
Advanced
Analytics in
Power BI with
R and Python

Ingesting, Transforming, Visualizing
—
Ryan Wade

Advanced Analytics
in Power BI with R

and Python
Ingesting, Transforming, Visualizing

Ryan Wade

Advanced Analytics in Power BI with R and Python: Ingesting, Transforming,
Visualizing

ISBN-13 (pbk): 978-1-4842-5828-6			 ISBN-13 (electronic): 978-1-4842-5829-3
https://doi.org/10.1007/978-1-4842-5829-3

Copyright © 2020 by Ryan Wade

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484258286. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ryan Wade
Indianapolis, IN, USA

https://doi.org/10.1007/978-1-4842-5829-3

I’d like to thank my colleagues at BlueGranite. It is an honor to be part
of a team of very smart and talented individuals. Iron sharpens Iron.

I’d like to thank the neighborhood I grew up in, the west side of
Michigan City, IN. My experience growing up there is priceless. I want

to thank Patrick Leblanc, Mico Yuk, Terry Morris, Dr. Brandeis
Marshall, and Dr. Sydeaka Watson. Each of you has attributes that I
admire much, and you all mentor me from afar via your examples.

I’d like to thank all my teammates from little league to college.
Athletics has been one of my best life teachers, and it was an honor to
go through the process with you all. I look up to and respect many of
you. I’d like to thank my former coaches, especially my high-school

and collegiate coaches. The tough challenges you placed me in caused
me to develop grit that has helped me in other aspects of my life.

Because of that, I will always be indebted to you.

I’d like to thank my extended family. It takes a village to raise a child,
and I have benefited from the support of many family members, and I

appreciate that. I’d like to thank my mentees, Tim Adams Jr. and Camille
Little. Both of you have a rare combination of very high intellect and

very likable personalities. In a short time, roles will switch, and you will
become the mentor, and I will be the mentee! I’d like to thank my

brothers from Michigan City and my brothers that I met while playing
football in Louisville. I experienced blood, sweat, and tears with you all.
We jumped off the porch and became men together. No matter what, we
will be brothers for life! I’d like to thank my first cousins. We grew up like
brothers and sisters and shared many fond memories. Some of you had
my back in a time of need. That will never be forgotten. I want to thank
my siblings, Paulette (RIP), Stephanie, Tina, and Luke, and my nephew
Junebug, who was raised like my brother. When we needed each other,

we always had each other’s back. Let’s stay that way. I’d like to thank my
mom and dad, Luther and Ernestine Wade. I appreciate your love,

support, and sacrifice for me and my siblings. It is much appreciated! In
your words, daddy, “I love you, and that is always.”

Last but not least, I’d like to thank God. I appreciate all the talents you
have given me. I will show my appreciation by using them to the fullest

so that I can be a benefit to my community.

v

Table of Contents

Part I: �Creating Custom Data Visualizations Using R������������������������������ 1

Chapter 1: �The Grammar of Graphics�� 3

Steps to build an R custom visual in Power BI�� 4

Step 1: Configure Power BI��� 4

Step 2: Drag the “R custom visual” icon to the Power BI canvas��� 4

Step 3: Define the data set��� 5

Step 4: Develop the visual in your default R IDE��� 5

Step 5: Use the following template to develop your visual��� 6

Step 6: Make the script functional�� 7

Recommended steps to create an R visual using ggplot2��� 7

Step 1: Load the required packages that you will need for your script������������������������������������ 8

Step 2: Make any required adjustments to the data set��� 9

Step 3: Initiate the creation of the visualization with the ggplot() function���������������������������� 10

Step 4: Add desired geom(s)��� 10

Step 5: Define your titles, subtitles, and caption�� 12

Step 6: Make any necessary changes to the x and y axis�� 13

Step 7: Apply themes if needed�� 16

Step 8: Use the theme( ) function to change any specific non-data elements����������������������� 17

Bonus step: Specifying specific colors for your points in your scatter plot���������������������������� 20

About the Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

vi

The importance of having “tidy” data�� 23

Popular geoms��� 24

Controlling aesthetics with scales��� 32

Themes built into ggplot2�� 34

Using R visuals in the Power BI service��� 35

Helper packages for ggplot2�� 35

Summary��� 36

Chapter 2: �Creating R Custom Visuals in Power BI Using ggplot2�������������������������� 39

Callout chart��� 40

Step 1: Acquire the necessary data�� 41

Step 2: Create a slicer based on the year in the Filter pane��� 42

Step 3: Configure the R visual in Power BI��� 43

Step 4: Export data to R Studio for development�� 43

Step 5: Load the required packages��� 45

Step 6: Create the variables needed for the data validation test�� 46

Step 7: Create the data validation test��� 46

Step 8: Add additional columns to your data set that is required for the
custom R visual�� 47

Step 9: Create the variables that will be used for the dynamic portions of the chart������������ 48

Step 10: Start building the chart by defining the ggplot( ) function�� 51

Step 11: Add a column chart layer to the R visual�� 52

Step 12: Add a text layer to the R visuals��� 52

Step 13: Modify the y axis�� 54

Step 14: Convert chart from a vertical column chart to horizontal bar chart������������������������� 55

Step 15: Add a dynamic annotation to the R visuals�� 56

Step 16: Add the dynamic titles and caption to the R visual�� 58

Step 17: Remove labels from x axis and y axis�� 59

Step 18: Remove legend��� 60

Step 19: Change the look and feel of the visual using theme_few( )�������������������������������������� 61

Step 20: Center align titles��� 62

Step 21: Add code to Power BI��� 64

Table of Contents

vii

Bubble chart��� 66

Step 1: Acquire the necessary data�� 67

Step 2: Load the data into Power BI��� 68

Step 3: Create a filter slicer based on the year�� 68

Step 4: Do the initial R visual configuration��� 68

Step 5: Export data to R Studio for development�� 69

Step 6: Load the required packages��� 69

Step 7: Create the variables needed for the data validation test�� 69

Step 8: Create the data validation test��� 70

Step 9: Define the colors for the conferences and conference divisions������������������������������� 70

Step 10: Dynamically define the chart titles��� 71

Step 11: Create the chart’s data set��� 71

Step 12: Start the chart by defining the ggplot function�� 72

Step 13: Add the layer for your bubble chart using the geom_point geom���������������������������� 73

Step 14: Add labels to the bubble chart�� 74

Step 15: Change the color of the bubble’s border and change the color of the
bubble’s fill��� 76

Step 16: Create the ggtitle�� 77

Step 17: Set the theme��� 78

Step 18: Add code to Power BI��� 78

Forecast��� 80

Step 1: Acquire the necessary data�� 81

Step 2: Create a slicer based on quarterback�� 83

Step 3: Configure the R visual�� 83

Step 4: Export data to R Studio for development�� 83

Step 5: Load the required packages to the script��� 83

Step 6: Create the variables needed for the data validation test�� 84

Step 7: Create the data validation test��� 84

Step 8: Create the dynamic chart title�� 85

Step 9: Create the data set that is needed to generate the forecast�������������������������������������� 85

Table of Contents

viii

Step 10: Generate the forecast��� 86

Step 11: Generate the plot�� 86

Step 12: Add code to Power BI��� 88

Line chart with shade�� 89

Step 1: Acquire the necessary data�� 92

Step 2: Load the data into Power BI��� 93

Step 3: Create the report slicers��� 94

Step 4: Configure the R visual�� 94

Step 5: Export data to R Studio for development�� 94

Step 6: Load the required packages to the script��� 95

Step 7: Create the variables needed for the data validation test�� 95

Step 8: Create the data validation test��� 96

Step 9: Create a new data frame based on the dataset data frame��������������������������������������� 97

Step 10: Create the variables that will be used for the dynamic portions of the chart���������� 97

Step 11: Create the data sets needed for background shade�� 98

Step 12: Create the data sets needed for line chart��� 102

Step 13: Create a named character vector that will be used to color the shades���������������� 103

Step 14: Start the chart by defining the ggplot function�� 103

Step 15: Add a layer to create the background shade�� 104

Step 16: Add a line chart based on the statistic selected��� 105

Step 17: Reshade the background using pre-determined colors based on the
political party�� 106

Step 18: Format the y axis based on the statistic selected�� 106

Step 19: Add labels to the x and y axis��� 106

Step 20: Add the dynamic titles and caption to the custom R visuals���������������������������������� 107

Step 21: Apply a theme based on The Economists publication�� 107

Step 22: Add code to Power BI��� 107

Map�� 109

Step 1: Acquire the necessary data�� 111

Step 2: Load the data into Power BI��� 113

Step 3: Create a slicer based on state in the Filter pane�� 113

Step 4: Configure the R visual�� 113

Table of Contents

ix

Step 5: Export data to R Studio for development�� 113

Step 6: Load the required packages��� 113

Step 7: Create the variables needed for the data validation test�� 114

Step 8: Create the data validation test��� 114

Step 9: Create the variables for the chart titles�� 115

Step 10: Add the quintile column to the data set��� 115

Step 11: Define the colors that will be used to shade the map�� 116

Step 12: Define the ggplot() function�� 116

Step 13: Add the map layer�� 117

Step 14: Format the x and y axis�� 118

Step 15: Color the counties based on their quintile�� 118

Step 16: Improve the approximation of the selected state��� 119

Step 17: Add the dynamic titles and caption to the custom R visuals���������������������������������� 120

Step 18: Apply the theme_map( ) theme��� 120

Step 19: Add code to Power BI��� 120

Quad chart��� 121

Step 1: Acquire the necessary data�� 124

Step 2: Load the data into Power BI��� 125

Step 3: Create a slicer for game type and period��� 126

Step 4: Configure an R visual on the report canvas�� 126

Step 5: Export data to R Studio for development�� 126

Step 6: Load the required packages��� 127

Step 7: Create the variables needed for the data validation test�� 127

Step 8: Create the data validation test��� 128

Step 9: Create the chart titles��� 128

Step 10: Add additional columns to the data set�� 129

Step 11: Start the chart by defining the ggplot function�� 129

Step 12: Use the geom_point( ) geom to plot the players on the plot����������������������������������� 130

Step 13: Add the labels for each quadrant��� 130

Step 14: Draw vertical and horizontal lines through the x and y axis���������������������������������� 131

Step 15: Add quadrant labels to the chart�� 131

Table of Contents

x

Step 16: Add labels for the x and y axis��� 134

Step 17: Add the dynamic titles and caption to the custom R visual����������������������������������� 134

Step 18: Add a theme��� 135

Step 19: Perform last minute cleanup�� 135

Step 20: Add code to Power BI��� 138

Adding regression line��� 140

Step 1: Acquire the necessary data�� 142

Step 2: Load the data into Power BI��� 142

Step 3: Configure the R visual�� 142

Step 4: Export data to R Studio for development�� 142

Step 5: Load the required packages��� 143

Step 6: Create the variables needed for the data validation test�� 143

Step 7: Create the data validation test��� 144

Step 8: Start the chart by initializing the ggplot function��� 144

Step 9: Add a scatter plot layer to the R visual��� 144

Step 10: Add regression line layer to the R visuals�� 145

Step 11: Add a title to the chart�� 146

Step 12: Change the chart’s theme�� 147

Step 13: Perform some last minute cleanup�� 147

Step 14: Add code to Power BI��� 147

Part II: Ingesting Data into the Power BI Data Model Using R
and Python��� 149

Chapter 3: �Reading CSV Files�� 151

Dynamically combining files�� 151

Example scenario��� 152

Picking the rolling 24 months using R�� 152

Picking the rolling 24 months using Python��� 163

Filtering rows based on a regular expression�� 171

Leveraging regular expressions via R�� 171

Leveraging regular expressions via Python�� 173

Table of Contents

xi

Chapter 4: �Reading Excel Files�� 177

Reading Excel files using R�� 178

Step 1: Import the tidyverse and readxl package��� 179

Step 2: Create the shell of the combine_sheets function��� 179

Step 3: Get the name of the sheets you need to combine in your function from
the specified Excel workbook��� 179

Step 4: Convert the character vector built in Step 3 to a named character vector�������������� 180

Step 5: Use the mapr_df function to combine the sheets into a single data frame������������� 181

Step 6: Return the data frame�� 182

Step 7: Set the working directory to the location where the Excel files are located������������ 183

Step 8: Assign the file names to the excel_file_paths variable�� 183

Step 9: Use the map_dfr function to apply the combine_sheets function to
each file in the working directory��� 183

Step 10: Copy the R script and paste it into the R editor via GetData in Power BI��������������� 184

Reading Excel files using Python��� 184

Step 1: Import the os and pandas library��� 185

Step 2: Create the shell of the combine_sheets function��� 185

Step 3: Create an Excel object based on the workbook located at the path
specified in the excel_file_path variable�� 186

Step 4: Create a list of the sheet names in the workbook specified by the
excel_file_path variable��� 186

Step 5: Use the read_excel method of pandas to read the data from each sheet
into one data frame�� 186

Step 6: Return the data frame held in df as the output from the
combine_sheets function��� 187

Step 7: Set the working directory to the location that contains the Excel data
you want to combine�� 187

Step 8: Get the list of the file names in the current working directory and assign
it to the excel_file_paths variable�� 187

Step 9: Create an empty data frame and name it combined_workbooks���������������������������� 188

Step 10: Create the shell of the for loop��� 188

Step 11: Combine all the data in each sheet into one data frame using the
combine_sheets function��� 189

Table of Contents

xii

Step 12: Append the combined_workbook data frame to the combined_workbooks
data frame�� 189

Step 13: Copy the Python script and paste it into the Python editor via GetData in
Power BI��� 189

Chapter 5: �Reading SQL Server Data��� 191

Adding AdventureWorksDW_StarSchema database to your SQL Server instance��������������������� 191

Reading SQL Server data into Power BI using R�� 192

Step 1: Create a DSN to the SQL Server database��� 193

Step 2: Create a log table in SQL Server�� 198

Step 3: Start developing the R script to load DimDate��� 199

Step 4: Create a variable to hold the name of the table you want to import������������������������ 199

Step 5: Create a variable to hold the sql statement that will be used to
return the table��� 200

Step 6: Create a connection to SQL Server�� 200

Step 7: Retrieve the data from SQL Server and store it in a data frame������������������������������ 200

Step 8: Get the current time��� 201

Step 9: Get the number of records that were read��� 201

Step 10: Create a one record R data frame that contains the information you
want to log�� 201

Step 11: Insert the information you gathered in Step 10 into the history log table�������������� 202

Step 12: Close your connection�� 203

Step 13: Copy the script into Power BI��� 203

Step 14: Create a script to load DimProduct based on the ReadLog_DimDate.R script������� 204

Step 15: Create a script to load DimPromotion based on the
ReadLog_DimDate.R script��� 205

Step 16: Create a script to load DimSalesTerritory based on the
ReadLog_DimDate.R script��� 206

Step 17: Create a script to load FactInternetSales based on the
ReadLog_DimDate.R script��� 207

Reading SQL Server data using Python��� 208

Step 1: Create a DSN to the SQL Server database��� 208

Step 2: Create a log table in SQL Server�� 208

Step 3: Begin creating the script to load the DimDate table�� 209

Table of Contents

xiii

Step 4: Create a variable that holds the name of the table that you want to
read into Power BI�� 210

Step 5: Create a connection to the database using sqlalchemy��� 210

Step 6: Read in the contents of the DimDate table and store it as a data frame
in the df_read variable��� 210

Step 7: Get the current date and time and store the information into the
datastamp variable��� 210

Step 8: Calculate the number of records in the DimDate table�� 211

Step 9: Create a one record pandas data frame that contains the information
you want to log��� 212

Step 10: Insert the information you gathered in Step 9 into the history log table���������������� 212

Step 11: Copy the script into Power BI��� 213

Step 12: Create a script to load DimProduct based on the
ReadLog_DimDate.py script��� 214

Step 13: Create a script to load DimPromotion based on the
ReadLog_DimDate.py script��� 215

Step 14: Create a script to load DimSalesTerritory based on the
ReadLog_DimDate.py script��� 216

Step 15: Create a script to load FactInternetSales based on the
ReadLog_DimDate.py script��� 217

Chapter 6: �Reading Data into the Power BI Data Model via an API����������������������� 219

Reading Census data into Power BI via an API using R��� 219

Step 1: Get a personal Census API key��� 220

Step 2: Load the necessary R packages��� 220

Step 3: Identify the variables you want to return from your data set����������������������������������� 221

Step 4: Create a character vector of the tables that contains the variables you
want to return��� 222

Step 5: Configure the get_acs function�� 222

Step 6: Give the variables (columns) meaningful names��� 223

Step 7: Copy the script into Power BI��� 224

Reading Census data into Power BI via an API using Python��� 225

Step 1: Get a personal Census API key��� 226

Step 2: Load the necessary Python libraries�� 226

Step 3: Identify the variables you want to return in your data set�� 226

Table of Contents

xiv

Step 4: Create a variable that is based on the list variables you want��������������������������������� 228

Step 5: Create a list of tuples that contains the geographies you want to in
your data set��� 229

Step 6: Retrieve the data using the censusdata.download() function���������������������������������� 229

Step 7: Reset the index of the data frame created in Step 6�� 230

Step 8: Define the new column names��� 230

Step 9: Rename columns�� 231

Step 10: Copy the script into Power BI��� 231

Summary��� 232

Part III: �Transforming Data Using R and Python��������������������������������� 233

Chapter 7: �Advanced String Manipulation and Pattern Matching������������������������� 235

Masking sensitive data�� 236

Masking sensitive data in Power BI using R�� 236

Masking sensitive data in Power BI using Python�� 241

Counting the number of words and sentences in reviews��� 246

Counting the number of words and sentences in reviews in Power BI using R������������������� 246

Counting the number of words in reviews in Power BI using Python����������������������������������� 249

Removing names that are in an invalid format�� 251

Removing names that are in an invalid format in Power BI using R������������������������������������ 251

Removing names that are in an invalid format in Power BI using Python���������������������������� 254

Identifying patterns in strings based on conditional logic��� 259

Identifying patterns in strings based on conditional logic in Power BI using R������������������� 261

Identifying patterns in strings based on conditional logic in Power BI using Python����������� 264

Summary��� 268

Chapter 8: �Calculated Columns Using R and Python��� 269

Create a Google Geocoding API key��� 270

Step 1: Log into the Google console��� 270

Step 2: Set up a billing account�� 271

Step 3: Add a new project�� 271

Step 4: Enable Geocoding API��� 273

Table of Contents

xv

Geocode the addresses using R��� 275

Geocode the addresses using Python�� 277

Calculate the distance with a custom function using R��� 281

Calculate the distance with a custom function using Python�� 283

Calculate distance with a pre-built function in Power BI using R�� 287

Calculate distance with a pre-built function in Power BI using Python������������������������������������� 289

Summary��� 291

Part IV: �Machine Learning and AI in Power BI Using R and Python���� 293

Chapter 9: �Applying Machine Learning and AI to Your Power BI Data Models������ 295

Apply machine learning to a data set before bringing it into the Power BI data model������������� 296

Predicting home values using R��� 297

Predicting home values using Python�� 300

Using pre-built AI models to enhance Power BI data models�� 304

Set up Cognitive Services in Azure��� 305

The Data Science Virtual Machine (DSVM)��� 306

Performing sentiment analysis in Microsoft Cognitive Services via Python������������������������� 307

Applying AI to your Power BI data model using services other than
Microsoft Cognitive Services��� 314

Configuring the Tone Analyzer service in IBM Watson�� 314

Writing the Python script to perform the tone analysis�� 317

Chapter 10: Productionizing Data Science Models and Data
Wrangling Scripts�� 329

Predicting home values in Power BI using R in SQL Server Machine Learning Services���������� 330

Build the R script that adds the model to SQL Server�� 330

Use SQL Server Machine Learning Services with R to score the data��������������������������������� 333

Predicting home values in Power BI using Python in SQL Server Machine
Learning Services�� 340

Create the script needed to add Python model to SQL Server��� 340

Use SQL Server Machine Learning Services with Python from Power BI to
score the data��� 345

Table of Contents

xvi

Performing sentiment analysis in Power BI using R in SQL Server Machine
Learning Services�� 351

Add pre-built R models to SQL Server Machine Learning Services using PowerShell��������� 351

Use pre-built R sentiment model in SQL Server Machine Learning Services
to score data in Power BI��� 353

Performing sentiment analysis in Power BI using Python in SQL Server Machine
Learning Services�� 361

Add pre-built Python models to SQL Server Machine Learning Services����������������������������� 361

Use pre-built Python sentiment model in SQL Server Machine Learning Services
to score data in Power BI��� 363

Calculating distance in Power BI using R in SQL Server Machine Learning Services��������������� 369

Step 1: Make sure dplyr is loaded in SSMLS�� 369

Step 2: Launch SSMS and connect to a SQL Server��� 369

Step 3: Add the CalculateDistance database to the server��� 370

Step 4: Add the stored procedure that will calculate the distances������������������������������������� 371

Step 5: Call the Power BI procedure from Power BI��� 374

Calculating distance in Power BI using Python in SQL Server Machine Learning Services������� 375

Step 1: Launch SSMS and connect to a SQL Server��� 376

Step 2: Add the CalculateDistance database to the server��� 376

Step 3: Add the stored procedure that will calculate the distances������������������������������������� 377

Step 4: Call the Power BI procedure from Power BI��� 380

�Index�� 383

Table of Contents

xvii

About the Author

Ryan Wade is a data analytic professional with over 20 years

of experience. His education and work experience enable

him to have a holistic view of analytics from a technical and

business viewpoint. He has an MCSE with an emphasis

on BI reporting and Microsoft R. He has an advanced

understanding of R, Python, DAX, T-SQL, M, and VBA. He

knows how to leverage those programming languages for

on-prem and cloud-based data analytics solutions using the

Microsoft Data Platform.

Ryan is a data analytics enthusiast, and he has spoken

at R meetups, Python meetups, SQLSaturdays, TDWI Conference, BDPA Conference,

and PASS Summit about various data analytics topics. He is the developer of a

comprehensive online course for ExcelTv showing how to implement R in Power BI for

advanced data analytics and data visualization.

xix

About the Technical Reviewer

Aaditya Maruthi works as a Senior Database Engineer for a reputed organization.

Having over ten years of experience in RDMS systems like Microsoft SQL Server and

Oracle, he worked extensively on Microsoft technologies like the SSAS, SSRS, SSIS, and

Power BI.

Aaditya is also a Certified AWS Solutions Architect Associate.

xxi

Acknowledgments

I want to thank the technical editors, Mike Huffer and Aaditya Maruthi. The feedback

that you all gave me was very valuable and much appreciated. I’d also like to thank

Jonathan Gennick and Jill Balzano. I appreciate your patience and help. I would not have

been able to complete the process without your guidance. I also want to thank both of

you for keeping things in perspective. There was so much I wanted to include, but that

would have taken way too long to write. You helped me decide what was important,

which helped us finish the book in a reasonable time.

xxiii

Introduction

Microsoft Power BI is considered by many to be the premier self-service business

intelligence tool on the market. In recent years, it has passed up formidable tools such

as QlikView and Tableau to gain the number one spot. One of the reasons why it is

considered such a great self-service business intelligence tool is because it is more than

just a visualization tool. Built into Microsoft Power BI are

•	 The DAX expression and query language that enables you to

interrogate your Power BI data model using complex business logic

in a fast and efficient way

•	 A data wrangling tool called Power Query that enables you to shape

and transform your data into a form that is conducive for data

analysis

•	 The Vertipaq engine that efficiently stores the data in a way that is

optimized for reporting and performs complex calculations fast and

efficiently

•	 Pre-packaged, interactive visualizations that enable you to present

your data in ways that are easily understood by report consumers

So, you may ask the question, with all these features why would you need to leverage

programming languages such as R and Python in Power BI? The answer is to fill in the

few areas where the native tools fall short. A few examples are

•	 Creating custom visualizations in a relatively easy way

•	 Applying data science to your Power BI data models without the need

of Power BI Premium

•	 Performing advanced string manipulations using advanced

techniques that are not available in Power Query or DAX

•	 Interacting with Microsoft Cognitive Services without the need of

Power BI Premium

xxiv

•	 Communicating with third-party data APIs to enrich your Power BI

data models in an efficient way

•	 And many more

This book covers how to leverage R and Python to bring the added functionality

listed earlier to your Power BI solutions. R is a perfect complement to Power BI because

it is a language written specifically for data analytics. Data analysts have been using R to

perform tasks like data wrangling and data visualization for decades. Given that, features

that may not be available in Power BI might have been in R for some time.

Python has become a very popular programming language in data analytics over the

last decade. One of the features that make Python so attractive is that it is not only great

for data analytics, but it is great for general programming tasks as well. Communicating

with APIs is a breeze with Python, but the same task is very clunky using Power Query.

These features of R and Python make them perfect companions to Power BI. This

book will cover some recipes that illustrate the preceding features. The recipes will

include detailed steps along with verbose descriptions so that you will get a clear

understanding of how they work. Before you get started using the recipes, you need to

configure your environment. Let’s go over those configurations.

�Configure your Azure environment
Different parts of Azure will be used throughout the book. Microsoft Cognitive Services

will be used to apply artificial intelligence to your Power BI data models. Also, the Data

Science Virtual Machine (DSVM) is the recommended development environment for

the book. The DSVM is optional but highly recommended. In order to work many of the

examples in this book, you will need an environment configured with many tools such as

•	 SQL Server 2017 or later

•	 SQL Server Machine Learning Services 2017 or later with R and

Python enabled

•	 The Anaconda distribution of Python

•	 The R programming language

•	 R Studio

Introduction

xxv

•	 VS Code

•	 Power BI Desktop

Manually configuring an environment with these resources can be a challenge,

but if you use the DSVM, most of the configuration is handled for you. In the following

sections, you will learn how to set up Azure so that you can consume Microsoft Cognitive

Services and you will also learn how to spin up a DSVM.

�Sign up for Azure
Sign up for Azure here: https://azure.microsoft.com/en-us/free/. You get 12 months

free for selected services plus $200 in credit during your first month!

�Sign up for Microsoft Cognitive Services
Microsoft Cognitive Services will be used to perform sentiment analysis inside of Power

BI using Python. You first need to set up the Microsoft Cognitive Services in Azure before

you can call it from Power BI. Here are the required steps to set up the service:

	 1.	 Log in to your Azure Portal.

	 2.	 Type Cognitive Services in the search box, then press Enter.

	 3.	 The preceding action should take you to the Cognitive Service

signup page. Click the Create button to initiate the signup process.

	 4.	 Fill in the following information:

•	 Name

•	 Subscription

•	 Location

•	 Pricing tier

•	 Resource group

	 5.	 Click the I confirm I have read and understood the notice below

check box.

	 6.	 Click the Create button.

Introduction

https://azure.microsoft.com/en-us/free/

xxvi

Note that there is a cost to use Microsoft Cognitive Services. To get pricing

information, go to your Microsoft Cognitive Services resource and type Pricing tier in the

search box, then click it in the results. Select the pricing tier you want to use. Doing so

will take you to a page that will give you pricing information based on your usage and

Azure region. The exercise in this book that uses Microsoft Cognitive Services is relatively

inexpensive, and you will have more than enough credits in your first month to cover the

cost.

�Create a Data Science Virtual Machine (DSVM)
The preferred setup is to start with a Data Science Virtual Machine (DSVM) and add the

resources that do not come pre-installed in the DSVM to it. This setup is highly preferred

because the amount of time it takes to fully configure your environment in the way that is

needed to do every exercise in the book can be lengthy and challenging. Using the DSVM

enables you to configure an environment in minutes that could take you many days

of trial and error if you tried to do it yourself. Instructions will be provided in the next

section if you decide to configure your own environment. Here are the instructions to set

up the DSVM.

�Steps to create a DSVM in Azure

	 1.	 Go to https://portal.azure.com. If prompted, sign in using the

credentials created in Step 1.

	 2.	 Click Create a resource in the upper left.

	 3.	 In the search box, type Data Science Virtual Machine -

Windows 2019.

	 4.	 Click the Create button. This action will cause a form to appear

that you need to fill out to configure the DSVM. You will land

on the Basics tab. The following steps will tell you how to fill

out the form.

	 5.	 Subscription: Select the subscription you want to use. It should

default to the subscription that you set up in Step 1.

Introduction

https://portal.azure.com/

xxvii

	 6.	 Resource group: If you already have a resource group in your

tenant you want to use, select it. Otherwise, create a new one for

your DSVM">.

	 7.	 Virtual machine name: The name you want your DSVM to have.

	 8.	 Region: An Azure region close to you.

	 9.	 Image: Make sure Data Science Virtual Machine – Windows 2016

is selected.

	 10.	 Size: I use B4ms because it is the cheaper option for the 16 gigs of

ram options. RAM is important for R, Python, and Power BI.

	 11.	 Username: <"Create a username">.

	 12.	 Password: <"Create password">.

	 13.	 Confirm password: <"Confirm password">.

	 14.	 Click Next: Disks >.

	 15.	 OS disk type: Select Standard SSD. This option is sufficient for

what we are doing.

	 16.	 Click Next: Networking>.

	 17.	 Make sure all the required fields are filled out. You can identify the

required fields with a *. They should be populated with a default

value; if not, click the Create New link below them and accept the

default settings.

	 18.	 Click Next: Management >.

	 19.	 Accept defaults and click Next: Advanced >.

	 20.	 Accept defaults and click Next: Tags >.

	 21.	 Click Next: Review + create >.

	 22.	 You will see a summary of the DSVM that you configured. You

will also see the cost to run the DSVM. If you agree with the

configuration, click the Create button.

Introduction

xxviii

Make sure to stop your DSVM after every use so that you don’t incur unnecessary costs.

As a safeguard, you should set up an auto-shutdown that will shut down your DSVM if it is

still running past a specified time. Do the following steps to set up auto-shutdown:

	 1.	 Go into your DSVM machine in the Azure Portal.

	 2.	 Type auto-shutdown in the search box, then select it in the list.

	 3.	 Enable auto-shutdown by selecting On in the Enabled button.

	 4.	 Select the time you would like to automate the shutdown in the

Scheduled shutdown textbox.

	 5.	 Choose the time zone you want to base the time on in the Time

zone combo box.

	 6.	 If you want notification to be sent to you that lets you know that

your DSVM will be shutting down, you can turn on the Send

notification before auto-shutdown. The notification will be sent to

the email that you put in the Email address textbox.

�Configure R in DSVM
You will be using a different distribution of R than the one installed. The distribution

of R that we will use is Microsoft R Open (MRO). This distribution of R is totally

compatible with distribution on CRAN, but it comes with enhancements that improve

the performance of certain types of calculations plus many additional tools. Perform the

following steps to download the MRO in your DSVM:

	 1.	 Get the version of R that is being used in the Power BI service.

You can find that information in the following Microsoft

documentation: https://docs.microsoft.com/en-us/power-bi/

visuals/service-r-visuals.

	 2.	 Open up a browser in the DSVM and go to the following site:

https://mran.microsoft.com/open. Two browsers are pre-

installed in the DSVM. They are Microsoft Edge and Firefox.

Introduction

https://docs.microsoft.com/en-us/power-bi/visuals/service-r-visuals
https://docs.microsoft.com/en-us/power-bi/visuals/service-r-visuals
https://mran.microsoft.com/open

xxix

	 3.	 Click the Download button on the right and you will be taken

to the download page. Once on the download page, click the

Past Releases link which is located on the right section of the

page. Clicking the link will take you to a page that has links to

all previous versions of Microsoft R Open. Click the link for the

version that the Power BI service is using.

	 4.	 Choose the download for Windows.

	 5.	 Execute the download.

	 6.	 Open R Studio in the DSVM.

	 7.	 Select Tools ➤ Global Options. Verify that the MRO distribution

you just installed is selected. If it is not, click the Change… button

and you should see it as one of the options. Select it, then click OK.

�Configure Python in DSVM
One of the benefits you gain with the DSVM is you get a distribution of Python pre-

installed that is perfect for data analytics. The name of the distribution is Anaconda.

The Anaconda distribution of Python comes pre-installed with over 1500 libraries that

are popular in data analytics. It also comes with a package manager and environment

management system named conda. Installing libraries via conda is preferred because

of how conda manage package dependencies. The environment management system

in conda makes it easy to create an isolated copy of a specific version of Python with

specific versions of Python libraries in it.

Let’s create a dedicated Python environment in the DSVM for this book and

name it pbi. To do so, you need to perform the following steps:

	 1.	 Log into the DSVM.

	 2.	 Open the command prompt by clicking in the search bar next to

the Windows sign and type cmd.

	 3.	 Type the following code to create a conda environment named pbi

based on Python 3.7:

conda create -n pbi python=3.7

Introduction

xxx

The decision to use python 3.7 was based on information obtained from the

following Microsoft documentation: https://docs.microsoft.com/en-us/business-

applications-release-notes/october18/intelligence-platform/power-bi-

service/pervasive-artificial-intelligence-bi/python-service. According to the

documentation, the Power BI service is compatible with Python 3.x so the current 3.x

versions of Python should be compatible.

Now we have a Python environment that we can use for our Python development in

this book.

�Configuring SQL Server Machine Learning Services
in DSVM
Several examples of the book require the use of SQL Server Machine Learning Services

(SSMLS). SSMLS provides tools that enable you to perform advanced analytics inside

the database using R, Python, and some tools that make it easier to work with big data.

SSMLS also offers some pre-trained models built by Microsoft that you can leverage. The

preceding features are not part of the default features, but SSMLS is enabled by default

in the DSVM. If you are not using the DSVM, you will have to enable it, and instructions

of how to do so can be found here: https://docs.microsoft.com/en-us/sql/machine-

learning/install/sql-machine-learning-services-windows-install?view=sql-

server-ver15. The pre-trained models that will be used in the book can be added to

your instance of SQL Server as a post-task installation. Go to this URL to get instructions

of how to install the pre-trained models as a post-task installation: https://docs.

microsoft.com/en-us/sql/machine-learning/install/sql-pretrained-models-

install?view=sql-server-ver15.

�Installing R packages
Some of the R scripts in this book may contain R packages that are not installed on your

machine. Installing packages in R is simple and straightforward. The following code

installs a popular R package named data.table via the R console:

install.packages("<package name>")

Introduction

https://docs.microsoft.com/en-us/business-applications-release-notes/october18/intelligence-platform/power-bi-service/pervasive-artificial-intelligence-bi/python-service
https://docs.microsoft.com/en-us/business-applications-release-notes/october18/intelligence-platform/power-bi-service/pervasive-artificial-intelligence-bi/python-service
https://docs.microsoft.com/en-us/business-applications-release-notes/october18/intelligence-platform/power-bi-service/pervasive-artificial-intelligence-bi/python-service
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-pretrained-models-install?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-pretrained-models-install?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-pretrained-models-install?view=sql-server-ver15

xxxi

There will be times when you may want to install multiple packages at once. For

instance, you may want to install the R package data.table and dplyr together. You can

accomplish that task by creating a character vector that contains two elements, one for

data.table and another for dplyr, and assign the results to a variable named pkgs. Then

you would pass that variable to the install.packages() function as illustrated here:

pkgs <- c("data.table", "dplyr")

install.packages(pkgs)

The R character vector data type is a one-dimensional array of the character
data type. You will learn more about this data types as well as other R data types
throughout the book.

When you are creating R visuals in Power BI, you need to be cognizant of which

version of the package is being used by the Power BI service. You can get a list of all

the available R packages in the Power BI service along with their version at this URL:

https://docs.microsoft.com/en-us/power-bi/service-r-packages-support.

The install.packages() will download the most recent version of the package from the

repository you are using if you are using the distribution of R from CRAN. If you are using

Microsoft R Open, it will install the most recent package based on the snapshot date. Both

methods may result in a version being installed that is not the same as the one in the

service. To download the version of a package that is being used in the service, you first

need to get the package version from the page located at the preceding URL, then you

need to use the devtools package to install it. Here is an example of using the devtools

package to install ggplot2 0.9.1 from CRAN:

library(devtools)

install_version(

 "ggplot2",

 version = "0.9.1",

 repos = "http://cran.us.r-project.org")

Introduction

https://docs.microsoft.com/en-us/power-bi/service-r-packages-support

xxxii

�Installing Python libraries
There are multiple ways you can install libraries in Python. You will use two methods

in this book, conda install and pip install. Installing libraries in Python is not as easy

and straightforward as it is installing packages in R. In this book, you will use the conda

prompt to install Python libraries. Perform the following steps to install Python a library

using conda:

	 1.	 Go to the Windows search bar located on the lower right next to

the Windows icon.

	 2.	 Type the word Anaconda and the Anaconda Prompt should

appear in the returned list. Click it to launch the Anaconda

Prompt.

	 3.	 Activate the environment that you are using for Power BI by typing

the following code in the command prompt:

conda activate "<environment name>"

It is highly recommended to use an environment for the Python

development associated with this book. Instructions of how to

create one are located in the next section.

	 4.	 Install the package using conda with the following code:

conda install <"package name">

So, if you were installing pandas, the code would be as follows:

conda install pandas

If you wanted to install pandas 1.0.4, you would use the

following code:

conda install pandas=1.0.4

Not all packages are available for a conda install. Go to the

following URL to get a list of packages that can be installed using

conda in Python 3.6: https://docs.anaconda.com/anaconda/

packages/py3.6_win-64/. One of the packages that will be used

Introduction

https://docs.anaconda.com/anaconda/packages/py3.6_win-64/
https://docs.anaconda.com/anaconda/packages/py3.6_win-64/

xxxiii

in this book is not available in conda but is available in PyPI. The

name of the package is CensusData. You must use pip to install the

CensusData library as illustrated here:

pip install CensusData

�Configure Power BI in DSVM
There are several configurations that you need to do in the Power BI Desktop to enable

R and Python. Those steps are covered in detail in the book’s code repository in GitHub.

You will also find instructions on how to create and use conda environment in Python.

Here is the URL to the book’s code repository: https://github.com/Apress/adv-

analytics-in-power-bi-w-r-and-python.

�Alternative setup
That DSVM is the optimal way to go, but it may not be an option for you. If that is the

case, you will have to manually install the required software. Here are links to the

required software that you need to install:

•	 Manually Install Power BI: www.microsoft.com/en-us/download/

details.aspx?id=58494

•	 Manually Install R Studio: https://rstudio.com/products/

rstudio/download/

•	 Manually Install Microsoft R Open: https://mran.microsoft.com/

download

•	 Manually Install Anaconda: www.anaconda.com/products/

individual

•	 Manually Install VS Code: https://code.visualstudio.com/

download

•	 Manually Install SQL Server 2019 Developer: www.microsoft.com/

en-us/sql-server/sql-server-downloads

Introduction

https://github.com/Apress/adv-analytics-in-power-bi-w-r-and-python
https://github.com/Apress/adv-analytics-in-power-bi-w-r-and-python
http://www.microsoft.com/en-us/download/details.aspx?id=58494
http://www.microsoft.com/en-us/download/details.aspx?id=58494
https://rstudio.com/products/rstudio/download/
https://rstudio.com/products/rstudio/download/
https://mran.microsoft.com/download
https://mran.microsoft.com/download
http://www.anaconda.com/products/individual
http://www.anaconda.com/products/individual
https://code.visualstudio.com/download
https://code.visualstudio.com/download
http://www.microsoft.com/en-us/sql-server/sql-server-downloads
http://www.microsoft.com/en-us/sql-server/sql-server-downloads

xxxiv

•	 Manually Install SQL Server Machine Learning Services:

https://docs.microsoft.com/en-us/sql/machine-learning/

install/sql-machine-learning-services-windows-

install?view=sql-server-ver15

If you go this route, I highly recommend you use a virtual machine running Windows

Server 2016 or later. Here is the URL to a YouTube video that provides step-by-step

instructions on how to install Windows Server 2019 in VirtualBox: www.youtube.com/wat

ch?v=ZjQSuyuN0nA&t=8s.

�Adding R packages to SQL Server Machine Learning
Services
In Chapter 10 of the book, you will learn how to productionize machine learning models

via SQL Server Machine Learning Services 2019 with R. When you do so, you need to

make sure that the required R packages are loaded in SSMLS 2019. Here is a T-SQL script

that you can use to see what packages are loaded in your instance of SSMLS 2019:

EXECUTE sp_execute_external_script

 @language=N'R',

 @script = N'

packagematrix <- installed.packages();

Name <- packagematrix[,1];

Version <- packagematrix[,3];

OutputDataSet <- data.frame(Name, Version);'

WITH RESULT SETS ((PackageName nvarchar(250), PackageVersion nvarchar(max)))

If the package you need is not in the list, then you will need to load it manually. Here

are the recommended steps to use to load the R packages in SSMLS 2019.

Introduction

https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install?view=sql-server-ver15
http://www.youtube.com/watch?v=ZjQSuyuN0nA&t=8s
http://www.youtube.com/watch?v=ZjQSuyuN0nA&t=8s

xxxv

�Step 1: Download sqlmlutils on your machine to the
Documents folder
The download for sqlmlutils can be found at this URL: https://github.com/Microsoft/

sqlmlutils/tree/master/R/dist.

Download the zip file from this GitHub repo and save it to your Documents folder.

�Step 2: Run the following code in the command prompt
Open the command prompt as administrator and run the following code:

R -e "install.packages('RODBCext', repos='https://cran.microsoft.com')"

R CMD INSTALL %UserProfile%\Documents\sqlmlutils_0.7.1.zip

The preceding code will work if you installed sqlmlutils in the Documents folder

under your profile. You will need to change the file path to the appropriate location if

sqlmlutils was saved in another location.

�Step 3: Load the required packages
After you perform Step 2, you will be in the position to load packages to SSMLS 2019

from an R script in R Studio. Here is a code snippet that loads the dplyr package to

SSMLS 2019:

library(sqlmlutils)

connection <- connectionInfo(

 server = "server",

 database = "database",

 uid = "username",

 pwd = "password")

sql_install.packages(connectionString = connection,

pkgs = "dplyr", verbose = TRUE, scope = "PUBLIC")

Introduction

https://github.com/Microsoft/sqlmlutils/tree/master/R/dist
https://github.com/Microsoft/sqlmlutils/tree/master/R/dist

xxxvi

You are not limited to loading multiple packages at once. Let’s say you want to load

two packages at once, dplyr and data.table. You could do so by creating a character

vector that contains both packages and use it for the pkgs argument as shown here:

library(sqlmlutils)

connection <- connectionInfo(

 server = "<server>",

 database = "<database>",

 uid = "<username>",

 pwd = "<password>")

pkgList <- c("dplyr","data.table")

sql_install.packages(connectionString = connection,

pkgs = pkgList, verbose = TRUE, scope = "PUBLIC")

�Add necessary Python libraries to SQL Server
Machine Learning Services
Just like with SQL Server Machine Learning Services 2019 with R, you need to know

how to load Python packages for SQL Server Machine Learning Services 2019 with

Python in Chapter 10. Here are the steps you should take to load Python libraries in

SSMLS 2019 using sqlmlutils.

�Step 1: Download sqlmlutils on client machine to the
Documents folder
The download for sqlmlutils can be found at this URL: https://github.com/Microsoft/

sqlmlutils/tree/master/Python/dist.

Download the zip file located in the preceding URL and save it to your Documents folder.

Introduction

https://github.com/Microsoft/sqlmlutils/tree/master/Python/dist
https://github.com/Microsoft/sqlmlutils/tree/master/Python/dist

xxxvii

�Step 2: Open the command prompt and run the
following code
pip install "pymssql<3.0"

pip install --upgrade --upgrade-strategy only-if-needed c:\temp\sqlmlutils-

0.7.2.zip

�Step 3: Load the required packages
After you perform Step 2, you will be in the position to load packages to SSMLS 2019

from a Python script in VS Code. Here is a code snippet that loads the pandas package to

SSMLS 2019:

import sqlmlutils

connection = sqlmlutils.ConnectionInfo(

 server="<yourserver>", database="<yourdatabase>",

 uid="<username>", pwd="<password>"))

sqlmlutils.SQLPackageManager(connection).install("pandas")

�On-premises data gateway
The on-premises data gateway is a tool that is used to enable secure data movement from

on-prem data sources to the Azure cloud. The on-premises data gateway can be run in

two different modes, personal and standard. If you want to deploy the solutions created

in Chapters 3–9 to the Power BI service and run them on a periodical basis, then you will

need to run the on-premises data gateway in personal model. As of the writing, R and

Python scripts used in Power Query can only be run via the on-premises data gateway

when it is in the personal mode. The downside of using the on-premises data gateway

in personal mode is that your solution will not be an enterprise solution. It will be a

solution that only you will have access to because, as the name suggests, the personal

mode is meant for individual use.

However, in Chapter 10, you will learn how you can leverage both R and Python in

an enterprise Power BI solution via SQL Server Machine Learning Services (SSMLS).

When you use SSMLS 2019, your R and Python code will be wrapped in a special T-SQL

stored procedure. T-SQL stored procedures can be used in the standard mode of the

Introduction

xxxviii

on-premises data gateway. In Chapter 10, you will learn the basics of how to refactor the

R and Python code you wrote in Chapters 3–9 for the special stored procedure used in

SSMLS 2019. Note that R visuals do not rely on the on-premises data gateway because

they are rendered using the instance of R located in the Power BI service.

�Resources
This book touches many technologies, so it would be impossible to give a complete

coverage to all of them. Realizing that, I decided to give a curated list of resources that

you can use to help fill in the missing pieces. I also included a link to the code repository

for the book as well as some good general education resources.

�Book’s code repository
The code for each exercise in this book is contained in the book’s code repository at this

URL: https://github.com/Apress/adv-analytics-in-power-bi-w-r-and-python. The

complete R and Python scripts are grouped by chapter and topic in the code repository.

Also, either the actual data sources or information on how to acquire the data sources

used in the examples is located in the code repository as well.

�R resources
Books

•	 R for Data Science: This excellent book properly introduces you

to R in a way that is recommended by arguably the most prolific R

package creator, Hadley Wickham. It does so by leveraging packages

that are a part of tidyverse. The book is available for free at this URL:

https://r4ds.had.co.nz/.

•	 An Introduction to Statistical Learning: With Applications in R: This

book is a good introduction to statistical concepts that are important

to machine learning via R. The book has been around for a few years

and is very popular in the R community. It is often used as the main

textbook for undergraduate- and graduate-level courses at many

Introduction

https://github.com/Apress/adv-analytics-in-power-bi-w-r-and-python
https://r4ds.had.co.nz/

xxxix

colleges and universities. You can acquire the book for free at this

URL: https://faculty.marshall.usc.edu/gareth-james/ISL/

ISLR%20Seventh%20Printing.pdf.

Websites

•	 RStudio: This website provides a wealth of educational R resources.

To get to the educational resources on the site, go to the Resource tab

in the menu bar and you will see options to access free webinars,

cheat sheets, and books. This is also the site where you get the

recommended IDE for R, R Studio. Here is the URL to the website:

https://rstudio.com/.

•	 The R Graph Gallery: This site provides examples of visuals created

using R complete with the underlying R code. You can use this site

to get visualization ideas. Here is the URL to the site: www.r-graph-

gallery.com/.

•	 R Bloggers: Great website to find community contributed blogs

covering various topics about the R programming language. Here is

the URL to the blog: www.r-bloggers.com/.

Tutorials

•	 dplyr tutorial Part 1: This is the first part of a two-part video series

about dplyr given by the package main author, Hadley Wickham. The

video was made back in 2014, but it is still very relevant. Here is the

URL to the tutorial: www.youtube.com/watch?v=8SGif63VW6E&t=15s.

•	 dplyr tutorial Part 2: This is the second part of the series mentioned

in the previous bullet: www.youtube.com/watch?v=Ue08LVuk790.

�Python resources
Books

•	 Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: This is an excellent resource that teaches you how to

apply machine learning and artificial intelligence to your data using

tools in Python. The book is available for purchases from most book

sellers.

Introduction

https://faculty.marshall.usc.edu/gareth-james/ISL/ISLR Seventh Printing.pdf
https://faculty.marshall.usc.edu/gareth-james/ISL/ISLR Seventh Printing.pdf
https://rstudio.com/
http://www.r-graph-gallery.com/
http://www.r-graph-gallery.com/
http://www.r-bloggers.com/
http://www.youtube.com/watch?v=8SGif63VW6E&t=15s
http://www.youtube.com/watch?v=Ue08LVuk790

xl

•	 Python for Data Analysis: Data Wrangling with Pandas, NumPy, and

IPython: This book is written by the original author of the pandas

library, Wes McKinney. The pandas library is arguably the most

popular library in Python for data wrangling. The book is available for

purchases from most book sellers.

Vlogs, podcasts, and training

•	 Data School: This YouTube channel is authored by Kevin Markham.

It provides a wealth of videos covering how to perform tasks in

data science using Python libraries such as pandas, matplotlib,

scikit-learn, and others. He does a great job at breaking down

complex concepts in an easy-to-understand way. Here is the URL

to this excellent YouTube channel: www.youtube.com/channel/

UCnVzApLJE2ljPZSeQylSEyg.

•	 Google’s Python Class: This is a relatively old, but still relevant,

introduction to Python presented by Google. The tutorial does a

good job of introducing data structures and other necessary topics

required to build a solid foundation to build on. It also includes a

very informative section on regular expressions. Here is the URL to

the website of this free 2-day Python course: https://developers.

google.com/edu/python.

•	 Talk Python to Me: This is a very informative podcast covering a wide

array of Python topics, many of which are about data analytics. Here

is the URL to the podcast’s site: https://talkpython.fm/.

Websites

•	 PEP 8: One of the best features of Python is how readable Python

code is compared to other programming languages. Unlike most

languages, Python forces a strict code style to facilitate code

readability. The code style is explained in detail in Pep 8 of Python.

You can find out more about Pep 8 at this URL: https://pep8.org/.

Introduction

http://www.youtube.com/channel/UCnVzApLJE2ljPZSeQylSEyg
http://www.youtube.com/channel/UCnVzApLJE2ljPZSeQylSEyg
https://developers.google.com/edu/python
https://developers.google.com/edu/python
https://talkpython.fm/
https://pep8.org/

xli

�Power BI resources
Vlogs

•	 Guy in a Cube: This is hands down, the number one go-to vlog for

all things Power BI. They have scores of YouTube videos covering

all aspects of Power BI including Power BI administration, Power

BI data modeling, and Power BI data visualization. Here is the

URL to their YouTube channel: www.youtube.com/channel/

UCFp1vaKzpfvoGai0vE5VJ0w.

Websites

•	 SQLBI: The creators of this website are the authoritative voice when

it comes to the DAX expression and query language used in Power

BI. Their site contains a wealth of information and tools related to

DAX. You will find thorough articles covering all things DAX, online

training, and tools such as DAX Studio.

•	 Tabular Editor: The Tabular Editor is a must-have tool when you

start doing serious Power BI development. It is an open source tool

that will soon be integrated in Power BI. To learn more about this

tool, go to this URL which will take you to a website dedicated to this

awesome tool: https://tabulareditor.com/.

Books

•	 The Definitive Guide to DAX: This is the “go-to” book for those who

want to get a thorough understanding of the DAX expression and

query language used in Power BI. The book is available for purchases

from most book sellers.

•	 M Is for Data Monkeys: This book is a good introduction to the M

functional programming language used in Power Query. The authors

do a great job at presenting common data wrangling recipes using M

in a very easy-to-understand way. It provides a very solid foundation

that enables you to approach more complicated M topics. The book is

available for purchases from most book sellers.

Introduction

http://www.youtube.com/channel/UCFp1vaKzpfvoGai0vE5VJ0w
http://www.youtube.com/channel/UCFp1vaKzpfvoGai0vE5VJ0w
https://tabulareditor.com/

xlii

Podcast

•	 BIFOCAL: Great podcast to stay current on all things related to Power

BI. You can find the podcast on popular podcast platforms.

�General resources
Books

•	 Data Science for Business by Foster Provost and Tom Fawcett: This

book introduces data science principles in a program language

agnostic way. It is a popular book in the data science community for

those that want to learn how to apply data science in business. The

book is available for purchases from most book sellers.

Websites

•	 Data Science Central: This is one of the premier sites for data science.

Here is the URL to the site: www.datasciencecentral.com/.

•	 Kaggle: This site started off as a site for data science competitions, but

it has morphed into a site that is so much more. A great site to find

data sets that you can use for your machine learning and artificial

intelligence education. Here is the URL to the site: www.kaggle.com/.

•	 ExcelTv: Microsoft Excel has been, and will continue to be in the

foreseeable future, a must-have tool in data science. The guys at

ExcelTv has created content that covers all aspects of Excel to help

make you become very proficient at using the software. The URL to

their site is https://excel.tv/.

Vlogs and tutorial

•	 Excel on Fire: Oz, the creator of the vlog, is arguably the most

passionate guy I ever met when it comes to data wrangling in Excel

via Power Query. Over the last few years, he has created a wealth of

YouTube videos that covers common data wrangling tasks that he has

solved using Power Query. The production quality of the videos is

Introduction

http://www.datasciencecentral.com/
http://www.kaggle.com/
https://excel.tv/

xliii

top-notch, and his ability to break down hard-to-understand Power

Query concepts in an easy-to-understand way is second to none. You

can find a link to his YouTube channel at this URL: www.youtube.

com/user/WalrusCandy/featured.

•	 Regular Expression Tutorial by Corey Schafer: Great introductory but

broad tutorial that covers pattern matching for regular expressions.

Trust me, after you watch this video, you will not only learn what

all those funny characters mean in regex, but you will also gain an

appreciation about how powerful and applicable they are! Here is the

link to the vlog: www.youtube.com/watch?v=sa-TUpSx1JA&t=554s.

Podcasts

•	 Analytics on Fire podcast: This is your one-stop shop for weekly BI/

Analytics masterclasses from the top influencers, customers, and

thought leaders in the industry. Tune in weekly to get a backstage

pass to these engaging discussions which marry education with

entertainment. You can find the podcast on popular podcast

platforms.

•	 Data Skeptic: This program language agnostic podcast introduces

advanced data science topics in an easy-to-understand and

entertaining way. He does so via some very interesting examples. You

can find this podcast on popular podcast platforms.

•	 Freakonomics: Learning the technical side of data science is only half

the battle. It is also very important to develop analytical acumen. This

podcast helps you develop that skill. You can find this podcast on

popular podcast platforms.

•	 SQL Data Partners: This is a very entertaining and educational

podcast covering various topics in the Microsoft Data Platform. The

hosts of the show are very knowledgeable about all aspects of the

Microsoft Data Platform. Sometimes their comedic talents come

through. Who knows, they may have a future in comedy. Lol. You can

find their podcast on popular podcast platforms.

Introduction

http://www.youtube.com/user/WalrusCandy/featured
http://www.youtube.com/user/WalrusCandy/featured
http://www.youtube.com/watch?v=sa-TUpSx1JA&t=554s

xliv

•	 Storytelling with Data: This podcast is presented by Cole Knaflic,

and it is a great resource to learn data visualization best practice

techniques. She is also the author of a best-selling book under the

same name. You can find her podcast on popular podcast platforms.

�Chapter summaries
•	 Chapter 1 – The Grammar of Graphics: Arguably, one of the strengths

R has over Python is its data visualization capabilities. The top data

visualization package in R is ggplot2, and it is based on a concept

known as the grammar of graphics. This chapter introduces you to

the ggplot2 package and presents a framework on how to properly

use the package in Power BI.

•	 Chapter 2 – Creating R Custom Visuals in Power BI Using ggplot2:

One of the biggest benefits of using ggplot2 is how expressive it allows

you to be when creating your visualization. This chapter provides

recipes for several visualizations to give you an idea of the type of R

visuals you can create in Power BI with the ggplot2 package.

•	 Chapter 3 – Reading CSV Files: This chapter provides recipes in both

R and Python that allows you to dynamically combine csv files in a

way that would be much harder to do using Power Query.

•	 Chapter 4 – Reading Excel Files: This chapter provides recipes in

both R and Python that allows you to dynamically combine multiple

worksheets from several Excel workbooks in a way that would be

much harder to do using Power Query.

•	 Chapter 5 – Reading SQL Server Data: This chapter provides recipes

in both R and Python that allows you to load data from SQL Server

into the Power BI data model. What makes this recipe beneficial is

that it shows you how you can use R and Python to log information

about your load in SQL Server.

Introduction

xlv

•	 Chapter 6 – Reading Data into the Power BI Data Model via an API:

This chapter provides recipes in both R and Python that shows the

reader how to acquire data for Power BI using APIs, which is much

harder to do and, in many instances, impossible to do using Power

Query.

•	 Chapter 7 – Advanced String Manipulation and Pattern Matching:

This chapter provides recipes in both R and Python that shows you

how to perform advanced string manipulation tasks leveraging

regular expressions. Regular expressions are native to R and Python

but not available in Power Query.

•	 Chapter 8 – Calculated Columns Using R and Python: This chapter

provides recipes in both R and Python that show you how to create

expressions based on advanced mathematical formulas. You will

learn the basics of refactoring mathematical formulas, and you will

also learn how to use pre-built functions that abstract the complexity

of many calculations from you. The chapter uses the Haversine

formula to make the example.

•	 Chapter 9 – Applying Machine Learning and AI to Your Power BI

Data Models: This chapter covers multiple topics, involving machine

learning and artificial intelligence. It starts by showing examples of

how to apply custom machine learning models built in R and Python

to your Power BI data models. Then it shows how to enhance your

Power BI data models with Microsoft Cognitive Services without the

need of Power BI Premium. This chapter does not limit you to the

capabilities offered by Microsoft because it finishes with showing you

how to leverage IBM Watson Natural Language Understanding to

show you how to leverage some text analytics capabilities that are not

in Microsoft Cognitive Services.

•	 Chapter 10 – Productionizing Data Science Models and Data

Wrangling Scripts: This chapter shows you how to leverage R and

Python in enterprise solutions for Power BI. The methods shown

focus on free solutions that are available to users who already have

the on-prem version of SQL Server 2017 and later.

Introduction

xlvi

Now that we have all the preliminary stuff out the way, we can get into the contents

of the book. The top feature that Power BI is known for is its visualization capabilities.

Given that, the book will start off by introducing you to how the R programming

language can be used to greatly enhance Power BI’s visualization capabilities via the

ggplot2 package.

Introduction

PART I

Creating Custom Data
Visualizations Using R

3
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_1

CHAPTER 1

The Grammar of Graphics
Data visualization has always been a very important part of statistics. It gives statisticians

a way to share their findings with others in a concise and relatively easy-to-understand

way. Given the fact that R is a programming language built by statisticians for

statisticians, the R community has made a considerable effort to ensure that R users are

able to effectively create visualizations to help them tell their data stories.

Arguably, the most popular R package for data visualization is the ggplot2 package.

This package was created by Hadley Wickham1 and is based on the concept of the

layered grammar of graphics. The layered grammar of graphics defines a plot in the

following way:

•	 A default data set and a set of mappings from variables to aesthetics

•	 One or more layers, each composed of a geometric object, a statistical

transformation, a position adjustment, and optionally a data set and

aesthetic mappings

•	 One scale for each aesthetic mapping

•	 A coordinate system

•	 The faceting specification

The preceding definition is a concise and thorough explanation of the layered

grammar of graphics from the author. You will learn how to use the preceding concepts

to build beautiful visualizations in Power BI using the ggplot2 package.

1�Wickham, Hadley. Ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Houston,
TX: Springer, 2016. p. 86.

https://doi.org/10.1007/978-1-4842-5829-3_1#DOI

4

Even though Power BI gives you the ability to create visuals using multiple libraries

and packages in both Python and R, this book will focus specifically on the ggplot2

package along with a few helper packages. The ggplot2 package stands in a class by itself

compared to other options in R and Python. The layered grammar of graphics of which

ggplot2 is based on cuts down the time it takes to convert a data visualization idea to

code. The package is feature-rich, so a large portion of your data visualization needs can

be met with ggplot2 and its helper packages.

�Steps to build an R custom visual in Power BI
This section outlines the workflow that you will use in Power BI to create an R visual. The

steps are consistently used regardless of the type of R visual you are creating. Here are

the steps.

�Step 1: Configure Power BI
You were given information on how to configure R in Power BI in the book’s

introduction. Make sure you go through the steps outlined in those instructions to

ensure Power BI is configured to use R.

�Step 2: Drag the “R custom visual” icon to the Power BI
canvas
You’ll now have access to an R custom visual icon. To add an R visualization to Power BI,

you first need to drag the R visual icon from the Visualization Pane to the Report Canvas.

The icon for the R visual is a capital R, and it is highlighted in the image in Figure 1-1.

Figure 1-1.  The R icon used to create R visuals in Power BI

Chapter 1 The Grammar of Graphics

5

The R visual is one of the default visuals available in Power BI. You can size it and

position it like any other Power BI visual.

�Step 3: Define the data set
Like with any other visual, you need to define the data set that the visual will be based

on. You can build up the data set by adding fields from your data model along with

optional measures to the Values pane. The resulting data set will be exposed to R as an

object known as a data frame. You can think of a data frame as an Excel table but with

many more features that facilitate data analysis.

One of the features of a data frame that you need to be aware of when creating an R

visual is that the rows in a data frame need to be unique. Given that, R will take steps to

make sure the rows are unique when the data frame is created in R. You need to make

sure that the data set you are passing to R has unique rows.

�Step 4: Develop the visual in your default R IDE
Now that you have a data set defined, you can use that data set to develop the desired R

visual in your preferred IDE. One of the things you did when you configured R in Power

BI was you identified your preferred R IDE. That feature enables you to develop the code

to create your R visual in a feature-rich IDE like R Studio instead of the R script editor in

Power BI.

The code for your R visual resides in the R script editor. Power BI displays it when

you select the icon for the R visual in the report canvas. The R script editor looks like that

in Figure 1-2.

Figure 1-2.  The R script editor in Power BI

Chapter 1 The Grammar of Graphics

6

As you can see, this is not an ideal place to develop your R code. There is no intelli-

sense, no console, and the amount of real estate you have to develop the code is limited.

Fortunately, Power BI gives you the ability to port the data set that you defined for your

custom R visual to the R IDE you selected. The recommended IDE for R is R Studio,

and it will be the one used here if you followed the instructions outlined in the book’s

introduction.

To port the data set for your visual for use by R in R Studio, select the R visual in the

report canvas, then click the arrow that is pointing 45 degrees to the right. That action

will launch R Studio and will create the beginnings of an R script that includes code that

produces a data frame named dataset based on the data passed to the visual in Power

BI. That action also includes any R code associated with the visual in the script. Instead

of Microsoft trying to re-invent the wheel, they decided to give you the ability to do

your development in an IDE like R Studio. Given that, I highly recommend that you do

all code development in R Studio instead of the tiny R editor that is available to you in

Power BI.

�Step 5: Use the following template to develop your visual
The following template in Listing 1-1 should be used for the R script when developing R

visuals in Power BI:

if (<"data test">) {

 #<"Code for R Visual">

} else {

 plot.new()

 title(main = "<predefined message>")

}

This template is used to test the data set to make sure it meets the requirements for

the desired R visual. If it does, it will commence to create the visualization; otherwise, it

will generate a blank plot with a message. The blank chart with the predefined message

is created using the following code:

plot.new()

title(main = " <predefined message> ")

Chapter 1 The Grammar of Graphics

7

The first line creates a new blank chart, and the second line adds a title to the chart

containing the message that you want to display to the report user.

�Step 6: Make the script functional
Once you get the R script functional, copy the complete script to the R editor. Include

all the code except the line that creates the data frame named dataset. The dataset data

frame is automatically generated in Power BI. Note that the resulting R visual in Power

BI is totally responsive to outside filters and slicers just like other visuals. You will see

several examples in the next chapter. One thing you lose, however, is bidirectional

filtering. Outside visuals will propagate to your R visual in Power BI, but you can’t filter

other Power BI chart items directly from an R visual.

�Recommended steps to create an R visual
using ggplot2
The previous section illustrated the overall template you should use when defining your

overall R script for your R visual. It included code to test your data set as well as code for

error handling. In this section, we will focus specifically on the recommended template

for R visuals after you have tested the data set. Specifically, we are talking about the code

that goes where you see #<"Code for R Visual"> in the following listing.

Listing 1-1.  R visual template for Power BI

if (<"data test">) {

 #<"Code for R Visual">

} else {

 plot.new()

 title(main = "<predefined message>")

}

The steps of developing the template will be described by developing the chart

pictured in Figure 1-3.

Chapter 1 The Grammar of Graphics

8

The preceding R visual uses the diamonds data set to plot a sample of diamonds

with a color of D to show diamond prices relative to carat size. It is a good example to

use because it provides a relatively easy way to illustrate each step in the template when

developing an R visual. Let’s begin with Step 1.

�Step 1: Load the required packages that you will need
for your script
For this example, you will use the following code in Listing 1-2 to load the two packages

needed for the script.

Listing 1-2.  Import statements

library(tidyverse)

library(scales)

You use ggplot2 and dplyr from the tidyverse metapackage.

Figure 1-3.  Visual used to describe the template to use when developing R visuals
in Power BI

Chapter 1 The Grammar of Graphics

9

The tidyverse metapackage is a collection of packages that work together to make
doing data science in R easier. The tidyverse metapackage gives you the ability to
import the core packages in one call by loading tidyverse instead of having to load
each of the core packages individually.

ggplot2 will be used to create the visualization, and dplyr will be used to perform

some data wrangling tasks. The scales packages will be used to help with some number

formatting tasks.

�Step 2: Make any required adjustments to the data set
Often adjustments need to be made to the data frame before it is passed to ggplot2. The code

used to make the adjustments to the data frame in this example is in Listing 1-3.

Listing 1-3.  Data prep for visual

plot.data <-

 diamonds %>%

 filter(color == "D") %>%

 sample_n(200)

The data set passed to R contains records that are not needed by the visual. So,

you need to use the dplyr package to remove unneeded data. You want to create a

visualization based on the color type D. To get a data frame with the desired color type,

you need to filter the original diamonds data frame to only include those colors. You do

that in the preceding third line.

That filtering leaves you with only diamonds with a D color. The total number of

records in the resulting data frame is 6775 records which is high for a scatter plot visual.

Plotting too many observations in a scatter plot visual can result in a problem known as

over-plotting. To minimize over-plotting, you can take a random sample of the data and

plot the sampled data instead. The sampled data will have a similar distribution as the

underlying data which will cause it to plot similarly but minimize data overlapping. The

preceding code does an inline sample via the sample_n() function from dplyr. The result

is a random sample with 200 records that plots much better.

Chapter 1 The Grammar of Graphics

10

�Step 3: Initiate the creation of the visualization
with the ggplot() function
You initiate the creation of a chart in ggplot2 with the ggplot() function. When you

initiate the ggplot() function, you pass it parameters that you want to make available

to all layers of your chart. In this example, you set the plot.data data frame to the data

argument and the caret field and price field to the x and y argument of the aes() function

as shown in Listing 1-4.

Listing 1-4.  Initiating the ggplot() function

ggplot(data = plot.data, aes(x = carat, y = price))

It is important to know what the aes() function is and how it is used. The aes()

function describes how to map your data to a visual attribute. Commonly used

aesthetics are

•	 The x coordinate and the y coordinate of the geometric shape you

are plotting

•	 The color of the geometric shape you are plotting

•	 The size of the geometric shape you are plotting

•	 The fill of the geometric shape you are plotting

The preceding aes() function is used to describe how to map the x and y coordinates

of the geometric shape that will be plotted. The aes() function can be defined in the

ggplot() function or in a geom function that you will learn about in the next step. If it is

defined in the ggplot() function, then it will be available to all layers of the chart, but if it

is defined in the geom function, then it will only be available in the layer it was defined.

You will see examples of both cases in the next chapter.

�Step 4: Add desired geom(s)
You can do so using the following code in Listing 1-5.

Listing 1-5.  Adding a geom

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point()

Chapter 1 The Grammar of Graphics

11

When you initiated the ggplot() function in the previous step, the visual did not have

any layers so there was nothing to visualize. The mechanisms used to add layers to a

ggplot visual are geoms. The geom used to create scatter plots in ggplot is geom_point().

In the preceding code, geom_point() inherits from the ggplot() function that preceded

it so you should notice that the data source and the aesthetics needed to define the x

and y coordinates did not need to be explicitly defined. The resulting chart is shown in

Figure 1-4.

You want to add an additional layer of detail. You want to identify the clarity of each

point in the scatter plot. You do so by setting the aesthetic for color to clarity in the geom_

point() geom as illustrated in the code in Listing 1-6.

Listing 1-6.  Adding an aesthetic for color

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity))

Figure 1-4.  Basic scatter plot

Chapter 1 The Grammar of Graphics

12

You set this aesthetic in the geom_point() geom because that aesthetic is only needed

in that layer.

It is important to remember that when you set data sources or aesthetics in your
ggplot() function, they will be available to all layers in your visual, but when you
set them in an individual geom, it will only be available in the layer associated
with the geom.

The output of the code with the clarity of each point identified is illustrated in

Figure 1-5.

�Step 5: Define your titles, subtitles, and caption
Here is code you can use to add a title to your visual in Listing 1-7.

Figure 1-5.  Basic scatter plot

Chapter 1 The Grammar of Graphics

13

Listing 1-7.  Adding the titles and caption

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity))+

labs(

 title = "Chart Title",

 subtitle = "Chart Subtitle ",

 caption = "Chart Caption"

)

ggplot2 makes it easy to add a title, subtitle, and caption to your chart via the labs()

function. The labs() function name is short for labels. The titles of your visual can be

based on a static string or a dynamically generated string. You will see examples of titles

based on dynamically generated strings in the next chapter. Figure 1-6 shows what the

chart would look like with the titles added.

�Step 6: Make any necessary changes to the x and y axis
The defaults labeling of the x and y coordinates provided by ggplot2 are often sufficient

and don’t require any change. But if you are not happy with the defaults, you can easily

change them using a scale function.

Figure 1-6.  Chart with the titles added

Chapter 1 The Grammar of Graphics

14

Let’s take a moment to look at the ggplot2 code you built up to this point in Listing 1-8.

Listing 1-8.  Code to modify the x and y axis

library(tidyverse)

library(scales)

plot.data <-

 diamonds %>%

 filter(color == "D") %>%

 sample_n(200)

ggplot(plot.data, aes(carat, price)) +

 geom_point(aes(color = clarity)) +

 labs(

 title = "Chart Title",

 subtitle = "Chart Subtitle",

 caption = "Chart Caption"

)

The preceding code produces the chart in Figure 1-6. That chart contains a few

defaults that you want to override. Those defaults you want to change are

•	 The x axis names

•	 The y axis names

•	 The way the numbers are formatted in the y axis

You can change these defaults using the scale_x_continuous() and scale_y_

continuous() functions as illustrated in the code in Listing 1-9.

Listing 1-9.  Code to modify the x and y axis

library(tidyverse)

library(scales)

plot.data <-

 diamonds %>%

 filter(color == "D") %>%

 sample_n(200)

Chapter 1 The Grammar of Graphics

15

ggplot(plot.data, aes(x = carat, y = price)) +

 geom_point(aes(color = clarity)) +

 labs(

 title = "Chart Title",

 subtitle = "Chart Subtitle",

 caption = "Chart Caption"

) +

 scale_x_continuous(name = "Size in Carats") +

 scale_y_continuous(

 name = "Price ($)",

 labels = dollar_format()

)

The result you receive after executing the preceding code is illustrated in Figure 1-7.

As you can see, the scale_x_continuous() and scale_y_continuous() functions make it

relatively easy to make the desired changes.

Figure 1-7.  Overriding some of the chart defaults

Chapter 1 The Grammar of Graphics

16

Notice you add scales to your visual in the same fashion that you used to add
layers to your visual. It is important to note that the scale functions are used to
override the default scales, but they do not add layers to your chart.

Because both the x and y axis are based on continuous data, the continuous version

of that scale for the x and y axis is used. The only thing you want to change for your x

axis is the name, and you see that is easily accomplished using the name argument. For

the y axis, you are not only changing the name, but you are also changing the way the

numbers are formatted on the axis. The name change is accomplished using the name

argument. The formatting is done via the labels argument. The dollar_format() function

from the scales package is used to format the numbers to a dollar format. The dollar_

format() function inherits the y value from the ggplot() function that was defined in the

first line of the script so it does not need to be explicitly defined in the function.

�Step 7: Apply themes if needed
ggplot2 comes with predefined themes that format the non-data aspects of the charts.

Non-data aspects include attributes such as how your titles are positioned on the chart,

the background color of your chart, and the font size used in your titles, to name a few.

It is very easy to apply one of the predefined themes to your visual. You add themes the

same way you add layers and modify scales. You simply type the “+” sign, followed by the

function that represents the theme you want to add as illustrated in the last two lines in

the code in Listing 1-10.

Listing 1-10.  Applying the theme_minimal() theme

ggplot(plot.data, aes(x = carat, y = price)) +

 geom_point(aes(color = clarity)) +

 labs(

 title = "Chart Title",

 subtitle = "Chart Subtitle",

 caption = "Chart Caption"

) +

Chapter 1 The Grammar of Graphics

17

 scale_x_continuous(name = "Size in Carats") +

 scale_y_continuous(

 name = "Price ($)",

 labels = dollar_format()

) +

 theme_minimal()

The resulting visual is shown in Figure 1-8.

You used the theme_minimal() theme in the preceding visual. It is considered a good

practice in data to only add elements to your visual if it is absolutely necessary. White

space in your visual is considered a good thing. The theme_minimal() theme is based on

that principle. A list of the themes that are available in ggplot2 is covered in a subsequent

section titled “Themes built into ggplot2.”

�Step 8: Use the theme( ) function to change any
specific non-data elements
In the event that you are not totally happy with the results of the theme you applied to

your visual, you can tweak the results even further using the theme() function. The code

in Listing 1-11 uses the theme() function to format the titles.

Figure 1-8.  The theme defaults based on the R script

Chapter 1 The Grammar of Graphics

18

Listing 1-11.  Using the theme() function to change non-data elements

ggplot(plot.data, aes(carat, price)) +

 geom_point(aes(color = clarity)) +

 labs(

 title = "Chart Title",

 subtitle = "Chart Subtitle",

 caption = "Chart Caption"

) +

 scale_x_continuous(name = "Size in Carats") +

 scale_y_continuous(

 name = "Price ($)",

 labels = dollar_format()

) +

 theme_minimal() +

 theme(

 plot.title = element_text(hjust = 0.5),

 plot.subtitle = element_text(hjust = 0.5),

 plot.caption = element_text(hjust = 1)

)

The code produces the following visual in Figure 1-9.

Chapter 1 The Grammar of Graphics

19

The theme function gives you access to over 80 chart elements that you can modify.

The majority of those elements have an element function associated with it that is used

to make the modification.

In the preceding code, we modified the position of the chart’s title, the chart’s

subtitle, and the chart’s caption. As you can see in the code, the element associated with

the chart title is plot.title, the element associated with the chart’s subtitle is plot.subtitle,

and the element associated with the chart’s caption is plot.caption. All three elements are

modified using the element_text() function. The chart’s title and subtitle were centered

using the hjust argument in the element_text() function. The hjust argument represents

the horizontal position of the text, and it accepts a value between 0 and 1. If you set hjust

to 0, it will left justify the text; if you set hjust to 0.5, it will center the text; and if you set

hjust to 1, it will right justify the text.

Listing 1-12 shows the element functions along with their available options.

Figure 1-9.  Re-positioned titles using the theme() function

Chapter 1 The Grammar of Graphics

20

Listing 1-12.  The element functions with their available options

element_blank()

element_rect(fill = NULL, colour = NULL, size = NULL, linetype = NULL,

color = NULL, inherit.blank = FALSE)

element_line(colour = NULL, size = NULL, linetype = NULL,

 lineend = NULL, color = NULL, arrow = NULL, inherit.blank = FALSE)

element_text(family = NULL, face = NULL, colour = NULL, size = NULL,

hjust = NULL, vjust = NULL, angle = NULL, lineheight = NULL, color = NULL,

margin = NULL, debug = NULL, inherit.blank = FALSE)

This URL, https://bit.ly/34EaWtr, contains the complete documentation about

the theme() function.

�Bonus step: Specifying specific colors for your points
in your scatter plot
There will be times when you want the colors of the points in your scatter plot to be the

same color. Let’s see what happens if we try to set the color aesthetic to a specific color

rather than a field in the data frame. The script in Listing 1-13 sets the color to blue in the

aes() function.

Listing 1-13.  Setting the color via the aes() function

library(tidyverse)

library(scales)

plot.data <-

 diamonds %>%

 filter(color == "D") %>%

 sample_n(200)

ggplot(plot.data, aes(carat, price)) +

 geom_point(aes(color = "blue")) +

 labs(

 title = "Chart Title",

Chapter 1 The Grammar of Graphics

https://bit.ly/34EaWtr

21

 subtitle = "Chart Subtitle",

 caption = "Chart Caption"

) +

 scale_x_continuous(name = "Size in Carats") +

 scale_y_continuous(

 name = "Price ($)",

 labels = dollar_format()

) +

 theme_minimal() +

 theme(

 plot.title = element_text(hjust = 0.5),

 plot.subtitle = element_text(hjust = 0.5),

 plot.caption = element_text(hjust = 1)

)

It produces the following chart in Figure 1-10.

Figure 1-10.  Setting color using the aes() function

Chapter 1 The Grammar of Graphics

22

Note that you did not get the expected results. Instead of getting a scattered plot

chart with the points colored blue, you got a scattered plot chart with the points colored

what appears to be red. That is because the aes() function scaled the color. You need to

define the color outside of the aes() function if you want it to be a specific color as done

in the code in Listing 1-14 on line 10.

Listing 1-14.  Setting the color outside the aes() function

library(tidyverse)

library(scales)

plot.data <-

 diamonds %>%

 filter(color == "D") %>%

 sample_n(200)

ggplot(plot.data, aes(carat, price)) +

 geom_point(color = "blue") +

 labs(

 title = "Chart Title",

 subtitle = "Chart Subtitle",

 caption = "Chart Caption"

) +

 scale_x_continuous(name = "Size in Carats") +

 scale_y_continuous(

 name = "Price ($)",

 labels = dollar_format()

) +

 theme_minimal() +

 theme(

 plot.title = element_text(hjust = 0.5),

 plot.subtitle = element_text(hjust = 0.5),

 plot.caption = element_text(hjust = 1)

)

It produces the following chart in Figure 1-11 with the desired results.

Chapter 1 The Grammar of Graphics

23

�The importance of having “tidy” data
For those of you that are DAX developers, you are aware of the importance of having your

BI data model formatted in a nice star schema structure. Doing so makes developing

DAX measures much easier. Measures that are simple to develop in a well-formed star

schema data model can be unnecessarily complex in a BI data model that is not shaped

in that format.

A similar phenomenon exists when building visualizations or doing data analysis in

R. When you format your data in what Hadley Wickham calls a tidy format, it makes data

analysis tasks and data visualization much easier to do.

A data set that is in a tidy format is a data set where each record represents a
single observation, and each column represents a single variable. It is similar to the
third normal form in databases.

Figure 1-11.  Specifying color outside the aes() function

Chapter 1 The Grammar of Graphics

24

If for some reason the data that you pass to your R visual in Power BI is not in a tidy

format, don’t panic. Luckily, you have packages such as dplyr and tidyr that you can

use in your R visual script that will help you shape your data into the format it needs to

be in.

The tidy data concept is very important in data analysis and data visualization. Its

importance is not limited to R. A complete coverage is beyond the scope of this book.

Fortunately, Hadley Wickham has written a nice white paper that you can read to learn

more about it. Here is the URL to that paper, https://vita.had.co.nz/papers/tidy-

data.pdf.

�Popular geoms
As mentioned earlier, ggplot2 is based on the layered grammar of graphics. Layers are

added to ggplot2 visuals through the use of geom functions. This feature of ggplot2

enables you to create beautiful visuals with minimum code that is relatively easy to write.

It makes expressing your ideas with code much easier to do compared to creating data

visualizations in other programming languages. There are many geoms available to you

in ggplot2, but here is a bulleted list of some popular geoms complete with code snippets

to illustrate them:

•	 geom_bar()

The geom_bar() geom is used to create what are typically called

column charts and horizontal bar charts. This section gives an

example of how to use the geom_bar() geom to create a column

chart using the code in Listing 1-15.

Listing 1-15.  geom_bar() example

library(tidyverse)

plot.data <-

 data.frame(Titanic) %>%

 group_by(Class) %>%

 summarize(`Total Freq` = sum(Freq))

Chapter 1 The Grammar of Graphics

https://vita.had.co.nz/papers/tidy-data.pdf
https://vita.had.co.nz/papers/tidy-data.pdf

25

ggplot(plot.data, aes(x = Class, y = `Total Freq`)) +

 geom_bar(stat = "identity") +

 labs(title = "geom_bar") +

 theme_minimal()

The visualization produced by the preceding code is shown in Figure 1-12.

The first line of code in the preceding script loads the tidyverse

package. The next block of code creates the data set needed for

the geom_bar() visual. The techniques used to wrangle the data in

that section will be covered in future parts of the book.

The next block code is the code that is actually creating the

visualization. The first two lines are all that is needed to create the

column chart. The last two lines are used to change the cosmetics

of the chart. They add a title to the chart and changed the chart’s

theme.

Figure 1-12.  The geom_bar() geom

Chapter 1 The Grammar of Graphics

26

Note that the geom_bar() only needed one argument to be

defined, and that is the stat argument. The other required

arguments (the data set, x coordinate, and y coordinate) were

inherited from the ggplot() function. Setting the stat argument to

“identity” tells ggplot2 that you want the height of your columns to

be based on the values of the columns that were assigned to the y

aesthetic in the aes() function. The default is to use count. You will

learn more about the stat argument in future examples.

•	 geom_histogram()

The geom_histogram() is used to create histogram chart.

Histogram charts are used to show how your data is distributed.

The code that we will use to illustrate this geom is in Listing 1-16.

Listing 1-16.  geom_histogram() example

library(tidyverse)

set.seed(50)

probs <- c(0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033,

0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.01, 0.01, 0.01,

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.015, 0.015, 0.015, 0.015,

0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.0133, 0.0133, 0.0133, 0.0133,

0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133,

0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133,

0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.017,

0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.01, 0.01,

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.0033, 0.0033, 0.0033,

0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033,

0.0033, 0.0033, 0.0033)

weights <- 265:364

names <- c("Liam Galles", "Noah Raymond", "William Hammontree",

"James Zaremba", "Oliver Zurcher", "Benjamin Hilker", "Elijah Loken",

"Lucas Lewter", "Mason Straus", "Logan Work", "Alexander Jarret",

"Ethan Wey", "Jacob Adolphsen", "Michael Solt", "Daniel Welcome",

Chapter 1 The Grammar of Graphics

27

"Henry Portman", "Jackson Tichenor", "Sebastian Free", "Aiden Papp",

"Matthew Lenzi", "Samuel Rinaldo", "David Goines", "Joseph Asuncion",

"Carter Philhower", "Owen Freeborn", "Wyatt Ice",

"John Mcguckin", "Jack Soden", "Luke Humfeld", "Jayden Natera",

"Dylan Galles", "Grayson Raymond", "Levi Hammontree", "Isaac Zaremba",

"Gabriel Zurcher", "Julian Hilker", "Mateo Loken", "Anthony Lewter",

"Jaxon Straus", "Lincoln Work", "Joshua Jarret", "Christopher Wey",

"Andrew Adolphsen", "Theodore Solt", "Caleb Welcome",

"Ryan Portman", "Asher Tichenor", "Nathan Free", "Thomas Papp",

"Leo Lenzi", "Isaiah Rinaldo", "Charles Goines", "Josiah Asuncion",

"Hudson Philhower", "Christian Freeborn", "Hunter Ice",

"Connor Mcguckin", "Eli Soden", "Ezra Humfeld", "Aaron Natera",

"Landon Galles", "Adrian Raymond", "Jonathan Hammontree",

"Nolan Zaremba", "Jeremiah Zurcher", "Easton Hilker", "Elias Loken",

"Colton Lewter", "Cameron Straus", "Carson Work", "Robert Jarret",

"Angel Wey", "Maverick Adolphsen", "Nicholas Solt", "Dominic Welcome",

"Jaxson Portman", "Greyson Tichenor", "Adam Free", "Ian Papp",

"Austin Lenzi", "Santiago Rinaldo", "Jordan Goines", "Cooper Asuncion",

"Brayden Philhower", "Roman Freeborn", "Evan Ice", "Ezekiel Mcguckin",

"Xavier Soden", "Jose Humfeld", "Jace Natera", "Jameson Adolphsen",

"Leonardo Solt", "Bryson Welcome", "Axel Portman", "Everett Tichenor",

"Parker Free", "Kayden Papp", "Miles Lenzi", "Sawyer Rinaldo",

"Jason Goines")

linemen_weights <- sample(weights, 100, replace = TRUE,

prob= probs)

plot.data <- data.frame(names, linemen_weights)

ggplot(plot.data, aes(linemen_weights)) +

 geom_histogram(binwidth = 20) +

 labs(title = "geom_histogram") +

 theme_minimal()

Chapter 1 The Grammar of Graphics

28

The preceding code produces the visualization in Figure 1-13 which is illustrated

as follows.

As in the previous example, the first part of the code builds out

the data set that will be used for the visual so you can reproduce

the same visual in your environment. It produces a fictitious data

set of American football offensive linemen at the collegiate level.

We will just focus on the last four lines of code which produces

the visual.

As you might have guessed, the basis of the histogram visual

is produced using the geom_histogram() geom. Note that it

uses one argument, and that is binwidth because the other

required arguments were inherited from the ggplot() function.

This argument enables you to define the width of the bins. It is

recommended you play with this argument because the default

Figure 1-13.  The geom_history() geom

Chapter 1 The Grammar of Graphics

29

settings normally do not create the optimum number of bins.

Note that the basis of the histogram was created with just the two

following code lines as illustrated in the following code:

ggplot(plot.data, aes(linemen_weights)) +

 geom_histogram(binwidth = 20)

The subsequent code after that point were for cosmetic features.

•	 geom_line()

The geom_line() geom is used to create line charts. Line charts are

great for showing trend over time. The following code in Listing 1-17

will be used to generate the line chart example.

Listing 1-17.  geom_line() example

library(tidyverse)

library(lubridate)

players <- c("Kobe Bryant", "Pau Gasol", "Lamar Odom")

plot.data <- lakers %>%

 filter(

 result == "made" & team == "LAL" & player %in% players

) %>%

 mutate(date = ymd(date)) %>%

 group_by(player, date) %>%

 summarize(points = sum(points))

ggplot(plot.data, aes(x=date,y=points,color=player)) +

 geom_line() +

 labs(title = "geom_line") +

 theme_minimal()

Chapter 1 The Grammar of Graphics

30

The output of the preceding code is shown in Figure 1-14.

As in the previous example, the first part of the code builds the

data set and gives you everything you need to recreate the visual

in your environment. This visualization is using the lakers data

set that comes with the lubridate package. The lakers data set

contains play-by-play information from the 2008 season.

Note how the color aesthetic is used to create multiple lines.

ggplot2 creates a line based on each unique item in the field

specified in the color aesthetic. Just like in the previous examples,

only two lines were needed to create the basis of the visual and

those were the line where the ggplot() function was initiated and

the next line after that which defined the geom layer.

Figure 1-14.  The geom_line() geom

Chapter 1 The Grammar of Graphics

31

•	 geom_point and geom_smooth

This example illustrates how to create a chart in ggplot2 that has

multiple layers. The example shows how to add a regression

line to a scatter plot. ggplot2 enables you to overlay your scatter

plot with different types of trend lines. It is not limited to linear

regression lines. ggplot2 also allows you to add confidence

intervals to your line at a level of your choice. As of this writing,

those features are not available in native Power BI.

The following code in Listing 1-18 is used to illustrate how to

create a scatter plot and overlay it with a regression line.

Listing 1-18.  geom_point() and geom_smooth() example

library(tidyverse)

set.seed(1)

plot.data <-

 diamonds %>%

 filter(color == "D") %>%

 sample_n(200)

ggplot(plot.data, aes(x=carat, y=price)) +

 geom_point() +

 geom_smooth(method ="lm") +

 labs(title = "geom_point & geom_smooth") +

 theme_minimal()

Chapter 1 The Grammar of Graphics

32

Figure 1-15 shows what the code produces.

The preceding chart is based on multiple layers, the geom_point()

and geom_smooth(). The geom_point() geom is used to create

the scatter plot, and the geom_smooth() geom is used to add a

regression line complete with a confidence interval. The default

for the confidence interval is 95%. You can change it by modifying

the se argument. Setting method argument to lm is what causes

the geom_smooth() geom to produce a regression line.

�Controlling aesthetics with scales
You learned earlier that the mapping of data to aesthetics is described using the aes()

function. The underlying process, however, is controlled by the scale functions. In this

section, you will learn how that happens.

Figure 1-15.  The geom_point() and geom_smooth() geom

Chapter 1 The Grammar of Graphics

33

Let’s start with a background of what scales are. A scale is needed for every

aesthetic in a chart (x coordinate, y coordinate, color, etc.). It determines how the data

will be “scaled” in your visual. You don’t need to explicitly define them. If you don’t

define them, ggplot2 will go with the defaults. Let’s use the code snippet in Listing 1-19

as an example.

Listing 1-19.  ggplot2 code minus the underlying helper code

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity))

In this example, there are no scales being explicitly defined. The preceding code is

translated to the following code in Listing 1-20 by ggplot2.

Listing 1-20.  ggplot2 code with helper code that defines the scales

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity)) +

scale_x_continuous() +

scale_y_continuous() +

scale_color_discrete()

ggplot2 uses the default values for each of those three scales.

The astute reader probably recognized a pattern in the naming convention of scales.

The scale functions use a three-part naming convention. Scale functions are prefaced

with the word “scale”, followed by the name of the aesthetic it is a scale for, and ending

with the type of scale it is. These three parts are delimited with a “_”.

So, if you look at the first two scales in the preceding script using the naming

convention just outlined, you notice that they are for the x and y aesthetic, respectively.

They both use the continuous scale type because the data mapped to the x and y

aesthetic are continuous numbers. The last scale is for the color aesthetic. The data

mapped to this aesthetic is the clarity field. That field contains a list of discrete values

which is the reason why the type of scale is discrete.

If you are cool with what ggplot2 produces, then you don’t need to define the scales.

You can go with the defaults. But if you want to override what ggplot2 produces, you need

to do so using the appropriate scale.

Chapter 1 The Grammar of Graphics

34

Recall the following code from Listing 1-9 that produced Figure 1-8:

library(tidyverse)

library(scales)

plot.data <-

 diamonds %>%

 filter(color == "D") %>%

 sample_n(200)

ggplot(plot.data, aes(x = carat, y = price)) +

 geom_point(aes(color = clarity)) +

 labs(

 title = "Chart Title",

 subtitle = "Chart Subtitle",

 caption = "Chart Caption"

) +

 scale_x_continuous(name = "Size in Carats") +

 scale_y_continuous(

 name = "Price ($)",

 labels = dollar_format()

)

Note that the aesthetic name is changed on the x aesthetic using the scale_x_

continuous() and the label formatting and aesthetic name is changed on the y aesthetic

using scale_y_continuous(). You will see more examples of ways you can modify your

aesthetics with scales in the next chapter.

�Themes built into ggplot2
ggplot2 comes pre-packaged with a list of themes that makes it easy to change the display

of your non-data elements in your chart. Here is a list of available themes as described by

the package author, Hadley Wickham:2

•	 theme_bw(): A variation on theme_gray() that uses a white

background and thin gray grid lines

2�Wickham, Hadley. Ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Houston,
TX: Springer, 2016. pp. 172–173.

Chapter 1 The Grammar of Graphics

35

•	 theme_linedraw(): A theme with only black lines of various widths on

white backgrounds, reminiscent of a linedrawing

•	 theme_light(): Similar to theme_linedraw() but with light gray lines

and axes, to direct more attention toward the data

•	 theme_dark(): The dark cousin of theme_light(), with similar line

sizes but a dark background. Useful to make thin colored lines

pop out

•	 theme_minimal(): A minimalistic theme with no background

annotations

•	 theme_classic(): A classic-looking theme, with x and y axis lines and

no gridlines

•	 theme_void(): A completely empty theme

�Using R visuals in the Power BI service
When you deploy an R visual to the Power BI service, you must make sure that you

are using a version of the package that is available in the service. The following URL

contains a list of available packages on the server along with their version: https://

docs.microsoft.com/en-us/power-bi/connect-data/service-r-packages-support.

�Helper packages for ggplot2
ggplot2 is a feature-rich package, and it contains the tools needed to handle most of your

data visualization needs. But there will be times when you will need to do things such as

wrangle the data set that Power BI passed to R before you create the visualization, format

the data in a way that is not possible using the features available in base R or ggplot2, or

use themes that are not part of the ggplot2 package.

Chapter 1 The Grammar of Graphics

https://docs.microsoft.com/en-us/power-bi/connect-data/service-r-packages-support
https://docs.microsoft.com/en-us/power-bi/connect-data/service-r-packages-support

36

Fortunately, you are not limited to the ggplot2 package when you develop your R

visual. Here are a few packages that are great complements to ggplot2 in Power BI. This

list is by no means exhaustive:

•	 tidyverse: A metapackage that contains a collection of popular R

packages that share the same framework. It includes packages such

as ggplot and dplyr. The tidyverse collection of packages facilitates

doing data science in R. More information about tidyverse can be

found at this URL: www.tidyverse.org/.

•	 ggthemes: Is a helper package for ggplot2 that contains additional

scales, geoms, and themes. Two of the themes that are worth noting

are theme_few() and theme_tufte(). These two themes are based on

best practices of two very popular data visualization experts, Stephen

Few and Edward Tufte. More information can be found about the

ggthemes package at this URL: https://cran.r-project.org/web/

packages/ggthemes/ggthemes.pdf.

•	 scales: The scales package provides ggplot2’s internal scaling

infrastructure as well as many functions for data transformation and

data formatting. You can find out more about the scales package at

this URL: https://cran.r-project.org/web/packages/scales/

scales.pdf.

•	 ggrepel: The ggrepel package provides geoms that reposition labels

to minimize label overlap. This package comes in handy when you

want to add labels to your scatter plot charts. You can find more

information about the ggrepel package at this URL: https://cran.r-

project.org/web/packages/ggthemes/ggthemes.pdf.

�Summary
In this chapter, you learned about

•	 A framework to use when adding R visuals to Power BI

•	 The layered grammar of graphics of which ggplot2 is based on

•	 How to use geoms to add layers to your visual

Chapter 1 The Grammar of Graphics

http://www.tidyverse.org/
https://cran.r-project.org/web/packages/ggthemes/ggthemes.pdf
https://cran.r-project.org/web/packages/ggthemes/ggthemes.pdf
https://cran.r-project.org/web/packages/scales/scales.pdf
https://cran.r-project.org/web/packages/scales/scales.pdf
https://cran.r-project.org/web/packages/ggthemes/ggthemes.pdf
https://cran.r-project.org/web/packages/ggthemes/ggthemes.pdf

37

•	 How to modify chart aesthetics using scale functions

•	 How to modify non-data elements of your chart using complete

themes and the theme() function

The goal of this chapter was to introduce you to some important concepts about

ggplot2 to make it easier to understand how to build the more advanced graphics you

will learn in the next chapter. Now that you know the basics of how to create R visuals in

Power BI using ggplot2, let’s take it up a notch and develop R visuals that will help you

tell some amazing data stories in Power BI!

Chapter 1 The Grammar of Graphics

39
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_2

CHAPTER 2

Creating R Custom
Visuals in Power BI
Using ggplot2
In the previous chapter, you were introduced to the ggplot2 package, and you were

given a basic template to use for creating visuals in Power BI. In this chapter, you will

be given some recipes that illustrate how expressive you can be when you leverage

ggplot2 to create R custom visuals in Power BI. This chapter contains recipes to create

the following charts:

•	 A callout chart with dynamic titles and annotations

•	 A bubble chart with dynamic titles that displays five dimensions

of data

•	 A detailed forecast visualization that forecasts the Wikipedia page

views for Lamar Jackson and Deshaun Watson

•	 A line chart that displays GDP by Year with a background shade based

on the political party in power for the point in time

•	 A map visualization that displays the state selected and colors

the counties in that state based on the population quintile the

county is in

•	 A quad chart that compares LA Lakers basketball players based on

total points scored and rebounds made in the 2008–2009 season

•	 A scatter plot of the average weight by height of US women that is

overlaid with a regression line

https://doi.org/10.1007/978-1-4842-5829-3_2#DOI

40

You can make minor modifications to these recipes to use with your data. You

can also be creative and take a little bit from each of the visuals to create a custom

visualization that is specific to your needs. The ggplot2 package is so rich that it will be

hard to limit your creativity. Let’s start by creating a callout chart.

�Callout chart
The horizontal bar chart is a very common visualization. It is great for ranking

categorical data based on a metric. One of the default visualizations in Power BI is a

bar chart, but it is pretty basic in nature. You can do some basic enhancements like

emphasize a bar by highlighting it, but you can’t take things further by adding features

like dynamic subtitles, captions, and dynamic annotations without using a clunky hack.

Luckily, that is not a limitation with ggplot2!

In this section, you will create the horizontal bar chart listed in Figure 2-1.

Figure 2-1.  A horizontal bar chart with a callout bar and annotation

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

41

The preceding chart ranks the top 7 countries based on percentage of government

expenditures that goes to education. It includes a dynamic annotation in the chart that

compares the top ranked country to the seventh ranked country. Lastly, it includes

a caption that tells you where the data came from. Let’s go over the code needed to

develop this visualization.

�Step 1: Acquire the necessary data
The data set that is used for this example comes from the World Bank Open Data. The

data set represents the percentage of government expenditures on education for each

country in the world. Perform the following steps to acquire the data set:

	 1.	 Go to data.worldbank.org.

	 2.	 Go to the search bar located in the upper middle portion of the

page and type “Government expenditure on education, total

(% of government expenditure)”. After you press Enter, a list

of possible options should appear and one should be exactly

what you just typed. Select it and you will be taken to a page

dedicated to this topic.

	 3.	 On the right side of the page, you should see a download section

with options to download as csv, xml, or Excel. Click the csv

option.

	 4.	 The action of the previous step will download a zip file to your

computer. As of the writing, the zip file contains three files: a data

file, a metadata file with country information, and a metadata

file with information about the indicator. The file needed for this

exercise is the data file. At the time of the writing, the file was

named API_SE.XPD.TOTL.GB.ZS_DS2_en_csv_v2_715566.csv.

Please note that the government agencies that produce these data sets can
change the format of these data sets without warning so the format may change in
the future.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

42

	 5.	 Now you need to import the data set into Power BI and put it in

the shape it needs to be in for the visual. The GetData feature in

Power BI will be used to perform that task. To load the contents

into Power BI, go to the Home tab, then click GetData ➤ Text/

CSV, then migrate to the location where the data file is located.

Recall that the data file that was used for this example is named

API_SE.XPD.TOTL.GB.ZS_DS2_en_csv_v2_715566.csv and it is the

biggest of the three files in the zip file. The file is also located in the

repo for this chapter.

	 6.	 Next, you need to make the necessary transformation to the data

using GetData (Power Query) to get it in the shape that it needs to

be in for the visualizations. The final output needs to contain the

following columns with the associated data types:

Column Name Data Type

Country Text

Country Code Text

Year Whole number

Total Expend % Decimal number

You will have a pbix file that contains the Power Query steps

needed to get the data into the preceding shape in the code

repository for this chapter. All you need to do is change the source

file. Please note the steps may need to change in the future if the

government entity that produced the data set decides to change

the format.

�Step 2: Create a slicer based on the year in the Filter pane
Drag the slicer icon to the upper right corner of the report canvas. The slicer icon is

pictured in Figure 2-2.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

43

After you finish positioning the slicer, drag the Year field from the

ExpenditureOnEducationByCountryByYear data set to the Field pane as illustrated in

Figure 2-3.

�Step 3: Configure the R visual in Power BI
Go to the visualization pane and drag an R visual to the report canvas. Resize the

visual to the desired size. Drop the Country, Total Expend %, and Year fields from the

EducationExpenditures table to the Fields pane. If the Fields pane is not showing, select

the R visual on the report canvas and it should appear.

�Step 4: Export data to R Studio for development
Select the R visual to expose the R script editor. You will see it at the bottom of the R

visual. If it is not fully exposed, then click the upward arrow that is located on the far

right corner of the R script editor. Once expanded, you should see the following code

(Figure 2-4).

Figure 2-2.  Image for slicer visual

Figure 2-3.  Image for the Fields pane

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

44

The comments are letting you know that R took the data set you created in Power

BI via the Fields pane and assigned it to an R object called a data frame that is named

dataset. A data frame is a two-dimensional data set with special properties. The data

frame is created in the preceding code in line 3. Power BI only allows data sets with

unique rows to be passed to R, and it ensures that the dataset data frame has unique

rows by using the unique() function in line 4.

The preceding editor is not an ideal place to do your development. Luckily, Microsoft

makes it easy for you to do the development in a more desirable environment like R

Studio. To transfer development to R Studio, click the 45° arrow. The arrow in question is

highlighted in Figure 2-5.

Clicking the arrow will open R Studio and will save the data set that was passed to

the R visual to a temporary location on your computer. It will also generate code that will

create the dataset variable that represents the data frame that was passed to the R visual

in Power BI. Lastly, any R code that is in the script will be passed to R Studio as well.

Listing 1-1 shows what will be passed to R Studio.

Listing 1-1.  Code passed to R Studio from Power BI

Input load. Please do not change

`dataset` =

 read.csv('<path to input file>',

 check.names = FALSE,

 encoding = "UTF-8",

Figure 2-5.  Clicking the highlighted arrow launches your preferred IDE for a more
pleasant development environment

Figure 2-4.  The Power BI R script editor with the default comments

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

45

 blank.lines.skip = FALSE

);

Original Script. Please update your script content here

and once completed copy below section back to the original

editing window. The following code to create a dataframe and

remove duplicated rows is always executed and acts as a

preamble for your script:

dataset <-

data.frame(

Country Name,

`Percent Education Expenditure Ranking`

)

dataset <- unique(dataset)

Paste or type your script code here:

The code. was reformatted so that it would fit nicely on the page. Lines 2–7 will

display on one line which is used to read the data set that was saved to disk into an R

data frame. The name dataset will be given to the data frame. Note that this is the same

name that is used in Power BI. That was done on purpose. Using the same name enables

you to use the code you will develop in R Studio in Power BI without having to do any

refactoring.

�Step 5: Load the required packages
The three packages. used in this example are tidyverse, scales, and ggthemes. The dplyr

package from tidyverse is used to perform some data wrangling, ggplot2 from tidyverse is

used to create the visualization, forcats from tidyverse will be used to define some sorting

rules, some functions from the scales package are used for number formatting, and the

ggthemes package provides the theme_few() theme. Here is the code used to load the

packages:

library(tidyverse)

library(scales)

library(ggthemes)

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

46

�Step 6: Create the variables needed for the data
validation test
The following code is used to create the data validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Country", "Total Expend %", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

You need to ensure that the data passed to R meets the requirements for the

visualization. Two tests are performed earlier to see if the requirements are met. First, a

test is done to make sure the expected columns were passed to R. Second, a test is done

to make sure the data set only represents one year.

The column names-based test is done in the first three lines of code. The first line

creates a character vector named currentColumns with the names of the columns in

the dataset data frame sorted in alphabetical order. It gets the names of the columns

from dataset data frame using the colnames() function. The sort() function is used to

sort the returned column names in alphabetical order. It needs to be in alphabetical

order for comparison reasons. The next line of code creates a character vector named

requiredColumns that contains the column names that the visual is expecting. The

column names must be supplied in alphabetical order as well.

In order to test them for equality, they must not only contain the same elements,

but the elements must be in the same order. To test for equality, the all.equal()

function from base R is used. It returns TRUE if the two character vectors are equal;

otherwise, it returns information about why they are unequal. You need a Boolean

value to be returned. You can ensure that one is returned by wrapping the all.equal()

function with the isTRUE() function. The last line in the preceding code gets the

unique years contained in the dataset data frame. That information will be used in

the next step.

�Step 7: Create the data validation test
Here is the shell of the validation test:

if (length(reportYear) == 1 & columnTest) {

 <code to produce visual>

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

47

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

If the dataset data frame only contains one year and the columnTest evaluates to

TRUE, then the code that creates the visualization is executed. Otherwise, a blank

chart with the message “The data supplied did not meet the requirements of the chart.”

is shown.

�Step 8: Add additional columns to your data set that is
required for the custom R visual
Now you need to start developing the script that creates the visualization when the

requirements are met. You need to enhance the dataset data frame with additional

columns in order to create the desired visualization. The code that will be used to

enhance the dataset data frame is shown as follows:

plotdata <-

 dataset %>%

 mutate(

 rank = dense_rank(desc(`Total Expend %`)),

 callout = ifelse(rank == 1, TRUE, FALSE)

 Country = fct_reorder(Country, rank, .desc = TRUE),

) %>%

 filter(rank <= 7)

This code will go where you see the <code to produce visual> in the template

shown in Step 7. The preceding code uses the dplyr package from tidyverse to add the

needed columns. The first line of code assigns the result of the succeeding code to a

variable named plotdata. The second line of code says that you are starting with the

dataset data frame and you are passing it as the first argument of the mutate() function

by using the pipe (%>%) operator.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

48

The pipe, %>%, operator comes from the magrittr package which is preloaded
with dplyr. It passes the result of an expression or a value to the succeeding
function. It makes code that involves chain operations much more readable.

The mutate() function is used to project two new columns, rank and callout, and

also to change the default sort order of the Country column. The rank column uses the

dense_rank() window function from dplyr to rank each row based on the Total Expend

% in descending order.

The callout column is used to identify the country that is ranked number one. It uses

the ifelse() function to return TRUE if the rank column is equal to one and return FALSE

otherwise. The Country column uses the fct_reorder() function from forcats to base its

sort order on the rank column. It can do so because the data type of the Country column

is factor.

A factor is a special data type in R that is used for categorical data. It has many
great attributes, and one of them is the ability to sort a factor column based on
another column.

The Country field will be sorted based on its rank. The sort order defined will be used

in the visualization.

Lastly, the filter() function is used to filter the dataset data frame. A filter is applied to the

rank column to limit the dataset data frame to only include countries that ranks in the top 7.

�Step 9: Create the variables that will be used for the
dynamic portions of the chart
One of the features that is available in R but not in Power BI is the ability to dynamically

add annotations to your chart. You can not only dynamically create the text you want to

display on the chart but you can also dynamically control the position you want to place

the text. In this step, you are creating the variables that will be used to create the dynamic

annotation, and you are also defining the position of the dynamic annotation. You will

also create the variables that will be used for the main chart title, the chart subtitle, and

the chart caption as well. Here is the code in question:

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

49

countryToAnnotate <- plotdata$`Country`[plotdata$rank == 1]

minExpenditure <- min(plotdata$`Total Expend %`)

maxExpenditure <- max(plotdata$`Total Expend %`)

minCountry <-

 plotdata$`Country`[

 which(plotdata$`Total Expend %` == minExpenditure)

]

minCountry <- paste(minCountry, collapse = " & ")

maxCountry <- plotdata$`Country`[

 which(plotdata$`Total Expend %` == maxExpenditure)

]

maxCountry <- paste(maxCountry, collapse = " & ")

mainTitle <- "% of Government Expenditure on Education"

subTitle <-

 paste(

 "The top 7 ranked countries in",

 reportYear,

 sep = " "

)

caption <- "Source: https://databank.worldbank.org/source/world-

development-indicators"

 label_val <-

 str_wrap(

 paste(

 maxCountry,

 "spent",

 percent((maxExpenditure/minExpenditure-1)),

 "more of their expenditures on education than",

 minCountry,

 sep = " "

),

 width = 35

)

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

50

Here are the explanations for each variable:

•	 countryToAnnotate: This is the country that ranks number one. It will

be the country that you will annotate.

•	 minExpenditure: This variable holds the result of using the min()

function to get the min value of the Total Expend % column. This

information will be later used to identify the country that has the

minimum expenditures.

•	 maxExpenditure: This variable holds the result of using the max()

function to get the max value of the Total Expend % column. This

information will be later used to identify the country that has the

maximum expenditures.

•	 minCountry: You identified the minimum percent expenditure in the

top 7 countries in the minExpenditure variable. Now you need to find

out which countries are associated with it. You find out that information

by subsetting the Country column in the plotdata data frame to

only include the countries where the Total Expend % is equal to the

minExpenditure. You use the which() function to help you with this

task. The which() function returns the TRUE indexes which can be used

to tell R the indexes of the Country column to return. The plotdata data

frame may contain ties which would need to be handled. That is done

in the next line. Tied countries are collapsed into a scalar character

vector using the paste() function. The elements in the newly collapse

scalar character vector are separated with the & sign. You can see an

example of ties if you select calendar year 2005 in the Power BI report.

•	 maxCountry: The which() function is used to help us get the max

country name as well. Here it is being used to get the index where the

rank column is equal to 1. There are no ties for the number one spot

in this data set so you really do not need to handle them.

•	 mainTitle: This variable holds the value of a static string that will be

used for the chart title.

•	 subtitle: This variable holds the value of a dynamically created string

that will be used for the chart’s subtitle based on the year that was

selected by the report user.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

51

•	 caption: This variable stores the website URL where the source data

came from.

•	 label_val: This variable contains the result of a dynamically created

chart annotation. The annotation compares the percent expenditures

of the country that spent the biggest percentage of their government

expenditures on education to the country that was ranked seventh.

It dynamically builds the annotation using the paste() function by

combining the maxCountry and minCountry variables along with the

result of the percent calculation.

The annotation is relatively long and will not fit on the visual if you

display it as one line. That problem is resolved by using the str_wrap()

function from the stringr package. This function provides a wealth

of formatting options, one of which is the ability to control the

maximum width of a line. You set this argument to 35, in this

example, which ensures that the annotation will fit on the chart.

�Step 10: Start building the chart by defining the
ggplot( ) function
The ggplot() function is defined here:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

)

The purpose of the x and y aesthetic is self-explanatory. The fill aesthetic tells

ggplot() what column (variable) you want to base the coloring of the bars on, and the

label aesthetic tells R what column will be used to add labels to the chart.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

52

�Step 11: Add a column chart layer to the R visual
In this step, you add the first layer to the chart which is a column chart using the

geom_col() geom. You have the option to use this or the gom_bar() geom. You chose

geom_col() because the default for the stat argument is stat_identity so the true value

of the y aesthetic will be displayed and not a count of the number of elements in y. If

we used geom_bar(), you would have to explicitly tell ggplot() that you want the stat

argument set to stat_identity:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

 geom_col()

�Step 12: Add a text layer to the R visuals
The following code takes what was built up to Step 11 and adds a layer to the chart for

the labels:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05)

In this step, you add another layer to the chart. You add the labels to the chart using

the geom_text() geom. The required arguments for the geom_text() geom are the x, y,

and label arguments. All three are inherited from the aesthetics defined in the ggplot()

function. The x and y arguments are used to define position of the labels, and the label

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

53

argument is used to define what will be displayed. In this example, you are displaying

the Total Expend % column formatted as a percent. The natural position of the labels

is partially outside the end of the columns of the chart. You need them to be contained

totally in the column chart so that the labels won’t overlap with the annotation that will

be added later. You move the labels from partially outside the columns to totally inside

the columns via the nudge_y argument. Figure 2-6 shows how the labels display without

using the nudge_y argument.

Figure 2-7 shows what the labels look like when you set the nudge_y equal to –0.05.

Figure 2-6.  Callout column chart with data labels

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

54

�Step 13: Modify the y axis
The following code uses the scale_y_continuous() scale to make modifications to the y

axis:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

Figure 2-7.  Callout column chart with data labels inside bars

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

55

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

)

You explicitly set the limits of the y scale to the range 0 to 0.75. You do this to give the

report user a consistent experience. By default, like many visualization tools, ggplot2 will

adjust the scales based on the data. This can visually misrepresent important differences

in the data between years. So, you prevent rescaling by explicitly defining the range. The

labels and breaks are used to help report users interpolate values of the columns in the

chart. Since you are providing those values explicitly, you don’t need labels and breaks.

So, they are removed by setting the labels and breaks argument to NULL.

�Step 14: Convert chart from a vertical column chart
to horizontal bar chart
This action is done by adding the coord_flip() function to the next line of the script as

illustrated here:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

) +

 coord_flip()

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

56

The coord_flip() function causes the x axis to become the y axis and the y axis to

become the x axis. The result is a horizontal bar chart illustrated in Figure 2-8.

�Step 15: Add a dynamic annotation to the R visuals
You add an annotation layer to the chart using the annotate() function as illustrated here:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

Figure 2-8.  Previous column chart switched to horizontal bar chart

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

57

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

) +

 coord_flip() +

 annotate(

 "text",

 label = label_val,

 x = countryToAnnotate[1],

 y = maxExpenditure + 0.12

)

You want to add a text annotation to the chart so the first argument is set to “text”.

Next, you set the label_val variable to the label argument because that variable contains

the text for the annotation. Lastly, you define the position of the annotation using the x

and y arguments. You set x to the name of the country you want to annotate. Setting x to

the country name aligns the annotation at the position of the x axis where the specified

country is. You set the position on the y axis to a position that is a few units higher than

the expenditure value of the country so that the annotation will not overlay the country’s

column. Note that because you used the coord_flip() function earlier, it appears you are

working on the x axis when you are actually working on the y axis and vice versa. The

result of adding the annotation layer is illustrated in Figure 2-9.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

58

�Step 16: Add the dynamic titles and caption to the
R visual
Next, you add the chart title, subtitle, and caption to the chart using the labs() function

along with the mainTitle, subTitle, and caption variable as illustrated in the following

code:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

) +

Figure 2-9.  Horizontal bar chart with annotation

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

59

 coord_flip() +

 annotate(

 "text",

 label = label_val,

 x = countryToAnnotate[1],

 y = maxExpenditure + 0.12

) +

 labs(

 title = mainTitle,

 subtitle = subTitle,

 caption = caption

)

Setting the labs function is self-explanatory so no explanation is needed.

�Step 17: Remove labels from x axis and y axis
You don’t need to explicitly define the x and y axis because of the labels you added to

the chart. You remove the x and y labels by setting the label argument in the xlab() and

ylab() functions to NULL as illustrated in the last line in the following code:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

60

 coord_flip() +

 annotate(

 "text",

 label = label_val,

 x = countryToAnnotate[1],

 y = maxExpenditure + 0.12

) +

 labs(

 title = mainTitle,

 subtitle = subTitle,

 caption = caption

) +

 xlab(label = NULL) +

 ylab(label = NULL)

�Step 18: Remove legend
If you refer back to Figure 2-10, you will notice a legend for callout. The callout column

is associated with the fill argument which is used to determine the color of the bars. You

use it to color the country ranked number one differently than the other countries. A

legend is not needed to explain the colors, so it is removed. You do so by setting the fill

argument in the guides() function to FALSE. Doing so removes the legend from the chart

because the legend is for the fill scale. The code used to perform the task is in the last

line in the following script:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

61

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

) +

 coord_flip() +

 annotate(

 "text",

 label = label_val,

 x = countryToAnnotate[1],

 y = maxExpenditure + 0.12

) +

 labs(

 title = mainTitle,

 subtitle = subTitle,

 caption = caption

) +

 xlab(label = NULL) +

 ylab(label = NULL) +

 guides(fill=FALSE)

�Step 19: Change the look and feel of the visual using
theme_few( )
Next, you change the look of the chart using principles by the data visualization expert,

Stephen Few, via the theme_few() theme from the ggthemes package as illustrated in the

last line in the following code:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

62

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

) +

 coord_flip() +

 annotate(

 "text",

 label = label_val,

 x = countryToAnnotate[1],

 y = maxExpenditure + 0.12

) +

 labs(

 title = mainTitle,

 subtitle = subTitle,

 caption = caption

) +

 xlab(label = NULL) +

 ylab(label = NULL) +

 guides(fill=FALSE) +

 theme_few()

�Step 20: Center align titles
The theme() function is used in the last line of the following code to handle this task:

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`)

)

) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

63

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75),

 labels = NULL,

 breaks = NULL

) +

 coord_flip() +

 annotate(

 "text",

 label = label_val,

 x = countryToAnnotate[1],

 y = maxExpenditure + 0.12

) +

 labs(

 title = mainTitle,

 subtitle = subTitle,

 caption = caption

) +

 xlab(label = NULL) +

 ylab(label = NULL) +

 guides(fill=FALSE) +

 theme_few() +

 theme(

 plot.title = element_text(hjust = 0.5),

 plot.subtitle = element_text(hjust = 0.5)

)

The theme() function is used to modify individual components of the chart’s theme.

The chart’s theme represents the non-data components of the chart. You can type

?theme() in the console to access the help file for theme() to see what components

are available for modification and the element function that is associated with it. The

element_text() function is the element function associated with plot.title and plot.subtitle

components. Setting the hjust argument of element_text() to 0.5 centers the text.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

64

�Step 21: Add code to Power BI
The entire R script is in Listing 2-2. Copy the code and paste it into the R script editor

associated with this visual in Power BI. There will be no need for refactoring if you

followed the steps correctly.

Listing 2-2.  The callout chart R script

library(tidyverse)

library(scales)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Country", "Total Expend %", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

if (length(reportYear) == 1 & columnTest) {

 plotdata <-

 dataset %>%

 mutate(

 rank = dense_rank(desc(`Total Expend %`)),

 `Country` = fct_reorder(`Country`, rank, .desc = TRUE),

 callout = ifelse(rank == 1, TRUE, FALSE)

) %>%

 filter(rank <= 7)

 countryToAnnotate <- plotdata$`Country`[plotdata$rank == 1]

 minExpenditure <- min(plotdata$`Total Expend %`)

 maxExpenditure <- max(plotdata$`Total Expend %`)

 minCountry <-

 plotdata$`Country`[

 which(plotdata$`Total Expend %` == minExpenditure)]

 minCountry <- paste(minCountry, collapse = " & ")

 maxCountry <-

 plotdata$`Country`[

 which(plotdata$`Total Expend %` == maxExpenditure)]

 maxCountry <- paste(maxCountry, collapse = " & ")

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

65

 mainTitle = "% of Government Expenditure on Education"

 subTitle =

 paste(

 "The top 7 ranked countries in",

 reportYear,

 sep = " ")

 caption =

 �"Source: https://databank.worldbank.org/source/world-development-

indicators"

 label_val <-

 str_wrap(

 paste(maxCountry, "spent",

 percent((maxExpenditure/minExpenditure-1)),

 "more than", minCountry, sep = " "),

 width = 25

)

 p <-

 ggplot(

 data = plotdata,

 aes(x = `Country`, y = `Total Expend %`, fill = callout,

 label = percent(`Total Expend %`))

) +

 geom_bar(stat="identity", aes(fill = callout)) +

 geom_text(nudge_y = -0.05) +

 scale_y_continuous(

 limits = c(0,0.75), labels = NULL, breaks = NULL) +

 coord_flip() +

 annotate(

 "text",

 label = label_val,

 x = countryToAnnotate[1],

 y = maxExpenditure + 0.1) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

66

 labs(

 title = mainTitle,

 subtitle = subTitle,

 caption = caption

) +

 xlab(label = NULL) +

 ylab(label = NULL) +

 guides(fill=FALSE) +

 theme_few() +

 theme(

 plot.title = element_text(hjust = 0.5),

 plot.subtitle = element_text(hjust = 0.5))

 p

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the chart.")

}

�Bubble chart
The bubble chart is another popular chart type. You can think of them as a scatter plot

with an additional attribute that uses size to represent another dimension of data. So

with a traditional bubble chart, you are able to show up to five dimensions of data:

•	 The x and y of each bubble represent two dimensions.

•	 The fill (the color inside the bubble) represents a dimension.

•	 The size represents a dimension.

•	 The labels represents a dimension.

You can take things to the next level using ggplot2. You can color the border of the

bubbles which will enable you to show six dimensions of data in your bubble chart! In

this example, you will use data from a fictitious professional football league that plots

running backs on six dimensions of data: name, height, weight, total rushing yards,

conference, and division. The chart that you will create in this exercise is shown in

Figure 2-11. Let’s go over the steps to create the chart.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

67

�Step 1: Acquire the necessary data
The data set used in this example is a fictitious data set of a pretend professional

football league. The league has two conferences: AL (American League) and USL

(United States League). Each conference contains four divisions: North, South,

East, and West. The data set contains the names, height, weight, rushing yards,

conference, and division of the running backs in this fictitious league. The name of

the file that contains the data set is FakeFootballLeagueData.csv and can be found in

the code repository for this chapter.

Figure 2-10.  A bubble chart that displays six dimensions of data

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

68

�Step 2: Load the data into Power BI
Load the data into the Power BI data model using GetData. The following table shows

the data types that each column should have:

Column Name Column Data Type

ID Whole Number

Year Whole Number

Key Whole Number

FN Text

LN Text

Weight Whole Number

Height Whole Number

Rushing Yards Whole Number

Division Text

Conference Text

The transformation steps needed to get the data in the preceding format are in the

PBI_FakeFootballLeague.pbix file.

�Step 3: Create a filter slicer based on the year
Create a report slicer based on the year field by first dragging the Year field to the report

canvas, then selecting the Slicer visual in the Visualization pane. Make sure the Year field

you drag is highlighted before you select the Slicer visual to convert it into a slicer. The

slicer visual is the one that includes a picture of a filter in the image.

�Step 4: Do the initial R visual configuration
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual

to the desired size. Drop the ID, Year, FN, LN, Weight, Height, Rushing Yards, Division,

and Conference fields from the FakeFootballLeague table to the Fields pane. If the Fields

pane is not showing, select the R visual and it should appear.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

69

�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will

export the data frame passed to R and the R starter code to R Studio. Please refer to Step

4 in the “Callout chart” section if you need a more detailed explanation.

�Step 6: Load the required packages
The following code is used to load the required packages:

library(tidyverse)

library(ggrepel)

library(ggthemes)

The dplyr and ggplot2 packages are used in this script from tidyverse. The dplyr

package is used to wrangle the data passed to R from Power BI into the shape it needs to

be in, and ggplot2 is used to create the visual. The ggrepel package is used to re-position

the labels of the data points in the visual format, and the ggthemes package is used to

change the display of the non-data components of the visual.

�Step 7: Create the variables needed for the data
validation test
currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Conference", "Division", "FN", "Height",

 "ID", "LN", "Rusing Yards", "Weight",

 "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

The currentColumns variable is used to hold the column names of the data frame

passed to R from Power BI. The names are sorted in alphabetical order for comparison

reasons. The requiredColumns variable is used to hold the names of the required

columns. They are also listed in alphabetical order for comparison reasons. The

columnTest variable holds the results of the comparison test. It uses the all.equal()

function to compare the currentColumns variable to the requiredColumns variable for

equality. If those two variables are equal, then TRUE is returned; otherwise, information

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

70

about what was not equal between the two variables is returned. You need a Boolean

response, so you wrap the all.equal() function with isTRUE() function which will return

TRUE when all.equal() returns TRUE and it will return FALSE when all.equal() returns

something other than TRUE. Next, the unique() function is used to get a list of unique

elements from the Year column.

�Step 8: Create the data validation test
The template used to perform the validation is as follows:

if(length(reportYear) == 1 & columnTest) {

 <code to create the visual>

} else{

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

The if statement performs two tests. First, it tests to see if the length of the reportYear

vector is equal to one. Second, it tests to see if the columnTest variable evaluates to

TRUE. If both of those conditions are met, then the code that creates the visual is

executed. Otherwise, code is executed that creates a blank chart with a message giving

the user information about why the expected visual was not returned.

�Step 9: Define the colors for the conferences and
conference divisions
One of the useful features of ggplot2 is that ggplot2 makes it easy to customize the

colors you want to use in a chart. You can define charts using a color name that ggplot2

recognizes, or you can use the hexadecimal representation of the color if you know it.

Here, you are using the latter to define your colors via named character vectors. You

use named character vectors to define the colors of the division and of the conferences.

The name of the elements in the named character vectors represents the division

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

71

or conference, and the value of the element in the named character vectors is the

hexadecimal number that represents the color you want to use. Here is the code that you

use to define the colors for the divisions and conferences:

divisionColors <- c("East"="#56B4E9", "West"="#33FAFF",

 "North"="#F0E442", "South"="#8B8D8D")

conferenceColors <- c("USL"="#000000", "AL"="#FC4E07")

Here is the URL to a website that you can use to get the hexadecimal number of

various colors: www.hexcolortool.com/#010328. This site can also be use when you

want to the hexadecimal value of a color you want to use in native a Power BI visual.

�Step 10: Dynamically define the chart titles
Here is the code that creates the chart title:

chartTitle <- paste("Runningback Quad Chart for",

 reportYear,

 sep = " "

)

The code concatenates the string “Runningback Quad Chart for” with the report year

selected by the report user to dynamically create the chart title.

�Step 11: Create the chart’s data set
The data set that was passed to Power BI is not totally ready for the chart. You want to

add a label to the data points in the chart for each running back. The labels would be

too long if you used both their first and last name, so you need a way to shorten them. A

good method to use would be to take the initial of the first name and concatenate it with

the last name. That is accomplished in the following code:

 chartData <-

 dataset %>%

 mutate(Name = paste0(str_sub(FN,1,1),". ", LN))

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

http://www.hexcolortool.com/#010328

72

The preceding code starts with the dataset data frame, then projects a new column

to it named Name. It is based on the concatenation of three strings using the paste0

function. The first string uses the str_sub() function from the stringr package to extract

the first character from the FN column. The second string is “ . ” and the third string is

the LN. So, if FN was John and if the LN was Doe, the result would be J. Doe.

�Step 12: Start the chart by defining the ggplot function
The bubble chart that you are creating will have six dimensions. The six dimensions are

•	 x coordinate of the chart to represent the running back’s weight

•	 y coordinate to represent the running back’s height

•	 Size of the bubble to represent the running back’s total rushing yards

•	 The fill (inside color) of the chart to represent the running back’s

division

•	 The color (border of the bubble) to represent the running back’s

conference

•	 The label to represent the running back’s name

You can set these dimensions using the aes() function in the ggplot() function as

illustrated here:

 p <- ggplot(

 chartData,

 aes(

 x = Weight, y = Height, size = `Rusing Yards`,

 color = Conference, fill = Division, stroke = 2,

 label = Name

)

)

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

73

�Step 13: Add the layer for your bubble chart using
the geom_point geom
There are 26 shapes that you can use in the geom_point() geom. Figure 2-11 is a visual

that depicts them.

There are three shapes that can be used to create bubble charts. They are shapes 1,

16, and 21. Only shape 21 allows you to control both the color (the border of the circle)

and the fill (the inside shade) of the point. Only the color is available in shape 1, and only

the fill is available in shape 16. The code that was used to add the geom_point() layer to

the visual using shape 21 is listed here:

 p <- ggplot(

 chartData,

 aes(

 x = Weight, y = Height, size = `Rusing Yards`,

 color = Conference, fill = Division, stroke = 2,

 label = Name

)

) +

 geom_point(shape = 21)

Figure 2-11.  Shows the shapes available in geom_point(). Visual was created
using the ggplot package

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

74

The result is the visual in Figure 2-12.

You have the basics of the bubble chart built. Note that the geom_point() geom

inherited the aesthetics from the ggplot() function so you did not have to explicitly define

them. Now, you need to make some cosmetic changes to make the chart visibly more

appealing.

�Step 14: Add labels to the bubble chart
You have bubbles scattered on the chart, but you don’t know which athlete the bubbles

represent. You can add text to the visual using the geom_text_repel() geom from the

ggrepel package. The geom_text_repel() geom tries to prevent overlapping when it adds

the labels. Here is the code with the geom_text_repel() layer added:

 p <- ggplot(

 chartData,

 aes(

Figure 2-12.  The initial bubble chart using shape 21

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

75

 x = Weight, y = Height, size = `Rusing Yards`,

 color = Conference, fill = Division, stroke = 2,

 label = Name

)

) +

 geom_point(shape = 21) +

 geom_text_repel(size = 5)

The result of adding the geom_text_repel() layer is listed in Figure 2-13.

Note that we were able to control the text size of the label via the size argument.

Without the size argument added, the font of the labels would vary based on the size of

the bubble.

Figure 2-13.  The bubble chart with added labels

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

76

�Step 15: Change the color of the bubble’s border
and change the color of the bubble’s fill
Next, you change the color of the bubbles using the predefined colors in the conferenceColors

named character vector. You do so by setting conferenceColors to the values argument in the

scale_color_manual() scale. You also need to set the fill with the predefined colors in the

divisionColors variable. You do so by setting divisionColors to the values argument in the

scale_fill_manual() scale. The code with the two new scales is listed here:

 p <- ggplot(

 chartData,

 aes(

 x = Weight, y = Height, size = `Rusing Yards`,

 color = Conference, fill = Division, stroke = 2,

 label = Name

)

) +

 geom_point(shape = 21) +

 geom_text_repel(size = 5) +

 scale_color_manual(values = conferenceColors) +

 scale_fill_manual(values = divisionColors)

The resulting visual is listed in Figure 2-14.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

77

�Step 16: Create the ggtitle
You pass the chartTitle variable to the ggtitle() function to add the title to the chart as

shown in the last line in the following code:

 p <- ggplot(

 chartData,

 aes(

 x = Weight, y = Height, size = `Rusing Yards`,

 color = Conference, fill = Division, stroke = 2,

 label = Name

)

) +

 geom_point(shape = 21) +

 geom_text_repel(size = 5) +

 scale_color_manual(values = conferenceColors) +

 scale_fill_manual(values = divisionColors) +

 ggtitle(chartTitle)

Figure 2-14.  Bubble chart with custom colors

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

78

�Step 17: Set the theme
In the following code, you set the theme of the visual to the theme_few() theme from the

ggthemes package:

 p <- ggplot(

 chartData,

 aes(

 x = Weight, y = Height, size = `Rusing Yards`,

 color = Conference, fill = Division, stroke = 2,

 label = Name

)

) +

 geom_point(shape = 21) +

 geom_text_repel(size = 5) +

 scale_color_manual(values = conferenceColors) +

 scale_fill_manual(values = divisionColors) +

 ggtitle(chartTitle) +

 theme_few()

�Step 18: Add code to Power BI
You now have a functional script that produces the desired visual. The full script is as

follows. Add the script in Listing 2-3 to the R script editor associated with the visual in

Power BI. The visual will be responsive to the Year filter used in the report.

Listing 2-3.  The bubble chart R script

library(tidyverse)

library(ggrepel)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <-

 �c("Conference", "Division", "FN", "Height", "ID", "LN", "Rusing Yards",

"Weight", "Year")

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

79

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

if(length(reportYear) == 1 & columnTest) {

 chartData <-

 dataset %>%

 mutate(Name = paste0(substring(FN,1,1),". ", LN))

 divisionColors <-

 c("East"="#56B4E9", "West"="#009E73", "North"="#F0E442",

 "South"="#0072B2")

 conferenceColors <- c("USL"="#000000", "AL"="#FC4E07")

 chartTitle <-

 paste("Runningback Quad Chart for", reportYear, sep = " ")

 p <- ggplot(

 chartData,

 aes(

 x = Weight, y = Height, size = `Rusing Yards`,

 color = Conference, fill = Division, stroke = 2,

 label = Name

)

) +

 geom_point(shape = 21) +

 geom_text_repel(size = 5) +

 scale_color_manual(values = conferenceColors) +

 scale_fill_manual(values = divisionColors) +

 ggtitle(chartTitle) +

 theme_few()

 p

} else{

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

80

�Forecast
Forecasting business outcomes has been a technique used by companies for many

years. Many business intelligence tools have forecast visualizations you can add to

your dashboards that will display a forecast, but they are very limited in the amount

of information they give. They are limited because they typically only show the

forecast, but they leave out important components that influence a forecast. Those

components include trend and seasonality. The forecast trend is used to show if the

data is decreasing or increasing over a long period of time. The forecast seasonality is

used to show variations in the data caused by the time of occurrence. Fortunately for

us, the data science team at Facebook developed a package for R called Prophet that

not only enables you to create robust forecast visual but also gives you the ability to

create visuals that give you valuable information about the different components that

make up the forecast.

In this exercise, you will build a visual that was inspired by the example used

in the Prophet documentation. The example in Prophet created a visualization

that forecasted Wikipedia page views for Peyton Manning. Peyton is a former NFL

quarterback. You will build on what was done in the Prophet example by building

an interactive visualization that will enable you to switch between two current NFL

quarterbacks, Lamar Jackson and Deshaun Watson. The visualization will not only

have a chart for the forecast but it will also have a chart to show the trend of the

forecast and charts to show weekly and yearly seasonality. An image of the visual is

illustrated in Figure 2-15.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

81

Let’s go over the steps needed to create this custom R visual!

�Step 1: Acquire the necessary data
You need to acquire the data that contains the daily Wikipedia views for Lamar Jackson

and Deshaun Watson. Here are the steps you need perform to acquire the data. Note

that you will need to go through these steps twice, once for Lamar Jackson and once for

Deshaun Watson:

	 1.	 Go to https://en.wikipedia.org/wiki/Wikipedia:Web_

statistics_tool to access the Wikipedia Web Statistics Tool.

	 2.	 Click toollabs:pageviews link in the Current tools section.

Figure 2-15.  Forecast visual produced using Prophet and ggplot2

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

https://en.wikipedia.org/wiki/Wikipedia:Web_statistics_tool
https://en.wikipedia.org/wiki/Wikipedia:Web_statistics_tool
https://tools.wmflabs.org/pageviews

82

	 3.	 Click X Clear above the search bar to clear the page names and

put the name of the page you want to test. On the first iteration,

use Lamar Jackson, and on the second iteration, use Deshaun

Watson.

	 4.	 Click the Dates textbox, then go to custom range.

	 5.	 Choose a data range that includes a minimum of a 2-year period.

That requirement is needed so that the Prophet package will have

enough information to detect yearly seasonality trends. In this

example, I chose 1/1/2018 for my beginning date and 12/31/2019

for my ending date.

	 6.	 Click the downward arrow in the Download button located below

the Pages textbox and select the CSV option. That action will

initiate the download process, and it will save the results of your

query in a csv format on your computer. The default name does

not give you information about the subject of your query. Rename

the file with a name that is representative of the contents of the

file. I prefixed each file with the initials of the subject. I used lj for

Lamar Jackson and dw for Deshaun Watson.

	 7.	 Next, you need to load the data set for Lamar Jackson and

Deshaun Watson into Power BI, make some data transformations

required for the visualization, then combine them into one data

set. Power Query will be used to do that. The final data set needs

to contain the following fields with the corresponding data types:

Column Name Data Type

Date Text

Page Views Whole number

Quarterback Text

Page Views (Log10) Decimal number

The transformations performed using Power Query to get the data

in the preceding format can be found in the pbix file located in the

code repo for this chapter.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

83

�Step 2: Create a slicer based on quarterback
Drag the Quarterback field to the upper right portion of the report canvas. Next, go to

the Visualization pane in the upper right corner and change the visualization to a Slicer

visual. The Slicer visual comes pre-packaged in Power BI, and it is the one that includes a

picture of a filter in the image.

�Step 3: Configure the R visual
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual

to the desired size. Drop the Date, Page Views, Page Views (Log10), and Quarterback

fields from the WikipediaPageViews table into the Fields pane. If the Fields pane is not

showing, select the R visual and it should appear.

�Step 4: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will

export the data frame passed to the R visual and the R starter code to R Studio. Please

refer to Step 4 in the “Callout chart” section if you need a more detailed explanation.

�Step 5: Load the required packages to the script
Here is the code needed to load the required packages for the script:

library(tidyverse)

library(prophet)

library(ggthemes)

library(gridExtra)

library(lubridate)

The dplyr package from tidyverse is used to perform some data wrangling tasks, the

ggplot2 package from tidyverse is used to create the visualization, the prophet package

is used to perform the forecast and help with creating the visualization, the gridExtra

package is used to enable multiple chart display in a single visual, and the lubridate

package is used to perform some date manipulation tasks.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

84

�Step 6: Create the variables needed for the data
validation test
The code used to create the variables for the validation is listed here:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Date", "Page Views", "Page Views (Log10)",

 "Quarterback")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

qb <- unique(dataset$Quarterback)

The currentColumns character vector variable is used to hold the column names of

the data frame passed to R from Power BI. The names are sorted in alphabetical order for

comparison reasons. The requiredColumns character vector variable is used to hold the

names of the required columns. They are also listed in alphabetical order for comparison

reasons. The columnTest variable holds the results of the comparison test. It uses the

all.equal() function to compare the currentColumns variable to the requiredColumns

variable for equality. If those two variables are equal, then TRUE is returned; otherwise,

information about what was not equal between the two variables is returned. You need

a Boolean response so you wrap the all.equal() function with the isTRUE() function

which will return TRUE when all.equal() returns TRUE and it will return FALSE when all.

equal() returns something other than TRUE. The last thing that is done is you get all the

unique elements in the Quarterback column and assign the result to the qb variable.

�Step 7: Create the data validation test
The template used to execute the validation test is as follows:

if (length(qb) == 1 & columnTest) {

 <code to produce visual>

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

85

The visual needs a data set that only contains one quarterback and has the required

columns. The first test checks to see if the length of the qb variable is 1. If it is equal to

1, then it means that there is only one quarterback in the data set so that test is passed.

The second test checks to see if the data frame passed from Power BI contains the

required columns. If the columnTest variable is equal to TRUE, then that test is passed.

If both tests evaluate to TRUE, then R will attempt to execute the code that creates the

visual. Otherwise, code is executed that creates a blank chart with a message containing

information about why the expected visual was not created.

�Step 8: Create the dynamic chart title
The following code creates a variable that will hold a dynamically created chart title

based on the quarterback’s name:

chartTitle <-

 paste0(qb, "'s Wikipedia page views forecast analysis")

It concatenates the Quarterback’s name with the string, “ ‘s Wikipedia page views

forecast analysis”, without any delimiters. The paste0() function is similar to the paste()

function. It is used when you want to concatenate strings without using a delimiter.

�Step 9: Create the data set that is needed to generate
the forecast
 dfPageViews <-

 dataset %>%

 transmute(

 Quarterback,

 ds = ymd(Date),

 y = `Page Views (Log10)`

)

The prophet package only requires two variables: ds and y. The ds variable is used

for the date. The dates should be contiguous and span a minimum of a 2-year time

period. The y variable represents the outcome you want to forecast which is the log of

the Page Views.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

86

Note  that you used the log of the page view count instead of the actual page
views count. That is a common technique used in situations like you have in this
example where you have high data dispersion. Using the log of the page views
reduces the dispersion and makes the data easier to visualize. Using the log
transformations is also a common technique used in feature engineering when
building data science models.

�Step 10: Generate the forecast
The three lines of the following code produce the forecast:

 m <- prophet(dfPageViews)

 future <- make_future_dataframe(

 m,

 periods = 365,

 freq = "day",

 include_history = TRUE

)

 forecast <- predict(m, future)

The first line produces a forecast model object based on the dfPageViews data frame.

The second line of code creates a data frame that adds the number of periods specified

in the periods argument to the end of the dates in the dfPageViews data frame. The

frequency of the period is defined in the freq argument, and if you set the include_history

argument to TRUE, then the historical dates are included in the data frame. The third

line generates the forecast via the predict() function using the model created in line 1

and the future data frame.

�Step 11: Generate the plot
You generate four plots in this step. The four plots are

•	 A plot of the forecast

•	 A plot that shows the trend in the underlying data

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

87

•	 A plot that shows weekly seasonality

•	 A plot that shows yearly seasonality

The code used to create the plots is shown here:

 p1 <- plot(m, forecast) + ggtitle(chartTitle) + theme_few()

 p <- prophet_plot_components(m, forecast)

 p2 <- p[[1]] + theme_few()

 p3 <- p[[2]] + theme_few()

 p4 <- p[[3]] + theme_few()

 p5 <- grid.arrange(p1, p2, p3, p4, nrow =4)

 p5

The resulting visual was depicted earlier in Figure 2-15. The visual in Figure 2-15 is

valuable because not only do you have a visual of the forecast, but you also have visuals

of the components that affect the forecast. You can see how the data is trending with the

trend plot, how the data typically vary throughout the week with the weekly plot, and

how the data typically vary throughout the year with the yearly plot.

The first thing you need to do is define each plot individually. Here are descriptions

of how each chart is individually defined:

•	 p1 is used to hold the visual of the actual forecast. It is built using

the plot() function from the Prophet package which, underneath the

hood, is built using ggplot. Because of that, you are able to apply the

theme_few() theme to it.

•	 p is used to hold the component charts generated by Prophet via

the prophet_plot_components() function. This function returns a

list of ggplot charts representing different components of forecast.

In this case, it is a trend chart, a weekly seasonality chart, and a

yearly seasonality chart.

•	 p2, p3, and p4 hold the three individual component charts

produced by p. As stated earlier, p is a list of ggplot charts. You

need to subset each chart out of the p as a ggplot chart. That is

accomplished using double brackets, [[. When you subset an object

from a list in R using single bracket, [, the item is returned as a list

with one element and not a single object in the data type that the

underlying element actually is. So, in this example, p[1] will not

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

88

return a ggplot chart, but it will return a list that has one item with

that item being a ggplot chart. If you want to explicitly return the

item in its true data type, then you need to subset with two brackets,

[[, as you did in the preceding code. Note that because each chart

was extracted as a ggplot chart, you were able to apply the theme_

few() theme to each of them.

Now that you have the forecast visual saved as a ggplot object and the visual for each

forecast components saved as a ggplot object, you can combine them into one visual

using the grid.arrange() function from the gridExtra package. This is done is line 6 in the

preceding code. You want the charts to be stacked on top of each other. You accomplish

that task by setting the nrow argument to 4. You control the way the visuals are displayed

on the screen using this argument. For instance, if you set that argument to 2, then it will

combine the charts in two rows resulting in two charts in each row.

�Step 12: Add code to Power BI
The entire script to create the forecast visual is in Listing 2-4. Copy and paste it in R script

editor in Power BI. The visual will be totally responsive to the Quarterback slicer.

Listing 2-4.  The R script that produces the forecast chart

library(tidyverse)

library(prophet)

library(ggthemes)

library(gridExtra)

library(lubridate)

library(rlang)

I needed to load rlang. Look into this package.

currentColumns <- sort(colnames(dataset))

requiredColumns <-

 c("Date", "Page Views", "Page Views (Log10)", "Quarterback")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

89

qb <- unique(dataset$Quarterback)

if (length(qb) == 1 & columnTest) {

 chartTitle <- paste0(qb, "'s Wikipedia page views forecast analysis")

 dfPageViews <-

 dataset %>%

 mutate(Date = ymd(Date)) %>%

 rename(ds = Date, y = `Page Views (Log10)`)

 m <- prophet(dfPageViews, yearly.seasonality=TRUE)

 future <- make_future_dataframe(m, periods = 365)

 forecast <- predict(m, future)

 p1 <- plot(m, forecast) + ggtitle(chartTitle) + theme_few()

 p <- prophet_plot_components(m, forecast)

 p2 <- p[[1]] + theme_few()

 p3 <- p[[2]] + theme_few()

 p4 <- p[[3]] + theme_few()

 p5 <- grid.arrange(p1, p2, p3, p4, nrow =4)

 p5

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the chart.")

}

�Line chart with shade
The line chart is arguably one of the most popular charts used in data visualization. It is

perfect for plotting data that spans a period of time. Because it is so widely used, all BI

tools natively support them.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

90

In exercise, you will learn how to create a line chart in Power BI using R. This

line chart will not be your typical line chart. It will include enhancements that were

not available in Power BI as of this writing. The R custom visual that you will create

was inspired by a visual created by Hadley Wickham in his book Ggplot2: Elegant

Graphics for Data Analysis (2nd edition, p. 44). The visual he created in the book used a

background shading technique to identify the president that was in office at a given point

of time in the chart. You will create an interactive R custom visual in Power BI that will

do something similar but with enhancements. The visual that you will create is listed in

Figure 2-16.

The R custom visual plots the % Change of GDP from calendar year 1947 to

calendar year 2018. What’s unique about this chart is that the background shade shows

the political party of the president at the given time. You leverage the interactivity of

Power BI to further enhance the visual. In addition to the president’s political party

view, you give the end user the ability to change the background to show the party

Figure 2-16.  Line chart showing GDP percent change with the background shade
based on the political party that reigns during the shaded time

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

91

that represented the majority of the United States Senate for a given point of time, the

party that represented the majority of the United States House of Representatives for a

given point of time, and the party that was the overall majority. In addition to that, you

will give the end user the ability to switch between showing the Actual GDP and the %

Change in GDP. The following image in Figure 2-17 shows the overall majority view for

Actual GDP.

Now that you have seen the R custom visual, let’s go over the steps you must take to

create the visual in Power BI!

Figure 2-17.  Line chart showing actual GDP with the background shade based on
the political party that reigns overall during the shaded time

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

92

�Step 1: Acquire the necessary data

	 1.	 Go to https://fred.stlouisfed.org/series/GDP which will take

you to a page on the St. Louis Fed website dedicated to historical

GDP information. Click the EDIT GRAPH button and change

the value in the Modify frequency combo box to Annual and

Aggregation method to End of Period. Click the X in the upper right

of the pop-up form to close out the form.

	 2.	 Click the DOWNLOAD button and choose the CSV format. At

the time of the writing, that action downloaded a csv file to my

computer with a file name of GDP.csv.

	 3.	 Go to the code repo for this example and locate the

PoliticalInfoWithGDP.xlsx workbook. The PoliticalInfoWithGDP.

xlsx workbook contains the data sets and the Power Query queries

that were used to create the PoliticalInfoWithGDP data set used

in this example. PoliticalInfoWithGDP is the data set that is

the source for the visual that will be produced in this exercise.

The hard work has been done for you, but you can inspect the

workbook to see how the following data sets were combined to

produce the PoliticalInfoWithGDP data set. Here are descriptions

of each query that were developed using Power Query inside the

PoliticalInfoWithGDP.xlsx workbook:

	 a.	 GDP: This query pulls in the GDP data that was downloaded in Step 2 and

adds a % GDP Change column to the data set.

	 b.	 Presidents: This query builds the data set that lists all the US presidents

during the time of the analysis along with a column that shows their

political affiliation.

	 c.	 Political Info: This query gets the information from a Wikipedia article

at this URL: https://en.wikipedia.org/wiki/Party_divisions_of_

United_States_Congresses. The information at this URL is used to get

the majority party for the Senate and House of Representative as well as the

president that was in office at the time. Power Query is used to reshape the

data for the visualization. You can follow the steps in Power Query to see

how it was done.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

https://fred.stlouisfed.org/series/GDP
https://en.wikipedia.org/wiki/Party_divisions_of_United_States_Congresses
https://en.wikipedia.org/wiki/Party_divisions_of_United_States_Congresses

93

Power Query is a data wrangling tool built inside of several Microsoft technologies
such as Microsoft Excel, Power BI, Power BI Dataflows, and SQL Server Analysis
Services. It has a GUI that greatly reduces that time it takes to perform simple data
wrangling. I highly recommend that R and Python developers who are new to the
Microsoft ecosystem take a look at this awesome tool!

	 d.	 PoliticalInfoWithGDP: Combines the preceding data sets and puts the

results in the shape needed for the visualization in this example via Power

Query.

	 4.	 As stated earlier, the PoliticalInfoWithGDP data set is the data set

that will be used for the visualization and was built using Power

Query as previously described. It has been saved as a csv file under

the name PoliticalInfoWithGDP.csv. You can find the file in the

code repo for this example.

�Step 2: Load the data into Power BI
Load the PoliticalInfoWithGDP.csv into Power BI by selecting Home ➤ GetData ➤

Text/CSV, then browse to the location where you saved the file. Click the Transform

Data button to go to the Power Query editor. Check to make sure that the fields have

the following data types:

Column Data Type

Index Whole Number

Year Whole Number

GDP Decimal Number

% GDP Change Decimal Number

Senate Majority Text

House Majority Text

President’s Majority Text

Overall Majority Text

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

94

Change the columns to the appropriate data type if the columns do not have the

preceding data types. The easiest way to change the data type is by right clicking

the column in question, then selecting Change Type. A list of available data types

will appear. Choose the one that applies to the column in question. After you have

verified that the data types are valid, click Close & Apply to load the data in the Power

BI data model.

Go to the table and make sure that the default behavior for Year and Index is set to

Do Not Summarize. To do so, select the field in the Fields pane, then go to Modeling ➤

Default Summarization in the Properties section, and select Don’t Summarize.

�Step 3: Create the report slicers
The report has two slicers. There is a slicer that is used so that the end user can select the

political view (House, Senate, President, or Overall) and a slicer that is used to select the

GDP stat (Actual GDP or GDP % Change) that the user wants to display. The work in this

step has been done for you in the starter pbix template which you can find in the code

repo for this example.

�Step 4: Configure the R visual
Go to the Visualization pane and drag an R visual to the report canvas. The R visual

icon is located in the lower right section of the Visualization pane. Resize the visual to

the desired size. Add Year, GetPoliticalLevel, GetPoliticalLevelName, GetGDPStat, and

GetGDPStatName to the Fields pane which is located beneath the Visualization pane.

Sometimes Microsoft Power BI defaults to applying an aggregation function to numeric

fields. Check to see if it tried to do that with the Year field. If there is aggregate function

being applied, then remove it by clicking the down arrow of the field in the Fields pane

and choose Don’t Summarize.

�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will

export the data frame passed to R and the R starter code to R Studio. Please refer to Step

4 in the “Callout chart” section if you need a more detailed explanation.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

95

�Step 6: Load the required packages to the script
The code needed to load the required packages is listed here:

library(tidyverse)

library(ggthemes)

library(scales)

The dplyr package from tidyverse will be used to perform some data wrangling tasks,

the ggplot2 package from tidyverse will be used to create the visualization, the economist

theme from the ggthemes package is used to format the non-data parts of the chart, and a

few functions from the scales package will be used for number formatting.

�Step 7: Create the variables needed for the data
validation test
Here is the code for the validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <-

 c("GetGDPStat", "GetGDPStatName", "GetPoliticalLevel",

 "GetPoliticalLevelName", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

politicalLevelName <- unique(dataset$GetPoliticalLevelName)

gdpStatName <- unique(dataset$GetGDPStatName)

The following three tests are performed:

•	 A test to make sure the data set passed to the visualization contains

the necessary fields

•	 A test to make sure only one political view is in the data set

•	 A test to make sure only one GDP stat is in the data set

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

96

Let’s go over the code used in the first test. Here is the code:

currentColumns <- sort(colnames(dataset))

requiredColumns <-

 c("GetGDPStat", "GetGDPStatName", "GetPoliticalLevel",

 "GetPoliticalLevelName", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

The first line gets the name of the columns from the data set passed to R and

assigned it to a character vector named currentColumns. The sort() function is used to

sort the column names in alphabetical order. The next line of code creates a character

vector of the required fields and names it requiredColumns. Note that the names

are supplied in alphabetical order. That is done to ensure that you can do a direct

comparison to the currentColumns character vector. The third line of code performs

the test by comparing the currentColumns character vector to the requiredColumns

character vector using the all.equal() function. When the currentColumns is equal to

requiredColumns, TRUE is returned. Otherwise, information is returned that tries to

explain why they did not match. You need a Boolean response so you wrap all.equal()

with the isTRUE() function. Doing so will return TRUE when all.equal() returns TRUE;

otherwise, it will return FALSE.

Next, two character vectors are created that hold the unique elements in the

GetPoliticalLevelName field and GetGDPStatName field, respectively, using the

following code:

politicalLevelName <- unique(dataset$GetPoliticalLevelName)

gdpStatName <- unique(dataset$GetGDPStatName)

Ideally, both will only have one element, and that will be tested in the next step.

�Step 8: Create the data validation test
The template used for the validation is as follows:

if(length(politicalLevelName) == 1 &

 length(gdpStatName) == 1 & columnTest) {

 <code to produce visual>

} else {

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

97

 plot.new()

 title("The data supplied did not meet the requirements of the chart.")

 }

The preceding if statement will execute the code needed to build the visualization

if there is only one value in the GetPoliticalLevelName field, if there is one value in the

GetGDPStatName field, and if columnTest evaluates to TRUE.

�Step 9: Create a new data frame based on the dataset
data frame
It is best practice not to modify the dataset data frame that was passed to R from Power

BI. To get around not modifying that data frame, you need to create a new one based on

the dataset data frame and modify that instead. Here is the code used to create the new

data frame:

dfPI <- dataset

�Step 10: Create the variables that will be used for the
dynamic portions of the chart
Here’s the code needed to define those variables:

 politicalLevelName <- unique(dfPI$GetPoliticalLevelName)

 gdpStatName <- unique(dfPI$GetGDPStatName)

 yAxisName <-

 paste(

 gdpStatName,

 ifelse(gdpStatName == "Actual GDP","(in Billions)",""),

 sep = " "

)

 chartTitle <- paste(gdpStatName, "Analysis", sep = " ")

 chartSubtitle <- paste(politicalLevelName, "view", sep = " ")

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

98

The preceding code dynamically produces the label for the y axis, the chart title, and

the chart subtitle. The first two lines get the political level and the GDP stat and store

the information for later use. The next line of code, actually six lines in the preceding

code snippet because of formatting reasons, is used to create the label for the y axis. It

uses the paste() function to combine the value of the gdpStatName variable with the

string (in billions) if the GDP stat that is being used is Actual GDP. The result is assigned

to the yAxisName variable. The fourth line of code dynamically builds the main chart

title by concatenating the value of the gdpStatName variable and the word “Analysis”

using a space delimiter. The last line of code dynamically creates the chart subtitle by

concatenating the value of the politicalLevelName variable and the word view using a

space delimiter.

�Step 11: Create the data sets needed for background
shade
In this step, you will use the data in the dfPI data frame and transform it into the data set

you need for the background shade portion of the visualization. Let’s start by taking a

peek at the data frame in Figure 2-18.

Figure 2-18.  A peek of the dfPI data frame

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

99

You need to use the preceding data to create a data set that has the start time and

end time of each contiguous party reign period. You need to take the preceding data

frame and write code that will transform it to the data frame in Figure 2-19.

In order to accomplish this transformation, you need to be able to uniquely identify

each contiguous political party reign. Currently, there is no unique identifier for each

political party reign so you need to add one. Once you do so, you will be able to use

traditional aggregation methods to get the start and end year of each reign. Let’s first go

over the steps needed to add the unique identifier which you will call group_id. The code

that produces the information for the group_id is listed here:

 dfPI$GetPoliticalLevel <- as.character(dfPI$GetPoliticalLevel)

 runs <- rle(dfPI$GetPoliticalLevel)

 group_id <- rep(seq_along(runs$lengths), runs$lengths)

The first thing that is done in line 1 is a data type conversion. The default data type

for columns in a data frame that contains strings in R is a data type known as factor for R

versions prior to R 4.0.

Figure 2-19.  Required data frame format

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

100

As of the writing of this book, the Power BI service has not been updated to R
version 4.0. If that is the case at the point of time you are working through this
exercise, then you will also need to do the conversion. If the Power BI service
has been updated to R version 4.0 or later, then you will not have to do the
conversion step.

Since the data in the GetPoliticalLevel column are all strings, R has converted it to the

factor data type. In order to perform the data processing needed in this step, you need

to convert the GetPoliticalLevel to a character data type. That data type is comparable to

the Text data type in DAX. That is accomplished in the first line of code. The next thing

you do is use the rle() function from base R to define the groups in the GetPoliticalLevel

column. The “rle” in the rle() function stands for run length encoding. When you pass the

GetPoliticalLevel column to the rle() function, you get the following output illustrated in

Figure 2-20.

The rle() function returned a list that contains two vectors. The first vector is a vector

named lengths and, in this example, it contains the length of each political reign. The

second vector is named values and, in this example, it contains the party who was in

power in each political reign. The information returned from the rle() function is saved

in the runs variable.

The information contained in the runs variable is used to create the group_id vector

using the following code:

group_id <- rep(seq_along(runs$lengths), runs$lengths)

The first thing that is done is the seq_along() function is used to generate a sequence

of integers that will represent the group_id. Since runs$length has a length of 9, an

integer vector will be returned that contains numbers 1–9. That expression is put into

the rep() function as the first argument, and the vector runs$length is put into the second

argument. Since both arguments contain vectors with the same length, the rep function

will take the first element produced by the seq_along() function, which in this case is the

Figure 2-20.  Output from the rle() function

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

101

number 1, and repeat it the number of times represented in the second integer vector,

which in this case is 3. So, the number 1 will be repeated three times. Next, the number 2

will be repeated four times because the value of the second element in runs$lengths is 4.

That logic is repeated for each element in runs$lengths, and the resulting output is listed

in Figure 2-21.

Next, you use the following code to create the data set for the visualization:

 dfShadeInfo <-

 cbind(dfPI, group_id) %>%

 transmute(group_id, Year, Party = GetPoliticalLevel) %>%

 group_by(group_id, Party) %>%

 summarize(start = min(Year), end = max(Year)+0.99) %>%

 ungroup()

The preceding code starts off by appending the group_id vector as a new column

to the dfPI data frame using the cbind() function where the c in cbind() stands for

column. Next, the pipe, %>%, operator is used to pass the resulting data frame as the first

argument to the transmute() function in the next line.

The transmute() verb is like the mutate() verb from dplyr in that it is used to project
new columns, but the difference with the transmute() function is that the data
frame that it creates is based only on the columns defined in the function.

The preceding transmute() verb will produce a data frame with three columns

named group_id, Year, and Party. Figure 2-22 is a peek of the first nine rows to show what

the result of using the transmute() verb in the preceding code looks like.

Figure 2-21.  The output of the group_id variable

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

102

Note that now you have a unique identifier for each political reign! Now you can use

traditional aggregation functions to get the start and end time for each political reign.

Again, the pipe operator is used to pass the data frame created by the transmute() verb

as the first argument of the group_by() verb in the next line. The group_by() verb will

group the data frame passed to it by the group_id and Party columns. The result of the

group_by() will be passed as the first argument of the summarize() verb in the next line.

The summarize() verb enables you to apply aggregation functions to your data set based

on your groupings. So, you are able to create a column named start that represents the

start of the political party reign based on the minimum year in the grouping, and you are

able to create a column named end that represents the end of the political party reign

based on the maximum year in the grouping. The value 0.99 is added to end column to

minimize the gap between the start of the old reign and beginning of the new reign.

�Step 12: Create the data sets needed for line chart
The code used to create the data set for the line chart is as follows:

 dfLineChartInfo <-

 dfPI %>%

 transmute(Year, GetGDPStat)

Figure 2-22.  The result of using the transmute() verb

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

103

The goal is to develop a line chart that displays the chosen GDP statistic by year

that spans the time period of the data set. In order to do that, we need to supply the

data set with two columns. Those columns are Year and GetGDPStat. You create

the needed data set by extracting those columns from the dfPI data frame using the

transmute() function.

�Step 13: Create a named character vector that will
be used to color the shades
 partyColors = c("Republican"="red", "Democrat"="blue",

 "Tie" = "white")

The color for Republican party is red, and the color for the Democratic party is blue. You

can force the visualization to use those colors for the parties via the named character

vector partyColors. The partyColors named character vector will be used later in the

script to force the visual to shade the background red for the time periods when the

republicans were in control and will force the visual to shade the background blue for the

time periods when the democrats were in control.

�Step 14: Start the chart by defining the ggplot function
The previous steps focused on data prep. The data prep steps illustrated one of the nice

features about R visuals in Power BI. If the data set that is passed to your visual is not in

the proper shape, you can use R to reshape your data set to get it where it needs to be.

In this step, you initiate the creation of the chart by setting the ggplot() function using

the following code:

p <- ggplot()

You might have noticed that you are initiating your chart with a ggplot() function

with any arguments. You did so because your chart will contain two layers, each with

independent data sources and aesthetics so they will be set at the layer level.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

104

�Step 15: Add a layer to create the background shade
This is accomplished using the following code:

 geom_rect(

 data = dfShadeInfo,

 aes(xmin = start, xmax = end, fill = Party),

 ymin = -Inf, ymax = Inf, alpha = 0.4, color = NA

)

The source data for this layer is the dfShadeInfo data frame. Figure 2-23 shows how it

looks if the Overall political view is chosen.

The preceding image shows nine political reigns, so the geom_rect() function will use

the preceding data frame to shade the background using a color based on the political

party that was in power during each of the political reign. The start and end point of each

political reign is defined by setting the start column to the xmin argument in the aes()

function and setting the end column to the xmax argument in the aes() function. The

upper boundary is defined by setting the ymax argument to Inf, and the lower boundary

Figure 2-23.  The dfShadeInfo data frame

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

105

is defined by setting ymin to -Inf. Using infinity for the upward and lower boundaries

ensures that the shade will be vertically filled. The shade is painted for each reign, and

the result is the shaded background listed in Figure 2-24.

Note the shading corresponds to the time period of each reign. The colors used for

each political party will be changed later in the script.

�Step 16: Add a line chart based on the statistic selected
The following code is used to create the line chart layer of the visualization:

geom_line(data = dfLineChartInfo, aes(x = Year, y = GetGDPStat))

The geom_line() geom is used to create a line chart. The data frame that it is based

on is the dfLineChartInfo data frame, and the column in that data frame that is used for

the x axis is the Year column and the column that is used for the y axis is the GetGDPStat

column.

Figure 2-24.  Background shade produced by the geom_rect() geom

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

106

�Step 17: Reshade the background using pre-determined
colors based on the political party
That is done using the following code:

scale_fill_manual(values=partyColors)

The scale_fill_manual() function can be used to override the default colors used

by ggplot2. Earlier, you defined the colors that you wanted to use for each party in the

partyColors named character vector. ggplot2 will shade the background to the colors

specified in partyColors by setting the values argument to the partyColors variable.

�Step 18: Format the y axis based on the statistic selected
Next, you format the y axis based on the GDP statistic that was selected using the

following code:

scale_y_continuous(labels=

 ifelse(gdpStatName == "ActualGDP",

 comma_format(),

 percent_format()

)

) +

If the selection was made to return the actual GDP, then the y axis will be formatted

in a comma_format() because the ActualGDP needs to be formatted as a number.

Otherwise, the y axis will be formatted as a percent using percent_format() because

the chart will be displaying percent change of GDP. Both the comma_format() and the

percent_format() function come from the scales package.

�Step 19: Add labels to the x and y axis
The following code adds a dynamically created label to the y axis and a fixed label to

the x axis:

 ylab(yAxisName) +

 xlab("Year")

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

107

�Step 20: Add the dynamic titles and caption to the
custom R visuals
The ggtitle() function is used to dynamically create the chart title and the chart subtitle

using the following code:

ggtitle(chartTitle, subtitle = chartSubtitle)

�Step 21: Apply a theme based on The Economists
publication
Since you are visualizing economic data, you will use the theme_economist() theme

from the ggthemes package to format your visual. The theme_economist() theme uses

formatting rules that are used by The Economists publication. You apply the theme_

economist() theme to your visual by adding the line of this code to the script:

theme_economist()

�Step 22: Add code to Power BI
The entire script that produces the visualization in this exercise is listed in Listing 2-5.

The script is functional so you can copy and paste it into Power BI. Make sure to paste it

after the commented section in the Power BI R script editor.

Listing 2-5.  The R script that produces the line chart with shade chart

library(tidyverse)

library(ggthemes)

library(scales)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("GetGDPStat", "GetGDPStatName", "GetPoliticalLevel",

"GetPoliticalLevelName", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

politicalLevelName <- unique(dataset$GetPoliticalLevelName)

gdpStatName <- unique(dataset$GetGDPStatName)

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

108

if(length(politicalLevelName) == 1 & length(gdpStatName) == 1 & columnTest)

{

 dfPI <- dataset

 #Variables for dynamic portions of the chart

 politicalLevelName <- unique(dfPI$GetPoliticalLevelName)

 gdpStatName <- unique(dfPI$GetGDPStatName)

 �yAxisName <- paste(gdpStatName, ifelse(gdpStatName == "Actual GDP",

"(in Billions)",""), sep = " ")

 chartTitle <- paste(gdpStatName, "Analysis", sep = " ")

 chartSubtitle <- paste(politicalLevelName, "view", sep = " ")

 #Get the number of

 dfPI$GetPoliticalLevel <- as.character(dfPI$GetPoliticalLevel)

 runs <- rle(dfPI$GetPoliticalLevel)

 group_id <- rep(seq_along(runs$lengths), runs$lengths)

 #Create the data set for shade layer

 dfShadeInfo <-

 cbind(dfPI, group_id) %>%

 transmute(group_id, Year, Party = GetPoliticalLevel) %>%

 group_by(group_id, Party) %>%

 summarize(start = min(Year), end = max(Year)+0.99) %>%

 ungroup()

 #Create the data set for line chart layer

 dfLineChartInfo <-

 dfPI %>%

 transmute(Year, GetGDPStat)

 #Define the shade colors

 partyColors = c("Republican"="red", "Democrat"="blue", "Tie" = "white")

 #Create the visualization

 p <- ggplot() +

 geom_rect(

 data = dfShadeInfo,

 aes(xmin = start, xmax = end, fill = Party),

 ymin = -Inf, ymax = Inf, alpha = 0.4, color = NA

) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

109

 geom_line(data = dfLineChartInfo, aes(x = Year, y = GetGDPStat)) +

 scale_fill_manual(values=partyColors) +

 scale_y_continuous(

 �labels=ifelse(gdpStatName == "Actual GDP", comma_format(),percent_

format())

) +

 ylab(yAxisName) +

 xlab("Year") +

 ggtitle(chartTitle, subtitle = chartSubtitle) +

 theme_economist()

 p

 } else {

 plot.new()

 title("The data supplied did not meet the requirements of the chart.")

 }

�Map
Spatial analytics has become more important in recent years. One form of spatial

analytics that is popular in business is geographic-based spatial analytics. Power BI

offers built-in map capabilities that work great for most situations. But in this example,

I will show how you can use R to build custom maps. The visual that you will draw is a

state heat map that shades the counties in the state based on the population quintile the

county falls in. The darker the shade, the more populated the county is. Figure 2-25 is an

example of the visual you will create when the state of Indiana is selected.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

110

The visual was created using a data set that contains the coordinates that define the

borders of the counties in the continental United States. When a state is selected, ggplot2

uses the geographic coordinates to draw the map. The counties are filled with a shade

of blue that is darker in the more populated counties and a shade of blue that is lighter

in the lower populated counties. You can easily switch between states by leveraging the

interactive capabilities of Power BI. If you change the slicer from Indiana to Kentucky,

then the following visual in Figure 2-26 will appear.

Figure 2-25.  Map visual produced using ggplot2 when Indiana is selected

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

111

One of the features that makes this visual great is that it limits the geography to

only the selected geography. Thus, it does not waste valuable chart real estate on other

geographies. Many map visuals often includes other geographical areas in addition to

the one that is the point of interest. Also, because it is created using ggplot2, you can add

other dynamic features such as a dynamic chart title, a dynamic chart subtitle, and a

dynamic chart caption. Let’s go over the steps needed to create this amazing visual!

�Step 1: Acquire the necessary data

	 1.	 Obtain a data set that lists the states with both their full name

and abbreviated name. The data set used came from https://

en.wikipedia.org/wiki/List_of_U.S._state_abbreviations

and can be found in the Abbreviations tab in the DataWrangling.

xlsx workbook.

	 2.	 Build out a data set with the county information needed for the

visual. Information used to create the data set was obtained

from www.nrcs.usda.gov/wps/portal/nrcs/detail/national/

home/?cid=nrcs143_013697 and can be found in the County FIPS

Codes tab of the DataWrangling.xlsx workbook.

Figure 2-26.  Map visual produced using ggplot2 when Kentucky is selected

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

https://en.wikipedia.org/wiki/List_of_U.S._state_abbreviations
https://en.wikipedia.org/wiki/List_of_U.S._state_abbreviations
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/home/?cid=nrcs143_013697
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/home/?cid=nrcs143_013697

112

	 3.	 Obtain a data set from the Census that lists population by county.

The data set can be found in the PopulationInfo tab in the

DataWrangling.xlsx workbook along with the Python script used

to obtain the data set.

	 4.	 Create a data set that contains the missing FIPS code. Some of the

missing FIPS codes were due to mapping issues, and some were

because they were not in the County FIPS Codes data set. This

data set will be used to correct that problem. It can be found in the

TheMissingInfo worksheet in the DataWrangling.xlsx workbook.

	 5.	 Obtain a data set from the ggplot2 package that contains border

information for the counties in the continental United States.

The information is warehoused in the Map Info tab of the

DataWrangling.xlsx workbook, and here is the code used to get

the data set:

library(tidyverse)

us_counties <- map_data("county", ".")

path <- “<location where you want to save the data set>”

write_csv(us_counties, path)

	 6.	 Use Power Query to combine the information from the previous

data sets into a shape needed by the visualization. The data set

can be found in the ChartData tab in the DataWrangling.xlsx

workbook. The query used to create the data set is also named

ChartData, and you can look at the query to see the steps used to

create the data set. This is the data set that will be used by Power

BI to create the R visual.

	 7.	 Save the data in the ChartData tab of the workbook. The data was

also saved to a csv file named chartdata.csv.

As with most visualization projects and data science projects in general, the longest

part of the project is normally acquiring, cleaning, and shaping the data. In this exercise,

I did the hard work for you so that you can focus on the data visualization aspect. You

can review the material in the code repo for this exercise to see the steps I took to

wrangle the data. For those of you coming from an R and/or Python background, doing

so will be a good way to familiarize yourself with Power Query.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

113

�Step 2: Load the data into Power BI
You need to bring the chartdata.csv file into the Power BI, then make some minor

adjustments to the data set before you load it into the data model. You can refer to the

pbix file for this example to see the transformations.

�Step 3: Create a slicer based on state in the Filter pane
Create a slicer based on the State column by first dragging the State column to the report

canvas. After you do that, you need to change the visual to a slicer by changing the

visualization type to a slicer visual. The slicer is the visual with the icon that has an image

of a funnel in it.

�Step 4: Configure the R visual
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual

to the desired size. Drop the index, lat, long, County, Total Population, and State fields

from the chartdata table into the Fields pane. If the Fields pane is not showing, select the

R visual and it should appear.

�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will

export the data frame passed to R and the R starter code to R Studio. Please refer to Step

4 in the “Callout chart” section if you need a more detailed explanation.

�Step 6: Load the required packages
The packages that will be used for this script are listed here:

library(tidyverse)

library(ggthemes)

The dplyr package from tidyverse will be used for some data wrangling, the stringr

package from tidyverse is used to reformat some titles, and the ggplot2 package from

tidyverse will be used to create the map visual. The theme_map() theme from the

ggthemes package will be used to format the non-data elements of the map visual.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

114

�Step 7: Create the variables needed for the data
validation test
Here is the code that creates the variables for the validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("County", "Index", "lat", "long", "State", "Total

Population")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

state <- str_to_title(unique(dataset$State))

The first line gets the column names from the data set passed to R from Power BI and

sorts them in alphabetical order, then put the results in the currentColumns character

vector variable. The second line creates a character vector that contains the column

names that are expected by the visualization in alphabetical order and assigns it to a

character vector named requiredColumns. The third line performs a test comparing

the column names in the currentColumns character vector to the column names in the

requiredColumns character vector. If they match, then TRUE is returned; otherwise,

FALSE is returned. The fourth line gets all of the unique elements in the State column of

the dataset data frame and uses the str_to_title() function from the stringr packages to

put the state names in a proper name format.

�Step 8: Create the data validation test
The shell of the data validation is as follows:

if (length(state) == 1 & columnTest) {

 <execute code to build visual>

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

115

The source data frame of the visualization needs to only contain one state, and it

needs to contain the required columns. The preceding if statement tests to see if there

is only one state in the data frame and if the data frame passed the column test. If both

conditions are met, then it will proceed to execute the code to create the map visual;

otherwise, it will produce a blank visual with a message informing you that R did not

have adequate information and could not create the visual.

�Step 9: Create the variables for the chart titles
Here is the code needed to create the chart titles:

 chartTitle <- paste0(state, "'s County Population Analysis")

 subTitle <- "(the darker shades the higher the population)"

The main chart title is made by concatenating the selected state with the string "'s

County Population Analysis" and is assigned to the chartTitle variable. The string "(the

darker shades the higher the population)" is used for the subtitle, and it is assigned to the

subTitle variable.

�Step 10: Add the quintile column to the data set
If you recall, the goal of this visualization is to group the counties in each state by

quintiles based on population. You use the ntile() function from dplyr to group the

counties in the state in quintiles as illustrated in the following code:

chartdata <-

 dataset %>%

 mutate(quintile = factor(ntile(`Total Population`, 5)))

The code creates a new data frame called chartdata by starting with the dataset data

frame, then the pipe operator from dplyr is used to pass it as the first argument to the

mutate() verb in the next line. The mutate() verb is used to project a new column named

quintile that will be created using the ntile() function. The ntile() function is wrapped

with the factor function to convert the quintiles to a factor data type. This action has a

similar effect as Don’t Summarize does in Power BI. Converting the quintiles to factor

causes them to be treated as categorical data and not as numeric data.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

116

�Step 11: Define the colors that will be used to shade
the map
You are going to use different shades of blue to shade the counties in the selected

state. You are going to use five different shades of blue using the name character

vector listed here:

 quintileColors <-

 c(

 "1" = "dodgerblue",

 "2" = "dodgerblue1",

 "3" = "dodgerblue2",

 "4" = "dodgerblue3",

 "5" = "dodgerblue4"

)

The dodgerblue color listed for quintile 1 is the lightest shade of blue in the list,

and doderblue4 for quintile 5 is the darkest shade of blue in the list. Here, you are using

the color names to define them instead of the hexadecimal value. Go to the following

website to learn more about the colors available to you in ggplot2: www.stat.columbia.

edu/~tzheng/files/Rcolor.pdf. You will see available names you can use to refer to

specific colors.

�Step 12: Define the ggplot() function
You start by defining the ggplot() function using the following code:

ggplot(chartdata, aes(long, lat, group = County,

 fill = quintile))

You use the chartdata data frame as the chart’s data source. Next, you configure

the aes() function by setting the long column to the x coordinate, the lat column

to the y coordinate, the County to the group aesthetic, and the quintile to the fill

aesthetic. This is our first time using the group aesthetic because prior to this

example, we have been using individual geoms, but the geom_polygon() geom is

what is known as a collective geom.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

117

Individual geoms only depend on one row, but collective geoms depend on multiple
rows of data. This example will use the geom_polygon() geom which is a collective
geom, and it will use data from multiple rows to define the border of the polygon
visual that will be created.

The geom_polygon() in this example draws polygons using the latitude and longitude

points in the data set for each group with the group in this example being the County in

the data set. The fill property is used to tell ggplot2 how you want to color the inside of

each county. Here, you will color the inside of each County based on the quintile they

are in.

You were able to use a Cartesian coordinate system (in this example, a coordinate
system that is based on an x and y axis) to represent your spatial data because
you are looking at a relatively small area of the globe. Even though the earth is the
shape of a sphere, when you are looking at a relatively small geographical area
you can analyze it using the same techniques that are used to analyze a plane and
get relatively good results.

�Step 13: Add the map layer
Here is the code that adds the map layer:

geom_polygon(show.legend = FALSE, color = "black")

You already have the aesthetics that you need for the map defined in the ggplot()

function. They will carry over to the geom_polygon() geom because anything that is

defined in the ggplot() function is available to all subsequent layers. You don’t need a

legend in this visual, so you set the show.legend argument to FALSE. You want the color

of the borders to be black. You make them black by setting the color argument to black.

Note  that when you want to set a chart attribute to a specific color, you need to do
so without using the aes() function. The reason was explained in detail in Chapter 1.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

118

�Step 14: Format the x and y axis
The following code is used to reformat the x and y axis:

 scale_x_continuous(name = NULL, labels = NULL, breaks = NULL) +

 scale_y_continuous(name = NULL, labels = NULL, breaks = NULL)

You removed the name, labels, and breaks by setting them equal to NULL. You did so

because you are visualizing a map and that information is not needed.

�Step 15: Color the counties based on their quintile
The following code will be used to color the counties:

 scale_fill_manual(values = quintileColors)

The ggplot2 package has good defaults which is one of the reasons that makes the

package so nice. What makes the package even nicer is that you can easily override the

defaults. The map will be colored as depicted in Figure 2-27 if the defaults from ggplot2

are used.

Figure 2-27.  The map visual with the default colors that is produced when
Florida is selected

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

119

Figure 2-28 is what the map looks like after you use custom colors via the scale_fill_

manual() function.

The second version makes it easy for the report user to tell which counties have

the lower populations and which counties have the higher populations based on the

darkness of the shades.

�Step 16: Improve the approximation of the selected state
The following code is used to do a quick aspect ratio approximation based on the

mercator map projection:

coord_quickmap()

Figure 2-28.  The map visual with custom colors that is produced when Florida is
selected

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

120

The geom_polygon() does a good job creating the map, but using the preceding code

quickly makes the map display a little more accurately.

�Step 17: Add the dynamic titles and caption to the custom
R visuals
The following code is used to add the dynamic titles using the ggtitle() function along

with the variables that hold the chart title and chart subtitle information:

ggtitle(chartTitle, subtitle = subTitle)

�Step 18: Apply the theme_map( ) theme
You use the theme_map() theme from ggthemes to further enhance the visual appeal of

the map.

�Step 19: Add code to Power BI
The complete script is in Listing 2-6. Copy and paste it into the R script editor in Power

BI. The R visual will be totally responsive to the state slicer in your Power BI report.

Listing 2-6.  The R script that produces the map chart

library(tidyverse)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <-

 c("County", "Index", "lat", "long", "State",

 "Total Population")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

state <- str_to_title(unique(dataset$State))

if (length(state) == 1 & columnTest) {

 chartTitle <- paste0(state, "'s County Population Analysis")

 subTitle <- "(the darker shades the higher the population)"

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

121

 chartdata <-

 dataset %>%

 mutate(quintile = factor(ntile(`Total Population`, 5)))

 quintileColors <-

 c(

 "1" = "dodgerblue",

 "2" = "dodgerblue1",

 "3" = "dodgerblue2",

 "4" = "dodgerblue3",

 "5" = "dodgerblue4"

)

 ggplot(chartdata, aes(long, lat, group = County,

 fill = quintile)) +

 geom_polygon(show.legend = FALSE, color = "black") +

 scale_x_continuous(name=NULL, labels=NULL, breaks=NULL) +

 scale_y_continuous(name=NULL, labels=NULL, breaks=NULL) +

 scale_fill_manual(values = quintileColors) +

 coord_quickmap() +

 ggtitle(chartTitle, subtitle = subTitle) +

 theme_map()

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

�Quad chart
As a Microsoft data professional, you are well aware of the visual in Figure 2-29 produced

by Gartner.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

122

Microsoft has done well compared to its competitors in the Business Intelligence

space, and Gartner acknowledges it. Microsoft has used industry comparisons like the

Gartner Magic Quadrant Chart to tout their position in the industry.

The visual Gartner used, the quad chart, is very effective when comparing different

entities based on two metrics. In this case, Gartner is comparing different BI vendors

based on their Ability to Execute and their Completeness of Vision. Gartner made the

chart visibly appealing by adding minor details. Some of those details include

•	 Labeling the quadrants

•	 Adding background shade to quadrants 2 and 3

•	 Using non-traditional labels for the x and y axis

•	 Adding a chart caption

Figure 2-29.  The 2020 Gartner Magic Quadrant Chart

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

123

These subtleties are not easy to create in Power BI but are straightforward in R using

ggplot2.

In this section, I will illustrate my point using a data set based on “play-by-play” data

for the 2008–2009 LA Lakers season. That info will be used to create the quad chart in

Figure 2-30 that compares the players against each other based on total points scored

and total rebounds made.

Like in the previous visualizations, you will take advantage of Power BI’s interactive

capabilities and add slicers to the visual so that you can see how the situation plays out

in different scenarios. There will be a filter for the type of game (home or away) as well as

a filter for the period of the game. The visual in Figure 2-31 shows the comparison when

only away games are considered.

Figure 2-30.  Quad chart comparing LA Lakers players based on rebounds and
points scored

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

124

Let’s go over the steps needed to create this beautiful visualization!

�Step 1: Acquire the necessary data
The data set used in this example was obtained from the lubridate package in R. The

code used to get that data set is as follows:

library(tidyverse)

library(lubridate)

chartData <-

 lakers %>%

 filter(

 (player != "" & team == "LAL" &

 result == "made" &

 etype %in% c("shot","free throw")

) |

Figure 2-31.  Quad chart based on away games

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

125

 (player != "" &

 team == "LAL" &

 etype == "rebound")

) %>%

 mutate(

 rebound = ifelse(etype == "rebound",1,0)

) %>%

 group_by(game_type, period, player) %>%

 summarize(

 `Total Points` = sum(points),

 Rebounds = sum(rebound)

) %>%

 rename(

 `Game Type` = game_type,

 Period = period,

 Player = player

)

path <- “<path to location to save file>”

write_csv(chartdata, path)

The output was saved to a csv file because that format is an easy format for Power BI

to consume. Don’t worry if you don’t understand the preceding code because you will

learn the techniques used later in the book. For now, know that if you need to recreate

the data set used in this visualization, you can do so by running the preceding R script.

�Step 2: Load the data into Power BI
Load the data in Power BI from the csv file created in Step 1 using GetData. Once loaded,

the data type of each column should have the data types listed below:

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

126

Column Name Data Type

Game Type Text

Period Whole Number

Player Text

Total Points Whole Number

Rebounds Whole Number

The file is already loaded in the pbix file located in the folder for this example in

the code repo. You can review the Power Query steps to see what transformations

were applied.

�Step 3: Create a slicer for game type and period
Create a report slicer based on the Game Type field by first dragging the Game Type field

to the report canvas, then selecting the Slicer visual in the Visualization pane. Make

sure the field you added to the canvas is highlighted before you select the Slicer visual to

convert it into a slicer. The slicer visual is the one that includes a picture of a filter in the

image. Perform the same action with the Period field.

�Step 4: Configure an R visual on the report canvas
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual

to the desired size. Drop the Player, Rebounds, and Total Points fields from the chartData

table into the Fields pane. If the Fields pane is not showing, select the R visual and it

should appear.

�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will

export the data frame passed to R and the R starter code to R Studio. Please refer to Step 4

in the “Callout chart” section if you need a more detailed explanation.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

127

�Step 6: Load the required packages
The required packages for this script are listed here:

library(tidyverse)

library(ggrepel)

library(ggthemes)

library(scales)

The dplyr package from tidyverse is used to perform some data wrangling tasks,

ggplot2 from tidyverse is used to create the visualization, the ggrepel package is used to

add the labels to the data points in the visualization, the theme_tufte() theme from the

ggthemes package is used to format the non-data elements of the visual, and the rescale()

function from the scales package is used to rescale some of the data.

�Step 7: Create the variables needed for the data
validation test
The variables needed for the validation test are defined in the following code:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Player", "Rebounds", "Total Points")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

noPlayerDups <-

 length(unique(dataset$Player)) == length(dataset$Player)

Here is a description of what each line in the preceding code snippet is doing:

•	 The first line of code creates a character vector variable named

currentColumns based on the column names from the dataset data

frame sorted in alphabetical order.

•	 The second line of code creates a character vector variable named

requiredColumns that contains the required columns needed for

the Quad Chart in alphabetical order.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

128

•	 The third line of code uses the all.equal() function from base R to

test the currentColumns variable and the requiredColumns variable

for equivalency. If they are equal, then all.equal() returns TRUE;

otherwise, it returns information about why they are not equal. We

wrap all.equal() with isTRUE() to get a Boolean response.

•	 The fourth line of code (actually two due to formatting) uses the

noPlayerDups variable to hold the result of the test that checks

if there are any duplicate players in the data set. It does so by

comparing the number of unique elements in the Players column to

the length of the Players column. If they are equal, then none of the

players are duplicated.

�Step 8: Create the data validation test
The template for the validation test is listed here:

if (noPlayerDups & columnTest) {

 <code to produce visual>

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

The validation test performs two tests: the noPlayerDups test and the columnTest.

If both tests evaluate to TRUE, then the code that creates the chart is executed.

Otherwise, a blank chart is created with information about why ggplot2 was not able to

create the chart.

�Step 9: Create the chart titles
Static strings are used in this example for the chart title, chart subtitle, and caption. They

are defined using the following code:

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

129

 chart.title <- "LA Lakers player comparison"

 chartsubtitle <- "(2008 - 2009 Season)"

 chart_source <- "Source: lubridate package"

�Step 10: Add additional columns to the data set
You are creating a quad chart that compares the LA Lakers basketball players based

on their rebounds and points scored. Rebounds and points scored are on two different

scales because the range of possible values for the number of points scored is a lot higher

than the range of possible values for the number of rebounds. The quad chart requires

them to be on the same scale. That is done in this step using the following code:

 graph_data <-

 dataset %>%

 mutate(

 Scaled.Rebounds =

 round(rescale(Rebounds, to = c(-10, 10)), 1)

 ,Scaled.TotalPoints =

 round(rescale(`Total Points`, to = c(-10, 10)), 1)

)

The mutate verb is used in this step to add two new columns to the data frame:

Scaled.Rebounds and Scaled.TotalPoints. Those two columns use the rescale() function

from the scales package to put them both on a scale between –10 and +10. These new

columns will be used in the visualization to represent the rebounds and total points

scored for each player.

�Step 11: Start the chart by defining the ggplot function
The following code is used to define the ggplot() function:

p <- ggplot(graph_data,

 aes(x = Scaled.Rebounds, y = Scaled.TotalPoints)

)

The data set that will be used in this visual is the graph_data data frame and only two

aesthetic are defined in the ggplot() function. They are the x and y aesthetics.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

130

�Step 12: Use the geom_point( ) geom to plot the players
on the plot
Next, you add dots to the graph to represent the players. The positions of the dots are

based on the rescaled version of the number of rebounds and the total number of points

the given player has. This is done by adding a geom_point() geom to the code as depicted

here:

p <- ggplot(

 graph_data,

 aes(x = Scaled.Rebounds, y = Scaled.TotalPoints)

) +

 geom_point()

The geom_point() geom inherits the aesthetics from the ggplot() function so the

required x and y aesthetics do not need to be defined in the geom_point() layer.

�Step 13: Add the labels for each quadrant
Next, you add a layer of labels to the visual that gives the name of the players the dots

represent. This is done using the geom_label_repel() geom as depicted in the following

code:

ggplot(graph_data,

 aes(x = Scaled.Rebounds,

 y = Scaled.TotalPoints)

) +

 geom_point() +

 geom_label_repel(aes(

 label = Player),

 size = 4, show.legend = FALSE

)

The geom_label_repel() geom inherits the x and y argument from the ggplot()

function so you do not need to define those two aesthetics. The only aesthetic needed to

be defined is the label aesthetic, which you set to the Player column. The values in this

column will be used to label the dots with the name of the player they represent. You set

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

131

the size argument outside the aes() function because you want all the labels to have the

same font size. Also, by default, ggplot2 creates a legend for each scale added outside the

x and y scale. A legend is not needed for the label, so to prevent one from being shown,

you set the show.legend property equal to FALSE.

�Step 14: Draw vertical and horizontal lines through the
x and y axis
The visual requires distinct lines for the x and y axis. The last two lines in the following

code add the required horizontal and vertical lines:

 p <- ggplot(

 graph_data,

 aes(x = Scaled.Rebounds,

 y = Scaled.TotalPoints)

) +

 geom_point() +

 geom_label_repel(

 aes(label = Player),

 size = 4,

 show.legend = FALSE

) +

 geom_hline(yintercept = 0) +

 geom_vline(xintercept = 0)

The geom_hline() and geom_vline() geoms are used to draw the lines. Setting the

yintercept in the geom_hline() function to 0 draws a horizontal line that goes through

point 0 of the y axis, and setting xintercept in the geom_vline() function to 0 draws a

vertical line that goes through point 0 of the x axis.

�Step 15: Add quadrant labels to the chart
Figure 2-32 shows what the visual looks like after performing the previous steps.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

132

The chart is coming along great. You are making good progress toward your end goal.

In this step, you will add labels to each quadrant using the following code:

 annotate("text", x = -5, y = 11, label = "High Scorer",

 alpha = 0.2, size = 6) +

 annotate("rect", xmin = -3.5, xmax = -6.5, ymin = 10.5,

 ymax = 11.5, alpha = .2) +

 annotate("text", x = 5, y = 11, label = "Beast Mode",

 alpha = 0.2, size = 6) +

 annotate("rect", xmin = 3.5, xmax = 6.5, ymin = 10.5,

 ymax = 11.5, alpha = .2)

 annotate("text", x = -5, y = -11, label = "Average",

 alpha = 0.2, size = 6) +

 annotate("rect", xmin = -3.5, xmax = -6.5, ymin = -11.5,

 ymax = -10.5, alpha = .2) +

Figure 2-32.  The beginnings of the quad chart

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

133

 annotate("text", x = 5, y = -11, label = "High Rebounder",

 alpha = 0.2, size = 6) +

 annotate("rect", xmin = 3.5, xmax = 6.5, ymin = -11.5,

 ymax = -10.5, alpha = .2) +

The preceding code builds labels with borders for each quad in the quad chart. The

first quad in the upper left is labeled High Scorer because players in this group rank high

in scoring but low in rebounding, the second quad in the upper right is named Beast

Mode because players in this quadrant rank high in both rebounding and scoring, the

third quadrant in the lower left is labeled Average because players in this quadrant rank

relatively low in both rebounding and scoring, and the fourth quadrant in the lower right

is labeled High Rebounder because players in this quadrant rank high in rebounds but

low in scoring.

Both the text and the border of the quadrant labels are created using the

annotate() function. The first argument of the annotate() function is where you

specify the type of geom you want to use for your annotation. The types of geoms

that are being used in this example to create the quadrant labels are the text and

rect geoms. In the preceding code, the text of the label for the respective quadrant

is created using the text geom, then a rectangular border is placed around the text

using the rect geom. First, let’s go over how the text annotation works, then we will go

over how the rect annotation works.

As stated earlier, you create a text annotation by setting the value of the first

argument in the annotate() function to text. The x and y argument are used to determine

the position of the “text”. In this visual, the x values of the text annotations are positioned

at the center of their respective quadrants, and the y values of the text annotations are

positioned just outside of the area of possible data points. The latter is done to minimize

the player data from overlapping with the quadrant labels. The alpha argument of each

text annotation is set to 0.2 to make sure the player names would show over the labels if

they were in the same position.

The alpha argument is used to set the transparency of a geom on a chart. The
closer to zero, the more transparent the element will be, and the closer to one, the
more opaque the element will be.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

134

After the quadrant label is created using the text annotation for the given quadrant,

the border of the label is created using the rect annotation. This is accomplished by

setting the first argument of the annotate() function to “rect”. The rectangle that you

want to draw is defined by using the xmin, xmax, ymin, and ymax arguments. Here are

descriptions that explain the purpose of each argument:

•	 The xmin argument is used to determine the x position of the upper

left and lower left corners.

•	 The xmax argument is used to determine the x position of the upper

right and lower right corners.

•	 The ymin argument is used to determine the y position of the lower

left and lower right corners.

•	 The ymax argument is used to determine the y position of the upper

left and upper right corners.

Once the corners are defined, the annotate() function connects the points with lines.

The result is a rectangular border around the labels.

�Step 16: Add labels for the x and y axis
Here is the code used to add the arrows to the x and y axis label names:

 xlab(bquote("Rebounding" ~ symbol('\256'))) +

 ylab(bquote("Scoring" ~ symbol('\256'))) +

This is a hack in which I used the bquote() function that is typically used to

create mathematical expressions in R. In this example, you are using it not to create a

mathematical expression but to add the arrow symbol to the labels. This is accomplished

via the xlab() and ylab() functions. The xlab() function is used to rename the x axis label,

and the ylab() function is used to rename the y axis label. The code symbol('\256') is

the code needed to draw an arrow.

�Step 17: Add the dynamic titles and caption to the custom
R visual
The chart title, the subtitle, and the chart source are added to the visual using the labs()

function using the following code:

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

135

labs(

 title = chart.title,

 subtitle = chartsubtitle,

 caption = chart_source

)

�Step 18: Add a theme
The theme of the chart is changed using visualization principles from Edward Tufte via

the theme_tufte() theme from the ggthemes package. This is accomplished by adding the

following code to the script:

theme_tufte() +

�Step 19: Perform last minute cleanup
Performing the previous steps will result in the visualization in Figure 2-33.

Figure 2-33.  Quad chart prior to last minute cleanup

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

136

You want to reformat the chart titles and the labels of the axes to look like the visual

below.

You do so using the code below:

 theme(

 plot.title = element_text(hjust = 0.5, size = 25)

 , plot.subtitle = element_text(hjust = 0.5, size = 20)

 , panel.border = element_rect(

 colour = "black",

 size = 2,

 fill = NA)

 , axis.title.x = element_text(hjust = 0.1, size = 18)

 , axis.title.y = element_text(hjust = 0.1, size = 18)

) +

 scale_x_continuous(labels = NULL, breaks = NULL) +

 scale_y_continuous(labels = NULL, breaks = NULL)

Figure 2-34.  Final version of the quad chart

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

137

Let’s go over the preceding code in detail. As you can see, most of the required

changes are handled using the theme() function. Here is a list of the components that are

modified by the theme() function in this step along with a description of how they were

modified:

•	 plot.title: This component is used to control the chart title, and it

uses the element_text() function to do so. The hjust argument of the

element_text() function is used to control the horizontal position of

the text, and it accepts values between 0 and 1. A value of 0 justifies

the text to the left, a value of 0.5 centers the text, and a value of 1 puts

the value to the far right. You use a value of 0.5 because you want the

text to be centered. You use the size argument to increase the size of

the font to 25.

•	 plot.subtitle: This component is used to control the chart subtitle, and

it also uses the element_text() function to do so. The hjust argument

is set the same way as it was in the plot.title component because you

want to center the text as you did in the plot.title component. You

want the subtitle to be smaller than the main title so you set it to the

lower number of 20.

•	 panel.border: This component is used to control the border around

the visual, and it uses the element_rect() function to do so. The colour

argument is used to set the color of the border, and the size argument

is used to set the thickness of the border.

•	 axis.title.x: This component is used to control the label of the x axis,

and it uses the element_text() function to do so. You want to label it to

be positioned on the left side of the x axis so you use a value of 0.1 for

the hjust argument to do so. You use the size argument to change the

font size of the text to 18.

•	 axis.title.y: This component is used to control the label of the y axis,

and it is configured similarly as the axis.title.x. The difference is

that the positioning is on a vertical line instead of a horizontal line.

Because of that, the closer you are to zero the lower your position will

be on the Y axes and the closer you are to 1 the higher your position

will be on the Y axis. You are using a value of 0.1 so that positions

your Y axes label close to the origin.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

138

Lastly, the scales_x_continuous() and scale_y_continuous() scales are used to

reformat the axes. The labels and breaks in both scale functions are set to NULL to

remove them from the chart. The results of these actions were illustrated earlier in

Figure 2-34.

�Step 20: Add code to Power BI
The complete script to produce the visual is in Listing 2-7.

Listing 2-7.  The R script that produces the quad chart

library(tidyverse)

library(ggrepel)

library(ggthemes)

library(scales)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Player", "Rebounds", "Total Points")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

noPlayerDups <- length(unique(dataset$Player)) == length(dataset$Player)

if (noPlayerDups & columnTest) {

 chart.title <- "LA Lakers player comparison"

 chartsubtitle <- "(2008 - 2009 Season)"

 chart_source <- "Source: lubridate package"

 graph_data <-

 dataset %>%

 mutate(

 Scaled.Rebounds =

 round(rescale(Rebounds, to = c(-10, 10)), 1)

 ,Scaled.TotalPoints =

 round(rescale(`Total Points`, to = c(-10, 10)), 1)

)

 p <- ggplot(graph_data, aes(x = Scaled.Rebounds, y = Scaled.TotalPoints)) +

 geom_point() +

 geom_label_repel(aes(label = Player), size = 4, show.legend = FALSE) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

139

 geom_hline(yintercept = 0) +

 geom_vline(xintercept = 0) +

 # quad 1

 �annotate("text", x = -5, y = 11, label = "High Scorer", alpha = 0.2,

size = 6) +

 �annotate("rect", xmin = -3.5, xmax = -6.5, ymin = 10.5, ymax = 11.5,

alpha = .2) +

 # quad 2

 �annotate("text", x = 5, y = 11, label = "Beast Mode", alpha = 0.2,

size = 6) +

 �annotate("rect", xmin = 3.5, xmax = 6.5, ymin = 10.5, ymax = 11.5,

alpha = .2) +

 # quad 3

 �annotate("text", x = -5, y = -11, label = "Average", alpha = 0.2,

size = 6) +

 �annotate("rect", xmin = -3.5, xmax = -6.5, ymin = -11.5, ymax = -10.5,

alpha = .2) +

 # quad 4

 �annotate("text", x = 5, y = -11, label = "High Rebounder", alpha = 0.2,

size = 6) +

 �annotate("rect", xmin = 3.5, xmax = 6.5, ymin = -11.5, ymax = -10.5,

alpha = .2) +

 # Shade lower left quadrant

 �annotate("rect", xmin = -Inf, xmax = 0.0, ymin = -Inf, ymax = 0,

alpha = 0.1, fill = "lightskyblue") +

 # Shade upper right quadrant

 �annotate("rect", xmin = 0.0, xmax = Inf, ymin = 0.0, ymax = Inf,

alpha = 0.1, fill = "lightskyblue") +

 # Titles

 xlab(bquote("Rebounding" ~ symbol('\256'))) +

 ylab(bquote("Scoring" ~ symbol('\256'))) +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

140

 �labs(title = chart.title, subtitle = chartsubtitle, caption = chart_

source) +

 # Prettying things up

 theme_tufte() +

 theme(

 plot.title = element_text(hjust = 0.5, size = 25)

 , plot.subtitle = element_text(hjust = 0.5, size = 20)

 , panel.border = element_rect(colour = "black", size = 2, fill = NA)

 , axis.title.x = element_text(hjust = 0.1, size = 18)

 , axis.title.y = element_text(hjust = 0.1, size = 18)

) +

 scale_x_continuous(labels = NULL, breaks = NULL) +

 scale_y_continuous(labels = NULL, breaks = NULL)

 p

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the chart.")

}

Copy and then paste the script in the R script editor associated with this visual. The

resulting R visual is totally responsive to the filters in the report.

�Adding regression line
One of the most common enhancements that data analysts tend to add to their scatter

plots are trend lines. Adding a trend line to your scatter plot in R using ggplot2 is

straightforward, and you have more configuration options than you typically have in

other visualization tools. For instance, you have the option to

•	 Use linear models, generalized linear models, generalized additive

models, and a few others for your trend line

•	 Determine what you want your confidence level to be

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

141

•	 Use your own formula for your trend line

•	 Use many more configurable options that are too numerous to list

In this section, you will use a simple example based on a data set that comes pre-

installed in R. The name of the data set is women, and it is a data set that shows the

average weight by height for women in the United States. You will plot the information

using a scatter plot, then overlay the scatter plot with a trend line based on a linear

regression model. The resulting visual is listed in Figure 2-35.

Let’s go over the steps to produce this visual!

Figure 2-35.  Scatter plot with added linear regression line

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

142

�Step 1: Acquire the necessary data
The code used in this example is one of the data sets that come pre-installed with base

R. Here is the R code used to create the csv file that is the source data for this example:

library(tidyverse)

data(women)

setwd("<path to folder where the file is located>")

write_csv(women, "women.csv")

A file named women.csv is the result of running the preceding code, and it will be the

source for Power BI in the next step.

�Step 2: Load the data into Power BI
Read the data into Power BI using GetData. To do so, click the Home tab in Power

BI, then click GetData ➤ Text/CSV. Next, browse to the location where you saved the

women.csv file. When you load the data, make sure that both the height and weight

columns are in a number format.

�Step 3: Configure the R visual
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual

to the desired size. Drop the height and weight columns from the women table into the

Fields pane. If the Fields pane is not showing, select the R visual and it should appear.

�Step 4: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will

export the data frame passed to R and the R starter code to R Studio. Please refer to Step

4 in the “Callout chart” section if you need a more detailed explanation.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

143

�Step 5: Load the required packages
The R packages that will be used in this script are tidyverse and ggthemes. The ggplot

package from tidyverse is used to create the visual, and the dplyr package from tidyverse

is used to shape the data for the visual. The ggthemes package provides the theme_tufte()

theme that will be used to change the chart’s theme.

�Step 6: Create the variables needed for the data
validation test
The following code is used to create the variables for the data validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("height", "weight")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

You need to make sure the data set passed to R from Power BI has the proper

structure, and you need to be prepared to handle the situation if it is not. The test you

perform in this example is a test that makes sure that the data set passed to R contains

only the columns needed for the R visual.

You do so by first getting the names of the columns in the dataset data frame, and

you assign it to a character vector variable named currentColumns. The elements in

the variable are sorted in alphabetical order. The next line of code creates another

character vector that contains the columns that are needed to create the R visual.

They are also supplied in alphabetical order. The last line in the code snippet

performs a test to see if the currentColumns and requiredColumns character vectors

are equal using the all.equal() function. The all.equal() function is used to compare

two R objects to see if they are equal. If they are equal, then TRUE is returned;

otherwise, information is returned that attempts to explain why they are unequal.

In this example, you are just concerned if the currentColumns and requiredColumns

variables are equal. You just need a Boolean response. You can get that by wrapping

all.equal() with the isTRUE() function.

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

144

�Step 7: Create the data validation test
Here is the shell of the data validation test:

if (columnTest) {

 <code to produce visual>

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the

 chart.")

}

Recall the columnTest variable is based on a test that returns a Boolean value. If the

value of the columnTest variable is TRUE, then the code will be executed to build the

visual; otherwise, the code in the else block will be executed. The code in the else block

generates a blank plot using the plot.new() function and adds text to the blank plot that

explains to the report user why the desired chart was not created.

�Step 8: Start the chart by initializing the ggplot function
Here is the code used in this step:

 chartdata <- dataset

 ggplot(chartdata, aes(x = weight, y = height)) +

First, you make a copy of the dataset data frame by assigning it to a variable named

chartdata. Next, you define the ggplot() function. The first argument is the data set that

the visual will use. The second argument uses the aes() function to define a couple visual

aesthetics. The aesthetics that are being defined are x and y coordinates.

�Step 9: Add a scatter plot layer to the R visual
The scatter plot layer is added by using the geom_point() geom. The values for the x

and y arguments are inherited from the ggplot() function and are used to determine the

position of each point in the scatter plot. Here is the code used to add the geom:

 geom_point() +

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

145

The result of adding the geom_point() geom to the chart is illustrated in Figure 2-36.

�Step 10: Add regression line layer to the R visuals
In this step, you add a regression line layer using the geom_smooth() geom. The code

used to add the layer is as follows:

 geom_smooth(method='lm') +

The preceding code will add a linear regression line to the chart based on the data

in the scatter plot. What makes this function so special is that it is very configurable. The

geom_smooth() function enables you to

•	 Specify your own linear regression formula

•	 Add a confidence interval to your linear regression line

Figure 2-36.  Scatter plot of the average American women weight by height using
the “women” data set that comes with base R

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

146

•	 Choose the confidence interval level you want to use

•	 Use other smoothing methods such as generalized linear regression

(glm), local regression (loess), robust linear models (rlm), and

generalized additive model (gam)

The following visual in Figure 2-37 is what the chart looks like after the regression

line has been added.

�Step 11: Add a title to the chart
The ggtitle() function is used to add the chart title and subtitle as shown here:

 ggtitle(

 "Average Weight by Heights for American Women",

 subtitle = "(with added regression line and

 confidence interval)"

) +

Figure 2-37.  Scatter plot with added regression line

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

147

Note the ggtitle() function is an alternative to the labs() function, but it has the

required functionality needed in this example.

�Step 12: Change the chart’s theme
You want to change the look and feel of the chart using principles from Stephen Few. You

do so using the following code which adds the theme_tufte() theme to the chart:

 theme_tufte() +

�Step 13: Perform some last minute cleanup
The theme() function is used to change the font size of the chart title, subtitle, and axis

labels. The chart title’s font is changed using the plot.title component, the chart’s subtitle

is changed using the plot.subtitle component, and the axis labels are changed using the

axis.title component. All three components use the element_text() function to make the

changes:

 theme(

 axis.title = element_text(size = 20),

 plot.title = element_text(size = 30),

 plot.subtitle = element_text(size = 20)

)

�Step 14: Add code to Power BI
The complete script is shown in Listing 2-8. Copy the script and paste it in the R script

editor in Power BI.

Listing 2-8.  The R script that produces the scatter chart with regression line

library(tidyverse)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("height","weight")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

148

if (columnTest) {

 chartdata <- dataset

 ggplot(chartdata, aes(x = weight, y = height)) +

 geom_point() +

 geom_smooth(method='lm') +

 ggtitle(

 "Average Weight by Heights for American Women",

 subtitle = "(with added regression line and confidence

 interval)"

) +

 theme_tufte() +

 theme(

 axis.title = element_text(size = 20),

 plot.title = element_text(size = 30),

 plot.subtitle = element_text(size = 20)

)

} else {

 plot.new()

 title("The data supplied did not meet the requirements of the chart.")

}

In this chapter, you walked through several recipes that illustrated how expressive

you can be with your visualizations in Power BI via the ggplot2 package. You can easily

modify the recipes to fit your needs, or you can use them to inspire a completely different

visual. The ggplot2 package along with its helper packages provides a great framework to

build R visuals for Power BI in a relatively low code way. The ggplot2 package is a perfect

companion to Power BI!

Chapter 2 Creating R Custom Visuals in Power BI Using ggplot2

PART II

Ingesting Data into the
Power BI Data Model
Using R and Python

151
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_3

CHAPTER 3

Reading CSV Files
Power BI is an excellent tool for data visualization and has been recognized as one

of the premier tools in that category. However, before you are able to create the great

visualizations that Power BI is known for, you first need to get data into the Power BI

data model.

Power BI comes with a tool named Power Query that enables you to handle most

situations you will encounter while bringing data into the Power BI data model. Power

Query’s graphical user interface is intuitive and easy to use, but there are advanced

situations where Power Query will fall short.

Fortunately, with the addition of R and Python in Power BI, many of those “hard-

to-do” tasks become relatively easy to handle. In this chapter, you will learn how to use

R and Python to dynamically choose the files in a folder that you want to combine and

filter rows based on a string pattern that requires advanced string matching techniques.

Let’s start with dynamically combining files.

�Dynamically combining files
Combining multiple files from a folder into a data set prior to bringing it into the Power

BI data model is a common task, but choosing those files dynamically using complex

selection logic can be challenging in Power Query. This section shows how to make the

task easy through using R and Python.

Combining files is straightforward in Power Query if you are combining all the files

in a particular folder into one data set when the files share the same data structure.

Combining files is also not a difficult task if you are combining files in a folder into one

data set using a simple selection rule to pick the files you want to combine. But when

you need to apply a selection rule that involves complex logic, then the task may be hard

if not impossible to do in Power Query. Using R and Python makes the task easier to

perform, even when the selection criteria is complex.

https://doi.org/10.1007/978-1-4842-5829-3_3#DOI

152

�Example scenario
Here is the scenario. It is February 5, 2014, and you are a financial analyst for a major

widget seller. You have a folder that contains monthly sale reports dating from 2010-

12-01 to 2014-01-01. Each month’s report is relatively big, and because of limitations of

Power BI, you are not able to load all historical reports. You need to limit your load to a

rolling 24-month period.

Here are some additional technical details:

•	 The reports are in a csv file type.

•	 The naming convention used for the file names is YYYY-MM-DD.csv.

•	 All the reports have the same structural layout.

Creating a workflow in Power Query that can dynamically pick files that are in the

rolling 24-month period would be hard to do. The task requires advanced Power Query

skills and the use of custom M code. The underlying M code needed to perform this task

would be complicated and not as intuitive as the code would be if R or Python were used.

Let’s first perform this task using R, then we will perform the same task using Python. That

way, you can see how intuitive and concise the code is using both of those languages.

�Picking the rolling 24 months using R
R users have been doing data wrangling since the early 1990s. Data wrangling is

the process of taking raw data and transforming it into a data set that is conducive

for analysis. The process of combining like files into one data set is a common data

wrangling task. The R community has developed many packages over the years that

makes such tasks much easier to do. You will see it being illustrated in this example. Let’s

go over the steps needed to perform the stated task in R.

�Step 1: Load the required R packages for the script

In this example, you will use four packages from tidyverse. Those packages are readr,

lubridate, purrr, and stringr. The readr package provides functionality that facilitates

reading flat files into R, the lubridate package provides functions that make it easier

to work with dates in R, the purrr package implements functional programming

techniques in R in a consistent way, and the stringr package provides some handy string

manipulation functions.

Chapter 3 Reading CSV Files

153

The readr and purrr packages are included in the tidyverse load so you do not need

to explicitly load them. You do, however, need to load lubridate and stringr because they

are not part of the core packages that are included in the tidyverse load. Here is the code

needed to load the packages:

library(tidyverse)

library(lubridate)

library(stringr)

You may be thinking that, if you need to use four R packages for one script, you are

actually making the situation harder because you don’t need to load additional packages

in Power Query. Everything you need in Power Query is already built in. Please follow

along with me and you will see that having access to a large number of packages in R is

a big plus. You will be able to perform some complicated tasks with very little code by

leveraging R packages.

�Step 2: Change your working directory to the folder that contains
the Sales data sets

A working directory in R is the root directory where your scripts and data are located.

Using a working directory is recommended because it enables you to keep all items that

are needed for your task in one central location. It also enables you to take advantage

of relative file path referencing. Relative file path referencing enables you to reference a

file relative to your working directory without having to supply the full file path. Your

working directory for this example should be set to the folder named R_Code which is

a subfolder in the Chapter03 section of the repo. The R_Code folder is contained in the

code download for this book. So if you saved the companion code to your Documents

folder, then you would set the working directory with code that looks similar to the

following code:

setwd("C:/Users/<"username">/Documents/AdvancedAnalyticsPowerBI/

Chapter03/R_Code")

The setwd() function sets your working directory to a new location based on the file

path that you passed to it.

Chapter 3 Reading CSV Files

154

If you want to set the working directory to a location relative to where your current

working directory is, you do so by starting your file path string with a period (“ . ”). Let’s

illustrate with an example. The code that follows assumes that your working directory

is your Documents folder and you want to change it to the R_Code folder using forward

slashes:

setwd("./AdvancedAnalyticsPowerBI/R_Code ")

The preceding code tells R to start from the Documents folder, your working

directory, via the use of the period. From there, you can traverse to the folder you want to

set your new working directory to using “/”, followed by the folder’s name. You can also

use “\”, but if you do, you need to use two backslashes because “\” is a special character

that needs to be escaped.

When you literally want to use a character that is also a special character, you
need to tell R and Python that you want to use the literal version of it by escaping
it with a “\”. Some commonly used special characters that need to be escaped are
“*” and “.”.

�Step 3: Read the file names into a character vector

If you want to select the files that should be included in the rolling 24 months, you need

to be able to analyze the file names to determine whether they should be included. To

do that, you use the list.files() function. The list.files() function gets all the file names

in the file path that is passed to it and puts it into a character vector as illustrated in the

following code:

monthly_reports <- list.files("./Data/SalesData/")

A character vector is a vector of data whose elements are of the character data
type. The character data type in R is similar to the string data type in DAX and the
text data type in M.

In the preceding code, R first gets all the file names in the specified directory and

puts them into a character vector. It then assigns the resulting character vector to a

variable named monthly_reports.

Chapter 3 Reading CSV Files

155

The <- is an assignment operator used to assign values to R variables.

Here is a printout of the information that is stored in the monthly_reports variable:

> monthly_reports

 [1] "2010-12-01.csv" "2011-01-01.csv" "2011-02-01.csv"

 [4] "2011-03-01.csv" "2011-04-01.csv" "2011-05-01.csv"

 [7] "2011-06-01.csv" "2011-07-01.csv" "2011-08-01.csv"

[10] "2011-09-01.csv" "2011-10-01.csv" "2011-11-01.csv"

[13] "2011-12-01.csv" "2012-01-01.csv" "2012-02-01.csv"

[16] "2012-03-01.csv" "2012-04-01.csv" "2012-05-01.csv"

[19] "2012-06-01.csv" "2012-07-01.csv" "2012-08-01.csv"

[22] "2012-09-01.csv" "2012-10-01.csv" "2012-11-01.csv"

[25] "2012-12-01.csv" "2013-01-01.csv" "2013-02-01.csv"

[28] "2013-03-01.csv" "2013-04-01.csv" "2013-05-01.csv"

[31] "2013-06-01.csv" "2013-07-01.csv" "2013-08-01.csv"

[34] "2013-09-01.csv" "2013-10-01.csv" "2013-11-01.csv"

[37] "2013-12-01.csv" "2014-01-01.csv"

�Step 4: Create a date vector

Now create a vector with the date representation of each file name. In order to be able to

determine the rolling 24 months, you need to get the file names into a date format. You

accomplish this in two steps. In the first step, you remove “.csv” so that you are left with a

string that can be parsed into a date. To do that, you use the str_replace() function from

the stringr package and assign the output to a character vector named date_format. Here

is the code:

date_format <- stringr::str_replace(monthly_reports, ".csv","")

Chapter 3 Reading CSV Files

156

The str_replace() function requires three parameters: the string you want to

change, the pattern in the string you want to replace, and the string you want to use as a

replacement. Here is a printout of what is held in the date_format variable created earlier:

> date_format

 [1] "2010-12-01" "2011-01-01" "2011-02-01" "2011-03-01"

 [5] "2011-04-01" "2011-05-01" "2011-06-01" "2011-07-01"

 [9] "2011-08-01" "2011-09-01" "2011-10-01" "2011-11-01"

[13] "2011-12-01" "2012-01-01" "2012-02-01" "2012-03-01"

[17] "2012-04-01" "2012-05-01" "2012-06-01" "2012-07-01"

[21] "2012-08-01" "2012-09-01" "2012-10-01" "2012-11-01"

[25] "2012-12-01" "2013-01-01" "2013-02-01" "2013-03-01"

[29] "2013-04-01" "2013-05-01" "2013-06-01" "2013-07-01"

[33] "2013-08-01" "2013-09-01" "2013-10-01" "2013-11-01"

[37] "2013-12-01" "2014-01-01"

 �Note that stringr:: before the str_replace() function is not needed. It is there to
make it clear which package the function came from.

The next thing you need to do is parse the string into a date. You can do that by using

the ymd() function from the lubridate package. Here is the code needed to do so:

date_format <- lubridate::ymd(date_format)

The ymd() function is a pretty slick function! It parses a string that is in a year-month-

day format to a date, and it is very forgiving. It does a good job of parsing dates that come

from date string that are harder to parse by other programming languages such as M in

Power Query. You take the resulting date vector and assign it to the date_format variable.

Here is a display of the contents held in the date_format variable:

> date_format

 [1] "2010-12-01" "2011-01-01" "2011-02-01" "2011-03-01"

 [5] "2011-04-01" "2011-05-01" "2011-06-01" "2011-07-01"

 [9] "2011-08-01" "2011-09-01" "2011-10-01" "2011-11-01"

[13] "2011-12-01" "2012-01-01" "2012-02-01" "2012-03-01"

[17] "2012-04-01" "2012-05-01" "2012-06-01" "2012-07-01"

Chapter 3 Reading CSV Files

157

[21] "2012-08-01" "2012-09-01" "2012-10-01" "2012-11-01"

[25] "2012-12-01" "2013-01-01" "2013-02-01" "2013-03-01"

[29] "2013-04-01" "2013-05-01" "2013-06-01" "2013-07-01"

[33] "2013-08-01" "2013-09-01" "2013-10-01" "2013-11-01"

[37] "2013-12-01" "2014-01-01"

The output appears to be the same as it was before the ymd() function was applied,

but it is actually not. You can prove that using the str() function to inspect it. The str()

function is used to display the structure of an R object. If you pass the date_format

variable to the str() function, you will get the following result which proves it is a date

data type:

> str(date_format)

 Date[1:38], format: "2010-12-01" "2011-01-01" "2011-02-01"

It is recommended that you perform your testing in the R console and not in the
R script editor in R Studio to prevent adding code to your script that should not
be there.

�Step 5: Create a data frame using the two vectors

You want to put the information into data frame because having the data in a data frame

makes analysis much easier. An R data frame is a two-dimensional tabular object made

up of variables (columns) that can have different data types. They are similar to Microsoft

Excel tables and SQL Server tables in some ways, but they are specifically designed for

data analysis. The code needed to convert the monthly_reports variable and date_format

variable to a data frame is listed as follows:

df <- tibbles::data_frame(monthly_reports, date_format)

You use data_frame() function from the tibble package instead of data.frame()

function that is part of base R because data.frame() has some undesirable side effects.

The data_frame() function creates a type of object known as a tibble, which can be

thought of as the modern version of the data frame. I find tibbles to be more desirable to

work with.

Chapter 3 Reading CSV Files

158

One of the attributes that I like about tibbles is the way they print to the screen. When

you print a tibble, only the first ten rows are outputted, and only the columns that can

fit on the screen are shown. When you print a regular data frame, R displays a lot more

information and that can be a problem if you are dealing with a big data set. You also get

the data type of each column from a tibble, which is valuable information. Here is what

the output looks like when I print the df data frame:

> df

A tibble: 38 x 2

 monthly_reports date_format

 <chr> <date>

 1 2010-12-01.csv 2010-12-01

 2 2011-01-01.csv 2011-01-01

 3 2011-02-01.csv 2011-02-01

 4 2011-03-01.csv 2011-03-01

 5 2011-04-01.csv 2011-04-01

 6 2011-05-01.csv 2011-05-01

 7 2011-06-01.csv 2011-06-01

 8 2011-07-01.csv 2011-07-01

 9 2011-08-01.csv 2011-08-01

10 2011-09-01.csv 2011-09-01

... with 28 more rows

�Step 6: Get the upper and lower bound of our desired date range

You want a rolling 24-month window. Thus, you need to compute the upper and

lower bound of the date range needed to define that window. You can do so using the

following code:

max_month <- max(df$date_format)

min_month <- max_month %m+% lubridate::months(-23)

You use the max() function over the date_format column in the df data frame to

get the max month, and you assign the results to the max_month variable. Next, you

take the max_month variable and subtract 23 months from it to get the min month by

invoking the %m+% operator from the lubridate package. That operator is designed to

add months. In this example, you are adding –23 months. The resulting value is assigned

to the min_month variable.

Chapter 3 Reading CSV Files

159

�Step 7: Subset the data frame to only include the desired months

In this step, you apply a filter that returns the vector that contains the files you want to

combine. You do so by applying a filter that returns only files for the months that are

greater than or equal to your minimum month. Here is the code:

reports_to_read <-

 df$monthly_reports[df$date_format >= min_month]

In R, you are able to filter a column in a data frame using the preceding method.

The code in between the brackets, df$date_format >= min_month, returns an R object

called a Boolean vector. In the expression, each element in the date_format column is

compared to the min_month variable and True is returned in the situations where the

element in the column is greater than or equal to min_month, and False is returned

otherwise. Only the rows that evaluate to True are kept.

You only want the reports_to_read column. You subset that column in the df data

frame by using df$monthly_reports syntax. If you wanted to return all the columns in

the data frame, you could have done so with the following code:

reports_to_read <- df[df$date_format >= min_month]

This is a method for subsetting data that relies on base R functionality, and it is fine

in simple situations. You will learn more intuitive methods later in the book that can be

used for more complicated subsetting scenarios. The contents of the reports_to_read

variable are shown here:

> reports_to_read

 [1] "2013-01-01.csv" "2013-02-01.csv" "2013-03-01.csv"

 [4] "2013-04-01.csv" "2013-05-01.csv" "2013-06-01.csv"

 [7] "2013-07-01.csv" "2013-08-01.csv" "2013-09-01.csv"

[10] "2013-10-01.csv" "2013-11-01.csv" "2013-12-01.csv"

[13] "2014-01-01.csv"

Chapter 3 Reading CSV Files

160

�Step 8: Create a data frame that is based on the union of all
the files

You now have the list of files that you want to combine into one data frame in the

reports_to_read variable. Now it’s time to actually do the combining. You can easily

combine the files with one line of code using the map_df() function from the purrr

package in R. Here is that line of code:

df_output <- purrr::map_df(reports_to_read, read_csv)

This line of code uses the map_df() function to map each element from the reports_

to_read variable to the read_csv() function from the readr package. The _df portion of

the function name tells you that the result from the function will be an R data frame that

contains the data from all of the files. Here is what the output of the resulting data frame

looks like:

> df_output

A tibble: 54,771 x 9

 Category OrderDate DueDate

 <chr> <dttm> <dttm>

 1 Bikes 2013-01-01 05:00:00 2013-01-13 05:00:00

 2 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 3 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 4 Bikes 2013-01-01 05:00:00 2013-01-13 05:00:00

 5 Bikes 2013-01-01 05:00:00 2013-01-13 05:00:00

 6 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 7 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 8 Bikes 2013-01-01 05:00:00 2013-01-13 05:00:00

 9 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

10 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

... with 54,761 more rows, and 6 more variables:

ShipDate <dttm>, OrderQuantity <int>, UnitPrice <dbl>,

SalesAmount <dbl>, TaxAmt <dbl>, `Order Month` <chr>

Note how nicely the information printed. The tibble package only printed

information that fitted nicely on the screen, and it gave information about the columns

(variables) that were not displayed.

Chapter 3 Reading CSV Files

161

�Step 9: Combine the code into one script and paste into the R
editor for Power BI

Now it’s time to take all the snippets from the prior steps and create a complete script

that you can execute from Power BI. The script is shown in Listing 3-1, and you are now

ready to paste it into the Power BI R editor.

Listing 3-1.  The complete R script needed to combine the files

library(tidyverse)

library(lubridate)

library(stringr)

setwd("./Data/SalesData")

monthly_reports <- list.files(".")

date_format <- stringr::str_replace(monthly_reports, ".csv","")

date_format <- lubridate::ymd(date_format)

df <- data_frame(monthly_reports, date_format)

max_month <- max(df$date_format)

min_month <- max_month %m+% months(-12)

reports_to_read <-

 df$monthly_reports[df$date_format >= min_month]

df_output <- purrr::map_df(reports_to_read, read_csv)

You copy the code in the R script and open the pbix file for this solution. Next, click

GetData ➤ More ➤ Other to open the menu of connector options. Then click R script on

the right-hand side of that menu as pictured in Figure 3-1.

Chapter 3 Reading CSV Files

162

After you click R script, the editor for R in Power BI will appear which is pictured in

Figure 3-2.

Figure 3-1.  Getting to the R script editor

Chapter 3 Reading CSV Files

163

Now paste your R script from Listing 1-1, into the editor and click OK. Now you will

be able to treat the resulting data set the same way you are able to treat any other data

set that is brought into Power BI. You can make further transformations to it using Power

Query, or you can load it straight into the Power BI data model.

�Picking the rolling 24 months using Python
Like R, Python has been around since the early 1990s. It also has many tools and libraries

that make the task of combining files over a rolling period relatively easy. Here are the

steps to pick the files that are in the rolling 24 months using Python.

�Step 1: Create a Python script and load the necessary libraries

The first thing you need to do is load the libraries and functions that will be used in the

script. You do that using the following code:

import os

import pandas as pd

from dateutil.relativedelta import relativedelta

Figure 3-2.  The R script editor

Chapter 3 Reading CSV Files

https://doi.org/10.1007/978-1-4842-5829-3_1Listing#1

164

This code loads two libraries (os and pandas) and one function (relativedelta). The os

library is used to interact with the file system, the pandas library is used to facilitate data

analysis, and the relativedelta() function from the dateutil library is used to help with

date manipulation.

�Step 2: Change your working directory to the Python_Code folder

You use the chdir() function from the os library in the same fashion that you used the

setwd() function in R. To set the working directory, you supply the function with a

file path using the same rules that we used in R. The following code sets the working

directory to the Python_Code folder assuming you saved the companion code to your

Documents folder:

os.chdir("C:/Users/<”username”>/Documents/AdvancedAnalyticsPowerBI/

Python_Code")

Now your script can use relative file paths to access the contents in the

SalesData folder.

�Step 3: Read the file names into a Python list

Now you read the names of the files located in the SalesData folder into a list. If you want

to select the files that should be included in the rolling 24 months, you need to be able to

analyze the file names to determine which files should be included. To do that, you will

use the os.listdir() function from the os library to get all of the names of the files in the

SalesData folder into a Python list. Here is the code you need to use to perform that task:

monthly_reports = os.listdir("./Data/SalesData/")

The following code tells Python to read all the file names in the SalesData folder into

a Python list and assign the list to a variable named monthly_reports. Here is a printout

of the contents contained in the monthly_reports variable:

>>> monthly_reports

['2010-12-01.csv', '2011-01-01.csv', '2011-02-01.csv',

 '2011-03-01.csv', '2011-04-01.csv', '2011-05-01.csv',

 '2011-06-01.csv', '2011-07-01.csv', '2011-08-01.csv',

 '2011-09-01.csv', '2011-10-01.csv', '2011-11-01.csv',

 '2011-12-01.csv', '2012-01-01.csv', '2012-02-01.csv',

Chapter 3 Reading CSV Files

165

 '2012-03-01.csv', '2012-04-01.csv', '2012-05-01.csv',

 '2012-06-01.csv', '2012-07-01.csv', '2012-08-01.csv',

 '2012-09-01.csv', '2012-10-01.csv', '2012-11-01.csv',

 '2012-12-01.csv', '2013-01-01.csv', '2013-02-01.csv',

 '2013-03-01.csv', '2013-04-01.csv', '2013-05-01.csv',

 '2013-06-01.csv', '2013-07-01.csv', '2013-08-01.csv',

 '2013-09-01.csv', '2013-10-01.csv', '2013-11-01.csv',

 '2013-12-01.csv', '2014-01-01.csv']

�Step 4: Create a pandas data frame that will hold the information
of the files to combine

The pandas data frame is a data structure that is similar to an R data frame. You will

leverage a pandas data frame for this task. One of the easiest ways to manually create a

pandas data frame is by converting a python dictionary to a data frame. You can think of

a dictionary as python data structure that contains one or more key/value pairs.

You will create a dictionary with one key/value pair named d, and it will be based on

the monthly_reports variable. The code you will use to do so is as follows:

d = {'monthly_reports': monthly_reports}

Next, you convert the dictionary to a pandas data frame using the following code:

df = pd.DataFrame(d)

The preceding code takes the dictionary d and uses it to create a one-column data

frame. The key in dictionary d is used as the column name, and the value in dictionary d

contains the items that will populate the rows.

�Step 5: Create a new column that strips the date information
from the monthly_reports column

Now you need a new column with just the date information. You create that new column

using the following code:

df["date_format"] =pd.to_datetime(

 df.monthly_reports.str.replace(".csv","")

)

Chapter 3 Reading CSV Files

166

This code first strips the string .csv from the file names in the monthly_reports

column. Doing this leaves you with what is a valid date that is in a string format. To get

the value in a date format, you use the to_datetime() function from the pandas library to

parse the string to a date format.

�Step 6: Get the upper and lower bound of the date range

Now you are in a position to get the upper and lower bound of the required date range.

You are aiming for a rolling 24-month range. You can generate the required month range

using the following code:

min_month = df.date_format.max() - relativedelta(months=23)

The logic used to calculate the min_month is to first find the max month of the files

in the folder by getting the max of the date_format column. Notice you did so using dot

notation to access the max() method of the date_format column.

Each column in a pandas data frame is of the series object type. The series object
type includes built-in methods that you can use depending on the data type of the
series. One of the methods that is available for series objects of the datetime data
type is the max() method.

Now that you have the max date of the report files, you can calculate the date that is

24 months earlier than the max date. You do that by using the relativedelta() function

from the dateutil library and passing months=23 as a parameter. The result of using the

relativedelta() function is that 23 months will be subtracted from the max date in the

date_format column.

�Step 7: Subset the data frame

Now that you know the date range, you can subset the df data frame to include only the

rows that represent data in that range. You do so by using the following code:

reports_to_read = df[df["date_format"]>=min_month]

Chapter 3 Reading CSV Files

167

The code in the brackets creates a series of Boolean values based on whether or

not the given date in the date_format column is greater than the min_month variable.

Python uses the True values to subset the df data frame and assigns the results to the

reports_to_read variable. Here’s a printout of what the contents of the reports_to_read

variable look like:

>>> reports_to_read

 monthly_reports date_format

14 2012-02-01.csv 2012-02-01

15 2012-03-01.csv 2012-03-01

16 2012-04-01.csv 2012-04-01

17 2012-05-01.csv 2012-05-01

18 2012-06-01.csv 2012-06-01

19 2012-07-01.csv 2012-07-01

20 2012-08-01.csv 2012-08-01

21 2012-09-01.csv 2012-09-01

22 2012-10-01.csv 2012-10-01

23 2012-11-01.csv 2012-11-01

24 2012-12-01.csv 2012-12-01

25 2013-01-01.csv 2013-01-01

26 2013-02-01.csv 2013-02-01

27 2013-03-01.csv 2013-03-01

28 2013-04-01.csv 2013-04-01

29 2013-05-01.csv 2013-05-01

30 2013-06-01.csv 2013-06-01

31 2013-07-01.csv 2013-07-01

32 2013-08-01.csv 2013-08-01

33 2013-09-01.csv 2013-09-01

34 2013-10-01.csv 2013-10-01

35 2013-11-01.csv 2013-11-01

36 2013-12-01.csv 2013-12-01

37 2014-01-01.csv 2014-01-01

Chapter 3 Reading CSV Files

168

�Step 8: Combine files into one data frame

You need to create a data frame that is based on the union of all of the files that are in the

rolling 24-month time period. You can accomplish this using the following code:

df_output = pd.concat(

 map(

 pd.read_csv,

 "./Data/SalesData/"+reports_to_read["monthly_reports"]))

The code uses the map() function in a similar fashion that you used the map_df()

function from the purrr package in R. The map function in the preceding code maps

the read_csv() function from pandas to each element in the monthly_reports series.

That action results in a list of data frames. The concat() function from pandas is used to

combine the list of data frames into one data frame.

�Step 9: Add the code to Power BI

The complete code for this task is shown in Listing 3-2.

Listing 3-2.  The complete Python script needed to combine the files

import os

import pandas as pd

from dateutil.relativedelta import relativedelta

os.chdir("<path to where the Python_Code folder is located>")

monthly_reports = os.listdir("./Data/SalesData")

d = {'monthly_reports': monthly_reports}

df = pd.DataFrame(d)

df["date_format"] = pd.to_datetime(

 df.monthly_reports.str.replace(".csv",""))

min_month = df.date_format.max() - relativedelta(months=23)

Chapter 3 Reading CSV Files

169

reports_to_read = df[df["date_format"]>=min_month]

df_output = pd.concat(

 map(

 pd.read_csv,

 "./Data/SalesData/"+reports_to_read["monthly_reports"]))

You copy the code in the Python script, then open up our pbix file for this example.

Next, you click GetData ➤ More ➤ Other and select Python script on the right-hand side.

Figure 3-3 shows the screen where you will find Python script editor.

Figure 3-3.  Where to find Python script editor

Chapter 3 Reading CSV Files

170

After you perform that action, the Python editor for Power BI will appear as shown in

Figure 3-4.

Paste your Python script in this editor and click OK. Now you will be able to treat the

resulting data set the same way you treat any other data set brought into Power BI. You

can make further transformations to it using Power Query, or you can load it straight into

the data model.

In this section, we learned how to determine the files that are in the rolling 24-month

time period using information in the file name in both R and Python. The code needed

to do it was straightforward and more intuitive than the M code would have been to

accomplish the same task.

You may never need to perform this exact task, but you can modify what you

learned in this section to fit your needs. I want you to open your mind and look at the

possibilities that R and Python give in Power BI. You just learned how easy it is for you to

interact with the files on the file system with R and Python. You will learn other powerful

features that are available in R and Python the further you go in this book. Next, you will

learn how to leverage regular expressions in R and Python to filter rows from a csv file.

Figure 3-4.  The Python script editor

Chapter 3 Reading CSV Files

171

�Filtering rows based on a regular expression
Power BI enables you to remove records that you don’t want to bring into your data

model fairly easy for most situations, but there are some situations where the logic that

is needed to filter the data is not possible using native Power BI tools. One example is

filtering records in your data set based on a string pattern that can only be matched with

a regular expression. You cannot leverage regular expressions in Power Query, but you

can in both R and Python.

In the next scenario, let’s pretend that you are the chief analyst for a political

campaign. You have a file that contains a list of potential voters that you need to

analyze for an email campaign. You only want to include voters in your Power BI-

based analysis that have a well-formed email address. You will use a regular expression

to detect whether the email addresses in the data set are well-formed. So in your

analysis, a record with an email address of johndoe@email will be discarded, but a

record with an email address of janedoe@email.com will be kept. The result of your

scrubbing will be a data set with only well-formed email addresses that will be brought

into the Power BI data model.

�Leveraging regular expressions via R
As of the writing of this book, this task would be impossible to do using Power Query

because regular expressions are not available in Power Query. That is not the case in R

because regular expressions are first-class citizens in that programming language. The

code needed to accomplish this task in R is concise and intuitive. Here are the steps.

�Step 1: Load the required packages

The first thing you need to do is load the required packages so that you can perform the

task in R. The two packages you need are tidyverse and stringr. You import the required

packages using the following code:

library(tidyverse)

library(stringr)

Chapter 3 Reading CSV Files

172

 �Note that stringr is part of tidyverse, but it is not part of the core packages that are
loaded when you load the tidyverse metapackage so you need to explicitly load it.

�Step 2: Load the file that contains the potential voters into R

You accomplish the task using the following code:

setwd("path to where the R_Code folder is located")

goodemails_raw <- read_csv("./Data/EmailAddresses.csv")

The code is straightforward. You first set the working directory to the R_Code folder

using the setwd() function. Next, you use relative file path referencing to traverse to the

EmailAddresses.csv file.

�Step 3: Define the regular expression

You use the following code to define the required regular expression:

email_pattern <- "^([a-zA-Z][\\w_]{4,20})\\@([a-zA-Z0-9.-]+)\\.

([a-zA-Z]{2,3})$"

The preceding regular expression is what we will use to match the pattern of a well-

formed email address. Please note that the preceding regular expression represents one

line of code, but it is occupying two lines due to width limitations of the page. Don’t

be alarmed with the complexity of regular expressions. You can often find the regular

expression you need for a given task via a Bing search. Remember, "Good programmers

write good code; great programmers steal great code" (unknown author). However, I will

not call using a regular expression that you find via an Internet search “stealing” because

the altruistic nature of many developers makes them want to share their knowledge with

the community.

�Step 4: Remove the bad email addresses from the data set

You will do so using the following code:

goodemails <-

 goodemails_raw %>%

 filter(str_detect(Email, email_pattern) == TRUE)

Chapter 3 Reading CSV Files

173

The code uses the filter() function from the dplyr package to filter the goodemails_

raw data frame. The filtering is done using the str_detect() function from the stringr

package. The str_detect() function enables you to test whether a string matches a regular

expression pattern. It returns TRUE if it matches the regular expression pattern passed

to it; otherwise, FALSE is returned. The filter() function will only retain rows where the

str_detect() function evaluates to TRUE.

�Step 5: Combine the preceding code into one script and paste
in the R editor for Power BI

The complete script is in Listing 3-3.

Listing 3-3.  The complete R script needed to scrub bad emails

library(tidyverse)

library(stringr)

setwd("<full path to the folder that contains the companion code for the

chapter>")

goodemails_raw <- read_csv("./Data/EmailAddresses.csv")

email_pattern <- "^([a-zA-Z][\\w_]{4,20})\\@([a-zA-Z0-9.-]+)\\.([a-zA-Z]

{2,3})$"

goodemails <-

 goodemails_raw %>%

 filter(str_detect(Email, email_pattern) == TRUE)

Copy the code in the R script and open your pbix file for this solution. Next, click

GetData ➤ More ➤ Other, then select R script on the right-hand side. Click OK after you

paste the code into the R editor in Power BI. The resulting data set will be added to the

Power BI data model.

�Leveraging regular expressions via Python
In this exercise, you will leverage regular expressions in Power BI using Python. Just like

with R, the Python code needed to accomplish this task is concise and intuitive. Here are

the steps.

Chapter 3 Reading CSV Files

174

�Step 1: Load the required libraries

The first thing you need to do is load the required libraries for the task. The two libraries

we need are os and pandas. You load the libraries using the following code:

import os

import pandas as pd

�Step 2: Load the file that contains the potential voters into
Python and assign the contents to a pandas data frame

You accomplish the task using the following code:

os.chdir("<path to the Python_Code folder in Chapter 3>")

goodemails = pd.read_csv("<full path to EmailAddresses.csv>")

First, you change the working directory to the Python_Code folder, then you read

in the contents of the EmailAddresses.csv file into a pandas data frame, and assign the

results to the goodemails_raw variable.

�Step 3: Define the regular expression that matches the pattern
of a well-formed email address

You use the following code to do so:

email_pattern <- "^([a-zA-Z][\\w_]{4,20})\\@([a-zA-Z0-9.-]+)\\.

([a-zA-Z]{2,3})$"

The preceding regular expression is what you use to test the email addresses. The code

is wrapped on two lines, but it actually represents just one line of code. It is on two lines

due to width limitations of the book. Note that the same regular expression that you used

in R also works in Python. Don’t be alarmed with the complexity of regular expressions.

You can often find the regular expression you need for a given task via a Bing search.

�Step 4: Remove the bad email addresses from the data set

You will remove rows that contain bad email addresses using the following code:

goodemails = goodemails_raw[

 goodemails_raw["Email"].str.match(email_pattern)]

Chapter 3 Reading CSV Files

175

The code works by first creating a Boolean pandas series using the

goodemails["Email"].str.match(email_pattern) code that is located between the

opening and closing brackets. That Boolean series is used to filter the data frame by only

keeping the rows where the code evaluates to True.

�Step 5: Combine the preceding code into one script and paste
in the Python editor for Power BI

The complete script is shown in Listing 3-4.

Listing 3-4.  The complete Python script

import os

import pandas as pd

os.chdir("C:/Users/ryanwade44/Downloads/Advanced Analytics in Power BI with

R and Python/Chapterx03/R_Code")

goodemails_raw = pd.read_csv("./Data/EmailAddresses.csv")

email_pattern = "^([a-zA-Z][\\w_]{4,20})\\@([a-zA-Z0-9.-]+)\\.

([a-zA-Z]{2,3})$"

goodemails = goodemails_raw[

 goodemails_raw["Email"].str.match(email_pattern)]

Now you copy the code in Listing 3-4. and open up your pbix file for this solution.

Next, you click GetData ➤ More ➤ Other, then select Python script on the right-hand

side. After that, you paste the code into the Python editor, then click OK which adds the

data set to the Power BI data model.

As illustrated in this example, regular expressions are extremely useful when it

comes to pattern matching strings. They are a very valuable tool for all data analysts

to have in their toolkit. They are not available for use in Power Query, but fortunately,

they are in Python and R. This is just one example how regular expressions can help you

accomplish pattern matching tasks that are not possible using the Power Query string

functions. Keep reading and you will be introduced to more examples of how you can

use regular expressions later in the book. Next, we will learn how to read MS Excel files

into the Power BI data model.

Chapter 3 Reading CSV Files

177
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_4

CHAPTER 4

Reading Excel Files
Power BI has built-in tools that enable you to read Microsoft Excel files into the Power BI

data model. The built-in functionality is intuitive and easy to use for simple workflows,

but things can become unnecessarily difficult when the workflows get complicated.

Many workflows that are difficult to do using native Power BI tools are relatively easy to

do using R or Python. We will illustrate with an example.

Here is the scenario:

•	 It is February 2, 2014, and you are the CFO of Contoso International.

•	 You receive sales data by year via MS Excel workbooks from your IT

department, and you save the data in a folder named ExcelFiles.

•	 Each workbook is broken out by year, and each month has its own

sheet in the workbook.

•	 The ExcelFiles folder contains five workbooks in total. The workbook

for calendar year 2010 contains sales data just for December of that

year, the workbooks for calendar years 2011–2013 have a full year

worth of data, and the workbook for calendar year 2014 has data just

for January of that year.

•	 At the beginning of each month, a new sheet is added to the

workbook with the sales data from the previous month.

•	 At the beginning of February of each year, you get a new workbook

for the current year that is updated in the same manner as the

previous workbooks.

https://doi.org/10.1007/978-1-4842-5829-3_4#DOI

178

You need to combine these files so that you can perform your required financial

analysis. You tried to automate this using Power Query but was not successful because

it required advanced Power Query techniques that was too difficult to understand, so

you decided to try to develop a solution using R and Python. Your friend, Tyrone, is

proficient in both R and Python, so he was able to help you. He gave you the steps of how

to accomplish the task in both R and Python. We will go over the R example first.

�Reading Excel files using R
In this example, you will create a workflow that

	 1.	 Loops through each workbook in the ExcelFiles folder

	 2.	 Combines the data from every sheet in the workbook into one

data frame

	 3.	 Appends the data frame created in Step 2 to the master data frame

that will warehouse the data from all of the workbooks when the

workflow is completed

The image in Figure 4-1 provides a visual representation of the steps.

Figure 4-1.  Workflow to combined total sales in an R data frame

Chapter 4 Reading Excel Files

179

Now let’s go over the steps needed to convert the preceding workflow into R code.

�Step 1: Import the tidyverse and readxl package
The packages that are used for this workflow are tidyverse and readxl. You are already

familiar with tidyverse. The readxl package is similar to the readr package but is

specifically designed to work with Microsoft Excel workbooks. Here is the required code

to load the packages:

library(tidyverse)

library(readxl)

�Step 2: Create the shell of the combine_sheets function
In this step, you are creating the beginning of a function that will read in the data that

are contained in the worksheets of the given workbook and combine them into one data

frame. The file path of the Excel workbook that you want to operate on is passed to the

function. Here is what the shell of that function looks like:

combine_sheets <- function(excel_file_path) {

 <R Code>

 return(<R object>)

}

�Step 3: Get the name of the sheets you need to combine
in your function from the specified Excel workbook
Now you need to start defining the body of your function. Your function needs to

identify the sheets in your workbook that it needs to combine. It will do so using the

following code:

df <- excel_file_path %>%

 excel_sheets()

Chapter 4 Reading Excel Files

180

The preceding code starts a workflow using the file path of the Excel workbook that

is contained in the excel_file_path variable. The workbook at that path contains the

sheets you want to combine. The excel_file_path variable is passed to the excel_sheets()

function from readxl using the pipe (%>%) operator. The excel_sheets() function returns

a character vector that contains the names of the sheets in the workbook located in the

path specified in the excel_file_path variable. This function relies heavily on the %>%

operator. Refer to the book’s introduction if you need an explanation of what it is and

how to use it.

�Step 4: Convert the character vector built in Step 3
to a named character vector
You convert the character vector created in Step 3 into a named character vector. The

name property of the named character vector will be used to identify the worksheet

where the rows of the resulting data frame produced in this example came from. The

named character vector is created using the following code:

df <- excel_file_path %>%

 excel_sheets() %>%

 set_names() %>%

The preceding code takes the character vector that was created by the excel_sheets()

function and passes it to the set_names() function from the purrr package. This function

sets the names of each element in the character vector to itself. You can get a better

understanding of this function by inspecting the df variable before and after the set_

names() function is applied. Here are the contents of the df variable before set_names() is

applied:

> df

 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

Here are the contents of the df variable after the set_names() function is applied:

> df

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

"Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

Chapter 4 Reading Excel Files

181

Notice that each element in the character vector has been given the name that

is equal to the value of the element. You will take advantage of this property in the

next step.

You are not limited to naming the character vector to itself. You can pass a
character vector of the same length with the names you want to use or a function
for situations where a name already exists, and you want to modify it based on
some rule.

�Step 5: Use the mapr_df function to combine the sheets
into a single data frame
In this step, you add one line of code to the workflow, but there is a lot going on in this

line of code that needs to be unpacked. Here is what the workflow looks like with the

extra code added:

df <- excel_file_path %>%

 excel_sheets() %>%

 set_names() %>%

 map_dfr(.f= ~read_excel(path= excel_file_path, sheet= ..1)

 ,.id = "sheet"

)

Let’s explain what’s going on in the last line:

•	 The named character vector created in the previous step is passed to

the map_dfr() function as the first argument.

•	 The .f argument is used to tell map_dfr() the function you want

to apply to the named character vector that you passed to it. The

function in this situation is read_excel(). You describe how you want

to use the read_excel() function via a formula. The formula starts

with a ~, then the read_excel() function along with its arguments.

The arguments that it uses are the path and sheet arguments. The

file path of the workbook that contains the sheets you want to

combine is assigned to the path argument, and the value from the

Chapter 4 Reading Excel Files

182

named character vector is assigned to the sheet argument. The value

assigned to this argument was ..1. This method is used to get the

argument we want to use based on its position. The named character

vector was passed to the map_dfr() function as the first argument via

set_names() so that is why we used ..1. If it was in the nth position,

then we would set the value to ..n.

•	 The map_dfr() function combines the data frames that were created

for each sheet in the workbook and collapse it into one data frame.

You can add a field to the resulting data frame that will enable you

to determine the sheet that the record came from. You accomplish

this using the .id argument. If you use this option, a column is added

that uses the names from the named character vector to populate

it. If you are not using a named character vector, the position of the

sheet name in the character vector is used. The value you give this

argument will be used as the column name.

�Step 6: Return the data frame
You want your function to return the data frame that was created. To do so, you use the

return statement with the df data frame you created. After you do that, the complete

definition of the function looks like this:

combine_sheets <- function(excel_file_path) {

 df <- excel_file_path %>%

 excel_sheets() %>%

 set_names() %>%

 map_df(.f = ~read_excel(path = excel_file_path, sheet = ..1)

 ,.id = "sheet"

)

 return(df)

}

Chapter 4 Reading Excel Files

183

�Step 7: Set the working directory to the location where
the Excel files are located
Now that you have the function defined, the hard part is over. You need to write the

code that utilizes the custom combine_sheets() function to combine the data from the

workbooks in the ExcelFiles folder. The first thing you need to do is set the working

directory so Power BI knows what folder to use. You can do so using the following code:

setwd("<full path to the ExcelFiles folder>")

�Step 8: Assign the file names to the excel_file_paths
variable
You use the list.files() function to get the name of the files in the current directory and

assign it to a variable named excel_file_paths using the following code:

excel_file_paths <- list.files(".")

The “.” passed to the list.files( ) function tells it that you want to return all the files
located in the current working directory. You can specify a nested folder in the
following way “./<nested folder name>”. The list.files() function also accepts a
character vector containing one or more full path names of the paths you want to
inspect.

�Step 9: Use the map_dfr function to apply the combine_
sheets function to each file in the working directory
Now you are at the step that combines the data from all the workbooks into one data

frame. The code needed to do it is as follows:

combine_workbooks <- map_dfr(excel_file_paths, combine_sheets)

The map_dfr() function applies the combine_sheets() custom function to the Excel

file names contained in the excel_file_paths character vector. The result of doing so is a

list of data frames. The map_dfr() function collapses the list of data frames into one data

frame and names the data frame combine_workbooks.

Chapter 4 Reading Excel Files

184

�Step 10: Copy the R script and paste it into the R editor
via GetData in Power BI
The resulting script of the previous steps is as follows:

library(tidyverse)

library(readxl)

combine_sheets <- function(excel_file_path) {

 df <- excel_file_path %>%

 excel_sheets() %>%

 set_names() %>%

 map_dfr(.f = ~read_excel(path = excel_file_path, sheet = ..1)

 ,.id = "sheet"

)

 return(df)

}

setwd("<full path to the ExcelFiles folder>")

excel_file_paths <- list.files(".")

combine_workbooks <- map_dfr(excel_file_paths, combine_sheets)

After you paste the code in the R editor in Power BI, the resulting data set will be

exposed to you like any other data set brought into Power BI.

�Reading Excel files using Python
Now you will perform the same task in Python. The workflow will be similar, but the

execution will be slightly different. The image in Figure 4-2 visually depicts the workflow

that will be used in Python.

Chapter 4 Reading Excel Files

185

�Step 1: Import the os and pandas library
The libraries that are used for this workflow are os and pandas. The os library is used to

interact with the file system, and pandas is used to read data from Excel into Python.

�Step 2: Create the shell of the combine_sheets function
You need to create a custom function that reads in the contents from the sheets in the

Excel workbook and combine them into one data frame. You need to pass to the function

the file path of the Excel workbook that contains the sheets you want to combine. Here is

the shell of the custom function you will use to perform this task:

def combine_sheets(excel_file_path):

 <Python Code>

 return <Python object>

Figure 4-2.  Workflow to combined total sales in a Pandas data frame

Chapter 4 Reading Excel Files

186

�Step 3: Create an Excel object based on the
workbook located at the path specified in the
excel_file_path variable
You defined the shell of the function; now let’s start writing the code that will go in the

body of the function. You start by creating an Excel object using the following code:

xlsx_file = pd.ExcelFile(excel_file_path)

The code uses the ExcelFile class from pandas to create the object. All it needs is the

file path to the Excel workbook.

�Step 4: Create a list of the sheet names in the workbook
specified by the excel_file_path variable
The function needs to know what sheets to combine. You can get that information using

the sheet_names property of the xlsx_file object you created in Step 3. You do so using the

following code:

ws = xlsx_file .sheet_names

The code gets the sheet names from the sheet_names property of xlsx_file and stores

them in the ws variable.

�Step 5: Use the read_excel method of pandas to read
the data from each sheet into one data frame
You accomplish Step 5 using the following line of code:

df = pd.concat(pd.read_excel(xlsx_file, sheet_name=ws))

Two major tasks are happening in the code, so it will be easier to understand if

we unpacked it into multiple steps. The first thing that is done is pandas is using

pd.read_excel(xlsx_file, sheet_name=ws) to read the data from the sheets in the

workbook, and it puts them in individual data frames. The first argument is unnamed,

but it is the io argument. This is where you identify the MS Excel file that you want to

read. The second argument is the sheet_name argument, and that is where you tell the

read_excel() method the worksheets you want to read from the specified workbook.

Chapter 4 Reading Excel Files

187

The ws variable is used to give read_excel() that information. The second thing pandas

does is it combines the individual data frames that were created using the read_excel()

method into one data frame via the concat() method from pandas. The resulting data

frame is assigned to the variable named df.

�Step 6: Return the data frame held in df as the output
from the combine_sheets function
This is done using the return statement as shown here:

return df

�Step 7: Set the working directory to the location that
contains the Excel data you want to combine
You now have the combine_sheets() custom function completely defined. Now you need

to write code that uses the function to combine the worksheets from the workbooks in

the ExcelFiles folder into one data frame. You first need to set the working directory to the

location that contains the Excel workbooks. You do so using the following code:

os.chdir("<full path to the ExcelFiles folder>")

�Step 8: Get the list of the file names in the current
working directory and assign it to the excel_file_paths
variable
Your script needs to know the names of the MS Excel workbooks to combine. You

can get the names of the workbooks using the listdir() function as illustrated in the

following code:

excel_file_paths = os.listdir(".")

The code makes the assumption that only the Excel files you want to combine are in

the current folder. That needs to be verified before the script is run.

Chapter 4 Reading Excel Files

188

�Step 9: Create an empty data frame and name it
combined_workbooks
In this step, you create an empty data frame named combined_workbooks that will be the

master data frame that will store the data from all of the workbooks. The code needed to

create the empty data frame is as follows:

combined_workbooks = pd.DataFrame()

The data frame created for each workbook using the combined_sheets function will

be appended to this data frame.

�Step 10: Create the shell of the for loop
The for loop in python enables you to iterate over a sequence. In this case, the sequence

that will be iterated over is the excel_file_paths list. The script uses the following code to

iterate over the excel_file_paths list:

for excel_file_path in excel_file_paths:

You will use for loops a lot in Python, so let’s take some time to explain the structure.

The for loop can be described using the following template:

for <variable to hold current value> in <sequence object>:

The variable that holds the current value of the iteration can be named anything.

Typically, the name is the singular version of the name given to the sequence object.

The sequence object is the object that you are iterating. In this script, it is the excel_

file_paths list. Let’s walk through the steps to explain how it operates.

If you print out the contents of excel_file_paths, you would see the following data:

['2010.xlsx', '2011.xlsx', '2012.xlsx', '2013.xlsx', '2014.xlsx']

You see that excel_file_paths is a list that contains five elements. The for loop in the

script iterates over this list, and it assigns the value of ‘2010.xlsx’ to the excel_file_path

variable after the first iteration, assigns the value of ‘2011.xlsx’ to the excel_file_path

variable after the second iteration, and continues doing that for each element in the list

until it iterates all of the elements.

Chapter 4 Reading Excel Files

189

�Step 11: Combine all the data in each sheet into one data
frame using the combine_sheets function
The following code takes the file path in the excel_file_path variable and passes it to

combine_function():

combined_workbook = combine_sheets(excel_file_path)

The combine_sheets() custom function combines the sheets in the workbook located

at the file path that was passed to it and puts them into one data frame. That data frame

is stored in the combined_workbook variable.

�Step 12: Append the combined_workbook data frame
to the combined_workbooks data frame
The code needed to perform this task is as follows:

combined_workbooks = combined_workbooks.append(combined_workbook,
 ignore_index=True)

The code uses the append method of the combined_workbooks data frame to

append the combine_workbook data frame to it. The ignore_index argument is set to True

because you want to ignore the indexes in combined_workbook data frame and use the

ones that are in combined_workbooks.

�Step 13: Copy the Python script and paste it into
the Python editor via GetData in Power BI
Here is the complete script:

import os
import pandas as pd

def combine_sheets(excel_file_path):

 xlsx_file = pd.ExcelFile(excel_file_path)
 ws = xlsx_file.sheet_names
 df = pd.concat(pd.read_excel(xlsx_file, sheet_name=ws))

 return df

Chapter 4 Reading Excel Files

190

os.chdir("<full path to SalesData_WorkbookFormat")

excel_file_paths = os.listdir(".")

combined_workbooks = pd.DataFrame()

for excel_file_path in excel_file_paths:

 combined_workbook = combine_sheets(excel_file_path)

 combined_workbooks = combined_workbooks.append(

 combined_workbook, ignore_index=True)

If you copy the script and paste it to the Python editor in Power BI via GetData, you

will get a data set that you can add to the Power BI data model.

In this chapter, you were able to implement a workflow that would have been very

difficult to do using Power Query and M. The R and Python code needed to do the

workflow is more succinct and easier to understand than the M code that is necessary to

perform the same task. You also learned how to use R and Python to abstract logic that is

repeated multiple times in a function to improve code efficiency and readability. In the

next chapter, you will learn how to interact with SQL Server in Power BI via R and Python.

Chapter 4 Reading Excel Files

191
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_5

CHAPTER 5

Reading SQL Server Data
Power BI’s built-in ETL tool, Power Query, is capable of reading data that is stored in a

variety of formats into memory, making transformations to the data while in memory,

and loading the transformed data into the Power BI data model. It does a great job of

doing these types of tasks as it can handle most ETL situations.

However, Power BI falls short if you want to log information about your Power BI

data loads. Power Query is designed to read data but not to write data. Fortunately,

that is not the case with R and Python. R and Python have packages and libraries,

respectively, that make logging data relatively easy. Both R and Python can write to

multiple sources ranging from flat files to databases. In this example, you will use R and

Python to log information about your data loads to a SQL Server database.

�Adding AdventureWorksDW_StarSchema database
to your SQL Server instance
The example in this chapter requires the AdventureWorksDW_StarSchema database as

the data source. This database is a subset of the AdventureWorksDW database developed

by Microsoft. Perform the following steps to restore the database to your SQL Server

instance:

	 1.	 Go to the repo of the book, then traverse to the Data

folder for Chapter 5. You will find the zip version of the

AdventureWorksDW_StarSchema.bak file in this location.

Unzip the AdventureWorksDW_StarSchema.zip to expose

AdventureWorksDW_StarSchema.bak.

	 2.	 Copy the AdventureWorksDW_StarSchema.bak file to the Backup

folder for SQL Server. The location of this folder in the Data

Science Virtual Machine (DSVM) is C:\Program Files\Microsoft

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

https://doi.org/10.1007/978-1-4842-5829-3_5#DOI

192

	 3.	 Go to SQL Server Management Studio (SSMS) and right-click the

Databases folder, then select Restore Databases….

	 4.	 The Restore Database pop-up form will appear. Make sure you are

on the General page tab. In the Source section, select the Device

radio button.

	 5.	 Click the eclipse button, the button with the three dots, then

click the Add button. Next, browse to the location where

AdventureWorksDW_StarSchema.bak is located.

	 6.	 Select the AdventureWorksDW_StarSchema.bak file, then click the

OK button to close out the Locate Backup File form.

	 7.	 Click OK to close out the Select backup devices form.

	 8.	 Click OK to close out the Restore Database form. Doing so will add

the database.

�Reading SQL Server data into Power BI using R
Here is the scenario. You are an analyst for Clothing R Us. The company has a small IT

department, and the database administrator, Vihaan, doubles as the system engineer.

There is no dedicated staff for business intelligence. You convinced the CFO, Adaugo,

about the advantages of business intelligence and how it can help the business make

informed decisions based on the company’s experience. She agreed to let Vihaan build

a small data mart around Internet sales. The data mart contains one fact table and four

dimension tables. All the dimension tables are Type 1 dimensions, and each load of

the warehouse is a kill and fill. Vihaan developed an ETL process, but the ETL did not

include any logging to monitor the amount of data that is being loaded into the data

mart. The success of this POC is critical to you, so you took it upon yourself to develop

a logging system as a sanity check to make sure that the data that is being loaded into

Power BI is reasonable.

Chapter 5 Reading SQL Server Data

193

In Type 1 Slowly Changing Dimension (SCD), the new information overwrites the
original information so no history is kept. In Type 2 SCD, a new record is added to
the table to represent the new information. Both the original and the new record
will be present.

You know that Power Query is designed to read data into Power BI, but it is not

designed to write data. Your colleague, Sarah, informed you that you can write data

back to a database relatively easy using either R or Python. You shared with her what

information you needed to log, and she gave you instructions for both R and Python.

Here are the instructions for R.

�Step 1: Create a DSN to the SQL Server database
You need to provide SQL Server with information to authenticate you so that you can

connect to the database. There are multiple ways to do this, but the method you will use

is the DSN (Data Source Name) method. DSNs are relatively easy to create and configure

in Windows 10. Here are the steps to do so:

	 1.	 Go to the Cortana Search Bar located on the left side of the taskbar

next to the Windows icon and type administrative tools.

	 2.	 You will see a list of administrative tools shortcuts. Search for

ODBC Data Sources (64-bit) and double-click it.

	 3.	 A pop-up box for ODBC Data Source Administrator (64-bit)

should appear with multiple tabs. Click the System DSN tab. You

want to use this tab to ensure that all users on your computer will

have access to this DSN. If you only want the current user to have

access to the DSN, you can stay on the User DSN tab.

	 4.	 Click the Add button.

	 5.	 You will see a list of drivers that you can choose from with SQL

Server being one of them. Select SQL Server, then click the Finish

button.

Chapter 5 Reading SQL Server Data

194

	 6.	 Next the Create a New Data Source to SQL Server pop-up box will

appear. This is where you configure the DSN. The Name is the

name that will be used by R to refer to the DSN, the Description

can be anything you want to use to describe the DSN, and the

Server is the name of the SQL Server that warehouses the database

you want to connect to.

Use SQLServer2019 for the Name and SQLServer2019 for the

Description. If you are not using SQL Server 2019, then use a name

that identifies the version of SQL Server you are working with. The

image below shows an example in which SQL Server 2017 was used.

Next, you need to retrieve the name of the SQL Server instance

that you want to use. To get the server name, open SQL Server

Management Studio and connect to the SQL Server instance. The

name that appears in the Server Name combo box is the name that

you want to use in the Server combo box in the Create a New Data

Source to SQL Server form. Copy the server name and paste it in the

Server combo box. When you finish filling out the form, it should look

like the image in Figure 5-1. Click Next if everything looks correct.

Figure 5-1.  The Create a New Data Source to SQL Server

Chapter 5 Reading SQL Server Data

195

	 7.	 You will see the pop-up form shown in Figure 5-2. Make sure

yours is configured the same way, then click Next.

	 8.	 Next, you will see the pop-up form in Figure 5-3. Make sure you

check the Change the default database to: check box and change

the database to AdventureWorksDW_StarSchema, then click Next.

Figure 5-2.  The Create a New Data Source to SQL Server

Chapter 5 Reading SQL Server Data

196

	 9.	 The next pop-up form you will see is the one depicted in Figure 5-4.

Make sure yours is configured the same way, then click Finish.

Figure 5-3.  The Create a New Data Source to SQL Server

Chapter 5 Reading SQL Server Data

197

	 10.	 After you click Finish, the pop-up box like the one shown in

Figure 5-5 will appear. You can test the connection by clicking

the Test Data Source button to make sure you can successfully

connect to the database using the DSN name you just configured.

Figure 5-4.  The Create a New Data Source to SQL Server

Chapter 5 Reading SQL Server Data

198

�Step 2: Create a log table in SQL Server
A log table with the name dbo.LoadHistoryLog should already exist in the database. In

case you need to recreate it, you can do so by executing the following code in SQL Server

Management Studio (SSMS):

Figure 5-5.  Information about the DSN

Chapter 5 Reading SQL Server Data

199

USE AdventureWorksDW_StarSchema

CREATE TABLE dbo.[LoadHistoryLog] (

 DATESTAMP DATETIME,

 TABLENAME VARCHAR(25),

 NUM_RECORDS INT

)

To execute the code in SSMS, you copy the preceding code, then click the New Query

button located in the menu bar. An editor should appear. Paste the code in the editor,

then click the Execute button in the menu bar to execute the code.

�Step 3: Start developing the R script to load DimDate
Go back to R Studio to begin developing the R script. The packages that you will use in

this script are RODBC and lubridate. The RODBC package will be used to interact with

SQL Server, and the lubridate package will be used to make it easier to do some date-

related tasks. Here’s the code needed to load the packages:

library(RODBC)

library(lubridate)

�Step 4: Create a variable to hold the name of the table
you want to import
The name of the table that will be read into the Power BI data model will be used

in several places in the script. A variable is used instead of hard-coding the value

throughout the script to make the script easier to maintain and reuse:

table_name <- "DimDate"

Chapter 5 Reading SQL Server Data

200

�Step 5: Create a variable to hold the sql statement that
will be used to return the table
The following code is used to create the sql statement that will be used to read the data

from the DimDate table into Power BI:

sql <- paste0(

 "SELECT * FROM dbo.",

 table_name)

The preceding code is using the paste0() function to concatenate "SELECT * FROM

dbo." with the table_name variable. The paste0() function is similar to the paste()

function. The difference between the two is that you can specify a delimiter in the paste()

function but the paste0() function assumes that you want to concatenate strings without

using a delimiter.

�Step 6: Create a connection to SQL Server
You create a connection to the database using the following code:

conn <- odbcConnect(dsn = "SQLServer2017")

As you can see, using a DSN makes it very easy to connect to the database. You use

the odbcConnect function from the RODBC package to make the connection, and the

only argument you need is the dsn argument. You set that argument equal to the name of

the DSN that you configured in Step 1.

�Step 7: Retrieve the data from SQL Server and store it in a
data frame
The sqlQuery() function from RODBC enables you to submit a query to the database

using the conn connection and stores the results in a data frame. The code to perform

this operation is this:

df_read <- sqlQuery(channel = conn, query = sql)

The results of the query are stored in the df_read data frame. This is the data that will

be fed to Power BI.

Chapter 5 Reading SQL Server Data

201

�Step 8: Get the current time
Now you need to start calculating the information you want to log about the load. The

information you want to log is the time the load occurred, the name of the table you

loaded, and the number of records that were loaded.

To get the time of the load, you use the now() function from the lubridate package

and assign it to the datestamp variable using the following code:

datestamp <- now()

�Step 9: Get the number of records that were read
You want to log the number of records that were loaded from the DimDate table. You get

that information using the nrow() function from base R. You use the following code to

store the number of records in DimDate to the num_records variable:

num_records <- nrow(df_read)

�Step 10: Create a one record R data frame that contains
the information you want to log
You calculated the information that you want to log; now you need to shape it so that you

can insert the information into the log table. The shape the data needs to be in is a data

frame. You start off by creating a named list using the variables you created that holds the

information you want to log.

A named list is simply a list that has names for each element in the list. Putting the
information in a named list makes it easy to convert to a data frame. The code in
this step describes how to build one.

The code you use to do so is as follows:

list_insert = list("DATESTAMP" = datestamp,

 "TABLENAME" = table_name,

 "NUM_RECORDS" = num_records

)

Chapter 5 Reading SQL Server Data

202

The preceding code builds a named list that contains the datestamp, table_name,

and num_records scalars and gives them the names DATESTAMP, TABLENAME, and

NUM_RECORDS, respectively.

A scalar is a vector with a length one.

Next, you convert the named list to a data frame using the following code:

df_insert = as_data_frame(list_insert)

The preceding code converts the named list into a data frame using the as_data_

frame() function and assigns the results to the df_insert data frame. The names in the

named list are used as the column headers.

�Step 11: Insert the information you gathered in Step 10
into the history log table
Now that the data you want to log is in a data frame, you can insert it into the

LoadHistoryLog table using the sqlSave() function from the RODBC package. You do so

using the following code:

sqlSave(

 channel = conn,

 dat = df_insert,

 tablename = "LoadHistoryLog",

 append = TRUE,

 rownames=FALSE

)

The channel argument in the sqlSave() function uses the connection that we

created earlier. It inserts the df_insert data frame into the LoadHistoryLog table. It is

very important that you set the append argument to TRUE so that sqlSave() knows to

insert the data into a table that already exists. If it is set to FALSE, it will produce an

error because it will try to create a table that already exists. Also, it is important to set

the rownames to FALSE, because if you don’t, a column will be created that has the row

names of the data frame and that information is not needed.

Chapter 5 Reading SQL Server Data

203

�Step 12: Close your connection
Next, you need to close your connection using the odbcClose() function from the RODBC

package. You do so using the following code:

odbcClose(conn)

�Step 13: Copy the script into Power BI
Here is the complete script:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimDate"

sql <- paste0(

 "SELECT * FROM dbo.",

 table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

 "DATESTAMP" = datestamp,

 "TABLENAME" = table_name,

 "NUM_RECORDS" = num_records)

df_insert <- as_data_frame(list_insert)

sqlSave(

 channel = conn,

 dat = df_insert,

 tablename = "LoadHistoryLog",

 append = TRUE,

 rownames=FALSE)

odbcClose(conn)

Chapter 5 Reading SQL Server Data

204

As in previous examples in the book, copy the R code into Power BI via GetData.

Two data frames, df_read and df_insert, are produced in the script so you need to tell

Power BI which one you want to load into the Power BI data model. You want to load

df_read, so select it, then click the Edit button. Now you need to change the name of the

query. Rename the query from df_read to DimDate in the PROPERTIES section. Click

Close & Apply to load the data into the Power BI data model.

�Step 14: Create a script to load DimProduct based
on the ReadLog_DimDate.R script
You need to reproduce the preceding steps for four more tables. You can easily

reproduce the steps for each table by making a copy of the ReadLog_DimDate.R script,

then make one minor change to the copied scripts. The change you need to make is the

value that the tablename variable is set to. In this step, you will do it for the DimProduct

table. Create a copy of the ReadLog_DimDate.R script and change the value of the table_

name variable from DimDate to DimProduct. Next, perform Step 13 with the exception

being that you rename the query to DimProduct instead. Here is what the code looks like

after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimProduct"

sql <- paste0(

 "SELECT * FROM dbo.",

 table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

 "DATESTAMP" = datestamp,

 "TABLENAME" = table_name,

 "NUM_RECORDS" = num_records)

Chapter 5 Reading SQL Server Data

205

df_insert <- as_data_frame(list_insert)

sqlSave(

 channel = conn,

 dat = df_insert,

 tablename = "LoadHistoryLog",

 append = TRUE,

 rownames=FALSE)

odbcClose(conn)

�Step 15: Create a script to load DimPromotion based
on the ReadLog_DimDate.R script
Create a copy of the ReadLog_DimDate.R script and change the value of the table_name

variable from DimDate to DimPromotion. Next, perform Step 13 with the exception

being that you rename the query from df_read to DimPromotion. Here is what the code

looks like after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimPromotion"

sql <- paste0(

 "SELECT * FROM dbo.",

 table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

 "DATESTAMP" = datestamp,

 "TABLENAME" = table_name,

 "NUM_RECORDS" = num_records)

Chapter 5 Reading SQL Server Data

206

df_insert <- as_data_frame(list_insert)

sqlSave(

 channel = conn,

 dat = df_insert,

 tablename = "LoadHistoryLog",

 append = TRUE,

 rownames=FALSE)

odbcClose(conn)

�Step 16: Create a script to load DimSalesTerritory based
on the ReadLog_DimDate.R script
Create a copy of the ReadLog_DimDate.R script and change the value of the table_name

variable from DimDate to DimSalesTerritory. Next, perform Step 13 with the exception

being that you rename the query from df_read to DimSalesTerritory. Here is what the

code looks like after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimSalesTerritory"

sql <- paste0(

 "SELECT * FROM dbo.",

 table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

 "DATESTAMP" = datestamp,

 "TABLENAME" = table_name,

 "NUM_RECORDS" = num_records)

Chapter 5 Reading SQL Server Data

207

df_insert <- as_data_frame(list_insert)

sqlSave(

 channel = conn,

 dat = df_insert,

 tablename = "LoadHistoryLog",

 append = TRUE,

 rownames=FALSE)

odbcClose(conn)

�Step 17: Create a script to load FactInternetSales based
on the ReadLog_DimDate.R script
Create a copy of the ReadLog_DimDate.R script and change the value of the table_name

variable from DimDate to FactInternetSales. Next, perform Step 13 with the exception

being that you rename the query from df_read to FactInternetSales. Here is what the code

looks like after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "FactInternetSales"

sql <- paste0(

 "SELECT * FROM dbo.",

 table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

 "DATESTAMP" = datestamp,

 "TABLENAME" = table_name,

 "NUM_RECORDS" = num_records)

Chapter 5 Reading SQL Server Data

208

df_insert <- as_data_frame(list_insert)

sqlSave(

 channel = conn,

 dat = df_insert,

 tablename = "LoadHistoryLog",

 append = TRUE,

 rownames=FALSE)

odbcClose(conn)

Performing the preceding steps not only results in the tables being loaded into Power

BI, but also the number of records that were loaded from each table will be recorded in

the log table.

�Reading SQL Server data using Python
In this section, you will perform the same task that you just performed in R using Python.

The logic is similar, but you will be able to perform the task in fewer steps. Let’s start with

Step 1.

�Step 1: Create a DSN to the SQL Server database
If you did the R example, then you already created the DSN so you can proceed to the

next step. If you did not, you must complete step 1 in the R example before proceeding to

the next step. The DSN is independent of R and Python so you can use the same one for

both.

�Step 2: Create a log table in SQL Server
A log table with the name dbo.LoadHistoryLog should already be in the database.

Execute the following code in SQL Server Management Studio (SSMS) if you need to

create the dbo.LoadHistoryLog table:

Chapter 5 Reading SQL Server Data

209

USE AdventureWorksDW_StarSchema

CREATE TABLE dbo.[LoadHistoryLog] (

 DATESTAMP DATETIME,

 TABLENAME VARCHAR(25),

 NUM_RECORDS INT

)

To execute the code in SSMS, you

	 1.	 Copy the preceding code

	 2.	 Expand the Database folder in SSMS, then select

AdventureWorksDW_StarSchema database

	 3.	 Click the New Query button located in the menu bar

	 4.	 Paste the code you copied in your clipboard to the editor, then

click the Execute button in the menu bar to execute the code

�Step 3: Begin creating the script to load the
DimDate table
You will use three libraries in this script. The libraries you will use are pandas,

sqlalchemy, and the datetime. Pandas will be the workhorse package as it will be used

to read the data that you want to load to the Power BI data model and to write the

information back to SQL Server that you want to log. The create_engine() function from

the sqlalchemy library is used to create a connection object to the SQL Server database,

and the datetime module from the datetime library will be leveraged for its date

functions. The following code is used to load those libraries, functions, and modules

mentioned earlier:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

Chapter 5 Reading SQL Server Data

210

�Step 4: Create a variable that holds the name of the table
that you want to read into Power BI
The name of the table that will be read into the Power BI data model will be used in

several places in the script. A variable is used instead of hard-coding the table name.

This makes it easier to maintain the script and reuse it for other tables. Here is the code

that is used to create the variable that will hold the table name:

tablename = "DimDate"

�Step 5: Create a connection to the database using
sqlalchemy
You create a connection to the SQL Server database using the following code:

con = create_engine("mssql+pyodbc://SQLServer2017")

Just as in the R example, using a DSN makes it very easy to connect to the database.

Here you use the create_engine() function from the sqlalchemy library to make the

connection. The syntax used to build the connection string for SQL Server in sqlalchemy

is "mssql+pyodbc://<DSN>", so in this situation, it is "mssql+pyodbc://SQLServer2017".

�Step 6: Read in the contents of the DimDate table
and store it as a data frame in the df_read variable
You will use the read_sql_table() method from pandas to read the contents of the

DimDate table and store it in a data frame named df_read. The read_sql_table() method

uses two arguments, the name of the sql table you want to read and the connection to

the database. Here is the code:

df_read = pd.read_sql_table(tablename, conn)

�Step 7: Get the current date and time and store the
information into the datastamp variable
You perform this task using the following code:

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

Chapter 5 Reading SQL Server Data

211

You use the now() method from datetime module to get the time of the load.

Unfortunately, the now function returns the date in a format that is not usable by SQL

Server so it needs to be reformatted. The format that the date is returned in is datetime.

datetime(YYYY, M, D, H, M, SS, MS). So, as an example, January 1, 2019 10:00 PM would

be returned as datetime.datetime(2019, 1, 1, 22, 0, 0, 0). You reformat that output using

the strftime() method to put it in a YYYY-MM-DD HH:MM:SS format by applying the

following format string: ‘%Y-%m-%d %H:%M:%S’. That action reformats the datetime.

datetime(2019, 1, 1, 22, 0, 0, 0) to '2019-04-14 22:05:24'. Now you have the datestamp in a

format that is usable by SQL Server.

�Step 8: Calculate the number of records in the
DimDate table
You need to log the number of records that were loaded from the DimDate table.

To get that information, you use the shape method from pandas as illustrated in the

following code:

num_records = df.shape[0]

The shape method returns a tuple with two elements. The first element contains

the number of rows in the data frame, and the second element contains the number of

columns. You just need the number of rows so you can subset the shape method with

[0] to get that information.

A tuple is a python data structure that represents a sequence of immutable objects.
They are similar to lists with the difference being that they cannot be changed after
they are created.

Chapter 5 Reading SQL Server Data

212

�Step 9: Create a one record pandas data frame that
contains the information you want to log
You accomplish this in two steps using the following code:

dict_insert = {

 "DATESTAMP":[datestamp],

 "TABLENAME":[tablename],

 "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

The first part of the code creates a dictionary of key/value pairs. The key is a hard-

coded value that will be the column name. The value is a list, and the elements in the list

will populate the column. In this case, each list only contains one element.

The second part of the code uses the from_dict method of the pandas DataFrame

class to create a data frame. The dict_insert dictionary is passed to it, and the result is the

df_insert data frame.

�Step 10: Insert the information you gathered in Step 9 into
the history log table
To get the data from the df_insert data frame into the LoadHistoryLog table, you use the

to_sql method of the df_insert data frame as illustrated here:

df_insert.to_sql(

 name='LoadHistoryLog',

 con=conn,

 index=False,

 if_exists = 'append'

)

The name of the table is LoadHistoryLog, the conn object you created earlier is used

for the con argument, the index property is set to False to prevent pandas from trying

to include the index value in the insert, and the if_exists is set to append so that pandas

knows to add the data as an insert if the table already exists.

Chapter 5 Reading SQL Server Data

213

�Step 11: Copy the script into Power BI
Here is the complete script:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimDate"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

 "DATESTAMP":[datestamp],

 "TABLENAME":[tablename],

 "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

 name='LoadHistoryLog',

 con=conn,

 index=False,

 if_exists = 'append'

)

As in previous examples, copy the Python code into Power BI via GetData. Two data

frames, df_read and df_insert, are produced in the script, so you need to tell Power BI

which one you want to load into the Power BI data model. You want to load df_read, so

select it, then click the Edit button. Next, change the name of the query from df_read to

DimDate in the PROPERTIES section. Click Close & Apply to load the data into the Power

BI data model.

Chapter 5 Reading SQL Server Data

214

�Step 12: Create a script to load DimProduct based
on the ReadLog_DimDate.py script
You need to reproduce the preceding steps for four more tables. You can easily

reproduce the steps for each table by making a copy of the ReadLog_DimDate.py script,

then make one minor change to the copied scripts. The change you need to make is the

value that the tablename variable is set to. In this step, you will do it for the DimProduct

table. Create a copy of the ReadLog_DimDate.py script and change the value of the table_

name variable from DimDate to DimProduct. Next, perform Step 11 with the exception

being that you rename the query to DimProduct instead. Here is what the script looks

like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimProduct"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

 "DATESTAMP":[datestamp],

 "TABLENAME":[tablename],

 "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

 name='LoadHistoryLog',

 con=conn,

 index=False,

 if_exists = 'append'

)

Chapter 5 Reading SQL Server Data

215

�Step 13: Create a script to load DimPromotion based
on the ReadLog_DimDate.py script
Create a copy of the ReadLog_DimDate.py script and change the value of the table_name

variable from DimDate to DimPromotion. Next, perform Step 11 with the exception

being that you rename the query from df_read to DimPromotion. Here is what the script

looks like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimPromotion"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

 "DATESTAMP":[datestamp],

 "TABLENAME":[tablename],

 "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

 name='LoadHistoryLog',

 con=conn,

 index=False,

 if_exists = 'append'

)

Chapter 5 Reading SQL Server Data

216

�Step 14: Create a script to load DimSalesTerritory based
on the ReadLog_DimDate.py script
Create a copy of the ReadLog_DimDate.py script and change the value of the table_name

variable from DimDate to DimSalesTerritory. Next, perform Step 11 with the exception

being that you rename the query from df_read to DimSalesTerritory. Here is what the

script looks like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimSalesTerritory"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

 "DATESTAMP":[datestamp],

 "TABLENAME":[tablename],

 "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

 name='LoadHistoryLog',

 con=conn,

 index=False,

 if_exists = 'append'

)

Chapter 5 Reading SQL Server Data

217

�Step 15: Create a script to load FactInternetSales based
on the ReadLog_DimDate.py script
Create a copy of the ReadLog_DimDate.py script and change the value of the table_name

variable from DimDate to FactInternetSales. Next, perform Step 11 with the exception

being that you rename the query from df_read to FactInternetSales. Here is what the

script looks like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "FactInternetSales"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

 "DATESTAMP":[datestamp],

 "TABLENAME":[tablename],

 "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

 name='LoadHistoryLog',

 con=conn,

 index=False,

 if_exists = 'append'

)

You were able to perform a task that is hard to do in Power Query but relatively easy

to do in both R and Python. Power Query can handle reading in data from SQL Server

tables but is not able to log information about the load. R and Python have packages and

libraries, respectively, that you can leverage to make the task relatively easy to do.

Chapter 5 Reading SQL Server Data

219
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_6

CHAPTER 6

Reading Data into
the Power BI Data Model
via an API
Many governmental entities and private companies have made their data

more accessible via Data APIs. Data APIs provide interfaces that enable you to

programmatically retrieve data from data providers. The data sets that these Data APIs

provide can bring great value to your Power BI data model.

Interfacing with Data APIs is hard to do using M code, but that is not the case with

R and Python. In this chapter, you will learn how to retrieve and load data from the US

Census via their Data API into the Power BI data model using R and Python. First, you’ll

see how to load the data using R. Then you’ll see the same data loaded again using

Python.

�Reading Census data into Power BI via an
API using R
Here is the scenario. You are a marketing analyst for Fleek. Fleek is a retail clothing store

whose target market is young adults. The company has a strong presence in the south-

eastern part of the United States, but they don’t have any stores in the state of Indiana.

You are tasked with identifying the counties in Indiana that have the demographics

that are known to patronize Fleek stores. You want to use demographic data from the

US Census to help you with your analysis that you will do in Power BI. The following

sections show the steps to perform the task of acquiring demographic data from the US

Census using R.

https://doi.org/10.1007/978-1-4842-5829-3_6#DOI

220

�Step 1: Get a personal Census API key
To access US Census data, you will need a Census API key. You can obtain one at the

following URL: https://api.census.gov/data/key_signup.html. You need to fill out a

short form and accept the terms of service. After you click the Submit Key Request button,

the US Census Bureau will respond with an email that contains your API key. Make sure

you save the key in a safe location.

�Step 2: Load the necessary R packages
The packages that you will use in this example are tidyverse and tidycensus. At this point

of the book, you are very familiar with the tidyverse package so there is no need for

explanation, but that is not the case with the tidycensus package. The tidycensus package

enables you to retrieve data from the US Census and the American Community Survey.

The package returns the data in a tidyverse-ready data frame. You can go to the following

link to find more information about how to use this package as well as the available data

sets: https://walkerke.github.io/tidycensus/. Use the following code to load the

required libraries and your Census API key that you received from the US Census into

your current session using the following code:

library(tidycensus)

library(tidyverse)

census_api_key("<census api key>", install = FALSE)

If you use the preceding method, you will need to include the code in all future runs.

If you want to install the API key in your R environment for future use, then you need to

use the following code instead:

census_api_key("<census api key>", install = TRUE)

readRenviron("~/.Renviron")

Setting the install argument to TRUE installs the key in your R environment for future

use. The next line of code reloads your environment so that you can use the API key in

your current session without having to restart R.

Chapter 6 Reading Data into the Power BI Data Model via an API

https://api.census.gov/data/key_signup.html
https://walkerke.github.io/tidycensus/

221

�Step 3: Identify the variables you want to return from
your data set
The US Census makes available several data sets. The information you need in this

example is contained in the acs5 data set.

The acs5 data set is based on estimates taken over a 5-year period. The other
available data sets are sf1, sf3, acs1, acs3, acs5, acs1/profile, acs3/profile, acs5/
profile, acs1/subject, acs3/subject, and acs5/subject. You can go to www.census.
gov/programs-surveys/acs/guidance/handbooks.html for more
information about the type of data that the US Census offers.

You need population data broken out in age bands from the acs5 data set for

calendar year 2015, but you don’t know the names of the variables that contain that

information. Use the following code to get the entire list of variables that are available in

the acs5 data set for calendar year 2015:

v15 <- load_variables(year = 2015, dataset= "acs5", cache = FALSE)

View(v15)

Let’s take a moment to explain the code. The load_variables function creates

a data frame that warehouses the variables based on the values of the arguments

passed to it. The cache option gives you the ability to locally cache the data for faster

subsequent retrievals. The output of the load_variables function is depicted in the

following table:

name label concept

1 | B06001_001E | Estimate!!Total

2 | B06001_002E | Estimate!!Total!!Under 5 years

3 | B06001_003E | Estimate!!Total!!5 to 17 years

4 | B06001_004E | Estimate!!Total!!18 to 24 years

5 | B06001_005E | Estimate!!Total!!25 to 34 years

Chapter 6 Reading Data into the Power BI Data Model via an API

http://www.census.gov/programs-surveys/acs/guidance/handbooks.html
http://www.census.gov/programs-surveys/acs/guidance/handbooks.html

222

Only the five records of the data set are listed in the preceding output. The resulting

data set actually contains a list of over 22,000 variables! Using the View function enables

you to view the list of variables in a tabular structure with filtering capabilities. Even with

the filtering capabilities, it can be challenging finding the variables you need. In future

chapters, you will learn more advanced filtering techniques that will help you find the

variables you need via the dplyr package. I used some of those techniques to find the

variables that are used in the next step.

�Step 4: Create a character vector of the tables that
contains the variables you want to return
After you identified the variables you want, you need to place them in a character vector.

Here is a character vector of the variables that warehouses the population by age bands

that is needed in this example:

cns_vars <- c("B06001_001E","B06001_002E","B06001_003E",

"B06001_004E","B06001_005E","B06001_006E","B06001_007E",

"B06001_008E","B06001_009E","B06001_010E","B06001_011E",

"B06001_012E")

B06001_001E represents the total population, B06001_002E represents the

population under 5, B06001_003E represents the population between 5 and 17,

B06001_004E represents the population between 18 and 24, B06001_005E represents the

population between 25 and 34, B06001_006E represents the population between 35 and

44, B06001_007E represents the population between 45 and 54, B06001_008E represents

the population between 55 and 59, B06001_009E represents the population between

60 and 61, B06001_010E represents the population between 62 and 64, B06001_011E

represents the population between 65 and 74, and B06001_012E represents the

population that is 75 years of age and above.

�Step 5: Configure the get_acs function
Configure the get_acs function to retrieve the data and assign the output to a data frame

named IN_POP_BY_COUNTY_BY_AGE. The get_acs() function retrieves the data from

the US Census API and puts it into an R data frame. The following code gets the required

population information by age bands at the county level for Indiana:

Chapter 6 Reading Data into the Power BI Data Model via an API

223

IN_POP_BY_COUNTY_BY_AGE <-

 suppressMessages(

 get_acs(

 geography = "county",

 state = "IN",

 variables = cns_vars,

 survey = "acs5",

 year = 2015,

 output = "wide"

)

)

Let’s explain the code. The geography argument tells tidycensus what level of

geography you want your data in. The level you want is county, so you use that as the

value. To limit the counties to only counties in the state of Indiana, you set the state

argument equal to “IN”. You set the variables argument to the character vector that

contains the list of variables that you defined in Step 5. The survey argument is used to tell

tidycensus which data set you want to search. The year argument is the year of the survey.

The output argument tells tidycensus how you want to output the data. Setting it to “wide”

puts the data in a format where each variable has its own column. The whole function is

wrapped in a suppressMessages function. This function suppresses the get_acs() function

from printing information to the console which can cause problems with Power BI.

�Step 6: Give the variables (columns) meaningful names
The names of the columns that are given to us by the US Census are somewhat cryptic,

and they do not give you a good idea of what they represent. Fortunately, you were given

what they represented when you used the load_variables function to find them. You

can rename the columns with more meaningful names using the rename function from

dplyr. Here is the code that performs that task:

IN_POP_BY_COUNTY_BY_AGE =

 rename(

 IN_POP_BY_COUNTY_BY_AGE,

 `Total`=B06001_001E,

 `Under 5`=B06001_002E,

Chapter 6 Reading Data into the Power BI Data Model via an API

224

 `5 to 17`=B06001_003E,

 `18 to 24`=B06001_004E,

 `25 to 34`=B06001_005E,

 `35 to 44`=B06001_006E,

 `45 to 54`=B06001_007E,

 `55 to 59`=B06001_008E,

 `60 and 61`=B06001_009E,

 `62 to 64`=B06001_010E,

 `65 to 74`=B06001_011E,

 `75+`=B06001_012E

)

The first argument of the rename function is the data set that contains the columns

that you want to rename. That is followed by pairs of values that have the new column

name on the left side and the old column name on the right side separated with a “=” sign.

One of the benefits of using the rename function from dplyr to rename the column is

that you are able to use column names that are not acceptable in regular R data frames.

�Step 7: Copy the script into Power BI
Here is the complete script:

library(tidycensus)

library(tidyverse)

census_api_key(

 "<census api key>", overwrite = FALSE,

 install = FALSE)

cns_vars <- c("B06001_001E","B06001_002E","B06001_003E","B06001_004E","B060

01_005E","B06001_006E","B06001_007E","B06001_008E","B06001_009E","B06001_01

0E","B06001_011E","B06001_012E")

IN_POP_BY_COUNTY_BY_AGE <-

 suppressMessages(

 get_acs(

 geography = "county",

 state = "IN",

Chapter 6 Reading Data into the Power BI Data Model via an API

225

 variables = cns_vars,

 survey = "acs1",

 year = 2015,

 output = "wide"

)

)

IN_POP_BY_COUNTY_BY_AGE =

 rename(

 IN_POP_BY_COUNTY_BY_AGE,

 `Total`=B06001_001E,

 `Under 5`=B06001_002E,

 `5 to 17`=B06001_003E,

 `18 to 24`=B06001_004E,

 `25 to 34`=B06001_005E,

 `35 to 44`=B06001_006E,

 `45 to 54`=B06001_007E,

 `55 to 59`=B06001_008E,

 `60 and 61`=B06001_009E,

 `62 to 64`=B06001_010E,

 `65 to 74`=B06001_011E,

 `75+`=B06001_012E

)

Copy the entire script into the R script editor in Power BI. The name of the data

frame will be IN_POP_BY_COUNTY_BY_AGE by default. If you want to rename the

query, then you need to go into edit mode to do so. If you are happy with the name, you

can load the data set directly into the Power BI data model to use as the source for some

awesome visualizations.

�Reading Census data into Power BI via an
API using Python
You also have the option of using Python to load data. The following section described

the steps to bring in the Census data into Power BI using Python. The workflow is similar

to the workflow involving R.

Chapter 6 Reading Data into the Power BI Data Model via an API

226

�Step 1: Get a personal Census API key
The Census API key is optional to access Census data using the censusdata library from

Python. To get one, go to the following URL: https://api.census.gov/data/key_

signup.html. You need to fill out a short form, accept the terms of service, then click the

Submit Key Request button. The Census Bureau will respond with an email that contains

your API key. Make sure you save the key in a safe location.

�Step 2: Load the necessary Python libraries
The two libraries needed in this script are the pandas and censusdata library. Pandas

is used for data manipulation, and the censusdata library is used to interface with the

Census API. Here is the code needed to load the libraries:

import pandas as pd

import censusdata

Please refer to the book’s introduction to get instructions of how to install python

libraries if the preceding libraries are not installed.

�Step 3: Identify the variables you want to return in your
data set
You need to search the acs5 data set for variables that contain calendar year 2015

population information by age bands. Type the following code in your console to

perform the search:

v15 = censusdata.search(

 'acs5',2015,'concept',

 'PLACE OF BIRTH BY AGE IN THE UNITED STATES')

The preceding code is not part of the main script. It is used to search for the
variables that are available based on the preceding criteria. A script is available in
the GitHub repo for this chapter that not only retrieves the variable info but also
saves the information as a csv file if you prefer to explore the data in that format.

Chapter 6 Reading Data into the Power BI Data Model via an API

https://api.census.gov/data/key_signup.html
https://api.census.gov/data/key_signup.html

227

The preceding code uses the search function from the censusdata library. The

first argument is the survey that contains the variables you want to use, the second

argument is the year you want to search, and the third argument is the field you want

to search. You can choose label or concept. You used the concept because that field

contains the description of the variables you are looking for. The last argument is the

search criteria.

The censusdata.search function returns a list of tuples.

A tuple is a sequence of objects that cannot be changed after being set. The big
difference between tuples and lists in python is that lists can be changed after the
fact but tuples cannot.

Each tuple contains three elements. The first element in each tuple is the variable

name, the second element is the concept, and the third element is the label. The list

returned in the search using the preceding code contains 120 tuples. You can subset the

first five elements of the tuple to get an idea of what the information looks like using the

following code:

v15[0:5]

The preceding code subsets the v15 list by getting the elements starting at position 0

and ending at but not including position 5. The result is a list that includes the elements

in positions 0, 1, 2, 3, and 4. A reformatted version of the output is listed as follows.

The output was reformatted, so you can easily identify each tuple:

[

 ('B06001_001E',

 'B06001. PLACE OF BIRTH BY AGE IN THE UNITED STATES',

 'Total:'),

 ('B06001_001M',

 'B06001. PLACE OF BIRTH BY AGE IN THE UNITED STATES',

 'Margin Of Error For!!Total:'),

 ('B06001_002E',

 'B06001. PLACE OF BIRTH BY AGE IN THE UNITED STATES',

 'Under 5 years'),

Chapter 6 Reading Data into the Power BI Data Model via an API

228

 ('B06001_002M',

 'B06001. PLACE OF BIRTH BY AGE IN THE UNITED STATES',

 'Margin Of Error For!!Under 5 years'),

 ('B06001_003E',

 'B06001. PLACE OF BIRTH BY AGE IN THE UNITED STATES',

 '5 to 17 years')

]

�Step 4: Create a variable that is based on the list
variables you want
After you identify the variables you want, you need to put them in a python list. Here is

the python list that contains the variables that have the population for each age band

that we need:

cns_vars = [

 "B06001_001E","B06001_002E","B06001_003E","B06001_004E",

 "B06001_005E","B06001_006E","B06001_007E","B06001_008E",

 "B06001_009E","B06001_010E","B06001_011E","B06001_012E"

]

B06001_001E represents the total population, B06001_002E represents the

population under 5, B06001_003E represents the population between 5 and 17,

B06001_004E represents the population between 18 and 24, B06001_005E represents the

population between 25 and 34, B06001_006E represents the population between 35 and

44, B06001_007E represents the population between 45 and 54, B06001_008E represents

the population between 55 and 59, B06001_009E represents the population between

60 and 61, B06001_010E represents the population between 62 and 64, B06001_011E

represents the population between 65 and 74, and B06001_012E represents the

population that is 75 years of age and above.

Chapter 6 Reading Data into the Power BI Data Model via an API

229

�Step 5: Create a list of tuples that contains the
geographies you want to in your data set
Next, you define your geographical requirements in a list of tuples. Each tuple in the

list will have two elements with the first element being the type of geographical entity

you want to use and the second element being the FIPS code of the actual geographical

entity you want to return.

In this example, you need population information for the state of Indiana broken out

by county. You define your requirements using the following code:

geographies = [('state', '18'),('county', '*')]

The first tuple defines the state requirement. You use the value ‘state’ to identify the

tuple as a “state” tuple, and you use the FIPS code 18 to identify Indiana. This tuple limits

the entire search to the state of Indiana. If you don’t know the FIPS code for Indiana, you

can leverage the us package to find that information using the following code:

import us

us.states.IN.fips

The second tuple is used to define the counties you want to return. You use the value

‘county’ to tell censusdata that you want to return counties, and you use the asterisk

because you want to return all 92 counties in Indiana.

�Step 6: Retrieve the data using the censusdata.download()
function
The following code gets the population data that you want from the US Census and puts

the data in a data frame named IN_POP_BY_COUNTY_BY_AGE:

IN_POP_BY_COUNTY_BY_AGE = censusdata.download(

 'acs5', 2015, censusdata.censusgeo(geographies),

 cns_vars)

Chapter 6 Reading Data into the Power BI Data Model via an API

230

The first argument is used to define the source you want to use which, in this case,

is the acs5 survey. The second argument is used to define the year you want to return.

The third argument is used to define the geographical requirements. The list you created

in Step 5 that contains the geographical requirements is passed to the censusdata.

censusgeo() function in this argument. The last argument is the cns_vars list. The cns_

vars is a list of variables you created in Step 4 that identifies the variables you want to

download.

�Step 7: Reset the index of the data frame created in
Step 6
The geography information is contained in the index of the data frame, but that

information needs to be in a dedicated column in order for it to be available for Power

BI. You use the reset_index method of the data frame to put the values of the index in a

dedicated column. Here is the code to do that:

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.reset_index()

The result of running the preceding code is the indexes will be moved to a column

named index. Now that information will be available for Power BI.

�Step 8: Define the new column names
The variables that were identified in Step 4 will be used to name the columns in the

returned data set. Those names are somewhat cryptic, and they don’t give a good

representation of what they represent. The pandas package gives you the ability to

rename the columns with more meaningful names. The following python dictionary will

give pandas the renaming requirements:

new_names = {

 'index':'Geography','B06001_001E':'Total',

 'B06001_002E':'Under 5','B06001_003E':'5 to 17',

 'B06001_004E':'18 to 24','B06001_005E':'25 to 34',

 'B06001_006E':'35 to 44','B06001_007E':'45 to 54',

Chapter 6 Reading Data into the Power BI Data Model via an API

231

 'B06001_008E':'55 to 59','B06001_009E':'60 and 61',

 'B06001_010E':'62 to 64','B06001_011E':'65 to 74',

 'B06001_012E':'75+'

 }

The preceding data is a python dictionary that has key/value pairs that will be used

to rename the columns. The keys in the key/value pairs represents the old column name,

and the values in the key/value pairs represents the new column name.

�Step 9: Rename columns
The columns are renamed using the following code:

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.rename(

 columns=new_names)

The rename method of the IN_POP_BY_COUNTY_BY_AGE data frame is used to

rename the columns. The columns argument uses the new_names dictionary to get the

information it needs to rename the columns.

�Step 10: Copy the script into Power BI
Here’s the entire script:

import pandas as pd

import censusdata

cns_vars = [

 "B06001_001E","B06001_002E","B06001_003E","B06001_004E",

 "B06001_005E","B06001_006E","B06001_007E","B06001_008E",

 "B06001_009E","B06001_010E","B06001_011E","B06001_012E"

]

geographies = [('state', '18'),('county', '*')]

Chapter 6 Reading Data into the Power BI Data Model via an API

232

IN_POP_BY_COUNTY_BY_AGE = censusdata.download(

 'acs5', 2015, censusdata.censusgeo(geographies),

 cns_vars)

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.reset_index()

new_names = {

 'index':'Geography','B06001_001E':'Total',

 'B06001_002E':'Under 5','B06001_003E':'5 to 17',

 'B06001_004E':'18 to 24','B06001_005E':'25 to 34',

 'B06001_006E':'35 to 44','B06001_007E':'45 to 54',

 'B06001_008E':'55 to 59','B06001_009E':'60 and 61',

 'B06001_010E':'62 to 64','B06001_011E':'65 to 74',

 'B06001_012E':'75+'

 }

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.rename(

 columns=new_names)

Copy the entire script into the Python script editor in Power BI. The name of the data

frame returned will be IN_POP_BY_COUNTY_BY_AGE by default. If you want to change

the name, you need to go into edit mode of Power Query to do so. Otherwise, if you are

happy with the name, you can load the data set directly into the Power BI data model.

�Summary
In this chapter, you learned how to bring in data from the US Census directly into the

Power BI data model using R and Python. Bringing disparate data from outside sources

like the US Census can greatly enhance your data models. You are not limited to the US

Census API as there are many Data APIs that give you programmatic access to some very

rich data sources. Once added to Power BI, these data sources can be the basis for some

amazing visualizations.

Chapter 6 Reading Data into the Power BI Data Model via an API

PART III

Transforming Data
Using R and Python

235
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_7

CHAPTER 7

Advanced String
Manipulation and
Pattern Matching
Basic string manipulation and pattern matching tasks can be handled using one of the

numerous string functions pre-packaged in Power Query. You can access many of these

functions from the graphical interface, and they are also available for use in custom

columns. These functions work great for simple situations but are not sufficient in

more advanced scenarios. Fortunately, R and Python have advanced tools that enable

you to perform advanced string manipulation and pattern matching tasks beyond the

capabilities of Power Query.

In this section of the book, you will learn how to leverage R and Python for advanced

string manipulation and pattern matching. The focus will be on the use of regular

expression. Regular expressions, sometimes referred to as regex, are text strings used to

describe a search pattern. They are extremely powerful, and they enable you to perform

string manipulation and pattern matching that requires advanced business logic that is

not possible using the basic matching methods used in Power Query.

In this chapter, you will learn how to

•	 Mask sensitive data

•	 Count the number of words and sentences in a memo field

•	 Scrub names that are not in a valid format

•	 Test to see if a pattern exists in a string

You will learn these methods using scenarios that you may encounter in business.

Let’s first learn how to mask sensitive data.

https://doi.org/10.1007/978-1-4842-5829-3_7#DOI

236

�Masking sensitive data
Many companies collect personal data on their customers, which makes both the

company and their customers vulnerable to security breaches. Most companies have

strict guidelines in place to minimize this risk. But sometimes companies need to share

data with outside vendors in order to gain more insights about their data. When they do

this, they need to make sure that any sensitive data is masked to protect their customers.

In this scenario, the VP of Collections, Marc Lovejoy, is working with the VP of

IT, Didi Costas, to develop an analytical reporting system using Power BI. One of the

requirements of the analytical system is that they need to perform sentiment analysis

on the comments that the collectors create after every call with the debtors. Some of

the comments contain SSNs and phone numbers. They want to use Microsoft Cognitive

Services, but they need to mask the SSNs and telephone numbers before they send the

comments to Microsoft Cognitive Services for sentiment analysis.

Microsoft Cognitive Services are a set of machine learning algorithms that were
built by Microsoft to help solve certain problems that require AI. You will learn how
to perform sentiment analysis in Power BI in a subsequent chapter.

They shared the requirement with their analyst, Tank Wade, and he came up with

two solutions: one using R and one using Python. Here is the solution using R.

�Masking sensitive data in Power BI using R
We will illustrate in the steps that follows how we can leverage regular expressions to

mask data in Power BI via R. Doing this task using native Power Query features would be

extremely hard to do if not impossible. Let’s go over the required steps!

�Step 1: Import tidyverse and stringr

As always, you start off with the package loads. The first package you will load is

tidyverse. You will use the dplyr package from tidyverse to add a new field to your data set

and the readr package from tidyverse to read in the data into the data frame. The stringr

package will do the heavy lifting in this script. You will leverage regular expressions with

Chapter 7 Advanced String Manipulation and Pattern Matching

237

the str_replace function to mask the sensitive data. Here is the code needed to load the

required packages:

library(tidyverse)

library(stringr)

�Step 2: Create the scrub data function

One of the nice features about using R is how easy it is to build a custom function that

you can use later in your script. The custom function in this script will take in the text,

search for SSNs and phone numbers using a regular expression, mask any SSNs and

phone numbers it finds, and return the mask data. Here are the steps needed to create

the function:

	 1.	 Create the shell of the function as shown here:

mask_text <- function(unmask_text){

}

The name of the function will be mask_text. The function takes

one argument named unmask_text.

	 2.	 Create a regular expression that matches the pattern of a US

phone number and assign the value to a variable named phone_

pattern:

phone_pattern = "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

The preceding regular expression is a common expression used

to match phone numbers. Regular expressions like these can be

easily found via a bing search.

	 3.	 Create a regular expression that matches the pattern for a SSN and

assign the value to a variable named ssn_pattern:

ssn_pattern = "\\d{3}-\\d{2}-\\d{4}"

As with the phone number example, chances are you can find

regular expressions that do a good job of matching a valid SSN

format via an Internet search. But for this example, I wanted to

show how easy it is to develop a regular expression to match a SSN

pattern.

Chapter 7 Advanced String Manipulation and Pattern Matching

238

You can identify numbers in regular expression with the \d character

combination. Because \ is a special character in regular expression,

you need to escape the backlash in \d by adding another \.

Characters such as the \ and . have special meanings in regular expressions.
These characters are known as metacharacters. If you want to use the literal
representation of these characters in a regular expression, you need to escape
them with a backslash (\). So, if you wanted to search for a period (.) in a string,
you need to preface it with a \ to tell the regular expression that you want to
literally search for a period. Since the \ is itself a metacharacter, you also need
to escape it. With that being said, if you want to send \. to the regular expression
engine, you need to send the string “\\.”.

Now that you know of a way to identify numbers in a regular

expression, let’s build the basic pattern of a SSN. The basic

pattern of a SSN is three digits, followed by a dash, followed by

two digits, followed by another dash, and ending with four digits.

The regular expression pattern that is held in the ssn_pattern

mimics that pattern by using a combination of the \\d and {}. The

\\d tells the regular expression that you want to match a number,

and the number in the {} tells the regular expression the number

of occurrences of a digit you want to match. The dashes in the

regular expression are placed in the location where you would

expect to find them in a SSN number.

	 4.	 The phone numbers are masked using the following code:

cleanned_text <- str_replace(

 unmask_text, pattern = phone_pattern,

 replacement = "XXX-XXX-XXXX")

In the preceding code, the str_replace function is used to mask

any phone numbers that are found in the text. What makes this

function different than the Text.Replace function in Power Query

is that you are able to use regular expressions in str_replace, but

you can’t use them in Text.Replace function. You can do very basic

Chapter 7 Advanced String Manipulation and Pattern Matching

239

pattern matching in Power Query but not the type you can do with

regular expressions. The preceding str_replace function takes the

string that is passed to it and searches it to see if it matches the

pattern of the regular expression passed to it. If it finds the string,

it replaces it with a mask defined in the replacement argument. So,

if the string “Ryan’s phone number is 555-852-6301 and his SSN is

123-45-6789” is passed to the function, “Ryan’s phone number is

XXX-XXX-XXXX and his SSN is 123-45-6789” will be returned.

	 5.	 The SSNs are masked in the comments using the following code:

cleanned_text <- str_replace(

 cleanned_text, pattern = ssn_pattern,

 replacement = "XXX-XX-XXXX")

The preceding code takes the results of the phone mask and

applies a similar technique to mask SSN using the ssn_pattern. So,

if “Ryan’s phone number is XXX-XXX-XXXX and his SSN is 123-45-

6789” was passed to the function, “Ryan’s phone number is XXX-

XXX-XXXX and his SSN is XXX-XX-XXXX” will be returned.

	 6.	 The last line of the function returns the result of the SSN and

phone masking using the return function.

Here is the complete code for the function:

mask_text <- function(unmask_text){

 phone_pattern = "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

 ssn_pattern = "\\d{3}-\\d{2}-\\d{4}"

 cleanned_text <- str_replace(

 unmask_text, pattern = phone_pattern,

 replacement = "XXX-XXX-XXXX")

 cleanned_text <- str_replace(

 cleanned_text, pattern = ssn_pattern,

 replacement = "XXX-XX-XXXX")

 return(cleanned_text)

}

Chapter 7 Advanced String Manipulation and Pattern Matching

240

The logic needed to perform the SSN and Phone Number masking is abstracted in

the mask_text function. So, when we need to perform a SSN mask and Phone Number

mask, we can do so with a simple function call. Abstracting the business logic in a

function makes the code much more readable and makes it easier to reuse complex

business logic without having to rewrite the code.

�Step 3: Read the comments into a data frame

Read the contents of the Comments.csv file into a data frame and put it in the df variable

using the following code:

df <- read_csv("Comments.csv")

If you are curious to see what the data that you read in look like, you can type the

following code in the console to return a view that displays the data frame as a formatted

tabular data set:

View(df)

�Step 4: Mask the phone numbers and ssn numbers in the
comment field

In this step, you will apply the mask_text function to the Comment field. We do so via

the mutate() function from dplyr, which enables us to do an inline modification of the

Comment field. Here is the code that performs this task:

df <-

 df %>%

 mutate(Comment = mask_text(Comment))

�Step 5: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the R script editor in GetData.

Here is the complete script:

library(tidyverse)

library(stringr)

Chapter 7 Advanced String Manipulation and Pattern Matching

241

setwd("<path where the Comments.csv file is located>")

mask_text <- function(unmask_text){

 phone_pattern = "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

 ssn_pattern = "\\d{3}-\\d{2}-\\d{4}"

 cleanned_text <- str_replace(

 unmask_text, pattern = phone_pattern,

 replacement = "XXX-XXX-XXXX")

 cleanned_text <- str_replace(

 cleanned_text, pattern = ssn_pattern,

 replacement = "XXX-XX-XXXX")

 return(cleanned_text)

}

df <- read_csv("Comments.csv")

df <-

 df %>%

 mutate(Comment = mask_text(Comment))

The resulting data frame with the masked data will be exposed to Power BI as a data

set that you can add to Power BI data model. This information can be used to enhance

your Power BI data model, which will enable you to create richer visualizations.

�Masking sensitive data in Power BI using Python
We used R in the previous example to mask the SSNs and Phone Numbers in the

comments. We can do the same with Python using similar logic but just a different

programming language. You will find many instances where you can perform a

task equally as well in R or Python. The language that you used is often a matter of

personal preference. Let’s now go over how to perform the masking we just did in R

using Python.

Chapter 7 Advanced String Manipulation and Pattern Matching

242

�Step 1: Import pandas, os, and re library

As always, you start off with the library loads. The first library you will load is pandas.

You will use it to read in the data and to mask the data in the Comment field. You will

also load the os package for some minor file system task, and the re package will be used

to handle the regular expression needs in this script. Here is the code that loads the

necessary libraries:

import pandas as pd

import re

import os

�Step 2: Create the mask_text function

Next, you need to build a custom function to mask the phone numbers and SSNs that are

in the Comment field. The function in this script will take in the text from the Comment

field, find the SSNs and phone numbers in the Comment field based on a regular

expression pattern match, mask the SSNs and phone numbers, then return the text with

the mask data. Here are the steps to create the function:

	 1.	 Create the shell of the function as shown here:

def mask_text (unmask_text):

The name of the function will be mask_text. The function takes

one argument named unmask_text.

	 2.	 Create a regular expression that matches the pattern of a US

phone number and assign the value to a variable named phone_

pattern:

phone_pattern = r"([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

The preceding regular expression is a common expression used to

match phone numbers. Many common patterns such as patterns

to match phone numbers and SSNs are easily found via a Bing or

Google searches.

Chapter 7 Advanced String Manipulation and Pattern Matching

243

Please note the use of r before the regular expression. In Python, but not in
versions of R prior to version 4.0.0, you can prefix a string with r to tell Python you
want to treat the string as a raw string. When you do so, the backslash is treated
as its literal representation and not as a special metacharacter. This prevents you
from having to escape the backslashes.

	 3.	 Create a regular expression that matches the pattern of a SSN and

assign the value to a variable named ssn_patterns:

ssn_pattern = r"\d{3}-\d{2}-\d{4}"

The pattern of a SSN is three digits, followed by a dash, followed

by two digits, followed by another dash, and ending with four

digits. In the preceding regular expression, you use \d to identify a

digit and you use {n} to tell the regular expression how many times

you want to match the preceding pattern. So \d{3} in the regular

expression says that you want to match three consecutive digits.

The regular expression in this example is lax and will result

in many false-positive matches because only certain digit

combinations can be used in a SSN. There are more complicated

regular expressions that you can use to reduce the number of

false positives, but the higher level of complexity may make them

much harder to read. When using regular expressions, you must

consider the trade-off of accuracy and interpretability.

	 4.	 The phone numbers are masked using the following code:

cleanned_text = re.sub(

 phone_pattern, "XXX-XXX-XXXX", unmask_text)

In the preceding code, the re.sub function is used to mask any

phone numbers that are found in the text with Xs. One of the

things that make this function different than the Text.Replace

function in Power Query is that you are able to use regular

expressions with this function.

Chapter 7 Advanced String Manipulation and Pattern Matching

244

	 5.	 The SSNs are masked in the comments using the following code:

cleanned_text = re.sub(

 ssn_pattern, "XXX-XX-XXXX", cleanned_text)

The code above takes the results of the phone mask and applies a

similar technique using the ssn_pattern pattern.

	 6.	 The last line of the function returns results of the SSN and phone

number masking using the return statement.

Here is the complete code needed to create the function:

def mask_text (unmask_text):

 phone_pattern = \

 r"([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

 ssn_pattern = r"\d{3}-\d{2}-\d{4}"

 cleanned_text = re.sub(

 phone_pattern, "XXX-XXX-XXXX", unmask_text)

 cleanned_text = re.sub(

 ssn_pattern, "XXX-XX-XXXX", cleanned_text)

 return cleanned_text

The logic needed to perform the SSN and Phone Number masking is abstracted in

the mask_text function. So, when you need to mask SSNs and Phone Numbers, you can

do so with a simple function call. Abstracting the business logic in a function makes the

code much more readable and makes the business logic easier to reuse.

�Step 3: Set the working directory

Set the working directory to the location of the Comments.csv file using the

following code:

os.chdir("<path to folder that contains the Comments.csv file")

Chapter 7 Advanced String Manipulation and Pattern Matching

245

�Step 4: Read the comments into a data frame

Read the contents of the Comments.csv file into a data frame using pandas and assign the

data frame to a variable named df using the following code:

df = pd.read_csv("Comments.csv")

�Step 5: Mask the phone numbers and SSNs

The following code does an inline update of the Comment field by applying

mask_text() function to the Comment field via the apply() method of that field:

df.Comment = df.Comment.apply(mask_text)

�Step 6: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the Python script editor in

GetData. Here is the complete script:

import pandas as pd

import re

import os

def mask_text (unmask_text):

 phone_pattern = \

 r"([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

 ssn_pattern = r"\d{3}-\d{2}-\d{4}"

 cleanned_text = re.sub(

 phone_pattern, "XXX-XXX-XXXX", unmask_text)

 cleanned_text = re.sub(

 ssn_pattern, "XXX-XX-XXXX", cleanned_text)

 return cleanned_text

os.chdir("<path to folder that contains the Comments.csv file")

df = pd.read_csv("Comments.csv")

df.Comment = df.Comment.apply(mask_text)

df

Chapter 7 Advanced String Manipulation and Pattern Matching

246

The resulting data frame with the masked data will be exposed to Power BI as a data

set that you can add to Power BI model. The added data can be used to help you tell a

better data story.

�Counting the number of words and sentences
in reviews
When many think of data science, they think of algorithms that predict a numerical

outcome or the probability of an event occurring. Little do they know you are not limited

to doing those types of predictions in data science. A subset of data science includes

techniques to work with unstructured text. This area of data science is called Natural

Language Processing (NLP). Techniques used in NLP, such as sentiment analysis or topic

analysis, are pretty advanced and are hard to build. In the next chapter, we will leverage

Microsoft Cognitive Services to perform those types of tasks in Power BI. But there are

more simple NLP techniques we can use without the need to make API calls to services

like Microsoft Cognitive Services. We will cover two of those techniques in this chapter.

The two techniques we will cover are counting the number of words and sentences in a

corpus of text. Let’s illustrate with an example.

Sarah is a data analyst for Yelp. She has been tasked to add additional information

to a report that Yelp gives their customers. The report contains the customer reviews,

and Sarah’s boss, Jessica, wants her to add a column that contains the number of words

in each review and a column that contains the number of sentences in each review. She

was able to accomplish both requirements in R but was only able to perform a word

count in Python. Here are the steps she used to perform the task in R.

�Counting the number of words and sentences in reviews
in Power BI using R
In this example, we will use R to calculate both the number of words in a yelp review and

the number of sentences in the review. As we have done before, we will lean on the tools

in tidyverse to help us with this task.

Chapter 7 Advanced String Manipulation and Pattern Matching

247

�Step 1: Import tidyverse and stringr

The two packages that will be used in this script are the tidyverse metapackage and

stringr. The dplyr package from tidyverse will be used to add a column to the data set that

contains a word count and to add another column that contains the sentence count. The

str_count function from the stringr package is doing the heavy lifting in this script:

library(tidyverse)

library(stringr)

�Step 2: Change working directory to location of the file

As always, you use the setwd() function to set the working directory to the location where

your data is. In this example, you set it to the location where the Yelp data is using the

following code:

setwd("<file path to where the file is located>")

�Step 3: Read in the Yelp data

The read_csv function from readr is used to read in the Yelp data into an R data frame.

The data frame is assigned to the df variable using the following code:

df <- read_csv("yelp_training_set_review_sample.csv")

�Step 4: Subset the columns

The Yelp data set is very wide. It contains many columns, and you are only interested

in a subset of them. So, you need to create a workflow that starts with the df data frame,

then subset it to only include the columns you are interested in. That is done using the

following code snippet:

df <-

 df %>%

 select(id, business_categories, business_review_count,

 business_stars, business_state, business_type,

 stars,text)

Chapter 7 Advanced String Manipulation and Pattern Matching

248

�Step 5: Add word count and sentence count columns

Now you need to add two columns to your data frame, one named word_count and

another one named sent_count. The word_count field will store the number of words in

the review, and the sent_count field will contain the number of sentences in the review.

You will accomplish both tasks using the str_count function from stringr as illustrated in

the following code:

mutate(word_count =

 str_count(text, boundary("word"))

 ,sent_count = str_count(text, boundary("sentence"))

)

The str_count function uses the boundary function to specify the type of count you

want to do. Notice how easy it is to do a word count and sentence count! It is a simple

function call! Performing a sentence count in Power Query is not feasible, but it is a

simple function call in R.

�Step 6: Copy the script into Power BI

Here is the complete script:

library(tidyverse)

library(stringr)

setwd("<path to Yelp file>")

df <- read_csv("yelp_training_set_review_sample.csv")

df <-

 df %>%

 select(

 id

 ,business_categories

 ,business_review_count

 ,business_stars

 ,business_state

 ,business_type,stars,text) %>%

Chapter 7 Advanced String Manipulation and Pattern Matching

249

 mutate(

 word_count = str_count(text, boundary("word"))

 ,sent_count = str_count(text, boundary("sentence"))

)

Copy the entire script and paste it in the R script editor in GetData so you can add

the resulting data frame to the Power BI data model. The data set is now available to

enhance your Power BI data model to enable you to more effectively tell your data story.

�Counting the number of words in reviews in Power
BI using Python
In this example, you will use Python to calculate the number of words in a Yelp review.

For many tasks, both R and Python will be equally suitable, but there will be situations

where one language is more suitable to perform a task than the other. That is the case

here. The solution to calculate the number of sentences in a review was not as apparent

in Python as it was in R, so we will focus on just doing the word count. The steps you can

use to do a word count are listed here.

�Step 1: Import pandas and os

The two libraries that you will use in this script are pandas and os. The pandas library

will be used to read the data from the Yelp file and also to calculate the number of words

in the review. The os package will be used for some file system tasks. Here is the code

used to import the two packages:

import pandas as pd

import os

�Step 2: Change working directory to the location of the file

The working directory is set to the location where the Yelp file is located using the os.

chdir() function. Here is the code needed to perform the task:

os.chdir(r"<file path to Yelp file>")

You are able to use the traditional file path convention because you prefaced the file

path string with r to tell python that you want the raw version of the string. A path like

C:\Users\Public will work because you will not need to escape the backslashes. This is

Chapter 7 Advanced String Manipulation and Pattern Matching

250

a feature that has been available in Python for some time now but just came available in

R in version 4.0.0.

�Step 3: Read the Yelp data into Python

The contents of the Yelp file are read into Python via the read_csv() method from pandas

and assigned to the variable df using the following code:

df = pd.read_csv("yelp_training_set_review_sample.csv")

�Step 4: Create the word_count column

This step is accomplished using the following code:

df["word_count"] = df["text"].str.split().apply(len)

The code is very succinct, but a lot is going on. Let’s unpack it. First, pandas uses the

split() method from the str class to split the words in the text and put them in a pandas

list. So, if the content in the text field was “The cat in the hat.”, the split function will split

the text and put it in a list that contains five elements that looks like this: [The, cat, in, the,

hat.]. The default delimiter for the split function is a white space which is what you need in

this situation. If you were to stop here, you will be left with a data frame that has a column

named word_count that is populated with a bunch of lists that are based on the text field.

The reason why you converted the text field to a list is to take advantage of a

particular list property. You can use the len function against a list to get the number of

elements in it. In the case here, each element in the list represents a word in the text, so

the result of applying the len function against it will be a good proxy for the word count.

The latter is done by using the apply() method to apply the len function to the list created

by the split() function.

�Step 5: Copy the script into Power BI

The complete script looks like this:

import pandas as pd

import os

os.chdir(r"<file path to the folder where the Yelp file is>")

Chapter 7 Advanced String Manipulation and Pattern Matching

251

df = pd.read_csv("yelp_training_set_review_sample.csv")

df["word_count"] = df["text"].str.split().apply(len)

You need to copy this script and paste it into the Python editor in Power BI. The resulting

data frame will be available to add to the Power BI data model.

�Removing names that are in an invalid format
Data in source systems is often messy and not well formatted. In many instances, the

data needs to be scrubbed before it can be used in reporting. That is the case in the

example that follows.

In this scenario, Jonathan, a consultant for SQLWeave, is responsible for ETL, and he

needs to scrub names from DimEmployees dimension table that are not in a valid format

before he loads the data into Power BI. Only names that are in the FN MI LN or FN LN

format will be accepted where FN stands for First Name, MI stands for Middle Initial, and

LN stands for Last Name. Jonathan developed a script in both R and Python to handle

this task. Here are the steps he used to perform the task in R.

�Removing names that are in an invalid format in Power
BI using R
Here are the steps required to scrub the names using R. We will accomplish the task

using tools that are made available in the tidyverse. Here are the steps.

�Step 1: Import tidyverse and stringr

You will use the tidyverse metapackage and stringr in this script. The readr package from

tidyverse is used to read in the data that is contained in the DimEmployee.csv file into an

R data frame, and dplyr from tidyverse is used to do an inline modification of the Name

field. The modification will leverage the str_extract() function from the stringr package.

The following code imports the required packages:

library(tidyverse)

library(stringr)

Chapter 7 Advanced String Manipulation and Pattern Matching

252

�Step 2: Change working directory to location where
the DimEmployee.csv file is

The setwd() function is used to set the working directory to the file path that contains

the file:

setwd("<file path to DimEmployee.csv file>")

�Step 3: Create a regular expression to match a valid name

The regular expression that will be used to match a proper name is defined here and

assigned to the nameWithOrWithoutMiddleInitial variable:

nameWithOrWithoutMiddleInitial = "(^[A-Z][a-z]{1,10}\\s[a-zA-Z]\\s[A-Z]

[a-z]{1,10}$)|(^[A-Z][a-z]{1,10}\\s[A-Z][a-z]{1,10}$)"

The regular expression may look complicated, but it is actually quite simple. Let’s

break it down into steps:

	 1.	 The regular expression is matching two name patterns: one in the

format of FN MI LN and other in the format of FN LN where FN

is first name, MI is middle initial, and LN is last name. The two

patterns are separated with a pipe, which stands for a logical “OR”.

The FN MI LN pattern in the regular expression is in blue, and the

FN LN pattern in the regular expression is in red:

(^[A-Z][a-z]{1,10}\\s[a-zA-Z\\s[A-Z][a-z]{1,10}$)|(^[A-Z][a-z]
{1,10}\\s[A-Z][a-z]{1,10}$)

	 2.	 Now let’s break down the blue section. Recall that the blue section

is matching the pattern FN MN LN. We will focus on the FN part

first. The regular expression uses the following code to identify the

FN: ^[A-Z][a-z]{1,10}. The ^ tells the regular expression that

you are starting the match from the beginning of the string. The

^ is followed by [A-Z] which tells the regular expression that the

first character must match a capital letter between A and Z. Next

is [a-z]{1,10}. That combination tells the regular expression that

the next 1–10 characters should be a lowercase letter between a

and z. This gives the regex flexibility to match a first name that has

a length of 2–11 letters.

Chapter 7 Advanced String Manipulation and Pattern Matching

253

	 3.	 The MI in the blue part of the regular expression is matched using

the following code: \\s[a-zA-Z]\\s. The \\s is used in regular

expression to match white spaces. Recall that the \ is a special

metacharacter, so if you want to literally use a backslash in your

regular expression, you need to escape it with another backslash.

The MI needs to be a single upper- or lowercase letter, and

[a-zA-Z] matches that situation. A white space is needed between

the MI and LN, so \\s is used to match that criteria.

	 4.	 Last, we need to match the last name on the blue section. That is

done using the following pattern: [A-Z][a-z]{1,10}$. The [A-Z]

tells the regular expression that the first letter in the LN needs

to be uppercase. The [a-z]{1,10} combination tells the regular

expression that the subsequent letters in the last name must be

lowercase and {1,10} says that you can have 1–10 lowercase

letters. The $ in the regular expression terminates the match.

	 5.	 The FN LN match is in red. The only difference is that \\s[a-zA-Z]\\s

is removed because you are trying to match a name that does not

have a middle initial.

�Step 4: Read the data into a data frame

Read in the contents of the DimEmployee.csv file into an R data frame and assign it to the

df variable using the following code:

df <- read_csv("DimEmployee.csv")

�Step 5: Do an inline update of the Name column

The code used to perform this step is listed as follows:

df <-

 df %>%

 mutate(Name = str_extract(Name,nameWithOrWithoutMiddleInitial))

The mutate() function is used to do the inline update. The str_extract() function from

stringr tests the Name field to see if it matches the regular expression pattern defined in

the nameWithOrWithoutMiddleInitial variable. If it finds a match, it will extract the text

that matches the pattern from the Name field. Otherwise, it returns nothing.

Chapter 7 Advanced String Manipulation and Pattern Matching

254

�Step 6: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the R script editor in GetData.

Here is the complete script:

library(tidyverse)

library(stringr)

setwd("C:/Users/rwade/Downloads/Chapter5/Chapter5")

nameWithOrWithoutMiddleInitial = "(^[A-Z][a-z]{1,10}\\s[a-zA-Z]\\s[A-Z]

[a-z]{1,10}$)|(^[A-Z][a-z]{1,10}\\s[A-Z][a-z]{1,10}$)"

df <- read_csv("DimEmployee.csv")

df <-

 df %>%

 mutate(Name = str_extract(Name,nameWithOrWithoutMiddleInitial))

The resulting data frame with the masked data will be exposed to Power BI as a data

set that you can add to Power BI model.

�Removing names that are in an invalid format in
Power BI using Python
Here are the steps required to scrub the names using Python. We will accomplish the

task using pandas, re, and os. Here are the steps.

�Step 1: Import pandas, re, and os library

You will use pandas, re, and os in this script. The pandas library is used to read in the

data in the DimEmployee.csv file into a Python data frame and is also used to do an inline

modification of the Name field. The modification will leverage some functions from the

re library to perform some regular expression tasks. It will also use the os package to

handle the file system tasks. Here is the code used to import those libraries:

import pandas as pd

import re

import os

Chapter 7 Advanced String Manipulation and Pattern Matching

255

�Step 2: Change working directory to the location where
the DimEmployee csv file is

The script uses the os.chdir() to change the working directory to the location that

warehouses the DimEmployee.csv file using the following code:

os.chdir(r"<file to the DimEmployee.csv file>")

�Step 3: Read in the DImEmployee data into an R data frame

The read_csv() method from the pandas package is used to read in the contents of the

DimEmployee.csv file into a pandas data frame, and it is assigned to the df variable using

the following code:

df = pd.read_csv("DimEmployee.csv")

�Step 4: Create a regular expression that matches a valid name

The regular expression that you will use that matches a proper name is defined as

follows:

r'([A-Z][a-z]{1,10}\s[a-zA-Z]\s[A-Z][a-z]{1,10})|' \

r'([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})'

The regular expression is compiled using the compile method from the re package,

and it is assigned to the nameWithOrWithoutMiddleInitial variable. The regular

expression may look complicated, but it is actually quite simple. Let’s break it down

into steps:

	 1.	 The regular expression is matching two name patterns: one in the

format of FN MI LN and other in the format of FN LN where FN

is first name, MI is middle initial, and LN is last name. The two

patterns are separated with a pipe, which stands for a logical “OR”.

The FN MI LN part of the pattern in the regular expression is in

blue, and the FN LN part of the pattern of the regular expression

is in red. The expression is prefaced with r, which tells Python to

Chapter 7 Advanced String Manipulation and Pattern Matching

256

treat the string as a raw string. Raw strings interpret backslashes in

a literal fashion and not as a special character, so backslashes in a

raw string do not need to be escaped:

r’([A-Z][a-z]{1,10}\s[a-zA-Z\s[A-Z][a-z]{1,10})|’ \

r’([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})’

	 2.	 Now let’s break down the blue section. Recall that the blue section

is matching the pattern FN MN LN. We will focus on the FN part

first. The regular expression uses the following code to identify

the FN: [A-Z][a-z]{1,10}. The [A-Z] part of the regex says that

that the first character in the pattern should match a capital

letter between A and Z. Next is [a-z]{1,10}. That combination

of characters tells the regular expression that the next 1–10

characters should be a lowercase letter between a and z. This gives

the regex flexibility to match a first name that has a length of 2–11

characters.

	 3.	 The MI in the blue part of the regular expression is matched

using the following code: \s[a-zA-Z]\s. The \s is used in regular

expression to match a white space. The MI needs to be a single

upper- or lowercase letter, and [a-zA-Z] matches that situation.

A white space is needed between the MI and LN, so \s is used to

match that criteria. You did not need to use a backslash to escape

your backslashes because the regular expression string was

converted to a raw string so the backslash is not interpreted as a

special character.

	 4.	 Next, you need to match the last name. That is done using the

following pattern: [A-Z][a-z]{1,10}. The [A-Z] tells the regular

expression that the first letter in the LN needs to be uppercase.

The [a-z]{1,10} combination tells the regular expression that the

subsequent letters in the last name must be lowercase, and {1,10}

says that you can have 1–10 lowercase letters. The $ in the regular

expression terminates the expression.

	 5.	 The FN LN match is in red. The only difference is that \s[a-zA-Z]\s

is removed because we don’t need to match a middle initial.

Chapter 7 Advanced String Manipulation and Pattern Matching

257

The previous five steps illustrated how simple regular expressions are and how easy

it is to match patterns with them. The pattern we used earlier was simple, but there

are many features in regular expressions that enable you to match some complicated

patterns. They are very powerful and are a must in a data analyst toolkit.

�Step 5: Compile the regular expression

The code required to perform this step is given here:

namepattern = \

 r'([A-Z][a-z]{1,10}\s[a-zA-Z]\s[A-Z][a-z]{1,10})|' \

 r'([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})'

nameWithOrWithoutMiddleInitial = re.compile(namepattern)

First, we assign the regular expression that was created in Step 4 to a

variable named namepattern. Then we create an object pattern named

nameWithOrWithoutMiddleInitial using the compile() method from re. The object will

be used to perform the pattern matching in later steps.

�Step 6: Define a function that executes the name test

The name of the function that performs the scrubbing is scrubName. Here is the code:

def scrubName(name):

 m = nameWithOrWithoutMiddleInitial.fullmatch(name)

 if m:

 return m.group(0)

 else:

 return None

The function takes one argument which is the name you want to scrub.

The first line of code in the function uses the fullmatch() method from the

nameWithOrWithoutMiddleInitial regular expression object. This method takes the

name argument that was passed to the function and tests to see if the name fully

matches the pattern defined in nameWithOrWithoutMiddleInitial. Note that you did not

have to use a ^ or $ to define the beginning and end of your pattern since you are doing a

full match.

Chapter 7 Advanced String Manipulation and Pattern Matching

258

The result is stored in m. If there is a match, then a match object is returned;

otherwise, None is returned which is Python’s equivalent to null. The match object has

many different methods. The one you will use is the group() method. Let’s illustrate with

a simple regular expression:

import re

p = re.compile("(Ryan)\\s(Wade)")

m = p.fullmatch("Ryan Wade")

m.group(0)

m.group(1)

m.group(2)

The regular expression used here is a literal expression that matches my name. My

first name and last name are put into groups using parentheses. So if I passed the string

“Ryan Wade” to p, fullmatch() will obviously find a match, and it will break the match

in three groups. If I want to return the full matched string “Ryan Wade”, use m.group(0)

because 0 returns the full match. If I want to return just “Ryan”, use m.group(1), and if I

just want to return “Wade”, use m.group(2).

So, let’s go back to the scrubName function. If a match is found, you want to return

the entire string. You can retrieve the full match using group 0. If a match is not found,

then None is returned.

�Step 7: Apply the function to the column to scrub the name

An inline update is done using the following code:

df["Name"] = df.Name.apply(scrubName)

The apply method of the Name field is used to apply the scrubName function to the

Name field.

�Step 8: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the Python script editor in

GetData. Here is the complete script:

import pandas as pd

import re

import os

Chapter 7 Advanced String Manipulation and Pattern Matching

259

os.chdir(r"<file to the DimEmployee.csv file>")

df = pd.read_csv("DimEmployee.csv")

namepattern = \

 r'([A-Z][a-z]{1,10}\s[a-zA-Z]\s[A-Z][a-z]{1,10})|' \

 r'([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})'

nameWithOrWithoutMiddleInitial = re.compile(namepattern)

def scrubName(name):

 m = nameWithOrWithoutMiddleInitial.fullmatch(name)

 if m:

 return m.group(0)

 else:

 return None

df["Name"] = df.Name.apply(scrubName)

The resulting data frame will be made available to the Power BI data model.

�Identifying patterns in strings based on
conditional logic
Most string parsing functions can be handled relatively easily using Power Query’s

native functionality. But when your string parsing is based on conditional logic, the

code can get verbose and hard to understand. Fortunately, many situations that require

string parsing with conditional logic can be handled more succinctly in R and Python

via regular expressions. Let’s illustrate how the fictitious company, MC Diesel, solved a

business problem by using regular expressions based on conditional business logic to

parse a string.

Rodney is the Executive Director for MC Diesel. He knows that MC Diesel had

issues in the past with two parts they manufacture. The two parts are fuel pumps (part #

561769) and fuel injectors (part # 561394). The issues were localized to plants in AL, LA,

and OH and only occurred in models A and B.

Rodney tasked his data scientist, Annie Su, to develop a dashboard with drill-

through capabilities to help him further diagnose and monitor the problem. The only

data Annie was able to obtain was a report with information listed in Table 7-1.

Chapter 7 Advanced String Manipulation and Pattern Matching

260

It appears that the report does not contain any information that identifies warehouse

location or part number and that information is needed for the analysis. Annie is very

smart, and she remembered that the SKU number is not some arbitrary number. She

knows that each part of the number has meaning. She knows that the first six digits

represent the part number, the digits in positions 7 and 8 are the state FIPS code of the

warehouse where the product was made, the character in position 9 represents the

model, and the digit in position 10 represents the shift that the product was made in. So,

an item with a SKU of 56176922A2 represents the following:

•	 A fuel pump because the first six digits, 561769, are the product

numbers for fuel pumps

•	 Was manufactured in Louisiana because the digits in positions 7 and

8, 22, are the state FIPS code for the state of Louisiana

•	 Has a model type of A because the character in position 9 is “A”

•	 Was manufactured during the second shift because the digit in

position 10 is 2

Annie needs to create a calculated column that returns the part number from the

SKU if the following conditions are met:

Table 7-1.  Parts Report

Date Key SKU Shift Store ID Recalled

20190813 75197726D3 3 263 False

20191211 70136522D1 1 221 False

20190401 70195609A3 3 92 False

20191228 75102709B1 1 91 False

20190304 70162016C3 3 161 True

20191218 70136526D2 2 263 False

20190322 70162029D1 1 291 False

20191012 70136539C2 2 395 False

20190318 56176926B2 2 262 False

Chapter 7 Advanced String Manipulation and Pattern Matching

261

•	 Is a fuel pumps made in AL, LA, or OH with a model type of A or B.

•	 Is a fuel injectors made in AL, LA, or OH with a model type of A or B.

If she performed this task using Power Query, the resulting code will be very verbose

but much more succinct using R or Python. The following steps illustrate how Annie was

able to create a solution using R.

�Identifying patterns in strings based on conditional logic
in Power BI using R
We will leverage regular expressions to match the products using the criteria defined

earlier. This example will illustrate how succinctly we are able to describe the logic

needed to find the SKUs we are looking for. The same criteria would be very verbose in

Power Query if you had to use M code. Let’s go over the steps.

�Step 1: Import the tidyverse and stringr packages

The first step is to import the required packages. The readr from tidyverse is used to read

in the contents of the ProductionOrders.csv file into an R data frame. The dplyr package

is used to handle the data frame manipulation tasks, and the stringr package is used

to handle the string manipulation tasks. Here is the code used to import the preceding

packages:

library(tidyverse)

library(stringr)

�Step 2: Change the working directory

The working directory is changed to the file path that contains the ProductionOrders.csv

file using the setwd() function as illustrated in the following code:

setwd("<Path to ProductionOrders.csv file>")

Chapter 7 Advanced String Manipulation and Pattern Matching

262

�Step 3: Create a function that identifies the products

The name of the function to handle this task is monitoredProducts. Here are the steps to

create the function:

	 1.	 Create the shell of the function using the following code:

monitoredProducts <- function(sku){

}

The monitoredProducts product function will require just one

parameter, sku.number.

	 2.	 Next, you need to define a regular expression that finds all fuel

pumps (561769) and injectors (561394) that were created in AL,

LA, or OH with a model type of A or B. You also want to return just

the product number portion of the SKU and not the entire SKU

number. You can accomplish this in regular expressions by using a

positive lookahead.

The website www.rexegg.com says that a positive lookahead

asserts that what immediately follows the current position in the

string is the pattern you are looking for. Let’s look at the regular

expression in this script and break down what that statement

means. Here is the regular expression in question:

pattern = "^(561769|561394)(?=(01|22|39)(A|B))

The positive lookahead portion of the preceding regular

expression is (?=(01|22|39)(A|B)). The structure of a positive

lookahead is a regular expression grouped in parenthesis that

starts with ?=. The pattern that follows the ?= is the pattern that

must follow the preceding pattern in order for the match to pass.

So, the regular expression identified in the pattern variable will

find a match in the SKU number if it

•	 Starts with 561769 or 561394

•	 Is preceded by state FIPS codes for AL, LA, or OH

•	 Has a model type of A or B

Chapter 7 Advanced String Manipulation and Pattern Matching

http://www.rexegg.com

263

This will make more sense when you use it in the function in Step 5.

	 3.	 In this step, you extract out the portion of the SKU that matches

your regular expression pattern using the following code:

mp = str_extract(sku, pattern = pattern)

	 4.	 The code uses the str_extract() function to extract the strings

that match the regular expression you define in Step 2. It will

only return the product code portion of the string if there is a

match. Let’s illustrate how it works with an example. If you passed

56176939A2 to the preceding function, R will return 561769. That

is because not only does the string pass the first condition because

it starts with 561769 but it also passes the positive lookahead

test because positions 7–8 in the string are 39 which is one of the

acceptable state FIPS codes and position 9 is A which is one of the

acceptable models. Alternatively, 56176910D2 returns NA because

the positive lookahead fails. The state FIPS code 10 is not one of

the FIPS codes you are looking for. The same hold true for the

model because model D is not a model that you are looking for.

�Step 4: Read in the data from the ProductionOrders.csv file into
an R data frame

The contents of the ProductionOrders.csv file are read into R and stored in the df variable

using the readr package using the following code:

df <- read_csv("ProductionOrders.csv")

�Step 5: Add a column to the df named “Monitored Products”

Next, you write code that performs a simple workflow of adding a new column to the

data frame named Monitored Products using the mutate() function from dplyr package.

Here is the code needed to perform that action:

df <-

 df %>%

 mutate(`Monitored Products` = monitoredProducts(SKU))

Chapter 7 Advanced String Manipulation and Pattern Matching

264

The preceding code uses the mutate() verb from dplyr to create the Monitored

Products column that is based on the results of applying the monitoredProducts() custom

function against the SKU column.

�Step 6: Copy the script into Power BI

Here is the complete script:

library(tidyverse)

library(stringr)

setwd("<Path to ProductionOrders.csv file>")

monitoredProducts <- function(sku){

 pattern = "^(561769|561394)(?=(01|22|39)(A|B))"

 mp = str_match(sku, pattern = pattern)[1]

 return_value = ifelse(is.na(mp),"Not Monitored", mp)

 return(return_value)

}

vmonitoredProducts = Vectorize(monitoredProducts)

df <- read_csv("ProductionOrders.csv")

df <-

 df %>%

 mutate(`Monitored Products` = vmonitoredProducts(SKU))

This script creates a data frame named df that can be added to the Power BI data

model via the R script editor in GetData.

�Identifying patterns in strings based on conditional logic
in Power BI using Python
In this section, we will perform the task we just completed in R with Python. As in the R

example, the main tool that will be leveraged are regular expressions. You will see in this

example that regular expressions are implemented in Python differently than they are in

R. Here are the steps required to perform the task in Python.

Chapter 7 Advanced String Manipulation and Pattern Matching

265

�Step 1: Import pandas, re, and os library

The three libraries that are used in this script are pandas, re, and os. The pandas package

is used to read in the data into the script and is used to add a new column to the data

frame. The re package is used to leverage regular expressions, and the os package is used

for file system tasks. The code used to do the import is listed as follows:

import pandas as pd

import re

import os

�Step 2: Change working directory

Next, you need to change the working directory to the location on your computer where

the ProductionOrders.csv file is located using the chdir() function from os. Here is a code

snippet that shows what the code would look like:

os.chdir("<path to folder that contains ProductionOrders.csv>")

�Step 3: Compile the required regular expression

Next, you need to define a regular expression that finds all fuel pumps (561769) and

injectors (561394) that were created in AL, LA, or OH and have a model type of A or

B. You also want to return only the product number portion of the SKU and not the

entire SKU number. You can accomplish this in regular expressions by using positive

lookahead.

The website www.rexegg.com says that a positive lookahead asserts that what

immediately follows the current position in the string is the pattern you are looking

for. Let’s look at the regular expression in this script to break down what that statement

means. Here is the regular expression in question that uses a positive lookahead:

pattern = "^(561769|561394)(?=(01|22|39)(A|B))

The positive lookahead portion of the preceding regular expression is (?=(01|22|39)

(A|B)). The structure of a positive lookahead is a regular expression grouped in

parenthesis and starts with ?=. The pattern that follows the ?= is the pattern that must

follow the preceding pattern in order for the match to pass.

Chapter 7 Advanced String Manipulation and Pattern Matching

http://www.rexegg.com

266

So, the regular expression identified in the pattern variable will pass if it

•	 Starts with 561769 or 561394

•	 Is preceded by state FIPS codes for AL, LA, or OH

•	 Has a model type of A or B

This will make more sense when you use it in the function in Step 5. After you

define the regular expression, you create a regular expression object named pattern by

compiling it using the compile() function from the re package. This is all accomplished

using the following code:

pattern = re.compile(r"^(561769|561394)(?=(01|22|39)(A|B)\d{1}$)")

�Step 4: Define a function that returns the monitored products

The name of the custom function that you will create that identifies the monitored

products is monitoredProducts. Here are the steps to create the function:

	 1.	 First, you need to create the shell of the function that accepts the

SKU as its only parameter. You do so using the following code:

def monitoredProducts(sku):

	 2.	 Next, you attempt to create a match object using the pattern object

you defined earlier using the following code:

m = pattern.match(sku)

If the SKU passed to it matches the regular expression compiled

in the pattern object, then a match group is returned. If the SKU

passed to it does not pass the test, then None is returned which is

Python equivalent of null.

	 3.	 Next, you extract the pattern from the SKU number passed to

match function in Step 2 if there is a match. You do so using the

following code:

if m == True:

 return m.group(0)

else:

 return "Not Monitored"

Chapter 7 Advanced String Manipulation and Pattern Matching

267

As stated in Step 2, when the code in Step 2 finds a match, a match

object with a Boolean value of True is returned. Otherwise, the

keyword None is returned. The preceding if statement is used to

see if a match object was returned. If one is returned, you get the

group in position 0 that represents the complete match. If one is

not returned, then the function returns “Not Monitored”.

�Step 5: Read in the data into Pandas data frame

In this step, you read in the contents of ProductionOrders.csv into a data frame named df

using the following code:

df = pd.read_csv("ProductionOrders.csv")

�Step 6: Create a new column named “Monitored Products”

In this step, you add a column named Monitored Products using the following code:

df["Monitored Products"] = df["SKU"].apply(monitoredProducts)

The preceding code applies the monitoredProducts() custom function you created to

the SKU column and assigns the results to a new column named Monitored Products.

�Step 7: Copy the script into Power BI

Here is the complete script:

import pandas as pd

import re

import os

os.chdir("<path to ProductionOrders.csv file>")

pattern = re.compile(r"^(561769|561394)(?=(01|22|39)(A|B)\d{1}$)")

def monitoredProducts(sku):

 m = pattern.match(sku)

 if m == True:

 return m.group(0)

Chapter 7 Advanced String Manipulation and Pattern Matching

268

 else:

 return "Not Monitored"

df = pd.read_csv("ProductionOrders.csv")

df["Monitored Products"] = df["sku"].apply(monitoredProducts)

Copy the preceding script and paste it into the Python editor via GetData in Power BI

so that you can add it to the Power BI data model.

�Summary
In this chapter, we covered several different string manipulation methods that are

available to you in Power BI via R and Python. The examples covered may not directly tie

to cases you experience in your data wrangling task, but with minor changes to the code,

I am sure you can find ways to apply some of these techniques to your situations.

Chapter 7 Advanced String Manipulation and Pattern Matching

269
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_8

CHAPTER 8

Calculated Columns
Using R and Python
A task that is difficult to do in Power Query is adding calculated columns that are based

on complex mathematical formulas. That problem does not exist in R or Python. R was

built by statisticians, so it was designed to perform complex statistical and mathematical

calculations. The same holds true with Python. Python is not only used in data science

but also in other computation-intensive fields such as engineering and physics. Like

R, Python is optimized to be able to perform calculations that are not possible using M

in Power Query. So, in situations where you need to add a calculated column based on

a complicated computation in Power BI, you should consider leveraging R or Python.

You will not only benefit from the fact that R and Python handle complex computations

better but, in many cases, you may find that R and/or Python may have a pre-built

function that does the heavy lifting for you.

Let’s use a scenario to illustrate this point. Imagine you are a Sr. Analyst for Gee’s

Trucking, Inc. Gee’s Trucking, Inc. recently acquired another trucking company, and

they now have over 100 drivers that are operating out of three terminals in metro

Indianapolis, IN.

The owner, Gee Troll, wants to calculate the commute distance to work for each of

his employees to get an estimate of the average commute distance. Ultimately, he wants

to know if any of his drivers would have a shorter commute if they switch terminals. You

know that you can easily approximate the distance between two geographical locations

using the Haversine formula that you learned in college.

The Haversine formula can be used to estimate the distance between two points
on earth given their longitudes and latitudes. The formula works because the earth
is shaped like a sphere.

https://doi.org/10.1007/978-1-4842-5829-3_8#DOI

270

You present to your manager four solutions: two solutions using R and two solutions

using Python. The two R solutions consist of one custom solution and one solution that

leverages a pre-built function. The same holds true for the two solutions in Python. All

four solutions require that the addresses are geocoded.

Geocoding is the process of transforming an address to a geographical coordinate
made up of a latitude and longitude value. A latitude measures how far north or
south a geographical location is from the equator, and the longitude measures how
far east or west a geographical location is from the prime meridian.

Here are the basic steps of the process:

	 1.	 Generate a Google API key that will be used to communicate with

the Google Geocoding API.

	 2.	 Geocode the addresses using Google Geocoding API in R and in

Python.

	 3.	 Calculate the distance between each employee’s home address

and the terminal that they work from using a custom function in R

and in Python.

	 4.	 Calculate the distance between each employee’s home address

and the terminal they work from using a pre-built function in R

and in Python.

Let’s start by generating your Google API key.

�Create a Google Geocoding API key
�Step 1: Log into the Google console
Log into the Google console by going to the following URL: https://console.cloud.

google.com/. If you don’t have a Google account, you will have to create one; otherwise,

you should be able to log into the console using your credentials.

Chapter 8 Calculated Columns Using R and Python

https://console.cloud.google.com/
https://console.cloud.google.com/

271

�Step 2: Set up a billing account
In order to use Google APIs, you need a payment method attached to your account. At

the time of writing, Google was offering $300 in credits to test their APIs, which is more

than enough to do this demo. If you go over the credits that are allotted to you for free,

Google will use the payment method you provided to secure the payment. To set up your

payment method, select Navigation Menu ➤ Billing ➤ Payment method in the menu as

illustrated in Figure 8-1.

�Step 3: Add a new project
Next, you need to create a project with geocoding enabled. Make the following menu

selections to create a project: Navigation Menu ➤ IAM & admin ➤ Manage resources.

The menu selection is illustrated in Figure 8-2.

Figure 8-1.  Setting up Google payment method

Chapter 8 Calculated Columns Using R and Python

272

Click the CREATE PROJECT button located in the upper right-hand portion of the

screen as illustrated in Figure 8-3.

Populate the form to create the project.

Figure 8-2.  Navigation to Manage resources

Figure 8-3.  Creating a new Google project

Chapter 8 Calculated Columns Using R and Python

273

�Step 4: Enable Geocoding API
Perform the following steps to enable geocoding in your project:

	 1.	 Select Navigation Menu ➤ APIs & Services ➤ Library as illustrated

in Figure 8-4.

	 2.	 Search for the Geocoding API in the Search for APIs & Services

textbox as illustrated in Figure 8-5.

	 3.	 Enable the Geocoding API by clicking the Enable button.

Figure 8-4.  Navigating to the Library

Figure 8-5.  Searching for Geocoding API

Chapter 8 Calculated Columns Using R and Python

274

	 4.	 Create credentials by doing the following steps:

•	 Select Navigation Menu ➤ APIs & Services ➤ Credentials in the

menu bar.

•	 Click Create credentials and choose API key as illustrated in

Figure 8-6.

•	 An API key should appear, and you should receive the option

to restrict the API key. You want to add restrictions to your API

key to help prevent unauthorized use. Click Restrict Key to set

up your restrictions. You will see the web form in Figure 8-7. For

this exercise, I recommend to only accept requests from your IP

address and restrict the key to the Geocoding API. You can do

so by using the configurations in Figure 8-7. After you make the

configurations, click the SAVE button to save.

Figure 8-6.  Generating API key

Chapter 8 Calculated Columns Using R and Python

275

	 5.	 You now have an API key configured with restrictions. Save your

key in a safe place. If you misplace it, you can go back to the

Google console to get a copy of your API key.

�Geocode the addresses using R
Now that you have your Google API key configured, you can use R to leverage the API to

geocode the addresses in the EmployeeList.csv file. The process of geocoding will convert

each address to a coordinate that represents a point on the earth, which is defined by a

longitude and latitude value. The longitude value tells you how far east or west you are

from the prime meridian, and the latitude value tells you how far north or south you are

Figure 8-7.  Configuring API restrictions

Chapter 8 Calculated Columns Using R and Python

276

from the equator. Having addresses in this format makes it possible to perform spatial

analytics. The type of spatial analytics that you are going to perform in this exercise is

estimating the distance between two addresses. The script in Listing 8-1 shows how to

geocode addresses in R by leveraging the Google API.

Listing 8-1.  Geocoding addresses with R using the Google API

library(tidyverse)

library(ggmap)

register_google(key = "<put API key here>")

setwd("<path to folder that host EmployeeList file>")

EmployeeList <- read_csv("EmployeeList.csv")

EmployeeList <-

 EmployeeList %>%

 mutate_geocode(EmployeeAddress, sensor = FALSE) %>%

 rename(lon_EmployeeAddress = lon, lat_EmployeeAddress=lat) %>%

 mutate_geocode(TerminalAddress, sensor = FALSE) %>%

 rename(lon_TerminalAddress = lon, lat_TerminalAddress = lat)

write_csv(EmployeeList, "EmployeeList.csv")

At this point of the book, you have a decent understanding of R, so I won’t be

as pedantic with my explanations as I was early on in the book. Here are succinct

explanations of the script broken out in logical steps:

	 1.	 Start by importing the required package. A new package, ggmap,

is introduced in this script. The main use for the ggmap package

is visualizing spatial data, but you will be using it to geocode the

addresses.

	 2.	 You use the Google Geocoding API service to geocode the

addresses. In order to do so, you need to register your API key

using the register_google() function.

	 3.	 Next, you read in the Employee.csv file.

Chapter 8 Calculated Columns Using R and Python

277

	 4.	 Next, you use dplyr and the mutate_geocode() verb from ggmap to

add the geocode information to your data set. Like the mutate()

verb from dplyr, mutate_geocode() is used to add, or project, new

columns to your data frame. The mutate_geocode() specifically

adds the coordinates of the addresses passed to it. It adds a

column named lon that contains the longitudes of the addresses

passed to it and a column named lat that contains the latitudes of

the addresses passed to it.

	 5.	 Next, you use the rename() verb from dplyr to give the lon and lat

columns a more meaningful name.

You have two options that you can use to rename columns using dplyr, rename( ),
and select( ). What makes rename() different than select( ) is that rename keeps all
other columns in your data set and not only the ones you are renaming, whereas
select( ) only keeps the columns you have in your select verb whether it be
columns you are renaming or columns you are selecting from your data frame.

	 6.	 You do Steps 4 and 5 for the TerminalAddress.

In this exercise, you were able to communicate with the Google API via R to geocode

the addresses. Making API calls with Power Query is not as easy when you are not

on premium compacity. If you are using Power BI Premium, you have the option to

use Microsoft Cognitive Services, but that is it. With R and Python, you don’t have that

limitation. In this example, we used the Google API to geocode the addresses, but later

in the book, we will show how you can leverage other APIs such as IBM Watson Natural

Language Understanding. In the next section, you will learn how to geocode your

addresses in Python.

�Geocode the addresses using Python
In the previous section, you geocoded your addresses using the Google API via R. In this

section, you will do the same using Python. As stated in the previous section, working

with APIs in Power Query is much harder unless you are using the relatively expensive

Power BI Premium. The following script in Listing 8-2 shows how to geocode addresses

in Python by leveraging the Google API.

Chapter 8 Calculated Columns Using R and Python

278

Listing 8-2.  Geocoding addresses with Python using the Google API

import pandas as pd

import os

from geopy import geocoders

g_api_key = "<API Key>"

g = geocoders.GoogleV3(g_api_key)

os.chdir("<path to folder where the EmployeeList file is located>")

EmployeeList = pd.read_csv("EmployeeList.csv")

EmployeeList["EmployeeAddressGC"] = \

 EmployeeList["EmployeeAddress"].apply(g.geocode)

EmployeeList["lat_EmployeeAddress"] = \

 EmployeeList["EmployeeAddressGC"].apply(lambda x: x.latitude)

EmployeeList["lon_EmployeeAddress"] = \

 EmployeeList["EmployeeAddressGC"].apply(lambda x: x.longitude)

EmployeeList["TerminalAddressGC"] = \

 EmployeeList["TerminalAddress"].apply(g.geocode)

EmployeeList["lat_TerminalAddressGC"] = \

 EmployeeList["TerminalAddressGC"].apply(lambda x: x.latitude)

EmployeeList["lon_TerminalAddress"] = \

 EmployeeList["TerminalAddressGC"].apply(lambda x: x.longitude)

cols = ["EmployeeAddressGC", "TerminalAddressGC"]

EmployeeList.drop(cols, inplace=True)

EmployeeList.to_csv("EmployeeList.csv", index = False)

Chapter 8 Calculated Columns Using R and Python

279

Because you are at the point in the book where you should have developed a good

understanding of Python, the code explanations will not be as verbose as they were

earlier in the book. Here is the explanation of the preceding Python script broken out in

logical steps:

	 1.	 You start with your library imports. The new module that is being

used in this script is the geocoders module from the geopy library.

This module is used to take care of the geocoding.

	 2.	 Next, you create an object, g, that is based on the Google API class,

GoogleV3. This object will be used to query the GoogleV3 API class

to geocode the addresses.

	 3.	 Next, you read in the Employee.csv file.

	 4.	 The data set contains two addresses that need geocoding, the

EmployeeAddress address and the TerminalAddress address. First,

the EmployeeAddress is geocoded by using the apply method of

the EmployeeAddress column to apply the geocode function from

object g using the following line of code:

EmployeeList["EmployeeAddressGC"] = EmployeeList

["EmployeeAddress"].apply(g.geocode)

The preceding line of code creates a location.Location object that

contains the geocoding information you need plus more. The

object is stored in the EmployeeList[“EmployeeAddressGC”] field.

You will extract information from that object in subsequent steps.

	 5.	 Next, you create the lat_EmployeeAddress column by extracting

information from the EmployeeAddressGC column created in

Step 4. As mentioned earlier, if Google was successful at

geocoding the address that you sent to it, Google will send you

a location.Location object that contains the address, latitude,

and longitude. You are interested in the latitude and longitude.

You can extract that information from the location.Location by

applying a lambda function to the EmployeeAddressGC field.

Chapter 8 Calculated Columns Using R and Python

280

A lambda function is a nameless function that only has one expression. They are
identified with the keyword lambda, followed by the arguments, followed by the
expression as illustrated here: lambda arguments: <expression>. They
provide a succinct way of applying functions to pandas data frames.

Use the following lambda function to extract the latitude from

EmployeeAddressGC: lambda x: x.latitude. The x in the lambda

function represents the EmployeeAddressGC field. The code

x.latitude enables you to access the latitude property in x.

	 6.	 Next, you create the lon_EmployeeAddress column by using the

same steps that you performed in Step 5 but replacing latitude

with longitude.

	 7.	 Next, you repeat Steps 4, 5, and 6 for the TerminalAddress field.

	 8.	 Next, you remove the unneeded columns from your data frame.

You only needed EmployeeAddressGC and TerminalAddressGC

to extract the latitude and longitude of the employee address and

terminal address. Those fields are no longer needed, so you can

remove them. An easy way to do that is using the drop method of

the EmployeeList data frame. That is done using the following code:

cols = ["EmployeeAddressGC", "TerminalAddressGC"]

EmployeeList.drop(cols, inplace=True)

The cols variable contains the list of columns you want to drop. By

default, the drop method will not act directly on the data frame.

If you want it to act directly on the data frame and permanently

remove the specified columns, you need to set the inplace

argument to True.

In this exercise, you were able to communicate with the Google API via Python to

geocode the addresses. You were able to perform a task relatively easy in Python that

would have been much harder in Power Query. In the next section, you will learn how

to use the geocoded information to estimate distance in miles using a custom function

built in R.

Chapter 8 Calculated Columns Using R and Python

281

�Calculate the distance with a custom function
using R
In the previous exercise, you setup your Geocoding API and you geocoded your

addresses. Now the data is in the proper format to calculate the distance. Listing 8-3 is

the R script that calculates the distances in miles between the employee addresses and

their terminal.

Listing 8-3.  Calculating distance in R using a custom function

library(tidyverse)

ComputeDist <-

 function(pickup_long, pickup_lat, dropoff_long, dropoff_lat) {

 R <- 6371 / 1.609344

 delta_lat <- dropoff_lat - pickup_lat

 delta_long <- dropoff_long - pickup_long

 degrees_to_radians = pi / 180.0

 a1 <- sin(delta_lat / 2 * degrees_to_radians)

 a2 <- as.numeric(a1) ^ 2

 a3 <- cos(pickup_lat * degrees_to_radians)

 a4 <- cos(dropoff_lat * degrees_to_radians)

 a5 <- sin(delta_long / 2 * degrees_to_radians)

 a6 <- as.numeric(a5) ^ 2

 a <- a2 + a3 * a4 * a6

 c <- 2 * atan2(sqrt(a), sqrt(1 - a))

 d <- R * c

 return(d)

 }

setwd("<path to folder where the EmployeeList file is located>")

EmployeeList <- read_csv("EmployeeList.csv")

EmployeeList <-

 EmployeeList %>%

 mutate(

 `Custom Distance Function Results` =

 round(

Chapter 8 Calculated Columns Using R and Python

282

 ComputeDist(

 lon_EmployeeAddress,

 lat_EmployeeAddress,

 lon_TerminalAddress,

 lat_TerminalAddress

),1

)

)

The code is unpacked into the following logical steps:

	 1.	 First, you need to load the required package. The only one needed

in this script is the tidyverse metapackage because most of the

functionality needed is already included in base R.

	 2.	 Next, you create a custom function named ComputeDist to

calculate the distance. The ComputeDist custom function requires

four parameters: the latitude and longitude of the Employee and

Terminal addresses, respectively.

Notice how involved the calculation is. Performing this type of

math in Power Query using M would be much harder to do and

would not be as performant as it is in R. I will not explain how this

calculation works because it is beyond the scope of this book. The

purpose of this example is to show how R does a much better job

than M at performing math-intensive calculations.

	 3.	 Next, you load the EmployeeList.csv file.

	 4.	 Next, you use the mutate() verb from dplyr to add a new column

named Custom Distance Function Results to the EmployeeList data

frame. The name Custom Distance Function Results was used to

make it clear that a custom function was used to calculate the

distance. The four required arguments are passed to the function,

and the round() function is used to round the returned value to

one decimal point.

	 5.	 The last thing you do is copy the entire script and add it to the

Power BI data model via the R script editor in GetData.

Chapter 8 Calculated Columns Using R and Python

283

In this exercise, you were able to create a calculated column based on a custom

function in five easy steps. The nice thing about using a custom function is that you were

able to abstract the complexities of the math needed to perform the calculation in a

custom function and you were able to invoke it whenever it is needed. The result is code

that is more readable and easier to maintain.

�Calculate the distance with a custom function
using Python
In a previous step, you geocoded your addresses using the Google Geocoding API. Now

the data is in the proper format to calculate the distance. Listing 8-4 is the Python script

that you will use to estimate the distance in miles between the employee address and

their terminal.

Listing 8-4.  Calculating distance in Python using a custom function

import pandas as pd

import numpy as np

import os

from math import cos, sin, atan2, pi, sqrt, pow

def ComputeDist(row):

 R = 6371 / 1.609344 #radius in mile

 delta_lat = row["lat_TerminalAddressGC"] -

 row["lat_EmployeeAddress"]

 delta_lon = row["lon_TerminalAddress"] -

 row["lon_EmployeeAddress"]

 degrees_to_radians = pi / 180.0

 a1 = sin(delta_lat / 2 * degrees_to_radians)

 a2 = pow(a1,2)

 a3 = cos(row["lat_EmployeeAddress"] * degrees_to_radians)

 a4 = cos(row["lat_TerminalAddress"] * degrees_to_radians)

 a5 = sin(delta_lon / 2 * degrees_to_radians)

 a6 = pow(a5,2)

Chapter 8 Calculated Columns Using R and Python

284

 a = a2 + a3 * a4 * a6

 c = 2 * atan2(sqrt(a), sqrt(1 - a))

 d = R * c

 return d

os.chdir("<path to folder where the EmployeeList file is>")

EmployeeList = pd.read_csv("EmployeeList_Python.csv")

EmployeeList["Custom Function"] = \

 EmployeeList.apply(lambda row: ComputeDist(row), axis=1)

Let’s unpack the preceding code into logical steps:

	 1.	 First, you need to load the required library. What’s new in this

script are some functions from the math library. These functions

are used to calculate the distance.

	 2.	 Next, you create custom function named ComputeDist() that

estimates the distance in miles between two geographical points.

The function requires one parameter, and that is the entire row

from the data frame. You will extract the information from the row

that is needed to perform the calculation. The calculation is very

involved, and performing this type of math in Power Query using

M would be harder to do and not as performant as it is in Python.

I will not explain how this calculation works because it is beyond

the scope of this book. The purpose is to show how Python does a

much better job at performing math-intensive calculations than M.

	 3.	 Next, you load the EmployeeList.csv file.

	 4.	 Next, you use the apply method to apply a lambda function on the

EmployeeList data frame. The complete line of code is as follows:

EmployeeList["Custom Function"] = (

 EmployeeList.apply(lambda row: ComputeDist(row), axis=1))

Chapter 8 Calculated Columns Using R and Python

285

The use of the parentheses in the preceding code enables you to continue code
on a subsequent line, making the code more readable. The subsequent lines must
follow the indentation rules defined in PEP8. PEP8 outlines the rule for formatting
your Python code. You can read more about PEP8 at this URL: https://
realpython.com/python-pep8/.

You were exposed to lambda functions earlier in the chapter. The

lambda functions you used were applied to a specific column in

a data frame, but the lambda function in this example is being

applied to the whole data frame. When you apply a lambda

function to a data frame, you have the option of telling pandas if

you want to apply it to the 0 axis or 1 axis. If you apply it to the 0

axis, then the lambda function will be applied top-down, but if

you apply it to the 1 axis, it will be applied left to right. Let’s make

things simpler with an example.

Let’s create a small data frame with the code beneath to illustrate

how to apply a lambda function to a data frame:

df = pd.DataFrame((

 {'A':[10, 20, 30], 'B':[15, 5, 10]}))

The preceding code produces the following data frame:

A B

0 10 15

1 20 5

2 30 10

If you want to get the sum for each column, you need to work

along the 0 axis so you can operate from top to down. You do so

using the following code:

df.apply(sum, axis = 0)

Chapter 8 Calculated Columns Using R and Python

https://realpython.com/python-pep8/
https://realpython.com/python-pep8/

286

The code produces the following output:

A 60

B 30

By setting the axis to 0, the code will work “top-down” along each

column, and it will sum up all the elements in each respective

column. If you set the axis to 1, it will work left to right and for

each row, and it will sum up all the elements in each of the rows.

So, if you change the axis to 1 as illustrated in the following code

df.apply(sum, axis = 1)

It will produce the following output:

0 25

1 25

2 40

Now you understand how lambda functions work when applied

to a data frame. Let’s revisit the code in this step from the original

script. Here’s the code:

EmployeeList["Custom Function"] = (

 EmployeeList.apply(lambda row: ComputeDist(row),

 axis=1))

The preceding code is applying the lambda function to the 1 axis.

In other words, it is working left to right on each row. The entire

row is passed to the ComputeDist() function. The ComputeDist()

function extracts the information it needs for the calculation from

the row object that was passed to it. Note that you are not limited

to aggregation functions when you use the apply method against a

data frame.

Chapter 8 Calculated Columns Using R and Python

287

	 5.	 Copy the preceding script in Listing 8-4 to add the data frame

that is generated by the script to the Power BI data model via the

Python script editor in GetData.

Like in the previous R exercise, you were able to create a calculated column based on

a custom function in five easy steps. Like in R, you were able to gain the benefit of having

code that is more readable and easier to maintain when you use custom functions to

create calculated columns in Power BI using Python.

�Calculate distance with a pre-built function
in Power BI using R
In the previous two sections, you learned how to develop custom functions in both R

and Python to efficiently perform computations that are math-intensive. Even though it

was not that hard to implement a math-intensive custom function, there are often much

easier solutions. At the time of this writing, the R programming language has over 15K

packages, and the Python programming language has well over 110K libraries. Often you

can find a solution to your problem in one of the many packages and libraries that are

available in R and Python, respectively.

That is the case with the calculating distance between two geographical points.

Instead of refactoring a mathematical formula in R code or Python code, you can

leverage a pre-built function. In this exercise, you will learn how to leverage the

geosphere package in R to perform the distance calculation. The complete script you will

use is in Listing 8-5.

Listing 8-5.  Calculating distance in R using a pre-built function

library(tidyverse)

library(geosphere)

setwd("<path to folder where the EmployeeList file is located>")

EmployeeList <- read_csv("EmployeeList.csv")

EmployeeList <-

 EmployeeList %>%

 rowwise() %>%

 mutate(

Chapter 8 Calculated Columns Using R and Python

288

 `Geosphere Function Result` =

 distHaversine(

 c(lon_EmployeeAddress, lat_EmployeeAddress),

 c(lon_TerminalAddress, lat_TerminalAddress)

) / 1609.34

)

Let’s unpack the code into logical steps:

	 1.	 First, load the required packages. The new package in this script is

the geosphere package. You will leverage this package to perform

the spatial calculations.

	 2.	 Next, you load the contents of the EmployeeList.csv file into the

EmployeeList data frame.

	 3.	 Next, you add a new column named Geosphere Function to the

EmployeeList data frame. You are using the chaining method in

dplyr to create a workflow that adds a column to the data frame

that calculates the distance based on the distHaversine function.

The first step of the workflow tells dplyr that you are starting with

the original data frame. The second step of the workflow passes

the data frame to the rowwise() function. The rowwise() function

is necessary because the distHaversine() function that is used in

the subsequent step is not vectorized.

A vectorized function works on a whole vector at the same time. Columns in a data
frame are vectors. When you apply a vectorized function against a vector, you don’t
need to implement in looping logic.

The rowwise() function tells all subsequent tasks in the workflow

to only consider the elements in the current row in the calculation.

The last step performs the calculation using the distHaversine()

function from the geosphere package. The distHaversine()

function returns the distance in meters, so multiplying the results

by 0.000621371 converts the value to miles.

Chapter 8 Calculated Columns Using R and Python

289

	 4.	 As always, you need to copy the entire script in Listing 8-5 to the

Python editor in Power BI so that you can add the resulting data

set to the Power BI data model.

In this exercise, you were able to leverage a pre-built function from the geosphere

package that abstracted the complexity of the calculation from you. The function that

was used was the distHaversine() function. All you had to do was pass the function the

required parameters and it performed the calculation for you. In the next exercise, you

will use similar functionality in Python.

�Calculate distance with a pre-built function
in Power BI using Python
The following Python script (Listing 8-6) uses a pre-built function to calculate the

distance.

Listing 8-6.  Calculating distance in Python using a pre-built function

import pandas as pd

import os

from haversine import haversine

os.chdir(r"<file path to folder that contains EmployeeList.csv>")

EmployeeList = pd.read_csv("EmployeeList.csv")

def useHaversine(row):

 point_one = \

 (row["lat_EmployeeAddress"], row["lon_EmployeeAddress"])

 point_two = \

 (row["lat_TerminalAddress"], row["lon_TerminalAddress"])

 return haversine(point_one, point_two, unit="mi")

EmployeeList["Haversine Function Result"] = \

 EmployeeList.apply(lambda row: useHaversine(row), axis=1)

Chapter 8 Calculated Columns Using R and Python

290

Let’s unpack the preceding code into logical steps:

	 1.	 First, you need to load the required libraries. The new library

in this script is the haversine library. This library is leveraged to

perform the spatial calculations.

	 2.	 Next, you load the contents of the EmployeeList.csv file into the

EmployeeList data frame.

	 3.	 Next, you define the useHaversine() function. The function accepts

the entire row as its input. Information is easily extracted from

the row passed to the function using methods you have already

learned. The useHaversine() custom function in this example uses

the haversine() function from the haversine library to calculate the

distance. You pass three parameters to the haversine() function:

the coordinates of the location_one, the coordinates of location_

two, and the units that you want the distance in. The location_one

and location_two variables need to be in a form of a tuple with

the first element in the tuple being the latitude and the second

element in the tuple being the longitude.

The reason why the Haversine() function from the Haversine

library is wrapped in the useHaversine() custom function

is because the Haversine() function is not vectorized. If the

Haversine() function was vectorized, it would be able to operate

on all the rows in the data frame in parallel, but since it is not, it

can only operate on one row at a time. That is why a single row is

passed to the useHaversine() function.

	 4.	 Next, create a column named Haversine Function Result that will

contain the distance between the Employee’s address and the

Terminal using the following code:

EmployeeList["Haversine Function Result"] = Employee

List.apply(lambda row: useHaversine(row), axis=1)

A lambda function is applied to the EmployeeList data frame along

axis 1. As you learned earlier in the custom function example, this

enables you to pass the entire row to the useHaversine() function.

Chapter 8 Calculated Columns Using R and Python

291

	 5.	 Last, but not least, copy the script and paste it into the Python

editor in Power BI so that the resulting data frame can be added to

the Power BI data model.

In this exercise, you were able to leverage a pre-built function from the Haversine

library that abstracted the complexity of the calculation using the Haversine formula

from you. The function that was used was the Haversine() function. Just like in R, you

were able to leverage a pre-built function that performs the mathematical calculations

for you using Python. All you had to do was make a function call.

�Summary
This chapter illustrated two very important techniques. The first technique was how

to use R and Python to create calculated columns based on a complex mathematical

formula. The example in this chapter showed how R and Python handle complex math

much better than M does in Power Query. The same would hold true when comparing

R and Python to DAX for most scenarios. The second technique showed how to use

pre-built functions from one of the many packages and libraries in R and Python,

respectively. The exercise used pre-built R and Python functions based on the Haversine

formula, but chances are that one of the 15,000+ R packages and one of the 110,000+

Python libraries have a pre-built function that you can use to abstract the complexity of

the distance calculation from you for the vast majority of your calculation needs.

The ability to use R and Python in Power BI to create calculated columns can be used

to overcome many other Power Query limitations. In addition to performing complex

calculations, you can also use R or Python to

•	 Create a calculated column that imputes values for missing data

points based on algorithms that are more accurate than common

methods such as using the mean or the mode

•	 Create a calculated column based on complex string manipulations

as you learned in Chapter 7

•	 Create a calculated column that is based on a machine learning

algorithm that you will learn in Chapter 9

•	 And many more

The possibilities are numerous!

Chapter 8 Calculated Columns Using R and Python

PART IV

Machine Learning and
AI in Power BI Using
R and Python

295
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_9

CHAPTER 9

Applying Machine
Learning and AI to Your
Power BI Data Models
Having a mature enterprise business intelligence solution has become the norm for

many organizations. A considerable number of firms have well-governed Enterprise

Data Warehouses (EDWs) that are updated via sophisticated ETL processes. They

use reporting tools such as SQL Server Report Services (SSRS) and Power BI to help

the business gain valuable insights about their business. Organizations that fall in

this category have done a great job of leveraging BI, and they are primed to introduce

artificial intelligence (AI) to their data strategy. Here are a few ways AI can be used to

enhance a mature business intelligence system:

•	 A bike shop can use a logistic regression model to add an attribute to

their customer dimension table to identify customers that are likely

to buy a bike within the next year.

•	 A retail company can use the k-means clustering algorithm to add

an attribute to their customer dimension table that segments their

customers for marketing purposes.

•	 An online retailer can use a logistic regression model to add an

attribute to their customer dimension table that can be used to

identify customers that are likely to churn.

•	 A restaurant can use sentiment analysis to add a sentiment attribute

to their customer dimension table based on the customer’s reviews.

https://doi.org/10.1007/978-1-4842-5829-3_9#DOI

296

These types of AI-generated attributes can be very valuable and are not easily

calculated using traditional means. Once these AI-generated attributes are added to your

data model, they can be used like any other attribute in your dimension tables. They can

be used in your Power BI visuals, tables, and matrixes.

In this chapter, you will learn how to leverage AI in your Power BI data models. This

chapter focuses on self-service methods, but later in the book, you will learn methods to

operationalize your AI models at scale without the need of Power BI Premium.

Power BI Premium has a feature called AI Insights that facilitates applying AI to
your Power BI data models. This book will not cover AI Insights because of the
price associated with it. All examples in this book can be done without the need for
premium compacity.

The chapter will introduce you to multiple ways you can apply AI to your Power BI

data. You will learn

•	 How to score your Power BI data using custom machine learning

models built in R and Python

•	 How to use Microsoft Cognitive Services to apply sentiment analysis to

your Power BI data model

•	 How to use IBM Watson Natural Language Understanding to apply

tone analysis to your Power BI data model

This chapter focuses on self-service methods, but later in the book, you will learn

how to operationalize some of the techniques outlined in this chapter for enterprise

solutions. Let’s get started with scoring your data using custom models built in R and

Python!

�Apply machine learning to a data set before
bringing it into the Power BI data model
Here is the scenario. You work for a real estate analytics firm in the city of Boston, MA.

Your data scientist was asked to help you predict median house prices in Boston.

She helped you by developing a machine learning model in both R and Python using the

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

297

Boston housing data set from Kaggle. She saved the models for you in a shared directory.

You will use those models to score a new data set that contains a list of homes whose

prices you want to predict.

The new data set contains 14 variables, but the model your data scientist developed

only uses 4 of them. Here are the four variables that the model uses:

•	 CRIM: Per capita crime rate by town

•	 RM: Average number of rooms per dwelling

•	 TAX: Full-value property-tax rate per $10,000

•	 LSTAT: % lower status of the population

You will create both an R and Python script for Power BI that will perform the

scoring. First, you will start with R.

�Predicting home values using R
Applying machine learning models developed by a data scientist to your Power BI data

models is straightforward. The steps to do so in R are outlined as follows. This book will

not cover how to build the actual models because that is outside the scope of this book.

The focus will be on how to apply a model that was created for you. Here are the steps.

�Step 1: Have the data scientist share the model with you

An R model is an object that can be saved to disk. After the data scientist builds the

model, she can save the model to disk and share it with you in the same manner that she

would share any other file. The process used to serialize the model to disk is very easy to

do in R and can be accomplished with one line of code. Here’s the code:

saveRDS(model, "model.rds")

The preceding code will take the model that the data scientist created that is stored

in the variable named model and save it to disk as a *.rds file in your working directory

using the saveRDS() function. The saveRDS() function is part of the base package.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

298

�Step 2: Load the tidyverse package

You will start developing the script to score the data in this step. You only need the

tidyverse package in this script, but most of what you will do can be handled with R’s

base functionality. The tidyverse metapackage is loaded using the following code:

library(tidyverse)

�Step 3: Load the model object and the data set to be scored

You do so using the following code:

model <- readRDS("./Model/model.rds")

boston_housing <- read_csv("./Data/BostonHousingData.csv")

The readRDS() function allows you to deserialize the model from disk so that you

can use it in your script. You used the read_csv() function from the readr package to read

in the data that needs to be scored into an R data frame named boston_housing.

�Step 4: Subset the data frame so that it only contains
the columns needed for the model

The data set has 13 variables, but you only need 4 of them for the model. You subset the

variables you need from the boston_housing data frame using the following code:

model_data <- boston_housing[,c("crim","rm","tax","lstat")]

The empty space after the bracket followed by the comma tells R that you want to

include all rows. The character vector that follows the comma tells R the columns that

you want to subset. So, the preceding code produces a data frame that contains all the

rows from the boston_housing data frame but only the columns listed in the character

vector. Now you have a data set that only contains the data needed for the model via the

model_data data frame.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

299

�Step 5: Apply the model to your data set to predict the median
home values

You accomplish this task with the following code:

pred_medv <- predict(model, model_data)

The preceding code returns a vector that contains the median home value

predictions for each observation that was passed to it.

The formal definition of an observation is a recording of qualities and quantities
of an observable phenomenon in the natural world. So, in this example, the
observable phenomenon is the information you have about each house you want to
predict.

Note that the data frame passed to the predict() function must contain the variables

(columns) that are needed in the model.

�Step 6: Add the predictions to the original data set

The code from Step 5 only returned a vector of data, which is meaningless by itself. You

need to combine it back to the original data set. You can easily do so using the following

code:

final_output <- cbind(model_data,pred_medv)

The code uses the cbind() function to attach a column to the end of the model_data

data frame, then assigns the resulting data frame to a variable named final_output. The

c in cbind() stands for column. In this case, it binds the vector pred_medv to the model_

data data frame as a new column and gives the new column the name of the vector,

which in this case is pred_medv.

�Step 7: Copy the entire R script into the Power BI data model

The final script is below in Listing 9-1.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

300

Listing 9-1.  R Script to predict Boston housing prices

library(tidyverse)

model <- readRDS("./Models/model.rds")

boston_housing <- read_csv("./Data/BostonHousingInfo.csv")

model_data <- boston_housing[, c("crim","rm","tax","lstat")]

pred_medv <- predict(model, model_data)

final_output <- cbind(model_data, pred_medv)

Like before, you copy the script, then go to GetData ➤ More ➤ Other in Power

BI. Next, you click R script and paste the script inside the R editor in Power BI. After that,

you click OK. The final_output data frame will be exposed to you by Power BI as a data

set that you can bring into the Power BI data model. You can combine it with other data

sets in the Power BI data model, create measures that use the predictions, or create

visualizations using the scored data.

�Predicting home values using Python
In this section, you will also predict Boston house prices, but you will do so using Python

instead of R. As in the R example, the focus will be on how to apply a model that was

created for you because the creation of the model is outside the scope of the book. Here

are the steps in Python.

�Step 1: Have the data scientist share the model with you

Like with R, a Python model is an object that can be saved to disk so it can be shared with

you in the same manner that the R model was shared earlier. The process to serialize the

model to disk in Python is very easy to do, and it can be accomplished with one line of

code after importing the joblib library. Here’s the code:

import joblib

joblib.dump(model,"model")

The preceding code takes the model that the data scientist created for you and saves

it to disk in the current working directory using the joblib.dump() function from the

joblib library. After the model has been saved to disk, the data scientist can share the

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

301

model with you in a shared repository such as OneDrive or Dropbox. A process known as

MLOps may be used in a more sophisticated shops so the model may be shared with you

via a repository such as GitHub or Azure DevOps in that scenario.

�Step 2: Load the necessary Python libraries needed for the script

This is the step where you actually start building the script that will do the scoring in

Power BI. Here is the code needed for your import section of your Python script:

import os

import joblib

from sklearn import preprocessing

import pandas as pd

The joblib library is used to deserialize the model that the data scientist shared with

you, the preprocessing module from scikit-learn provides you with tools to transform your

data to get it ready for scoring, and the pandas library will handle your data frame needs.

�Step 3: Load the model object and the Boston homes data set

You can do so using the following code:

model = joblib.load("../Models/model_Python.pkl")

boston_housing = pd.read_csv("../Data/BostonHousingInfo.csv")

The joblib.load function is very similar to the readRDS function we used in R. It

allows you to deserialize the model from disk so that you can use it in your script. You

used the read_csv method in pandas to read in the data that needs to be scored into a

pandas data frame. Note that both file paths used are prefix with a “..”. Prefixing your file

path with a “..” enables you to start your relative file path referencing one level up from

your currently working directory. The Models and Data folder are at the same level as

the Python folder which is the folder the current working directory is set to. Using the

“..” allows you to go one level up to the Chapter09 folder which enables you to access the

contents in Models folder and Data folder.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

302

�Step 4: Extract the information needed from the bost_housing
data frame

The data set that you are using has 13 variables, but you only need 4 of them for the

model. After you extract the variables from the bost_housing data frame that you need,

you will need to standardize them.

Standardization is often required by models in scikit-learn. It is usually
recommended in machine learning when working with variables that have
different scales, as do the variables used in this example. When you are developing
a model using variables of different scales, variables with the bigger values
will carry more weight and can cause bias in your model. The scale( ) function
from the preprocessing module puts all the variables on the same scale, which
alleviates that problem. Here is the URL to a YouTube video that further explains
standardization: www.youtube.com/watch?v=sh_tLn1phfc.

You subset and standardize the data you need for the model using the following code:

model_data = preprocessing.scale(

 boston_housing[["crim","rm","tax","lstat"]])

Let’s first break down the code passed to the scale() function, then explain what the

scale() function does. Here’s the code passed to the scale() function:

boston_housing[["crim","rm","tax","lstat"]].

This code subsets the boston_housing data frame so that it only includes the

columns defined in the list contained inside the brackets that are used to subset the data

frame. Next, the resulting data frame is passed to the scale() function where it will be

standardized. Once standardized, all the variables will be on the same scale.

�Step 5: Apply the model to the preprocessed data to predict
the median home values

You accomplish this task with the following code:

pred_medv = model.predict(model_data)

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

http://www.youtube.com/watch?v=sh_tLn1phfc

303

The preceding code returns an array that contains the median home value

predictions for each observation that was passed to it. The resulting output is assigned

to a variable named pred_medv. Note it is important that the model_data data frame

contains the variables that are needed in the model model.

�Step 6: Add the predictions to the original data set

The code from Step 6 only returned an array of data which is meaningless by itself.

You need to combine it back to the original data set. You can easily do so using the

following code:

final_output = boston_housing.loc[:,["crim","rm","tax","lstat"]]

final_output["pred_medv"] = pred_medv

You want to name the data set that will be passed to Power BI final_output. To do

so, you start by creating a data frame named final_output that is a subset of the boston_

housing data frame. You only need the crim, rm, tax, and lsat columns from the boston_

housing data frame.

You will use the iloc method of the boston_housing data frame to subset those

columns. The iloc method allows you to subset both the rows and the columns of a data

frame at the same time. The first argument subsets the rows, and the second argument

subsets the column. In this example, you want all rows from the boston_housing data

frame so you tell pandas that with the : symbol. Note if you wanted the first three rows,

you would use 0:2. You put the integer position of the row you want to start with on the

left of the semicolon and the integer position of the row you want to end with on the

right of the semicolon. You would start your range with 0 because python uses a 0-based

index. The next argument is used to tell pandas what columns you want to return. You

can use : if you want to return all columns, but if you want to return a subset of the

column, you can use a list that contains the columns you want to return as we did in this

example. Lastly, you append a new column named pred_medv to the final_output data

frame using the following code: final_output["pred_medv"] = pred_medv.

�Step 7: Copy the entire Python script into the Python script editor
in Power BI

The final script is shown in Listing 9-2.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

304

Listing 9-2.  Python script to predict Boston housing prices

import os

import pandas as pd

import joblib

from sklearn import preprocessing

model = joblib.load("../Models/model_Python.pkl")

boston_housing = pd.read_csv("../Data/BostonHousingInfo.csv")

model_data = preprocessing.scale(boston_housing[["crim","rm","tax","lstat"]])

pred_medv = model.predict(model_data)

final_output = boston_housing.loc[:,["crim","rm","tax","lstat"]]

final_output["pred_medv"] = pred_medv

Like in the examples before, you go to GetData ➤ More ➤ Other, then click Python

script. Next, you paste the preceding script in the Python editor, then click OK. The final_

output data frame will be exposed to Power BI as a data set that can be brought into the

Power BI data model.

If needed, the field with the prediction can be further enhanced in Power Query to

make it more valuable before it is added to the data model. For instance, if a real estate

company was using this model, they could put the predicted house prices into bins. For

instance, the houses with predicted prices less than 100K could go in the <100K bin, the

houses with predicted prices between 100K and 200K can be put into the 100–200K bin,

houses with predicted prices between 200K and 300K can be put into the 200–300K bin,

and so on. Doing this type of binning may help the business gain valuable insights about

their situation.

�Using pre-built AI models to enhance Power BI data
models
Developing AI models is not a trivial task. The amount of time it takes to develop a

model that generalizes well against real data can be resource- and time-intensive.

It often requires a team of data scientists and data engineers to accomplish such a

task. Fortunately, big software vendors such as Microsoft and IBM have developed

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

305

sophisticated AI models that are easily accessible via API calls. These models are based

on years of research that would be hard for you to replicate on your own.

In this section, you will learn how these models can be used to enhance your

Power BI data models. You will learn how to use Microsoft Cognitive Services to perform

sentiment analysis.

Sentiment analysis is used to detect how positive or negative the sentiment of a
piece of text (sentence, paragraph, tweet, etc.) is. In Microsoft Cognitive Services,
this is done by assigning a numerical score between 0 and 1. The closer the score
is to 0, the more negative the text is, and the closer the score is to 1, the more
positive the text is.

You can use sentiment analysis to enhance your Power BI data models by using it to

add attributes to your dimension tables. For instance, if you are a restaurant, the average

sentiment scores of your customer reviews can be the basis of an attribute in your

customer dimension table. Such an attribute can be used to find associations between

things such as sentiment and customer attrition. In a restaurant example, you may

discover that the majority of low sentiment scores were associated with customers who

purchased particular items on the menu.

Let’s go over the steps needed to add sentiment analysis to your Power BI model

using Microsoft Cognitive Services. The example will only be done in using Python

because R is not currently supported. You can also perform this task using AI Insights via

Power BI Dataflows, but that requires Power BI Premium which is relatively expensive

and outside the price range of many Power BI users.

�Set up Cognitive Services in Azure
You must configure Microsoft Cognitive Services in Azure before you are able to leverage

it in Power BI. You will have an Azure account if you went through the steps to create one

in the book’s introduction. If you are new to Azure, I highly recommend you sign up for

a free account. At the time of writing, Microsoft was offering $200 in free credits for the

first month! That is more than enough credits to cover all the Azure-related activities in

this book if you were to do them in the first month of service. If you don’t have an Azure

account, go to the book’s introduction to get the instructions needed to sign up for one.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

306

If you already have an Azure account, then you need to sign into the Azure Portal.

You can do so by going to portal.azure.com. After you have signed into your Azure

account, click the Create a resource button at the upper left of the page. Next click AI +

Machine Learning ➤ Text Analytics. Those actions will take you to a form that you need

to fill out to set up the Text Analytics service. Give the resource a meaningful name in

the Name textbox, attach a subscription in the Subscription textbox, set the location to

a region closest to you in the Location textbox, choose a pricing tier that is appropriate

for your needs in the Pricing tier textbox, and attach the resource to an existing resource

group or create a new one in the Resource group textbox. If you are still in your first

month, the subscription with the $200 credits will be available to you as an option for

subscriptions.

�The Data Science Virtual Machine (DSVM)
As stated earlier, this example will only be done in Python because R is not supported.

In addition to using just Python, the example will be done in the Microsoft Data Science

Virtual Machine (DSVM). The reason why the DSVM is recommended is because it

is pre-configured with the majority of the tools you need for data science. It has the

Anaconda distribution of Python pre-installed, Power BI, SQL Server, Jupyter Lab, and

Azure Data Studio, to name a few. Configuring such an environment yourself would be

hard to do, but with the DSVM, you can spin one up on demand.

Before you move forward, there are some things you need to do in your DSVM to

finish configuring your environment. You need to install some packages for Microsoft

Cognitive Services. Here are the steps you need to perform:

	 1.	 Launch your DSVM: You can do your development on your

personal desktop, but I highly recommend that you use the

DSVM. If you choose to go your own route, then start from your

environment of choice.

	 2.	 Open the conda prompt: To open the conda prompt, search for

it in the windows search bar by typing anaconda prompt. You

should see it appear in your search list. Right-click it, then launch

it as an administrator.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

https://portal.azure.com

307

	 3.	 Activate the Python environment you use for Azure development:

It is recommended that you use the AzureML environment

that comes pre-installed in the DSVM. To activate the AzureML

environment, type the following in the conda prompt:

conda activate AzureML

If you are operating in your own environment and don’t know

the environment you should use, type conda env list in the conda

prompt to get a list of the environments available to you.

	 4.	 Type the following code to install the library: Make sure you are

installing the library in the appropriate environment by activating

the desired environment using the code in Step 3.

pip install azure-cognitiveservices-language-textanalytics

�Performing sentiment analysis in Microsoft Cognitive
Services via Python
You will use the freely available data set of Yelp reviews from Kaggle in this exercise. Here

are the steps you need to go through to acquire the data and score it in Power BI.

�Step 1: Get the Yelp review data from Kaggle

At the time of the writing, the data set was available at this URL: www.kaggle.com/yelp-

dataset/yelp-dataset/version/4. Make sure to download the csv version of the yelp_

review data set for this example. The data set will be downloaded as a zip file. Unzip the

yelp_review.csv file and save it to the Data folder for this chapter in the repository.

The yelp_review.csv data set is big. It contains close to 5.3 MM reviews. You do not

need that many samples for this exercise, and it is highly recommended that you use a

sample to keep cost down to a minimum. The following script gets a random sample of

100 reviews from the yelp_review.csv data set and saves it under the yelp_review_sample.

csv file name:

import pandas as pd

import numpy as np

import os

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

http://www.kaggle.com/yelp-dataset/yelp-dataset/version/4
http://www.kaggle.com/yelp-dataset/yelp-dataset/version/4

308

os.chdir("set to your working directory")

dfYelpReviews = pd.read_csv("yelp_review.csv")

dfYelpReviewsSample = dfYelpReviews.sample(100, random_state = 1)

dfYelpReviewsSample["id"] = np.arange(len(dfYelpReviewsSample))

dfYelpReviewsSample = dfYelpReviewsSample[["id","text"]]

dfYelpReviewsSample.to_csv(

 "yelp_review_sample.csv", index = False)

Here’s how the script works:

	 1.	 Loads the required libraries: Pandas is used for some basic data

wrangling, the arange function from numpy is used to create a row

number column, and os is used to set the working directory.

	 2.	 Reads in the yelp_review data set: This is accomplished by using

the read_csv() method of the pandas.

	 3.	 Creates a sample of the data set using the sample method of the

dfYelpReviewsSample data frame: You created the sample using

just two arguments. The first argument is the sample size which,

in this case, is 100. The second argument is the random_state

argument. If you set the argument to 1 as earlier, then your sample

will return the same data set as the one used by the book’s author.

�Step 2: Import the necessary libraries, modules, and function
for the script

This step is where the development of the script begins. You will start with the imports

shown here:

import pandas as pd

import ast

import os

from azure.cognitiveservices.language.textanalytics import

TextAnalyticsClient

from msrest.authentication import CognitiveServicesCredentials

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

309

You are aware of two of the first three libraries. The ast library is new. The literal_eval

function from that library is used to evaluate a string that represents a python expression.

That functionality is used in this script. It will be explained in a subsequent step. The

TextAnalyticsClient and CognitiveServicesCredentials functions are used to communicate

with Microsoft Cognitive Services in the next step.

�Step 3: Assign values to the variables used in the script

The values of the variables are set in the script using the following code:

api_key = "<put api key here>"

endpoint = \

 "https://rwtextanalyticsapi.cognitiveservices.azure.com/"

credentials = CognitiveServicesCredentials(subscription_key)

text_analytics = TextAnalyticsClient(

 endpoint=endpoint, credentials=credentials)

You can find the value of your API key and endpoint by going to your text analytics

resource in Azure. Both can be found in the Overview page. You can get there by clicking

the Overview tab located in the upper right corner. The API key is used to create an

instance of CognitiveServicesCredentials. The credentials and the endpoint variables

are used together to create an instance of TextAnalyticsClient which is assigned to the

text_analytics variable. The text_analytics variable will be the workhorse for doing the

sentiment analysis.

Step 4: Read in the sample of the Yelp review data into Python

The following code reads in the sample into a pandas data frame. It is important that
you use the sample data set and not the entire data set. The entire data set contains

close to 5.3 MM reviews which could cause you to incur unnecessary charges. The 100

observations in the sample data set are more than enough for practice. The sample

data set that you created earlier contains two fields: the id field is used to identify each

review, and the text field contains the review that will be analyzed. The language field is

added so that Microsoft Cognitive Services know what language to use. You are using en

because that is the code for English which is the language the reviews are in.

df = pd.read_csv("< path to yelp_sample.csv>")

df["language"] = "en"

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

310

�Step 5: Transform the data frame to the format that is required
by Microsoft Cognitive Services

Microsoft Cognitive Services needs the data sent to it for sentiment analysis to be a list of

dictionaries. Here is what a list of dictionaries looks like:

documents = [

 {"id": "1",

 "language": "en",

 "text": "Football is great sport."},

 {"id": "1",

 "language": "en",

 "text": "Lamar Jackson is the best quarterback."},

 {"id": "1",

 "language": "en",

 "text": "UK football sucks!!! "}

]

The to_json method of the pandas data frame can be used to reformat the df data

frame into that format. In order to do so, you need to set the orient argument to records

as done in the following code:

documents = df.to_json(orient='records')

The output is formatted as a list of dictionaries, but Python does not see it that way.

Python just sees a string. You need to explicitly tell Python to evaluate the output of df.

to_json(orient='records') as a python expression. You can accomplish that by using

the literal_eval() function from the ast library as illustrated in the following code:

documents = ast.literal_eval(documents)

Now the documents variable contains the information Microsoft Cognitive Services

needs in the proper format. Each dictionary in the list passed to Microsoft Cognitive

Services contains three key/value pairs. The three keys are the id which is used to

uniquely identify each review that you are performing sentiment analysis on, the text

which represents the text you want to analyze, and the language you want to do your

sentiment analysis in.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

311

�Step 6: Score the reviews using the sentiment method
of the text_analytics object

The code used to score the reviews is as follows:

response = text_analytics.sentiment(documents=documents, raw = False)

It returns a list that contains a batch result item for each review that was passed to the

sentiment() method. Each batch result item has properties that hold information about

the review. The two properties that you are interested in are the id property and the

score property. You will use those two properties to build a data frame that contains the

sentiment scores in the next step.

�Step 7: Create a data frame to hold the sentiment data

You were able to score your reviews and get information returned backed to you in the

form of a list of batch result items. As stated earlier, the list contains batch result items

for each review that was sent to Microsoft Cognitive Services. Each batch result items

contains properties that expose information about the review. The two that you are

interested in are the id of the review and the sentiment score.

Here is the section of the script that uses the id and score property of each object

returned by Microsoft Cognitive Services to create the data frame:

listSentiments = []

for document in response.documents:

 id = document.id

 score = document.score

 listSentiments.append([id, score])

dfSentiments = pd.DataFrame(

 listSentiments, columns=['ID','Score'])

dfSentiments

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

312

Here is an explanation of the script broken out in steps:

	 1.	 Create an empty list and name it listSentiments: The first line

creates an empty list named listSentiments. This list will get

populated with the output retrieved from Microsoft Cognitive

Services and will ultimately get converted to a data frame in a

subsequent step.

	 2.	 Iterate through each document in response.documents using the

for loop: The for loop is used to iterate through each document in

response.documents to access the sentiment information.

	 3.	 Grab the id and score for each document: The documents returned

by each iteration contain an id and score property. You grab

those values and put them in their respective variables using the

following code:

id = document.id

score = document.score

	 4.	 Append the values from the current document to the listSentiments

list: In this step, you populate the listSentiments list with the

variables created in Step 3 via the list’s append method. The

append method uses a list based on the two variables to append

the information.

	 5.	 Create the dfSentiments data frame: The DataFrame() method

from pandas is used to convert the listSentiments list to a data

frame. A list containing the desired column names is passed to

the columns argument of the DataFrame() method to name the

columns in the data frame.

�Step 8: Add the data to Power BI

The complete script is in Listing 9-3.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

313

Listing 9-3.  Python script that uses Microsoft Cognitive Services to perform

sentiment analysis

import pandas as pd

import json

import ast

from pandas.io.json import json_normalize

from azure.cognitiveservices.language.textanalytics import (

 TextAnalyticsClient)

from msrest.authentication import CognitiveServicesCredentials

api_key = "<put api key here>"

endpoint = \

 "https://rwtextanalyticsapi.cognitiveservices.azure.com/"

credentials = CognitiveServicesCredentials(api_key)

text_analytics = TextAnalyticsClient(

 endpoint=endpoint, credentials=credentials)

df = pd.read_csv("<path to yelp_sample.csv>")

df["language"] = "en"

documents = df.to_json(orient='records')

documents = ast.literal_eval(documents)

response = text_analytics.sentiment(

 documents=documents, raw = False)

listSentiments = []

for document in response.documents:

 id = document.id

 score = document.score

 listSentiments.append([id, score])

dfSentiments = pd.DataFrame(

 listSentiments, columns=['ID','Score'])

Copy and paste the code into the Python editor in Power BI. Doing so will expose the

dfSentiments data frame to the Power BI data model.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

314

�Applying AI to your Power BI data model using
services other than Microsoft Cognitive Services
Microsoft Cognitive Services has a nice selection of AI models that you can leverage, but

they do not cover all situations. Fortunately, other vendors such as IBM and Google offer

services that you can use that are extremely powerful that can help fill in the gap. You

will find that some services are common among all vendors such as sentiment analysis,

but there are other services that may be unique to a given vendor. One such service is the

Tone Analyzer offered by IBM Watson Natural Language Understanding.

In this chapter, you will learn how to leverage IBM Watson Natural Language

Understanding to take advantage of its Tone Analyzer API in Power BI. The Tone Analyzer

is used to return the tone of the text. Some of the tones it can detect are happy, sad,

and excited, to name a few. This exercise will be done in just Python because R was not

supported by IBM Watson at the time of this writing. The next section will cover how to

set up your account in IBM Watson Natural Language Understanding, and that will be

followed by a section that covers how to use the service from a Python script in Power BI.

�Configuring the Tone Analyzer service in IBM Watson
Like with Azure, you need to get an account, then set up the Tone Analyzer service. Here

are the steps to do that.

�Step 1: Sign up for IBM Cloud account

Go to www.ibm.com/cloud/watson-natural-language-understanding/pricing to sign

up for an IBM Watson Natural Language Understanding account.

�Step 2: Log into the IBM Cloud

After you sign up, go to this URL to log in: https://cloud.ibm.com/login.

�Step 3: Go to the Tone Analyzer page

	 1.	 Click the Create Resource button at the top of the page. It will take

you to a page that has a big list of services available to you.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

http://www.ibm.com/cloud/watson-natural-language-understanding/pricing
https://cloud.ibm.com/login

315

	 2.	 Search for the Tone Analyzer service in the Search the catalog…

search box contained in the upper right portion of the page. Doing

so will filter the list down to the Tone Analyzer service. Click the

Tone Analyzer service when you see it.

�Step 4: Define your Tone Analyzer service

	 1.	 In the Select a region section, pick the region that is closest to you

in the drop-down box.

	 2.	 Choose the Lite plan in the Select a pricing plan section. That plan

is sufficient for this exercise. You may need to upgrade your plan if

your future needs take you past the free 2500 API calls you receive

per month or if you have privacy concerns.

	 3.	 In the Configure your resource section,

•	 Give your plan a meaningful name in the Service name: section.

•	 Select a resource group. If you are new to IBM Watson Natural

Language Understanding, you can go with the default resource

group. If you already have resource group(s) in IBM Watson

Natural Language Understanding, they will be available for you to

select. Like in Azure, resource groups allow you to combine your

IBM Watson Natural Language Understanding resources in one

group which facilitates access and billing.

•	 You can optionally add tags in the Tags: section which further

helps you organize and group your resources.

	 4.	 Click the Create button in the upper left to create the resource.

�Step 5: Get your API key

Your API key will be used to authenticate you when you make API calls to the IBM

Watson Natural Language Understanding service. It is very important that you keep the

API key secure.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

316

You should have been taken to a page where you can administer your Tone Analyzer

resource after you clicked the Create button in Step 4. If for some reason you were not,

you can get to it by clicking the navigation icon in the upper right corner of the page

which is pictured in Figure 9-1.

One of the options you will see is Resource List. Click it to go to the Resource list page.

You should see your Tone Analyzer resource in the Services section. Click it to go to the

page that will allow you to administer your Tone Analyzer resource.

After you arrived at the desired location, click the Manage tab in the upper right

corner pictured in Figure 9-2.

Figure 9-1.  The IBM Navigation menu

Figure 9-2.  Link to get to the page where you can manage your Tone
Analyzer service

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

317

Once there, you can get your API key by clicking the copy icon next to the API key

illustrated in Figure 9-3.

�Writing the Python script to perform the tone analysis
You can start developing the python script now that you have the resources set up in IBM

Watson Natural Language Understanding. Just like in the Microsoft Cognitive Services

example, the script will score the data and produce a data frame with the scored data

that can be brought into Microsoft Power BI. Here are the steps.

�Step 1: Import the required libraries and modules

You will start off by defining the imports you need for the script as shown in the following

code:

import json

import pandas as pd

import ast

import os

from ibm_watson import ToneAnalyzerV3

from ibm_watson.tone_analyzer_v3 import ToneInput

from ibm_cloud_sdk_core.authenticators import IAMAuthenticator

This script uses the pandas library to handle some basic data wrangling tasks and

json work. The literal_eval function from the ast library is used to execute a string

representation of some python code, and the ToneAnalyzerV3 and IAMAuthenticator are

used to perform the tone analysis. More explanations about the latter two will be given in

a subsequent step.

Figure 9-3.  Accessing your Tone Analyzer service API key

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

318

�Step 2: Create an instance of the IAMAuthenticator class

The code needed to do so is as follows:

authenticator = IAMAuthenticator("<your API key>")

This step is used for authentication. It initiates an IAMAuthenticator object based on

the API key that you generated earlier and assigns it to the authenticator variable.

�Step 3: Create an instance of the ToneAnalyzerV3 class

The code needed to do so is as follows:

service = ToneAnalyzerV3(

 version='2019-12-22',

 authenticator=authenticator

)

The code creates an instance of the ToneAnalyzerV3 class that you will use to

communicate with the IBM Watson Natural Language Understanding Tone Analyzer

service. You need to populate two parameters: the version parameter and the

authenticator parameter. The version parameter is used to tell the API which version of

the API you want to use. If a version of the API was created on the date you specified,

then that version of the API will be used. Otherwise, it will use the most recent version of

the API created before the data specified. It is important to use the date that was tested

during development to prevent your code from breaking.

�Step 4: Set the service URL of the service object

The code needed to perform this step is as follows:

service.set_service_url(

 "https://gateway.watsonplatform.net/tone-analyzer/api")

You can find your service URL by going to the Manage tab in your IBM Watson

Natural Language Understanding Tone Analyzer resource page.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

319

�Step 5: Create a data frame that will hold the data you want
to use for the tone analysis

The code is straightforward. You use the read_csv() method from pandas to retrieve the

data as illustrated here:

dfDocuments = pd.read_csv(

 "<path to the documents csv file>")

�Step 6: Create a data frame based on the scored data

Use the following code to create an empty list:

listReturnedUtterance = []

The tone analysis will be done by sending each document to IBM Watson Natural

Language Understanding individually, and the results will be sent back to you in JSON

format.

A document in tone analysis is a group of words or sentences that represents the
level of your analysis. Examples include a tweet if you are doing tone analysis
for Twitter or a restaurant review if you are doing tone analysis on the restaurant
reviews.

The returned JSON will be parsed to get the tones with their corresponding scores.

That information will be stored in the list created in the line of code earlier. This list will

be the basis of the data frame that will be the data source for Power BI.

�Step 7: Create a looping structure to individually send the
documents to IBM Watson

This is accomplished in the following code:

for index, row in dfDocuments.iterrows():

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

320

The IBM Watson Natural Language Understanding tone analysis service only

allows 50 submissions in one batch, but you will often need to send more. You can

get around this limitation by sending documents to IBM Watson Natural Language

Understanding one request at a time instead of in batches. You can accomplish this by

iterating over the dfDocuments data frame via the iterrows() method. The iterrows()

method will iterate over the dfDocuments data frame and return a pair of index and

row value. The index represents the index value of the row and the row is returned as a

pandas series. This functionality enables you to act on each column of the data frame

individually row by row.

�Step 8: Format and score the document

The code required to perform this step is as follows:

 submissionText = row["text"].replace("'","")

 submissionText = submissionText[0:500]

 PythonExpression = "[{'text': '" + submissionText + "'}]"

 Submission = ast.literal_eval(PythonExpression)

 tone_chat = service.tone_chat(Submission).get_result()

IBM Watson Natural Language Understanding needs to receive the request in a form

of a list with each element in the list being a dictionary that contains the document that

needs to be analyzed. You are sending one request at a time so the request needs to be

formatted as follows:

[{'text': '<document to be analyzed'}]

The result is a list that contains a dictionary with one element. Your data is in a data

frame, so you need to do some manipulation to get the data in the preceding format.

In the first line of code in the preceding code snippet, you replace all single quote

symbols in the document with an empty string. The single quote symbol is used to

encapsulate the text in your document. Removing instances of them that appear in the

document will prevent parsing errors.

The second line of code makes sure you are only getting the first 500 characters of the

document because that is the max size allowed by IBM Watson. The 0 in that line tells

Python what position you want to start in the string, and it is inclusive.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

321

Python is a zero-based programming language, and R is a one-based programming
language. That means the default initial index created in Python will be 0, but it will
be 1 in R.

The 500 tells Python the position where you want to stop, but it is not inclusive. So,

the preceding code will retrieve all characters starting in position 0 up to the position

right before position 500 or the length of the string if the length is lower than 500. This

results in a max of 500 characters being returned. This is the max number of characters

allowed by IBM Watson.

The third line of code creates a string that represents the expression needed to create

a list with a dictionary in it that contains the document you want to score. It is built

by concatenating the static portions that will be the same for all submissions with the

dynamic portion which contains the document to be analyzed.

The fourth line of code executes the string as a Python expression. The result of that,

in this case, is a list object with a dictionary inside being produced. The resulting list is

assigned to the Submission variable.

Lastly, the fifth line of code uses the tone_chat() method from the service object

you created earlier to communicate the submission to IBM Watson Natural Language

Understanding. The results are stored in the tone_chat variable.

�Step 9: Assign the results of the tone analysis and set the initial
values of the tone variables

The following code is used to perform this step:

 utterances = tone_chat["utterances_tone"]

 sad, frustrated, satisfied, excited, \

 polite, impolite, sympathetic, unknown = \

 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

322

The preceding first line gets the utterances_tone dictionary returned from IBM

Watson Natural Language Understanding and assigns it to the utterances variable. The

output of the utterances_tone comes back looking like the following sample JSON:

{'utterances_tone':

 [{'utterance_id': 0,

 'utterance_text': '<document that was analyzed>',

 'tones': [{'score': <between 0 and 1 for tone 1>,

 'tone_id': '<tone_id 1>',

 'tone_name': '<tone_name 1>'},

 …………………………………………………………………………

 {'score': <between 0 and 1 for tone n>,

 'tone_id': '<tone_id n>',

 'tone_name': '<tone_name n>'}

]

 }

]

}

The main part of the preceding JSON you are interested in are the tones. Note

that multiple tones can be returned per document submitted. The possible tones are

represented in the tone variables that you created in this step. Each possible tone was

initialized with a value of 0.

Note that a \ was used for line continuation when initializing the tone variables.
The three lines actually represent one line of code, but that line is too wide to fit
on this page. The line continuations were used to overcome the width limitation.

For each tone returned, you get the score, an id, and the tone name. In the next step,

you will iterate through the tones to get the score for each tone returned.

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

323

�Step 10: Loop through the returned tones and assign their scores
to the appropriate variable

The following code is used to accomplish this step:

 tones = utterances[0]["tones"]

 for tone in tones:

 toneid = tone["tone_id"]

 if toneid == "sad":

 sad = tone["score"]

 elif toneid == "frustrated":

 frustrated = tone["score"]

 elif toneid == "satisfied":

 satisfied = tone["score"]

 elif toneid == "excited":

 excited = tone["score"]

 elif toneid == "polite":

 polite = tone["score"]

 elif toneid == "impolite":

 impolite = tone["score"]

 elif toneid == "sympathetic":

 sympathetic = tone["score"]

 else:

 unknown = tone["score"]

 listReturnedUtterance.append(

 [index, sad, frustrated, satisfied, excited,

 polite, impolite, sympathetic, unknown])

Because you are submitting one document at a time, the returned value represents

the tones for one submission. Even though tones for only one document are being

returned, you still need to explicitly tell Python that you want the first one. You do that

with the following code: utterances[0]["tones"]. The [0] gets the first utterance, and

the [“tones”] extracts the tones from that utterance. The result is stored in the tones

variable. Next, you iterate over the elements in tones variable and assign the score to the

appropriate tone. So, if the value of toneid of the current iteration is impolite, then the

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

324

score for the impolite variable will be changed from 0 to the impolite score. After all the

returned tones have been iterated through and assigned to the appropriate tone variable,

the index value of the current iteration along with the values of each tone is appended to

the listReturnedUtterance list.

�Step 11: Create a data frame based on the listReturnedUtterance
list

The code needed to accomplish this step is as follows:

colnames = ["index", "sad", "frustrated", "satisfied", "excited",

"polite", "impolite", "sympathetic", "unknown"]

dfReturnedUtterance = pd.DataFrame(

 listReturnedUtterance, columns=colnames)

It is relatively easy to convert your listReturnedUtterance list to a data frame using

the DataFrame method from pandas. You need to give it two arguments. The first

argument is the list you want to convert into a data frame, which in this case is the

listReturnedUtterance list. The second argument you need to populate is the columns

argument. You supply that argument with a Python list that contains the names you want

to use for the columns.

�Step 12: Merge the dfReturnedUtterance data frame
with the dfDocuments data frame

Here is the code needed to perform this step:

dfOutput = pd.merge(

 dfDocuments, dfReturnedUtterance,

 how='inner', left_on = 'id', right_on = 'index')

dfOutput = dfOutput[

 ['id', 'text', 'sad', 'frustrated', 'satisfied',

 'excited', 'polite', 'impolite', 'sympathetic', 'unknown']]

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

325

You merge the dfReturnedUtterance data frame to the dfDocuments data frame using

the merge method of pandas. The way this is accomplished is you provide the data frame

that represents the left side of the join as the first argument of the merge() method and

the data frame that represents the right side of the join as the second argument. Next,

you tell the pandas what type of join you want to do using the how argument. In this

example, you are performing an inner join. Lastly, you identify the columns you want to

use in the join from each data frame. The column that you want to use from the left data

frame is specified in the left_on argument, and the column you want to use from the right

data frame is specified in the right_on argument.

�Step 13: Copy the complete script into Power BI

Here is the complete script that you need to copy and place in the Python script editor

that you access via GetData. The script returns multiple data frames that will be exposed

to Power BI. The one you want to add is the dfOutput data frame.

Listing 9-4.  Python script that uses IBM Watson to perform tone analysis

import json

import pandas as pd

import ast

import os

from ibm_watson import ToneAnalyzerV3

from ibm_watson.tone_analyzer_v3 import ToneInput

from ibm_cloud_sdk_core.authenticators import IAMAuthenticator

authenticator = IAMAuthenticator("<your API key>")

service = ToneAnalyzerV3(

 version='2019-12-22',

 authenticator=authenticator)

service.set_service_url(

 "https://gateway.watsonplatform.net/tone-analyzer/api")

dfDocuments = pd.read_csv(

 "<path to the documents csv file>")

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

326

listReturnedUtterance = []

for index, row in dfDocuments.iterrows():

 submissionText = row["text"].replace("'","")

 submissionText = submissionText[0:500]

 PythonExpression = "[{'text': '" + submissionText + "'}]"

 Submission = ast.literal_eval(PythonExpression)

 tone_chat = service.tone_chat(Submission).get_result()

 utterances = tone_chat["utterances_tone"]

 sad, frustrated, satisfied, excited, \

 polite, impolite, sympathetic, unknown = \

 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

 tones = utterances[0]["tones"]

 for tone in tones:

 toneid = tone["tone_id"]

 if toneid == "sad":

 sad = tone["score"]

 elif toneid == "frustrated":

 frustrated = tone["score"]

 elif toneid == "satisfied":

 satisfied = tone["score"]

 elif toneid == "excited":

 excited = tone["score"]

 elif toneid == "polite":

 polite = tone["score"]

 elif toneid == "impolite":

 impolite = tone["score"]

 elif toneid == "sympathetic":

 sympathetic = tone["score"]

 else:

 unknown = tone["score"]

 listReturnedUtterance.append(

 [index, sad, frustrated, satisfied, excited,

 polite, impolite, sympathetic, unknown])

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

327

colnames = ["index", "sad", "frustrated", "satisfied", "excited",

"polite", "impolite", "sympathetic", "unknown"]

dfReturnedUtterance = pd.DataFrame(

 listReturnedUtterance, columns=colnames)

dfOutput = pd.merge(

 dfDocuments, dfReturnedUtterance,

 how='inner', left_on = 'id', right_on = 'index')

dfOutput = dfOutput[

 ['id', 'text', 'sad', 'frustrated', 'satisfied',

 'excited', 'polite', 'impolite', 'sympathetic', 'unknown']]

In this chapter, we covered the technical details that you need to know to apply AI to

your Power BI data models using custom models built in R and Python. You also learned

how to easily perform data transformation required by your machine learning models

that would be very hard to do in Power Query. Lastly, we covered how to use pre-built

models from cloud-based services such as Microsoft Cognitive Services and IBM Watson

Natural Language Understanding. The techniques in this chapter were self-service-

based techniques and are not meant to be an enterprise solution. In Chapter 10, you will

learn how to use similar techniques on an enterprise scale!

Chapter 9 Applying Machine Learning and AI to Your Power BI Data Models

329
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_10

CHAPTER 10

Productionizing Data
Science Models and Data
Wrangling Scripts
The data wrangling scripts and data scoring scripts in the previous chapters work great in

a self-service situation or in small shops where one person is responsible for maintaining

the Power BI data models. That is because in those situations you can get away with

using the personal version of the on-premises data gateway. But, the enterprise version

of the on-premises data gateway is required for enterprise solutions, and it does not allow

the use of R or Python scripts embedded in Power BI. Fortunately, you can overcome

this limitation using a relatively new feature in SQL Server known as SQL Server Machine

Learning Services (SSMLS). SSMLS is a feature of SQL Server that enables you to perform

advanced data analytics inside the database via R and Python scripts that are wrapped in

a special T-SQL stored procedure. Since you are able to fetch data via a stored procedure

call using the on-premises data gateway, you can refactor your previously written data

wrangling and data scoring scripts in Power BI to an enterprise solution by wrapping the

scripts in a stored procedure.

In this chapter, we will go over some examples that show how to refactor a data

wrangling script and a data scoring script, and as a bonus, we will show how to use a pre-

built model that comes with SSMLS to get sentiment scores for free! First, let’s refactor

the Boston house price prediction example in SSMLS.

https://doi.org/10.1007/978-1-4842-5829-3_10#DOI

330

�Predicting home values in Power BI using R in SQL
Server Machine Learning Services
In this example, we will refactor the R script that was used to predict house prices in

Chapter 9 and wrap it in a special stored procedure. Doing so will enable the R script to

be used with the enterprise version of the on-premises data gateway. This change will

enable you to use the solution in an enterprise situation. Here are the required steps.

�Build the R script that adds the model to SQL Server
Listing 10-1 shows the code needed to add the R model to SQL Server.

Listing 10-1.  Code needed to add R model to SQL Server

library(RODBC)

Load model into our R session

model <- readRDS("./Models/Model.rds")

Connects to the database

server.name = "DSVM2019"

db.name = "BostonHousingData"

connection.string = paste(

 "driver={SQL Server}", ";",

 "server=", server.name, ";",

 "database=", db.name, ";",

 "trusted_connection=true", sep = "")

conn <- odbcDriverConnect(connection.string)

Define parameters

model_name <- "R Model"

modelbin <- serialize(model, NULL)

modelbinstr = paste(modelbin, collapse = "")

Build the SQL Statement and execute it

using the sqlQuery command

sql_code <- paste0(

 "EXEC AddModel_R ",

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

331

 "@ModelName='",

 model_name, "', ",

 "@Model_Serialized='",

 modelbinstr, "'")

sqlQuery(conn, sql_code)

odbcClose(conn)

Now let’s go over the code in steps.

�Step 1: Load the necessary packages

library(RODBC)

Only one package needs to be loaded in this script which is the RODBC package.

The RODBC package will be used to interact with SQL Server.

�Step 2: Load the model into the R session

The following code is used to perform the task:

model <- readRDS("./Models/Model.rds")

In this step, you load the model into R using the readRDS() function which is a part

of base R. You will be able to use a relative file path if your working directory is set to the

R folder for Chapter 10.

�Step 3: Create a connection to the database

The following code is used to connect to the database:

server.name = "DSVM2019"

db.name = "BostonHousingData"

connection.string = paste(

 "driver={SQL Server}", ";",

 "server=", server.name, ";",

 "database=", db.name, ";",

 "trusted_connection=true", sep = "")

conn <- odbcDriverConnect(connection.string)

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

332

A connection string is created based on the server and database name you used

to set the server.name and db.name variables, respectively. That information is

concatenated with some static information to build the connection string. The results are

assigned to the connection.string variable. Lastly, the connection.string variable is passed

to the odbcDriverConnection() function to create a connection object. The connection

object that is created is named conn.

�Step 4: Define the model variables

The code for this step is as follows:

model_name <- "R Model"

modelbin <- serialize(model, NULL)

modelbinstr = paste(modelbin, collapse = "")

A model_name variable is used to hold the name of the model. It will be used later in

a subsequent step to identify the model in the dbo.Models table. The model is serialized

using the serialized() function, and the results of the serialization is stored in the

modelbin variable. Next, the modelbin is converted to a scalar character vector by using

the collapse option of the paste() function, and the results are stored in the modelbinstr

variable. That modelbinstr variable is the representation of the model that will be

inserted into the database.

�Step 5: Build the T-SQL statement to add the model
to the database

The code to perform this task is as follows:

sql_code <- paste0(

 "EXEC AddModel_R ",

 "@ModelName='",

 model_name, "', ",

 "@Model_Serialized='",

 modelbinstr, "'")

The paste0() function is used to build the T-SQL that executes the AddModel_R

stored procedure in SQL Server. The AddModel_R stored procedure uses the INSERT

statement to insert the model into SQL Server using parameters that are based on

the variables built in Step 4. The VALUES clause is used with the INSERT statement

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

333

to pass the model name that is defined in the model_name variable and the string

representation of the model that is defined in the modelbinstr variable. The AddModel

stored procedure is already configured in the database that you will add to your server in

a subsequent step. After you add the database, you can view the T-SQL code that is being

executed by inspecting the code inside the dbo.AddModel_R stored procedure.

�Step 6: Add the code needed to execute the T-SQL statement
from R

Here’s the code for this step:

sqlQuery(conn, sql_code)

odbcClose(conn)

The T-SQL code built in Step 5 is executed using the sqlQuery() function from the

RODBC package. It uses the conn object to connect to the database and sql_code variable

to give the function the T-SQL statement to execute. The connection to the database is

closed after the T-SQL code is executed.

�Step 7: Save the script

Make sure to save the script if you are starting from scratch. You will need to execute it

in a later step to add the model to the SQL Server. Note that the script is available in the

code repository of this book.

�Use SQL Server Machine Learning Services with R
to score the data
In this section, we will go over the steps needed to add the database used in this example

to your server. You will also go over the steps needed to configure the database and score

the data.

�Step 1: Launch SQL Server Management Studio

If you are using the recommended Windows 2019 DSVM, then SQL Management Studio

(SSMS) and SQL Server 2019 will already be installed with SQL Server Machine Learning

Services enabled. Please refer to the installation instructions located in the introduction

if those resources are not installed in your environment.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

334

�Step 2: Create a connection to the server you want to use

When you launch SQL Server Management Studio (SSMS), the server name should

be populated in the textbox field. If it is not listed and you don’t know the name of the

server, then you can type “.” and SSMS will open the local server in your environment.

�Step 3: Add the BostonHousingInfo database to your server

A starter database for this exercise is in the Databases folder for this chapter. The name

of the file that you will use to restore the database is BostonHousingData.bak. Perform

the following steps to restore the BostonHousingData database:

	 1.	 Copy the BostonHousingData.bak file to the Backup folder for SQL

Server. The location in the DSVM is C:\Program Files\Microsoft

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SSMS and right-click the Databases folder, then select

Restore Databases….

	 3.	 The Restore Database pop-up form will appear. Make sure you are

on the General page tab. In the Source section, select the Device

radio button.

	 4.	 Click the eclipse button, the button with the three dots, then

click the Add button. Next, browse to the location where

BostonHousingData.bak is located.

	 5.	 Select the BostonHousingData.bak file, then click the OK button to

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form. Doing so will add

the database.

The database added in this step will include the necessary infrastructure needed

for this exercise and the data that will be scored. The Boston Housing data used in this

example was obtained using the load_boston() function from sklearn.datasets. The code

used to acquire the data set is in the code repository.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

335

�Step 4: Add the model to the database

Go back to AddModelToDatabase.R script in R Studio. Make sure that the working

directory is set to the R folder. Execute the script. If you configured the script correctly,

the R model will be added to the dbo.Models table in the BostonHousingInfo database.

�Step 5: Add the stored procedure to the database that will do
the scoring

Listing 10-2 is the code that creates the stored procedure.

Listing 10-2.  The uspPredictHousePrices_R stored procedure

CREATE PROCEDURE [dbo].[uspPredictHousePrices_R]

AS

BEGIN

 -- Define variables

 DECLARE @model varbinary(max) =

 (SELECT MODEL

 FROM [dbo].[Models]

 WHERE ModelName = 'R Model');

 DECLARE @RScript nvarchar(max);

 DECLARE @Query nvarchar(max);

 DECLARE @InputDFName nvarchar(25);

 DECLARE @OutputDFName nvarchar(25);

 -- Define source data

 SET @Query='SELECT [crim], [rm], [tax], [lstat]

 FROM [dbo].[BostonHousingInfo]'

 -- R script to score data

 SET @RScript = N'

bhmodel_deserialized <-

 unserialize(as.raw(bhmodel_serialized));

model_data <- dfInputData

pred_medv <-

 predict(bhmodel_deserialized, model_data)

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

336

dfOutputData <-

 cbind(model_data, pred_medv)'

 SET @InputDFName = 'dfInputData'

 SET @OutputDFName = 'dfOutputData'

 EXEC sp_execute_external_script

 @language = N'R'

 ,@script = @RScript

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@params = N'@bhmodel_serialized varbinary(max)'

 ,@bhmodel_serialized = @model

 WITH RESULT SETS((

 [crim] float

 ,[rm] float

 ,[tax] float

 ,[lstat] float

 ,[pred_medv] float

));

END

The preceding code performs the following actions:

	 1.	 Defines the following variables needed in the script:

•	 @model variable is used to hold the model. You retrieve the

model from the dbo.Models table using T-SQL.

•	 @RScript variable holds the R script that does the scoring.

•	 @query_string variable holds the TSQL script that defines the

data set that will be scored.

•	 @InputDFName variable holds the name of the input data set

that Python will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set

that R will use to refer to the output data set.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

337

	 2.	 Sets the @Query with the TSQL code that returns the input

data set. The input data set represents the data that will be scored

using R.

	 3.	 Sets the @RScript variable with the R code that will perform

the scoring. The R script assigned to this variable performs the

following steps:

•	 Loads the bhmodel_serialized in a raw format, then unserializes

it using the unserialize() function and assigns the results to the

bhmodel_deserialized variable.

•	 Create a variable named model_data that is based on the

dfInputData data frame. You do this because it is best practice to

not act directly on the input data set passed to R from SQL Server.

•	 Uses the predict() function from base R to score the data. The first

parameter passed to the function is the model, and the second

parameter is the data that needs to be scored. The output is a

vector that contains the predictions, and it will be stored in the

pred_medv variable.

Note that you were able to include the whole data frame. That is because it
only contains the columns needed by the regression formula. In more advanced
situations, you may need to perform transformation to the data passed to R to get
it in the structure that is needed by the model’s formula.

•	 Creates a dfOutputData data frame using the cbind() function

to do a column-based bind that combines the model_data data

frame and the pred_medv vector into one data frame.

•	 Sets the names you want to use for the input and output data

frames.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

338

	 4.	 Configures the sp_execute_external_script stored procedure.

Most of this is self-explanatory, but the @params and

@bhmodel_serialized parameters may need some explanation.

The @params argument enables you to define extra parameters

needed by the model. In this case, we are defining a parameter

named @bhmodel_serialized with a varbinary(max) data type.

This parameter will pass the model to the R script and will

expose it to the script with the parameter name minus the @ sign

which happens to be in this case bhmodel_serialized. The value

of @bhmodel_serialized parameter is set in the succeeding line.

	 5.	 The WITH RESULT SETS clause is used to define the column

names and column data types. This will give Power BI the

information it needs to determine the column names and data

types of the scored data set passed to it from SQL Server.

Execute the preceding script to add the stored procedure to the database. Now, you

will be able to score the data by calling the stored procedure.

�Step 6: Fetch the scored data in Power BI from SQL Server

To fetch the scored data in Power BI, launch Power BI, then go to GetData ➤ SQL

Server. Populate the Server and Database (optional) textbox. Next, expand the Advanced

options section and type EXEC [dbo].[uspPredictHousePrices_R] in the SQL statement

(optional, requires database) textbox. The Include relationship columns check box is

checked by default, but it is not needed in this situation, so it is unchecked. Figure 10-1

shows what the form looks like after it has been configured.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

339

Click OK to add the data to the Power BI data model.

The focused in this example should not be on the model. The model in this exercise

was based on a simple linear regression formula, and it was made simple so that the

focus would be on how to implement an R model to score data in Power BI via SSMLS.

We did not focus on developing a complex model on purpose. Developing accurate

machine learning models is well beyond the scope of this book. But if you or the data

scientist on your team already knows how to develop complex models in R that produce

Figure 10-1.  GetData form populated with information needed to execute the
dbo.uspPredictedHousePrices_R stored procedure

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

340

accurate predictions, then the steps outlined in this chapter can be used to apply those R

models to Power BI data models via SSMLS. Next, you will learn how to perform a similar

task in SSMLS using Python.

�Predicting home values in Power BI using Python
in SQL Server Machine Learning Services
In this example, we will refactor the Python script that was used to predict house prices

in Chapter 9 and wrap it in a special stored procedure. Embedding the Python script in a

stored procedure will enable the Python script to be used with the enterprise version of

the on-premises data gateway. Here are the required steps.

�Create the script needed to add Python model to SQL
Server

�Step 1: Get the version of libraries used in this exercise
The libraries used in this exercise are pickle, os, pyodbc, scikit-learn, and pandas. You

need to make sure that the versions of those packages that you use in development

are the same as the versions in SSMLS. You can get the versions that are being used in

SSMLS by running the following T-SQL script shown in Listing 10-3 in SQL Server.

Listing 10-3.  Script to get installed Python libraries

EXECUTE sp_execute_external_script

 @language = N'Python'

 ,@script = N'

import pkg_resources

import pandas as pd

installed_packages = pkg_resources.working_set

installed_packages_list =

 sorted(["%s==%s" % (i.key, i.version) for i in installed_packages])

df = pd.DataFrame(installed_packages_list)

OutputDataSet = df'

WITH RESULT SETS ((PackageVersion nvarchar (150)))

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

341

The preceding script returns a list of all of the packages that are installed in the

installation of Python in SSMLS. As of the writing, here are the versions of the libraries

used in SSMLS 2019:

•	 pyodbc 4.0.25

•	 scikit-learn 0.20.2

•	 pandas 0.23.4

Note that the os and pickle libraries are not listed. That is because those packages are

included in all python installations by default.

�Step 2: Create a conda environment

We need to make sure that all development is done using the same version that is used

in SSMLS to prevent unnecessary version conflicts, to ensure that we need to set up a

special development environment known as a conda environment.

conda environment helps you isolate project development by letting you determine
the version of python you want to use, the libraries you want to include, and
the version of those libraries that you want to use. There are other environment
management options in python. What makes conda different from the others is that
it is language agnostic so it can be used with other programming languages.

Perform the following steps to create a conda environment:

	 1.	 Open VS Code

Open the command prompt and type the following code to

change the working directory:

cd <"path to Python folder for Chapter One">

Next, type the following code to open VS Code from the preceding

location:

code .

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

342

	 2.	 Open a terminal shell in VS Code in the above location

Type CTRL+SHIFT+` to open a terminal shell. You are using the

Command Prompt in this example. If you need to change the

terminal shell, open the shell option window located in the upper

right pictured in Figure 10-2.

Once you make the preceding selection, you will be given the

following options depicted in Figure 10-3.

Make the highlighted selection to change the terminal shell to the

Command Prompt.

	 3.	 Create a new conda environment called ssmls

We need a development environment that uses the same version

of Python and the same version of the libraries that are used

in SSMLS. The version of Python that is used in SSMLS 2019 is

Python 3.73. Type the following code in the command prompt to

create an environment using that version of Python:

conda create --name ssmls python=3.7.3

Figure 10-2.  The VS Code shell option window

Figure 10-3.  Terminal shell options

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

343

	 4.	 Switch to the environment you just created

In Step 3, you created an environment, but you are not working

out of it. If you are working in the recommended Data Science

Virtual Machine, then you will have many pre-installed

environments as well as any environments you created. You need

to type the following code in the command prompt to get a list of

the environments that are available to you:

conda env list

If you are working in the DSVM, you will see several environments

plus the ssmls environment. If you are working on your personal

machine, then you may just see the ssmls environment, the base

environment, and any other environments you may have created

personally. Type the following command in the command prompt

to activate the ssmls environment:

activate ssmls

Now you are in the ssmls environment which is based on the same

version of Python that is used in SSMLS 2019.

	 5.	 Install the required libraries in the ssmls environment

Now you need to install the pandas, scikit-learn, and pyodbc

libraries. Let’s install pandas first. To install the version of pandas

needed for this task, type the following code:

conda install pandas=0.23.4

The preceding code will begin the installation process. You will

have to go through several prompts to complete the installation.

Perform the same action for scikit-learn 0.20.2 and pyodbc 4.0.25.

Make sure to put an = sign in between the library name and the

version as illustrated in the pandas example.

�Step 3: Create the code that pushes the model to SQL Server

The code in Listing 10-4 is used to push the model to SQL Server.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

344

Listing 10-4.  Script to push the model to the database

import os

import pyodbc

import pickle

server = 'DSVM2019'

database = 'BostonHousingData'

con = pyodbc.connect(

 'Trusted_Connection=yes',

 driver = '{SQL Server}',

 server = server,

 database = database

)

cursor = con.cursor()

model = pickle.load(open("./Models/model.pkl", "rb"))

modelstr = pickle.dumps(model)

cursor.execute(

 "INSERT INTO [dbo].[Models](ModelName, Model) VALUES (?, ?)",

 "Python Model", modelstr

)

con.commit()

con.close()

The preceding code uses the os library to interact with the file system, the pyodbc

library to interact with SQL Server, and the pickle library to load and save the model

object. Here are the steps that are performed in the script:

	 1.	 A connection object named con is created based on a Windows

Authentication type connection. The connection gets the server

name and database name from the server and database variables

that were defined earlier

	 2.	 A cursor object named cursor is created that will be used to

execute a T-SQL statement.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

345

	 3.	 The model that was previously saved to disk is loaded into the

Python session using the open() function and the pickle.load()

function. The open() function opens the model using the “rb”

access mode where “rb” stands for read binary. The results are

then loaded to the session using the pickle.load() function which

is assigned to a variable named model. Next, the model in the

model variable is serialized using the pickle.dumps() function, and

the result is assigned to the modelstr variable.

	 4.	 The execute method of the cursor object is used to execute a T-SQL

statement on the targeted database. The first argument is the

T-SQL statement. The TSQL statement is an INSERT statement

that is used to insert the model and model name in the designated

table. The ? symbols are used as place holders for the ModelName

and Model parameters. The next two arguments are used to

provide the parameters. Please note that order is important.

	 5.	 Save the script under the name AddModelToDatabase.py. Keep

this file open. We will be coming back to it in a later step.

�Use SQL Server Machine Learning Services with Python
from Power BI to score the data
In this section, you will add the BostonHousingData database to your server and the

script you created in the previous step to add the model to that database, then create a

Python stored procedure to predict house prices. What follows are the steps to do so.

�Step 1: Launch SQL Server Management Studio

If you are using the recommended Windows 2019 DSVM, then SQL Management Studio

(SSMS) and SQL Server 2019 will already be installed with SSMLS enabled. I highly

recommend using the DSVM because it greatly reduces the effort required to configure

your environment. If you are not using the DSVM, you will need to manually install SQL

Server 2019 with SSMLS enabled. You will also need to install SQL Server Management

Studio. Installation instructions are included in the Introduction.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

346

�Step 2: Create a connection to the server you want to use

When you launch SQL Server Management Studio, the server name should be populated

in the textbox field. If it is not listed and you don’t know the name of the server, then you

can type “ . ” and SSMS will open the database server that is local to your environment.

�Step 3: Add the BostonHousingInfo database to your server

A starter database for this project is in the database folder for this chapter. The name of

the file is BostonHousingData.bak. If you did the R version of this exercise, you can skip

this step because the database will already be added to the server. Otherwise, perform

the following steps to restore the database:

	 1.	 Copy the BostonHousingData.bak file to the Backup folder for SQL

Server. The location in the DSVM is C:\Program Files\Microsoft

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SQL Server Management Studio (SSMS) and right-click the

Databases folder, then select Restore Databases….

	 3.	 The Restore Database pop-up form will appear. Make sure you are

on the General page tab. In the Source section, select the Device

radio button.

	 4.	 Click the eclipse button, the button with the three dots,

then click the Add button. Browse to the location where the

BostonHousingData.bak is located.

	 5.	 Select the BostonHousingData.bak file, then click the OK button to

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form.

The database added in this step will include the necessary infrastructure needed

for this exercise and the data that will be scored. The Boston Housing data was obtained

using the load_bostondata() function from sklearn.datasets. A script to get the data is

included in the book’s code repository.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

347

�Step 4: Add the model to the database

Go back to AddModelToDatabase.py script in VS Code. Make sure that the working

directory is set to the Python folder. Execute the script. If you configured the script correctly,

the model will be added to the dbo.Models table in the BostonHousingInfo database.

�Step 5: Add the stored procedure to the database that will do
the scoring

Listing 10-5 is the code that creates the stored procedure.

Listing 10-5.  The uspPredictHousePrices_Python stored procedure

CREATE PROCEDURE [dbo].[uspPredictHousePrices_Python]

AS

BEGIN

 DECLARE @model VARBINARY(max) =

 (SELECT MODEL

 FROM [dbo].[Models]

 WHERE ModelName = 'Python Model');

 DECLARE @PythonScript nvarchar(max);

 DECLARE @Query nvarchar(max);

 DECLARE @InputDFName nvarchar(25);

 DECLARE @OutputDFName nvarchar(25);

 -- Define source data

 SET @Query='SELECT [crim], [rm], [tax], [lstat]

 FROM [dbo].[BostonHousingInfo]'

 -- Python script to score data

 SET @PythonScript = N'

import pickle

from sklearn import linear_model

bhmodel_deserialized = pickle.loads(bhmodel_serialized)

pred_medv = bhmodel_deserialized.predict(dfInputData)

dfOutputData = dfInputData

dfOutputData["pred_medv"] = pred_medv

'

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

348

 SET @InputDFName = 'dfInputData'

 SET @OutputDFName = 'dfOutputData'

 EXECUTE sp_execute_external_script

 @language = N'Python'

 ,@script = @PythonScript

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@params = N'@bhmodel_serialized varbinary(max)'

 ,@bhmodel_serialized = @model

 WITH RESULT SETS((

 [crim] float

 ,[rm] float

 ,[tax] float

 ,[lstat] float

 ,[pred_medv] float

));

END;

The preceding code performs the following actions:

	 1.	 Defines the following variables needed in the script:

•	 @model variable is used to hold the model. The Python model

that is assigned to this variable is retrieved from the dbo.Models

table using T-SQL.

•	 @PythonScript variable holds the Python script that does the

scoring.

•	 @Query variable holds the TSQL script that defines the data set

that will be scored.

•	 @InputDFName variable holds the name of the input data set

that Python will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set

that Python will use to refer to the output data set.

	 2.	 Sets the @Query with the TSQL code that returns the input data set.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

349

	 3.	 Sets the @PythonScript variable. The python script assigned to

this variable performs the following steps:

•	 Loads the pickle package to handle interacting with the model

•	 Uses the pickle.loads() function to deserialize the bhmodel_serialized

model object and assign the results to bhmodel_deserialized

•	 Uses the predict() method of the bhmodel_deserialized object to

predict the medv using the dfInputData data frame

Note that you were able to include the whole data frame. That is because it
only contains the columns needed by the regression model. In more advanced
situations, you may need to perform transformations to the data passed to Python
to get it in the structure that is needed by the model’s formula.

•	 Creates a dfOutputData data frame using the dfInputData data

frame with pred_medv variable added as a new column

	 4.	 Sets the names you want to use for the input and output data

frames using the @InputDFName and @OutputDFName variables.

	 5.	 Configures the sp_execute_external_script stored procedure. Most

of parameters are self-explanatory, but explanations will be given

for the @params and @bhmodel_serialized parameters. The

@params argument enables you to define extra parameters

needed by the model. In this case, you are defining a parameter

named @bhmodel_serialized that has a varbinary(max) data

type. This parameter will pass the model to the Python script

and the model will be exposed to the script using the parameter

name minus the @ sign. The value of the @bhmodel_serialized

parameter is set in the succeeding line of code.

	 6.	 The WITH RESULT SETS clause is used to define the column

names and column data types of the output. This information will

be help Power BI determine the data types it should use and how

to name the columns in the Power BI data model.

Execute the preceding script to add the stored procedure to the database. Now, you

will be able to score the data by calling the stored procedure.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

350

�Step 6: Fetch the scored data in Power BI from SQL Server

To fetch the scored data in Power BI, launch Power BI, then go to GetData ➤ SQL Server.

Populate the Server and Database (optional) textboxes with your server name and the

name of the database that warehouses the model. Next, expand the Advanced options

section and type EXEC [dbo].[uspPredictHousePrices_Python] in the SQL statement

(optional, requires database) textbox. The Include relationship columns check box is

checked by default, but it is not needed in this situation, so it is unchecked. Figure 10-4

shows what the form looks like after it has been configured.

Figure 10-4.  GetData form populated with information needed to execute the
dbo.uspPredictedHousePrices_Python stored procedure

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

351

Click OK to add the data to the Power BI data model.

Just like in the R example, the focus in this example was not on the model but how

to implement the model on Power BI data via SSMLS. Developing accurate machine

learning models is well beyond the scope of this book. But if you or the data scientist

on your team already knows how to develop complex models in Python that produce

accurate predictions, then the steps outlined in this chapter can be used to apply those

Python models to Power BI data models via SSMLS.

�Performing sentiment analysis in Power BI using
R in SQL Server Machine Learning Services
You used a Python script in Chapter 9 to call Microsoft Cognitive Services to perform

sentiment analysis. Most DBAs don’t allow API calls to be made from the database so

Microsoft Cognitive Services will not be an option in most situations. Luckily, the pre-

built models that come with SSMLS enable you to perform sentiment analysis without

the need of making API calls to Microsoft Cognitive Services. Here are the steps needed to

perform sentiment analysis using a pre-built SSMLS model.

�Add pre-built R models to SQL Server Machine Learning
Services using PowerShell

�Step 1: Check to see if the pre-trained models are
installed
Check to see if the pre-built models are installed in the following path:

C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\R_SERVICES\

library\MicrosoftML\mxLibs\x64

You should see the following files in the preceding path:

•	 AlexNet_Updated.model

•	 ImageNet1K_mean.xml

•	 pretrained.model

•	 ResNet_101_Updated.model

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

352

•	 ResNet_18_Updated.model

•	 ResNet_50_Updated.model

If you do, you can skip to the Use pre-built R sentiment model in SQL Server Machine

Learning Services to score data in Power BI section. Otherwise, go to Step 2.

�Step 2: Open PowerShell as administrator

There are multiple ways to open PowerShell but an easy way is to search for PowerShell

in the search bar next to the Windows icon on the taskbar. Doing so will cause the

Windows PowerShell app to appear in the results. Right-click it and select Run as

administrator.

�Step 3: Download PowerShell script

Go to https://aka.ms/mlm4sql to download the file Install-MLModels.ps1. This file

contains the PowerShell script needed to add the Python models to SSMLS. Clicking the

link should cause the file to get downloaded to your Downloads folder. Verify that the file

was successfully downloaded to the Downloads folder because the next step assumes

that it will be there.

�Step 4: Run the downloaded script in PowerShell

Run the following command in PowerShell:

C:\Users\<user-name>\Downloads\Install-MLModels.ps1 MSSQLSERVER

If the file was downloaded to your Downloads folder, then you will just needed to

change the <user-name> to your username. Please refer to the “Troubleshooting” section

if you are not able to successfully run the code.

�Troubleshooting

•	 If you can't run the script, you may not have rights. You can see what

rights you have by running the following code in PowerShell:

Get-ExecutionPolicy

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

https://aka.ms/mlm4sql

353

•	 If it is set to restricted, you can change it to unrestricted using the

following code:

Set-ExecutionPolicy unrestricted

•	 After you run the preceding code, you should be able to run the

Install-MLModels.psi script. PowerShell should be returned back to

restricted state if that is what it was originally in. You can do so with

the following code:

Set-ExecutionPolicy restricted

�Use pre-built R sentiment model in SQL Server Machine
Learning Services to score data in Power BI
If SQL Server Machine Learning Services is enabled and if you were successful at loading

the pre-trained models, then you are in the position to be able to perform the sentiment

analysis. Here are the steps you need to follow.

�Step 1: Begin defining the stored procedures

Here is the T-SQL code that will be used to begin defining the stored procedure:

CREATE PROCEDURE [dbo].[getSentiments_R]

AS

BEGIN

END

The CREATE PROCEDURE command is used to add a stored procedure to a

database. You are adding a stored procedure named [dbo].[getSentiments_R] in the

preceding script. The [dbo] in the name represents the schema that the stored procedure

belongs to. Schemas are used to group database objects together. The default schema

is dbo. The second part is the actual name. After the stored procedure has been named,

you type AS and follow that with the T-SQL code that defines the stored procedure. In

this example, the T-SQL code will be wrapped in a BEGIN… END statement so that it will

be executed in a batch.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

354

�Step 2: Define variables

Here are the variables that will be used in the stored proc:

DECLARE @RScript nvarchar(max);

DECLARE @Query nvarchar(max);

DECLARE @InputDataFrame nvarchar(128) = 'dfInput';

DECLARE @OutputDataFrame nvarchar(128) = 'dfOutput';

The @RScript variable will hold the R code that is responsible for performing the

sentiment analysis, the @Query variable is used to hold the T-SQL statement that is used

to define the input data set that will be passed to R, the @InputDataFrame variable will

hold the name that R will use to refer to the input data set, and the @OutputDataFrame

variable will hold the name that R will use to refer to the output data set.

�Step 3: Set @Query variable

The following code is used to set the @Query variables:

SET @Query = 'SELECT [id], [text] ' +

 'FROM [dbo].[SentimentData]'

The code builds the T-SQL string needed to retrieve the input data for the script.

The field that the sentiment analysis will be performed on is the text field. The id field is

used to uniquely identify each record in the data set.

�Step 4: Set @RScript variable

The @RScript variable is set below with the R code that will do the scoring:

SET @RScript = '

dfInput$text = as.character(dfInput$text)

sentimentScores <-

 rxFeaturize(

 data = dfInput,

 mlTransforms = getSentiment(

 vars = list(SentimentScore = "text"))

)

sentimentScores$text <- NULL

dfOutput <- cbind(dfInput, sentimentScores)'

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

355

The script is relatively short because the pre-trained model does the heavy lifting.

In the preceding R script, the first line changes the text field in the dfInput data frame to

a character data type. By default, R converts any character-based fields into a data type

called a factor. Factor fields are used for categorical data.

Data stored as a factor data type is stored using a method similar to the dictionary

enconding used in Microsoft’s tabular engine. Each unique element in the field is

replaced with an integer that serves as an index, and a map is created that maps the

index to the unique element it replaces. This technique is beneficial because integers are

more efficient to work with and have a lower memory footprint than long strings. Factors

are good for data analysis, but the benefits you gain from using them are not needed in

this example. You just need the actual text, so you convert the field to the character data

type using the as.character() function from base R.

The actual sentiment analysis is performed in this section of the script:

sentimentScores <-

 rxFeaturize(

 data = dfInput,

 mlTransforms = getSentiment(

 vars = list(SentimentScore = "text")

)

)

The workhorse functions are the rxFeaturize() and getSentiment() functions from

RevoScaleR. RevoScaleR is a package of R functions built to overcome many of the

challenges of working with big data sets.

RevoScaleR is a very powerful package, and I highly recommend you learn
how to use it if you plan to do serious R development in SSMLS. Here is the
URL to a guide that provides a thorough coverage of RevoScaleR: https://
packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_
Users_Guide.pdf.

The rxFeaturize() function is used to access data that has undergone a machine

learning data transformation via MicrosoftML. It specifies the machine learning

transformation that is being performed in the mlTransforms argument. The machine

learning transformation that is occurring in this example is a sentiment transformation

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

https://packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_Guide.pdf
https://packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_Guide.pdf
https://packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_Guide.pdf

356

via getSentiment(). The vars argument in getSentiment() is used to specify the fields in

the data set that the sentiment analysis will be performed on. If you specify a named list,

then the name of each element in your list represents the name of the column that will

hold the sentiment score, and the value represents the field you want to perform the

sentiment analysis on. A nice benefit that you get from using a named list is that you can

use a named list with multiple elements and score multiple fields at once. Here is what

the code would look like if you were scoring two additional fields named textB and field

textC:

sentimentScores <-

 rxFeaturize(

 data = dfInput,

 mlTransforms = getSentiment(

 vars = list(

 SentimentScore = "text",

 SentimentScoreB = "textB",

 SentimentScoreC = "textC")

)

)

The getSentiment() function will return a numeric value between 0 and 1 for each

sentiment analysis it performs. The closer to 0 the value is, the more negative the

sentiment, and the closer to 1 the value is, the more positive the sentiment. Typically,

at this point you will come up with a rule to determine how you want to categorize the

results. The most common method is to make the outcome binary by using a cutoff point

that will be used to determine what is a good sentiment and what is a bad sentiment.

The most common cutoff point is 0.5. When that cutoff point is used, any text that is

scored 0.5 or greater is considered positive and anything that is scored less than 0.5 is

considered negative.

You are not limited to converting your scores to a binary category. For instance,

you may want to convert it into three categories. You may decide to say that any score

between 0.33 and 0.66 is considered neutral, any score that is greater than 0.66 is good,

and any score that is less than 0.33 is bad. The way you categorize the output is totally up

to you.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

357

�Step 5: Configure sp_execute_external_script

Here is the code that is used to configure sp_execute_external_script:

EXEC sp_execute_external_script

 @language = N'R'

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@script = @RScript

The sp_execute_external_script special stored procedure is used to execute code in

SQL Server that is using a programming language other than T-SQL. At the time of the

writing, the available languages are R, Python, and Java. The parameters that are needed

for this special stored procedure depend on the script you are executing. In this scenario,

you need to define five parameters. Here are the parameters with descriptions:

•	 @language is used to specify the language you are using.

•	 @input_data_1 represents the T-SQL code needed to create the input

data set.

•	 @input_data_1_name represents the name that the R script will use

to refer to the input data frame.

•	 @output_data_1_name represents the name that the R script will use

to refer to the output data frame.

•	 @script will hold the R script that does the sentiment analysis.

�Step 6: Define the output

The output is defined using the following code:

 WITH RESULT SETS((

 [crim] float

 ,[rm] float

 ,[tax] float

 ,[lstat] float

 ,[pred_medv] float

));

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

358

Without the preceding code, SQL Server will return the output without names or

known data types. This can be a problem when you are calling the stored procedure from

Power BI. The WITH RESULT SETS clause enables you to give the output names and data

types to make it more consumable by third-party clients like Power BI.

�Step 7: Add the procedure to the database

Listing 10-6 contains the complete script.

Listing 10-6.  The getSentiments_R stored procedure

CREATE PROCEDURE [dbo].[getSentiments_R]

AS

BEGIN

 DECLARE @RScript nvarchar(max);

 DECLARE @Query nvarchar(max);

 DECLARE @InputDFName nvarchar(128) = 'dfInput';

 DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

 SET @Query = 'SELECT [id], [text], [likes] ' +

 'FROM [dbo].[SentimentData]'

 SET @RScript = '

 dfInput$text = as.character(dfInput$text)

 sentimentScores <-

 rxFeaturize(

 data = dfInput,

 mlTransforms = getSentiment(

 vars = list(SentimentScore = "text"))

)

 sentimentScores$text <- NULL

 dfOutput <- cbind(dfInput, sentimentScores)'

 '

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

359

 EXEC sp_execute_external_script

 @language = N'R'

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@script = @RScript

 WITH RESULT SETS (

 (

 [id] [bigint],

 [text] [varchar](8000),

 [score] [float]

)

)

END

Run the preceding code in the SentimentsDB database in SQL Server to add the

stored procedure to the database.

�Step 8: Call the procedure from Power BI

To fetch the scored data in Power BI, launch Power BI, then go to GetData ➤ SQL Server.

Populate the Server and Database (optional) textboxes. Next, expand the Advanced

options section and type EXEC [dbo].[getSentiments_R] in the SQL statement

(optional, requires database) textbox. The Include relationship columns check box is

checked by default, but it is not needed in this situation, so it is unchecked. Figure 10-5

shows what the form looks like after it has been configured.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

360

As in similar stored procedure calls, the result will be exposed to the Power BI data

model.

Figure 10-5.  GetData form populated with information needed to execute the
dbo.getSentiment_R stored procedure

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

361

�Performing sentiment analysis in Power BI using
Python in SQL Server Machine Learning Services
As stated in the R version of this example, you can’t use Microsoft Cognitive Services to

perform sentiment analysis in SSMLS because of security reasons. But the sentiment

pre-built model in SSMLS allows you to perform sentiment analysis without having

to make API calls that may be a security risk. Here are the steps needed to perform

sentiment analysis using the pre-built SSMLS model via Python.

�Add pre-built Python models to SQL Server Machine
Learning Services

�Step 1: Check to see if the pre-trained models are
installed
Check to see if the pre-built models are installed in the following path:

C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\PYTHON_SERVICES\

Lib\site-packages\microsoftml\mxLibs

You should see the following files in the preceding path:

•	 AlexNet_Updated.model

•	 ImageNet1K_mean.xml

•	 pretrained.model

•	 ResNet_101_Updated.model

•	 ResNet_18_Updated.model

•	 ResNet_50_Updated.model

If you do, you can skip to the “Use pre-built Python sentiment model in SQL Server

Machine Learning Services to score data in Power BI” section. Otherwise, go to Step 2.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

362

�Step 2: Open PowerShell as administrator

There are multiple ways to open PowerShell, but an easy way is to search for PowerShell

in the search bar next to the Windows icon on the taskbar. Doing so will cause the

Windows PowerShell app to appear in the results. Right-click it and select Run as

administrator.

�Step 3: Download PowerShell script

Go to https://aka.ms/mlm4sql to download the file Install-MLModels.ps1. This file

contains the PowerShell script needed to add the models to SSMLS. Clicking the link

should cause the file to get downloaded to your Downloads folder. Verify that the file was

successfully downloaded to the Downloads folder because the next step assumes that it

will be there.

�Step 4: Run the downloaded script in PowerShell

Run the following command in PowerShell:

C:\Users\<user-name>\Downloads\Install-MLModels.ps1 MSSQLSERVER

If the file was downloaded to your Downloads folder, then you will need to change

the <user-name> to your username. Please refer to the “Troubleshooting” section if you

are not able to successfully run the code.

�Troubleshooting

•	 If you can't run the script, you may not have rights. You can see what

rights you have by running the following code in PowerShell:

Get-ExecutionPolicy

•	 If it is set to restricted, you can change it to unrestricted using the

following code:

Set-ExecutionPolicy unrestricted

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

https://aka.ms/mlm4sql

363

•	 After you run the preceding code, you should be able to run the

Install-MLModels.psi script. PowerShell should be returned back to

restricted state if that is what it was originally in. You can do so with

the following code:

Set-ExecutionPolicy restricted

The pre-trained models should now be added to SSMLS.

�Use pre-built Python sentiment model in SQL Server
Machine Learning Services to score data in Power BI
You should be in a good position to score the data if you successfully performed the

previous steps. The steps needed to score the data are as follows.

�Step 1: Begin defining the stored procedures

CREATE PROCEDURE [dbo].[getSentiments_Python]

AS

BEGIN

END

The CREATE PROCEDURE command is used to add a stored procedure to a

database. You are adding a stored procedure named [dbo].[getSentiments_Python] in the

preceding script. The [dbo] in the name represents the schema that the stored procedure

belongs to. Schemas are used to group database objects. The default schema is dbo. The

second part is the actual name. After the stored procedure has been named, you type AS

and follow that with the T-SQL code that defines the stored procedure. The T-SQL code

will be defined in a BEGIN… END statement so that it will be executed in a batch.

�Step 2: Define variables

DECLARE @PythonScript nvarchar(max);

DECLARE @Query nvarchar(max);

DECLARE @InputDataFrame nvarchar(128) = 'dfInput';

DECLARE @OutputDataFrame nvarchar(128) = 'dfOutput';

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

364

The @PythonScript variable will hold the Python code that is responsible for

performing the sentiment analysis, the @Query variable is used to hold the T-SQL

statement that is used to define the input data set that will be passed to Python, the @

InputDataFrame variable will hold the name that Python will use to refer to the input

data set, and the @OutputDataFrame variable will hold the name that Python will use to

refer to the output data set.

�Step 3: Set @Query

The @Query variable holds the T-SQL string that is needed to retrieve the input data for

the Python script. Here is the code:

SET @Query = 'SELECT [id], [text] FROM [dbo].[SentimentData]'

The @Query variable holds the T-SQL string that is needed to retrieve the input data

for the Python script.

�Step 4: Set @PythonScript

The python code that will perform the sentiment analysis is set to the @PythonScript

using the code below:

 SET @PythonScript = '

from microsoftml import rx_featurize, get_sentiment

sentiment_scores = rx_featurize(

 data=dfInput,

 ml_transforms=[get_sentiment(cols=dict(scores="text"))])

dfOutput = sentiment_scores'

The first line of code in the preceding script loads the required functions. They

are the rx_featurize() function and get_sentiment() function from the microsoftml

Python library. The next line uses the rx_featurize() function and getSentiment()

function together to do the sentiment analysis. The rxFeaturize() function enables

you to access data that has undergone a machine learning data transformation via

microsoftml. It specifies the machine learning transformation that is being performed

in the mlTransforms argument. In this example, the transformation is a sentiment

transformation done using the getSentiment() function. The cols argument in

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

365

getSentiment() is used to specify the columns in the data set that you want to score. It

uses a dictionary, with the key of each key/value pair in the dictionary representing

the name of the new column that will contain the sentiment scores and the value

representing the column that contains the text you are scoring.

Please note that you can perform sentiment analysis on multiple columns at once.

You just need to add the necessary key/value pairs to your dictionary with the new keys

representing the new columns that will hold the sentiment scores and the new values

representing the columns you want to score.

The getSentiment() function will return a numeric value between 0 and 1 for each

sentiment analysis it performs. The closer to 0 the value is, the more negative the

sentiment, and the closer to 1 the value is, the more positive the sentiment.

�Step 5: Configure sp_execute_external_script

The sp_execute_external_script is configured using the following code:

 EXEC sp_execute_external_script

 @language = N'Python'

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@script = @PythonScript

In this step, you configure the sp_execute_eternal_script procedure. The configuration

is almost identical to the one that we did for R. The only difference is the language

parameter.

�Step 6: Define the output

The output is defined using the following code:

 WITH RESULT SETS((

 [crim] float

 ,[rm] float

 ,[tax] float

 ,[lstat] float

 ,[pred_medv] float

));

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

366

Without the preceding code, SQL Server will return the output without names or

known data types. This can be a problem when you are calling the stored procedure from

Power BI. The WITH RESULT SETS clause enables you to give the output columns names

and data types to make it more consumable by third party clients like Power BI.

�Step 7: Add the procedure to the database

Listing 10-7 contains the complete script.

Listing 10-7.  The getSentiments_Python stored procedure

CREATE PROCEDURE [dbo].[getSentiments_Python]

AS

BEGIN

 DECLARE @PythonScript nvarchar(max);

 DECLARE @Query nvarchar(max);

 DECLARE @InputDFName nvarchar(128) = 'dfInput';

 DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

 SET @Query = 'SELECT ID, [text] FROM dbo.SentimentData'

 SET @PythonScript = '

import pandas as pd

from microsoftml import rx_featurize, get_sentiment

sentiment_scores = rx_featurize(

 data=dfInput,

 ml_transforms=[get_sentiment(cols=dict(scores="text"))])

dfOutput = sentiment_scores

'

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

367

 EXEC sp_execute_external_script

 @language = N'Python'

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@script = @PythonScript

 WITH RESULT SETS (

 (

 [ID] [bigint],

 [text] [varchar](8000),

 [score] [float]

)

)

END

Run the preceding T-SQL code via SSMS in the SentimentsDB to add the [dbo].

[getSentiments_Python] to the SentimentsDB database.

�Step 8: Call the procedure from Power BI

To score the data, launch Power BI, then go to GetData ➤ SQL Server. Populate the

Server and Database (optional) textboxes. Next, expand the Advanced options section

and type EXEC [dbo].[getSentiments_Python] in the SQL statement (optional, requires

database) textbox. The Include relationship columns check box is checked by default,

but it is not needed in this situation, so it is unchecked. Figure 10-6 shows what the form

looks like after it has been configured.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

368

The results will be available to the Power BI data model.

Figure 10-6.  GetData form populated with information needed to execute the
dbo.getSentiment_Python stored procedure

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

369

�Calculating distance in Power BI using R in SQL
Server Machine Learning Services
There are more benefits from having access to R in SQL Server than scoring data

using machine learning models. Some of those benefits include performing data

transformations or performing advanced mathematical calculations that are hard to do

with traditional T-SQL. Here is an example of performing an advanced mathematical

calculation that is hard to implement in T-SQL but easy to implement in R. You will

learn how to implement the Haversine formula to calculate distance between two

geographical points. Let’s go over the steps!

�Step 1: Make sure dplyr is loaded in SSMLS
The dplyr package will be available if you are using the DSVM. If you are not, refer to the

book’s introduction for information on how to add R packages to SSMLS. You can run

the following script shown in Listing 10-8 to get the available R packages in SSMLS.

Listing 10-8.  Script to get installed R packages

EXECUTE sp_execute_external_script

 @language=N'R',

 @script = N'

packagematrix <- installed.packages();

Name <- packagematrix[,1];

Version <- packagematrix[,3];

OutputDataSet <- data.frame(Name, Version);'

WITH RESULT SETS ((PackageName nvarchar(250), PackageVersion nvarchar(max)))

�Step 2: Launch SSMS and connect to a SQL Server
Make sure to connect to a SQL Server that has SSMLS with the R enabled. It will be

enabled by default if you are using the DSVM. If you are using an instance configured

outside of DSVM, then it will need to be enabled. Please refer to the installation section

of the book’s introduction to get information about how to enable R in SSMLS if the

SQL Server instance that you are working on does not have R enabled. You can run the

following code as a quick test to see if it is:

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

370

EXEC sp_execute_external_script @language = N'R',

@script = N'

Test <- "Test R"

OutputDataSet = data.frame(Test)'

If R is enabled, a single cell table with the value Test R will be returned.

�Step 3: Add the CalculateDistance database to the server
The CalculateDistance database is pre-configured with the data set and tables needed

for this example. It is included in the book’s repo. You will find it in the Databases folder

for Chapter 10. Here are the steps you need to take in order to add the database to SQL

Server:

	 1.	 Copy the CalculateDistance.bak file to the Backup folder for SQL

Server. The location in the DSVM is C:\Program Files\Microsoft

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SSMS and right-click the Databases folder, then select

Restore Databases….

	 3.	 The Restore Database pop-up form will appear. Make sure you

are on the General page tab. Select the Device radio button in the

Source section.

	 4.	 Click the eclipse button, the button with the three dots, then

click the Add button, then browse to the location where

CalculateDistance.bak is located.

	 5.	 Select the CalculateDistance.bak file, then click the OK button to

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form. Doing so will add

the database.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

371

�Step 4: Add the stored procedure that will calculate
the distances
The T-SQL needed to create the stored procedure that will calculate the distance

between the two addresses is shown in Listing 10-9.

Listing 10-9.  The calcDistance_R stored procedure

CREATE PROCEDURE [dbo].[calcDistance_R]

AS

BEGIN

 DECLARE @RScript nvarchar(max);

 DECLARE @Query nvarchar(max);

 DECLARE @InputDFName nvarchar(128) = 'dfInput';

 DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

 �SET @Query = 'SELECT [Employee_ID], [EmployeeAddress],

[TerminalAddress], [lon_EmployeeAddress], [lat_EmployeeAddress],

[lon_TerminalAddress], [lat_TerminalAddress]

 FROM [dbo].[EmployeeList]'

 SET @RScript = '

 library(dplyr)

 ComputeDist <-

 �function(addressA_long, addressA_lat, addressB_long,

addressB_lat) {

 R <- 6371 / 1.609344 #radius in mile

 delta_lat <- addressB_lat - addressA_lat

 delta_long <- addressB_long - addressA_long

 degrees_to_radians = pi / 180.0

 a1 <- sin(delta_lat / 2 * degrees_to_radians)

 a2 <- as.numeric(a1) ^ 2

 a3 <- cos(addressA_lat * degrees_to_radians)

 a4 <- cos(addressB_lat * degrees_to_radians)

 a5 <- sin(delta_long / 2 * degrees_to_radians)

 a6 <- as.numeric(a5) ^ 2

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

372

 a <- a2 + a3 * a4 * a6

 c <- 2 * atan2(sqrt(a), sqrt(1 - a))

 d <- R * c

 return(d)

 }

 dfOutput <-

 dfInput %>%

 mutate(

 Distance =

 �round(ComputeDist(lon_EmployeeAddress,

lat_EmployeeAddress, lon_TerminalAddress,

lat_TerminalAddress), 1)

)'

 EXEC sp_execute_external_script

 @language = N'R'

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@script = @RScript

 WITH RESULT SETS (

 (

 [ID] [bigint],

 [AddressA] [varchar](50),

 [AddressB] [varchar](50),

 [lon_AddressA] [decimal](10,8),

 [lat_AddressA] [decimal](10,8),

 [lon_AddressB] [decimal](10,8),

 [lat_AddressB] [decimal](10,8),

 [Distance] [decimal](4,1)

)

)

END

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

373

The script uses the same logic that was used in Chapter 8. The method in Chapter 8

is good for self-service situations but not enterprise solutions. You are limited to using

the personal version of the on-premises data gateway for refreshes when you use R scripts

in Power BI. That limitation prevents you from using them in an enterprise solution. The

situation changes when you use R in SSMS. You are able to use the enterprise version of the

on-premises data gateway because your R script is embedded in a T-SQL stored procedure.

Now that you have the background about some of the benefits of using R-based

stored procedures in SSMLS, let’s go over how the preceding stored procedure works:

	 1.	 Defines the following variables needed in the script:

•	 @RScript variable holds the R script that does the calculation.

•	 @Query variable holds the TSQL script that defines the data set

that the calculation will be applied on.

One of the benefits of having the input data set defined by a T-SQL statement is
that you can use the power of T-SQL to incorporate complex business logic or to
perform complex data transformations to define the data set.

•	 @InputDFName variable holds the name of the input data set

that R will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set

that R will use to refer to the output data set.

	 2.	 Sets the @Query variable with the TSQL code that returns the

input data set.

	 3.	 Sets the @RScript variable. The R script assigned to this variable

performs the following steps:

•	 Loads the dplyr package. This package is used to add the column

to the data set with the computed distance.

•	 Defines the ComputeDist() function. This is the same function

that we used in Chapter 8. We are just using the R script in a

stored procedure instead of calling it from Power Query.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

374

•	 Creates the dfOutput data frame that is based on the dfInput data

frame that was passed to the R script, then adds a new column

named Distance that is based on the ComputeDist function.

•	 Configures sp_execute_external_script using the variables we

defined earlier.

•	 Configures the WITH RESULT SETS to explicitly define the

column names and data types of the output data.

The preceding steps were explained in depth in Chapter 8. Please refer to that

chapter if you need a more detailed explanation. Execute the T-SQL script in SSMS to

add the dbo.calcDistance_R to the database.

�Step 5: Call the Power BI procedure from Power BI
To score the data via Power BI, launch Power BI, then go to GetData ➤ SQL Server.

Populate the Server and Database (optional) textboxes. Next, expand the Advanced

options section and type EXEC [dbo].[calcDistance_R] in the SQL statement (optional,

requires database) textbox. The Include relationship columns check box is checked by

default, but it is not needed in this situation, so it is unchecked. Figure 10-7 shows what

the form looks like after it has been configured.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

375

The resulting data set will be available to the Power BI data model.

�Calculating distance in Power BI using Python
in SQL Server Machine Learning Services
Just like with R, there are more benefits from having access to Python in SQL Server than

scoring data using machine learning models. Some of those benefits include performing

Figure 10-7.  GetData form populated with information needed to execute the
dbo.calcDistance_R stored procedure

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

376

data transformations or performing advanced mathematical calculations that are hard

to do with traditional T-SQL. You just completed an exercise that refactored a relatively

complex formula, the Haversine formula, using R in SSMLS. Now you will do the same in

Python. Let’s go over the steps of how to do so.

�Step 1: Launch SSMS and connect to a SQL Server
Make sure your instance of SQL Server has SSMLS with the Python enabled. It is enabled

in the instance of SQL Server that is in the DSVM. You can use the following code to

check to see if Python is enabled:

EXEC sp_execute_external_script @language =N'Python',

@script=N'

OutputDataSet = InputDataSet;

',

@input_data_1 =N'SELECT 1 AS hello'

WITH RESULT SETS (([hello] int not null));

GO

If Python is enabled, the above script will return a table with one column and one

row. The column header will be hello and the value in the row will be 1.

�Step 2: Add the CalculateDistance database to the server
The CalculateDistance database is pre-configured with the data set and tables needed for

this example. It is included in the book’s repo. You will find it in the Databases folder for

Chapter 10. Here are the steps you need to take to add the database to SQL Server:

	 1.	 Copy the CalculateDistance.bak file to the Backup folder for SQL

Server. The location in the DSVM is C:\Program Files\Microsoft

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SSMS and right-click the Databases folder, then select

Restore Databases….

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

377

	 3.	 The Restore Database pop-up form will appear. Make sure you are

on the General page tab. In the Source section, select the Device

radio button.

	 4.	 Click the eclipse button, the button with the three dots, then

click the Add button, then browse to the location where

CalculateDistance.bak is located.

	 5.	 Select the CalculateDistance.bak file, then click the OK button to

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form. Doing so will add

the database.

�Step 3: Add the stored procedure that will calculate
the distances
The T-SQL needed to create the stored procedure that will calculate the distance

between the two addresses is listed in Listing 10-10.

Listing 10-10.  The calcDistance_Python stored procedure

CREATE PROCEDURE [dbo].[calcDistance_Python]

AS

BEGIN

 DECLARE @PythonScript nvarchar(max);

 DECLARE @Query nvarchar(max);

 DECLARE @InputDFName nvarchar(128) = 'dfInput';

 DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

 �SET @Query = 'SELECT [Employee_ID], [EmployeeAddress],

[TerminalAddress], [lon_EmployeeAddress], [lat_EmployeeAddress],

[lon_TerminalAddress], [lat_TerminalAddress]

 FROM [dbo].[EmployeeList]'

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

378

 SET @PythonScript = '

from math import cos, sin, atan2, pi, sqrt, pow

def ComputeDist(row):

 R = 6371 / 1.609344 #radius in mile

 delta_lat = row["lat_EmployeeAddress"] - row["lat_TerminalAddress"]

 delta_lon = row["lon_EmployeeAddress"] - row["lon_TerminalAddress"]

 degrees_to_radians = pi / 180.0

 a1 = sin(delta_lat / 2 * degrees_to_radians)

 a2 = pow(a1,2)

 a3 = cos(row["lat_TerminalAddress"] * degrees_to_radians)

 a4 = cos(row["lat_EmployeeAddress"] * degrees_to_radians)

 a5 = sin(delta_lon / 2 * degrees_to_radians)

 a6 = pow(a5,2)

 a = a2 + a3 * a4 * a6

 c = 2 * atan2(sqrt(a), sqrt(1 - a))

 d = R * c

 return d

dfOutput = dfInput

dfOutput["Distance"] = dfOutput.apply(lambda row: ComputeDist(row), axis=1)'

 EXEC sp_execute_external_script

 @language = N'Python'

 ,@input_data_1 = @Query

 ,@input_data_1_name = @InputDFName

 ,@output_data_1_name = @OutputDFName

 ,@script = @PythonScript

 WITH RESULT SETS (

 (

 [ID] [bigint],

 [AddressA] [varchar](50),

 [AddressB] [varchar](50),

 [lon_AddressA] [FLOAT],

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

379

 [lat_AddressA] [FLOAT],

 [lon_AddressB] [FLOAT],

 [lat_AddressB] [FLOAT],

 [Distance] [FLOAT]

)

)

END

The script uses the same logic that was used in Chapter 8. The method in Chapter 8

is good for self-service scenarios that is being maintained by an individual analyst. This

method is better for enterprise solutions for the same reasons given in the R version of

the exercise.

Now, let’s go over how the preceding stored procedure works:

	 1.	 Defines the following variables needed in the script:

•	 @PythonScript variable holds the Python script that performs the

calculation.

•	 @Query variable holds the TSQL script that defines the data set

that the calculation will be applied on.

•	 @InputDFName variable holds the name of the input data set

that Python will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set

that Python will use to refer to the output data set.

	 2.	 Sets the @Query variable with the TSQL code that returns the

input data set.

	 3.	 Sets the @PythonScript variable. The python script assigned to

this variable performs the following steps:

•	 Loads the cos, sin, atan2, pi, sqrt, and pow functions from the

math library. Those functions will be used by the distance

calculation formula in the script.

•	 Defines the ComputeDist() function. This is the same function

that we used in Chapter 8. We are just using it in a stored

procedure instead of Power Query.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

380

•	 Creates the dfOutput data frame based on the dfInput data frame

that was passed to the script.

•	 Add the Distance field to the dfOutput data frame by using a

lambda function to apply the ComputeDist() function.

	 4.	 Configures sp_execute_external_script. Note that the parameters

in this task are different than the Boston Housing example. We

are not using a model to score data in this task, so the parameters

needed to handle models were not required.

	 5.	 Configures the WITH RESULT SETS clause so that you can

explicitly define the column names and data types of your

output data.

The preceding steps were explained in depth in Chapter 8. Please refer to that

chapter if you need a more detailed explanation. Execute the T-SQL script in SSMS to

add the dbo.calcDistance_Python to the database.

�Step 4: Call the Power BI procedure from Power BI
To score the data in Power BI, launch Power BI, then go to GetData ➤ SQL Server.

Populate the Server and Database (optional) textboxes. Next, expand the Advanced

options section and type [dbo].[calcDistance_Python] in the SQL statement (optional,

requires database) textbox. The Include relationship columns check box is checked by

default, but it is not needed in this situation, so it is unchecked. Figure 10-8 shows what

the form looks like after it has been configured.

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

381

In this chapter, you learned how to productionize your R and Python scripts for use

with Power BI via SSMLS. They remained accessible to Power BI because they were

productionized by wrapping them in a special stored procedure in SQL Server. The

coverage given to SSMLS was very high level. A thorough coverage of SSMLS would

require its own book. SSMLS has tools that make doing data science on big data sets

Figure 10-8.  GetData form populated with information needed to execute the
dbo.calcDistance_Python stored procedure

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

382

more efficient than the methods outlined in this book. They are designed to be used

by data engineers and data scientists. If you are interested in studying SSMLS in more

depth, I highly recommend that you research the following SSMLS topics:

•	 Native Scoring: Makes predictions via a T-SQL view using a trained

model developed with certain revoscalepy or RevoScaleR algorithms.

Native Scoring is faster than custom R and Python models because

they use native C++ libraries and don’t have to call an R or Python

interpreter.

•	 RevoScaleR: A collection of R functions for importing, transforming,

and analyzing data at scale. You can find a thorough coverage

of the RevoScaleR package at this URL: https://packages.

revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_

Guide.pdf.

•	 revoscalepy: A collection of Python functions for importing,

transforming, and analyzing data at scale. You can find out more about

revoscalepy here: https://docs.microsoft.com/en-us/sql/machine-

learning/python/ref-py-revoscalepy?view=sql-server-ver15.

•	 Real Time Scoring: Real-time scoring uses the sp_rxPredict system

stored procedure for high-performance predictions. It has no

dependencies on R or Python runtimes so it can be run on SQL

Server instances where R and Python are not installed.

The methods outlined in this chapter work great when you are working with

relatively small SQL Server data sets that can easily fit in your server’s memory. The

above features have functionality that you can leverage when your data is too big to fit

into memory.

In addition to SSMLS, Microsoft offers cloud-based enterprise solutions that you

can leverage as well from Power BI. These solutions include Azure Machine Learning

Services, Azure Databricks, and Azure Synapse, to name a few. Even more solutions are

available if you are using Power BI Premium. This book purposely focused on the SSMLS

because it is freely available to those who have SQL Server 2016 and later and does

not require you to have premium compacity. Maybe the cloud-based solutions will be

covered in the next version of this book!

I really appreciate you purchasing the book and I hope you find the book’s content

very useful and educational!

Chapter 10 Productionizing Data Science Models and Data Wrangling Scripts

https://packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_Guide.pdf
https://packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_Guide.pdf
https://packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_Guide.pdf
https://docs.microsoft.com/en-us/sql/machine-learning/python/ref-py-revoscalepy?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/python/ref-py-revoscalepy?view=sql-server-ver15

383
© Ryan Wade 2020
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3

Index

A
AdventureWorksDW_StarSchema

database, 191, 192, 195, 209
aes() function, 1, 3, 10, 20, 22, 26, 32–34,

72, 104, 116, 117, 131, 144
all.equal() function, 46, 69, 70, 84,

96, 128, 143
annotate() function, 56, 57, 133, 134
Artificial intelligence (AI), 295
as_data_frame() function, 202

B
bhmodel_deserialized variable, 337
@bhmodel_serialized

parameters, 338, 349
Bubble chart, 39

add lables, 74, 75
chart titles, 71
colors, 76, 77
conferences/divisions colors, 70, 71
data set, 67, 71, 72
data validation test, 70
dimensions of data, 66, 67, 72
filter slicer, 68
geom_point() geom, 73, 74
ggplot() function, 72
ggtitle() function, 77, 78
load data, 68
packages, 69

R script, 78–80
R visual configuration, 68
variables, 69

C
Callout chart, 39

add columns, 47
align titles, 62, 63
axis, 54, 55
column chart layer, R visual, 52
data set, 41, 42
data validation test, 47
dynamic annotation, 56–58
dynamic titles/caption, 58, 59
export data, R Studio, 43–45
horizontal bar chart/dynamic

annotations, 40
packages, 45
remove labels, 59, 60
remove legend, 60, 61
R script, 64–66
R visual configuration, 43
slicer, 42, 43
text layer, R visual, 52–54
theme_few() theme, 61, 62
variables, dynamic

portions, 46, 48, 50, 51
chdir() function, 164, 249, 255
colnames() function, 46

https://doi.org/10.1007/978-1-4842-5829-3#DOI

384

comma_format() function, 106
ComputeDist() function, 284, 286, 373,

379, 380
coord_flip() function, 55, 56
Counting words, Python

pandas/os, 249
read data, 250
script, 250
word_count, 250
working directory, 249

Counting words/sentences, R language
add columns, 248
read_csv function, 247
script, 248, 249
subset columns, 247
tidyverse/stringr, 247
working directory, 247

CSV files, reading
combining files

character vector, 154, 155
create data, two vectors, 157, 158
data frame, 160
date vector, 155, 156
example, 152
load r packages, script, 152
R editor, 161, 163
subset, 159
upper and lower bound, 158
working directory, 153, 154

Python
combine files, 168
code folder, 164
create pandas, 165
create script and libraries, 163
data frame, 166
monthly_reports column, 165

power BI, 168–170
read file names, 164
upper and lower bound, 166

Custom machine learning models, 296

D
data_frame() function, 157, 202
Data Science Virtual Machine (DSVM),

191, 306
Data Source Name (DSN), 193
Data visualization, 3, 24, 36, 61, 89
dense_rank() function, 48

E
element_text() function, 19, 63, 137, 147

F
fct_reorder() function, 48
filter() function, 48, 173
Forecast

data, 81, 82
data set, 85
data validation test, 84
dynamic chart title, 85
export data, R Studio, 83
generation, 86
packages, 83
plots, 86–88
R script, 88, 89
R visual configuration, 83
Slicer, quarterback, 83
variables, 84
visualization, 80, 81

Index

385

G, H
Geocoding, 270, 271, 273–276, 279, 281, 283
Geographic-based spatial analytics, 109
geom_bar() geom, 24, 25
geom functions

geom_bar(), 24, 25
geom_histogram(), 26–28
ggplot2, 24

geom_line(), 29, 30
geom_point() geom, 11, 12, 32, 73, 74, 130,

144, 145
geom_rect() function, 104, 105
get_acs function, 222, 223
ggplot()

aes() function, 20, 21
geom, 10–12
helper package, 36
R visual, 35
theme() function, 17
titles/caption, 13
x/y axis, 14

ggplot2
data frame, 9
import statements, 8
template, 7, 8

ggtitle() function, 77, 78, 107, 120, 146, 147
Google Geocoding API key

billing account, 271
configuration, 275
generation, 274
Google console, 270
library, 273
navigation, manage resources, 272
new project, 271
searching, 273

I
Identifying patterns, Python

create column, 267
monitoredProducts function, 266, 267
pandas/os/re library, 265
read contents, 267
regular expression, 265, 266
script, 267
working directory, 265

Identifying patterns, R language
add columns, 263
monitoredProducts function, 262, 263
read data, 263
script, 264
tidyverse/stringr, 261
working directory, 261

@InputDFName variable, 336, 348, 373, 379
isTRUE() function, 46, 70, 84, 96, 143

J
joblib.dump() function, 300

K
K-means clustering algorithm, 295

L
labs() function, 13, 58, 134, 147
Line chart, 39

actual GDP, 91
add labels, 106
add layer, 104, 105
colors, 106

Index

386

data frame, 97
data sets, 92, 93

creation, 102
data frame format, 99
dfPI data frame, 98
group_by() verb, 102
group_id, 99, 101
rle() function, 100
seq_along() function, 100
summarize () verb, 102
transmute() verb, 101, 102
visualization, 101

data validation test, 95–97
dynamic titles, 107
export data, R studio, 94
format y axis, 106
GDP percentage, 90
geom_line() geom, 105
load data, 93, 94
name character vector, 103
packages, 95
report slicers, 94
R script, 107–109
R visual configuration, 94
theme_economist() theme, 107
variables, 97, 98

list.files() function, 154, 183
Logistic regression model, 295

M
Map, 39

chart titles, 115
colors, 116
counties, 118, 119
creation, Indiana, 109, 110

creation, Kentucky, 110, 111
data sets, 111, 112
data validation test, 114, 115
dynamic titles/captions, 120
export data, R Studio, 113
format x/y axis, 118
geom_polygon() function, 117
ggplot() function, 116
layer, 117
load data, 113
packages, 113
quintile column, 115
R script, 120, 121
R visual configuration, 113
slicer, 113
state approximation, 119
theme_map() theme, 120
variables, 114

map_df() function, 160, 168
Masking sensitive data, Python

load libraries, 242
mask_text function, 242–244
phone/SSN numbers, 245
read data, 245
script, 245
working directory, 244

Masking sensitive data, R language
phone/SSN numbers, 240
read data, 240
script, 240, 241
scrub data function, 237–240
tidyverse/stringr, 236

Microsoft cognitive services, Python
adding data, Power BI, 312, 313
data frame, 310–312
libraries, modules and

function, 308, 309

Line chart (cont.)

Index

387

sentiment() method, 311
variables, 309
yelp_review.csv file, 307, 308

@model variable, 336, 348

N
Natural Language Processing (NLP), 246
ntile() function, 115

O
odbcDriverConnection() function, 332
os.chdir() function, 249
@OutputDFName variable, 336, 348, 349,

373, 379

P
Pre-built AI models

DVSM, 306, 307
Microsoft cognitive services, 305
resource- and time-intensive, 304
sentiment analysis (see Microsoft

cognitive services, Python)
Pre-built function, distance calculation

Python, 289, 290
R language, 287–289

Pre-built Python sentiment model
call Power BI, 367, 368
CREATE PROCEDURE command, 363
getSentiments_Python stored

procedure, 366, 367
@PythonScript variable, 364, 365
@Query variable, 364
sp_execute_external_script, 365

Pre-built R sentiment model
call Power BI, 359
getSentiment() function, 356

output, 358
@query variable, 354
@RScript variable, 355
sp_execute_external_script, 357
stored procedure, 353, 358, 359
variable, 354

predict() function, 86, 299, 337
Prophet, 80
Python

calculating distance, custom function,
283–287

Census data (see Reading Census
data, Python)

counting words (see Counting
words, Python)

distance calculation
CalculateDistance

database, 376, 377
call Power BI, 380–382
SSMS, 376
stored procedure, 377–380

geocoding addresses, 277, 279, 280
house value prediction, SQL server

conda environment, 341–343
libraries, 340, 341
push the model, 344, 345
ssmls environment, 343

identifying patterns, conditional logic
(see Identifying patterns, Python)

masking sensitive data (see Masking
sensitive data, Python)

pre-built models
installation, 361
PowerShell script, 362
troubleshooting, 362

removing names (see Removing
names, Python)

SQL server (see SQL server)

Index

388

Q
Quad chart, 39

add columns, 129
add lables, 130, 134
axis.title.x, 137
axis.title.y, 137
chart titles, 129
cleanup, 135
creation, 123
data sets, 124, 125
data validation test, 128
dynamic titles/caption, 134
export data, R Studio, 126, 127
final version, 136
Gartner, 122
geom_point() geom, 130
load data, 125, 126
packages, 127
panel.border, 137
plot.subtitle, 137
plot.title, 137
quadrant labels, 131–134
R script, 138–140
R visual configuration, 126
slicer, 126
theme_tufte() theme, 135
variables, 127, 128
vertical/horizontal lines, 131
visualization, 123, 124

R
read_csv() method, 250, 255, 308, 319
Reading Census data, Python

acs5 data set, 226
Census API key, 226
censusdata.censusgeo() function, 227,

229, 230

elements, 227
IN_POP_BY_COUNTY_BY_AGE

data frame, 231
load libraries, 226
output, 227
renaming columns, 230, 231
reset_index method, 230
script, 231, 232
tuples list, 229
variables, 228

Reading Census data, R language
acs5 data set, 221
Census API key, 220
character vector, 222
filtering techniques, 222
get_acs function, 222, 223
load packages, 220
load_variables function, 221
rename function, 223, 224
script, 224, 225
tidycensus, 223

Reading excel files
combined_workbook data frame, 189
combine_sheets() custom

function, 189
empty data frame, 188
listdir() function, 187
for loop, 188
object, 186
os/pandas, 185
read_excel() method, 186
return.df, 187
script, 189, 190
sheet_names, 186
workflow, 184, 185
working directory, 187

Regular expression
definition, 172

Index

389

potential vectors, 172
python

potential vectors, 174
remove bad email address, 174
required libraries, 174
script, 175
well-formed email address, 174

R editor, 173
remove bad email addressses, 171, 173
required packages, 171

Regression line, 39
chart’s theme, 147
cleanup, 147
data, 142
data validation test, 144
export data, R Studio, 142
geom_smooth() function, 145
ggtitle() function, 146
load data, 142
options, 140
packages, 143
R script, 147, 148
R visual configuration, 142
scatter plot layer, 141, 144–146
variables, 143

relativedelta() function, 164
Removing names, Python

DImEmployee data, 255
pandas/os/re library, 254
regular expression, 255–257
script, 258, 259
scrubName function, 257, 258
working directory, 255

Removing names, R language
column name, 253
read data, 253
regular expression, 252, 253
script, 254

tidyverse/stringr, 251, 252
R language

basic steps, 270
calculating distance, custom function,

281, 282
complex calculations, 291
distance calculation, 369

calcDistance_R stored procedure,
371–374

call, Power BI, 374, 375
database, 370
SQL server connection, 369
SSMLS, 369

geocoding addresses, 276, 277
home value prediction

applying model, 299
cbind() function, 299
data frame, 298
data scientist, 297
readRDS() function, 298
tidyverse package, 298

house value prediction, 330
AddModel_R stored

procedure, 332
database connection, 331
dbo.Models table, 332
model variables, 332
readRDS() function, 331
RODBC package, 331
saving script, 333
sqlQuery() function, 333
SQL Server, 330

pre-built models
downloaded script, 352
installation, 351
installing, PowerShell, 352
PowerShell, 352
troubleshooting, 352

Index

390

SSMS
BostonHousingData database, 334
creation, 334
load_boston() function, 334, 335
scored database, 338, 340
uspPredictHousePrices_R stored

procedure, 335, 336
variables, 336
WITH RESULT SETS clause, 338

statistical and mathematical
calculations, 269

R, programming language
Census data (see Reading Census data,

R language)
counting words/sentences

(see Counting words/sentences,
R language)

identifying patterns, conditional logic
(see Identifying patterns, R
language)

masking sensitive data (see Masking
sensitive data, R language)

reading excel files
character vector, 180
combine_sheets() custom

function, 183
data frame, 182
excel_sheets() function, 180
list.files() function, 183
map_dfr() function, 181, 182
script, 184
tidyverse/readxl, 179
workflow, 178
working directory, 183

removing names (see Removing
names, R language)

R visual
data frame, 5
ggplot2 (see ggplot2)
icon, 4
IDE, 5, 6
Power BI, configuration, 4
script functional, 7
template, 6

rxFeaturize() function, 355, 364

S
sample_n() function, 9
saveRDS() function, 297
scale_x_continuous()/

scale_y_continuous() functions, 14
seq_along() function, 100
setwd() function, 153, 164
Slowly Changing Dimension (SCD), 193
Spatial analytics, 109
sp_execute_external_script, 365
SQL Management Studio (SSMS)

AddModelToDatabase.py script, 347
BostonHousingData.bak file, 346
DVSM, 345
scored data, 350, 351
server connection, 346
stored procedure, 347, 348
variable, 348, 349

SQL server
business intelligence, 192
connection creation, 200
create_engine() function, 209, 210
data frame, 201, 202
datetime module, 211
dbo.LoadHistoryLog, 208, 209
df_insert data frame, 212

R language (cont.)

Index

391

df_read to DimPromotion, 215
DimDate to DimSalesTerritory, 206
DimDate to FactInternetSales, 207, 208
DimDate table, 200
DSN creation, 193
LoadHistoryLog table, 202
log table, creation, 198
lubridate package, 201
new Data Source creation, 194–197
number of records, 201
odbcClose() function, 203
ReadLog_DimDate.R script, 204, 205
RODBC package, 199
script, 203, 204
sqlQuery() function, 200
variable, 199

SQL Server Machine Learning Services
(SSMLS), 329

SQL Server Management Studio
(SSMS), 192

SQL Server Report Services (SSRS), 295
str() function, 157
str_count function, 247, 248
str_extract() function, 251, 253, 263
str_replace() function, 155, 156

T
theme() function, 17–20, 37, 62, 63,

137, 147
theme_few() theme, 61, 62, 78, 87, 88
theme_minimal() theme, 17
tidyverse package, 23–25

Tone Analyzer service
API key, 315–317
authentication, 318
Create Resource button, 314
definition, 315
IBM Watson Natural Language

Understanding account, 314
libraries/modules, 317
log into, 314
Python script, 317

dfDocuments data frame, 319
dfReturnedUtterance data frame,

324, 325
empty list, 319
format/score document, 320, 321
initial values, 321, 322
listReturnedUtterance list, 324
loop, returned tones, 323
Power BI, 325–327
read_csv() method, 319
URL, 318

ToneAnalyzerV3 class, 318
transmute() function, 101

U, V, W, X
unserialize() function, 337
useHaversine() function, 290, 291

Y, Z
ymd() function, 156, 157

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Creating Custom Data Visualizations Using R
	Chapter 1: The Grammar of Graphics
	Steps to build an R custom visual in Power BI
	Step 1: Configure Power BI
	Step 2: Drag the “R custom visual” icon to the Power BI canvas
	Step 3: Define the data set
	Step 4: Develop the visual in your default R IDE
	Step 5: Use the following template to develop your visual
	Step 6: Make the script functional

	Recommended steps to create an R visual using ggplot2
	Step 1: Load the required packages that you will need for your script
	Step 2: Make any required adjustments to the data set
	Step 3: Initiate the creation of the visualization with the ggplot() function
	Step 4: Add desired geom(s)
	Step 5: Define your titles, subtitles, and caption
	Step 6: Make any necessary changes to the x and y axis
	Step 7: Apply themes if needed
	Step 8: Use the theme() function to change any specific non-data elements
	Bonus step: Specifying specific colors for your points in your scatter plot

	The importance of having “tidy” data
	Popular geoms
	Controlling aesthetics with scales
	Themes built into ggplot2
	Using R visuals in the Power BI service
	Helper packages for ggplot2
	Summary

	Chapter 2: Creating R Custom Visuals in Power BI Using ggplot2
	Callout chart
	Step 1: Acquire the necessary data
	Step 2: Create a slicer based on the year in the Filter pane
	Step 3: Configure the R visual in Power BI
	Step 4: Export data to R Studio for development
	Step 5: Load the required packages
	Step 6: Create the variables needed for the data validation test
	Step 7: Create the data validation test
	Step 8: Add additional columns to your data set that is required for the custom R visual
	Step 9: Create the variables that will be used for the dynamic portions of the chart
	Step 10: Start building the chart by defining the ggplot() function
	Step 11: Add a column chart layer to the R visual
	Step 12: Add a text layer to the R visuals
	Step 13: Modify the y axis
	Step 14: Convert chart from a vertical column chart to horizontal bar chart
	Step 15: Add a dynamic annotation to the R visuals
	Step 16: Add the dynamic titles and caption to the R visual
	Step 17: Remove labels from x axis and y axis
	Step 18: Remove legend
	Step 19: Change the look and feel of the visual using theme_few()
	Step 20: Center align titles
	Step 21: Add code to Power BI

	Bubble chart
	Step 1: Acquire the necessary data
	Step 2: Load the data into Power BI
	Step 3: Create a filter slicer based on the year
	Step 4: Do the initial R visual configuration
	Step 5: Export data to R Studio for development
	Step 6: Load the required packages
	Step 7: Create the variables needed for the data validation test
	Step 8: Create the data validation test
	Step 9: Define the colors for the conferences and conference divisions
	Step 10: Dynamically define the chart titles
	Step 11: Create the chart’s data set
	Step 12: Start the chart by defining the ggplot function
	Step 13: Add the layer for your bubble chart using the geom_point geom
	Step 14: Add labels to the bubble chart
	Step 15: Change the color of the bubble’s border and change the color of the bubble’s fill
	Step 16: Create the ggtitle
	Step 17: Set the theme
	Step 18: Add code to Power BI

	Forecast
	Step 1: Acquire the necessary data
	Step 2: Create a slicer based on quarterback
	Step 3: Configure the R visual
	Step 4: Export data to R Studio for development
	Step 5: Load the required packages to the script
	Step 6: Create the variables needed for the data validation test
	Step 7: Create the data validation test
	Step 8: Create the dynamic chart title
	Step 9: Create the data set that is needed to generate the forecast
	Step 10: Generate the forecast
	Step 11: Generate the plot
	Step 12: Add code to Power BI

	Line chart with shade
	Step 1: Acquire the necessary data
	Step 2: Load the data into Power BI
	Step 3: Create the report slicers
	Step 4: Configure the R visual
	Step 5: Export data to R Studio for development
	Step 6: Load the required packages to the script
	Step 7: Create the variables needed for the data validation test
	Step 8: Create the data validation test
	Step 9: Create a new data frame based on the dataset data frame
	Step 10: Create the variables that will be used for the dynamic portions of the chart
	Step 11: Create the data sets needed for background shade
	Step 12: Create the data sets needed for line chart
	Step 13: Create a named character vector that will be used to color the shades
	Step 14: Start the chart by defining the ggplot function
	Step 15: Add a layer to create the background shade
	Step 16: Add a line chart based on the statistic selected
	Step 17: Reshade the background using pre-determined colors based on the political party
	Step 18: Format the y axis based on the statistic selected
	Step 19: Add labels to the x and y axis
	Step 20: Add the dynamic titles and caption to the custom R visuals
	Step 21: Apply a theme based on The Economists publication
	Step 22: Add code to Power BI

	Map
	Step 1: Acquire the necessary data
	Step 2: Load the data into Power BI
	Step 3: Create a slicer based on state in the Filter pane
	Step 4: Configure the R visual
	Step 5: Export data to R Studio for development
	Step 6: Load the required packages
	Step 7: Create the variables needed for the data validation test
	Step 8: Create the data validation test
	Step 9: Create the variables for the chart titles
	Step 10: Add the quintile column to the data set
	Step 11: Define the colors that will be used to shade the map
	Step 12: Define the ggplot() function
	Step 13: Add the map layer
	Step 14: Format the x and y axis
	Step 15: Color the counties based on their quintile
	Step 16: Improve the approximation of the selected state
	Step 17: Add the dynamic titles and caption to the custom R visuals
	Step 18: Apply the theme_map() theme
	Step 19: Add code to Power BI

	Quad chart
	Step 1: Acquire the necessary data
	Step 2: Load the data into Power BI
	Step 3: Create a slicer for game type and period
	Step 4: Configure an R visual on the report canvas
	Step 5: Export data to R Studio for development
	Step 6: Load the required packages
	Step 7: Create the variables needed for the data validation test
	Step 8: Create the data validation test
	Step 9: Create the chart titles
	Step 10: Add additional columns to the data set
	Step 11: Start the chart by defining the ggplot function
	Step 12: Use the geom_point() geom to plot the players on the plot
	Step 13: Add the labels for each quadrant
	Step 14: Draw vertical and horizontal lines through the x and y axis
	Step 15: Add quadrant labels to the chart
	Step 16: Add labels for the x and y axis
	Step 17: Add the dynamic titles and caption to the custom R visual
	Step 18: Add a theme
	Step 19: Perform last minute cleanup
	Step 20: Add code to Power BI

	Adding regression line
	Step 1: Acquire the necessary data
	Step 2: Load the data into Power BI
	Step 3: Configure the R visual
	Step 4: Export data to R Studio for development
	Step 5: Load the required packages
	Step 6: Create the variables needed for the data validation test
	Step 7: Create the data validation test
	Step 8: Start the chart by initializing the ggplot function
	Step 9: Add a scatter plot layer to the R visual
	Step 10: Add regression line layer to the R visuals
	Step 11: Add a title to the chart
	Step 12: Change the chart’s theme
	Step 13: Perform some last minute cleanup
	Step 14: Add code to Power BI

	Part II: Ingesting Data into the Power BI Data Model Using R and Python
	Chapter 3: Reading CSV Files
	Dynamically combining files
	Example scenario
	Picking the rolling 24 months using R
	Step 1: Load the required R packages for the script
	Step 2: Change your working directory to the folder that contains the Sales data sets
	Step 3: Read the file names into a character vector
	Step 4: Create a date vector
	Step 5: Create a data frame using the two vectors
	Step 6: Get the upper and lower bound of our desired date range
	Step 7: Subset the data frame to only include the desired months
	Step 8: Create a data frame that is based on the union of all the files
	Step 9: Combine the code into one script and paste into the R editor for Power BI

	Picking the rolling 24 months using Python
	Step 1: Create a Python script and load the necessary libraries
	Step 2: Change your working directory to the Python_Code folder
	Step 3: Read the file names into a Python list
	Step 4: Create a pandas data frame that will hold the information of the files to combine
	Step 5: Create a new column that strips the date information from the monthly_reports column
	Step 6: Get the upper and lower bound of the date range
	Step 7: Subset the data frame
	Step 8: Combine files into one data frame
	Step 9: Add the code to Power BI

	Filtering rows based on a regular expression
	Leveraging regular expressions via R
	Step 1: Load the required packages
	Step 2: Load the file that contains the potential voters into R
	Step 3: Define the regular expression
	Step 4: Remove the bad email addresses from the data set
	Step 5: Combine the preceding code into one script and paste in the R editor for Power BI

	Leveraging regular expressions via Python
	Step 1: Load the required libraries
	Step 2: Load the file that contains the potential voters into Python and assign the contents to a pandas data frame
	Step 3: Define the regular expression that matches the pattern of a well-formed email address
	Step 4: Remove the bad email addresses from the data set
	Step 5: Combine the preceding code into one script and paste in the Python editor for Power BI

	Chapter 4: Reading Excel Files
	Reading Excel files using R
	Step 1: Import the tidyverse and readxl package
	Step 2: Create the shell of the combine_sheets function
	Step 3: Get the name of the sheets you need to combine in your function from the specified Excel workbook
	Step 4: Convert the character vector built in Step 3 to a named character vector
	Step 5: Use the mapr_df function to combine the sheets into a single data frame
	Step 6: Return the data frame
	Step 7: Set the working directory to the location where the Excel files are located
	Step 8: Assign the file names to the excel_file_paths variable
	Step 9: Use the map_dfr function to apply the combine_sheets function to each file in the working directory
	Step 10: Copy the R script and paste it into the R editor via GetData in Power BI

	Reading Excel files using Python
	Step 1: Import the os and pandas library
	Step 2: Create the shell of the combine_sheets function
	Step 3: Create an Excel object based on the workbook located at the path specified in the excel_file_path variable
	Step 4: Create a list of the sheet names in the workbook specified by the excel_file_path variable
	Step 5: Use the read_excel method of pandas to read the data from each sheet into one data frame
	Step 6: Return the data frame held in df as the output from the combine_sheets function
	Step 7: Set the working directory to the location that contains the Excel data you want to combine
	Step 8: Get the list of the file names in the current working directory and assign it to the excel_file_paths variable
	Step 9: Create an empty data frame and name it combined_workbooks
	Step 10: Create the shell of the for loop
	Step 11: Combine all the data in each sheet into one data frame using the combine_sheets function
	Step 12: Append the combined_workbook data frame to the combined_workbooks data frame
	Step 13: Copy the Python script and paste it into the Python editor via GetData in Power BI

	Chapter 5: Reading SQL Server Data
	Adding AdventureWorksDW_StarSchema database to your SQL Server instance
	Reading SQL Server data into Power BI using R
	Step 1: Create a DSN to the SQL Server database
	Step 2: Create a log table in SQL Server
	Step 3: Start developing the R script to load DimDate
	Step 4: Create a variable to hold the name of the table you want to import
	Step 5: Create a variable to hold the sql statement that will be used to return the table
	Step 6: Create a connection to SQL Server
	Step 7: Retrieve the data from SQL Server and store it in a data frame
	Step 8: Get the current time
	Step 9: Get the number of records that were read
	Step 10: Create a one record R data frame that contains the information you want to log
	Step 11: Insert the information you gathered in Step 10 into the history log table
	Step 12: Close your connection
	Step 13: Copy the script into Power BI
	Step 14: Create a script to load DimProduct based on the ReadLog_DimDate.R script
	Step 15: Create a script to load DimPromotion based on the ReadLog_DimDate.R script
	Step 16: Create a script to load DimSalesTerritory based on the ReadLog_DimDate.R script
	Step 17: Create a script to load FactInternetSales based on the ReadLog_DimDate.R script

	Reading SQL Server data using Python
	Step 1: Create a DSN to the SQL Server database
	Step 2: Create a log table in SQL Server
	Step 3: Begin creating the script to load the DimDate table
	Step 4: Create a variable that holds the name of the table that you want to read into Power BI
	Step 5: Create a connection to the database using sqlalchemy
	Step 6: Read in the contents of the DimDate table and store it as a data frame in the df_read variable
	Step 7: Get the current date and time and store the information into the datastamp variable
	Step 8: Calculate the number of records in the DimDate table
	Step 9: Create a one record pandas data frame that contains the information you want to log
	Step 10: Insert the information you gathered in Step 9 into the history log table
	Step 11: Copy the script into Power BI
	Step 12: Create a script to load DimProduct based on the ReadLog_DimDate.py script
	Step 13: Create a script to load DimPromotion based on the ReadLog_DimDate.py script
	Step 14: Create a script to load DimSalesTerritory based on the ReadLog_DimDate.py script
	Step 15: Create a script to load FactInternetSales based on the ReadLog_DimDate.py script

	Chapter 6: Reading Data into the Power BI Data Model via an API
	Reading Census data into Power BI via an API using R
	Step 1: Get a personal Census API key
	Step 2: Load the necessary R packages
	Step 3: Identify the variables you want to return from your data set
	Step 4: Create a character vector of the tables that contains the variables you want to return
	Step 5: Configure the get_acs function
	Step 6: Give the variables (columns) meaningful names
	Step 7: Copy the script into Power BI

	Reading Census data into Power BI via an API using Python
	Step 1: Get a personal Census API key
	Step 2: Load the necessary Python libraries
	Step 3: Identify the variables you want to return in your data set
	Step 4: Create a variable that is based on the list variables you want
	Step 5: Create a list of tuples that contains the geographies you want to in your data set
	Step 6: Retrieve the data using the censusdata.download() function
	Step 7: Reset the index of the data frame created in Step 6
	Step 8: Define the new column names
	Step 9: Rename columns
	Step 10: Copy the script into Power BI

	Summary

	Part III: Transforming Data Using R and Python
	Chapter 7: Advanced String Manipulation and Pattern Matching
	Masking sensitive data
	Masking sensitive data in Power BI using R
	Step 1: Import tidyverse and stringr
	Step 2: Create the scrub data function
	Step 3: Read the comments into a data frame
	Step 4: Mask the phone numbers and ssn numbers in the comment field
	Step 5: Copy the script into Power BI

	Masking sensitive data in Power BI using Python
	Step 1: Import pandas, os, and re library
	Step 2: Create the mask_text function
	Step 3: Set the working directory
	Step 4: Read the comments into a data frame
	Step 5: Mask the phone numbers and SSNs
	Step 6: Copy the script into Power BI

	Counting the number of words and sentences in reviews
	Counting the number of words and sentences in reviews in Power BI using R
	Step 1: Import tidyverse and stringr
	Step 2: Change working directory to location of the file
	Step 3: Read in the Yelp data
	Step 4: Subset the columns
	Step 5: Add word count and sentence count columns
	Step 6: Copy the script into Power BI

	Counting the number of words in reviews in Power BI using Python
	Step 1: Import pandas and os
	Step 2: Change working directory to the location of the file
	Step 3: Read the Yelp data into Python
	Step 4: Create the word_count column
	Step 5: Copy the script into Power BI

	Removing names that are in an invalid format
	Removing names that are in an invalid format in Power BI using R
	Step 1: Import tidyverse and stringr
	Step 2: Change working directory to location where the DimEmployee.csv file is
	Step 3: Create a regular expression to match a valid name
	Step 4: Read the data into a data frame
	Step 5: Do an inline update of the Name column
	Step 6: Copy the script into Power BI

	Removing names that are in an invalid format in Power BI using Python
	Step 1: Import pandas, re, and os library
	Step 2: Change working directory to the location where the DimEmployee csv file is
	Step 3: Read in the DImEmployee data into an R data frame
	Step 4: Create a regular expression that matches a valid name
	Step 5: Compile the regular expression
	Step 6: Define a function that executes the name test
	Step 7: Apply the function to the column to scrub the name
	Step 8: Copy the script into Power BI

	Identifying patterns in strings based on conditional logic
	Identifying patterns in strings based on conditional logic in Power BI using R
	Step 1: Import the tidyverse and stringr packages
	Step 2: Change the working directory
	Step 3: Create a function that identifies the products
	Step 4: Read in the data from the ProductionOrders.csv file into an R data frame
	Step 5: Add a column to the df named “Monitored Products”
	Step 6: Copy the script into Power BI

	Identifying patterns in strings based on conditional logic in Power BI using Python
	Step 1: Import pandas, re, and os library
	Step 2: Change working directory
	Step 3: Compile the required regular expression
	Step 4: Define a function that returns the monitored products
	Step 5: Read in the data into Pandas data frame
	Step 6: Create a new column named “Monitored Products”
	Step 7: Copy the script into Power BI

	Summary

	Chapter 8: Calculated Columns Using R and Python
	Create a Google Geocoding API key
	Step 1: Log into the Google console
	Step 2: Set up a billing account
	Step 3: Add a new project
	Step 4: Enable Geocoding API

	Geocode the addresses using R
	Geocode the addresses using Python
	Calculate the distance with a custom function using R
	Calculate the distance with a custom function using Python
	Calculate distance with a pre-built function in Power BI using R
	Calculate distance with a pre-built function in Power BI using Python
	Summary

	Part IV: Machine Learning and AI in Power BI Using R and Python
	Chapter 9: Applying Machine Learning and AI to Your Power BI Data Models
	Apply machine learning to a data set before bringing it into the Power BI data model
	Predicting home values using R
	Step 1: Have the data scientist share the model with you
	Step 2: Load the tidyverse package
	Step 3: Load the model object and the data set to be scored
	Step 4: Subset the data frame so that it only contains the columns needed for the model
	Step 5: Apply the model to your data set to predict the median home values
	Step 6: Add the predictions to the original data set
	Step 7: Copy the entire R script into the Power BI data model

	Predicting home values using Python
	Step 1: Have the data scientist share the model with you
	Step 2: Load the necessary Python libraries needed for the script
	Step 3: Load the model object and the Boston homes data set
	Step 4: Extract the information needed from the bost_housing data frame
	Step 5: Apply the model to the preprocessed data to predict the median home values
	Step 6: Add the predictions to the original data set
	Step 7: Copy the entire Python script into the Python script editor in Power BI

	Using pre-built AI models to enhance Power BI data models
	Set up Cognitive Services in Azure
	The Data Science Virtual Machine (DSVM)
	Performing sentiment analysis in Microsoft Cognitive Services via Python
	Step 1: Get the Yelp review data from Kaggle
	Step 2: Import the necessary libraries, modules, and function for the script
	Step 3: Assign values to the variables used in the script
	Step 4: Read in the sample of the Yelp review data into Python
	Step 5: Transform the data frame to the format that is required by Microsoft Cognitive Services
	Step 6: Score the reviews using the sentiment method of the text_analytics object
	Step 7: Create a data frame to hold the sentiment data
	Step 8: Add the data to Power BI

	Applying AI to your Power BI data model using services other than Microsoft Cognitive Services
	Configuring the Tone Analyzer service in IBM Watson
	Step 1: Sign up for IBM Cloud account
	Step 2: Log into the IBM Cloud
	Step 3: Go to the Tone Analyzer page
	Step 4: Define your Tone Analyzer service
	Step 5: Get your API key

	Writing the Python script to perform the tone analysis
	Step 1: Import the required libraries and modules
	Step 2: Create an instance of the IAMAuthenticator class
	Step 3: Create an instance of the ToneAnalyzerV3 class
	Step 4: Set the service URL of the service object
	Step 5: Create a data frame that will hold the data you want to use for the tone analysis
	Step 6: Create a data frame based on the scored data
	Step 7: Create a looping structure to individually send the documents to IBM Watson
	Step 8: Format and score the document
	Step 9: Assign the results of the tone analysis and set the initial values of the tone variables
	Step 10: Loop through the returned tones and assign their scores to the appropriate variable
	Step 11: Create a data frame based on the listReturnedUtterance list
	Step 12: Merge the dfReturnedUtterance data frame with the dfDocuments data frame
	Step 13: Copy the complete script into Power BI

	Chapter 10: Productionizing Data Science Models and Data Wrangling Scripts
	Predicting home values in Power BI using R in SQL Server Machine Learning Services
	Build the R script that adds the model to SQL Server
	Step 1: Load the necessary packages
	Step 2: Load the model into the R session
	Step 3: Create a connection to the database
	Step 4: Define the model variables
	Step 5: Build the T-SQL statement to add the model to the database
	Step 6: Add the code needed to execute the T-SQL statement from R
	Step 7: Save the script

	Use SQL Server Machine Learning Services with R to score the data
	Step 1: Launch SQL Server Management Studio
	Step 2: Create a connection to the server you want to use
	Step 3: Add the BostonHousingInfo database to your server
	Step 4: Add the model to the database
	Step 5: Add the stored procedure to the database that will do the scoring
	Step 6: Fetch the scored data in Power BI from SQL Server

	Predicting home values in Power BI using Python in SQL Server Machine Learning Services
	Create the script needed to add Python model to SQL Server
	Step 1: Get the version of libraries used in this exercise
	Step 2: Create a conda environment
	Step 3: Create the code that pushes the model to SQL Server

	Use SQL Server Machine Learning Services with Python from Power BI to score the data
	Step 1: Launch SQL Server Management Studio
	Step 2: Create a connection to the server you want to use
	Step 3: Add the BostonHousingInfo database to your server
	Step 4: Add the model to the database
	Step 5: Add the stored procedure to the database that will do the scoring
	Step 6: Fetch the scored data in Power BI from SQL Server

	Performing sentiment analysis in Power BI using R in SQL Server Machine Learning Services
	Add pre-built R models to SQL Server Machine Learning Services using PowerShell
	Step 1: Check to see if the pre-trained models are installed
	Step 2: Open PowerShell as administrator
	Step 3: Download PowerShell script
	Step 4: Run the downloaded script in PowerShell
	Troubleshooting

	Use pre-built R sentiment model in SQL Server Machine Learning Services to score data in Power BI
	Step 1: Begin defining the stored procedures
	Step 2: Define variables
	Step 3: Set @Query variable
	Step 4: Set @RScript variable
	Step 5: Configure sp_execute_external_script
	Step 6: Define the output
	Step 7: Add the procedure to the database
	Step 8: Call the procedure from Power BI

	Performing sentiment analysis in Power BI using Python in SQL Server Machine Learning Services
	Add pre-built Python models to SQL Server Machine Learning Services
	Step 1: Check to see if the pre-trained models are installed
	Step 2: Open PowerShell as administrator
	Step 3: Download PowerShell script
	Step 4: Run the downloaded script in PowerShell
	Troubleshooting

	Use pre-built Python sentiment model in SQL Server Machine Learning Services to score data in Power BI
	Step 1: Begin defining the stored procedures
	Step 2: Define variables
	Step 3: Set @Query
	Step 4: Set @PythonScript
	Step 5: Configure sp_execute_external_script
	Step 6: Define the output
	Step 7: Add the procedure to the database
	Step 8: Call the procedure from Power BI

	Calculating distance in Power BI using R in SQL Server Machine Learning Services
	Step 1: Make sure dplyr is loaded in SSMLS
	Step 2: Launch SSMS and connect to a SQL Server
	Step 3: Add the CalculateDistance database to the server
	Step 4: Add the stored procedure that will calculate the distances
	Step 5: Call the Power BI procedure from Power BI

	Calculating distance in Power BI using Python in SQL Server Machine Learning Services
	Step 1: Launch SSMS and connect to a SQL Server
	Step 2: Add the CalculateDistance database to the server
	Step 3: Add the stored procedure that will calculate the distances
	Step 4: Call the Power BI procedure from Power BI

	Index

