−2t .

Now we could go through this process again to eliminate L[x(t)] and solve for y(t) this time (see
Problem 1 in Exercises 5.5), or we could just substitute our solution for x(t) in the first equation of
our original system and solve for y:

y(t) = dx

dt
+ 3x = d

dx

(
− 1

2
e−4t + 5

2
e−2t

)
+ 3

(
− 1

2
e−4t + 5

2
e−2t

)
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= 2e−4t − 5e−2t − 3

2
e−4t + 15

2
e−2t = 1

2
e−4t + 5

2
e−2t .

The next example shows how we can handle a system of two second-order linear
equations. In particular, note that we don’t have to write this as a system of four
first-order equations. The Laplace transform technique works directly on higher-order
derivatives via formula (5.1.6) or, in this case, (5.1.5).

Example 5.5.2 A System of Second-Order Equations
The system IVP we want to solve is

d2x

dt2
− 4x + dy

dt
= 0

−4
dx

dt
+ d2y

dt2
+ 2y = 0,

with x(0) = 0, x′(0) = 1, y(0) = −1, and y′(0) = 2.
Applying the Laplace transform to each side of each equation, we get

L
[
x′′(t)

]− 4L [x(t)] +L
[
y′(t)

]= 0

−4L
[
x′(t)

]+L
[
y′′(t)

]+ 2L
[
y(t)

]= 0.

Using (5.1.4) and (5.1.5), we can write the preceding system as

s2L[x(t)] − x′(0) − sx(0) − 4L[x(t)] + sL
[
y(t)

]− y(0) = 0

−4sL[x(t)] + 4x(0) + s2L[y(t)] − y′(0) − sy(0) + 2L[y(t)] = 0.

Now we insert the initial conditions and simplify the resulting equations to get

(
s2 − 4

)
L[x(t)] + sL[y(t)] = 0

−4sL[x(t)] +
(
s2 + 2

)
L[y(t)] = 2 − s. (*)

As in the previous example, we can solve these equations by realizing that they constitute a system of
ordinary algebraic equations in the unknowns L[x(t)] and L[y(t)]. If we multiply the first equation
of (*) by 4s, multiply the second by s2 − 4, and then add the resulting equations, we obtain

(
s4 + 2s2 − 8

)
L[y(t)] = −s3 + 2s2 + 4s − 8,

so

L[y(t)] = −s3 + 2s2 + 4s − 8

s4 + 2s2 − 8
= −s3 + 2s2 + 4s − 8(

s2 + 4
) (

s2 − 2
)

= −s3 + 2s2 + 4s − 8(
s2 + 4

)(
s + √

2
)(

s − √
2
)

= 1

6

[
1 + √

2

s + √
2

+ 1 − √
2

s − √
2

− 8(s − 2)

s2 + 4

]
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= 1

6

[
1 + √

2

s + √
2

+ 1 − √
2

s − √
2

− 8
s

s2 + 22
+ 8

2

s2 + 22

]
. (**)

Using entries 2, 3, and 4 of the table of transforms (Table 5.1), we see that

y(t) = 1

6

[(
1 + √

2
)

e−√
2t +

(
1 − √

2
)

e

√
2t − 8 cos 2t + 8 sin 2t

]
.

To find L[x(t)], we can go back to system (*) and eliminate L[y(t)] or we can substitute expression
(**) for L[y(t)] in either equation of (*) and solve for L[x(t)]. Let’s try the second method.

Using (**) and the first equation in (*), we find that

(
s2 − 4

)
L[x(t)] + s

(
−s3 + 2s2 + 4s − 8(

s2 + 4
) (

s2 − 2
)
)

= 0.

Solving for L[x(t)], we get

L[x(t)] = −s

(
−s3 + 2s2 + 4s − 8(

s2 − 4
) (

s2 + 4
) (

s2 − 2
)
)

= s(s − 2)2(s + 2)

(s − 2)(s + 2)
(
s2 + 4

) (
s2 − 2

)
= s(s − 2)(

s2 + 4
)(

s + √
2
)(

s − √
2
)

= − 1

12

[
2 + √

2

s + √
2

+ 2 − √
2

s − √
2

− 4

(
s + 2

s2 + 4

)]

= − 1

12

[
2 + √

2

s + √
2

+ 2 − √
2

s − √
2

− 4

(
s

s2 + 22
+ 2

s2 + 22

)]
.

Entries 2, 3, and 4 from Table 5.1 tell us that

x(t) = − 1

12

[(
2 + √

2
)

e−√
2t +

(
2 − √

2
)

e

√
2t − 4 cos 2t − 4 sin 2t

]
.

You should confirm that these are the solutions to the original IVP.

Exercises 5.5
A

1. Eliminate L[x(t)] from the algebraic system

(s + 3)L[x(t)] −L[y(t)] = 2

(s + 3)L[y(t)] −L[x(t)] = 3

and then solve for y(t). (See Example 5.5.1.)
Solve the IVPs in Problems 2–14 by using the Laplace transform.

2.
{
x ′ = y, y′ = −x

}
; x(0) = 2, y(0) = −1

3.
{
x ′ = 2x − 3y, y′ = y − 2x

}
; x(0) = 8, y(0) = 3

4.
{
x ′ = 12x + 5y, y′ = −6x + y

}
; x(0) = 0, y(0) = 1
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5.
{
x′ = −2x + y, y′ = −9x + 4y

}
; x(0) = 5, y(0) = −3

6.
{
x′ = −6x + 2y, y′ = −7x + 3y

}
; x(0) = 1, y(0) = 0

7.
{
x′ = x + y, y′ = −4x + y

}
; x(0) = 1, y(0) = 3

8.
{
x′ = y′ + 6y, y′ = 3

2x − 1
2x′

}
; x(0) = 2, y(0) = 3

9.
{
x′ + x − 5y = 0, y′ + 4x + 5y = 0

}
; x(0) = −1, y(0) = 2

10.
{
x′ + y′ = −3x − 2y + e−2t , 2x′ + y′ = −2x − y + 1

}
; x(0) = 0, y(0) = 0

11.
{
x′ = x − y − e−t , y′ = 2x + 3y + e−t

}
; x(0) = 1, y(0) = 0

12.
{
x′ + y′ = x, y′ + z′ = x, z′ + x′ = x

}
; x(0) = 1, y(0) = 1, z(0) = 1

13.
{
x′ − 3x − 6y = 27t2, x′ + y′ − 3y = 5e t

}
; x(0) = 5, y(0) = −1

14.
{
x′ = 2y + et , y′ = 8x − t

}
; x(0) = 1, y(0) = 1

B
15. Solve the system IVP

{
x′′ + y′ = 4x, 4x′ − y′′ = 9y

}
; x(0) = 0, x′(0) = 1,

y(0) = −1, y′(0) = 2 by using the Laplace transform.

16. Solve the system IVP
{
x′′ − y′ = −t + 1, x′ − x + 2y′ = 4et

}
; x(0) = 0,

x′(0) = 1, y(0) = 0 by using the Laplace transform.

17. The system

mx′′ = −k1(x − aθ) − k2(x + aθ)

mr2θ ′′ = k1a(x − aθ) − k2 a (x + aθ)

models the motion of a slab of mass m mounted on two springs, as shown in the
following figure. Here, x is the vertical displacement of the center of mass and
θ is the angle shown. The constant r represents the radius of gyration of the
slab about the appropriate axis through the center of mass. Use the Laplace
transform and technology to solve the system for x and θ if m = 1, k1 = 1,
k2 = 2, a = 1, r = 1, x(0) = 1, x′(0) = 0, θ(0) = 0.1, and θ ′(0) = 0.

18. The system consisting of two pendulums connected by a spring (see the fol-
lowing figure) has its motion approximated by the system of equations

mx′′ + mω2
0 x = −k(x − y)
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my′′ + mω2
0 y = −k(y − x),

where L is the length of each pendulum, g is the gravitational constant, and
ω2

0 = g/L. Use the Laplace transform and technology to solve this system with
m = 1, L = 5, g = 32, k = 2, and the initial conditions x(0) = 0, x′(0) = 2,
y(0) = 0, and y′(0) = 2.

19. The following circuit is described by the system

L1İ1 + R1 (I1 − I2) = v(t)

L2İ2 + R2I2 + R1 (I2 − I1) = 0.

Determine I1 and I2 when the switch is closed if L1 = L2 = 2 henry, R1 =
3 ohm, R2 = 8 ohm, and v(t) = 6 volt. Assume that I1(0) = I2(0) = 0.

20. In determining the concentration of a chemical in a system consisting of two
compartments separated by a membrane, we get the system of equations

ẋ = ay − bx

ẏ = bx − ay − βy,

subject to the conditions x(0) = x∗ and y(0) = y∗, where x∗ and y∗ are con-
stants. (Here, x and y represent the masses of the chemical in compartments
1 and 2, respectively, at any time t , and the constants a, b, and β are positive
constants of proportionality related to the rate of flow of the chemical from
one compartment to another.)
a. Solve this system of equations using Laplace transforms.

b. Letting p = 1
2 (b + a + β) and q = 1

2

√
(b + a + β)2 − 4βb, show that q

is a (positive) real number and that p > q.

c. Using the solution found in part (a) and the results of part (b), show that
the chemical masses x and y approach zero steadily.
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C
21. Solve the system IVP

{
d2x

dt2 = y + 4e−2t ,
d2y

dt2 = x − e−2t
}

; x(0) = y(0) =
x′(0) = y′(0) = 0.

22. Use the Laplace transform to solve the system

d2x

dt2
− 4x + dy

dt
= 0

−4
dx

dt
+ d2y

dt2
+ 2y = 0,

for which x(0) = 0, x′(0) = 1, y(0) = −1, and y′(0) = 2.

*5.6 Laplace transforms of linear differential equations with
variable coefficients2

As we have seen, the Laplace transformation is a powerful tool for solving linear
differential equations of any order with constant coefficients. Although the Laplace
transform can be used to solve certain linear differential equations with variable co-
efficients, the calculations may be very complicated and ultimately frustrating. As a
general rule, Laplace transform techniques are not useful for most problems of this
type.

Example 5.6.1 A Linear Equation with Variable Coefficients
Suppose we’re given the IVP y′′ + t2y = 0; y(0) = A, y′(0) = B. First of all, note that this seems to
be a fairly simple linear equation with variable coefficients. There is only one variable coefficient, a
simple polynomial, and the forcing function is zero.

If we apply the Laplace transform to each side of the equation, we see that

L[y′′] +L[t2y] = 0. (5.6.1)

The first difficulty we encounter is the calculation of L[t2y]. We have developed no formula for
such a product of functions. However, there is a formula,

L[tnf (t)] = (−1)nF (n)(s) = (−1)n
dn

dsn
L[f (t)], (5.6.2)

whose proof (for n = 1,2) is left as an exercise. (Generalize the method indicated for Exercise 2.)
Letting Y = L[y] and using (5.6.2) with n = 2, formula (5.1.5), and the initial conditions, we

see that (5.6.1) becomes

s2Y − sA − B + d2

ds2
Y = 0,

2 ∗ Denotes an optional section.
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or

Y ′′ + s2Y = As + B. (5.6.3)

In this case, the Laplace transform has not simplified our problem to one involving algebraic equa-
tions. We see that (5.6.3), the equation in the transform variable Y , has the same level of difficulty
as the original.

Example 5.6.2 Another Linear Equation with Variable Coefficients
Consider the nonhomogeneous IVP x′′ + 3tx′ − 6x = 2; x(0) = 0, x′(0) = 0.

As usual, we apply the Laplace transform to each side of the equation and use linearity to get

L[x′′] + 3L[tx′] − 6L[x] = 2

s
. (5.6.4)

Using (5.6.2), formulas (5.1.4) and (5.1.5), and the initial condition, we calculate

L[tx′] = − d

ds
L[x′] = − d

ds
(sX(s) − x(0)) = −sX′(s) − X(s),

where X(s) = L[x(t)]. Then Eq. (5.6.4) becomes

s2X(s) − sx(0) − x′(0) + 3
(−sX′(s) − X(s)

)− 6X(s) = 2

s
,

or

X′(s) +
(

3

s
− s

3

)
X(s) = − 2

3s2
. (5.6.5)

(Whoa!) Instead of ending up with a Laplace transform to which we could then apply the inverse
transform, we get a linear first-order differential equation that we must solve for the function X(s) =
L[x(t)]. Fortunately, we know how to solve such an equation. An integrating factor for Eq. (5.6.5)

is μ(s) = e

∫ ( 3
s − s

3

)
ds = s3e−s2/6. Multiplying both sides of (5.6.5) by μ, integrating, and solving

for X(s) yields

X(s) = 2

s3
+ C · es2/6

s3
. (5.6.6)

(This is getting better and better.) If we look at Table 5.1, we don’t see anything like the right-hand
side of (5.6.6). However, if we assume that the function x(t) is of exponential order, we can finish
the problem. In Section 5.1 we noted that lims→∞ F(s) = lims→∞ L[f (t)] = 0. So we know that

lim
s→∞X(s) = lim

s→∞

(
2

s3
+ C · es2/6

s3

)
= 0.

Since lims→∞(2/s3) = 0, the only way that the second term in parentheses will vanish as s → ∞
is if C = 0. (Use L’Hôpital’s Rule or the series expansion of ex to see that this term is unbounded as
s tends to infinity.) Thus Eq. (5.6.6) becomes X(s) = 2

s3 . Applying the inverse transform gives us

x(t) = t2.

In the last example, the initial conditions didn’t allow us to determine the arbitrary
constant we were left with. We had to resort to a limit argument. Now we’ll look at an
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IVP where we’ll have to work a little harder to determine the values of any constants
resulting from applying the Laplace transform.

Example 5.6.3 One More Linear Equation with Variable Coefficients
Let’s try to solve ty′′ + y′ = t ; y(0) = 0, y′(0) = 0.

Let Y = L[y]. From formula (5.6.2), we have L[ty′′] = − d
ds

(
s2Y − sy(0) − y′(0)

)
=

−2sY − s2Y ′. Therefore, after some simplification, the transformed differential equation is

s2Y ′ + sY = − 1

s2
.

In standard form we can write this first-order linear equation as

Y ′ +
(

1

s

)
Y = − 1

s4
. (5.6.7)

Using the integrating factor μ(s) = e
∫

1/s ds = s, we solve (5.6.7) to get

Y = 1

2s3
+ C

s
. (5.6.8)

Note that lims→∞ Y = 0, so we can’t determine the value of C as we did in Example 5.6.2. However,
we can find C by first determining y: y =L−1[Y ] =L−1[1/(2s3)] + C ·L−1[1/s] = t2/4 + C.

Now we use the initial condition y(0) = 0 to see that C = 0. It is easy to check that y = t2/4 is
the solution of the IVP.

Note that in Example 5.6.3, if we replace the initial condition y′(0) = 0 by y′(0) =
c �= 0, the equation has no solution—the function y = t2/4 wouldn’t satisfy both
initial conditions. If we write the equation in the standard form y′′ + (1/t)y′ = 1,
we see that the function 1/t is discontinuous at t = 0. However, we can find the
general solution of the equation ty′′ + y′ = t by using the familiar formula yGNH =
yGH + yPNH and a technique from a previous exercise.

Multiplying the homogeneous equation by t , we have the equation t2y′′ + ty′ = 0,
which is a Cauchy–Euler equation (see the explanation after Problem 33 in Exer-
cises 4.3). Using the substitution mentioned there, we find that yGH = C1 + C2 ln t .
Since y = (1/4)t2 is a solution of the nonhomogeneous equation, the general solu-
tion of the differential equation is y = C1 + C2 ln t + (1/4)t2. Note that if we require
y(0) to be finite, we are forced to conclude that C2 = 0.

Formula (5.6.2) suggests that if a second-order equation a(t)y′′+b(t)y′+c(t)y =
f (t) has linear coefficients of the form at + b, where a and b are constants, then
we get a first-order equation for Y = L[y], which may be simpler than the original
equation (sometimes). However, if the differential equation has quadratic coefficients
at2 + bt + c, we get (letting n = 2 in (5.6.2)) a second-order differential equation for
L[y], which hints that the Laplace transform method works well only for special
equations with variable coefficients.

As we have tried to imply, the reality is that linear differential equations with
variable coefficients are best handled by using alternative methods. The technique of
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variation of parameters works on equations whose coefficients are continuous func-
tions (see Example 4.4.5). There are various “tricks”—for example, substitutions that
reduce some second-order equations to first-order equations. Power series methods
are effective, and many famous functions in applied mathematics arise as power series
solutions of differential equations. Although we will not discuss these series methods
further within this textbook, there is a good treatment in Appendix D.

Exercises 5.6
A

1. Consider the first-order linear equation y′ = 1 − xy.
a. Try to find the general solution of this equation by using the Laplace trans-

form. Describe the difficulties you encounter.

b. Solve the equation by using an integrating factor.

2. Let F(s) = L[f (t)]. Prove the formulas L[tf (t)] = − d
ds

F (s) and L[t2f (t)] =
d2

ds2 F(s) as follows.

a. Show that d
ds

e−st = −te−st and d2

ds2 e−st = t2e−st .
b. Using Leibniz’s rule for differentiating under an integral sign (Ap-

pendix A.7), show that dF
ds

= − ∫∞
0 tf (t)e−st dt = −L[tf (t)] and d2F

ds2 =∫∞
0 t2f (t)e−st dt = L[t2f (t)].

3. Use the Laplace transform to solve the IVP y′′ + ty′ − y = 0; y(0) = 0,
y′(0) = 1.

B
4. Consider the equation ty′′ + (1 + t)y′ + y = t2, t ≥ 0.

a. Use the Laplace transform to solve the equation.
b. Explain why your solution contains only one arbitrary constant.

5. Use the Laplace transform to solve the IVP t2y′′ +4ty′ +2y = 12t2; y(0) = 0,
y′(0) = 0.

6. Use the Laplace transform to solve the IVP ty′′ − ty′ + y = 5; y(0) = 5,
y′(0) = 3.

7. Use the Laplace transform to solve the equation ty′′ − 2(t + 1)y′ +
(t + 2)y = 0.

8. Use the Laplace transform to solve the BVP ty ′′ − (t + 3)y′ + 4y = t − 1;
y(0) = y(1) = 0.

C
9. The nth Laguerre polynomial ln(t) is defined by the equation

ln(t) = et

n!
dn

dtn
(tne−t )

for t > 0 and n = 0,1,2,3, . . ..
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a. Calculate l1(t), l2(t), l3(t), l4(t).

b. Using entry 2 of Table 5.1 and formula (5.6.2), determine Ln(s) =
L[ln(t)].

c. Use the Laplace transform to find the general solution of xy′′+(1−x)y ′+
ny = 0, where n is a nonnegative integer.

10. Let ln(t) denote the nth Laguerre polynomial (see Problem 9).
a. Use the answer to part (b) of the previous exercise (looking at the back

of the book if necessary) and the Convolution Theorem to prove that∫ x

0 ln(t) dt = ln(x) − ln+1(x).

b. Prove that
∫ x

0 ln(t)lm(x − t) dt = lm+n(x) − lm+n+1(x).

Summary
Transformation methods are important examples of how we can change difficult
problems into problems that can be handled more easily. If f (t) is a function that
is integrable for t ≥ 0, then the Laplace transform of f is defined by L[f (t)] =∫∞

0 f (t)e−st dt , when this improper integral exists. The integral will exist if we stick
to continuous or piecewise continuous functions f (t) for which there are positive
constants M and K such that |f (t)| < eMt for all t ≥ K . Note that this integral is a
function of the parameter s, so we can write L[f (t)] = F(s).

Using basic properties of integrals, we can see that L[c · f (t)] = c · L[f (t)],
where c is any real constant, and that L[f (t) + g(t)] = L[f (t)]+L[g(t)], whenever
the Laplace transforms of both f and g exist. Any transformation that satisfies the
last two properties is called a linear transformation. If c1 and c2 are constants, we can
combine the two properties to write L[c1f (t) + c2g(t)] = c1L[f (t)] + c2L[g(t)].

Table 5.1 in Section 5.2 gives the Laplace transform of some important classes
of functions, including power functions, exponentials, trigonometric functions, and
multiples of these functions. There are also important formulas for the Laplace trans-
forms of f ′, f ′′, and higher derivatives. The Laplace transform method lets us handle
a linear nonhomogeneous equation with initial conditions all at once.

Once we have calculated the Laplace transform of a function—in particular, once
we have transformed a differential equation into an algebraic equation—we have to
be able to reverse the process to gain information about the original problem. It is
important to remember that if the Laplace transforms of the continuous functions f

and g exist and are equal for s ≥ c (c a constant), then f (t) = g(t) for all t ≥ 0. This
says that a continuous function can be recovered uniquely from its Laplace trans-
form. Letting L[f (t)] = F(s), we can express the definition of the inverse Laplace
transform as

L−1[F ] = f if and only if L[f ] = F.
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It can be shown that the inverse Laplace transform is a linear transformation:

L−1 [c1F(t) + c2G(t)] = c1L−1[F(t)] + c2L−1[G(t)].
In trying to find the inverse transform of an expression that is the product of two
or more transforms, we encounter the idea of the convolution of two functions. The
convolution of two functions f and g is the integral (f ∗ g)(t) = ∫ t

0 f (r)g(t − r) dr ,
provided that the integral exists for t > 0. This product has important algebraic prop-
erties, and one of the most useful is that the Laplace transform of a convolution of
two functions is equal to the product of the Laplace transforms of these two functions.
More precisely, suppose that f and g are two functions whose Laplace transforms ex-
ist. Let F(s) = L[f (t)] and G(s) = L[g(t)]. Then the Convolution Theorem says
that

L[(f ∗ g)(t)] = L
[∫ t

0
f (r)g(t − r) dr

]
= L[f (t)] ·L[g(t)] = F(s) · G(s).

By using the unit step function (or Heaviside function) U , defined by

U(t) =
{

0 for t < 0

1 for t ≥ 0,

we can model systems in which there are abrupt changes. Mathematically, this means
that we can express piecewise continuous functions in a simple way, using U(t) as a
basic building block.

When we are solving differential equations that model abrupt changes the follow-
ing result comes in handy. If L[f (t)] exists for s > c and if a > 0, then

L[f (t − a)U(t − a)] = e−a sL[f (t)] for s > c.

Alternatively, we can write the preceding formula as

f (t − a)U(t − a) = L−1 [e−a sL[f (t)]] .
If we want to consider problems where there is an external force of large magnitude
applied suddenly for a very short period of time, we need the idea of the unit impulse
function, or Dirac delta function, defined as

δ(t) = lim
b→0

δb(t) =
{

∞ for t = 0

0 for t �= 0,

where

δb(t) =
{

1
b

for 0 ≤ t ≤ b

0 for t > b.

We can show that L[δ(t − a)] = e−s a . In particular, L[δ(t)] = 1.



Summary 229

When initial conditions are given, the Laplace transform converts a system of
linear differential equations with constant coefficients to a system of simultaneous
algebraic equations. Then we can solve the algebraic equations for the transformed
solution functions. Finally, applying the inverse transform to these functions gives
us the solutions of the original system of linear ODEs. However neat this sounds
conceptually, the algebraic details are often quite messy, and technology comes in
handy.

Although the Laplace transform can be used in solving linear equations with
variable coefficients, the usefulness of this technique is limited, and solving such
equations by using power series (see Appendix D) is the usual method.



6
CHAPTER

Systems of linear
differential equations

Introduction
In Chapters 1–5, we treated single differential equations for the most part, focusing
on linear equations of first and higher order. In this chapter we start with the important
fact that any differential equation (linear or nonlinear) of order two or higher can be
written as an equivalent system of first-order equations.

In this chapter, we will explore (mainly) autonomous systems of first-order linear
differential equations. The theory of these equations is neat and complete, and an im-
portant component is the Superposition Principle, which we discussed in Chapters 2
and 4 and which we will come to recognize as the distinguishing characteristic of lin-
ear systems. This fundamental principle will help us to determine the general solution
of linear systems in essentially the same way as we solved single second-order linear
equations in Sections 4.1 and 4.2. As we saw in Chapter 5, the Laplace Transform is
a useful tool for solving systems of linear differential equations.

To understand the important ideas underlying the theory and application of linear
systems, we’ll introduce some of the language and concepts from the area of math-
ematics called linear algebra without probing too deeply into the intricacies of this
valuable and useful subject. Also, we will develop qualitative (geometric) aspects of
second- and third-order systems such as the phase plane.

In Chapter 7, we will see how nonlinear systems can be analyzed qualitatively in
terms of certain related linear systems.

6.1 Higher-order equations and their equivalent systems
To see where we’re headed, think back to the first time you had to solve the following
kind of word problem:

Christopher has 21 coins in his pockets, all nickels and dimes. They amount to $1.75. How many
dimes does he have?

The first time you saw this problem, you were probably shown a solution like this
one:

A Modern Introduction to Differential Equations. https://doi.org/10.1016/B978-0-12-818217-8.00013-0
Copyright © 2021 Elsevier Inc. All rights reserved.
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Let x be the number of dimes. Then the total amount corresponding to dimes is
10x cents. The number of nickels must be 21 − x, so the amount corresponding
to nickels is 5(21 − x) cents. Because the total amount of money in Christopher’s
pockets is $1.75, or 175 cents, we have the equation 10x + 5(21 − x) = 175,
equivalent to 5x + 105 = 175, which has the solution x = 14. Thus, Christopher
has 14 dimes (and 21 − 14 = 7 nickels).

A bit later in your algebra course, you might have seen the same problem again, but
this time you were probably shown how to turn this problem into a system problem:

Let x be the number of dimes and let y be the number of nickels. Then the words
of the problem tell us two things, one fact about the number of coins and one fact
about the amount of money: (1) x + y = 21 and (2) 10x + 5y = 175. In other
words, viewed this way, the problem gives us the system of equations

x + y = 21

10x + 5y = 175.

This system can be solved by elimination (multiply the first equation by −5 and
then add the result to the second equation) or by substitution (solve the first equa-
tion for x, for example, and then substitute for x in the second equation).

The most important consequence of looking at our problem as a system problem is
that the system has a very nice geometrical interpretation as a set of two straight lines
(Fig. 6.1). The solution of the system (and of our original problem) is given by the
coordinates of the point where the lines intersect: x = 14, y = 7.

FIGURE 6.1

Graphs of x + y = 21 and 10x + 5y = 175

Similarly, for differential equations, a systems approach has certain advantages,
especially the graphical interpretation of a problem and its solution. Also, certain
problems may naturally occur in system form. For example, we may want to compute
the trajectory of a baseball. In this case, it is natural to consider the components
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u and v of the ball’s velocity in both its horizontal (x) and vertical (y) directions,
respectively. A possible system1 arising from this problem is

mu
du

dx
= −FL sin θ − FD cos θ

mv
dv

dy
= FL cos θ − FD sin θ − mg.

Similarly, in an ecological study, we may want to analyze the interaction of two or
more biological species, each of which needs its own equation to represent its growth
rate and its relationship to the other species.

6.1.1 Conversion technique I: converting a higher-order equation
into a system

Now that our previous discussion has prepared us to see even simple problems as
systems, we can tackle some higher-order differential equations. The key here is the
following important result:

Any single nth-order differential equation can be converted into an equivalent
system of first-order equations. More precisely, any nth-order differential equation
of the form

x(n) = F
(
t, x, x′, x′′, . . . , x(n−1)

)
can be converted into an equivalent system of n first-order equations by letting

x1 = x, x2 = x′, x3 = x′′, . . . , xn = x(n−1).

Here, equivalent means that a function x = u(t) is a solution of x(n) =
F(t, x, x′, . . . , x(n−1)) if and only if the ordered n-tuple of functions(
u(t), u′(t), . . . , u(n−1)(t)

)
is a solution of the system x′

1 = x2, x′
2 = x3, . . . , x′

n =
F (t, x1, x2, . . . , xn). In particular, our substitution scheme indicates that any solu-
tion of the single nth-order equation is the first component of the n-tuple that is the
solution of the system and vice versa.

After looking at some examples of how this conversion technique works, we’ll
introduce the geometric/graphical significance of this method.

Example 6.1.1 Converting a Second-Order Linear Equation
As we will see later in this chapter, a second-order linear equation such as 2 d2x

dt2 + 3 dx
dt

+ x = 0
could represent the motion of a weight attached to a spring, the flow of electricity through a circuit,
or other important phenomena.

1 Robert B. Banks, Towing Icebergs, Falling Dominoes, and Other Adventures in Applied Mathematics
(Princeton, NJ: Princeton University Press, 1998).
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Using the substitutions described previously, we introduce new variables x1 and x2: Let x1 = x

and x2 = dx
dt

. Now isolate the highest derivative (the second) in the original equation, and then
substitute the new variables in the right-hand side:

(1)
d2x

dt2
+ 3

2

dx

dt
+ 1

2
x = 0

(2)
d2x

dt2
= − 3

2

dx

dt
− 1

2
x

(3)
d2x

dt2
= − 3

2
x2 − 1

2
x1

In terms of the new variables, we see that dx1
dt

= dx
dt

= x2 and dx2
dt

= d
dt

(
dx
dt

)
= d2x

dt2 =
[from step (3) above] − 3

2 x2 − 1
2 x1. From this, we see that our original second-order equation leads

to the following system of linear first-order equations in two unknown functions x1 and x2:

(A)
dx1

dt
= x2

(B)
dx2

dt
= − 3

2
x2 − 1

2
x1

This system is equivalent to the original single differential equation in the sense that any solution
x(t) of the original equation yields solutions x1(t) = x(t) and x2(t) = d

dt
x(t) of the system, and

any solution (x1(t), x2(t)) of the system gives us a solution x(t) = x1(t) of the original equation.
Let’s follow up on the first part of that statement. From our work in Chapter 4, we know that

x(t) = e−t/2 +2e−t is a solution of the original second-order equation. Then the pair x1(t) = x(t) =
e−t/2 + 2 e−t and x2(t) = d

dt
x(t) = − 1

2 e−t/2 − 2e−t constitutes a solution of the system. (Verify
this.)

Let’s look at a few more examples of this technique of converting a higher-order
equation into a system of first-order equations.

Example 6.1.2 Converting a Second-Order Nonlinear Equation
Suppose we have the second-order nonlinear equation y′′ = y3 + (y′)3. Let x1 = y and x2 = y′.
Then x′

1 = y′ = x2, y′′ = x′
2, y3 = x3

1 , and (y′)3 = x3
2 , so we can rewrite y′′ = y3 + (y′)3 as x′

2
= x3

1 + x3
2 .

Finally, putting these pieces together, we can write the original equation as the following equiv-
alent nonlinear system in x1 and x2:

x′
1 = x2

x′
2 = x3

1 + x3
2 .

Example 6.1.3 Converting a Third-Order Equation
The nonautonomous third-order linear equation

d3x

dt3
− d2x

dt2
+ 2t

dx

dt
− 3x + 6 = 0
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can be changed into a system of first-order equations as follows: Let x1 = x, x2 = dx
dt

, and x3 = d2x

dt2 .

Then dx1
dt

= dx
dt

= x2, dx2
dt

= d
dt

(
dx
dt

)
= d2x

dt2 = x3, and dx3
dt

= d
dt

(
d2x

dt2

)
= d3x

dt3 .

Solving the original equation for d3x

dt3 and then substituting the new variables x1, x2, and x3, we
have

d3x

dt3
= d2x

dt2
− 2t

dx

dt
+ 3x − 6 = x3 − 2tx2 + 3x1 − 6.

Putting all the information together, we see that the original third-order equation is equivalent to the
system of three first-order equations

dx1

dt
= x2

dx2

dt
= x3

dx3

dt
= x3 − 2tx2 + 3x1 − 6.

To be mathematically precise, we can describe this system as a three-dimensional nonautonomous
linear system with independent variable t and dependent variables x1, x2, and x3.

As we’ll see later in this chapter, an autonomous system has a nice graphical inter-
pretation that yields a neat qualitative analysis. We lose some of this power when we
are dealing with a nonautonomous system. But even when we are confronted with a
nonautonomous equation, a simple variation of the conversion technique we’ve been
illustrating will allow us to transform the equation into an autonomous system. To
convert a single nonautonomous nth-order equation into an equivalent autonomous
system (one whose equations do not explicitly contain the independent variable t), we
need n+1 first-order equations: x1 = x, x2 = x′, x3 = x′′, . . . , xn = x(n−1), xn+1 = t .
We’ll see this in the next example.

Example 6.1.4 Converting a Nonautonomous Equation into an Auto-
nomous System
The nonautonomous second-order linear equation 2 d2x

dt2 + 3 dx
dt

+ x = 50 sin t could be handled in
the same way as the equation in Example 6.1.3, but instead we’ll demonstrate the extension of the
conversion technique.

Start by letting x1 = x and x2 = dx
dt

as before, but also introduce x3 = t . Then

dx1

dt
= dx

dt
= x2,

dx2

dt
= d2x

dt2
= 1

2

(
−3

dx

dt
− x + 50 sin t

)
= 1

2
(−3x2 − x1 + 50 sinx3) ,

dx3

dt
= 1,

so the equivalent system is

dx1

dt
= x2
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dx2

dt
= 1

2
(−x1 − 3x2 + 50 sinx3)

dx3

dt
= 1.

Our second-order nonautonomous equation has been replaced by an equivalent autonomous three-
dimensional system. If we had not used the third variable x3 and had written our equation as a system
of two equations, the second equation would have been nonautonomous. We would have had

dx1

dt
= x2 and

dx2

dt
= 1

2
(−x1 − 3x2 + 50 sin t)

as the system, with the explicit presence of t in the second equation making this equation (and
therefore the system) nonautonomous.

Of course, we should be able to convert an initial-value problem (IVP) into a
system IVP as well. If we think about this, we would expect that the original initial
conditions would have to expand to cover each first-order equation in the system. The
next example shows how this works.

Example 6.1.5 Converting a Second-Order Initial-Value Problem
The nonautonomous second-order linear IVP y′′ − xy′ − x2y = 0; y(0) = 1, y′(0) = 2 can be trans-
formed into a system IVP as follows. Let u1 = y and u2 = y′. (We’re using a different letter for the
new variables to avoid confusion with the original independent variable x.) We see that u′

1 = y′ = u2

and u′
2 = y′′ = xy′ + x2y = xu2 + x2u1. Then, because u1 = y, y(0) = 1 implies that u1(0) = 1,

and y′(0) = 2 implies that u2(0) = 2 because u2 = y′. Therefore, the original IVP becomes the
system IVP

u′
1 = u2

u′
2 = xu2 + x2u1; u1(0) = 1, u2(0) = 2.

Note that because each equation in the system is first-order, we need only one initial condition for
each new variable. What would the equivalent autonomous system look like?

6.1.2 Conversion technique II: converting a system into a
higher-order equation

We showed in Examples 6.1.1–6.1.5 how higher-order equations can always be trans-
formed into equivalent first-order systems. The next example illustrates how a partic-
ular linear system can be represented by a single higher-order equation. However, it
is not true that every system of first-order equations is equivalent to a single higher-
order differential equation.2

2 See, e.g., Section 6.4 of Differential Equations: A Dynamical Systems Approach: Higher-Dimensional
Systems by J.H. Hubbard and B.H. West (New York: Springer-Verlag, 1995).
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Example 6.1.6 Converting a System into a Single Equation
Can we convert the system

(1) y′ = z

(2) z′ = w

(3) w′ = x − 3y − 6z − 3w,

where y, z, and w are functions of x, into an equivalent single higher-order equation?
Of course we can. Just look back at what we did in our earlier examples, but start with the

last equation and work backward. Differentiating Eq. (2) gives us z′′ = w′, but Eq. (1) says that
z′′ = (y′)′′ = y′′′, so that w′ = y′′′. Now we use this last result to rewrite Eq. (3) as

y′′′ = x − 3y − 6z − 3w

= x − 3y − 6y′ − 3z′ [from (1) and (2)]
= x − 3y − 6y′ − 3y′′ [from (1)]

or y′′′ + 3y′′ + 6y′ + 3y = x, a third-order linear nonautonomous differential equation.

Exercises 6.1
A
Write each of the higher-order ordinary differential equations (ODEs) or systems of
ODEs in Problems 1–11 as a system of first-order equations. If initial conditions are
given, rewrite them in terms of the first-order system.

1. d2x

dt2 − x = 1

2.
(
x′′)2 − (sin t)x′ = x cos t

3. x2y′′ − 3xy′ + 4y = 5 lnx

4. ẋ + (ẋ)2 + x(x − 1) = 0

5. x′′′ − tx′′ + x′ − 5x + t2 = 0

6. y(4) + y = 0

7. w(4) − 2w′′′ + 5w′′ + 3w′ − 8w = 6 sin(4t)

8. ÿ + y = t ; y(0) = 1, y′(0) = 0

9. x′′ + 3x′ + 2x = 1; x(0) = 1, x′(0) = 0

10. d2x

dt2 = −x, d2y

dt2 = y (Write each second-order equation as two first-order equa-
tions.)

11. x
d2y

dt2 − y = 4t , 2 d2x

dt2 +
(

dy
dt

)2 = x (Convert each second-order equation into

two first-order equations.)

Write each of the systems of equations in Problems 12–16 as a single second-
order equation, rewriting any initial conditions as necessary.
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12. dy
dt

= x, dx
dt

= −y; y(0) = 0, x(0) = 1

13. du
dx

= 2v − 1, dv
dx

= 1 + 2u

14. x′ = x + y, y′ = x − y

15. dx
dt

= 7y − 4x − 13, dy
dt

= 2x − 5y + 11; x(0) = 2, y(0) = 3

16. x ′ = y + sinx, y′ = cos(x + y)

B
17. The equation d2x

dt2 + 4 dx
dt

+ 4x = 0 describes the position x(t) of a particular
mass attached to a spring and set in motion by pulling it down 2 ft below its
equilibrium position (x = 0) and giving it an initial velocity of 2 ft/s in the
upward direction. Some air resistance is assumed. Express this equation as a
system of first-order equations and describe what each equation of the system
represents.

18. In electrical circuit theory, the current I is the derivative of the charge Q. By
making this natural substitution Q′ = I in the equation

LQ′′ + R Q′ + 1

C
Q = E(t),

transform the equation into an equivalent system of two first-order equations.

19. An object placed in water, pushed down a certain distance below the water,
and then released has its bobbing motion described by the equation

d2y

dt2
+
(

g

s0

)
y = 0,

where y is the vertical displacement from its equilibrium position, g is the
acceleration due to gravity, and s0 is the initial depth. Express this equation as
a system of first-order equations.

20. The second-order nonlinear equation d2x

d t2 + g
L

sin x = 0 describes the swing-
ing of a pendulum, where x is the angle the pendulum makes with the vertical,
g is the acceleration due to gravity, and L is the length of the pendulum. Con-
vert this equation into a nonlinear system of first-order equations.

21. The equation y′′′ + y′ − cos y = 0 describes a geometrical model of crystal
growth. Express this third-order equation as a system of three first-order equa-
tions.

22. The equation y(4) + λ(yy′′′ − y′y′′) − y′ = 0, where λ is a positive parame-
ter, arises in a nonlinear “boundary layer” problem in physical oceanography.
Write this equation as a system of four first-order equations.

23. Rewrite the system IVP given in Example 6.1.5 as an equivalent autonomous
system.

24. Consider the equation y′′ + y = 0.
a. Convert this equation into a system with variables u and v.
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b. Use the result of part (a) and the Chain Rule to conclude that u2 + v2 is a
constant.

C
25. Write the following system of equations as a single fourth-order equation, with

appropriate initial conditions:

d2x

dt2
+ 2

dy

dt
+ 8x = 32t

d2y

dt2
+ 3

dx

dt
− 2y = 60e−t ; x(0) = 6, x′(0) = 8, y(0) = −24, and y′(0) = 0.

26. Suppose you are given the linear system of first-order equations

t
dx

dt
= −3x + 4y

t
dy

dt
= −2x + 3y.

Introduce a new independent variable w by the substitution w = ln t (or t =
ew) and show that this substitution allows you to write the system as a new
system with constant coefficients.

27. Consider the system

x′ = f (x, y)

y′ = g(x, y),

where x and y are functions of t . Assume you can use the first equation to ex-
press y explicitly as a function of x and x ′, say y = F(x, x′) for some function
F(u, v) of two variables.
a. Find an expression for y′ = dy/dt by differentiating the equation y =

F(x, x′) via the Chain Rule for functions of two variables (see Sec-
tion A.7).

b. Substitute the expression for y′ found in part (a) into the second equa-
tion of the original system and set the right-hand side equal to g(x, y) =
g(x,F (x, x′)). Observe how the results of parts (a) and (b) yield a second-
order equation solely in terms of x and x′.

*6.2 Existence and uniqueness3

Now that we’ve learned how to convert higher-order equations to equivalent systems
of first-order equations and we’ve seen some qualitative analyses of these systems,

3 ∗ Denotes an optional section.
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it’s time to ask the important questions we first considered in Section 2.8 in the con-
text of first-order equations: How do we know that a given higher-order equation or
equivalent system has a solution—and do we know that any such solution is unique?

We don’t want to waste human and computer resources searching for a solution
that may not exist or that may merely be one of many solutions. For now we’ll focus
on second-order equations and their corresponding systems.

The first example shows that when there is one solution of a system, there may be
many.

Example 6.2.1 A System IVP with Many Solutions
Let’s look at the IVP

t2x′′ − 2tx′ + 2x = 0, with x(0) = 0 and x′(0) = 0.

This is equivalent to the system IVP

x′
1 = x2

x′
2 = 2

t
x2 − 2

t2
x1, with x1(0) = 0 = x2(0).

Then x(t) ≡ 0 and any function of the form x(t) = Kt2 (where K is any constant) are solutions
of the original IVP. (Verify this.) With respect to the equivalent system of equations, x1(t) ≡ 0,
x2(t) ≡ 0, is a solution, and any pair of functions x1(t) = Kt2, x2(t) = 2Kt is a solution. What we
are saying here is that our IVP has infinitely many solutions.

In contrast to the IVP in the preceding example, we can have a system of differ-
ential equations with no solution.

Example 6.2.2 A System IVP with No Solution
Let’s look at the IVP

x′
1 = 1

x2
1

, x′
2 = 2x1 − x2, with x1(0) = 0 and x2(0) = 1.

When we examine these equations carefully, we see that if x1(t) is part of a solution pair for this
IVP, then x′

1 doesn’t exist for t = 0 because x′
1(0) = 1[

x1(0)
]2 and x1(0) = 0. This says that there is

no solution to this IVP.

What we want in most real-life situations is one and only one solution to an IVP.
The next example shows such a case.

Example 6.2.3 A System IVP with a Unique Solution
The IVP

{
dx
dt

= y,
dy
dt

= x; x(0) = 1, y(0) = 0
}

has the unique solution x(t) = 1
2

(
et + e−t

)
,

y(t) = 1
2

(
et − e−t

)
. You may recognize x and y as the hyperbolic cosine (cosh) and hyperbolic

sine (sinh), respectively.
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This system is equivalent to the single equation ẍ −x = 0, or ẍ = x, with x(0) = 1 and ẋ(0) = 0,
and it isn’t too difficult to guess what kind of function is equal to its own second derivative. Prob-
lem 1 in Exercises 6.2 will ask you to explore this further.

6.2.1 An Existence and Uniqueness Theorem
At this point we have seen that the possibilities for second-order IVPs are similar to
those we saw in Section 2.8 for first-order IVPs. We can have no solution, infinitely
many solutions, or exactly one solution. Once again we would like to determine when
there is one and only one solution of an IVP.

The simplest Existence and Uniqueness Theorem for second-order differential
equations or two-dimensional systems of first-order equations is one that is a natural
extension of the result we saw in Section 2.8. We’ll state two forms of this.

Existence and Uniqueness Theorem I

Suppose we have a second-order IVP
d2y

dt2
= f (t, y, ẏ), with y(t0) = y0 and ẏ(t0) = ẏ0. If f,

∂f

∂y
,

and
∂f

∂ẏ
are continuous in a closed box B in three-dimensional space (t-y-ẏ space) and the point

(t0, y0, ẏ0) lies inside B, then the IVP has a unique solution y(t) on some t-interval I containing t0.

Equivalently,

Existence and Uniqueness Theorem II
Suppose we have a two-dimensional system of first-order equations

dx1

dt
= f (t, x1, x2)

dx2

dt
= g(t, x1, x2),

where x1(t0) = x0
1 and x2(t0) = x0

2 . If f,g,
∂f
∂x1

,
∂g
∂x1

,
∂f
∂x2

, and ∂g
∂x2

are all continuous in a box B in

t-x1 − x2 space containing the point
(
t0, x0

1 , x0
2

)
, then there is an interval I containing t0 in which

there is a unique solution x1 = y1(t), x2 = y2(t) of the IVP.

6.2.2 Many solutions
We can write the equation in Example 6.2.1 in the form x′′ = f (t, x, x′) = 2tx′−2x

t2 ,
so we see that f does not exist in any box in which t = 0. Therefore, we should not
expect exactly one solution, and, in fact, although there is a solution to the IVP with
initial conditions x(0) = 0 and ẋ(0) = 0, any such solution is not unique.
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6.2.3 No solution
In Example 6.2.2, we can use the system form of our Existence and Uniqueness
Theorem to see that the function f (t, x1, x2) = 1/x2

1 does not exist at the point(
t, x0

1 , x0
2

) = (0,0,1), so once again we are not guaranteed exactly one solution—
and, in fact, there is no solution of the IVP.

6.2.4 Exactly one solution
Finally, if we examine the IVP in Example 6.2.3 from either the single-equation or
the system point of view, we should see that in this situation we are guaranteed the
existence of one and only one solution of the IVP. (Check this.)

The nice thing about these questions is that in most common applied problems,
the functions and their derivatives are well behaved (continuous, etc.), so that we do
have both existence and uniqueness.

Exercises 6.2
A

1. In Example 6.2.3, you saw an IVP for a system of equations that was equivalent
to the single equation IVP x′′ − x = 0, or x′′ = x, with x(0) = 1 and x′(0) = 0.
Using the technique of Section 4.1, show that x(t) = 1

2

(
et + e−t

)
is the solution

of the IVP x′′ − x = 0 with x(0) = 1 and x′(0) = 0.

2. Verify that each of the following IVPs has a solution that is guaranteed unique
everywhere in three-dimensional space.
a. x′

1 = x2, x′
2 = 3x1 − 5x2; x1(0) = 1, x2(0) = 0

b. x′
1 = x2

1 , x′
2 = sinx1 − x2

2 ; x1(0) = 0, x2(0) = 0

c. x′
1 = x3

2 , x′
2 = tx1 − x2; x1(0) = 0, x2(0) = 1

3. For each of the following equations, determine intervals in which solutions are
guaranteed to exist.
a. y(iv) + 4y′′′ + 3y = t

b. ty′′′ + (sin t)y′′ + 3y = cos t

c. t (t − 1)y(iv) + ety′′ + 4t2y = 0

d. y′′′ + ty′′ + t2y′ + t3y = ln t

4. Show that the IVP

ẋ = f (t, x, y) = e−0.002t − 0.08x − xy2

ẏ = g(t, x, y) = 0.08x − y + xy2; x(0) = 0, y(0) = 0

has a unique solution for all values of t, x, and y.
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B
5. Show that the IVP{

yx′ = y − 4t, (x − 3)y′ = −4x + sin t; x(0) = 3, y(0) = 0
}

has no solution. Does this contradict the existence part of the result given in this
section? Explain.

6. a. Show that
{
x1(t) = e−t sin(3t), y1(t) = e−t cos(3t)

}
and{

x2(t) = e−(t−1) sin(3(t − 1)), y2(t) = e−(t−1) cos(3(t − 1))
}

are solutions of the system

dx

dt
= −x + 3y

dy

dt
= −3x − y.

b. Use technology to draw the graphs of each of the solutions in part (a) in
the x-y phase plane.

c. Explain why the solutions in part (a) don’t contradict the uniqueness part
of the result in this section.

C
7. Consider the equation

5x2y(5) − (6 sinx)y′′′ + 2xy′′ + πx3y′ + (3x − 5)y = 0.

Suppose that Y(x) is a solution of this equation such that Y(1) = 0, Y ′(1) = 0,
Y ′′(1) = 0, Y ′′′(1) = 0, Y (4)(1) = 0, and Y (5)(1) = 0. Why must Y(x) be equal
to 0 for all values of x?

8. Use technology to plot some trajectories of the nonautonomous system

dx

dt
= (1 − t)x − ty

dy

dt
= tx + (1 − t)y.

Your graph should show some intersecting curves. Does the graph contradict
the Existence and Uniqueness Theorem? Explain.

9. Consider the system

ẋ = y

ẏ = −x + (1 − x2 − y2)y.
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a. Let D denote the region in the phase plane defined by x2 + y2 < 4. Verify
that the given system satisfies the hypotheses of the Existence and Unique-
ness Theorem throughout D.

b. By substitution, show that x(t) = sin t , y(t) = cos t is a solution of the
system.

c. Now consider a different solution, in this case starting from the initial con-
ditions x(0) = 1/2, y(0) = 0. Without doing any calculations, explain why
this solution must satisfy x(t)2 + y(t)2 < 1 for all real values of t .

6.3 Numerical solutions of systems
Most numerical methods for computing solutions of differential equations are de-
signed for systems of first-order equations, and they can be applied to second- and
higher-order single differential equations by finding equivalent systems of first-order
equations. Any of the numerical approximation methods introduced for first-order
equations in Sections 3.1, 3.2, and 3.3 can be extended to systems of first-order equa-
tions in a natural way. In fact, calculators that can handle higher-order equations
either graphically or numerically require the user to input the equation as a system.

In this section we’ll work mainly with two-dimensional linear systems, leaving
the obvious generalizations to the last subsection. Even though it is important to
be able to solve simple numerical problems by hand, most systems of differential
equations are solved using numerical methods implemented on computers. These
techniques work for both linear and nonlinear systems.

6.3.1 Euler’s method applied to systems
Let’s start by recalling Euler’s method for solving the first-order IVP y′ = f (x, y),
y′(x0) = y0. This algorithm was originally given as formula (3.1.3):

yk+1 = yk + h · f (xk, yk).

Here, h is the step size and yk denotes the approximate value of the solution at the
point xk = x0 + kh.

Now suppose we have a system of two first-order differential equations

dx

dt
= f (t, x, y)

dy

dt
= g(t, x, y),

with x(t0) = x0 and y(t0) = y0. If we let tk = t0 + kh, xk ≈ x(tk), and yk ≈ y(tk), we
can apply Euler’s algorithm to each equation separately to get the result

xk+1 = xk + h · f (tk, xk, yk)
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yk+1 = yk + h · f (tk, xk, yk). (6.3.1)

Let’s see how this method works on a system we’ve already seen.

Example 6.3.1 Euler’s Method for a System—by Hand
As a simple illustration of Euler’s method applied to a system, let’s approximate the solution of the
IVP of Example 6.2.3 at t = 0.5. The system, which we know has a unique solution, is

dx

dt
= y,

dy

dt
= x; x(0) = 1, y(0) = 0.

Equations
When we use a step size h = 0.1 the algorithm given by Eq. (6.3.1) looks like

xk+1 = xk + (0.1)yk

yk+1 = yk + (0.1)xk,

where x0 = x(0) = 1 and y0 = y(0) = 0.

Calculation
We approximate the solution at t = 0.5 by taking five steps:

x1 = x0 + (0.1)y0 = 1 + (0.1)(0) = 1

y1 = y0 + (0.1)x0 = 0 + (0.1)(1) = 0.1

x2 = x1 + (0.1)y1 = 1 + (0.1)(0.1) = 1.01

y2 = y1 + (0.1)x1 = 0.1 + (0.1)(1) = 0.2

x3 = x2 + (0.1)y2 = 1.01 + (0.1)(0.2) = 1.03

y3 = y2 + (0.1)x2 = 0.2 + (0.1)(1.01) = 0.301

x4 = x3 + (0.1)y3 = 1.03 + (0.1)(0.301) = 1.0601

y4 = y3 + (0.1)x3 = 0.301 + (0.1)(1.03) = 0.404

x5 = x4 + (0.1)y4 = 1.0601 + (0.1)(0.404) = 1.1005

y5 = y4 + (0.1)x4 = 0.404 + (0.1)(1.0601) = 0.51001

Result
These calculations indicate that x(0.5) ≈ 1.1005 and y(0.5) ≈ 0.5100. But to four decimal

places, the exact solution is x(0.5) = cosh(0.5) =
(

1
2

)
(exp(0.5) + exp(−0.5)) = 1.1276 and

y(0.5) = sinh(0.5) =
(

1
2

)
(exp(0.5) − exp(−0.5)) = 0.5211. Thus, the absolute error is 0.0271 for

x and 0.0111 for y.
If we cut our step size in half, letting h = 0.05 and using technology, we need 10 steps and

find that our approximations are x(0.5) ≈ 1.1138 and y(0.5) ≈ 0.5151, to four decimal places. Now
the error—0.0130 for x and 0.006 for y—is roughly half of what these errors were when h = 0.1.
Having computer resources at our command, it’s hard to resist another run, this time with h = 0.01.
Taking 50 steps, we have x(0.5) ≈ 1.1248 and y(0.5) ≈ 0.5198, with errors 0.0028 and 0.0013 for
x and y, respectively. You should experiment with a few other values of h on your own computer
algebra system (CAS) or graphing calculator.
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Problem 1 in Exercises 6.3 asks you to write the system form of the improved
Euler method (Heun’s method).

6.3.2 The fourth-order Runge–Kutta method for systems
As an additional example, let’s look at the system form of the Runge–Kutta algorithm
introduced in Section 3.3. (As we mentioned in that discussion, it was Kutta who
generalized the basic method to systems of ODEs in 1901.)

We start with the same general first-order system we considered before:

dx

dt
= f (t, x, y)

dy

dt
= g(t, x, y),

with x(t0) = x0 and y(t0) = y0. Again, we let tk = t0 +kh, xk ≈ x(tk), and yk ≈ y(tk).
Then the system version of the classic Runge–Kutta formula (3.3.2) is

xk+1 = xk + 1

6
(m1 + 2m2 + 2m3 + m4)

yk+1 = yk + 1

6
(M1 + 2M2 + 2M3 + M4),

where

m1 = hf (tk, xk, yk)

m2 = hf

(
tk + h

2
, xk + m1

2
, yk + M1

2

)

m3 = hf

(
tk + h,xk + m2

2
, yk + M2

2

)
m4 = hf (tk + h,xk + m3, yk + M3) = hf (tk+1, xk + m3, yk + M3),

and

M1 = hg(tk, xk, yk)

M2 = hg

(
tk + h

2
, xk + m1

2
, yk + M1

2

)

M3 = hg

(
tk + h

2
, xk + m2

2
, yk + M2

2

)
M4 = hg(tk + h,xk + m3, yk + M3) = hg(tk+1, xk + m3, yk + M3).

Now let’s put this algorithm to use—with the aid of technology, of course.
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Example 6.3.2 Using Runge–Kutta (RK4) and a CAS
Let’s look again at the IVP analyzed in Example 6.2.3. The system IVP is dx

dt
= y, dy

dt
= x; x(0) = 1,

y(0) = 0, and we want to approximate x(0.5) and y(0.5). Rather than wearing ourselves out trying
to implement the fourth-order Runge–Kutta (RK4) method by hand, we can enter the equations and
initial conditions into our CAS, specify the method (in whatever way you must describe the RK4
method), and choose a step size h = 0.1.

What we get is an approximation for x(0.5) of 1.1276 and an approximation for y(0.5) of
0.5211, both rounded to four decimal places. To four decimal places the absolute error for each
approximation is 0.

Our final example shows how the Runge–Kutta–Fehlberg fourth- and fifth-order
(rkf45) algorithm works on an interesting nonlinear system application.

Example 6.3.3 Using Runge–Kutta–Fehlberg (rkf45) and a CAS
The Japanese-born British mathematician E.C. Zeeman (1925–2016) developed a simple nonlinear
model of the human heartbeat:

ε
dx

dt
= −(x3 − Ax + c)

dc

dt
= x,

where x(t) is the displacement from equilibrium of the heart’s muscle fiber, c = c(t) is the concen-
tration of a chemical control at time t , and ε and A are positive constants. Because the levels of c

determine the contraction and expansion (relaxation) of the muscle fibers, we can think of c as a
stimulus and x as a response.

FIGURE 6.2

Slope field and trajectory for the system IVP
{

dx
dt

= −(x3 − 3x + c), dc
dt

= x; x(0) = 1.7,

c(0) = 0.3
}
, 0 ≤ t ≤ 30
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We want to investigate the nature of the model’s solution, and for convenience we’ll assume that
ε ≈ 1.0 and A ≈ 3. In addition we let x(0) ≈ 1.7 and c(0) ≈ 0.3. (The initial conditions were de-
termined after experimenting with various values on a CAS.) The calculations producing the graphs
and the values discussed next were carried out using the rkf45 method for the system. Be aware that
we have jumped the gun here, anticipating geometrical aspects that will be discussed fully in Sec-
tion 6.4. For now, just realize that we have eliminated the variable t by dividing the second equation

by the first: dc
dx

= dc
dt

· dt
dx

=
dc
dt
dx
dt

= x/
(
−(x3 − 3x + c)

)
. The slope field in Fig. 6.2 is that of the

first-order equation for dc/dx.
Because one important feature of a heartbeat is that it is periodic (lub-dub, lub-dub, . . . ), the

solution should reveal this in the x-c phase plane—and in fact it does (Fig. 6.2). The systole, corre-
sponding to a fully relaxed heart muscle, and the diastole, indicating a state of full contraction, are
labeled on Fig. 6.2.

We see that the heart muscle starts at (1.7,0.3) and, under the influence of increasing c, contracts
until it is fully contracted at D. Then the muscle begins to relax until it attains systole at S, returns
to the initial point, and (we hope) begins the cycle again. Superimposing the trajectory on the slope
field makes it easy to see the direction of the trajectory, but the numerical values in Table 6.1 also
tell the story.

Table 6.1 Solution Values of{
dx
dt

= −(x3 − 3x + c), dc
dt

= x;
x(0) = 1.7, c(0) = 0.3

}
t x(t) c(t)

0 1.7000 0.3000
2 0.7499 2.9990
4 −1.8417 0.4728
6 −1.1132 −2.5911
8 1.9436 −1.2862
10 1.3384 2.0618

If we examine the signs of x and c as t increases, we see that the points (x, c) are moving
counterclockwise through the quadrants of the x-c plane. Looking carefully at the data in the table,
we can see that the trajectory returns to its initial point (1.7,0.3) at some time between 8 and 10. In
fact, a more detailed analysis reveals that the solution of our IVP has period approximately equal to
8.88. (See Problem 12 in Exercises 6.3.)

Solving the system with rkf45 and then plotting x against t (Fig. 6.3a), we see the periodic
nature of the heart muscle’s expansions and contractions. Fig. 6.3b shows how the electrochemical
activity represented by the variable c also varies periodically.

We will investigate interesting nonlinear systems again in Chapter 7.

Just as for a single first-order equation, we can use spreadsheet commands to
carry out the calculations needed to approximate the solutions of systems. System
versions of the standard numerical techniques may be a bit more difficult to program,
may require more intermediate storage, and may take a little more time, but they
work well. Graphing calculators also handle systems of differential equations. In fact,
as we remarked in the Introduction of this chapter, they usually deal with a single
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FIGURE 6.3a

Graph of x(t) vs. t for the system IVP
{

dx
dt

= −(x3 − 3x + c), dc
dt

= x;x(0) = 1.7, c(0) = 0.3
}
,

0 ≤ t ≤ 30, −2.5 ≤ x ≤ 2.5

FIGURE 6.3b

Graph of c(t) vs. t for the system IVP{
dx
dt

= − (x3 − 3x + c
)
, dc

dt
= x;x(0) = 1.7, c(0) = 0.3

}
, 0 ≤ t ≤ 30, −4 ≤ c ≤ 4

higher-order equation by requiring the user to write it in terms of a system and then
solving the system numerically.

Whatever technology you use, try to understand what methods have been im-
plemented by reading your documentation or checking out your software’s “Help”
features.

Exercises 6.3
All problems are to be done using technology, unless otherwise indicated.

A
1. a. Extend the improved Euler method given by formula (3.2.1) to a system

of two first-order equations.

b. By hand, re-do Example 6.3.1 using h = 0.1 to find approximations to
x(0.5) and y(0.5).

c. Calculate the absolute error in part (b).

d. Use technology and the improved Euler method with h = 0.1 to check
your answers to part (b).
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2. Consider the system x′ = x − 4y, y′ = −x + y, with x(0) = 1 and y(0) = 0.
The exact solution is x(t) = (

e−t + e3t
)
, y(t) = (

e−t − e3t
)
.

a. Verify that the exact solution of the IVP is the solution given above.

b. Approximate the value of the solution at the point t = 0.2 using Euler’s
method with h = 0.1. Compare your result with the values of the exact
solution, calculating the absolute error.

c. Approximate the value of the solution at the point t = 0.2 using a RK4
method with h = 0.2. Calculate the absolute error.

3. Consider the IVP y′′ + y′ − 2y = 2x, with y(0) = 1 and y′(0) = 1.
a. Convert this problem into a system of two first-order equations. (Choose

your new variables carefully.)

b. Determine approximate values of the solution at x = 0.5 and x = 1.0 us-
ing Euler’s method with h = 0.1.

c. Determine approximate values of the solution at x = 0.5 and x = 1.0 us-
ing the RK4 method with h = 0.1.

4. Using the method in Section 4.1, we can determine that the solution to the IVP

d2x

dt2
+ 1

4

dx

dt
+ 2x = 0, with x(0) = 1, ẋ(0) = 0

is x(t) = 1
127e

(
− 1

8 t
) (

127 cos
(

1
8

√
127t

)
+ √

127 sin
(

1
8

√
127t

))
.

a. Convert this IVP into a system of first-order equations.

b. Determine the approximate value of the solution at t = 0.6 using the
rkf45 method, if available. Otherwise, use the highest-order Runge–Kutta
method available to you, with h = 0.01. Compare your values with the
exact solution above.

B
5. A particle moves in three-dimensional space according to the equations

dx

dt
= yz,

dy

dt
= zx,

dz

dt
= xy.

a. Assuming that x(0) = 0, y(0) = 5, and z(0) = 0, use the Runge–Kutta–
Fehlberg method, if available, to approximate the solution at t = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 5.0, and 37. (Otherwise use the highest-
order Runge–Kutta method available to you, with h = 0.01.) Describe
what these values seem to be telling you about the motion of the particle.

b. Now assume that x(0) = y(0) = 1 and z(0) = 0. Approximate the solution
at t = 0.1,0.2,0.3,1.5,1.6,1.7,1.8, and 1.9 using the same procedure
you used in part (a). What seems to be happening?



6.3 Numerical solutions of systems 251

6. Consider the system

dx

dt
= 7y − 4x − 13

dy

dt
= 2x − 5y + 11.

a. Suppose that x(0) = 1 and y(0) = 1. Use technology and the rkf45
method (or a reasonable substitute) to estimate x and y for t = 1,2,3,4,5,

10,15, and 20.

b. On the basis of the values found in part (a), guess at limt→∞ x(t) and
limt→∞ y(t).

7. The nonlinear Lotka–Volterra system

ẋ = 3x − 2xy

ẏ = 0.5xy − y

has solutions (x(t), y(t)) that are periodic because a given trajectory al-
ways returns to its initial point in some finite time t∗: x(t + t∗) = x(t) and
y(t + t∗) = y(t). Using technology and the rkf45 method, estimate the small-
est value of t∗ to two decimal places if x(0) = 3 and y(0) = 2. (Try different
values of t 
= 0 until you get x(t) ≈ 3 and y(t) ≈ 2.0.)

8. The equations

ẋ = y

ẏ = −0.25y − 2x; x(0) = 1, y(0) = 0

represent a certain spring-mass system with damping. As usual, assume that
the positive direction for x(t) and y(t) is downward and time is measured in
seconds.
a. Using technology, approximate x(t) and y(t) for t = 1,2,3,4 and inter-

pret the position and velocity in each case.

b. Estimate (to the nearest hundredth of a second) the time when the mass
first reaches its equilibrium position, x = 0.

9. Emden’s equation d2y

dx2 + 2
x

dy
dx

+yn = 0, where n is a parameter, has been used

to model the thermal behavior of a spherical cloud of gas.4 When the cloud of
gas is a star, the first zero of the solution, multiplied by 1010 cm, represents
the radius of the star. In modeling the bright component of Capella (a star
in the constellation Auriga), the astrophysicist A.S. Eddington took n = 3 in
Emden’s equation and used the initial conditions y(0) = 1, y′(0) = 0.

4 See H.T. Davis, Introduction to Nonlinear Differential Equations and Integral Equations (New York:
Dover, 1962): 371ff.
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a. Express Eddington’s version of Emden’s equation as an equivalent system
of two first-order equations in the variables u and v.

b. Approximate the radius of Capella by determining (approximating) the
first value of x for which y(x) = 0.

10. The Fitzhugh–Nagumo model arises in the study of the impulses in a nerve
fiber:

V̇ = W

Ẇ =
(

1

3
V 3 − V

)
+ R − uW

Ṙ = ε

u
(bR − V − a).

Assume that V (0) = 1, W(0) = 0.5, and R(0) = 1. Approximate the maxi-
mum and minimum values, if they exist, of V,W , and R if ε = 0.08, a = 0.7,
b = 0.8, and u = 0.6.

C
11. A famous model for the spread of a disease is the S-I-R model. At a given

time t , S represents the population of susceptibles, those who have never had
the disease and can get it; I stands for the infected, those who have the disease
now and can give it to others; and R denotes the recovered, those who have
already had the disease and are immune. Suppose these populations are related
by the system

dS

dt
= (−0.00001)SI

dI

dt
= (0.00001)SI − I

14
dR

dt
= I

14
,

with S(0) = 45,400, I (0) = 2100, R(0) = 2500.
a. Add the three differential equations and interpret the result in terms of a

population.

b. Use your CAS to plot S, I , and R as functions of t on separate graphs.
[Warning: Some mathematical software (such as Maple) may reserve the
letter I for the imaginary unit

√−1. If this is your situation, use IN to
denote the infected population.]

c. Use your CAS to plot phase portraits in the S-I , S-R, and I -R planes.

d. Use a powerful numerical method (with h = 0.1 if appropriate) to ap-
proximate the values of S, I , and R at t = 1,2,3,10,15,16, and 17 days.
What do you see?
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e. Approximate the value of t at which I = 0.

12. Use the rkf45 method to show why the period of the trajectory in Fig. 6.2 is
approximately 8.88. (Use the method suggested in Problem 7.)

13. Investigate the Zeeman heartbeat model in Example 6.3.3 with ε = 0.025, A =
0.1575, and (x0, c0) = (0.45,−0.02025).
a. Use the rkf45 method to approximate x(t) and c(t) for t = 0.01,0.02, . . . ,

0.10 seconds. What do your calculations tell you about the direction of the
solution curve in the x-c plane?

b. Draw the trajectory corresponding to the initial conditions given above.

c. Approximate the period of the trajectory found in part (b).

d. Estimate the coordinates of the diastole and the systole.

14. A lunar lander is falling freely toward the surface of the moon. If x(t) repre-
sents the distance of the lander from the center of the moon (in meters, with t

in seconds), then x(t) satisfies the IVP

d2x

dt2
= 4 − 4.9044 × 1012

x2
,

with x(0) = 1,781,870 and x′(0) = −450. (The value x(0) represents the fact
that the retro rockets are fired at t = 0—when the lander is at a height of 41,870
meters from the moon’s surface, or 1,781,870 meters from the moon’s center.)
a. Determine the value of t when x(t) = 1,740,000—that is, when the craft

has landed on the lunar surface.

b. What is the lunar lander’s velocity at touchdown?

6.4 The geometry of autonomous systems
The purpose of this section is to introduce some of the basic geometric tools used to
analyze the qualitative behavior of systems of first-order equations. Because many
systems—especially nonlinear systems—cannot be solved in closed form, the ability
to analyze systems geometrically (i.e., graphically) is very important. The first thing
we have to realize is that the very useful graphical tool of slope fields can’t be ap-
plied directly to higher-order equations; this technique depends on a knowledge of
the first derivative alone. However, as we’ll see shortly, there’s a clever way of using
our knowledge of first-order qualitative methods in the analysis of higher-order dif-
ferential equations. We already had a quick peek at this technique in our analysis of
Example 6.3.3.

For convenience, we’ll spend most of our time analyzing autonomous two-
dimensional systems (planar systems), although we will also tackle some nonau-
tonomous systems and some three-dimensional systems toward the end of this sec-
tion.
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6.4.1 Phase portraits for systems of equations
Suppose we have an autonomous system of the form

dx

dt
= f (x, y)

dy

dt
= g(x, y). (6.4.1)

It is customary to assume that f and g are continuous for all values of x and y

and have continuous partial derivatives with respect to x and y. These are realistic
assumptions for most applications.

For example, let’s take the system

dx

dt
= y

dy

dt
= −17x − 2y

and work with it throughout our initial discussions.
First, we can eliminate the variable t by dividing the second equation by the first

equation:

dy

dx
= dy

dt
· dt

dx
=

dy
dt
dx
dt

= g(x, y)

f (x, y)
. (6.4.2)

(See Section A.2 for a reminder of the Chain Rule used in this process.) For our
example g(x, y) = −17x − 2y and f (x, y) = y in (6.4.2), and we get

dy

dx
= −17x − 2y

y
.

Now we have a single first-order differential equation dy
dx

= g(x,y)
f (x,y)

in the variables y

and x, and we can construct and analyze the slope field corresponding to this first-
order equation (6.4.2). (Go back to Fig. 6.2 to see one such slope field.) Fig. 6.4a
shows the slope field for our current example.

If we could solve Eq. (6.4.2) for y in terms of x, or even implicitly, we would
have a solution curve in the x-y plane. The plane of the variables x and y (with x-
and y-axes) is called the phase plane of the original system of differential equations
with t as a parameter. As we saw in Section 1.3, a solution of the system (6.4.1)
consists of a pair of functions x = x(t), y = y(t). We can think of a solution curve
defined parametrically as a set of points (x(t), y(t)) as t varies. Each solution curve in
the phase plane is called a trajectory (or orbit) of the system of equations. Although
the independent variable t is not present explicitly, the passage of time is represented
by the direction that a point (x(t), y(t)) takes on a particular trajectory. The way
the curve is followed as the values of t increase is called the positive direction on
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the trajectory. The collection of plots of the trajectories is called the system’s phase
portrait or phase-plane diagram. The concepts of phase plane and phase portrait
are natural extensions of the qualitative concepts discussed in Section 2.5.

Usually much less than the complete phase portrait is required (or of interest)
for applications. By choosing good representative initial conditions, points through
which we want the trajectories to pass, we can draw a fairly useful picture of the
system’s solutions.

Even if we can’t solve the system, we can still look at the slope field of the single
Eq. (6.4.2), the outline of the phase portrait of the system.

Let’s do this for the system we’ve been discussing.

Example 6.4.1 Phase Portrait—One Trajectory
Our system is

dx

dt
= y

dy

dt
= −17x − 2y,

which gives us the first-order equation dy
dx

= −17x−2y
y when we eliminate the variable t . Using a

calculator or CAS to draw a piece of the slope field for this first-order equation can result in an
incorrect plot (see Problem 13 in Exercises 6.4). Your technological device may have a problem at
points (x, y) with y = 0. If you draw the slope field by hand, be sure to place vertical tangent line
segments along the x-axis (where y = 0), corresponding to an undefined (or infinite) slope when
y = 0. It is better to use technology that takes the pair of equations given previously as input.

FIGURE 6.4a

Slope field for dy
dx

= −17x−2y
y

, 0 ≤ t ≤ 5; −1 ≤ x ≤ 1, −4 ≤ y ≤ 4
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Fig. 6.4a shows the slope field, and Fig. 6.4b shows a single trajectory satisfying the initial
condition x(0) = 4, y(0) = 0—that is, a trajectory passing through the point (4,0) in the x-y (phase)
plane—superimposed on the slope field.

FIGURE 6.4b

Trajectory for
{

dx
dt

= y,
dy
dt

= −17x − 2y; x(0) = 4, y(0) = 0
}
, 0 ≤ t ≤ 5; −2 ≤ x ≤ 4,

−12 ≤ y ≤ 7

Because the trajectory starts at (4,0), we can see that the positive direction on the trajectory is
clockwise, and the curve seems to spiral into the origin. (Try using technology to draw the trajectory
for 0 ≤ t ≤ b, letting b get larger and larger.) To get an accurate phase portrait, you may want to use
the slope field to suggest good initial points to use. Each dynamical system has its own appropriate
range for t .

Now let’s look at a more elaborate phase portrait, one showing several trajectories.

Example 6.4.2 Phase Portrait—Several Trajectories
The system consists of the two equations (1) dx

dt
= x + y and (2) dy

dt
= −x + y. Whatever quantities

these equations describe, certain details should be obvious from the nature of the equations. First of
all, from Eq. (1), the growth of quantity x depends on itself and on the other quantity y in a positive
way. On the other hand, Eq. (2) indicates that quantity y depends on itself positively, but its growth
is hampered by the presence of quantity x—a larger value of x leads to a slowdown in the growth
of y.

Let’s look at the phase portrait corresponding to this problem. For our system, Eq. (6.4.2) looks
like

dy

dx
=

dy
dt
dx
dt

= −x + y

x + y
.
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This first-order equation is neither separable nor linear, but it is homogeneous (see the explanation for
Problems 15–18 of Exercises 2.1) and can be solved implicitly. Fig. 6.5a shows several trajectories,

obtained by specifying nine initial points (x(0), y(0)), superimposed on the slope field for dy
dx

=
−x+y
x+y . Because points on a trajectory are calculated by numerical methods, your CAS may allow

you (or require you) to specify a step size and the actual numerical approximation method to be
used. Numerical methods for systems of differential equations were discussed in Section 6.3.

Each point on a particular curve in Fig. 6.5a represents a state of the system. For each value of t ,
the point (x(t), y(t)) on the curve provides a snapshot of this dynamical system. If the variables x

and y are supposed to represent animal or human populations, for example, then the proper place to
view the trajectories is the first quadrant. Fig. 6.5b describes the first quadrant of the phase plane for
our problem, with four trajectories determined by four initial points.

FIGURE 6.5a

Trajectories for
{

dx
dt

= x + y,
dy
dt

= −x + y
}
; (x(0), y(0)) = (−1,−1), (−1,0), (−1,1),

(0,−1), (0,0), (0,1), (1,−1), (1,0), and (1,1), 0 ≤ t ≤ 4

Using technology again in our preceding example, we can graph x(t) and y(t) in the t-x and
t-y planes, respectively. Figs. 6.6a and 6.6b show solution curves with x(0) = 50 and y(0) = 140,
respectively.

These graphs show clearly that the quantity y reaches a maximum of about 164 when t ≈ 0.4
and that the x quantity hits a peak of about 800 when t ≈ 2. Note that the horizontal and vertical
scales are different for Figs. 6.6a and 6.6b.

Viewed another way, the system in the preceding example had three variables: the
independent variable t and the dependent variables x and y. To be precise about all
this, we state that a solution of our system is a pair of functions x = x(t), y = y(t),
and the graphical representation of such a solution is a curve in three-dimensional
t-x-y space—a set of points of the form (t, x(t), y(t)). Fig. 6.7 shows what the solu-
tion with initial point (0,50,140) looks like for our problem.
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FIGURE 6.5b

Trajectories for
{

dx
dt

= x + y,
dy
dt

= −x + y
}
; (x(0), y(0)) = (0,60), (25,100), (50,140), and

(0,160), 0 ≤ t ≤ 1.2

FIGURE 6.6a

x(t); x(0) = 50, 0 ≤ t ≤ 2.355

FIGURE 6.6b

y(t); y(0) = 140, 0 ≤ t ≤ 1
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FIGURE 6.7

Solution of
{

dx
dt

= x + y,
dy
dt

= −x + y;x(0) = 50, y(0) = 140
}
, 0 ≤ t ≤ 1

Your CAS may allow you to manipulate the axes and get different views of this
space curve. Fig. 6.6a represents the projection of several such space curves onto the
x-y plane, a much less confusing way of viewing the behavior of the system. These
projections can be thought of as the shadows that would be cast by the space curves
if a very bright light were shining on them from the front (the x-y face) of Fig. 6.7.

Note that because the system we started with in the preceding example is au-
tonomous, the solution curves are independent of the starting time. This means that if
you pick a starting point (x*, y*) at time t*, then the path of a population starting at
this point is the same as the path of a population starting at the same point at any other
time t**. Geometrically, this says that there is only one path (or trajectory) through
each point of the x-y plane. This is a consequence of an Existence and Uniqueness
Theorem for systems that we saw in Section 6.2. (Look back at Section 2.8 for the
theorem that applies to first-order ODEs.)

These trajectories tell us that for the initial points chosen, the quantity y increases
to a maximum value and then decreases to zero, while the quantity x also increases
until it reaches its maximum level after quantity y has disappeared.

6.4.2 Equilibrium points
From the slope field and phase portrait in Fig. 6.5a, it seems clear that all trajectories
(solution curves of the single differential equation) are escaping from the origin as
t increases. The variable t is behind the scenes in a phase portrait, but you should
experiment with different ranges of t in your CAS or graphing calculator to verify
the preceding statement.

Recall that in Section 2.6, we found that equilibrium (or constant) solutions were
important in the qualitative study of single first-order equations. We will see that the
same is true for autonomous systems of equations. A point (x0, y0) is an equilibrium
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point (or critical point) of the autonomous system (6.4.1)—linear or nonlinear—if
f (x0, y0) = 0 and g(x0, y0) = 0. This is equivalent to saying that x = x0, y = y0
is a solution of (6.4.1). For example, it can be easily verified that the origin (0, 0)

is an equilibrium point for the system in Example 6.4.2. Both physically and math-
ematically, we should be interested primarily in the behavior of trajectories near
equilibrium points. A good deal of information about solutions of an autonomous
system can be found without actually solving the system.

The algebra of finding equilibrium points (or equilibrium solutions) is trickier
now because we must solve a system of algebraic equations. For example, if we want
to find the equilibrium solutions of the nonlinear system of differential equations
{ẋ = x − y, ẏ = 1 − xy}, we must solve the algebraic system

(1) x − y = 0

(2) 1 − xy = 0.

We can solve Eq. (1) for y, finding that y = x, and then substitute for y in the
second equation. We get 1 − x2 = 0, which implies that x = ±1. Because y = x, the
only equilibrium points are (−1,−1) and (1,1).

Before we move on, let’s look at the system
{
ẋ = 4 − 4x2 − y2, ẏ = 3xy

}
. Any

equilibrium solution has to satisfy the equations

(A) 4 − 4x2 − y2 = 0

(B) 3xy = 0.

Eq. (B) tells us that we have two possibilities: (i) x = 0 or (ii) y = 0. [We can
eliminate x = y = 0 because (A) wouldn’t be satisfied with this choice.] If x = 0,
substituting in (A) gives us 4 − y2 = 0, so y = ±2. Then we have two equilibrium
solutions, (0,2) and (0,−2). Alternatively, if y = 0, substituting in (A) yields 4 −
4x2 = 0, so x = ±1. Now we have the remaining two equilibrium solutions, (1,0)

and (−1,0).
The next example presents a simple system model of an arms race. Models

of this general form were proposed by the English scientist Lewis F. Richardson
(1881–1953) in the 1930s. As a Quaker, he was greatly interested in the causes and
avoidance of war. We’ll see how a qualitative analysis helps us to understand the
situation being modeled.

Example 6.4.3 An Arms Race Model
Let’s look at a nonhomogeneous autonomous linear system:

dx

dt
= 7y − 4x − 13

dy

dt
= 2x − 5y + 11.

The functions x(t) and y(t) could represent the readiness for war of two nations, X and Y,
respectively. This readiness might be measured, for example, in terms of the level of expenditures
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for weapons for each country at time t . To get the first equation, this model assumes that the rate
of increase of x is a linear function of both x and y. In particular, if y increases, then so does the
rate at which x increases. (Clear?) But the cost of building up and maintaining a supply of weapons
also puts the brakes on too much expansion. The term −4x in the first equation suggests a sense
of restraint proportional to the arms level of nation X. Finally, the constant term −13 can represent
some basic, constant relationship of nation X to nation Y—probably some underlying feelings of
good will that diminish the threat and therefore decrease dependence on weaponry. The second
equation can be interpreted in a similar way, but here the positive constant 11 probably signifies a
grievance by Y against X that results in an accumulation of arms. Now what does this model tell us
about the situation? We don’t know how to solve such a system yet, but we can still learn a lot about
the arms race between the two nations.

As in Example 6.4.1, we can start constructing the phase portrait of the system by eliminating
the variable t :

dy

dx
=

dy
dt
dx
dt

= 2x − 5y + 11

7y − 4x − 13
.

Now we can look at the slope field and some trajectories corresponding to this single equation
(Fig. 6.8). Several initial points were chosen. (Try a smaller set of initial points yourself.) For this to
be a realistic model of an arms race, the values of x and y should be positive, and thus our focus is
on the first quadrant.

FIGURE 6.8

Trajectories for
{

dx
dt

= 7y − 4x − 13,
dy
dt

= 2x − 5y + 11
}
. Initial points (i, j), i = 0,1,2,3;

j = 1,2,3,4, 0 ≤ t ≤ 5

First of all, note that one solution of the system is the pair of functions x(t) ≡ 2, y(t) ≡ 3. In this
phase portrait, if we look hard enough, we notice that the points (x(t), y(t)) on every trajectory seem
to be moving toward the point (2,3) as t increases. (To verify this last statement, you should plot the
phase portrait for 0 ≤ t ≤ b and let b increase.) The point (2,3) is an equilibrium point—as we saw
previously, a point (x, y) at which both dx/dt and dy/dt equal 0. The behavior of trajectories near
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this point entitles it to be called a sink. In real-life terms, this means that the arms race represented
by this system would stabilize as time passes, approaching a state in which the level of military
expenditures for nation X would be 2 and the level for nation Y would be 3, where the units could
be millions or billions.

6.4.3 Three-dimensional systems
We have been focusing on second-order equations and their equivalent systems, but
the techniques we have discussed apply to any differential equation of order greater
than 1. The main difficulty with equations of order three and higher is that we lose
some aspects of the graphical interpretation of the solution. Let’s look at the next
example, which presents us with a three-dimensional system.

Example 6.4.4 A System of Three First-Order Equations
We want to examine the behavior of the three-dimensional system

ẋ = −0.1x − y

ẏ = x − 0.1y

ż = −0.2z.

A Three-Dimensional Trajectory
The complete picture of this linear system is given by the set of points (t, x(t), y(t), z(t)),

a four-dimensional situation. Assuming that x, y, and z are functions of the parameter t and that we
have the initial condition x(0) = 5, y(0) = 5, and z(0) = 10, we get the three-dimensional trajectory
shown in Fig. 6.9. This is a projection of the four-dimensional picture onto three-dimensional space,
just as the two-dimensional phase portraits we saw previously are projections of three-dimensional
curves onto two-dimensional planes.

FIGURE 6.9

An x-y-z plane trajectory for the system
{
ẋ = −0.1x − y, ẏ = x − 0.1y, ż = −0.2z; x(0) = 5,

y(0) = 5, z(0) = 10
}
, 0 ≤ t ≤ 15

By plotting this with your CAS and rotating the axes (if possible), you should be able to see that
the solution spirals into the origin in the x-y plane, while it moves toward the origin in the variable
z as well.
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A Two-Dimensional Trajectory
Now we can project the three-dimensional spiral (in x-y-z space) onto the x-y plane (Fig. 6.10).

FIGURE 6.10

An x-y plane trajectory for the system
{
ẋ = −0.1x − y, ẏ = x − 0.1y, ż = −0.2z; x(0) = 5,

y(0) = 5, z(0) = 10
}
, 0 ≤ t ≤ 15

If we increase the range of t , we get a tighter spiral and we see that the origin is a sink for this
system.

Exercises 6.4
A

Assume that each function in Problems 1–8 is a function of time, t . For each
of these IVPs, (a) convert to a system, (b) use technology to find the graph of the
solution in the phase plane, and (c) show a graph of the two components of the
solution relative to the t-axis.

1. x′′ + x′ = 0; x(0) = 1, x′(0) = 2

2. r̈ − r = 0; r(0) = 0, ṙ(0) = 1

3. ÿ + y = 0; y(0) = 2, ẏ(0) = 0

4. y ′′ = −4; y(0) = y′(0) = 0

5. ẍ − ẋ = 0; x(0) = 1, ẋ(0) = 1

6. x ′′ − 2x′ + x = 0; x(0) = −1, x′(0) = −1

7. x′′ = x − x3; x(0) = 0, x′(0) = 1

8. x′′ + 0.5x′ + 2x = 0; x(0) = 0, x′(0) = 1

B
9. Read the explanation before Problem 15 of Exercises 2.1 and solve the equa-

tion

dy

dx
= −x + y

x + y

that arises in Example 6.4.2.
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10. Consider the following equations:

dx

dt
= 0.2x − 0.002xy

dy

dt
= −0.1y + 0.001xy.

a. Find the first-order differential equation that defines the trajectories of
this system in the phase plane.

b. Solve this separable equation to find the implicit algebraic equation of the
trajectories.

11. The equation Q̈ + 9Q̇ + 14Q = 1
2 sin t models an electric circuit with resis-

tance of 180 ohm, capacitance of 1/280 farad, inductance of 20 henry, and an
applied voltage given by E(t) = 10 sin t . Q = Q(t) denotes the capacitance,
the charge on the capacitor at time t , and Q̇(t) denotes the current in the cir-
cuit. Assume Q(0) = 0 and Q̇(0) = 0.1.
a. Express this IVP as a system of two first-order equations using the appro-

priate initial conditions.

b. Use technology to graph the solution of the system in the phase plane,
with 0 ≤ t ≤ 8.

c. Use technology to graph the solution of the original second-order equa-
tion relative to the t-axis, considering first the interval 0 ≤ t ≤ 2 and then
0 ≤ t ≤ 8.

d. Describe the behavior of the capacitance as t → ∞.

12. Find all equilibrium solutions of each of the following systems.
a. ẋ = x − 3y, ẏ = 3x + y

b. x′ = 2x + 4y, y′ = 3x + 6y

c. ṙ = −2rs + 1, ṡ = 2rs − 3s

d. x′ = cosy, y′ = sinx − 1

e. ẋ = x − y2, ẏ = x2 − y

f. r ′ = 1 − s, s′ = r3 + s

13. Find all the equilibrium points of the system

x′ = x2y3

y′ = −x3y2

and sketch the phase portrait for this system.

14. Consider a population of two species of trout that compete for the same food
supply. The system describing the populations for the species x and y is

ẋ = x(−2x − y + 180)
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ẏ = y(−x − 2y + 120).

a. Find all equilibrium points of the system.

b. Sketch the phase portrait for this system.

C
15. Convert the equation x′′ + x′ − x + x3 = 0 to a system and find all equilibrium

points.

16. The equation d2θ

dt2 + k2 sin θ = 0 describes the motion of an undamped pendu-
lum, where θ is the angle the pendulum makes with the vertical. Convert this
equation to a system and describe all its equilibrium points.

17. Consider the differential equation x′′ + λ − ex = 0, where λ is a parameter.
a. Sketch the phase-plane diagram for λ > 0.

b. Sketch the phase-plane diagram for λ < 0.

c. Describe the significance of the value λ = 0.

6.5 Systems and matrices
6.5.1 Matrices and vectors
Suppose we look at the homogeneous linear system

x′ = ax + by

y′ = cx + dy, (6.5.1)

where x and y are functions of t , and a, b, c, and d are constants.
There is a useful notation for linear systems that was invented by the English

mathematician Arthur Cayley and named by his fellow countryman James Sylvester
around 1850. This notation allows us to pick out the coefficients a, b, c, and d in

system (6.5.1) and write them in a square array A =
[
a b

c d

]
called a matrix—in

this case, the matrix of coefficients of the linear system. (The plural of matrix is
matrices.) In general, a matrix is just a rectangular array of mathematical objects
(numbers or functions in this book) and can describe linear systems of all sizes. The
size of a matrix is given in terms of the number of its rows and columns. For example,

A =
[
a b

c d

]
is described as a 2 × 2 matrix because it has two rows, (a b) and (c d),

and two columns,

[
a

c

]
and

[
b

d

]
. The matrix B =

⎡
⎣−4 0 1 5

2 6 7 −π

0
√

5 3 5/9

⎤
⎦ is a 3 × 4

matrix because it has three rows and four columns.
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If A =
[
a b

c d

]
and B =

[
e f

g h

]
, then we say the matrices are equal and write

A = B if a = e, b = f , c = g, and d = h. We say that the “corresponding elements
must be equal.”

In describing the linear system (6.5.1), we can also introduce a column matrix or

vector X =
[
x

y

]
. (This is a 2 × 1 matrix.) If x(t) and y(t) are solutions of the system

(6.5.1), we call X =
[
x

y

]
a solution vector of the system. We can view X as a point

in the x-y plane, or phase plane, whose coordinates are written vertically instead of
in the usual horizontal ordered-pair configuration. If a vector is made up of constants,
then the direction of the vector is taken as the direction of an arrow from the origin to

the point (x, y) in the x-y plane. (See Section B.1 for more information.) If V =
[
x1
y1

]
and W =

[
x2
y2

]
, we say that V = W if and only if x1 = x2 and y1 = y2.

If a vector (or, more generally, a matrix) is made up of objects (elements or en-
tries) that are functions, we can define the derivative of such a vector as the vector
whose elements are the derivatives of the original elements, provided that all these

individual derivatives exist. For example, if X(t) =
[

−t2

sin t

]
, then

d

dt
X(t) =

[
d
dt

(−t2)

d
dt

(sin t)

]
=
[ −2t

cos t)

]
.

In particular, if X(t) =
[
x(t)

y(t)

]
represents the solution vector of the planar sys-

tem (6.5.1), then X′(t) =
[
x′(t)
y′(t)

]
is the velocity vector of the point (x(t), y(t)) as

it moves along a trajectory. We note that velocity vectors have both magnitude and
direction, whereas the line segments that make up a slope field only have slope. An-
other way of saying this is that the system (6.5.1) involves time, but the single ODE
dy/dx = (cx + dy)/(ax + by), which gives us a slope field, is the result of eliminat-
ing t from the original pair of equations.

6.5.2 The matrix representation of a linear system
We can write the system

ẋ = ax + by

ẏ = cx + dy
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compactly and symbolically as

[
ẋ

ẏ

]
=
[
a b

c d

][
x

y

]
,

or Ẋ = AX, where X =
[
x

y

]
and A =

[
a b

c d

]
. The juxtaposition (“product”)[

a b

c d

][
x

y

]
represents the vector

[
ax + by

cx + dy

]
. For example,

[
3 −2
1 4

][
x

y

]
=[

3x − 2y

x + 4y

]
. There is a way to define and interpret this product of a matrix and a

vector in the context of linear algebra (see Section B.3 for details), but we will take
this product as a symbolic representation of the system, highlighting the matrix
of coefficients and the solution vector. Soon we will see how a linear system’s
solutions—its behavior in the phase plane—are determined by the matrix of coeffi-
cients. For now, let’s look at some examples of the use of matrix notation.

Example 6.5.1 Matrix Form of a Two-Dimensional Linear System
We can write the linear system of ODEs

ẋ = −3x + 5y

ẏ = x − 4y

in matrix terms as

[
ẋ

ẏ

]
=
[−3 5

1 −4

][
x

y

]
.

The next example demonstrates how we have to be careful in extracting the correct
matrix of coefficients from a linear system problem.

Example 6.5.2 Matrix Form of a Two-Dimensional Linear System
The linear system dx

dt
= y, dy

dt
= −x should be written as

dx

dt
= 0 · x + 1 · y

dy

dt
= −1 · x + 0 · y

first. Then it is clear that the matrix representation of the system is

d

dt

[
x

y

]
=
⎡
⎣ dx

dt

dy
dt

⎤
⎦=

[
0 1

−1 0

][
x

y

]
.
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6.5.3 Some matrix algebra
Before we continue, we should discuss some properties of matrix algebra that we’ll
be using in the rest of this chapter. For example, if we’re given the system

x′ = −4x + 6y = 2(−2x + 3y)

y′ = 2x − 8y = 2(x − 4y)

it is natural to write

[
x′
y′
]

=
[−4 6

2 −8

]
= 2

[−2 3
1 −4

]
, or X′ = 2AX, where

A =
[−2 3

1 −4

]
. More generally, if A =

[
a b

c d

]
and k is a constant (called a scalar

to distinguish it from a vector or a matrix), then kA = k

[
a b

c d

]
=
[
ka kb

kc kd

]
. In par-

ticular, for vectors, we have k

[
u

v

]
=
[
ku

kv

]
. Put simply, multiplying a matrix (vector)

by a number requires multiplying each element of that matrix (vector) by the number.

For example, if A =
[

2 −3
5 0

]
and k = −2, then

kA = −2A =
[−2(2) −2(−3)

−2(5) −2(0)

]
=
[ −4 6
−10 0

]
.

Two matrices, A and B, of the same size (that is, having the same number of rows
and the same number of columns) can be added element by element. For example, if

A =
[−2 3

4 −1

]
and B =

[
1 2
3 4

]
, then

A + B =
[−2 + 1 3 + 2

4 + 3 (−1) + 4

]
=
[−1 5

7 3

]
,

A − B = A + (−1)B =
[−2 3

4 −1

]
+
[−1 −2
−3 −4

]
=
[−3 1

1 −5

]
.

Similarly, if V =
[
x1
y1

]
and W =

[
x2
y2

]
, then V + W =

[
x1 + x2
y1 + y2

]
. The vector defined

as 0 =
[

0
0

]
, which is called the zero vector, behaves in the world of vectors the way

the number 0 acts in arithmetic: V + 0 = V = 0 + V for any vector V . We can define

the zero matrix, Z =
[

0 0
0 0

]
, having the same property for matrix addition. Note

that X =
[
x

y

]
is an equilibrium point for the system

[
ẋ

ẏ

]
=
[
a b

c d

][
x

y

]
if and only
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if

[
a b

c d

][
x

y

]
= 0—that is, if and only if X is a solution of the matrix equation

AX = 0.
A particularly useful idea for our future work is a linear combination of vectors.

Given two vectors V =
[
x1
y1

]
and W =

[
x2
y2

]
, any vector of the form k1V + k2W ,

where k1 and k2 are scalars, is called a linear combination of V and W . In
terms of our given vectors, a linear combination of V and W is any vector of the

form k1V + k2W =
[
k1x1

k1y1

]
+
[
k2x2

k2y2

]
=
[
k1x1 + k2x2

k1y1 + k2y2

]
. As an example, for the

specific vectors V =
[

sin t

2

]
and W =

[
cos t

et

]
, a linear combination has the form[

k1 sin t + k2 cos t

2k1 + k2e
t

]
.

It is important to know that the associative and distributive rules of algebra hold
for matrix addition and the product of a matrix and a vector. For example, if A and B

are matrices; V and W are vectors; and k, k1, and k2 are scalars, then

A(kV ) = k(AV ),

A(V + W) = AV + AW,

and

A(k1V + k2W) = A(k1V ) + A(k2W) = k1(AV ) + k2(AW).

These results are discussed further in Section B.3.

Finally, note that the matrix

[
1 0
0 1

]
acts as an identity for multiplication:[

1 0
0 1

][
x

y

]
=
[
x

y

]
for any vector

[
x

y

]
. In the context of two-dimensional systems,

the matrix

[
1 0
0 1

]
is called the identity matrix and is denoted by I .

Shortly we will see how matrix notation gives us insight into the nature of a
system’s solutions. To understand the solutions more fully, we will introduce some
additional concepts from linear algebra.

Exercises 6.5
A

1. Express each of the following systems of linear equations in matrix terms—
that is, in the form AX = B, where A, X, and B are matrices.
a. 3x + 4y = −7

−x − 2y = 5
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b. πa − 3b = 4
5a + 2b = −3

c. x − y + z = 7
−x + 2y − 3z = 9
2x − 3y + 5z = 11

[Think about what would make sense in (c).]

2. If A =
[

1 2
3 4

]
, B =

[
0 −2
3 1

]
, I =

[
1 0
0 1

]
, V =

[
2

−1

]
, and W =

[
3
2

]
, cal-

culate each of the following:
a. 2A − 3B

b. AV

c. BW

d. −2V + 5W

e. A(3V − 2W)

f. (A − 5I )W

3. If A =
[

1 2
3 4

]
and V =

[
x

y

]
, solve the equation AV =

[
1
3

]
for V (i.e., find

values for x and y).

4. Find the derivative of each of the following vectors:

a. X(t) =
[
t3 − 2t2 + t

et sin t

]

b. V (x) =
[

2 cosx

−3e−2x

]

c. B(u) =
[

e−u + eu

2 cosu − 5 sinu

]

d. Y(t) =
[
(t2 + 1)e−t

t sin t

]

Convert each system of differential equations in Problems 5–10 to the matrix form
Ẋ = AX.

5. ẋ = 2x + y

ẏ = 3x + 4y

6. ẋ = x − y

ẏ = y − 4x

7. ẋ = 2x + y

ẏ = 4y − x

8. ẋ = x

ẏ = y
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9. ẋ = −2x + y

ẏ = −2y

10. ẋ − 8y + x = 0
ẏ − y − x = 0

B
11. Using the technique shown in Section 6.1, write each of the following second-

order equations as a system of first-order equations and then express the sys-
tem in matrix form.
a. y′′ − 3y′ + 2y = 0

b. 5y′′ + 3y′ − y = 0

c. y′′ + ω2y = 0, where ω is a constant.

12. Show that the origin is the only equilibrium point of the system

ẋ = ax + by

ẏ = cx + dy,

where a, b, c, and d are constants, with ad − bc 
= 0.

C

13. If A(t) =
(

a11(t) a12(t)

a21(t) a22(t)

)
and B(t) =

(
b11(t)

b21(t)

)
are a matrix and a vector

having entries that are differentiable functions of t , show that

d

dt
[A(t)B(t)] = dA(t)

dt
B(t) + A(t)

dB(t)

dt
.

6.6 Two-dimensional systems of first-order linear equations
6.6.1 Eigenvalues and eigenvectors
To begin to understand linear systems of ODEs, including their qualitative behavior
and their closed-form solutions, we will focus on linear two-dimensional systems of
the form

ẋ = ax + by

ẏ = cx + dy, (6.6.1)

where x and y both depend on the variable t , and a, b, c, and d are constants. Our
analysis of such simple (but important) systems will prepare us to understand the
treatment of higher-order linear systems in Section 6.12.
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First, let’s write the system (6.6.1) in matrix form:[
ẋ

ẏ

]
=
[
a b

c d

][
x

y

]
,

or

d

dt

[
x

y

]
=
[
a b

c d

][
x

y

]
,

or

Ẋ = AX, (6.6.2)

where X =
[
x

y

]
and A =

[
a b

c d

]
. Ignoring the fact that the capital letters represent

matrices, what does the form of Eq. (6.6.2) remind you of? Have you seen a differen-
tial equation of this form before? If we use lowercase letters and write the equation
as ẋ = ax, we get a familiar separable equation representing exponential growth or
decay. (See Section 2.1, especially Example 2.1.2.) This observation suggests that the
solution of system (6.6.1) or the matrix equation (6.6.2) may have something to do
with exponentials.

Let’s make a shrewd guess and then examine the consequences of our guess. In
particular, let us assume that x(t) = c1e

λt and y(t) = c2e
λt for constants λ, c1, and c2.

(Stating that λ, the coefficient of t , is the same for both x and y is a simplifying

assumption.) Substituting

[
c1e

λt

c2e
λt

]
for X in (6.6.2), we get

[
c1λeλt

c2λeλt

]
=
[
a b

c d

][
c1e

λt

c2e
λt

]
=
[
a b

c d

]
eλt

[
c1
c2

]
,

or

λeλt

[
c1
c2

]
=
[
a b

c d

]
eλt

[
c1
c2

]
,

or (dividing out the exponential factor and switching the right and left sides)

AX̃ = λX̃, (6.6.3)

where X̃ =
[
c1
c2

]
. Note that our reasonable guess about x and y has allowed us

to replace our original differential equation problem with a pure algebra problem.
Eq. (6.6.3) is in matrix terms and has nothing (apparently) to do with differential
equations. Given a 2 × 2 matrix A and a 2 × 1 column matrix X̃, we can try to solve
(6.6.3) for the value or values of λ, each called a characteristic value or eigenvalue
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of the matrix A. Eigenvalues will play an important role in solving linear systems and
in understanding the qualitative behavior of solutions.

Furthermore, if we have solved Eq. (6.6.3) for its eigenvalues λ, then for each
value of λ we can solve (6.6.3) for the corresponding vector or vectors X̃. Each such
nonzero vector X̃ is called an eigenvector (or characteristic vector) of the system.
We see that if both entries of X̃ are zero, then X̃ satisfies (6.6.3) for any value of λ,
but this is the trivial case. In all the discussion that follows, we will assume that c1
and c2 are not both zero—that is, at least one of the two constants is not zero.

Before getting involved in symbolism, terminology, and the general problem of
solving the matrix equation AX̃ = λX̃, let’s look at a specific example in detail.

Example 6.6.1 Solving a Linear System with Eigenvalues and Eigen-
vectors
Suppose we have the system

ẋ = −2x + y

ẏ = −4x + 3y, (*)

which we can write as Ẋ =
[
ẋ

ẏ

]
=
[−2 1
−4 3

][
x

y

]
. We want to find the general solution of this

system.

Substitution
Assuming, say, that c1 
= 0, we substitute x = c1eλt and y = c2eλt into (*) and get λc1eλt =

−2c1eλt + c2eλt = eλt (−2c1 + c2) and λc2eλt = −4c1eλt + 3c2eλt = eλt (−4c1 + 3c2). If we
simplify each equation by dividing out the exponential term and moving all terms to the left-hand
side, we get

(A) (λ + 2)c1 − c2 = 0

(B) 4c1 + (λ − 3)c2 = 0. (**)

Now we want to solve (**) for λ.

Solving for λ

If we multiply Eq. (A) by (λ− 3) and then add the resulting equation to (B), we get (λ− 3)(λ+
2)c1 + 4c1 = 0, or (λ2 − λ − 2)c1 = 0. Because we have assumed that c1 is not zero, we must have
λ2 − λ − 2 = 0. This means that the eigenvalues of A are λ = 2 and λ = −1. (Go through all the
algebra carefully.) Note that we didn’t have to know c1 to find λ. We just had to know that c1 was
not zero. It is important that we could have assumed that c2 was not zero and come to the same
conclusion. (Check this.)

Solving the System of ODEs

If we take the eigenvalue λ = 2, we have x(t) = c1e2t and y(t) = c2e2t , so that X1 =
[
x

y

]
=[

c1e2t

c2e2t

]
= e2t

[
c1
c2

]
. But when λ = 2, the equations in (**) both represent the single equation 4c1 −

c2 = 0, so that we have the relation c2 = 4c1. Then we can write X1 = e2t

[
c1
c2

]
= e2t

[
c1

4c1

]
=
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c1

[
1
4

]
e2t , which is a one-parameter family of solutions of the system (*). What we mean is that

the pair of functions x(t) = c1e2t and y(t) = 4c1e2t is a nontrivial solution of our system for any
nonzero constant c1.

Similarly, if we take the eigenvalue λ = −1, then the system (**) reduces to the single equation

c1 − c2 = 0 and we can define X2 = e−t

[
c1
c2

]
= e−t

[
c1
c2

]
= c1

[
1
1

]
e−t , which is also a one-

parameter family of solutions of the system. In other words, the pair of functions x(t) = c1e−t

and y(t) = c1e−t is also a nontrivial solution of our system for any nonzero constant c1.
It is easy to see that the Superposition Principle we have been using since Chapter 2 allows us

to conclude that

X = k1X1 + k2X2 = k1

[
c1

[
1
4

]
e2t

]
+ k2

[
c1

[
1
1

]
e−t

]
= C1

[
1
4

]
e2t + C2

[
1
1

]
e−t

is the general solution of the system ẋ = −2x + y, ẏ = −4x + 3y. The constants C1 and C2 can be
chosen to match arbitrary initial data.

6.6.2 Geometric interpretation of eigenvectors

The vector

[
1
4

]
that appears in the preceding example is called an eigenvector

(or characteristic vector) corresponding to the eigenvalue (or characteristic value)
λ = 2. This vector is a nonzero solution, X̃, of AX̃ = λX̃ when λ = 2. This means
that there are infinitely many eigenvectors corresponding to the eigenvalue λ = 2—

that is, all the vectors

[
c1
c2

]
such that 4c1 − c2 = 0, or all the nonzero vectors of the

form

[
c1

4c1

]
are eigenvectors associated with λ = 2. Choosing c1 = 1 gives us the

simple particular vector V1 =
[

1
4

]
, which can be called the representative eigenvec-

tor. Graphically, this eigenvector represents a straight line from the origin to the point

(1,4) in the c1-c2 plane. Similarly, the vector V2 =
[

1
1

]
is the representative eigen-

vector corresponding to the eigenvalue λ = −1 and can be interpreted as a straight
line from (0,0) to (1,1) in the c1-c2 plane. (See the description of vectors in Sec-
tion B.1.) Fig. 6.11 shows V1 and V2 in the c1-c2 plane.

6.6.3 The general problem

Now let’s consider the equation AX̃ = λX̃, where A =
[
a b

c d

]
and X̃ =

[
c1
c2

]
and at

least one of the numbers c1 and c2 is nonzero. In the discussion that follows, we’ll
assume that c1 
= 0.

Written out as individual equations, AX̃ = λX̃ has the form

ac1 + bc2 = λc1

cc1 + dc2 = λc2
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FIGURE 6.11

Representative eigenvectors V1 =
[

1
4

]
and V2 =

[
1
1

]

or

(A) (a − λ)c1 + bc2 = 0

(B) cc1 + (d − λ)c2 = 0,

and we want to determine λ.
We can solve this algebraic system by the method of elimination as follows:

1. Multiply Eq. (A) by d − λ to obtain

(d − λ)(a − λ)c1 + b(d − λ)c2 = 0.

2. Multiply Eq. (B) by −b to get

−bcc1 − b(d − λ)c2 = 0.

3. Add the equations found in steps 1 and 2 to get

(d − λ)(a − λ)c1 − bcc1 = 0,

or [
λ2 − (a + d)λ + (ad − bc)

]
c1 = 0. (Check the algebra.)

4. Because we assumed that c1 
= 0 at the beginning of this discussion, we must have

λ2 − (a + d)λ + (ad − bc) = 0. (6.6.4)

This equation is called the characteristic equation of the matrix A, and its roots are
the eigenvalues of A.
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Using the quadratic formula, we find that

λ = (a + d) ±√
(a + d)2 − 4(ad − bc)

2
.

If we had assumed that c2 
= 0 at the beginning, we would have found the same
solution for λ. Then for each distinct value of λ that we find, we can substitute that
value into the system

(a − λ)c1 + bc2 = 0

cc1 + (d − λ)c2 = 0

and solve for X̃ =
[
c1
c2

]
, the corresponding eigenvector.

There are two things to notice about the characteristic equation of A,

λ2 − (a + d)λ + (ad − bc) = 0

and the resulting formula for λ:

1. The expression a +d is just the sum of the main diagonal (upper left, lower right)

elements of the matrix A =
[
a b

c d

]
. In linear algebra, this is called the trace of

A. For example, if A =
[−7 2

0 4

]
, then the trace of A is (−7) + 4 = −3.

2. The expression ad − bc is formed from the matrix of coefficients A =
[
a b

c d

]
as follows: Multiply the main diagonal elements and then subtract the product
of the other diagonal elements (upper right, lower left). The number calcu-
lated this way is called the determinant of the coefficient matrix. Symboli-

cally, det(A) = det

[
a b

c d

]
= ad − bc. For example, if A =

[−7 −3
2 4

]
, then

det(A) = (−7)(4)− (−3)(2) = −28 − (−6) = −28 + 6 = −22. The determinant
of a matrix A is often denoted by the symbol |A|, so the rule for calculation in the
2 × 2 case can be given as

|A| =
∣∣∣∣a b

c d

∣∣∣∣= ad − bc.

Observations 1 and 2 provide us with an alternative way of viewing the charac-
teristic equation:

λ2 − (trace of A)λ + det(A) = 0. (6.6.5)

The roots of the characteristic Eq. (6.6.5)—the eigenvalues—lead to eigenvectors and
ultimately to the general solution of a linear system. Let’s look at an example using
this shortcut.
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Example 6.6.2 Solving a Linear System with Eigenvalues and Eigen-
vectors
The following equations constitute a simple model for detecting diabetes:

dg

dt
= −2.92g − 4.34h

dh

dt
= 0.208g − 0.780h,

where g(t) denotes excess glucose concentration in the bloodstream and h(t) represents excess
insulin concentration. “Excess” refers to concentrations above the equilibrium values. We want to
determine the solution at any time t .

Eigenvalues

The matrix form of our equations is d
dt

X =
[
dg/dt

dh/dt

]
=
[−2.92 −4.34

0.208 −0.780

][
g

h

]
, so that the

matrix of coefficients is A =
[−2.92 −4.34

0.208 −0.780

]
. The trace of A is −2.92 + (−0.780) = −3.7 and

the determinant of A is −2.92(−0.780) − (−4.34)(0.208) = 3.18032. The characteristic equation
is

λ2 − (trace of A)λ + det(A) = λ2 + 3.7λ + 3.18032 = 0.

Solving this by calculator or CAS, we find that the eigenvalues are λ1 = −2.34212 and λ2 =
−1.35788, rounded to five decimal places.

Eigenvectors
Now we substitute each eigenvalue in the equations

(a − λ)c1 + bc2 = 0

cc1 + (d − λ)c2 = 0

and solve for the corresponding eigenvector X̃ =
[
c1
c2

]
. In our problem, we must substitute in the

equations

(−2.92 − λ)c1 − 4.34c2 = 0

0.208c1 + (−0.780 − λ)c2 = 0.

If λ = −2.34212, then the equations are

−0.57788c1 − 4.34c2 = 0

0.208c1 + 1.56212c2 = 0.

But these two equations are really only one distinct equation, c2 = −0.13315c1. (Solve each equa-
tion for c2 and see for yourself.) Therefore, to ensure that at least one element of the eigenvector
is an integer, we can take c1 = 1 and c2 = −0.13315, so that an eigenvector corresponding to the
eigenvalue λ = −2.34212 is

X̃1 =
[

1
−0.13315

]
.
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Similarly, if we use the other eigenvalue, λ = −1.35788, we can take the single equation (−2.92 −
λ)c1 − 4.34c2 = 0 and substitute the eigenvalue to get (−2.92 + 1.35788)c1 − 4.34c2 = 0, so that
c2 = −0.35994c1. If we take c1 = 1, we must have c2 = −0.35994, and an eigenvector correspond-
ing to the eigenvalue λ = −2.34212 is

X̃2 =
[

1
−0.35994

]
.

The Solution
The Superposition Principle gives the general solution as

X̃ = C1X̃1 + C2X̃2 = C1

[
1

−0.13315

]
e−2.34212t + C2

[
1

−0.35994

]
e−1.35788t .

If we were given initial concentrations of glucose and insulin, we could determine the constants C1
and C2. (See Problem 12 in Exercises 6.6.)

6.6.4 The geometric behavior of solutions
In the next few examples, we will get a preview of how the behavior of a two-
dimensional system of linear differential equations with constant coefficients depends
on the eigenvalues and eigenvectors of its matrix of coefficients. We’ll illustrate some
typical phase portraits. Then in Sections 6.7–6.9 we’ll give a systematic description
of all the possible behaviors of these linear systems using the nature of their eigen-
values and eigenvectors.

Example 6.6.3 Example 6.6.1 Revisited—A Saddle Point
Let’s look again at the system from Example 6.6.1:

ẋ = −2x + y

ẏ = −4x + 3y.

As we saw earlier, the eigenvalues of this system are λ1 = 2 and λ2 = −1, with corresponding

representative eigenvectors V1 =
[

1
4

]
and V2 =

[
1
1

]
. The general solution was given by

X = C1

[
1
4

]
e2t + C2

[
1
1

]
e−t =

[
C1e2t + C2e−t

4C1e2t + C2e−t

]
.

Fig. 6.12 shows some trajectories for this system of linear equations. These are particular solutions

of dy
dx

= dy/dt
dx/dt

= −4x+3y
−2x+y

. Note in particular that the lines y = 4x and y = x appear as trajectories.
These trajectories are actually four half-lines: y = 4x for x > 0, y = 4x for x < 0, y = x for x > 0,
and y = x for x < 0.

A little basic algebra shows us that the origin is the only equilibrium point, and it is called a sad-
dle point in this situation. A saddle point is the two-dimensional version of the node we discussed in
Section 2.6. What characterizes a saddle point is that solutions can approach the equilibrium point
along one direction (as though it were a sink), yet move away from the point in another direction
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FIGURE 6.12

Phase portrait of the system ẋ = −2x + y, ẏ = −4x + 3y

(as though it were a source).5 In particular, it turns out that one trajectory is the half-line y = 4x in
the first quadrant, along which the motion is away from the origin, and another trajectory is the line
y = x also in the first quadrant, along which the movement is toward the origin. The straight lines
y = 4x and y = x are asymptotes for the other trajectories (as t → ±∞). You may not be able to
see this clearly from the phase portrait that your graphing utility generates unless you play with the
range of t and choose initial values carefully, but you can see this and other behavior analytically
(see Problem 13 in Exercises 6.6).

Example 6.6.4 A Source
Now let’s look at the system of differential equations

ẋ = 2x + y

ẏ = 3x + 4y.

First of all, note that the system’s only equilibrium point—where ẋ = 0 and ẏ = 0—is the origin of
the phase plane, (x, y) = (0,0). (You should verify this using the ordinary algebra of simultaneous
equations.)

Using the formula given by Eq. (6.6.4), we see that the characteristic equation of our system is
λ2 − (2 + 4)λ + ((2)(4) − (1)(3)) = 0, or λ2 − 6λ + 5 = 0, which has the roots λ1 = 5 and λ2 = 1.
To find the eigenvectors corresponding to these eigenvalues, we must solve the matrix equation

5 This terminology is usually seen in a multivariable calculus course: If you look at a horse’s saddle in
the tail-to-head direction, it appears that the center of the saddle is lower than the front or back, so that the
center seems to be a minimum point on the saddle’s surface. However, if you look across the saddle from
one side of the horse, it appears that the center is at the peak of a stirrup-to-stirrup curve, so the center
seems like a maximum point. In fact, a saddle point is neither a minimum nor a maximum.
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AX̃ = λX̃, where A =
[

2 1
3 4

]
, λ = 5 or 1, and X̃ =

[
c1
c2

]
. This matrix equation is equivalent to the

system

(1) (2 − λ)c1 + c2 = 0
(2) 3c1 + (4 − λ)c2 = 0.

(6.6.6)

Substituting the first eigenvalue, λ = 5, in (6.6.6) gives us

(1) −3c1 + c2 = 0

(2) 3c1 − c2 = 0.

There is really only one equation here, and its solution is given by c2 = 3c1. Thus, the eigen-

vectors corresponding to the eigenvalue λ = 2 have the form

[
c1

3c1

]
, or c1

[
1
3

]
. If we let c1 = 1, we

get the “neat” representative eigenvector V1 =
[

1
3

]
.

When we use the other eigenvalue, λ = 1, in the system (6.6.6), we find that

(1) c1 + c2 = 0

(2) 3c1 + 3c2 = 0,

which has the solution c2 = −c1. Therefore, the eigenvectors in this case have the form

[
c1

−c1

]
, or

c1

[
1

−1

]
. Thus, our representative eigenvector can be V2 =

[
1

−1

]
.

FIGURE 6.13

Phase portrait of the system ẋ = 2x + y, ẏ = 3x + 4y
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Now let’s look at the phase portrait corresponding to the original system, a family of trajectories
corresponding to the first-order equation

dy

dx
=

dy
dt
dx
dt

= 3x + 4y

2x + y
.

This phase portrait is shown in Fig. 6.13. The curves y = 3x and y = −x, which are straight-line
trajectories, are labeled so that we can see the significance of the eigenvectors.

If you look carefully (or find your own phase portrait), you will see that the trajectories shown
are fleeing the origin (as t → ∞) in such a way that any trajectory is tangent to the line y = −x at
the origin—that is, as t → −∞. In this situation, the origin is called an unstable node (specifically,
a source or repeller).

The next example reveals another type of source for a two-dimensional system.

Example 6.6.5 A Spiral Source
Look at the system

dx

dt
= x + y

dy

dt
= −4x + y.

Note that once again the origin is this system’s only equilibrium point. (Check this for yourself.)
Because the matrix of coefficients has a = 1, b = 1, c = −4, and d = 1, we use formula (6.6.4) to

FIGURE 6.14

Phase portrait of the system dx
dt

= x + y, dy
dt

= −4x + y; (x(0), y(0)) = (−4,0), (−2,0),
(2,0), (3,0); −5 ≤ t ≤ 0.7



282 CHAPTER 6 Systems of linear differential equations

determine that the characteristic equation of this system is λ2 −2λ+5 = 0, so the quadratic formula
gives us the eigenvalues λ1 = 1 + 2i and λ2 = 1 − 2i. When we get complex eigenvalues such as
this complex conjugate pair, the eigenvectors will turn out to have complex numbers as entries and
to have no useful direct geometric significance.6 We’ll deal with this situation in more detail in
Section 6.9. The phase portrait for this system is shown in Fig. 6.14.

We can see that the trajectories are spirals that move outward, away from the equilibrium point,
in a clockwise direction. In this case, as in the previous example, the equilibrium point is called a
source (or a repeller). Other systems with complex eigenvalues may correspond to spirals that move
in a counterclockwise direction or to spirals that move in toward the equilibrium point (clockwise or
counterclockwise).

These examples should convince you that trajectories can behave quite differently
near equilibrium points. In the next section, we will examine how the trajectories of
a two-dimensional system can be classified.

Exercises 6.6
A

1. Calculate the determinant of each of the following matrices by hand:

a.
[−3 5

1 1

]

b.
[

4 2
10 5

]

c.

[
6t −4

sin t t3

]

d.
[

cos θ sin θ

− sin θ cos θ

]
2. Find the eigenvalues and eigenvectors of matrices (a) and (b) in Problem 1.

3. Find a 2 × 2 matrix with eigenvalues 1 and 3 and corresponding eigenvectors[
1
1

]
and

[
1
2

]
.

For each system in Problems 4–10, (a) convert to the matrix form Ẋ = AX; (b) find
the characteristic equation; (c) find all eigenvalues; (d) describe all eigenvectors cor-
responding to each eigenvalue found in part (c). Parts (a)–(d) should be done without
the aid of a calculator or CAS.

4. ẋ = −x + 4y

ẏ = 2x − 3y

5. ẋ = x − y

ẏ = y − 4x

6 See Section 4.4 of Applied Linear Algebra by L. Sadun (Upper Saddle River, NJ: Prentice Hall, 2001).
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6. ẋ = −4x + 2y

ẏ = 2x − y

7. ẋ = x

ẏ = y

8. ẋ = −6x + 4y

ẏ = −3x + y

9. ẋ = 5x − y

ẏ = 2x + y

10. ẋ = 4x − 6y

ẏ = 3x − 7y

B
11. Consider the algebraic system

ax + by = e

cx + dy = f,

where a, b, c, d, e, and f are constants, with ad − bc 
= 0.
a. Show that the solution is given by x = de−bf

ad−bc
, y = af −ce

ad−bc
.

b. Express your solution in part (a) in terms of the determinants∣∣∣∣a e

c f

∣∣∣∣ ,
∣∣∣∣a b

c d

∣∣∣∣ , and

∣∣∣∣e b

f d

∣∣∣∣ .
12. In Example 6.6.2, find the solution of the system satisfying the initial condi-

tions g(0) = g0 and h(0) = 0. (You may use technology to solve the resulting
system of algebraic equations.)

13. In Example 6.6.1, the system ẋ = −2x + y, ẏ = −4x + 3y was shown to have
the solution

X =
[
x(t)

y(t)

]
=
[

C1e
2t + C2e

−t

4C1e
2t + C2e

−t

]
.

a. Substitute for x(t) and y(t) in the right-hand side of the expression

dy

dx
= −4x + 3y

−2x + y
.

b. Use the result of part (a) to show that the slope of any trajectory not on
either of the lines determined by the eigenvectors approaches 4, the slope
of the eigenvector corresponding to the larger of the two distinct eigen-
values. [Hint: Factor out e2t , the dominant term for large positive values
of t .]
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c. Use the result of part (a) to show that the slope of any trajectory not on
either of the lines determined by the eigenvectors approaches 1, the slope
of the eigenvector corresponding to the smaller of the two eigenvalues.
[Hint: Factor out e−t , the dominant term for large negative values of t .]

14. Use technology to sketch the phase portrait of the system in Problem 13. Then
sketch in the eigenvectors (getting them from the answers in the back of the
book if necessary) and comment on the behavior of the trajectories with re-
spect to the origin. Use both positive and negative values of t .

15. Use technology to sketch the phase portrait of the system {ẋ = −0.1x +
0.075y, ẏ = 0.1x − 0.2y}. Then sketch in the eigenvectors (using your CAS
if necessary) and comment on the behavior of the trajectories with respect to
the origin. Use both positive and negative values of t .

16. A substance X decays into substance Y at rate k1 > 0, and Y in turn decays
into another substance at rate k2 > 0. The system

dx

dt
= −k1x

dy

dt
= k1x − k2y

describes the process, where x(t) and y(t) represent the amount of X and Y ,
respectively. Assume that k1 
= k2.
a. Find the eigenvalues of the system.

b. Find the eigenvectors corresponding to each of the eigenvalues found in
part (a).

c. Solve for x(t) and y(t) and then find limt→∞ x(t) and limt→∞ y(t), in-
terpreting your answers in physical terms.

17. The following system models the exchange of nutrients between mother and
fetus in the placenta:

dc1

dx
= −α1(c1 − c2)

dc2

dx
= −α2(c1 − c2),

where c1(x) is the concentration of nutrient in the maternal bloodstream at
a distance x along the placental membrane and c2(x) is the concentration of
nutrient in the fetal bloodstream at a distance x. Here, α1 and α2 are constants,
α1 
= α2.
a. If c1(0) = c0 and c2(0) = C0, use eigenvalues and eigenvectors to solve

the system for c1(x) and c2(x).

b. Solve for c1(x) and c2(x) by converting the system into a single second-
order differential equation and using the techniques of Section 4.1.
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18. Consider the spring-mass system described by ẍ + bẋ + kx = 0.
a. Find all values of b and k for which this system has real, distinct eigen-

values.

b. Find the general solution of the system for the values of b and k found in
part (a).

c. Find the solution of the system that satisfies the initial condition x(0) = 1.

d. Describe the motion of the mass in the situation described in part (c).

19. The behavior of a damped pendulum is described near the lowest point of its
trajectory by the linear equation ẍ = −kẋ − gx/L, where k is the damping
coefficient, g is the acceleration due to gravity, and L is the length of the
pendulum.
a. Express the differential equation as a linear system.

b. Find the characteristic equation of the system.

c. Find all eigenvalues of the system.

d. Describe all eigenvectors.

e. If k2 > 4g/L, solve the system and state what happens as t → ∞.

20. Using Newton’s law of cooling (see Problem 22, Exercises 2.1), the flow of
heat in a two-story house just after the furnace fails can be modeled by the
IVP

ẋ = −0.7x + 0.5y

ẏ = 0.5x − 0.6y; x(0) = 70, y(0) = 60,

where x(t) and y(t) are the temperatures downstairs and upstairs, respectively,
at time t (in hours).
a. Find the characteristic equation of the system.

b. Find all eigenvalues of the system.

c. Find all eigenvectors of the system.

d. Determine the values x(2) and y(2).

e. Determine limt→∞ x(t) and limt→∞ y(t).

C

21. Consider the system ẋ = Ax, where A =
[
a b

c d

]
. Suppose that the trajecto-

ries spiral as in Example 6.6.5, possibly in the opposite direction. The polar
form (Section B.1) of a spiral trajectory provides the polar angle θ(t) =
arctan

(
y(t)
x(t)

)
; the direction of the spiral will be clockwise if dθ/dt < 0 and

counterclockwise if dθ/dt > 0. Show that the direction of a spiral trajectory
depends on the sign of c, the lower left-hand entry of the matrix A, as follows.
a. Show that det(A) = ad − bc > 0.
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b. Show that (trace of A)2 < 4(det(A))—that is, (a + d)2 < 4(ad − bc).

c. Show that dθ/dt = (xẏ − yẋ)/(x2 + y2), and that the sign of dθ/dt

equals the sign of xẏ − yẋ.

d. Show that

xẏ − yẋ = c

[
x +

(
d − a

2c

)
y

]2

+ y2

4c

[
4(ad − bc) − (a + d)2

]
and explain why the sign of dθ/dt equals the sign of c.

6.7 The stability of homogeneous linear systems: unequal
real eigenvalues

First of all, we might be able to guess by now that a linear system Ẋ = AX of ODEs,
where det(A) 
= 0, has exactly one equilibrium point, (0,0). (See Problem 12 of
Exercises 6.5.) If det(A) = 0, however, the system may have many other equilib-
rium solutions. As promised in the preceding section, the stability of a system—the
behavior of trajectories with respect to the equilibrium point(s)—will be explained
completely in terms of the eigenvalues and eigenvectors of the matrix A.

Because the characteristic equation of a two-dimensional system is a quadratic
equation, we know that there are two eigenvalues, λ1 and λ2. There are only three
possibilities for these eigenvalues:

1. The eigenvalues are both real numbers with λ1 
= λ2.
2. The eigenvalues are real numbers with λ1 = λ2.
3. The eigenvalues are complex numbers: λ1 = p + qi and λ2 = p − qi, where p

and q are real numbers (called the real part and the imaginary part, respectively)
and i = √−1.

In situation 3, we say that λ1 and λ2 are complex conjugates of each other. (You
may want to review Appendix C for more information about complex numbers.)

The nature of the eigenvalues will play an important role in the qualitative analysis
of systems of linear equations. In this section we will deal with possibility 1, leaving
situations 2 and 3 for the next two sections.

6.7.1 Unequal real eigenvalues
First, suppose that the matrix A in the system Ẋ = AX has two real eigenvalues λ1
and λ2 with λ1 
= λ2. Let V1 and V2 be the corresponding representative eigenvectors.
Then we’ll show that the general solution of the system is given by

X(t) = c1e
λ1tV1 + c2e

λ2tV2, (6.7.1)

where c1 and c2 are arbitrary constants.
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Geometrically, the first term on the right-hand side of (6.7.1) represents a straight-
line trajectory parallel7 to V1, and the second term describes a line parallel to V2 (see
Fig. 6.15). Note that these trajectories lie in the phase plane (the x-y plane).

FIGURE 6.15

V = 3et
[

2
1

]
for t = 0, 1, and 2

If both c1 and c2 are nonzero, then the solution X(t) is a linear combination of
the two basic terms whose relative contributions change with time. In this situation,
the trajectories curve in a way that will be described later.

To see why (6.7.1) is the general solution, first note that each term is itself a so-
lution of the system. If, for example, we consider X1(t) = c1e

λ1tV1, then Ẋ1(t) =
c1λ1e

λ1tV1 and AX1 = A(c1e
λ1tV1) = c1e

λ1t (AV1) = c1e
λ1t (λ1V1) = λ1c1e

λ1tV1
because V1 is an eigenvector corresponding to λ1. (See Section 6.5 for properties of
matrix–vector multiplication.) Therefore, Ẋ1(t) = AX1. Now we can see that if X1
and X2 are any solutions of the system, then the linear combination X = k1X1 +k2X2
is also a solution for any constants k1 and k2:

Ẋ =
•︷ ︸︸ ︷

(k1X1 + k2X2) = k1Ẋ1 + k2Ẋ2 = k1(AX1) + k2(AX2)

= A(k1X1) + A(k2X2)

= A(k1X1 + k2X2) = AX.

These steps follow from the algebraic properties of matrices, vectors, and of
derivatives, and this property of solutions of linear systems is another version of the
Superposition Principle that we have encountered several times before.

We can argue (somewhat loosely) that (6.7.1) represents a solution of a two-
dimensional system (or its equivalent second-order equation) and has two arbitrary

7 Two vectors V and W are parallel if W = cV for some nonzero constant c. In other words, parallel
vectors lie on the same straight line through the origin, pointing in the same direction (if c > 0) or in
opposite directions (if c < 0). See Appendix B.1.
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constants and hence is the general solution of the system Ẋ = AX. To be rigorous,

we can use the fact that any initial condition X0 = X(t0) =
[
x(t0)

y(t0)

]
=
[
x0
y0

]
for the

system can be written as a linear combination of the eigenvectors—X0 = k1V1 +k2V2

for some constants k1 and k2—so a solution (6.7.1) can be found to satisfy any ini-
tial condition X(t0) = X0. (You’ll be asked to prove these assertions in Problems 24
and 25 in Exercises 6.7.) Finally, Existence and Uniqueness Theorem II of Section 6.2
allows us to say that (6.7.1) is the only solution.

6.7.2 The impossibility of dependent eigenvectors
If one of the eigenvectors is a scalar multiple of the other—say V2 is a multiple of
V1—then the expression in (6.7.1) collapses to a scalar multiple of V1 and there is
only one arbitrary constant. This expression can’t represent the general solution of a
second-order equation.

Fortunately, this collapse can’t happen under our current assumption. It is easy to
prove that if a 2 × 2 matrix A has distinct eigenvalues λ1 and λ2 with corresponding
eigenvectors V1 and V2, then neither eigenvector is a scalar multiple of the other.
Suppose that V2 = cV1, where c is a nonzero scalar. Then V2 − cV1 = 0, the zero
vector, and we must have

0 = A(V2 − cV1) = AV2 − c(AV1) = λ2V2 − c(λ1V1)

= λ2(cV1) − c(λ1V1) = c(λ2 − λ1)V1.

But then, because c 
= 0 and V1 (as an eigenvector) is nonzero, we must conclude that
(λ2 − λ1) = 0, which contradicts the assumption that we have distinct eigenvalues.

6.7.3 Unequal positive eigenvalues
In the expression for the general solution, c1e

λ1tV1 + c2e
λ2tV2, suppose that λ1 >

λ2 > 0. First, note that as t increases, both eigenvector multiples point away from the
origin so all solutions grow with time. (The algebraic signs of the constants c1 and c2

influence the quadrants in which the solutions grow.) To understand the relative rates
at which the individual terms grow, we can factor out the exponential corresponding
to the larger eigenvalue and write X(t) = eλ1t (c1V1 + c2e

(λ2−λ1)tV2).
Note that e(λ2−λ1)t → 0 as t → +∞ because λ2 − λ1 < 0. Therefore, X(t) ≈

eλ1t c1V1 as t gets larger. Noting that eλ1t c1V1 is parallel to V1, we see that the slope
of any trajectory X(t) approaches the slope of the line determined by V1. This says
that trajectories will curve away from the origin and their slopes will approach the
slope of the line determined by the eigenvector V1, corresponding to the larger eigen-
value. In this situation, the equilibrium point (0,0) is called a source (unstable node,
repeller). (Recall our discussions in Section 2.6.) In “backward time,” as t → −∞,
the trajectories will be asymptotic to the line determined by the eigenvector V2 be-
cause then the first term in the linear combination c1e

λ1tV1 +c2e
λ2tV2 is approaching
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zero faster than the second term. This says that if we move backward, the trajectories
enter the origin tangent to the line determined by V2.

We are now ready to re-examine an earlier example in light of the preceding two
paragraphs.

Example 6.7.1 Unequal Positive Eigenvalues: A Source
First of all, the system

ẋ = 2x + y

ẏ = 3x + 4y

that we saw in Example 6.6.4 has two positive unequal eigenvalues, λ1 = 5 and λ2 = 1, with corre-

sponding eigenvectors V1 =
[

1
3

]
and V2 =

[
1

−1

]
. Therefore the general solution is

X(t) = c1e5t

[
1
3

]
+ c2et

[
1

−1

]
=
[

c1e5t + c2et

3c1e5t − c2et

]
=
[
x(t)

y(t)

]
.

Fig. 6.16 is a more detailed version of Fig. 6.13, the phase portrait of our system. The new
graph shows several trajectories and the way in which they curve away from the origin, their slopes

approaching the slope of the line determined by the eigenvector V1 =
[

1
3

]
corresponding to the

larger eigenvalue λ = 5.

FIGURE 6.16

Trajectories of the system ẋ = 2x + y, ẏ = 3x + 4y. Bold points • indicate initial positions
(t = 0) for trajectories

Analytically, we can examine the equation dy
dx

=
dy
dt
dx
dt

= 3x+4y
2x+y

, whose solutions make up the

phase portrait—that is, the equation giving the slopes of trajectories in the x-y plane. Substituting
x(t) = c1e5t + c2et and y(t) = 3c1e5t − c2et from the general solution given previously, we get

dy

dx
= 15c1e5t − c2et

5c1e5t + c2et
.
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For large values of t , the expression for dy
dx

is dominated by the e5t terms, which we can factor out:

dy

dx
= e5t (15c1 − c2e−4t )

e5t (5c1 + c2e−4t )
= 15c1 − c2e−4t

5c1 + c2e−4t
.

The condition c1 = 0 would mean that we are dealing with the straight-line trajectory deter-

mined by the eigenvector V2 =
[

1
−1

]
. But if c1 
= 0, as t → ∞ we see that the slope of any trajectory

tends to 15c1−0
5c1+0 = 3, the slope of the line determined by the eigenvector V1 =

[
1
3

]
.

If we consider large negative values of t—that is, if we run the trajectories backward in time—

then et is the dominant term in the expression for dy
dx

and we can factor it out:

dy

dx
= 15c1e5t − c2et

5c1e5t + c2et
=

et
(

15c1e4t − c2

)
et
(
5c1e4t + c2

) = 15c1e4t − c2

5c1e4t + c2
.

The preceding expression tells us that if c2 
= 0, then as t → −∞ the slope of any trajectory tends

to 0−c2
0+c2

= −1, the slope of the line determined by the eigenvector V2 =
[

1
−1

]
. If we have c2 = 0,

we will be on the straight-line trajectory determined by the eigenvector V1 =
[

1
3

]
.

6.7.4 Unequal negative eigenvalues
If both eigenvalues are negative (say λ1 < λ2 < 0), then both eigenvector multiples
point toward the origin, and all solutions decrease or decay with time. To see this,
write (6.7.1) in the form

X(t) =
[ c1

e−λ1t

]
V1 +

[ c2

e−λ2t

]
V2 =

[ c1

eKt

]
V1 +

[ c2

eMt

]
V2,

where K = −λ1 and M = −λ2 are positive constants. Then clearly, both terms of
X(t) approach the origin as t → +∞. Because λ1 < λ2 we have −λ1 > −λ2, or
K > M , so the first term in the expression for X(t) approaches the origin faster than
the second term. We will see in the next example that as t increases, trajectories curve
toward the origin, closer to the eigenvector V2 (or its negative if c2 < 0), correspond-
ing to the larger eigenvalue. Under these circumstances, we say that (0,0) is a stable
node, or sink.

Example 6.7.2 Unequal Negative Eigenvalues: A Sink
Here we look at the system

ẋ = −4x + y

ẏ = 3x − 2y.

The characteristic equation is λ2 + 6λ + 5 = 0 and the eigenvalues are negative and unequal: λ1 =
−5 and λ2 = −1. Using the linear algebra capabilities of a CAS, we find that the corresponding
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representative eigenvectors are V1 =
[−1

1

]
and V2 =

[
1
3

]
. (Don’t worry if your CAS produces

eigenvectors that are different from these—yours should lie on the same line as the ones given here.
Your slopes y/x should be −1 and 3.)

The general solution of our system is

X(t) = c1e−5t

[−1
1

]
+ c2e−t

[
1
3

]
=
[
−c1e−5t + c2e−t

c1e−5t + 3c2e−t

]
.

It is clear from the negative exponents in the expression for X(t) that X(t) →
[

0
0

]
as t → ∞, so the

origin is a sink. Fig. 6.17 shows some typical trajectories and seems to indicate that the trajectories

are tangent to the line determined by the eigenvector V2 =
[

1
3

]
.

FIGURE 6.17

Trajectories for the system ẋ = −4x + y, ẏ = 3x − 2y. Bold points • indicate initial positions
(t = 0) for trajectories

Recognizing that e−t is larger than e−5t for large values of t , we look at

dy

dx
= 3x − 2y

−4x + y
= −5c1e−5t − 3c2e−t

5c1e−5t − c2e−t
=

e−t
(
−5c1e−4t − 3c2

)
e−t

(
5c1e−4t − c2

) = −5c1e−4t − 3c2

5c1e−4t − c2
.

If c2 
= 0, then dy
dx

approaches −3c2−c2
= 3, the slope of the eigenvector V2 =

[
1
3

]
, as t → ∞. If

c2 = 0, then the trajectory is on the straight line determined by the eigenvector

[−1
1

]
.

6.7.5 Unequal eigenvalues with opposite signs
If the eigenvalues have opposite signs (say λ1 < 0 < λ2), then look at the general
solution X(t) = c1e

λ1tV1 + c2e
λ2tV2 to see that the term c1e

λ1tV1 (corresponding to
the negative eigenvalue λ1) points toward the origin, whereas c2e

λ2tV points away
from the origin (Fig. 6.18).
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FIGURE 6.18

Typical eigenvectors for the case λ1 < 0 < λ2

In this case, trajectories approach the origin along one direction and veer away
from the origin along another. In this situation we describe (0,0) as a saddle point.
Look back at Example 6.6.3, especially Fig. 6.12.

Let’s consider a new example of what happens when the eigenvalues of a system
have opposite signs.

Example 6.7.3 Unequal Eigenvalues with Opposite Signs: A Saddle
Point
Let’s investigate the system dx

dt
= x + 5y, dy

dt
= x − 3y. The characteristic equation is λ2 + 2λ −

8 = 0. The eigenvalues and their corresponding eigenvectors are λ1 = −4, V1 =
[

1
−1

]
; λ2 = 2,

V2 =
[

5
1

]
. The general solution is

X(t) = c1e−4t

[
1

−1

]
+ c2e2t

[
5
1

]
=
[

c1e−4t + 5c2e2t

−c1e−4t + c2e2t

]
.

We can see that the straight-line trajectory c1e−4t V1 = c1e−4t

[
1

−1

]
=
[

c1e−4t

−c1e−4t

]
ap-

proaches the origin as t → ∞. (There are actually two half-line trajectories, one for positive c1
and one for negative c1. See Fig. 6.19.) But the half-line trajectories corresponding to c2e2t V2 =
c2e2t

[
5
1

]
=
[

5c2e2t

c2e2t

]
for positive and negative values of c2 are clearly moving away from the

origin with increasing t .

Substituting the expressions for x(t) and y(t) in the formula for dy
dx

and factoring out the dom-
inant term for large t , we get

dy

dx
= x − 3y

x + 5y
= 4c1e−4t + 2c2e2t

−4c1e−4t + 10c2e2t
=

e2t
(

4c1e−6t + 2c2

)
e2t

(−4c1e−6t + 10c2
) = 4c1e−6t + 2c2

−4c1e−6t + 10c2
.
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FIGURE 6.19

Trajectories for the system dx
dt

= x + 5y, dy
dt

= x − 3y

If c2 
= 0, we see that as t → ∞,
dy
dx

tends to 2c2
10c2

= 1
5 , the slope of the eigenvector V2. This

says that the slopes of trajectories not on the straight lines determined by V1 and V2 approach the
slope of V2, the eigenvalue associated with the positive eigenvalue. As t → −∞ the slopes of these
trajectories tend to the slope of V1. Fig. 6.19 shows this partial-source/partial-sink behavior with
respect to the origin, which is a saddle point.

6.7.6 Unequal eigenvalues, one eigenvalue equal to zero
Finally, we consider the situation in which we have two unequal eigenvalues, but
one of them is 0. Suppose that λ1 = 0 and λ2 
= 0. This means that the characteris-
tic equation can be written in the form 0 = (λ − 0)(λ − λ2) = λ2 − λ2λ. We know
from Section 6.6 that the constant term of the characteristic equation equals det(A).
Clearly, in this case we have det(A) = 0. Therefore, we should not expect the origin
to be the only equilibrium point (see Problem 12 of Exercises 6.5). In fact, every
point (x,0) of the horizontal axis may be an equilibrium point for such a system.
(Problem 21 in Exercises 6.7 asks for a proof of this assertion.) If V1 is the eigenvec-
tor associated with λ1 = 0, we know that A(c1V1) = c1A(V1) = c1λ1V1 = 0—that is,
each point on the line determined by V1 is an equilibrium point.

The general solution in this situation has the form

X(t) = c1e
(0)tV1 + c2e

λ2tV2 = c1V1 + c2e
λ2tV2.

Note that if λ2 > 0 and t → ∞, then X(t) grows without bound. But if t → −∞, so
that we are traveling backward along a trajectory, then the trajectory approaches c1V1,
the line determined by V1. Similarly, if λ2 < 0 and t → ∞, then X(t) approaches the
line determined by V1, whereas if t → −∞, then X(t) grows without bound. In any
case, each trajectory will be a half-line parallel (in the usual plane geometry sense)
to the eigenvector V2, with one endpoint on the line determined by V1. (The constant
vector c1V1 just shifts c2e

λ2tV2 horizontally and vertically.)
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The next example should explain the geometry of the trajectories when we have
one eigenvalue equal to 0.

Example 6.7.4 Unequal Eigenvalues, One Eigenvalue Equal to Zero
Fig. 6.20 shows the phase portrait for the system ẋ = y, ẏ = y, whose eigenvalues are 0 and 1 and

whose corresponding eigenvectors are

[
1
0

]
and

[
1
1

]
, respectively.

FIGURE 6.20

Phase portrait for the system ẋ = y, ẏ = y

The equations of the trajectories are X(t) = c1

[
1
0

]
+ c2et

[
1
1

]
=
[
c1 + c2et

c2et

]
. This says (see

Exercise 26) that any trajectory not on the line determined by V =
[

1
0

]
has the equation y(t) =

x(t) + k, so these trajectories form an infinite family of straight lines parallel to y = x. Note that

the eigenvector

[
1
0

]
corresponding to the zero eigenvalue determines two half-line trajectories, the

positive x-axis and the negative x-axis. In our example, it is easy to see that every point (x,0) of
the horizontal axis is an equilibrium point: ẋ = y = 0 and ẏ = y = 0 imply that y = 0 and the
x-coordinate is completely arbitrary. The fact that the nonzero eigenvalue is positive makes the
points on the x-axis sources. (If necessary, review the last full paragraph before this example.)

By looking at Examples 6.6.3–6.6.5 and the examples in this section, we notice
that a solution starting in a direction different from those of the eigenvectors is curved,
representing [as we know from (6.7.1)] a linear combination, c1e

λ1tV1 + c2e
λ2tV2,

of two exponential solutions that have different rates of change (indicated by the
eigenvalues). If we look at enough phase portraits, we may also realize that there
is a tendency for the “fast” eigenvector (associated with the larger of two unequal
eigenvalues) to have the stronger influence on the solutions. Trajectories curve toward
the direction of this eigenvector as t → ∞.
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In the next section, we’ll investigate what happens when there is a repeated real
eigenvalue and when there seems to be only one eigenvector corresponding to two
real eigenvalues.

Exercises 6.7
A
For each of the Systems 1–12, (a) find the eigenvalues and their corresponding
eigenvectors and (b) sketch/plot a few trajectories and show the position(s) of the
eigenvector(s). Do part (a) manually, but if the eigenvalues are irrational numbers or
decimals, you can use technology to find the corresponding eigenvectors.

1. ẋ = 3x, ẏ = 2y

2. ẋ = −x, ẏ = −2y

3. x′ = −3x − y, y′ = 4x + 2y

4. ṙ = 5r + 4s, ṡ = −2r − s

5. ẋ = x + 5y, ẏ = x − 3y

6. ẋ = 2x + 3y, ẏ = x + y

7. ẋ = −3x + y, ẏ = 4x − 2y

8. x′ = −4x + 2y, y′ = −3x + y

9. x′ = −2x − y, y′ = −x + 2y

10. ẋ = 3y, ẏ = −3x

11. ẋ = 3x + 6y, ẏ = −x − 2y

12. x′ = 2x + 2y, y′ = x + 3y

B
13. Consider the system ẋ = 4x − 3y, ẏ = 8x − 6y.

a. Find the eigenvalues of this system.

b. Find the eigenvectors corresponding to the eigenvalues in part (a).

c. Sketch/plot some trajectories and explain what you see.

d. Write the general solution of the system in the form X(t) = c1e
λ1tV1 +

c2e
λ2tV2, and then re-examine your explanation in part (c).

14. Show that if X is an eigenvector of A corresponding to eigenvalue λ, then any
nonzero multiple of X is also an eigenvector of A corresponding to λ.

15. Solve the IVP X′ =
[−2 1
−5 4

]
X, X(0) =

[
1
3

]
and describe the behavior of the

solution as t → ∞.

(
Here, X(t) =

[
x(t)

y(t)

]
.

)
16. Write a system of first-order linear equations whose trajectories show the fol-

lowing behaviors:
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a. (0,0) is a sink with eigenvalues λ1 = −3 and λ2 = −5.

b. (0,0) is a saddle point with eigenvalues λ1 = −1 and λ2 = 4.

c. (0,0) is a source with eigenvalues λ1 = 2 and λ2 = 3.

17. Consider the system ẋ = −x + αy, ẏ = −2y, where α is a constant.
a. Show that the origin is a sink regardless of the value of α.

b. Assume that X(t) is the solution vector of the system satisfying the initial

condition X(0) =
[

0
0.5

]
. Sketch the phase portrait for different values of

α and describe how the trajectory X(t), for t ≥ 0, depends on the value
of α.

18. Consider the following circuit.

The current I through the inductor and the voltage V across the capacitor
satisfy the system

L
dI

dt
= −R1I − V

C
dV

dt
= I − V

R2
.

a. Find the general solution of the system if R1 = 1 ohm, R2 = 3
5 ohm,

L = 2 henry, and C = 2
3 farad.

b. Show that I (t) → 0 and V (t) → 0 as t → ∞ regardless of the initial
values I (0) and V (0).

19. Consider the system of differential equations in the preceding problem. Find a
condition on R1,R2, C, and L that must be satisfied if the eigenvalues of the
coefficient matrix are to be real and distinct.

20. Two quantities of a chemical solution are separated by a membrane. If x(t)

and y(t) represent the amounts of the chemical at time t on each side of the
membrane and V1 and V2 represent the (constant) volume of each solution,
respectively, then the diffusion problem can be modeled by the system

ẋ = P

[
y

V2
− x

V1

]
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ẏ = P

[
x

V1
− y

V2

]
,

where P is a positive constant called the permeability of the membrane. Note
that x(t)

V1
and y(t)

V2
represent the concentrations of solution on each side.

a. Assuming that x(0) = x0 and y(0) = y0, find the solution of the system
IVP without using technology.

b. Calculate limt→∞ x(t) and limt→∞ y(t).

c. Using part (b), interpret the result limt→∞[x(t) + y(t)] physically.

d. Notice that if y
V2

> x
V1

, then ẋ > 0. Does this say that the chemical moves
across the membrane from the side with a lower concentration to the side
with a higher concentration or vice versa? Confirm your answer by con-
sidering what happens if x

V1
>

y
V2

in the second equation.

21. Consider the system

ẋ = ax + by

ẏ = cx + dy,

where a, b, c, and d are constants. Show that if ad − bc = 0, then every point
(x,0) of the horizontal axis is an equilibrium point for the system. [Hint: Solve
the system ax + by = 0, cx + dy = 0 for x.]

22. Given the system

x′ = ax + by

y′ = cx + dy,

where a, b, c, and d are constants, express the eigenvalues of this system in
terms of its trace and its determinant.

C
23. Consider the system

ṙ = −r − s

ṡ = −βr − s,

where β is a parameter.
a. Find the general solution of the system when β = 0.5. Use the eigenvalues

of the coefficient matrix to determine what kind of equilibrium the system
has at the origin.

b. Find the general solution of the system when β = 2. Use the eigenvalues
of the coefficient matrix to determine what kind of equilibrium the system
has at the origin.

c. The solutions of the system show two rather different types of behavior
for the two values of β considered in parts (a) and (b). Find a formula for
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the eigenvalues in terms of β and determine the value of β between 0.5
and 2 where the transition from one type of behavior to the other occurs.
(This critical value of the parameter is called a bifurcation point. See
Section 2.7.)

24. Suppose that we have the system Ẋ = AX and that V1 and V2 are eigenvectors
of A such that neither V1 nor V2 is a scalar multiple of the other. Show that

any initial condition X0 = X(0) =
[
x0
y0

]
can be written as a linear combination

of V1 and V2. In other words, show that you can always find scalars c1 and

c2 so that X0 = c1V1 + c2V2. [Hint: Let V1 =
[
x1
y1

]
and V2 =

[
x2
y2

]
be the

eigenvectors, where you assume that x1, x2, y1, and y2 are known. Now convert
the equation X0 = c1V1 + c2V2 into a system of algebraic linear equations and
go from there.]

25. If the system Ẋ = AX has two real eigenvalues λ1 and λ2, with λ1 
= λ2, and
V1 and V2 are the corresponding (distinct) eigenvectors, show that X(t) =
c1e

λ1tV1 + c2e
λ2,tV2 satisfies the initial condition X(0) = X0 =

[
x0
y0

]
=

c1V1 + c2V2. (See the preceding problem for the justification of this repre-
sentation of X0 for some scalars c1 and c2.)

26. As indicated in Example 6.7.4, the system ẋ = y, ẏ = y has the solution

X(t) =
[
c1 + c2e

t

c2e
t

]
. Show that any trajectory not on the line determined by

V =
[

1
0

]
satisfies the equation y(t) = x(t) + k (in the phase plane) for some

constant k. (This says that the trajectories form an infinite family of lines par-
allel to y = x.)

6.8 The stability of homogeneous linear systems: equal real
eigenvalues

Now let’s see what happens if both eigenvalues are real and equal. In other words,
the characteristic equation has a repeated root, or double root. (See Section 4.1 for
the second-order homogeneous linear equation case.) A full understanding of this
situation requires more linear algebra than we want to pursue right now. However,
the following discussions and examples should give us a clear picture of what’s going
on.

6.8.1 Equal nonzero eigenvalues, two independent eigenvectors
First, suppose that λ1 = λ2 
= 0. If we can find distinct representative eigenvec-
tors V1 and V2 that are not scalar multiples of each other, then we can still write
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the general solution of the system using (6.7.1): X(t) = c1e
λ1tV1 + c2e

λ2tV2 =
c1e

λ1tV1 + c2e
λ1tV2 = eλ1t (c1V1 + c2V2). If we let t = 0, we see that X(0) =

eλ1(0)(c1V1 + c2V2) = c1V1 + c2V2, so we can write X(t) = eλ1tX0, where X0 =
X(0). (See Problem 18 of Exercises 6.8.) Under these conditions, all trajectories are
straight lines through the origin because they are constant multiples of the constant
vector X0 = c1V1 + c2V2. The origin is called a star node in this case and will be a
source if λ1 > 0 and a sink if λ1 < 0. Figs. 6.21a and 6.21b show possible trajectories
for various initial vectors X0.

FIGURE 6.21a

Source: λ > 0

FIGURE 6.21b

Sink: λ < 0

Let’s examine a system for which the origin is a star node.

Example 6.8.1 The Origin as a Star Node (a Source)
Look at the system dx

dt
= x, dy

dt
= y. We can write this in matrix form as Ẋ = AX, where

A =
[

1 0
0 1

]
. It is easy to see that A has eigenvalues λ1 = 1 = λ2. (Check this.) By the way
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we defined the product of a matrix and a vector earlier in this chapter, we see that our matrix of
coefficients A is such that AV = V = 1 · V = λ1V for every vector V . In particular, any nonzero
vector V is an eigenvector corresponding to the eigenvalue 1. (Be sure you understand the preceding

statement.) A particularly simple eigenvector to work with is V1 =
[

1
0

]
. It is easy to see that the

vector V2 =
[

0
1

]
is not a multiple of V1 because any scalar multiple of V1 would have the form

[
c

0

]
,

where c is a constant. Therefore, we can write the solution of our system as

X(t) = c1etV1 + c2etV2 = c1et

[
1
0

]
+ c2et

[
0
1

]
=
[
c1et

c2et

]
.

Of course, because each of our original (separable) differential equations contains only one
variable, we could solve each one separately to get the same result in the form x(t) = c1et , y(t) =
c2et . As we indicated in the discussion right before this example, the trajectories are straight lines
through the origin, and Fig. 6.22 shows that the origin, a star node, is a source.

FIGURE 6.22

Phase portrait of the system dx
dt

= x, dy
dt

= y

6.8.2 Equal nonzero eigenvalues, only one independent eigenvector
Now suppose that λ1 = λ2 
= 0, but our single eigenvalue has only one distinct rep-
resentative eigenvector. What we mean is that all eigenvectors corresponding to the
single distinct eigenvalue are scalar multiples of each other. Geometrically, this says
that all eigenvectors lie on the same straight line through the origin. Then if we tried
to use the solution form (6.7.1), we would get

X(t) = c1e
λ1tV + c2e

λ1tV = (c1 + c2)e
λ1tV = keλ1tV .

But how can the general solution of a two-dimensional system or second-order equa-
tion have only one arbitrary constant?
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What we have to do here is find another solution of the system that is indepen-
dent of the one solution we found using the single eigenvalue and its representative
eigenvector. This is similar to the technique we used to solve a second-order linear
equation whose characteristic equation had a repeated root (see Section 4.1). In our
situation, an independent solution is one that is not a scalar multiple of the first solu-
tion. If we do find another eigenvector corresponding to the single eigenvalue, but one
that is independent of the original eigenvector, then the solution can still be written
in the form X(t) = c1e

λ1tV1 + c2e
λ2tV2.

It turns out that we can find a substitute for an independent eigenvector. Although
we won’t go into all the linear algebraic details here, we can at least try to explain the
end result. Another (independent) solution of the system must have the form

X2(t) = teλtV + eλtW, (6.8.1)

where V is the original eigenvector corresponding to the single eigenvalue λ and W ,
called a generalized eigenvector (of order 2), is a vector that satisfies the matrix
equation

(A − λI)W = V. (6.8.2)

(See Problem 13 in Exercises 6.8.)
We can easily see that the vector defined by (6.8.1) is a solution of the system.

If X(t) = teλtV + eλtW , then Ẋ(t) = t (λeλtV ) + eλtV + λeλtW = (λt + 1)eλtV +
λeλtW and, because (6.8.2) implies that AW = V + λW ,

AX = A(teλtV + eλtW) = teλt (AV ) + eλt (AW) = teλt (λV ) + eλt (V + λW)

= (λt + 1)eλtV + λeλtW.

Thus, Ẋ = AX—that is, (6.8.1) defines a solution of the system.
Next, we must solve Eq. (6.8.2) for W , and then we can write the general solution

of the system as

X(t) = c1e
λtV + c2

[
teλtV + eλtW

]
. (6.8.3)

(The theory of linear algebra shows that we can always solve for W in Eq. (6.8.2) if
V is an eigenvector of A corresponding to eigenvalue λ.)

Now let’s look at an example in which we have equal nonzero eigenvalues, but
only one distinct representative eigenvector.

Example 6.8.2 Equal Nonzero Eigenvalues, Only One Distinct Eigenvec-
tor
Consider the system ẋ = −2x + y, ẏ = −2y. We can write this in matrix form as Ẋ = AX,

where A =
[−2 1

0 −2

]
. The characteristic polynomial of A is λ2 + 4λ + 4 = (λ + 2)2, so λ = −2

is a repeated root. Then the matrix equation AV = λV = −2V is equivalent to the system
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−2x + y = −2x

−2y = −2y,

or

y = 0

−2y = −2y.

From this we see that any eigenvector

[
x

y

]
must have the form

[
x

0

]
= x

[
1
0

]
for arbitrary values

of x. Therefore we can take V =
[

1
0

]
as the only independent eigenvector that corresponds to the

eigenvalue −2. Now we must find a vector W =
[
r

s

]
satisfying (A − λI)W = V .

In our problem, (A − λI)W = V becomes

{[−2 1
0 −2

]
− (−2)

[
1 0
0 1

]}[
r

s

]
=
[

1
0

]
,

{[−2 1
0 −2

]
+
[

2 0
0 2

]}[
r

s

]
=
[

1
0

]
,

or [
0 1
0 0

][
r

s

]
=
[

1
0

]
,

which is equivalent to the algebraic system

0 · r + 1 · s = 1

0 · r + 0 · s = 0.

This tells us that s = 1 and r is a “free variable”—that is, r is completely arbitrary. For convenience,

let r = 0 so that our generalized eigenvector is W =
[

0
1

]
. Finally, we can write the general solution

of our system in the form (6.8.3):

X(t) = c1e−2t

[
1
0

]
+ c2

[
te−2t

[
1
0

]
+ e−2t

[
0
1

]]

=
[
c1e−2t + c2te−2t

c2e−2t

]
.

Fig. 6.23, generated by a CAS, shows that the trajectories spiral in toward the origin, in such

a way that they are tangent to the eigenvector V =
[

1
0

]
or its negative at the origin. (Note that the

vector V is part of the positive x-axis.)

Whenever we have a system with equal nonzero eigenvalues but only one distinct
eigenvector, the phase portrait will consist of spirals approaching the origin when the
repeated eigenvalue is negative, and the phase portrait will consist of spirals moving
outward if the eigenvalue is positive. A negative eigenvalue makes the origin a spiral
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FIGURE 6.23

Trajectories for the system ẋ = −2x + y, ẏ = −2y

sink; a positive eigenvalue makes the origin a spiral source. Furthermore, if the
eigenvalue is negative, the slopes of all trajectories not on the line determined by
the one eigenvector approach the slope of this line as t → ∞. A positive eigenvalue
indicates that the slopes of all trajectories not on the line determined by the one
eigenvector approach the slope of this line as t → −∞. (Problem 14 in Exercises 6.8
asks for a proof of these two statements.)

6.8.3 Both eigenvalues zero
Finally, let’s assume that λ1 = λ2 = 0. If there are two linearly independent eigenvec-
tors V1 and V2, then the general solution is X(t) = c1e

0·tV1 +c2e
0·tV2 = c1V1 +c2V2,

a single vector of constants. If there is only one linearly independent eigenvector V

corresponding to the eigenvalue 0, then we can find a generalized eigenvector and
use formula (6.8.3):

X(t) = c1e
λtV + c2

[
teλtV + eλtW

]
.

For λ = 0, we get X(t) = c1V +c2[tV +W ] = (c1 +c2t)V +c2W . In Exercise 15
you will investigate a system that has both eigenvalues zero.

Exercises 6.8
A
For each of the Systems 1–8, (a) find the eigenvalues and their corresponding lin-
early independent eigenvectors and (b) sketch/plot a few trajectories and show the
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position(s) of the eigenvector(s) if they do not have complex entries. Do part (a)
manually, but if the eigenvalues are irrational numbers, you may use technology to
find the corresponding eigenvectors.

1. ẋ = 3x, ẏ = 3y

2. ẋ = −4x, ẏ = x − 4y

3. ẋ = 2x + y, ẏ = 4y − x

4. ẋ = 3x − y, ẏ = 4x − y

5. ẋ = 2y − 3x, ẏ = y − 2x

6. ẋ = 5x + 3y, ẏ = −3x − y

7. ẋ = −3x − y, ẏ = x − y

8. ẋ = √
2x + 5y, ẏ = √

2y

B

9. Given a characteristic polynomial λ2 + αλ + β, what condition on α and β

guarantees that there is a repeated eigenvalue?

10. Let A =
[
a b

c d

]
. Show that A has only one eigenvalue if and only if

[trace (A)]2 − 4 det(A) = 0.

11. Write a system of first-order linear equations for which (0,0) is a sink with
eigenvalues λ1 = −2 and λ2 = −2.

12. Write a system of first-order linear equations for which (0,0) is a source with
eigenvalues λ1 = 3 and λ2 = 3.

13. Show that if V is an eigenvector of a 2 × 2 matrix A corresponding to eigen-
value λ and vector W is a solution of (A − λI)W = V , then V and W are
linearly independent. [See Eqs. (6.8.2)–(6.8.3).] [Hint: Suppose that W = cV

for some scalar c. Then show that V must be the zero vector.]

14. Suppose that a system Ẋ = AX has only one eigenvalue λ, and that every
eigenvector is a scalar multiple of one fixed eigenvector, V . Then Eq. (6.8.3)
tells us that any trajectory has the form X(t) = c1e

λtV +c2
[
teλtV + eλtW

]=
teλt

[
1
t
(c1V + W) + c2V

]
.

a. If λ < 0, show that the slope of X(t) approaches the slope of the line
determined by V as t → ∞. [Hint: e−λt

t
X(t), as a scalar multiple of X(t),

is parallel to X(t).]

b. If λ < 0, show that the slope of X(t) approaches the slope of the line
determined by V as t → −∞.

15. Consider the system ẋ = 6x + 4y, ẏ = −9x − 6y.
a. Show that the only eigenvalue of the system is 0.

b. Find the single independent eigenvector V corresponding to λ = 0.
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c. Show that every trajectory of this system is a straight line parallel to V ,
with trajectories on opposite sides of V moving in opposite directions.
[Hint: First, for any trajectory not on the line determined by V , look at its
slope, dy/dx.]

16. If {ẋ = ax +by, ẏ = cx +dy} is a system with a double eigenvalue and a 
= d ,
show that the general solution of the system is

c1e
λt

[
2b

d − a

]
+ c2e

λt

(
t

[
2b

d − a

]
+
[

0
2

])
,

where λ = (a + d)/2.

C

17. Prove that c1e
λt

[
1
0

]
+ c2e

λt

[
t

1

]
is the general solution of Ẋ = AX, where

A =
[
λ 1
0 λ

]
.

18. Suppose the matrix A has repeated real eigenvalues λ and there is a pair of

linearly independent eigenvectors associated with A. Prove that A =
[
λ 0
0 λ

]
.

19. A special case of the Cayley–Hamilton Theorem states that if λ2 + αλ +
β = 0 is the characteristic equation of a matrix A, then A2 + αA + βI is the
zero matrix. (We say that a 2 × 2 matrix always satisfies its own characteristic
equation.) Using this result, show that if a 2×2 matrix A has a repeated eigen-

value λ and V =
[
x

y

]

= 0 (the zero vector), then either V is an eigenvector of

A or else (A − λI)V is an eigenvector of A. [See Appendix B.3 if you are not
familiar with matrix-matrix multiplication.]

6.9 The stability of homogeneous linear systems: complex
eigenvalues

6.9.1 Complex eigenvalues and complex eigenvectors
Now let’s examine what occurs when the matrix A in the system Ẋ = AX has
complex eigenvalues. As we’ve already stated, any complex root λ of the quadratic
characteristic equation λ2 − (a + d)λ + (ad − bc) = 0 must occur as part of a com-
plex conjugate pair: λ = p ± qi. As we’ll see, the behavior of trajectories in the
case of complex eigenvalues depends on the real part, p, of the complex eigenvalues.
When the eigenvalues of a matrix are complex numbers the eigenvectors will also
have complex entries (see Appendix C.1), and therefore the algebra of the situation
will be slightly more complicated.
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The most important point to realize is that when A has complex eigenvalues
the general solution of Ẋ = AX has the same form as (6.7.1), X(t) = c 1e

λ1tV1 +
c2e

λ2tV2. In other words, the Superposition Principle holds, but we have to deal with
the fact that this formula will produce vectors whose elements are complex. For ex-
ample, in the context of the general solution formula, the phrase “multiplying by a
scalar” refers to multiplying vectors (whose entries may be complex numbers) by
complex numbers.

Fortunately, there are some useful results that aid us in our work with complex
eigenvalues and eigenvectors:

1. It is crucial to recall Euler’s formula, which we saw in Section 4.1:

ep+qi = ep(cos(q) + i sin(q)).

This result will be useful in simplifying complex-valued expressions and will
show us how to obtain real-valued solutions of Ẋ = AX.

2. Another important fact is that eigenvectors corresponding to complex conjugate
eigenvalues are conjugate to each other. If the eigenvalue λ1 = p + qi has a

corresponding eigenvector V1 =
[
a1 + b1i

a2 + b2i

]
=
[
a1
a2

]
+ i

[
b1

b2

]
= U + iW , then

λ2 = λ1 = p − qi has a corresponding eigenvector V2 = V 1 =
[
a1 + b1i

a2 + b2i

]
=[

a1 − b1i

a2 − b2i

]
=
[
a1
a2

]
− i

[
b1

b2

]
= U − iW . The proof of this result follows from the

properties of the conjugate: Suppose that AV1 = λ1V1. Then (AV1) = (λ1V1), so
AV 1 = λ1V 1, or (because all elements of A are real) AV 1 = λ1V 1 = λ2V 1. That
is, V 1 is an eigenvector corresponding to λ2 = λ1.

To see how valuable results 1 and 2 are, let’s suppose that λ = p + qi is an eigen-
value of the matrix A and that V = U + iW is a corresponding eigenvector. If we
define X(t) = eλtV , then AX = A

(
eλtV

) = eλt (AV ) = eλt (λV ) = λeλtV = Ẋ, so
X(t) is a solution of Ẋ = AX. Using Euler’s formula and the properties of complex
multiplication (see Section C.1), we have

X(t) = eλtV = e(p+qi)tV = ept (cosqt + i sinqt)(U + iW)

= ept {(cosqt)U − (sinqt)W } + iept {(cosqt)W + (sinqt)U} .

Then the real part and the imaginary part of X(t) can be considered separately:

X1(t) = Re {X(t)} = ept {(cosqt)U − (sinqt)W }
X2(t) = Im {X(t)} = ept {(cosqt)W + (sinqt)U} .

The important observation here is that X1(t) and X2(t) are real-valued linearly in-
dependent solutions of the system Ẋ = AX. (Problem 13 in Exercises 6.9 asks for a
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proof that the same two solutions result from taking the real and imaginary parts of
eλtV .)

We will justify this observation for the real part of X(t), leaving the proof for the

imaginary part as Problem 14 in Exercises 6.9. First we write XR = Re {X(t)} = X+X
2

(see Section C.1 if necessary). Then

AXR = A

(
X + X

2

)
= 1

2A
(
X + X

)= 1
2

(
AX + AX

)
= 1

2

(
Ẋ + (AX)

)
= 1

2

(
Ẋ + Ẋ

)
= Re(Ẋ) = (Ẋ)R = ˙︷︸︸︷

(XR).

Now the Superposition Principle tells us that c1X1(t)+c2X2(t) is also a solution—in
fact, it is the general solution of the system. The proofs of this last fact in Section 6.7
are valid here. We can take the scalars c1 and c2 to be real numbers.

Let’s see how to work with the complexities (pun intended) of a system with
complex eigenvalues.

Example 6.9.1 A System with Complex Eigenvalues
As a first example of working with complex eigenvalues and eigenvectors, let’s look at the equation
d2θ

dt2 + k2 sin θ = 0, which describes the motion of an undamped pendulum. Here, θ is the angle the

pendulum makes with the vertical, and k2 = g
L

, where g is the acceleration due to gravity and L

is the length of the pendulum. This famous equation is nonlinear and will be treated fully in Sec-

tion 7.5, but for small angles θ, sin θ ≈ θ , so we can consider the linearized equation d2θ

dt2 +k2θ = 0.
The system form of the linear pendulum equation has complex eigenvalues.

First, we convert the linearized pendulum equation to a system (see Problem 16 of Exercises 6.4
for the nonlinear case). Letting x = θ and y = dθ

dt
= dx

dt
, we convert our linear second-order homo-

geneous equation into the system dx
dt

= y, dy
dt

= −k2x. (Be sure that you remember how to carry
out this conversion.)

In matrix form, we have the system d
dt

[
x

y

]
=
[

0 1

−k2 0

][
x

y

]
, with characteristic equation λ2 +

k2 = 0 and complex conjugate eigenvalues λ1 = ki and λ2 = −ki. (Verify all the statements in the

preceding sentence.) The equation AV = λ1V has the form

[
0 1

−k2 0

][
x

y

]
= ki

[
x

y

]
=
[
kix

kiy

]
,

which is equivalent to the algebraic system

y = kix

−k2x = kiy.

Because the second equation is just ki times the first, we see that we can take x as arbitrary and y =
kix, which gives us the eigenvector V =

[
x

kix

]
= x

[
1
ki

]
. Letting x = 1, we get the representative

eigenvector

V1 =
[

1
ki

]
=
[

1
0

]
+ i

[
0
k

]
.
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From the discussion preceding this example, we realize that we don’t have to worry about the second
(conjugate) eigenvalue and its associated eigenvector. The general solution of our original equation
and its system version can be obtained from the information we already have. We start with the
solution

X̂(t) = ekit

([
1
0

]
+ i

[
0
k

])
= (coskt + i sinkt)

([
1
0

]
+ i

[
0
k

])

=
(

(coskt)

[
1
0

]
− (sinkt)

[
0
k

])
+ i

(
(coskt)

[
0
k

]
+ (sinkt)

[
1
0

])
.

Because the real and imaginary parts of the preceding expression are linearly independent solutions
of the system, the general solution is given by

X(t) = c1

(
(coskt)

[
1
0

]
− (sinkt)

[
0
k

])
+ c2

(
(coskt)

[
0
k

]
+ (sin kt)

[
1
0

])

= c1

[
coskt

−k sinkt

]
+ c2

[
sinkt

k coskt

]
=
[

c1 coskt + c2 sinkt

−kc1 sinkt + kc2 coskt

]
.

Fig. 6.24 shows some trajectories for this system when k = 1. These curves are circles centered
at the origin. We say that the origin is a center for the system. You should try to generate your own
phase portrait by choosing different values of k and various initial points for each value of k.

FIGURE 6.24

Trajectories for the system dx
dt

= y, dy
dt

= −x, 0 ≤ t ≤ 7. Initial points: (x(0), y(0)) = (1,0),
(0.5,0), (0,0.8)
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The next example provides a more challenging problem algebraically.

Example 6.9.2 A System with Complex Eigenvalues
According to Kirchhoff’s Second Law, an electric circuit with resistance of 2 ohm, capacitance of
0.5 farad, inductance of 1 henry, and no driving electromotive force can be modeled by the second-
order linear equation Q̈ + 2Q̇ + 2Q = 0, where Q = Q(t) is the charge on the capacitor at time t .
If Q(0) = 1 and Q̇(0) = 0, we want to determine the charge on the capacitor at time t ≥ 0.

We write our second-order equation as a system of first-order equations by introducing new
variables: Let x = Q and y = ẋ = Q̇, so ẏ = Q̈ = −2Q − 2Q̇ = −2x − 2y. Then the original
second-order equation is equivalent to the system

ẋ = y

ẏ = −2x − 2y,

which can be written in matrix form as Ẋ =
[

0 1
−2 −2

][
x

y

]
. The matrix of coefficients has char-

acteristic equation λ2 + 2λ + 2 = 0, with roots −1 + i and −1 − i. Working with the first of these
eigenvalues, we see that any eigenvector must satisfy the matrix equation[

0 1
−2 −2

][
x

y

]
= (−1 + i)

[
x

y

]
,

which is equivalent to the equations

y = −x + ix

−2x − 2y = −y + iy.

Substituting the first equation in the second equation, we get

−2x − 2[−x + ix] = −[−x + ix] + i[−x + ix]
−2x + 2x − 2ix = x − ix − ix − x (remembering that t2 = −1)

−2ix = −2ix.

The preceding equation, an identity, says that any value of x will be a solution. If we choose x = 1
for convenience, then the first equation gives us y = −1 + i, so the representative eigenvector is

V1 =
[

1
i − 1

]
=
[

1
−1

]
+ i ·

[
0
1

]
= U + iW.

As in the previous example, we work with the solution provided by one of the complex conjugate
eigenvalues and its representative eigenvector:

X̂(t) = e(−1+i)t

([
1

−1

]
+ i

[
0
1

])
= e−t (cos t + i sin t)

([
1

−1

]
+ i

[
0
1

])

= e−t

(
(cos t)

[
1

−1

]
− (sin t)

[
0
1

])
+ ie−t

(
(cos t)

[
0
1

]
+ (sin t)

[
1

−1

])
.

Extracting the real and imaginary parts of this last complex-valued expression, we express the gen-
eral solution as

X(t) = c1e−t

(
(cos t)

[
1

−1

]
− (sin t)

[
0
1

])
+ c2e−t

(
(cos t)

[
0
1

]
+ (sin t)

[
1

−1

])
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= c1

[
e−t cos t

−e−t cos t − e−t sin t

]
+ c2

[
e−t sin t

e−t cos t − e−t sin t

]

= e−t

[
c1 cos t + c2 sin t

(c2 − c1) cos t − (c2 + c1) sin t

]
=
[
x(t)

y(t)

]
.

Now, using the initial conditions x(0) = Q(0) = 1 and y(0) = Q̇(0) = 0 in the general solution

just given, we get the condition

[
c1

c2 − c1

]
=
[

1
0

]
, which implies that c1 = 1 and c2 = 1. Thus the

solution of our original IVP is Q(t) = x(t) = e−t (cos t + sin t). (See Fig. 6.25.) Because the current,
I , is defined as the rate of change of Q, we get a bonus: I (t) = Q̇(t) = y(t) = −2e−t sin t .

FIGURE 6.25

Graph of x(t) = e−t (cos t + sin t), 0 ≤ t ≤ 6

As satisfying as this analytical solution may be, a natural question is what the trajectories for
this system look like. Fig. 6.26 shows five trajectories, corresponding to different initial conditions.
The trajectory for the IVP we started with is second from the bottom.

Note that in Fig. 6.26 the trajectories are spirals moving toward the equilibrium
solution, the origin. We say that the origin is a spiral sink. If we examine the gen-
eral solution, we can see why the trajectories behave this way. First of all, there
is no straight-line direction along which the trajectories approach the origin. In the
preceding example, the expressions for both x(t) and y(t) have trigonometric terms
that contribute oscillations, movements back and forth across the x-axis. But in ad-
dition, each entry of the general solution has a factor of e−t , which dampens these
oscillations for positive values of t . Thus, as t increases in a positive direction, the
amplitudes of these oscillations tend to 0. A look at Euler’s formula explains the
existence of this decaying exponential: The real part, p, of the eigenvalue pair is neg-
ative. Fig. 6.25 shows a plot of x against t for the particular solution with x(0) = 1
and y(0) = 0. The graph of y against t is similar.

As we’ll see in some of the exercises following this section, if the eigenvalues are
p ±qi and p > 0, then we get spirals that wind away from (0,0) as t increases. Here,
we say that the origin is a spiral source. This corresponds to oscillatory solutions
with increasing amplitudes and describes resonance. (See Example 4.3.4, especially
Fig. 4.3.)
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FIGURE 6.26

Trajectories for the system ẋ = y, ẏ = −2x − 2y, −0.3 ≤ t ≤ 4. Initial conditions:
(x(0), y(0)) = (1,0), (0.5,0), (0,0.8), (0,1), (0.5,−0.8)

Table 6.2 Summary of Stability Criteria for Two-Dimensional Linear Systems

Eigenvalues Stability References
REAL
Unequal
Both > 0 Unstable node (source, repeller) Examples 6.6.4 and 6.7.1
Both < 0 Stable node (sink, attractor) Examples 6.6.2 and 6.7.2
Different signs Saddle point Examples 6.6.1, 6.6.3, and

6.7.3
One = 0, the other 
= 0 Whole line of equilibrium points Example 6.7.4 and Problem 21

of Exercises 6.7
Equal
Both > 0 Unstable node (source, repeller) Example 6.8.1
Both < 0 Stable node (sink, attractor) Example 6.8.2
Both = 0 “Algebraically unstable” Problem 15 of Exercises 6.8
COMPLEX
Real part > 0 Spiral source (unstable spiral,

repeller)
Example 6.6.5

Real part < 0 Spiral sink (stable spiral) Example 6.9.2
Real part = 0 Center (neutral center, stable

center)
Example 6.9.1

The case where p = 0, so that we have pure imaginary eigenvalues, is interesting.
Now the trajectories are closed, nonintersecting curves that encircle the origin. This
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corresponds to the situation in which we have undamped oscillations. (See Exam-
ple 6.9.1, especially Fig. 6.24.)

Now let’s stand back and summarize all these cases. Table 6.2 categorizes the
stability of two-dimensional homogeneous autonomous systems, referring to relevant
examples or exercises.

Exercises 6.9
A
For each of the Systems 1–10, (a) find the eigenvalues and their corresponding
eigenvectors and (b) sketch/plot a few trajectories and show the position(s) of the
eigenvector(s) if they do not have complex entries.

1. ṙ = −r − 2s, ṡ = 2r − s

2. ẋ = 3x − 2y, ẏ = 2x + 3y

3. ẋ = −0.5x − y, ẏ = x − 0.5y

4. ẋ = x + y, ẏ = −3x − y

5. ẋ = 2x + y, ẏ = −3x − y

6. ẋ = x + 2y, ẏ = −5x − y

7. ẋ = y − 7x, ẏ = −2x − 5y

8. ẋ = x − 3y, ẏ = 3x + y

9. ẋ = 6x − y, ẏ = 5x + 4y

10. ẋ + x + 5y = 0, ẏ − x − y = 0

B
11. Write systems of first-order linear equations whose trajectories show the fol-

lowing behaviors:
a. (0,0) is a spiral source with eigenvalues λ1 = 2 + 2i and λ2 = 2 − 2i.

b. (0,0) is a stable center with eigenvalues λ1 = −3i and λ2 = 3i.

c. (0,0) is a spiral sink with eigenvalues λ1 = −1 + 2i and λ2 = −1 − 2i.

12. Consider the system

ẋ = y

ẏ = −x − βy,

where β is a parameter.
a. Using technology to draw trajectories, examine the stability of the equi-

librium solution for β = −1,−0.1,0,0.1, and 1.

b. Does there seem to be a bifurcation point—that is, a critical value of β at
which the stability changes its nature? (Review Section 2.7.)
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c. Find a formula for the eigenvalues of the system, showing their depen-
dence on β.

d. Relate the information found in part (c) to the stability summary in Ta-
ble 6.2 and answer the question in part (b) with increased confidence.

13. If λ is a complex eigenvalue of matrix A,V = U + iW is a corresponding
eigenvector, and X(t) = eλtV , then we have seen that

X1(t) = Re{X(t)} = ept {(cosqt)U − (sinqt)W }
X2(t) = Im{X(t)} = ept {(cosqt)W + (sinqt)U}

are real-valued linearly independent solutions of the system Ẋ = AX. Show
that the same two solutions can be obtained by taking the real and imagi-
nary parts of eλtV . (Thus the second term of the familiar solution formula
c1e

λ1tV1 + c2e
λ2tV2 = c1e

λ1tV1 + c2e
λ1tV 1 is unnecessary.)

14. Show that if X(t) is a complex-valued solution of the system Ẋ = AX, then

so is XI = Im(X) = X−X
2i

, the imaginary part of X(t).

15. The following two-loop electrical circuit illustration can be modeled by the
system

di1

dt
= −

(
R1 + R2

L

)
i1 + R2

L
i2

di2

dt
= −

(
R1 + R2

L

)
i1 +

(
R2

L
− 1

R2C

)
i2.

Using eigenvalues and eigenvectors, solve the IVP i1(0) = 1, i2(0) = 0, when
R1 = R2 = 1, L = 1, and C = 3. (Use technology to find the eigenvectors.)

16. The equation P̈ + λ(b − a)P = λ(α − β) is a “cobweb model with stocks
(inventory)” used in economic theory to describe the price P of goods under
certain circumstances. Here a, b,α, and β are constants with a < 0, b > 0,
λ > 0.
a. Determine the equilibrium solution P of the equation.

b. Letting p = P − P , find the second-order equation satisfied by p.

c. Solve the equation found in part (b) for p.

d. Express P in terms of P and p and describe the behavior of P .
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C

17. In Section 6.7.2, we proved the result that the eigenvectors corresponding to
distinct eigenvalues are linearly independent. Use this result to show that the
real and imaginary parts of complex eigenvectors are linearly independent.

18. The change in the amounts x and y of two substances that enter a certain
chemical reaction can be described by the IVP

ẋ = −3x + αy, ẏ = βx − 2y;x(0) = y(0) = 1,

where α and β are two parameters that depend on the conditions of reaction
(temperature, humidity, etc.). Are there values of α and β for which the solu-
tion of the IVP is a periodic function of time?

6.10 Nonhomogeneous systems
6.10.1 The general solution
The linear systems we have been dealing with so far are called homogeneous sys-
tems. Basically, this means that they can be expressed in the form Ẋ = AX with no
“leftover” terms. If a linear system has to be written as Ẋ = AX + B (t), where B(t)

is a vector of the form

[
b1(t)

b2(t)

]
, then we say that the system is nonhomogeneous. For

example, in matrix terms, the system dx
dt

= x + sin t,
dy
dt

= t − y must be written as[
ẋ(t)

ẏ(t)

]
=
[

1 0
0 −1

][
x

y

]
+
[

sin t

t

]
and so is nonhomogeneous.

Don’t confuse the distinction between autonomous and nonautonomous with that
between homogeneous and nonhomogeneous. For example, if b1(t) and b2(t) are
constant functions (not both zero), then we have a system that is both autonomous
and nonhomogeneous. (See, e.g., Example 6.4.3.)

The techniques that were introduced in Section 4.2 for second-order nonhomo-
geneous equations generalize to systems, but the calculations are more complicated.
To get a handle on solving a nonhomogeneous linear system, we need a fundamental
fact about linear systems:

The general solution, XGNH, of a linear nonhomogeneous system is obtained by finding a particular
solution, XPNH, of the nonhomogeneous system and adding it to the general solution, XGH, of the
associated homogeneous system.

You should see this as an application of the Superposition Principle and as an
extension of the result we saw for single linear differential equations (Section 4.2).
Symbolically, we can write XGNH = XGH + XPNH. Using the definitions of these
terms, we can see that this sum of vectors is a solution of the nonhomogeneous sys-
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tem:

ẊGNH = ẊGH + ẊPNH = AXGH + {AXPNH + B(t)}
= A(XGH + XPNH) + B(t) = AXGNH + B(t).

(Be sure you follow this.) You should see that XGH, as a general solution, must contain
two arbitrary constants, so the expression for XGNH contains two arbitrary constants.

Let’s look at a simple example showing the structure of a nonhomogeneous sys-
tem’s solution.

Example 6.10.1 The Solution of a Nonhomogeneous System
The system

ẋ = x + y + 2e−t

ẏ = 4x + y + 4e−t

can be written in the form Ẋ(t) =
[

1 1
4 1

]
X +

[
2e−t

4e−t

]
=
[

1 1
4 1

]
X + 2e−t

[
1
2

]
. The system

has eigenvalues λ1 = 3 and λ2 = −1, with corresponding eigenvectors V1 =
[

1
2

]
and V2 =

[
1

−2

]
.

(Check this.) Then the general solution of the associated homogeneous system Ẋ(t) =
[

1 1
4 1

]
X is

XGH = c1e3t

[
1
2

]
+ c2e−t

[
1

−2

]
.

We need to verify that a particular solution of the original nonhomogeneous system is given by

XPNH = e−t

[
0

−2

]
=
[

0

−2e−t

]
. Therefore, the general solution of the nonhomogeneous system is

XGNH = XGH + XPNH = c1e3t

[
1
2

]
+ c2e−t

[
1

−2

]
+
[

0

−2e−t

]

=
[

c1e3t + c2e−t

2c1e3t − 2c2e−t − 2e−t

]
.

(Check that this is the general solution of the original nonhomogeneous system.)

6.10.2 The method of undetermined coefficients
The challenge in working with a nonhomogeneous system is to find a particular so-
lution of the nonhomogeneous system. There are various techniques for finding a
particular solution. We can use the variation of parameters technique seen in Sec-
tion 4.4, but for systems the calculations involved are very tedious. Therefore, we’ll
restrict our attention to the method of undetermined coefficients (Section 4.3), which
is not as powerful, but is easier to use. As we saw in Section 4.3 and Section 4.4,
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this method requires intelligent guessing. We have to ask ourselves what terms are
contained in B(t) but not in XGH, and then guess at the form of XPNH on the basis of
this information.

We should note that this method of undetermined coefficients can be used only

when the vector B(t) =
[
b1(t)

b2(t)

]
contains terms that are constants, exponential func-

tions, sines, cosines, polynomials, or any sum or product of such terms. For other
kinds of functions making up B(t),XPNH must be found using some other technique
(for example, variation of parameters).

The next example illustrates the method with its resulting algebraic complexities.

Example 6.10.2 Using the Method of Undetermined Coefficients
Let’s consider the system dx

dt
= x + sin t , dy

dt
= t − y that we discussed at the beginning of this

section. We have Ẋ = AX + B(t), where A =
[

1 0
0 −1

]
and B(t) =

[
sin t

t

]
= sin t

[
1
0

]
+ t

[
0
1

]
.

The eigenvalues of A are 1 and −1, with corresponding eigenvectors

[
1
0

]
and

[
0
1

]
.

Thus, the general solution of the homogeneous system can be written as

XGH = c1et

[
1
0

]
+ c2e−t

[
0
1

]
.

(Verify the statements in this paragraph for yourself.)
Now we look for a particular solution of the original nonhomogeneous equation. First, we com-

pare the terms of B(t) with the terms of XGH to see whether there is any duplication. In this case,
we see that the terms sin t and t are not terms that can be obtained just from XGH. Because our
system is equivalent to a single second-order differential equation, we realize that we have to find a
function that can combine with its own first and second derivatives to yield B(t). We take a guess
that XPNH must look like C sin t +D cos t +Et +F , where C,D,E, and F are vectors of constants.
Our trial solution for XPNH consists of a linear combination of the functions sin t and t and their
derivatives—a linear combination with undetermined coefficients.

Let’s substitute our guess into the nonhomogeneous system:

ẊPNH︷ ︸︸ ︷
C cos t − D sin t + E = A

⎛
⎜⎝

XPNH︷ ︸︸ ︷
C sin t + D cos t + Et + F

⎞
⎟⎠+

B(t)︷ ︸︸ ︷
sin t

[
1
0

]
+ t

[
0
1

]

= AC sin t + AD cos t + AEt + AF + sin t

[
1
0

]
+ t

[
0
1

]
.

When we collect like terms, matching the coefficients of functions on each side, we get the following
system:

(1) C = AD [The coefficients of cos t must be equal.]

(2) −D = AC +
[

1
0

]
[The coefficients of sin t must be equal.]
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(3) 0 = AE +
[

0
1

]
[The coefficients of t must be equal.]

(4) E = AF [The constant terms must be equal.]

Remembering that A =
[

1 0
0 −1

]
, we can solve Eq. (3) for E:

AE = −
[

0
1

]
=
[

0
−1

]
, or

[
1 0
0 −1

][
e1
e2

]
=
[

0
−1

]
,

so e1 = 0 and e2 = 1. (Check this.) Now that we know E, we can use Eq. (4) to find F :

[
0
1

]
=
[

1 0
0 −1

][
f1
f2

]
,

so f1 = 0 and f2 = −1.
If we multiply both sides of (1) by A, we get AC = A2D = D (because A2 = I , the 2 × 2

identity matrix), which we can substitute into Eq. (2): −D = D +
[

1
0

]
, or

[−1
0

]
= 2D =

[
2d1
2d2

]
,

so d1 = − 1
2 and d2 = 0. (Make sure you follow all this.) Finally, we solve (1) for C:

[
c1
c2

]
=[

1 0
0 −1

][−1/2
0

]
, so c1 = − 1

2 and c2 = 0.

We have determined all the coefficients. Putting the pieces together, we have

XPNH =
[−1/2

0

]
sin t +

[−1/2
0

]
cos t +

[
0
1

]
t +

[
0

−1

]
=
[
− 1

2 (sin t + cos t)

t − 1

]
,

and we finally obtain

XGNH = XGH + XPNH

= c1et

[
1
0

]
+ c2e−t

[
0
1

]
+
[
− 1

2 (sin t + cos t)

t − 1

]
=
[
c1et − 1

2 (sin t + cos t)

t − 1 + c2e−t

]

as the general solution of the original nonhomogeneous equation.
Note that the system in this example is uncoupled—that is, each equation contains only one

unknown function. Problem 17 in Exercises 6.10 asks you to solve each equation separately to
obtain the same answer as the one shown here.

Practice in the technique of undetermined coefficients leads to a more systematic
way of guessing a possible solution of the nonhomogeneous system. The second col-
umn of Table 6.3 indicates the component of XPNH that corresponds to the matching
component bi(t) of B(t). If bi(t) is a sum of different functions, then it is a conse-
quence of the Superposition Principle that the matching component of XPNH is a sum
of trial solutions.

There is an exception to the neatness of the table. If bi(t) contains terms that du-
plicate any corresponding parts of XGH, then each corresponding trial term must be
multiplied by tm, where m is the smallest positive integer that eliminates the duplica-
tion.
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Table 6.3 Trial Particular Solutions for Nonhomogeneous Systems

bi(t) Form of Trial Solution
c 
= 0, a constant K, a constant
Pn(t) = ant

n + an−1t
n−1 + · · · + a1t + a0 Qn(t) = cnt

n + cn−1t
n−1 + · · · + c1t + c0

ceat Keat

a cos rt + b sin rt α cos rt + β sin rt

eRt (a cos rt + b sin rt) eRt (α cos rt + β sin rt)

Pn(t)e
at Qn(t)e

at

In Example 6.10.2, we had b1(t) = sin t and b2(t) = t—a trigonometric func-
tion a cos rt + b sin rt , with a = 0, r = 1, and b = 1, and a first-degree polynomial
Pn(t) = ant

n + an−1t
n−1 + · · · + a1t + a0, where n = 1, a1 = 1, and a0 = 0. There

was no duplication between XGH and B(t) because the terms making up XGH are ex-
ponential functions. Consequently, our educated guess for XPNH consisted of a linear
combination of sine and cosine plus a first-degree polynomial.

Let’s use the instant wisdom conferred by Table 6.3 to solve the next problem.

Example 6.10.3 Undetermined Coefficients
Suppose we are trying to solve the system dx

dt
= y, dy

dt
= 3y − 2x + 2t2 + 3e2t . We can write this

system as Ẋ = AX + B(t), where A =
[

0 1
−2 3

]
and B(t) =

[
0

2t2 + 3e2t

]
=
(

2t2 + 3e2t
)[0

1

]
.

The eigenvalues of A are 1 and 2, with corresponding eigenvectors

[
1
1

]
and

[
1
2

]
. (Verify this.)

We know that the general solution of the homogeneous system is given by

XGH = c1et

[
1
1

]
+ c2e2t

[
1
2

]
.

To find a particular solution of the nonhomogeneous system, we compare the terms of B(t) with the
terms of XGH to see whether there is any duplication. In this example, ignoring constants, we see
that e2t appears in both XGH and B(t). We also recognize that the term t2 in B(t) is not found in
XGH. Using Table 6.3 and the description of how to handle duplicate terms, we guess that XPNH
must look like

Ct2 + Dt + E + Fe2t + Gte2t ,

where C,D,E,F , and G are vectors of constants. Note that because there is a second-degree term,
our trial particular solution contains a full quadratic polynomial and multiplying e2t by t eliminates
the duplication.

If we substitute this guess into the nonhomogeneous system, we get

2Ct + D + 2Fe2t + Ge2t + 2Gte2t = A
(
Ct2 + Dt + E + Fe2 t + Gte2t

)
+
(

2t2 + 3e2t
)[0

1

]

= ACt2 + ADt + AE + AFe2t + AGte2t +
(

2t2 + 3e2t
)[0

1

]
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=
(

AC +
[

0
2

])
t2 + ADt + AE +

(
AF +

[
0
3

])
e2t + AGte2t .

Matching the coefficients of like terms on each side, we get the system

(1) 0 = AC +
[

0
2

]
[The coefficients of t2 must be equal.]

(2) 2C = AD [The coefficients of t must be equal.]
(3) D = AE [The constant terms must be equal.]

(4) 2F + G = AF +
[

0
3

]
[The coefficients of e2t must be equal.]

(5) 2G = AG [The coefficients of te2t must be equal.]
Working through these equations (see Problem 19 in Exercises 6.10), we find that

C =
[

1
0

]
,D =

[
3
2

]
,E =

[
7
2
3

]
,F =

[
0
3

]
, and G =

[
3
6

]
.

Now that we’ve determined the coefficients C,D,E,F , and G, we can construct the particular
solution of the nonhomogeneous equation.

XPNH =
[

1
0

]
t2 +

[
3
2

]
t +

[
7
2
3

]
+
[

0
3

]
e2t +

[
3
6

]
te2t .

Finally, we get the general solution of the nonhomogeneous equation:

XGNH = XGH + XPNH

= c1et

[
1
1

]
+ c2e2t

[
1
2

]
+
[

1
0

]
t2 +

[
3
2

]
t +

[
7
2
3

]
+
[

0
3

]
e2t +

[
3
6

]
te2t

=
[

c1et + c2e2t + t2 + 3t + 7
2 + 3te2t

c1et + 2c2e2t + 2t + 3 + 3e2t + 6te2t

]

=
[
c1et + (c2 + 3t) e2t + t2 + 3t + 7

2

c1et + (2c2 + 3 + 6t) e2t + 2t + 3

]
.

Of course, this means that x(t) = c1et + (c2 + 3t)e2t + t2 + 3t + 7/2 and y(t) = c1et + (2c2 + 3 +
6t)e2t + 2t + 3 are the solutions of our system. You should check to see that these functions satisfy
our original system.

When the nonhomogeneous system is also autonomous—that is, it has the form
Ẋ = AX+B(t), where the entries of B(t) are constants—we can analyze the stability
of the system’s solutions by finding the equilibrium point(s) (no longer the origin) and
considering the eigenvalues and eigenvectors of the matrix A.

Example 6.10.4 Stability of an Autonomous Nonhomogeneous System
We return to the system of Example 6.4.3:

ẋ = 7y − 4x − 13

ẏ = 2x − 5y + 11.
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To find the equilibrium point(s), we solve the algebraic system

−4x + 7y = 13

2x − 5y = −11

to find that (2,3) is the only equilibrium point. (The details in this example are left as parts of
Problem 21 in Exercises 6.10.)

We can write our system of differential equations in the form

Ẋ = AX + B(t) =
[−4 7

2 −5

][
x

y

]
+
[−13

11

]
.

Because the eigenvalues of A are λ1 =
(√

57 − 9
)

/2 and λ2 = −
(√

57 + 9
)

/2, both of which are

negative real numbers, Table 6.2 at the end of Section 6.9 tells us that the equilibrium point (2,3) is
a sink. (Go back to take another look at Fig. 6.8.)

Despite its limitations, the method of undetermined coefficients is very useful. In
Chapter 5 we saw another way of solving systems of nonhomogeneous linear equa-
tions, by means of the Laplace transform. This transform method was particularly
useful in solving IVPs.

Exercises 6.10
A

1. Find the particular solution of the system in Example 6.10.2 that satisfies
x(0) = 0, y(0) = 1.

2. Find the particular solution of the system in Example 6.10.3 that satisfies
x(0) = −1, y(0) = 2.

Without using technology, find the general solution of each of the systems in Prob-
lems 3–16. You may check your answers using a CAS.

3. ẋ = y + 2et , ẏ = x + t2

4. ẋ = y − 5 cos t , ẏ = 2x + y

5. ẋ = 3x + 2y + 4e5t , ẏ = x + 2y

6. ẋ = 3x − 4y + e−2t , ẏ = x − 2y − 3e−2t

7. ẋ = 4x + y − e2t , ẏ = y − 2x [Hint: Multiples of both e2t and te2t should
appear in your guess for XPNH.]

8. ẋ = 2y −x + 1, ẏ = 3y − 2x [Hint: Multiples of both et and tet should appear
in your guess forXPNH.]

9. ẋ = 5x − 3y + 2e3t , ẏ = x + y + 5e−t

10. ẋ = x + y + 1 + et , ẏ = 3x − y

11. ẋ = 2x − y, ẏ = 2y − x − 5et sin t

12. ẋ = x + 2y, ẏ = x − 5 sin t
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13. ẋ = y, ẏ = −2x − 3y + sin t + et

14. ẋ = −2x + y + 2e−t , ẏ = x − 2y + 3t

15. ẋ = x + y + et , ẏ = y + e−t

16. ẋ = x + y + t − 2, ẏ = 4x + y + 4t − 1

B
17. Consider each equation in Example 6.10.2 as a first-order linear equation and

solve each equation separately, confirming that you get the same answer as in
the worked-out example. (You may want to review Section 2.2 and the tech-
nique of integration by parts.)

18. a. Use technology to draw the phase portrait for the system in Exam-
ple 6.10.2.

b. Draw a graph of x(t) vs. t .

c. Draw a graph of y(t) vs. t .

19. Assume that you have Eqs. (1)–(5) in Example 6.10.3. Let C =
[
c1
c2

]
, D =[

d1

d2

]
, etc. Solve for the vectors C,D,E,F , and G in the following order:

a. Use Eq. (1) to show that C =
[

1
0

]
.

b. Use Eq. (2) to show that D =
[

3
2

]
.

c. Use Eq. (3) to show that E =
[

7/2
3

]
.

d. Assuming that G is not the zero vector, use Eq. (5) to derive a general
form for G. (There is an arbitrary constant involved.)

e. Substitute the general form for G found in part (d) into Eq. (4) to de-
termine the concrete form of G. Then use this information to see that a

convenient form for F is

[
0
3

]
.

20. a. Use technology to draw the phase portrait for the system in Exam-
ple 6.10.3.

b. Draw the graph of x(t) vs. t , assuming that x(0) = 50.

c. Draw the graph of y(t) vs. t , assuming that y(0) = 100.

21. Look at the system in Example 6.10.4.
a. Show that the only equilibrium point is (2,3).

b. Show that the eigenvalues of the matrix of coefficients A are

λ1 =
(√

57 − 9
)

/2 and λ2 = −
(√

57 + 9
)

/2.
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c. Find eigenvectors corresponding to λ1 and λ2.

d. Express the general solution of the homogeneous system in terms of the
eigenvalues and eigenvectors found in parts (b) and (c).

e. Find a particular solution of the nonhomogeneous system.

f. Put the answers to parts (d) and (e) together to get the general solution of
the nonhomogeneous system. Then determine what happens as t → ∞.

22. Newton’s laws of motion give the following system as a model for the motion
of an object falling under the influence of gravity:

dy

dt
= v(t)

dv

dt
= g − cv(t); y(0) = 0, v(0) = 0

for 0 ≤ t ≤ T , where y(T ) = H . Here, y(t) denotes the downward distance
from the spot where the object was dropped to the place where the falling
object is at time t ; v(t) is the velocity; g is the gravitational constant; and c is
the drag coefficient, representing air resistance.
a. Without using technology, solve this nonhomogeneous system for y(t)

and v(t).

b. Find limt→∞ v(t) and interpret your answer in physical terms.

23. A cold medication moving through the body can be modeled8 by the IVP

ẋ = −k1x + I

ẏ = k1x − k2y; x(0) = 0, y(0) = 0,

where x(t) and y(t) are the amounts of medication in the gastrointestinal (GI)
tract and the bloodstream, respectively, at time t measured in hours elapsed
since the initial dosage. Here, I > 0 is the constant dosage rate and k1, k2 are
positive transfer rates (out of the GI tract and bloodstream, respectively).
a. Without using technology, solve the nonhomogeneous system for x(t) and

y(t).

b. Find limt→∞ x(t) and limt→∞ y(t).

c. Assume that the decongestant part of a continuous acting capsule (such as
Contac�) has k1 = 1.386/h and k2 = 0.1386/h and that the antihistamine
portion has k1 = 0.6931/h and k2 = 0.0231/h. Also assume that I = 1/6
(i.e., one unit per six hours). Use technology to graph x(t) against t and
y(t) against t for the decongestant on the same set of axes.

8 This model is based on the work of Edward Spitznagel of Washington University and was first commu-
nicated to me by Courtney Coleman, Harvey Mudd College.
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d. Assuming the data given in part (c), use technology to graph x(t) and y(t)

for the antihistamine on the same set of axes.

24. The buying behavior of the public toward a particular product can be modeled
by

dB

dt
= b(M − βB)

dM

dt
= a(B − αM) + cA,

where B = B(t) is the level of buying, M = M(t) is a measure of the public’s
motivation or attitude toward the product, and A = A(t) is the advertising
policy. The parameters a, b, c,α, and β are all assumed positive.
a. Show that for constant advertising (i.e., A(t) is a constant function) the

buying levels tend to a limiting value over time.

b. If α = β = 2, a = b = c = 1, B(0) = M(0) = 0, and

A(t) =
{

100 units for 0 < t < 10
0 for t > 10

determine the complete forecast for the buying behavior—that is, find
B(t) and M(t).

25. A political race between two candidates can be modeled by the system

dx

dt
= ax − by + e

dy

dt
= −cx + dy − e,

where x(t) and y(t) represent the number of supporters of the two candidates
and e > 0 denotes a gain in supporters for the first candidate based on contact
between those committed to the first candidate and those who are uncommit-
ted. The parameters a, b, c, and d are positive.
a. Determine conditions involving a, b, and e guaranteeing that dx/dt > 0.

b. Determine conditions involving c, d , and e guaranteeing that dy/dt > 0.

c. Determine conditions guaranteeing equilibrium in the system.

26. Consider a closed, two-compartment model in which the initial concentrations
of a dye are 2 mg/l in Compartment 1 and 10 mg/l in Compartment 2. The
compartments have constant volumes of 10 and 20 liters, respectively, and are
separated by a permeable membrane that allows transfer between the compart-
ments at the rate of 0.25 l/h.
a. Determine formulas for the concentrations of dye at any time t in each

compartment.
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b. Determine what happens to the concentrations in each compartment as
t → ∞.

C
27. During World War I, the English scientist F.W. Lanchester (1868–1946) de-

vised several mathematical models for the new art of aerial combat. These
models have since been extended and applied to various modern conflicts. One
model, describing the interaction of two conventional armies (as opposed to
guerrilla forces or a mixture of conventional and guerrilla forces), is given by

dx

dt
= −ay + f (t) − c

dy

dt
= −bx + g(t) − d; x(0) = α,y(0) = β,

where x(t) and y(t) represent the strengths of the opposing forces at time t ;
a and b denote nonnegative loss rates; c and d are constant noncombat losses
per day; and f (t) and g(t) denote reinforcement rates in number of combatants
per day.
a. Assuming that f (t) = k and g(t) = l (k and l are constants) during a

battle, determine the strengths of each army at time t during the battle.

b. If α > l−d
b

> 0 and β > k−c
a

> 0, determine the conditions under which
the y-force will be wiped out.

c. Assume that a = 0.006, b = 0.008, c = d = 1000, k = 6000, l = 4000,
α = 90,000, and β = 200,000, where c, d, k, and l are measured in men
per day. Use technology to graph x(t) and y(t) for 0 ≤ t ≤ 60. Then use
the graphs to determine the time t∗ when x(t∗) = y(t∗). Which side is
winning after 50 days?

28. A two-compartment model for cholesterol flow yields the following nonho-
mogeneous system:

dx

dt
= −(α + β)x + γy + K1 + K2

dy

dt
= βx − γy + K3,

where x and y denote the amounts of cholesterol in the two compartments,
β and γ represent rates at which cholesterol moves from one compartment to
the other, α represents a rate of excretion, and K1,K2,K3 denote the rates at
which cholesterol flows into the compartments.
a. Solve the system using technology for the lengthy algebraic calculations.

b. Describe the behavior of the solutions x(t) and y(t) over a long period of
time.
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*6.11 Spring-mass problems9

6.11.1 Simple harmonic motion
We have seen spring-mass problems before (for example, in the exercises in Sec-
tion 4.1). The treatment in this section represents a systematic exposition of this
important model and demonstrates the usefulness of a qualitative approach.

To start with, suppose we have a spring attached to the ceiling and a weight (mass)
hanging from the bottom of the spring, as in Fig. 6.27a.

FIGURE 6.27a

Spring-mass system, mass in the equilibrium position

If we set the mass in motion by giving it an upward or downward push, we can use
Newtonian mechanics and the qualitative analysis of systems of ODEs to investigate
the forces acting on the mass during its motion. We want to describe the state of this
system, giving the mass’s position and velocity at any time t . First, we’ll assume that
there’s no air resistance, friction, or other impeding force. The resulting situation is
called simple harmonic motion, or free undamped motion.

FIGURE 6.27b

Spring-mass system, mass displaced from the equilibrium position

9 ∗ Denotes an optional section.
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Fundamental to understanding the mass’s movement is Newton’s Second Law of
Motion, which can be stated as F = m ·a, where F is a force (or sum of forces) acting
on a body (such as the weight hanging from the spring), m is the body’s mass, and a

is the acceleration of the body. If x denotes the displacement (distance) of the mass
from its equilibrium (rest) position, where a move downward is considered a positive

displacement (Fig. 6.27b), we can write this expression for the force as m · d2x

dt2 .
Now note that if you pull down on the weight (stretching the spring in the pro-

cess), you can feel a certain tension—a tendency for the spring to pull the weight
back up. Similarly, if you push up on the weight, thereby compressing the spring,
you feel a force that tends to push the weight down. This behavior is described by
Hooke’s Law: The force F (called the restoring force) exerted by a spring, tending to
restore the weight to the equilibrium position, is proportional to the distance x of the
weight from the equilibrium position. Stated simply, force is proportional to stretch.
Mathematically, we write F = −kx, where k is a positive constant called the spring
constant. Note that if x is positive, then the restoring force is negative, whereas if x

is negative, then F is positive.
Because we are ignoring any other kind of force acting on the weight, we can

equate the two expressions for the force to get

m · d2x

dt2
= −kx,

which we can write in the form

d2x

dt2
+ βx = 0, where β = k

m
. (6.11.1)

We saw this kind of homogeneous second-order linear equation in Section 4.1, and
from our work in Section 6.1 we know how to convert this equation into an equivalent
system of first-order equations. Earlier in this section we learned how to understand
what a phase portrait is telling us. Now let’s analyze this problem qualitatively.

Example 6.11.1 A Spring-Mass System—Simple Harmonic Motion
Given the equation d2x

dt2 +βx = 0, where β = k
m , we let x1 = x and x2 = ẋ. We see that ẋ1 = ẋ = x2

and ẋ2 = ẍ = −βx (by solving the second-order equation for the second derivative) = −βx1, so we
have the two-dimensional system

ẋ1 = x2

ẋ2 = −βx1. (6.11.2)

First of all, note that x2 represents the velocity of the mass, x2 = ẋ, the rate of change of the position,
or displacement of the mass. Using the language developed in Example 6.4.2, we say that if we could
solve the System (6.11.2) for x1 and x2, then the ordered pair (x1(t), x2(t)), consisting of the mass’s
current position and velocity, would give the state of the system at time t .

Now we can look at some trajectories in the phase plane of (6.11.2)—that is, some solution
curves in the x1-x2 plane. Using initial points (x1(0), x2(0)) = (1,0), (0,1), and (2,0), Fig. 6.28
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shows what these curves look like when β = 2
5 and we take the interval 0 ≤ t ≤ 10. (You should use

technology to plot your own trajectories with different initial points and smaller ranges for t .)

FIGURE 6.28

Trajectories for
{
ẋ1 = x2, ẋ2 = − 2

5 x1

}
. Initial points (1,0), (0,1), (2,0); 0 ≤ t ≤ 10

6.11.2 Analysis
Is this the behavior expected from a bouncing mass? First of all, note that the origin is
a special point, an equilibrium solution, because both equations of our system vanish
at (x1, x2) = (0,0). Physically, this means that a mass-spring system that starts at its
equilibrium position (x(0) = 0) and has no initial push or pull (ẋ(0) = x2(0) = 0)

will remain at rest forever, which makes sense.
Now we look closely at a typical closed orbit, as one of these elliptical trajectories

is called. Assume that x1 = 0 and x2 is positive—that is, the mass is at its equilibrium
position and is given an initial tug downward. When the mass is at rest (x1 = 0) and it
is pushed or pulled in a downward direction (dx1/dt = x2 > 0), the flow moves in a
clockwise direction (note the direction of the slope field arrows), with x2 decreasing
and x1 increasing until the trajectory is at the x1-axis. Physically, this means that the
mass moves downward until the spring reaches its maximum extension (x1 is at its
most positive value), depending on how much force was applied initially to pull the
mass downward, at which time the mass has lost all its initial velocity (x2 = 0). Then
the energy stored in the spring serves to pull the mass back up toward its equilibrium
position, so that x1 is decreasing at the same time that the velocity x2 is increasing—
but in a negative direction (upward). Graphically, this is taking place in the fourth
quadrant of the phase plane. When the flow has reached the state (0, x2), where x2
is negative, the mass has reached its original position and has attained its maximum
velocity upward.
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As the trajectory takes us into the third quadrant, the mass is overshooting its
original position but is slowing down: x1 < 0 and x2 < 0. When the trajectory has
reached the point (x1,0), where x1 is negative, the spring is most compressed and the
mass is (for an instant) not moving.

As the trajectory moves through the second quadrant, the mass is headed back
toward its initial position with increasing velocity in a downward (positive) direction:
x1 < 0 and x2 > 0. Finally, the mass reaches its initial position with its initial velocity
in the positive (downward) direction—x1 = 0, x2 > 0—and the cycle begins all over
again.

This analysis seems to say that the mass will never stop, bobbing up and down
forever. This apparently nonsensical conclusion is perfectly reasonable when you
realize that a real mass-spring system is always subject to some air resistance and
some sort of friction that slows the system down and eventually forces the mass to
stop moving. Our analysis assumes no such impeding force, so the conclusion is
rational, even though the assumption is unrealistic.

6.11.3 Another view—solution curves
As we did in several of the examples in Section 6.4, we can use technology to plot
each solution of our system against t . Figs. 6.29a and 6.29b show the solution with
β = 2

5 , x1(0) = 1, and x2(0) = 1, corresponding to a spring-mass system that starts
1 unit below its equilibrium position and has been given an initial velocity of 1 in a
downward direction. We should not be surprised at the appearance of these solution
curves. The closed orbits in Fig. 6.28 reflect the periodic nature of the motion of the
mass. These motions are called oscillations. Using the methods that we saw in Sec-
tion 4.1, we can determine that when β = 2

5 the general solution of system (6.11.2)
is

x1(t) = C1

2

√
10 sin

(
1

5

√
10t

)
+ C2 cos

(
1

5

√
10t

)

x2 (t) = C1 cos

(
1

5

√
10t

)
− C2

5

√
10 sin

(
1

5

√
10t

)
,

and we can see that the explicit source of the oscillations is the trigonometric terms.
The particular system solution shown in Figs. 6.29a and 6.29b corresponds to the
initial conditions x1(0) = 1, x2(0) = 1, so C1 = C2 = 1. (Verify this.)

Remembering the discussion of the equivalence of a second-order equation and a
system in Example 6.1.1, we realize that

x1(t) = C1

2

√
10 sin

(
1

5

√
10t

)
+ C2 cos

(
1

5

√
10t

)

is the general solution of the original single differential equation d2x

dt2 +βx = 0, where

β = 2
5 . (Review Section 6.1. It happens that x2(t) = dx1/dt is also a solution, but this

is true only because the equation is homogeneous.)
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FIGURE 6.29a

x1(t), displacement; x1(0) = 1, 0 ≤ t ≤ 25

FIGURE 6.29b

x2(t), velocity; x2(0) = 1, 0 ≤ t ≤ 25

6.11.4 Free damped motion
Now let’s look at a more realistic version of a spring-mass system. This time we’ll
assume the existence of a combination of air resistance and some friction in the
spring-mass system, called a damping force, to slow the mass down. To dramatize
the situation, you may think of the mass as being immersed in a bucket of water,
oil, or maple syrup, so that any initial force imparted to the mass is opposed by a
force in the opposite direction as the mass meets resistance. The motion that results
is called free damped motion. For instance, the damping produced by automobile
shock absorbers provides a more comfortable ride.

The damping force works against the motion of the mass, so when the mass is
moving down (the positive direction), the damping force acts in an upward direc-
tion, and when the mass is moving up (the negative direction), the damping force
acts in a downward direction. In algebraic terms, this damping force’s sign must be
opposite to the sign of the direction of the velocity. For small velocities, experiments
have shown that the damping force is proportional to the velocity of the mass. We
can express the last two sentences mathematically as F = −α dx

dt
, where α is a posi-

tive constant of proportionality called the damping constant. Realizing that both the
spring’s restoring force and this damping force are opposed to the mass’s motion, we
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can use Newton’s Second Law of Motion to derive the equation

m · d2x

dt2
= −α

dx

dt
− kx,

which we can write in the form

d2x

dt2
+ b

dx

dt
+ cs = 0, where b = α

m
and c = k

m
. (6.11.3)

Now we can convert this second-order differential equation into a system and analyze
our problem qualitatively.

Example 6.11.2 A Spring-Mass System—Free Damped Motion
The second-order linear equation d2x

dt2 + b dx
dt

+ cx = 0 is equivalent to the two-dimensional system

dx1

dt
= x2

dx2

dt
= −bx2 − cx1. (6.11.4)

Phase Portrait Analysis
To understand the motion of the mass, we’ll look first at the trajectory we get when we take

b = 1
4 , c = 2, x1(0) = 1, and x2(0) = 0 (Fig. 6.30). In particular, we should see that the mass starts

off 1 unit below its equilibrium position with no initial velocity in any direction.

FIGURE 6.30

Trajectory for the system
{

dx1
dt

= x2,
dx2
dt

= − 1
4 x2 − 2x1;x1(0) = 1, x2(0) = 0

}
, 0 ≤ t ≤ 25

The direction of the trajectory in Fig. 6.30 indicates very dramatically that the state of the
system is spiraling into the origin—that is, x1(t) → 0 and x2(t) → 0 as t → ∞. Every time the
spiral trajectory in Fig. 6.30 crosses the x2-axis (so that x1 = 0), the mass is at its equilibrium
position—on its way up when the velocity x2 is negative and on its way down when x2 is positive.
(Remember our agreement on which direction is positive and which direction is negative.) This type
of spiral clearly indicates why we can say that the origin is a sink for the system.
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Another View
We can also look at the graphs of x1(t) against t (Fig. 6.31a) and x2(t) against t (Fig. 6.31b) for

the same system. The oscillations shown in Figs. 6.31a and 6.31b reflect the behavior of the system
in a different way.

FIGURE 6.31a

x1(t), displacement; x1(0) = 1, 0 ≤ t ≤ 25

FIGURE 6.31b

x2(t), velocity; x2(0) = 0, 0 ≤ t ≤ 25

The mass reaches its equilibrium position when the x1(t) curve crosses the t-axis. If x1(t∗) = 0,
then look at Fig. 6.31b to see what the value of x2(t∗) is. If x2(t∗) > 0, for example, the mass is on
its way down. Also note how Figs. 6.30, 6.31a, and 6.31b show that the successive rises and falls get
progressively smaller.

The figures all reflect the initial conditions and seem to say that the mass eventually comes to
rest at its equilibrium position. If you were to hit a brass gong with a special ceremonial hammer,
the vibrations would be loud at the beginning, but would gradually fade to nothing. This is roughly
what we are seeing here.

A Look at the Actual Solution
The curves in Figs. 6.31a and 6.31b are not periodic, despite their resemblance to familiar

trigonometric curves that are. In Section 4.1 we saw how to determine that the solution of our IVP
d2x

dt2 + 1dx
4dt

+ 2x = 0, with x(0) = 1 and dx
dt

(0) = 0, is given by

x(t) = e

(
− 1

8 t
) (

cos

(
1

8

√
127t

)
+

√
127

127
sin

(
1

8

√
127t

))
,
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which is not a pure trigonometric function because of the exponential factor. (You should verify that
this is a solution.) In terms of our system (6.11.4), we have x1(t) = x(t) and x2(t) = dx

dt
. (Do the

differentiation to see what x2(t) looks like.)

The exponential factor e

(
− 1

8 t
)

, called the time-varying amplitude, forces the decay of the
oscillations indicated by the trigonometric terms. Fig. 6.32 shows the graph of the solution x(t),

together with the graphs of e

(
− 1

8 t
)

and −e

(
− 1

8 t; 0≤t≤20
)

.

FIGURE 6.32

The graphs of x(t), e

(
− 1

8 t
)
, and −e

(
− 1

8 t
)

6.11.5 Different kinds of damping
You should be aware that there are different kinds of damped motion. The behavior

of a damped system described by the equation md2x

dt2 + α dx
dt

+ kx = 0 depends on the
relationship among the three constants m,α, and k—the mass, the damping coeffi-
cient, and the spring constant, respectively. The example we just analyzed is a case
of underdamped motion, occurring when the damping coefficient is relatively small
compared to the other constants: α2 < 4mk, technically. The other two possibilities,
overdamped motion (α2 > 4mk) and critically damped motion (α2 = 4mk), are
explored in Problems 1 and 2 in Exercises 6.11.

6.11.6 Forced motion
Sometimes a physical system is subject to external forces, which must appear in
its mathematical representation. For example, the motion of an automobile (whose
body-suspension combination can be considered a spring-mass system) is influenced
by irregularities in the road surface. Similarly, a tall building may be subjected to
strong winds that will cause it to sway in an uncharacteristic way.

We’re going to look at an IVP related to Example 2.2.5 and to Problems 27–29 in
Exercises 2.2. This discussion will involve an important type of second-order linear
equation with a forcing term.

Example 6.11.3 Forced Damped Motion
Suppose we have an electrical circuit with an inductance of 0.5 henry, a resistance of 6 ohm, a ca-
pacitance of 0.02 farad, and a generator providing alternating voltage given by 24 sin (10t) for t ≥ 0.
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The alternating voltage is the external force applied to the circuit, and the resistance is a damping
coefficient. Then, letting Q denote the instantaneous charge on the capacitor, Kirchhoff’s Law gives
us the equation

0.5
d2Q

dt2
+ 6

dQ

dt
+ 50Q = 24 sin 10t,

or

d2Q

dt2
+ 12

dQ

dt
+ 100Q = 48 sin 10t.

Let’s assume that Q(0) = 0 and dQ
dt

(0) = 0.
This second-order nonhomogeneous equation is equivalent to the nonautonomous system

dx1

dt
= x2

dx2

dt
= 48 sin 10t − 12x2 − 100x1,

with initial conditions x1(0) = 0 and x2(0) = 0. (You should work this out for yourself.)

Phase Portrait
The phase portrait (Fig. 6.33a) corresponding to this system, for 0 ≤ t ≤ 0.94, is interesting.

At first, we suspect that we may get a spiral opening outward. But with an expanded range for
t—say, from 0 to 5—the phase portrait resembles a closed orbit around the origin (Fig. 6.33b). We
can understand the initial “blip” by using the explicit solution found by the techniques discussed in
Section 4.2:

Q(t) = 1

10
e−6t (4 cos 8t + 3 sin 8t) − 2

5
cos 10t.

FIGURE 6.33a

Trajectory for the system
{

dx1
dt

= x2,
dx2
dt

= 48 sin 10 t − 12x2 − 100x1;x1(0) = 0 = x2

}
,

0 ≤ t ≤ 0.94

As in Example 2.2.5, we see that there is a transient term, 1
10 e−6t (4 cos 8t + 3 sin 8t), that

becomes negligible as t grows large (Why?), and a steady-state term, 2
5 cos 10t , that controls the be-

havior of Q(t)(= x1) eventually. This steady-state term is periodic with the same period
(

2π
10 = π

5

)
as the forcing term and has the amplitude 2

5 . The current in the circuit is given by I = dQ
dt

= x2.
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FIGURE 6.33b

Trajectory for the system
{

dx1
dt

= x2,
dx2
dt

= 48 sin 10 t − 12x2 − 100x1;x1(0) = 0 = x2(0)
}
,

0 ≤ t ≤ 5

Let’s look at one more example of a spring-mass system. First, we suppose that
there is no air resistance or friction. Next, we assume that the spring to which the
mass is attached is supported by a board. Now we set the mass into motion by moving
the supporting board up and down in a periodic manner. This situation is described
as driven undamped motion or forced undamped motion. As in the preceding
example, a force external to the spring-mass system itself is being applied to the
system, and we want to understand the behavior of the system.

When we apply Newton’s Second Law of Motion, an analysis similar to that pro-
vided in Example 6.11.1 gives us the equation

m · d2x

dt2
= −kx + f (t),

which we can write as

d2x

dt2
+ βx = F(t) where β = k

m
and F(t) = f (t)

m
. (6.11.5)

The forcing function f (t) (or F(t)) describes the external force that jiggles the sup-
porting board up and down rhythmically. Remember that we are assuming that this
force is periodic, so f (t) is sometimes positive and sometimes negative—that is,
sometimes the board moves downward, and sometimes it moves upward. (Have you
ever seen the toy consisting of a paddle with a rubber ball attached to it by an elastic
cord?)

The next example gives us the qualitative analysis of this problem.

Example 6.11.4 Forced Undamped Motion
The system equivalent to our problem is

dx1

dt
= x2
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dx2

dt
= F(t) − βx1. (6.11.6)

Let’s take β = 4 and assume that the forcing function is F(t) = cos(2t). Furthermore, let’s
assume that the mass starts from its equilibrium position, x1(0) = x(0) = 0, and that it has no initial
motion before the external force is applied—that is, x2(0) = dx

dt
(0) = 0. Fig. 6.32 shows the phase

portrait corresponding to this IVP for 0 ≤ t ≤ 20.

FIGURE 6.34

Trajectory for the system
{

dx1
dt

= x2,
dx2
dt

= cos 2t − 4x1;x1(0) = 0 = x2(0)
}
, 0 ≤ t ≤ 20

Analysis
Note that because the initial point is the origin, it is obvious that the spiral trajectory is moving

outward—that is, in a clockwise direction. (You should contrast this with Fig. 6.30 in Exam-
ple 6.11.2.) Fig. 6.34 indicates that both the displacement of the mass and its velocity are growing
without bound. The graphs of x1(t) and x2(t) against t (Figs. 6.35a and 6.35b) confirm this.

FIGURE 6.35a

x1(t), displacement, in Example 6.11.4; 0 ≤ t ≤ 30

The Actual Solution
The solution of the system we have chosen as an example is x1(t) = x(t) = t

4 sin(2t). (Check
that this is a solution of the IVP.) The sine term contributes an oscillation between −1 and 1, but the
factor t

4 affects the amplitude of the oscillations: |x(t)| = ∣∣ t
4

∣∣ |sin (2t)|, so that − t
4 ≤ x(t) ≤ t

4 for
t ≥ 0, and x(t) gets larger in both the positive and negative directions as t gets larger.

Fig. 6.36 shows how the linear factor t
4 magnifies the oscillation caused by the trigonometric

factor.
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FIGURE 6.35b

x2(t), velocity; x2(t) in Example 6.11.4, 0 ≤ t ≤ 30

FIGURE 6.36

x1(t) = x(t) = t
4 sin(2t), 0 ≤ t ≤ 30

6.11.7 Resonance
A situation in which we have unbounded oscillation, as shown in the preceding ex-
ample, is called resonance. This is particularly important because all mechanical
systems have natural or characteristic frequencies—that is, each atom making up
the system is vibrating at a particular frequency, and the composite system has its
own characteristic frequency. Recall that if a function g is periodic with period T

(so that T is the smallest number for which g(t + T ) = g(t) for all t), then its fre-
quency f is the number of cycles per unit of time: f = 1

T
. Resonance occurs when

the frequency of an external force coincides with the natural frequency of the system,
thereby amplifying it. You may have noticed that the windows in your home rattle
when a heavy vehicle drives by. Going faster than a certain speed in a car may cause
a disturbing rattling. In the preceding example, the natural frequency of the system
is 1

π
cycles per unit of time, which is equal to the frequency of the forcing function

F(t) = cos(2t).
An unfortunate and frequent physical consequence of such amplified vibration is

the destruction of the system. In a spring-mass system, the spring can break. A seri-
ous situation can occur when numbers of people march in step over a bridge, and the
frequency of the vibrations set in place by the marching feet causes resonance and
the collapse of the bridge. (This is why military columns and parade marchers “break
step” when crossing a bridge.) As another example, in 1959 and 1960, several mod-
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els of the same plane crashed, seeming to explode in midair. The Civil Aeronautics
Board (CAB) determined that the disintegration of the planes was due to mechanical
resonance. A component within the planes, when not fastened securely, generated os-
cillations that acted as an excessive external force on the wings, breaking them within
30 seconds.10 Similarly, resonance occurs when the ocean’s waves hit a human-made
barrier or when wind swirls around a bridge support or tower.

A less disastrous example of resonance is the shattering of a glass by a power-
ful singer hitting a very high note. The external force here is the sound wave that
amplifies the natural frequency of the glass.

It should be pointed out, however, that resonance can also be our friend. The great
scientist Galileo (1564–1642) made the following observation about resonance used
in the ringing of heavy, free-swinging bells in a tower11:

Even as a boy, I observed that one man alone by giving these impulses at the right
instant was able to ring a bell so large that when four, or even six, men seized
the rope and tried to stop it they were lifted from the ground, all of them together
being unable to counterbalance the momentum which a single man, by properly
timed pulls, had given it.

A parent pushing a child’s swing, timing the pushes to coincide with the swing’s
motion, is using resonance to increase the amplitude of each swing.12 A motorist
rocking his or her car to get it out of a muddy rut or a snow bank is applying an
external force to amplify the car’s natural frequency. Tuning a radio depends on res-
onance.

6.11.8 An analogy
As we’ve seen, beginning in Chapter 4, linear second-order differential equations
with constant coefficients can be applied to both spring-mass systems and to electrical
circuit problems. We should reflect on the fact that two apparently different physical
situations can be analyzed by means of the same basic differential equation.

Table 6.4 illustrates this mechanical-electrical analogy, one of several that can be
used to explain similarities between applied problems. The left-hand side of the table
refers to Newton’s laws of motion coupled with Hooke’s law, while the right-hand
side invokes Kirchhoff’s second voltage law.

10 For examples of resonance, see Alice B. Dickinson, Differential Equations: Theory and Use in Time
and Motion (Reading, MA: Addison-Wesley, 1972): 100 ff.
11 Galileo Galilei, Dialogues Concerning Two New Sciences, translated by H. Crew and A. DeSalvio
(New York: Macmillan, 1914), “First Day,” 98.
12 See, e.g., “How to Pump a Swing” by S. Wirkus, R. Rand, and A. Ruina, College Math. J. 29 (1998):
266–275.
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Table 6.4 Mechanical-Electrical Analogy

Spring-Mass System
mẍ + αẋ + kx = f (t)

Electrical Circuit
LQ̈ + RQ̇ + (1/C)Q = E(t)

Displacement x Q Charge
Velocity ẋ Q̇ = I Current
Mass m L Inductance
Damping constant α R Resistance
Spring constant k 1/C 1/Capacitance = Elastance
External force f (t) E(t) Electromotive force (voltage)

Exercises 6.11
A
1. The IVP ẍ + 20ẋ + 64x = 0, with x(0) = 1/3 and ẋ(0) = 0, models the motion

of a spring-mass system with a damping force. The initial conditions indicate
that the mass has been pulled below its equilibrium position and released.
a. Express this IVP as a system of two first-order equations using the appro-

priate initial conditions.

b. Use technology to graph the solution of the system in the phase plane.

c. Use technology to graph the solution of the original second-order equation
relative to the t-axis.

d. Comparing the results of parts (b) and (c) to the appropriate graphs in Ex-
amples 6.11.1 and 6.11.2, why do you think that the motion shown in this
problem should be called overdamped?

2. Consider the spring-mass system modeled by the IVP ẍ + cẋ + 0.25x = 0, with
x(0) = 1

2 and ẋ(0) = 7
4 . Here, c is a positive parameter.

a. Express the IVP in terms of a system of first-order equations, including
initial conditions.

b. For each of the values c = 0.5, 1, and 1.5, use technology to graph the
solution of the system in the phase plane, 0 ≤ t ≤ 20.

c. For each of the values c = 0.5, 1, and 1.5, use technology to graph the
solution of the original equation with respect to t on the interval

0 ≤ t ≤ 20.

d. Based on your answers to parts (b) and (c), describe how the nature of the
solution changes as the value of c passes through the value 1? (When c = 1
the system is critically damped.)

3. Consider the following model of a spring-mass system: ẍ + 64x = 16 cos 8t ,
with x(0) = 0 and ẋ(0) = 0.
a. Express the IVP in terms of a system of first-order equations, including

initial conditions.
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b. Use technology to graph the solution of the system in the phase plane.

c. Use technology to graph the solution of the original second-order equation
relative to the t-axis.

d. What is the relationship of the graph in (c) to the two half-lines x = t and
x = −t for t ≥ 0?

4. A spring-mass system can be modeled by the equation mẍ + kx = 0, with
x(0) = α and ẋ(0) = β.
a. Express the IVP in terms of a system of first-order equations (including

initial conditions).

b. Determine the maximum velocity of the mass.

B
5. A spring having a spring constant of 250 is used in a simple set of scales to

measure the weights of objects placed on the pan. The pan (of mass 0.5 kg)
rests on top of the spring (see the following illustration).

A block of mass M kg is placed on the pan, causing the spring to oscillate.
There is a damping force of 10v Newtons, where v m/s is the speed of the pan.
a. Determine the differential equation of motion for the subsequent damped

oscillations.

b. Show that the general solution of the equation found in part (a) has the

form x = A0e
− 10 t

2M+1 cos(nt + ε), where A0 is the initial amplitude. Hence,
find an expression for n in terms of M .

c. Find, in terms of M , the time it takes for the system to settle down to
oscillations of only 25% of the initial amplitude.

d. What effect would removing the damping force have on the system?

6. A particle is in simple harmonic motion along the y-axis. At t = 0, y = 3 and
v = dy/dt = 0. Exactly 1/2 second later, these values repeat themselves. Find
y(t) and v(t).

C
7. Convert each of the following systems to a single second-order equation. Then

interpret each equation to determine which (if any) cannot represent a spring-
mass system. Explain your reasoning.



340 CHAPTER 6 Systems of linear differential equations

a. Q′ = −6Q + 3R

R′ = −Q − 2R

b. ẋ = 3x − y

ẏ = x + 3y

6.12 Generalizations: the n × n case (n ≥ 3)
6.12.1 Matrix representation
We now extend our previous analysis of systems, first to 3 × 3 systems and then to
nth-order linear systems. We can use matrix notation to represent a homogeneous
third-order system with constant coefficients

ẋ1 = a11x1 + a12x2 + a13x3

ẋ2 = a21x1 + a22x2 + a23x3

ẋ3 = a31x1 + a32x2 + a33x3

symbolically, in the form Ẋ = AX, where

X =
⎡
⎣x1

x2
x3

⎤
⎦ , Ẋ =

⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦ ,

and

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ .

Example 6.12.1 Matrix Representation of a 3 × 3 System
The system ẋ = −2x + 4y − z, ẏ = 5x − y + 3z, ż = x + z can be written first in the usual vertical
way

ẋ = −2x + 4y − z ẋ = −2x + 4y − z

ẏ = 5x − y + 3z or ẏ = 5x − y + 3z

ż = x + z ż = x + 0y + z

and then more compactly as

⎡
⎣ẋ

ẏ

ż

⎤
⎦=

⎡
⎣−2 4 −1

5 −1 3
1 0 1

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ .
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6.12.2 Eigenvalues and eigenvectors
It is important to understand that the concepts of eigenvalue and eigenvector are valid
for any system of n equations in n unknowns (n ≥ 2). Specifically, given a system
Ẋ = AX, where X is a nonzero 3 × 1 column matrix (vector) and A is a 3 × 3 matrix,
then an eigenvalue λ is a solution of the equation AX = λX. Given an eigenvalue
λ, an eigenvector associated with λ is a nonzero vector V that satisfies the equation
AV = λV .

The equation AX = λX can be expressed as AX − λX = 0, where 0 denotes the
3 × 1 vector consisting entirely of zeros. This matrix equation is equivalent to the
homogeneous algebraic system

(a11 − λ)x1 + a12x2 + a13x3 = 0

a21x1 + (a22 − λ)x2 + a23x3 = 0

a31x1 + a32x2 + (a33 − λ)x3 = 0,

or ⎡
⎣a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

⎤
⎦
⎡
⎣x1

x2
x3

⎤
⎦=

⎡
⎣0

0
0

⎤
⎦ . (6.12.1)

Now the matrix of coefficients in (6.12.1) can be expressed as⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦−

⎡
⎣λ 0 0

0 λ 0
0 0 λ

⎤
⎦=

⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦− λ

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦= A − λI,

so the equation AX − λX = 0 can be written as (A − λI)X = 0, where I is the 3 × 3
identity matrix consisting of ones down the main diagonal and zeros elsewhere. The
matrix I is such that IX = X for any 3 × 1 vector X.

The equation (A−λI)X = 0 represents a homogeneous algebraic system of three
linear equations in three unknowns, and the theory of linear algebra indicates that
there is a number � depending on the matrix of coefficients with the following im-
portant property:

The system (6.12.1) has only the zero solution x1 = x2 = x3 = 0 if � 
= 0. How-
ever, if � = 0, then there is a solution x1, x2, x3 with at least one of the xi(i = 1,2,3)

different from zero.
This number � is the determinant of the matrix of coefficients in (6.12.1), de-

noted by det(A − λI), and it is the extension to three dimensions of the determi-
nant introduced in Section 6.6. (See Problem 12 of Exercises 6.5 and Problem 11
of Exercises 6.6 for the significance of the 2 × 2 determinant in the solution of a
system of equations.) Therefore, (A − λI)X = 0 has a nonzero solution X only if
det(A − λI) = 0. An important fact is that det(A − λI) is a third-degree polynomial
in λ, called the characteristic polynomial of A, so the eigenvalues of A are the roots
of the characteristic equation det(A − λI) = 0. There are algorithms for calculating
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the determinants of 3 × 3 systems, but they are tedious and any graphing calculator
or CAS can evaluate them. In particular, a CAS will provide characteristic polynomi-
als, eigenvalues, and corresponding eigenvectors. There are also formulas for solving
cubic equations, but these methods are more complicated than the quadratic formula,
and it is advisable to use your calculator or computer to solve these equations.

Let’s use technology in the next example to calculate determinants, eigenvalues,
and eigenvectors for a three-dimensional system.

Example 6.12.2 Eigenvalues and Eigenvectors via a CAS
Let’s look at the matrix of coefficients in Example 6.12.1:

A =
⎡
⎣−2 4 −1

5 −1 3
1 0 1

⎤
⎦ .

A CAS provides the information that det(A) = −7, the characteristic equation is λ3 + 2λ2 − 20λ +
7 = 0, and the eigenvalues (rounded to four decimal places) are λ1 = 3.3485, λ2 = −5.7143, and
λ3 = 0.3658. The corresponding representative eigenvectors are

V1 =
⎡
⎣2.3485

3.3903
1

⎤
⎦ ,V2 =

⎡
⎣−6.7143

6.4848
1

⎤
⎦ , and V3 =

⎡
⎣−0.6342

−0.1251
1

⎤
⎦ .

Don’t be concerned if your CAS or calculator gives you eigenvectors that are different from these.
You should check to see that each eigenvector you find is a constant multiple of one of the vectors
V1,V2, and V3 given here.

6.12.3 Linear independence and linear dependence
At this point you should be asking yourself, What do these eigenvalues and eigen-
vectors tell me about the system? Just as in the 2 × 2 case, we can write the general
solution of a 3 × 3 system in terms of the eigenvalues and eigenvectors of the matrix
of coefficients. To see what’s going on, we’ll need to use a few concepts already seen
in the 2 × 2 case. For example, given a number of vectors v1,v2, . . . ,vk , a linear
combination of these vectors is a vector that has the form a1v1 + a2v2 + · · · + akvk

for some choice of scalars a1, a2, . . . , ak . The collection of vectors is called linearly
independent if the only way you can have a1v1 + a2v2 + · · · + akvk = 0 (the zero
vector) is to have a1 = a2 = · · · = ak = 0. If you could find scalars ai , not all zero, so
that a linear combination of the vectors vi was equal to the zero vector, then we say
that the collection of vectors is linearly dependent. To see what linear dependence
means, suppose that a1v1 + a2v2 + · · · + akvk = 0 and one of the scalars, say aj , is
not zero. Then we can write

a1v1 + a2v2 + · · · + ajvj + · · · + akvk = 0,

aj vj = −a1v1 − a2v2 − · · · − aj−1vj−1 − aj+1vj+1 − · · · − akvk,
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or

vj =
(

−a1

aj

)
v1 +

(
−a2

aj

)
v2 + · · · +

(
−aj−1

aj

)
vj−1

+
(

−aj+1

aj

)
vj+1 + · · · +

(
−ak

aj

)
vk.

This last line tells us that if a collection of vectors is linearly dependent, then at least
one of the vectors is a linear combination of the others.

Let’s see some examples of these concepts.

Example 6.12.3 Linearly Independent and Linearly Dependent Vectors

The three vectors

⎡
⎣1

0
2

⎤
⎦,

⎡
⎣0

1
2

⎤
⎦, and

⎡
⎣1

2
0

⎤
⎦ are linearly independent because the equation

a1

⎡
⎣1

0
2

⎤
⎦+ a2

⎡
⎣0

1
2

⎤
⎦+ a3

⎡
⎣1

2
0

⎤
⎦=

⎡
⎣0

0
0

⎤
⎦

is equivalent to the algebraic system

a1 + a3 = 0

a2 + 2a3 = 0

2a1 + 2a2 = 0,

which you can solve to find that a1 = a2 = a3 = 0. (Do the work!)

On the other hand, the collection of vectors

⎡
⎣ 3

4
−4

⎤
⎦,

⎡
⎣0

1
2

⎤
⎦, and

⎡
⎣1

2
0

⎤
⎦ is linearly dependent be-

cause the vector equation

a1

⎡
⎣ 3

4
−4

⎤
⎦+ a2

⎡
⎣0

1
2

⎤
⎦+ a3

⎡
⎣1

2
0

⎤
⎦=

⎡
⎣0

0
0

⎤
⎦

is equivalent to the algebraic system

3a1 + a3 = 0

4a1 + a2 + 2a3 = 0

−4a1 + 2a2 = 0,

which has infinitely many solutions of the form a1 = K , a2 = 2K , and a3 = −3K . In particular, we
can let K = 1, so we have the nonzero solution a1 = 1, a2 = 2, and a3 = −3. Note, for example,
that we can write ⎡

⎣ 3
4

−4

⎤
⎦= −2

⎡
⎣0

1
2

⎤
⎦+ 3

⎡
⎣1

2
0

⎤
⎦ .
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Now suppose that we have the system Ẋ = AX, where X is a 3 × 1 vector and A

is a 3 × 3 matrix of constants. If A has three distinct real eigenvalues λ1, λ2, λ3, then
the theory of linear algebra tells us that the corresponding eigenvectors V1,V2,V3

are linearly independent. Furthermore, the vectors eλ1tV1, eλ2tV2, eλ3tV3 are linearly
independent, and the general solution of Ẋ = AX is

X(t) = c1e
λ1tV1 + c2e

λ2tV2 + c3e
λ3tV3, (6.12.2)

where c1, c2, and c3 are arbitrary constants. Compare this with (6.7.1).

Example 6.12.4 Solving a 3 × 3 System via Eigenvalues and Eigenvec-
tors
Consider the system

ẋ = 4x + z

ẏ = −2y

ż = −z.

The matrix of coefficients is A =
⎡
⎣4 0 1

0 −2 0
0 0 −1

⎤
⎦, and a CAS calculates the eigenvalues to be

λ1 = 4, λ2 = −1, and λ3 = −2, with corresponding eigenvectors

V1 =
⎡
⎣1

0
0

⎤
⎦ , V2 =

⎡
⎣ 1

0
−5

⎤
⎦ , and V3 =

⎡
⎣0

1
0

⎤
⎦ .

Note that these vectors must be linearly independent because the eigenvalues are distinct real num-
bers. Thus, via Eq. (6.12.2), the general solution of our system is given by

X(t) = c1e4t

⎡
⎣1

0
0

⎤
⎦+ c2e−t

⎡
⎣ 1

0
−5

⎤
⎦+ c3e−2t

⎡
⎣0

1
0

⎤
⎦

=
⎡
⎢⎣c1e4t + c2e−t

c3e−2 t

−5c2e−t

⎤
⎥⎦ .

In this example, we noticed that the second and third differential equations making up our original
system were separable. After solving each of them, we could have substituted for z in the first
equation, which would then be a simple linear equation in x. (Do this and compare your answer
with the one given previously.)

A trajectory in x-y-z space (corresponding to the initial conditions x(0) = 2, y(0) = 5, and
z(0) = −10) is shown in Fig. 6.37, and the same trajectories in the t-z plane and the y-z plane are
shown in Figs. 6.38a and 6.38b, respectively.

Note that the graph of a solution of this system is really four-dimensional, a set of points of the
form (t, x(t), y(t), z(t)). Therefore, what Fig. 6.37 is showing is a projection of a four-dimensional
curve onto three-dimensional x-y-z space.
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FIGURE 6.37

Solution of ẋ = 4x + z, ẏ = −2y, ż = −z; x(0) = 2, y(0) = 5, z(0) = −10; 0 ≤ t ≤ 2

FIGURE 6.38a

Graph of z(t), 0 ≤ t ≤ 2

FIGURE 6.38b

Graph of z(t) vs. y(t), 0 ≤ t ≤ 2

Accepting the fact that a 3 × 3 matrix has a cubic characteristic equation, we real-
ize that we can have (1) three distinct real eigenvalues, (2) one distinct real eigenvalue
and a different repeated real eigenvalue, (3) one repeated real eigenvalue, or (4) one
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real eigenvalue and a complex conjugate pair of eigenvalues. Possibilities 1 and 4 are
handled easily by formula (6.12.2). However, when we have repeated eigenvalues, we
must find linearly independent eigenvectors, sometimes by calculating one or more
generalized eigenvectors. (Go back to Example 6.8.2 and the discussion preceding it.
Also see Problem 18 in Exercises 6.8.)

It should be clear how important the theory of linear algebra is to a full under-
standing of higher-order differential equations and their equivalent systems, but we
will not investigate that theory further in this book.

The next example shows how techniques that we developed for two-dimensional
systems with complex eigenvalues (Section 6.9) can be extended to three-dimensional
systems.

Example 6.12.5 Solving a 3 × 3 System—Complex Eigenvalues
Look at the system ẋ = x, ẏ = 2x + y − 2z, ż = 3x + 2y + z. The matrix of coefficients is

A =
⎡
⎣1 0 0

2 1 −2
3 2 1

⎤
⎦. A CAS provides the characteristic equation λ3 −3λ2 +7λ−5 = (λ−1)(λ2 −

2λ + 5) = 0, which has roots λ1 = 1, λ2 = 1 + 2i, and λ3 = 1 − 2i. A CAS also gives the corre-

sponding eigenvectors V1 =
⎡
⎣ 2

−3
2

⎤
⎦, V2 =

⎡
⎣0

i

1

⎤
⎦, and V3 =

⎡
⎣ 0

−i

1

⎤
⎦. (Remember that your calculator

or CAS may give you eigenvectors that look different from these. Just check to see that yours are
multiples of the ones used here. Also, note that V2 and V3 are conjugates of each other.)

Now we can use (6.12.2) to write the general solution in the form

X(t) = c1et

⎡
⎣ 2

−3
2

⎤
⎦+ c2e(1+2i)t

⎡
⎣0

i

1

⎤
⎦+ c3e(1−2i)t

⎡
⎣ 0

−i

1

⎤
⎦ .

However, we realize that X1(t) = et

⎡
⎣ 2

−3
2

⎤
⎦ is a solution of the system by itself.

Furthermore, extending what we saw in Section 6.9, we know that we need work only with the
first complex eigenvalue-eigenvector pair, because the other eigenvalue and eigenvector are conju-
gates that produce the same solutions (see Problem 13 of Exercises 6.9). Therefore, we consider
only

X̃(t) = e(1+2i)t

⎡
⎣0

i

1

⎤
⎦= et (cos(2t) + i sin(2t))

⎡
⎣0

i

1

⎤
⎦

= et

⎡
⎣ 0

− sin(2t) + i cos(2t)

cos(2t) + i sin(2t)

⎤
⎦= et

⎡
⎣ 0

− sin(2t)

cos(2t)

⎤
⎦+ iet

⎡
⎣ 0

cos(2t)

sin(2t)

⎤
⎦ .

From the preceding expression, we derive two linearly independent real-valued solutions of our
system:

X2(t) = Re
{
X̃(t)

}
= et

⎡
⎣ 0

− sin(2t)

cos(2t)

⎤
⎦ and X3(t) = Im

{
X̃(t)

}
= et

⎡
⎣ 0

cos(2t)

sin(2t)

⎤
⎦ .
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Finally, the Superposition Principle tells us that

X(t) = c1X1 + c2X2 + c3X3

= c1et

⎡
⎣ 2

−3
2

⎤
⎦+ c2et

⎡
⎣ 0

− sin(2t)

cos(2t)

⎤
⎦+ c3et

⎡
⎣ 0

cos(2t)

sin(2t)

⎤
⎦

=
⎡
⎢⎣ 2c1et

−3c1et − c2et sin(2t) + c3et cos(2t)

2c1et + c2et cos(2t) + c3et sin(2t)

⎤
⎥⎦

= et

⎡
⎣ 2c1

−3c1 − c2 sin(2t) + c3 cos(2t)

2c1 + c2 cos(2t) + c3 sin(2t)

⎤
⎦

is the real-valued general solution of the original system. If you use technology to solve this problem,
be aware that your CAS may express the solution functions in a different but equivalent way.

6.12.4 Nonhomogeneous systems
It is important to realize that we can also handle larger nonhomogeneous systems in
this way using the relationship explored in Section 6.10: XGNH = XGH + XPNH. The
method of undetermined coefficients becomes algebraically messier as the size of the
system increases, and the Laplace transform is a better solution method.

6.12.5 Generalization to n × n systems
Everything we’ve done with 2 × 2 and 3 × 3 systems of equations can be general-
ized to n × n systems. We can express a homogeneous nth-order linear system with
constant coefficients

ẋ1 = a11x1 + a12x2 + a13x3 + · · · + a1nxn

ẋ2 = a21x1 + a22x2 + a23x3 + · · · + a2nxn

ẋ3 = a31x1 + a32x2 + a33x3 + · · · + a3nxn

...
...

...

ẋn = an1x1 + an2x2 + an3x3 + · · · + annxn

as Ẋ = AX, where

X =

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
x3

...

xn

⎤
⎥⎥⎥⎥⎥⎦ , Ẋ =

⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

...

ẋn

⎤
⎥⎥⎥⎥⎥⎦ , and A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ .
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Example 6.12.6 Matrix Form of a Four-Dimensional System
A compartmental analysis (see Section 2.3) of the processes involved in protein synthesis in ani-
mals and humans uses radioactive isotopes as tracers. A particular four-compartment model of this
situation could lead to a system such as

ẋ1 = −2x1 + x2

ẋ2 = x1 − 2x2

ẋ3 = x1 + x2 − x3

ẋ4 = x3,

where xi (t) denotes the fraction of the total administered radioactivity attached to the material (albu-
men) in compartment i (i = 1,2,3,4). The coefficients indicate flow rates of the radioactive material
from compartment to compartment.

In matrix terms, we can express this system as

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−2 1 0 0
1 −2 0 0
1 1 −1 0
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ .

Extending the theory underlying the solution of algebraic systems of three linear
equations in three unknowns to systems of n equations in n unknowns, we state that
any n × n matrix has a determinant and that eigenvalues and eigenvectors can be
defined for such square matrices. Specifically, given a system Ẋ = AX, where X is an
n×1 column matrix (vector) and A is an n×n matrix, an eigenvalue λ is a solution of
the equation det(A− λI) = 0, where I is the n × n identity matrix consisting of ones
down the main diagonal and zeros elsewhere. Given an eigenvalue λ, an eigenvector
associated with λ is a nonzero vector V satisfying the equation AV = λV .

The characteristic equation of an n×n matrix is an nth-degree polynomial. How-
ever, once a polynomial has degree greater than or equal to 5, there is no longer a
general formula that gives its zeros. In general, the only way to tackle such equa-
tions is to use approximation methods. A CAS—or even a graphing calculator—has
various algorithms to do this.

Now suppose that we have the system Ẋ = AX, where X is an n × 1 vec-
tor and A is an n × n matrix of constants. If A has n distinct real eigenvalues
λ1, λ2, . . . , λn, then the theory of linear algebra guarantees that the correspond-
ing eigenvectors V1,V2, . . . , Vn are linearly independent. Furthermore, the vectors
eλ1tV1, e

λ2tV2, . . . , e
λntVn are linearly independent, and the general solution of Ẋ =

AX is

X(t) = c1e
λ1tV1 + c2e

λ2tV2 + · · · + cne
λntVn, (6.12.3)

where c1, c2, . . . , cn are arbitrary constants. You should expect the usual complica-
tions when there are repeated real roots, complex conjugate pairs of roots, and so
forth.
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If we investigate a mechanical system (Fig. 6.39) consisting of two springs at-
tached to two movable masses, the physics of the situation gives us a pair of second-
order linear differential equations. In turn, this system of two equations can be ex-
pressed as a system of four first-order linear equations.

FIGURE 6.39

The spring-mass system for Example 6.12.7

The following example assumes that we start from the equilibrium position by
giving one mass an initial velocity. Most of the computational work will be done by
a CAS.

Example 6.12.7 A Four-Dimensional System from Mechanics
Let’s consider the system

d2z1

dt2
= −11z1 + 6z2

d2z2

dt2
= −6z2 + 6z1,

where z1 is the distance of mass 1 from its equilibrium position and z2 is the distance of mass 2 from
equilibrium. We’ll assume the initial conditions z1(0) = 0, z′

1(0) = 0, z2(0) = 0, and z′
2(0) = 1.

Representation as a First-Order System
Introducing the new variables x1 = z1, x2 = dz1

dt
, x3 = z2, and x4 = dz2

dt
, we convert our pair

of second-order equations into the four-dimensional system of first-order equations

dx1

dt
= x2

dx2

dt
= −11x1 + 6x3

dx3

dt
= x4

dx4

dt
= −6x3 + 6x1,

with x1(0) = x2(0) = x3(0) = 0 and x′
3(0) = x4(0) = 1.



350 CHAPTER 6 Systems of linear differential equations

Matrix Representation, Eigenvalues, Eigenvectors

We can express the last system as d
dt

X =

⎡
⎢⎢⎣

0 1 0 0
−11 0 6 0

0 0 0 1
6 0 −6 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦= AX. A CAS gives the

characteristic equation of matrix A as λ4 + 17λ2 + 30 = 0, which we can factor as (λ2 + 15)(λ2 +
2) = 0, so the eigenvalues are λ1 = √

15i, λ2 = −√
15i, λ3 = √

2i, and λ4 = −√
2i. The corre-

sponding eigenvectors are

V1 =

⎡
⎢⎢⎢⎣

3

3
√

15i

−2

−2
√

15i

⎤
⎥⎥⎥⎦ ,V2 =

⎡
⎢⎢⎢⎣

3

−3
√

15i

−2

2
√

15i

⎤
⎥⎥⎥⎦ ,V3 =

⎡
⎢⎢⎢⎣

2

2
√

2i

3

3
√

2i

⎤
⎥⎥⎥⎦ , and V4 =

⎡
⎢⎢⎢⎣

2

−2
√

2i

3

−3
√

2i

⎤
⎥⎥⎥⎦ .

If you check this with a CAS, remember that you may get a different (but equivalent) form for the
eigenvectors.

The General Solution
On the basis of our previous experience with complex conjugate pairs of eigenvalues and eigen-

vectors, we can just work with the pairs λ1, V1 and λ3, V3. First, we know that

X̂(t) = eλ1t V1 = e

√
15it

⎡
⎢⎢⎢⎣

3

3
√

15i

−2

−2
√

15i

⎤
⎥⎥⎥⎦=

(
cos

(√
15t
)

+ i sin
(√

15t
))
⎡
⎢⎢⎢⎣

3

3
√

15i

−2

−2
√

15i

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 cos
(√

15t
)

−3
√

15 sin
(√

15t
)

−2 cos
(√

15t
)

2
√

15 sin
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 sin
(√

15t
)

3
√

15 cos
(√

15t
)

−2 sin
(√

15t
)

−2
√

15 cos
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= X1(t) + iX2(t),

where both X1(t) and X2(t) are linearly independent real-valued solutions of the system. Then we
have

X̃(t) = eλ3t V3 = e

√
2it

⎡
⎢⎢⎢⎣

2

2
√

2i

3

3
√

2i

⎤
⎥⎥⎥⎦=

(
cos

(√
2t
)

+ i sin
(√

2t
))
⎡
⎢⎢⎢⎣

2

2
√

2i

3

3
√

2i

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 cos
(√

2t
)

−2
√

2 sin
(√

2t
)

3 cos
(√

2t
)

−3
√

2 sin
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 sin
(√

2t
)

2
√

2 cos
(√

2t
)

3 sin
(√

2t
)

3
√

2 cos
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= X3(t) + iX4(t),

where X3(t) and X4(t) are linearly independent real-valued solutions of the system. The general
solution is

X(t) = c1X1 + c2X2 + c3X3 + c4X4
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= c1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 cos
(√

15t
)

−3
√

15 sin
(√

15t
)

−2 cos
(√

15t
)

2
√

15 sin
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 sin
(√

15t
)

3
√

15 cos
(√

15t
)

−2 sin
(√

15t
)

−2
√

15 cos
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 cos
(√

2t
)

−2
√

2 sin
(√

2t
)

3 cos
(√

2t
)

−3
√

2 sin
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 sin
(√

2t
)

2
√

2 cos
(√

2t
)

3 sin
(√

2t
)

3
√

2 cos
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Particular Solutions
The initial conditions x1(0) = x2(0) = x3(0) = 0 and x′

3(0) = x4(0) = 1 imply that c1 = c3 = 0

and c2 = −2
√

15/195, c4 = 3
√

2/26. Therefore,

z1(t) = x1(t) = 3
√

2

13
sin
(√

2t
)

− 2
√

15

65
sin
(√

15t
)

and

z2(t) = x3(t) = 9
√

2

26
sin
(√

2t
)

+ 4
√

15

195
sin
(√

15t
)

.

If we are interested in the stability of an n×n system rather than its exact solution,
we can give a simplified version of the results we have seen for 2 × 2 systems (see
Table 6.2 in Section 6.9): If A is an n × n matrix of constants, then the equilibrium
solution X = 0 for the system Ẋ = AX is asymptotically stable (that is, it is a sink)
if every eigenvalue of A has a negative real part and is unstable if A has at least
one eigenvalue with a positive real part. Furthermore, if all eigenvalues have positive
real parts, the n-dimensional origin X = 0 is a source; and if some eigenvalues have
positive real parts and others have negative real parts, the equilibrium point is called
a saddle point.

Exercises 6.12
A
For each of the systems in Problems 1–6, (a) write the system in the form Ẋ =
AX; (b) use technology to find eigenvalues and representative eigenvectors; and (c)
express the general solution as a single real-valued vector of functions.

1. dx
dt

= x − y + z
dy
dt

= x + y − z
dz
dt

= 2x − y
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2. dx
dt

= x − 2y − z
dy
dt

= −x + y + z
dz
dt

= x − z

3. dx
dt

= 3x − y + z
dy
dx

= x + y + z
dz
dt

= 4x − y + 4z

4. dx
dt

= 2x + y
dy
dt

= x + 3y − z
dz
dt

= 2y + 3z − x

5. dx
dt

= 2x − y + z
dy
dt

= x + 2y − z
dz
dt

= x − y + 2z

6. dx
dt

= 2x + 2z − y
dy
dt

= x + 2z
dz
dt

= y − 2x − z

7. For the system in Problem 1, use your CAS to plot the x-y-z space trajectory
passing through the point (0,1,0) when t = 0.

8. For the system in Problem 4, use your CAS to plot the x-y-z space trajectory
passing through the point (1,1,−1) when t = 0.

B

9. In Example 6.12.7, use the initial conditions to show that c1 = c3 = 0 and
c2 = −2

√
15/195, c4 = 3

√
2/26.

10. a. Solve the IVP

dx

dt
= z + y − x

dy

dt
= z + x − y

dz

dt
= x + y + z,

x(0) = 1, y(0) = −1/3, z(0) = 0.

b. Use the explicit solution found in part (a) to calculate x(0.5), y(0.5), and
z(0.5).

c. Use two or more numerical methods found in your CAS to approximate
x(0.5), y(0.5), and z(0.5). Compare the answers to each other and to the
exact answers in part (a).
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11. Solve the IVP

dx

dt
= y + z

dy

dt
= z + x

dz

dt
= x + y

x(0) = −1, y(0) = 1, z(0) = 0.

12. Consider the system

ẍ = 2x + ẋ + y

ẏ = 4x + 2y.

a. Convert this system to a system of three first-order equations, Ẏ = AY .

b. Use technology to find the eigenvalues of the matrix A in part (a).

c. Use technology to find two linearly independent eigenvectors correspond-
ing to the eigenvalues found in (b).

d. Take W =
⎡
⎣ t

1
−1 − 2t

⎤
⎦ as a third eigenvector that is independent of the

two found in part (c) and give the general solution of Ẏ = AY .

e. Find the general solution x(t), y(t) of the original system.

13. Consider the two-mass, three-spring system shown here.

If there are no external forces, and if the masses and spring constants are equal
and of unit magnitude, then the equations of motion are

x′′
1 = −2x1 + x2, x′′

2 = x1 − 2x2.

a. Transform the system of equations into a system of four first-order equa-
tions by letting y1 = x1, y2 = x′

1, y3 = x2, and y4 = x′
2.

b. Find the eigenvalues of the matrix of coefficients for the system in part (a).
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c. Solve the system in part (a) subject to the initial conditions y1(0) = 2,
y2(0) = 1, y3(0) = 2, y4(0) = 1. Describe the physical motion of the
spring-mass system corresponding to this solution.

d. Solve the system in part (a) subject to the initial conditions y1(0) = 2,
y2(0) = √

3, y3(0) = −2, y4(0) = −√
3. Describe the physical motion of

the spring-mass system corresponding to this solution.

e. Observe that the spring-mass system has two natural modes of oscillation
in this problem. How are the natural frequencies related to the eigenvalues
of the coefficient matrix? Do you think that there might be a third natural
mode of oscillation with a different frequency?

14. In analyzing the flow of lead pollution in a human body among the three com-
partments bone, blood, and tissue, the following system was developed (see
E. Batschelet, L. Brand, and A. Steiner, “On the Kinetics of Lead in the Hu-
man Body,” Journal of Mathematical Biology 8 (1979): 15–23):

ẋ1 = − 65

1800
x1 + 1088

87,500
x2 + 7

200,000
x3 + 6162

125

ẋ2 = 20

1800
x1 − 20

700
x2

ẋ3 = 7

1800
x1 − 7

200,000
x3.

Here, x1(t) is the amount of lead in the blood at time t (in years), x2(t) is the
amount of lead in tissue, and x3(t) is the amount of lead in bone. Assume that
x1(0) = x2(0) = x3(0) = 0.
a. Use technology to graph the three-dimensional trajectory in x1-x2-x3

space with 0 ≤ t ≤ 250. (Move the axes around to get a good view.)

b. Use technology to graph the solution in the t-x1 plane, 0 ≤ t ≤ 150. What
seems to be the equilibrium level of lead in the blood?

c. Use technology to graph the solution in the t-x2 plane, 0 ≤ t ≤ 250. What
seems to be the equilibrium level of lead in tissue?
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d. Use technology to graph the solution in the t-x3 plane, 0 ≤ t ≤ 70,000.
In your CAS, specify a step size of 50 if you can. (Warning: It may take
a long time for your CAS to produce the graph.) What seems to be the
equilibrium level of lead in bone?

e. What do the graphs in parts (b), (c), and (d) say about the comparative
times it takes blood, tissue, and bone to reach their equilibrium levels of
lead?

C
15. There are three tanks (see the following figure) that pump fluid back and forth

in the following way: Tank A pumps fluid into tank B at a rate of 1% of its
volume per hour and also back into itself at a rate of 1% of the volume per
hour. Tank B pumps into itself, tank A, and tank C, all at a rate of 2% of its
volume per hour. Tank C pumps into tank B at a rate of 2% of its volume per
hour and back into itself at the rate of 3% of its volume per hour. Assuming
that the initial volumes in tanks A, B, and C are 23,000, 1000, and 1000 liters,
respectively, describe the changes in volume of fluid in each tank as func-
tions of time. (Use technology only to find the eigenvalues and corresponding
eigenvectors.)

16. Suppose that you have a double pendulum—that is, one pendulum suspended
from another—as shown in the following figure. The laws of physics, after a
simplifying change of variables, give us the following system as a model for
small oscillations about the equilibrium position:

ẋ = y

ẏ = −x + αu

u̇ = v

v̇ = x − u.

Here, α = (m2/m1) (1 + m2/m1)
−1, x = θ1, u = θ2, and y and v are the an-

gular velocities θ̇1 and θ̇2, respectively. For this problem, let α = 0.3.
a. Express the system in matrix form.

b. Use technology to find the eigenvalues of the system.
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c. Use technology to find eigenvectors corresponding to the eigenvalues
found in part (b).

d. Find the general real-valued solution of the system.

17. Consider the pair of 50 gallon tanks shown here. Initially, tank I is full of
compound B and tank II is full of compound C. Start to introduce compound A
into each tank at the rates shown in the figure.

a. Let x1(t) and x2(t) denote the amount of compound A in tanks I and II, re-
spectively. Similarly, define y1(t), y2(t), z1(t), and z2(t) for the amounts
of compounds B and C in tanks I and II. Now write a system of six
nonhomogeneous differential equations describing the flow of the vari-
ous substances into and out of tanks I and II, expressing any fractions in
decimal form. Be sure to write initial conditions.

b. Use technology to solve the IVP expressed in part (a).

c. Use technology to graph x1(t), y1(t), and z1(t) against t , all on the same
set of axes.

d. Use technology to graph x2(t), y2(t), and z2(t) against t , all on the same
set of axes.

18. Suppose you have a system Ẋ = AX, where A is a 3 × 3 matrix that has an
eigenvalue λ of multiplicity 3 and corresponding eigenvector V . Then it can be
shown that the general solution of the system can be written as c1X1 + c2X2 +
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c3X3, where X1 = eλtV , X2 = eλt (W + tV ), X3 = eλt (U + tW + t2

2 V ), W

satisfies (A − λI)W = V , and U satisfies (A − λI)U = W .
a. Find the repeated eigenvalue and representative eigenvector for the system

x′ = x + y + z

y′ = 2x + y − z

z′ = −3x + 2y + 4z.

b. Use the method described above and technology to write the general so-
lution of this system.

19. Find the general solution of the nonautonomous, nonhomogeneous system

dx

dt
= 2t

dy

dt
= 3x + 2t

dz

dt
= x + 4y + t

a. by using ideas from Problem 18, followed by the technique of undeter-
mined coefficients. (See Section 6.10.)

b. by solving the first equation and then substituting this solution in the sec-
ond equation, and so forth.

Summary
The most important thing to remember in this chapter is that any single nth-order
differential equation can be converted into an equivalent system of first-order
equations. More precisely, any nth-order differential equation

x(n) = F
(
t, x,x′,x′′, . . . , x(n−1)

)
can be converted into an equivalent system of first-order equations by letting
x1 = x, x2 = x′, x3 = x′′, . . ., xn = x(n−1). However, to convert a single nonau-
tonomous nth-order equation into an equivalent autonomous system (one whose
equations do not explicitly contain the independent variable t), we need n + 1 first-
order equations: x1 = x, x2 = x′, x3 = x′′, . . . , xn = x(n−1), xn+1 = t . The system is
linear or nonlinear, autonomous or nonautonomous, according to the nature of the
individual equations in the system. Linear systems are easier to calculate with and
understand than nonlinear systems. Similarly, autonomous systems are easier to work
with than nonautonomous systems.

Before getting too immersed in trying to solve higher-order equations or their
equivalent systems, we have to determine when solutions exist—and whether exist-
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ing solutions are unique. Suppose we have a two-dimensional system of first-order
equations

dx1

dt
= f (t, x1, x2)

dx2

dt
= g (t, x1, x2) ,

where x1 (t0) = x0
1 and x2 (t0) = x0

2 . Then if f , g, ∂f
∂x1

, ∂g
∂x1

, ∂f
∂x2

, and ∂g
∂x2

are all

continuous in a box B in t − x1 − x2 space containing the point
(
t0, x

0
1 , x0

2

)
, there is

an interval I containing t0 in which there is a unique solution x1 = y1(t), x2 = y2(t)

of the IVP.
Once we are confident that an IVP involving a higher-order equation or its system

equivalent has a unique solution, we can apply natural two-dimensional general-
izations of the numerical solution methods introduced in Sections 3.1–3.3: Euler’s
method; the improved Euler method; and higher-order techniques such as the fourth-
order Runge–Kutta and Runge–Kutta–Fehlberg methods. Technology is indispens-
able in the numerical solution of both single equations and systems.

A two-dimensional system has the form

x′ = F(t, x, y)

y′ = G(t, x, y).

A particular solution of such a system consists of a pair of functions x(t), y(t) that,
when substituted into the equations of the system, give true statements. The proper
graphical representation of a solution is a curve in three-dimensional t-x-y space,
the set of points of the form (t , x(t), y(t)), but often it is useful to think of the points
(x(t), y(t)) as tracing out a path (also called an orbit or a trajectory) in the x-y plane
(called the phase plane) as the parameter t varies “offstage.” The positive direction
of the path is the direction that corresponds to increasing values of t . The collection
of all trajectories is the phase portrait of the system. Technology also enables us to
study the graphs of x versus t and y versus t .

For autonomous systems x′ = f (x, y), y′ = g(x, y), we can eliminate any explicit
reliance on the parameter t by using the Chain Rule to form the first-order differential
equation

dy

dx
= dy

dt
· dt

dx
=

dy
dt
dx
dt

= g(x, y)

f (x, y)
.

This gives the slope of the tangent line at points of the phase plane. The slope
field of this first-order equation outlines the phase portrait of the system.

Given any two-dimensional autonomous system x′ = f (x, y), y′ = g(x, y), an
equilibrium point is a point (x, y) such that f (x, y) = 0 = g(x, y). This means, for
example, that a particle at this point in the phase plane is not moving. The language
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of sinks and sources used in Section 2.6 can be extended to apply to equilibrium
solutions of systems.

By using matrices and their properties, we can write any n × n autonomous sys-
tem of linear equations with constant coefficients

ẋ1 = a11x1 + a12x2 + a13x3 + · · · + a1nxn

ẋ2 = a21x1 + a22x2 + a23x3 + · · · + a2nxn

ẋ3 = a31x1 + a32x2 + a33x3 + · · · + a3nxn

...
...

...

ẋn = an1x1 + an2x2 + an3x3 + · · · + annxn

in the compact form Ẋ = AX, where

X =

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
x3

...

xn

⎤
⎥⎥⎥⎥⎥⎦ , Ẋ =

⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

...

ẋn

⎤
⎥⎥⎥⎥⎥⎦ , and A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ .

For two-dimensional systems in which the matrix of coefficients A has a nonzero de-
terminant, the origin is the only equilibrium point. The qualitative behavior (stability)
of such a linear system is completely determined by the eigenvalues and eigenvec-
tors of A. If the system has a pair of complex conjugate eigenvalues, we have to use
Euler’s formula, ep+qi = ep(cos(q) + i sin(q)), to obtain real-valued solutions.

Using expressions for the general solution of our system, we can analyze the
stability of the system qualitatively in terms of eigenvalues and eigenvectors. The
stability results are summarized in Table 6.2 at the end of Section 6.9.

We may have a nonhomogeneous system

ẋ1 = a11x1 + a12x2 + a13x3 + · · · + a1nxn + b1(t)

ẋ2 = a21x1 + a22x2 + a23x3 + · · · + a2nxn + b2(t)

ẋ3 = a31x1 + a32x2 + a33x3 + · · · + a3nxn + b3(t)

...
...

...

ẋn = an1x1 + an2x2 + an3x3 + · · · + annxn + bn(t),

which can be written as Ẋ = AX + B(t), with

X =

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
x3

...

xn

⎤
⎥⎥⎥⎥⎥⎦ , Ẋ =

⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

...

ẋn

⎤
⎥⎥⎥⎥⎥⎦ ,
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A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ , and B(t) =

⎡
⎢⎢⎢⎢⎢⎣

b1(t)

b2(t)

b3(t)

...

bn(t)

⎤
⎥⎥⎥⎥⎥⎦ .

In this situation, we know that the general solution, XGNH, of a linear nonhomo-
geneous system is obtained by finding a particular solution, XPNH, of the nonho-
mogeneous system and adding it to the general solution, XGH, of the homogeneous
system: XGNH = XGH + XPNH. The method of undetermined coefficients can be
used to make an intelligent guess about the particular solution if the entries of vector
B(t) contain terms that are constants, exponential functions, sines, cosines, polyno-
mials, or any sum or product of such terms. For other kinds of functions making up
B(t), XPNH must be found using some other technique (for example, variation of
parameters).

In an optional section, both analytic and qualitative techniques are used to analyze
spring-mass problems, including one exhibiting the phenomenon of resonance.

Although we started with a thorough analysis of the equilibrium points and the
stability of the system near these points for two-dimensional systems of equations
with constant coefficients, we saw eventually that the concepts of eigenvalue and
eigenvector were meaningful for systems of n equations. Specifically, given a system
Ẋ = AX, where X is an n × 1 column matrix (vector) and A is an n × n matrix,
an eigenvalue λ is a solution of the equation det(A − λI) = 0, where I is the n × n

identity matrix consisting of ones down the main diagonal and zeros elsewhere. We
know that det(A − λI) is an nth-degree polynomial in λ. Given an eigenvalue λ, an
eigenvector associated with λ is a nonzero vector V satisfying the equation AV =
λV .

For values of n greater than 3, we lose the ordinary intuitive geometric inter-
pretation of our results. Also, when n is greater than or equal to 5, there is no
general procedure we can follow to solve the characteristic equations. We must use
approximation methods, and technology becomes crucial here. The question of the
multiplicity of eigenvalues leads to complicated linear-algebra considerations, and
the general vector form of the solution of a system is difficult to describe without
delving more deeply into linear algebra.
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CHAPTER

Systems of nonlinear
differential equations

Introduction
We have discussed various nonlinear equations throughout previous chapters, espe-
cially in Chapters 2 and 3, treating them numerically, graphically, and analytically.
In general, we can’t expect to find the explicit (closed-form) solution of a nonlinear
equation, so we are forced to rely on qualitative and computational methods rather
than on purely analytical techniques. This complexity is magnified when we address
systems of nonlinear equations.

In Chapter 6 we analyzed the stability of systems of linear differential equations—
that is, the behavior of such systems near equilibrium points—and saw that this
stability could be described completely in terms of the eigenvalues and eigenvec-
tors of the system. This kind of analysis can be done for nonlinear systems, but it
is not quite as satisfactory and complete. One way of carrying out this study is to
examine how closely we can approximate (in some sense) a nonlinear system by a
linear system and then apply the linear theory.

The modern qualitative theory of stability discussed in Chapter 6 and in this chap-
ter originated in the late 1800s with the work of the French mathematician Henri
Poincaré (1854–1912), who was studying whether the solar system was actually a sta-
ble system. The equations involved in Poincaré’s study of celestial mechanics could
not be solved explicitly, so he and others developed implicit (qualitative) methods to
deal with the complicated problems of planetary motion. [An excellent account of
this work and its consequences is Celestial Encounters: The Origins of Chaos and
Stability by F. Diacu and P. Holmes (Princeton: Princeton University Press, 1996).]

7.1 Equilibria of nonlinear systems
Recall that an equilibrium point of a differential equation or a system of differential
equations is a constant solution. If we look at the two (somewhat similar) equations

(1) y′ = −y

(2) y′ = −y(1 − y),

we see some important differences between linear and nonlinear equations.

A Modern Introduction to Differential Equations. https://doi.org/10.1016/B978-0-12-818217-8.00014-2
Copyright © 2021 Elsevier Inc. All rights reserved.
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Eq. (1) is linear, but more fundamentally it is separable, so it is easy to find the
general solution, y = Ce−t , where C is an arbitrary constant. (We recognize that
C = y(0), the initial state of the system being modeled by the equation.)

Now Eq. (2) is nonlinear and separable, and its general solution is y = 1
1+Cet ,

where C = 1/y(0) − 1. (Verify the solutions to both equations.)
Let’s examine some typical solution curves for Eq. (1). Fig. 7.1 shows that there

is only one equilibrium solution, y ≡ 0, and this is a sink. (Review Section 2.6 if
necessary.) If an object described by the equation starts off at zero (that is, if C = 0),
it remains at zero for all time. If the object’s initial state is not zero, then the object
will approach the solution y ≡ 0 as its asymptotically stable solution (or sink).

FIGURE 7.1

Solutions of y′ = −y; y(0) = 5,3,1,−2,−4

On the other hand, Fig. 7.2 shows the same kind of information for Eq. (2). For
such a nonlinear equation there can be more than one equilibrium solution, in this
case y ≡ 0 and y ≡ 1. Also note that some solutions of a nonlinear equation may
become unbounded as t approaches some finite value. (If y(0) > 1, for what value of
t does the denominator of the general solution to Eq. (2) vanish?)

FIGURE 7.2

Solutions of y′ = −y(1 − y)
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In contrast, all solutions of a linear equation or a system of linear equations are
defined for all values of the independent variable. Finally, looking closely at the be-
havior of solutions of Eq. (2) with different initial values, we see that the solutions
starting off above 1 behave differently from those solutions with initial values less
than 1. The equilibrium solution y ≡ 0 is a sink if y(0) < 1 and y ≡ 1 is a source
if y(0) > 1. Furthermore, for solutions with initial values C greater than 1, the line

t = ln
(
− 1

C

)
is a vertical asymptote. We say that the solution “blows up in finite

time.” (Note that when y(0) > 1, C = 1/y(0) − 1 < 0, so that the blow-up point t is
the logarithm of a positive quantity.) The last three types of behavior cannot occur
when we are dealing with a linear equation. You should expect that the situation with
nonlinear systems is appropriately complicated.

Let’s look at an example of a nonlinear system and its behavior near its equilib-
rium points.

Example 7.1.1 Stability of a Nonlinear System
The nonlinear system

x′ = x − x2 − xy

y′ = −y − y2 + 2xy

represents two populations interacting in a predator-prey relationship. This is essentially a Lotka–
Volterra system (see Section 7.4) with “crowding” terms (the squared terms) added for both species.

To calculate the equilibrium points of this system, we solve the system {x′ = 0, y′ = 0}, which
is the same as the nonlinear algebraic system

(A) x(1 − x − y) = 0

(B) y(−1 − y + 2x) = 0.

Clearly, the origin, x = y = 0, is an equilibrium point. Logically, there are only three other cases
to examine: (1) x = 0, y �= 0; (2) x �= 0, y = 0; and (3) x �= 0, y �= 0. Assuming case 1, we can
eliminate Eq. (A) and examine (B), which becomes y(−1 − y) = 0. Because y �= 0, we conclude
that −1 − y = 0, or y = −1. Thus, our second equilibrium point is (0,−1). Moving to case 2, we
can ignore Eq. (B) and focus on (A), which now looks like x(1 − x) = 0. Because we are assuming
in case 2 that x �= 0, we can see that x = 1, which gives us the third equilibrium point (1, 0). Finally,
if x �= 0 and y �= 0, our system of algebraic equations becomes

(A2) x + y = 1

(B2) y − 2x = −1.

(We have divided out x and y in (A) and (B) and then rearranged the terms of each equation.)
Subtracting (B2) from (A2) gives us 3x = 2, or x = 2

3 . Substituting this value of x in (A2) yields

y = 1
3 . Therefore, the last equilibrium point is

(
2
3 , 1

3

)
.

In terms of a population problem, the only interesting equilibrium point is the last one we found.
(Why is this so?) If we look at a slope field for the original system of nonlinear differential equations

near the point
(

2
3 , 1

3

)
, we see an interesting pattern (Fig. 7.3a).

The apparent spiraling of solutions into the equilibrium point can be seen more clearly if we
show some numerically generated solution curves (Fig. 7.3b). Fig. 7.3b represents a predator-prey



364 CHAPTER 7 Systems of nonlinear differential equations

FIGURE 7.3a

Slope field for x′ = x − x2 − xy, y′ = −y − y2 + 2xy near
(

2
3 , 1

3

)

FIGURE 7.3b

Phase portrait for x′ = x − x2 − xy, y′ = −y − y2 + 2xy near
(

2
3 , 1

3

)
; (x(0), y(0)) = (0.2,1),

(0.8,0.8), (0.8,0.5), (1,0.7), (1,0.2), (0.5,1)

population that is stabilizing. If the units are thousands of creatures, then the X population is heading
for a steady population of about 667, whereas the Y population has 333 as its stable value.
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Mathematically, however, we should look at the entire phase portrait to understand the complex
behavior of nonlinear systems. We’ll return for a detailed analysis of this system in Example 7.3.1.

Exercises 7.1
A
Find all the equilibrium points for each of the systems in Problems 1–14, using
technology if necessary.

1. x′ = −x + xy, y′ = −y + 2xy

2. x′ = x − xy, y′ = y − xy

3. x′ = x2 − y2, y′ = x − xy

4. x′ = 1 − y2, y′ = 1 − x2

5. x′ = x + y + 2xy, y′ = −2x + y + y3

6. x′ = y
(
1 − x2

)
, y′ = −x

(
1 − y2

)
7. x′ = x − x2 − xy, y′ = 3y − xy − 2y2

8. x′ = 1 − y, y′ = x2 − y2

9. x′ = (1 + x) siny, y′ = 1 − x − cosy

10. x′ = 3y − ex , y′ = 2x − y [Hint: There are two equilibrium points. Use your
CAS to approximate these points.]

11. x′ = y2 − x2, y′ = x − 1

12. x′ = x2 − y, y′ = y2 − x

13. x′ = xy(1 − x), y′ = y
(
1 − y

x

)
14. x′ = y, y′ = − sinx − 3y

B

15. Use technology to find all the equilibrium points of the system

x′ = −y, y′ =
(
x4 + 4x3 − x2 − 4x + y

)
/8.

16. A two-mode laser produces two different kinds of photons, whose numbers
are n1 and n2. The equations governing the rates of photon production are

ṅ1 = G1Nn1 − k1n1

ṅ2 = G2Nn2 − k2n2,

where N(t) = N0 − a1n1 − a2n2 is the number of excited atoms. The pa-
rameters G1,G2, k1, k2, a1, a2, and N0 are all positive. Use a CAS “solve”
command to find all the equilibrium points of the system.



366 CHAPTER 7 Systems of nonlinear differential equations

17. A chemostat is a device for growing and studying bacteria by supplying nutri-
ents and maintaining convenient levels of the bacteria in a culture. One model
of a chemostat is the nonlinear system

dN

dt
= a1

(
C

1 + C

)
N − N

dC

dt
= −

(
C

1 + C

)
N − C + a2,

where N = N(t) denotes the bacterial density at time t ; C = C(t) denotes the
concentration of nutrient; and a1, a2 are positive parameters. Use technology
to find all the equilibrium solutions (N∗,C∗) of the system.

18. In the absence of damping and any external force, the motion of a pendulum

is described by the equation d2θ

dt2 + g
L

sin θ = 0, where θ is the angle between
the pendulum and the downward vertical, g is the acceleration due to gravity,
and L is the length of the pendulum.
a. Write this equation as a system of two first-order equations.

b. Describe all the equilibrium points of the system.

C
19. Use technology to find all the equilibrium solutions of the system

x′ = x − y2 + a + bxy, y′ = 0.2y − x + x3,

where a = 1.28 and b = 1.4. (Round to the nearest thousandth.)

7.2 Linear approximation at equilibrium points
One important aspect of linear systems is that the behavior of solutions near an equi-
librium point (local behavior) tells you the behavior of solutions in the entire phase
plane. However, even though many of the “nice” properties of linear systems are not
present when we analyze nonlinear systems, we may be able to understand the local
behavior of nonlinear systems by a process of linearization or linear approximation:
We try to replace the original nonlinear system by a linear system that is close to it
near an equilibrium point. This is analogous to our discussion of Euler’s method in
Section 3.1, which involved approximating solution curves by tangent lines.

To see how this might work, let’s go back to the nonlinear equation y′ = −y(1 −
y) = −y + y2 discussed in Section 7.1. We know that y = 0 is an equilibrium point.
Now note that for values of y close to zero, y2 is smaller than y. For example, if y =
0.00001, then y2 = 0.0000000001. Then, dropping the squared (nonlinear) terms, we
can guess that the linear equation y′ = −y is a good approximation for the original
equation and that the behavior of this last equation near y = 0 should tell us how
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y′ = −y(1 − y) behaves near y = 0. A comparison of the solution curves near y = 0
in Fig. 7.1 and Fig. 7.2 shows us that this is true. However, it should also be clear that
we would be wrong to base our analysis of y′ = −y(1 − y) on y′ = −y for all initial
values.

If we want to analyze the behavior of y′ = −y(1 − y) near its other equilibrium
point, y = 1, we can use a simple change of variable: Let y = 1 + z, so that studying
the behavior of y′ = −y(1 − y) near y = 1 is the same as analyzing the behavior
of the equation y = 1 + z near z = 0. (Make sure you see this.) With this change of
variable we get the new equation z′ = −y(1 − y) = (−1 − z)(−z) = z + z2. Using
the same reasoning as before, we can take z′ = z as a good linear approximation near
z = 0. This last equation has the general solution z = Cet , so solutions of z′ = z + z2

move away from z = 0 as t increases. But because y = 1 + z, the solutions of y′ =
−y(1 − y) near y = 1 curve away from y = 1, behavior we can verify by looking at
Fig. 7.2.

As another example, take the second-order nonlinear equation d2x

dt2 + g
L

sinx = 0,
which describes the swinging of a pendulum, where x is the angle the pendulum
makes with the vertical, g is the acceleration due to gravity, and L is the pendulum’s
length. This equation is not easy to deal with analytically, so usually the nonlinearity
is removed by a substitution. For small values of x—that is, for an oscillation of
small amplitude—sinx ≈ x, so we can replace our original nonlinear equation by

the linear equation that approximates it: d2x

dt2 + g
L
x = 0. This approximate pendulum

model has the same mathematical behavior as the undamped spring-mass system (see
Eq. (6.11.1)). Despite our success in approximating a nonlinear equation with one
that is linear, this is a limited victory. The next example illustrates how linearization
can lead us astray.

Example 7.2.1 Linearization Can Mislead
Let’s look at the system

ẋ = y + ax
(
x2 + y2

)
ẏ = −x + ay

(
x2 + y2

)
,

where a is a real parameter.
Clearly, the origin (x, y) = (0,0) is an equilibrium point regardless of the value of the parame-

ter a. In our example the obvious linearized system is

ẋ = y

ẏ = −x.

(Look back at the spring-mass system analyzed in Example 6.11.1.) This can be written in the form

Ẋ = AX, where X =
[
x

y

]
and A =

[
0 1

−1 0

]
. The characteristic equation is λ2 + 1 = 0, so that

the eigenvalues of A are purely imaginary: i and −i. From Table 6.2 in Section 6.9, we conclude that
the origin is a stable center of the linearized system. But this is the wrong conclusion with respect
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to the original nonlinear system, as the phase portrait of the original nonlinear system near (0,0)

shows. This portrait (Fig. 7.4) corresponds to a = −1.

FIGURE 7.4

Trajectories of ẋ = y − x
(
x2 + y2

)
, ẏ = −x − y

(
x2 + y2

)
, 0 ≤ t ≤ 18;

(x(0), y(0)) = (0,1), (0,−1)

It seems that the trajectories spiral in toward the equilibrium point, indicating that the origin is
actually a spiral sink for the nonlinear system. However, appearances can be deceiving, and Prob-
lem 21 in Exercises 7.2 suggests a way of proving this claim about the origin.

We begin to suspect that the stability of the original system depends on the value of the param-
eter a. If a = 0, for example, then the nonlinear portion of the system disappears, leaving us with a
purely linear system—in fact, the same system analyzed in Example 6.11.1 (with β = 1). As we’ve
said, the origin is a stable center for this linear system, every trajectory closing perfectly after one
cycle. (Problem 21 asks you to explore these ideas further.)

In summary, we can look at this last example as a linear system “perturbed” (dis-
turbed or knocked off kilter) by a nonlinear component. We can write this system

as Ẋ =
[

0 1
−1 0

]
X +

[
f (x, y)

g(x, y)

]
, where f and g are nonlinear functions of x and

y. As we’ll see later, if the nonlinear perturbation is “nice” enough, the behavior of
the whole system can be predicted from the behavior of its linear portion near the
equilibrium points.

7.2.1 Almost linear systems
If we want to make this discussion of linear approximation mathematically sound,
we have to remind ourselves of some basic calculus facts. Back in Section 3.1 we
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discussed local linearity, the idea that if we “zoom” in on a point on a curve y = f (x),
the curve looks like a straight line—in fact, like a piece of the tangent line drawn
to the curve at that point. More precisely, for values of the independent variable x

close to x = a, we can write f (x) ≈ f (a) + f ′(a)(x − a). We should see that this
expression consists of the first two terms of an nth-degree (n ≥ 1) Taylor polynomial
approximation of f near x = a—or, equivalently, the first two terms of the Taylor
series expansion of f in a neighborhood of x = a:

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3 + · · ·

+ f (n)

n! (x − a)n + · · ·

= f (a) + f ′(a)(x − a) + (x − a)2
{

f ′′(a)

2! + f ′′′(a)

3! (x − a) + · · ·

+f (n)

n! (x − a)n−2 + · · ·
}

.

We can write this last result as f (x) ≈ f (a) + f ′(a)(x − a) + O
(
(x − a)2

)
, where

the notation O
(
(x − a)2

)
represents the fact that if x is close to a (so that x − a

is very small), then the sum of all terms past the second will be bounded by some
multiple of (x − a)2. (The series in braces, {· · · }, converges to some constant.)

Now assume that we have a general nonlinear autonomous system of the form

ẋ = F(x, y)

ẏ = G(x,y) (7.2.1)

which has the origin as an equilibrium point—that is, F(0,0) = 0 and G(0,0) = 0.
This last assumption is just for convenience as we develop some methodology. If we
can write F as ax + by + f (x, y) and G as cx + dy + g(x, y), where f and g are
nonlinear functions, then we can express the system in the form

Ẋ =
[
a b

c d

]
X +

[
f (x, y)

g(x, y)

]
.

If the nonlinear functions f and g are small enough (in a sense to be explained later)
that their effect on the system is negligible, then we can call our system “almost lin-
ear.” Near the origin, our nonlinear system behaves essentially like the linear system

Ẋ =
[
a b

c d

]
X—that is, like the system

ẋ = ax + by

ẏ = cx + dy.
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Earlier we recalled that the tangent line y = f (a) + f ′(a)(x − a) gives the best
linear approximation of a single-variable function f near x = a. For F(x, y), a func-
tion of two variables, the best approximation near a point (a, b) is provided by the
tangent plane given by the approximation formula

F(x, y) ≈ F(a, b) + ∂F

∂x
(a, b)(x − a) + ∂F

∂y
(a, b)(y − b), (7.2.2)

where ∂F
∂x

(a, b) and ∂F
∂y

(a, b) denote the first partial derivatives of F evaluated at the
point (a, b). (See Appendix A.8.) For example, if we want to approximate F(x, y) =
x3 + y3 near the point (1,1), we calculate

F(1,1) = 13 + 13 = 2

∂F

∂x
= 3x2,

∂F

∂x
(1,1) = 3(1)2 = 3

∂F

∂y
= 3y2,

∂F

∂y
(1,1) = 3(1)2 = 3,

so the equation of the tangent plane is z = 2 + 3(x − 1) + 3(y − 1).
You should think of the right-hand side of Eq. (7.2.2) as the first-degree Taylor

polynomial approximation of F , the linear terms in x and y of the two-variable Taylor
series expansion of F . This approximation ignores the rest of the series consisting of
the terms in x and y of the second degree and higher, which we can denote by f (x, y).
Thus, in our last example, we can write x3 +y3 ≈ 2+3(x −1)+3(y −1) near (1,1)

or x3 + y3 = 2 + 3(x − 1) + 3(y − 1) + f (x, y) near (1,1). (See Appendix A.8 for
more information on this topic.)

If we choose the point (a, b) to be the origin, then we can rewrite (7.2.1) as

ẋ = F(0,0) + ∂F

∂x
(0,0)x + ∂F

∂y
(0,0)y + f (x, y)

ẏ = G(0,0) + ∂G

∂x
(0,0)x + ∂G

∂y
(0,0)y + g(x, y),

or (remembering that we have assumed F(0,0) = G(0,0) = 0) as

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y), (7.2.3)

where a = ∂F
∂x

(0,0), b = ∂F
∂y

(0,0), c = ∂G
∂x

(0,0), and d = ∂G
∂y

(0,0).
The technical definition of the “smallness” of f and g near the origin is that

lim
(x,y)→(0,0)

f (x, y)√
x2 + y2

= lim
(x,y)→(0,0)

g(x, y)√
x2 + y2

= 0. (7.2.4)

The limits in (7.2.4) just say that near the origin, f and g are small in comparison
to r = √

x2 + y2, which is the radial distance of the point (x, y) from the origin.
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We define an almost linear system as a nonlinear system (7.2.3) that satisfies
(7.2.4). In this situation, the linear part

ẋ = ax + by

ẏ = cx + dy (7.2.5)

is called the associated linear system or linear approximation about the equilib-
rium point (0,0).

Example 7.2.2 A Linear Approximation
Let’s examine the behavior of the following system near the origin:

ẋ = x + 2y + x cosy

ẏ = −y − siny.

First of all, we can see that (0,0) is an equilibrium point for the system. Now we must find the
associated linear system, which is not obvious because x cosy and − siny actually contain linear
terms that must be combined with the linear terms already visible in the original system.

Substituting the Taylor (or Maclaurin) expansions for cosy and siny (see Appendix A.3) in the
given equations and collecting terms, we have

ẋ = x + 2y + x

(
1 − y2

2! + y4

4! − · · ·
)

= 2x + 2y + x

(
−y2

2! + y4

4! − · · ·
)

ẏ = −y −
(

y − y3

3! + y5

5! − · · ·
)

= −2y −
(

−y3

3! + y5

5! − · · ·
)

.

FIGURE 7.5a

Slope field for ẋ = x + 2y + x cosy, ẏ = −y − siny
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FIGURE 7.5b

Trajectories for ẋ = x + 2y + x cosy, ẏ = −y − siny

FIGURE 7.5c

Trajectories for ẋ = 2x + 2y, ẏ = −2y

Thus, the associated linear system is

ẋ = 2x + 2y

ẏ = −2y,
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or

Ẋ =
[

2 2
0 −2

]
X = AX.

The characteristic equation of this linear system is given by λ2 − 4 = 0, so the eigenvalues are
λ = −2 and λ = 2.

Table 6.2 in Section 6.9 tells us that two real eigenvalues opposite in sign indicate that we have a
saddle point. Fig. 7.5a shows the slope field for the system; Fig. 7.5b shows some trajectories for the
nonlinear system around the origin; Fig. 7.5c shows trajectories around the origin for the associated
linear system.

We can see from these phase portraits that the linear approximation captures the behavior of the
nonlinear system near the origin.

Exercises 7.2
A
In Problems 1–15, (a) verify that (0,0) is an equilibrium point of each system and
(b) show that each system is almost linear.

1. x′ = 3x + y + xy, y′ = 2x + 2y − 2xy2

2. x′ = x − y + x2, y′ = x + y

3. x′ = x − xy − 8x2, y′ = −y + xy

4. x′ = −4x + y − xy3, y′ = x − 2y + 3x2

5. x′ = 3 sinx + y, y′ = 4x + cosy − 1

6. x′ = x − y, y′ = 1 − ex

7. x′ = −3x − y − xy, y′ = 5x + y + xy3

8. x′ = y
(
1 − x2

)
, y′ = −x

(
1 − y2

)
9. x′ = −x + x3, y′ = −2y

10. x′ = −2x + 3y + xy, y′ = −x + y − 2xy2

11. x′ = (x − 2y)(y + 4), y′ = 2x − y

12. x′ = (x − 2)(y − 3) − 6, y′ = (x + 2y)(y − 1)

13. x′ = 5x − 14y + xy, y′ = 3x − 8y + x2 + y2

14. x′ = 9x + 5y + xy, y′ = −7x − 3y + x2

15. x′ = 1
2

(
1 − 1

2x − 1
2y

)
x, y′ = 1

4

(
1 − 1

3x − 2
3y

)
y

B
16. Find the linear approximation of the system {ẋ = sinx + 2y, ẏ = xy +

3yex + x}.
17. Consider the two systems

(a) ẋ = −y + x(x2 + y2), ẏ = x + y(x2 + y2)
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(b) ẋ = −y − x(x2 + y2), ẏ = x − y(x2 + y2).

a. Show that both systems are almost linear and determine all the equilib-
rium solutions.

b. Linearize each system.

c. Convert each system to polar coordinates and use these representations to
determine the nature of all the equilibrium solutions for each system.

18. Show that the system

x′ = −x + 3y + y cos
√

x2 + y2

y′ = −x − 5y + x cos
√

x2 + y2

is not almost linear.

19. Consider the second-order nonlinear equation ẍ + x − 0.25x2 = 0.
a. Convert this equation to a nonlinear system of two first-order equations.

b. Determine if (0,0) is an equilibrium solution of the system found in
part (a).

c. Determine the associated linear system.

20. The interaction between two species is governed by the model {Ḣ = (a1 −
b1H − c1P)H, Ṗ = (−a2 + c2H)P }, where H is the population of the host
(prey), P is that of the parasite (or predator), and all constants are positive. As-
suming that a1c2 −b1a2 > 0, find the equilibrium solutions for the populations
and classify them.

C
21. Let’s return to the system in Example 7.2.1:

ẋ = y + ax
(
x2 + y2

)
ẏ = −x + ay

(
x2 + y2

)
.

a. Introduce polar coordinates. Note that x2 + y2 = r2 and use the Chain
Rule to show that xẋ + yẏ = rṙ .

b. In the expression for rṙ found in part (a), substitute for ẋ and ẏ using the
equations in the system and show that ṙ = ar3 for r > 0.

c. Show that θ = arctan(y/x) and that θ̇ = xẏ−yẋ

r2 . Substitute for ẋ and ẏ in

this last formula to see that θ̇ = 1.

d. The results of parts (b) and (c) show that our original system is equivalent
to the system

{
ṙ = ar3, θ̇ = 1

}
. The second equation says that all trajec-

tories rotate counterclockwise around the origin with constant angular
velocity 1. Recognizing that the first equation describes the radial dis-
tance from the origin to a point on the trajectory—for a point (x(t), y(t))
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on a trajectory, d(t) = √
x(t)2 + y(t)2 is the radial distance—examine

what happens to r(t) as t → ∞ in the three cases a < 0, a = 0, and a > 0.
What does this say about the nature of the equilibrium point at the origin?
Sketch a trajectory (in the x-y plane) for each of the three cases.

7.3 The Hartman–Grobman theorem
In this section, we will expand (pun intended) our view of linear approximation as an
aid in understanding the stability of nonlinear systems. More generally, suppose that
(a, b) is an equilibrium point for the system

ẋ = F(x, y)

ẏ = G(x,y),

which means that F(a, b) = 0 = G(a,b). Using the tangent plane approximation
formula (7.2.2), we can rewrite this system as

ẋ = F(a, b) + ∂F

∂x
(a, b)(x − a) + ∂F

∂y
(a, b)(y − b) + f (x, y)

ẏ = G(a,b) + ∂G

∂x
(a, b)(x − a) + ∂G

∂y
(a, b)(y − b) + g(x, y)

or, because F(a, b) = 0 = G(a,b), as

ẋ = A(x − a) + B(y − b) + f (x, y)

ẏ = C(x − a) + D(y − b) + g(x, y), (7.3.1)

where

A = ∂F

∂x
(a, b), B = ∂F

∂y
(a, b), C = ∂G

∂x
(a, b), and D = ∂G

∂y
(a, b).

The matrix of coefficients in this situation can be written as[
A B

C D

]
=

[
∂F
∂x

(a, b) ∂F
∂y

(a, b)

∂G
∂x

(a, b) ∂G
∂y

(a, b)

]
=

[
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]
(a,b)

.

The matrix of partial derivatives is called the Jacobian, denoted by J (x, y), and
is named after the mathematician Carl Jacobi (1804–51).

Another way to look at this general situation is to realize that we are translating
the equilibrium point (a, b) to the origin by using the change of variables u = x − a

and v = y − b. Of course, this means that x = u + a and y = v + b, so we can
rewrite (7.3.1) as

u̇ = Au + Bv + f (u, v)
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v̇ = Cu + Dv + g(u, v),

which has (0,0) as an equilibrium point. Note that this says that any equilibrium
point (a∗, b∗) �= (0,0) can be translated to the origin for the purpose of analyz-
ing the stability of the system. Therefore, we can state an important stability result
for nonlinear systems in terms of an equilibrium point at the origin. The theorem is
given in terms of the eigenvalues of the associated linear system.

Suppose we have the nonlinear autonomous system

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y), (7.3.2)

where ad − bc �= 0, lim(x,y)→(0,0) f (x, y)/
√

x2 + y2 = lim(x,y)→(0,0) g(x, y)/√
x2 + y2 = 0, and the origin is an equilibrium point. If λ1 and λ2 are the eigen-

values of the associated linear system

ẋ = ax + by,

ẏ = cx + dy, (7.3.3)

then the Hartman–Grobman theorem states that the equilibrium points of the two
systems (7.3.2) and (7.3.3) are related as follows:

a. If the eigenvalues λ1 and λ2 are not equal real numbers or are not pure imaginary
numbers, then the trajectories of the almost linear system (7.3.2) near the equilib-
rium point (0,0) behave the same way as the trajectories of the associated linear
system (7.3.3) near the origin. That is, we can use the appropriate table entries
given in Section 6.9 to determine whether the origin is a node, a saddle point, or
a spiral point of both systems.

b. If λ1 = λ2 > 0, then the origin is an unstable equilibrium solution for both the
nonlinear and linearized systems. If λ1 = λ2 < 0, then the origin is asymptotically
stable for both systems.

c. If λ1 = 0 and λ2 > 0, then the origin is unstable for the nonlinear system. If λ1 = 0
and λ2 < 0, then the origin may be stable or unstable for the nonlinear system,
depending on the neglected nonlinear terms.

d. If λ1 and λ2 are complex conjugates with a nonzero real part, then the origin is
unstable or asymptotically stable, depending on whether the real part of λ1, λ2 is
positive or negative, respectively.

e. If λ1 and λ2 are pure imaginary numbers—that is, λ1 = i δ, λ2 = −i δ, δ �= 0,
then the origin is a center for the linearized system, but may not be a center for
the nonlinear system. The origin is either a center or a spiral point of the nonlinear
system. Also, this spiral point may be asymptotically stable, stable, or unstable,
depending on the nonlinear terms neglected during the linearization.

To summarize, there are only two situations in which the behavior of trajectories
near an equilibrium solution of a nonlinear system could differ from the behavior of
the system’s linearization:
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1. When the linearized system has zero as an eigenvalue.
2. When the linearized system has pure imaginary eigenvalues, so that the equilib-

rium solution is a center.

A nonlinear system is said to have a hyperbolic equilibrium point if all eigen-
values of the Jacobian matrix J (x, y) are nonzero or have a nonzero real part in the
case of complex conjugate eigenvalues. The system has a nonhyperbolic equilib-
rium point if at least one eigenvalue is zero or has a zero real part. In abbreviated
form, the Hartman–Grobman result can be stated as follows:

Suppose that (u, v) is a hyperbolic equilibrium point of the nonlinear sys-
tem (7.3.2). Then there is a neighborhood of this equilibrium point on which
the phase portrait of the nonlinear system resembles that of the linearized sys-
tem (7.3.3). If (u, v) is a nonhyperbolic equilibrium point, no conclusion can be
drawn about the trajectories of the nonlinear system near the equilibrium point.

This important result was announced by David Grobman in 1959 and was inde-
pendently stated and proved by Philip Hartman in 1960. It was based on earlier work
on the stability of nonlinear systems by H. Poincaré, A.M. Lyapunov (1857–1918),
and others beginning at the end of the 19th century.

The next example shows how to use the Hartman–Grobman theorem.

Example 7.3.1 An Application of the Hartman–Grobman Theorem
Let’s return to the system in Example 7.1.1:

x′ = x − x2 − xy

y′ = −y − y2 + 2xy.

We saw that there were four equilibrium points: (0,0), (0,−1), (1,0), and ( 2
3 , 1

3 ).

Near the origin, because the terms x2, y2, and xy are smaller than the terms x and y, we can
replace the nonlinear system by its associated linear system

x′ = x

y′ = −y.

The eigenvalues of this linear system are −1 and 1. According to part (a) of the Hartman–Grobman
result, the trajectories of the nonlinear system should behave the same way as the trajectories of this
associated linear system. Table 6.2 in Section 6.9 tells us that the origin is a saddle point for both
systems.

If we want to examine what happens near the equilibrium point (0,−1), we make the change of
variables u = x − 0 = x and v = y − (−1) = y + 1 so that we can rewrite the original system as

u′ = x′ = u − u2 − u(v − 1) = 2u − u2 − uv

v′ = y′ = −(v − 1) − (v − 1)2 + 2u(v − 1) = −2u + v − v2 + 2uv.

Then the associated linear system is

u′ = 2u
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v′ = −2u + v,

with eigenvalues 1 and 2. (Check this.) Now paragraph (a) of the Hartman–Grobman theorem and
the table in Section 6.9 tell us that the equilibrium point (0,−1) is a source for the nonlinear system.

The equilibrium point (1,0) leads us to make the change of variables u = x − 1 and v =
y − 0 = y, so that the nonlinear system is transformed into

u′ = −u − v − u2 − uv

v′ = v − v2 + 2uv,

with associated linear system

u′ = −u − v

v′ = v.

The eigenvalues for this last system are −1 and 1, so that (1,0) is a saddle point for both the
nonlinear system and its associated linear system.

Finally, we look at the equilibrium point
(

2
3 , 1

3

)
. The transformation u = x − 2

3 , v = y − 1
3

leads to the system

u′ = −2u

3
− 2v

3
− u2 − uv

v′ = 2u

3
− v

3
− v2 + 2uv.

The linear approximation is given by

u′ = −2u

3
− 2v

3

v′ = 2u

3
− v

3
,

which has eigenvalues − 1
2 +

√
15
6 i and − 1

2 −
√

15
6 i. Therefore, from result (a) and Table 6.2, we

know that
(

2
3 , 1

3

)
is a spiral sink. (Look back at Figs. 7.3a and 7.3b to see this clearly.) Fig. 7.6a

shows some trajectories near the origin, a saddle point. Fig. 7.6b illustrates the behavior of the
system near the equilibrium point (0,−1), a source. Finally, Fig. 7.6c makes it clear that (1,0) is
indeed a saddle point.

Now let’s examine a system whose stability is not so clear.

Example 7.3.2 Another Application of Hartman–Grobman
The system we’ll investigate is

ẋ = −x3 − y

ẏ = x − y3.

Set ẋ = 0 and ẏ = 0 and then substitute y = −x3 from the first equation into the second equation.
We get x + x9 = 0, or x(1 + x8) = 0, so x = 0. It follows that (0,0) is the only equilibrium point of
this system.
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FIGURE 7.6a

Trajectories of x′ = x − x2 − xy, y′ = −y − y2 + 2xy near the origin

FIGURE 7.6b

Trajectories of x′ = x − x2 − xy, y′ = −y − y2 + 2xy near (0,−1)

The linearized system is

ẋ = −y

ẏ = x,
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FIGURE 7.6c

Trajectories of x′ = x − x2 − xy, y′ = −y − y2 + 2xy near (1,0)

with characteristic equation λ2 + 1 = 0 and eigenvalues −i and i. Because the eigenvalues are pure
imaginary numbers, case (e) of the Hartman–Grobman result tells us that the origin is either a center
or a spiral point of the original nonlinear system. (Note that the origin is a center of the associated lin-
ear system.) Fig. 7.7 shows a typical trajectory, in this case with initial state (x(0), y(0)) = (−0.5,0)

and t running from −9 to 100.

FIGURE 7.7

Trajectories of ẋ = −x3 − y, ẏ = x − y3 near the origin
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From this, we can see that the trajectory appears to spiral in toward the origin—that is, the
equilibrium point is asymptotically stable. We could have seen this analytically by defining the
function

d(t) =
√

x2(t) + y2(t),

which gives the distance from any point (x(t), y(t)) on a trajectory to (0,0). Differentiating this
function and then substituting from our original equations, we get

ḋ(t) = 1

2

[
x2(t) + y2(t)

]−1/2
(2x(t)ẋ(t) + 2y(t)ẏ(t))

=
x(t)

(
−x3(t) − y(t)

)
+ y(t)

(
x(t) − y3(t)

)
√

x2(t) + y2(t)
= − x4(t) + y4(t)√

x2(t) + y2(t)
< 0.

This says that the distance between points on the trajectory and the origin is decreasing with
time—that is, the trajectory is always moving closer and closer to the origin.

The next example shows another type of behavior.

Example 7.3.3 Yet Another Application of Hartman–Grobman
The system

ẋ = 2x − 6x2y

ẏ = 2y + x

FIGURE 7.8

Trajectories of ẋ = 2x − 6x2y, ẏ = 2y + x near the origin
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has the origin as its only equilibrium point. (Check this for yourself.) The linearization of this system
is

ẋ = 2x

ẏ = 2y + x,

which has the characteristic equation λ2 − 4λ + 4 = (λ − 2)2 = 0. Because the eigenvalues are
positive and equal, we use part (b) of the Hartman–Grobman theorem to conclude that the origin is
an unstable equilibrium point, a source. Fig. 7.8 shows this.

It is important to realize that the classification of equilibrium solutions for non-
linear systems given by the Hartman–Grobman theorem says nothing about the
behavior of trajectories of the nonlinear system with initial positions far from
an equilibrium point. The equilibrium solutions of linear systems determine the
global behavior of solutions, whereas the equilibria of a nonlinear system influence
the qualitative picture only locally.

Exercises 7.3
A
Each of the almost linear systems in Problems 1–10 has (0,0) as an equilibrium
point. Discuss the type and stability of the origin by examining the associated linear
system in each case.

1. x′ = x − y + x2, y′ = x + y

2. x′ = x − xy − 8x2, y′ = −y + xy

3. x′ = −4x + y − xy3, y′ = x − 2y + 3x2

4. x′ = 3 sinx + y, y′ = 4x + cosy − 1

5. x′ = x − y, y′ = 1 − ex

6. x′ = −3x − y − xy, y′ = 5x + y + xy3

7. x′ = y
(
1 − x2

)
, y′ = −x

(
1 − y2

)
8. x′ = −x + x3, y′ = −2y

9. x′ = −2x + 3y + xy, y′ = −x + y − 2xy2

10. x′ = 5x − 14y + xy, y′ = 3x − 8y + x2 + y2

B
11. Consider the nonlinear system

ẋ = −x + xy, ẏ = 2y − xy + 0.5x.

a. Find all the equilibrium points.

b. Describe the type and stability of each equilibrium point found in part (a)
by examining the associated linear system in each case.
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12. Consider the nonlinear system

ẋ = x − y + 5, ẏ = x2 + 6x + 8.

a. Find all the equilibrium points.

b. Describe the type and stability of each equilibrium point found in part (a)
by examining the associated linear system in each case.

13. Consider the nonlinear system

ẋ = x(8 − 4x − y), ẏ = y(3 − 3x − y),

which describes the populations x(t) and y(t) of two species that are compet-
ing for the same resources.
a. Find all the equilibrium points of this system.

b. By linearizing about each equilibrium point found in part (a), determine
the type and stability of each equilibrium point.

14. Find all the equilibrium points of the system

ẋ = 2x − 0.2x2 − 0.4xy

ẏ = 4y − 0.4y2 − 0.8xy

and determine the type and stability of each equilibrium point.

C
15. The Brusselator is a simple model of a hypothetical chemical oscillator that

first appeared in a 1968 paper by Belgian scientists I. Prigogine (a Nobel lau-
reate) and R. Lefever, and was named for the capital of their home country.
One version of the model is

ẋ = 1 − (a + 1)x + bx2y

ẏ = ax − bx2y,

where x and y are concentrations of chemicals and a, b are positive parame-
ters.
a. Use technology, if necessary, to find the only equilibrium solution of this

system.

b. Linearize the system about the equilibrium point found in part (a).

c. Find the eigenvalues of the associated linear system. (Technology could
be useful here.)

d. Using your answers from part (c) and the Hartman–Grobman theorem,
discuss the nature of the equilibrium solutions for each of the following
cases:

(1) a = 3, b = 1;



384 CHAPTER 7 Systems of nonlinear differential equations

(2) a = 2, b = 7;
(3) a = 1, b = 4.

7.4 Two important nonlinear systems
Now that we know something about the qualitative behavior of nonlinear systems,
we can apply this knowledge to the analysis of two important nonlinear systems of
differential equations: the Lotka–Volterra equations and the system corresponding
to an undamped pendulum.

7.4.1 A predator-prey model: the Lotka–Volterra equations
An important type of real-life problem that can be modeled by a system of differential
equations is a predator-prey problem, in which we assume that there are two species
of animals, X and Y, in a small geographical region such as an island. One species
(the predator) thinks of the other species (the prey) as food and is very dependent
on this food supply for survival.

Let x(t) and y(t) represent the populations of the two species at time t . We can
make the following reasonable assumptions:

1. If there are no predators, the prey species will grow at a rate proportional to
its own population (assuming an unlimited food supply). [This is a Malthusian
assumption; see Exercise 20 in Section 2.1.]

2. If there is no prey, the predator species will decline at a rate proportional to the
predator population.

3. The presence of both predators and prey is beneficial to the growth of the predator
species and is harmful to the growth of the prey species.

The third assumption says that interactions (or close encounters of the hungry kind)
between the predator and prey lead to a decrease in the prey population and to a result-
ing increase in the predator population. As we will see, these contacts are indicated
mathematically by a multiplication of the variables that represent predator and prey.
These assumptions lead to a system of nonlinear first-order differential equations like
the following:

ẋ = 0.2x − 0.002xy, ẏ = −0.1y + 0.001xy. (7.4.1)

For this system, how can we see that x(t) is the size of the prey population at any
time t and y(t) is the number of predators at time t?

First of all, note that if there are no predators—that is, if y is always 0—the system
reduces to ẋ = 0.2x, ẏ = 0. This says that the prey population would increase at a
rate that is proportional to the actual prey population at any time. Also, the predator
population is constant—at zero. This is realistic and consistent with assumption 1.
Furthermore, if there is no prey—that is, if x ≡ 0—the system becomes dx/dt = 0,
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dy/dt = −0.1y, which means that the number of predators would decrease at a rate
proportional to the predator population, where 0.1 is the constant of proportionality,
the predator’s intrinsic death rate. Again, this is realistic because in the absence of
a crucial food supply the bottom line would be starvation and a net decline in the
predator population.

The intriguing terms in (7.4.1) are the terms involving the product xy. We’ve
already suggested that these terms represent the number of possible interactions be-
tween the two species. To illustrate this point, suppose there were four foxes and
three rabbits on an island. If we label the foxes F1,F2,F3, and F4 and the rabbits
R1,R2, and R3, then we have the following possible one-on-one encounters be-
tween foxes and rabbits: (F1,R1), (F1,R2), (F1,R3), (F2,R1), (F2,R2), (F2,R3),
(F3,R1), (F3,R2), (F3,R3), (F4,R1), (F4,R2), and (F4,R3). Note that there are
4 × 3 = 12, or x times y, possible interactions. Of course, we can have two foxes
meeting up with one rabbit or one fox coming upon three rabbits, and so on, but
the idea is that the number of interactions is proportional to the product of the two
populations. The coefficient of xy in the first equation, −0.002, is a measure of the
predator’s effectiveness in terms of prey capture, whereas the coefficient 0.001 in the
second equation is an indicator of the predator’s efficiency in terms of prey consump-
tion.

The nonlinear system (7.4.1) is a particular example of a system called the Lotka–
Volterra equations:

ẋ = ax − bxy

ẏ = −cy + dxy,

where a, b, c, and d are positive constants. Alfred Lotka (1880–1949) was a chemist
and demographer, and Vito Volterra (1860–1940) was a mathematical physicist. In
the 1920s they derived these equations independently—Lotka from a chemical re-
action problem and Volterra from a problem concerning populations of fish in the
Adriatic Sea. In general, there is no explicit solution of the Lotka–Volterra equa-
tions in terms of elementary functions.

However, we can understand this system from the viewpoint of the Hartman–
Grobman theorem, by using a qualitative analysis.

7.4.2 A qualitative analysis of the Lotka–Volterra equations
The equilibrium points for the system {ẋ = ax − bxy, ẏ = −cy + dxy} are solutions
of the algebraic system

ax − bxy = x(a − by) = 0

−cy + dxy = y(−c + dx) = 0.

Clearly, x = y = 0 is a solution—that is, the origin (0,0) is an equilibrium point. It
should also be clear from these last equations that if either x or y is zero, then the
other variable must also be zero. Therefore, if there are any other equilibrium points,
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we must have x �= 0 and y �= 0. In the first algebraic equation, if x �= 0, then we must
have a − by = 0, so y = a/b. From the second equation, we see that if y �= 0, then
−c + dx = 0, so x = c/d . Thus, the only equilibrium points for the Lotka–Volterra
system are (0,0) and (c/d, a/b). (Remember that b and d are assumed to be positive.)

Near the origin, we can replace our original system by the associated linear system

ẋ = ax

ẏ = −cy,

which can be written in matrix form as Ẋ = AX, where A =
[
a 0
0 −c

]
and X =

[
x

y

]
.

Now the characteristic equation of A is λ2 + (c − a)λ − ac = 0, so the eigenvalues
are a and −c. Because the eigenvalues are real and of opposite signs, Table 6.2 in
Section 6.9 indicates that the origin is a saddle point for the linearized system. The
Hartman–Grobman theorem tells us that (0,0) is also a saddle point for our original
nonlinear system.

To study the behavior of the system near the equilibrium point (c/d, a/b), we
transform the system by defining u = x − c/d and v = y − a/b. Then our original
system becomes

u̇ = a
(
u + c

d

)
− b

(
u + c

d

)(
v + a

b

)
v̇ = −c

(
v + a

b

)
+ d

(
u + c

d

)(
v + a

b

)
,

which simplifies to

u̇ =
(

−bc

d

)
v − buv

v̇ =
(

ad

b

)
u + duv.

The associated linear system is given by Ẋ = AX, where A =
[

0 − bc
d

ad
b

0

]
. The

characteristic equation here is λ2 + ac = 0, so the eigenvalues are λ1 = √
ac i and

λ2 = −√
ac i. Because we have pure imaginary eigenvalues, part (c) of the Hartman–

Grobman theorem tells us that (c/d, a/b) is either a center or a spiral point for the
nonlinear system. (The table in Section 6.9 indicates that (c/d, a/b) is a stable center
for the associated linear system, but this doesn’t have to be true for our nonlinear
system.) Let a = b = c = d = 1. Then Fig. 7.9a shows the slope field for the nonlin-
ear system near the equilibrium point (c/d, a/b) = (1,1), and Fig. 7.9b depicts some
trajectories near (1,1).

These figures suggest (but do not prove) that the equilibrium point (1,1) is a
stable center for the nonlinear system. (Problem 9 in Exercises 7.4 proposes some
investigations in this direction.)

Now let’s return to the specific system (7.4.1) and analyze it geometrically.
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FIGURE 7.9a

Slope field of ẋ = x − xy, ẏ = −y + xy near (1,1)

FIGURE 7.9b

Trajectories of ẋ = x − xy, ẏ = −y + xy near (1,1)

Example 7.4.1 Qualitative Analysis of a Predator-Prey Model
Fig. 7.10 shows the trajectory corresponding to our system

dx

dt
= 0.2x − 0.002xy
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dy

dt
= −0.1y + 0.001xy,

with x(0) = 100, y(0) = 25, and 0 ≤ t ≤ 52.
What does this picture tell us? First, we realize that the horizontal axis (x) represents the prey

and the vertical axis (y) the predators. Our starting point, corresponding to t = 0, is (100,25), and
the direction of the trajectory is counterclockwise. (To see the direction, use technology to look at
partial trajectories such as those given by 0 ≤ t ≤ 10, 0 ≤ t ≤ 15, or 0 ≤ t ≤ 25.)

FIGURE 7.10

Trajectory for
{

dx
dt

= 0.2x − 0.002xy,
dy
dt

= −0.1y + 0.001xy;x(0) = 100, y(0) = 25
}
;

0 ≤ t ≤ 52

Fig. 7.10 illustrates a cyclic behavior that seems a bit too neat to be found in the wild. However,
regular population cycles do seem to occur in nature.1 In our graph, both prey and predator popu-
lations increase as the number of prey increases, but when the prey population exceeds about 350,
the predators seem to overwhelm their prey to the extent that there are more and more predators, but
a declining prey population. The predators continue to increase until their number is about 260, at
which time the effect of a dwindling food supply catches up to the predators and their population
begins to decline. The predators may starve or start killing each other as competition for diminish-
ing resources grows fierce. Finally, the predator population is low enough for the prey population to
recover, and the cycle begins again.

1 Examination of the records of the Hudson’s Bay Company, which trapped fur-bearing animals in Canada
for almost 200 years, suggests a periodic pattern in the number of lynx pelts harvested from about 1845 to
the 1930s. The lynx, a cat-like predator, has the snowshoe hare as its main prey. For an analysis of the data,
see J.D. Murray, Mathematical Biology I: An Introduction (Third Edition) (New York: Springer-Verlag,
2002): 83–84.
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Fig. 7.10 highlights the point (100,100) because x = 100, y = 100 is an equilibrium solution
of the system, called a center in this case. (Verify the preceding statement.) If this system were to
have initial point (100,100), neither population would move from this state. The origin is also an
equilibrium point.

This discussion highlights the fact that a good model must be simple enough to
be analyzed mathematically, but complex enough to represent a system realistically.
In modeling, realism is often sacrificed for simplicity, and one of the shortcomings
of the Lotka–Volterra model is its reliance on unrealistic assumptions. For exam-
ple, prey populations are limited by food resources and not just by predation, and
no predator can consume infinite quantities of prey. Many other examples of cyclical
relationships between predator and prey populations have been demonstrated in the
laboratory or observed in nature, but in general they are better fit by models incor-
porating terms that represent carrying capacity (the maximum population size that a
given environment can support) for the prey population (see Example 2.5.1), realistic
functional responses (how a predator’s consumption rate changes as prey densities
change) for the predator population, and complexity in the environment.

7.4.3 Other graphical representations
With the aid of technology, we can look at plots of x(t) against t and y(t) against
t separately (Figs. 7.11a and 7.11b). We compare these graphs, noting the way in
which one population lags behind the other over time. The trajectory (Fig. 7.10) gives
the big picture, the state (x(t), y(t)) of the ecological system as time marches on,
whereas Figs. 7.11a and 7.11b show the individual population fluctuations. Fig. 7.12
exhibits the cyclic nature of the predator fluctuation and that of the prey fluctuation
on the same set of axes. Each graph in this example was prepared by a CAS using a
numerical approximation to the actual system solution.

FIGURE 7.11a

x(t), prey population; x(0) = 100; 0 ≤ t ≤ 200
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FIGURE 7.11b

y(t), predator population; y(0) = 25; 0 ≤ t ≤ 220

FIGURE 7.12

Predator and prey population vs. t

7.4.4 The undamped pendulum
After our ecological field trip, let’s return to the world of physics and look at the
motion of a simple pendulum. In Section 7.2, we saw that the second-order nonlinear

equation d2θ

dt2 + g
L

sin θ = 0 describes the motion of an undamped pendulum—that
is, a pendulum under the influence of gravity with no friction or air resistance imped-
ing its movement. Here, θ is the angle the pendulum makes with the vertical, g is the
acceleration due to gravity, and L is the pendulum’s length (Fig. 7.13).

Example 7.4.2 The Undamped Pendulum: A Hartman–Grobman Analy-
sis
Letting x = θ and y = θ̇ = ẋ, we can express the single equation d2θ

dt2 + g
L

sin θ = 0 as the nonlinear
system

ẋ = y

ẏ = − g

L
sinx.
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FIGURE 7.13

The undamped pendulum

The first thing we have to do is find the equilibrium points of this system. Clearly, any equilibrium
point (x, y) must have y = 0. The equation − g

L
sinx = 0 has solutions x = nπ , n = 0,±1,±2, . . . .

Thus, all points of the form (nπ,0) for n = 0,±1,±2, . . . are equilibrium points for the system
describing the pendulum’s swing. Because the sine function has period 2π—that is, sin(x + 2kπ) =
sinx for any integer k—the second equation in the system remains the same for angles differing by
integer multiples of 2π . Thus, there is no physical difference in the system for such angles. (Think
about this in physical terms.) Now all the equilibrium point first coordinates that are even multiples
of π differ from 0 by multiples of 2π , so we can just study what happens near (0,0). For example, the
point (−8π,0) is the same as (0 + (−4) · 2π,0). Similarly, all the equilibrium point first coordinates
that are odd multiples of π differ from π by multiples of 2π , so we can just see what happens to the
system near (π,0). For example, (17π,0) is the same as (π + (8) · 2π,0). Therefore, by analyzing
the behavior of the system near the points (0,0) and (π,0), we can understand the behavior near
any of the infinite number of equilibrium points.

Near the origin we can replace sin x by its Taylor series expansion, so our system can be written
as

ẋ = y

ẏ = − g

L
sinx = − g

L

(
x − x3

3! + x5

5! − x7

7! + · · ·
)

and we see that the linearization of our system is given by

ẋ = y

ẏ = − g

L
x.

In matrix form this becomes Ẋ =
[

0 1

− g
L

0

]
X, with characteristic equation λ2 + g

L
= 0 and

pure imaginary eigenvalues λ = ±√
g/L i. Part (c) of the Hartman–Grobman theorem points to

either a center or a spiral point. Intuitively, we should realize that this is like the situation with the
undamped spring-mass system. In the absence of any kind of resistance the object will continue to
move periodically about its equilibrium state. In our case we would expect the pendulum to swing
back and forth indefinitely. (Compare the pendulum’s associated linear system with system (6.11.2)
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in Example 6.11.1.) Fig. 7.14 shows the phase portrait of the nonlinear system with g = L near the
origin.

FIGURE 7.14

Trajectories of ẋ = y, ẏ = − sinx near the origin

Note what the figure tells us. If the pendulum starts with x0 = θ0 anywhere between 0 and π and
we release the weight at the end (the bob), then the pendulum will swing in a clockwise (negative)
direction toward the vertical position and go past the vertical (x = θ = 0) until it makes the same
initial angle on the other side. At this point in time (x = x0 = −θ0), the pendulum starts its journey
back to the vertical position and then goes past it until x = θ0 once more. The variable y represents
the angular velocity, which is zero as we release the pendulum, becomes negative as the velocity
increases in a negative (clockwise) direction, attains its maximum as the pendulum swings through
the vertical position, and then decreases as the pendulum approaches x = x0 = −θ0. At this point,
the pendulum begins its swing back toward the center and ultimately back to its initial position, its
velocity increasing and decreasing appropriately. (We’ll deal with the curves at the top and bottom
of Fig. 7.14 shortly.)

Now let’s examine the pendulum’s behavior near the equilibrium point (π,0). The transforma-
tion u = x − π , v = y − 0 results in the nonlinear system

u̇ = v

v̇ = − g

L
sin(u + π) = − g

L
(− sinu) = g

L
sinu,

with the associated linear system

u̇ = v

v̇ = g

L
u.

(Make sure you understand how we arrived here.) This linear system has the characteristic equation

λ2 − g
L

= 0 and eigenvalues ±
√

g
L

. We look to part (a) of the Hartman–Grobman theorem (and
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Table 6.2 in Section 6.9) to see that the equilibrium point (π,0) is a saddle point. Fig. 7.15 (again
with g = L) focuses on the system’s behavior near this point.

FIGURE 7.15

Trajectories of ẋ = y, ẏ = − sinx near (π,0)

As neat as this analysis seems to be, we’ve touched on something we haven’t explained yet—the
strange curves at the top and bottom of Fig. 7.14. If we step back and look at the entire phase portrait
(Fig. 7.16), this strangeness becomes more evident.

FIGURE 7.16

Phase portrait of ẋ = y, ẏ = − sinx
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Clearly, if the initial velocity imparted to the undamped pendulum is low enough, the pendulum
swings indefinitely back and forth about its equilibrium point (0,0). Physically, this equilibrium
position corresponds to the pendulum at rest (y = θ̇ = 0) and hanging straight down (x = θ = 0). If
we give the pendulum a high enough initial velocity, it will whirl up and over the top, over and over
again in the absence of any friction or air resistance. Its velocity will vary periodically, attaining its
minimum at odd multiples of π (when its position is straight up) and its maximum at even multiples
of π (when it is moving through the straight down position).

The curves joining the saddle points (odd multiples of π on the x-axis) need careful explana-
tion. Fig. 7.17 focuses on the curves connecting the saddle points (−π,0) and (π,0). These are
called separatrices (the plural of separatrix); they separate the regions of “normal” behavior from
each other. (More technically, they are called heteroclinic trajectories or saddle connections.) As
we’ve indicated before, the saddle points represent a pendulum pointed straight up and at rest. Phys-
ically, then, these heteroclinic trajectories describe the fact that the pendulum slows down just as it
approaches the upside-down position.

FIGURE 7.17

Separatrices connecting (−π,0) and (π,0)

Problems 15 and 16 in Exercises 7.4 suggest a more analytic way of understanding the un-
damped pendulum’s behavior.

Exercises 7.4
A
Find the nontrivial equilibrium point for each of the Lotka–Volterra systems in Prob-
lems 1–6. You may need technology.

1. ẋ = 3x − 2x y, ẏ = −y + 4x y

2. ẋ = 0.1x − 0.2x y, ẏ = −0.5y + 0.3x y

3. ẋ = 0.005x − 0.02x y, ẏ = −0.3y + 0.4x y
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4. ẋ = x − 2x y, ẏ = −3y + 4x y

5. ẋ = 0.2x − 0.2y, ẏ = −3y + x y

6. ẋ = 3x − 2x y, ẏ = −y + 1
2x y

7. Consider the Lotka–Volterra equations {ẋ = x − xy, ẏ = −y + xy}. To de-
velop some confidence in the power of numerical methods, use whatever
Runge–Kutta algorithm and step size your instructor suggests to approximate
the solution to the initial value problem with x(0) = 1 and y(0) = 2 over the
interval [0,1].

8. Find all the equilibrium points for the modified predator-prey system {ẋ =
ax − by − cx2, ẏ = −qy + rxy − sy2}. (Here a, b, c, q, r, s are positive con-
stants, and the negative quadratic terms indicate that the growth rates of the two
species diminish as either population becomes large due to finite resources for
both.)

B
9. Consider the Lotka–Volterra equations for a = b = c = d = 1. Fig. 7.9b shows

some trajectories corresponding to this situation. Without relying on the graph,
we want to show that the trajectories are closed curves—that is, that the equi-
librium point (1,1) is a stable center.
a. Show that the slope field for dy

dx
is symmetric about the line y = x. [Hint:

Look at what happens if you interchange x and y in the slope equation.]

b. Show that if you start at some point P = (x, y) on the line y = x and
travel along the trajectory once around the point (1,1), you wind up back
at the same point P , so that the curve is closed.

10. Consider the system first examined in Example 7.4.1:

ẋ = 0.2x − 0.002x y

ẏ = −0.1y + 0.001x y.

a. Find the equilibrium points for the system.

b. Plot the trajectory corresponding to the initial conditions x(0) = 100 and
y(0) = 300. Interpret these initial values and the shape of the trajectory
in terms of the predator and prey populations. (Choose the interval [0,55]
for your independent variable t .)

c. Use the graph of the trajectory found in part (b) to estimate the maximum
and minimum values of the populations x and y.

d. Find the slope equation dy
dx

and solve it (implicitly) using the initial con-
ditions given in part (b).

e. Use technology to plot the solution found in part (d), using ranges for x

and y consistent with your answers to part (c).
11. Recall that the Lotka–Volterra system has the nontrivial equilibrium point

(c/d, a/b). To understand the direction of any trajectory for the Lotka–
Volterra equations without relying on a graph provided by technology, divide
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the first quadrant of the x-y plane into four subquadrants via the lines x = c/d

and y = a/b. (Sketch this situation.)
a. Show that for x > c/d and y > a/b, you have ẋ < 0 and ẏ > 0.

b. Show that for x < c/d and y > a/b, you have ẋ < 0 and ẏ < 0.

c. Show that for x < c/d and y < a/b, you have ẋ > 0 and ẏ < 0.

d. Show that for x > c/d and y < a/b, you have ẋ > 0 and ẏ > 0.

e. From the results of parts (a)–(d), explain why any point (x(t), y(t)) on a
trajectory for the Lotka–Volterra equations moves in a counterclockwise
direction.

12. Recall that in this section the Lotka–Volterra equations ẋ = ax − bxy, ẏ =
−cy + dxy were linearized to u̇ = (−bc/d)v, v̇ = (ad/b)u near the equilib-
rium point (c/d, a/b).
a. Find the slope equation du

dv
and show that the linear system has a solution

satisfying ad2u2 + b2cv2 = K , where K is a positive constant.

b. Rewrite the solution in part (a) in terms of the original variables x and y

and show that you get the equation of an ellipse with center at (c/d, a/b)

and with axes parallel to the axes of the x-y plane.

c. Compute the derivative of each equation of the linearized system to get the
equations ü = −acu, v̈ = −acv—uncoupled second-order linear equa-
tions of the form ẅ = −Rw.

d. Show that the solution of the linearized system is a pair of functions
(u(t), v(t)) with the same period 2π/

√
ac.

13. Focus on the equation for the predator population, dy
dt

= −cy + dxy.
a. Divide the equation by y and integrate between the initial time t0 and

some arbitrary time t .

b. Assuming that the predator population is periodic (see Fig. 7.10 or 7.11b,
for example) with period T , let t = t1 in part (a), so that t1 − t0 = T

and y(t1) = y(t0). Show that the average value of the prey population
is c/d , the same as the equilibrium population of the prey. (Recall that
the average value of a function f on the interval [a, b] is defined as

1
b−a

∫ b

a
f (r) dr .) [Hint: Note that ẏ/y = −c + dx and integrate from 0

to T , using the periodicity of ln |y(t)|.]
14. Assuming the result of Problem 13b and that the average value of the predator

population y(t) is a/b, the equilibrium population of the predator, and also
assuming that both the predator and prey populations have the same period T ,
show that the average value of x(t)y(t) equals the average value of x(t) times
the average value of y(t). [Hint: (ẏ + cy)/d = xy.]

C

15. Consider the simplified pendulum equation used in Fig. 7.14, Example 7.4.2:
d2θ

dt2 + sin θ = 0. You should show (analytically) that this equation has periodic
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solutions—that is, there are closed trajectories in the phase plane correspond-
ing to the system version of the equation.
a. Show that this equation is equivalent to the system

dx

dt
= y

dy

dt
= − sinx.

b. Show that any trajectory in the phase plane is a solution of dy
dx

= − sin x
y

.

c. Solve the equation in part (b).

d. Show that there are closed trajectories in the x-y plane, and hence that the
undamped pendulum problem has periodic solutions. [Hint: Find suitable
values of the constant of integration you get in part (c).]

16. When you find the general solution of the equation dy
dx

= − sin x
y

[as in part (b)
of the preceding problem], you have an arbitrary constant C.
a. What values of C give the wavy trajectories at the top and bottom of

Fig. 7.16?

b. What values of C give the separatrices, as in Fig. 7.17?

17. For small values of θ , sin θ ≈ θ , so that the linearized equation of the un-
damped pendulum is θ̈ + g

L
θ = 0. Work with this equation and the initial

conditions θ(0) = 0, θ̇ (0) = 2.
a. Find θ(t) if the length of the pendulum is 8 feet. (Take g = 32 ft/s2.)

b. What is the period of the function found in part (a)?

c. If the pendulum is part of a clock that ticks once for each time the pendu-
lum makes a complete swing, how many ticks does the clock make in one
minute?

d. How is the motion of the pendulum affected if the length is changed to
L = 4?

18. The equation θ̈ +kθ̇ +sin θ = 0 describes a particular damped pendulum—that
is, a pendulum with friction or air resistance. Here, k is a positive constant, the
coefficient of friction.
a. Convert this second-order equation to a system of first-order equations.

b. Use technology to produce the phase portrait when k = 0.1.

c. Use technology to produce the phase portrait when k = 0.5.

d. Compare the phase portraits in parts (b) and (c) and give a physical inter-
pretation of what you see.

7.5 Bifurcations
The concept of a bifurcation that we analyzed in Section 2.7 for first-order equations
can be extended to two-dimensional (and higher-dimensional) systems.
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Since the analysis of a nonlinear system can often be reduced to the study of a
related linear system, we’ll start by looking at an example of a bifurcation in a linear
system.

Example 7.5.1 A Bifurcation in a Linear System
Suppose we’re given a spring-mass system described by the second-order linear equation ẍ + μẋ +
x = 0, where μ, the damping constant, is a parameter representing a frictional force. We want to see
how the behavior of the system is affected by varying μ.

Writing this equation as a planar system of linear equations, we have

ẋ = y

ẏ = −x − μy.

Now we write the system in the compact form Ẋ = AX, where A =
[

0 1
−1 −μ

]
, X =

[
x(t)

y(t)

]
, and

Ẋ =
[
ẋ(t)

ẏ(t)

]
.

The only equilibrium point is (0,0). The eigenvalues of A are λ1 = − 1
2 μ + 1

2

√
μ2 − 4 and

λ2 = − 1
2 μ − 1

2

√
μ2 − 4.

If μ = 0, we have λ1 = i and λ2 = −i, so the origin is a stable center, but not asymptotically
stable.

If μ = −2, then λ1 = λ2, both real and positive. This means that the origin is an unstable node.
If −2 < μ < 0, then λ1 and λ2 are complex conjugates with a positive real part. In this case, the

origin is an unstable spiral.
For 0 < μ < 2 we see that λ1 and λ2 are complex conjugates with a negative real part, implying

that the origin is a stable spiral (which is asymptotically stable).
If μ < −2, then λ1 and λ2 are positive and unequal, implying that the origin is an unstable

node.
Finally, if μ > 2 the eigenvalues are negative and unequal, so the origin is a stable node.
Looking back over our analysis of the various key values of the parameter μ, we see that μ =

0,−2,2 are possible bifurcation points. In crossing the value μ = 0 from left to right, we see that
an unstable spiral becomes a stable spiral. From the definitions given in Section 2.7, this behavior
indicates that we have a transcritical bifurcation (Fig. 7.18)

FIGURE 7.18

ẋ = y, ẏ = −x − μ: μ = −1,0,1, respectively
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When we cross the value μ = −2, there is a change from an unstable node to an unstable spiral.
There is no change in the stability of the system, so μ = −2 is not a bifurcation point.

Finally, crossing the point μ = 2 produces no change in stability (a stable spiral becomes a
stable node), so μ = 2 is not a bifurcation point.

In Section 2.7, for a single nonlinear differential equation, we described a saddle-
node bifurcation, a situation in which two equilibrium solutions collide and annihilate
each other. One of the solutions is unstable (the saddle), while the other (the node) is
stable. Now we’ll see what this looks like in a nonlinear system.

Example 7.5.2 A Saddle-Node Bifurcation
Consider the nonlinear system

ẋ = y

ẏ = x2 − y − μ.

The equilibrium solutions satisfy

y = 0

x2 − y − μ = 0.

From these algebraic equations we get the equilibrium solutions (
√

μ,0) and (−√
μ,0).

When μ = 0, we get a single equilibrium solution (0,0). For μ < 0,
√

μ is complex, and so there
are no equilibrium solutions. However, for μ > 0, there are two equilibrium solutions, (−√

μ,0) and
(
√

μ,0).
To examine the behavior of the system near the equilibrium solution (

√
μ,0), we make the

change of variables u = x − √
μ and v = y − 0 = y. This gives us the nonlinear system

u̇ = v

v̇ = (u + √
μ)2 − v − μ = u2 + 2

√
μu − v

and the associated linear system

u̇ = v

v̇ = 2
√

μu − v.

The matrix of coefficients for the linearized system is

[
0 1

2
√

μ −1

]
, with characteristic equation

λ2 + λ − 2
√

μ = 0 and eigenvalues (−1 ± √
1 + 8

√
μ)/2.

Since 1 + 8
√

μ > 0, we have two real eigenvalues, one positive and one negative. (Note that√
1 + 8

√
μ > 1, so −1 + √

1 + 8
√

μ > 0 and −1 − √
1 + 8

√
μ < 0.) This indicates that (

√
μ,0) is

a saddle node (see Table 6.2 in Section 6.9).
On the other hand, as we can easily show (Do this.), when we consider the equilibrium solution

(−√
μ,0) the linearized system {u̇ = v, v̇ = −2

√
μu − v} yields two negative eigenvalues, −1 ±√

1 − 8
√

μ. Note that for 0 <
√

μ ≤ 1/8, the radicand 1 − 8
√

μ is nonnegative, and so we have a
stable node (sink). If

√
μ > 1/8, then 1 − 8

√
μ < 0, and our complex conjugate eigenvalues gives

us a stable spiral.
Since the equilibrium points—one unstable, the other stable—merge as μ crosses the origin, we

have a saddle-node bifurcation (see Fig. 7.19).
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FIGURE 7.19

ẋ = y, ẏ = −x − μ: μ = 4

Example 7.5.3 A Pitchfork Bifurcation
To see another type of bifurcation, we’ll analyze the system

ẋ = y

ẏ = μx − x3 − y,

where μ is a real parameter.
The equilibrium points are solutions of y = 0, μx −x3 +y = 0, or μx −x3 = x(μ−x2) = 0—

that is, (0,0), (
√

μ,0) and (−√
μ,0) are our equilibrium solutions.

Near the origin, we can approximate the nonlinear system by the linear system[
ẋ(t)

ẏ(t)

]
=

[
0 1
μ −1

][
x

y

]
.

The characteristic equation of the matrix is λ2 +λ−μ = 0, yielding eigenvalues (−1+√
1 + 4μ)/2

and (−1 − √
1 + 4μ)/2.

FIGURE 7.20

ẋ = y, ẏ = μx − y: μ = −1,0,1, respectively
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According to Table 6.2, if −1/4 < μ < 0, then the origin is a stable node, and if μ < −1/4, then
(0,0) is a stable spiral. For μ > 0, the origin is a saddle point (Fig. 7.20). Note that for μ = 0, the
origin is the only equilibrium point, but for μ > 0 there are three: (−1,0), (0,0), (1,0) for μ = 1,
for example. Thus, μ = 0 is a bifurcation point, and we have a pitchfork bifurcation.

There are many other aspects of bifurcations that we are leaving unexplored. In
Section 7.6, we’ll encounter the Hopf bifurcation, one that can only appear in sys-
tems of dimension two and higher.

Exercises 7.5
A

1. In Example 7.5.1, show that the eigenvalues are λ = −μ/2 ± (1/2)
√

μ2 − 4.

2. In Example 7.5.2, verify that the eigenvalues of the linearized system are λ =
(−1 ± √

1 + 8
√

μ)/2.

3. In Example 7.5.3, show that the eigenvalues of the linearized system are λ =
(−1 ± √

1 + 4μ)/2.

4. Consider the system {ẋ = μx − x2, ẏ = −y}.
a. Determine all the bifurcation points (if any) of the system.

b. Classify all the bifurcations found in part (a).

5. Consider the system {ẋ = y − 2x, ẏ = μ + x2 − y}.
a. Determine all the bifurcations (if any) of the system.

b. Classify all the bifurcations found in part (a).

B
6. Consider the system {ẋ = −2x + 1

4y, ẏ = −x + μy}.
a. Find all the equilibrium solutions.

b. Determine the eigenvalues of the system.

c. Determine all the bifurcation values and classify them.

7. Consider the system {ẋ = μx + y + sinx, ẏ = x − y}.
a. Find all the equilibrium solutions of the system.

b. Linearize the system about the origin. [Hint: Use the power series for sinx

given in Appendix A.3.]

c. Determine the eigenvalues of the linear system found in part (b).

d. Determine all the bifurcation values and classify them.

8. Consider the system {ẋ = x(μ − 2x) − xy, ẏ = y(x − 1)}.
a. Find all the equilibrium solutions of the system.

b. Linearize the system about the origin.

c. Determine the eigenvalues of the linear system found in part (b).

d. Determine all the bifurcation values and classify them.

9. Consider the system {ẋ = μx − x3 + xy2, ẏ = −y − y3 − x2y}.
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a. Find all the equilibrium solutions of the system.
b. Linearize the system about the origin.
c. Determine the eigenvalues of the linear system found in part (b).
d. Determine all the bifurcation values and classify them.

10. Consider the system {ẋ = μx + 10x2, ẏ = x − 2y}.
a. Find all the equilibrium solutions of the system.
b. Linearize the system about each equilibrium point.
c. Determine the eigenvalues of the linear systems found in part (b).
d. Determine all the bifurcation values and classify them.

C
11. Find and classify all the bifurcations for the system {ẋ = y − ax, ẏ =

−by + x/(1 + x)}, where a and b are real parameters. [Hint: Consider sce-
narios depending on the values of ab and a + b.]

*7.6 Limit cycles and the Hopf bifurcation2

7.6.1 Limit cycles
Recall that a solution (x(t), y(t)) of a planar system of differential equations is pe-
riodic if there is a T > 0 such that x(t + T ) = x(t) and y(t + T ) = y(t) for every t .
Periodic solutions are an important aspect of differential equations since many phys-
ical phenomena occur roughly periodically. In Section 7.4, for example, we saw how
predator-prey interactions could be periodic (Example 7.4.1); and clearly anything
connected with daily, monthly, or yearly cycles in nature is approximately periodic.
The Zeeman model of the human heartbeat (Example 6.3.3), the Lotka–Volterra
equations, and the undamped pendulum (Section 7.4) show that autonomous sys-
tems sometimes have periodic solutions whose trajectories are closed curves in the
phase plane. As we shall see later in this section, the van der Pol oscillator, which
can be described as a negatively damped nonlinear oscillator, has solutions whose
limiting behavior (as t → ∞) is that of a finite periodic solution. Such a nontrivial
isolated closed trajectory is called a limit cycle. Here “nontrivial” means that the so-
lution curve is not a single point, and “isolated” refers to the fact that no trajectory
sufficiently near the limit cycle is also closed.

In general a linear system Ẋ = AX may have closed trajectories, but they won’t
be isolated: If X(t) is a periodic solution, then so is cX(t) for any nonzero con-
stant c. (Can you show this?) Therefore, for instance, by choosing c = (1−1/k) (k =
1,2,3, . . .), we see that X(t) is being crowded by a one-parameter family of closed
trajectories. The closed trajectories of the nonlinear system shown in Fig. 7.9b in
Section 7.4 are not isolated and so could not possibly be limit cycles. You can get
trajectories as close to each other as you wish.

2 ∗ Denotes an optional section.
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Example 7.6.1 A Limit Cycle
Consider the system

ẋ = y + x(1 − x2 − y2)

ẏ = −x + y(1 − x2 − y2).

To make this system easier to analyze, we’ll transform it into polar form. Letting x = r(t) cos θ(t),
y = r(t) sin θ(t), we see that x2 + y2 = r2. The Chain Rule (Sections A.2, A.7) gives us r2θ̇ =
xẏ − yẋ, and we can make the appropriate substitutions to see that

rṙ = x{y + x(1 − r2)} + y{−x + y(1 − r2)}
= r2(1 − r2),

where r2 = x2 + y2. Similarly, r2θ̇ = x{−x + y(1 − r2)} − y{y + x(1 − r2)} = −r2, and so the
polar form of the system is

ṙ = r(1 + r)(1 − r)

θ̇ = −1.

From this representation, two obvious solutions are r = 0 and r = 1. (Why isn’t r = −1 a solution?)
The first solution corresponds to an unstable node at the origin. The second represents the polar form
of a circle of radius one centered at the origin. The fact that θ̇ = −1 implies the circle is traversed
in a clockwise direction with a constant angular velocity of one unit. Thus we have a solution of the
system that is a closed trajectory (Fig. 7.21, in rectangular coordinates).

We notice that in Fig. 7.21 if r =
√

x2 + y2 < 1, then ṙ > 0 and trajectories spiral outwards
toward the closed trajectory. If r > 1, then ṙ < 0 and trajectories spiral inwards toward the closed
trajectory.

Overall, the trajectories approach an isolated closed trajectory which we call a (stable) limit
cycle.

To repeat, a closed trajectory γ of a nonlinear system is called a limit cycle if it is
an isolated nonconstant periodic trajectory. Every trajectory that begins sufficiently
near a limit cycle approaches it either for t → ∞ or for t → −∞. Graphically, this
means that such a trajectory either winds itself around the limit cycle or unwinds
from it. A limit cycle is called stable if it attracts nearby solutions (from inside and
outside) as t → ∞.

As one author has stated,

The stable limit cycle is the basic model for all self-sustained oscillators—those
which return, or recover, to some fundamental periodic orbit when perturbed from
it. The stable oscillations, “beating” of the human heart (which returns to some
normal rate after we raise it by sprinting), cycles of predator-prey systems, and
various electrical circuits are three among myriad examples. Business cycles and
certain periodic outbreaks of social unrest . . . are, quite possibly, others.3

3 J.M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science (Addison-Wesley, 1997):
121.
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FIGURE 7.21

Phase portrait of ẋ = y + x(1 − x2 − y2), ẏ = −x + y(1 − x2 − y2)

In this quotation, “self-sustained oscillators” refers to oscillations that are gener-
ated and maintained by a source of power that lacks any corresponding periodicity.
In other words, there’s no external periodic forcing term. In terms of a spring-mass
system (Section 6.11), if there is a negative damping term, this causes small pertur-
bations to grow exponentially in amplitude.

There are other types of limit cycles that we’ll see in the following exam-
ples. An unstable limit cycle is one from which nearby trajectories spiral away as
t → ∞ (Fig. 7.24). (Alternatively, an unstable limit cycle attracts nearby solutions
as t → −∞.) Finally, as we expect from our earlier discussions of equilibrium points
(Chapter 2), there is a semistable limit cycle—trajectories approach one side of it
while pulling away from the other side (Fig. 7.28).

Example 7.6.2 An Unstable Limit Cycle
Let’s examine the system

ẋ = −y + x
(
x2 + y2 − 1

)
ẏ = x + y

(
x2 + y2 − 1

)
.

The presence of the algebraic form x2 +y2, with its suggestion of circularity (rotation), suggests that
we may be able to see things more clearly if we switch to polar coordinates. Making the substitutions
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r cos θ = r(t) cos θ , y = r sin θ = r(t) sin θ(t), and θ = arctan(y/x), we have x2 + y2 = r2. A few
algebraic manipulations (see Problem 5 of Exercises 7.6) give us the polar coordinate form of the
system we started with:

ṙ =
(
r2 − 1

)
r (r ≥ 0)

θ̇ = 1.

This system describes the motion of an object in terms of its radial distance r = r(t) from the origin
and its (constant) angular velocity θ̇ in a counterclockwise direction. Fig. 7.22 illustrates this in
general.

FIGURE 7.22

Motion described in terms of radial distance and angular velocity

Because the equations are independent (or uncoupled), each involving only one dependent vari-
able, we can analyze them separately. We can look at the first equation as a first-order nonlinear
equation and consider its phase portrait (Fig. 7.23) in the manner of Section 2.5. Recalling that r is
nonnegative, we see that the only equilibrium solutions are r ≡ 0 and r ≡ 1. Note that the first equa-
tion tells us that if r < 1, then ṙ < 0, so the trajectory’s distance from the origin is decreasing—that
is, the trajectory is approaching the origin and moving away from the unit circle (r ≡ 1,0 ≤ θ ≤ 2π),
whereas if r > 1, we have ṙ > 0, so trajectories are also repelled by the unit circle.

FIGURE 7.23

Phase portrait of ṙ = (r2 − 1)r, r ≥ 0
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From this phase portrait we can see that r ≡ 0 is a sink and r ≡ 1 is a source. We could have
used the First Derivative Test of Section 2.6 to see this (see also Problem 6 in Exercises 7.6.). In
particular, the origin is a sink for the system in its original rectangular coordinate form. Fig. 7.24
shows the phase portrait in x-y space.

FIGURE 7.24

Phase portrait of ṙ = (r2 − 1)r, r ≥ 0, in the x-y phase plane

From this we see that the unit circle is an unstable limit cycle.

Now we’re ready for something a bit more complicated, but rewarding.

Example 7.6.3 A System with Two Limit Cycles
Let’s look at the system

ṙ = r(r − 1)(r − 2), r ≥ 0

θ̇ = 1.

As in the previous example, the system describes the motion of an object in terms of its radial dis-
tance r = r(t) from the origin and its (constant) angular velocity θ̇ in a counterclockwise direction.
Let’s look at the phase portrait of the first equation (Fig. 7.25), whose equilibrium solutions are
r ≡ 0, r ≡ 1, and r ≡ 2.

As we can see, r ≡ 0 is a source, r ≡ 1 is a sink, and r ≡ 2 is a source. This tells us that
the system has two circular limit cycles: one stable (r ≡ 1) and one unstable (r ≡ 2). Trajectories
starting out inside the unit circle approach the unit circle as t → ∞, as do trajectories with initial
points inside the ring formed by the two circles r ≡ 1 and r ≡ 2. Any trajectory starting outside the
circle of radius 2 moves farther away as t → ∞. Fig. 7.26 shows the phase portrait in the usual x-y
plane—that is, in rectangular (Cartesian) coordinates.

The next example illustrates a third kind of limit cycle.
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FIGURE 7.25

Phase portrait of ṙ = r(r − 1)(r − 2), r ≥ 0

FIGURE 7.26

Phase portrait of ṙ = r(r − 1)(r − 2), r ≥ 0, in the x-y plane

Example 7.6.4 A Semistable Limit Cycle
What kind of behavior is shown by the following system?

ṙ = r(r − 1)2, r ≥ 0

θ̇ = 1.

The phase portrait for the first equation (Fig. 7.27) tells the story.
The equilibrium point r ≡ 0 is a source, whereas r ≡ 1 is a node because ṙ > 0 for 0 < r < 1

and also for r > 1. The graphical interpretation of this fact is that the unit circle described by r ≡ 1
is a semistable limit cycle. Trajectories approach the unit circle from inside it, whereas trajectories
that start outside escape the unit circle. Fig. 7.28 shows the phase portrait in the x-y plane.
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FIGURE 7.27

Phase portrait of ṙ = r(r − 1)2, r ≥ 0

FIGURE 7.28

Phase portrait of ṙ = r(r − 1)2, r ≥ 0, in the x-y plane

The next example deals with a famous equation that arose when radios were first
developed and that had applications to television as well. The original context was
the study of certain electrical circuits containing a vacuum tube (a triode generator),
but the work has also had significant biological applications. The pioneering experi-
ments and the first theoretical analysis were conducted by Dutch electrical engineer
Balthasar van der Pol (1889–1959) and others in the 1920s.

Example 7.6.5 The Van Der Pol Equation
The van der Pol equation (or van der Pol oscillator)

x′′ + ε
(
x2 − 1

)
x′ + x = 0, (7.6.1)
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where ε is a positive parameter, can also be interpreted in terms of a spring-mass system with non-
linear resistance (see Problem 1 in Exercises 7.6). Equation (7.6.1) can be written as the equivalent
system

x′
1 = x2

x′
2 = −x1 + εx2

(
1 − x2

1

)
. (7.6.2)

The first thing we have to do is find the equilibrium points of (7.6.2), the solutions of the system
{x′

1 = 0, x′
2 = 0}. Clearly x2 = 0, and substituting this value into the second equation of (7.6.2)

gives us x1 = 0 as well. Thus the origin, (0,0), is the only equilibrium point.
To get a sense of how this system behaves let’s assume that ε = 1. (See Problems 2 and 3 of

Exercises 7.6, which ask you to consider other values of ε.) The linearized version of the nonlinear
system (7.6.2) is then

x′
1 = x2

x′
2 = −x1 + x2, (7.6.3)

with characteristic equation λ2 − λ + 1 = 0 and eigenvalues (1 ± √
3 i)/2. This implies that both

the nonlinear system (7.6.2) and its linear approximation (7.6.3) have a spiral source at the ori-
gin. (Why?) However, this particular system exhibits some characteristically nonlinear behavior.
Fig. 7.29 shows the phase portrait of the nonlinear system (7.6.2) near (0,0).

FIGURE 7.29

Phase portrait of x′
1 = x2, x′

2 = −x1 + x2
(
1 − x2

1

)
near the origin

What is happening here is that several paths starting near the origin spiral outward from the
origin (as expected) toward a limit cycle, whereas other trajectories starting farther away from (0,0)

also seem to be approaching this limit cycle asymptotically (that is, as t → ∞). Note that the phase
portrait of the linearized system (Fig. 7.30) shows no cyclic behavior, only the spiraling away from
the origin.
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FIGURE 7.30

Phase portrait of x′
1 = x2, x′

2 = −x1 + x2 near the origin

Fig. 7.31 shows a plot of x against t with the initial conditions x(0) = 0.5, x′(0) = −0.5. This
graph reflects the eventual periodicity of the solution and the fact that the spirals work their way out-
ward (through increasing values of t) to the stable limit cycle. The solution shows transient behavior
(temporary or short-lived behavior) at the beginning, before settling into its periodic pattern.

FIGURE 7.31

Plot of x(t) against t , x(0) = x′(0) = 0.5, −6 ≤ t ≤ 26

On the other hand, if we choose an initial point (x(0) = −3, x′(0) = −5) in a region that appears
to be outside the limit cycle shown in Fig. 7.29, we see the solution behavior shown by Fig. 7.32.
This illustrates how a spiral finds its way inward to the stable limit cycle.

Again, we can see that the solution eventually becomes periodic after an initial transient stage.

Of course a nonlinear equation or system may have no limit cycles. In general,
finding limit cycles is a very difficult problem. Because nonlinear equations and sys-
tems are usually too difficult to solve, other qualitative methods have been developed
to determine the existence or nonexistence of limit cycles. These methods involve
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FIGURE 7.32

Plot of x(t) against t , x(0) = −3, x′(0) = −5, −0.6 ≤ t ≤ 26

advanced mathematical ideas that we won’t discuss in this book, with the excep-
tion of a negative criterion formulated by the Swedish mathematician Ivar Bendixson
(1861–1935). This is explained between exercises 9 and 10, and is illustrated in ex-
ercises 10–15.

7.6.2 The Hopf bifurcation
In Section 7.5, we saw transcritical, saddle-node, and pitchfork bifurcations in linear
and nonlinear systems. Equilibrium points were created and destroyed and stability
properties were changed when parameter values changed. Now we use the following
example to introduce some other possibilities.

Example 7.6.6 A Hopf Bifurcation
The system

ẋ = μx + y − x(x2 + y2)

ẏ = −x + μy − y(x2 + y2),

where μ is a parameter, exhibits interesting bifurcation behavior.
It is clear that this system has an equilibrium point at the origin, no matter what the value of the

parameter μ is. The polar representation of this system is

ṙ = r(μ − r2)

θ̇ = −1.

The equilibrium solution at the origin becomes r = 0, and since θ̇ < 0 the trajectories move clock-
wise around the origin. (These polar equations are uncoupled; each involves only one variable and
so can be analyzed separately.)

If μ < 0, then ṙ < 0, so the trajectories’ distances from the origin is decreasing. This means that
the origin is a sink—that is, all trajectories approach the origin as t → ∞ (Fig. 7.33).

If μ = 0, then ṙ = −r3. For nonzero r we see that ṙ < 0, and therefore all trajectories approach
the origin as t → ∞. In this case the origin is thus a stable node (a sink) (Fig. 7.34).

However if μ > 0, then ṙ < 0 for
√

μ < r < ∞ and ṙ > 0 for 0 < r <
√

μ. In this situation the
origin is an unstable node (a source) surrounded by a stable limit cycle, r = √

μ, which grows out
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FIGURE 7.33

Phase portrait of ṙ = r(μ − r2), r ≥ 0: μ < 0 in the x-y plane

FIGURE 7.34

Phase portrait of ṙ = r(μ − r2), r ≥ 0: μ = 0 in the x-y plane

of the origin (Fig. 7.35). All nonzero trajectories spiral away from the origin and toward the limit
cycle as t → ∞.

What happens in this example is that μ = 0 is a bifurcation point, and as μ crosses 0—that is,
moves from negative values to positive values—a stable spiral becomes unstable and a limit cycle is
generated. In this situation, we say that a (supercritical) Hopf bifurcation occurs at the parameter
value μ = 0.

It is interesting to note that the linearized form of our original system,

ẋ = μx + y

ẏ = −x + μy,
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FIGURE 7.35

Phase portrait of ṙ = r(μ − r2), r ≥ 0: μ > 0 in the x-y plane

predicts a center at the origin, which is not correct (see Exercise 4). In our original system, the
origin changes from being asymptotically stable (a sink) to being unstable (a source) without passing
through the stage of being a center.

To repeat, a supercritical Hopf bifurcation occurs when a stable spiral changes
into an unstable spiral surrounded by a limit cycle. In terms of eigenvalues, the way
that the stable equilibrium solution became destabilized in Example 7.6.6 was by
having the complex conjugate eigenvalues (located in the left half-plane for μ < 0)
cross into the right half-plane as μ increased from negative to positive values. The
eigenvalues of the Jacobian matrix evaluated at (0,0) are μ± i. [The Hopf bifurcation
is also referred to as the Poincaré–Andronov–Hopf bifurcation or the Andronov–Hopf
bifurcation. The phenomenon was discovered by Poincaré in 1892. An important
theorem describing the bifurcation was proved by A.A. Andronov for planar systems
in 1929, and then proved for n-dimensional systems, n ≥ 2, by Eberhard Hopf in
1942.]

There is another kind of Hopf bifurcation that we should acknowledge.

Example 7.6.7 A Subcritical Hopf Bifurcation
Let’s investigate the behavior of the system

ẋ = μx − y + xy2

ẏ = x + μy + y3

as the parameter μ is varied. We see that this system has a single equilibrium solution at the origin.
(Verify this.) The linearization is

ẋ = μx − y
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ẏ = x + μy,

and the Jacobian has eigenvalues μ± i, which resembles the situation in Example 7.6.6 and suggests
the existence of a Hopf bifurcation.

FIGURE 7.36

Phase portrait of ẋ = μx − y + xy2, ẏ = x + μy + y3: μ = −0.2,0.2, respectively

However, if we convert to polar form, we find that the equation for r becomes ṙ = μr + ry2,
which shows that the origin is unstable (Why?). Fig. 7.36 shows the phase portraits in rectangular
coordinate form for μ = −0.2 and μ = 0.2, respectively. The left phase portrait shows the existence
of an unstable limit cycle surrounding the stable focus at the origin. The second graph of Fig. 7.36
shows the unstable focus which occurs when μ is positive. This different type of Hopf bifurcation
is referred to as subcritical.

To be clear about this, a subcritical Hopf bifurcation occurs when an equilibrium
solution loses its stability by absorbing an unstable limit cycle.

To summarize:

• A Hopf bifurcation occurs when a periodic solution (limit cycle) surrounding an
equilibrium point arises or goes away as a parameter μ varies.

• When a stable limit cycle surrounds an unstable equilibrium point, the bifurcation
is called supercritical. [Examples 7.6.5 and 7.6.6]

• If the limit cycle is unstable and surrounds a stable equilibrium point, then the
bifurcation is called subcritical. [Example 7.6.7]

Bifurcations in general—and the Hopf bifurcation in particular—may lead to dis-
astrous results in various systems that are essentially nonlinear.

The Hopf bifurcation has been cited to explain the onset of often harmful os-
cillations in all sorts of natural systems, from human and animal populations and
chemical reactions to business cycles and airplane wings and landing gears. Histori-
cally, many instances of oscillatory behavior were attributed to resonance, but more
recent stability analyses have uncovered possible Hopf bifurcations.
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For example, the famous Tacoma Narrows Bridge collapse in 1940 has long been
considered a result of resonance, but now there are mathematicians and engineers
who suggest a Hopf bifurcation as the explanation, almost for the same reason as the
flutter in airplane wings or the “weave” in bicycle behavior.

Similarly, the Bhopal disaster, a 1984 gas leak at a pesticide plant in India in
which over 500,000 people were exposed to a toxic gas, has been analyzed as an ex-
ample of “thermal runaway” that occurred inside a storage tank. (This term describes
a process that is accelerated by increased temperature, in turn releasing energy that
further increases temperature. For example, lithium-ion batteries are susceptible to
this phenomenon.) As one researcher has hypothesized,

The stability properties of the model indicate that the thermal runaway may have
been due to a large amplitude, hard thermal oscillation initiated at a subcritical
Hopf bifurcation.

[R. Ball, Oscillatory thermal instability and the Bhopal disaster, Process Safety and
Environmental Protection 89 (No. 5): pp. 317-322.]

Exercises 7.6
A

1. In the discussion of the van der Pol equation (7.6.1), the comment was made
that it can be interpreted as a spring-mass system with nonlinear resistance.
Specifically, the term ε(x2 − 1) represents a variable damping coefficient.
a. Explain why ε(x2 −1) < 0 when −1 < x < 1, so that damping is negative

for the small oscillations corresponding to −1 < x < 1. (This means that
small-amplitude oscillations are amplified if they become too small.)

b. Explain why ε(x2 − 1) > 0 when |x| > 1, so that damping is positive for
the large oscillations corresponding to |x| > 1. (This means that large-
amplitude oscillations are made to decay if they become too large.)

2. Use technology to draw phase portraits of the van der Pol equation for

ε = 1

4
,

3

2
, and 3.

3. Consider the van der Pol equation in the system form (7.6.2), where x1(0) = 1
and x2(0) = 0.
a. For ε = 1

4 , graph the trajectory in the x1-x2 plane. Then graph x1(t)

against t and x2(t) against t on different sets of axes. Use technology.

b. For ε = 4, graph the trajectory in the x1-x2 plane. Then graph x1(t)

against t and x2(t) against t on different sets of axes. Use technology.

c. Describe the differences between the graphs in part (a) and the graphs in
part (b).

4. Use the EUT in Section 6.2.1 to show that the van der Pol equation has a
unique solution in any interval containing t = 0.
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B
5. Go back to Example 7.6.2 and look at the trigonometric substitutions sug-

gested there. You will verify the polar coordinate form of the system equations.
a. Use the Chain Rule to show that rṙ = xẋ + yẏ.

b. Show that θ̇ = − 1
x2+y2 (yẋ − xẏ), or −r2θ̇ = (yẋ − xẏ).

c. Show that xẋ + yẏ = (
x2 + y2

) (
x2 + y2 − 1

) = r2
(
r2 − 1

)
. [Hint: Mul-

tiply the first equation in the system by x and the second equation by y

and then add the results.]

d. Use part (a) and part (c) to show that ṙ = r
(
r2 − 1

)
.

e. Use part (b) and the general method in part (c) to show that θ̇ = 1.

6. Reconsider the uncoupled system (polar coordinate form) in Example 7.6.2.
a. Solve for r(t).

b. Solve for θ(t).

c. Use your answers to part (a) and part (b) to construct x(t) and y(t).

7. Follow the directions given in the preceding problem for the system in Exam-
ple 7.6.3.

8. Consider the system
{
ṙ = r

(
1 − r2

)
, θ̇ = 1

}
.

a. Show that this is equivalent to the system

ẋ = x − y − x
(
x2 + y2

)
ẏ = x + y − y

(
x2 + y2

)
,

where x = r(t) cos θ(t) and y = r(t) sin θ(t).

b. Use either form of the system to determine its unique limit cycle.

9. Consider the system
{
ṙ = r

(
4 − r2

)
, θ̇ = 1

}
, where x(t) = r(t) cos θ(t) and

y = r(t) sin θ(t). Given the initial conditions x(0) = 0.1, y(0) = 0, sketch the
graph of x(t) without finding an explicit expression for x(t). [Hint: Study
Example 7.6.2 carefully.]

Suppose we have an autonomous system {ẋ = f (x, y), ẏ = g(x, y)}, where f

and g have continuous first partial derivatives in some region R of the phase
plane that doesn’t have any “holes.” Then Bendixson’s Theorem (or Nega-
tive Criterion) states that if ∂f

∂x
+ ∂g

∂y
is always positive or always negative

at points of R, then the system has no periodic solutions in R. For exam-
ple, the system

{
ẋ = xy2, ẏ = x2 + 8y

}
has no limit cycles anywhere because

∂
(
xy2

)
∂x

+ ∂
(
x2+8y

)
∂y

= y2 + 8 > 0 for all values of x and y in the plane.

Use Bendixson’s criterion (above) to show that the systems in Problems 10–13 have
no limit cycles in the phase plane.

10.
{
ẋ = x + 2xy + x3, ẏ = −y2 + x2y

}
11.

{
ẋ = x3 + x + 7y, ẏ = x2y

}
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12.
{
ẋ = −2x − x siny, ẏ = −x2y3

}
13.

{
ẋ = 2x3y4 − 3, ẏ = 2yex + x

}
14. Show that the system

ẋ = 12x + 10y + x2y + y siny − x3

ẏ = x + 14y − xy2 − y3

has no periodic solution in the disk x2 + y2 ≤ 8.

15. A mechanical system with variable damping can be modeled by the equation

ẍ + a(x)ẋ + b(x) = 0,

where a(x) is a positive function.
a. Write this equation in system form.

b. Use the Bendixson criterion to show that this mechanical system has no
nonconstant periodic solution.

16. Consider the system {ṙ = μr − r3, θ̇ = 1}.
a. Determine all the equilibrium solutions and analyze their stability.

b. Determine all the bifurcation values of μ and identify the nature of the
bifurcations.

17. Consider the system

ẋ = μx − y −
(

x + 3

2
y

)
(x2 + y2)

ẏ = x + μy +
(

3

2
x − y

)
(x2 + y2).

a. Use the polar form of the system to find and classify all the bifurcation
points.

b. First find all the equilibrium points and then linearize about these points
to determine and classify all the bifurcation points.

18. Let ẋ = −μx − y + x

1+x2+y2 , ẏ = x − μy + y

1+x2+y2 .
a. Show that this system has a Hopf bifurcation as μ > 0 decreases through

μ = 1. [Hint: Express the system in polar form.]

b. Find the radius of the limit cycle for 0 < μ < 1.

C
19. The system

ẋ = −y − y2

ẏ = 1

2
x − 1

5
y + xy − 6

5
y2
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was discovered by the Chinese mathematician Tung Chin Chu in the late 1950s
in his investigation of a famous unsolved problem on limit cycles.
a. Find the equilibrium point(s) of this system.

b. Use technology to draw a phase portrait for each equilibrium point, focus-
ing on the region around that point. (It’s a bit tricky to get a good phase
portrait for this problem. Be patient.)

c. Using the phase portrait(s), identify and describe any limit cycle(s) you
see with the term stable or unstable.

20. Find all limit cycles of the system

ṙ = r(r − 1)(r − 2)2(r − 3)

θ̇ = 1

and identify them as stable, unstable, or semistable.

21. Show that the system

ẋ = μx − y + x(x2 + y2)(2 − x2 − y2)

ẏ = x + μy + y(x2 + y2)(2 − x2 − y2)

undergoes a subcritical Hopf bifurcation at μ = 0 for a certain range of values
of the parameter μ.

Summary
Nonlinear differential equations and systems of nonlinear equations are rarely han-
dled satisfactorily by finding closed-form solutions. In particular, we can’t analyze
the stability of systems of nonlinear equations as easily as we analyzed the stabil-
ity of linear systems in Chapter 6. The modern study of nonlinear phenomena relies
heavily on the qualitative methods pioneered by H. Poincaré and others at the end of
the nineteenth century and in the beginning of the twentieth century. Current technol-
ogy implements the power of these qualitative techniques.

One of the differences between linear and nonlinear equations is that a nonlinear
equation may have more than one equilibrium solution. Another difference is that a
solution of a nonlinear equation may “blow up in finite time”—that is, they become
unbounded as t approaches some finite value. A third difference is that a nonlinear
equation or system may be extremely sensitive to initial conditions. A slight change
in an initial value may lead to drastic changes in the behavior of the solution or
solutions.

A point (a∗, b∗) is an equilibrium point of the general nonlinear autonomous sys-
tem

ẋ = F(x, y)
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ẏ = G(x,y)

if F(a∗, b∗) = 0 = G(a∗, b∗). If the origin is an equilibrium point, and the functions
F and G are “nice” enough, we may be able to write our system in the form

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y),

where f and g are nonlinear functions and a = ∂F
∂x

(0,0), b = ∂F
∂y

(0,0), c = ∂G
∂x

(0,0),

and d = ∂G
∂y

(0,0). More generally, if (a, b) �= (0,0) is an equilibrium point for the
system, we can rewrite the system as

ẋ = A(x − a) + B(y − b) + f (x, y)

ẏ = C(x − a) + D(y − b) + g(x, y),

where f and g are nonlinear and A = ∂F
∂x

(a, b), B = ∂F
∂y

(a, b), C = ∂G
∂x

(a, b), and

D = ∂G
∂y

(a, b).
Another way to look at this general situation is to realize that we are translating

the equilibrium point (a, b) to the origin by using the change of variables u = x − a

and v = y − b. Of course, this means that x = u+ a and y = v + b, so we can rewrite
the last system as

u̇ = Au + Bv + f (u, v)

v̇ = Cu + Dv + g(u, v),

which has (0,0) as an equilibrium point. Note that this says that any equilibrium
point (a, b) �= (0,0) can be transformed to the origin for the purpose of analyzing the
stability of the system.

A nonlinear autonomous system

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y),

where ad − bc �= 0, lim(x,y)→(0,0)

(
f (x,y)√
x2+y2

)
= lim(x,y)→(0,0)

(
g(x,y)√
x2+y2

)
= 0 and

where the origin is an equilibrium point, is called an almost linear system; the re-
duced system

ẋ = ax + by

ẏ = cx + dy

is called the associated linear system (or linear approximation) about the origin.
The important Hartman–Grobman theorem is a qualitative result describing

how the equilibrium points of the nonlinear and linear systems are related according
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to the nature of eigenvalues of the associated linear system. When the linearized
system has zero as an eigenvalue or when the linearized system has pure imaginary
eigenvalues (so that the equilibrium solution is a center), further analysis is necessary
to determine the nature of the equilibrium points.

The Lotka–Volterra equations, the undamped pendulum, and the van der Pol
equation provide important examples of nonlinear systems and their analyses. In
particular, the van der Pol oscillator exhibits uniquely nonlinear behavior in having a
stable limit cycle, an isolated closed trajectory that (in this case) serves as an asymp-
totic limit for all other trajectories as t → ∞. Some limit cycles, called unstable
limit cycles, repel nearby trajectories. Finally, if trajectories near a limit cycle ap-
proach it from one side while being repelled from the other side, the cycle is called
semistable.

The concept of a bifurcation that was analyzed in Section 2.7 for first-order
equations can be extended to two-dimensional systems. Examples of transcritical,
pitchfork, and saddle-node bifurcations are provided. A Hopf bifurcation occurs
when an equilibrium solution loses its stability and a limit cycle appears as a param-
eter varies. Supercritical and subcritical Hopf bifurcations are discussed.
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APPENDIX

Some calculus concepts
and results

Appendix A is intended to offer either a brief review of or an introduction to selected
key ideas of calculus.

A.1 Local linearity: the tangent line approximation
The concept of local linearity says that if the function f is differentiable—that is, if
it has a derivative—at x = a and we “zoom in” on the point (a, f (a)) on the graph
of y = f (x), then the portion of the curve that surrounds the point looks very much
like a straight line, at least to the naked eye. Another way of saying this is to say that
the tangent line at the point (a, f (a)) is a good approximation to the curve for values
of x close to a. Fig. A.1 illustrates this.

FIGURE A.1

The tangent line approximation

Using the point-slope formula from algebra, we can write the equation of this
tangent line as y = f (a) + f ′(a)(x − a), and we can express this tangent line ap-
proximation as f (x) ≈ f (a) + f ′(a)(x − a) for x close to a.

As x takes on values farther away from a, we expect the absolute error |E(x)| =∣∣f (x) − f (a) − f ′(a)(x − a)
∣∣ to become larger.

For example, the equation of the tangent line drawn to the sine curve at the origin
is y = sin(0) + cos(0)(x − 0) = x. This says that near the origin, sinx ≈ x. One

421
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consequence of this is that sin x
x

≈ 1 for values of x near (but not equal to) zero, so we
get the famous result limx→0

sin x
x

= 1.

A.2 The chain rule
You should know the rules for finding the derivatives of power functions, poly-
nomials, exponential functions, logarithms, and trigonometric and inverse trigono-
metric functions. You may also have learned about differentiating certain combina-
tions of exponential functions called hyperbolic functions: sinhx = (ex − e−x)/2,
coshx = (ex + e−x)/2, tanhx = sinhx/ coshx, etc. You should know the Product
Rule and the Quotient Rule for differentiation, and how to deal with implicit func-
tions.

The Chain Rule applies to composite functions. Suppose that a quantity z depends
on a quantity y, and that the quantity y depends on the value of quantity x. Using
function notation, we can write this as z = f (y), y = g(x), so z = f (g(x)). This says
that, ultimately, z depends on (is a function of) x. The Chain Rule tells us how a
change in the value of x affects the value of z. In Leibniz notation,

dz

dx
= dz

dy
· dy

dx
.

This form is useful in many applied problems, and in Chapter 6 where the concepts
of phase plane and phase portrait are introduced.

Example
If z = y57 and y = sinx, then

dz

dx
= dz

dy
· dy

dx
=

(
57y56

)
· cosx = 57 sin56 x cosx.

You may have learned another way to see the Chain Rule: If z = f (g(x)), then z′ = f ′(g(x)) ·g′(x).
This alternative point of view uses the idea of an “inside” function and an “outside” function. Try
this on the preceding example, where the 57th-power function is outside and the sine function is
inside.

A.3 The Taylor polynomial/Taylor series
To extend the idea of the tangent line approximation, we look for a polynomial Pn of
degree n that approximates a function f as closely as possible on an interval about
a point x = a. What this means mathematically is that we want the polynomial to
satisfy the following closeness conditions: Pn(a) = f (a),P ′

n(a) = f ′(a),P ′′
n (a) =

f ′′(a),P ′′′
n (a) = f ′′′(a), . . ., and P

(n)
n (a) = f (n)(a). For a given function f , a point
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x = a, and degree n, the polynomial that satisfies all these conditions is given by the
formula

Pn(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

+ f ′′′(a)

3! (x − a)3 + · · · + f (n)(a)

n! (x − a)n.

This is called the Taylor polynomial of degree n about x = a, and we can write
f (x) ≈ Pn(x) for x close to a. The closeness of the approximation depends on both
the value of x and the value of n. In general, the closer the value of x is to the value
a and the higher the degree n, the better the approximation.

If we consider what happens to a Taylor polynomial as we let n get larger, we
arrive at the idea of the (infinite) Taylor series:

P(x) = lim
n→∞Pn(x) = lim

n→∞

n∑
k=0

f (k)(a)

k! (x − a)k

= f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

+ f ′′′(a)

3! (x − a)3 + · · · + f (n)(a)

n! (x − a)n + · · · .

More precisely, suppose that f is a function with derivatives of all orders in some
interval (a − r, a + r). Then the Taylor series given previously represents the function
f on the interval (a − r, a + r) if and only if limn→∞ Rn(x) = 0, where Rn(x) is the
remainder in Taylor’s formula:

Rn(x) = f (x) −
(

f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

+ f ′′′(a)

3! (x − a)3 + · · · + f (n)(a)

n! (x − a)n

)

= f (n+1)(c)

(n + 1)! (x − a)n+1 for some point c in (a − r, a + r).

As we saw in Section A.1, any approximation process is subject to error. For example,
when working with π , which has an infinitely long nonrepeating decimal represen-
tation, we lose accuracy by using 3.14159 or even 3.14159265359 as its value. This,
in turn, leads to what is called a propagated error, the accumulated error resulting
from many calculations with rounded values. If each item of data is inaccurate be-
cause of rounding of some sort, then the various steps in a calculation process can
compound the error. A useful approximation method guarantees that the smaller the
round-off error at each stage, the smaller the cumulative round-off error. Of course, it
turns out that sometimes round-off errors cancel each other out to a certain extent—
approximate values that are too high may be balanced by values that are too low.
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A truncation error occurs when we stop (or truncate) an approximation process
after a certain number of steps. For example, when we approximate the values of sinx

near x = 0 by using the first seven nonzero terms of its (infinite) Taylor series,

x − x3

3! + x5

5! − x7

7! + x9

9! − x11

11! + x13

13! ,

we are introducing a truncation error. If we write sinx = T13(x) + R13(x), where
T13(x) is the 13th-degree polynomial just given, a formula from calculus gives an
upper bound for the absolute truncation error

| sinx − T13(x)| = |R13(x)| = | sin c|
14! |x|14 ≤ |x|14

14! ,

where c is a positive number less than x. Even if we use the 1001st-degree Taylor
polynomial, we are still only approximating and will therefore have truncation error.

Here are some Taylor series that occur often in applications:

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · + xn

n! + · · ·

sinx = x − x3

3! + x5

5! − x7

7! + · · · + (−1)k
x2k+1

(2k + 1)! + · · ·

cosx = 1 − x2

2! + x4

4! − x6

6! + · · · + (−1)k
x2k

(2k)! + · · ·

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · + (−1)k+1 xk

k
+ · · ·

1

1 − x
= 1 + x + x2 + x3 + · · · + xn + · · · .

Although the first three series are valid (or converge) for any value of x, the logarith-
mic series is valid only on the interval (−1,1]. The last series, a geometric series,
converges for |x| < 1. In Section C.4, we show how Euler used the exponential series
to arrive at a formula for the complex exponential function.

A Taylor series is a special type of power series. We can differentiate or integrate
a power series term by term for values of x within its interval of convergence. If the
power series

∑∞
n=0 anx

n converges to S(x) for x in some interval I , then

S′(x) =
∞∑

n=0

nanx
n−1 = a1 + 2a2x + 3a3x

2 + · · · + nanx
n−1 + · · ·

and

∫ x

0
S(t) dt =

∫ x

0

( ∞∑
n=0

ant
n

)
dt =

∞∑
n=0

∫ x

0
ant

n dt =
∞∑

n=0

an

n + 1
xn+1
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= a0x + a1

2
x2 + a2

3
x3 + · · · + an

n + 1
xn+1 + · · · ,

where both the differentiated and the integrated series converge for x in I .
In Appendix D, we show how to solve certain differential equations using power

series methods.

A.4 The fundamental theorem of calculus
A function F is an antiderivative of the function f if F ′(x) = f (x). A very impor-
tant connection between derivatives and integrals is expressed by the Fundamental
Theorem of Calculus (FTC). This result comes in two flavors:

A. If f (x) is continuous on the closed interval [a, b] and if F(x) is any antiderivative
of f (x) on this interval, then

∫ b

a

f (x) dx = F(b) − F(a).

B. Let f (x) be defined and continuous on a closed interval [a, b] and define the
function G(x) on this interval:

G(x) =
∫ x

a

f (t) dt.

Then G(x) is differentiable there with derivative f (x): G′(x) = f (x)—that is,
d
dx

∫ x

a
f (t) dt = f (x).

Version A simplifies the whole business of finding the value of a definite integral:
Just find an antiderivative of the integrand. Of course, as we know, this isn’t always
as simple as it sounds. At least half of your calculus course was probably devoted to
techniques of substitution and integration by parts, trying to recognize integrands as
derivatives resulting from the Product Rule, the Chain Rule, and so forth.

A slight twist on version A tells us that if we integrate f ′, the rate function over
[a, b], we get the total change in f , the amount function over the same interval.
For example, if s(t), v(t), and a(t) denote the position, velocity, and acceleration,
respectively, of a moving object at time t , then we have∫

v(t) dt = s(t) + C and
∫

a(t) dt = v(t) + K,

where C and K denote arbitrary constants. Consequently, we can write

∫ b

a

v(t) dt =
∫ b

a

s′(t) dt = s(b) − s(a),



426 APPENDIX A Some calculus concepts and results

which says that if we integrate the velocity function, we get the total change in
position of a moving object as t changes from a to b. If we integrate the speed
function—the absolute value of the velocity—we get the total distance traveled by
the object. (See Example 1.3.4 in the text.)

As useful as version A is in solving differential equations, version B extends the
notion of differentiation (and therefore of integration) to functions defined by inte-
grals. (See, e.g., Problems 9 and 10 in Exercises 1.2.)

Example
Suppose that Q(x) = ∫ x

−2 cos(u2) du. Then Q′(x) = cos(x2), Q′′(x) = −2x sin(x2), and so on.

If we are given a curve with equation y = f (x), a ≤ x ≤ b, then we can calculate
the arclength of f (the length of the curve y = f (x)) by using the formula L =∫ b

a

√
1 +

(
dy
dx

)2
dx.

The (First) Mean Value Theorem for Integrals can come in handy: If f

and g are continuous functions on [a, b] and g(x) ≥ 0 for all x ∈ [a, b], then∫ b

a
f (x)g(x) dx = f (ξ)

∫ b

a
g(x) dx for some ξ ∈ [a, b].

A.5 Partial fractions
An important and useful result from algebra says that every rational function (quo-
tient of polynomial functions), no matter how complicated, comes from adding sim-
pler fractions. For example, the function

8x + 1

x2 − x − 6

comes from the following addition of simpler pieces:

3

x + 2
+ 5

x − 3
= 3(x − 3) + 5(x + 2)

(x + 2)(x − 3)
= 8x + 1

x2 − x − 6
.

In calculus, when we have an integrand that is a rational function, we can reverse this
addition process to find the simpler fractions, fractions that we can integrate easily.
Thus, for example,∫

8x + 1

x2 − x − 6
dx =

∫ (
3

x + 2
+ 5

x − 3

)
dx =

∫
3

x + 2
dx +

∫
5

x − 3
dx

= 3 ln |x + 2| + 5 ln |x − 3| + C.

In this example, the algebraic challenge is to find constants A and B such that

8x + 1

x2 − x − 6
= A

x + 2
+ B

x − 3
. (*)
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The fractions A/(x + 2) and B/(x − 3) are called partial fractions because each
contributes a piece of the whole. In particular, the denominators x + 2 and x − 3
are parts (factors) of the original denominator x2 − x − 6. The numbers A and B are
called undetermined coefficients (see Section 4.3, Section 6.10.2, and Appendix D).
To find A and B, we clear Eq. (*) of fractions by multiplying both sides by x2 −x −6.
The result is

8x + 1 = A(x − 3) + B(x + 2).

This is supposed to be an identity in x. If we let x = 3, we find that 8(3)+1 = 0+5B,
or B = 5. Similarly, letting x = −2, we get 8(−2) + 1 = −5A + 0, so A = 3.

This technique works for a rational function in lowest terms whose denomina-
tor can be factored into distinct linear factors. More complicated denominators can
also be handled by this kind of algebraic method, and you can find a more detailed
discussion in your calculus text. Most computer algebra systems can produce such
“partial-fraction decompositions” and can evaluate integrals with integrands that are
rational functions. Partial fractions are particularly useful in Section 2.1, in Chapter 5,
and in Chapter 7.

A.6 Improper integrals
In dealing with the definite integral

∫ b

a
f (x) dx, we make two basic assumptions:

(1) the interval [a, b] is finite and (2) the integrand f is bounded—that is, it does
not become infinite—on the closed interval [a, b]. If we violate one or both of these
assumptions, we encounter a type of improper integral.

First, let us assume that we want to consider the interval [a,∞) or (−∞, b],
where a and b are real numbers. We can define∫ ∞

a

f (x) dx = lim
B→∞

∫ B

a

f (x) dx or
∫ b

−∞
f (x)dx = lim

A→∞

∫ b

−A

f (x)dx

provided that each limit exists. If the limit exists, we say that the improper integral
converges. Otherwise, we say that the improper integral diverges. Finally,

∫ ∞

−∞
f (x)dx = lim

A→∞

∫ c

−A

f (x)dx + lim
B→∞

∫ B

c

f (x) dx

provided that each limit on the right-hand side exists individually. Here, c is an arbi-
trary real number. It is not correct to define

∫ ∞
−∞ f (x)dx as limC→∞

∫ C

−C
f (x)dx.

Example
∫ ∞

1

dx

1 + x2
= lim

B→∞ arctanx|B1 = lim
B→∞(arctanB − arctan 1)
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= lim
B→∞

(
arctanB − π

4

)
= lim

B→∞ arctanB − π

4

= π

2
− π

4
= π

4
.

Example
Consider

∫ ∞
0 sinx dx. The limit

lim
B→∞

∫ B

0
sinx dx = lim

B→∞(− cos(B) + cos(0)) = − lim
B→∞ cos(B) + 1

doesn’t exist because cos(B) oscillates from −1 to 1 as B tends to infinity.
When we are dealing with this first type of improper integral, for which the interval is not

finite, sometimes a form of L’Hôpital’s Rule comes in handy: Suppose that as x → a, where a is

±∞, f (x) → ±∞, and g(x) → ±∞. If limx→a
f ′(x)

g′(x)
= L, where L is either a real number or

±∞, then limx→a
f (x)
g(x)

= L.

Example
Consider Euler’s gamma function, defined by �(x) = ∫ ∞

0 tx−1e−t dt . Integration by parts tells us
that

�(x) = −tx−1e−t
]∞

0
−

∫ ∞
0

(x − 1)tx−2(−e−t ) dt

= lim
c→∞

−tc−1

ec
+ (x − 1)

∫ ∞
0

tx−2e−t dt

= (x − 1) · �(x − 1),

where we have used L’Hôpital’s Rule several times in evaluating the limit. (Successive differentia-

tions of the numerator and denominator of −tc−1

ec eventually gives us −(c − 1)! in the numerator,
whereas the denominator remains ec , so the limit of the quotient as c tends to infinity is 0.) Note that
because �(1) = �(2) = 1, we can conclude that �(x + 1) = x · (x − 1) · (x − 2) · (x − 3) · · ·3 ·
2 · 1 = x! when x is an integer, so the gamma function provides a generalization of n! to the case in
which n is not an integer. (See Section D.3, especially footnote 4.)

Now let’s suppose that f is defined and finite on the interval [a, b] except at the endpoint b.
Then the integral

∫ b
a f (x)dx

∫ b

a
f (x)dx = lim

B→b−

∫ B

a
f (x)dx

provided that this left-hand limit (or limit from the left) exists. Similarly, if f is unbounded at the
endpoint a, then we define

∫ b

a
f (x)dx = lim

A→a+

∫ b

A
f (x)dx

provided that this right-hand limit (or limit from the right) exists.
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Example
The function 1/

√
1 − x2 is unbounded at x = 1 (and at x = −1). The improper integral of this

function on the interval [0,1] converges:

∫ 1

0

dx√
1 − x2

= lim
B→1−

∫ B

0

dx√
1 − x2

= lim
B→1− arcsin(B) − arcsin(0) = π

2
.

Another possibility is that the function f is defined and finite on [a, b] except at a point ξ inside the
interval. The improper integral is then defined as

∫ b

a
f (x)dx = lim

c→ξ−

∫ c

a
f (x)dx + lim

d→ξ+

∫ b

d
f (x)dx

provided that both one-sided limits exist.

Example

∫ 2

0

dx

(x − 1)2/3
= lim

c→1−

∫ c

0

dx

(x − 1)2/3
+ lim

d→1+

∫ 2

d

dx

(x − 1)2/3

= lim
c→1− 3(x − 1)

1/3
∣∣∣∣c
0

+ lim
d→1+ 3(x − 1)

1/3
∣∣∣∣2
d

= lim
c→1−

[
3(c − 1)

1/3 − 3 (−1)
1/3

]
+ lim

d→1+
[
3 (1)

1/3 − 3 (d − 1)
1/3

]
= 3 + 3 = 6.

The following Comparison Test for Improper Integrals is often useful: Sup-
pose that 0 ≤ g(x) ≤ f (x). If

∫ ∞
a

f (x) dx converges, then
∫ ∞
a

g(x) dx converges.
Furthermore, if

∫ ∞
a

g(x) dx diverges, then
∫ ∞
a

f (x) dx also diverges.

A.7 Functions of several variables/partial derivatives
Sometimes we encounter functions that depend on more than one independent vari-
able. For example, the area of a rectangle depends on both its length and its width.
We can express this relationship as A = f (l,w) = l · w. In general, if there are two
independent variables (x and y) and one dependent variable (z), we can express this
situation as z = f (x, y). In other words, the variable z depends on (is a function of)
the variables x and y. This means that changes in the value of either x or y (or both)
will lead to changes in z. The instantaneous rate of change of z with respect to x

is given by the partial derivative of z with respect to x, which is defined by the
formula

∂z

∂x
= lim

h→0

f (x + h,y) − f (x, y)

h
.
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Similarly, the instantaneous rate of change of z with respect to y is given by the
partial derivative of z with respect to y, which is defined by the formula

∂z

∂y
= lim

h→0

f (x, y + h) − f (x, y)

h
.

What this means in terms of practical calculation is that to find ∂z
∂x

, you just treat y

as a constant and differentiate with respect to x as usual. For ∂z
∂y

, you treat x as a
constant and regard y as the “live” variable.

The Chain Rule takes different forms in this multivariable environment, among
them this version: If x = f (t) and y = g(t), where f and g are differentiable and F

is a function of x and y, then dF
dt

= ∂F
∂x

dx
dt

+ ∂F
∂y

dy
dt

.

Example
If z = f (x, y) = x2y2 − 3xy3 + 5x4y2, then

∂z

∂x
= 2xy2 − 3y3 + 20x3y2 and

∂z

∂y
= 2x2y − 9xy2 + 10x4y.

Example
Suppose w = e2x+3y sin(xy). Then, using the Product Rule and the Chain Rule, we find that

∂w

∂x
= e2x+3y cos(xy)y + 2e2x+3y sin(xy)

and

∂w

∂y
= e2x+3y cos(xy)x + 3e2x+3y sin(xy).

Example
Let F(x, y) = x2 + y2, with x = x(t) = cos t and y = y(t) = sin t . Then the multivariable Chain
Rule gives us dF

dt
= ∂F

∂x
dx
dt

+ ∂F
∂y

dy
dt

= (2x)(− sin t)+ (2y)(cos t) = −2 cos t sin t +2 sin t cos t = 0,

which is not surprising since F(x, y) = x2 + y2 = cos2 t + sin2 t ≡ 1.

In general, if you have a function of n variables, z = f (x1, x2, x3, . . . , xn), then
you can define the partial derivative of z with respect to xk , and calculate it by treating
xk as the only true variable and treating the other xi (i 
= k) as constants. You can

define higher derivatives and mixed derivatives in the obvious way: ∂2z
∂xi∂xk

, ∂nz
∂xn

k
, and

so on.

Example
Using z = f (x, y) = x2y2 − 3xy3 + 5x4y2 and the results of the first example, we have

∂2z

∂x2
= ∂

∂x

(
∂z

∂x

)
= ∂

∂x

(
2xy2 − 3y3 + 20x3y2

)
= 2y2 + 60x2y2
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∂2z

∂y2
= ∂

∂y

(
∂z

∂y

)
= ∂

∂y

(
2x2y − 9xy2 + 10x4y

)
= 2x2 − 18xy + 10x4

∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)
= ∂

∂x

(
2x2y − 9xy2 + 10x4y

)
= 4xy − 9y2 + 40x3y,

and so forth.

If we have an integral of the form
∫ b

a
f (x, t) dt , where f is a function of the two

variables x and t and a, b are constants, then this integral is a function of x: If we
integrate with respect to the variable t , the result will still contain the variable x.
Leibniz’s rule for differentiating under the integral sign says that the equation

d

dx

∫ b

a

f (x, t) dt =
∫ b

a

∂

∂x
f (x, t) dt

is valid at x = x0, in the sense that both sides exist and are equal, provided that f and
its partial derivative ∂

∂x
f are both continuous in some rectangular region a ≤ t ≤ b,

c ≤ x ≤ d of the x-t plane. (This was one of the mathematical rules Richard Feynman,
the renowned physicist, was fondest of.)

Example
Let f (x, t) = (2t + x3)2. Then

∫ 1
0 f (x, t) dt = ∫ 1

0 (2t + x3)2 dt = 4/3 + 2x3 + x6, so that

d

dx

∫ 1

0
(2t + x3)2 dt = d

dx

(
4/3 + 2x3 + x6

)
= 6x2 + 6x5.

But we can use Leibniz’s rule to calculate

d

dx

∫ 1

0
(2t + x3)2 dt =

∫ 1

0

∂

∂x
(2t + x3)2 dt =

∫ 1

0
(6tx2 + 6x5) dt

=
∫ 1

0

(
12tx2 + 6x5

)
dt = 6x2 + 6x5.

A.8 The tangent plane: the Taylor expansion of F(x,y)
In Section A.1, we saw that the tangent line y = f (a) + f ′(a)(x − a) gives the
best linear approximation of a single-variable function f near x = a. For F(x, y),
a function of two variables, the best approximation near a point (a, b) is provided by
the tangent plane given by the approximation formula

F(x, y) ≈ F(a, b) + ∂F

∂x
(a, b)(x − a) + ∂F

∂y
(a, b)(y − b),

where ∂F
∂x

(a, b) and ∂F
∂y

(a, b) denote the partial derivatives evaluated at the point
(a, b).



432 APPENDIX A Some calculus concepts and results

Example
Let’s calculate the tangent plane approximation of the function F(x, y) = x3 − x2y2 + y3 near
the point (a, b) = (1,2). We have ∂F

∂x
= 3x2 − 2xy2 and ∂F

∂y
= −2x2y + 3y2, so F(1,2) =

13 − 1222 + 23 = 5, ∂F
∂x

(1,2) = 3(1)2 − 2(1)(2)2 = −5, and ∂F
∂y

(1,2) = −2(1)2(2) + 3(2)2 = 8.
Putting these results into the tangent plane formula, we get

F(x, y) ≈ F(1,2) + ∂F

∂x
(1,2)(x − 1) + ∂F

∂y
(1,2)(y − 2)

= 5 − 5(x − 1) + 8(y − 2).

Fig. A.2 shows the three-dimensional picture of the surface and its tangent plane.

FIGURE A.2

Tangent plane to the surface z = x3 − x2y2 + y3 at (1,2)

For points (x, y) close to (1,2), the values of z on the tangent plane are close to
the values of z on the surface defined by z = F(x, y).

We can define a full Taylor series expansion of a function of several variables, but
for this text we only need the idea of the tangent plane (linear) approximation (see
Chapter 7).
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Vectors and matrices

Appendix B provides an expanded view of the vector and matrix algebra needed in
this text.

B.1 Vectors and vector algebra; polar coordinates
In more abstract courses, a vector is an object in a set whose elements obey certain
algebraic rules. For physicists, engineers, and other scientists, a vector—more prop-
erly, a geometric vector—is a quantity that has both magnitude (size) and direction.
In two-dimensional physical situations, there are two usual ways to represent a vec-

tor: (1) as an ordered pair of real numbers written (x, y) or

[
x

y

]
and (2) as an arrow

from the origin (usually) of the x-y plane to a point (x, y) or

[
x

y

]
. The numbers x and

y are called the components or coordinates of the vector. As indicated in Chapter 6,
we can also consider vectors with complex-number coordinates and vectors whose
components are functions. For the sake of simplicity in this appendix, we’ll work
with vectors whose components are real numbers.

FIGURE B.1

Ways to represent a vector

Both ways of looking at a vector are shown in Fig. B.1. In the “arrow” view, the
vector v = (x, y) is always the hypotenuse of a right triangle, so by the Pythagorean

433
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Theorem its length, denoted |v|, is given by the expression
√

x2 + y2. The direction
of a vector is indicated by the direction of the arrow.

Vectors, which often represent forces of various kinds, can be combined to indi-
cate interactions. For example, we can add two vectors as follows: If v1 = (x1, y1)

and v2 = (x2, y2), then v1 +v2 = (x1, y1)+ (x2, y2) = (x1 +x2, y1 +y2). Subtraction
is similar. We can also multiply a vector by a real number (or a complex number or
a function), which is called a scalar in this situation. To do this, just multiply each
component of the vector by the scalar: If v = (x, y) and r is any real number, then
r v = (rx, ry). Because the components of vectors are real numbers, we should ex-
pect the usual rules of algebra to apply. If v1, v2, and v3 are vectors and r is a scalar,
then v1 + v2 = v2 + v1 [commutative property], v1 + (v2 + v3) = (v1 + v2) + v3
[associative property], and r (v1 + v2) = r v1 + r v2 [distributive property]. There is
a zero vector, denoted 0 = (0,0), such that v + 0 = v = 0 + v for every vector v
[additive identity].

Geometrically, the addition or subtraction of vectors is captured by the Parallel-
ogram Law (see Fig. B.2 for the two-dimensional version).

FIGURE B.2

The Parallelogram Law

Another way of representing a vector in two-dimensional space is by using polar
coordinates (Fig. B.3). If we have a vector corresponding to the point (x, y), then
we can describe it using its length r (its radial distance from the origin) and the angle
θ that the arrow makes with the positive x-axis, measured in a counterclockwise
direction. As we saw previously, the length is given by the formula r = √

x2 + y2.
As we look at Fig. B.3, simple trigonometry tells us that x = r cos θ , y = r sin θ ,

and θ = arctan
( y

x

)
, x �= 0. As indicated in some of the examples in Chapter 7, the po-

lar representation of vectors may be more natural in problems involving expressions
that look like x2, y2, x2 + y2, and so on.

There is no reason to restrict our definition of vectors to two dimensions. In

three-dimensional space, a vector is an ordered triplet, (x, y, z) or

⎡
⎣x

y

z

⎤
⎦, of real

numbers or an arrow joining the origin (0,0,0) to the point (x, y, z). In general,
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FIGURE B.3

Polar representation of a vector

an n-dimensional vector is an ordered n-tuple, (x1, x2, x3, . . . , xn) or

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤
⎥⎥⎥⎥⎦, of real

numbers. The coordinate-by-coordinate arithmetic or algebra of vectors generalizes
to any dimension in the obvious way.

Given a set of vectors {v1,v2, . . . ,vm}, any vector of the form c1v1 + c2v2 +
· · · + cmvm, where c1, c2, . . . , cm are scalars, is called a linear combination of the
set of vectors. The set of vectors {v1,v2, . . . ,vm} is called linearly independent
if the only way we can have c1v1 + c2v2 + · · · + cmvm = 0 (the zero vector) is if
c1 = c2 = · · · = cm = 0. Otherwise, the set of vectors is linearly dependent. Linear
dependence implies that at least one vector in the set can be expressed as a linear
combination of the others.

Example
We will determine whether the following vectors are linearly independent:

v1 =

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ , v4 =

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦ .

The statement c1v1 + c2v2 + c3v3 + c4v4 = 0 is equivalent to the system of algebraic equations

c1 + c2 = 0

c1 + c4 = 0

c2 + c3 = 0

c3 + c4 = 0.
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This system is not difficult to solve by hand using substitution or elimination, but we can also use
the capability of a graphing calculator or computer algebra system (CAS) to solve such systems of
equations. In any case, we find that c1 = 1, c2 = −1, c3 = 1, and c4 = −1 is a solution. Because the
scalars are not all zero, we conclude that the four vectors are linearly dependent. Note, for example,
that we can write the first vector as a linear combination of the remaining vectors: v1 = v2 −v3 +v4.

B.2 Matrices and basic matrix algebra
A matrix (the plural is matrices) is simply a rectangular arrangement (array) of
numbers or other mathematical objects (such as functions) and is usually denoted by
a capital letter. It can be considered a generalization of a vector. For example, we can
have the matrix

A =
⎡
⎣ 0 −4 1/2 9

π 14/5 −0.15 2

7
√

3 0 −3

⎤
⎦ .

The numbers or objects making up a matrix are called its elements or entries. Most
of the time we’ll use real numbers, although complex numbers and even functions
can appear as entries of matrices (as they can for components of vectors).

One way to describe a matrix is by indicating how many rows and columns it has.
Matrix A in the preceding equation has three rows and four columns and is called a
3 by 4 matrix, or a 3×4 matrix. A matrix with m rows and n columns is called an m by
n matrix (m × n matrix). Note that each row or column of a matrix can be considered
a vector. An n × 1 matrix is called a column vector, whereas a 1 × n matrix is called
a row vector. Two matrices are called equal if they have the same number of rows
and columns and their corresponding elements are equal. For example, we can write[

1 0 −5/3

1/
√

2 3 0.25

]
=

[
7/7 0 −15/9√
2/2 15/5 1/4

]
.

We can add and subtract matrices of the same shape by adding or subtracting their
corresponding elements, but (for example) we can’t add a 3 by 4 matrix and a 4 by 3
matrix or subtract one of these from the other. If we take the matrix A that we have
already defined and introduce the matrix B, so that we have

A =
⎡
⎣ 0 −4 1/2 9

π 14/5 −0.15 2

7
√

3 0 −3

⎤
⎦ and B =

⎡
⎣ −3 5 −1/2 4

3/4 6/5 0.65 8

−9
√

2 8 3

⎤
⎦ ,

then

A + B =
⎡
⎣0 + (−3) −4 + 5 1/2 + (−1/2) 9 + 4

π + 3/4 14/5 + 6/5 −0.15 + 0.65 2 + 8

7 + (−9)
√

3 + √
2 0 + 8 −3 + 3

⎤
⎦
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=
⎡
⎣ −3 1 0 13

π + 3/4 4 0.5 10

−2
√

3 + √
2 8 0

⎤
⎦

and

A − B =
⎡
⎣0 − (−3) −4 − 5 1/2 − (−1/2) 9 − 4

π − 3/4 14/5 − 6/5 −0.15 − 0.65 2 − 8

7 − (−9)
√

3 − √
2 0 − 8 −3 − 3

⎤
⎦

=
⎡
⎣ 3 −9 1 5

π − 3/4 8/5 −0.8 −6

16
√

3 − √
2 −8 −6

⎤
⎦ .

The role of the number zero in matrix algebra is played by the zero matrix of the
appropriate size—the matrix all of whose entries are zero.

We can also multiply a matrix by a number (or even a function) called a scalar,
as in the case of vectors. We just multiply every element of the matrix by that scalar:

−5 ·
⎡
⎣ 3 −2 0

−7 4 1/3

5 −6
√

2

⎤
⎦ =

⎡
⎢⎣

−5 (3) −5 (−2) −5 (0)

−5 (−7) −5 (4) −5 (1/3)

−5 (5) −5 (−6) −5
(√

2
)
⎤
⎥⎦

=
⎡
⎣−15 10 0

35 −20 −5/3

−25 30 −5
√

2

⎤
⎦ .

We’ve just multiplied a 3 by 3 matrix—one type of square matrix—by the
scalar (−5).

B.3 Linear transformations and matrix multiplication
The really interesting thing about matrix arithmetic and algebra is how we multiply
matrices. The natural thing to do—take two matrices with the same shape and mul-
tiply their corresponding elements—is not what is meant by matrix multiplication
in the theory of linear algebra. Instead, there is a row-by-column process that looks
strange at first, but becomes more natural when we see its applications.

To motivate the multiplication of matrices, let’s return to elementary algebra for
a moment and look at a system of two equations in two unknowns:

−2x + 3y = 5

x − 4y = −2.

In connection with this system, we can think of a point (x, y) in the plane transformed
into another point as follows:
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T (x, y) = (−2x + 3y, x − 4y).

For example,

T (1,0) = (−2(1) + 3(0),1 − 4(0)) = (−2,1)

T (−4,5) = (−2(−4) + 3(5),−4 − 4(5)) = (23,−24)

and

T (−2.8,−0.2) = (−2(−2.8) + 3(−0.2),−2.8 − 4(−0.2)) = (5,−2).

Note that this last calculation says that the ordered pair (x, y) = (−2.8,−0.2) is
a solution of our system of linear equations.

Geometrically, the point (1,0) has been moved to the location (−2,1), the point
(−4,5) has been changed to (23,−24), and the point (−2.8,−0.2) has been trans-
formed into (5,−2). If we think of a point (x, y) as defining a vector, then the
transformation stretches (or shrinks) the vector and rotates it through some angle
θ until it becomes another vector. Fig. B.4 shows this interpretation of the effect of T

on the vector (1,0).

FIGURE B.4

The effect of T (x, y) = (−2x + 3y, x − 4y) on the vector (1,0)

More abstractly, we should be able to see that T is a linear transformation of
points (x, y) in the plane to other points (x̂, ŷ) in the plane: If u = (x1, y1) and v =
(x2, y2), then T (c1u+ c2v) = T (c1u)+T (c2v) = c1T (u)+ c2T (v) for any constants
c1 and c2.

Matrix notation was invented by the English mathematician Arthur Cayley pre-
cisely to describe linear transformations. If T (x, y) = (x̂, ŷ), where

ax + by = x̂

cx + dy = ŷ,

then we can pick out the coefficients a, b, c, and d and write them in a square array

A =
[
a b

c d

]
called a matrix. If we know what variables x, y, x̂, and ŷ we’re using,
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then knowing this matrix of coefficients enables us to understand what T is doing
to points in the plane. We can focus on these variables by introducing the vectors

X =
[
x

y

]
and X̂ =

[
x̂

ŷ

]
. Now we can write our system of equations compactly as

[
a b

c d

][
x

y

]
=

[
x̂

ŷ

]
,

or AX = X̂. To make sense, the “product” of A and X must be the column matrix[
ax + by

cx + dy

]
, which leads to a row-by-column multiplication:

[
a b

][
x

y

]
= ax + by and

[
c d

][
x

y

]
= cx + dy.

Furthermore, the multiplication of two matrices of the appropriate sizes can be inter-
preted as a composition of transformations, one transformation followed by another.

Example
Suppose that we have two linear transformations defined by

M(x,y) = (x + 2y,3x + 4y) and P(x, y) = (−2x, x + 3y).

Then

(M ◦ P)(x, y) = M(P(x, y)) = M(−2x, x + 3y)

= (−2x + 2(x + 3y),3(−2x) + 4(x + 3y))

= (6y,−2x + 12y).

In particular, (M ◦ P)(1,1) = (6,10).

The matrices of coefficients for the transformations M and P look like M =[
1 2
3 4

]
and p =

[−2 0
1 3

]
, so the composition M ◦ P takes the form of a product of

2 × 2 matrices:[
1 2
3 4

][−2 0
1 3

][
x

y

]
=

[
1 2
3 4

][
−2x

x + 3y

]

=
[ −2x + 2(x + 3y)

3(−2x) + 4(x + 3y)

]
=

[
6y

−2x + 12y

]

and when

[
x

y

]
=

[
1
1

]
,

[
1 2
3 4

][−2 0
1 3

][
1
1

]
=

[
6

10

]
.
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We should check to see that (M ◦ P)(x, y) �= (P ◦ M)(x, y) or, equivalently, that[
1 2
3 4

][−2 0
1 3

]
�=

[−2 0
1 3

][
1 2
3 4

]
.

Looking at the preceding example, we see that transforming the vector (x, y) by P

and then by M is equivalent to transforming the vector by the single transformation
T (x, y) = (6y,−2x + 12y). In matrix terms, we can express the effect of the compo-

sition M ◦ P as

[
0 6

−2 12

][
x

y

]
=

[
6y

−2x + 12y

]
. Note what we get when we add the

results of multiplying each element of the first row of the matrix associated with M ,[
1 2

]
, by the corresponding element of the first column of the matrix associated

with P ,

[−2
1

]
: (1)(−2) + (2)(1) = 0, which happens to be the first row, first column

element of the matrix corresponding to M ◦ P . Similarly, for example, combining
the second row of the matrix associated with M ,

(
3 4

)
and the first column of the

matrix associated with P ,

[−2
1

]
, we get the element in the second row, first column

of M ◦ P : (3)(−2) + (4)(1) = −2. In this way we can describe the matrix for M ◦ P

as the product of the matrix representing M and the matrix representing P .
In general, if A and B are both 2 × 2 matrices, we find the element in row i and

column j of the product matrix C = AB by adding the products of each element of
row i of matrix A and the corresponding element in column j of matrix B. Here’s
what the matrix product corresponding to M ◦P in the last example looks like in full:[

1 2
3 4

][−2 0
1 3

]
=

[
(1)(−2) + (2)(1) (1)(0) + (2)(3)

(3)(−2) + (4)(1) (3)(0) + (4)(3)

]
=

[
0 6

−2 12

]
.

We should be able to calculate the matrix product corresponding to P ◦M . We notice
that the order of composition/multiplication is important: The matrix corresponding
to M ◦ P is not necessarily the matrix corresponding to P ◦ M . In general, matrix
multiplication is not commutative: If A and B are two matrices that can be multi-
plied (see the next paragraph), then AB �= BA in general.

This situation of one function or transformation followed by another is the moti-
vation for matrix multiplication. The general multiplication of matrices remains the
row-by-column procedure described for 2 × 2 matrices. In order for us to calculate
the matrix product C = AB, the number of columns of A must be the same as the
number of rows of B. Let C = AB, where A is m× r and B is r ×n. Then the product
is a matrix with m rows and n columns:

A · B = C

(m × r) · (r × n) = m × n

Thus, if A is a 3 by 5 matrix and B is a 5 by 7 matrix, we can find the product AB,
which will be a 3 by 7 matrix. However, the product BA does not make sense because
the number of columns of B (7) does not equal the number of rows of A (3).
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If the sizes of A and B are compatible, as described previously, then cij , the
element in row i and column j of the product matrix C, is just the sum of the products
of each element of row i of matrix A and the corresponding element in column j of
matrix B. Letting aik denote the entry in row i and column k of matrix A, and letting
bkj denote the element in row k and column j of matrix B, we can write the last
sentence more concisely as

cij =
r∑

k=1

aikbkj = ai1 b1j + ai2 b2j + · · · + air brj . (B.3.1)

Schematically, we can represent this matrix multiplication as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 . . . c1j . . . c1n

c21 c22 . . . c2j . . . c2n

...
...

...
...

...
...

ci1 ci2 . . . cij . . . cin

...
...

...
...

...
...

cm1 cm2 . . . cmj . . . cmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1r

a21 a22 . . . a2r

...
...

...
...

ai1 ai2 . . . air

...
...

...
...

am1 am2 . . . amr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

b11 b12 . . .

b21 b22 . . .

...
...

...

br1 br2 . . .

b1j

b2j

...

brj

. . . b1n

. . . b2n

...
...

. . . brn

⎤
⎥⎥⎥⎥⎥⎦ .

Here are some more examples of matrix multiplication.

Example

[
2 −3 0
4 0 1

]
·
⎡
⎣1 2

3 4
5 6

⎤
⎦ =

[
2(1) − 3(3) + 0(5) 2(2) − 3(4) + 0(6)

4(1) + 0(3) + 1(5) 4(2) + 0(4) + 1(6)

]

=
[−7 −8

9 14

]
,

⎡
⎣ π −2 6

0 4 1
−3 5 7

⎤
⎦ ·

⎡
⎣2 −3 0

9 2 −6
2 1 4

⎤
⎦

=
⎡
⎣ π(2) − 2(9) + 6(2) π(−3) − 2(2) + 6(1) π(0) − 2(−6) + 6(4)

0(2) + 4(9) + 1(2) 0(−3) + 4(2) + 1(1) 0(0) + 4(−6) + 1(4)

−3(2) + 5(9) + 7(2) −3(−3) + 5(2) + 7(1) −3(0) + 5(−6) + 7(4)

⎤
⎦
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=
⎡
⎣2π − 6 −3π + 2 36

38 9 −20
53 26 −2

⎤
⎦ .

A particularly important and useful 2 × 2 matrix is the identity matrix I =[
1 0
0 1

]
. We will see that this matrix plays the same role in matrix algebra that the

number 1 plays in arithmetic—that is, I · A = A · I for any 2×2 matrix A. If matrix
A is 2 × n, then I · A = A, but A · I is not defined unless n = 2. Similarly, if A is an
n × 2 matrix, then A · I = A, but I · A is not defined unless n = 2. In general, for
any positive integer n, the n × n matrix with ones on the main diagonal (upper left
corner to lower right corner) and zeros elsewhere serves as the identity matrix I for
n × n matrix multiplication.

Given an n × n matrix A, the n × n matrix B is called the (multiplicative) inverse
of A if AB = I = BA. If an inverse of A exists, then it is unique and is denoted
by A−1.

With the definitions we have seen, matrix addition and multiplication satisfy all
the familiar basic rules of algebra, except for commutativity. For example, we have
the associative law for multiplication: If A is an m × r matrix, B is an r × s matrix,
and C is an s × n matrix, then A(BC) = (AB)C, an m × n matrix. We also have
the distributive law: If A is an m × r matrix and B and C are r × n matrices, then
A(B + C) = AB + AC (which is an m × n matrix).

Let’s prove the distributive law in the situation in which A is an m × r matrix and
B and C are r × 1 matrices (vectors). We expect the product A(B +C) to be a vector
having m rows. Now suppose that aik denotes the element in row i, column k of A,
that bk and ck are the elements in row k(k = 1,2, . . . , r), and that pi is the element
in row i of the product A(B + C). Then by Eq. (B.3.1) we have (for i = 1,2, . . . ,m)

pi =
r∑

k=1

aik (bk + ck) =
r∑

k=1

(aik bk + aik ck) =
r∑

k=1

aik bk +
r∑

k=1

aik ck

= (the entry in row i of AB) + (the entry in row i of AC),

so we have shown that A(B + C) = AB + AC.

B.4 Eigenvalues and eigenvectors
As we saw in the previous section, if A is an n × n matrix and X is a nonzero n × 1

vector

⎡
⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎦, we can consider the multiplication of X by matrix A in the form AX as

somehow transforming or changing the vector X. If there is a scalar λ such that AX =
λX, then λ is called an eigenvalue of A, and the vector X is called an eigenvector
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corresponding to λ. Geometrically, we’re saying that an eigenvector is a nonzero
vector that gets changed into a constant multiple of itself. For example, identifying a

vector X =
[
x

y

]
with the point (x, y) in the familiar Cartesian coordinate system, we

can see that an eigenvector is a point (not the origin) such that it and its transformed
self lie on the same straight line through the origin. The direction of an eigenvector
is either unchanged (if λ > 0) or reversed (if λ < 0) when the vector is multiplied
by A. The matrix equation AX = λX is like the functional equation f (x) = λx, which
represents a straight line through the origin with slope λ.

If we start with the assumption that AX = λX, then AX − λX = 0 (the zero
vector), and the distributive property of matrix multiplication allows us to write (A−
λI)X = 0. (We must write A − λI instead of A − λ because it doesn’t make sense
to subtract a number from a matrix.) If we can find an inverse for A − λI—that is,
an n × n matrix B such that (A − λI)B = I = B(A − λI)—then we can cancel the
factor A−λI out of the matrix equation (A−λI)X = 0 to get X = 0, the n×1 vector
all of whose elements are 0. Therefore, remembering that an eigenvector was defined
as a nonzero vector, we see that the only interesting situation occurs when the matrix
A − λI does not have an inverse. (Do you follow the logic?)

The equation (A − λI)X = 0 represents a homogeneous system of n algebraic
linear equations in n unknowns, and the theory of linear algebra indicates that there is
a number �, depending on the matrix A−λI , with the following important property:
If � �= 0, then the system (A − λI)X = 0 has only the zero solution x1 = x2 = . . . =

xn = 0. However, if � = 0, then there is a solution X =

⎡
⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎦ with at least one of

the xi different from zero. This number � is the determinant of the matrix A − λI ,
denoted by det(A − λI). Therefore (A − λI)X = 0 has a nonzero solution X only if
det(A − λI) = 0. For any n × n linear system (homogeneous or not), the nature of
the solutions depends on (that is, is determined by) whether the determinant is zero.
The determinant is often calculated by means of successive operations on the rows
and/or columns of the matrix. (Rather than spend time learning tedious algorithms
for finding determinants, you should learn how to get these numbers from your CAS.
Even a graphing calculator will evaluate a determinant if the matrix is not too large.)
From a more abstract point of view, a determinant is just a special kind of function
from a set of square matrices to the real numbers.

For now, let’s see how a determinant arises in solving a simple system of algebraic
equations.

Example
Suppose we want to solve the following system of two equations in two unknowns:

2x − 3y = 2

x + 4y = −5.
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We can use the method of elimination to solve this system. For example, we can subtract twice the
second equation from the first equation to eliminate the variable x and get −11y = 12, or y = − 12

11 .

Then we can substitute this value of y in the second equation and solve for x. We get x = − 7
11 . Note

that when we solve this particular system by elimination, the denominator of each component of the
solution is 11.

Now write the system in matrix form:[
2 −3
1 4

][
x

y

]
=

[
2

−5

]
.

What do we get if we take the matrix of coefficients, multiply the main diagonal
(upper left, lower right) elements 2 and 4, and then subtract the product of the other
diagonal elements −3 and 1? We get (2)(4) − (−3)(1) = 11. (Surprise!) The num-
ber calculated this way is the determinant of the coefficient matrix. When solving
any system of linear equations in two unknowns, we always wind up dividing by the
determinant—if it’s not zero. Cramer’s Rule, which you may have seen in a college
algebra course, is a general n × n linear system solution formula that uses determi-
nants.

For a larger system, a CAS or graphing calculator provides important informa-
tion about a system easily. Let’s use technology in the next example to calculate the
determinant, eigenvalues, and eigenvectors for a three-dimensional system.

Example
Suppose we have a system with the matrix of coefficients

A =
⎡
⎣ 2 2 −6

2 −1 −3
−2 −1 1

⎤
⎦ .

A CAS (Maple in this case) tells us that det(A) = 24 and that the eigenvalues are λ1 = 6, λ2 =
−2 = λ3. The corresponding (linearly independent) eigenvectors are

⎡
⎣−2

−1
1

⎤
⎦ ,

⎡
⎣ 1

−2
0

⎤
⎦ , and

⎡
⎣0

3
1

⎤
⎦ .

(If you try this example using your own CAS, the eigenvectors may not look like those here, but each
should be a constant multiple of one of those given previously.)
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Complex numbers

C.1 Complex numbers: the algebraic view
Historically, the need for complex numbers arose when people tried to solve equa-
tions such as x2 + 1 = 0 and realized that there was no ordinary number that satisfied
this equation. The basic element in the expansion of the number system is the imag-
inary unit, i = √−1, a solution of x2 + 1 = 0. There is an interesting pattern to the
powers of i: i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, i7 = −i, i8 = 1, . . . .
We can use this repetition in groups of four, for example, to calculate a high power of
i: i338 = (i2)169 = (−1)169 = −1. A complex number is any expression of the form
x + yi, where x and y are real numbers. If we have a complex number z = x + yi,
then x is called the real part, denoted Re(z), and y is called the imaginary part,
denoted Im(z), of the complex number. (Note that despite its name, y is a real num-
ber.) In particular, any real number x is a member of the family of complex numbers
because it can be written as x + 0 · i. Any complex number of the form yi (= 0 + yi)

is called a pure imaginary number.
Complex numbers can be added and subtracted in a reasonable way by combining

real parts and imaginary parts as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i

and

(a + bi) − (c + di) = (a − c) + (b − d)i.

We can also multiply complex numbers as we would multiply any binomial in alge-
bra, remembering to replace i2 whenever it occurs by −1:

(a + bi) · (c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc)i.

Division of complex numbers is a bit trickier. If z = x +yi is a complex number, then
its complex conjugate, z, is defined as z = x − yi. (Just reverse the sign of the imag-
inary part.) The complex conjugate is important in division because z · z = x2 + y2,
a real number. (Check this out.) In division of complex numbers, the conjugate plays
much the same role as the conjugate we learned to use in algebra to simplify frac-
tions; for example, if we were asked to simplify the fraction 3√

5
, we would rationalize

445
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the denominator as follows:

3√
5

= 3√
5

·
√

5√
5

= 3
√

5

5
.

Another example from algebra makes the similarity between conjugates more obvi-
ous:

2 + √
3

3 − √
2

= 2 + √
3

3 − √
2

· 3 + √
2

3 + √
2

= 6 + 2
√

2 + 3
√

3 + √
6

9 − 2

= 6 + 2
√

2 + 3
√

3 + √
6

7
.

In the preceding example, 3+√
2 is the conjugate of 3−√

2; when we multiply these
conjugates, the radical sign disappears, leaving us with the integer 7. Now if we have
to divide two complex numbers, we use the complex conjugate to get the answer, the
quotient, to look like a complex number. For example,

2 + 3i

3 + 5i
= 2 + 3i

3 + 5i
· 3 − 5i

3 − 5i
= 21 − i

9 + 25
= 21

34
− 1

34
i.

In general, if z = a + bi and w = c + di, then

z

w
= a + bi

c + di
= a + bi

c + di
· c − di

c − di
= ac + bd

c2 + d2
+ bc − ad

c2 + d2
i.

If z and w are complex numbers, we should be able to see that z = z, (z + w) = z+w,

z · w = z · w, and
(

z
w

) = z
w

for w �= 0. Also, Re(z) = z+z
2 and Im(z) = z−z

2i
.

The important algebraic rules of commutativity, associativity, and distributivity
work for complex numbers. Furthermore, all the properties in this section extend to
vectors and matrices (Appendix B) with complex-number entries. For example, if

V =

⎡
⎢⎢⎣

c1
c2
...
cn

⎤
⎥⎥⎦ is a vector with complex components, then V =

⎡
⎢⎢⎣

c1
c2
...
cn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎦. If A =

[
aij

]
represents a matrix with entry aij in row i and column j , then A = [

aij

] = [
aij

]
.

C.2 Complex numbers: the geometric view
The geometric interpretation of complex numbers occurred at roughly the same
time to three people: the Norwegian surveyor and map maker, Caspar Wessel
(1745–1818); the French-Swiss mathematician, Jean Robert Argand (1768–1822);
and the German mathematician-astronomer-physicist, Karl Friedrich Gauss
(1777–1855).
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The idea here is to represent a complex number using the familiar Cartesian co-
ordinate system, making the horizontal axis the real axis and the vertical axis the
imaginary axis. Such a system is called the complex plane. For example, Fig. C.1
shows how the complex number 3 + 2i would be represented as a point in this way.

FIGURE C.1

Representation of a complex number

If we join this point to the origin with a straight line, we get a vector. (See Sec-
tion B.1.) The sum of z = a + bi and w = c + di corresponds to the point (or vector)
(a + c, b + d). This implies that the addition/subtraction of complex numbers corre-
sponds to the Parallelogram Law of vector algebra (Fig. C.2).

FIGURE C.2

The Parallelogram Law

The modulus, or absolute value, of the complex number z = x + yi, denoted |z|,
is the nonnegative real number defined by the equation |z| = √

x2 + y2. The number
|z| represents the distance between the origin and the point (x, y) in the complex
plane, the length of the vector representing the complex number z = x + yi. Note
that |z|2 = z · z.
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C.3 The quadratic formula
Given the quadratic equation ax2 + bx + c = 0, where a, b, and c are real numbers
with a �= 0, the solutions are given by the quadratic formula:

x = −b ± √
b2 − 4ac

2a
.

The expression inside the radical sign, b2 − 4ac, is called the discriminant and en-
ables us to discriminate among the possibilities for solutions. If b2 − 4ac > 0, the
quadratic formula yields two real solutions. If b2 − 4ac = 0, we get a single repeated
solution, a solution of multiplicity two. Finally, if b2 −4ac < 0, the quadratic formula
produces two complex numbers as solutions, a complex conjugate pair. To see this
last situation, suppose that b2 − 4ac = −q, where q is a positive real number. Then
the solution formula looks like

x = −b ± √−q

2a
= −b ± √

q(−1)

2a
= −b ± √

q i

2a
,

so the two solutions are x1 = − b
2a

+
√

q

2a
i and x2 = − b

2a
−

√
q

2a
i, which are complex

conjugates of each other.

C.4 Euler’s formula
Around 1740, while studying differential equations of the form y′′ + y = 0, Euler
discovered his famous formula for complex exponentials:

eiy = cosy + i siny.

If z = x + iy, then we have

ez = ex+iy = exeiy = ex(cos y + i sin y).

Without fully understanding the way infinite series worked, Euler just substituted the
complex number iy in the series for ex (see Section A.3) and then separated the real
and imaginary parts:

eiy = 1 + iy + (iy)2

2! + (iy)3

3! + (iy)4

4! + (iy)5

5! + · · ·

= 1 + iy − y2

2! − i
y3

3! + y4

4! + i
y5

5! − · · ·

=
(

1 − y2

2! + y4

4! − · · ·
)

︸ ︷︷ ︸
cos y

+i

(
y − y3

3! + y5

5! − · · ·
)

︸ ︷︷ ︸
sin y

= cosy + i siny.
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Series solutions of
differential equations

Appendix D supplements the treatment of linear equations in Chapters 4, 5, and 6.

D.1 Power series solutions of first-order equations
In Chapters 4, 5, and 6 we discussed solutions for second- and higher-order linear
equations with constant coefficients. The methods we discuss in this appendix can
be applied to equations—not necessarily linear—with variable coefficients (see Sec-
tion 5.6), equations that in general do not yield closed-form solutions. Among these
are equations important in many areas of applied mathematics.

As an illustration of the key idea, we’ll solve a simple first-order equation.

Example
Consider the equation y′ = 1 − xy. We make the fundamental assumption that a solution y can be
expanded in a power series (Taylor series, Maclaurin series)

y(x) = a0 + a1x + a2x2 + a3x3 + · · · + anxn + · · ·

that converges in some interval. (See Section A.3 for the basics.) We have chosen an interval around
the origin.

Then, because a convergent power series can be differentiated term by term within its interval
of convergence (see Section A.3),

y′(x) = a1 + 2a2x + 3a3x2 + · · · + nanxn−1 + · · · .

Substituting these last two series in the differential equation, we have

a1 + 2a2x + 3a3x2 + · · · + nanxn−1 + · · ·
= 1 − x

{
a0 + a1x + a2x2 + a3x3 + · · · + anxn + · · ·

}
= 1 − a0x − a1x2 − a2x3 − a3x4 − · · · − anxn+1 − · · · .

Because these power series are equal, coefficients of equal powers of x on both sides must be equal.
(This is really the method of undetermined coefficients that we first saw in Section 4.3 of the text.)
Therefore, we have

a1 = 1,2a2 = −a0,3a3 = −a1,4a4 = −a2,5a5 = −a3, . . . , nan = −an−2, . . . ,

449
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so

a1 = 1, a2 = −a0

2
, a3 = −a1

3
= − 1

3
, a4 = −a2

4
= −− a0

2
4

= a0

2 · 4
,

a5 = −a3

5
= 1

3 · 5
, . . . , an = −an−2

n
, . . . .

These formulas, in which we define later coefficients by relating them to earlier coefficients, are
called recurrence (or recursion) relations. If we look carefully, we see that for odd indices (sub-
scripts), the pattern is

a1 = 1, a3 = − 1

3
, a5 = 1

3 · 5
, a7 = − 1

3 · 5 · 7
, . . . .

Similarly, for even indices we find the pattern

a0 = arbitrary, a2 = −a0

2
, a4 = a0

2 · 4
, a6 = − a0

2 · 4 · 6
, . . . .

In general, the pattern is

a2k = (−1)ka0

2 · 4 · 6 · · · (2k)
for k = 1,2,3, . . . ;

a2k+1 = (−1)k

1 · 3 · 5 · 7 · · · (2k + 1)
for k = 0,1,2, . . . .

Therefore, we can write the power series form of the solution as

y(x) = a0 + x − a0

2
x2 − 1

1 · 3
x3 +

( a0

2 · 4

)
x4 + 1

1 · 3 · 5
x5 + · · ·

=
(

x − x3

1 · 3
+ x5

1 · 3 · 5
− · · ·

)
+ a0

(
1 − x2

2
+ x4

2 · 4
− · · ·

)
,

where a0 = y(0) is the arbitrary constant that we expect in the general solution of a first-order
equation.

To approximate y(x) for a value of x close to zero, we just substitute the value in the series,
taking as many terms of this series as are needed to guarantee the accuracy we wish.

If we solve the linear equation in the preceding example using the technique of
integrating factors (see Section 2.2.2), we get the answer

y = ex2/2
∫

e−x2/2 dx + Cex2/2,

which can’t be expressed in a more elementary way. If we integrate the power series
representation of e−x2/2 term by term, multiply by the series form of ex2/2, and then
add the series for Cex2/2, we get the same series solution we found (after collecting
terms).

When using this power series method sometimes we can recognize the series in
our solution as a representation of an elementary function. (Try using the method on
the equation y′ = ay, where a is a constant, for example. You should recognize the
series solution as the Taylor series representation of Ceax about the origin.)
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All computer algebra systems have the ability to work with series expansions,
usually truncating the series after a fixed number of terms that the user can control.
However, not all systems can give us a power series solution of an ODE directly. For
example, Maple has a very useful power series package, powseries, and the dsolve
command (in the package DEtools) has a series option, but other computer algebra
systems may require the user to do much more work in finding a series solution.

D.2 Series solutions of second-order linear equations:
ordinary points

In this section we’ll examine second-order linear equations of the form

a(t)y′′ + b(t)y′ + c(t)y = 0, (D.2.1)

where a(t), b(t), and c(t) are polynomial functions. We divide through by a(t) and
write Eq. (D.2.1) in the standard form

y′′ + P(t)y′ + Q(t)y = 0, (D.2.2)

where P(t) = b(t)
a(t)

and Q(t) = c(t)
a(t)

.
A point t0 is called an ordinary point of Eq. (D.2.2) if both P and Q can be

expanded in power series centered at t0 that converge for every t in an open interval
containing t0. Functions that have such power series representations are called ana-
lytic at the point t0. If t0 is not an ordinary point, it is called a singular point of the
equation.

Example
The point t = 0 is an ordinary point of the equation (t + 2)y′′ + t2y′ + y = 0 because each of

the functions P(t) = t2

t+2 and Q(t) = 1
t+2 has its own power series expansion that converges near

t = 0:

Q(t) = 1

2
− t

4
+ t2

8
− t3

16
+ · · · and P(t) = t2

2
− t3

4
+ t4

8
− t5

16
+ · · · .

(See the geometric series in Section A.3.) However, t = −2 is a singular point because the denomi-
nators of P(t) and Q(t) are zero at t = −2.

Let’s apply the undetermined coefficient method of the last section to a famous
second-order linear equation near an ordinary point. The equation is named for the
English mathematician Sir George Bidell Airy (1801–92), who did pioneering work
in elasticity and in partial differential equations.
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Example
Airy’s equation, y′′ + xy = 0, which occurs in the study of optics and quantum physics, cannot be
solved in terms of elementary functions. We can think of the equation as describing a spring-mass
system in which the stiffness of the spring is increasing with time. (Perhaps the room containing the
system is getting colder.)

Noting that x = 0 is an ordinary point of this equation, we assume that we can write a solution
as

y(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + · · · + anxn + · · · .

Then

y′(x) = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · + nanxn−1 + · · ·

and

y′′(x) = 2a2 + 6a3x + 12a4x2 + · · · + n(n − 1)anxn−2 + · · · .

Substituting in the differential equation, we get

(
2a2 + 6a3x + 12a4x2 + · · · + n(n − 1)anxn−2 + · · ·

)
+ x

(
a0 + a1x + a2x2 + a3x3 + a4x4 + · · · + anxn + · · ·

)
= 0.

Collecting terms, we can write this last equation as

2a2 + (6a3 + a0) x + (12a4 + a1) x2 + · · ·
+ (

n(n − 1)an + an−3
)
xn−2 + · · · = 0.

Equating coefficients of equal powers of x, we see that the preceding equation implies that

2a2 = 0, or a2 = 0; 6a3 + a0, or a3 = − a0

2 · 3
;

12a4 + a1 = 0, or a4 = − a1

3 · 4
; 20a5 + a2 = 0, or a5 = − a2

4 · 5
,

and so forth, so we can see the recurrence relation as an = − an−3
(n−1)·n for n = 3,4,5, . . . . Note that

a0 and a1 are arbitrary and that the coefficients are connected by jumps of three in the subscripts.
In particular we have 0 = a2 = a5 = a8 = · · · = a2+3k = · · · . We can also see the pattern when the
subscript is a multiple of 3:

a3 = − a0

2 · 3
, a6 = − a3

5 · 6
= a0

2 · 3 · 5 · 6
, a9 = − a6

8 · 9
= − a0

2 · 3 · 5 · 6 · 8 · 9
,

a12 = − a9

11 · 12
= a0

2 · 3 · 5 · 6 · 8 · 9 · 11 · 12
,

and so forth, so the formula is

a3k = (−1)ka0

2 · 3 · 5 · 6 · 8 · 9 · · · (3k − 1) · 3k
.
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Similarly, we can see that

a4 = − a1

3 · 4
, a7 = − a4

6 · 7
= a1

3 · 4 · 6 · 7
,

a10 = − a7

9 · 10
= − a1

3 · 4 · 6 · 7 · 9 · 10
,

a13 = − a10

12 · 13
= a1

3 · 4 · 6 · 7 · 9 · 10 · 12 · 13
,

and so forth, so the recurrence relation is

a3k+1 = (−1)ka1

3 · 4 · 6 · 7 · 9 · 10 · · · (3k) · (3k + 1)
.

Putting all the pieces together, we get

y(x) = a0

[
1 − x3

2 · 3
+ x6

2 · 3 · 5 · 6
− x9

2 · 3 · 5 · 6 · 8 · 9
+ · · ·

]

+ a1

[
x − x4

3 · 4
+ x7

3 · 4 · 6 · 7
− x10

3 · 4 · 6 · 7 · 9 · 10
+ · · ·

]

= y(0)

[
1 − x3

2 · 3
+ x6

2 · 3 · 5 · 6
− x9

2 · 3 · 5 · 6 · 8 · 9
+ · · ·

]

+ y′(0)x

[
1 − x3

3 · 4
+ x6

3 · 4 · 6 · 7
− x9

3 · 4 · 6 · 7 · 9 · 10
+ · · ·

]

= y(0) · Ai(x) + y′(0)x · Bi(x),

where the two series (convergent for all values of x) define Ai(x) and Bi(x), the Airy functions of
the first and second kind, respectively, up to constant multiplicative factors.

With the aid of technology, we can look at the graph of the solution of Airy’s equation with
initial conditions y(0) = 0, y′(0) = 1 (Fig. D.1), which is just the graph of xBi(x).

FIGURE D.1

Solution of y′′ + xy = 0; y(0) = 0, y′(0) = 1

Both Maple and Mathematica, for example, have built-in capabilities to deal with Airy functions
numerically and graphically. (See the commands AiryAi(x) and AiryBi(x) in Maple or AiryAi[x] and
AiryBi[x] in Mathematica.)

If we want to find a solution near an ordinary point t0 other than zero, we can use
the substitution u = t − t0. This substitution transforms the equation in t to one in the
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variable u, which we can solve near the ordinary point u = 0. When we have solved
the equation in u, we can just replace u by t − t0 to return to the original variable.

The method of undetermined coefficients also applies to nonhomogeneous equa-
tions and to equations whose coefficients are not polynomials, provided that the
function on the right-hand side and the coefficient functions can be expanded in
powers of t . When we are trying to solve a nonhomogeneous equation, equating
coefficients becomes a little more difficult because some of the coefficients of the
solution series y(t) = ∑∞

n=0 ant
n will include numerical values independent of the

two arbitrary constants a0 and a1. This part of the general solution yGNH constitutes
yPNH. (Check this out for yourself by using series to solve the equation y′′ − y = ex .
You should recognize your solution as y = c1e

x + c2e
−x + 1

2xex .)

D.3 Regular singular points: the method of Frobenius
Some singular points are such that special series methods have been developed to
handle situations in which they occur. The point t0 is a regular singular point of
y′′ + P(t)y′ + Q(t)y = 0 if t0 is a singular point and the functions (t − t0)P (t) and
(t − t0)

2Q(t) are both analytic at t0. If t0 is a singular point that is not regular, it is
called an irregular singular point.

For example, t = 1 is a singular point of the equation (t2 − 1)2y′′ + (t − 1)y′ +
y = 0 because P(t) = t−1

(t2−1)2 = t−1
(t+1)2(t−1)2 and Q(t) = 1

(t+1)2(t−1)2 have zero de-
nominators at t = 1, so neither P(t) nor Q(t) has a convergent power series expan-

sion in a neighborhood of 1. But if we look at (t −1)P (t) = (t−1)2

(t+1)2(t−1)2 = 1
(t+1)2 and

(t − 1)2Q(t) = (t−1)2

(t+1)2(t−1)2 = 1
(t+1)2 , we see that both (t − 1)P (t) and (t − 1)2Q(t)

are analytic at t = 1, so t = 1 is a regular singular point.
Near a regular singular point, say t = 0 for convenience, we write Eq. (D.2.2) as

t2y′′ + tp(t)y′ + q(t)y = 0, (D.3.1)

where p(t) = tP (t) and q(t) = t2Q(t). Because t = 0 is a regular singular point,
p and q are analytic at t = 0. The usual power series method will not work, and we
use the method of Frobenius,1 which produces at least one solution of the form

y(t) = t r
∞∑

n=0

ant
n =

∞∑
n=0

ant
n+r , (D.3.2)

where we assume that a0 �= 0.

1 The German mathematician Ferdinand Georg Frobenius (1849–1917) published his method in 1878. It
was based on a technique that originated with Euler (who else?). Frobenius made many contributions to
analysis and especially to algebra.
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It is important to note that three of the most popular computer algebra systems
(Maple, Mathematica, and MATLAB) cannot apply the method of Frobenius directly
to get power series solutions near regular singular points. We would have to develop
a solution in a step-by-step fashion, using the capabilities of the system to handle
power series and recursion relations.

We’ll illustrate the method of Frobenius using a famous equation in applied math-
ematics, one that first arose in an investigation of the motion of a hanging chain and
has since appeared in such problems as the analysis of vibrations of a circular mem-
brane and planetary motion.

Example
Bessel’s equation of order p is x2y′′ + xy′ +

(
x2 − p2

)
y = 0, which is of the form (D.3.1) and

has x = 0 as a regular singular point.2 We’ll take the parameter p to be an arbitrary nonnegative real
number.

Substituting the type of series given in (D.3.2) for y, we find that

y′ =
∞∑

n=0

an(n + r)xn+r−1

and

y′′ =
∞∑

n=0

an(n + r)(n + r − 1)xn+r−2,

so that we have

x2y′′ + xy′ +
(
x2 − p2

)
y =

∞∑
n=0

an(n + r)(n + r − 1)xn+r +
∞∑

n=0

an(n + r)xn+r

+
∞∑

n=0

anxn+r+2 −
∞∑

n=0

anp2xn+r

=
∞∑

n=0

{
an(n + r)(n + r − 1) + an(n + r) − anp2

}
xn+r

+
∞∑

n=0

anxn+r+2

=
∞∑

n=0

{
(n + r)2 − p2

}
anxn+r +

∞∑
n=0

anxn+r+2 = 0.

2 Among other achievements, the German astronomer Friedrich Wilhelm Bessel (1784–1846) was the
first to measure accurately the distance to a fixed star.
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Transposing series and making the substitution (actually a shift of subscripts) n + 2 = n on the
right-hand side, we get

∞∑
n=0

{
(n + r)2 − p2

}
anxn+r = −

∞∑
n=0

anxn+r+2 = −
∞∑

n=2

an−2xn+r .

Now we equate coefficients of equal powers. To start, we have

n = 0 :
(
r2 − p2

)
a0 = 0

n = 1 :
[
(1 + r)2 − p2

]
a1 = 0.

Because we have assumed that a0 �= 0, we must have r2 − p2 = 0. This last equation is called the
indicial equation3 and implies that r = ±p.

Let’s assume that r = p ≥ 0. Then when n = 1, the equation
[
(1 + r)2 − p2

]
a1 = 0 reduces to

(2r + 1)a1 = 0, so we can conclude a1 = 0.
For n ≥ 2, equating coefficients of equal powers of x gives us the recurrence relation

{
(n + r)2 − p2

}
an = −an−2

or

an = − an−2{
(n + r)2 − p2

} = − an−2

n(n + 2r)

because r2 − p2 = 0. We can look at a few terms to see the pattern:

a2 = − a0

2(2 + 2r)
= − a0

22(1 + r)
,

a3 = − a1

3(3 + 2r)
= 0,

[
because a1 = 0

]

a4 = − a2

4(4 + 2r)
= −

( −a0
22(1+r)

)
2 · 22(2 + r)

= a0

242!(1 + r)(2 + r)
,

a5 = − a3

5(5 + 2r)
= 0,

a6 = − a4

6(6 + 2r)
= −

(
a0

242!(1+r)(2+r)

)
6(6 + 2r)

= − a0

263!(1 + r)(2 + r)(3 + r)
.

We can see, for example, that ak = 0 for k odd.
Letting n = 2k and remembering that we’re assuming r = p, we can express the even coeffi-

cients in the form

a2k = (−1)ka0

22kk!(r + 1)(r + 2) · · · (r + k)

= (−1)ka0

22kk!(p + 1)(p + 2) · · · (p + k)
.

3 In general, for the method of Frobenius, the indicial equation has the form r(r − 1) + r p0 + q0 = 0,
where p0 and q0 are the constant terms of the series expansions of p(t) and q(t) in Eq. (D.3.1).
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In working with Bessel’s equation, it is common practice to make things neater by taking a0 =
1

2pp! ,4 so that

a2k = (−1)k

22k+pk!(p + k)! .

The final result is the Bessel function of order p of the first kind, Jp(x):

y(x) = Jp(x) =
∞∑

n=0

(−1)nx2n+p

22n+pn!(p + n)! =
∞∑

n=0

(−1)n
(
x
2

)2n+p

n!(p + n)!

=
(x

2

)p
∞∑

n=0

(−1)n
(
x
2

)2n

n!(p + n)! .

It can be shown that this series converges for all real values of x.
Using technology, we can produce a graph of Bessel functions of order p for p = 0,1,2,3,

and 4 (Fig. D.2).

FIGURE D.2

Jp(x) for p = 0,1,2,3,4; 0 ≤ x ≤ 10

Both Maple and Mathematica, for example, can deal with Bessel functions of the first kind
numerically and graphically via the command BesselJ (mu,x) in Maple or BesselJ [m,x] in Math-
ematica. The parameter mu or m represents the order that we have called p. It is interesting to note
that a computer algebra system (CAS) could express the solution of the IVP y′′ + xy = 0; y(0) = 0,
y′(0) = 1 that we considered in Section D.2 as

y(x) = 2

9

35/6π

�
(

2
3

)√
x BesselJ

(
1

3
,

2x3/2

3

)
.

We should make several comments about the preceding example:

1. In our analysis, we have actually assumed that x > 0 to avoid the possibility of
fractional powers of negative numbers.

2. In the indicial equation r2 − p2 = 0, we have assumed that r = p, a nonnegative
number. If r is in fact a nonnegative integer, then the Frobenius series is an or-
dinary power series with first term a0x

n. For applications, the choices p = 0 and
p = 1 occur most often.

4 Actually, a0 = 1
2p�(p+1)

, where � denotes Euler’s gamma function (see Section A.6).
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3. All our efforts have produced just one solution of Bessel’s equation for a fixed
value of p. It can be shown that when 2p is not a positive integer,

J−p(x) =
(

2

x

)p ∞∑
n=0

(−1)n
(

x
2

)2n

n!(−p + n)!

defines a second, linearly independent solution of Bessel’s equation. When p is
an integer, it can be shown that Jp(x) = (−1)pJ−p(x), so the two solutions are
dependent.

4. If p is not an integer, the general solution of Bessel’s equation has the form
y(x) = k1Jp(x) + k2J−p(x) for arbitrary constants k1 and k2.

5. The function

Yp(x) = (cospπ)Jp(x) − J−p(x)

sinpπ

is the standard Bessel function of the second kind. Then

y(x) = c1 Jp(x) + c2Yp(x)

is the general solution of Bessel’s equation in all cases, whether or not p is an inte-
ger. Both Maple and Mathematica have commands, BesselY (mu,x) and BesselY
[m,x], respectively, that enable users to explore Bessel functions of the second
kind numerically and graphically.

There are many treatments of the properties and applications of Bessel functions.
Accessible sources of information include the books Differential Equations: Theory,
Technique, and Practice (Second Edition) by Steven G. Krantz (New York: Chapman
& Hall/CRC, 2014) and Handbook of Mathematical Formulas and Integrals (Fourth
Edition) by Alan Jeffrey and Hui Hui Dai (San Diego: Academic Press, 2008).

D.4 The point at infinity
In some situations we want to determine the behavior of solutions of the equation

y′′ + P(t)y′ + Q(t)y = 0

for large values of the independent variable t—the behavior “in the neighborhood
of infinity.” The way to deal with this problem is to use the substitution t = 1

u
and

investigate the resulting equation near u = 0. This substitution converts a problem in
large values of t to one in small values of u. Once the “u-problem” is solved near
u = 0, we make the substitution t = 1

u
in the u-solution to get the solution near the t

point of infinity.
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Let u = 1
t
. Then, by the Chain Rule,

y′ = dy

dt
= dy

du
.
du

dt
= dy

du

(
− 1

t2

)
= −u2.

dy

du

and

y′′ = d

dt

(
dy

dt

)
= d

du

(
dy

dt

)
· du

dt
=

(
−u2 d2y

du2
− 2u

dy

du

)(
−u2

)
.

Let’s use this transformation method to solve an equation for large values of the
independent variable.

Example
Find the general solution of the equation

4t3 d2y

dt2
+ 6t2 dy

dt
+ y = 0

for large values of t .
First, we write the equation in the standard form

d2y

dt2
+ 3

2t

dy

dt
+ 1

4t3
y = 0.

Making the substitution u = 1
t and using the calculations for y′ and y′′ given previously, we trans-

form our equation into

(
−u2 d2y

du2
− 2u

dy

du

)(
−u2

)
+ 3u

2

(
−u2 dy

du

)
+ u3

4
y = 0,

or

4u
d2y

du2
+ 2

dy

du
+ y = 0,

which has u = 0 as a regular singular point.
If we use the Frobenius method, we find the general solution

�(u) = c1

∞∑
n=0

(−1)nun

(2n)! + c2

∞∑
n=0

(−1)nu
n+ 1

2

(2n + 1)! .

Substituting u = 1
t , we get the solution

y(t) = c1

∞∑
n=0

(−1)n

(2n)!
(

1

t

)n

+ c2

∞∑
n=0

(−1)n

(2n + 1)!
(

1

t

)n+ 1
2

= c1 cos

(
1√
t

)
+ c2 sin

(
1√
t

)
.

(See Section A.3.)
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D.5 Some additional special differential equations
Many famous functions, such as the Airy and Bessel functions, arise as power series
solutions of second-order differential equations. These functions form a particular
class of what are usually called special functions.

Some classic references are Special Functions by Earl D. Rainville (New York:
Chelsea, 1971); The Functions of Mathematical Physics by Harry Hochstadt (New
York: Dover, 2012); and Solved Problems in Analysis: As Applied to Gamma, Beta,
Legendre and Bessel Functions by O.J. Farrell and B. Ross (New York: Dover, 2013).
More modern books are Special Functions by George E. Andrews, Richard Askey,
and Ranjan Roy (New York: Cambridge University Press, 1999) and Special Func-
tions and Orthogonal Polynomials by Richard Beals and Roderick Wong (New York:
Cambridge University Press, 2016).

Among these important second-order equations that have been significant in solv-
ing problems in applied mathematics, science, and engineering, which you are invited
to investigate using the methods of this appendix, are the following:

Chebyshev’s equation: (1 −x2)y′′ −xy′ +p2y = 0, where p is a constant. (When
p is a nonnegative integer, the solution is an nth-degree polynomial.)

Gauss’s hypergeometric equation: x(1−x)y′′ + [c − (a + b + 1)x]y′ −aby = 0,
where a, b, and c are constants.

Hermite’s equation: y′′ − 2xy′ + 2py = 0, where p is a constant.
Laguerre’s equation: xy′′ + (1 − x)y′ +py = 0, where p is a constant. [See Prob-

lems 9–10 in Exercises 5.6.]

Legendre’s equation: (1 − x2)y′′ − 2xy′ +
[
k(k + 1) − m2

1−x2

]
y = 0, where m and

k are constants, k > 0.



Answers and hints to
odd-numbered exercises

Exercises 1.1
1. a. The independent variable is x and the dependent variable is y.

b. First-order.
c. Linear.

3. a. The independent variable is not indicated, but the dependent variable is x.
b. Second-order.
c. Nonlinear because of the term exp(−x); the equation cannot be written in

the form (1.1.1), where y is replaced by x and x is replaced by the indepen-
dent variable.

5. a. The independent variable is x and the dependent variable is y.
b. First-order.
c. Nonlinear because you get the terms x2(y′)2 and x y′ y when you remove

the parentheses.
7. a. The independent variable is x and the dependent variable is y.

b. Fourth-order.
c. Linear.

9. a. The independent variable is t and the dependent variable is x.
b. Third-order.
c. Linear.

11. a. The independent variable is x, the dependent variable is y; first-order, non-
linear because of the exponent y′.

13. a. Nonlinear; the first equation is nonlinear because of the term 4xy =
4x(t)y(t).

b. Linear.
c. Nonlinear; the first and second equations are nonlinear because each con-

tains a product of dependent variables.
d. Linear.

15. a = 1.

Exercises 1.2
11. a. For example, c y′ = 1 is a possible differential equation satisfied by y.

b. For example, y′ − ay = beax cosbx.
c. For example, y′ − y = Bet . Other possibilities are the equations y′′ − y =

2Bet and y′′ − y′ = Bet .
d. One answer is y′ = −3 e−3t + t y, or y′ − t y = −3 e−3t .

461
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13. y′ =
(

y2+1
y2+2

)(
x2+2
x2+1

)
, a first-order nonlinear equation.

15. One solution is y′ = (−2x y)/(x2 + 4).
19. a. The given equation is equivalent to (y′)2 = −1. Since there is no real-valued

function y′ whose square is negative, there can be no real-valued function
y satisfying the equation.

b. The only way that two absolute values can have a sum equal to zero is
if each absolute value is itself zero. This says that y is identically equal to
zero, so that the zero function is the only solution. The graph of this solution
is the x-axis (if the independent variable is x).

21. If x > c or x < −c, then c2 − x2 < 0 and the functions y = ±√
c2 − x2 do not

exist as real-valued functions. If x = ±c, then each function is the zero function,
which is not a solution of the differential equation.

23. One solution is y(x) = (1/2)(sinx − cosx).
27. y′(t) = − sin t + ∫ t

0 y(u)du or y′′ − y = − cos t .

Exercises 1.3
1. R(t) = −π (1 + cos t).
3. r(t) = (a/b)(ebt /b − t − 1/b).
5. A = −1/4, B = 1/37, C = −6/37.
9. Recall the Product Rule and the Fundamental Theorem of Calculus (Sec-

tion A.4).
11. No. An equation of order n requires an n-parameter family of solutions.
13. The length of the runway must be 5/6 mile (five-sixths of a mile).
15. b. x(t) = (1 − 3t)e3t , y(t) = −9te3t .
17. a. Deriving inspiration from Example 1.2.1, we get u(t) = u(0) ekat = Aekat .

b. We have w(t) = (k−1) A
k

(1 − ekat ) for 0 < k ≤ 1; w(t) = a At for k = 0.

19. b. As t → ∞, e−kEt → 0, so that W(t) → C
E

. Note that C/E is in pounds per
day.

c. About 79 days for 20 pounds, 138 days for 30 pounds, and about 177 days
for 35 pounds. This says that the weight is a concave up decreasing function
of time—that is, the rate of weight loss slows down with time.

21. b. Here’s the graph of y(t) = 333.2361
1+61.7743 e−0.029078 t :
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c.
Actual Population Logistic Pop. Value

1800 5,308,483 5,308,480
1980 226,542,199 250,670,896
2000 281,421,906 281,418,481

d. lim
t→∞y(t) = lim

t→∞
333.2361

1+61.7743 e−0.029078 t = 333.2361 million people.

Exercises 2.1
1. y = A

2 + C

x2 .

3. y = (t − 2)3 = t3 − 6t2 + 12t − 8. The solution y ≡ 0 is a singular solution of
the basic ODE and satisfies the initial condition.

5. y = 2 − 3 cosx. The only possible singular solution is y ≡ 2, but this can be
obtained by letting C = 0.

7. y2

2 + y + ln |y − 1| = − 1
x

+ C. The constant function y ≡ 1 is a singular solu-
tion. Note that the implicit solution formula is not defined for y = 1.

9. z = ln(C−10x )
ln 10 . Note that for each particular value of the parameter C, the solu-

tion is defined only for 10x < C—that is, for x < lnC/ ln 10 (or x < log10 C).

11. y = − x2

2 + C or y = C e−x .
13. x + 2y − 2 ln |x + 2y + 2| = x + C; y = −(x + 2)/2 is a singular solution.

15. arctan
( y

x

)− 1
2 ln

(
x2+y2

x2

)
− ln |x| − C = 0.

17. We have two one-parameter families of solutions: y = x
√

2 ln |x| + C and y =
−x

√
2 ln |x| + C.

19. $ 1271.25
21. m(2) = m(0)e−0.0256(2) ≈ 0.95m(0). This says that approximately five percent

of the original mass has decayed.
25. a. x(t) = 1

2−t
.

b. The interval I can be as large as (−∞,2) or (2,∞). Any such interval I

cannot include the point t = 2, at which x(t) is not defined.
c.

d. The only solution is x ≡ 0, a singular solution that satisfies the initial con-
dition x(0) = 0.
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27. t = 60.
29. V (4) = 32π cubic units.
33. a. 10000e31.2 ≈ 3.5 × 1017

b. 0.533 hours ≈ 32 minutes
35. The equation’s solution is N = N(t) = N(0)e−0.105t and the half-life is 6.60

hours.
37. V = 300 ft/s.
39. a. If we let p(x) = dy/dx, then the original equation becomes dp

dx
=

k
[
1 + p2

]1/2
.

b. y = C1
2k

ek x + 1
2kC1

e−k x + C2 = 1
2k

(
C2e

k x + 1
C2

e−k x
)

+ C3.

41. a. The equilibrium solution occurs when C = D/μ.

b. The formula for the concentration is C = D
μ

−
(

D−μC0
μ

)
e−μt . As t → ∞,

e−μt → 0, so C(t) → D
μ

− 0 = D
μ

, the equilibrium solution found in
part (a).

c.

43. The population is predicted to be approximately 30,400 in 2025.

Exercises 2.2
1. y = 2x − 1 + C e−2 x .

3. x = t2

2 − 1
2 + C e−t2

.

5. y = t3

6 − t2

5 + C

t3 .
7. y = x sinx + Cx.
9. x = et

(
ln |t | + t2/2 + C

)
.

11. y(x) = ex+ab−ea

x
.
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13. For m 	= −a, we have y = em x

a+m
+ C e−a x . If m = −a, then

ea xy =
∫

e(a−a) x dx =
∫

1dx = x + C, so that

y = xe−a x + C e−a x = (x + C)e−a x.

Note: A CAS that can solve ODEs may miss the need for an analysis of two
cases.

15. x(t) =
(

t
t+1

)
(t + ln |t | − 1).

17. y = − ln
(
x + C x2

)
.

19. y = t4

t6+C
; y ≡ 0 is a singular solution.

21. y = ±1√
x+ 1

2 +C e2x
; y ≡ 0 is a singular solution.

23. y = 2 et2
/(

2C − et2
)

; y ≡ 0 is a singular solution.

25. a. W(t) =
(

α
β

+ C e−βt/3
)3

.

b. W∞ =
(

α
β

)3
.

c. W(t) = W∞
(
1 − e−βt/3

)3
.

d.

27. a. I (t) = E
R

− E
R

e−(R/L)t = E
R

(
1 − e−(R/L)t

)
.

b. lim
t→∞ I (t) = E

R
.

c. t = L
R

ln 2.

d. I (t) ≡ E
R

.

29. Q(t) = E0C [sin(ω t)−ωRC cos(ωt)]
1+(RCω)2 + ωE0RC2

1+(RCω)2 e−t/RC

= E0C

1+(RCω)2

{
sin(ωt) − ωRC cos(ωt) + ωRCe−t/RC

}
.

31. p(t) = v
μ+v

+
(
p0 − v

μ+v

)
e−(μ+v)t

= v
μ+v

[
1 − e−(μ+v)t

]+ p0e
−(μ+v)t
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q(t) = 1 −
{

v
μ+v

[
1 − e−(μ+v)t

]+ p0e
−(μ+v)t

}
= μ

μ+v
+
(
q0 − μ

μ+v

)
e−(μ+v)t

= μ
μ+v

[
1 − e−(μ+v)t

]+ q0e
−(μ+v)t .

33. b. If K(t) ≡ 0, then V (t) = Ze− ∫ T
t r(x) dx , either from the original (separable)

differential equation or from the formula for V (t) proved in part (a).

Exercises 2.3
1. p′ = bp − d p = (b − d)p.

3. p′ = k p2 − d p = (k p − d)p.

5. a. P = α t
k

+ α

k2 +
(

1.285 − α

k2

)
ek t

≈ (0.0452 t + 1.275) + 0.01045 e0.0355 t .

b. P(35) ≈ 2,893,202 people.

7. A(t) = 25
2 − 25

2 e−t/50 = 25
2

(
1 − e−t/50

)
.

9. a. 100 gallons.
b. 175 pounds.

11. 165.12 minutes.
15. The rate of ventilation should be greater than 50 cubic feet per minute.

Exercises 2.4
1.
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3.

5.

7.
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9.

11.

13.
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15.

The nullclines are all points (x, y) such that x = ±(2k +1)π/2 (an odd multiple
of π/2) and y is not an odd multiple of π/2.

17.

19. The equations in Problems 4, 5, 8, and 14 are autonomous.
21. a.

b. The amount of substance X approaches 40.
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23. Circles centered at the origin with radii
√

1/C2 − 1, where C ∈ [−1,0) ∪ (0,1]
is the slope.

25. The horizontal lines x = α and x = β.
27. a. Field 3.

b. Field 1.
c. Field 2.

29. a. If the initial point is above the t-axis (i.e., y(t0) = y0 < 0), then y → ∞
as t → ∞. If the initial point is on the t-axis, the solution curve is the
t-axis—that is, y(t) = 0 for all values of t . Finally, if the initial point is
below the t-axis, then y → −∞ as t → ∞.

b. If the initial value of P,P0, is above 1, then P → 1 as t → ∞. For 0 <

P0 < 1, we have P → 1 as t → ∞. If P0 < 0, then P → −∞ as t → ∞.
c. A careful examination of the slope field reveals that when y(0) < 1/2 we

seem to have y(t) → −∞ as t → ∞, and when y(0) > 1/2 we have y(t) →
∞ as t → ∞. When y(0) = 1/2 the solutions tend to 0.

d. Some solutions seem to be unbounded (positively or negatively) as t tends
to infinity, while others seem to be periodic. The initial condition is essential
in determining which of these behaviors to expect.

31. a.

b. x(t) → 1 as t → ∞
c. x(t) → 1 as t → ∞
d. x(t) → −1 as t → ∞
e. x(t) → −1 as t → ∞

33. c. No.

Exercises 2.5
1.
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3.

5.

7.

9.

11.

13.

15. a.

b. There are no critical points. Any solution must be an increasing function.
17. a.

b. If the initial current, I (0), is 3 amp, it is to the right of the critical point, so
that the current tends to decrease toward 1.2 amp as t gets larger.

19. a. y(t) → 0 as t → ∞.
b. y(t) → ∞ as t → ∞.

21. a.

b. P(t) → 0 as t → ∞
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23.

25. If α < 1/2, the equilibrium solution (1 − 2α)−1 is a sink. If α > 1/2, the equi-
librium solution (1 − 2α)−1 is a source.

27. a.

b. x(t) → √
a/b.

c. x(t) stays at zero.
d. x(t) → √

a/b.

Exercises 2.6
1. The equilibrium points are y = 0 and y = 1. Both are nodes.
3. The only equilibrium point is y = 0, a source.
5. The equilibrium points are x = −a/b and 0. We find that x = −a/b is a sink

and x = 0 is a source.
7. The equilibrium points are x = 0 and 1. The solution x = 1 is a sink, but x = 0

is a node.
9. The equilibrium points are x = 0,2, and 4. We see that x = 0 is a source, x = 2

is a sink, and x = 4 is a source.
11. The only equilibrium point is x = 0. A careful examination reveals that x = 0 is

a source.
13. There is only one equilibrium point, x ≈ 0.74, which is a source.
15. We see that x = −1 is a sink, x = 0 is a source, and x = 0.5 is a node.
17. For example, ẋ = ex or ẋ = sinx + 2. Neither of these functions f (x) can ever

be equal to zero.

19. a. u = 3
√

8P
bS

= 2 3
√

P
bS

.

b. The equilibrium speed is a sink.
c. A rower may start from rest with maximum acceleration but then tire a bit so

that his or her speed would level off at the equilibrium speed. If the rower’s
speed is greater than the equilibrium speed, we can reasonably believe that
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he or she may tire or that the “drag force” b S u2 may exceed the “tractive
force” 8P

u
and so slow the boat down.

21. a.

b. The equilibrium solutions are x = −2,1,3; they are a node, a source, and a
sink, respectively.

23. a.

b. With a = 10 and b = 2, the graph is

c. The only equilibrium point is N = 1/b. The phase portrait given in (a)
indicates that this is a sink.

d. The graph of N(t) is concave up on the interval [0,1/be) and concave down
on the interval [1/be,1].

Exercises 2.7
1. (1).
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(2). The only bifurcation point is c = 0.
(3). The bifurcation diagram is

3. (1).

(2). The only bifurcation point is c = 1.
(3).
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5. (1).

(2). There is one bifurcation point, c = 0.
(3).

7. We find that h∗ = 25/4 is the maximum harvest rate beyond which any popula-
tion will become extinct.

9. The value c = 0 is a pitchfork bifurcation.
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11. The values α = −2 and α = 2 are the only bifurcation points:

13. c. The bifurcation point R = Rc is a sink.

Exercises 2.8
1. For example, take any rectangle centered at (0,3) that avoids the t-axis (x = 0).
3. There is no rectangle R containing the origin that does not also include points

of the x-axis, where t = 0.
5. There is no rectangle R satisfying the requirements of the Existence and Unique-

ness Theorem.
7. For example, take any rectangle in the t-y plane that does not include part of the

line t = −1.
9. The solution’s domain is I = (−π/2,π/2), an interval of length π .

11. x(t) = (
t
3 + 3

√
x0
)3; the initial condition of Example 2.8.2 is x(0) = 0, so we

don’t expect uniqueness in that case. In the current exercise, both f and ∂f
∂x

are
continuous at (0, x0) if x0 < 0, so we are guaranteed existence and uniqueness
on some t-interval I .

13. a. ∂f
∂Q

is not defined at Q = 1.
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b. The constant function Q ≡ 1 is a solution because Q′ = 0 = |Q − 1| and
Q(0) = 1. This solution is in fact unique.

c. Consider the possible cases Q < 1 and Q > 1 separately.
15. The conditions of the Existence and Uniqueness Theorem are not satisfied, so

uniqueness is not guaranteed.
17. The conditions of the Existence and Uniqueness Theorem are satisfied, and so

we expect to find an interval I = (2 − h,2 + h) centered at x = 2 such that the
IVP has a unique solution on I .

19. No. If a solution near P ≡ b were to equal the equilibrium solution—that is, if
another solution curve intersects the horizontal line P ≡ b at the point (t∗, b)—
then we would have two solutions of the IVP dP

dt
= kP (b − P), P(t∗) = b.

21. a. Show that [y(t) y(−t)]′ = 0.
b. What does part (a) imply about the signs of y(t) and y(−t)?

Exercises 3.1
1.

tk yk

0 1.000000
0.25 0.750000
0.50 0.625000
0.75 0.589844
1.00 0.643490

3.
tk yk

1.0 2.000000
1.5 3.359141
2.0 4.266010
2.5 5.065065
3.0 5.807155
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5. y(π/2) ≈ 1.14884140143. The absolute error of the approximation is
|1 − 1.14884140143| = 0.14884140143.

7. y(1) ≈ 1.38556107091.
9. y(1) ≈ 0.80998149723; since the solution of the equation is y(x) = arctanx, we

have y(1) = arctan 1 = π/4. Multiplying our approximation for y(1) by 4, we
get an approximation for π .

11. a.

y1 = y0 + 0.2y0
2 = 1 + 0.2(1)2 = 1.2

y2 = y1 + 0.2y1
2 = 1.2 + 0.2(1.2)2 = 1.488

y3 = y2 + 0.2y2
2 = 1.488 + 0.2(1.488)2 = 1.9308288

y4 = y3 + 0.2y3
2 = 1.9308288 + 0.2(1.9308288)2 = 2.67644877098

y5 = y4 + 0.2y4
2 = 2.67644877098 + 0.2(2.67644877098)2

= 4.10912437572

y6 = y5 + 0.2y5
2 = 4.10912437572 + 0.2(4.10912437572)2

= 7.48610500275.

b. The equation is separable.
c. The following table compares approximate and actual values:

tk yk Actual y(tk)

0 1 1
0.2 1.2 1.25
0.4 1.488 1.6667
0.6 1.9308 2.5000
0.8 2.6764 5.0000
1.0 4.1091 UNDEFINED
1.2 7.4861 −5.0000
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The solution graph indicates the difficulty:

13. a. P(1) ≈ 1.330624 million people = 1,330,624 people.
b. P(0) = 1.284999 . . . people ≈ 1,285,000 people.

15. V (0) = 166.390541 . . . ≈ 166.39 meters per second.
17. The exact solution is x(t) = √

t3 + 1. With h = 0.5, we get x(2) ≈ 2.746746,
with an absolute error of about 0.253254. With h = 0.25, we get x(2) ≈
2.870814, with an absolute error of about 0.129186.

19. a. x′′ = 3x5.
b. If x(0) = 1, then x′′ = 3x5 > 0 for all x > 0, implying that the solution

curve is concave up.
c. Euler’s method underestimates the true value of the solution at t = 0.1.

21. a. Note that the direction field is not meaningful for y < −1 or y > 1.

c. We see that y(1) ≈ 0.8950 and y(1.2) ≈ 1.0235. However y(1.3) and
y(1.3), for example, can’t be calculated because the values would involve
the square roots of negative numbers. With a relatively large step size of
0.4, once you get a little past t = 1.2, Euler’s method produces values of y

that are greater than 1.
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23. The only way a solution curve can coincide with its tangent line segments is
if the solution curve is a straight line—that is, if y(x) = Cx + D, so that the
differential equation is dy

dx
= C.

25. a. 2500
2501 cosx + 50

2501 sinx − 2500
2501e−50x ; y(0.2) = 0.9836011240 . . . .

b. y(0.2) ≈ 1.7466146068. The absolute error is 0.7630134828.
c. y(0.2) ≈ 1.1761983279. The absolute error is 0.1925972039.
d. y(0.2) ≈ 1.8623800769. The absolute error is 0.8787789529.
e. No.

Exercises 3.2
1. The table of approximations

TRUE
VALUE

Euler’s
Method

Absolute
Error

Improved Euler
Method

Absolute
Error

h = 0.1 5.93977 5.69513 0.24464 5.93266 0.00711
h = 0.05 5.93977 5.81260 0.12717 5.93791 0.00186
h = 0.025 5.93977 5.87490 0.06487 5.93930 0.00047

3. a. x(t) = −t − 1 + 2 et .
b. x(1) ≈ 3.42816.
c. The following table shows the absolute error at each step of part (b):

tk xk TRUE VALUE Absolute Error
0 1 1 0
0.1 1.11000 1.11034 0.00034
0.2 1.24205 1.24281 0.00076
0.3 1.39847 1.39972 0.00125
0.4 1.58180 1.58365 0.00185
0.5 1.79489 1.79744 0.00255
0.6 2.04086 2.04424 0.00338
0.7 2.32315 2.32751 0.00436
0.8 2.64558 2.65108 0.00550
0.9 3.01236 3.01921 0.00685
1.0 3.42816 3.43656 0.00840

5. a. P(1) ≈ 1.330624 million people = 1,330,624 people.
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b. P(0) ≈ 1.285363 million people = 1,285,363 people.

7. a. y(t) = [(1 − α) t] 1
/
(1−α) .

b. Take f (t, y) = yα , t0 = 0, and y0 = 0 in the improved Euler method. Then
we have, for any h, y1 = y0 + h

2 {f (t0, y0) + f (t1, y0 + hf (t0, y0))} =
h
2 f (t1,0) = 0 = y2 = · · · = yk = yk+1 for all positive integer values of k.

c. If y0 = y(0) = 0.01, then for any h, the improved Euler’s method produces
a nonzero sequence of approximate values.

9. a. We find that y(t) = 1/100 + (99/100)e−100 t and y(1) = 0.01.
b. With h = 0.1, we get y(1) ≈ 1.3288 × 1016; with h = 0.05, we get y(1) ≈

3.8372 × 1018; and with h = 0.01, we get y(1) = 0.01.
c.

Exercises 3.3
1.

TRUE VALUE Euler’s Method Improved Euler Method RK4 Method
h = 0.1 2.7182818 2.5937425 2.7140808 2.7182797
h = 0.05 2.7182818 2.6532977 2.7171911 2.7182817
h = 0.025 2.7182818 2.6850638 2.7180039 2.7182818

3. y(1) = e ≈ 2.71828181139414093.
5. a. x = 2

t2+C
.

b. The rkf45 method yields x(1) ≈ 0.99999999727228860.
7. a. The following table provides the required data:

t V (t)

5 100.163
10 104.984
15 105.045
16 105.046
17 105.046
18 105.046
19 105.046
20 105.046

We guess that the terminal velocity is 105.046 ft/s.
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b.

11. a.
t (0.5,1) (0.5,2) (1.5,1) (1.5,2) (2,2)

1 1.845 1.707 2.320 1.918 2.051
2 2.663 2.069 4.207 2.215 2.233
3 3.349 2.190 4.893 2.235 2.236
4 3.872 2.224 4.988 2.236 2.236
5 4.246 2.233 4.999 2.236 2.236
6 4.504 2.235 5.000 2.236 2.236
7 4.677 2.236 5.000 2.236 2.236
8 4.791 2.236 5.000 2.236 2.236
9 4.865 2.236 5.000 2.236 2.236
10 4.913 2.236 5.000 2.236 2.236

b. (r, q) ≈ (0.5,1.4).

Exercises 4.1
1. y = (c1 + c2t)e

2t .
3. x = et (c1 cos t + c2 sin t).
5. x = c1 + c2e

−2t .
7. y = c1 cos 2t + c2 sin 2t .
9. r(t) = e2t (c1 cos 4t + c2 sin 4t).

11. x(t) = −e2t + 2et .
13. y(t) = 1

4e(2t−π) sin 4t .

17. a. I (t) = 3
2

(
e−10t − e−50t

)
.

b.
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c. The maximum value of I is approximately 0.8.
d. The maximum value of I is achieved when t ≈ 0.04 seconds.

19. x(t) = 3 cos 12t + 5
6 sin 12t .

21. a. x(t) = − 1
30e−2t

(
11

√
3 sin(2

√
3t) + 3 cos(2

√
3t)
)

.

b. The graphs are

c. The greatest distance is approximately 33 cm.
25. c. u(t) = C1t + C2.

Exercises 4.2
7. yp = 3x2.

9. y(t) = 3
4 x − 1

16 + e−3 t/2
(
C1 cos

(
1
2

√
7x
)

+ C2 sin
(

1
2

√
7x
))

.

11. y(x) = c1e
−x + c2e

2x/3 − 5
13 cosx + 1

13 sinx.

13. y(x) = c1 cosx + c2 sinx − 1
2x cosx.

15. x(t) = c1e
−t + c2 + 1

2et − te−t .

17. x(t) =
{

1 if 0 ≤ t < 1
− cosπt if t ≥ 1.
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Exercises 4.3
1. yGH = c1 + c2e

−3t ; yPNH = Kt .
3. yGH = c1 + c2e

−7x ; yPNH = K xe−7x .
5. yGH = c1 cos 5x + c2 sin 5x; yPNH = Ax(cos 5x + sin 5x).
7. yGH = e−3x(c1 cos 2x + c2 sin 2x); yPNH = xe−3x(c1 cos 2x + c2 sin 2x).
9. yGH = c1 coskt + c2 sin kt ; yPNH = C.

11. yGNH = C1e
3t + C2e

−t + 1
5e4t .

13. xGNH = C1e
t cos t + C2e

t sin t +
(
− 2

5 t − 14
25

)
sin t +

(
1
5 t + 2

25

)
cos t + et .

15. xGNH = C1 + C2e
−t − 2 cos t − 2 sin t .

17. yGNH = (C1 + C2x)e−5x + 2x2e−5x .

19. xGNH = C1e
−t + C2e

−2t +
(
− 3

10 t + 17
50

)
cos t +

(
1
10 t + 3

25

)
sin t .

21. y(x) = 3
5xe4x − 3

25e4x + 3
25e−x .

23. y(t) = e−t/2
(

7 cos
(√

3
2 t
)

+ 11
√

3
3 sin

(√
3

2 t
))

+ (−t2e−t − 6e−t − 4te−t
)

sin t + (−2te−t − 6e−t
)

cos t.

25. Assuming that a particular solution of the equation has the form yp =
A cos(ωx) + B sin(ωx), we find that

yp = −25(1 − ω2) sin(ωx)

25 − 49ω2 + 25ω4
− 5 cos(ωx)ω

25 − 49ω2 + 25ω4
.

The amplitude of a particular solution is a maximum when ω ≈ 0.99. This sit-
uation is very close to resonance, but the oscillations do not build up without
limit.
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27. a.

b. y(t) = t − sin t .
c. y(t) = −π cos t − 2 sin t .

d. y(t) =
{
t − sin t, 0 ≤ t ≤ π

−π cos t − 2 sin t, t ≥ π.

29. y(x) = c1e
x + c2e

2x + 3
130 (9 cos 3x − 7 sin 3x) − 1

6970 (27 cos 9x − 79 sin 9x).

31. y(x) = c1 cos 2x + c2 sin 2x + 1
12 − 1

24 cos2 2x − 1
32 cos3 2x.

33. b. No, any solution is unbounded unless the constant is zero.
c. If c = 0, the solution is unbounded unless the constant is zero. If b = 0 also,

the solution is a polynomial and thus unbounded as t → ∞.

35. y(x) = c1x
(
√

10−2) + c2 x(−√
10−2) + (10x2 − 2)/5x2.

37. y(x) = x(c1 cos(lnx) + c2 sin(lnx)) + x lnx.

Exercises 4.4
1. xGNH = C1t et + C2e

t + t ln t et − t et = K1t et + K2e
t + t et ln t .
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3. rGNH = C1t et + C2e
t + t ln t et − t et = K1t et + K2e

t + t et ln t .
5. yGNH = c1x e−2x + c2e

−2x + 1
2x3e−2x .

7. yGNH = c1x e−x + c2e
−x + 1

4x2e−x(2 lnx − 3).

9. yGNH = ex
(
c1 ex + c2 − ex cos(e−x)

)
.

11. yGNH = c1x ln x + c2x + 1
2x ln2 x.

13. yGNH = c1x
2 + c2x + 1

4x3(2 ln x − 3).

15. yGNH = c1 tan x + c2 + 1
2x tan x.

17. b. yGNH = c1x
3 + c2x

2 + 1
2x4.

Exercises 4.5
1. y(x) = C1e

3x + C2e
−x + C3.

3. y(x) = C1xe−x + C2e
−x + C3.

5. y(t) = C1e
10t + et (C2 cos t + C3 sin t).

7. y(t) = C1e
−2t + C2e

2t + C3e
−3t + C4e

3t .
9. y(t) = C1 + (C2t + C3) et + C4e

−2t .
11. y(t) = (C1t

2 + C2t + C3)e
t + (C4t + C5)e

2t + C6e
3t + C7e

4t .

13. y(x) = e−0.7289x(C1 cos (0.6186 t) + C2 sin (0.6186 t))

+ e0.4765x(C3 cos (0.7591t) + C2 sin (0.7591t)).

15. a. yGH = C1x
3 + C2x2 + C3x + C4.

b. An intelligent guess would be yPNH = (R/24)x4.

17. y(t) = (C1 tn−3 + C2t
n−4 + · · · + Cn−3t + Cn−2) + Cn−1e

−t + Cne
t .

19. y(t) = 1
6e3t + C1 + C2e

−6t + C3e
t .

21. y(x) = C1e
4x + C2e

3x + C3e
−2x − xe3x

375 (25x2 + 60x + 126).

23. y(x) = C1 cos x + C2 sin x + C3x + C4 + x sin x + 2x cos x + 1
4x4 − 3x2.

25. a. yPNH = C1y1 + C2y2 + C3y3.

b.

⎡
⎣y 1 y 2 y 3

y′
1 y′

2 y′
3

y′′
1 y′′

2 y′′
3

⎤
⎦
⎡
⎢⎣C′

1
C′

2
C′

3

⎤
⎥⎦=

⎡
⎣0

0
g

⎤
⎦.

c. y(x) = c1e
x + c2e

−x + c3e
2x − 1

2xex .

Exercises 4.6
3. a. (−1,2)

b. (−∞,1)

c.
(

π
2 , 3π

2

)
d. (0,3).
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5. a. (−1,1)

b. Any initial conditions given at x = −1 or x = 1 would not guarantee a unique
solution.

c. n = 0: y = 1; n = 1: y = x; n = 2: y = (3x2 − 1)/2; n = 3: y = (5x3 −
3x)/2.

d. There is no contradiction.
7. d. The constant is 1.

e. The functions S and C behave the way the sine and cosine, respectively,
behave.

Exercises 5.1
1. 2/s3, s > 0.
3. 3!/s4, s > 0.
5. 1/(s − a)2, s > a.
7. 10/s + 100/(s − 2), s > 2.
9.
(
12 − 14s + 5s2 − 17s3

)
/s4, s > 0.

11. 2/(s − 1) − 3/(s + 1) + 8/s3, s > 1.
13.

(
1 − e−4s − 4se−4s

)
/s2, s > 0.

15.
(
s + e−2s − e−s

)
/s2, s > 0.

17. L[y(t)] = 1/(s − 1).
19. L[y(t)] = (2s + 5)/ ((s + 1)(s + 2)).
21. L[y(t)] = s/

(
s2 + 1

)
.

23. L[y(x)] = (
s3 − 2s2 + s + 3

)
/
(
(s2 + 1)(s2 − s − 2)

)
.

25. L[y(x)] = 2
(
s2 + s − 1

)
/
(
s3 (s − 1)3).

27. L[sinh(at)] = 1/[2(s − a)] − 1/[2(s + a)] = a/
(
s2 − a2

) ;L[cosh(at)] =
s/
(
s2 − a2

)
. The transforms exist for s > a.

29. 1
s

(
eas−1
eas+1

)
= 1

s
tanh

(
as
2

)
.

35. For example, h(t) = π for t = 1, h(t) = 1 for t 	= 1. Functions that differ at only
a finite number of points have equal integrals.

37. F(s) =
√

π
s

, s > 0.

Exercises 5.2
1. 1

3 sin 3t .

3. cos
√

2t .
5. 1

2

{
1 − e−t (cos t + sin t)

}
.

7. 4e2t − 3 cos 4t + 5
2 sin 2t .

9. − 1
6e−t − 4

3e2t + 7
2e3t .
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13. b.
(
1 − e−3 t/2

)
/t .

17. s/
(
s2 + 1

)2
.

19. y(t) = 2t2 − 6t + 7 + e−2t − 8e−t .
21. y(x) = x2 + 4x + 4 + x2ex − 4ex .

23. Q(t) =

⎧⎪⎪⎨
⎪⎪⎩

e−t sin t for 0 ≤ t < π

2
5 cos t − 1

5 sin t

− 1
5e(−t+π){2 cos t + sin t} + e−t sin t for t ≥ π.

25. f (t) = 4t + 2
3 t3.

27. x(t) = 2 − e−t .
29. x(t) = 1

10 t5e2t + 1
4 t4e2t = 1

20 t4e2t (2t + 5).

Exercises 5.3
1. a.

b. f (t) = 1 · U(t − 1) + U(t − 2)[0 − 1] = U(t − 1) − U(t − 2).
3. a.

b. f (t) = U(t − 1) − 3U(t − 2) + 2U(t − 3).
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5. a.

b. f (t) = t · U(t) + U(t − 2)[(t − 2) − t] + U(t − 4)[0 − (t − 2)]
= tU(t) − 2U(t − 2) + (2 − t)U(t − 4).

11. L[f (t)] = (
2 − 2e−2s + 4s2e−2s

)
/s3.

13. L[f (t)] = (
1 − 2e−2s + e−4s

)
/s2.

15.
[

1
2U(t − π) − 1

2U(t − 3π)
]

sin2 t = 1
2 sin2 t for π < t < 3π and 0 elsewhere.

17. y(t) =
⎧⎨
⎩

− 14
5 e5t/4 + 6t + 24

5 for 0 ≤ t < 1

− 14
5 e5t/4 + 54

5 e
5
4 (t−1) for t ≥ 1.

19. y(t) = 1 − cos t + sin t − U
(
t − π

2

)
(1 − sin t)

=
{

1 − cos t + sin t for t < π/2
− cos t + 2 sin t for t ≥ π/2.

21. y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 +
(

10
√

17
17 − 2

)
e−(

√
17+5)t/2 −

(
2 + 10

√
17

17

)
e(

√
17−5)t/2 for t ≤ 1

4 − et−1 +
(

1
2 − 7

√
17

34 − 2 + 10
√

17
17

)
e
−
(
(
√

17+5)(t−1)/2
)

+
(

1
2 + 7

√
17

34

)
e(

√
17−5)(t−1)/2 +

(
10

√
17

17 − 2
)

e
−
(
(
√

17+5)t/2
)

−
(

10
√

17
17 + 2

)
e−(

√
17+5)t/2 for t > 1.

23. y(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
9e3t − 1

3 t − 1
9 for 0 ≤ t ≤ 1

1
9e3t − 2

9e3(t−1) + 1
3 t − 5

9 for 1 ≤ t ≤ 2
1
9e3t − 2

9e3(t−1) + 1
9e3(t−2) for t > 2.
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25. a. P(t) =
{

Aekt + h
k

(
1 − ekt

)
for 0 ≤ t ≤ 30

Aekt + h
k

(
e−k(30−t) − ekt

)
for t > 30.

b. A = h
k

(
e330k − e360k

)/(
1 − e360k

)
.

27. a. The graph of W(t) is

b. y(t) ≡ 0.

c. y(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0 ≤ t < 1
1
2e2(1−t) + 1

2 − e1−t for 1 ≤ t ≤ 2
1
2e2(1−t) − e1−t + e2−t − 1

2e2(2−t) for t > 2.

d. The forcing term creates a temporary “blip” in the zero function. However,
the solution begins decaying exponentially shortly after 2 units of time:
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Exercises 5.4
1. −1.

3. e−πs cosπ3.

5. y(t) =

⎧⎪⎨
⎪⎩

0 for t < 1

e−8(t−1) for 1 ≤ t < 2

e−8(t−1) + e−8(t−2) for t ≥ 2.

7. y(t) = 1
6

(
e2t − e−4t

)
.

9. y(t) = e−t + 2te−t + [
2(t − 1)e−(t−1)

]
U(t − 1).

11. y(t) =
{

1 for t < 2π

1 + sin t for t ≥ 2π.

13. y(t) = − 1
4

(
2 sin(t − 1) − et−1 + e−(t−1)

)
U(t − 1).

15. y(x) = [after expanding and simplifying]
⎧⎨
⎩

W
6EI

x2
(

3
2L − x

)
for 0 ≤ x < L

2

WL2

24EI

(
3x − L

2

)
for x ≥ L

2 .

19. a. x(t) =
⎧⎨
⎩

0 for t < a

H
√

mk
m

sin

(√
k
m

(t − a)

)
for t ≥ a.

b. Because m and k are constants directly related to the spring-mass system,

varying the value of H affects the amplitude of the oscillations, the max-

imum distance of the mass from its equilibrium position. Viewed another

way, in the original equation, the quantity k H represents the magnitude of

the jerk upward.

c. If we want A to be the maximum displacement of the mass from equilib-

rium, we must have H
√

mk
m

= A, or H = A
√

mk
k

.

21. a. L[y(t)] = (
1/
(
s2 + 2

))∑∞
n=1 e−ns .

b. y(t) =
(

1/
√

2
)∑∞

n=1 U(t − n) sin
√

2(t − n).

c. The solution oscillates indefinitely.

Exercises 5.5
1. y(t) = 5

2e−2t + 1
2e−4t .

3. x(t) = 3e4t + 5e−t , y(t) = −2e4t + 5e−t .

5. x(t) = 5et − 18tet , y(t) = −3et − 54tet .

7. x(t) = et cos 2t + 1
2et sin 2t , y(t) = x′ − x = et cos 2t − 2et sin 2t .

9. x(t) = −e−3t (−2 sin 4t + cos 4t), y(t) = 2e−3t cos 4t .

11. x(t) = 3
10e−t + 7

10e2t cos t − 11
10e2t sin t , y(t) = − 2

5e−t + 2
5et cos t + 9

5e2t sin t .

13. x(t) = 3et − 9t2 + 6t + 2, y(t) = −et − 6t .
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15. x(t) = 4
15 cos2

√
3t − 2

15 + 4
15

√
3 sin

√
3t cos

√
3t − 2

15 cosh
√

3t

+ 1
15

√
3 sinh

√
3t

y(t) = − 32
15 cos2

√
3t + 16

15 + 32
45

√
3 sin

√
3t cos

√
3t + 1

15 cosh
√

3t

− 2
45

√
3 sinh

√
3t.

17. x(t) = 11
20 cos 2t + 9

20 cos
(√

2t
)

, θ(t) = 11
20 cos 2t − 9

20 cos
(√

2t
)

.

19. I1(t) = 11
4 − 1

20e−6t − 27
10e−t , I2(t) = 3

4 + 3
20e−6t − 9

10e−t .

21. x(t) = 1
4et − 3

4e−t − 1
2 cos t + sin t + e−2t

y(t) = 1
2 cos t − sin t + 1

4et − 3
4e−t .

Exercises 5.6
1. b. y(x) = e−x2/2

∫
ex2/2 dx + Ce−x2/2.

3. y(t) = t .
5. y(t) = t2.
7. y(t) = Ct3et .
9. a. l1(t) = −t + 1; l2(t) = 1

2 (t2 − 4t + 2); l3(t) = 1
6 (−t3 + 9t2 − 18t + 6);

l4(t) = 1
24 (t4 − 16t3 + 72t2 − 96t + 24).

b. Ln(s) = L[ln(t)] = (s − 1)n/sn+1.
c. y(x) = ex

n!
dn

dxn (xne−x) = ln(x).

Exercises 6.1
1.
{

dx1
dt

= x2,
dx2
dt

= 1 + x1

}
.

3. The nonautonomous system is
{
y′

1 = y2, y
′
2 = (5 ln x + 3xy2 − 4y1)/x

2
}
. Re-

placing x by y3 and adding the equation y′
3 = 1 yields an autonomous system.

5.
{
x′

1 = x2, x
′
2 = x3, x

′
3 = t x3 − x2 + 5x1 − t2

}
.

7. The nonautonomous system is
{
w′

1 = w2,w
′
2 = w3,w

′
3 = w4,w

′
4 = 6 sin(4t) +

2w4 − 5w3 − 3w2 + 8w1
}
. To get an autonomous system, replace t by w5 and

add the equation w′
5 = 1.

9.
{
x′

1 = x2, x
′
2 = 1 − 3x2 − 2x1; x1(0) = 1, x2(0) = 0

}
.

11. dx1
dt

= x2, dx2
dt

= 1
2

{
x1 − y2

2

}
, dy1

dt
= y2, and dy2

dt
= 4t+y1

x1
.

13. d2u

dx2 − 4u − 2 = 0 or d2v

dx2 − 4v + 2 = 0.

15. d2x

dt2 + 9 dx
dt

+ 6x − 12 = 0 or d2y

dt2 + 9 dy
dt

+ 6y − 18 = 0.

17.
{

dx1
dt

= x2,
dx2
dt

= −4x1 − 4x2; x1(0) = 2, x2(0) = −2
}

; the first equation rep-

resents the velocity of the mass at time t , whereas the second equation represents
the acceleration of the mass.
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19.
{

dy1
dt

= y2,
dy2
dt

= −
(

g
s0

)
y1

}
.

21.
{
w′

1 = w2,w
′
2 = w3,w

′
3 = w4,w

′
4 = 6 sin(4t) + 2w4 − 5w3 − 3w2 + 8w1

}
; to

get an autonomous system, replace t by w5 and add the equation w′
5 = 1.

23.
{
u′

1 = u2, u
′
2 = u3u2 + u2

3u1, u
′
3 = 1; u1(0) = 1, u2(0) = 2, u3(0) = 0

}
.

25. d4x

dt4 − 16x = 120e−t − 64t ; x(0) = 6, x′(0) = 8, x′′(0) = −48, and x′′′(0) =
−8 or d4y

dt4 − 16y = 540e−t − 96, y(0) = −24, y′(0) = 0, y′′(0) = −12, and
y′′′(0) = 84.

Exercises 6.2
3. a. (−∞,∞).

b. (−∞,0) or (0,∞).
c. (−∞,0) or (0,1) or (1,∞).
d. (0,∞).

5. There is no contradiction.
7. Extend the Existence and Uniqueness Theorem to six dimensions.
9. c. If the solution with initial condition x(0) = 1/2, y(0) = 0 satisfies x2(t) +

y2(t) ≥ 1 for any finite value of t , this means that the solution intersects
the solution given in part (b) at some point (x(t∗), y(t∗)) on the unit circle.
Thus, two solutions of the system pass through the same point in the open
disk x2 + y2 < 4, contradicting the uniqueness established in part (a).

Exercises 6.3
1. a. xk+1 = xk + h

2

{
f (tk, xk, yk) + f (tk+1, xk + hf (tk, xk, yk)) , yk

+ hg (tk, xk, yk)
}

yk+1 = yk + h
2

{
g (tk, xk, yk) + g (tk+1, xk + hf (tk, xk, yk)) , yk

+hg (tk, xk, yk)
}
.

b. x(0.5) ≈ 1.1273, y(0.5) ≈ 0.5202.
c. For x(0.5) the absolute error is approximately 0.0003, while for y(0.5) the

absolute error is approximately 0.0009.
3. a. {u′

1 = u2, u′
2 = 2x + 2u1 − u2; u1(0) = 1, u2(0) = 1}.

b. Using Euler’s method with h = 0.1, we find that u1(0.5) ≈ 1.8774 and
u2(0.5) ≈ 4.1711; u1(1.0) ≈ 5.5515 and u2(1.0) ≈ 13.3031.

c. Using a fourth-order Runge–Kutta method with h = 0.1, we get u1(0.5) ≈
2.1784 and u2(0.5) ≈ 4.7536; u1(1.0) ≈ 6.7731 and u2(1.0) ≈ 14.7205.

5. a. (x(t), y(t), z(t)) = (0,5,0) for all the values of t specified. The particle
doesn’t seem to be moving.
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b. The values of x, y, and z seem to be increasing without bound as t grows
larger, with the values of x, y, and z approaching each other.

7. t∗ = 3.72, to two decimal places.

9. a.
{

du
dx

= v, dv
dx

= − 2
x
v − u3; u(0) = 1, v(0) = 0

}
.

b. x ≈ 6.9.
11. a. dS

dt
+ dI

dt
+ dR

du
= d

dt
(S + I + R) = 0. This means that the total population

does not change.
b.

c.

d. We used the rkf45 method and all values were rounded to the nearest whole
number. The values show the steady increase in the number of people who
recovered, the decreasing number of susceptible people, and that the number
of infected people probably peaks between days 10 and 15.

t S I R

1 44,255 3062 2682
2 42,649 4405 2947
3 40,460 6217 3323
10 13,044 25,547 11,408
15 3447 25,638 20,915
16 2681 24,609 22,710
17 2108 23,464 24,428

e. We conclude that t ≈ 161 if we round down, but t ≈ 171 if we round I to
the nearest integer.
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13. a.
t x(t) y(t)

0.01 0.4492 −0.0158
0.02 0.4468 −0.0113
0.03 0.4432 −0.0068
0.04 0.4385 −0.0024
0.05 0.4330 0.0019
0.06 0.4266 0.0062
0.07 0.4196 0.0105
0.08 0.4120 0.0146
0.09 0.4039 0.0187
0.10 0.3952 0.0227

b. The direction of the solution curve is counterclockwise.

c. t ≈ 1.1.
d. Diastole: (x, c) ≈ (−0.46,0.02) when t ≈ 0.52; systole: (x, c) ≈

(0.46,−0.02) when t ≈ 1.05.

Exercises 6.4
1. a. {x′

1 = x2, x
′
2 = −x2; x1(0) = 1, x2(0) = 2}.

b.
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c.

3. a. {ẏ1 = y2, ẏ2 = −y1; y1(0) = 2, y2(0) = 0}.
b.

c.

5. a. {ẋ1 = x2, ẋ2 = x2; x1(0) = 1 = x2(0)}.
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b.

c.

7. a. {x′
1 = x2, x

′
2 = x1 − x3

1 ; x1(0) = 0, x2(0) = 1}.
b.
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c.

9. 2 arctan
( y

x

)+ ln
(
x2 + y2

)− C = 0.

11. a. {Q̇1 = Q2, Q̇2 = 1
2 sin t − 14Q1 − 9Q2; Q1(0) = 0,Q2(0) = 0.1}.

b.

c.

d. The capacitance appears to be periodic.
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13. Every point on the x- and y-axes is an equilibrium point. The phase portrait:

15. The system form of the equation is {x′
1 = x2, x′

2 = −x2 + x1 − x3
1}. The equi-

librium solutions are (0,0), (−1,0), and (1,0).
17. a. With λ = 1 the phase portrait is

b. With λ = −1 the phase portrait is
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c. The value λ = 0 is a bifurcation point, a point at which the phase portrait
changes drastically.

Exercises 6.5
1. a.

[
3 4

−1 −2

][
x

y

]
=
[−7

5

]
;

b.
[
π −3
5 2

][
a

b

]
=
[

4
−3

]
.

c.

⎡
⎣ 1 −1 1

−1 2 −3
2 −3 5

⎤
⎦
⎡
⎣x

y

z

⎤
⎦=

⎡
⎣ 7

9
11

⎤
⎦.

3. V =
[

1
0

]
.

5. Ẋ =
[
ẋ

ẏ

]
=
[

2 1
3 4

] [
x

y

]
.

7. Ẋ =
[
ẋ

ẏ

]
=
[

2 1
−1 4

][
x

y

]
.

9. Ẋ =
[
ẋ

ẏ

]
=
[−2 1

0 −2

][
x

y

]
.

11. a. The system is {y′
1 = y2, y

′
2 = 3y2 − 2y1}, which can be written as

[
y′

1
y′

2

]
=[

0 1
−2 3

][
y1
y2

]
.

b. The system is
{
y′

1 = y2, y
′
2 = 1

5y1 − 3
5y2

}
, which can be written as[

y′
1

y′
2

]
=
[

0 1
1
5 − 3

5

][
y1
y2

]
.

c. The system is
{
y′

1 = y2, y
′
2 = −ω2y1

}
, which can be written as[

y′
1

y′
2

]
=
[

0 1

−ω2 0

][
y1
y2

]
.

Exercises 6.6
1. a. 17

b. 0
c. 6t4 + 4 sin t

d. cos2 θ + sin2 θ = 1.
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3.
[−1 2
−4 5

]
, for example.

5. a.
[
ẋ

ẏ

]
=
[

1 −1
−4 1

][
x

y

]
.

b. The characteristic equation is λ2 − (1 + 1)λ + (1(1) − (−1)(−4)) = λ2 −

2λ − 3 = 0.

c. λ1 = 3 and λ2 = −1.

d. Any nonzero vector of the form

[
x

−2x

]
= x

[
1

−2

]
is an eigenvector cor-

responding to the eigenvalue λ = 3. Any nonzero vector of the form[
x

2x

]
= x

[
1
2

]
is an eigenvector corresponding to the eigenvalue λ = −1.

7. a.
[
ẋ

ẏ

]
=
[

1 0
0 1

][
x

y

]
.

b. The characteristic equation is λ2 − (1 + 1)λ + (1 − 0) = λ2 − 2λ + 1 = 0.

c. λ1 = 1 = λ2.

d. Clearly, any nonzero vector

[
x

y

]
is an eigenvector corresponding to the

eigenvalue λ = −1. As we will see in Section 6.8, a 2 × 2 system that has a

repeated eigenvalue (an eigenvalue of “multiplicity two”) must be handled

carefully. In this problem, we can find at least two eigenvectors that do not

lie on the same straight line—for example, V1 =
[

1
0

]
and V2 =

[
0
1

]
.

9. a.
[
ẋ

ẏ

]
=
[

5 −1
2 1

][
x

y

]
.

b. λ2 − 6λ + 7 = 0.

c. λ1 = 3 + √
2, λ 2 = 3 − √

2.

d. V1 =
[

1

2 − √
2

]
, V2 =

[
1

2 + √
2

]
.

11. b. x =
∣∣∣∣e b

f d

∣∣∣∣
/∣∣∣∣a b

c d

∣∣∣∣ and y =
∣∣∣∣a e

c f

∣∣∣∣
/∣∣∣∣a b

c d

∣∣∣∣.
15. The phase portrait corresponding to the system is
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The trajectories are moving toward the origin as t increases. Algebraically, this
is a consequence of the fact that both eigenvalues are negative. Furthermore,
the trajectories approach the line determined by the eigenvector associated with
the larger (less negative) eigenvalue as t → ∞. The trajectories approach the
line determined by the eigenvector associated with the smaller (more negative)
eigenvalue as t → −∞.

17. a. c1(x) = α1

(
C0−c0
α2−α1

)
e(α2 − α1)x + α2c0−α1C0

α2−α1
and

c2(x) = α2

(
C0−c0
α2−α1

)
e(α2−α1)x + α2c0−α1C0

α2−α1
.

19. a. The system is
{
ẋ1 = x2, ẋ2 = −kx2 − g

L
x1
}
.

b. λ2 + kλ + g
L

= 0.

c. λ1 =
(
−kL +√

k2L2 − 4gL
)/

2L, λ2 =
(
−k L −√

k2L2 − 4gL
)/

2L.

d. V1 =
[

1(
−kL +√

k2L2 − 4gL
)/

2L

]
,

V2 =
[

1(
−kL −√

k2L2 − 4gL
)/

2L

]
.

e. As t → ∞ the pendulum tends to its equilibrium position (0,0).
21. d. Part (c) shows that the sign of dθ/dt equals the sign of xẏ − yẋ, which has

just been shown to equal c
[
x + (

d−a
2c

)
y
]2 + y2

4c

[
4(ad − bc) − (a + d)2

]
.

The first term of this last expression is c times a perfect square, while in
the second term the bracketed expression is positive according to part (b).
Given the presence of another perfect square, y2/4, it is clear that x ẏ − yẋ

(and so dθ/dt) must have the same sign as c.

Exercises 6.7
1. a. λ1 = 3 and λ2: Any nonzero vector of the form

[
x

0

]
= x

[
1
0

]
is an eigen-

vector corresponding to the eigenvalue λ = 3. Any nonzero vector of
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the form

[
0
y

]
= y

[
0
1

]
is an eigenvector corresponding to the eigenvalue

λ = 2.
b. Here is a plot of several trajectories with the eigenvectors (essentially, the

x- and y-axes) shown:

3. a. λ1 = 1 and λ2 = −2: Any nonzero vector of the form

[
x

−4x

]
= x

[
1

−4

]
is

an eigenvector corresponding to the eigenvalue λ = 1. Any nonzero vector

of the form

[
x

−x

]
= x

[
1

−1

]
is an eigenvector corresponding to the eigen-

value λ = −2.
b. Here’s the plot of several trajectories and the eigenvectors:

5. a. λ1 = 2 and λ2 = −4: Any nonzero vector of the form

[
x

1
5x

]
= x

[
1
1
5

]
=

x

[
5
1

]
is an eigenvector corresponding to the eigenvalue λ = 2. Any nonzero
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vector of the form

[
x

−x

]
= x

[
1

−1

]
is an eigenvector corresponding to the

eigenvalue λ = −4.
b. Trajectories and eigenvectors are shown here:

7. a. λ1 = −5+√
17

2 and λ2 = −5−√
17

2 , both irrational numbers; using a CAS we

find corresponding representative eigenvectors V1 =
[

−1+√
17

8
1

]
and V2 =[

−1−√
17

8
1

]
.

b. Here are some trajectories and the eigenvectors (which are difficult to pick
out):

9. a. λ1 = √
5 and λ2 = −√

5, irrational numbers: Any nonzero vector of the

form

[
x

−
(

2 + √
5
)]= x

[
1

−
(

2 + √
5
)]= x

[
2 − √

5
1

]
is an eigenvector

corresponding to the eigenvalue λ = √
5. Any nonzero vector of the form
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[
x

−
(

2 − √
5
)

x

]
= x

[
1

−
(

2 − √
5
)]= x

[
2 + √

5
1

]
is an eigenvector cor-

responding to the eigenvalue λ = −√
5.

b. Here are some trajectories and the eigenvectors:

11. a. λ1 = 0, V1 =
[−2

1

]
; λ2 = 1, V1 =

[−3
1

]
.

b. Here are the eigenvectors and some trajectories:

The two eigenvectors are very close together and may be difficult to see as sep-
arate vectors.

13. a. λ = 0 and λ = −2.
b. Representative eigenvectors corresponding to the eigenvalues λ1 = 0 and

λ2 = −2 are V1 =
[

3
4

]
and V2 =

[
1
2

]
, respectively.
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c. Here’s a plot of some trajectories:

Every point of the line y = 4
3x is an equilibrium point. The origin is a

sink, while every other point on the line is a node. All the other trajecto-
ries (straight lines) seem to be parallel to the trajectory determined by the
eigenvector V1.

d. X(t) = c1e
0·t
[

3
4

]
+ c2e

−2t

[
1
2

]
= c1

[
3
4

]
+ c2e

−2t

[
1
2

]
.

15. X(t) = 1
2e3t

[
1
5

]
+ 1

2e−t

[
1
1

]
; the solution approaches 1

2e3t

[
1
5

]
(the line y = 5x)

asymptotically.
17. b. Here are some trajectories for different values of α:

α = 0
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α = 5

α = −5

When α = 0 the trajectory is a straight line from (0,0.5) to the origin. For
α > 0 the trajectory swirls down from (0,0.5) toward the origin in a clock-
wise direction, flattening as α increases. For α < 0 the trajectory swirls
from (0,0.5) toward the origin in a counterclockwise direction, flattening
as α increases in the negative direction.

19.
(

1
CR2

− R1
L

)2 − 4
CL

> 0 [Also: L + C R1R2 > 2R 2
√

LC, or L >

R 2

(
2
√

LC − CR1

)
.

23. a. X(t) =
[
r(t)

s(t)

]
= c1e

(−2+√
2

2

)
t

[
−√

2
1

]
+ c2e

(−2−√
2

2

)
t

[√
2

1

]

=
⎡
⎢⎣−√

2c1e

(−2+√
2

2

)
t + √

2c2e

(−2−√
2

2

)
t

c1e

(−2+√
2

2

)
t + c2e

(−2−√
2

2

)
t

⎤
⎥⎦ : The origin is a sink.
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b. X(t) =
[
r(t)

s(t)

]
= c1e

(√
2−1

)
t

[
1

−√
2

]
+ c2e

(
−1−√

2
)
t

[
1√
2

]

=
⎡
⎢⎣ c1e

(√
2−1

)
t + c2e

(
−1−√

2
)
t

−√
2c1e

(√
2−1

)
t + √

2c2e

(
−1−√

2
)
t

⎤
⎥⎦ : The origin is a saddle point.

c. λ1 = −1 + √
β and λ2 = −1 − √

β; the bifurcation point occurs at β = 1.

Exercises 6.8
1. a. λ1 = 3 = λ2; V1 =

[
1
0

]
and V2 =

[
0
1

]
.

b. Here’s a plot of the eigenvectors and some trajectories:

3. a. λ1 = 3 = λ2: Any nonzero vector of the form

[
x

x

]
= x

[
1
1

]
is an eigenvector

corresponding to the repeated eigenvalue λ = 3. All eigenvectors lie on the

straight line determined by

[
1
1

]
, and there is only one linearly independent

eigenvector.
b. Here’s a plot of the eigenvector and some trajectories:



Answers and hints to odd-numbered exercises 509

5. a. λ1 = −1 = λ2: Any nonzero vector of the form

[
x

x

]
= x

[
1
1

]
is an eigen-

vector corresponding to the repeated eigenvalue λ = −1. All eigenvectors

lie on the straight line determined by

[
1
1

]
, and there is only one linearly

independent eigenvector.
b. Here’s a plot of the eigenvector and some trajectories:

7. a. λ1 = −2 = λ2: Any nonzero vector of the form

[−x

x

]
= x

[−1
1

]
is an

eigenvector corresponding to the repeated eigenvalue λ = −2. All eigen-

vectors lie on the straight line determined by

[−1
1

]
, and there is only one

linearly independent eigenvector.
b. Here’s a plot of the eigenvector and some trajectories:

9. α2 = 4β.
11. Two such systems are {ẋ = −2x, ẏ = −2y} and {ẋ = x + 3y, ẏ = −3x − 5y}.
15. b. The sole linearly independent eigenvector is V =

[
1
0

]
.
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Exercises 6.9
1. a. λ1 = −1 + 2i and λ2 = −1 − 2i; V1 =

[
i

1

]
and V2 = V 1 =

[−i

1

]
.

b. Here’s a plot of some trajectories, spirals swirling into the origin (a sink):

3. a. λ1 = −0.5 + i and λ2 = −0.5 − i; V1 =
[−1

i

]
and V2 =

[−1
−i

]
.

b. Some trajectories, spirals swirling toward the origin (a sink):

5. a. λ1 =
(

1 + √
3i
)
/2 and λ2 =

(
1 − √

3i
)
/2; V1 =

[
1(

−3 + √
3i
)
/2

]
and

V2 =
[

1(
−3 − √

3 i
)
/2

]
.
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b. Here are some trajectories, spirals swirling away from the origin
(a source):

7. a. λ1 = −6 + i and λ2 = −6 − i; V1 =
[

1 − i

2

]
and V2 =

[
1 + i

2

]
.

b. Some trajectories, spirals swirling toward the origin (a sink):

9. a. λ1 = 5 + 2 i and λ2 = 5 − 2i; V1 =
[

1
1 − 2i

]
and V2 =

[
1

1 + 2i

]
.



512 Answers and hints to odd-numbered exercises

b. Some trajectories, spirals swirling away from the origin (a source):

11. a. One such system has the matrix of coefficients

[
2 −4
1 2

]
, which yields the

system {ẋ = 2x − 4y, ẏ = x + 2y}.
b. One such system has the matrix of coefficients

[
1 −2
5 −1

]
, which yields the

system {ẋ = x − 2y, ẏ = 5x − y}.
c. One such system has the matrix of coefficients

[−1 2
−2 −1

]
, which yields

the system {ẋ = −x + 2y, ẏ = −2x − y}.

15. X(t) = e− 2
3 t

⎡
⎢⎣cos

(√
2

3 t
)

− 2
√

2 sin
(√

2
3 t
)

−3
√

2 sin
(√

2
3 t
)

⎤
⎥⎦.

Exercises 6.10
1.
{
x(t) = 1

2et − 1
2 (sin t + cos t), y(t) = t − 1 + 2e− t

}
.

3. XGNH =
[
c1e

t − c2e
−t + tet − 1

2et − t2 − 2

c1e
t + c2e

−t + tet − 3
2et − 2t

]

=
⎡
⎢⎣
(
c1 − 1

2

)
et − c2e

−t + tet − t2 − 2(
c1 − 3

2

)
et + c2e

−t + tet − 2t

⎤
⎥⎦ .

5. XGNH =
[

2c1e
4t − c2e

t + 3e5t

c1e
4t + c2e

t + e5t

]
.
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7. XGNH =
[

−c1e
3t + c2e

2t + te2t

c1e
3t − 2c2e

2t + 2e2t − 2te2t

]
=
[

−c1e
3t + (t + c2) e2t

c1e
3t − (2t − 2 + 2c2) e2t

]
.

9. XGNH =
[

3c1e
4t + c2e

2t − 4e3t − e−t

c1e
4t + c2e

2t − 2e3t − 2e−t

]
.

11. XGNH =
[
−c1e

3t + c2e
t + 2et cos t − et sin t

c1e
3t + c2e

t + 3et cos t + et sin t

]
.

13. XGNH =
[
− 1

2c1e
−2t − c2e

−t + 1
10 sin t − 3

10 cos t + 1
6et

−c1e
−2t + c2e

−t + 1
10 cos t + 3

10 sin t + 1
6et

]
.

15. XGNH =
[
(c1 + (c2 + 1) t) et + 1

4e−t

c2e
t − 1

2e−t

]
.

19. d. G = g1

[
1
2

]
, where g1 	= 0 is arbitrary.

e. G =
[

3
6

]
. Then, letting f1 = 0 for convenience, the equations imply that

f2 = 3, so that F =
[

0
3

]
.

21. c. The eigenvectors corresponding to λ1 and λ2 are V1 =
[
(1 + √

57)/4
1

]
and

V2 =
[
(1 − √

57)/4
1

]
, respectively.

d. XGNH = c1e
(−9+√

57) t/2

[
(1 + √

57)/4
1

]
+c2e

(−9−√
57) t/2

[
(1 − √

57)/4
1

]

e. Any particular solution has to be a vector of constants; for example,

XPNH =
[

2
3

]
works.

f. XGH(t) = XGNH(t) + XPNH →
[

2
3

]
as t → ∞ because all exponential

terms have negative exponents.

23. a. XGNH =
[
x(t)

y(t)

]
=
⎡
⎣ − I

k1
e−k1t + I/k1

I
k1−k2

e−k1t − k1I
k2(k1−k2)

e−k2t + I/k2

⎤
⎦

=
⎡
⎣ I

k1

(
1 − e−k1t

)
I
k2

(
1 + k2

k1−k2
e−k1t − k1

k1−k2
e−k2t

)
⎤
⎦ .

b. lim
t→∞x (t) = I

k1
and lim

t→∞y(t) = I
k2

.
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c. The graphs of x(t) and y(t) for the decongestant:

d. The graphs of x(t) and y(t) for the antihistamine:

25. a. ax − by + e > 0.
b. −cx + dy − e > 0.

c. We have the equilibrium point (x∗, y∗) =
(

e(b−d)
ad−bc

,
e(a−c)
ad−bc

)
, provided that

b ≥ d, a ≥ c, and ad − bc 	= 0. (We can’t have a negative number of sup-
porters.)

27. a. XGNH =
[
x(t)

y(t)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
1
2

(
α − l−d

b

)−
√

ab
2b

(
β − k−c

a

)]
e
√

abt

+
[

1
2

(
α − l−d

b

)+
√

ab
2b

(
β − k−c

a

)]
e−√

abt + l−d
b[

−
√

ab
2a

(
α − l−d

b

)+ 1
2

(
β − k−c

a

)]
e
√

abt

+
[√

ab
2a

(
α − l−d

b

)+ 1
2

(
β − k−c

a

)]
e−√

abt + k−c
a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

b. β − k−c
a

<
√

ab
a

(
α − l−d

b

)
.



Answers and hints to odd-numbered exercises 515

c. Here are the graphs of x(t) and y(t) for 0 ≤ t ≤ 50:

Extending the time axis a bit and using the “trace” or “zoom” capabilities
of a CAS or graphing calculator, we find that x(t∗) = y(t∗) when t∗ ≈
55 days. From the graph we see that side “y” is winning after 50 days.

Exercises 6.11
1. a. {ẋ1 = x2, ẋ2 = −64x1 − 20x2; x1(0) = 1/3, x2(0) = 0}.

b.
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c.

d. The mass approaches its equilibrium position but doesn’t quite reach it be-
cause of the large damping force. In particular, the mass doesn’t overshoot
its equilibrium position.

3. a. {ẋ1 = x2, ẋ2 = 16 cos 8t − 64x1;x1(0) = 0, x2(0) = 0}.
b.

c.

d. The half-lines x = t and x = −t are asymptotes for the graph in (c) for t ≥ 0:
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5. a. (M + 0.5)ẍ + 10 ẋ + kx = 0.
b. n = √

1000M + 400/(2M + 1).
c. t = 2M+1

10 ln 4.
d. Removing the damping force means that the scales would continue to oscil-

late and would not settle down to allow a reading to be taken.
7. a. Q′′ +8Q′+15Q = 0: This equation can represent a spring-mass system with

spring constant 15 and damping constant 8. (We could also have derived a
single second-order equation in R.)

b. ẍ − 6ẋ + 10x = 0: This second-order equation cannot represent a spring-
mass system because the equation implies that any damping force works in
the same direction as the mass’s motion. (We could also have derived a single
second-order equation in y.)

Exercises 6.12

1. a.

⎡
⎣ẋ

ẏ

ż

⎤
⎦=

⎡
⎣1 −1 1

1 1 −1
2 −1 0

⎤
⎦
⎡
⎣x

y

z

⎤
⎦.

b. λ1 = −1, V1 =
⎡
⎣ 1

−3
−5

⎤
⎦; λ2 = 1, V2 =

⎡
⎣1

1
1

⎤
⎦; λ3 = 2, V3 =

⎡
⎣1

0
1

⎤
⎦.

c. X(t) =
⎡
⎢⎣ c1e

−t + c2e
t + c3e

2t

−3c1e
−t + c2e

t

−5c1e
−t + c2e

t + c3e
2t

⎤
⎥⎦.

3. a.

⎡
⎣ẋ

ẏ

ż

⎤
⎦=

⎡
⎣3 −1 1

1 1 1
4 −1 4

⎤
⎦
⎡
⎣x

y

z

⎤
⎦.

b. λ1 = 1, V1 =
⎡
⎣ 1

1
−1

⎤
⎦; λ2 = 2, V2 =

⎡
⎣ 1

−2
−3

⎤
⎦; λ3 = 5, V3 =

⎡
⎣1

1
3

⎤
⎦.

c. X(t) =
⎡
⎢⎣ c1e

t + c2e
2t + c3e

5t

c1e
t − 2c2e

2t + c3e
5t

−c1e
t − 3c2e

2t + 3c3e
5t

⎤
⎥⎦.

5. a.

⎡
⎣ẋ

ẏ

ż

⎤
⎦=

⎡
⎣2 −1 1

1 2 −1
1 −1 2

⎤
⎦
⎡
⎣x

y

z

⎤
⎦.

b. λ1 = 2, V1 =
⎡
⎣1

1
1

⎤
⎦; λ2 = 3, V2 =

⎡
⎣1

0
1

⎤
⎦; λ3 = 1, V3 =

⎡
⎣0

1
1

⎤
⎦.
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c. X(t) =
⎡
⎢⎣ c1e

3t + c3e
2t

c2e
t + c3e

2t

c1e
3t + c2e

t + c3e
2t

⎤
⎥⎦.

7. The space trajectory through (0,1,0) when t = 0 is

11. X(t) =
⎡
⎣x(t)

y(t)

z(t)

⎤
⎦=

⎡
⎣−e−t

e−t

0

⎤
⎦.

13. a.
{
y′

1 = y2, y′
2 = −2y1 + y3, y′

3 = y4, y′
4 = y1 − 2y3

}
.

b. λ1 = i, λ2 = −i, λ3 = √
3i, λ4 = −√

3i.

c. Y(t) =

⎡
⎢⎢⎣

y1(t)

y2(t)

y3(t)

y4(t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

x1(t)

x′
1(t)

x2(t)

x′
2(t)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

2 cos t + sin t

−2 sin t + cos t

2 cos t + sin t

−2 sin t + cos t

⎤
⎥⎥⎦.

The masses oscillate in sync because x1(t) = x2(t) and x′
1(t) = x′

2(t) for all
positive values of t .

d. Y(t) =

⎡
⎢⎢⎣

y1(t)

y2(t)

y3(t)

y4(t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

x1(t)

x′
1(t)

x2(t)

x′
2(t)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 cos
(√

3t
)

+ sin
(√

3t
)

−2
√

3 sin
(√

3t
)

+ √
3 cos

(√
3t
)

−2 cos
(√

3t
)

− sin
(√

3t
)

2
√

3 sin
(√

3t
)

− √
3 cos

(√
3t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The masses are now out of sync because at any time t the masses are located
at opposite sides of their respective equilibrium positions and are moving
either toward each other or away from each other.
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e. There are two natural frequencies, 1/2π for the system in part (c), and√
3/2π . The “1” and the “

√
3” in the numerators of the frequencies are the

imaginary parts of the eigenvalues. A third mode of oscillation is possible
that combines the two natural frequencies already found.

15. X(t) =
⎡
⎣A(t)

B(t)

C(t)

⎤
⎦=

⎡
⎢⎣ 11,000e−0.02t + (11,000/3)e−0.06t + 25,000/3

−(22,000/3)e−0.06t + 25,000/3

−11,000e−0.02t + (11,000/3) e−0.06t + 25,000/3

⎤
⎥⎦.

17. a. Ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.1 0.02 0 0 0 0
0.1 −0.14 0 0 0 0

0 0 −0.1 0.02 0 0
0 0 0.1 −0.14 0 0
0 0 0 0 −0.1 0.02
0 0 0 0 0.1 −0.14

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)

y1(t)

y2(t)

z1(t)

z2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

4
2
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

b. x1(t) = 50 − 4.59e−0.169t − 45.41e−0.071t ,

x2(t) = 50 + 15.82e−0.169t − 65.82e−0.071t ,

y1(t) = 14.79e−0.169t + 35.21e−0.071t ,

y2(t) = −51.03e−0.169t + 51.03e−0.071t ,

z1(t) = −10.21e−0.169t + 10.21e−0.071t ,

z2(t) = 35.21e−0.169t + 14.79e−0.071t .

c. Here are x1(t), y1(t), and z1(t) on the same set of axes:

d. Here are x2(t), y2(t), and z2(t) on the same set of axes:
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19. XGNH =
⎡
⎣x(t)

y(t)

z(t)

⎤
⎦=

⎡
⎢⎣ t2 + c3

12

t3 + t2 + c3
4 t + c2

4 − c3
48

t4 + 5
3 t3 + 1

2 (c3 + 1) t2 + c2t + c1

⎤
⎥⎦.

Exercises 7.1
1. (0,0) and

(
1
2 ,1

)
.

3. (0,0), (1,1), and (−1,1).

5. (0,0) and (−1,−1).

7. (0,0),
(

0, 3
2

)
, (1,0), and (−1,2).

9. (0,2nπ) and (2, (2n + 1)π), n = 0,±1,±2, . . . .

11. (1,−1), and (1,1).

13. The entire x-axis except the origin, plus the point (1,1).

15. (0,0), (1,0), (−1,0), and (−4,0).

17. (0, a2) and
(

a1(−1+a1a2−a2)
a1−1 , 1

a1−1

)
, provided that a1 	= 1.

19. (−1.016,0.166), (−0.798,−1.450), (−0.259,−1.208), (0.355,1.551),

(0.634,1.900), and (1.085,−0.956).

Exercises 7.2
17. a. The origin, (0,0), is the only equilibrium solution for each system.

b. (a) {ẋ = −y, ẏ = x }; (b) {ẋ = −y, ẏ = x}.
c. For system (a), the origin is a source (unstable node), whereas for system

(b) the origin is a sink (stable node).

19. a.
{
ẋ = y, ẏ = 0.25x2 − x

}
.

b. Yes, (0,0) is an equilibrium solution.

c. {ẋ = y, ẏ = −x}.
21. d. If a < 0, then ṙ < 0, implying that a trajectory will spiral into (0,0), so that

the origin is a stable spiral point (a sink). If a = 0, then ṙ = 0, so that r is a

constant and the origin is a stable center. If a > 0, the origin is an unstable

spiral point (a source). In the language of Section 2.7, the parameter value

a = 0 is a bifurcation point.
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a < 0

a = 0 a > 0

Exercises 7.3
1. The origin is a spiral source.
3. The origin is a stable node, a sink.
5. The origin is a saddle point.
7. The origin is a center.
9. The origin is a spiral sink.

11. a. (0,0) and (4,1).
b. (0,0) is a saddle point, whereas (4,1) is a sink.

13. a. (0,0), (2,0), and (0,3).
b. (0,0) is a source, (2,0) is a sink, and (0,3) is a saddle point.

15. a. The only equilibrium point is
(
1, a

b

)
.
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b. ẋ = (a − 1)(x − 1) + b
(
y − a

b

)
, ẏ = −a(x − 1) − b

(
y − a

b

)
. Letting u =

x − 1 and v = y − a
b

, this becomes the system {u̇ = (a − 1)u + bv, v̇ =
−au − bv}.

c. λ = − 1
2 − b

2 + a
2 ± 1

2

√
(a − b)2 − 2(a + b) + 1.

d. (1) (1,3) is a spiral source; (2) (1,2/7) is a sink; (3) (1,1/4) is a sink.

Exercises 7.4
1. The only nontrivial equilibrium point is

(
1
4 , 3

2

)
.

3. The only nontrivial equilibrium point is
(

3
4 , 1

4

)
.

5. The only nontrivial equilibrium point is (3,3).

7. [t = .1, x(t) = .905130981942487424, y(t) = 1.99036351756532892]
[t = .2, x(t) = .820792722038854339, y(t) = 1.96310057595484810]
[t = .3, x(t) = .746918149815353428, y(t) = 1.92096012363624435]
[t = .4, x(t) = .682988624646712062, y(t) = 1.8668278660690446]
[t = .5, x(t) = .628223724693027674, y(t) = 1.80349863147592626]
[t = .6, x(t) = .581725902364229608, y(t) = 1.73353191257205697]
[t = .8, x(t) = .509916830817235156, y(t) = 1.58232127656877064]
[t = .9, x(t) = .482944734671241827, y(t) = 1.504546664756024171]
[t = 1, x(t) = .460967197688796904, y(t) = 1.42710548153511119].

15. c. y = ±√
2 cosx + C.

17. a. θ(t) = sin 2t .
b. The period of sin 2t is 2π/2 = π .
c. 19 ticks.
d. Halving the length of the pendulum reduces the amplitude and the period

by a factor of
√

2
2 =

√
1
2 . In other words, shortening the pendulum makes it

run faster, yielding more ticks per minute. (In this case, the clock will tick
27 times per minute.)

Exercises 7.5
5. a. The only bifurcation value is μ = 0.

b. The bifurcation is transcritical.
7. a. The only equilibrium solution is (0,0).

b. {ẋ = (μ + 1)x + y, ẏ = x − y}.
c. The eigenvalues are 1

2μ ± 1
2

√
μ2 + 4μ + 8.

d. We have μ = −2 as a bifurcation value, giving us a pitchfork bifurcation.
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9. a. The origin, (0,0), is the only equilibrium solution.
b. {ẋ = μx, ẏ = −y}
c. The eigenvalues are −1 and μ.
d. There is a pitchfork bifurcation at the origin.

11. There are transcritical bifurcations along the curve a = 1
b

.

Exercises 7.6
3. a.

b.

c. Each trajectory indicates the existence of a stable limit cycle. However, the
shapes of the trajectories and the limit cycles change as ε changes. Simi-
larly, x1(t) and x2(t) are periodic but not trigonometric; when ε changes
from 1/4 to 4, x1(t) changes to a flatter shape, while x2(t) develops
spikes.

7. a. r(t) = 1 +
√

1
Ce2t−1

.

b. θ(t) = t + C.

c. (x(t), y(t)) = (r(t) cos θ(t), r(t) sin θ(t)).
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9.

15. a. {ẋ1 = x2, ẋ2 = −a (x1) x2 − b (x1)}.
17. a–b. The only bifurcation value is μ = 0, and the bifurcation is a supercritical

Hopf bifurcation.
19. a. The only equilibrium points are (0,0) and (−2,−1).

b. The phase portrait near the origin and near the point (−2,−1):

c. There seems to be an unstable limit cycle around (0,0) (a source) and a
stable limit cycle (a sink) around (−2,−1).
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Symbols
3 × 3 system

generalizations to, 347
matrix representation of, 340
solving

via complex eigenvalues, 346, 347
via eigenvalues/eigenvectors, 344

A
Absolute error, 111, 119, 421
Absolute value, 447
Adaptive methods, 137, 142
Agnew, Ralph P., 176n4
Air pollution, 53, 54

rates, 53
Airy, George Bidell, 451
Airy functions

of first kind, 453
of second kind, 453

Airy’s equation, 452
Algebra, 186

complex numbers and, 445, 446
linear, 231, 298, 341, 348
matrix, 268, 269, 436, 437
systems, 202
vector, 433–436

Algorithm, Runge–Kutta–Fehlberg, 137, 142, 247,
248

Almost linear systems, 368–371, 376, 419
Amplitude, 149

of oscillations, 160, 415
time-varying, 332

Amplitude-phase angle form, 148–151
Analytic, 451
Analytic solutions, 27
Angles, phase, 149
Angular velocity, 392, 405f
Antiderivatives, 425
Approximation methods, 173

at equilibrium points, 366–383
Euler’s method and, 366
five-step, 118f
for integrals, 115f
for solutions, 141
local linearity, 113
misleading, 367, 368
numerical, 111–142
slope fields and, 371f

tangent line, 421, 422
Taylor polynomial, 369, 370, 422–425
three-step, 114f
trajectories and, 372f

Argand, Robert, 446
Arms race model, 260
Associated homogeneous equations, 154
Associated linear system, 371, 419
Associative law, 442
Associative rule, 269
Asymptotes, 279
Asymptotically stable equilibrium points, 381
Asymptotically stable solutions, 79, 109
Attractors, 79
Autonomous equations, 61, 108

slope field for, 64
Autonomous nonhomogeneous systems, stability of,

319, 320
Autonomous systems, 235, 238, 357, 358

converting nonautonomous equations into, 235,
236

nonlinear, 369, 376, 418, 419
three-dimensional, 235

Auxiliary equation, 144
Averages, weighted, 136

B
Backward Euler method, 126, 127, 130, 141
Balance equation, 51
Balance law, 51
Basic matrix algebra, 436
Batschelet, E., 354
Bending moment, 209
Bendixson, Ivar, 411
Bendixson’s negative criterion, 416
Bernoulli, Jakob, 144n1
Bernoulli equation, 47
Bessel, Friedrich Wilhelm, 455n2
Bessel functions, 122

Maple and, 457
Mathematica and, 457
of first kind, 457
of second kind, 458

Bessel’s equation, 455
Bifurcations, 87–94, 96–108

diagram, 88, 89
differential equations and, 88, 89, 109
Hopf, 402

525
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pitchfork, 90, 91, 109
point, 88, 89, 109, 298, 312
saddle-node, 90
transcritical, 89, 90, 92, 109
value, 89

Bimolecular chemical reactions, 32, 66
Bistability, 94, 95
Bloodstream, 51, 52
Bombay, 139
Botswana, 55, 129, 212
Boundary conditions, 16, 26
Boundary-value problems, 14–20, 26

solutions, 16, 17
with infinitely many solutions, 17

Brand, L., 354
Brecher, M.E., 36n3
Brusselator, 383

C
CAB, see Civil Aeronautics Board
Cantilever beam problem, 208
Carrying capacity, 74
Cauchy–Euler equation, 164, 171
Cauchy–Euler polygon, 114
Cayley, Arthur, 438
Cayley–Hamilton Theorem, 305
Celestial Encounters: The Origins of Chaos and

Stability (Diacu and Holmes), 361
Centers, 389

for nonlinear systems, 386
for systems, 308
stable, 367, 386, 395, 398
undamped pendulum and, 391

Chain rule, 28, 422
Change, 1

rates of, 1
total, 425, 426

Characteristic equation, 144–146, 181, 275
equal roots and, 146
unequal roots and, 145

Characteristic frequencies, 336
Characteristic polynomial, 341
Characteristic values, 272
Chebyshev’s equation, 460
Chemostat, 366
Christopher, 231, 232
Chu, Tung Chin, 418
Circuit problem, 45
Civil Aeronautics Board (CAB), 337
Closed orbits, 327
Coefficients, see also Undetermined coefficients

constant, 153
matrix of, 265, 439
method of undetermined, 155–157, 449
nonconstant, 169

variable, 449
Coleman, Courtney, 322n8
Column vectors, 436
Columns, 265, 440
Commutative property, 434
Compartment problems, 50–55
Complex conjugates, 145–147, 445, 448

roots, 147
Complex eigenvalues, 305–314

solving 3 × 3 systems with, 346
systems with, 305–314

Complex eigenvectors, 305–314
Complex numbers

algebraic view of, 445
representation of, 447f

Complex plane, 447
Components, 433
Composition of transformations, 439
Computers, 202, 451
Concavity

down, 73
phase portraits and, 74f
up, 73

Concentrations, 297
Constant coefficients

higher-order linear equations with, 172
homogeneous nth order linear equation with,

172
homogeneous second-order linear equations

with, 143
nonhomogeneous nth order linear equation with,

172
nonhomogeneous second-order linear equations

with, 154
Constants

arbitrary, 348
damping, 329, 332
spring, 152
vectors of, 316
velocity, 32

Continuous functions, 169
piecewise, 186, 227, 228

Converges, 427
Conversion techniques, 233, 236

higher-order equations into systems, 233
nonautonomous equations, 235
second-order initial value problem, 236
second-order linear equations, 233
second-order nonlinear equations, 234
third-order equations, 234

Convolution, 194–204, 228
Convolution Theorem, 199, 228

integral equation and, 200
Cooling

Newton’s law of, 36, 285
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Coordinates, 433
Cosine, hyperbolic, 193
Cosines, hyperbolic, 240
Counterclockwise, 248, 282, 396
Cramer’s rule, 444
Critical points, 78, 108, 260
Critically damped motion, 332
Crowding terms, 363
Cumulative truncation error, 116, 134

square of step size and, 134
Curie, Marie and Pierre, 35
Currents, 333
Curves

above, 82
away, 58, 82
below, 82
deflection, 208
elastic, 208
four-dimensional, 344
implicit solutions of, 31f
in three-dimensional space, 257
integral, 11, 26
positive direction of, 20
slope fields and, 58
solutions, 11, 31f, 112, 254
space, 20, 21
toward, 82

D
D’Alembert, Jean Baptiste, 153
Damped motion, 148
Damped pendulums, 285, 397
Damping constants, 329
Damping force, 329
Decreasing, 72, 120, 290
Deflection curve, 208
Degree of polynomial trial solutions, 158t
Denominators, 362
Dependent eigenvectors, 288
Derivative tests, 81, 83, 406

failure of, 81
Derivatives, 266

negative, 72, 81
partial, 100
positive, 72

Determinants, 276, 277, 341, 443
of matrix of coefficients, 341

DEtools, 451
Diacu, F., 361
Diastole, 248
Differential equations

basic terminology, 2–8
bifurcations and, 87–89
integrating, 27
Laplace transform of, 191

nonlinear first-order, 384
partial, 2–8
solutions of, 8–14
special, 460
stiff, 123, 141
systems of, 65

Differential Equations (2nd Edition) (Agnew),
176n4

Differential operators, 151
Diffusion problems, 296
Dirac, Paul A.M., 214
Dirac delta function, 213–215, 228
Direction fields, see Slope fields
Discontinuous forcing terms, 207
Discontinuous functions

cantilever beam problem and, 208, 209
transforms of, 205

Distance, total, 426
Distributions, 214
Distributive law, 442
Distributive rule, 269
Diverges, 427, 429
Domains, restricted, 99
Double pendulum, 355
Double root, 153
Dr. Euler’s Fabulous Formula (Nahin), 146n3
Driven undamped motion, 334
Driving term, 40
Dsolve, 451
Dummy variables, 15
Dynamical solutions, 20
Dynamics, 1

E
Eddington, A.S., 251
Eigenvalues, 144, 271, 272, 275, 277, 359, 442–444

complex, 305–314
complex conjugate, 307, 309, 399, 413
conjugates, 306
equal nonzero, 298, 300, 301
equal real, 298
equal to zero, 293, 294
matrix representation of, 350
negative, 290, 302
nonhomogeneous systems and, 350
positive, 302
pure imaginary, 311, 380
saddle points and, 292
sinks and, 290, 351
solving 3 × 3 systems with, 344, 346
solving linear systems with, 273, 277
sources and, 289, 351
unequal, with opposite signs, 292
unequal negative, 290
unequal positive, 288, 289
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unequal real, 286
zero, 293, 294, 303

Eigenvectors, 271, 273, 274, 277, 301, 341, 359,
442–444

complex, 305–314
dependent, 288
distinct, 298
generalized, 301, 346
geometric interpretation of, 274
independent, 298, 300
matrix representation of, 350
nonhomogeneous systems and, 350
representative, 274, 275f
solving 3 × 3 systems with, 344
solving linear systems with, 273, 277

Eighth-order homogeneous linear equations, 174
Elastic curve, 208
Elements, 266, 436
Elimination, 444
Ellie, 11, 139
Emden’s equation, 251, 252
Entering, 53
Entries, 266, 436
Epstein, J.M., 403n3
Equal eigenvalues

nonzero, 298, 300
real, 298–305

Equal matrices, 436
Equal roots

characteristic equation and, 146
real but, 145

Equalities, checking, 197
Equations, see also Differential equations; Linear

equations; Ordinary differential
equations

Airy’s, 452
autonomous, 61, 72, 108
auxiliary, 144
Balance, 51
Bernoulli, 47
Bessel’s, 455
Cauchy–Euler, 164, 171, 172
characteristic, 144–146, 181, 275
Chebyshev’s, 460
eighth-order homogeneous linear, 174
Emden’s, 251, 252
Euler’s differential, 164
first-order, 144, 219, 449
form of, 140
fourth-order homogeneous linear, 173
Gauss’s hypergeometric, 460
Gompertz, 86
Hermite’s, 460
higher-order, 231–239
higher-order linear, 172–177

homogeneous, 35, 40, 108, 328
indicial, 456
integral, 202
integro-differential, 200, 201
Laguerre’s, 460
Landau, 78, 91, 98
Legendre’s, 460
logistic, 72, 73
Lotka–Volterra, 384, 385, 420
Michaelis–Menten, 129
nonautonomous, 61, 108
nonhomogeneous, 40, 154–156, 165, 174, 196
nonhomogeneous nth-order linear, 172
nonhomogeneous second-order linear, 154
nonlinear, 41, 307, 367
nonlinear first-order differential, 384
nth order, 3
Riccati, 122
satisfying, 8
second-order, 219, 220
separable, 27–39, 108, 362
slope fields and, 61, 62
third-order, 143, 174, 177
uncoupled, 405, 411
van der Pol’s, 408, 420
wave, 3
with parameters, 74, 75

Equilibrium points, 78–87, 108, 259, 268, 358, 361,
418

asymptotically stable, 381
hyperbolic, 377
linear approximation at, 366
nonhyperbolic, 377
of nonlinear systems, 363, 376, 377, 386
on horizontal axis, 293
tests for, 79
unstable, 382

Equilibrium solutions, 60, 79, 109, 260
semistable, 79, 109
sinks and, 79, 90, 93, 95, 98, 109, 362, 363
sources and, 79, 95, 109, 363
unstable, 79, 109

Equilibrium values, 33
Equivalence, 328
Errors

absolute, 111, 119, 421
analysis, 117–119, 134
cumulative truncation, 116, 134
functions, 31
input, 141
local truncation, 116, 134, 136
propagated, 116, 141, 423
round-off, 116f, 141
total, 116f
truncation, 116, 141, 424
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Euler, Leonhard, 89
Euler polygon, 114
Euler’s differential equation, 164
Euler’s formula, 146

complex numbers and, 448
discovery of, 146n3

Euler’s gamma function, 428, 457n4
Euler’s method, 111–119, 119t, 120–126, 128, 138

backward, 126, 127, 130, 141
completely unknown solution, 122
improved, 131–134, 134t, 135, 136, 138, 246
linear approximation and, 366
systems and, 244–246
unknown exact solution, 121, 122
with error analysis, 118, 119

Ewing, J.A., 96
Existence, 177–181
Existence and Uniqueness Theorem, 100, 103, 109,

178
many solutions, 178
no solutions, 179
one solution, 179
regions, 101f

Expansion
Maclaurin, 371
Taylor, 369, 431

Exponential forcing function, 159
Exponential order, function of, 186

F
Failure, of derivative tests, 81
Fairness in employment, 54
Fechner, Gustav, 65
Finite values, 58
First Shift Formula, 194, 207
First-order equations

linear, 239, 257, 271–286
power series solutions, 449
systems of, 219

First-order initial value problems, 14, 15
First-order method, 117, 141
First-order ordinary differential equations

nonlinear, 5
First-order systems, 349
Fitzhugh–Nagumo model, 252
Five-step approximation, 118f
Force

damping, 329
shear, 209
stretch and, 326

Forced damped motion, 332, 334
Forced motion, 332

phase portraits, 333, 334
Forced undamped motion, 334

analysis, 335

solutions, 335
Forcing functions, 154, 159–161

exponential, 159
linear combination of, 161
trigonometric, 160

Forcing term, 40
discontinuous, 207

Formulas
Euler, 118, 124, 132, 133, 146, 448
First Shift, 194, 207
quadratic, 448
Second Shift, 194, 207

Four-dimensional curves, 344
Four-dimensional situations, 262
Four-dimensional space, 21
Four-dimensional systems

from mechanics, 349
matrix form of, 348

Fourth-order homogeneous linear equation, 173
Fourth-order methods, 134, 138
Fractions, partial, 32, 426, 427
Free damped motion, 329

spring-mass systems, 330
Free undamped motion, 325
Frequency, 336

characteristic, 336
natural, 336

Frobenius, Ferdinand Georg, 454n1
Frobenius, method of, 454, 454n1
FTC, see Fundamental Theorem of Calculus
Functions, 186, 195, 266

Airy, 453
Bessel, 122, 457
continuous, 169
Dirac delta, 213–215, 228
discontinuous, 180
error, 31
Euler’s gamma, 428, 457n4
exponential forcing, 159
forcing, 154, 159–161
gamma, 428, 457n4
generalized, 214
Heaviside, 205–207
hyperbolic, 422
hyperbolic secant, 139
implicit, 422
impulse, 213
independent, 146n2
inverse of, 195
of exponential order, 186
of partial derivatives, 429
of variables, 429–432
one-to-one, 195
periodic, 193
piecewise continuous, 186, 227, 228
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special, 460
unit impulse, 214, 228
unit step, 205
unknown, 165
with no explicit integrals, 31

Fundamental Theorem of Calculus (FTC), 12, 15,
425, 426

G
Galileo, 337, 337n11
Gamma function, 428, 457n4
Gauss, Karl Friedrich, 446
Gauss’s hypergeometric equation, 460
General form

for ordinary differential equations, 4
for second-order ordinary differential equations,

4
General solutions, 19, 25, 26
Generalized eigenvector, 301, 346
Generalized functions, 214
Geometric behavior of solutions, 278

saddle points, 278, 279
sources, 279–281
spiral sources, 281, 282

Geometric series, 424, 451
Geometric vector, 433
Gompertz, Benjamin, 86
Gompertz equation, 86
Graphs

of solutions, 29, 30
phase portraits and, 84
separable equations and, 29

Guessing, 29

H
Hadlock, Charles R., 97
Half-lines, 278
Hartman, Philip, 377
Hartman–Grobman theorem

applications of, 377
Lotka–Volterra equations and, 385
trajectory, 379f, 380f
undamped pendulum and, 390–394

Heartbeat, 247, 248, 253, 402
Heaviside function, 205–207
Hermite’s equation, 460
Herod, J.V., 5n2
Heteroclinic trajectories, 394
Heun, Karl, 132
Heun’s method, 132, 141, 246
Higher-order equations, 231–239

conversion techniques, 233, 236
Higher-order linear equations, 172–177

superposition principle, 172

with constant coefficients, 172
HIV, 1, 5
Holmes, P., 361
Homogeneous equations, 35, 108

associated, 154
eighth-order linear, 174
fourth-order linear, 173
nth order linear, 174
second-order linear, 143–153
superposition principle for, 144

Homogeneous linear systems, stability of, 286, 298,
305

Homogeneous nth order linear equation, with
constant coefficients, 172

Homogeneous second-order linear equations
characteristic equation and, 144, 145
with constant coefficients, 143–154

Hooke’s Law, 326
Hopf bifurcation, 401, 411, 414, 420

subcritical, 413, 414, 420
supercritical, 412, 413, 420, 524

Horizontal axis, 293
Hudson’s Bay Company, 388n1
Hyperbolic cosine, 178, 193, 240
Hyperbolic equilibrium point, 377
Hyperbolic functions, 422
Hyperbolic secant function, 139
Hyperbolic sine, 193, 240
Hysteresis, 96

hysteresis loop, 96

I
Identities, 8
Identity matrix, 269, 341, 442
Imaginary part, 145, 445
Imaginary units, 445
Implicit functions, 422
Implicit solutions, 10, 111

of curves, 31f
verifying, 10, 11

Improper integral, 427–429
convergence, 427
divergence, 427

Improved Euler method, 131–134, 134t, 138, 246
second-order, 134, 142

Impulse functions
transforms of, 213
unit, 214, 228

Increasing, 64, 72
Indefinite integrals, 11
Independent eigenvectors, 298, 300
Independent functions, 146n2
Indicial equation, 456
Infected, 252
Infinite families of solutions, 11, 26
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Infinity, points at, 458
Initial conditions, 14–16, 26
Initial value problems (IVP), 14–26

first-order, 14
for step sizes, 122t
linear, 101
second-order, 16, 236
slope fields, for system, 247f
solutions of, 30f, 34f, 44f, 115
solutions of, using inverse Laplace transform,

195, 196
system, 19–21, 247f
system, with many solutions, 240
system, with no solution, 240
with discontinuous forcing term, 207, 208
with infinitely many solutions, 99
with unique solution, 14–26

Input, 40
nonhomogeneous second-order linear equations,

154
Input error, 141
Integers, nonnegative, 457
Integral equations

Convolution Theorem and, 200
solutions, 200, 201

Integrals, 11, 26
approximation of, by rectangular area, 115f
curves, 11, 26
functions with no explicit, 31
improper, 427–429
indefinite, 11

Integrating differential equations, 27
Integrating factor, 41, 42, 108

using, 45
Integration, 425
Integro-differential equations, 200, 201
Intervals, unique solutions in, 112
Inverse, multiplicative, 442
Inverse Laplace transforms, 194–198, 227

solving IVPs using, 195, 198
Inverse of functions, 195
Inverse transformations, 185

Laplace, 194–198
Irregular singular point, 454
Isocline, 59, 108

solutions and, 60
zero, 108

Isolated, 402
IVP, see Initial value problems

J
Jacobian, 375
Joshua, 11
Jump discontinuity, 206

K
Kermack, 139
Kermack–McKendrick model, 140
Kirchhoff’s laws, 45, 77

Second, 309
Voltage, 143, 151, 163

Kroopnick, A.J., 36n2
Kutta, M. Wilhelm, 136

L
Lagrange, Joseph Louis, 165
Laguerre polynomial, 226
Laguerre’s equation, 460
Lanchester, F.W., 324
Landau, L. D., 91
Landau equation, 78, 91, 98
Laplace, Pierre-Simon de, 185
Laplace transform, 185, 186, 227, 320

examples of, 196t
inverse, 194–198, 227
of differential equation, 191
technology and, 202
variable coefficients and, 223
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Laser threshold, 93
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Newton’s law of cooling, 285
Newton’s Second Law of Motion, 152, 326, 330
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Nonhyperbolic equilibrium point, 377
Nonlinear Dynamics, Mathematical Biology, and

Social Science (Epstein), 403n3
Nonlinear Dynamics and Chaos (Second Edition)

(Strogatz), 93n6
Nonlinear equations

examples, 387, 390–394
second-order, 234, 367, 374, 390

Nonlinear first-order differential equations, 384
Nonlinear operators, 41
Nonlinear ordinary differential equations, 5

first-order, 5
Nonlinear systems, 6, 26, 231

autonomous, 369, 376, 418, 419
centers, 386
examples, 387, 390–394
phase portraits and, 364f
slope fields and, 364f
sources for, 378
spiral points, 386
spiral sink for, 368
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Singular solutions, 19, 26, 28, 31, 108
Sinks, 79, 84, 262, 263, 278, 290, 291, 296, 299,

299f, 320, 330, 351, 359
eigenvalues and, 290, 304, 351
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unequal negative eigenvalues and, 290

Six Sources of Collapse (Hadlock), 97
Slope fields, 57, 58, 59f, 60, 60f, 61, 62, 62f –64f,

81f, 99f, 103f, 108, 247f, 253, 254,
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forced undamped motion, 334
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implicit, 10, 11, 30, 31f, 108, 111
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with unique, 178

local linear approximation, 113f
n-parameter family of, 15
no closed form, 168, 169
numerical, 244
numerical approximation, 127–142
ODE, involving Dirac delta function, 215
of differential equations, 8–13
of nonhomogeneous systems, 182
of ordinary differential equations, 8, 9
of second-order ordinary differential equations,

9
of systems, 274, 358
of systems of ODEs, 19–21
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166, 351
power series, 449–451
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real-valued, 359
semistable equilibrium, 79, 109
separable equations, 30
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451–454
singular, 19, 26, 28, 31, 108
spring-mass problems, 331
stationary, 79
to 3 × 3 systems, 346, 347
to eighth-order homogeneous linear equations,

174
to linear systems with eigenvalues/eigenvectors,

273, 274
to nonhomogeneous third-order equations, 174
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for nonhomogeneous second-order linear
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for nonhomogeneous systems, 318t
unique, 16, 17, 98, 99, 102, 109, 112
unknown exact, 121, 122
unstable equilibrium, 79, 109
vectors, 266

Sources, 79, 84, 279, 281, 282, 288, 294, 299, 299f,
300, 351, 359

eigenvalues and, 289
equilibrium solutions and, 87, 95, 362
for nonlinear systems, 378
geometric behavior and, 279–282
phase portrait and, 406
spiral, 281, 303, 310

Space curves, 20, 21
Special functions, 460
Special slope field, 60
Spiral points

for nonlinear systems, 386
outward, 409
undamped pendulum and, 391

Spiral sink, 302, 310
for nonlinear systems, 368

Spiral sources, 281, 303, 310
Spitznagel, Edward, 322n8
Spring constants, 152
Spring-mass problems, 325, 360

analysis, 327, 328
phase portrait analysis, 330
solution curves and, 328
solutions, 331

Spring-mass systems, 164, 326, 349f
free damped motion, 330

Square matrix, 437
Stability, 361, 418

asymptotically, 381
criteria, 311t
of autonomous nonhomogeneous systems, 319
of homogeneous linear systems, 286, 298, 305
of nonlinear systems, 363, 376, 377
theorem, 392

Stable centers, 367, 386, 395, 398
Stable limit cycle, 403, 420
Stable nodes, 290
Standard form of linear equations, 39
Star nodes, 299
Starting times, 259
Stationary points, 79, 109
Stationary solutions, 79
Steady-state, 46

terms, 333
Steiner, A., 354

Step size
for initial value problems, 122t
square of, 134
variable, 137, 142

Stiff differential equations, 123, 141
Stimulus, 247
Stretch, force and, 326
Strogatz, S.H., 93n6
Substitution, 273, 425
Sufficiency, 101
Superposition principle, 40, 143, 144, 182

for higher-order linear equations, 172
for homogeneous equations, 143, 144
linear systems and, 287

Susceptibles, 252
Systems, 265–271

algebra, 202
almost linear, 368–371, 373, 374, 376, 419
associated linear, 371, 419
autonomous, 235, 236, 238, 253, 260, 319, 357,

358, 369, 376, 402, 416, 418, 419
autonomous nonhomogeneous, 314, 319
autonomous three-dimensional, 236
centers, 308
conversion of higher-order equations, 233
Euler’s method and, 244–246
first order, 349
high-order equations, 231–239
homogeneous linear, 286, 298, 305
IVP, 19–21, 247f

with many solutions, 240
with no solutions, 240
with unique, 240

linear, 6, 26, 186, 217, 218, 231, 409
transforms, 218, 220

linearized, 379, 386, 409, 412
Lotka–Volterra, 363, 384, 385
nonhomogeneous, 182, 314–324
nonlinear, 6, 26, 231, 361, 363, 376, 377, 384
nonlinear autonomous, 369, 376, 418, 419
of differential equations, 65
of first-order equations, 349
of ordinary differential equations, 6–8, 19–21,

237
phase portraits for, 254–259, 279f –281f, 294f,

300f, 358
Runge–Kutta method, 246
second-order equations, 271
solutions, 257
spring-mass, 164
states of, 257, 326
three-dimensional, 235, 236, 262
trajectory, 247f, 254, 262f, 263f, 305, 330f,

333f –335f
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two-dimensional, of first-order linear equations,
271–277

two-dimensional linear, 267, 311t
uncoupled, 317
with complex eigenvalues, 305, 307, 309
with two limit cycles, 406

Systole, 248

T
T cells, 5
Tangent line, 80, 366, 369, 370

approximation, 421, 421f
Tangent plane, 370

Taylor expansion and, 431
Taylor expansion, 369

geometric, 424
power, 424
tangent plane and, 431

Taylor polynomial approximation, 369, 370,
422–425

first-degree, 370
Taylor series, 422–424
Technology, 202
Terms

discontinuous forcing, 207, 208
driving, 40
forcing, 40
steady-state, 333
transient, 46, 333

Theorems
Cayley–Hamilton, 305
Convolution, 199, 228
Existence and Uniqueness, 100, 103, 109, 178
Fundamental, of Calculus, 12, 425, 426
Hartman–Grobman, 375–377, 419
Mean Value, 105
Mean Value for integrals, 426
stability, 392

Third-order equations, conversion of, 234
Third-order nonhomogeneous equations, 174
Three-dimensional systems, 236, 262
Three-dimensional trajectory, 262
Three-step approximation, 114f
Threshold, 52, 93

laser, 93
Time-varying amplitude, 332
Total change, 425, 426
Total distance, 426
Total error, 116f
Townes, C., 92
Toy, P., 36n3
Trace, 276, 277
Trajectory, 20, 26, 358

half-lines, 278
Hartman–Grobman theorem, 379f, 380f

linear approximation and, 387f
Lotka–Volterra equations, 395, 396
of systems, 247f, 262f, 263f, 330f, 333f –335f
phase portrait with one, 255, 256
phase portrait with several, 256, 257
three-dimensional, 262
two-dimensional, 263
x-y plane, 262f, 263f

Transcritical bifurcation, 89, 90, 92, 109
Transformations, 40, 154, see also Inverse

transformations; Laplace transform
composition of, 439
linear, 188, 227
of discontinuous functions, 205–213
of impulse functions, 213–215
of systems of linear equations, 217–220

Transient behavior, 410
Transient terms, 46, 333
Trapezoid Rule, 132
Trigonometric forcing functions, 160
Triode generator, 408
Truncation error, 116, 141, 424

cumulative, 116, 134
local, 116, 134, 136

Two-dimensional linear systems
matrix representation, 267
stability criteria for, 311t

Two-dimensional systems, of first order linear
equations, 271

Two-dimensional trajectory, 263

U
Unbounded vibrations, 160
Uncoupled equations, 405
Uncoupled systems, 317
Undamped oscillations, 312
Undamped pendulum, 265, 307, 384, 390, 391f, 420

centers and, 391
Hartman–Grobman theorem and, 390–394
negative direction, 392
spiral points and, 391

Underdamped motion, 332
Undetermined coefficients, 155, 159–162, 174, 427

exceptions to, 162
method of, 155–157, 182, 183, 449, 451
nonhomogeneous systems and, 315
with exponential forcing function, 159
with linear combination of forcing functions,

161
with trigonometric forcing function, 160

Unequal eigenvalues
characteristic equation and, 145
negative, 290
positive, 289
real, 286–298
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real but, 145
with opposite signs, 291, 292

Unique solutions, 16, 17, 98, 99, 102
in intervals, 112
IVP with, 99–102
linear IVP, 101
system IVP with, 240

Uniqueness, 177–181
Unit impulse function, 214, 228
Unit step function, 205
Unstable equilibrium point, 382
Unstable equilibrium solution, 79, 109
Unstable limit cycle, 404, 406, 420

motion in, 405f
phase portrait, 393f

Unstable nodes, 281, 288
Unstable repellers, 281

V
Vacuum tube, see also Triode generator
Van der Pol, Balthasar, 408
Van der Pol’s equation, 408, 420

phase portraits, 409f
Variable coefficients, 449

Laplace transform and, 223
Variable step sizes, 137, 142
Variables

dummy, 15
functions of, 429–432
separation of, 28

Variation of constants, 165
Variation of parameters, 146, 165–172

no closed form solution, 168, 169
nonconstant coefficients, 169, 170
using, 165–167

Vector algebra, 433–436
Vectors, 265, 266, 433–436, see also Eigenvectors

column, 436
geometric, 433
linear dependence of, 343
linear independence of, 343
n-dimensional, 435
nonzero, 443
of constants, 316
row, 436
solution, 266
zero, 268, 434

Velocity, 16, 326, 426, 492
angular, 392, 405f
constants, 32
of reactions, 32, 66

Volterra, Vito, 385
Von Bertalanffy growth model, 47

W
Wagon, S., 36n3
Wave equation, 3
Weighted averages, 136
Wessel, Caspar, 446

Y
Yeargers, E.K., 5n2

Z
Zeeman, E.C., 247
Zero isocline, 108
Zero matrix, 268, 437
Zero vector, 268, 434
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