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Introduction

Microsoft Power BI is considered by many to be the premier self-service business 

intelligence tool on the market. In recent years, it has passed up formidable tools such 

as QlikView and Tableau to gain the number one spot. One of the reasons why it is 

considered such a great self-service business intelligence tool is because it is more than 

just a visualization tool. Built into Microsoft Power BI are

•	 The DAX expression and query language that enables you to 

interrogate your Power BI data model using complex business logic 

in a fast and efficient way

•	 A data wrangling tool called Power Query that enables you to shape 

and transform your data into a form that is conducive for data 

analysis

•	 The Vertipaq engine that efficiently stores the data in a way that is 

optimized for reporting and performs complex calculations fast and 

efficiently

•	 Pre-packaged, interactive visualizations that enable you to present 

your data in ways that are easily understood by report consumers

So, you may ask the question, with all these features why would you need to leverage 

programming languages such as R and Python in Power BI? The answer is to fill in the 

few areas where the native tools fall short. A few examples are

•	 Creating custom visualizations in a relatively easy way

•	 Applying data science to your Power BI data models without the need 

of Power BI Premium

•	 Performing advanced string manipulations using advanced 

techniques that are not available in Power Query or DAX

•	 Interacting with Microsoft Cognitive Services without the need of 

Power BI Premium
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•	 Communicating with third-party data APIs to enrich your Power BI 

data models in an efficient way

•	 And many more

This book covers how to leverage R and Python to bring the added functionality 

listed earlier to your Power BI solutions. R is a perfect complement to Power BI because 

it is a language written specifically for data analytics. Data analysts have been using R to 

perform tasks like data wrangling and data visualization for decades. Given that, features 

that may not be available in Power BI might have been in R for some time.

Python has become a very popular programming language in data analytics over the 

last decade. One of the features that make Python so attractive is that it is not only great 

for data analytics, but it is great for general programming tasks as well. Communicating 

with APIs is a breeze with Python, but the same task is very clunky using Power Query.

These features of R and Python make them perfect companions to Power BI. This 

book will cover some recipes that illustrate the preceding features. The recipes will 

include detailed steps along with verbose descriptions so that you will get a clear 

understanding of how they work. Before you get started using the recipes, you need to 

configure your environment. Let’s go over those configurations.

�Configure your Azure environment
Different parts of Azure will be used throughout the book. Microsoft Cognitive Services 

will be used to apply artificial intelligence to your Power BI data models. Also, the Data 

Science Virtual Machine (DSVM) is the recommended development environment for 

the book. The DSVM is optional but highly recommended. In order to work many of the 

examples in this book, you will need an environment configured with many tools such as

•	 SQL Server 2017 or later

•	 SQL Server Machine Learning Services 2017 or later with R and 

Python enabled

•	 The Anaconda distribution of Python

•	 The R programming language

•	 R Studio
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•	 VS Code

•	 Power BI Desktop

Manually configuring an environment with these resources can be a challenge, 

but if you use the DSVM, most of the configuration is handled for you. In the following 

sections, you will learn how to set up Azure so that you can consume Microsoft Cognitive 

Services and you will also learn how to spin up a DSVM.

�Sign up for Azure
Sign up for Azure here: https://azure.microsoft.com/en-us/free/. You get 12 months 

free for selected services plus $200 in credit during your first month!

�Sign up for Microsoft Cognitive Services
Microsoft Cognitive Services will be used to perform sentiment analysis inside of Power 

BI using Python. You first need to set up the Microsoft Cognitive Services in Azure before 

you can call it from Power BI. Here are the required steps to set up the service:

	 1.	 Log in to your Azure Portal.

	 2.	 Type Cognitive Services in the search box, then press Enter.

	 3.	 The preceding action should take you to the Cognitive Service 

signup page. Click the Create button to initiate the signup process.

	 4.	 Fill in the following information:

•	 Name

•	 Subscription

•	 Location

•	 Pricing tier

•	 Resource group

	 5.	 Click the I confirm I have read and understood the notice below 

check box.

	 6.	 Click the Create button.
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Note that there is a cost to use Microsoft Cognitive Services. To get pricing 

information, go to your Microsoft Cognitive Services resource and type Pricing tier in the 

search box, then click it in the results. Select the pricing tier you want to use. Doing so 

will take you to a page that will give you pricing information based on your usage and 

Azure region. The exercise in this book that uses Microsoft Cognitive Services is relatively 

inexpensive, and you will have more than enough credits in your first month to cover the 

cost.

�Create a Data Science Virtual Machine (DSVM)
The preferred setup is to start with a Data Science Virtual Machine (DSVM) and add the 

resources that do not come pre-installed in the DSVM to it. This setup is highly preferred 

because the amount of time it takes to fully configure your environment in the way that is 

needed to do every exercise in the book can be lengthy and challenging. Using the DSVM 

enables you to configure an environment in minutes that could take you many days 

of trial and error if you tried to do it yourself. Instructions will be provided in the next 

section if you decide to configure your own environment. Here are the instructions to set 

up the DSVM.

�Steps to create a DSVM in Azure

	 1.	 Go to https://portal.azure.com. If prompted, sign in using the 

credentials created in Step 1.

	 2.	 Click Create a resource in the upper left.

	 3.	 In the search box, type Data Science Virtual Machine -  

Windows 2019.

	 4.	 Click the Create button. This action will cause a form to appear 

that you need to fill out to configure the DSVM. You will land 

on the Basics tab. The following steps will tell you how to fill 

out the form.

	 5.	 Subscription: Select the subscription you want to use. It should 

default to the subscription that you set up in Step 1.
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	 6.	 Resource group: If you already have a resource group in your 

tenant you want to use, select it. Otherwise, create a new one for 

your DSVM">.

	 7.	 Virtual machine name: The name you want your DSVM to have.

	 8.	 Region: An Azure region close to you.

	 9.	 Image: Make sure Data Science Virtual Machine – Windows 2016 

is selected.

	 10.	 Size: I use B4ms because it is the cheaper option for the 16 gigs of 

ram options. RAM is important for R, Python, and Power BI.

	 11.	 Username: <"Create a username">.

	 12.	 Password: <"Create password">.

	 13.	 Confirm password: <"Confirm password">.

	 14.	 Click Next: Disks >.

	 15.	 OS disk type: Select Standard SSD. This option is sufficient for 

what we are doing.

	 16.	 Click Next: Networking>.

	 17.	 Make sure all the required fields are filled out. You can identify the 

required fields with a *. They should be populated with a default 

value; if not, click the Create New link below them and accept the 

default settings.

	 18.	 Click Next: Management >.

	 19.	 Accept defaults and click Next: Advanced >.

	 20.	 Accept defaults and click Next: Tags >.

	 21.	 Click Next: Review + create >.

	 22.	 You will see a summary of the DSVM that you configured. You 

will also see the cost to run the DSVM. If you agree with the 

configuration, click the Create button.
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Make sure to stop your DSVM after every use so that you don’t incur unnecessary costs. 

As a safeguard, you should set up an auto-shutdown that will shut down your DSVM if it is 

still running past a specified time. Do the following steps to set up auto-shutdown:

	 1.	 Go into your DSVM machine in the Azure Portal.

	 2.	 Type auto-shutdown in the search box, then select it in the list.

	 3.	 Enable auto-shutdown by selecting On in the Enabled button.

	 4.	 Select the time you would like to automate the shutdown in the 

Scheduled shutdown textbox.

	 5.	 Choose the time zone you want to base the time on in the Time 

zone combo box.

	 6.	 If you want notification to be sent to you that lets you know that 

your DSVM will be shutting down, you can turn on the Send 

notification before auto-shutdown. The notification will be sent to 

the email that you put in the Email address textbox.

�Configure R in DSVM
You will be using a different distribution of R than the one installed. The distribution 

of R that we will use is Microsoft R Open (MRO). This distribution of R is totally 

compatible with distribution on CRAN, but it comes with enhancements that improve 

the performance of certain types of calculations plus many additional tools. Perform the 

following steps to download the MRO in your DSVM:

	 1.	 Get the version of R that is being used in the Power BI service. 

You can find that information in the following Microsoft 

documentation: https://docs.microsoft.com/en-us/power-bi/

visuals/service-r-visuals.

	 2.	 Open up a browser in the DSVM and go to the following site: 

https://mran.microsoft.com/open. Two browsers are pre-

installed in the DSVM. They are Microsoft Edge and Firefox.
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	 3.	 Click the Download button on the right and you will be taken 

to the download page. Once on the download page, click the 

Past Releases link which is located on the right section of the 

page. Clicking the link will take you to a page that has links to 

all previous versions of Microsoft R Open. Click the link for the 

version that the Power BI service is using.

	 4.	 Choose the download for Windows.

	 5.	 Execute the download.

	 6.	 Open R Studio in the DSVM.

	 7.	 Select Tools ➤ Global Options. Verify that the MRO distribution 

you just installed is selected. If it is not, click the Change… button 

and you should see it as one of the options. Select it, then click OK.

�Configure Python in DSVM
One of the benefits you gain with the DSVM is you get a distribution of Python pre-

installed that is perfect for data analytics. The name of the distribution is Anaconda. 

The Anaconda distribution of Python comes pre-installed with over 1500 libraries that 

are popular in data analytics. It also comes with a package manager and environment 

management system named conda. Installing libraries via conda is preferred because 

of how conda manage package dependencies. The environment management system 

in conda makes it easy to create an isolated copy of a specific version of Python with 

specific versions of Python libraries in it.

Let’s create a dedicated Python environment in the DSVM for this book and 

name it pbi. To do so, you need to perform the following steps:

	 1.	 Log into the DSVM.

	 2.	 Open the command prompt by clicking in the search bar next to 

the Windows sign and type cmd.

	 3.	 Type the following code to create a conda environment named pbi 

based on Python 3.7:

conda create -n pbi python=3.7
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The decision to use python 3.7 was based on information obtained from the 

following Microsoft documentation: https://docs.microsoft.com/en-us/business-

applications-release-notes/october18/intelligence-platform/power-bi-

service/pervasive-artificial-intelligence-bi/python-service. According to the 

documentation, the Power BI service is compatible with Python 3.x so the current 3.x 

versions of Python should be compatible.

Now we have a Python environment that we can use for our Python development in 

this book.

�Configuring SQL Server Machine Learning Services 
in DSVM
Several examples of the book require the use of SQL Server Machine Learning Services 

(SSMLS). SSMLS provides tools that enable you to perform advanced analytics inside 

the database using R, Python, and some tools that make it easier to work with big data. 

SSMLS also offers some pre-trained models built by Microsoft that you can leverage. The 

preceding features are not part of the default features, but SSMLS is enabled by default 

in the DSVM. If you are not using the DSVM, you will have to enable it, and instructions 

of how to do so can be found here: https://docs.microsoft.com/en-us/sql/machine-

learning/install/sql-machine-learning-services-windows-install?view=sql-

server-ver15. The pre-trained models that will be used in the book can be added to 

your instance of SQL Server as a post-task installation. Go to this URL to get instructions 

of how to install the pre-trained models as a post-task installation: https://docs.

microsoft.com/en-us/sql/machine-learning/install/sql-pretrained-models-

install?view=sql-server-ver15.

�Installing R packages
Some of the R scripts in this book may contain R packages that are not installed on your 

machine. Installing packages in R is simple and straightforward. The following code 

installs a popular R package named data.table via the R console:

install.packages("<package name>")
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There will be times when you may want to install multiple packages at once. For 

instance, you may want to install the R package data.table and dplyr together. You can 

accomplish that task by creating a character vector that contains two elements, one for 

data.table and another for dplyr, and assign the results to a variable named pkgs. Then 

you would pass that variable to the install.packages() function as illustrated here:

pkgs <- c("data.table", "dplyr")

install.packages(pkgs)

The R character vector data type is a one-dimensional array of the character 
data type. You will learn more about this data types as well as other R data types 
throughout the book.

When you are creating R visuals in Power BI, you need to be cognizant of which 

version of the package is being used by the Power BI service. You can get a list of all 

the available R packages in the Power BI service along with their version at this URL: 

https://docs.microsoft.com/en-us/power-bi/service-r-packages-support.

The install.packages() will download the most recent version of the package from the 

repository you are using if you are using the distribution of R from CRAN. If you are using 

Microsoft R Open, it will install the most recent package based on the snapshot date. Both 

methods may result in a version being installed that is not the same as the one in the 

service. To download the version of a package that is being used in the service, you first 

need to get the package version from the page located at the preceding URL, then you 

need to use the devtools package to install it. Here is an example of using the devtools 

package to install ggplot2 0.9.1 from CRAN:

library(devtools)

install_version(

    "ggplot2",

    version = "0.9.1",

    repos = "http://cran.us.r-project.org")
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�Installing Python libraries
There are multiple ways you can install libraries in Python. You will use two methods 

in this book, conda install and pip install. Installing libraries in Python is not as easy 

and straightforward as it is installing packages in R. In this book, you will use the conda 

prompt to install Python libraries. Perform the following steps to install Python a library 

using conda:

	 1.	 Go to the Windows search bar located on the lower right next to 

the Windows icon.

	 2.	 Type the word Anaconda and the Anaconda Prompt should 

appear in the returned list. Click it to launch the Anaconda 

Prompt.

	 3.	 Activate the environment that you are using for Power BI by typing 

the following code in the command prompt:

conda activate "<environment name>"

It is highly recommended to use an environment for the Python 

development associated with this book. Instructions of how to 

create one are located in the next section.

	 4.	 Install the package using conda with the following code:

conda install <"package name">

So, if you were installing pandas, the code would be as follows:

conda install pandas

If you wanted to install pandas 1.0.4, you would use the  

following code:

conda install pandas=1.0.4

Not all packages are available for a conda install. Go to the 

following URL to get a list of packages that can be installed using 

conda in Python 3.6: https://docs.anaconda.com/anaconda/

packages/py3.6_win-64/. One of the packages that will be used 
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in this book is not available in conda but is available in PyPI. The 

name of the package is CensusData. You must use pip to install the 

CensusData library as illustrated here:

pip install CensusData

�Configure Power BI in DSVM
There are several configurations that you need to do in the Power BI Desktop to enable 

R and Python. Those steps are covered in detail in the book’s code repository in GitHub. 

You will also find instructions on how to create and use conda environment in Python. 

Here is the URL to the book’s code repository: https://github.com/Apress/adv-

analytics-in-power-bi-w-r-and-python.

�Alternative setup
That DSVM is the optimal way to go, but it may not be an option for you. If that is the 

case, you will have to manually install the required software. Here are links to the 

required software that you need to install:

•	 Manually Install Power BI: www.microsoft.com/en-us/download/

details.aspx?id=58494

•	 Manually Install R Studio: https://rstudio.com/products/

rstudio/download/

•	 Manually Install Microsoft R Open: https://mran.microsoft.com/

download

•	 Manually Install Anaconda: www.anaconda.com/products/

individual

•	 Manually Install VS Code: https://code.visualstudio.com/

download

•	 Manually Install SQL Server 2019 Developer: www.microsoft.com/

en-us/sql-server/sql-server-downloads
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•	 Manually Install SQL Server Machine Learning Services:  

https://docs.microsoft.com/en-us/sql/machine-learning/

install/sql-machine-learning-services-windows-

install?view=sql-server-ver15

If you go this route, I highly recommend you use a virtual machine running Windows 

Server 2016 or later. Here is the URL to a YouTube video that provides step-by-step 

instructions on how to install Windows Server 2019 in VirtualBox: www.youtube.com/wat

ch?v=ZjQSuyuN0nA&t=8s.

�Adding R packages to SQL Server Machine Learning 
Services
In Chapter 10 of the book, you will learn how to productionize machine learning models 

via SQL Server Machine Learning Services 2019 with R. When you do so, you need to 

make sure that the required R packages are loaded in SSMLS 2019. Here is a T-SQL script 

that you can use to see what packages are loaded in your instance of SSMLS 2019:

EXECUTE sp_execute_external_script

  @language=N'R',

  @script = N'

packagematrix <- installed.packages();

Name <- packagematrix[,1];

Version <- packagematrix[,3];

OutputDataSet <- data.frame(Name, Version);'

WITH RESULT SETS ((PackageName nvarchar(250), PackageVersion nvarchar(max) ))

If the package you need is not in the list, then you will need to load it manually. Here 

are the recommended steps to use to load the R packages in SSMLS 2019.
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�Step 1: Download sqlmlutils on your machine to the  
Documents folder
The download for sqlmlutils can be found at this URL: https://github.com/Microsoft/

sqlmlutils/tree/master/R/dist.

Download the zip file from this GitHub repo and save it to your Documents folder.

�Step 2: Run the following code in the command prompt
Open the command prompt as administrator and run the following code:

R -e "install.packages('RODBCext', repos='https://cran.microsoft.com')"

R CMD INSTALL %UserProfile%\Documents\sqlmlutils_0.7.1.zip

The preceding code will work if you installed sqlmlutils in the Documents folder 

under your profile. You will need to change the file path to the appropriate location if 

sqlmlutils was saved in another location.

�Step 3: Load the required packages
After you perform Step 2, you will be in the position to load packages to SSMLS 2019 

from an R script in R Studio. Here is a code snippet that loads the dplyr package to 

SSMLS 2019:

library(sqlmlutils)

connection <- connectionInfo(

  server   = "server",

  database = "database",

  uid      = "username",

  pwd      = "password")

sql_install.packages(connectionString = connection,

pkgs = "dplyr", verbose = TRUE, scope = "PUBLIC")
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You are not limited to loading multiple packages at once. Let’s say you want to load 

two packages at once, dplyr and data.table. You could do so by creating a character 

vector that contains both packages and use it for the pkgs argument as shown here:

library(sqlmlutils)

connection <- connectionInfo(

  server   = "<server>",

  database = "<database>",

  uid      = "<username>",

  pwd      = "<password>")

pkgList <- c("dplyr","data.table")

sql_install.packages(connectionString = connection,

pkgs = pkgList, verbose = TRUE, scope = "PUBLIC")

�Add necessary Python libraries to SQL Server 
Machine Learning Services
Just like with SQL Server Machine Learning Services 2019 with R, you need to know 

how to load Python packages for SQL Server Machine Learning Services 2019 with 

Python in Chapter 10. Here are the steps you should take to load Python libraries in 

SSMLS 2019 using sqlmlutils.

�Step 1: Download sqlmlutils on client machine to the  
Documents folder
The download for sqlmlutils can be found at this URL: https://github.com/Microsoft/

sqlmlutils/tree/master/Python/dist.

Download the zip file located in the preceding URL and save it to your Documents folder.
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�Step 2: Open the command prompt and run the  
following code
pip install "pymssql<3.0"

pip install --upgrade --upgrade-strategy only-if-needed c:\temp\sqlmlutils-

0.7.2.zip

�Step 3: Load the required packages
After you perform Step 2, you will be in the position to load packages to SSMLS 2019 

from a Python script in VS Code. Here is a code snippet that loads the pandas package to 

SSMLS 2019:

import sqlmlutils

connection = sqlmlutils.ConnectionInfo(

    server="<yourserver>", database="<yourdatabase>",

    uid="<username>", pwd="<password>"))

sqlmlutils.SQLPackageManager(connection).install("pandas")

�On-premises data gateway
The on-premises data gateway is a tool that is used to enable secure data movement from 

on-prem data sources to the Azure cloud. The on-premises data gateway can be run in 

two different modes, personal and standard. If you want to deploy the solutions created 

in Chapters 3–9 to the Power BI service and run them on a periodical basis, then you will 

need to run the on-premises data gateway in personal model. As of the writing, R and 

Python scripts used in Power Query can only be run via the on-premises data gateway 

when it is in the personal mode. The downside of using the on-premises data gateway 

in personal mode is that your solution will not be an enterprise solution. It will be a 

solution that only you will have access to because, as the name suggests, the personal 

mode is meant for individual use.

However, in Chapter 10, you will learn how you can leverage both R and Python in 

an enterprise Power BI solution via SQL Server Machine Learning Services (SSMLS). 

When you use SSMLS 2019, your R and Python code will be wrapped in a special T-SQL 

stored procedure. T-SQL stored procedures can be used in the standard mode of the 
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on-premises data gateway. In Chapter 10, you will learn the basics of how to refactor the 

R and Python code you wrote in Chapters 3–9 for the special stored procedure used in 

SSMLS 2019. Note that R visuals do not rely on the on-premises data gateway because 

they are rendered using the instance of R located in the Power BI service.

�Resources
This book touches many technologies, so it would be impossible to give a complete 

coverage to all of them. Realizing that, I decided to give a curated list of resources that 

you can use to help fill in the missing pieces. I also included a link to the code repository 

for the book as well as some good general education resources.

�Book’s code repository
The code for each exercise in this book is contained in the book’s code repository at this 

URL: https://github.com/Apress/adv-analytics-in-power-bi-w-r-and-python. The 

complete R and Python scripts are grouped by chapter and topic in the code repository. 

Also, either the actual data sources or information on how to acquire the data sources 

used in the examples is located in the code repository as well.

�R resources
Books

•	 R for Data Science: This excellent book properly introduces you 

to R in a way that is recommended by arguably the most prolific R 

package creator, Hadley Wickham. It does so by leveraging packages 

that are a part of tidyverse. The book is available for free at this URL: 

https://r4ds.had.co.nz/.

•	 An Introduction to Statistical Learning: With Applications in R: This 

book is a good introduction to statistical concepts that are important 

to machine learning via R. The book has been around for a few years 

and is very popular in the R community. It is often used as the main 

textbook for undergraduate- and graduate-level courses at many 
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colleges and universities. You can acquire the book for free at this 

URL: https://faculty.marshall.usc.edu/gareth-james/ISL/

ISLR%20Seventh%20Printing.pdf.

Websites

•	 RStudio: This website provides a wealth of educational R resources. 

To get to the educational resources on the site, go to the Resource tab 

in the menu bar and you will see options to access free webinars, 

cheat sheets, and books. This is also the site where you get the 

recommended IDE for R, R Studio. Here is the URL to the website: 

https://rstudio.com/.

•	 The R Graph Gallery: This site provides examples of visuals created 

using R complete with the underlying R code. You can use this site 

to get visualization ideas. Here is the URL to the site: www.r-graph-

gallery.com/.

•	 R Bloggers: Great website to find community contributed blogs 

covering various topics about the R programming language. Here is 

the URL to the blog: www.r-bloggers.com/.

Tutorials

•	 dplyr tutorial Part 1: This is the first part of a two-part video series 

about dplyr given by the package main author, Hadley Wickham. The 

video was made back in 2014, but it is still very relevant. Here is the 

URL to the tutorial: www.youtube.com/watch?v=8SGif63VW6E&t=15s.

•	 dplyr tutorial Part 2: This is the second part of the series mentioned 

in the previous bullet: www.youtube.com/watch?v=Ue08LVuk790.

�Python resources
Books

•	 Hands-On Machine Learning with Scikit-Learn, Keras, and 

TensorFlow: This is an excellent resource that teaches you how to 

apply machine learning and artificial intelligence to your data using 

tools in Python. The book is available for purchases from most book 

sellers.
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•	 Python for Data Analysis: Data Wrangling with Pandas, NumPy, and 

IPython: This book is written by the original author of the pandas 

library, Wes McKinney. The pandas library is arguably the most 

popular library in Python for data wrangling. The book is available for 

purchases from most book sellers.

Vlogs, podcasts, and training

•	 Data School: This YouTube channel is authored by Kevin Markham. 

It provides a wealth of videos covering how to perform tasks in 

data science using Python libraries such as pandas, matplotlib, 

scikit-learn, and others. He does a great job at breaking down 

complex concepts in an easy-to-understand way. Here is the URL 

to this excellent YouTube channel: www.youtube.com/channel/

UCnVzApLJE2ljPZSeQylSEyg.

•	 Google’s Python Class: This is a relatively old, but still relevant, 

introduction to Python presented by Google. The tutorial does a 

good job of introducing data structures and other necessary topics 

required to build a solid foundation to build on. It also includes a 

very informative section on regular expressions. Here is the URL to 

the website of this free 2-day Python course: https://developers.

google.com/edu/python.

•	 Talk Python to Me: This is a very informative podcast covering a wide 

array of Python topics, many of which are about data analytics. Here 

is the URL to the podcast’s site: https://talkpython.fm/.

Websites

•	 PEP 8: One of the best features of Python is how readable Python 

code is compared to other programming languages. Unlike most 

languages, Python forces a strict code style to facilitate code 

readability. The code style is explained in detail in Pep 8 of Python. 

You can find out more about Pep 8 at this URL: https://pep8.org/.
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�Power BI resources
Vlogs

•	 Guy in a Cube: This is hands down, the number one go-to vlog for 

all things Power BI. They have scores of YouTube videos covering 

all aspects of Power BI including Power BI administration, Power 

BI data modeling, and Power BI data visualization. Here is the 

URL to their YouTube channel: www.youtube.com/channel/

UCFp1vaKzpfvoGai0vE5VJ0w.

Websites

•	 SQLBI: The creators of this website are the authoritative voice when 

it comes to the DAX expression and query language used in Power 

BI. Their site contains a wealth of information and tools related to 

DAX. You will find thorough articles covering all things DAX, online 

training, and tools such as DAX Studio.

•	 Tabular Editor: The Tabular Editor is a must-have tool when you 

start doing serious Power BI development. It is an open source tool 

that will soon be integrated in Power BI. To learn more about this 

tool, go to this URL which will take you to a website dedicated to this 

awesome tool: https://tabulareditor.com/.

Books

•	 The Definitive Guide to DAX: This is the “go-to” book for those who 

want to get a thorough understanding of the DAX expression and 

query language used in Power BI. The book is available for purchases 

from most book sellers.

•	 M Is for Data Monkeys: This book is a good introduction to the M 

functional programming language used in Power Query. The authors 

do a great job at presenting common data wrangling recipes using M 

in a very easy-to-understand way. It provides a very solid foundation 

that enables you to approach more complicated M topics. The book is 

available for purchases from most book sellers.
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Podcast

•	 BIFOCAL: Great podcast to stay current on all things related to Power 

BI. You can find the podcast on popular podcast platforms.

�General resources
Books

•	 Data Science for Business by Foster Provost and Tom Fawcett: This 

book introduces data science principles in a program language 

agnostic way. It is a popular book in the data science community for 

those that want to learn how to apply data science in business. The 

book is available for purchases from most book sellers.

Websites

•	 Data Science Central: This is one of the premier sites for data science. 

Here is the URL to the site: www.datasciencecentral.com/.

•	 Kaggle: This site started off as a site for data science competitions, but 

it has morphed into a site that is so much more. A great site to find 

data sets that you can use for your machine learning and artificial 

intelligence education. Here is the URL to the site: www.kaggle.com/.

•	 ExcelTv: Microsoft Excel has been, and will continue to be in the 

foreseeable future, a must-have tool in data science. The guys at 

ExcelTv has created content that covers all aspects of Excel to help 

make you become very proficient at using the software. The URL to 

their site is https://excel.tv/.

Vlogs and tutorial

•	 Excel on Fire: Oz, the creator of the vlog, is arguably the most 

passionate guy I ever met when it comes to data wrangling in Excel 

via Power Query. Over the last few years, he has created a wealth of 

YouTube videos that covers common data wrangling tasks that he has 

solved using Power Query. The production quality of the videos is 
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top-notch, and his ability to break down hard-to-understand Power 

Query concepts in an easy-to-understand way is second to none. You 

can find a link to his YouTube channel at this URL: www.youtube.

com/user/WalrusCandy/featured.

•	 Regular Expression Tutorial by Corey Schafer: Great introductory but 

broad tutorial that covers pattern matching for regular expressions. 

Trust me, after you watch this video, you will not only learn what 

all those funny characters mean in regex, but you will also gain an 

appreciation about how powerful and applicable they are! Here is the 

link to the vlog: www.youtube.com/watch?v=sa-TUpSx1JA&t=554s.

Podcasts

•	 Analytics on Fire podcast: This is your one-stop shop for weekly BI/

Analytics masterclasses from the top influencers, customers, and 

thought leaders in the industry. Tune in weekly to get a backstage 

pass to these engaging discussions which marry education with 

entertainment. You can find the podcast on popular podcast 

platforms.

•	 Data Skeptic: This program language agnostic podcast introduces 

advanced data science topics in an easy-to-understand and 

entertaining way. He does so via some very interesting examples. You 

can find this podcast on popular podcast platforms.

•	 Freakonomics: Learning the technical side of data science is only half 

the battle. It is also very important to develop analytical acumen. This 

podcast helps you develop that skill. You can find this podcast on 

popular podcast platforms.

•	 SQL Data Partners: This is a very entertaining and educational 

podcast covering various topics in the Microsoft Data Platform. The 

hosts of the show are very knowledgeable about all aspects of the 

Microsoft Data Platform. Sometimes their comedic talents come 

through. Who knows, they may have a future in comedy. Lol. You can 

find their podcast on popular podcast platforms.
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•	 Storytelling with Data: This podcast is presented by Cole Knaflic, 

and it is a great resource to learn data visualization best practice 

techniques. She is also the author of a best-selling book under the 

same name. You can find her podcast on popular podcast platforms.

�Chapter summaries
•	 Chapter 1 – The Grammar of Graphics: Arguably, one of the strengths 

R has over Python is its data visualization capabilities. The top data 

visualization package in R is ggplot2, and it is based on a concept 

known as the grammar of graphics. This chapter introduces you to 

the ggplot2 package and presents a framework on how to properly 

use the package in Power BI.

•	 Chapter 2 – Creating R Custom Visuals in Power BI Using ggplot2: 

One of the biggest benefits of using ggplot2 is how expressive it allows 

you to be when creating your visualization. This chapter provides 

recipes for several visualizations to give you an idea of the type of R 

visuals you can create in Power BI with the ggplot2 package.

•	 Chapter 3 – Reading CSV Files: This chapter provides recipes in both 

R and Python that allows you to dynamically combine csv files in a 

way that would be much harder to do using Power Query.

•	 Chapter 4 – Reading Excel Files: This chapter provides recipes in 

both R and Python that allows you to dynamically combine multiple 

worksheets from several Excel workbooks in a way that would be 

much harder to do using Power Query.

•	 Chapter 5 – Reading SQL Server Data: This chapter provides recipes 

in both R and Python that allows you to load data from SQL Server 

into the Power BI data model. What makes this recipe beneficial is 

that it shows you how you can use R and Python to log information 

about your load in SQL Server.
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•	 Chapter 6 – Reading Data into the Power BI Data Model via an API: 

This chapter provides recipes in both R and Python that shows the 

reader how to acquire data for Power BI using APIs, which is much 

harder to do and, in many instances, impossible to do using Power 

Query.

•	 Chapter 7 – Advanced String Manipulation and Pattern Matching: 

This chapter provides recipes in both R and Python that shows you 

how to perform advanced string manipulation tasks leveraging 

regular expressions. Regular expressions are native to R and Python 

but not available in Power Query.

•	 Chapter 8 – Calculated Columns Using R and Python: This chapter 

provides recipes in both R and Python that show you how to create 

expressions based on advanced mathematical formulas. You will 

learn the basics of refactoring mathematical formulas, and you will 

also learn how to use pre-built functions that abstract the complexity 

of many calculations from you. The chapter uses the Haversine 

formula to make the example.

•	 Chapter 9 – Applying Machine Learning and AI to Your Power BI 

Data Models: This chapter covers multiple topics, involving machine 

learning and artificial intelligence. It starts by showing examples of 

how to apply custom machine learning models built in R and Python 

to your Power BI data models. Then it shows how to enhance your 

Power BI data models with Microsoft Cognitive Services without the 

need of Power BI Premium. This chapter does not limit you to the 

capabilities offered by Microsoft because it finishes with showing you 

how to leverage IBM Watson Natural Language Understanding to 

show you how to leverage some text analytics capabilities that are not 

in Microsoft Cognitive Services.

•	 Chapter 10 – Productionizing Data Science Models and Data 

Wrangling Scripts: This chapter shows you how to leverage R and 

Python in enterprise solutions for Power BI. The methods shown 

focus on free solutions that are available to users who already have 

the on-prem version of SQL Server 2017 and later.
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Now that we have all the preliminary stuff out the way, we can get into the contents 

of the book. The top feature that Power BI is known for is its visualization capabilities. 

Given that, the book will start off by introducing you to how the R programming 

language can be used to greatly enhance Power BI’s visualization capabilities via the 

ggplot2 package.
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CHAPTER 1

The Grammar of Graphics
Data visualization has always been a very important part of statistics. It gives statisticians 

a way to share their findings with others in a concise and relatively easy-to-understand 

way. Given the fact that R is a programming language built by statisticians for 

statisticians, the R community has made a considerable effort to ensure that R users are 

able to effectively create visualizations to help them tell their data stories.

Arguably, the most popular R package for data visualization is the ggplot2 package. 

This package was created by Hadley Wickham1 and is based on the concept of the 

layered grammar of graphics. The layered grammar of graphics defines a plot in the 

following way:

•	 A default data set and a set of mappings from variables to aesthetics

•	 One or more layers, each composed of a geometric object, a statistical 

transformation, a position adjustment, and optionally a data set and 

aesthetic mappings

•	 One scale for each aesthetic mapping

•	 A coordinate system

•	 The faceting specification

The preceding definition is a concise and thorough explanation of the layered 

grammar of graphics from the author. You will learn how to use the preceding concepts 

to build beautiful visualizations in Power BI using the ggplot2 package.

1�Wickham, Hadley. Ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Houston,  
TX: Springer, 2016. p. 86.

https://doi.org/10.1007/978-1-4842-5829-3_1#DOI
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Even though Power BI gives you the ability to create visuals using multiple libraries 

and packages in both Python and R, this book will focus specifically on the ggplot2 

package along with a few helper packages. The ggplot2 package stands in a class by itself 

compared to other options in R and Python. The layered grammar of graphics of which 

ggplot2 is based on cuts down the time it takes to convert a data visualization idea to 

code. The package is feature-rich, so a large portion of your data visualization needs can 

be met with ggplot2 and its helper packages.

�Steps to build an R custom visual in Power BI
This section outlines the workflow that you will use in Power BI to create an R visual. The 

steps are consistently used regardless of the type of R visual you are creating. Here are 

the steps.

�Step 1: Configure Power BI
You were given information on how to configure R in Power BI in the book’s 

introduction. Make sure you go through the steps outlined in those instructions to 

ensure Power BI is configured to use R.

�Step 2: Drag the “R custom visual” icon to the Power BI 
canvas
You’ll now have access to an R custom visual icon. To add an R visualization to Power BI, 

you first need to drag the R visual icon from the Visualization Pane to the Report Canvas. 

The icon for the R visual is a capital R, and it is highlighted in the image in Figure 1-1.

Figure 1-1.  The R icon used to create R visuals in Power BI

Chapter 1  The Grammar of Graphics
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The R visual is one of the default visuals available in Power BI. You can size it and 

position it like any other Power BI visual.

�Step 3: Define the data set
Like with any other visual, you need to define the data set that the visual will be based 

on. You can build up the data set by adding fields from your data model along with 

optional measures to the Values pane. The resulting data set will be exposed to R as an 

object known as a data frame. You can think of a data frame as an Excel table but with 

many more features that facilitate data analysis.

One of the features of a data frame that you need to be aware of when creating an R 

visual is that the rows in a data frame need to be unique. Given that, R will take steps to 

make sure the rows are unique when the data frame is created in R. You need to make 

sure that the data set you are passing to R has unique rows.

�Step 4: Develop the visual in your default R IDE
Now that you have a data set defined, you can use that data set to develop the desired R 

visual in your preferred IDE. One of the things you did when you configured R in Power 

BI was you identified your preferred R IDE. That feature enables you to develop the code 

to create your R visual in a feature-rich IDE like R Studio instead of the R script editor in 

Power BI.

The code for your R visual resides in the R script editor. Power BI displays it when 

you select the icon for the R visual in the report canvas. The R script editor looks like that 

in Figure 1-2.

Figure 1-2.  The R script editor in Power BI

Chapter 1  The Grammar of Graphics
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As you can see, this is not an ideal place to develop your R code. There is no intelli-

sense, no console, and the amount of real estate you have to develop the code is limited. 

Fortunately, Power BI gives you the ability to port the data set that you defined for your 

custom R visual to the R IDE you selected. The recommended IDE for R is R Studio, 

and it will be the one used here if you followed the instructions outlined in the book’s 

introduction.

To port the data set for your visual for use by R in R Studio, select the R visual in the 

report canvas, then click the arrow that is pointing 45 degrees to the right. That action 

will launch R Studio and will create the beginnings of an R script that includes code that 

produces a data frame named dataset based on the data passed to the visual in Power 

BI. That action also includes any R code associated with the visual in the script. Instead 

of Microsoft trying to re-invent the wheel, they decided to give you the ability to do 

your development in an IDE like R Studio. Given that, I highly recommend that you do 

all code development in R Studio instead of the tiny R editor that is available to you in 

Power BI.

�Step 5: Use the following template to develop your visual
The following template in Listing 1-1 should be used for the R script when developing R 

visuals in Power BI:

if (<"data test">) {

     #<"Code for R Visual">

} else {

     plot.new()

     title(main = "<predefined message>")

}

This template is used to test the data set to make sure it meets the requirements for 

the desired R visual. If it does, it will commence to create the visualization; otherwise, it 

will generate a blank plot with a message. The blank chart with the predefined message 

is created using the following code:

plot.new()

title(main = " <predefined message> ")

Chapter 1  The Grammar of Graphics
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The first line creates a new blank chart, and the second line adds a title to the chart 

containing the message that you want to display to the report user.

�Step 6: Make the script functional
Once you get the R script functional, copy the complete script to the R editor. Include 

all the code except the line that creates the data frame named dataset. The dataset data 

frame is automatically generated in Power BI. Note that the resulting R visual in Power 

BI is totally responsive to outside filters and slicers just like other visuals. You will see 

several examples in the next chapter. One thing you lose, however, is bidirectional 

filtering. Outside visuals will propagate to your R visual in Power BI, but you can’t filter 

other Power BI chart items directly from an R visual.

�Recommended steps to create an R visual  
using ggplot2
The previous section illustrated the overall template you should use when defining your 

overall R script for your R visual. It included code to test your data set as well as code for 

error handling. In this section, we will focus specifically on the recommended template 

for R visuals after you have tested the data set. Specifically, we are talking about the code 

that goes where you see #<"Code for R Visual"> in the following listing.

Listing 1-1.  R visual template for Power BI

if (<"data test">) {

     #<"Code for R Visual">

} else {

     plot.new()

     title(main = "<predefined message>")

}

The steps of developing the template will be described by developing the chart 

pictured in Figure 1-3.
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The preceding R visual uses the diamonds data set to plot a sample of diamonds 

with a color of D to show diamond prices relative to carat size. It is a good example to 

use because it provides a relatively easy way to illustrate each step in the template when 

developing an R visual. Let’s begin with Step 1.

�Step 1: Load the required packages that you will need 
for your script
For this example, you will use the following code in Listing 1-2 to load the two packages 

needed for the script.

Listing 1-2.  Import statements

library(tidyverse)

library(scales)

You use ggplot2 and dplyr from the tidyverse metapackage.

Figure 1-3.  Visual used to describe the template to use when developing R visuals 
in Power BI
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The tidyverse metapackage is a collection of packages that work together to make 
doing data science in R easier. The tidyverse metapackage gives you the ability to 
import the core packages in one call by loading tidyverse instead of having to load 
each of the core packages individually.

ggplot2 will be used to create the visualization, and dplyr will be used to perform 

some data wrangling tasks. The scales packages will be used to help with some number 

formatting tasks.

�Step 2: Make any required adjustments to the data set
Often adjustments need to be made to the data frame before it is passed to ggplot2. The code 

used to make the adjustments to the data frame in this example is in Listing 1-3.

Listing 1-3.  Data prep for visual

plot.data <-

     diamonds %>%

     filter(color == "D") %>%

     sample_n(200)

The data set passed to R contains records that are not needed by the visual. So, 

you need to use the dplyr package to remove unneeded data. You want to create a 

visualization based on the color type D. To get a data frame with the desired color type, 

you need to filter the original diamonds data frame to only include those colors. You do 

that in the preceding third line.

That filtering leaves you with only diamonds with a D color. The total number of 

records in the resulting data frame is 6775 records which is high for a scatter plot visual. 

Plotting too many observations in a scatter plot visual can result in a problem known as 

over-plotting. To minimize over-plotting, you can take a random sample of the data and 

plot the sampled data instead. The sampled data will have a similar distribution as the 

underlying data which will cause it to plot similarly but minimize data overlapping. The 

preceding code does an inline sample via the sample_n() function from dplyr. The result 

is a random sample with 200 records that plots much better.
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�Step 3: Initiate the creation of the visualization 
with the ggplot() function
You initiate the creation of a chart in ggplot2 with the ggplot() function. When you 

initiate the ggplot() function, you pass it parameters that you want to make available 

to all layers of your chart. In this example, you set the plot.data data frame to the data 

argument and the caret field and price field to the x and y argument of the aes() function 

as shown in Listing 1-4.

Listing 1-4.  Initiating the ggplot() function

ggplot(data = plot.data, aes(x = carat, y = price))

It is important to know what the aes() function is and how it is used. The aes() 

function describes how to map your data to a visual attribute. Commonly used 

aesthetics are

•	 The x coordinate and the y coordinate of the geometric shape you  

are plotting

•	 The color of the geometric shape you are plotting

•	 The size of the geometric shape you are plotting

•	 The fill of the geometric shape you are plotting

The preceding aes() function is used to describe how to map the x and y coordinates 

of the geometric shape that will be plotted. The aes() function can be defined in the 

ggplot() function or in a geom function that you will learn about in the next step. If it is 

defined in the ggplot() function, then it will be available to all layers of the chart, but if it 

is defined in the geom function, then it will only be available in the layer it was defined. 

You will see examples of both cases in the next chapter.

�Step 4: Add desired geom(s)
You can do so using the following code in Listing 1-5.

Listing 1-5.  Adding a geom

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point()
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When you initiated the ggplot() function in the previous step, the visual did not have 

any layers so there was nothing to visualize. The mechanisms used to add layers to a 

ggplot visual are geoms. The geom used to create scatter plots in ggplot is geom_point(). 

In the preceding code, geom_point() inherits from the ggplot() function that preceded 

it so you should notice that the data source and the aesthetics needed to define the x 

and y coordinates did not need to be explicitly defined. The resulting chart is shown in 

Figure 1-4.

You want to add an additional layer of detail. You want to identify the clarity of each 

point in the scatter plot. You do so by setting the aesthetic for color to clarity in the geom_

point() geom as illustrated in the code in Listing 1-6.

Listing 1-6.  Adding an aesthetic for color

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity))

Figure 1-4.  Basic scatter plot
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You set this aesthetic in the geom_point() geom because that aesthetic is only needed 

in that layer.

It is important to remember that when you set data sources or aesthetics in your 
ggplot() function, they will be available to all layers in your visual, but when you 
set them in an individual geom, it will only be available in the layer associated 
with the geom.

The output of the code with the clarity of each point identified is illustrated in 

Figure 1-5.

�Step 5: Define your titles, subtitles, and caption
Here is code you can use to add a title to your visual in Listing 1-7.

Figure 1-5.  Basic scatter plot
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Listing 1-7.  Adding the titles and caption

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity))+

labs(

     title = "Chart Title",

     subtitle = "Chart Subtitle ",

     caption = "Chart Caption"

)

ggplot2 makes it easy to add a title, subtitle, and caption to your chart via the labs() 

function. The labs() function name is short for labels. The titles of your visual can be 

based on a static string or a dynamically generated string. You will see examples of titles 

based on dynamically generated strings in the next chapter. Figure 1-6 shows what the 

chart would look like with the titles added.

�Step 6: Make any necessary changes to the x and y axis
The defaults labeling of the x and y coordinates provided by ggplot2 are often sufficient 

and don’t require any change. But if you are not happy with the defaults, you can easily 

change them using a scale function.

Figure 1-6.  Chart with the titles added
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Let’s take a moment to look at the ggplot2 code you built up to this point in Listing 1-8.

Listing 1-8.  Code to modify the x and y axis

library(tidyverse)

library(scales)

plot.data <-

     diamonds %>%

     filter(color == "D") %>%

     sample_n(200)

ggplot(plot.data, aes(carat, price)) +

     geom_point(aes(color = clarity)) +

     labs(

          title = "Chart Title",

          subtitle = "Chart Subtitle",

          caption = "Chart Caption"

     )

The preceding code produces the chart in Figure 1-6. That chart contains a few 

defaults that you want to override. Those defaults you want to change are

•	 The x axis names

•	 The y axis names

•	 The way the numbers are formatted in the y axis

You can change these defaults using the scale_x_continuous() and scale_y_

continuous() functions as illustrated in the code in Listing 1-9.

Listing 1-9.  Code to modify the x and y axis

library(tidyverse)

library(scales)

plot.data <-

     diamonds %>%

     filter(color == "D") %>%

     sample_n(200)
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ggplot(plot.data, aes(x = carat, y = price)) +

     geom_point(aes(color = clarity)) +

     labs(

          title = "Chart Title",

          subtitle = "Chart Subtitle",

          caption = "Chart Caption"

     ) +

     scale_x_continuous(name = "Size in Carats") +

     scale_y_continuous(

          name = "Price ($)",

          labels = dollar_format()

     )

The result you receive after executing the preceding code is illustrated in Figure 1-7.

As you can see, the scale_x_continuous() and scale_y_continuous() functions make it 

relatively easy to make the desired changes.

Figure 1-7.  Overriding some of the chart defaults
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Notice you add scales to your visual in the same fashion that you used to add 
layers to your visual. It is important to note that the scale functions are used to 
override the default scales, but they do not add layers to your chart.

Because both the x and y axis are based on continuous data, the continuous version 

of that scale for the x and y axis is used. The only thing you want to change for your x 

axis is the name, and you see that is easily accomplished using the name argument. For 

the y axis, you are not only changing the name, but you are also changing the way the 

numbers are formatted on the axis. The name change is accomplished using the name 

argument. The formatting is done via the labels argument. The dollar_format() function 

from the scales package is used to format the numbers to a dollar format. The dollar_

format() function inherits the y value from the ggplot() function that was defined in the 

first line of the script so it does not need to be explicitly defined in the function.

�Step 7: Apply themes if needed
ggplot2 comes with predefined themes that format the non-data aspects of the charts. 

Non-data aspects include attributes such as how your titles are positioned on the chart, 

the background color of your chart, and the font size used in your titles, to name a few. 

It is very easy to apply one of the predefined themes to your visual. You add themes the 

same way you add layers and modify scales. You simply type the “+” sign, followed by the 

function that represents the theme you want to add as illustrated in the last two lines in 

the code in Listing 1-10.

Listing 1-10.  Applying the theme_minimal() theme

ggplot(plot.data, aes(x = carat, y = price)) +

     geom_point(aes(color = clarity)) +

     labs(

          title = "Chart Title",

          subtitle = "Chart Subtitle",

          caption = "Chart Caption"

     ) +
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     scale_x_continuous(name = "Size in Carats") +

     scale_y_continuous(

          name = "Price ($)",

          labels = dollar_format()

     ) +

     theme_minimal()

The resulting visual is shown in Figure 1-8.

You used the theme_minimal() theme in the preceding visual. It is considered a good 

practice in data to only add elements to your visual if it is absolutely necessary. White 

space in your visual is considered a good thing. The theme_minimal() theme is based on 

that principle. A list of the themes that are available in ggplot2 is covered in a subsequent 

section titled “Themes built into ggplot2.”

�Step 8: Use the theme( ) function to change any  
specific non-data elements
In the event that you are not totally happy with the results of the theme you applied to 

your visual, you can tweak the results even further using the theme() function. The code 

in Listing 1-11 uses the theme() function to format the titles.

Figure 1-8.  The theme defaults based on the R script
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Listing 1-11.  Using the theme() function to change non-data elements

ggplot(plot.data, aes(carat, price)) +

     geom_point(aes(color = clarity)) +

     labs(

          title = "Chart Title",

          subtitle = "Chart Subtitle",

          caption = "Chart Caption"

     ) +

     scale_x_continuous(name = "Size in Carats") +

     scale_y_continuous(

          name = "Price ($)",

          labels = dollar_format()

     ) +

     theme_minimal() +

     theme(

          plot.title = element_text(hjust = 0.5),

          plot.subtitle = element_text(hjust = 0.5),

          plot.caption = element_text(hjust = 1)

     )

The code produces the following visual in Figure 1-9.
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The theme function gives you access to over 80 chart elements that you can modify. 

The majority of those elements have an element function associated with it that is used 

to make the modification.

In the preceding code, we modified the position of the chart’s title, the chart’s 

subtitle, and the chart’s caption. As you can see in the code, the element associated with 

the chart title is plot.title, the element associated with the chart’s subtitle is plot.subtitle, 

and the element associated with the chart’s caption is plot.caption. All three elements are 

modified using the element_text() function. The chart’s title and subtitle were centered 

using the hjust argument in the element_text() function. The hjust argument represents 

the horizontal position of the text, and it accepts a value between 0 and 1. If you set hjust 

to 0, it will left justify the text; if you set hjust to 0.5, it will center the text; and if you set 

hjust to 1, it will right justify the text.

Listing 1-12 shows the element functions along with their available options.

Figure 1-9.  Re-positioned titles using the theme() function
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Listing 1-12.  The element functions with their available options

element_blank()

element_rect(fill = NULL, colour = NULL, size = NULL, linetype = NULL, 

color = NULL, inherit.blank = FALSE)

element_line(colour = NULL, size = NULL, linetype = NULL,

  lineend = NULL, color = NULL, arrow = NULL, inherit.blank = FALSE)

element_text(family = NULL, face = NULL, colour = NULL, size = NULL,  

hjust = NULL, vjust = NULL, angle = NULL, lineheight = NULL, color = NULL, 

margin = NULL, debug = NULL, inherit.blank = FALSE)

This URL, https://bit.ly/34EaWtr, contains the complete documentation about 

the theme() function.

�Bonus step: Specifying specific colors for your points 
in your scatter plot
There will be times when you want the colors of the points in your scatter plot to be the 

same color. Let’s see what happens if we try to set the color aesthetic to a specific color 

rather than a field in the data frame. The script in Listing 1-13 sets the color to blue in the 

aes() function.

Listing 1-13.  Setting the color via the aes() function

library(tidyverse)

library(scales)

plot.data <-

     diamonds %>%

     filter(color == "D") %>%

     sample_n(200)

ggplot(plot.data, aes(carat, price)) +

  geom_point(aes(color = "blue")) +

  labs(

    title = "Chart Title",
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    subtitle = "Chart Subtitle",

    caption = "Chart Caption"

  ) +

  scale_x_continuous(name = "Size in Carats") +

  scale_y_continuous(

    name = "Price ($)",

    labels = dollar_format()

  ) +

  theme_minimal() +

  theme(

    plot.title = element_text(hjust = 0.5),

    plot.subtitle = element_text(hjust = 0.5),

    plot.caption = element_text(hjust = 1)

  )

It produces the following chart in Figure 1-10.

Figure 1-10.  Setting color using the aes() function
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Note that you did not get the expected results. Instead of getting a scattered plot 

chart with the points colored blue, you got a scattered plot chart with the points colored 

what appears to be red. That is because the aes() function scaled the color. You need to 

define the color outside of the aes() function if you want it to be a specific color as done 

in the code in Listing 1-14 on line 10.

Listing 1-14.  Setting the color outside the aes() function

library(tidyverse)

library(scales)

plot.data <-

     diamonds %>%

     filter(color == "D") %>%

     sample_n(200)

ggplot(plot.data, aes(carat, price)) +

  geom_point(color = "blue") +

  labs(

    title = "Chart Title",

    subtitle = "Chart Subtitle",

    caption = "Chart Caption"

  ) +

  scale_x_continuous(name = "Size in Carats") +

  scale_y_continuous(

    name = "Price ($)",

    labels = dollar_format()

  ) +

  theme_minimal() +

  theme(

    plot.title = element_text(hjust = 0.5),

    plot.subtitle = element_text(hjust = 0.5),

    plot.caption = element_text(hjust = 1)

  )

It produces the following chart in Figure 1-11 with the desired results.
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�The importance of having “tidy” data
For those of you that are DAX developers, you are aware of the importance of having your 

BI data model formatted in a nice star schema structure. Doing so makes developing 

DAX measures much easier. Measures that are simple to develop in a well-formed star 

schema data model can be unnecessarily complex in a BI data model that is not shaped 

in that format.

A similar phenomenon exists when building visualizations or doing data analysis in 

R. When you format your data in what Hadley Wickham calls a tidy format, it makes data 

analysis tasks and data visualization much easier to do.

A data set that is in a tidy format is a data set where each record represents a 
single observation, and each column represents a single variable. It is similar to the 
third normal form in databases.

Figure 1-11.  Specifying color outside the aes() function
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If for some reason the data that you pass to your R visual in Power BI is not in a tidy 

format, don’t panic. Luckily, you have packages such as dplyr and tidyr that you can 

use in your R visual script that will help you shape your data into the format it needs to 

be in.

The tidy data concept is very important in data analysis and data visualization. Its 

importance is not limited to R. A complete coverage is beyond the scope of this book. 

Fortunately, Hadley Wickham has written a nice white paper that you can read to learn 

more about it. Here is the URL to that paper, https://vita.had.co.nz/papers/tidy-

data.pdf.

�Popular geoms
As mentioned earlier, ggplot2 is based on the layered grammar of graphics. Layers are 

added to ggplot2 visuals through the use of geom functions. This feature of ggplot2 

enables you to create beautiful visuals with minimum code that is relatively easy to write. 

It makes expressing your ideas with code much easier to do compared to creating data 

visualizations in other programming languages. There are many geoms available to you 

in ggplot2, but here is a bulleted list of some popular geoms complete with code snippets 

to illustrate them:

•	 geom_bar()

The geom_bar() geom is used to create what are typically called 

column charts and horizontal bar charts. This section gives an 

example of how to use the geom_bar() geom to create a column 

chart using the code in Listing 1-15.

Listing 1-15.  geom_bar() example

library(tidyverse)

plot.data <-

  data.frame(Titanic) %>%

  group_by(Class) %>%

  summarize(`Total Freq` = sum(Freq))
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ggplot(plot.data, aes(x = Class, y = `Total Freq`)) +

  geom_bar(stat = "identity") +

  labs(title = "geom_bar") +

  theme_minimal()

The visualization produced by the preceding code is shown in Figure 1-12.

The first line of code in the preceding script loads the tidyverse 

package. The next block of code creates the data set needed for 

the geom_bar() visual. The techniques used to wrangle the data in 

that section will be covered in future parts of the book.

The next block code is the code that is actually creating the 

visualization. The first two lines are all that is needed to create the 

column chart. The last two lines are used to change the cosmetics 

of the chart. They add a title to the chart and changed the chart’s 

theme.

Figure 1-12.  The geom_bar() geom
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Note that the geom_bar() only needed one argument to be 

defined, and that is the stat argument. The other required 

arguments (the data set, x coordinate, and y coordinate) were 

inherited from the ggplot() function. Setting the stat argument to 

“identity” tells ggplot2 that you want the height of your columns to 

be based on the values of the columns that were assigned to the y 

aesthetic in the aes() function. The default is to use count. You will 

learn more about the stat argument in future examples.

•	 geom_histogram()

The geom_histogram() is used to create histogram chart. 

Histogram charts are used to show how your data is distributed. 

The code that we will use to illustrate this geom is in Listing 1-16.

Listing 1-16.  geom_histogram() example

library(tidyverse)

set.seed(50)

probs <- c(0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 

0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.015, 0.015, 0.015, 0.015, 

0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.0133, 0.0133, 0.0133, 0.0133, 

0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 

0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 

0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.0133, 0.017, 

0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.0033, 0.0033, 0.0033, 

0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 0.0033, 

0.0033, 0.0033, 0.0033)

weights <- 265:364

names <- c("Liam  Galles", "Noah  Raymond", "William  Hammontree", 

"James  Zaremba", "Oliver  Zurcher", "Benjamin  Hilker", "Elijah  Loken", 

"Lucas  Lewter", "Mason  Straus", "Logan  Work", "Alexander  Jarret", 

"Ethan  Wey", "Jacob  Adolphsen", "Michael  Solt", "Daniel  Welcome", 
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"Henry  Portman", "Jackson  Tichenor", "Sebastian  Free", "Aiden  Papp", 

"Matthew  Lenzi", "Samuel  Rinaldo", "David  Goines", "Joseph  Asuncion", 

"Carter  Philhower", "Owen  Freeborn", "Wyatt  Ice",

"John  Mcguckin", "Jack  Soden", "Luke  Humfeld", "Jayden  Natera", 

"Dylan  Galles", "Grayson  Raymond", "Levi  Hammontree", "Isaac  Zaremba", 

"Gabriel  Zurcher", "Julian  Hilker", "Mateo  Loken", "Anthony  Lewter", 

"Jaxon  Straus", "Lincoln  Work", "Joshua  Jarret", "Christopher  Wey", 

"Andrew  Adolphsen", "Theodore  Solt", "Caleb  Welcome", 

"Ryan  Portman", "Asher  Tichenor", "Nathan  Free", "Thomas  Papp", 

"Leo  Lenzi", "Isaiah  Rinaldo", "Charles  Goines", "Josiah  Asuncion", 

"Hudson  Philhower", "Christian  Freeborn", "Hunter  Ice", 

"Connor  Mcguckin", "Eli  Soden", "Ezra  Humfeld", "Aaron  Natera", 

"Landon  Galles", "Adrian  Raymond", "Jonathan  Hammontree", 

"Nolan  Zaremba", "Jeremiah  Zurcher", "Easton  Hilker", "Elias  Loken", 

"Colton  Lewter", "Cameron  Straus", "Carson  Work", "Robert  Jarret", 

"Angel  Wey", "Maverick  Adolphsen", "Nicholas  Solt", "Dominic  Welcome", 

"Jaxson  Portman", "Greyson  Tichenor", "Adam  Free", "Ian  Papp", 

"Austin  Lenzi", "Santiago  Rinaldo", "Jordan  Goines", "Cooper  Asuncion", 

"Brayden  Philhower", "Roman  Freeborn", "Evan  Ice", "Ezekiel  Mcguckin", 

"Xavier  Soden", "Jose  Humfeld", "Jace  Natera", "Jameson  Adolphsen", 

"Leonardo  Solt", "Bryson  Welcome", "Axel  Portman", "Everett  Tichenor", 

"Parker  Free", "Kayden  Papp", "Miles  Lenzi", "Sawyer  Rinaldo", 

"Jason  Goines")

linemen_weights <- sample(weights, 100, replace = TRUE,

prob= probs)

plot.data <- data.frame(names, linemen_weights)

ggplot(plot.data, aes(linemen_weights)) +

  geom_histogram(binwidth = 20) +

  labs(title = "geom_histogram") +

  theme_minimal()
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The preceding code produces the visualization in Figure 1-13 which is illustrated 

as follows.

As in the previous example, the first part of the code builds out 

the data set that will be used for the visual so you can reproduce 

the same visual in your environment. It produces a fictitious data 

set of American football offensive linemen at the collegiate level. 

We will just focus on the last four lines of code which produces 

the visual.

As you might have guessed, the basis of the histogram visual 

is produced using the geom_histogram() geom. Note that it 

uses one argument, and that is binwidth because the other 

required arguments were inherited from the ggplot() function. 

This argument enables you to define the width of the bins. It is 

recommended you play with this argument because the default 

Figure 1-13.  The geom_history() geom
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settings normally do not create the optimum number of bins. 

Note that the basis of the histogram was created with just the two 

following code lines as illustrated in the following code:

ggplot(plot.data, aes(linemen_weights)) +

  geom_histogram(binwidth = 20)

The subsequent code after that point were for cosmetic features.

•	 geom_line()

The geom_line() geom is used to create line charts. Line charts are 

great for showing trend over time. The following code in Listing 1-17  

will be used to generate the line chart example.

Listing 1-17.  geom_line() example

library(tidyverse)

library(lubridate)

players <- c("Kobe Bryant", "Pau Gasol", "Lamar Odom")

plot.data <- lakers %>%

  filter(

    result == "made" & team == "LAL" & player %in% players

  ) %>%

  mutate(date = ymd(date)) %>%

  group_by(player, date) %>%

  summarize(points = sum(points))

ggplot(plot.data, aes(x=date,y=points,color=player)) +

  geom_line() +

  labs(title = "geom_line") +

  theme_minimal()
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The output of the preceding code is shown in Figure 1-14.

As in the previous example, the first part of the code builds the 

data set and gives you everything you need to recreate the visual 

in your environment. This visualization is using the lakers data 

set that comes with the lubridate package. The lakers data set 

contains play-by-play information from the 2008 season.

Note how the color aesthetic is used to create multiple lines. 

ggplot2 creates a line based on each unique item in the field 

specified in the color aesthetic. Just like in the previous examples, 

only two lines were needed to create the basis of the visual and 

those were the line where the ggplot() function was initiated and 

the next line after that which defined the geom layer.

Figure 1-14.  The geom_line() geom
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•	 geom_point and geom_smooth

This example illustrates how to create a chart in ggplot2 that has 

multiple layers. The example shows how to add a regression 

line to a scatter plot. ggplot2 enables you to overlay your scatter 

plot with different types of trend lines. It is not limited to linear 

regression lines. ggplot2 also allows you to add confidence 

intervals to your line at a level of your choice. As of this writing, 

those features are not available in native Power BI.

The following code in Listing 1-18 is used to illustrate how to 

create a scatter plot and overlay it with a regression line.

Listing 1-18.  geom_point() and geom_smooth() example

library(tidyverse)

set.seed(1)

plot.data <-

  diamonds %>%

  filter(color == "D") %>%

  sample_n(200)

ggplot(plot.data, aes(x=carat, y=price)) +

  geom_point() +

  geom_smooth(method ="lm") +

  labs(title = "geom_point & geom_smooth") +

  theme_minimal()
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Figure 1-15 shows what the code produces.

The preceding chart is based on multiple layers, the geom_point() 

and geom_smooth(). The geom_point() geom is used to create 

the scatter plot, and the geom_smooth() geom is used to add a 

regression line complete with a confidence interval. The default 

for the confidence interval is 95%. You can change it by modifying 

the se argument. Setting method argument to lm is what causes 

the geom_smooth() geom to produce a regression line.

�Controlling aesthetics with scales
You learned earlier that the mapping of data to aesthetics is described using the aes() 

function. The underlying process, however, is controlled by the scale functions. In this 

section, you will learn how that happens.

Figure 1-15.  The geom_point() and geom_smooth() geom
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Let’s start with a background of what scales are. A scale is needed for every 

aesthetic in a chart (x coordinate, y coordinate, color, etc.). It determines how the data 

will be “scaled” in your visual. You don’t need to explicitly define them. If you don’t 

define them, ggplot2 will go with the defaults. Let’s use the code snippet in Listing 1-19 

as an example.

Listing 1-19.  ggplot2 code minus the underlying helper code

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity))

In this example, there are no scales being explicitly defined. The preceding code is 

translated to the following code in Listing 1-20 by ggplot2.

Listing 1-20.  ggplot2 code with helper code that defines the scales

ggplot(plot.data, aes(x = carat, y = price)) +

geom_point(aes(color = clarity)) +

scale_x_continuous() +

scale_y_continuous() +

scale_color_discrete()

ggplot2 uses the default values for each of those three scales.

The astute reader probably recognized a pattern in the naming convention of scales. 

The scale functions use a three-part naming convention. Scale functions are prefaced 

with the word “scale”, followed by the name of the aesthetic it is a scale for, and ending 

with the type of scale it is. These three parts are delimited with a “_”.

So, if you look at the first two scales in the preceding script using the naming 

convention just outlined, you notice that they are for the x and y aesthetic, respectively. 

They both use the continuous scale type because the data mapped to the x and y 

aesthetic are continuous numbers. The last scale is for the color aesthetic. The data 

mapped to this aesthetic is the clarity field. That field contains a list of discrete values 

which is the reason why the type of scale is discrete.

If you are cool with what ggplot2 produces, then you don’t need to define the scales. 

You can go with the defaults. But if you want to override what ggplot2 produces, you need 

to do so using the appropriate scale.
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Recall the following code from Listing 1-9 that produced Figure 1-8:

library(tidyverse)

library(scales)

plot.data <-

     diamonds %>%

     filter(color == "D") %>%

     sample_n(200)

ggplot(plot.data, aes(x = carat, y = price)) +

     geom_point(aes(color = clarity)) +

     labs(

          title = "Chart Title",

          subtitle = "Chart Subtitle",

          caption = "Chart Caption"

     ) +

     scale_x_continuous(name = "Size in Carats") +

     scale_y_continuous(

          name = "Price ($)",

          labels = dollar_format()

     )

Note that the aesthetic name is changed on the x aesthetic using the scale_x_

continuous() and the label formatting and aesthetic name is changed on the y aesthetic 

using scale_y_continuous(). You will see more examples of ways you can modify your 

aesthetics with scales in the next chapter.

�Themes built into ggplot2
ggplot2 comes pre-packaged with a list of themes that makes it easy to change the display 

of your non-data elements in your chart. Here is a list of available themes as described by 

the package author, Hadley Wickham:2 

•	 theme_bw(): A variation on theme_gray() that uses a white 

background and thin gray grid lines

2�Wickham, Hadley. Ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Houston,  
TX: Springer, 2016. pp. 172–173.
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•	 theme_linedraw(): A theme with only black lines of various widths on 

white backgrounds, reminiscent of a linedrawing

•	 theme_light(): Similar to theme_linedraw() but with light gray lines 

and axes, to direct more attention toward the data

•	 theme_dark(): The dark cousin of theme_light(), with similar line 

sizes but a dark background. Useful to make thin colored lines  

pop out

•	 theme_minimal(): A minimalistic theme with no background 

annotations

•	 theme_classic(): A classic-looking theme, with x and y axis lines and 

no gridlines

•	 theme_void(): A completely empty theme

�Using R visuals in the Power BI service
When you deploy an R visual to the Power BI service, you must make sure that you 

are using a version of the package that is available in the service. The following URL 

contains a list of available packages on the server along with their version: https://

docs.microsoft.com/en-us/power-bi/connect-data/service-r-packages-support.

�Helper packages for ggplot2
ggplot2 is a feature-rich package, and it contains the tools needed to handle most of your 

data visualization needs. But there will be times when you will need to do things such as 

wrangle the data set that Power BI passed to R before you create the visualization, format 

the data in a way that is not possible using the features available in base R or ggplot2, or 

use themes that are not part of the ggplot2 package.
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Fortunately, you are not limited to the ggplot2 package when you develop your R 

visual. Here are a few packages that are great complements to ggplot2 in Power BI. This 

list is by no means exhaustive:

•	 tidyverse: A metapackage that contains a collection of popular R 

packages that share the same framework. It includes packages such 

as ggplot and dplyr. The tidyverse collection of packages facilitates 

doing data science in R. More information about tidyverse can be 

found at this URL: www.tidyverse.org/.

•	 ggthemes: Is a helper package for ggplot2 that contains additional 

scales, geoms, and themes. Two of the themes that are worth noting 

are theme_few() and theme_tufte(). These two themes are based on 

best practices of two very popular data visualization experts, Stephen 

Few and Edward Tufte. More information can be found about the 

ggthemes package at this URL: https://cran.r-project.org/web/

packages/ggthemes/ggthemes.pdf.

•	 scales: The scales package provides ggplot2’s internal scaling 

infrastructure as well as many functions for data transformation and 

data formatting. You can find out more about the scales package at 

this URL: https://cran.r-project.org/web/packages/scales/

scales.pdf.

•	 ggrepel: The ggrepel package provides geoms that reposition labels 

to minimize label overlap. This package comes in handy when you 

want to add labels to your scatter plot charts. You can find more 

information about the ggrepel package at this URL: https://cran.r-

project.org/web/packages/ggthemes/ggthemes.pdf.

�Summary
In this chapter, you learned about

•	 A framework to use when adding R visuals to Power BI

•	 The layered grammar of graphics of which ggplot2 is based on

•	 How to use geoms to add layers to your visual
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•	 How to modify chart aesthetics using scale functions

•	 How to modify non-data elements of your chart using complete 

themes and the theme() function

The goal of this chapter was to introduce you to some important concepts about 

ggplot2 to make it easier to understand how to build the more advanced graphics you 

will learn in the next chapter. Now that you know the basics of how to create R visuals in 

Power BI using ggplot2, let’s take it up a notch and develop R visuals that will help you 

tell some amazing data stories in Power BI!
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CHAPTER 2

Creating R Custom 
Visuals in Power BI  
Using ggplot2
In the previous chapter, you were introduced to the ggplot2 package, and you were 

given a basic template to use for creating visuals in Power BI. In this chapter, you will 

be given some recipes that illustrate how expressive you can be when you leverage 

ggplot2 to create R custom visuals in Power BI. This chapter contains recipes to create 

the following charts:

•	 A callout chart with dynamic titles and annotations

•	 A bubble chart with dynamic titles that displays five dimensions  

of data

•	 A detailed forecast visualization that forecasts the Wikipedia page 

views for Lamar Jackson and Deshaun Watson

•	 A line chart that displays GDP by Year with a background shade based 

on the political party in power for the point in time

•	 A map visualization that displays the state selected and colors  

the counties in that state based on the population quintile the  

county is in

•	 A quad chart that compares LA Lakers basketball players based on 

total points scored and rebounds made in the 2008–2009 season

•	 A scatter plot of the average weight by height of US women that is 

overlaid with a regression line

https://doi.org/10.1007/978-1-4842-5829-3_2#DOI
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You can make minor modifications to these recipes to use with your data. You 

can also be creative and take a little bit from each of the visuals to create a custom 

visualization that is specific to your needs. The ggplot2 package is so rich that it will be 

hard to limit your creativity. Let’s start by creating a callout chart.

�Callout chart
The horizontal bar chart is a very common visualization. It is great for ranking 

categorical data based on a metric. One of the default visualizations in Power BI is a 

bar chart, but it is pretty basic in nature. You can do some basic enhancements like 

emphasize a bar by highlighting it, but you can’t take things further by adding features 

like dynamic subtitles, captions, and dynamic annotations without using a clunky hack. 

Luckily, that is not a limitation with ggplot2!

In this section, you will create the horizontal bar chart listed in Figure 2-1.

Figure 2-1.  A horizontal bar chart with a callout bar and annotation
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The preceding chart ranks the top 7 countries based on percentage of government 

expenditures that goes to education. It includes a dynamic annotation in the chart that 

compares the top ranked country to the seventh ranked country. Lastly, it includes 

a caption that tells you where the data came from. Let’s go over the code needed to 

develop this visualization.

�Step 1: Acquire the necessary data
The data set that is used for this example comes from the World Bank Open Data. The 

data set represents the percentage of government expenditures on education for each 

country in the world. Perform the following steps to acquire the data set:

	 1.	 Go to data.worldbank.org.

	 2.	 Go to the search bar located in the upper middle portion of the 

page and type “Government expenditure on education, total 

(% of government expenditure)”. After you press Enter, a list 

of possible options should appear and one should be exactly 

what you just typed. Select it and you will be taken to a page 

dedicated to this topic.

	 3.	 On the right side of the page, you should see a download section 

with options to download as csv, xml, or Excel. Click the csv 

option.

	 4.	 The action of the previous step will download a zip file to your 

computer. As of the writing, the zip file contains three files: a data 

file, a metadata file with country information, and a metadata 

file with information about the indicator. The file needed for this 

exercise is the data file. At the time of the writing, the file was 

named API_SE.XPD.TOTL.GB.ZS_DS2_en_csv_v2_715566.csv.

Please note that the government agencies that produce these data sets can 
change the format of these data sets without warning so the format may change in 
the future.

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



42

	 5.	 Now you need to import the data set into Power BI and put it in 

the shape it needs to be in for the visual. The GetData feature in 

Power BI will be used to perform that task. To load the contents 

into Power BI, go to the Home tab, then click GetData ➤ Text/

CSV, then migrate to the location where the data file is located. 

Recall that the data file that was used for this example is named 

API_SE.XPD.TOTL.GB.ZS_DS2_en_csv_v2_715566.csv and it is the 

biggest of the three files in the zip file. The file is also located in the 

repo for this chapter.

	 6.	 Next, you need to make the necessary transformation to the data 

using GetData (Power Query) to get it in the shape that it needs to 

be in for the visualizations. The final output needs to contain the 

following columns with the associated data types:

Column Name Data Type

Country Text

Country Code Text

Year Whole number

Total Expend % Decimal number

You will have a pbix file that contains the Power Query steps 

needed to get the data into the preceding shape in the code 

repository for this chapter. All you need to do is change the source 

file. Please note the steps may need to change in the future if the 

government entity that produced the data set decides to change 

the format.

�Step 2: Create a slicer based on the year in the Filter pane
Drag the slicer icon to the upper right corner of the report canvas. The slicer icon is 

pictured in Figure 2-2.
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After you finish positioning the slicer, drag the Year field from the 

ExpenditureOnEducationByCountryByYear data set to the Field pane as illustrated in 

Figure 2-3.

�Step 3: Configure the R visual in Power BI
Go to the visualization pane and drag an R visual to the report canvas. Resize the 

visual to the desired size. Drop the Country, Total Expend %, and Year fields from the 

EducationExpenditures table to the Fields pane. If the Fields pane is not showing, select 

the R visual on the report canvas and it should appear.

�Step 4: Export data to R Studio for development
Select the R visual to expose the R script editor. You will see it at the bottom of the R 

visual. If it is not fully exposed, then click the upward arrow that is located on the far 

right corner of the R script editor. Once expanded, you should see the following code 

(Figure 2-4).

Figure 2-2.  Image for slicer visual

Figure 2-3.  Image for the Fields pane
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The comments are letting you know that R took the data set you created in Power 

BI via the Fields pane and assigned it to an R object called a data frame that is named 

dataset. A data frame is a two-dimensional data set with special properties. The data 

frame is created in the preceding code in line 3. Power BI only allows data sets with 

unique rows to be passed to R, and it ensures that the dataset data frame has unique 

rows by using the unique() function in line 4.

The preceding editor is not an ideal place to do your development. Luckily, Microsoft 

makes it easy for you to do the development in a more desirable environment like R 

Studio. To transfer development to R Studio, click the 45° arrow. The arrow in question is 

highlighted in Figure 2-5.

Clicking the arrow will open R Studio and will save the data set that was passed to 

the R visual to a temporary location on your computer. It will also generate code that will 

create the dataset variable that represents the data frame that was passed to the R visual 

in Power BI. Lastly, any R code that is in the script will be passed to R Studio as well. 

Listing 1-1 shows what will be passed to R Studio.

Listing 1-1.  Code passed to R Studio from Power BI

# Input load. Please do not change #

`dataset` =

  read.csv('<path to input file>',

           check.names = FALSE,

           encoding = "UTF-8",

Figure 2-5.  Clicking the highlighted arrow launches your preferred IDE for a more 
pleasant development environment

Figure 2-4.  The Power BI R script editor with the default comments
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           blank.lines.skip = FALSE

  );

# Original Script. Please update your script content here

# and once completed copy below section back to the original

# editing window. The following code to create a dataframe and

# remove duplicated rows is always executed and acts as a

# preamble for your script:

# dataset <-

#   data.frame(

#     Country Name,

#     `Percent Education Expenditure Ranking`

#   )

# dataset <- unique(dataset)

# Paste or type your script code here:

The code. was reformatted so that it would fit nicely on the page. Lines 2–7 will 

display on one line which is used to read the data set that was saved to disk into an R 

data frame. The name dataset will be given to the data frame. Note that this is the same 

name that is used in Power BI. That was done on purpose. Using the same name enables 

you to use the code you will develop in R Studio in Power BI without having to do any 

refactoring.

�Step 5: Load the required packages
The three packages. used in this example are tidyverse, scales, and ggthemes. The dplyr 

package from tidyverse is used to perform some data wrangling, ggplot2 from tidyverse is 

used to create the visualization, forcats from tidyverse will be used to define some sorting 

rules, some functions from the scales package are used for number formatting, and the 

ggthemes package provides the theme_few() theme. Here is the code used to load the 

packages:

library(tidyverse)

library(scales)

library(ggthemes)
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�Step 6: Create the variables needed for the data  
validation test
The following code is used to create the data validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Country", "Total Expend %", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

You need to ensure that the data passed to R meets the requirements for the 

visualization. Two tests are performed earlier to see if the requirements are met. First, a 

test is done to make sure the expected columns were passed to R. Second, a test is done 

to make sure the data set only represents one year.

The column names-based test is done in the first three lines of code. The first line 

creates a character vector named currentColumns with the names of the columns in 

the dataset data frame sorted in alphabetical order. It gets the names of the columns 

from dataset data frame using the colnames() function. The sort() function is used to 

sort the returned column names in alphabetical order. It needs to be in alphabetical 

order for comparison reasons. The next line of code creates a character vector named 

requiredColumns that contains the column names that the visual is expecting. The 

column names must be supplied in alphabetical order as well.

In order to test them for equality, they must not only contain the same elements, 

but the elements must be in the same order. To test for equality, the all.equal() 

function from base R is used. It returns TRUE if the two character vectors are equal; 

otherwise, it returns information about why they are unequal. You need a Boolean 

value to be returned. You can ensure that one is returned by wrapping the all.equal() 

function with the isTRUE() function. The last line in the preceding code gets the 

unique years contained in the dataset data frame. That information will be used in 

the next step.

�Step 7: Create the data validation test
Here is the shell of the validation test:

if (length(reportYear) == 1 & columnTest) {

  <code to produce visual>
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} else {

  plot.new()

  title("The data supplied did not meet the requirements of the

         chart.")

}

If the dataset data frame only contains one year and the columnTest evaluates to 

TRUE, then the code that creates the visualization is executed. Otherwise, a blank 

chart with the message “The data supplied did not meet the requirements of the chart.” 

is shown.

�Step 8: Add additional columns to your data set that is 
required for the custom R visual
Now you need to start developing the script that creates the visualization when the 

requirements are met. You need to enhance the dataset data frame with additional 

columns in order to create the desired visualization. The code that will be used to 

enhance the dataset data frame is shown as follows:

plotdata <-

  dataset %>%

  mutate(

    rank = dense_rank(desc(`Total Expend %`)),

    callout = ifelse(rank == 1, TRUE, FALSE)

    Country = fct_reorder(Country, rank, .desc = TRUE),

  ) %>%

  filter(rank <= 7)

This code will go where you see the <code to produce visual> in the template 

shown in Step 7. The preceding code uses the dplyr package from tidyverse to add the 

needed columns. The first line of code assigns the result of the succeeding code to a 

variable named plotdata. The second line of code says that you are starting with the 

dataset data frame and you are passing it as the first argument of the mutate() function 

by using the pipe (%>%) operator.
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The pipe, %>%, operator comes from the magrittr package which is preloaded 
with dplyr. It passes the result of an expression or a value to the succeeding 
function. It makes code that involves chain operations much more readable.

The mutate() function is used to project two new columns, rank and callout, and 

also to change the default sort order of the Country column. The rank column uses the 

dense_rank() window function from dplyr to rank each row based on the Total Expend 

% in descending order.

The callout column is used to identify the country that is ranked number one. It uses 

the ifelse() function to return TRUE if the rank column is equal to one and return FALSE 

otherwise. The Country column uses the fct_reorder() function from forcats to base its 

sort order on the rank column. It can do so because the data type of the Country column 

is factor.

A factor is a special data type in R that is used for categorical data. It has many 
great attributes, and one of them is the ability to sort a factor column based on 
another column.

The Country field will be sorted based on its rank. The sort order defined will be used 

in the visualization.

Lastly, the filter() function is used to filter the dataset data frame. A filter is applied to the 

rank column to limit the dataset data frame to only include countries that ranks in the top 7.

�Step 9: Create the variables that will be used for the  
dynamic portions of the chart
One of the features that is available in R but not in Power BI is the ability to dynamically 

add annotations to your chart. You can not only dynamically create the text you want to 

display on the chart but you can also dynamically control the position you want to place 

the text. In this step, you are creating the variables that will be used to create the dynamic 

annotation, and you are also defining the position of the dynamic annotation. You will 

also create the variables that will be used for the main chart title, the chart subtitle, and 

the chart caption as well. Here is the code in question:
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countryToAnnotate <- plotdata$`Country`[plotdata$rank == 1]

minExpenditure <- min(plotdata$`Total Expend %`)

maxExpenditure <- max(plotdata$`Total Expend %`)

minCountry <-

  plotdata$`Country`[

    which(plotdata$`Total Expend %` == minExpenditure)

  ]

minCountry <- paste(minCountry, collapse = " & ")

maxCountry <- plotdata$`Country`[

  which(plotdata$`Total Expend %` == maxExpenditure)

  ]

maxCountry <- paste(maxCountry, collapse = " & ")

mainTitle <- "% of Government Expenditure on Education"

subTitle <-

  paste(

    "The top 7 ranked countries in",

    reportYear,

    sep = " "

  )

caption <- "Source:  https://databank.worldbank.org/source/world-

development-indicators"

  label_val <-

    str_wrap(

      paste(

        maxCountry,

        "spent",

        percent((maxExpenditure/minExpenditure-1)),

        "more of their expenditures on education than",

        minCountry,

        sep = " "

      ),

      width = 35

    )
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Here are the explanations for each variable:

•	 countryToAnnotate: This is the country that ranks number one. It will 

be the country that you will annotate.

•	 minExpenditure: This variable holds the result of using the min() 

function to get the min value of the Total Expend % column. This 

information will be later used to identify the country that has the 

minimum expenditures.

•	 maxExpenditure: This variable holds the result of using the max() 

function to get the max value of the Total Expend % column. This 

information will be later used to identify the country that has the 

maximum expenditures.

•	 minCountry: You identified the minimum percent expenditure in the 

top 7 countries in the minExpenditure variable. Now you need to find 

out which countries are associated with it. You find out that information 

by subsetting the Country column in the plotdata data frame to 

only include the countries where the Total Expend % is equal to the 

minExpenditure. You use the which() function to help you with this 

task. The which() function returns the TRUE indexes which can be used 

to tell R the indexes of the Country column to return. The plotdata data 

frame may contain ties which would need to be handled. That is done 

in the next line. Tied countries are collapsed into a scalar character 

vector using the paste() function. The elements in the newly collapse 

scalar character vector are separated with the & sign. You can see an 

example of ties if you select calendar year 2005 in the Power BI report.

•	 maxCountry: The which() function is used to help us get the max 

country name as well. Here it is being used to get the index where the 

rank column is equal to 1. There are no ties for the number one spot 

in this data set so you really do not need to handle them.

•	 mainTitle: This variable holds the value of a static string that will be 

used for the chart title.

•	 subtitle: This variable holds the value of a dynamically created string 

that will be used for the chart’s subtitle based on the year that was 

selected by the report user.
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•	 caption: This variable stores the website URL where the source data 

came from.

•	 label_val: This variable contains the result of a dynamically created 

chart annotation. The annotation compares the percent expenditures 

of the country that spent the biggest percentage of their government 

expenditures on education to the country that was ranked seventh. 

It dynamically builds the annotation using the paste() function by 

combining the maxCountry and minCountry variables along with the 

result of the percent calculation.

The annotation is relatively long and will not fit on the visual if you  

display it as one line. That problem is resolved by using the str_wrap()  

function from the stringr package. This function provides a wealth 

of formatting options, one of which is the ability to control the 

maximum width of a line. You set this argument to 35, in this 

example, which ensures that the annotation will fit on the chart.

�Step 10: Start building the chart by defining the  
ggplot( ) function
The ggplot() function is defined here:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    )

The purpose of the x and y aesthetic is self-explanatory. The fill aesthetic tells 

ggplot() what column (variable) you want to base the coloring of the bars on, and the 

label aesthetic tells R what column will be used to add labels to the chart.
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�Step 11: Add a column chart layer to the R visual
In this step, you add the first layer to the chart which is a column chart using the 

geom_col() geom. You have the option to use this or the gom_bar() geom. You chose 

geom_col() because the default for the stat argument is stat_identity so the true value 

of the y aesthetic will be displayed and not a count of the number of elements in y. If 

we used geom_bar(), you would have to explicitly tell ggplot() that you want the stat 

argument set to stat_identity:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

    geom_col()

�Step 12: Add a text layer to the R visuals
The following code takes what was built up to Step 11 and adds a layer to the chart for 

the labels:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05)

In this step, you add another layer to the chart. You add the labels to the chart using 

the geom_text() geom. The required arguments for the geom_text() geom are the x, y, 

and label arguments. All three are inherited from the aesthetics defined in the ggplot() 

function. The x and y arguments are used to define position of the labels, and the label 
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argument is used to define what will be displayed. In this example, you are displaying 

the Total Expend % column formatted as a percent. The natural position of the labels 

is partially outside the end of the columns of the chart. You need them to be contained 

totally in the column chart so that the labels won’t overlap with the annotation that will 

be added later. You move the labels from partially outside the columns to totally inside 

the columns via the nudge_y argument. Figure 2-6 shows how the labels display without 

using the nudge_y argument.

Figure 2-7 shows what the labels look like when you set the nudge_y equal to –0.05.

Figure 2-6.  Callout column chart with data labels
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�Step 13: Modify the y axis
The following code uses the scale_y_continuous() scale to make modifications to the y 

axis:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

Figure 2-7.  Callout column chart with data labels inside bars
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    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    )

You explicitly set the limits of the y scale to the range 0 to 0.75. You do this to give the 

report user a consistent experience. By default, like many visualization tools, ggplot2 will 

adjust the scales based on the data. This can visually misrepresent important differences 

in the data between years. So, you prevent rescaling by explicitly defining the range. The 

labels and breaks are used to help report users interpolate values of the columns in the 

chart. Since you are providing those values explicitly, you don’t need labels and breaks. 

So, they are removed by setting the labels and breaks argument to NULL.

�Step 14: Convert chart from a vertical column chart 
to horizontal bar chart
This action is done by adding the coord_flip() function to the next line of the script as 

illustrated here:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    ) +

    coord_flip()
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The coord_flip() function causes the x axis to become the y axis and the y axis to 

become the x axis. The result is a horizontal bar chart illustrated in Figure 2-8.

�Step 15: Add a dynamic annotation to the R visuals
You add an annotation layer to the chart using the annotate() function as illustrated here:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

Figure 2-8.  Previous column chart switched to horizontal bar chart
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    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    ) +

    coord_flip() +

    annotate(

       "text",

       label = label_val,

       x = countryToAnnotate[1],

       y = maxExpenditure + 0.12

    ) 

You want to add a text annotation to the chart so the first argument is set to “text”. 

Next, you set the label_val variable to the label argument because that variable contains 

the text for the annotation. Lastly, you define the position of the annotation using the x 

and y arguments. You set x to the name of the country you want to annotate. Setting x to 

the country name aligns the annotation at the position of the x axis where the specified 

country is. You set the position on the y axis to a position that is a few units higher than 

the expenditure value of the country so that the annotation will not overlay the country’s 

column. Note that because you used the coord_flip() function earlier, it appears you are 

working on the x axis when you are actually working on the y axis and vice versa. The 

result of adding the annotation layer is illustrated in Figure 2-9.
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�Step 16: Add the dynamic titles and caption to the  
R visual
Next, you add the chart title, subtitle, and caption to the chart using the labs() function 

along with the mainTitle, subTitle, and caption variable as illustrated in the following 

code:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    ) +

Figure 2-9.  Horizontal bar chart with annotation
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    coord_flip() +

    annotate(

       "text",

       label = label_val,

       x = countryToAnnotate[1],

       y = maxExpenditure + 0.12

    ) +

    labs(

       title = mainTitle,

       subtitle = subTitle,

       caption = caption

    )

Setting the labs function is self-explanatory so no explanation is needed.

�Step 17: Remove labels from x axis and y axis
You don’t need to explicitly define the x and y axis because of the labels you added to 

the chart. You remove the x and y labels by setting the label argument in the xlab() and 

ylab() functions to NULL as illustrated in the last line in the following code:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    ) +
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    coord_flip() +

    annotate(

       "text",

       label = label_val,

       x = countryToAnnotate[1],

       y = maxExpenditure + 0.12

    ) +

    labs(

       title = mainTitle,

       subtitle = subTitle,

       caption = caption

    ) +

    xlab(label = NULL) +

    ylab(label = NULL)

�Step 18: Remove legend
If you refer back to Figure 2-10, you will notice a legend for callout. The callout column 

is associated with the fill argument which is used to determine the color of the bars. You 

use it to color the country ranked number one differently than the other countries. A 

legend is not needed to explain the colors, so it is removed. You do so by setting the fill 

argument in the guides() function to FALSE. Doing so removes the legend from the chart 

because the legend is for the fill scale. The code used to perform the task is in the last 

line in the following script:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +

    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +
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    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    ) +

    coord_flip() +

    annotate(

       "text",

       label = label_val,

       x = countryToAnnotate[1],

       y = maxExpenditure + 0.12

    ) +

    labs(

       title = mainTitle,

       subtitle = subTitle,

       caption = caption

    ) +

    xlab(label = NULL) +

    ylab(label = NULL) +

    guides(fill=FALSE)

�Step 19: Change the look and feel of the visual using 
theme_few( )
Next, you change the look of the chart using principles by the data visualization expert, 

Stephen Few, via the theme_few() theme from the ggthemes package as illustrated in the 

last line in the following code:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +
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    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    ) +

    coord_flip() +

    annotate(

       "text",

       label = label_val,

       x = countryToAnnotate[1],

       y = maxExpenditure + 0.12

    ) +

    labs(

       title = mainTitle,

       subtitle = subTitle,

       caption = caption

    ) +

    xlab(label = NULL) +

    ylab(label = NULL) +

    guides(fill=FALSE) +

    theme_few()

�Step 20: Center align titles
The theme() function is used in the last line of the following code to handle this task:

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`)

      )

    ) +
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    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

       limits = c(0,0.75),

       labels = NULL,

       breaks = NULL

    ) +

    coord_flip() +

    annotate(

       "text",

       label = label_val,

       x = countryToAnnotate[1],

       y = maxExpenditure + 0.12

    ) +

    labs(

       title = mainTitle,

       subtitle = subTitle,

       caption = caption

    ) +

    xlab(label = NULL) +

    ylab(label = NULL) +

    guides(fill=FALSE) +

    theme_few() +

    theme(

        plot.title = element_text(hjust = 0.5),

        plot.subtitle = element_text(hjust = 0.5)

    )

The theme() function is used to modify individual components of the chart’s theme. 

The chart’s theme represents the non-data components of the chart. You can type 

?theme() in the console to access the help file for theme() to see what components 

are available for modification and the element function that is associated with it. The 

element_text() function is the element function associated with plot.title and plot.subtitle 

components. Setting the hjust argument of element_text() to 0.5 centers the text.
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�Step 21: Add code to Power BI
The entire R script is in Listing 2-2. Copy the code and paste it into the R script editor 

associated with this visual in Power BI. There will be no need for refactoring if you 

followed the steps correctly.

Listing 2-2.  The callout chart R script

library(tidyverse)

library(scales)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Country", "Total Expend %", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

if (length(reportYear) == 1 & columnTest) {

  plotdata <-

    dataset %>%

    mutate(

      rank = dense_rank(desc(`Total Expend %`)),

      `Country` = fct_reorder(`Country`, rank, .desc = TRUE),

      callout = ifelse(rank == 1, TRUE, FALSE)

    ) %>%

    filter(rank <= 7)

  countryToAnnotate <- plotdata$`Country`[plotdata$rank == 1]

  minExpenditure <- min(plotdata$`Total Expend %`)

  maxExpenditure <- max(plotdata$`Total Expend %`)

  minCountry <-

    plotdata$`Country`[

      which(plotdata$`Total Expend %` == minExpenditure)]

  minCountry <- paste(minCountry, collapse = " & ")

  maxCountry <-

    plotdata$`Country`[

      which(plotdata$`Total Expend %` == maxExpenditure)]

  maxCountry <- paste(maxCountry, collapse = " & ")
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  mainTitle = "% of Government Expenditure on Education"

  subTitle =

    paste(

      "The top 7 ranked countries in",

      reportYear,

      sep = " ")

  caption =

    �"Source: https://databank.worldbank.org/source/world-development-

indicators"

  label_val <-

    str_wrap(

      paste(maxCountry, "spent",

            percent((maxExpenditure/minExpenditure-1)),

            "more than", minCountry, sep = " "),

      width = 25

    )

  p <-

    ggplot(

      data = plotdata,

      aes(x = `Country`, y = `Total Expend %`, fill = callout,

          label = percent(`Total Expend %`))

    ) +

    geom_bar(stat="identity", aes(fill = callout)) +

    geom_text(nudge_y = -0.05) +

    scale_y_continuous(

      limits = c(0,0.75), labels = NULL, breaks = NULL) +

    coord_flip() +

    annotate(

      "text",

      label = label_val,

      x = countryToAnnotate[1],

      y = maxExpenditure + 0.1) +
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    labs(

      title = mainTitle,

      subtitle = subTitle,

      caption = caption

    ) +

    xlab(label = NULL) +

    ylab(label = NULL) +

    guides(fill=FALSE) +

    theme_few() +

    theme(

      plot.title = element_text(hjust = 0.5),

      plot.subtitle = element_text(hjust = 0.5))

  p

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the chart.")

}

�Bubble chart
The bubble chart is another popular chart type. You can think of them as a scatter plot 

with an additional attribute that uses size to represent another dimension of data. So 

with a traditional bubble chart, you are able to show up to five dimensions of data:

•	 The x and y of each bubble represent two dimensions.

•	 The fill (the color inside the bubble) represents a dimension.

•	 The size represents a dimension.

•	 The labels represents a dimension.

You can take things to the next level using ggplot2. You can color the border of the 

bubbles which will enable you to show six dimensions of data in your bubble chart! In 

this example, you will use data from a fictitious professional football league that plots 

running backs on six dimensions of data: name, height, weight, total rushing yards, 

conference, and division. The chart that you will create in this exercise is shown in 

Figure 2-11. Let’s go over the steps to create the chart.

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



67

�Step 1: Acquire the necessary data
The data set used in this example is a fictitious data set of a pretend professional 

football league. The league has two conferences: AL (American League) and USL 

(United States League). Each conference contains four divisions: North, South, 

East, and West. The data set contains the names, height, weight, rushing yards, 

conference, and division of the running backs in this fictitious league. The name of 

the file that contains the data set is FakeFootballLeagueData.csv and can be found in 

the code repository for this chapter.

Figure 2-10.  A bubble chart that displays six dimensions of data
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�Step 2: Load the data into Power BI
Load the data into the Power BI data model using GetData. The following table shows 

the data types that each column should have:

Column Name Column Data Type

ID Whole Number

Year Whole Number

Key Whole Number

FN Text

LN Text

Weight Whole Number

Height Whole Number

Rushing Yards Whole Number

Division Text

Conference Text

The transformation steps needed to get the data in the preceding format are in the 

PBI_FakeFootballLeague.pbix file.

�Step 3: Create a filter slicer based on the year
Create a report slicer based on the year field by first dragging the Year field to the report 

canvas, then selecting the Slicer visual in the Visualization pane. Make sure the Year field 

you drag is highlighted before you select the Slicer visual to convert it into a slicer. The 

slicer visual is the one that includes a picture of a filter in the image.

�Step 4: Do the initial R visual configuration
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual 

to the desired size. Drop the ID, Year, FN, LN, Weight, Height, Rushing Yards, Division, 

and Conference fields from the FakeFootballLeague table to the Fields pane. If the Fields 

pane is not showing, select the R visual and it should appear.
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�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will 

export the data frame passed to R and the R starter code to R Studio. Please refer to Step 

4 in the “Callout chart” section if you need a more detailed explanation.

�Step 6: Load the required packages
The following code is used to load the required packages:

library(tidyverse)

library(ggrepel)

library(ggthemes)

The dplyr and ggplot2 packages are used in this script from tidyverse. The dplyr 

package is used to wrangle the data passed to R from Power BI into the shape it needs to 

be in, and ggplot2 is used to create the visual. The ggrepel package is used to re-position 

the labels of the data points in the visual format, and the ggthemes package is used to 

change the display of the non-data components of the visual.

�Step 7: Create the variables needed for the data  
validation test
currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Conference", "Division", "FN", "Height",

                     "ID", "LN", "Rusing Yards", "Weight",

                     "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

The currentColumns variable is used to hold the column names of the data frame 

passed to R from Power BI. The names are sorted in alphabetical order for comparison 

reasons. The requiredColumns variable is used to hold the names of the required 

columns. They are also listed in alphabetical order for comparison reasons. The 

columnTest variable holds the results of the comparison test. It uses the all.equal() 

function to compare the currentColumns variable to the requiredColumns variable for 

equality. If those two variables are equal, then TRUE is returned; otherwise, information 
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about what was not equal between the two variables is returned. You need a Boolean 

response, so you wrap the all.equal() function with isTRUE() function which will return 

TRUE when all.equal() returns TRUE and it will return FALSE when all.equal() returns 

something other than TRUE. Next, the unique() function is used to get a list of unique 

elements from the Year column.

�Step 8: Create the data validation test
The template used to perform the validation is as follows:

if(length(reportYear) == 1 & columnTest) {

    <code to create the visual>

} else{

    plot.new()

    title("The data supplied did not meet the requirements of the

          chart.")

}

The if statement performs two tests. First, it tests to see if the length of the reportYear 

vector is equal to one. Second, it tests to see if the columnTest variable evaluates to 

TRUE. If both of those conditions are met, then the code that creates the visual is 

executed. Otherwise, code is executed that creates a blank chart with a message giving 

the user information about why the expected visual was not returned.

�Step 9: Define the colors for the conferences and  
conference divisions
One of the useful features of ggplot2 is that ggplot2 makes it easy to customize the 

colors you want to use in a chart. You can define charts using a color name that ggplot2 

recognizes, or you can use the hexadecimal representation of the color if you know it. 

Here, you are using the latter to define your colors via named character vectors. You 

use named character vectors to define the colors of the division and of the conferences. 

The name of the elements in the named character vectors represents the division 
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or conference, and the value of the element in the named character vectors is the 

hexadecimal number that represents the color you want to use. Here is the code that you 

use to define the colors for the divisions and conferences:

divisionColors <- c("East"="#56B4E9", "West"="#33FAFF",

                   "North"="#F0E442", "South"="#8B8D8D")

conferenceColors <- c("USL"="#000000", "AL"="#FC4E07")

Here is the URL to a website that you can use to get the hexadecimal number of 

various colors: www.hexcolortool.com/#010328. This site can also be use when you 

want to the hexadecimal value of a color you want to use in native a Power BI visual.

�Step 10: Dynamically define the chart titles
Here is the code that creates the chart title:

chartTitle <- paste("Runningback Quad Chart for",

                     reportYear,

                     sep = " "

              )

The code concatenates the string “Runningback Quad Chart for” with the report year 

selected by the report user to dynamically create the chart title.

�Step 11: Create the chart’s data set
The data set that was passed to Power BI is not totally ready for the chart. You want to 

add a label to the data points in the chart for each running back. The labels would be 

too long if you used both their first and last name, so you need a way to shorten them. A 

good method to use would be to take the initial of the first name and concatenate it with 

the last name. That is accomplished in the following code:

  chartData <-

    dataset %>%

    mutate(Name = paste0(str_sub(FN,1,1),". ", LN))
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The preceding code starts with the dataset data frame, then projects a new column 

to it named Name. It is based on the concatenation of three strings using the paste0 

function. The first string uses the str_sub() function from the stringr package to extract 

the first character from the FN column. The second string is “ . ” and the third string is 

the LN. So, if FN was John and if the LN was Doe, the result would be J. Doe.

�Step 12: Start the chart by defining the ggplot function
The bubble chart that you are creating will have six dimensions. The six dimensions are

•	 x coordinate of the chart to represent the running back’s weight

•	 y coordinate to represent the running back’s height

•	 Size of the bubble to represent the running back’s total rushing yards

•	 The fill (inside color) of the chart to represent the running back’s 

division

•	 The color (border of the bubble) to represent the running back’s 

conference

•	 The label to represent the running back’s name

You can set these dimensions using the aes() function in the ggplot() function as 

illustrated here:

  p <- ggplot(

    chartData,

    aes(

      x = Weight, y = Height, size = `Rusing Yards`,

      color = Conference, fill = Division, stroke = 2,

      label = Name

    )

  )
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�Step 13: Add the layer for your bubble chart using 
the geom_point geom
There are 26 shapes that you can use in the geom_point() geom. Figure 2-11 is a visual 

that depicts them.

There are three shapes that can be used to create bubble charts. They are shapes 1, 

16, and 21. Only shape 21 allows you to control both the color (the border of the circle) 

and the fill (the inside shade) of the point. Only the color is available in shape 1, and only 

the fill is available in shape 16. The code that was used to add the geom_point() layer to 

the visual using shape 21 is listed here:

  p <- ggplot(

    chartData,

    aes(

      x = Weight, y = Height, size = `Rusing Yards`,

      color = Conference, fill = Division, stroke = 2,

      label = Name

    )

  ) +

  geom_point(shape = 21)

Figure 2-11.  Shows the shapes available in geom_point(). Visual was created 
using the ggplot package
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The result is the visual in Figure 2-12.

You have the basics of the bubble chart built. Note that the geom_point() geom 

inherited the aesthetics from the ggplot() function so you did not have to explicitly define 

them. Now, you need to make some cosmetic changes to make the chart visibly more 

appealing.

�Step 14: Add labels to the bubble chart
You have bubbles scattered on the chart, but you don’t know which athlete the bubbles 

represent. You can add text to the visual using the geom_text_repel() geom from the 

ggrepel package. The geom_text_repel() geom tries to prevent overlapping when it adds 

the labels. Here is the code with the geom_text_repel() layer added:

  p <- ggplot(

    chartData,

    aes(

Figure 2-12.  The initial bubble chart using shape 21
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      x = Weight, y = Height, size = `Rusing Yards`,

      color = Conference, fill = Division, stroke = 2,

      label = Name

    )

  ) +

    geom_point(shape = 21) +

    geom_text_repel(size = 5)

The result of adding the geom_text_repel() layer is listed in Figure 2-13.

Note that we were able to control the text size of the label via the size argument. 

Without the size argument added, the font of the labels would vary based on the size of 

the bubble.

Figure 2-13.  The bubble chart with added labels
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�Step 15: Change the color of the bubble’s border 
and change the color of the bubble’s fill
Next, you change the color of the bubbles using the predefined colors in the conferenceColors 

named character vector. You do so by setting conferenceColors to the values argument in the 

scale_color_manual() scale. You also need to set the fill with the predefined colors in the 

divisionColors variable. You do so by setting divisionColors to the values argument in the 

scale_fill_manual() scale. The code with the two new scales is listed here:

  p <- ggplot(

         chartData,

         aes(

           x = Weight, y = Height, size = `Rusing Yards`,

           color = Conference, fill = Division, stroke = 2,

           label = Name

         )

       ) +

       geom_point(shape = 21) +

       geom_text_repel(size = 5) +

       scale_color_manual(values = conferenceColors) +

       scale_fill_manual(values = divisionColors)

The resulting visual is listed in Figure 2-14.
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�Step 16: Create the ggtitle
You pass the chartTitle variable to the ggtitle() function to add the title to the chart as 

shown in the last line in the following code:

  p <- ggplot(

    chartData,

    aes(

      x = Weight, y = Height, size = `Rusing Yards`,

      color = Conference, fill = Division, stroke = 2,

      label = Name

    )

  ) +

    geom_point(shape = 21) +

    geom_text_repel(size = 5) +

    scale_color_manual(values = conferenceColors) +

    scale_fill_manual(values = divisionColors) +

    ggtitle(chartTitle)

Figure 2-14.  Bubble chart with custom colors
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�Step 17: Set the theme
In the following code, you set the theme of the visual to the theme_few() theme from the 

ggthemes package:

   p <- ggplot(

    chartData,

    aes(

      x = Weight, y = Height, size = `Rusing Yards`,

      color = Conference, fill = Division, stroke = 2,

      label = Name

    )

  ) +

    geom_point(shape = 21) +

    geom_text_repel(size = 5) +

    scale_color_manual(values = conferenceColors) +

    scale_fill_manual(values = divisionColors) +

    ggtitle(chartTitle) +

    theme_few()

�Step 18: Add code to Power BI
You now have a functional script that produces the desired visual. The full script is as 

follows. Add the script in Listing 2-3 to the R script editor associated with the visual in 

Power BI. The visual will be responsive to the Year filter used in the report.

Listing 2-3.  The bubble chart R script

library(tidyverse)

library(ggrepel)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <-

    �c("Conference", "Division", "FN", "Height", "ID", "LN", "Rusing Yards", 

"Weight", "Year")
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columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

reportYear <- unique(dataset$Year)

if(length(reportYear) == 1 & columnTest) {

  chartData <-

    dataset %>%

    mutate(Name = paste0(substring(FN,1,1),". ", LN))

  divisionColors <-

      c("East"="#56B4E9", "West"="#009E73", "North"="#F0E442",

        "South"="#0072B2")

  conferenceColors <- c("USL"="#000000", "AL"="#FC4E07")

  chartTitle <-

      paste("Runningback Quad Chart for", reportYear, sep = " ")

  p <- ggplot(

          chartData,

          aes(

            x = Weight, y = Height, size = `Rusing Yards`,

            color = Conference, fill = Division, stroke = 2,

            label = Name

          )

        ) +

        geom_point(shape = 21) +

        geom_text_repel(size = 5) +

        scale_color_manual(values = conferenceColors) +

        scale_fill_manual(values = divisionColors) +

        ggtitle(chartTitle) +

        theme_few()

  p

} else{

  plot.new()

  title("The data supplied did not meet the requirements of the

        chart.")

}
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�Forecast
Forecasting business outcomes has been a technique used by companies for many 

years. Many business intelligence tools have forecast visualizations you can add to 

your dashboards that will display a forecast, but they are very limited in the amount 

of information they give. They are limited because they typically only show the 

forecast, but they leave out important components that influence a forecast. Those 

components include trend and seasonality. The forecast trend is used to show if the 

data is decreasing or increasing over a long period of time. The forecast seasonality is 

used to show variations in the data caused by the time of occurrence. Fortunately for 

us, the data science team at Facebook developed a package for R called Prophet that 

not only enables you to create robust forecast visual but also gives you the ability to 

create visuals that give you valuable information about the different components that 

make up the forecast.

In this exercise, you will build a visual that was inspired by the example used 

in the Prophet documentation. The example in Prophet created a visualization 

that forecasted Wikipedia page views for Peyton Manning. Peyton is a former NFL 

quarterback. You will build on what was done in the Prophet example by building 

an interactive visualization that will enable you to switch between two current NFL 

quarterbacks, Lamar Jackson and Deshaun Watson. The visualization will not only 

have a chart for the forecast but it will also have a chart to show the trend of the 

forecast and charts to show weekly and yearly seasonality. An image of the visual is 

illustrated in Figure 2-15.
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Let’s go over the steps needed to create this custom R visual!

�Step 1: Acquire the necessary data
You need to acquire the data that contains the daily Wikipedia views for Lamar Jackson 

and Deshaun Watson. Here are the steps you need perform to acquire the data. Note 

that you will need to go through these steps twice, once for Lamar Jackson and once for 

Deshaun Watson:

	 1.	 Go to https://en.wikipedia.org/wiki/Wikipedia:Web_

statistics_tool to access the Wikipedia Web Statistics Tool.

	 2.	 Click toollabs:pageviews link in the Current tools section.

Figure 2-15.  Forecast visual produced using Prophet and ggplot2
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	 3.	 Click X Clear above the search bar to clear the page names and 

put the name of the page you want to test. On the first iteration, 

use Lamar Jackson, and on the second iteration, use Deshaun 

Watson.

	 4.	 Click the Dates textbox, then go to custom range.

	 5.	 Choose a data range that includes a minimum of a 2-year period. 

That requirement is needed so that the Prophet package will have 

enough information to detect yearly seasonality trends. In this 

example, I chose 1/1/2018 for my beginning date and 12/31/2019 

for my ending date.

	 6.	 Click the downward arrow in the Download button located below 

the Pages textbox and select the CSV option. That action will 

initiate the download process, and it will save the results of your 

query in a csv format on your computer. The default name does 

not give you information about the subject of your query. Rename 

the file with a name that is representative of the contents of the 

file. I prefixed each file with the initials of the subject. I used lj for 

Lamar Jackson and dw for Deshaun Watson.

	 7.	 Next, you need to load the data set for Lamar Jackson and 

Deshaun Watson into Power BI, make some data transformations 

required for the visualization, then combine them into one data 

set. Power Query will be used to do that. The final data set needs 

to contain the following fields with the corresponding data types:

Column Name Data Type

Date Text

Page Views Whole number

Quarterback Text

Page Views (Log10) Decimal number

The transformations performed using Power Query to get the data 

in the preceding format can be found in the pbix file located in the 

code repo for this chapter.
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�Step 2: Create a slicer based on quarterback
Drag the Quarterback field to the upper right portion of the report canvas. Next, go to 

the Visualization pane in the upper right corner and change the visualization to a Slicer 

visual. The Slicer visual comes pre-packaged in Power BI, and it is the one that includes a 

picture of a filter in the image.

�Step 3: Configure the R visual
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual 

to the desired size. Drop the Date, Page Views, Page Views (Log10), and Quarterback 

fields from the WikipediaPageViews table into the Fields pane. If the Fields pane is not 

showing, select the R visual and it should appear.

�Step 4: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will 

export the data frame passed to the R visual and the R starter code to R Studio. Please 

refer to Step 4 in the “Callout chart” section if you need a more detailed explanation.

�Step 5: Load the required packages to the script
Here is the code needed to load the required packages for the script:

library(tidyverse)

library(prophet)

library(ggthemes)

library(gridExtra)

library(lubridate)

The dplyr package from tidyverse is used to perform some data wrangling tasks, the 

ggplot2 package from tidyverse is used to create the visualization, the prophet package 

is used to perform the forecast and help with creating the visualization, the gridExtra 

package is used to enable multiple chart display in a single visual, and the lubridate 

package is used to perform some date manipulation tasks.
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�Step 6: Create the variables needed for the data  
validation test
The code used to create the variables for the validation is listed here:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Date", "Page Views", "Page Views (Log10)",

                     "Quarterback")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

qb <- unique(dataset$Quarterback)

The currentColumns character vector variable is used to hold the column names of 

the data frame passed to R from Power BI. The names are sorted in alphabetical order for 

comparison reasons. The requiredColumns character vector variable is used to hold the 

names of the required columns. They are also listed in alphabetical order for comparison 

reasons. The columnTest variable holds the results of the comparison test. It uses the 

all.equal() function to compare the currentColumns variable to the requiredColumns 

variable for equality. If those two variables are equal, then TRUE is returned; otherwise, 

information about what was not equal between the two variables is returned. You need 

a Boolean response so you wrap the all.equal() function with the isTRUE() function 

which will return TRUE when all.equal() returns TRUE and it will return FALSE when all.

equal() returns something other than TRUE. The last thing that is done is you get all the 

unique elements in the Quarterback column and assign the result to the qb variable.

�Step 7: Create the data validation test
The template used to execute the validation test is as follows:

if (length(qb) == 1 & columnTest) {

     <code to produce visual>

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the

         chart.")

}
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The visual needs a data set that only contains one quarterback and has the required 

columns. The first test checks to see if the length of the qb variable is 1. If it is equal to 

1, then it means that there is only one quarterback in the data set so that test is passed. 

The second test checks to see if the data frame passed from Power BI contains the 

required columns. If the columnTest variable is equal to TRUE, then that test is passed. 

If both tests evaluate to TRUE, then R will attempt to execute the code that creates the 

visual. Otherwise, code is executed that creates a blank chart with a message containing 

information about why the expected visual was not created.

�Step 8: Create the dynamic chart title
The following code creates a variable that will hold a dynamically created chart title 

based on the quarterback’s name:

chartTitle <-

    paste0(qb, "'s Wikipedia page views forecast analysis")

It concatenates the Quarterback’s name with the string, “ ‘s Wikipedia page views 

forecast analysis”, without any delimiters. The paste0() function is similar to the paste() 

function. It is used when you want to concatenate strings without using a delimiter.

�Step 9: Create the data set that is needed to generate 
the forecast
  dfPageViews <-

    dataset %>%

    transmute(

        Quarterback,

        ds = ymd(Date),

        y = `Page Views (Log10)`

    )

The prophet package only requires two variables: ds and y. The ds variable is used 

for the date. The dates should be contiguous and span a minimum of a 2-year time 

period. The y variable represents the outcome you want to forecast which is the log of 

the Page Views.
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Note  that you used the log of the page view count instead of the actual page 
views count. That is a common technique used in situations like you have in this 
example where you have high data dispersion. Using the log of the page views 
reduces the dispersion and makes the data easier to visualize. Using the log 
transformations is also a common technique used in feature engineering when 
building data science models.

�Step 10: Generate the forecast
The three lines of the following code produce the forecast:

  m <- prophet(dfPageViews)

  future <- make_future_dataframe(

                 m,

                 periods = 365,

                 freq = "day",

                 include_history = TRUE

            )

  forecast <- predict(m, future)

The first line produces a forecast model object based on the dfPageViews data frame. 

The second line of code creates a data frame that adds the number of periods specified 

in the periods argument to the end of the dates in the dfPageViews data frame. The 

frequency of the period is defined in the freq argument, and if you set the include_history 

argument to TRUE, then the historical dates are included in the data frame. The third 

line generates the forecast via the predict() function using the model created in line 1 

and the future data frame.

�Step 11: Generate the plot
You generate four plots in this step. The four plots are

•	 A plot of the forecast

•	 A plot that shows the trend in the underlying data
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•	 A plot that shows weekly seasonality

•	 A plot that shows yearly seasonality

The code used to create the plots is shown here:

  p1 <- plot(m, forecast) + ggtitle(chartTitle) + theme_few()

  p <- prophet_plot_components(m, forecast)

  p2 <- p[[1]] + theme_few()

  p3 <- p[[2]] + theme_few()

  p4 <- p[[3]] + theme_few()

  p5 <- grid.arrange(p1, p2, p3, p4, nrow =4)

  p5

The resulting visual was depicted earlier in Figure 2-15. The visual in Figure 2-15 is 

valuable because not only do you have a visual of the forecast, but you also have visuals 

of the components that affect the forecast. You can see how the data is trending with the 

trend plot, how the data typically vary throughout the week with the weekly plot, and 

how the data typically vary throughout the year with the yearly plot.

The first thing you need to do is define each plot individually. Here are descriptions 

of how each chart is individually defined:

•	 p1 is used to hold the visual of the actual forecast. It is built using 

the plot() function from the Prophet package which, underneath the 

hood, is built using ggplot. Because of that, you are able to apply the 

theme_few() theme to it.

•	 p is used to hold the component charts generated by Prophet via 

the prophet_plot_components() function. This function returns a 

list of ggplot charts representing different components of forecast. 

In this case, it is a trend chart, a weekly seasonality chart, and a 

yearly seasonality chart.

•	 p2, p3, and p4 hold the three individual component charts 

produced by p. As stated earlier, p is a list of ggplot charts. You 

need to subset each chart out of the p as a ggplot chart. That is 

accomplished using double brackets, [[. When you subset an object 

from a list in R using single bracket, [, the item is returned as a list 

with one element and not a single object in the data type that the 

underlying element actually is. So, in this example, p[1] will not 
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return a ggplot chart, but it will return a list that has one item with 

that item being a ggplot chart. If you want to explicitly return the 

item in its true data type, then you need to subset with two brackets, 

[[, as you did in the preceding code. Note that because each chart 

was extracted as a ggplot chart, you were able to apply the theme_

few() theme to each of them.

Now that you have the forecast visual saved as a ggplot object and the visual for each 

forecast components saved as a ggplot object, you can combine them into one visual 

using the grid.arrange() function from the gridExtra package. This is done is line 6 in the 

preceding code. You want the charts to be stacked on top of each other. You accomplish 

that task by setting the nrow argument to 4. You control the way the visuals are displayed 

on the screen using this argument. For instance, if you set that argument to 2, then it will 

combine the charts in two rows resulting in two charts in each row.

�Step 12: Add code to Power BI
The entire script to create the forecast visual is in Listing 2-4. Copy and paste it in R script 

editor in Power BI. The visual will be totally responsive to the Quarterback slicer.

Listing 2-4.  The R script that produces the forecast chart

library(tidyverse)

library(prophet)

library(ggthemes)

library(gridExtra)

library(lubridate)

library(rlang)

# I needed to load rlang. Look into this package.

currentColumns <- sort(colnames(dataset))

requiredColumns <-

    c("Date", "Page Views", "Page Views (Log10)", "Quarterback")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))
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qb <- unique(dataset$Quarterback)

if (length(qb) == 1 & columnTest) {

  chartTitle <- paste0(qb, "'s Wikipedia page views forecast analysis")

  dfPageViews <-

    dataset %>%

    mutate(Date = ymd(Date)) %>%

    rename(ds = Date, y = `Page Views (Log10)`)

  m <- prophet(dfPageViews, yearly.seasonality=TRUE)

  future <- make_future_dataframe(m, periods = 365)

  forecast <- predict(m, future)

  p1 <- plot(m, forecast) + ggtitle(chartTitle) + theme_few()

  p <- prophet_plot_components(m, forecast)

  p2 <- p[[1]] + theme_few()

  p3 <- p[[2]] + theme_few()

  p4 <- p[[3]] + theme_few()

  p5 <- grid.arrange(p1, p2, p3, p4, nrow =4)

  p5

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the chart.")

}

�Line chart with shade
The line chart is arguably one of the most popular charts used in data visualization. It is 

perfect for plotting data that spans a period of time. Because it is so widely used, all BI 

tools natively support them.
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In exercise, you will learn how to create a line chart in Power BI using R. This 

line chart will not be your typical line chart. It will include enhancements that were 

not available in Power BI as of this writing. The R custom visual that you will create 

was inspired by a visual created by Hadley Wickham in his book Ggplot2: Elegant 

Graphics for Data Analysis (2nd edition, p. 44). The visual he created in the book used a 

background shading technique to identify the president that was in office at a given point 

of time in the chart. You will create an interactive R custom visual in Power BI that will 

do something similar but with enhancements. The visual that you will create is listed in 

Figure 2-16.

The R custom visual plots the % Change of GDP from calendar year 1947 to 

calendar year 2018. What’s unique about this chart is that the background shade shows 

the political party of the president at the given time. You leverage the interactivity of 

Power BI to further enhance the visual. In addition to the president’s political party 

view, you give the end user the ability to change the background to show the party 

Figure 2-16.  Line chart showing GDP percent change with the background shade 
based on the political party that reigns during the shaded time
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that represented the majority of the United States Senate for a given point of time, the 

party that represented the majority of the United States House of Representatives for a 

given point of time, and the party that was the overall majority. In addition to that, you 

will give the end user the ability to switch between showing the Actual GDP and the % 

Change in GDP. The following image in Figure 2-17 shows the overall majority view for 

Actual GDP.

Now that you have seen the R custom visual, let’s go over the steps you must take to 

create the visual in Power BI!

Figure 2-17.  Line chart showing actual GDP with the background shade based on 
the political party that reigns overall during the shaded time
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�Step 1: Acquire the necessary data

	 1.	 Go to https://fred.stlouisfed.org/series/GDP which will take 

you to a page on the St. Louis Fed website dedicated to historical 

GDP information. Click the EDIT GRAPH button and change 

the value in the Modify frequency combo box to Annual and 

Aggregation method to End of Period. Click the X in the upper right 

of the pop-up form to close out the form.

	 2.	 Click the DOWNLOAD button and choose the CSV format. At 

the time of the writing, that action downloaded a csv file to my 

computer with a file name of GDP.csv.

	 3.	 Go to the code repo for this example and locate the 

PoliticalInfoWithGDP.xlsx workbook. The PoliticalInfoWithGDP.

xlsx workbook contains the data sets and the Power Query queries 

that were used to create the PoliticalInfoWithGDP data set used 

in this example. PoliticalInfoWithGDP is the data set that is 

the source for the visual that will be produced in this exercise. 

The hard work has been done for you, but you can inspect the 

workbook to see how the following data sets were combined to 

produce the PoliticalInfoWithGDP data set. Here are descriptions 

of each query that were developed using Power Query inside the 

PoliticalInfoWithGDP.xlsx workbook:

	 a.	 GDP: This query pulls in the GDP data that was downloaded in Step 2 and 

adds a % GDP Change column to the data set.

	 b.	 Presidents: This query builds the data set that lists all the US presidents 

during the time of the analysis along with a column that shows their 

political affiliation.

	 c.	 Political Info: This query gets the information from a Wikipedia article 

at this URL: https://en.wikipedia.org/wiki/Party_divisions_of_

United_States_Congresses. The information at this URL is used to get 

the majority party for the Senate and House of Representative as well as the 

president that was in office at the time. Power Query is used to reshape the 

data for the visualization. You can follow the steps in Power Query to see 

how it was done.

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 

https://fred.stlouisfed.org/series/GDP
https://en.wikipedia.org/wiki/Party_divisions_of_United_States_Congresses
https://en.wikipedia.org/wiki/Party_divisions_of_United_States_Congresses


93

Power Query is a data wrangling tool built inside of several Microsoft technologies 
such as Microsoft Excel, Power BI, Power BI Dataflows, and SQL Server Analysis 
Services. It has a GUI that greatly reduces that time it takes to perform simple data 
wrangling. I highly recommend that R and Python developers who are new to the 
Microsoft ecosystem take a look at this awesome tool!

	 d.	 PoliticalInfoWithGDP: Combines the preceding data sets and puts the 

results in the shape needed for the visualization in this example via Power 

Query.

	 4.	 As stated earlier, the PoliticalInfoWithGDP data set is the data set 

that will be used for the visualization and was built using Power 

Query as previously described. It has been saved as a csv file under 

the name PoliticalInfoWithGDP.csv. You can find the file in the 

code repo for this example.

�Step 2: Load the data into Power BI
Load the PoliticalInfoWithGDP.csv into Power BI by selecting Home ➤ GetData ➤ 

Text/CSV, then browse to the location where you saved the file. Click the Transform 

Data button to go to the Power Query editor. Check to make sure that the fields have 

the following data types:

Column Data Type

Index Whole Number

Year Whole Number

GDP Decimal Number

% GDP Change Decimal Number

Senate Majority Text

House Majority Text

President’s Majority Text

Overall Majority Text

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



94

Change the columns to the appropriate data type if the columns do not have the 

preceding data types. The easiest way to change the data type is by right clicking 

the column in question, then selecting Change Type. A list of available data types 

will appear. Choose the one that applies to the column in question. After you have 

verified that the data types are valid, click Close & Apply to load the data in the Power 

BI data model.

Go to the table and make sure that the default behavior for Year and Index is set to 

Do Not Summarize. To do so, select the field in the Fields pane, then go to Modeling ➤ 

Default Summarization in the Properties section, and select Don’t Summarize.

�Step 3: Create the report slicers
The report has two slicers. There is a slicer that is used so that the end user can select the 

political view (House, Senate, President, or Overall) and a slicer that is used to select the 

GDP stat (Actual GDP or GDP % Change) that the user wants to display. The work in this 

step has been done for you in the starter pbix template which you can find in the code 

repo for this example.

�Step 4: Configure the R visual
Go to the Visualization pane and drag an R visual to the report canvas. The R visual 

icon is located in the lower right section of the Visualization pane. Resize the visual to 

the desired size. Add Year, GetPoliticalLevel, GetPoliticalLevelName, GetGDPStat, and 

GetGDPStatName to the Fields pane which is located beneath the Visualization pane. 

Sometimes Microsoft Power BI defaults to applying an aggregation function to numeric 

fields. Check to see if it tried to do that with the Year field. If there is aggregate function 

being applied, then remove it by clicking the down arrow of the field in the Fields pane 

and choose Don’t Summarize.

�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will 

export the data frame passed to R and the R starter code to R Studio. Please refer to Step 

4 in the “Callout chart” section if you need a more detailed explanation.
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�Step 6: Load the required packages to the script
The code needed to load the required packages is listed here:

library(tidyverse)

library(ggthemes)

library(scales)

The dplyr package from tidyverse will be used to perform some data wrangling tasks, 

the ggplot2 package from tidyverse will be used to create the visualization, the economist 

theme from the ggthemes package is used to format the non-data parts of the chart, and a 

few functions from the scales package will be used for number formatting.

�Step 7: Create the variables needed for the data  
validation test
Here is the code for the validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <-

      c("GetGDPStat", "GetGDPStatName", "GetPoliticalLevel",

        "GetPoliticalLevelName", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

politicalLevelName <- unique(dataset$GetPoliticalLevelName)

gdpStatName <- unique(dataset$GetGDPStatName)

The following three tests are performed:

•	 A test to make sure the data set passed to the visualization contains 

the necessary fields

•	 A test to make sure only one political view is in the data set

•	 A test to make sure only one GDP stat is in the data set
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Let’s go over the code used in the first test. Here is the code:

currentColumns <- sort(colnames(dataset))

requiredColumns <-

      c("GetGDPStat", "GetGDPStatName", "GetPoliticalLevel",

        "GetPoliticalLevelName", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

The first line gets the name of the columns from the data set passed to R and 

assigned it to a character vector named currentColumns. The sort() function is used to 

sort the column names in alphabetical order. The next line of code creates a character 

vector of the required fields and names it requiredColumns. Note that the names 

are supplied in alphabetical order. That is done to ensure that you can do a direct 

comparison to the currentColumns character vector. The third line of code performs 

the test by comparing the currentColumns character vector to the requiredColumns 

character vector using the all.equal() function. When the currentColumns is equal to 

requiredColumns, TRUE is returned. Otherwise, information is returned that tries to 

explain why they did not match. You need a Boolean response so you wrap all.equal() 

with the isTRUE() function. Doing so will return TRUE when all.equal() returns TRUE; 

otherwise, it will return FALSE.

Next, two character vectors are created that hold the unique elements in the 

GetPoliticalLevelName field and GetGDPStatName field, respectively, using the 

following code:

politicalLevelName <- unique(dataset$GetPoliticalLevelName)

gdpStatName <- unique(dataset$GetGDPStatName)

Ideally, both will only have one element, and that will be tested in the next step.

�Step 8: Create the data validation test
The template used for the validation is as follows:

if(length(politicalLevelName) == 1 &

   length(gdpStatName) == 1 & columnTest) {

   <code to produce visual>

} else {

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



97

    plot.new()

    title("The data supplied did not meet the requirements of the chart.")

  }

The preceding if statement will execute the code needed to build the visualization 

if there is only one value in the GetPoliticalLevelName field, if there is one value in the 

GetGDPStatName field, and if columnTest evaluates to TRUE.

�Step 9: Create a new data frame based on the dataset 
data frame
It is best practice not to modify the dataset data frame that was passed to R from Power 

BI. To get around not modifying that data frame, you need to create a new one based on 

the dataset data frame and modify that instead. Here is the code used to create the new 

data frame:

dfPI <- dataset

�Step 10: Create the variables that will be used for the  
dynamic portions of the chart
Here’s the code needed to define those variables:

  politicalLevelName <- unique(dfPI$GetPoliticalLevelName)

  gdpStatName <- unique(dfPI$GetGDPStatName)

  yAxisName <-

    paste(

      gdpStatName,

      ifelse(gdpStatName == "Actual GDP","(in Billions)",""),

      sep = " "

    )

  chartTitle <- paste(gdpStatName, "Analysis", sep = " ")

  chartSubtitle <- paste(politicalLevelName, "view", sep = " ")
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The preceding code dynamically produces the label for the y axis, the chart title, and 

the chart subtitle. The first two lines get the political level and the GDP stat and store 

the information for later use. The next line of code, actually six lines in the preceding 

code snippet because of formatting reasons, is used to create the label for the y axis. It 

uses the paste() function to combine the value of the gdpStatName variable with the 

string (in billions) if the GDP stat that is being used is Actual GDP. The result is assigned 

to the yAxisName variable. The fourth line of code dynamically builds the main chart 

title by concatenating the value of the gdpStatName variable and the word “Analysis” 

using a space delimiter. The last line of code dynamically creates the chart subtitle by 

concatenating the value of the politicalLevelName variable and the word view using a 

space delimiter.

�Step 11: Create the data sets needed for background 
shade
In this step, you will use the data in the dfPI data frame and transform it into the data set 

you need for the background shade portion of the visualization. Let’s start by taking a 

peek at the data frame in Figure 2-18.

Figure 2-18.  A peek of the dfPI data frame
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You need to use the preceding data to create a data set that has the start time and 

end time of each contiguous party reign period. You need to take the preceding data 

frame and write code that will transform it to the data frame in Figure 2-19.

In order to accomplish this transformation, you need to be able to uniquely identify 

each contiguous political party reign. Currently, there is no unique identifier for each 

political party reign so you need to add one. Once you do so, you will be able to use 

traditional aggregation methods to get the start and end year of each reign. Let’s first go 

over the steps needed to add the unique identifier which you will call group_id. The code 

that produces the information for the group_id is listed here:

  dfPI$GetPoliticalLevel <- as.character(dfPI$GetPoliticalLevel)

  runs <- rle(dfPI$GetPoliticalLevel)

  group_id <- rep(seq_along(runs$lengths), runs$lengths)

The first thing that is done in line 1 is a data type conversion. The default data type 

for columns in a data frame that contains strings in R is a data type known as factor for R 

versions prior to R 4.0.

Figure 2-19.  Required data frame format
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As of the writing of this book, the Power BI service has not been updated to R 
version 4.0. If that is the case at the point of time you are working through this 
exercise, then you will also need to do the conversion. If the Power BI service 
has been updated to R version 4.0 or later, then you will not have to do the 
conversion step.

Since the data in the GetPoliticalLevel column are all strings, R has converted it to the 

factor data type. In order to perform the data processing needed in this step, you need 

to convert the GetPoliticalLevel to a character data type. That data type is comparable to 

the Text data type in DAX. That is accomplished in the first line of code. The next thing 

you do is use the rle() function from base R to define the groups in the GetPoliticalLevel 

column. The “rle” in the rle() function stands for run length encoding. When you pass the 

GetPoliticalLevel column to the rle() function, you get the following output illustrated in 

Figure 2-20.

The rle() function returned a list that contains two vectors. The first vector is a vector 

named lengths and, in this example, it contains the length of each political reign. The 

second vector is named values and, in this example, it contains the party who was in 

power in each political reign. The information returned from the rle() function is saved 

in the runs variable.

The information contained in the runs variable is used to create the group_id vector 

using the following code:

group_id <- rep(seq_along(runs$lengths), runs$lengths)

The first thing that is done is the seq_along() function is used to generate a sequence 

of integers that will represent the group_id. Since runs$length has a length of 9, an 

integer vector will be returned that contains numbers 1–9. That expression is put into 

the rep() function as the first argument, and the vector runs$length is put into the second 

argument. Since both arguments contain vectors with the same length, the rep function 

will take the first element produced by the seq_along() function, which in this case is the 

Figure 2-20.  Output from the rle() function
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number 1, and repeat it the number of times represented in the second integer vector, 

which in this case is 3. So, the number 1 will be repeated three times. Next, the number 2 

will be repeated four times because the value of the second element in runs$lengths is 4. 

That logic is repeated for each element in runs$lengths, and the resulting output is listed 

in Figure 2-21.

Next, you use the following code to create the data set for the visualization:

  dfShadeInfo <-

    cbind(dfPI, group_id) %>%

    transmute(group_id, Year, Party = GetPoliticalLevel) %>%

    group_by(group_id, Party) %>%

    summarize(start = min(Year), end = max(Year)+0.99) %>%

    ungroup()

The preceding code starts off by appending the group_id vector as a new column 

to the dfPI data frame using the cbind() function where the c in cbind() stands for 

column. Next, the pipe, %>%, operator is used to pass the resulting data frame as the first 

argument to the transmute() function in the next line.

The transmute() verb is like the mutate() verb from dplyr in that it is used to project 
new columns, but the difference with the transmute() function is that the data 
frame that it creates is based only on the columns defined in the function.

The preceding transmute() verb will produce a data frame with three columns 

named group_id, Year, and Party. Figure 2-22 is a peek of the first nine rows to show what 

the result of using the transmute() verb in the preceding code looks like.

Figure 2-21.  The output of the group_id variable
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Note that now you have a unique identifier for each political reign! Now you can use 

traditional aggregation functions to get the start and end time for each political reign. 

Again, the pipe operator is used to pass the data frame created by the transmute() verb 

as the first argument of the group_by() verb in the next line. The group_by() verb will 

group the data frame passed to it by the group_id and Party columns. The result of the 

group_by() will be passed as the first argument of the summarize() verb in the next line. 

The summarize() verb enables you to apply aggregation functions to your data set based 

on your groupings. So, you are able to create a column named start that represents the 

start of the political party reign based on the minimum year in the grouping, and you are 

able to create a column named end that represents the end of the political party reign 

based on the maximum year in the grouping. The value 0.99 is added to end column to 

minimize the gap between the start of the old reign and beginning of the new reign.

�Step 12: Create the data sets needed for line chart
The code used to create the data set for the line chart is as follows:

  dfLineChartInfo <-

    dfPI %>%

    transmute(Year, GetGDPStat)

Figure 2-22.  The result of using the transmute() verb
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The goal is to develop a line chart that displays the chosen GDP statistic by year 

that spans the time period of the data set. In order to do that, we need to supply the 

data set with two columns. Those columns are Year and GetGDPStat. You create 

the needed data set by extracting those columns from the dfPI data frame using the 

transmute() function.

�Step 13: Create a named character vector that will 
be used to color the shades
  partyColors = c("Republican"="red", "Democrat"="blue", 

                  "Tie" = "white")

The color for Republican party is red, and the color for the Democratic party is blue. You 

can force the visualization to use those colors for the parties via the named character 

vector partyColors. The partyColors named character vector will be used later in the 

script to force the visual to shade the background red for the time periods when the 

republicans were in control and will force the visual to shade the background blue for the 

time periods when the democrats were in control.

�Step 14: Start the chart by defining the ggplot function
The previous steps focused on data prep. The data prep steps illustrated one of the nice 

features about R visuals in Power BI. If the data set that is passed to your visual is not in 

the proper shape, you can use R to reshape your data set to get it where it needs to be.

In this step, you initiate the creation of the chart by setting the ggplot() function using 

the following code:

p <- ggplot()

You might have noticed that you are initiating your chart with a ggplot() function 

with any arguments. You did so because your chart will contain two layers, each with 

independent data sources and aesthetics so they will be set at the layer level.
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�Step 15: Add a layer to create the background shade
This is accomplished using the following code:

       geom_rect(

          data = dfShadeInfo,

          aes(xmin = start, xmax = end, fill = Party),

              ymin = -Inf, ymax = Inf, alpha = 0.4, color = NA

          )

The source data for this layer is the dfShadeInfo data frame. Figure 2-23 shows how it 

looks if the Overall political view is chosen.

The preceding image shows nine political reigns, so the geom_rect() function will use 

the preceding data frame to shade the background using a color based on the political 

party that was in power during each of the political reign. The start and end point of each 

political reign is defined by setting the start column to the xmin argument in the aes() 

function and setting the end column to the xmax argument in the aes() function. The 

upper boundary is defined by setting the ymax argument to Inf, and the lower boundary 

Figure 2-23.  The dfShadeInfo data frame
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is defined by setting ymin to -Inf. Using infinity for the upward and lower boundaries 

ensures that the shade will be vertically filled. The shade is painted for each reign, and 

the result is the shaded background listed in Figure 2-24.

Note the shading corresponds to the time period of each reign. The colors used for 

each political party will be changed later in the script.

�Step 16: Add a line chart based on the statistic selected
The following code is used to create the line chart layer of the visualization:

geom_line(data = dfLineChartInfo, aes(x = Year, y = GetGDPStat))

The geom_line() geom is used to create a line chart. The data frame that it is based 

on is the dfLineChartInfo data frame, and the column in that data frame that is used for 

the x axis is the Year column and the column that is used for the y axis is the GetGDPStat 

column.

Figure 2-24.  Background shade produced by the geom_rect() geom
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�Step 17: Reshade the background using pre-determined 
colors based on the political party
That is done using the following code:

scale_fill_manual(values=partyColors)

The scale_fill_manual() function can be used to override the default colors used 

by ggplot2. Earlier, you defined the colors that you wanted to use for each party in the 

partyColors named character vector. ggplot2 will shade the background to the colors 

specified in partyColors by setting the values argument to the partyColors variable.

�Step 18: Format the y axis based on the statistic selected
Next, you format the y axis based on the GDP statistic that was selected using the 

following code:

scale_y_continuous(labels=

      ifelse(gdpStatName == "ActualGDP",

          comma_format(),

          percent_format()

      )

) +

If the selection was made to return the actual GDP, then the y axis will be formatted 

in a comma_format() because the ActualGDP needs to be formatted as a number. 

Otherwise, the y axis will be formatted as a percent using percent_format() because 

the chart will be displaying percent change of GDP. Both the comma_format() and the 

percent_format() function come from the scales package.

�Step 19: Add labels to the x and y axis
The following code adds a dynamically created label to the y axis and a fixed label to 

the x axis:

       ylab(yAxisName) +

       xlab("Year")
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�Step 20: Add the dynamic titles and caption to the  
custom R visuals
The ggtitle() function is used to dynamically create the chart title and the chart subtitle 

using the following code:

ggtitle(chartTitle, subtitle = chartSubtitle)

�Step 21: Apply a theme based on The Economists  
publication
Since you are visualizing economic data, you will use the theme_economist() theme 

from the ggthemes package to format your visual. The theme_economist() theme uses 

formatting rules that are used by The Economists publication. You apply the theme_

economist() theme to your visual by adding the line of this code to the script:

theme_economist()

�Step 22: Add code to Power BI
The entire script that produces the visualization in this exercise is listed in Listing 2-5. 

The script is functional so you can copy and paste it into Power BI. Make sure to paste it 

after the commented section in the Power BI R script editor.

Listing 2-5.  The R script that produces the line chart with shade chart

library(tidyverse)

library(ggthemes)

library(scales)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("GetGDPStat", "GetGDPStatName", "GetPoliticalLevel", 

"GetPoliticalLevelName", "Year")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

politicalLevelName <- unique(dataset$GetPoliticalLevelName)

gdpStatName <- unique(dataset$GetGDPStatName)
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if(length(politicalLevelName) == 1 & length(gdpStatName) == 1 & columnTest) 

{

  dfPI <- dataset

  #Variables for dynamic portions of the chart

  politicalLevelName <- unique(dfPI$GetPoliticalLevelName)

  gdpStatName <- unique(dfPI$GetGDPStatName)

  �yAxisName <- paste(gdpStatName, ifelse(gdpStatName == "Actual GDP", 

"(in Billions)",""), sep = " ")

  chartTitle <- paste(gdpStatName, "Analysis", sep = " ")

  chartSubtitle <- paste(politicalLevelName, "view", sep = " ")

  #Get the number of

  dfPI$GetPoliticalLevel <- as.character(dfPI$GetPoliticalLevel)

  runs <- rle(dfPI$GetPoliticalLevel)

  group_id <- rep(seq_along(runs$lengths), runs$lengths)

  #Create the data set for shade layer

  dfShadeInfo <-

    cbind(dfPI, group_id) %>%

    transmute(group_id, Year, Party = GetPoliticalLevel) %>%

    group_by(group_id, Party) %>%

    summarize(start = min(Year), end = max(Year)+0.99) %>%

    ungroup()

  #Create the data set for line chart layer

  dfLineChartInfo <-

    dfPI %>%

    transmute(Year, GetGDPStat)

  #Define the shade colors

  partyColors = c("Republican"="red", "Democrat"="blue", "Tie" = "white")

  #Create the visualization

  p <- ggplot() +

       geom_rect(

          data = dfShadeInfo,

          aes(xmin = start, xmax = end, fill = Party),

              ymin = -Inf, ymax = Inf, alpha = 0.4, color = NA

          ) +
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       geom_line(data = dfLineChartInfo, aes(x = Year, y = GetGDPStat)) +

       scale_fill_manual(values=partyColors) +

       scale_y_continuous(

         �labels=ifelse(gdpStatName == "Actual GDP", comma_format(),percent_

format())

       ) +

       ylab(yAxisName) +

       xlab("Year") +

       ggtitle(chartTitle, subtitle = chartSubtitle) +

       theme_economist()

    p

  } else {

    plot.new()

    title("The data supplied did not meet the requirements of the chart.")

  }

�Map
Spatial analytics has become more important in recent years. One form of spatial 

analytics that is popular in business is geographic-based spatial analytics. Power BI 

offers built-in map capabilities that work great for most situations. But in this example, 

I will show how you can use R to build custom maps. The visual that you will draw is a 

state heat map that shades the counties in the state based on the population quintile the 

county falls in. The darker the shade, the more populated the county is. Figure 2-25 is an 

example of the visual you will create when the state of Indiana is selected.
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The visual was created using a data set that contains the coordinates that define the 

borders of the counties in the continental United States. When a state is selected, ggplot2 

uses the geographic coordinates to draw the map. The counties are filled with a shade 

of blue that is darker in the more populated counties and a shade of blue that is lighter 

in the lower populated counties. You can easily switch between states by leveraging the 

interactive capabilities of Power BI. If you change the slicer from Indiana to Kentucky, 

then the following visual in Figure 2-26 will appear.

Figure 2-25.  Map visual produced using ggplot2 when Indiana is selected
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One of the features that makes this visual great is that it limits the geography to 

only the selected geography. Thus, it does not waste valuable chart real estate on other 

geographies. Many map visuals often includes other geographical areas in addition to 

the one that is the point of interest. Also, because it is created using ggplot2, you can add 

other dynamic features such as a dynamic chart title, a dynamic chart subtitle, and a 

dynamic chart caption. Let’s go over the steps needed to create this amazing visual!

�Step 1: Acquire the necessary data

	 1.	 Obtain a data set that lists the states with both their full name 

and abbreviated name. The data set used came from https://

en.wikipedia.org/wiki/List_of_U.S._state_abbreviations 

and can be found in the Abbreviations tab in the DataWrangling.

xlsx workbook.

	 2.	 Build out a data set with the county information needed for the 

visual. Information used to create the data set was obtained 

from www.nrcs.usda.gov/wps/portal/nrcs/detail/national/

home/?cid=nrcs143_013697 and can be found in the County FIPS 

Codes tab of the DataWrangling.xlsx workbook.

Figure 2-26.  Map visual produced using ggplot2 when Kentucky is selected
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	 3.	 Obtain a data set from the Census that lists population by county. 

The data set can be found in the PopulationInfo tab in the 

DataWrangling.xlsx workbook along with the Python script used 

to obtain the data set.

	 4.	 Create a data set that contains the missing FIPS code. Some of the 

missing FIPS codes were due to mapping issues, and some were 

because they were not in the County FIPS Codes data set. This 

data set will be used to correct that problem. It can be found in the 

TheMissingInfo worksheet in the DataWrangling.xlsx workbook.

	 5.	 Obtain a data set from the ggplot2 package that contains border 

information for the counties in the continental United States. 

The information is warehoused in the Map Info tab of the 

DataWrangling.xlsx workbook, and here is the code used to get 

the data set:

library(tidyverse)

us_counties <- map_data("county", ".")

path <- “<location where you want to save the data set>”

write_csv(us_counties, path)

	 6.	 Use Power Query to combine the information from the previous 

data sets into a shape needed by the visualization. The data set 

can be found in the ChartData tab in the DataWrangling.xlsx 

workbook. The query used to create the data set is also named 

ChartData, and you can look at the query to see the steps used to 

create the data set. This is the data set that will be used by Power 

BI to create the R visual.

	 7.	 Save the data in the ChartData tab of the workbook. The data was 

also saved to a csv file named chartdata.csv.

As with most visualization projects and data science projects in general, the longest 

part of the project is normally acquiring, cleaning, and shaping the data. In this exercise, 

I did the hard work for you so that you can focus on the data visualization aspect. You 

can review the material in the code repo for this exercise to see the steps I took to 

wrangle the data. For those of you coming from an R and/or Python background, doing 

so will be a good way to familiarize yourself with Power Query.
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�Step 2: Load the data into Power BI
You need to bring the chartdata.csv file into the Power BI, then make some minor 

adjustments to the data set before you load it into the data model. You can refer to the 

pbix file for this example to see the transformations.

�Step 3: Create a slicer based on state in the Filter pane
Create a slicer based on the State column by first dragging the State column to the report 

canvas. After you do that, you need to change the visual to a slicer by changing the 

visualization type to a slicer visual. The slicer is the visual with the icon that has an image 

of a funnel in it.

�Step 4: Configure the R visual
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual 

to the desired size. Drop the index, lat, long, County, Total Population, and State fields 

from the chartdata table into the Fields pane. If the Fields pane is not showing, select the 

R visual and it should appear.

�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will 

export the data frame passed to R and the R starter code to R Studio. Please refer to Step 

4 in the “Callout chart” section if you need a more detailed explanation.

�Step 6: Load the required packages
The packages that will be used for this script are listed here:

library(tidyverse)

library(ggthemes)

The dplyr package from tidyverse will be used for some data wrangling, the stringr 

package from tidyverse is used to reformat some titles, and the ggplot2 package from 

tidyverse will be used to create the map visual. The theme_map() theme from the 

ggthemes package will be used to format the non-data elements of the map visual.
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�Step 7: Create the variables needed for the data  
validation test
Here is the code that creates the variables for the validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("County", "Index", "lat", "long", "State", "Total 

Population")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

state <- str_to_title(unique(dataset$State))

The first line gets the column names from the data set passed to R from Power BI and 

sorts them in alphabetical order, then put the results in the currentColumns character 

vector variable. The second line creates a character vector that contains the column 

names that are expected by the visualization in alphabetical order and assigns it to a 

character vector named requiredColumns. The third line performs a test comparing 

the column names in the currentColumns character vector to the column names in the 

requiredColumns character vector. If they match, then TRUE is returned; otherwise, 

FALSE is returned. The fourth line gets all of the unique elements in the State column of 

the dataset data frame and uses the str_to_title() function from the stringr packages to 

put the state names in a proper name format.

�Step 8: Create the data validation test
The shell of the data validation is as follows:

if (length(state) == 1 & columnTest) {

   <execute code to build visual>

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the

         chart.")

}
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The source data frame of the visualization needs to only contain one state, and it 

needs to contain the required columns. The preceding if statement tests to see if there 

is only one state in the data frame and if the data frame passed the column test. If both 

conditions are met, then it will proceed to execute the code to create the map visual; 

otherwise, it will produce a blank visual with a message informing you that R did not 

have adequate information and could not create the visual.

�Step 9: Create the variables for the chart titles
Here is the code needed to create the chart titles:

  chartTitle <- paste0(state, "'s County Population Analysis")

  subTitle <- "(the darker shades the higher the population)"

The main chart title is made by concatenating the selected state with the string "'s 

County Population Analysis" and is assigned to the chartTitle variable. The string "(the 

darker shades the higher the population)" is used for the subtitle, and it is assigned to the 

subTitle variable.

�Step 10: Add the quintile column to the data set
If you recall, the goal of this visualization is to group the counties in each state by 

quintiles based on population. You use the ntile() function from dplyr to group the 

counties in the state in quintiles as illustrated in the following code:

chartdata <-

    dataset %>%

    mutate(quintile = factor(ntile(`Total Population`, 5)))

The code creates a new data frame called chartdata by starting with the dataset data 

frame, then the pipe operator from dplyr is used to pass it as the first argument to the 

mutate() verb in the next line. The mutate() verb is used to project a new column named 

quintile that will be created using the ntile() function. The ntile() function is wrapped 

with the factor function to convert the quintiles to a factor data type. This action has a 

similar effect as Don’t Summarize does in Power BI. Converting the quintiles to factor 

causes them to be treated as categorical data and not as numeric data.
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�Step 11: Define the colors that will be used to shade 
the map
You are going to use different shades of blue to shade the counties in the selected 

state. You are going to use five different shades of blue using the name character 

vector listed here:

  quintileColors <-

    c(

      "1" = "dodgerblue",

      "2" = "dodgerblue1",

      "3" = "dodgerblue2",

      "4" = "dodgerblue3",

      "5" = "dodgerblue4"

    )

The dodgerblue color listed for quintile 1 is the lightest shade of blue in the list, 

and doderblue4 for quintile 5 is the darkest shade of blue in the list. Here, you are using 

the color names to define them instead of the hexadecimal value. Go to the following 

website to learn more about the colors available to you in ggplot2: www.stat.columbia.

edu/~tzheng/files/Rcolor.pdf. You will see available names you can use to refer to 

specific colors.

�Step 12: Define the ggplot() function
You start by defining the ggplot() function using the following code:

ggplot(chartdata, aes(long, lat, group = County,

       fill = quintile))

You use the chartdata data frame as the chart’s data source. Next, you configure 

the aes() function by setting the long column to the x coordinate, the lat column 

to the y coordinate, the County to the group aesthetic, and the quintile to the fill 

aesthetic. This is our first time using the group aesthetic because prior to this 

example, we have been using individual geoms, but the geom_polygon() geom is 

what is known as a collective geom.
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Individual geoms only depend on one row, but collective geoms depend on multiple 
rows of data. This example will use the geom_polygon() geom which is a collective 
geom, and it will use data from multiple rows to define the border of the polygon 
visual that will be created.

The geom_polygon() in this example draws polygons using the latitude and longitude 

points in the data set for each group with the group in this example being the County in 

the data set. The fill property is used to tell ggplot2 how you want to color the inside of 

each county. Here, you will color the inside of each County based on the quintile they 

are in.

You were able to use a Cartesian coordinate system (in this example, a coordinate 
system that is based on an x and y axis) to represent your spatial data because 
you are looking at a relatively small area of the globe. Even though the earth is the 
shape of a sphere, when you are looking at a relatively small geographical area 
you can analyze it using the same techniques that are used to analyze a plane and 
get relatively good results.

�Step 13: Add the map layer
Here is the code that adds the map layer:

geom_polygon(show.legend = FALSE, color = "black")

You already have the aesthetics that you need for the map defined in the ggplot() 

function. They will carry over to the geom_polygon() geom because anything that is 

defined in the ggplot() function is available to all subsequent layers. You don’t need a 

legend in this visual, so you set the show.legend argument to FALSE. You want the color 

of the borders to be black. You make them black by setting the color argument to black.

Note  that when you want to set a chart attribute to a specific color, you need to do 
so without using the aes() function. The reason was explained in detail in Chapter 1.
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�Step 14: Format the x and y axis
The following code is used to reformat the x and y axis:

  scale_x_continuous(name = NULL, labels = NULL, breaks = NULL) +

  scale_y_continuous(name = NULL, labels = NULL, breaks = NULL)

You removed the name, labels, and breaks by setting them equal to NULL. You did so 

because you are visualizing a map and that information is not needed.

�Step 15: Color the counties based on their quintile
The following code will be used to color the counties:

  scale_fill_manual(values = quintileColors)

The ggplot2 package has good defaults which is one of the reasons that makes the 

package so nice. What makes the package even nicer is that you can easily override the 

defaults. The map will be colored as depicted in Figure 2-27 if the defaults from ggplot2 

are used.

Figure 2-27.  The map visual with the default colors that is produced when  
Florida is selected
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Figure 2-28 is what the map looks like after you use custom colors via the scale_fill_

manual() function.

The second version makes it easy for the report user to tell which counties have 

the lower populations and which counties have the higher populations based on the 

darkness of the shades.

�Step 16: Improve the approximation of the selected state
The following code is used to do a quick aspect ratio approximation based on the 

mercator map projection:

coord_quickmap()

Figure 2-28.  The map visual with custom colors that is produced when Florida is 
selected
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The geom_polygon() does a good job creating the map, but using the preceding code 

quickly makes the map display a little more accurately.

�Step 17: Add the dynamic titles and caption to the custom 
R visuals
The following code is used to add the dynamic titles using the ggtitle() function along 

with the variables that hold the chart title and chart subtitle information:

ggtitle(chartTitle, subtitle = subTitle)

�Step 18: Apply the theme_map( ) theme
You use the theme_map() theme from ggthemes to further enhance the visual appeal of 

the map.

�Step 19: Add code to Power BI
The complete script is in Listing 2-6. Copy and paste it into the R script editor in Power 

BI. The R visual will be totally responsive to the state slicer in your Power BI report.

Listing 2-6.  The R script that produces the map chart

library(tidyverse)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <-

   c("County", "Index", "lat", "long", "State",

     "Total Population")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

state <- str_to_title(unique(dataset$State))

if (length(state) == 1 & columnTest) {

  chartTitle <- paste0(state, "'s County Population Analysis")

  subTitle <- "(the darker shades the higher the population)"
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  chartdata <-

    dataset %>%

    mutate(quintile = factor(ntile(`Total Population`, 5)))

  quintileColors <-

    c(

      "1" = "dodgerblue",

      "2" = "dodgerblue1",

      "3" = "dodgerblue2",

      "4" = "dodgerblue3",

      "5" = "dodgerblue4"

    )

  ggplot(chartdata, aes(long, lat, group = County,

         fill = quintile)) +

    geom_polygon(show.legend = FALSE, color = "black") +

    scale_x_continuous(name=NULL, labels=NULL, breaks=NULL) +

    scale_y_continuous(name=NULL, labels=NULL, breaks=NULL) +

    scale_fill_manual(values = quintileColors) +

    coord_quickmap() +

    ggtitle(chartTitle, subtitle = subTitle) +

    theme_map()

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the

         chart.")

}

�Quad chart
As a Microsoft data professional, you are well aware of the visual in Figure 2-29 produced 

by Gartner.

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



122

Microsoft has done well compared to its competitors in the Business Intelligence 

space, and Gartner acknowledges it. Microsoft has used industry comparisons like the 

Gartner Magic Quadrant Chart to tout their position in the industry.

The visual Gartner used, the quad chart, is very effective when comparing different 

entities based on two metrics. In this case, Gartner is comparing different BI vendors 

based on their Ability to Execute and their Completeness of Vision. Gartner made the 

chart visibly appealing by adding minor details. Some of those details include

•	 Labeling the quadrants

•	 Adding background shade to quadrants 2 and 3

•	 Using non-traditional labels for the x and y axis

•	 Adding a chart caption

Figure 2-29.  The 2020 Gartner Magic Quadrant Chart
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These subtleties are not easy to create in Power BI but are straightforward in R using 

ggplot2.

In this section, I will illustrate my point using a data set based on “play-by-play” data 

for the 2008–2009 LA Lakers season. That info will be used to create the quad chart in 

Figure 2-30 that compares the players against each other based on total points scored 

and total rebounds made.

Like in the previous visualizations, you will take advantage of Power BI’s interactive 

capabilities and add slicers to the visual so that you can see how the situation plays out 

in different scenarios. There will be a filter for the type of game (home or away) as well as 

a filter for the period of the game. The visual in Figure 2-31 shows the comparison when 

only away games are considered.

Figure 2-30.  Quad chart comparing LA Lakers players based on rebounds and 
points scored
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Let’s go over the steps needed to create this beautiful visualization!

�Step 1: Acquire the necessary data
The data set used in this example was obtained from the lubridate package in R. The 

code used to get that data set is as follows:

library(tidyverse)

library(lubridate)

chartData <-

  lakers %>%

  filter(

    (player != "" & team == "LAL" &

     result == "made" &

    etype %in% c("shot","free throw")

    ) |

Figure 2-31.  Quad chart based on away games
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    (player != "" &

     team == "LAL" &

     etype == "rebound")

    ) %>%

  mutate(

    rebound = ifelse(etype == "rebound",1,0)

  ) %>%

  group_by(game_type, period, player) %>%

  summarize(

    `Total Points` = sum(points),

    Rebounds = sum(rebound)

  ) %>%

  rename(

    `Game Type` = game_type,

    Period = period,

    Player = player

  )

path <- “<path to location to save file>”

write_csv(chartdata, path)

The output was saved to a csv file because that format is an easy format for Power BI 

to consume. Don’t worry if you don’t understand the preceding code because you will 

learn the techniques used later in the book. For now, know that if you need to recreate 

the data set used in this visualization, you can do so by running the preceding R script.

�Step 2: Load the data into Power BI
Load the data in Power BI from the csv file created in Step 1 using GetData. Once loaded, 

the data type of each column should have the data types listed below:
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Column Name Data Type

Game Type Text

Period Whole Number

Player Text

Total Points Whole Number

Rebounds Whole Number

The file is already loaded in the pbix file located in the folder for this example in 

the code repo. You can review the Power Query steps to see what transformations 

were applied.

�Step 3: Create a slicer for game type and period
Create a report slicer based on the Game Type field by first dragging the Game Type field 

to the report canvas, then selecting the Slicer visual in the Visualization pane. Make 

sure the field you added to the canvas is highlighted before you select the Slicer visual to 

convert it into a slicer. The slicer visual is the one that includes a picture of a filter in the 

image. Perform the same action with the Period field.

�Step 4: Configure an R visual on the report canvas
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual 

to the desired size. Drop the Player, Rebounds, and Total Points fields from the chartData 

table into the Fields pane. If the Fields pane is not showing, select the R visual and it 

should appear.

�Step 5: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will 

export the data frame passed to R and the R starter code to R Studio. Please refer to Step 4  

in the “Callout chart” section if you need a more detailed explanation.
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�Step 6: Load the required packages
The required packages for this script are listed here:

library(tidyverse)

library(ggrepel)

library(ggthemes)

library(scales)

The dplyr package from tidyverse is used to perform some data wrangling tasks, 

ggplot2 from tidyverse is used to create the visualization, the ggrepel package is used to 

add the labels to the data points in the visualization, the theme_tufte() theme from the 

ggthemes package is used to format the non-data elements of the visual, and the rescale() 

function from the scales package is used to rescale some of the data.

�Step 7: Create the variables needed for the data  
validation test
The variables needed for the validation test are defined in the following code:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Player", "Rebounds", "Total Points")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

noPlayerDups <-

     length(unique(dataset$Player)) == length(dataset$Player)

Here is a description of what each line in the preceding code snippet is doing:

•	 The first line of code creates a character vector variable named 

currentColumns based on the column names from the dataset data 

frame sorted in alphabetical order.

•	 The second line of code creates a character vector variable named 

requiredColumns that contains the required columns needed for 

the Quad Chart in alphabetical order.
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•	 The third line of code uses the all.equal() function from base R to 

test the currentColumns variable and the requiredColumns variable 

for equivalency. If they are equal, then all.equal() returns TRUE; 

otherwise, it returns information about why they are not equal. We 

wrap all.equal() with isTRUE() to get a Boolean response.

•	 The fourth line of code (actually two due to formatting) uses the 

noPlayerDups variable to hold the result of the test that checks 

if there are any duplicate players in the data set. It does so by 

comparing the number of unique elements in the Players column to 

the length of the Players column. If they are equal, then none of the 

players are duplicated.

�Step 8: Create the data validation test
The template for the validation test is listed here:

if (noPlayerDups & columnTest) {

    <code to produce visual>

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the

         chart.")

}

The validation test performs two tests: the noPlayerDups test and the columnTest. 

If both tests evaluate to TRUE, then the code that creates the chart is executed. 

Otherwise, a blank chart is created with information about why ggplot2 was not able to 

create the chart.

�Step 9: Create the chart titles
Static strings are used in this example for the chart title, chart subtitle, and caption. They 

are defined using the following code:
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  chart.title <- "LA Lakers player comparison"

  chartsubtitle <- "(2008 - 2009 Season)"

  chart_source <- "Source:  lubridate package"

�Step 10: Add additional columns to the data set
You are creating a quad chart that compares the LA Lakers basketball players based 

on their rebounds and points scored. Rebounds and points scored are on two different 

scales because the range of possible values for the number of points scored is a lot higher 

than the range of possible values for the number of rebounds. The quad chart requires 

them to be on the same scale. That is done in this step using the following code:

  graph_data <-

    dataset %>%

    mutate(

      Scaled.Rebounds =

        round(rescale(Rebounds, to = c(-10, 10)), 1)

      ,Scaled.TotalPoints =

        round(rescale(`Total Points`, to = c(-10, 10)), 1)

    )

The mutate verb is used in this step to add two new columns to the data frame: 

Scaled.Rebounds and Scaled.TotalPoints. Those two columns use the rescale() function 

from the scales package to put them both on a scale between –10 and +10. These new 

columns will be used in the visualization to represent the rebounds and total points 

scored for each player.

�Step 11: Start the chart by defining the ggplot function
The following code is used to define the ggplot() function:

p <- ggplot(graph_data,

            aes(x = Scaled.Rebounds, y = Scaled.TotalPoints)

     )

The data set that will be used in this visual is the graph_data data frame and only two 

aesthetic are defined in the ggplot() function. They are the x and y aesthetics.
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�Step 12: Use the geom_point( ) geom to plot the players 
on the plot
Next, you add dots to the graph to represent the players. The positions of the dots are 

based on the rescaled version of the number of rebounds and the total number of points 

the given player has. This is done by adding a geom_point() geom to the code as depicted 

here:

p <- ggplot(

            graph_data,

            aes(x = Scaled.Rebounds, y = Scaled.TotalPoints)

     ) +

     geom_point()

The geom_point() geom inherits the aesthetics from the ggplot() function so the 

required x and y aesthetics do not need to be defined in the geom_point() layer.

�Step 13: Add the labels for each quadrant
Next, you add a layer of labels to the visual that gives the name of the players the dots 

represent. This is done using the geom_label_repel() geom as depicted in the following 

code:

ggplot(graph_data,

       aes(x = Scaled.Rebounds,

           y = Scaled.TotalPoints)

       ) +

       geom_point() +

       geom_label_repel(aes(

           label = Player),

           size = 4, show.legend = FALSE

       )

The geom_label_repel() geom inherits the x and y argument from the ggplot() 

function so you do not need to define those two aesthetics. The only aesthetic needed to 

be defined is the label aesthetic, which you set to the Player column. The values in this 

column will be used to label the dots with the name of the player they represent. You set 

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



131

the size argument outside the aes() function because you want all the labels to have the 

same font size. Also, by default, ggplot2 creates a legend for each scale added outside the 

x and y scale. A legend is not needed for the label, so to prevent one from being shown, 

you set the show.legend property equal to FALSE.

�Step 14: Draw vertical and horizontal lines through the  
x and y axis
The visual requires distinct lines for the x and y axis. The last two lines in the following 

code add the required horizontal and vertical lines:

  p <- ggplot(

              graph_data,

              aes(x = Scaled.Rebounds,

                  y = Scaled.TotalPoints)

              ) +

       geom_point() +

       geom_label_repel(

           aes(label = Player),

           size = 4,

           show.legend = FALSE

       ) +

       geom_hline(yintercept = 0) +

       geom_vline(xintercept = 0)

The geom_hline() and geom_vline() geoms are used to draw the lines. Setting the 

yintercept in the geom_hline() function to 0 draws a horizontal line that goes through 

point 0 of the y axis, and setting xintercept in the geom_vline() function to 0 draws a 

vertical line that goes through point 0 of the x axis.

�Step 15: Add quadrant labels to the chart
Figure 2-32 shows what the visual looks like after performing the previous steps.
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The chart is coming along great. You are making good progress toward your end goal. 

In this step, you will add labels to each quadrant using the following code:

    annotate("text", x = -5, y = 11, label = "High Scorer",

             alpha = 0.2, size = 6) +

    annotate("rect", xmin = -3.5, xmax = -6.5, ymin = 10.5,

             ymax = 11.5, alpha = .2) +

    annotate("text", x = 5, y = 11, label = "Beast Mode",

             alpha = 0.2, size = 6) +

    annotate("rect", xmin = 3.5, xmax = 6.5, ymin = 10.5,

             ymax = 11.5, alpha = .2)

    annotate("text", x = -5, y = -11, label = "Average",

             alpha = 0.2, size = 6) +

    annotate("rect", xmin = -3.5, xmax = -6.5, ymin = -11.5,

             ymax = -10.5, alpha = .2) +

Figure 2-32.  The beginnings of the quad chart
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    annotate("text", x = 5, y = -11, label = "High Rebounder",

             alpha = 0.2, size = 6) +

    annotate("rect", xmin = 3.5, xmax = 6.5, ymin = -11.5,

             ymax = -10.5, alpha = .2) +

The preceding code builds labels with borders for each quad in the quad chart. The 

first quad in the upper left is labeled High Scorer because players in this group rank high 

in scoring but low in rebounding, the second quad in the upper right is named Beast 

Mode because players in this quadrant rank high in both rebounding and scoring, the 

third quadrant in the lower left is labeled Average because players in this quadrant rank 

relatively low in both rebounding and scoring, and the fourth quadrant in the lower right 

is labeled High Rebounder because players in this quadrant rank high in rebounds but 

low in scoring.

Both the text and the border of the quadrant labels are created using the 

annotate() function. The first argument of the annotate() function is where you 

specify the type of geom you want to use for your annotation. The types of geoms 

that are being used in this example to create the quadrant labels are the text and 

rect geoms. In the preceding code, the text of the label for the respective quadrant 

is created using the text geom, then a rectangular border is placed around the text 

using the rect geom. First, let’s go over how the text annotation works, then we will go 

over how the rect annotation works.

As stated earlier, you create a text annotation by setting the value of the first 

argument in the annotate() function to text. The x and y argument are used to determine 

the position of the “text”. In this visual, the x values of the text annotations are positioned 

at the center of their respective quadrants, and the y values of the text annotations are 

positioned just outside of the area of possible data points. The latter is done to minimize 

the player data from overlapping with the quadrant labels. The alpha argument of each 

text annotation is set to 0.2 to make sure the player names would show over the labels if 

they were in the same position.

The alpha argument is used to set the transparency of a geom on a chart. The 
closer to zero, the more transparent the element will be, and the closer to one, the 
more opaque the element will be.
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After the quadrant label is created using the text annotation for the given quadrant, 

the border of the label is created using the rect annotation. This is accomplished by 

setting the first argument of the annotate() function to “rect”. The rectangle that you 

want to draw is defined by using the xmin, xmax, ymin, and ymax arguments. Here are 

descriptions that explain the purpose of each argument:

•	 The xmin argument is used to determine the x position of the upper 

left and lower left corners.

•	 The xmax argument is used to determine the x position of the upper 

right and lower right corners.

•	 The ymin argument is used to determine the y position of the lower 

left and lower right corners.

•	 The ymax argument is used to determine the y position of the upper 

left and upper right corners.

Once the corners are defined, the annotate() function connects the points with lines. 

The result is a rectangular border around the labels.

�Step 16: Add labels for the x and y axis
Here is the code used to add the arrows to the x and y axis label names:

    xlab(bquote("Rebounding" ~ symbol('\256'))) +

    ylab(bquote("Scoring" ~ symbol('\256'))) +

This is a hack in which I used the bquote() function that is typically used to 

create mathematical expressions in R. In this example, you are using it not to create a 

mathematical expression but to add the arrow symbol to the labels. This is accomplished 

via the xlab() and ylab() functions. The xlab() function is used to rename the x axis label, 

and the ylab() function is used to rename the y axis label. The code symbol('\256') is 

the code needed to draw an arrow.

�Step 17: Add the dynamic titles and caption to the custom 
R visual
The chart title, the subtitle, and the chart source are added to the visual using the labs() 

function using the following code:
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labs(

      title = chart.title,

      subtitle = chartsubtitle,

      caption = chart_source

)

�Step 18: Add a theme
The theme of the chart is changed using visualization principles from Edward Tufte via 

the theme_tufte() theme from the ggthemes package. This is accomplished by adding the 

following code to the script:

theme_tufte() +

�Step 19: Perform last minute cleanup
Performing the previous steps will result in the visualization in Figure 2-33.

Figure 2-33.  Quad chart prior to last minute cleanup
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You want to reformat the chart titles and the labels of the axes to look like the visual 

below.

You do so using the code below:

    theme(

      plot.title = element_text(hjust = 0.5, size = 25)

      , plot.subtitle = element_text(hjust = 0.5, size = 20)

      , panel.border = element_rect(

                           colour = "black",

                           size = 2,

                       fill = NA)

      , axis.title.x = element_text(hjust = 0.1, size = 18)

      , axis.title.y = element_text(hjust = 0.1, size = 18)

    ) +

    scale_x_continuous(labels = NULL, breaks = NULL) +

    scale_y_continuous(labels = NULL, breaks = NULL)

Figure 2-34.  Final version of the quad chart

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



137

Let’s go over the preceding code in detail. As you can see, most of the required 

changes are handled using the theme() function. Here is a list of the components that are 

modified by the theme() function in this step along with a description of how they were 

modified:

•	 plot.title: This component is used to control the chart title, and it 

uses the element_text() function to do so. The hjust argument of the 

element_text() function is used to control the horizontal position of 

the text, and it accepts values between 0 and 1. A value of 0 justifies 

the text to the left, a value of 0.5 centers the text, and a value of 1 puts 

the value to the far right. You use a value of 0.5 because you want the 

text to be centered. You use the size argument to increase the size of 

the font to 25.

•	 plot.subtitle: This component is used to control the chart subtitle, and 

it also uses the element_text() function to do so. The hjust argument 

is set the same way as it was in the plot.title component because you 

want to center the text as you did in the plot.title component. You 

want the subtitle to be smaller than the main title so you set it to the 

lower number of 20.

•	 panel.border: This component is used to control the border around 

the visual, and it uses the element_rect() function to do so. The colour 

argument is used to set the color of the border, and the size argument 

is used to set the thickness of the border.

•	 axis.title.x: This component is used to control the label of the x axis, 

and it uses the element_text() function to do so. You want to label it to 

be positioned on the left side of the x axis so you use a value of 0.1 for 

the hjust argument to do so. You use the size argument to change the 

font size of the text to 18.

•	 axis.title.y: This component is used to control the label of the y axis, 

and it is configured similarly as the axis.title.x. The difference is 

that the positioning is on a vertical line instead of a horizontal line. 

Because of that, the closer you are to zero the lower your position will 

be on the Y axes and the closer you are to 1 the higher your position 

will be on the Y axis. You are using a value of 0.1 so that positions 

your Y axes label close to the origin.
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Lastly, the scales_x_continuous() and scale_y_continuous() scales are used to 

reformat the axes. The labels and breaks in both scale functions are set to NULL to 

remove them from the chart. The results of these actions were illustrated earlier in 

Figure 2-34.

�Step 20: Add code to Power BI
The complete script to produce the visual is in Listing 2-7.

Listing 2-7.  The R script that produces the quad chart

library(tidyverse)

library(ggrepel)

library(ggthemes)

library(scales)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("Player", "Rebounds", "Total Points")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

noPlayerDups <- length(unique(dataset$Player)) == length(dataset$Player)

if (noPlayerDups & columnTest) {

  chart.title <- "LA Lakers player comparison"

  chartsubtitle <- "(2008 - 2009 Season)"

  chart_source <- "Source:  lubridate package"

  graph_data <-

    dataset %>%

    mutate(

      Scaled.Rebounds =

        round(rescale(Rebounds, to = c(-10, 10)), 1)

      ,Scaled.TotalPoints =

        round(rescale(`Total Points`, to = c(-10, 10)), 1)

    )

  p <- ggplot(graph_data, aes(x = Scaled.Rebounds, y = Scaled.TotalPoints)) +

    geom_point() +

    geom_label_repel(aes(label = Player), size = 4, show.legend = FALSE) +
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    geom_hline(yintercept = 0) +

    geom_vline(xintercept = 0) +

    # quad 1

    �annotate("text", x = -5, y = 11, label = "High Scorer", alpha = 0.2, 

size = 6) +

    �annotate("rect", xmin = -3.5, xmax = -6.5, ymin = 10.5, ymax = 11.5, 

alpha = .2) +

    # quad 2

    �annotate("text", x = 5, y = 11, label = "Beast Mode", alpha = 0.2,  

size = 6) +

    �annotate("rect", xmin = 3.5, xmax = 6.5, ymin = 10.5, ymax = 11.5, 

alpha = .2) +

    # quad 3

    �annotate("text", x = -5, y = -11, label = "Average", alpha = 0.2,  

size = 6) +

    �annotate("rect", xmin = -3.5, xmax = -6.5, ymin = -11.5, ymax = -10.5, 

alpha = .2) +

    # quad 4

    �annotate("text", x = 5, y = -11, label = "High Rebounder", alpha = 0.2, 

size = 6) +

    �annotate("rect", xmin = 3.5, xmax = 6.5, ymin = -11.5, ymax = -10.5, 

alpha = .2) +

    # Shade lower left quadrant

    �annotate("rect", xmin = -Inf, xmax = 0.0, ymin = -Inf, ymax = 0,  

alpha = 0.1, fill = "lightskyblue") +

    # Shade upper right quadrant

    �annotate("rect", xmin = 0.0, xmax = Inf, ymin = 0.0, ymax = Inf,  

alpha = 0.1, fill = "lightskyblue") +

    # Titles

    xlab(bquote("Rebounding" ~ symbol('\256'))) +

    ylab(bquote("Scoring" ~ symbol('\256'))) +
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    �labs(title = chart.title, subtitle = chartsubtitle, caption = chart_

source) +

    # Prettying things up

    theme_tufte() +

    theme(

      plot.title = element_text(hjust = 0.5, size = 25)

      , plot.subtitle = element_text(hjust = 0.5, size = 20)

      , panel.border = element_rect(colour = "black", size = 2, fill = NA)

      , axis.title.x = element_text(hjust = 0.1, size = 18)

      , axis.title.y = element_text(hjust = 0.1, size = 18)

    ) +

    scale_x_continuous(labels = NULL, breaks = NULL) +

    scale_y_continuous(labels = NULL, breaks = NULL)

  p

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the chart.")

}

Copy and then paste the script in the R script editor associated with this visual. The 

resulting R visual is totally responsive to the filters in the report.

�Adding regression line
One of the most common enhancements that data analysts tend to add to their scatter 

plots are trend lines. Adding a trend line to your scatter plot in R using ggplot2 is 

straightforward, and you have more configuration options than you typically have in 

other visualization tools. For instance, you have the option to

•	 Use linear models, generalized linear models, generalized additive 

models, and a few others for your trend line

•	 Determine what you want your confidence level to be
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•	 Use your own formula for your trend line

•	 Use many more configurable options that are too numerous to list

In this section, you will use a simple example based on a data set that comes pre-

installed in R. The name of the data set is women, and it is a data set that shows the 

average weight by height for women in the United States. You will plot the information 

using a scatter plot, then overlay the scatter plot with a trend line based on a linear 

regression model. The resulting visual is listed in Figure 2-35.

Let’s go over the steps to produce this visual!

Figure 2-35.  Scatter plot with added linear regression line
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�Step 1: Acquire the necessary data
The code used in this example is one of the data sets that come pre-installed with base 

R. Here is the R code used to create the csv file that is the source data for this example:

library(tidyverse)

data(women)

setwd("<path to folder where the file is located>")

write_csv(women, "women.csv")

A file named women.csv is the result of running the preceding code, and it will be the 

source for Power BI in the next step.

�Step 2: Load the data into Power BI
Read the data into Power BI using GetData. To do so, click the Home tab in Power 

BI, then click GetData ➤ Text/CSV. Next, browse to the location where you saved the 

women.csv file. When you load the data, make sure that both the height and weight 

columns are in a number format.

�Step 3: Configure the R visual
Go to the visualization pane and drag an R visual to the report canvas. Resize the visual 

to the desired size. Drop the height and weight columns from the women table into the 

Fields pane. If the Fields pane is not showing, select the R visual and it should appear.

�Step 4: Export data to R Studio for development
Click the 45° arrow that is located on the title bar of the R script editor. This action will 

export the data frame passed to R and the R starter code to R Studio. Please refer to Step 

4 in the “Callout chart” section if you need a more detailed explanation.
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�Step 5: Load the required packages
The R packages that will be used in this script are tidyverse and ggthemes. The ggplot 

package from tidyverse is used to create the visual, and the dplyr package from tidyverse 

is used to shape the data for the visual. The ggthemes package provides the theme_tufte() 

theme that will be used to change the chart’s theme.

�Step 6: Create the variables needed for the data  
validation test
The following code is used to create the variables for the data validation test:

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("height", "weight")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))

You need to make sure the data set passed to R from Power BI has the proper 

structure, and you need to be prepared to handle the situation if it is not. The test you 

perform in this example is a test that makes sure that the data set passed to R contains 

only the columns needed for the R visual.

You do so by first getting the names of the columns in the dataset data frame, and 

you assign it to a character vector variable named currentColumns. The elements in 

the variable are sorted in alphabetical order. The next line of code creates another 

character vector that contains the columns that are needed to create the R visual. 

They are also supplied in alphabetical order. The last line in the code snippet 

performs a test to see if the currentColumns and requiredColumns character vectors 

are equal using the all.equal() function. The all.equal() function is used to compare 

two R objects to see if they are equal. If they are equal, then TRUE is returned; 

otherwise, information is returned that attempts to explain why they are unequal. 

In this example, you are just concerned if the currentColumns and requiredColumns 

variables are equal. You just need a Boolean response. You can get that by wrapping 

all.equal() with the isTRUE() function.
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�Step 7: Create the data validation test
Here is the shell of the data validation test:

if (columnTest) {

        <code to produce visual>

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the

        chart.")

}

Recall the columnTest variable is based on a test that returns a Boolean value. If the 

value of the columnTest variable is TRUE, then the code will be executed to build the 

visual; otherwise, the code in the else block will be executed. The code in the else block 

generates a blank plot using the plot.new() function and adds text to the blank plot that 

explains to the report user why the desired chart was not created.

�Step 8: Start the chart by initializing the ggplot function
Here is the code used in this step:

  chartdata <- dataset

  ggplot(chartdata, aes(x = weight, y = height)) +

First, you make a copy of the dataset data frame by assigning it to a variable named 

chartdata. Next, you define the ggplot() function. The first argument is the data set that 

the visual will use. The second argument uses the aes() function to define a couple visual 

aesthetics. The aesthetics that are being defined are x and y coordinates.

�Step 9: Add a scatter plot layer to the R visual
The scatter plot layer is added by using the geom_point() geom. The values for the x 

and y arguments are inherited from the ggplot() function and are used to determine the 

position of each point in the scatter plot. Here is the code used to add the geom:

    geom_point() +
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The result of adding the geom_point() geom to the chart is illustrated in Figure 2-36.

�Step 10: Add regression line layer to the R visuals
In this step, you add a regression line layer using the geom_smooth() geom. The code 

used to add the layer is as follows:

    geom_smooth(method='lm') +

The preceding code will add a linear regression line to the chart based on the data 

in the scatter plot. What makes this function so special is that it is very configurable. The 

geom_smooth() function enables you to

•	 Specify your own linear regression formula

•	 Add a confidence interval to your linear regression line

Figure 2-36.  Scatter plot of the average American women weight by height using 
the “women” data set that comes with base R
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•	 Choose the confidence interval level you want to use

•	 Use other smoothing methods such as generalized linear regression 

(glm), local regression (loess), robust linear models (rlm), and 

generalized additive model (gam)

The following visual in Figure 2-37 is what the chart looks like after the regression 

line has been added.

�Step 11: Add a title to the chart
The ggtitle() function is used to add the chart title and subtitle as shown here:

    ggtitle(

      "Average Weight by Heights for American Women",

      subtitle = "(with added regression line and

                  confidence interval)"

    ) +

Figure 2-37.  Scatter plot with added regression line

Chapter 2  Creating R Custom Visuals in Power BI Using ggplot2 



147

Note the ggtitle() function is an alternative to the labs() function, but it has the 

required functionality needed in this example.

�Step 12: Change the chart’s theme
You want to change the look and feel of the chart using principles from Stephen Few. You 

do so using the following code which adds the theme_tufte() theme to the chart:

    theme_tufte() +

�Step 13: Perform some last minute cleanup
The theme() function is used to change the font size of the chart title, subtitle, and axis 

labels. The chart title’s font is changed using the plot.title component, the chart’s subtitle 

is changed using the plot.subtitle component, and the axis labels are changed using the 

axis.title component. All three components use the element_text() function to make the 

changes:

    theme(

      axis.title = element_text(size = 20),

      plot.title = element_text(size = 30),

      plot.subtitle = element_text(size = 20)

    )

�Step 14: Add code to Power BI
The complete script is shown in Listing 2-8. Copy the script and paste it in the R script 

editor in Power BI.

Listing 2-8.  The R script that produces the scatter chart with regression line

library(tidyverse)

library(ggthemes)

currentColumns <- sort(colnames(dataset))

requiredColumns <- c("height","weight")

columnTest <- isTRUE(all.equal(currentColumns, requiredColumns))
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if (columnTest) {

  chartdata <- dataset

  ggplot(chartdata, aes(x = weight, y = height)) +

    geom_point() +

    geom_smooth(method='lm') +

    ggtitle(

      "Average Weight by Heights for American Women",

      subtitle = "(with added regression line and confidence

                   interval)"

    ) +

    theme_tufte() +

    theme(

      axis.title = element_text(size = 20),

      plot.title = element_text(size = 30),

      plot.subtitle = element_text(size = 20)

    )

} else {

  plot.new()

  title("The data supplied did not meet the requirements of the chart.")

}

In this chapter, you walked through several recipes that illustrated how expressive 

you can be with your visualizations in Power BI via the ggplot2 package. You can easily 

modify the recipes to fit your needs, or you can use them to inspire a completely different 

visual. The ggplot2 package along with its helper packages provides a great framework to 

build R visuals for Power BI in a relatively low code way. The ggplot2 package is a perfect 

companion to Power BI!
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CHAPTER 3

Reading CSV Files
Power BI is an excellent tool for data visualization and has been recognized as one 

of the premier tools in that category. However, before you are able to create the great 

visualizations that Power BI is known for, you first need to get data into the Power BI 

data model.

Power BI comes with a tool named Power Query that enables you to handle most 

situations you will encounter while bringing data into the Power BI data model. Power 

Query’s graphical user interface is intuitive and easy to use, but there are advanced 

situations where Power Query will fall short.

Fortunately, with the addition of R and Python in Power BI, many of those “hard-

to-do” tasks become relatively easy to handle. In this chapter, you will learn how to use 

R and Python to dynamically choose the files in a folder that you want to combine and 

filter rows based on a string pattern that requires advanced string matching techniques. 

Let’s start with dynamically combining files.

�Dynamically combining files
Combining multiple files from a folder into a data set prior to bringing it into the Power 

BI data model is a common task, but choosing those files dynamically using complex 

selection logic can be challenging in Power Query. This section shows how to make the 

task easy through using R and Python.

Combining files is straightforward in Power Query if you are combining all the files 

in a particular folder into one data set when the files share the same data structure. 

Combining files is also not a difficult task if you are combining files in a folder into one 

data set using a simple selection rule to pick the files you want to combine. But when 

you need to apply a selection rule that involves complex logic, then the task may be hard 

if not impossible to do in Power Query. Using R and Python makes the task easier to 

perform, even when the selection criteria is complex.
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�Example scenario
Here is the scenario. It is February 5, 2014, and you are a financial analyst for a major 

widget seller. You have a folder that contains monthly sale reports dating from 2010-

12-01 to 2014-01-01. Each month’s report is relatively big, and because of limitations of 

Power BI, you are not able to load all historical reports. You need to limit your load to a 

rolling 24-month period.

Here are some additional technical details:

•	 The reports are in a csv file type.

•	 The naming convention used for the file names is YYYY-MM-DD.csv.

•	 All the reports have the same structural layout.

Creating a workflow in Power Query that can dynamically pick files that are in the 

rolling 24-month period would be hard to do. The task requires advanced Power Query 

skills and the use of custom M code. The underlying M code needed to perform this task 

would be complicated and not as intuitive as the code would be if R or Python were used. 

Let’s first perform this task using R, then we will perform the same task using Python. That 

way, you can see how intuitive and concise the code is using both of those languages.

�Picking the rolling 24 months using R
R users have been doing data wrangling since the early 1990s. Data wrangling is 

the process of taking raw data and transforming it into a data set that is conducive 

for analysis. The process of combining like files into one data set is a common data 

wrangling task. The R community has developed many packages over the years that 

makes such tasks much easier to do. You will see it being illustrated in this example. Let’s 

go over the steps needed to perform the stated task in R.

�Step 1: Load the required R packages for the script

In this example, you will use four packages from tidyverse. Those packages are readr, 

lubridate, purrr, and stringr. The readr package provides functionality that facilitates 

reading flat files into R, the lubridate package provides functions that make it easier 

to work with dates in R, the purrr package implements functional programming 

techniques in R in a consistent way, and the stringr package provides some handy string 

manipulation functions.

Chapter 3  Reading CSV Files



153

The readr and purrr packages are included in the tidyverse load so you do not need 

to explicitly load them. You do, however, need to load lubridate and stringr because they 

are not part of the core packages that are included in the tidyverse load. Here is the code 

needed to load the packages:

library(tidyverse)

library(lubridate)

library(stringr)

You may be thinking that, if you need to use four R packages for one script, you are 

actually making the situation harder because you don’t need to load additional packages 

in Power Query. Everything you need in Power Query is already built in. Please follow 

along with me and you will see that having access to a large number of packages in R is 

a big plus. You will be able to perform some complicated tasks with very little code by 

leveraging R packages.

�Step 2: Change your working directory to the folder that contains 
the Sales data sets

A working directory in R is the root directory where your scripts and data are located. 

Using a working directory is recommended because it enables you to keep all items that 

are needed for your task in one central location. It also enables you to take advantage 

of relative file path referencing. Relative file path referencing enables you to reference a 

file relative to your working directory without having to supply the full file path. Your 

working directory for this example should be set to the folder named R_Code which is 

a subfolder in the Chapter03 section of the repo. The R_Code folder is contained in the 

code download for this book. So if you saved the companion code to your Documents 

folder, then you would set the working directory with code that looks similar to the 

following code:

setwd("C:/Users/<"username">/Documents/AdvancedAnalyticsPowerBI/

Chapter03/R_Code")

The setwd() function sets your working directory to a new location based on the file 

path that you passed to it.
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If you want to set the working directory to a location relative to where your current 

working directory is, you do so by starting your file path string with a period (“ . ”). Let’s 

illustrate with an example. The code that follows assumes that your working directory 

is your Documents folder and you want to change it to the R_Code folder using forward 

slashes:

setwd("./AdvancedAnalyticsPowerBI/R_Code ")

The preceding code tells R to start from the Documents folder, your working 

directory, via the use of the period. From there, you can traverse to the folder you want to 

set your new working directory to using “/”, followed by the folder’s name. You can also 

use “\”, but if you do, you need to use two backslashes because “\” is a special character 

that needs to be escaped.

When you literally want to use a character that is also a special character, you 
need to tell R and Python that you want to use the literal version of it by escaping 
it with a “\”. Some commonly used special characters that need to be escaped are 
“*” and “.”.

�Step 3: Read the file names into a character vector

If you want to select the files that should be included in the rolling 24 months, you need 

to be able to analyze the file names to determine whether they should be included. To 

do that, you use the list.files() function. The list.files() function gets all the file names 

in the file path that is passed to it and puts it into a character vector as illustrated in the 

following code:

monthly_reports <- list.files("./Data/SalesData/")

A character vector is a vector of data whose elements are of the character data 
type. The character data type in R is similar to the string data type in DAX and the 
text data type in M.

In the preceding code, R first gets all the file names in the specified directory and 

puts them into a character vector. It then assigns the resulting character vector to a 

variable named monthly_reports.
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The <- is an assignment operator used to assign values to R variables.

Here is a printout of the information that is stored in the monthly_reports variable:

> monthly_reports

 [1] "2010-12-01.csv" "2011-01-01.csv" "2011-02-01.csv"

 [4] "2011-03-01.csv" "2011-04-01.csv" "2011-05-01.csv"

 [7] "2011-06-01.csv" "2011-07-01.csv" "2011-08-01.csv"

[10] "2011-09-01.csv" "2011-10-01.csv" "2011-11-01.csv"

[13] "2011-12-01.csv" "2012-01-01.csv" "2012-02-01.csv"

[16] "2012-03-01.csv" "2012-04-01.csv" "2012-05-01.csv"

[19] "2012-06-01.csv" "2012-07-01.csv" "2012-08-01.csv"

[22] "2012-09-01.csv" "2012-10-01.csv" "2012-11-01.csv"

[25] "2012-12-01.csv" "2013-01-01.csv" "2013-02-01.csv"

[28] "2013-03-01.csv" "2013-04-01.csv" "2013-05-01.csv"

[31] "2013-06-01.csv" "2013-07-01.csv" "2013-08-01.csv"

[34] "2013-09-01.csv" "2013-10-01.csv" "2013-11-01.csv"

[37] "2013-12-01.csv" "2014-01-01.csv"

�Step 4: Create a date vector

Now create a vector with the date representation of each file name. In order to be able to 

determine the rolling 24 months, you need to get the file names into a date format. You 

accomplish this in two steps. In the first step, you remove “.csv” so that you are left with a 

string that can be parsed into a date. To do that, you use the str_replace() function from 

the stringr package and assign the output to a character vector named date_format. Here 

is the code:

date_format <- stringr::str_replace(monthly_reports, ".csv","")
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The str_replace() function requires three parameters: the string you want to 

change, the pattern in the string you want to replace, and the string you want to use as a 

replacement. Here is a printout of what is held in the date_format variable created earlier:

> date_format

 [1] "2010-12-01" "2011-01-01" "2011-02-01" "2011-03-01"

 [5] "2011-04-01" "2011-05-01" "2011-06-01" "2011-07-01"

 [9] "2011-08-01" "2011-09-01" "2011-10-01" "2011-11-01"

[13] "2011-12-01" "2012-01-01" "2012-02-01" "2012-03-01"

[17] "2012-04-01" "2012-05-01" "2012-06-01" "2012-07-01"

[21] "2012-08-01" "2012-09-01" "2012-10-01" "2012-11-01"

[25] "2012-12-01" "2013-01-01" "2013-02-01" "2013-03-01"

[29] "2013-04-01" "2013-05-01" "2013-06-01" "2013-07-01"

[33] "2013-08-01" "2013-09-01" "2013-10-01" "2013-11-01"

[37] "2013-12-01" "2014-01-01"

 �Note that stringr:: before the str_replace() function is not needed. It is there to 
make it clear which package the function came from.

The next thing you need to do is parse the string into a date. You can do that by using 

the ymd() function from the lubridate package. Here is the code needed to do so:

date_format <- lubridate::ymd(date_format)

The ymd() function is a pretty slick function! It parses a string that is in a year-month-

day format to a date, and it is very forgiving. It does a good job of parsing dates that come 

from date string that are harder to parse by other programming languages such as M in 

Power Query. You take the resulting date vector and assign it to the date_format variable. 

Here is a display of the contents held in the date_format variable:

> date_format

 [1] "2010-12-01" "2011-01-01" "2011-02-01" "2011-03-01"

 [5] "2011-04-01" "2011-05-01" "2011-06-01" "2011-07-01"

 [9] "2011-08-01" "2011-09-01" "2011-10-01" "2011-11-01"

[13] "2011-12-01" "2012-01-01" "2012-02-01" "2012-03-01"

[17] "2012-04-01" "2012-05-01" "2012-06-01" "2012-07-01"
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[21] "2012-08-01" "2012-09-01" "2012-10-01" "2012-11-01"

[25] "2012-12-01" "2013-01-01" "2013-02-01" "2013-03-01"

[29] "2013-04-01" "2013-05-01" "2013-06-01" "2013-07-01"

[33] "2013-08-01" "2013-09-01" "2013-10-01" "2013-11-01"

[37] "2013-12-01" "2014-01-01"

The output appears to be the same as it was before the ymd() function was applied, 

but it is actually not. You can prove that using the str() function to inspect it. The str() 

function is used to display the structure of an R object. If you pass the date_format 

variable to the str() function, you will get the following result which proves it is a date 

data type:

> str(date_format)

 Date[1:38], format: "2010-12-01" "2011-01-01" "2011-02-01"

It is recommended that you perform your testing in the R console and not in the 
R script editor in R Studio to prevent adding code to your script that should not 
be there.

�Step 5: Create a data frame using the two vectors

You want to put the information into data frame because having the data in a data frame 

makes analysis much easier. An R data frame is a two-dimensional tabular object made 

up of variables (columns) that can have different data types. They are similar to Microsoft 

Excel tables and SQL Server tables in some ways, but they are specifically designed for 

data analysis. The code needed to convert the monthly_reports variable and date_format 

variable to a data frame is listed as follows:

df <- tibbles::data_frame(monthly_reports, date_format)

You use data_frame() function from the tibble package instead of data.frame() 

function that is part of base R because data.frame() has some undesirable side effects. 

The data_frame() function creates a type of object known as a tibble, which can be 

thought of as the modern version of the data frame. I find tibbles to be more desirable to 

work with.
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One of the attributes that I like about tibbles is the way they print to the screen. When 

you print a tibble, only the first ten rows are outputted, and only the columns that can 

fit on the screen are shown. When you print a regular data frame, R displays a lot more 

information and that can be a problem if you are dealing with a big data set. You also get 

the data type of each column from a tibble, which is valuable information. Here is what 

the output looks like when I print the df data frame:

> df

# A tibble: 38 x 2

   monthly_reports date_format

   <chr>           <date>

 1 2010-12-01.csv  2010-12-01

 2 2011-01-01.csv  2011-01-01

 3 2011-02-01.csv  2011-02-01

 4 2011-03-01.csv  2011-03-01

 5 2011-04-01.csv  2011-04-01

 6 2011-05-01.csv  2011-05-01

 7 2011-06-01.csv  2011-06-01

 8 2011-07-01.csv  2011-07-01

 9 2011-08-01.csv  2011-08-01

10 2011-09-01.csv  2011-09-01

# ... with 28 more rows

�Step 6: Get the upper and lower bound of our desired date range

You want a rolling 24-month window. Thus, you need to compute the upper and 

lower bound of the date range needed to define that window. You can do so using the 

following code:

max_month <- max(df$date_format)

min_month <- max_month %m+% lubridate::months(-23)

You use the max() function over the date_format column in the df data frame to 

get the max month, and you assign the results to the max_month variable. Next, you 

take the max_month variable and subtract 23 months from it to get the min month by 

invoking the %m+% operator from the lubridate package. That operator is designed to 

add months. In this example, you are adding –23 months. The resulting value is assigned 

to the min_month variable.
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�Step 7: Subset the data frame to only include the desired months

In this step, you apply a filter that returns the vector that contains the files you want to 

combine. You do so by applying a filter that returns only files for the months that are 

greater than or equal to your minimum month. Here is the code:

reports_to_read <-

  df$monthly_reports[df$date_format >= min_month]

In R, you are able to filter a column in a data frame using the preceding method. 

The code in between the brackets, df$date_format >= min_month, returns an R object 

called a Boolean vector. In the expression, each element in the date_format column is 

compared to the min_month variable and True is returned in the situations where the 

element in the column is greater than or equal to min_month, and False is returned 

otherwise. Only the rows that evaluate to True are kept.

You only want the reports_to_read column. You subset that column in the df data 

frame by using df$monthly_reports syntax. If you wanted to return all the columns in 

the data frame, you could have done so with the following code:

reports_to_read <- df[df$date_format >= min_month]

This is a method for subsetting data that relies on base R functionality, and it is fine 

in simple situations. You will learn more intuitive methods later in the book that can be 

used for more complicated subsetting scenarios. The contents of the reports_to_read 

variable are shown here:

> reports_to_read

 [1] "2013-01-01.csv" "2013-02-01.csv" "2013-03-01.csv"

 [4] "2013-04-01.csv" "2013-05-01.csv" "2013-06-01.csv"

 [7] "2013-07-01.csv" "2013-08-01.csv" "2013-09-01.csv"

[10] "2013-10-01.csv" "2013-11-01.csv" "2013-12-01.csv"

[13] "2014-01-01.csv"
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�Step 8: Create a data frame that is based on the union of all 
the files

You now have the list of files that you want to combine into one data frame in the 

reports_to_read variable. Now it’s time to actually do the combining. You can easily 

combine the files with one line of code using the map_df() function from the purrr 

package in R. Here is that line of code:

df_output <- purrr::map_df(reports_to_read, read_csv)

This line of code uses the map_df() function to map each element from the reports_

to_read variable to the read_csv() function from the readr package. The _df portion of 

the function name tells you that the result from the function will be an R data frame that 

contains the data from all of the files. Here is what the output of the resulting data frame 

looks like:

> df_output

# A tibble: 54,771 x 9

   Category OrderDate           DueDate

   <chr>    <dttm>              <dttm>

 1 Bikes    2013-01-01 05:00:00 2013-01-13 05:00:00

 2 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 3 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 4 Bikes    2013-01-01 05:00:00 2013-01-13 05:00:00

 5 Bikes    2013-01-01 05:00:00 2013-01-13 05:00:00

 6 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 7 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

 8 Bikes    2013-01-01 05:00:00 2013-01-13 05:00:00

 9 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

10 Accesso~ 2013-01-01 05:00:00 2013-01-13 05:00:00

# ... with 54,761 more rows, and 6 more variables:

#   ShipDate <dttm>, OrderQuantity <int>, UnitPrice <dbl>,

#   SalesAmount <dbl>, TaxAmt <dbl>, `Order Month` <chr>

Note how nicely the information printed. The tibble package only printed 

information that fitted nicely on the screen, and it gave information about the columns 

(variables) that were not displayed.
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�Step 9: Combine the code into one script and paste into the R 
editor for Power BI

Now it’s time to take all the snippets from the prior steps and create a complete script 

that you can execute from Power BI. The script is shown in Listing 3-1, and you are now 

ready to paste it into the Power BI R editor.

Listing 3-1.  The complete R script needed to combine the files

library(tidyverse)

library(lubridate)

library(stringr)

setwd("./Data/SalesData")

monthly_reports <- list.files(".")

date_format <- stringr::str_replace(monthly_reports, ".csv","")

date_format <- lubridate::ymd(date_format)

df <- data_frame(monthly_reports, date_format)

max_month <- max(df$date_format)

min_month <- max_month %m+% months(-12)

reports_to_read <-

    df$monthly_reports[df$date_format >= min_month]

df_output <- purrr::map_df(reports_to_read, read_csv)

You copy the code in the R script and open the pbix file for this solution. Next, click 

GetData ➤ More ➤ Other to open the menu of connector options. Then click R script on 

the right-hand side of that menu as pictured in Figure 3-1.
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After you click R script, the editor for R in Power BI will appear which is pictured in 

Figure 3-2.

Figure 3-1.  Getting to the R script editor
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Now paste your R script from Listing 1-1, into the editor and click OK. Now you will 

be able to treat the resulting data set the same way you are able to treat any other data 

set that is brought into Power BI. You can make further transformations to it using Power 

Query, or you can load it straight into the Power BI data model.

�Picking the rolling 24 months using Python
Like R, Python has been around since the early 1990s. It also has many tools and libraries 

that make the task of combining files over a rolling period relatively easy. Here are the 

steps to pick the files that are in the rolling 24 months using Python.

�Step 1: Create a Python script and load the necessary libraries

The first thing you need to do is load the libraries and functions that will be used in the 

script. You do that using the following code:

import os

import pandas as pd

from dateutil.relativedelta import relativedelta

Figure 3-2.  The R script editor

Chapter 3  Reading CSV Files

https://doi.org/10.1007/978-1-4842-5829-3_1Listing#1


164

This code loads two libraries (os and pandas) and one function (relativedelta). The os 

library is used to interact with the file system, the pandas library is used to facilitate data 

analysis, and the relativedelta() function from the dateutil library is used to help with 

date manipulation.

�Step 2: Change your working directory to the Python_Code folder

You use the chdir() function from the os library in the same fashion that you used the 

setwd() function in R. To set the working directory, you supply the function with a 

file path using the same rules that we used in R. The following code sets the working 

directory to the Python_Code folder assuming you saved the companion code to your 

Documents folder:

os.chdir("C:/Users/<”username”>/Documents/AdvancedAnalyticsPowerBI/

Python_Code")

Now your script can use relative file paths to access the contents in the 

SalesData folder.

�Step 3: Read the file names into a Python list

Now you read the names of the files located in the SalesData folder into a list. If you want 

to select the files that should be included in the rolling 24 months, you need to be able to 

analyze the file names to determine which files should be included. To do that, you will 

use the os.listdir() function from the os library to get all of the names of the files in the 

SalesData folder into a Python list. Here is the code you need to use to perform that task:

monthly_reports = os.listdir("./Data/SalesData/")

The following code tells Python to read all the file names in the SalesData folder into 

a Python list and assign the list to a variable named monthly_reports. Here is a printout 

of the contents contained in the monthly_reports variable:

>>> monthly_reports

['2010-12-01.csv', '2011-01-01.csv', '2011-02-01.csv',

 '2011-03-01.csv', '2011-04-01.csv', '2011-05-01.csv',

 '2011-06-01.csv', '2011-07-01.csv', '2011-08-01.csv',

 '2011-09-01.csv', '2011-10-01.csv', '2011-11-01.csv',

 '2011-12-01.csv', '2012-01-01.csv', '2012-02-01.csv',
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 '2012-03-01.csv', '2012-04-01.csv', '2012-05-01.csv',

 '2012-06-01.csv', '2012-07-01.csv', '2012-08-01.csv',

 '2012-09-01.csv', '2012-10-01.csv', '2012-11-01.csv',

 '2012-12-01.csv', '2013-01-01.csv', '2013-02-01.csv',

 '2013-03-01.csv', '2013-04-01.csv', '2013-05-01.csv',

 '2013-06-01.csv', '2013-07-01.csv', '2013-08-01.csv',

 '2013-09-01.csv', '2013-10-01.csv', '2013-11-01.csv',

 '2013-12-01.csv', '2014-01-01.csv']

�Step 4: Create a pandas data frame that will hold the information 
of the files to combine

The pandas data frame is a data structure that is similar to an R data frame. You will 

leverage a pandas data frame for this task. One of the easiest ways to manually create a 

pandas data frame is by converting a python dictionary to a data frame. You can think of 

a dictionary as python data structure that contains one or more key/value pairs.

You will create a dictionary with one key/value pair named d, and it will be based on 

the monthly_reports variable. The code you will use to do so is as follows:

d = {'monthly_reports': monthly_reports}

Next, you convert the dictionary to a pandas data frame using the following code:

df = pd.DataFrame(d)

The preceding code takes the dictionary d and uses it to create a one-column data 

frame. The key in dictionary d is used as the column name, and the value in dictionary d 

contains the items that will populate the rows.

�Step 5: Create a new column that strips the date information 
from the monthly_reports column

Now you need a new column with just the date information. You create that new column 

using the following code:

df["date_format"] =pd.to_datetime(

    df.monthly_reports.str.replace(".csv","")

    )
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This code first strips the string .csv from the file names in the monthly_reports 

column. Doing this leaves you with what is a valid date that is in a string format. To get 

the value in a date format, you use the to_datetime() function from the pandas library to 

parse the string to a date format.

�Step 6: Get the upper and lower bound of the date range

Now you are in a position to get the upper and lower bound of the required date range. 

You are aiming for a rolling 24-month range. You can generate the required month range 

using the following code:

min_month = df.date_format.max() - relativedelta(months=23)

The logic used to calculate the min_month is to first find the max month of the files 

in the folder by getting the max of the date_format column. Notice you did so using dot 

notation to access the max() method of the date_format column.

Each column in a pandas data frame is of the series object type. The series object 
type includes built-in methods that you can use depending on the data type of the 
series. One of the methods that is available for series objects of the datetime data 
type is the max() method.

Now that you have the max date of the report files, you can calculate the date that is 

24 months earlier than the max date. You do that by using the relativedelta() function 

from the dateutil library and passing months=23 as a parameter. The result of using the 

relativedelta() function is that 23 months will be subtracted from the max date in the 

date_format column.

�Step 7: Subset the data frame

Now that you know the date range, you can subset the df data frame to include only the 

rows that represent data in that range. You do so by using the following code:

reports_to_read = df[df["date_format"]>=min_month]
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The code in the brackets creates a series of Boolean values based on whether or 

not the given date in the date_format column is greater than the min_month variable. 

Python uses the True values to subset the df data frame and assigns the results to the 

reports_to_read variable. Here’s a printout of what the contents of the reports_to_read 

variable look like:

>>> reports_to_read

   monthly_reports date_format

14  2012-02-01.csv  2012-02-01

15  2012-03-01.csv  2012-03-01

16  2012-04-01.csv  2012-04-01

17  2012-05-01.csv  2012-05-01

18  2012-06-01.csv  2012-06-01

19  2012-07-01.csv  2012-07-01

20  2012-08-01.csv  2012-08-01

21  2012-09-01.csv  2012-09-01

22  2012-10-01.csv  2012-10-01

23  2012-11-01.csv  2012-11-01

24  2012-12-01.csv  2012-12-01

25  2013-01-01.csv  2013-01-01

26  2013-02-01.csv  2013-02-01

27  2013-03-01.csv  2013-03-01

28  2013-04-01.csv  2013-04-01

29  2013-05-01.csv  2013-05-01

30  2013-06-01.csv  2013-06-01

31  2013-07-01.csv  2013-07-01

32  2013-08-01.csv  2013-08-01

33  2013-09-01.csv  2013-09-01

34  2013-10-01.csv  2013-10-01

35  2013-11-01.csv  2013-11-01

36  2013-12-01.csv  2013-12-01

37  2014-01-01.csv  2014-01-01
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�Step 8: Combine files into one data frame

You need to create a data frame that is based on the union of all of the files that are in the 

rolling 24-month time period. You can accomplish this using the following code:

df_output = pd.concat(

    map(

        pd.read_csv,

        "./Data/SalesData/"+reports_to_read["monthly_reports"]))

The code uses the map() function in a similar fashion that you used the map_df() 

function from the purrr package in R. The map function in the preceding code maps 

the read_csv() function from pandas to each element in the monthly_reports series. 

That action results in a list of data frames. The concat() function from pandas is used to 

combine the list of data frames into one data frame.

�Step 9: Add the code to Power BI

The complete code for this task is shown in Listing 3-2.

Listing 3-2.  The complete Python script needed to combine the files

import os

import pandas as pd

from dateutil.relativedelta import relativedelta

os.chdir("<path to where the Python_Code folder is located>")

monthly_reports = os.listdir("./Data/SalesData")

d = {'monthly_reports': monthly_reports}

df = pd.DataFrame(d)

df["date_format"] = pd.to_datetime(

    df.monthly_reports.str.replace(".csv",""))

min_month = df.date_format.max() - relativedelta(months=23)
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reports_to_read = df[df["date_format"]>=min_month]

df_output = pd.concat(

    map(

        pd.read_csv,

        "./Data/SalesData/"+reports_to_read["monthly_reports"]))

You copy the code in the Python script, then open up our pbix file for this example. 

Next, you click GetData ➤ More ➤ Other and select Python script on the right-hand side. 

Figure 3-3 shows the screen where you will find Python script editor.

Figure 3-3.  Where to find Python script editor
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After you perform that action, the Python editor for Power BI will appear as shown in 

Figure 3-4.

Paste your Python script in this editor and click OK. Now you will be able to treat the 

resulting data set the same way you treat any other data set brought into Power BI. You 

can make further transformations to it using Power Query, or you can load it straight into 

the data model.

In this section, we learned how to determine the files that are in the rolling 24-month 

time period using information in the file name in both R and Python. The code needed 

to do it was straightforward and more intuitive than the M code would have been to 

accomplish the same task.

You may never need to perform this exact task, but you can modify what you 

learned in this section to fit your needs. I want you to open your mind and look at the 

possibilities that R and Python give in Power BI. You just learned how easy it is for you to 

interact with the files on the file system with R and Python. You will learn other powerful 

features that are available in R and Python the further you go in this book. Next, you will 

learn how to leverage regular expressions in R and Python to filter rows from a csv file.

Figure 3-4.  The Python script editor
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�Filtering rows based on a regular expression
Power BI enables you to remove records that you don’t want to bring into your data 

model fairly easy for most situations, but there are some situations where the logic that 

is needed to filter the data is not possible using native Power BI tools. One example is 

filtering records in your data set based on a string pattern that can only be matched with 

a regular expression. You cannot leverage regular expressions in Power Query, but you 

can in both R and Python.

In the next scenario, let’s pretend that you are the chief analyst for a political 

campaign. You have a file that contains a list of potential voters that you need to 

analyze for an email campaign. You only want to include voters in your Power BI-

based analysis that have a well-formed email address. You will use a regular expression 

to detect whether the email addresses in the data set are well-formed. So in your 

analysis, a record with an email address of johndoe@email will be discarded, but a 

record with an email address of janedoe@email.com will be kept. The result of your 

scrubbing will be a data set with only well-formed email addresses that will be brought 

into the Power BI data model.

�Leveraging regular expressions via R
As of the writing of this book, this task would be impossible to do using Power Query 

because regular expressions are not available in Power Query. That is not the case in R 

because regular expressions are first-class citizens in that programming language. The 

code needed to accomplish this task in R is concise and intuitive. Here are the steps.

�Step 1: Load the required packages

The first thing you need to do is load the required packages so that you can perform the 

task in R. The two packages you need are tidyverse and stringr. You import the required 

packages using the following code:

library(tidyverse)

library(stringr)
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 �Note that stringr is part of tidyverse, but it is not part of the core packages that are 
loaded when you load the tidyverse metapackage so you need to explicitly load it.

�Step 2: Load the file that contains the potential voters into R

You accomplish the task using the following code:

setwd("path to where the R_Code folder is located")

goodemails_raw <- read_csv("./Data/EmailAddresses.csv")

The code is straightforward. You first set the working directory to the R_Code folder 

using the setwd() function. Next, you use relative file path referencing to traverse to the 

EmailAddresses.csv file.

�Step 3: Define the regular expression

You use the following code to define the required regular expression:

email_pattern <- "^([a-zA-Z][\\w\\_]{4,20})\\@([a-zA-Z0-9.-]+)\\. 

([a-zA-Z]{2,3})$"

The preceding regular expression is what we will use to match the pattern of a well-

formed email address. Please note that the preceding regular expression represents one 

line of code, but it is occupying two lines due to width limitations of the page. Don’t 

be alarmed with the complexity of regular expressions. You can often find the regular 

expression you need for a given task via a Bing search. Remember, "Good programmers 

write good code; great programmers steal great code" (unknown author). However, I will 

not call using a regular expression that you find via an Internet search “stealing” because 

the altruistic nature of many developers makes them want to share their knowledge with 

the community.

�Step 4: Remove the bad email addresses from the data set

You will do so using the following code:

goodemails <-

      goodemails_raw %>%

      filter(str_detect(Email, email_pattern) == TRUE)
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The code uses the filter() function from the dplyr package to filter the goodemails_

raw data frame. The filtering is done using the str_detect() function from the stringr 

package. The str_detect() function enables you to test whether a string matches a regular 

expression pattern. It returns TRUE if it matches the regular expression pattern passed 

to it; otherwise, FALSE is returned. The filter() function will only retain rows where the 

str_detect() function evaluates to TRUE.

�Step 5: Combine the preceding code into one script and paste 
in the R editor for Power BI

The complete script is in Listing 3-3.

Listing 3-3.  The complete R script needed to scrub bad emails

library(tidyverse)

library(stringr)

setwd("<full path to the folder that contains the companion code for the 

chapter>")

goodemails_raw <- read_csv("./Data/EmailAddresses.csv")

email_pattern <- "^([a-zA-Z][\\w\\_]{4,20})\\@([a-zA-Z0-9.-]+)\\.([a-zA-Z]

{2,3})$"

goodemails <-

        goodemails_raw %>%

        filter(str_detect(Email, email_pattern) == TRUE)

Copy the code in the R script and open your pbix file for this solution. Next, click 

GetData ➤ More ➤ Other, then select R script on the right-hand side. Click OK after you 

paste the code into the R editor in Power BI. The resulting data set will be added to the 

Power BI data model.

�Leveraging regular expressions via Python
In this exercise, you will leverage regular expressions in Power BI using Python. Just like 

with R, the Python code needed to accomplish this task is concise and intuitive. Here are 

the steps.
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�Step 1: Load the required libraries

The first thing you need to do is load the required libraries for the task. The two libraries 

we need are os and pandas. You load the libraries using the following code:

import os

import pandas as pd

�Step 2: Load the file that contains the potential voters into 
Python and assign the contents to a pandas data frame

You accomplish the task using the following code:

os.chdir("<path to the Python_Code folder in Chapter 3>")

goodemails = pd.read_csv("<full path to EmailAddresses.csv>")

First, you change the working directory to the Python_Code folder, then you read 

in the contents of the EmailAddresses.csv file into a pandas data frame, and assign the 

results to the goodemails_raw variable.

�Step 3: Define the regular expression that matches the pattern 
of a well-formed email address

You use the following code to do so:

email_pattern <- "^([a-zA-Z][\\w\\_]{4,20})\\@([a-zA-Z0-9.-]+)\\. 

([a-zA-Z]{2,3})$"

The preceding regular expression is what you use to test the email addresses. The code 

is wrapped on two lines, but it actually represents just one line of code. It is on two lines 

due to width limitations of the book. Note that the same regular expression that you used 

in R also works in Python. Don’t be alarmed with the complexity of regular expressions. 

You can often find the regular expression you need for a given task via a Bing search.

�Step 4: Remove the bad email addresses from the data set

You will remove rows that contain bad email addresses using the following code:

goodemails = goodemails_raw[

    goodemails_raw["Email"].str.match(email_pattern)]
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The code works by first creating a Boolean pandas series using the 

goodemails["Email"].str.match(email_pattern) code that is located between the 

opening and closing brackets. That Boolean series is used to filter the data frame by only 

keeping the rows where the code evaluates to True.

�Step 5: Combine the preceding code into one script and paste 
in the Python editor for Power BI

The complete script is shown in Listing 3-4.

Listing 3-4.  The complete Python script

import os

import pandas as pd

os.chdir("C:/Users/ryanwade44/Downloads/Advanced Analytics in Power BI with 

R and Python/Chapterx03/R_Code")

goodemails_raw = pd.read_csv("./Data/EmailAddresses.csv")

email_pattern = "^([a-zA-Z][\\w\\_]{4,20})\\@([a-zA-Z0-9.-]+)\\. 

([a-zA-Z]{2,3})$"

goodemails = goodemails_raw[

    goodemails_raw["Email"].str.match(email_pattern)]

Now you copy the code in Listing 3-4. and open up your pbix file for this solution. 

Next, you click GetData ➤ More ➤ Other, then select Python script on the right-hand 

side. After that, you paste the code into the Python editor, then click OK which adds the 

data set to the Power BI data model.

As illustrated in this example, regular expressions are extremely useful when it 

comes to pattern matching strings. They are a very valuable tool for all data analysts 

to have in their toolkit. They are not available for use in Power Query, but fortunately, 

they are in Python and R. This is just one example how regular expressions can help you 

accomplish pattern matching tasks that are not possible using the Power Query string 

functions. Keep reading and you will be introduced to more examples of how you can 

use regular expressions later in the book. Next, we will learn how to read MS Excel files 

into the Power BI data model.
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CHAPTER 4

Reading Excel Files
Power BI has built-in tools that enable you to read Microsoft Excel files into the Power BI 

data model. The built-in functionality is intuitive and easy to use for simple workflows, 

but things can become unnecessarily difficult when the workflows get complicated. 

Many workflows that are difficult to do using native Power BI tools are relatively easy to 

do using R or Python. We will illustrate with an example.

Here is the scenario:

•	 It is February 2, 2014, and you are the CFO of Contoso International.

•	 You receive sales data by year via MS Excel workbooks from your IT 

department, and you save the data in a folder named ExcelFiles.

•	 Each workbook is broken out by year, and each month has its own 

sheet in the workbook.

•	 The ExcelFiles folder contains five workbooks in total. The workbook 

for calendar year 2010 contains sales data just for December of that 

year, the workbooks for calendar years 2011–2013 have a full year 

worth of data, and the workbook for calendar year 2014 has data just 

for January of that year.

•	 At the beginning of each month, a new sheet is added to the 

workbook with the sales data from the previous month.

•	 At the beginning of February of each year, you get a new workbook 

for the current year that is updated in the same manner as the 

previous workbooks.

https://doi.org/10.1007/978-1-4842-5829-3_4#DOI
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You need to combine these files so that you can perform your required financial 

analysis. You tried to automate this using Power Query but was not successful because 

it required advanced Power Query techniques that was too difficult to understand, so 

you decided to try to develop a solution using R and Python. Your friend, Tyrone, is 

proficient in both R and Python, so he was able to help you. He gave you the steps of how 

to accomplish the task in both R and Python. We will go over the R example first.

�Reading Excel files using R
In this example, you will create a workflow that

	 1.	 Loops through each workbook in the ExcelFiles folder

	 2.	 Combines the data from every sheet in the workbook into one 

data frame

	 3.	 Appends the data frame created in Step 2 to the master data frame 

that will warehouse the data from all of the workbooks when the 

workflow is completed

The image in Figure 4-1 provides a visual representation of the steps.

Figure 4-1.  Workflow to combined total sales in an R data frame
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Now let’s go over the steps needed to convert the preceding workflow into R code.

�Step 1: Import the tidyverse and readxl package
The packages that are used for this workflow are tidyverse and readxl. You are already 

familiar with tidyverse. The readxl package is similar to the readr package but is 

specifically designed to work with Microsoft Excel workbooks. Here is the required code 

to load the packages:

library(tidyverse)

library(readxl)

�Step 2: Create the shell of the combine_sheets function
In this step, you are creating the beginning of a function that will read in the data that 

are contained in the worksheets of the given workbook and combine them into one data 

frame. The file path of the Excel workbook that you want to operate on is passed to the 

function. Here is what the shell of that function looks like:

combine_sheets <- function(excel_file_path) {

    <R Code>

    return(<R object>)

}

�Step 3: Get the name of the sheets you need to combine 
in your function from the specified Excel workbook
Now you need to start defining the body of your function. Your function needs to 

identify the sheets in your workbook that it needs to combine. It will do so using the 

following code:

df <- excel_file_path %>%

        excel_sheets()
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The preceding code starts a workflow using the file path of the Excel workbook that 

is contained in the excel_file_path variable. The workbook at that path contains the 

sheets you want to combine. The excel_file_path variable is passed to the excel_sheets() 

function from readxl using the pipe (%>%) operator. The excel_sheets() function returns 

a character vector that contains the names of the sheets in the workbook located in the 

path specified in the excel_file_path variable. This function relies heavily on the %>% 

operator. Refer to the book’s introduction if you need an explanation of what it is and 

how to use it.

�Step 4: Convert the character vector built in Step 3 
to a named character vector
You convert the character vector created in Step 3 into a named character vector. The 

name property of the named character vector will be used to identify the worksheet 

where the rows of the resulting data frame produced in this example came from. The 

named character vector is created using the following code:

df <- excel_file_path %>%

    excel_sheets() %>%

    set_names() %>%

The preceding code takes the character vector that was created by the excel_sheets() 

function and passes it to the set_names() function from the purrr package. This function 

sets the names of each element in the character vector to itself. You can get a better 

understanding of this function by inspecting the df variable before and after the set_

names() function is applied. Here are the contents of the df variable before set_names() is 

applied:

> df

 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

Here are the contents of the df variable after the set_names() function is applied:

> df

  Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec

"Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
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Notice that each element in the character vector has been given the name that 

is equal to the value of the element. You will take advantage of this property in the 

next step.

You are not limited to naming the character vector to itself. You can pass a 
character vector of the same length with the names you want to use or a function 
for situations where a name already exists, and you want to modify it based on 
some rule.

�Step 5: Use the mapr_df function to combine the sheets 
into a single data frame
In this step, you add one line of code to the workflow, but there is a lot going on in this 

line of code that needs to be unpacked. Here is what the workflow looks like with the 

extra code added:

df <- excel_file_path %>%

      excel_sheets() %>%

      set_names() %>%

      map_dfr(.f= ~read_excel(path= excel_file_path, sheet= ..1)

             ,.id = "sheet"

      )

Let’s explain what’s going on in the last line:

•	 The named character vector created in the previous step is passed to 

the map_dfr() function as the first argument.

•	 The .f argument is used to tell map_dfr() the function you want 

to apply to the named character vector that you passed to it. The 

function in this situation is read_excel(). You describe how you want 

to use the read_excel() function via a formula. The formula starts 

with a ~, then the read_excel() function along with its arguments. 

The arguments that it uses are the path and sheet arguments. The 

file path of the workbook that contains the sheets you want to 

combine is assigned to the path argument, and the value from the 
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named character vector is assigned to the sheet argument. The value 

assigned to this argument was ..1. This method is used to get the 

argument we want to use based on its position. The named character 

vector was passed to the map_dfr() function as the first argument via 

set_names() so that is why we used ..1. If it was in the nth position, 

then we would set the value to ..n.

•	 The map_dfr() function combines the data frames that were created 

for each sheet in the workbook and collapse it into one data frame. 

You can add a field to the resulting data frame that will enable you 

to determine the sheet that the record came from. You accomplish 

this using the .id argument. If you use this option, a column is added 

that uses the names from the named character vector to populate 

it. If you are not using a named character vector, the position of the 

sheet name in the character vector is used. The value you give this 

argument will be used as the column name.

�Step 6: Return the data frame
You want your function to return the data frame that was created. To do so, you use the 

return statement with the df data frame you created. After you do that, the complete 

definition of the function looks like this:

combine_sheets <- function(excel_file_path) {

    df <- excel_file_path %>%

        excel_sheets() %>%

        set_names() %>%

        map_df(.f = ~read_excel(path = excel_file_path, sheet = ..1)

               ,.id = "sheet"

        )

    return(df)

}
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�Step 7: Set the working directory to the location where 
the Excel files are located
Now that you have the function defined, the hard part is over. You need to write the 

code that utilizes the custom combine_sheets() function to combine the data from the 

workbooks in the ExcelFiles folder. The first thing you need to do is set the working 

directory so Power BI knows what folder to use. You can do so using the following code:

setwd("<full path to the ExcelFiles folder>")

�Step 8: Assign the file names to the excel_file_paths  
variable
You use the list.files() function to get the name of the files in the current directory and 

assign it to a variable named excel_file_paths using the following code:

excel_file_paths <- list.files(".")

The “.” passed to the list.files( ) function tells it that you want to return all the files 
located in the current working directory. You can specify a nested folder in the 
following way “./<nested folder name>”. The list.files() function also accepts a 
character vector containing one or more full path names of the paths you want to 
inspect.

�Step 9: Use the map_dfr function to apply the combine_
sheets function to each file in the working directory
Now you are at the step that combines the data from all the workbooks into one data 

frame. The code needed to do it is as follows:

combine_workbooks <- map_dfr(excel_file_paths, combine_sheets)

The map_dfr() function applies the combine_sheets() custom function to the Excel 

file names contained in the excel_file_paths character vector. The result of doing so is a 

list of data frames. The map_dfr() function collapses the list of data frames into one data 

frame and names the data frame combine_workbooks.
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�Step 10: Copy the R script and paste it into the R editor 
via GetData in Power BI
The resulting script of the previous steps is as follows:

library(tidyverse)

library(readxl)

combine_sheets <- function(excel_file_path) {

    df <- excel_file_path %>%

        excel_sheets() %>%

        set_names() %>%

        map_dfr(.f = ~read_excel(path = excel_file_path, sheet = ..1)

                ,.id = "sheet"

        )

    return(df)

}

setwd("<full path to the ExcelFiles folder>")

excel_file_paths <- list.files(".")

combine_workbooks <- map_dfr(excel_file_paths, combine_sheets)

After you paste the code in the R editor in Power BI, the resulting data set will be 

exposed to you like any other data set brought into Power BI.

�Reading Excel files using Python
Now you will perform the same task in Python. The workflow will be similar, but the 

execution will be slightly different. The image in Figure 4-2 visually depicts the workflow 

that will be used in Python.
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�Step 1: Import the os and pandas library
The libraries that are used for this workflow are os and pandas. The os library is used to 

interact with the file system, and pandas is used to read data from Excel into Python.

�Step 2: Create the shell of the combine_sheets function
You need to create a custom function that reads in the contents from the sheets in the 

Excel workbook and combine them into one data frame. You need to pass to the function 

the file path of the Excel workbook that contains the sheets you want to combine. Here is 

the shell of the custom function you will use to perform this task:

def combine_sheets(excel_file_path):

    <Python Code>

    return <Python object>

Figure 4-2.  Workflow to combined total sales in a Pandas data frame
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�Step 3: Create an Excel object based on the  
workbook located at the path specified in the  
excel_file_path variable
You defined the shell of the function; now let’s start writing the code that will go in the 

body of the function. You start by creating an Excel object using the following code:

xlsx_file = pd.ExcelFile(excel_file_path)

The code uses the ExcelFile class from pandas to create the object. All it needs is the 

file path to the Excel workbook.

�Step 4: Create a list of the sheet names in the workbook 
specified by the excel_file_path variable
The function needs to know what sheets to combine. You can get that information using 

the sheet_names property of the xlsx_file object you created in Step 3. You do so using the 

following code:

ws = xlsx_file .sheet_names

The code gets the sheet names from the sheet_names property of xlsx_file and stores 

them in the ws variable.

�Step 5: Use the read_excel method of pandas to read 
the data from each sheet into one data frame
You accomplish Step 5 using the following line of code:

df = pd.concat(pd.read_excel(xlsx_file, sheet_name=ws))

Two major tasks are happening in the code, so it will be easier to understand if  

we unpacked it into multiple steps. The first thing that is done is pandas is using  

pd.read_excel(xlsx_file, sheet_name=ws) to read the data from the sheets in the 

workbook, and it puts them in individual data frames. The first argument is unnamed, 

but it is the io argument. This is where you identify the MS Excel file that you want to 

read. The second argument is the sheet_name argument, and that is where you tell the 

read_excel() method the worksheets you want to read from the specified workbook. 
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The ws variable is used to give read_excel() that information. The second thing pandas 

does is it combines the individual data frames that were created using the read_excel() 

method into one data frame via the concat() method from pandas. The resulting data 

frame is assigned to the variable named df.

�Step 6: Return the data frame held in df as the output 
from the combine_sheets function
This is done using the return statement as shown here:

return df

�Step 7: Set the working directory to the location that  
contains the Excel data you want to combine
You now have the combine_sheets() custom function completely defined. Now you need 

to write code that uses the function to combine the worksheets from the workbooks in 

the ExcelFiles folder into one data frame. You first need to set the working directory to the 

location that contains the Excel workbooks. You do so using the following code:

os.chdir("<full path to the ExcelFiles folder>")

�Step 8: Get the list of the file names in the current  
working directory and assign it to the excel_file_paths 
variable
Your script needs to know the names of the MS Excel workbooks to combine. You 

can get the names of the workbooks using the listdir() function as illustrated in the 

following code:

excel_file_paths = os.listdir(".")

The code makes the assumption that only the Excel files you want to combine are in 

the current folder. That needs to be verified before the script is run.
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�Step 9: Create an empty data frame and name it  
combined_workbooks
In this step, you create an empty data frame named combined_workbooks that will be the 

master data frame that will store the data from all of the workbooks. The code needed to 

create the empty data frame is as follows:

combined_workbooks = pd.DataFrame()

The data frame created for each workbook using the combined_sheets function will 

be appended to this data frame.

�Step 10: Create the shell of the for loop
The for loop in python enables you to iterate over a sequence. In this case, the sequence 

that will be iterated over is the excel_file_paths list. The script uses the following code to 

iterate over the excel_file_paths list:

for excel_file_path in excel_file_paths:

You will use for loops a lot in Python, so let’s take some time to explain the structure. 

The for loop can be described using the following template:

for <variable to hold current value> in <sequence object>:

The variable that holds the current value of the iteration can be named anything. 

Typically, the name is the singular version of the name given to the sequence object. 

The sequence object is the object that you are iterating. In this script, it is the excel_

file_paths list. Let’s walk through the steps to explain how it operates.

If you print out the contents of excel_file_paths, you would see the following data:

['2010.xlsx', '2011.xlsx', '2012.xlsx', '2013.xlsx', '2014.xlsx']

You see that excel_file_paths is a list that contains five elements. The for loop in the 

script iterates over this list, and it assigns the value of ‘2010.xlsx’ to the excel_file_path 

variable after the first iteration, assigns the value of ‘2011.xlsx’ to the excel_file_path 

variable after the second iteration, and continues doing that for each element in the list 

until it iterates all of the elements.
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�Step 11: Combine all the data in each sheet into one data 
frame using the combine_sheets function
The following code takes the file path in the excel_file_path variable and passes it to 

combine_function():

combined_workbook = combine_sheets(excel_file_path)

The combine_sheets() custom function combines the sheets in the workbook located 

at the file path that was passed to it and puts them into one data frame. That data frame 

is stored in the combined_workbook variable.

�Step 12: Append the combined_workbook data frame 
to the combined_workbooks data frame
The code needed to perform this task is as follows:

combined_workbooks = combined_workbooks.append(combined_workbook,
                     ignore_index=True)

The code uses the append method of the combined_workbooks data frame to 

append the combine_workbook data frame to it. The ignore_index argument is set to True 

because you want to ignore the indexes in combined_workbook data frame and use the 

ones that are in combined_workbooks.

�Step 13: Copy the Python script and paste it into 
the Python editor via GetData in Power BI
Here is the complete script:

import os
import pandas as pd

def combine_sheets(excel_file_path):

    xlsx_file = pd.ExcelFile(excel_file_path)
    ws = xlsx_file.sheet_names
    df = pd.concat(pd.read_excel(xlsx_file, sheet_name=ws))

    return df
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os.chdir("<full path to SalesData_WorkbookFormat")

excel_file_paths = os.listdir(".")

combined_workbooks = pd.DataFrame()

for excel_file_path in excel_file_paths:

    combined_workbook = combine_sheets(excel_file_path)

    combined_workbooks = combined_workbooks.append(

                         combined_workbook, ignore_index=True)

If you copy the script and paste it to the Python editor in Power BI via GetData, you 

will get a data set that you can add to the Power BI data model.

In this chapter, you were able to implement a workflow that would have been very 

difficult to do using Power Query and M. The R and Python code needed to do the 

workflow is more succinct and easier to understand than the M code that is necessary to 

perform the same task. You also learned how to use R and Python to abstract logic that is 

repeated multiple times in a function to improve code efficiency and readability. In the 

next chapter, you will learn how to interact with SQL Server in Power BI via R and Python.
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CHAPTER 5

Reading SQL Server Data
Power BI’s built-in ETL tool, Power Query, is capable of reading data that is stored in a 

variety of formats into memory, making transformations to the data while in memory, 

and loading the transformed data into the Power BI data model. It does a great job of 

doing these types of tasks as it can handle most ETL situations.

However, Power BI falls short if you want to log information about your Power BI 

data loads. Power Query is designed to read data but not to write data. Fortunately, 

that is not the case with R and Python. R and Python have packages and libraries, 

respectively, that make logging data relatively easy. Both R and Python can write to 

multiple sources ranging from flat files to databases. In this example, you will use R and 

Python to log information about your data loads to a SQL Server database.

�Adding AdventureWorksDW_StarSchema database 
to your SQL Server instance
The example in this chapter requires the AdventureWorksDW_StarSchema database as 

the data source. This database is a subset of the AdventureWorksDW database developed 

by Microsoft. Perform the following steps to restore the database to your SQL Server 

instance:

	 1.	 Go to the repo of the book, then traverse to the Data 

folder for Chapter 5. You will find the zip version of the 

AdventureWorksDW_StarSchema.bak file in this location. 

Unzip the AdventureWorksDW_StarSchema.zip to expose 

AdventureWorksDW_StarSchema.bak.

	 2.	 Copy the AdventureWorksDW_StarSchema.bak file to the Backup 

folder for SQL Server. The location of this folder in the Data 

Science Virtual Machine (DSVM) is C:\Program Files\Microsoft 

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

https://doi.org/10.1007/978-1-4842-5829-3_5#DOI
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	 3.	 Go to SQL Server Management Studio (SSMS) and right-click the 

Databases folder, then select Restore Databases….

	 4.	 The Restore Database pop-up form will appear. Make sure you are 

on the General page tab. In the Source section, select the Device 

radio button.

	 5.	 Click the eclipse button, the button with the three dots, then 

click the Add button. Next, browse to the location where 

AdventureWorksDW_StarSchema.bak is located.

	 6.	 Select the AdventureWorksDW_StarSchema.bak file, then click the 

OK button to close out the Locate Backup File form.

	 7.	 Click OK to close out the Select backup devices form.

	 8.	 Click OK to close out the Restore Database form. Doing so will add 

the database.

�Reading SQL Server data into Power BI using R
Here is the scenario. You are an analyst for Clothing R Us. The company has a small IT 

department, and the database administrator, Vihaan, doubles as the system engineer. 

There is no dedicated staff for business intelligence. You convinced the CFO, Adaugo, 

about the advantages of business intelligence and how it can help the business make 

informed decisions based on the company’s experience. She agreed to let Vihaan build 

a small data mart around Internet sales. The data mart contains one fact table and four 

dimension tables. All the dimension tables are Type 1 dimensions, and each load of 

the warehouse is a kill and fill. Vihaan developed an ETL process, but the ETL did not 

include any logging to monitor the amount of data that is being loaded into the data 

mart. The success of this POC is critical to you, so you took it upon yourself to develop 

a logging system as a sanity check to make sure that the data that is being loaded into 

Power BI is reasonable.
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In Type 1 Slowly Changing Dimension (SCD), the new information overwrites the 
original information so no history is kept. In Type 2 SCD, a new record is added to 
the table to represent the new information. Both the original and the new record 
will be present.

You know that Power Query is designed to read data into Power BI, but it is not 

designed to write data. Your colleague, Sarah, informed you that you can write data 

back to a database relatively easy using either R or Python. You shared with her what 

information you needed to log, and she gave you instructions for both R and Python. 

Here are the instructions for R.

�Step 1: Create a DSN to the SQL Server database
You need to provide SQL Server with information to authenticate you so that you can 

connect to the database. There are multiple ways to do this, but the method you will use 

is the DSN (Data Source Name) method. DSNs are relatively easy to create and configure 

in Windows 10. Here are the steps to do so:

	 1.	 Go to the Cortana Search Bar located on the left side of the taskbar 

next to the Windows icon and type administrative tools.

	 2.	 You will see a list of administrative tools shortcuts. Search for 

ODBC Data Sources (64-bit) and double-click it.

	 3.	 A pop-up box for ODBC Data Source Administrator (64-bit) 

should appear with multiple tabs. Click the System DSN tab. You 

want to use this tab to ensure that all users on your computer will 

have access to this DSN. If you only want the current user to have 

access to the DSN, you can stay on the User DSN tab.

	 4.	 Click the Add button.

	 5.	 You will see a list of drivers that you can choose from with SQL 

Server being one of them. Select SQL Server, then click the Finish 

button.
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	 6.	 Next the Create a New Data Source to SQL Server pop-up box will 

appear. This is where you configure the DSN. The Name is the 

name that will be used by R to refer to the DSN, the Description 

can be anything you want to use to describe the DSN, and the 

Server is the name of the SQL Server that warehouses the database 

you want to connect to.

Use SQLServer2019 for the Name and SQLServer2019 for the 

Description. If you are not using SQL Server 2019, then use a name 

that identifies the version of SQL Server you are working with. The 

image below shows an example in which SQL Server 2017 was used. 

Next, you need to retrieve the name of the SQL Server instance 

that you want to use. To get the server name, open SQL Server 

Management Studio and connect to the SQL Server instance. The 

name that appears in the Server Name combo box is the name that 

you want to use in the Server combo box in the Create a New Data 

Source to SQL Server form. Copy the server name and paste it in the 

Server combo box. When you finish filling out the form, it should look 

like the image in Figure 5-1. Click Next if everything looks correct.

Figure 5-1.  The Create a New Data Source to SQL Server
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	 7.	 You will see the pop-up form shown in Figure 5-2. Make sure 

yours is configured the same way, then click Next.

	 8.	 Next, you will see the pop-up form in Figure 5-3. Make sure you 

check the Change the default database to: check box and change 

the database to AdventureWorksDW_StarSchema, then click Next.

Figure 5-2.  The Create a New Data Source to SQL Server
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	 9.	 The next pop-up form you will see is the one depicted in Figure 5-4. 

Make sure yours is configured the same way, then click Finish.

Figure 5-3.  The Create a New Data Source to SQL Server
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	 10.	 After you click Finish, the pop-up box like the one shown in 

Figure 5-5 will appear. You can test the connection by clicking 

the Test Data Source button to make sure you can successfully 

connect to the database using the DSN name you just configured.

Figure 5-4.  The Create a New Data Source to SQL Server
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�Step 2: Create a log table in SQL Server
A log table with the name dbo.LoadHistoryLog should already exist in the database. In 

case you need to recreate it, you can do so by executing the following code in SQL Server 

Management Studio (SSMS):

Figure 5-5.  Information about the DSN
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USE AdventureWorksDW_StarSchema

CREATE TABLE dbo.[LoadHistoryLog] (

      DATESTAMP DATETIME,

      TABLENAME VARCHAR(25),

      NUM_RECORDS INT

)

To execute the code in SSMS, you copy the preceding code, then click the New Query 

button located in the menu bar. An editor should appear. Paste the code in the editor, 

then click the Execute button in the menu bar to execute the code.

�Step 3: Start developing the R script to load DimDate
Go back to R Studio to begin developing the R script. The packages that you will use in 

this script are RODBC and lubridate. The RODBC package will be used to interact with 

SQL Server, and the lubridate package will be used to make it easier to do some date-

related tasks. Here’s the code needed to load the packages:

library(RODBC)

library(lubridate)

�Step 4: Create a variable to hold the name of the table 
you want to import
The name of the table that will be read into the Power BI data model will be used 

in several places in the script. A variable is used instead of hard-coding the value 

throughout the script to make the script easier to maintain and reuse:

table_name <- "DimDate"
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�Step 5: Create a variable to hold the sql statement that 
will be used to return the table
The following code is used to create the sql statement that will be used to read the data 

from the DimDate table into Power BI:

sql <- paste0(

    "SELECT * FROM dbo.",

    table_name)

The preceding code is using the paste0() function to concatenate "SELECT * FROM 

dbo." with the table_name variable. The paste0() function is similar to the paste() 

function. The difference between the two is that you can specify a delimiter in the paste() 

function but the paste0() function assumes that you want to concatenate strings without 

using a delimiter.

�Step 6: Create a connection to SQL Server
You create a connection to the database using the following code:

conn <- odbcConnect(dsn = "SQLServer2017")

As you can see, using a DSN makes it very easy to connect to the database. You use 

the odbcConnect function from the RODBC package to make the connection, and the 

only argument you need is the dsn argument. You set that argument equal to the name of 

the DSN that you configured in Step 1.

�Step 7: Retrieve the data from SQL Server and store it in a 
data frame
The sqlQuery() function from RODBC enables you to submit a query to the database 

using the conn connection and stores the results in a data frame. The code to perform 

this operation is this:

df_read <- sqlQuery(channel = conn, query = sql)

The results of the query are stored in the df_read data frame. This is the data that will 

be fed to Power BI.
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�Step 8: Get the current time
Now you need to start calculating the information you want to log about the load. The 

information you want to log is the time the load occurred, the name of the table you 

loaded, and the number of records that were loaded.

To get the time of the load, you use the now() function from the lubridate package 

and assign it to the datestamp variable using the following code:

datestamp <- now()

�Step 9: Get the number of records that were read
You want to log the number of records that were loaded from the DimDate table. You get 

that information using the nrow() function from base R. You use the following code to 

store the number of records in DimDate to the num_records variable:

num_records <- nrow(df_read)

�Step 10: Create a one record R data frame that contains 
the information you want to log
You calculated the information that you want to log; now you need to shape it so that you 

can insert the information into the log table. The shape the data needs to be in is a data 

frame. You start off by creating a named list using the variables you created that holds the 

information you want to log.

A named list is simply a list that has names for each element in the list. Putting the 
information in a named list makes it easy to convert to a data frame. The code in 
this step describes how to build one.

The code you use to do so is as follows:

list_insert = list("DATESTAMP" = datestamp,

                   "TABLENAME" = table_name,

                   "NUM_RECORDS" = num_records

              )
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The preceding code builds a named list that contains the datestamp, table_name, 

and num_records scalars and gives them the names DATESTAMP, TABLENAME, and 

NUM_RECORDS, respectively.

A scalar is a vector with a length one.

Next, you convert the named list to a data frame using the following code:

df_insert = as_data_frame(list_insert)

The preceding code converts the named list into a data frame using the as_data_

frame() function and assigns the results to the df_insert data frame. The names in the 

named list are used as the column headers.

�Step 11: Insert the information you gathered in Step 10 
into the history log table
Now that the data you want to log is in a data frame, you can insert it into the 

LoadHistoryLog table using the sqlSave() function from the RODBC package. You do so 

using the following code:

sqlSave(

      channel = conn,

      dat = df_insert,

      tablename = "LoadHistoryLog",

      append = TRUE,

      rownames=FALSE

)

The channel argument in the sqlSave() function uses the connection that we 

created earlier. It inserts the df_insert data frame into the LoadHistoryLog table. It is 

very important that you set the append argument to TRUE so that sqlSave() knows to 

insert the data into a table that already exists. If it is set to FALSE, it will produce an 

error because it will try to create a table that already exists. Also, it is important to set 

the rownames to FALSE, because if you don’t, a column will be created that has the row 

names of the data frame and that information is not needed.
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�Step 12: Close your connection
Next, you need to close your connection using the odbcClose() function from the RODBC 

package. You do so using the following code:

odbcClose(conn)

�Step 13: Copy the script into Power BI
Here is the complete script:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimDate"

sql <- paste0(

    "SELECT * FROM dbo.",

    table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

    "DATESTAMP" = datestamp,

    "TABLENAME" = table_name,

    "NUM_RECORDS" = num_records)

df_insert <- as_data_frame(list_insert)

sqlSave(

    channel = conn,

    dat = df_insert,

    tablename = "LoadHistoryLog",

    append = TRUE,

    rownames=FALSE)

odbcClose(conn)
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As in previous examples in the book, copy the R code into Power BI via GetData. 

Two data frames, df_read and df_insert, are produced in the script so you need to tell 

Power BI which one you want to load into the Power BI data model. You want to load 

df_read, so select it, then click the Edit button. Now you need to change the name of the 

query. Rename the query from df_read to DimDate in the PROPERTIES section. Click 

Close & Apply to load the data into the Power BI data model.

�Step 14: Create a script to load DimProduct based 
on the ReadLog_DimDate.R script
You need to reproduce the preceding steps for four more tables. You can easily 

reproduce the steps for each table by making a copy of the ReadLog_DimDate.R script, 

then make one minor change to the copied scripts. The change you need to make is the 

value that the tablename variable is set to. In this step, you will do it for the DimProduct 

table. Create a copy of the ReadLog_DimDate.R script and change the value of the table_

name variable from DimDate to DimProduct. Next, perform Step 13 with the exception 

being that you rename the query to DimProduct instead. Here is what the code looks like 

after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimProduct"

sql <- paste0(

    "SELECT * FROM dbo.",

    table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

    "DATESTAMP" = datestamp,

    "TABLENAME" = table_name,

    "NUM_RECORDS" = num_records)
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df_insert <- as_data_frame(list_insert)

sqlSave(

    channel = conn,

    dat = df_insert,

    tablename = "LoadHistoryLog",

    append = TRUE,

    rownames=FALSE)

odbcClose(conn)

�Step 15: Create a script to load DimPromotion based 
on the ReadLog_DimDate.R script
Create a copy of the ReadLog_DimDate.R script and change the value of the table_name 

variable from DimDate to DimPromotion. Next, perform Step 13 with the exception 

being that you rename the query from df_read to DimPromotion. Here is what the code 

looks like after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimPromotion"

sql <- paste0(

    "SELECT * FROM dbo.",

    table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

    "DATESTAMP" = datestamp,

    "TABLENAME" = table_name,

    "NUM_RECORDS" = num_records)
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df_insert <- as_data_frame(list_insert)

sqlSave(

    channel = conn,

    dat = df_insert,

    tablename = "LoadHistoryLog",

    append = TRUE,

    rownames=FALSE)

odbcClose(conn)

�Step 16: Create a script to load DimSalesTerritory based 
on the ReadLog_DimDate.R script
Create a copy of the ReadLog_DimDate.R script and change the value of the table_name 

variable from DimDate to DimSalesTerritory. Next, perform Step 13 with the exception 

being that you rename the query from df_read to DimSalesTerritory. Here is what the 

code looks like after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "DimSalesTerritory"

sql <- paste0(

    "SELECT * FROM dbo.",

    table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

    "DATESTAMP" = datestamp,

    "TABLENAME" = table_name,

    "NUM_RECORDS" = num_records)
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df_insert <- as_data_frame(list_insert)

sqlSave(

    channel = conn,

    dat = df_insert,

    tablename = "LoadHistoryLog",

    append = TRUE,

    rownames=FALSE)

odbcClose(conn)

�Step 17: Create a script to load FactInternetSales based 
on the ReadLog_DimDate.R script
Create a copy of the ReadLog_DimDate.R script and change the value of the table_name 

variable from DimDate to FactInternetSales. Next, perform Step 13 with the exception 

being that you rename the query from df_read to FactInternetSales. Here is what the code 

looks like after you make the modifications:

library(tidyverse)

library(RODBC)

library(lubridate)

table_name <- "FactInternetSales"

sql <- paste0(

    "SELECT * FROM dbo.",

    table_name)

conn <- odbcConnect(dsn = "SQLServer2017")

df_read <- sqlQuery(channel = conn, query = sql)

datestamp <- now()

num_records <- nrow(df_read)

list_insert <- list(

    "DATESTAMP" = datestamp,

    "TABLENAME" = table_name,

    "NUM_RECORDS" = num_records)
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df_insert <- as_data_frame(list_insert)

sqlSave(

    channel = conn,

    dat = df_insert,

    tablename = "LoadHistoryLog",

    append = TRUE,

    rownames=FALSE)

odbcClose(conn)

Performing the preceding steps not only results in the tables being loaded into Power 

BI, but also the number of records that were loaded from each table will be recorded in 

the log table.

�Reading SQL Server data using Python
In this section, you will perform the same task that you just performed in R using Python. 

The logic is similar, but you will be able to perform the task in fewer steps. Let’s start with 

Step 1.

�Step 1: Create a DSN to the SQL Server database
If you did the R example, then you already created the DSN so you can proceed to the 

next step. If you did not, you must complete step 1 in the R example before proceeding to 

the next step. The DSN is independent of R and Python so you can use the same one for 

both.

�Step 2: Create a log table in SQL Server
A log table with the name dbo.LoadHistoryLog should already be in the database. 

Execute the following code in SQL Server Management Studio (SSMS) if you need to 

create the dbo.LoadHistoryLog table:
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USE AdventureWorksDW_StarSchema

CREATE TABLE dbo.[LoadHistoryLog] (

      DATESTAMP DATETIME,

      TABLENAME VARCHAR(25),

      NUM_RECORDS INT

)

To execute the code in SSMS, you

	 1.	 Copy the preceding code

	 2.	 Expand the Database folder in SSMS, then select 

AdventureWorksDW_StarSchema database

	 3.	 Click the New Query button located in the menu bar

	 4.	 Paste the code you copied in your clipboard to the editor, then 

click the Execute button in the menu bar to execute the code

�Step 3: Begin creating the script to load the  
DimDate table
You will use three libraries in this script. The libraries you will use are pandas, 

sqlalchemy, and the datetime. Pandas will be the workhorse package as it will be used 

to read the data that you want to load to the Power BI data model and to write the 

information back to SQL Server that you want to log. The create_engine() function from 

the sqlalchemy library is used to create a connection object to the SQL Server database, 

and the datetime module from the datetime library will be leveraged for its date 

functions. The following code is used to load those libraries, functions, and modules 

mentioned earlier:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime
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�Step 4: Create a variable that holds the name of the table 
that you want to read into Power BI
The name of the table that will be read into the Power BI data model will be used in 

several places in the script. A variable is used instead of hard-coding the table name. 

This makes it easier to maintain the script and reuse it for other tables. Here is the code 

that is used to create the variable that will hold the table name:

tablename = "DimDate"

�Step 5: Create a connection to the database using  
sqlalchemy
You create a connection to the SQL Server database using the following code:

con = create_engine("mssql+pyodbc://SQLServer2017")

Just as in the R example, using a DSN makes it very easy to connect to the database. 

Here you use the create_engine() function from the sqlalchemy library to make the 

connection. The syntax used to build the connection string for SQL Server in sqlalchemy 

is "mssql+pyodbc://<DSN>", so in this situation, it is "mssql+pyodbc://SQLServer2017".

�Step 6: Read in the contents of the DimDate table 
and store it as a data frame in the df_read variable
You will use the read_sql_table() method from pandas to read the contents of the 

DimDate table and store it in a data frame named df_read. The read_sql_table() method 

uses two arguments, the name of the sql table you want to read and the connection to 

the database. Here is the code:

df_read = pd.read_sql_table(tablename, conn)

�Step 7: Get the current date and time and store the  
information into the datastamp variable
You perform this task using the following code:

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
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You use the now() method from datetime module to get the time of the load. 

Unfortunately, the now function returns the date in a format that is not usable by SQL 

Server so it needs to be reformatted. The format that the date is returned in is datetime.

datetime(YYYY, M, D, H, M, SS, MS). So, as an example, January 1, 2019 10:00 PM would 

be returned as datetime.datetime(2019, 1, 1, 22, 0, 0, 0). You reformat that output using 

the strftime() method to put it in a YYYY-MM-DD HH:MM:SS format by applying the 

following format string: ‘%Y-%m-%d %H:%M:%S’. That action reformats the datetime.

datetime(2019, 1, 1, 22, 0, 0, 0) to '2019-04-14 22:05:24'. Now you have the datestamp in a 

format that is usable by SQL Server.

�Step 8: Calculate the number of records in the  
DimDate table
You need to log the number of records that were loaded from the DimDate table. 

To get that information, you use the shape method from pandas as illustrated in the 

following code:

num_records = df.shape[0]

The shape method returns a tuple with two elements. The first element contains 

the number of rows in the data frame, and the second element contains the number of 

columns. You just need the number of rows so you can subset the shape method with 

[0] to get that information.

A tuple is a python data structure that represents a sequence of immutable objects. 
They are similar to lists with the difference being that they cannot be changed after 
they are created.
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�Step 9: Create a one record pandas data frame that  
contains the information you want to log
You accomplish this in two steps using the following code:

dict_insert = {

    "DATESTAMP":[datestamp],

    "TABLENAME":[tablename],

    "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

The first part of the code creates a dictionary of key/value pairs. The key is a hard-

coded value that will be the column name. The value is a list, and the elements in the list 

will populate the column. In this case, each list only contains one element.

The second part of the code uses the from_dict method of the pandas DataFrame 

class to create a data frame. The dict_insert dictionary is passed to it, and the result is the 

df_insert data frame.

�Step 10: Insert the information you gathered in Step 9 into 
the history log table
To get the data from the df_insert data frame into the LoadHistoryLog table, you use the 

to_sql method of the df_insert data frame as illustrated here:

df_insert.to_sql(

      name='LoadHistoryLog',

      con=conn,

      index=False,

      if_exists = 'append'

)

The name of the table is LoadHistoryLog, the conn object you created earlier is used 

for the con argument, the index property is set to False to prevent pandas from trying 

to include the index value in the insert, and the if_exists is set to append so that pandas 

knows to add the data as an insert if the table already exists.
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�Step 11: Copy the script into Power BI
Here is the complete script:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimDate"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

    "DATESTAMP":[datestamp],

    "TABLENAME":[tablename],

    "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

    name='LoadHistoryLog',

    con=conn,

    index=False,

    if_exists = 'append'

)

As in previous examples, copy the Python code into Power BI via GetData. Two data 

frames, df_read and df_insert, are produced in the script, so you need to tell Power BI 

which one you want to load into the Power BI data model. You want to load df_read, so 

select it, then click the Edit button. Next, change the name of the query from df_read to 

DimDate in the PROPERTIES section. Click Close & Apply to load the data into the Power 

BI data model.
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�Step 12: Create a script to load DimProduct based 
on the ReadLog_DimDate.py script
You need to reproduce the preceding steps for four more tables. You can easily 

reproduce the steps for each table by making a copy of the ReadLog_DimDate.py script, 

then make one minor change to the copied scripts. The change you need to make is the 

value that the tablename variable is set to. In this step, you will do it for the DimProduct 

table. Create a copy of the ReadLog_DimDate.py script and change the value of the table_

name variable from DimDate to DimProduct. Next, perform Step 11 with the exception 

being that you rename the query to DimProduct instead. Here is what the script looks 

like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimProduct"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

    "DATESTAMP":[datestamp],

    "TABLENAME":[tablename],

    "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

    name='LoadHistoryLog',

    con=conn,

    index=False,

    if_exists = 'append'

)
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�Step 13: Create a script to load DimPromotion based 
on the ReadLog_DimDate.py script
Create a copy of the ReadLog_DimDate.py script and change the value of the table_name 

variable from DimDate to DimPromotion. Next, perform Step 11 with the exception 

being that you rename the query from df_read to DimPromotion. Here is what the script 

looks like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimPromotion"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

    "DATESTAMP":[datestamp],

    "TABLENAME":[tablename],

    "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

    name='LoadHistoryLog',

    con=conn,

    index=False,

    if_exists = 'append'

)
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�Step 14: Create a script to load DimSalesTerritory based 
on the ReadLog_DimDate.py script
Create a copy of the ReadLog_DimDate.py script and change the value of the table_name 

variable from DimDate to DimSalesTerritory. Next, perform Step 11 with the exception 

being that you rename the query from df_read to DimSalesTerritory. Here is what the 

script looks like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "DimSalesTerritory"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

    "DATESTAMP":[datestamp],

    "TABLENAME":[tablename],

    "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

    name='LoadHistoryLog',

    con=conn,

    index=False,

    if_exists = 'append'

)
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�Step 15: Create a script to load FactInternetSales based 
on the ReadLog_DimDate.py script
Create a copy of the ReadLog_DimDate.py script and change the value of the table_name 

variable from DimDate to FactInternetSales. Next, perform Step 11 with the exception 

being that you rename the query from df_read to FactInternetSales. Here is what the 

script looks like after the changes:

import pandas as pd

from sqlalchemy import create_engine

from datetime import datetime

tablename = "FactInternetSales"

conn = create_engine("mssql+pyodbc://SQLServer2017")

df_read = pd.read_sql_table(tablename, conn)

datestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

num_records = df_read.shape[0]

dict_insert = {

    "DATESTAMP":[datestamp],

    "TABLENAME":[tablename],

    "NUM_RECORDS":[num_records]}

df_insert = pd.DataFrame.from_dict(dict_insert)

df_insert.to_sql(

    name='LoadHistoryLog',

    con=conn,

    index=False,

    if_exists = 'append'

)

You were able to perform a task that is hard to do in Power Query but relatively easy 

to do in both R and Python. Power Query can handle reading in data from SQL Server 

tables but is not able to log information about the load. R and Python have packages and 

libraries, respectively, that you can leverage to make the task relatively easy to do.
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CHAPTER 6

Reading Data into 
the Power BI Data Model 
via an API
Many governmental entities and private companies have made their data 

more accessible via Data APIs. Data APIs provide interfaces that enable you to 

programmatically retrieve data from data providers. The data sets that these Data APIs 

provide can bring great value to your Power BI data model.

Interfacing with Data APIs is hard to do using M code, but that is not the case with 

R and Python. In this chapter, you will learn how to retrieve and load data from the US 

Census via their Data API into the Power BI data model using R and Python. First, you’ll 

see how to load the data using R. Then you’ll see the same data loaded again using 

Python.

�Reading Census data into Power BI via an  
API using R
Here is the scenario. You are a marketing analyst for Fleek. Fleek is a retail clothing store 

whose target market is young adults. The company has a strong presence in the south-

eastern part of the United States, but they don’t have any stores in the state of Indiana. 

You are tasked with identifying the counties in Indiana that have the demographics 

that are known to patronize Fleek stores. You want to use demographic data from the 

US Census to help you with your analysis that you will do in Power BI. The following 

sections show the steps to perform the task of acquiring demographic data from the US 

Census using R.
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�Step 1: Get a personal Census API key
To access US Census data, you will need a Census API key. You can obtain one at the 

following URL: https://api.census.gov/data/key_signup.html. You need to fill out a 

short form and accept the terms of service. After you click the Submit Key Request button, 

the US Census Bureau will respond with an email that contains your API key. Make sure 

you save the key in a safe location.

�Step 2: Load the necessary R packages
The packages that you will use in this example are tidyverse and tidycensus. At this point 

of the book, you are very familiar with the tidyverse package so there is no need for 

explanation, but that is not the case with the tidycensus package. The tidycensus package 

enables you to retrieve data from the US Census and the American Community Survey. 

The package returns the data in a tidyverse-ready data frame. You can go to the following 

link to find more information about how to use this package as well as the available data 

sets: https://walkerke.github.io/tidycensus/. Use the following code to load the 

required libraries and your Census API key that you received from the US Census into 

your current session using the following code:

library(tidycensus)

library(tidyverse)

census_api_key("<census api key>", install = FALSE)

If you use the preceding method, you will need to include the code in all future runs. 

If you want to install the API key in your R environment for future use, then you need to 

use the following code instead:

census_api_key("<census api key>", install = TRUE)

readRenviron("~/.Renviron")

Setting the install argument to TRUE installs the key in your R environment for future 

use. The next line of code reloads your environment so that you can use the API key in 

your current session without having to restart R.

Chapter 6  Reading Data into the Power BI Data Model via an API

https://api.census.gov/data/key_signup.html
https://walkerke.github.io/tidycensus/


221

�Step 3: Identify the variables you want to return from  
your data set
The US Census makes available several data sets. The information you need in this 

example is contained in the acs5 data set.

The acs5 data set is based on estimates taken over a 5-year period. The other 
available data sets are sf1, sf3, acs1, acs3, acs5, acs1/profile, acs3/profile, acs5/
profile, acs1/subject, acs3/subject, and acs5/subject. You can go to www.census.
gov/programs-surveys/acs/guidance/handbooks.html for more 
information about the type of data that the US Census offers.

You need population data broken out in age bands from the acs5 data set for 

calendar year 2015, but you don’t know the names of the variables that contain that 

information. Use the following code to get the entire list of variables that are available in 

the acs5 data set for calendar year 2015:

v15 <- load_variables(year = 2015, dataset= "acs5", cache = FALSE)

View(v15)

Let’s take a moment to explain the code. The load_variables function creates 

a data frame that warehouses the variables based on the values of the arguments 

passed to it. The cache option gives you the ability to locally cache the data for faster 

subsequent retrievals. The output of the load_variables function is depicted in the 

following table:

name label concept

1 | B06001_001E | Estimate!!Total

2 | B06001_002E | Estimate!!Total!!Under 5 years

3 | B06001_003E | Estimate!!Total!!5 to 17 years

4 | B06001_004E | Estimate!!Total!!18 to 24 years

5 | B06001_005E | Estimate!!Total!!25 to 34 years
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Only the five records of the data set are listed in the preceding output. The resulting 

data set actually contains a list of over 22,000 variables! Using the View function enables 

you to view the list of variables in a tabular structure with filtering capabilities. Even with 

the filtering capabilities, it can be challenging finding the variables you need. In future 

chapters, you will learn more advanced filtering techniques that will help you find the 

variables you need via the dplyr package. I used some of those techniques to find the 

variables that are used in the next step.

�Step 4: Create a character vector of the tables that  
contains the variables you want to return
After you identified the variables you want, you need to place them in a character vector. 

Here is a character vector of the variables that warehouses the population by age bands 

that is needed in this example:

cns_vars <- c("B06001_001E","B06001_002E","B06001_003E",

"B06001_004E","B06001_005E","B06001_006E","B06001_007E",

"B06001_008E","B06001_009E","B06001_010E","B06001_011E",

"B06001_012E")

B06001_001E represents the total population, B06001_002E represents the 

population under 5, B06001_003E represents the population between 5 and 17, 

B06001_004E represents the population between 18 and 24, B06001_005E represents the 

population between 25 and 34, B06001_006E represents the population between 35 and 

44, B06001_007E represents the population between 45 and 54, B06001_008E represents 

the population between 55 and 59, B06001_009E represents the population between 

60 and 61, B06001_010E represents the population between 62 and 64, B06001_011E 

represents the population between 65 and 74, and B06001_012E represents the 

population that is 75 years of age and above.

�Step 5: Configure the get_acs function
Configure the get_acs function to retrieve the data and assign the output to a data frame 

named IN_POP_BY_COUNTY_BY_AGE. The get_acs() function retrieves the data from 

the US Census API and puts it into an R data frame. The following code gets the required 

population information by age bands at the county level for Indiana:
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IN_POP_BY_COUNTY_BY_AGE <-

  suppressMessages(

    get_acs(

      geography = "county",

      state = "IN",

      variables = cns_vars,

      survey = "acs5",

      year = 2015,

      output = "wide"

    )

  )

Let’s explain the code. The geography argument tells tidycensus what level of 

geography you want your data in. The level you want is county, so you use that as the 

value. To limit the counties to only counties in the state of Indiana, you set the state 

argument equal to “IN”. You set the variables argument to the character vector that 

contains the list of variables that you defined in Step 5. The survey argument is used to tell 

tidycensus which data set you want to search. The year argument is the year of the survey. 

The output argument tells tidycensus how you want to output the data. Setting it to “wide” 

puts the data in a format where each variable has its own column. The whole function is 

wrapped in a suppressMessages function. This function suppresses the get_acs() function 

from printing information to the console which can cause problems with Power BI.

�Step 6: Give the variables (columns) meaningful names
The names of the columns that are given to us by the US Census are somewhat cryptic, 

and they do not give you a good idea of what they represent. Fortunately, you were given 

what they represented when you used the load_variables function to find them. You 

can rename the columns with more meaningful names using the rename function from 

dplyr. Here is the code that performs that task:

IN_POP_BY_COUNTY_BY_AGE =

  rename(

    IN_POP_BY_COUNTY_BY_AGE,

    `Total`=B06001_001E,

    `Under 5`=B06001_002E,
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    `5 to 17`=B06001_003E,

    `18 to 24`=B06001_004E,

    `25 to 34`=B06001_005E,

    `35 to 44`=B06001_006E,

    `45 to 54`=B06001_007E,

    `55 to 59`=B06001_008E,

    `60 and 61`=B06001_009E,

    `62 to 64`=B06001_010E,

    `65 to 74`=B06001_011E,

    `75+`=B06001_012E

  )

The first argument of the rename function is the data set that contains the columns 

that you want to rename. That is followed by pairs of values that have the new column 

name on the left side and the old column name on the right side separated with a “=” sign.

One of the benefits of using the rename function from dplyr to rename the column is 

that you are able to use column names that are not acceptable in regular R data frames.

�Step 7: Copy the script into Power BI
Here is the complete script:

library(tidycensus)

library(tidyverse)

census_api_key(

    "<census api key>", overwrite = FALSE,

    install = FALSE)

cns_vars <- c("B06001_001E","B06001_002E","B06001_003E","B06001_004E","B060

01_005E","B06001_006E","B06001_007E","B06001_008E","B06001_009E","B06001_01

0E","B06001_011E","B06001_012E")

IN_POP_BY_COUNTY_BY_AGE <-

  suppressMessages(

    get_acs(

      geography = "county",

      state = "IN",
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      variables = cns_vars,

      survey = "acs1",

      year = 2015,

      output = "wide"

    )

  )

IN_POP_BY_COUNTY_BY_AGE =

  rename(

    IN_POP_BY_COUNTY_BY_AGE,

    `Total`=B06001_001E,

    `Under 5`=B06001_002E,

    `5 to 17`=B06001_003E,

    `18 to 24`=B06001_004E,

    `25 to 34`=B06001_005E,

    `35 to 44`=B06001_006E,

    `45 to 54`=B06001_007E,

    `55 to 59`=B06001_008E,

    `60 and 61`=B06001_009E,

    `62 to 64`=B06001_010E,

    `65 to 74`=B06001_011E,

    `75+`=B06001_012E

  )

Copy the entire script into the R script editor in Power BI. The name of the data 

frame will be IN_POP_BY_COUNTY_BY_AGE by default. If you want to rename the 

query, then you need to go into edit mode to do so. If you are happy with the name, you 

can load the data set directly into the Power BI data model to use as the source for some 

awesome visualizations.

�Reading Census data into Power BI via an  
API using Python
You also have the option of using Python to load data. The following section described 

the steps to bring in the Census data into Power BI using Python. The workflow is similar 

to the workflow involving R.
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�Step 1: Get a personal Census API key
The Census API key is optional to access Census data using the censusdata library from 

Python. To get one, go to the following URL: https://api.census.gov/data/key_

signup.html. You need to fill out a short form, accept the terms of service, then click the 

Submit Key Request button. The Census Bureau will respond with an email that contains 

your API key. Make sure you save the key in a safe location.

�Step 2: Load the necessary Python libraries
The two libraries needed in this script are the pandas and censusdata library. Pandas 

is used for data manipulation, and the censusdata library is used to interface with the 

Census API. Here is the code needed to load the libraries:

import pandas as pd

import censusdata

Please refer to the book’s introduction to get instructions of how to install python 

libraries if the preceding libraries are not installed.

�Step 3: Identify the variables you want to return in your 
data set
You need to search the acs5 data set for variables that contain calendar year 2015 

population information by age bands. Type the following code in your console to 

perform the search:

v15 = censusdata.search(

    'acs5',2015,'concept',

    'PLACE OF BIRTH BY AGE IN THE UNITED STATES')

The preceding code is not part of the main script. It is used to search for the 
variables that are available based on the preceding criteria. A script is available in 
the GitHub repo for this chapter that not only retrieves the variable info but also 
saves the information as a csv file if you prefer to explore the data in that format.
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The preceding code uses the search function from the censusdata library. The 

first argument is the survey that contains the variables you want to use, the second 

argument is the year you want to search, and the third argument is the field you want 

to search. You can choose label or concept. You used the concept because that field 

contains the description of the variables you are looking for. The last argument is the 

search criteria.

The censusdata.search function returns a list of tuples.

A tuple is a sequence of objects that cannot be changed after being set. The big 
difference between tuples and lists in python is that lists can be changed after the 
fact but tuples cannot.

Each tuple contains three elements. The first element in each tuple is the variable 

name, the second element is the concept, and the third element is the label. The list 

returned in the search using the preceding code contains 120 tuples. You can subset the 

first five elements of the tuple to get an idea of what the information looks like using the 

following code:

v15[0:5]

The preceding code subsets the v15 list by getting the elements starting at position 0 

and ending at but not including position 5. The result is a list that includes the elements 

in positions 0, 1, 2, 3, and 4. A reformatted version of the output is listed as follows.  

The output was reformatted, so you can easily identify each tuple:

[

    ('B06001_001E',

    'B06001.  PLACE OF BIRTH BY AGE IN THE UNITED STATES',

    'Total:'),

    ('B06001_001M',

    'B06001.  PLACE OF BIRTH BY AGE IN THE UNITED STATES',

    'Margin Of Error For!!Total:'),

    ('B06001_002E',

    'B06001.  PLACE OF BIRTH BY AGE IN THE UNITED STATES',

    'Under 5 years'),
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    ('B06001_002M',

    'B06001.  PLACE OF BIRTH BY AGE IN THE UNITED STATES',

    'Margin Of Error For!!Under 5 years'),

    ('B06001_003E',

    'B06001.  PLACE OF BIRTH BY AGE IN THE UNITED STATES',

    '5 to 17 years')

]

�Step 4: Create a variable that is based on the list  
variables you want
After you identify the variables you want, you need to put them in a python list. Here is 

the python list that contains the variables that have the population for each age band 

that we need:

cns_vars = [

    "B06001_001E","B06001_002E","B06001_003E","B06001_004E",

    "B06001_005E","B06001_006E","B06001_007E","B06001_008E",

    "B06001_009E","B06001_010E","B06001_011E","B06001_012E"

    ]

B06001_001E represents the total population, B06001_002E represents the 

population under 5, B06001_003E represents the population between 5 and 17, 

B06001_004E represents the population between 18 and 24, B06001_005E represents the 

population between 25 and 34, B06001_006E represents the population between 35 and 

44, B06001_007E represents the population between 45 and 54, B06001_008E represents 

the population between 55 and 59, B06001_009E represents the population between 

60 and 61, B06001_010E represents the population between 62 and 64, B06001_011E 

represents the population between 65 and 74, and B06001_012E represents the 

population that is 75 years of age and above.
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�Step 5: Create a list of tuples that contains the  
geographies you want to in your data set
Next, you define your geographical requirements in a list of tuples. Each tuple in the 

list will have two elements with the first element being the type of geographical entity 

you want to use and the second element being the FIPS code of the actual geographical 

entity you want to return.

In this example, you need population information for the state of Indiana broken out 

by county. You define your requirements using the following code:

geographies = [('state', '18'),('county', '*')]

The first tuple defines the state requirement. You use the value ‘state’ to identify the 

tuple as a “state” tuple, and you use the FIPS code 18 to identify Indiana. This tuple limits 

the entire search to the state of Indiana. If you don’t know the FIPS code for Indiana, you 

can leverage the us package to find that information using the following code:

import us

us.states.IN.fips

The second tuple is used to define the counties you want to return. You use the value 

‘county’ to tell censusdata that you want to return counties, and you use the asterisk 

because you want to return all 92 counties in Indiana.

�Step 6: Retrieve the data using the censusdata.download() 
function
The following code gets the population data that you want from the US Census and puts 

the data in a data frame named IN_POP_BY_COUNTY_BY_AGE:

IN_POP_BY_COUNTY_BY_AGE = censusdata.download(

    'acs5', 2015, censusdata.censusgeo(geographies),

    cns_vars)
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The first argument is used to define the source you want to use which, in this case, 

is the acs5 survey. The second argument is used to define the year you want to return. 

The third argument is used to define the geographical requirements. The list you created 

in Step 5 that contains the geographical requirements is passed to the censusdata.

censusgeo() function in this argument. The last argument is the cns_vars list. The cns_

vars is a list of variables you created in Step 4 that identifies the variables you want to 

download.

�Step 7: Reset the index of the data frame created in  
Step 6
The geography information is contained in the index of the data frame, but that 

information needs to be in a dedicated column in order for it to be available for Power 

BI. You use the reset_index method of the data frame to put the values of the index in a 

dedicated column. Here is the code to do that:

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.reset_index()

The result of running the preceding code is the indexes will be moved to a column 

named index. Now that information will be available for Power BI.

�Step 8: Define the new column names
The variables that were identified in Step 4 will be used to name the columns in the 

returned data set. Those names are somewhat cryptic, and they don’t give a good 

representation of what they represent. The pandas package gives you the ability to 

rename the columns with more meaningful names. The following python dictionary will 

give pandas the renaming requirements:

new_names = {

    'index':'Geography','B06001_001E':'Total',

    'B06001_002E':'Under 5','B06001_003E':'5 to 17',

    'B06001_004E':'18 to 24','B06001_005E':'25 to 34',

    'B06001_006E':'35 to 44','B06001_007E':'45 to 54',
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    'B06001_008E':'55 to 59','B06001_009E':'60 and 61',

    'B06001_010E':'62 to 64','B06001_011E':'65 to 74',

    'B06001_012E':'75+'

    }

The preceding data is a python dictionary that has key/value pairs that will be used 

to rename the columns. The keys in the key/value pairs represents the old column name, 

and the values in the key/value pairs represents the new column name.

�Step 9: Rename columns
The columns are renamed using the following code:

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.rename(

    columns=new_names)

The rename method of the IN_POP_BY_COUNTY_BY_AGE data frame is used to 

rename the columns. The columns argument uses the new_names dictionary to get the 

information it needs to rename the columns.

�Step 10: Copy the script into Power BI
Here’s the entire script:

import pandas as pd

import censusdata

cns_vars = [

    "B06001_001E","B06001_002E","B06001_003E","B06001_004E",

    "B06001_005E","B06001_006E","B06001_007E","B06001_008E",

    "B06001_009E","B06001_010E","B06001_011E","B06001_012E"

    ]

geographies = [('state', '18'),('county', '*')]
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IN_POP_BY_COUNTY_BY_AGE = censusdata.download(

    'acs5', 2015, censusdata.censusgeo(geographies),

    cns_vars)

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.reset_index()

new_names = {

    'index':'Geography','B06001_001E':'Total',

    'B06001_002E':'Under 5','B06001_003E':'5 to 17',

    'B06001_004E':'18 to 24','B06001_005E':'25 to 34',

    'B06001_006E':'35 to 44','B06001_007E':'45 to 54',

    'B06001_008E':'55 to 59','B06001_009E':'60 and 61',

    'B06001_010E':'62 to 64','B06001_011E':'65 to 74',

    'B06001_012E':'75+'

    }

IN_POP_BY_COUNTY_BY_AGE = IN_POP_BY_COUNTY_BY_AGE.rename(

    columns=new_names)

Copy the entire script into the Python script editor in Power BI. The name of the data 

frame returned will be IN_POP_BY_COUNTY_BY_AGE by default. If you want to change 

the name, you need to go into edit mode of Power Query to do so. Otherwise, if you are 

happy with the name, you can load the data set directly into the Power BI data model.

�Summary
In this chapter, you learned how to bring in data from the US Census directly into the 

Power BI data model using R and Python. Bringing disparate data from outside sources 

like the US Census can greatly enhance your data models. You are not limited to the US 

Census API as there are many Data APIs that give you programmatic access to some very 

rich data sources. Once added to Power BI, these data sources can be the basis for some 

amazing visualizations.
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CHAPTER 7

Advanced String 
Manipulation and  
Pattern Matching
Basic string manipulation and pattern matching tasks can be handled using one of the 

numerous string functions pre-packaged in Power Query. You can access many of these 

functions from the graphical interface, and they are also available for use in custom 

columns. These functions work great for simple situations but are not sufficient in 

more advanced scenarios. Fortunately, R and Python have advanced tools that enable 

you to perform advanced string manipulation and pattern matching tasks beyond the 

capabilities of Power Query.

In this section of the book, you will learn how to leverage R and Python for advanced 

string manipulation and pattern matching. The focus will be on the use of regular 

expression. Regular expressions, sometimes referred to as regex, are text strings used to 

describe a search pattern. They are extremely powerful, and they enable you to perform 

string manipulation and pattern matching that requires advanced business logic that is 

not possible using the basic matching methods used in Power Query.

In this chapter, you will learn how to

•	 Mask sensitive data

•	 Count the number of words and sentences in a memo field

•	 Scrub names that are not in a valid format

•	 Test to see if a pattern exists in a string

You will learn these methods using scenarios that you may encounter in business. 

Let’s first learn how to mask sensitive data.
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�Masking sensitive data
Many companies collect personal data on their customers, which makes both the 

company and their customers vulnerable to security breaches. Most companies have 

strict guidelines in place to minimize this risk. But sometimes companies need to share 

data with outside vendors in order to gain more insights about their data. When they do 

this, they need to make sure that any sensitive data is masked to protect their customers.

In this scenario, the VP of Collections, Marc Lovejoy, is working with the VP of 

IT, Didi Costas, to develop an analytical reporting system using Power BI. One of the 

requirements of the analytical system is that they need to perform sentiment analysis 

on the comments that the collectors create after every call with the debtors. Some of 

the comments contain SSNs and phone numbers. They want to use Microsoft Cognitive 

Services, but they need to mask the SSNs and telephone numbers before they send the 

comments to Microsoft Cognitive Services for sentiment analysis.

Microsoft Cognitive Services are a set of machine learning algorithms that were 
built by Microsoft to help solve certain problems that require AI. You will learn how 
to perform sentiment analysis in Power BI in a subsequent chapter.

They shared the requirement with their analyst, Tank Wade, and he came up with 

two solutions: one using R and one using Python. Here is the solution using R.

�Masking sensitive data in Power BI using R
We will illustrate in the steps that follows how we can leverage regular expressions to 

mask data in Power BI via R. Doing this task using native Power Query features would be 

extremely hard to do if not impossible. Let’s go over the required steps!

�Step 1: Import tidyverse and stringr

As always, you start off with the package loads. The first package you will load is 

tidyverse. You will use the dplyr package from tidyverse to add a new field to your data set 

and the readr package from tidyverse to read in the data into the data frame. The stringr 

package will do the heavy lifting in this script. You will leverage regular expressions with 
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the str_replace function to mask the sensitive data. Here is the code needed to load the 

required packages:

library(tidyverse)

library(stringr)

�Step 2: Create the scrub data function

One of the nice features about using R is how easy it is to build a custom function that 

you can use later in your script. The custom function in this script will take in the text, 

search for SSNs and phone numbers using a regular expression, mask any SSNs and 

phone numbers it finds, and return the mask data. Here are the steps needed to create 

the function:

	 1.	 Create the shell of the function as shown here:

mask_text <- function(unmask_text){

}

The name of the function will be mask_text. The function takes 

one argument named unmask_text.

	 2.	 Create a regular expression that matches the pattern of a US 

phone number and assign the value to a variable named phone_

pattern:

phone_pattern = "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

The preceding regular expression is a common expression used 

to match phone numbers. Regular expressions like these can be 

easily found via a bing search.

	 3.	 Create a regular expression that matches the pattern for a SSN and 

assign the value to a variable named ssn_pattern:

ssn_pattern = "\\d{3}-\\d{2}-\\d{4}"

As with the phone number example, chances are you can find 

regular expressions that do a good job of matching a valid SSN 

format via an Internet search. But for this example, I wanted to 

show how easy it is to develop a regular expression to match a SSN 

pattern.
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You can identify numbers in regular expression with the \d character 

combination. Because \ is a special character in regular expression, 

you need to escape the backlash in \d by adding another \.

Characters such as the \ and . have special meanings in regular expressions. 
These characters are known as metacharacters. If you want to use the literal 
representation of these characters in a regular expression, you need to escape 
them with a backslash (\). So, if you wanted to search for a period (.) in a string, 
you need to preface it with a \ to tell the regular expression that you want to 
literally search for a period. Since the \ is itself a metacharacter, you also need 
to escape it. With that being said, if you want to send \. to the regular expression 
engine, you need to send the string “\\.”.

Now that you know of a way to identify numbers in a regular 

expression, let’s build the basic pattern of a SSN. The basic 

pattern of a SSN is three digits, followed by a dash, followed by 

two digits, followed by another dash, and ending with four digits. 

The regular expression pattern that is held in the ssn_pattern 

mimics that pattern by using a combination of the \\d and {}. The 

\\d tells the regular expression that you want to match a number, 

and the number in the {} tells the regular expression the number 

of occurrences of a digit you want to match. The dashes in the 

regular expression are placed in the location where you would 

expect to find them in a SSN number.

	 4.	 The phone numbers are masked using the following code:

cleanned_text <- str_replace(

    unmask_text, pattern = phone_pattern,

    replacement = "XXX-XXX-XXXX")

In the preceding code, the str_replace function is used to mask 

any phone numbers that are found in the text. What makes this 

function different than the Text.Replace function in Power Query 

is that you are able to use regular expressions in str_replace, but 

you can’t use them in Text.Replace function. You can do very basic 
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pattern matching in Power Query but not the type you can do with 

regular expressions. The preceding str_replace function takes the 

string that is passed to it and searches it to see if it matches the 

pattern of the regular expression passed to it. If it finds the string, 

it replaces it with a mask defined in the replacement argument. So, 

if the string “Ryan’s phone number is 555-852-6301 and his SSN is 

123-45-6789” is passed to the function, “Ryan’s phone number is 

XXX-XXX-XXXX and his SSN is 123-45-6789” will be returned.

	 5.	 The SSNs are masked in the comments using the following code:

cleanned_text <- str_replace(

    cleanned_text, pattern = ssn_pattern,

    replacement = "XXX-XX-XXXX")

The preceding code takes the results of the phone mask and 

applies a similar technique to mask SSN using the ssn_pattern. So, 

if “Ryan’s phone number is XXX-XXX-XXXX and his SSN is 123-45-

6789” was passed to the function, “Ryan’s phone number is XXX-

XXX-XXXX and his SSN is XXX-XX-XXXX” will be returned.

	 6.	 The last line of the function returns the result of the SSN and 

phone masking using the return function.

Here is the complete code for the function:

mask_text <- function(unmask_text){

  phone_pattern = "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

  ssn_pattern = "\\d{3}-\\d{2}-\\d{4}"

  cleanned_text <- str_replace(

    unmask_text, pattern = phone_pattern,

    replacement = "XXX-XXX-XXXX")

  cleanned_text <- str_replace(

    cleanned_text, pattern = ssn_pattern,

    replacement = "XXX-XX-XXXX")

  return(cleanned_text)

}
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The logic needed to perform the SSN and Phone Number masking is abstracted in 

the mask_text function. So, when we need to perform a SSN mask and Phone Number 

mask, we can do so with a simple function call. Abstracting the business logic in a 

function makes the code much more readable and makes it easier to reuse complex 

business logic without having to rewrite the code.

�Step 3: Read the comments into a data frame

Read the contents of the Comments.csv file into a data frame and put it in the df variable 

using the following code:

df <- read_csv("Comments.csv")

If you are curious to see what the data that you read in look like, you can type the 

following code in the console to return a view that displays the data frame as a formatted 

tabular data set:

View(df)

�Step 4: Mask the phone numbers and ssn numbers in the 
comment field

In this step, you will apply the mask_text function to the Comment field. We do so via 

the mutate() function from dplyr, which enables us to do an inline modification of the 

Comment field. Here is the code that performs this task:

df <-

  df %>%

  mutate(Comment = mask_text(Comment))

�Step 5: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the R script editor in GetData. 

Here is the complete script:

library(tidyverse)

library(stringr)

Chapter 7  Advanced String Manipulation and Pattern Matching 



241

setwd("<path where the Comments.csv file is located>")

mask_text <- function(unmask_text){

  phone_pattern = "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

  ssn_pattern = "\\d{3}-\\d{2}-\\d{4}"

  cleanned_text <- str_replace(

    unmask_text, pattern = phone_pattern,

    replacement = "XXX-XXX-XXXX")

  cleanned_text <- str_replace(

    cleanned_text, pattern = ssn_pattern,

    replacement = "XXX-XX-XXXX")

  return(cleanned_text)

}

df <- read_csv("Comments.csv")

df <-

  df %>%

  mutate(Comment = mask_text(Comment))

The resulting data frame with the masked data will be exposed to Power BI as a data 

set that you can add to Power BI data model. This information can be used to enhance 

your Power BI data model, which will enable you to create richer visualizations.

�Masking sensitive data in Power BI using Python
We used R in the previous example to mask the SSNs and Phone Numbers in the 

comments. We can do the same with Python using similar logic but just a different 

programming language. You will find many instances where you can perform a 

task equally as well in R or Python. The language that you used is often a matter of 

personal preference. Let’s now go over how to perform the masking we just did in R 

using Python.
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�Step 1: Import pandas, os, and re library

As always, you start off with the library loads. The first library you will load is pandas. 

You will use it to read in the data and to mask the data in the Comment field. You will 

also load the os package for some minor file system task, and the re package will be used 

to handle the regular expression needs in this script. Here is the code that loads the 

necessary libraries:

import pandas as pd

import re

import os

�Step 2: Create the mask_text function

Next, you need to build a custom function to mask the phone numbers and SSNs that are 

in the Comment field. The function in this script will take in the text from the Comment 

field, find the SSNs and phone numbers in the Comment field based on a regular 

expression pattern match, mask the SSNs and phone numbers, then return the text with 

the mask data. Here are the steps to create the function:

	 1.	 Create the shell of the function as shown here:

def mask_text (unmask_text):

The name of the function will be mask_text. The function takes 

one argument named unmask_text.

	 2.	 Create a regular expression that matches the pattern of a US 

phone number and assign the value to a variable named phone_

pattern:

phone_pattern = r"([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

The preceding regular expression is a common expression used to 

match phone numbers. Many common patterns such as patterns 

to match phone numbers and SSNs are easily found via a Bing or 

Google searches.

Chapter 7  Advanced String Manipulation and Pattern Matching 



243

Please note the use of r before the regular expression. In Python, but not in 
versions of R prior to version 4.0.0, you can prefix a string with r to tell Python you 
want to treat the string as a raw string. When you do so, the backslash is treated 
as its literal representation and not as a special metacharacter. This prevents you 
from having to escape the backslashes.

	 3.	 Create a regular expression that matches the pattern of a SSN and 

assign the value to a variable named ssn_patterns:

ssn_pattern = r"\d{3}-\d{2}-\d{4}"

The pattern of a SSN is three digits, followed by a dash, followed 

by two digits, followed by another dash, and ending with four 

digits. In the preceding regular expression, you use \d to identify a 

digit and you use {n} to tell the regular expression how many times 

you want to match the preceding pattern. So \d{3} in the regular 

expression says that you want to match three consecutive digits.

The regular expression in this example is lax and will result 

in many false-positive matches because only certain digit 

combinations can be used in a SSN. There are more complicated 

regular expressions that you can use to reduce the number of 

false positives, but the higher level of complexity may make them 

much harder to read. When using regular expressions, you must 

consider the trade-off of accuracy and interpretability.

	 4.	 The phone numbers are masked using the following code:

cleanned_text = re.sub(

    phone_pattern, "XXX-XXX-XXXX", unmask_text)

In the preceding code, the re.sub function is used to mask any 

phone numbers that are found in the text with Xs. One of the 

things that make this function different than the Text.Replace 

function in Power Query is that you are able to use regular 

expressions with this function.
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	 5.	 The SSNs are masked in the comments using the following code:

cleanned_text = re.sub(

    ssn_pattern, "XXX-XX-XXXX", cleanned_text)

The code above takes the results of the phone mask and applies a 

similar technique using the ssn_pattern pattern.

	 6.	 The last line of the function returns results of the SSN and phone 

number masking using the return statement.

Here is the complete code needed to create the function:

def mask_text (unmask_text):

    phone_pattern = \

        r"([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

    ssn_pattern = r"\d{3}-\d{2}-\d{4}"

    cleanned_text = re.sub(

        phone_pattern, "XXX-XXX-XXXX", unmask_text)

    cleanned_text = re.sub(

        ssn_pattern, "XXX-XX-XXXX", cleanned_text)

    return cleanned_text

The logic needed to perform the SSN and Phone Number masking is abstracted in 

the mask_text function. So, when you need to mask SSNs and Phone Numbers, you can 

do so with a simple function call. Abstracting the business logic in a function makes the 

code much more readable and makes the business logic easier to reuse.

�Step 3: Set the working directory

Set the working directory to the location of the Comments.csv file using the 

following code:

os.chdir("<path to folder that contains the Comments.csv file")
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�Step 4: Read the comments into a data frame

Read the contents of the Comments.csv file into a data frame using pandas and assign the 

data frame to a variable named df using the following code:

df = pd.read_csv("Comments.csv")

�Step 5: Mask the phone numbers and SSNs

The following code does an inline update of the Comment field by applying

mask_text() function to the Comment field via the apply() method of that field:

df.Comment = df.Comment.apply(mask_text)

�Step 6: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the Python script editor in 

GetData. Here is the complete script:

import pandas as pd

import re

import os

def mask_text (unmask_text):

    phone_pattern = \

        r"([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

    ssn_pattern = r"\d{3}-\d{2}-\d{4}"

    cleanned_text = re.sub(

        phone_pattern, "XXX-XXX-XXXX", unmask_text)

    cleanned_text = re.sub(

        ssn_pattern, "XXX-XX-XXXX", cleanned_text)

    return cleanned_text

os.chdir("<path to folder that contains the Comments.csv file")

df = pd.read_csv("Comments.csv")

df.Comment = df.Comment.apply(mask_text)

df
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The resulting data frame with the masked data will be exposed to Power BI as a data 

set that you can add to Power BI model. The added data can be used to help you tell a 

better data story.

�Counting the number of words and sentences 
in reviews
When many think of data science, they think of algorithms that predict a numerical 

outcome or the probability of an event occurring. Little do they know you are not limited 

to doing those types of predictions in data science. A subset of data science includes 

techniques to work with unstructured text. This area of data science is called Natural 

Language Processing (NLP). Techniques used in NLP, such as sentiment analysis or topic 

analysis, are pretty advanced and are hard to build. In the next chapter, we will leverage 

Microsoft Cognitive Services to perform those types of tasks in Power BI. But there are 

more simple NLP techniques we can use without the need to make API calls to services 

like Microsoft Cognitive Services. We will cover two of those techniques in this chapter. 

The two techniques we will cover are counting the number of words and sentences in a 

corpus of text. Let’s illustrate with an example.

Sarah is a data analyst for Yelp. She has been tasked to add additional information 

to a report that Yelp gives their customers. The report contains the customer reviews, 

and Sarah’s boss, Jessica, wants her to add a column that contains the number of words 

in each review and a column that contains the number of sentences in each review. She 

was able to accomplish both requirements in R but was only able to perform a word 

count in Python. Here are the steps she used to perform the task in R.

�Counting the number of words and sentences in reviews 
in Power BI using R
In this example, we will use R to calculate both the number of words in a yelp review and 

the number of sentences in the review. As we have done before, we will lean on the tools 

in tidyverse to help us with this task.
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�Step 1: Import tidyverse and stringr

The two packages that will be used in this script are the tidyverse metapackage and 

stringr. The dplyr package from tidyverse will be used to add a column to the data set that 

contains a word count and to add another column that contains the sentence count. The 

str_count function from the stringr package is doing the heavy lifting in this script:

library(tidyverse)

library(stringr)

�Step 2: Change working directory to location of the file

As always, you use the setwd() function to set the working directory to the location where 

your data is. In this example, you set it to the location where the Yelp data is using the 

following code:

setwd("<file path to where the file is located>")

�Step 3: Read in the Yelp data

The read_csv function from readr is used to read in the Yelp data into an R data frame. 

The data frame is assigned to the df variable using the following code:

df <- read_csv("yelp_training_set_review_sample.csv")

�Step 4: Subset the columns

The Yelp data set is very wide. It contains many columns, and you are only interested 

in a subset of them. So, you need to create a workflow that starts with the df data frame, 

then subset it to only include the columns you are interested in. That is done using the 

following code snippet:

df <-

  df %>%

  select(id, business_categories, business_review_count,

         business_stars, business_state, business_type,

         stars,text)
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�Step 5: Add word count and sentence count columns

Now you need to add two columns to your data frame, one named word_count and 

another one named sent_count. The word_count field will store the number of words in 

the review, and the sent_count field will contain the number of sentences in the review. 

You will accomplish both tasks using the str_count function from stringr as illustrated in 

the following code:

mutate(word_count =

     str_count(text, boundary("word"))

    ,sent_count = str_count(text, boundary("sentence"))

)

The str_count function uses the boundary function to specify the type of count you 

want to do. Notice how easy it is to do a word count and sentence count! It is a simple 

function call! Performing a sentence count in Power Query is not feasible, but it is a 

simple function call in R.

�Step 6: Copy the script into Power BI

Here is the complete script:

library(tidyverse)

library(stringr)

setwd("<path to Yelp file>")

df <- read_csv("yelp_training_set_review_sample.csv")

df <-

  df %>%

  select(

       id

      ,business_categories

      ,business_review_count

      ,business_stars

      ,business_state

      ,business_type,stars,text) %>%
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  mutate(

       word_count = str_count(text, boundary("word"))

      ,sent_count = str_count(text, boundary("sentence"))

  ) 

Copy the entire script and paste it in the R script editor in GetData so you can add 

the resulting data frame to the Power BI data model. The data set is now available to 

enhance your Power BI data model to enable you to more effectively tell your data story.

�Counting the number of words in reviews in Power  
BI using Python
In this example, you will use Python to calculate the number of words in a Yelp review. 

For many tasks, both R and Python will be equally suitable, but there will be situations 

where one language is more suitable to perform a task than the other. That is the case 

here. The solution to calculate the number of sentences in a review was not as apparent 

in Python as it was in R, so we will focus on just doing the word count. The steps you can 

use to do a word count are listed here.

�Step 1: Import pandas and os

The two libraries that you will use in this script are pandas and os. The pandas library 

will be used to read the data from the Yelp file and also to calculate the number of words 

in the review. The os package will be used for some file system tasks. Here is the code 

used to import the two packages:

import pandas as pd

import os

�Step 2: Change working directory to the location of the file

The working directory is set to the location where the Yelp file is located using the os.

chdir() function. Here is the code needed to perform the task:

os.chdir(r"<file path to Yelp file>")

You are able to use the traditional file path convention because you prefaced the file 

path string with r to tell python that you want the raw version of the string. A path like 

C:\Users\Public will work because you will not need to escape the backslashes. This is 
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a feature that has been available in Python for some time now but just came available in 

R in version 4.0.0.

�Step 3: Read the Yelp data into Python

The contents of the Yelp file are read into Python via the read_csv() method from pandas 

and assigned to the variable df using the following code:

df = pd.read_csv("yelp_training_set_review_sample.csv")

�Step 4: Create the word_count column

This step is accomplished using the following code:

df["word_count"] = df["text"].str.split().apply(len)

The code is very succinct, but a lot is going on. Let’s unpack it. First, pandas uses the 

split() method from the str class to split the words in the text and put them in a pandas 

list. So, if the content in the text field was “The cat in the hat.”, the split function will split 

the text and put it in a list that contains five elements that looks like this: [The, cat, in, the, 

hat.]. The default delimiter for the split function is a white space which is what you need in 

this situation. If you were to stop here, you will be left with a data frame that has a column 

named word_count that is populated with a bunch of lists that are based on the text field.

The reason why you converted the text field to a list is to take advantage of a 

particular list property. You can use the len function against a list to get the number of 

elements in it. In the case here, each element in the list represents a word in the text, so 

the result of applying the len function against it will be a good proxy for the word count. 

The latter is done by using the apply() method to apply the len function to the list created 

by the split() function.

�Step 5: Copy the script into Power BI

The complete script looks like this:

import pandas as pd

import os

os.chdir(r"<file path to the folder where the Yelp file is>")
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df = pd.read_csv("yelp_training_set_review_sample.csv")

df["word_count"] = df["text"].str.split().apply(len)

You need to copy this script and paste it into the Python editor in Power BI. The resulting 

data frame will be available to add to the Power BI data model.

�Removing names that are in an invalid format
Data in source systems is often messy and not well formatted. In many instances, the 

data needs to be scrubbed before it can be used in reporting. That is the case in the 

example that follows.

In this scenario, Jonathan, a consultant for SQLWeave, is responsible for ETL, and he 

needs to scrub names from DimEmployees dimension table that are not in a valid format 

before he loads the data into Power BI. Only names that are in the FN MI LN or FN LN 

format will be accepted where FN stands for First Name, MI stands for Middle Initial, and 

LN stands for Last Name. Jonathan developed a script in both R and Python to handle 

this task. Here are the steps he used to perform the task in R.

�Removing names that are in an invalid format in Power  
BI using R
Here are the steps required to scrub the names using R. We will accomplish the task 

using tools that are made available in the tidyverse. Here are the steps.

�Step 1: Import tidyverse and stringr

You will use the tidyverse metapackage and stringr in this script. The readr package from 

tidyverse is used to read in the data that is contained in the DimEmployee.csv file into an 

R data frame, and dplyr from tidyverse is used to do an inline modification of the Name 

field. The modification will leverage the str_extract() function from the stringr package. 

The following code imports the required packages:

library(tidyverse)

library(stringr)
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�Step 2: Change working directory to location where 
the DimEmployee.csv file is

The setwd() function is used to set the working directory to the file path that contains 

the file:

setwd("<file path to DimEmployee.csv file>")

�Step 3: Create a regular expression to match a valid name

The regular expression that will be used to match a proper name is defined here and 

assigned to the nameWithOrWithoutMiddleInitial variable:

nameWithOrWithoutMiddleInitial = "(^[A-Z][a-z]{1,10}\\s[a-zA-Z]\\s[A-Z]

[a-z]{1,10}$)|(^[A-Z][a-z]{1,10}\\s[A-Z][a-z]{1,10}$)"

The regular expression may look complicated, but it is actually quite simple. Let’s 

break it down into steps:

	 1.	 The regular expression is matching two name patterns: one in the 

format of FN MI LN and other in the format of FN LN where FN 

is first name, MI is middle initial, and LN is last name. The two 

patterns are separated with a pipe, which stands for a logical “OR”. 

The FN MI LN pattern in the regular expression is in blue, and the 

FN LN pattern in the regular expression is in red:

(^[A-Z][a-z]{1,10}\\s[a-zA-Z\\s[A-Z][a-z]{1,10}$)|(^[A-Z][a-z]
{1,10}\\s[A-Z][a-z]{1,10}$)

	 2.	 Now let’s break down the blue section. Recall that the blue section 

is matching the pattern FN MN LN. We will focus on the FN part 

first. The regular expression uses the following code to identify the 

FN: ^[A-Z][a-z]{1,10}. The ^ tells the regular expression that 

you are starting the match from the beginning of the string. The 

^ is followed by [A-Z] which tells the regular expression that the 

first character must match a capital letter between A and Z. Next 

is [a-z]{1,10}. That combination tells the regular expression that 

the next 1–10 characters should be a lowercase letter between a 

and z. This gives the regex flexibility to match a first name that has 

a length of 2–11 letters.
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	 3.	 The MI in the blue part of the regular expression is matched using 

the following code: \\s[a-zA-Z]\\s. The \\s is used in regular 

expression to match white spaces. Recall that the \ is a special 

metacharacter, so if you want to literally use a backslash in your 

regular expression, you need to escape it with another backslash. 

The MI needs to be a single upper- or lowercase letter, and 

[a-zA-Z] matches that situation. A white space is needed between 

the MI and LN, so \\s is used to match that criteria.

	 4.	 Last, we need to match the last name on the blue section. That is 

done using the following pattern: [A-Z][a-z]{1,10}$. The [A-Z]  

tells the regular expression that the first letter in the LN needs 

to be uppercase. The [a-z]{1,10} combination tells the regular 

expression that the subsequent letters in the last name must be 

lowercase and {1,10} says that you can have 1–10 lowercase 

letters. The $ in the regular expression terminates the match.

	 5.	 The FN LN match is in red. The only difference is that \\s[a-zA-Z]\\s  

is removed because you are trying to match a name that does not 

have a middle initial.

�Step 4: Read the data into a data frame

Read in the contents of the DimEmployee.csv file into an R data frame and assign it to the 

df variable using the following code:

df <- read_csv("DimEmployee.csv")

�Step 5: Do an inline update of the Name column

The code used to perform this step is listed as follows:

df <-

  df %>%

  mutate(Name = str_extract(Name,nameWithOrWithoutMiddleInitial))

The mutate() function is used to do the inline update. The str_extract() function from 

stringr tests the Name field to see if it matches the regular expression pattern defined in 

the nameWithOrWithoutMiddleInitial variable. If it finds a match, it will extract the text 

that matches the pattern from the Name field. Otherwise, it returns nothing.
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�Step 6: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the R script editor in GetData. 

Here is the complete script:

library(tidyverse)

library(stringr)

setwd("C:/Users/rwade/Downloads/Chapter5/Chapter5")

nameWithOrWithoutMiddleInitial = "(^[A-Z][a-z]{1,10}\\s[a-zA-Z]\\s[A-Z]

[a-z]{1,10}$)|(^[A-Z][a-z]{1,10}\\s[A-Z][a-z]{1,10}$)"

df <- read_csv("DimEmployee.csv")

df <-

  df %>%

  mutate(Name = str_extract(Name,nameWithOrWithoutMiddleInitial))

The resulting data frame with the masked data will be exposed to Power BI as a data 

set that you can add to Power BI model.

�Removing names that are in an invalid format in  
Power BI using Python
Here are the steps required to scrub the names using Python. We will accomplish the 

task using pandas, re, and os. Here are the steps.

�Step 1: Import pandas, re, and os library

You will use pandas, re, and os in this script. The pandas library is used to read in the 

data in the DimEmployee.csv file into a Python data frame and is also used to do an inline 

modification of the Name field. The modification will leverage some functions from the 

re library to perform some regular expression tasks. It will also use the os package to 

handle the file system tasks. Here is the code used to import those libraries:

import pandas as pd

import re

import os

Chapter 7  Advanced String Manipulation and Pattern Matching 



255

�Step 2: Change working directory to the location where 
the DimEmployee csv file is

The script uses the os.chdir() to change the working directory to the location that 

warehouses the DimEmployee.csv file using the following code:

os.chdir(r"<file to the DimEmployee.csv file>")

�Step 3: Read in the DImEmployee data into an R data frame

The read_csv() method from the pandas package is used to read in the contents of the 

DimEmployee.csv file into a pandas data frame, and it is assigned to the df variable using 

the following code:

df = pd.read_csv("DimEmployee.csv")

�Step 4: Create a regular expression that matches a valid name

The regular expression that you will use that matches a proper name is defined as 

follows:

r'([A-Z][a-z]{1,10}\s[a-zA-Z]\s[A-Z][a-z]{1,10})|' \

r'([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})'

The regular expression is compiled using the compile method from the re package, 

and it is assigned to the nameWithOrWithoutMiddleInitial variable. The regular 

expression may look complicated, but it is actually quite simple. Let’s break it down 

into steps:

	 1.	 The regular expression is matching two name patterns: one in the 

format of FN MI LN and other in the format of FN LN where FN 

is first name, MI is middle initial, and LN is last name. The two 

patterns are separated with a pipe, which stands for a logical “OR”. 

The FN MI LN part of the pattern in the regular expression is in 

blue, and the FN LN part of the pattern of the regular expression 

is in red. The expression is prefaced with r, which tells Python to 
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treat the string as a raw string. Raw strings interpret backslashes in 

a literal fashion and not as a special character, so backslashes in a 

raw string do not need to be escaped:

r’([A-Z][a-z]{1,10}\s[a-zA-Z\s[A-Z][a-z]{1,10})|’ \

r’([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})’

	 2.	 Now let’s break down the blue section. Recall that the blue section 

is matching the pattern FN MN LN. We will focus on the FN part 

first. The regular expression uses the following code to identify 

the FN: [A-Z][a-z]{1,10}. The [A-Z] part of the regex says that 

that the first character in the pattern should match a capital 

letter between A and Z. Next is [a-z]{1,10}. That combination 

of characters tells the regular expression that the next 1–10 

characters should be a lowercase letter between a and z. This gives 

the regex flexibility to match a first name that has a length of 2–11 

characters.

	 3.	 The MI in the blue part of the regular expression is matched 

using the following code: \s[a-zA-Z]\s. The \s is used in regular 

expression to match a white space. The MI needs to be a single 

upper- or lowercase letter, and [a-zA-Z] matches that situation. 

A white space is needed between the MI and LN, so \s is used to 

match that criteria. You did not need to use a backslash to escape 

your backslashes because the regular expression string was 

converted to a raw string so the backslash is not interpreted as a 

special character.

	 4.	 Next, you need to match the last name. That is done using the 

following pattern: [A-Z][a-z]{1,10}. The [A-Z] tells the regular 

expression that the first letter in the LN needs to be uppercase. 

The [a-z]{1,10} combination tells the regular expression that the 

subsequent letters in the last name must be lowercase, and {1,10} 

says that you can have 1–10 lowercase letters. The $ in the regular 

expression terminates the expression.

	 5.	 The FN LN match is in red. The only difference is that \s[a-zA-Z]\s  

is removed because we don’t need to match a middle initial.
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The previous five steps illustrated how simple regular expressions are and how easy 

it is to match patterns with them. The pattern we used earlier was simple, but there 

are many features in regular expressions that enable you to match some complicated 

patterns. They are very powerful and are a must in a data analyst toolkit.

�Step 5: Compile the regular expression

The code required to perform this step is given here:

namepattern = \

    r'([A-Z][a-z]{1,10}\s[a-zA-Z]\s[A-Z][a-z]{1,10})|' \

    r'([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})'

nameWithOrWithoutMiddleInitial = re.compile(namepattern)

First, we assign the regular expression that was created in Step 4 to a 

variable named namepattern. Then we create an object pattern named 

nameWithOrWithoutMiddleInitial using the compile() method from re. The object will 

be used to perform the pattern matching in later steps.

�Step 6: Define a function that executes the name test

The name of the function that performs the scrubbing is scrubName. Here is the code:

def scrubName(name):

    m = nameWithOrWithoutMiddleInitial.fullmatch(name)

    if m:

        return m.group(0)

    else:

        return None

The function takes one argument which is the name you want to scrub. 

The first line of code in the function uses the fullmatch() method from the 

nameWithOrWithoutMiddleInitial regular expression object. This method takes the 

name argument that was passed to the function and tests to see if the name fully 

matches the pattern defined in nameWithOrWithoutMiddleInitial. Note that you did not 

have to use a ^ or $ to define the beginning and end of your pattern since you are doing a 

full match.
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The result is stored in m. If there is a match, then a match object is returned; 

otherwise, None is returned which is Python’s equivalent to null. The match object has 

many different methods. The one you will use is the group() method. Let’s illustrate with 

a simple regular expression:

import re

p = re.compile("(Ryan)\\s(Wade)")

m = p.fullmatch("Ryan Wade")

m.group(0)

m.group(1)

m.group(2)

The regular expression used here is a literal expression that matches my name. My 

first name and last name are put into groups using parentheses. So if I passed the string 

“Ryan Wade” to p, fullmatch() will obviously find a match, and it will break the match 

in three groups. If I want to return the full matched string “Ryan Wade”, use m.group(0) 

because 0 returns the full match. If I want to return just “Ryan”, use m.group(1), and if I 

just want to return “Wade”, use m.group(2).

So, let’s go back to the scrubName function. If a match is found, you want to return 

the entire string. You can retrieve the full match using group 0. If a match is not found, 

then None is returned.

�Step 7: Apply the function to the column to scrub the name

An inline update is done using the following code:

df["Name"] = df.Name.apply(scrubName)

The apply method of the Name field is used to apply the scrubName function to the 

Name field.

�Step 8: Copy the script into Power BI

In the last step, you copy the entire script and paste it in the Python script editor in 

GetData. Here is the complete script:

import pandas as pd

import re

import os
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os.chdir(r"<file to the DimEmployee.csv file>")

df = pd.read_csv("DimEmployee.csv")

namepattern = \

    r'([A-Z][a-z]{1,10}\s[a-zA-Z]\s[A-Z][a-z]{1,10})|' \

    r'([A-Z][a-z]{1,10}\s[A-Z][a-z]{1,10})'

nameWithOrWithoutMiddleInitial = re.compile(namepattern)

def scrubName(name):

    m = nameWithOrWithoutMiddleInitial.fullmatch(name)

    if m:

        return m.group(0)

    else:

        return None

df["Name"] = df.Name.apply(scrubName)

The resulting data frame will be made available to the Power BI data model.

�Identifying patterns in strings based on  
conditional logic
Most string parsing functions can be handled relatively easily using Power Query’s 

native functionality. But when your string parsing is based on conditional logic, the 

code can get verbose and hard to understand. Fortunately, many situations that require 

string parsing with conditional logic can be handled more succinctly in R and Python 

via regular expressions. Let’s illustrate how the fictitious company, MC Diesel, solved a 

business problem by using regular expressions based on conditional business logic to 

parse a string.

Rodney is the Executive Director for MC Diesel. He knows that MC Diesel had 

issues in the past with two parts they manufacture. The two parts are fuel pumps (part # 

561769) and fuel injectors (part # 561394). The issues were localized to plants in AL, LA, 

and OH and only occurred in models A and B.

Rodney tasked his data scientist, Annie Su, to develop a dashboard with drill-

through capabilities to help him further diagnose and monitor the problem. The only 

data Annie was able to obtain was a report with information listed in Table 7-1.
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It appears that the report does not contain any information that identifies warehouse 

location or part number and that information is needed for the analysis. Annie is very 

smart, and she remembered that the SKU number is not some arbitrary number. She 

knows that each part of the number has meaning. She knows that the first six digits 

represent the part number, the digits in positions 7 and 8 are the state FIPS code of the 

warehouse where the product was made, the character in position 9 represents the 

model, and the digit in position 10 represents the shift that the product was made in. So, 

an item with a SKU of 56176922A2 represents the following:

•	 A fuel pump because the first six digits, 561769, are the product 

numbers for fuel pumps

•	 Was manufactured in Louisiana because the digits in positions 7 and 

8, 22, are the state FIPS code for the state of Louisiana

•	 Has a model type of A because the character in position 9 is “A”

•	 Was manufactured during the second shift because the digit in 

position 10 is 2

Annie needs to create a calculated column that returns the part number from the 

SKU if the following conditions are met:

Table 7-1.  Parts Report

Date Key SKU Shift Store ID Recalled

20190813 75197726D3 3 263 False

20191211 70136522D1 1 221 False

20190401 70195609A3 3 92 False

20191228 75102709B1 1 91 False

20190304 70162016C3 3 161 True

20191218 70136526D2 2 263 False

20190322 70162029D1 1 291 False

20191012 70136539C2 2 395 False

20190318 56176926B2 2 262 False
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•	 Is a fuel pumps made in AL, LA, or OH with a model type of A or B.

•	 Is a fuel injectors made in AL, LA, or OH with a model type of A or B.

If she performed this task using Power Query, the resulting code will be very verbose 

but much more succinct using R or Python. The following steps illustrate how Annie was 

able to create a solution using R.

�Identifying patterns in strings based on conditional logic 
in Power BI using R
We will leverage regular expressions to match the products using the criteria defined 

earlier. This example will illustrate how succinctly we are able to describe the logic 

needed to find the SKUs we are looking for. The same criteria would be very verbose in 

Power Query if you had to use M code. Let’s go over the steps.

�Step 1: Import the tidyverse and stringr packages

The first step is to import the required packages. The readr from tidyverse is used to read 

in the contents of the ProductionOrders.csv file into an R data frame. The dplyr package 

is used to handle the data frame manipulation tasks, and the stringr package is used 

to handle the string manipulation tasks. Here is the code used to import the preceding 

packages:

library(tidyverse)

library(stringr)

�Step 2: Change the working directory

The working directory is changed to the file path that contains the ProductionOrders.csv 

file using the setwd() function as illustrated in the following code:

setwd("<Path to ProductionOrders.csv file>")
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�Step 3: Create a function that identifies the products

The name of the function to handle this task is monitoredProducts. Here are the steps to 

create the function:

	 1.	 Create the shell of the function using the following code:

monitoredProducts <- function(sku){

}

The monitoredProducts product function will require just one 

parameter, sku.number.

	 2.	 Next, you need to define a regular expression that finds all fuel 

pumps (561769) and injectors (561394) that were created in AL, 

LA, or OH with a model type of A or B. You also want to return just 

the product number portion of the SKU and not the entire SKU 

number. You can accomplish this in regular expressions by using a 

positive lookahead.

The website www.rexegg.com says that a positive lookahead 

asserts that what immediately follows the current position in the 

string is the pattern you are looking for. Let’s look at the regular 

expression in this script and break down what that statement 

means. Here is the regular expression in question:

pattern = "^(561769|561394)(?=(01|22|39)(A|B))

The positive lookahead portion of the preceding regular 

expression is (?=(01|22|39)(A|B)). The structure of a positive 

lookahead is a regular expression grouped in parenthesis that 

starts with ?=. The pattern that follows the ?= is the pattern that 

must follow the preceding pattern in order for the match to pass.

So, the regular expression identified in the pattern variable will 

find a match in the SKU number if it

•	 Starts with 561769 or 561394

•	 Is preceded by state FIPS codes for AL, LA, or OH

•	 Has a model type of A or B
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This will make more sense when you use it in the function in Step 5.

	 3.	 In this step, you extract out the portion of the SKU that matches 

your regular expression pattern using the following code:

mp = str_extract(sku, pattern = pattern)

	 4.	 The code uses the str_extract() function to extract the strings 

that match the regular expression you define in Step 2. It will 

only return the product code portion of the string if there is a 

match. Let’s illustrate how it works with an example. If you passed 

56176939A2 to the preceding function, R will return 561769. That 

is because not only does the string pass the first condition because 

it starts with 561769 but it also passes the positive lookahead 

test because positions 7–8 in the string are 39 which is one of the 

acceptable state FIPS codes and position 9 is A which is one of the 

acceptable models. Alternatively, 56176910D2 returns NA because 

the positive lookahead fails. The state FIPS code 10 is not one of 

the FIPS codes you are looking for. The same hold true for the 

model because model D is not a model that you are looking for.

�Step 4: Read in the data from the ProductionOrders.csv file into 
an R data frame

The contents of the ProductionOrders.csv file are read into R and stored in the df variable 

using the readr package using the following code:

df <- read_csv("ProductionOrders.csv")

�Step 5: Add a column to the df named “Monitored Products”

Next, you write code that performs a simple workflow of adding a new column to the 

data frame named Monitored Products using the mutate() function from dplyr package. 

Here is the code needed to perform that action:

df <-

  df %>%

  mutate(`Monitored Products` = monitoredProducts(SKU))
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The preceding code uses the mutate() verb from dplyr to create the Monitored 

Products column that is based on the results of applying the monitoredProducts() custom 

function against the SKU column.

�Step 6: Copy the script into Power BI

Here is the complete script:

library(tidyverse)

library(stringr)

setwd("<Path to ProductionOrders.csv file>")

monitoredProducts <- function(sku){

  pattern = "^(561769|561394)(?=(01|22|39)(A|B))"

  mp = str_match(sku, pattern = pattern)[1]

  return_value = ifelse(is.na(mp),"Not Monitored", mp)

  return(return_value)

}

vmonitoredProducts = Vectorize(monitoredProducts)

df <- read_csv("ProductionOrders.csv")

df <-

  df %>%

  mutate(`Monitored Products` = vmonitoredProducts(SKU))

This script creates a data frame named df that can be added to the Power BI data 

model via the R script editor in GetData.

�Identifying patterns in strings based on conditional logic 
in Power BI using Python
In this section, we will perform the task we just completed in R with Python. As in the R 

example, the main tool that will be leveraged are regular expressions. You will see in this 

example that regular expressions are implemented in Python differently than they are in 

R. Here are the steps required to perform the task in Python.
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�Step 1: Import pandas, re, and os library

The three libraries that are used in this script are pandas, re, and os. The pandas package 

is used to read in the data into the script and is used to add a new column to the data 

frame. The re package is used to leverage regular expressions, and the os package is used 

for file system tasks. The code used to do the import is listed as follows:

import pandas as pd

import re

import os

�Step 2: Change working directory

Next, you need to change the working directory to the location on your computer where 

the ProductionOrders.csv file is located using the chdir() function from os. Here is a code 

snippet that shows what the code would look like:

os.chdir("<path to folder that contains ProductionOrders.csv>")

�Step 3: Compile the required regular expression

Next, you need to define a regular expression that finds all fuel pumps (561769) and 

injectors (561394) that were created in AL, LA, or OH and have a model type of A or 

B. You also want to return only the product number portion of the SKU and not the 

entire SKU number. You can accomplish this in regular expressions by using positive 

lookahead.

The website www.rexegg.com says that a positive lookahead asserts that what 

immediately follows the current position in the string is the pattern you are looking 

for. Let’s look at the regular expression in this script to break down what that statement 

means. Here is the regular expression in question that uses a positive lookahead:

pattern = "^(561769|561394)(?=(01|22|39)(A|B))

The positive lookahead portion of the preceding regular expression is (?=(01|22|39)

(A|B)). The structure of a positive lookahead is a regular expression grouped in 

parenthesis and starts with ?=. The pattern that follows the ?= is the pattern that must 

follow the preceding pattern in order for the match to pass.
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So, the regular expression identified in the pattern variable will pass if it

•	 Starts with 561769 or 561394

•	 Is preceded by state FIPS codes for AL, LA, or OH

•	 Has a model type of A or B

This will make more sense when you use it in the function in Step 5. After you 

define the regular expression, you create a regular expression object named pattern by 

compiling it using the compile() function from the re package. This is all accomplished 

using the following code:

pattern = re.compile(r"^(561769|561394)(?=(01|22|39)(A|B)\d{1}$)")

�Step 4: Define a function that returns the monitored products

The name of the custom function that you will create that identifies the monitored 

products is monitoredProducts. Here are the steps to create the function:

	 1.	 First, you need to create the shell of the function that accepts the 

SKU as its only parameter. You do so using the following code:

def monitoredProducts(sku):

	 2.	 Next, you attempt to create a match object using the pattern object 

you defined earlier using the following code:

m = pattern.match(sku)

If the SKU passed to it matches the regular expression compiled 

in the pattern object, then a match group is returned. If the SKU 

passed to it does not pass the test, then None is returned which is 

Python equivalent of null.

	 3.	 Next, you extract the pattern from the SKU number passed to 

match function in Step 2 if there is a match. You do so using the 

following code:

if m == True:

    return m.group(0)

else:

    return "Not Monitored"
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As stated in Step 2, when the code in Step 2 finds a match, a match 

object with a Boolean value of True is returned. Otherwise, the 

keyword None is returned. The preceding if statement is used to 

see if a match object was returned. If one is returned, you get the 

group in position 0 that represents the complete match. If one is 

not returned, then the function returns “Not Monitored”.

�Step 5: Read in the data into Pandas data frame

In this step, you read in the contents of ProductionOrders.csv into a data frame named df 

using the following code:

df = pd.read_csv("ProductionOrders.csv")

�Step 6: Create a new column named “Monitored Products”

In this step, you add a column named Monitored Products using the following code:

df["Monitored Products"] = df["SKU"].apply(monitoredProducts)

The preceding code applies the monitoredProducts() custom function you created to 

the SKU column and assigns the results to a new column named Monitored Products.

�Step 7: Copy the script into Power BI

Here is the complete script:

import pandas as pd

import re

import os

os.chdir("<path to ProductionOrders.csv file>")

pattern = re.compile(r"^(561769|561394)(?=(01|22|39)(A|B)\d{1}$)")

def monitoredProducts(sku):

    m = pattern.match(sku)

    if m == True:

        return m.group(0)
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    else:

        return "Not Monitored"

df = pd.read_csv("ProductionOrders.csv")

df["Monitored Products"] = df["sku"].apply(monitoredProducts)

Copy the preceding script and paste it into the Python editor via GetData in Power BI 

so that you can add it to the Power BI data model.

�Summary
In this chapter, we covered several different string manipulation methods that are 

available to you in Power BI via R and Python. The examples covered may not directly tie 

to cases you experience in your data wrangling task, but with minor changes to the code, 

I am sure you can find ways to apply some of these techniques to your situations.
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CHAPTER 8

Calculated Columns 
Using R and Python
A task that is difficult to do in Power Query is adding calculated columns that are based 

on complex mathematical formulas. That problem does not exist in R or Python. R was 

built by statisticians, so it was designed to perform complex statistical and mathematical 

calculations. The same holds true with Python. Python is not only used in data science 

but also in other computation-intensive fields such as engineering and physics. Like 

R, Python is optimized to be able to perform calculations that are not possible using M 

in Power Query. So, in situations where you need to add a calculated column based on 

a complicated computation in Power BI, you should consider leveraging R or Python. 

You will not only benefit from the fact that R and Python handle complex computations 

better but, in many cases, you may find that R and/or Python may have a pre-built 

function that does the heavy lifting for you.

Let’s use a scenario to illustrate this point. Imagine you are a Sr. Analyst for Gee’s 

Trucking, Inc. Gee’s Trucking, Inc. recently acquired another trucking company, and 

they now have over 100 drivers that are operating out of three terminals in metro 

Indianapolis, IN.

The owner, Gee Troll, wants to calculate the commute distance to work for each of 

his employees to get an estimate of the average commute distance. Ultimately, he wants 

to know if any of his drivers would have a shorter commute if they switch terminals. You 

know that you can easily approximate the distance between two geographical locations 

using the Haversine formula that you learned in college.

The Haversine formula can be used to estimate the distance between two points 
on earth given their longitudes and latitudes. The formula works because the earth 
is shaped like a sphere.

https://doi.org/10.1007/978-1-4842-5829-3_8#DOI


270

You present to your manager four solutions: two solutions using R and two solutions 

using Python. The two R solutions consist of one custom solution and one solution that 

leverages a pre-built function. The same holds true for the two solutions in Python. All 

four solutions require that the addresses are geocoded.

Geocoding is the process of transforming an address to a geographical coordinate 
made up of a latitude and longitude value. A latitude measures how far north or 
south a geographical location is from the equator, and the longitude measures how 
far east or west a geographical location is from the prime meridian.

Here are the basic steps of the process:

	 1.	 Generate a Google API key that will be used to communicate with 

the Google Geocoding API.

	 2.	 Geocode the addresses using Google Geocoding API in R and in 

Python.

	 3.	 Calculate the distance between each employee’s home address 

and the terminal that they work from using a custom function in R 

and in Python.

	 4.	 Calculate the distance between each employee’s home address 

and the terminal they work from using a pre-built function in R 

and in Python.

Let’s start by generating your Google API key.

�Create a Google Geocoding API key
�Step 1: Log into the Google console
Log into the Google console by going to the following URL: https://console.cloud.

google.com/. If you don’t have a Google account, you will have to create one; otherwise, 

you should be able to log into the console using your credentials.
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�Step 2: Set up a billing account
In order to use Google APIs, you need a payment method attached to your account. At 

the time of writing, Google was offering $300 in credits to test their APIs, which is more 

than enough to do this demo. If you go over the credits that are allotted to you for free, 

Google will use the payment method you provided to secure the payment. To set up your 

payment method, select Navigation Menu ➤ Billing ➤ Payment method in the menu as 

illustrated in Figure 8-1.

�Step 3: Add a new project
Next, you need to create a project with geocoding enabled. Make the following menu 

selections to create a project: Navigation Menu ➤ IAM & admin ➤ Manage resources. 

The menu selection is illustrated in Figure 8-2.

Figure 8-1.  Setting up Google payment method
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Click the CREATE PROJECT button located in the upper right-hand portion of the 

screen as illustrated in Figure 8-3.

Populate the form to create the project.

Figure 8-2.  Navigation to Manage resources

Figure 8-3.  Creating a new Google project
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�Step 4: Enable Geocoding API
Perform the following steps to enable geocoding in your project:

	 1.	 Select Navigation Menu ➤ APIs & Services ➤ Library as illustrated 

in Figure 8-4.

	 2.	 Search for the Geocoding API in the Search for APIs & Services 

textbox as illustrated in Figure 8-5.

	 3.	 Enable the Geocoding API by clicking the Enable button.

Figure 8-4.  Navigating to the Library

Figure 8-5.  Searching for Geocoding API
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	 4.	 Create credentials by doing the following steps:

•	 Select Navigation Menu ➤ APIs & Services ➤ Credentials in the  

menu bar.

•	 Click Create credentials and choose API key as illustrated in  

Figure 8-6.

•	 An API key should appear, and you should receive the option 

to restrict the API key. You want to add restrictions to your API 

key to help prevent unauthorized use. Click Restrict Key to set 

up your restrictions. You will see the web form in Figure 8-7. For 

this exercise, I recommend to only accept requests from your IP 

address and restrict the key to the Geocoding API. You can do 

so by using the configurations in Figure 8-7. After you make the 

configurations, click the SAVE button to save.

Figure 8-6.  Generating API key
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	 5.	 You now have an API key configured with restrictions. Save your 

key in a safe place. If you misplace it, you can go back to the 

Google console to get a copy of your API key.

�Geocode the addresses using R
Now that you have your Google API key configured, you can use R to leverage the API to 

geocode the addresses in the EmployeeList.csv file. The process of geocoding will convert 

each address to a coordinate that represents a point on the earth, which is defined by a 

longitude and latitude value. The longitude value tells you how far east or west you are 

from the prime meridian, and the latitude value tells you how far north or south you are 

Figure 8-7.  Configuring API restrictions
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from the equator. Having addresses in this format makes it possible to perform spatial 

analytics. The type of spatial analytics that you are going to perform in this exercise is 

estimating the distance between two addresses. The script in Listing 8-1 shows how to 

geocode addresses in R by leveraging the Google API.

Listing 8-1.  Geocoding addresses with R using the Google API

library(tidyverse)

library(ggmap)

register_google(key = "<put API key here>")

setwd("<path to folder that host EmployeeList file>")

EmployeeList <- read_csv("EmployeeList.csv")

EmployeeList <-

    EmployeeList %>%

    mutate_geocode(EmployeeAddress, sensor = FALSE) %>%

    rename(lon_EmployeeAddress = lon, lat_EmployeeAddress=lat) %>%

    mutate_geocode(TerminalAddress, sensor = FALSE) %>%

    rename(lon_TerminalAddress = lon, lat_TerminalAddress = lat)

write_csv(EmployeeList, "EmployeeList.csv")

At this point of the book, you have a decent understanding of R, so I won’t be 

as pedantic with my explanations as I was early on in the book. Here are succinct 

explanations of the script broken out in logical steps:

	 1.	 Start by importing the required package. A new package, ggmap, 

is introduced in this script. The main use for the ggmap package 

is visualizing spatial data, but you will be using it to geocode the 

addresses.

	 2.	 You use the Google Geocoding API service to geocode the 

addresses. In order to do so, you need to register your API key 

using the register_google() function.

	 3.	 Next, you read in the Employee.csv file.
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	 4.	 Next, you use dplyr and the mutate_geocode() verb from ggmap to 

add the geocode information to your data set. Like the mutate() 

verb from dplyr, mutate_geocode() is used to add, or project, new 

columns to your data frame. The mutate_geocode() specifically 

adds the coordinates of the addresses passed to it. It adds a 

column named lon that contains the longitudes of the addresses 

passed to it and a column named lat that contains the latitudes of 

the addresses passed to it.

	 5.	 Next, you use the rename() verb from dplyr to give the lon and lat 

columns a more meaningful name.

You have two options that you can use to rename columns using dplyr, rename( ), 
and select( ). What makes rename() different than select( ) is that rename keeps all 
other columns in your data set and not only the ones you are renaming, whereas 
select( ) only keeps the columns you have in your select verb whether it be 
columns you are renaming or columns you are selecting from your data frame.

	 6.	 You do Steps 4 and 5 for the TerminalAddress.

In this exercise, you were able to communicate with the Google API via R to geocode 

the addresses. Making API calls with Power Query is not as easy when you are not 

on premium compacity. If you are using Power BI Premium, you have the option to 

use Microsoft Cognitive Services, but that is it. With R and Python, you don’t have that 

limitation. In this example, we used the Google API to geocode the addresses, but later 

in the book, we will show how you can leverage other APIs such as IBM Watson Natural 

Language Understanding. In the next section, you will learn how to geocode your 

addresses in Python.

�Geocode the addresses using Python
In the previous section, you geocoded your addresses using the Google API via R. In this 

section, you will do the same using Python. As stated in the previous section, working 

with APIs in Power Query is much harder unless you are using the relatively expensive 

Power BI Premium. The following script in Listing 8-2 shows how to geocode addresses 

in Python by leveraging the Google API.
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Listing 8-2.  Geocoding addresses with Python using the Google API

import pandas as pd

import os

from geopy import geocoders

g_api_key = "<API Key>"

g = geocoders.GoogleV3(g_api_key)

os.chdir("<path to folder where the EmployeeList file is located>")

EmployeeList = pd.read_csv("EmployeeList.csv")

EmployeeList["EmployeeAddressGC"] = \

    EmployeeList["EmployeeAddress"].apply(g.geocode)

EmployeeList["lat_EmployeeAddress"] = \

    EmployeeList["EmployeeAddressGC"].apply(lambda x: x.latitude)

EmployeeList["lon_EmployeeAddress"] = \

    EmployeeList["EmployeeAddressGC"].apply(lambda x: x.longitude)

EmployeeList["TerminalAddressGC"] = \

    EmployeeList["TerminalAddress"].apply(g.geocode)

EmployeeList["lat_TerminalAddressGC"] = \

    EmployeeList["TerminalAddressGC"].apply(lambda x: x.latitude)

EmployeeList["lon_TerminalAddress"] = \

    EmployeeList["TerminalAddressGC"].apply(lambda x: x.longitude)

cols = ["EmployeeAddressGC", "TerminalAddressGC"]

EmployeeList.drop(cols, inplace=True)

EmployeeList.to_csv("EmployeeList.csv", index = False)
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Because you are at the point in the book where you should have developed a good 

understanding of Python, the code explanations will not be as verbose as they were 

earlier in the book. Here is the explanation of the preceding Python script broken out in 

logical steps:

	 1.	 You start with your library imports. The new module that is being 

used in this script is the geocoders module from the geopy library. 

This module is used to take care of the geocoding.

	 2.	 Next, you create an object, g, that is based on the Google API class, 

GoogleV3. This object will be used to query the GoogleV3 API class 

to geocode the addresses.

	 3.	 Next, you read in the Employee.csv file.

	 4.	 The data set contains two addresses that need geocoding, the 

EmployeeAddress address and the TerminalAddress address. First, 

the EmployeeAddress is geocoded by using the apply method of 

the EmployeeAddress column to apply the geocode function from 

object g using the following line of code:

EmployeeList["EmployeeAddressGC"] = EmployeeList 

["EmployeeAddress"].apply(g.geocode)

The preceding line of code creates a location.Location object that 

contains the geocoding information you need plus more. The 

object is stored in the EmployeeList[“EmployeeAddressGC”] field. 

You will extract information from that object in subsequent steps.

	 5.	 Next, you create the lat_EmployeeAddress column by extracting 

information from the EmployeeAddressGC column created in  

Step 4. As mentioned earlier, if Google was successful at 

geocoding the address that you sent to it, Google will send you 

a location.Location object that contains the address, latitude, 

and longitude. You are interested in the latitude and longitude. 

You can extract that information from the location.Location by 

applying a lambda function to the EmployeeAddressGC field.
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A lambda function is a nameless function that only has one expression. They are 
identified with the keyword lambda, followed by the arguments, followed by the 
expression as illustrated here: lambda arguments: <expression>. They 
provide a succinct way of applying functions to pandas data frames.

Use the following lambda function to extract the latitude from 

EmployeeAddressGC: lambda x: x.latitude. The x in the lambda 

function represents the EmployeeAddressGC field. The code 

x.latitude enables you to access the latitude property in x.

	 6.	 Next, you create the lon_EmployeeAddress column by using the 

same steps that you performed in Step 5 but replacing latitude 

with longitude.

	 7.	 Next, you repeat Steps 4, 5, and 6 for the TerminalAddress field.

	 8.	 Next, you remove the unneeded columns from your data frame. 

You only needed EmployeeAddressGC and TerminalAddressGC 

to extract the latitude and longitude of the employee address and 

terminal address. Those fields are no longer needed, so you can 

remove them. An easy way to do that is using the drop method of 

the EmployeeList data frame. That is done using the following code:

cols = ["EmployeeAddressGC", "TerminalAddressGC"]

EmployeeList.drop(cols, inplace=True)

The cols variable contains the list of columns you want to drop. By 

default, the drop method will not act directly on the data frame. 

If you want it to act directly on the data frame and permanently 

remove the specified columns, you need to set the inplace 

argument to True.

In this exercise, you were able to communicate with the Google API via Python to 

geocode the addresses. You were able to perform a task relatively easy in Python that 

would have been much harder in Power Query. In the next section, you will learn how 

to use the geocoded information to estimate distance in miles using a custom function 

built in R.
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�Calculate the distance with a custom function  
using R
In the previous exercise, you setup your Geocoding API and you geocoded your 

addresses. Now the data is in the proper format to calculate the distance. Listing 8-3 is 

the R script that calculates the distances in miles between the employee addresses and 

their terminal.

Listing 8-3.  Calculating distance in R using a custom function

library(tidyverse)

ComputeDist <-

  function(pickup_long, pickup_lat, dropoff_long, dropoff_lat) {

    R <- 6371 / 1.609344

    delta_lat <- dropoff_lat - pickup_lat

    delta_long <- dropoff_long - pickup_long

    degrees_to_radians = pi / 180.0

    a1 <- sin(delta_lat / 2 * degrees_to_radians)

    a2 <- as.numeric(a1) ^ 2

    a3 <- cos(pickup_lat * degrees_to_radians)

    a4 <- cos(dropoff_lat * degrees_to_radians)

    a5 <- sin(delta_long / 2 * degrees_to_radians)

    a6 <- as.numeric(a5) ^ 2

    a <- a2 + a3 * a4 * a6

    c <- 2 * atan2(sqrt(a), sqrt(1 - a))

    d <- R * c

    return(d)

  }

setwd("<path to folder where the EmployeeList file is located>")

EmployeeList <- read_csv("EmployeeList.csv")

EmployeeList <-

  EmployeeList %>%

  mutate(

    `Custom Distance Function Results` =

      round(
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          ComputeDist(

              lon_EmployeeAddress,

              lat_EmployeeAddress,

              lon_TerminalAddress,

              lat_TerminalAddress

          ),1

      )

  )

The code is unpacked into the following logical steps:

	 1.	 First, you need to load the required package. The only one needed 

in this script is the tidyverse metapackage because most of the 

functionality needed is already included in base R.

	 2.	 Next, you create a custom function named ComputeDist to 

calculate the distance. The ComputeDist custom function requires 

four parameters: the latitude and longitude of the Employee and 

Terminal addresses, respectively.

Notice how involved the calculation is. Performing this type of 

math in Power Query using M would be much harder to do and 

would not be as performant as it is in R. I will not explain how this 

calculation works because it is beyond the scope of this book. The 

purpose of this example is to show how R does a much better job 

than M at performing math-intensive calculations.

	 3.	 Next, you load the EmployeeList.csv file.

	 4.	 Next, you use the mutate() verb from dplyr to add a new column 

named Custom Distance Function Results to the EmployeeList data 

frame. The name Custom Distance Function Results was used to 

make it clear that a custom function was used to calculate the 

distance. The four required arguments are passed to the function, 

and the round() function is used to round the returned value to 

one decimal point.

	 5.	 The last thing you do is copy the entire script and add it to the 

Power BI data model via the R script editor in GetData.
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In this exercise, you were able to create a calculated column based on a custom 

function in five easy steps. The nice thing about using a custom function is that you were 

able to abstract the complexities of the math needed to perform the calculation in a 

custom function and you were able to invoke it whenever it is needed. The result is code 

that is more readable and easier to maintain.

�Calculate the distance with a custom function  
using Python
In a previous step, you geocoded your addresses using the Google Geocoding API. Now 

the data is in the proper format to calculate the distance. Listing 8-4 is the Python script 

that you will use to estimate the distance in miles between the employee address and 

their terminal.

Listing 8-4.  Calculating distance in Python using a custom function

import pandas as pd

import numpy as np

import os

from math import cos, sin, atan2, pi, sqrt, pow

def ComputeDist(row):

    R = 6371 / 1.609344 #radius in mile

    delta_lat = row["lat_TerminalAddressGC"] -

    row["lat_EmployeeAddress"]

    delta_lon = row["lon_TerminalAddress"] -

    row["lon_EmployeeAddress"]

    degrees_to_radians = pi / 180.0

    a1 = sin(delta_lat / 2 * degrees_to_radians)

    a2 = pow(a1,2)

    a3 = cos(row["lat_EmployeeAddress"] * degrees_to_radians)

    a4 = cos(row["lat_TerminalAddress"] * degrees_to_radians)

    a5 = sin(delta_lon / 2 * degrees_to_radians)

    a6 = pow(a5,2)
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    a = a2 + a3 * a4 * a6

    c = 2 * atan2(sqrt(a), sqrt(1 - a))

    d = R * c

    return d

os.chdir("<path to folder where the EmployeeList file is>")

EmployeeList = pd.read_csv("EmployeeList_Python.csv")

EmployeeList["Custom Function"] = \

    EmployeeList.apply(lambda row: ComputeDist(row), axis=1)

Let’s unpack the preceding code into logical steps:

	 1.	 First, you need to load the required library. What’s new in this 

script are some functions from the math library. These functions 

are used to calculate the distance.

	 2.	 Next, you create custom function named ComputeDist() that 

estimates the distance in miles between two geographical points. 

The function requires one parameter, and that is the entire row 

from the data frame. You will extract the information from the row 

that is needed to perform the calculation. The calculation is very 

involved, and performing this type of math in Power Query using 

M would be harder to do and not as performant as it is in Python. 

I will not explain how this calculation works because it is beyond 

the scope of this book. The purpose is to show how Python does a 

much better job at performing math-intensive calculations than M.

	 3.	 Next, you load the EmployeeList.csv file.

	 4.	 Next, you use the apply method to apply a lambda function on the 

EmployeeList data frame. The complete line of code is as follows:

EmployeeList["Custom Function"] = (

    EmployeeList.apply(lambda row: ComputeDist(row), axis=1))
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The use of the parentheses in the preceding code enables you to continue code 
on a subsequent line, making the code more readable. The subsequent lines must 
follow the indentation rules defined in PEP8. PEP8 outlines the rule for formatting 
your Python code. You can read more about PEP8 at this URL: https://
realpython.com/python-pep8/.

You were exposed to lambda functions earlier in the chapter. The 

lambda functions you used were applied to a specific column in 

a data frame, but the lambda function in this example is being 

applied to the whole data frame. When you apply a lambda 

function to a data frame, you have the option of telling pandas if 

you want to apply it to the 0 axis or 1 axis. If you apply it to the 0 

axis, then the lambda function will be applied top-down, but if 

you apply it to the 1 axis, it will be applied left to right. Let’s make 

things simpler with an example.

Let’s create a small data frame with the code beneath to illustrate 

how to apply a lambda function to a data frame:

df = pd.DataFrame((

    {'A':[10, 20, 30], 'B':[15, 5, 10]}))

The preceding code produces the following data frame:

A B

0 10 15

1 20 5

2 30 10

If you want to get the sum for each column, you need to work 

along the 0 axis so you can operate from top to down. You do so 

using the following code:

df.apply(sum, axis = 0)
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The code produces the following output:

A 60

B 30

By setting the axis to 0, the code will work “top-down” along each 

column, and it will sum up all the elements in each respective 

column. If you set the axis to 1, it will work left to right and for 

each row, and it will sum up all the elements in each of the rows. 

So, if you change the axis to 1 as illustrated in the following code

df.apply(sum, axis = 1)

It will produce the following output:

0 25

1 25

2 40

Now you understand how lambda functions work when applied 

to a data frame. Let’s revisit the code in this step from the original 

script. Here’s the code:

EmployeeList["Custom Function"] = (

    EmployeeList.apply(lambda row: ComputeDist(row),

    axis=1))

The preceding code is applying the lambda function to the 1 axis. 

In other words, it is working left to right on each row. The entire 

row is passed to the ComputeDist() function. The ComputeDist() 

function extracts the information it needs for the calculation from 

the row object that was passed to it. Note that you are not limited 

to aggregation functions when you use the apply method against a 

data frame.
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	 5.	 Copy the preceding script in Listing 8-4 to add the data frame 

that is generated by the script to the Power BI data model via the 

Python script editor in GetData.

Like in the previous R exercise, you were able to create a calculated column based on 

a custom function in five easy steps. Like in R, you were able to gain the benefit of having 

code that is more readable and easier to maintain when you use custom functions to 

create calculated columns in Power BI using Python.

�Calculate distance with a pre-built function 
in Power BI using R
In the previous two sections, you learned how to develop custom functions in both R 

and Python to efficiently perform computations that are math-intensive. Even though it 

was not that hard to implement a math-intensive custom function, there are often much 

easier solutions. At the time of this writing, the R programming language has over 15K 

packages, and the Python programming language has well over 110K libraries. Often you 

can find a solution to your problem in one of the many packages and libraries that are 

available in R and Python, respectively.

That is the case with the calculating distance between two geographical points. 

Instead of refactoring a mathematical formula in R code or Python code, you can 

leverage a pre-built function. In this exercise, you will learn how to leverage the 

geosphere package in R to perform the distance calculation. The complete script you will 

use is in Listing 8-5.

Listing 8-5.  Calculating distance in R using a pre-built function

library(tidyverse)

library(geosphere)

setwd("<path to folder where the EmployeeList file is located>")

EmployeeList <- read_csv("EmployeeList.csv")

EmployeeList <-

    EmployeeList %>%

    rowwise() %>%

    mutate(
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        `Geosphere Function Result` =

            distHaversine(

                c(lon_EmployeeAddress, lat_EmployeeAddress),

                c(lon_TerminalAddress, lat_TerminalAddress)

            ) / 1609.34

    )

Let’s unpack the code into logical steps:

	 1.	 First, load the required packages. The new package in this script is 

the geosphere package. You will leverage this package to perform 

the spatial calculations.

	 2.	 Next, you load the contents of the EmployeeList.csv file into the 

EmployeeList data frame.

	 3.	 Next, you add a new column named Geosphere Function to the 

EmployeeList data frame. You are using the chaining method in 

dplyr to create a workflow that adds a column to the data frame 

that calculates the distance based on the distHaversine function. 

The first step of the workflow tells dplyr that you are starting with 

the original data frame. The second step of the workflow passes 

the data frame to the rowwise() function. The rowwise() function 

is necessary because the distHaversine() function that is used in 

the subsequent step is not vectorized.

A vectorized function works on a whole vector at the same time. Columns in a data 
frame are vectors. When you apply a vectorized function against a vector, you don’t 
need to implement in looping logic.

The rowwise() function tells all subsequent tasks in the workflow 

to only consider the elements in the current row in the calculation. 

The last step performs the calculation using the distHaversine() 

function from the geosphere package. The distHaversine() 

function returns the distance in meters, so multiplying the results 

by 0.000621371 converts the value to miles.

Chapter 8  Calculated Columns Using R and Python



289

	 4.	 As always, you need to copy the entire script in Listing 8-5 to the 

Python editor in Power BI so that you can add the resulting data 

set to the Power BI data model.

In this exercise, you were able to leverage a pre-built function from the geosphere 

package that abstracted the complexity of the calculation from you. The function that 

was used was the distHaversine() function. All you had to do was pass the function the 

required parameters and it performed the calculation for you. In the next exercise, you 

will use similar functionality in Python.

�Calculate distance with a pre-built function 
in Power BI using Python
The following Python script (Listing 8-6) uses a pre-built function to calculate the 

distance.

Listing 8-6.  Calculating distance in Python using a pre-built function

import pandas as pd

import os

from haversine import haversine

os.chdir(r"<file path to folder that contains EmployeeList.csv>")

EmployeeList = pd.read_csv("EmployeeList.csv")

def useHaversine(row):

    point_one = \

        (row["lat_EmployeeAddress"], row["lon_EmployeeAddress"])

    point_two = \

        (row["lat_TerminalAddress"], row["lon_TerminalAddress"])

    return haversine(point_one, point_two, unit="mi")

EmployeeList["Haversine Function Result"] = \

    EmployeeList.apply(lambda row: useHaversine(row), axis=1)
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Let’s unpack the preceding code into logical steps:

	 1.	 First, you need to load the required libraries. The new library 

in this script is the haversine library. This library is leveraged to 

perform the spatial calculations.

	 2.	 Next, you load the contents of the EmployeeList.csv file into the 

EmployeeList data frame.

	 3.	 Next, you define the useHaversine() function. The function accepts 

the entire row as its input. Information is easily extracted from 

the row passed to the function using methods you have already 

learned. The useHaversine() custom function in this example uses 

the haversine() function from the haversine library to calculate the 

distance. You pass three parameters to the haversine() function: 

the coordinates of the location_one, the coordinates of location_

two, and the units that you want the distance in. The location_one 

and location_two variables need to be in a form of a tuple with 

the first element in the tuple being the latitude and the second 

element in the tuple being the longitude.

The reason why the Haversine() function from the Haversine 

library is wrapped in the useHaversine() custom function 

is because the Haversine() function is not vectorized. If the 

Haversine() function was vectorized, it would be able to operate 

on all the rows in the data frame in parallel, but since it is not, it 

can only operate on one row at a time. That is why a single row is 

passed to the useHaversine() function.

	 4.	 Next, create a column named Haversine Function Result that will 

contain the distance between the Employee’s address and the 

Terminal using the following code:

EmployeeList["Haversine Function Result"] = Employee 

List.apply(lambda row: useHaversine(row), axis=1)

A lambda function is applied to the EmployeeList data frame along 

axis 1. As you learned earlier in the custom function example, this 

enables you to pass the entire row to the useHaversine() function.
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	 5.	 Last, but not least, copy the script and paste it into the Python 

editor in Power BI so that the resulting data frame can be added to 

the Power BI data model.

In this exercise, you were able to leverage a pre-built function from the Haversine 

library that abstracted the complexity of the calculation using the Haversine formula 

from you. The function that was used was the Haversine() function. Just like in R, you 

were able to leverage a pre-built function that performs the mathematical calculations 

for you using Python. All you had to do was make a function call.

�Summary
This chapter illustrated two very important techniques. The first technique was how 

to use R and Python to create calculated columns based on a complex mathematical 

formula. The example in this chapter showed how R and Python handle complex math 

much better than M does in Power Query. The same would hold true when comparing 

R and Python to DAX for most scenarios. The second technique showed how to use 

pre-built functions from one of the many packages and libraries in R and Python, 

respectively. The exercise used pre-built R and Python functions based on the Haversine 

formula, but chances are that one of the 15,000+ R packages and one of the 110,000+ 

Python libraries have a pre-built function that you can use to abstract the complexity of 

the distance calculation from you for the vast majority of your calculation needs.

The ability to use R and Python in Power BI to create calculated columns can be used 

to overcome many other Power Query limitations. In addition to performing complex 

calculations, you can also use R or Python to

•	 Create a calculated column that imputes values for missing data 

points based on algorithms that are more accurate than common 

methods such as using the mean or the mode

•	 Create a calculated column based on complex string manipulations 

as you learned in Chapter 7

•	 Create a calculated column that is based on a machine learning 

algorithm that you will learn in Chapter 9

•	 And many more

The possibilities are numerous!

Chapter 8  Calculated Columns Using R and Python



PART IV

Machine Learning and  
AI in Power BI Using  
R and Python



295
© Ryan Wade 2020 
R. Wade, Advanced Analytics in Power BI with R and Python, https://doi.org/10.1007/978-1-4842-5829-3_9

CHAPTER 9

Applying Machine 
Learning and AI to Your 
Power BI Data Models
Having a mature enterprise business intelligence solution has become the norm for 

many organizations. A considerable number of firms have well-governed Enterprise 

Data Warehouses (EDWs) that are updated via sophisticated ETL processes. They 

use reporting tools such as SQL Server Report Services (SSRS)  and Power BI to help 

the business gain valuable insights about their business. Organizations that fall in 

this category have done a great job of leveraging BI, and they are primed to introduce 

artificial intelligence (AI) to their data strategy. Here are a few ways AI can be used to 

enhance a mature business intelligence system:

•	 A bike shop can use a logistic regression model to add an attribute to 

their customer dimension table to identify customers that are likely 

to buy a bike within the next year.

•	 A retail company can use the k-means clustering algorithm to add 

an attribute to their customer dimension table that segments their 

customers for marketing purposes.

•	 An online retailer can use a logistic regression model to add an 

attribute to their customer dimension table that can be used to 

identify customers that are likely to churn.

•	 A restaurant can use sentiment analysis to add a sentiment attribute 

to their customer dimension table based on the customer’s reviews.

https://doi.org/10.1007/978-1-4842-5829-3_9#DOI
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These types of AI-generated attributes can be very valuable and are not easily 

calculated using traditional means. Once these AI-generated attributes are added to your 

data model, they can be used like any other attribute in your dimension tables. They can 

be used in your Power BI visuals, tables, and matrixes.

In this chapter, you will learn how to leverage AI in your Power BI data models. This 

chapter focuses on self-service methods, but later in the book, you will learn methods to 

operationalize your AI models at scale without the need of Power BI Premium.

Power BI Premium has a feature called AI Insights that facilitates applying AI to 
your Power BI data models. This book will not cover AI Insights because of the 
price associated with it. All examples in this book can be done without the need for 
premium compacity.

The chapter will introduce you to multiple ways you can apply AI to your Power BI 

data. You will learn

•	 How to score your Power BI data using custom machine learning 

models built in R and Python

•	 How to use Microsoft Cognitive Services to apply sentiment analysis to 

your Power BI data model

•	 How to use IBM Watson Natural Language Understanding to apply 

tone analysis to your Power BI data model

This chapter focuses on self-service methods, but later in the book, you will learn 

how to operationalize some of the techniques outlined in this chapter for enterprise 

solutions. Let’s get started with scoring your data using custom models built in R and 

Python!

�Apply machine learning to a data set before 
bringing it into the Power BI data model
Here is the scenario. You work for a real estate analytics firm in the city of Boston, MA. 

Your data scientist was asked to help you predict median house prices in Boston.  

She helped you by developing a machine learning model in both R and Python using the 
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Boston housing data set from Kaggle. She saved the models for you in a shared directory. 

You will use those models to score a new data set that contains a list of homes whose 

prices you want to predict.

The new data set contains 14 variables, but the model your data scientist developed 

only uses 4 of them. Here are the four variables that the model uses:

•	 CRIM: Per capita crime rate by town

•	 RM: Average number of rooms per dwelling

•	 TAX: Full-value property-tax rate per $10,000

•	 LSTAT: % lower status of the population

You will create both an R and Python script for Power BI that will perform the 

scoring. First, you will start with R.

�Predicting home values using R
Applying machine learning models developed by a data scientist to your Power BI data 

models is straightforward. The steps to do so in R are outlined as follows. This book will 

not cover how to build the actual models because that is outside the scope of this book. 

The focus will be on how to apply a model that was created for you. Here are the steps.

�Step 1: Have the data scientist share the model with you

An R model is an object that can be saved to disk. After the data scientist builds the 

model, she can save the model to disk and share it with you in the same manner that she 

would share any other file. The process used to serialize the model to disk is very easy to 

do in R and can be accomplished with one line of code. Here’s the code:

saveRDS(model, "model.rds")

The preceding code will take the model that the data scientist created that is stored 

in the variable named model and save it to disk as a *.rds file in your working directory 

using the saveRDS() function. The saveRDS() function is part of the base package.
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�Step 2: Load the tidyverse package

You will start developing the script to score the data in this step. You only need the 

tidyverse package in this script, but most of what you will do can be handled with R’s 

base functionality. The tidyverse metapackage is loaded using the following code:

library(tidyverse)

�Step 3: Load the model object and the data set to be scored

You do so using the following code:

model <- readRDS("./Model/model.rds")

boston_housing <- read_csv("./Data/BostonHousingData.csv")

The readRDS() function allows you to deserialize the model from disk so that you 

can use it in your script. You used the read_csv() function from the readr package to read 

in the data that needs to be scored into an R data frame named boston_housing.

�Step 4: Subset the data frame so that it only contains 
the columns needed for the model

The data set has 13 variables, but you only need 4 of them for the model. You subset the 

variables you need from the boston_housing data frame using the following code:

model_data <- boston_housing[,c("crim","rm","tax","lstat")]

The empty space after the bracket followed by the comma tells R that you want to 

include all rows. The character vector that follows the comma tells R the columns that 

you want to subset. So, the preceding code produces a data frame that contains all the 

rows from the boston_housing data frame but only the columns listed in the character 

vector. Now you have a data set that only contains the data needed for the model via the 

model_data data frame.

Chapter 9  Applying Machine Learning and AI to Your Power BI Data Models



299

�Step 5: Apply the model to your data set to predict the median 
home values

You accomplish this task with the following code:

pred_medv <- predict(model, model_data)

The preceding code returns a vector that contains the median home value 

predictions for each observation that was passed to it.

The formal definition of an observation is a recording of qualities and quantities 
of an observable phenomenon in the natural world. So, in this example, the 
observable phenomenon is the information you have about each house you want to 
predict.

Note that the data frame passed to the predict() function must contain the variables 

(columns) that are needed in the model.

�Step 6: Add the predictions to the original data set

The code from Step 5 only returned a vector of data, which is meaningless by itself. You 

need to combine it back to the original data set. You can easily do so using the following 

code:

final_output <- cbind(model_data,pred_medv)

The code uses the cbind() function to attach a column to the end of the model_data 

data frame, then assigns the resulting data frame to a variable named final_output. The 

c in cbind() stands for column. In this case, it binds the vector pred_medv to the model_

data data frame as a new column and gives the new column the name of the vector, 

which in this case is pred_medv.

�Step 7: Copy the entire R script into the Power BI data model

The final script is below in Listing 9-1.
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Listing 9-1.  R Script to predict Boston housing prices

library(tidyverse)

model <- readRDS("./Models/model.rds")

boston_housing <- read_csv("./Data/BostonHousingInfo.csv")

model_data <- boston_housing[, c("crim","rm","tax","lstat")]

pred_medv <- predict(model, model_data)

final_output <- cbind(model_data, pred_medv)

Like before, you copy the script, then go to GetData ➤ More ➤ Other in Power 

BI. Next, you click R script and paste the script inside the R editor in Power BI. After that, 

you click OK. The final_output data frame will be exposed to you by Power BI as a data 

set that you can bring into the Power BI data model. You can combine it with other data 

sets in the Power BI data model, create measures that use the predictions, or create 

visualizations using the scored data.

�Predicting home values using Python
In this section, you will also predict Boston house prices, but you will do so using Python 

instead of R. As in the R example, the focus will be on how to apply a model that was 

created for you because the creation of the model is outside the scope of the book. Here 

are the steps in Python.

�Step 1: Have the data scientist share the model with you

Like with R, a Python model is an object that can be saved to disk so it can be shared with 

you in the same manner that the R model was shared earlier. The process to serialize the 

model to disk in Python is very easy to do, and it can be accomplished with one line of 

code after importing the joblib library. Here’s the code:

import joblib

joblib.dump(model,"model")

The preceding code takes the model that the data scientist created for you and saves 

it to disk in the current working directory using the joblib.dump() function from the 

joblib library. After the model has been saved to disk, the data scientist can share the 
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model with you in a shared repository such as OneDrive or Dropbox. A process known as 

MLOps may be used in a more sophisticated shops so the model may be shared with you 

via a repository such as GitHub or Azure DevOps in that scenario.

�Step 2: Load the necessary Python libraries needed for the script

This is the step where you actually start building the script that will do the scoring in 

Power BI. Here is the code needed for your import section of your Python script:

import os

import joblib

from sklearn import preprocessing

import pandas as pd

The joblib library is used to deserialize the model that the data scientist shared with 

you, the preprocessing module from scikit-learn provides you with tools to transform your 

data to get it ready for scoring, and the pandas library will handle your data frame needs.

�Step 3: Load the model object and the Boston homes data set

You can do so using the following code:

model = joblib.load("../Models/model_Python.pkl")

boston_housing = pd.read_csv("../Data/BostonHousingInfo.csv")

The joblib.load function is very similar to the readRDS function we used in R. It 

allows you to deserialize the model from disk so that you can use it in your script. You 

used the read_csv method in pandas to read in the data that needs to be scored into a  

pandas data frame. Note that both file paths used are prefix with a “..”. Prefixing your file 

path with a “..” enables you to start your relative file path referencing one level up from 

your currently working directory. The Models and Data folder are at the same level as 

the Python folder which is the folder the current working directory is set to. Using the 

“..” allows you to go one level up to the Chapter09 folder which enables you to access the 

contents in Models folder and Data folder.
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�Step 4: Extract the information needed from the bost_housing 
data frame

The data set that you are using has 13 variables, but you only need 4 of them for the 

model. After you extract the variables from the bost_housing data frame that you need, 

you will need to standardize them.

Standardization is often required by models in scikit-learn. It is usually 
recommended in machine learning when working with variables that have 
different scales, as do the variables used in this example. When you are developing 
a model using variables of different scales, variables with the bigger values 
will carry more weight and can cause bias in your model. The scale( ) function 
from the preprocessing module puts all the variables on the same scale, which 
alleviates that problem. Here is the URL to a YouTube video that further explains 
standardization: www.youtube.com/watch?v=sh_tLn1phfc.

You subset and standardize the data you need for the model using the following code:

model_data = preprocessing.scale(

    boston_housing[["crim","rm","tax","lstat"]])

Let’s first break down the code passed to the scale() function, then explain what the 

scale() function does. Here’s the code passed to the scale() function:

boston_housing[["crim","rm","tax","lstat"]].

This code subsets the boston_housing data frame so that it only includes the 

columns defined in the list contained inside the brackets that are used to subset the data 

frame. Next, the resulting data frame is passed to the scale() function where it will be 

standardized. Once standardized, all the variables will be on the same scale.

�Step 5: Apply the model to the preprocessed data to predict 
the median home values

You accomplish this task with the following code:

pred_medv = model.predict(model_data)
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The preceding code returns an array that contains the median home value 

predictions for each observation that was passed to it. The resulting output is assigned 

to a variable named pred_medv. Note it is important that the model_data data frame 

contains the variables that are needed in the model model.

�Step 6: Add the predictions to the original data set

The code from Step 6 only returned an array of data which is meaningless by itself. 

You need to combine it back to the original data set. You can easily do so using the 

following code:

final_output = boston_housing.loc[:,["crim","rm","tax","lstat"]]

final_output["pred_medv"] = pred_medv

You want to name the data set that will be passed to Power BI final_output. To do 

so, you start by creating a data frame named final_output that is a subset of the boston_

housing data frame. You only need the crim, rm, tax, and lsat columns from the boston_

housing data frame.

You will use the iloc method of the boston_housing data frame to subset those 

columns. The iloc method allows you to subset both the rows and the columns of a data 

frame at the same time. The first argument subsets the rows, and the second argument 

subsets the column. In this example, you want all rows from the boston_housing data 

frame so you tell pandas that with the : symbol. Note if you wanted the first three rows, 

you would use 0:2. You put the integer position of the row you want to start with on the 

left of the semicolon and the integer position of the row you want to end with on the 

right of the semicolon. You would start your range with 0 because python uses a 0-based 

index. The next argument is used to tell pandas what columns you want to return. You 

can use : if you want to return all columns, but if you want to return a subset of the 

column, you can use a list that contains the columns you want to return as we did in this 

example. Lastly, you append a new column named pred_medv to the final_output data 

frame using the following code: final_output["pred_medv"] = pred_medv.

�Step 7: Copy the entire Python script into the Python script editor 
in Power BI

The final script is shown in Listing 9-2.
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Listing 9-2.  Python script to predict Boston housing prices

import os

import pandas as pd

import joblib

from sklearn import preprocessing

model = joblib.load("../Models/model_Python.pkl")

boston_housing = pd.read_csv("../Data/BostonHousingInfo.csv")

model_data = preprocessing.scale(boston_housing[["crim","rm","tax","lstat"]])

pred_medv = model.predict(model_data)

final_output = boston_housing.loc[:,["crim","rm","tax","lstat"]]

final_output["pred_medv"] = pred_medv

Like in the examples before, you go to GetData ➤ More ➤ Other, then click Python 

script. Next, you paste the preceding script in the Python editor, then click OK. The final_

output data frame will be exposed to Power BI as a data set that can be brought into the 

Power BI data model.

If needed, the field with the prediction can be further enhanced in Power Query to 

make it more valuable before it is added to the data model. For instance, if a real estate 

company was using this model, they could put the predicted house prices into bins. For 

instance, the houses with predicted prices less than 100K could go in the <100K bin, the 

houses with predicted prices between 100K and 200K can be put into the 100–200K bin, 

houses with predicted prices between 200K and 300K can be put into the 200–300K bin, 

and so on. Doing this type of binning may help the business gain valuable insights about 

their situation.

�Using pre-built AI models to enhance Power BI data 
models
Developing AI models is not a trivial task. The amount of time it takes to develop a 

model that generalizes well against real data can be resource- and time-intensive. 

It often requires a team of data scientists and data engineers to accomplish such a 

task. Fortunately, big software vendors such as Microsoft and IBM have developed 
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sophisticated AI models that are easily accessible via API calls. These models are based 

on years of research that would be hard for you to replicate on your own.

In this section, you will learn how these models can be used to enhance your 

Power BI data models. You will learn how to use Microsoft Cognitive Services to perform 

sentiment analysis.

Sentiment analysis is used to detect how positive or negative the sentiment of a 
piece of text (sentence, paragraph, tweet, etc.) is. In Microsoft Cognitive Services, 
this is done by assigning a numerical score between 0 and 1. The closer the score 
is to 0, the more negative the text is, and the closer the score is to 1, the more 
positive the text is.

You can use sentiment analysis to enhance your Power BI data models by using it to 

add attributes to your dimension tables. For instance, if you are a restaurant, the average 

sentiment scores of your customer reviews can be the basis of an attribute in your 

customer dimension table. Such an attribute can be used to find associations between 

things such as sentiment and customer attrition. In a restaurant example, you may 

discover that the majority of low sentiment scores were associated with customers who 

purchased particular items on the menu.

Let’s go over the steps needed to add sentiment analysis to your Power BI model 

using Microsoft Cognitive Services. The example will only be done in using Python 

because R is not currently supported. You can also perform this task using AI Insights via 

Power BI Dataflows, but that requires Power BI Premium which is relatively expensive 

and outside the price range of many Power BI users.

�Set up Cognitive Services in Azure
You must configure Microsoft Cognitive Services in Azure before you are able to leverage 

it in Power BI. You will have an Azure account if you went through the steps to create one 

in the book’s introduction. If you are new to Azure, I highly recommend you sign up for 

a free account. At the time of writing, Microsoft was offering $200 in free credits for the 

first month! That is more than enough credits to cover all the Azure-related activities in 

this book if you were to do them in the first month of service. If you don’t have an Azure 

account, go to the book’s introduction to get the instructions needed to sign up for one.
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If you already have an Azure account, then you need to sign into the Azure Portal. 

You can do so by going to portal.azure.com. After you have signed into your Azure 

account, click the Create a resource button at the upper left of the page. Next click AI + 

Machine Learning ➤ Text Analytics. Those actions will take you to a form that you need 

to fill out to set up the Text Analytics service. Give the resource a meaningful name in 

the Name textbox, attach a subscription in the Subscription textbox, set the location to 

a region closest to you in the Location textbox, choose a pricing tier that is appropriate 

for your needs in the Pricing tier textbox, and attach the resource to an existing resource 

group or create a new one in the Resource group textbox. If you are still in your first 

month, the subscription with the $200 credits will be available to you as an option for 

subscriptions.

�The Data Science Virtual Machine (DSVM)
As stated earlier, this example will only be done in Python because R is not supported. 

In addition to using just Python, the example will be done in the Microsoft Data Science 

Virtual Machine (DSVM). The reason why the DSVM is recommended is because it 

is pre-configured with the majority of the tools you need for data science. It has the 

Anaconda distribution of Python pre-installed, Power BI, SQL Server, Jupyter Lab, and 

Azure Data Studio, to name a few. Configuring such an environment yourself would be 

hard to do, but with the DSVM, you can spin one up on demand.

Before you move forward, there are some things you need to do in your DSVM to 

finish configuring your environment. You need to install some packages for Microsoft 

Cognitive Services. Here are the steps you need to perform:

	 1.	 Launch your DSVM: You can do your development on your 

personal desktop, but I highly recommend that you use the 

DSVM. If you choose to go your own route, then start from your 

environment of choice.

	 2.	 Open the conda prompt: To open the conda prompt, search for 

it in the windows search bar by typing anaconda prompt. You 

should see it appear in your search list. Right-click it, then launch 

it as an administrator.
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	 3.	 Activate the Python environment you use for Azure development: 

It is recommended that you use the AzureML environment 

that comes pre-installed in the DSVM. To activate the AzureML 

environment, type the following in the conda prompt:

conda activate AzureML

If you are operating in your own environment and don’t know 

the environment you should use, type conda env list in the conda 

prompt to get a list of the environments available to you.

	 4.	 Type the following code to install the library: Make sure you are 

installing the library in the appropriate environment by activating 

the desired environment using the code in Step 3.

pip install azure-cognitiveservices-language-textanalytics

�Performing sentiment analysis in Microsoft Cognitive 
Services via Python
You will use the freely available data set of Yelp reviews from Kaggle in this exercise. Here 

are the steps you need to go through to acquire the data and score it in Power BI.

�Step 1: Get the Yelp review data from Kaggle

At the time of the writing, the data set was available at this URL: www.kaggle.com/yelp-

dataset/yelp-dataset/version/4. Make sure to download the csv version of the yelp_

review data set for this example. The data set will be downloaded as a zip file. Unzip the 

yelp_review.csv file and save it to the Data folder for this chapter in the repository.

The yelp_review.csv data set is big. It contains close to 5.3 MM reviews. You do not 

need that many samples for this exercise, and it is highly recommended that you use a 

sample to keep cost down to a minimum. The following script gets a random sample of 

100 reviews from the yelp_review.csv data set and saves it under the yelp_review_sample.

csv file name:

import pandas as pd

import numpy as np

import os
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os.chdir("set to your working directory")

dfYelpReviews = pd.read_csv("yelp_review.csv")

dfYelpReviewsSample = dfYelpReviews.sample(100, random_state = 1)

dfYelpReviewsSample["id"] = np.arange(len(dfYelpReviewsSample))

dfYelpReviewsSample = dfYelpReviewsSample[["id","text"]]

dfYelpReviewsSample.to_csv(

    "yelp_review_sample.csv", index = False)

Here’s how the script works:

	 1.	 Loads the required libraries: Pandas is used for some basic data 

wrangling, the arange function from numpy is used to create a row 

number column, and os is used to set the working directory.

	 2.	 Reads in the yelp_review data set: This is accomplished by using 

the read_csv() method of the pandas.

	 3.	 Creates a sample of the data set using the sample method of the 

dfYelpReviewsSample data frame: You created the sample using 

just two arguments. The first argument is the sample size which, 

in this case, is 100. The second argument is the random_state 

argument. If you set the argument to 1 as earlier, then your sample 

will return the same data set as the one used by the book’s author.

�Step 2: Import the necessary libraries, modules, and function 
for the script

This step is where the development of the script begins. You will start with the imports 

shown here:

import pandas as pd

import ast

import os

from azure.cognitiveservices.language.textanalytics import 

TextAnalyticsClient

from msrest.authentication import CognitiveServicesCredentials
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You are aware of two of the first three libraries. The ast library is new. The literal_eval 

function from that library is used to evaluate a string that represents a python expression. 

That functionality is used in this script. It will be explained in a subsequent step. The 

TextAnalyticsClient and CognitiveServicesCredentials functions are used to communicate 

with Microsoft Cognitive Services in the next step.

�Step 3: Assign values to the variables used in the script

The values of the variables are set in the script using the following code:

api_key = "<put api key here>"

endpoint = \

    "https://rwtextanalyticsapi.cognitiveservices.azure.com/"

credentials = CognitiveServicesCredentials(subscription_key)

text_analytics = TextAnalyticsClient(

    endpoint=endpoint, credentials=credentials)

You can find the value of your API key and endpoint by going to your text analytics 

resource in Azure. Both can be found in the Overview page. You can get there by clicking 

the Overview tab located in the upper right corner. The API key is used to create an 

instance of CognitiveServicesCredentials. The credentials and the endpoint variables 

are used together to create an instance of TextAnalyticsClient which is assigned to the 

text_analytics variable. The text_analytics variable will be the workhorse for doing the 

sentiment analysis.

Step 4: Read in the sample of the Yelp review data into Python

The following code reads in the sample into a pandas data frame. It is important that 
you use the sample data set and not the entire data set. The entire data set contains 

close to 5.3 MM reviews which could cause you to incur unnecessary charges. The 100 

observations in the sample data set are more than enough for practice. The sample 

data set that you created earlier contains two fields: the id field is used to identify each 

review, and the text field contains the review that will be analyzed. The language field is 

added so that Microsoft Cognitive Services know what language to use. You are using en 

because that is the code for English which is the language the reviews are in.

df = pd.read_csv("< path to yelp_sample.csv>")

df["language"] = "en"
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�Step 5: Transform the data frame to the format that is required 
by Microsoft Cognitive Services

Microsoft Cognitive Services needs the data sent to it for sentiment analysis to be a list of 

dictionaries. Here is what a list of dictionaries looks like:

documents = [

             {"id": "1",

              "language": "en",

              "text": "Football is great sport."},

             {"id": "1",

              "language": "en",

              "text": "Lamar Jackson is the best quarterback."},

             {"id": "1",

              "language": "en",

              "text": "UK football sucks!!! "}

]

The to_json method of the pandas data frame can be used to reformat the df data 

frame into that format. In order to do so, you need to set the orient argument to records 

as done in the following code:

documents = df.to_json(orient='records')

The output is formatted as a list of dictionaries, but Python does not see it that way. 

Python just sees a string. You need to explicitly tell Python to evaluate the output of df.

to_json(orient='records') as a python expression. You can accomplish that by using 

the literal_eval() function from the ast library as illustrated in the following code:

documents = ast.literal_eval(documents)

Now the documents variable contains the information Microsoft Cognitive Services 

needs in the proper format. Each dictionary in the list passed to Microsoft Cognitive 

Services contains three key/value pairs. The three keys are the id which is used to 

uniquely identify each review that you are performing sentiment analysis on, the text 

which represents the text you want to analyze, and the language you want to do your 

sentiment analysis in.
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�Step 6: Score the reviews using the sentiment method 
of the text_analytics object

The code used to score the reviews is as follows:

response = text_analytics.sentiment(documents=documents, raw = False)

It returns a list that contains a batch result item for each review that was passed to the 

sentiment() method. Each batch result item has properties that hold information about 

the review. The two properties that you are interested in are the id property and the 

score property. You will use those two properties to build a data frame that contains the 

sentiment scores in the next step.

�Step 7: Create a data frame to hold the sentiment data

You were able to score your reviews and get information returned backed to you in the 

form of a list of batch result items. As stated earlier, the list contains batch result items 

for each review that was sent to Microsoft Cognitive Services. Each batch result items 

contains properties that expose information about the review. The two that you are 

interested in are the id of the review and the sentiment score.

Here is the section of the script that uses the id and score property of each object 

returned by Microsoft Cognitive Services to create the data frame:

listSentiments = []

for document in response.documents:

    id = document.id

    score = document.score

    listSentiments.append([id, score])

dfSentiments = pd.DataFrame(

    listSentiments, columns=['ID','Score'])

dfSentiments
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Here is an explanation of the script broken out in steps:

	 1.	 Create an empty list and name it listSentiments: The first line 

creates an empty list named listSentiments. This list will get 

populated with the output retrieved from Microsoft Cognitive 

Services and will ultimately get converted to a data frame in a 

subsequent step.

	 2.	 Iterate through each document in response.documents using the 

for loop: The for loop is used to iterate through each document in 

response.documents to access the sentiment information.

	 3.	 Grab the id and score for each document: The documents returned 

by each iteration contain an id and score property. You grab 

those values and put them in their respective variables using the 

following code:

id = document.id

score = document.score

	 4.	 Append the values from the current document to the listSentiments 

list: In this step, you populate the listSentiments list with the 

variables created in Step 3 via the list’s append method. The 

append method uses a list based on the two variables to append 

the information.

	 5.	 Create the dfSentiments data frame: The DataFrame() method 

from pandas is used to convert the listSentiments list to a data 

frame. A list containing the desired column names is passed to 

the columns argument of the DataFrame() method to name the 

columns in the data frame.

�Step 8: Add the data to Power BI

The complete script is in Listing 9-3.
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Listing 9-3.  Python script that uses Microsoft Cognitive Services to perform 

sentiment analysis

import pandas as pd

import json

import ast

from pandas.io.json import json_normalize

from azure.cognitiveservices.language.textanalytics import (

    TextAnalyticsClient)

from msrest.authentication import CognitiveServicesCredentials

api_key = "<put api key here>"

endpoint = \

    "https://rwtextanalyticsapi.cognitiveservices.azure.com/"

credentials = CognitiveServicesCredentials(api_key)

text_analytics = TextAnalyticsClient(

    endpoint=endpoint, credentials=credentials)

df = pd.read_csv("<path to yelp_sample.csv>")

df["language"] = "en"

documents = df.to_json(orient='records')

documents = ast.literal_eval(documents)

response = text_analytics.sentiment(

    documents=documents, raw = False)

listSentiments = []

for document in response.documents:

    id = document.id

    score = document.score

    listSentiments.append([id, score])

dfSentiments = pd.DataFrame(

    listSentiments, columns=['ID','Score'])

Copy and paste the code into the Python editor in Power BI. Doing so will expose the 

dfSentiments data frame to the Power BI data model.
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�Applying AI to your Power BI data model using 
services other than Microsoft Cognitive Services
Microsoft Cognitive Services has a nice selection of AI models that you can leverage, but 

they do not cover all situations. Fortunately, other vendors such as IBM and Google offer 

services that you can use that are extremely powerful that can help fill in the gap. You 

will find that some services are common among all vendors such as sentiment analysis, 

but there are other services that may be unique to a given vendor. One such service is the 

Tone Analyzer offered by IBM Watson Natural Language Understanding.

In this chapter, you will learn how to leverage IBM Watson Natural Language 

Understanding to take advantage of its Tone Analyzer API in Power BI. The Tone Analyzer 

is used to return the tone of the text. Some of the tones it can detect are happy, sad, 

and excited, to name a few. This exercise will be done in just Python because R was not 

supported by IBM Watson at the time of this writing. The next section will cover how to 

set up your account in IBM Watson Natural Language Understanding, and that will be 

followed by a section that covers how to use the service from a Python script in Power BI.

�Configuring the Tone Analyzer service in IBM Watson
Like with Azure, you need to get an account, then set up the Tone Analyzer service. Here 

are the steps to do that.

�Step 1: Sign up for IBM Cloud account

Go to www.ibm.com/cloud/watson-natural-language-understanding/pricing to sign 

up for an IBM Watson Natural Language Understanding account.

�Step 2: Log into the IBM Cloud

After you sign up, go to this URL to log in: https://cloud.ibm.com/login.

�Step 3: Go to the Tone Analyzer page

	 1.	 Click the Create Resource button at the top of the page. It will take 

you to a page that has a big list of services available to you.
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	 2.	 Search for the Tone Analyzer service in the Search the catalog… 

search box contained in the upper right portion of the page. Doing 

so will filter the list down to the Tone Analyzer service. Click the 

Tone Analyzer service when you see it.

�Step 4: Define your Tone Analyzer service

	 1.	 In the Select a region section, pick the region that is closest to you 

in the drop-down box.

	 2.	 Choose the Lite plan in the Select a pricing plan section. That plan 

is sufficient for this exercise. You may need to upgrade your plan if 

your future needs take you past the free 2500 API calls you receive 

per month or if you have privacy concerns.

	 3.	 In the Configure your resource section,

•	 Give your plan a meaningful name in the Service name: section.

•	 Select a resource group. If you are new to IBM Watson Natural 

Language Understanding, you can go with the default resource 

group. If you already have resource group(s) in IBM Watson 

Natural Language Understanding, they will be available for you to 

select. Like in Azure, resource groups allow you to combine your 

IBM Watson Natural Language Understanding resources in one 

group which facilitates access and billing.

•	 You can optionally add tags in the Tags: section which further 

helps you organize and group your resources.

	 4.	 Click the Create button in the upper left to create the resource.

�Step 5: Get your API key

Your API key will be used to authenticate you when you make API calls to the IBM 

Watson Natural Language Understanding service. It is very important that you keep the 

API key secure.
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You should have been taken to a page where you can administer your Tone Analyzer 

resource after you clicked the Create button in Step 4. If for some reason you were not, 

you can get to it by clicking the navigation icon in the upper right corner of the page 

which is pictured in Figure 9-1.

One of the options you will see is Resource List. Click it to go to the Resource list page. 

You should see your Tone Analyzer resource in the Services section. Click it to go to the 

page that will allow you to administer your Tone Analyzer resource.

After you arrived at the desired location, click the Manage tab in the upper right 

corner pictured in Figure 9-2.

Figure 9-1.  The IBM Navigation menu

Figure 9-2.  Link to get to the page where you can manage your Tone 
Analyzer service
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Once there, you can get your API key by clicking the copy icon next to the API key 

illustrated in Figure 9-3.

�Writing the Python script to perform the tone analysis
You can start developing the python script now that you have the resources set up in IBM 

Watson Natural Language Understanding. Just like in the Microsoft Cognitive Services 

example, the script will score the data and produce a data frame with the scored data 

that can be brought into Microsoft Power BI. Here are the steps.

�Step 1: Import the required libraries and modules

You will start off by defining the imports you need for the script as shown in the following 

code:

import json

import pandas as pd

import ast

import os

from ibm_watson import ToneAnalyzerV3

from ibm_watson.tone_analyzer_v3 import ToneInput

from ibm_cloud_sdk_core.authenticators import IAMAuthenticator

This script uses the pandas library to handle some basic data wrangling tasks and 

json work. The literal_eval function from the ast library is used to execute a string 

representation of some python code, and the ToneAnalyzerV3 and IAMAuthenticator are 

used to perform the tone analysis. More explanations about the latter two will be given in 

a subsequent step.

Figure 9-3.  Accessing your Tone Analyzer service API key
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�Step 2: Create an instance of the IAMAuthenticator class

The code needed to do so is as follows:

authenticator = IAMAuthenticator("<your API key>")

This step is used for authentication. It initiates an IAMAuthenticator object based on 

the API key that you generated earlier and assigns it to the authenticator variable.

�Step 3: Create an instance of the ToneAnalyzerV3 class

The code needed to do so is as follows:

service = ToneAnalyzerV3(

                         version='2019-12-22',

                         authenticator=authenticator

          )

The code creates an instance of the ToneAnalyzerV3 class that you will use to 

communicate with the IBM Watson Natural Language Understanding Tone Analyzer 

service. You need to populate two parameters: the version parameter and the 

authenticator parameter. The version parameter is used to tell the API which version of 

the API you want to use. If a version of the API was created on the date you specified, 

then that version of the API will be used. Otherwise, it will use the most recent version of 

the API created before the data specified. It is important to use the date that was tested 

during development to prevent your code from breaking.

�Step 4: Set the service URL of the service object

The code needed to perform this step is as follows:

service.set_service_url(

    "https://gateway.watsonplatform.net/tone-analyzer/api")

You can find your service URL by going to the Manage tab in your IBM Watson 

Natural Language Understanding Tone Analyzer resource page.
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�Step 5: Create a data frame that will hold the data you want 
to use for the tone analysis

The code is straightforward. You use the read_csv() method from pandas to retrieve the 

data as illustrated here:

dfDocuments = pd.read_csv(

    "<path to the documents csv file>")

�Step 6: Create a data frame based on the scored data

Use the following code to create an empty list:

listReturnedUtterance = []

The tone analysis will be done by sending each document to IBM Watson Natural 

Language Understanding individually, and the results will be sent back to you in JSON 

format.

A document in tone analysis is a group of words or sentences that represents the 
level of your analysis. Examples include a tweet if you are doing tone analysis 
for Twitter or a restaurant review if you are doing tone analysis on the restaurant 
reviews.

The returned JSON will be parsed to get the tones with their corresponding scores. 

That information will be stored in the list created in the line of code earlier. This list will 

be the basis of the data frame that will be the data source for Power BI.

�Step 7: Create a looping structure to individually send the 
documents to IBM Watson

This is accomplished in the following code:

for index, row in dfDocuments.iterrows():
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The IBM Watson Natural Language Understanding tone analysis service only 

allows 50 submissions in one batch, but you will often need to send more. You can 

get around this limitation by sending documents to IBM Watson Natural Language 

Understanding one request at a time instead of in batches. You can accomplish this by 

iterating over the dfDocuments data frame via the iterrows() method. The iterrows() 

method will iterate over the dfDocuments data frame and return a pair of index and 

row value. The index represents the index value of the row and the row is returned as a  

pandas series. This functionality enables you to act on each column of the data frame 

individually row by row.

�Step 8: Format and score the document

The code required to perform this step is as follows:

    submissionText = row["text"].replace("'","")

    submissionText = submissionText[0:500]

    PythonExpression = "[{'text':  '" + submissionText + "'}]"

    Submission = ast.literal_eval(PythonExpression)

    tone_chat = service.tone_chat(Submission).get_result()

IBM Watson Natural Language Understanding needs to receive the request in a form 

of a list with each element in the list being a dictionary that contains the document that 

needs to be analyzed. You are sending one request at a time so the request needs to be 

formatted as follows:

[{'text': '<document to be analyzed'}]

The result is a list that contains a dictionary with one element. Your data is in a data 

frame, so you need to do some manipulation to get the data in the preceding format.

In the first line of code in the preceding code snippet, you replace all single quote 

symbols in the document with an empty string. The single quote symbol is used to 

encapsulate the text in your document. Removing instances of them that appear in the 

document will prevent parsing errors.

The second line of code makes sure you are only getting the first 500 characters of the 

document because that is the max size allowed by IBM Watson. The 0 in that line tells 

Python what position you want to start in the string, and it is inclusive.
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Python is a zero-based programming language, and R is a one-based programming 
language. That means the default initial index created in Python will be 0, but it will 
be 1 in R.

The 500 tells Python the position where you want to stop, but it is not inclusive. So, 

the preceding code will retrieve all characters starting in position 0 up to the position 

right before position 500 or the length of the string if the length is lower than 500. This 

results in a max of 500 characters being returned. This is the max number of characters 

allowed by IBM Watson.

The third line of code creates a string that represents the expression needed to create 

a list with a dictionary in it that contains the document you want to score. It is built 

by concatenating the static portions that will be the same for all submissions with the 

dynamic portion which contains the document to be analyzed.

The fourth line of code executes the string as a Python expression. The result of that, 

in this case, is a list object with a dictionary inside being produced. The resulting list is 

assigned to the Submission variable.

Lastly, the fifth line of code uses the tone_chat() method from the service object 

you created earlier to communicate the submission to IBM Watson Natural Language 

Understanding. The results are stored in the tone_chat variable.

�Step 9: Assign the results of the tone analysis and set the initial 
values of the tone variables

The following code is used to perform this step:

    utterances = tone_chat["utterances_tone"]

    sad, frustrated, satisfied, excited, \

    polite, impolite, sympathetic, unknown = \

        0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
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The preceding first line gets the utterances_tone dictionary returned from IBM 

Watson Natural Language Understanding and assigns it to the utterances variable. The 

output of the utterances_tone comes back looking like the following sample JSON:

{'utterances_tone':

       [{'utterance_id': 0,

          'utterance_text': '<document that was analyzed>',

          'tones': [{'score': <between 0 and 1 for tone 1>,

                     'tone_id': '<tone_id 1>',

                     'tone_name': '<tone_name 1>'},

                      …………………………………………………………………………

                    {'score': <between 0 and 1 for tone n>,

                     'tone_id': '<tone_id n>',

                     'tone_name': '<tone_name n>'}

                   ]

         }

      ]

}

The main part of the preceding JSON you are interested in are the tones. Note 

that multiple tones can be returned per document submitted. The possible tones are 

represented in the tone variables that you created in this step. Each possible tone was 

initialized with a value of 0.

Note that a \ was used for line continuation when initializing the tone variables. 
The three lines actually represent one line of code, but that line is too wide to fit 
on this page. The line continuations were used to overcome the width limitation.

For each tone returned, you get the score, an id, and the tone name. In the next step, 

you will iterate through the tones to get the score for each tone returned.
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�Step 10: Loop through the returned tones and assign their scores 
to the appropriate variable

The following code is used to accomplish this step:

    tones = utterances[0]["tones"]

    for tone in tones:

        toneid = tone["tone_id"]

        if toneid == "sad":

            sad = tone["score"]

        elif toneid == "frustrated":

            frustrated = tone["score"]

        elif toneid == "satisfied":

            satisfied = tone["score"]

        elif toneid == "excited":

            excited = tone["score"]

        elif toneid == "polite":

            polite = tone["score"]

        elif toneid == "impolite":

            impolite = tone["score"]

        elif toneid == "sympathetic":

            sympathetic = tone["score"]

        else:

            unknown = tone["score"]

    listReturnedUtterance.append(

        [index, sad, frustrated, satisfied, excited,

        polite, impolite, sympathetic, unknown])

Because you are submitting one document at a time, the returned value represents 

the tones for one submission. Even though tones for only one document are being 

returned, you still need to explicitly tell Python that you want the first one. You do that 

with the following code: utterances[0]["tones"]. The [0] gets the first utterance, and 

the [“tones”] extracts the tones from that utterance. The result is stored in the tones 

variable. Next, you iterate over the elements in tones variable and assign the score to the 

appropriate tone. So, if the value of toneid of the current iteration is impolite, then the 

Chapter 9  Applying Machine Learning and AI to Your Power BI Data Models



324

score for the impolite variable will be changed from 0 to the impolite score. After all the 

returned tones have been iterated through and assigned to the appropriate tone variable, 

the index value of the current iteration along with the values of each tone is appended to 

the listReturnedUtterance list.

�Step 11: Create a data frame based on the listReturnedUtterance 
list

The code needed to accomplish this step is as follows:

colnames = ["index", "sad", "frustrated", "satisfied", "excited",

"polite", "impolite", "sympathetic", "unknown"]

dfReturnedUtterance = pd.DataFrame(

    listReturnedUtterance, columns=colnames)

It is relatively easy to convert your listReturnedUtterance list to a data frame using 

the DataFrame method from pandas. You need to give it two arguments. The first 

argument is the list you want to convert into a data frame, which in this case is the 

listReturnedUtterance list. The second argument you need to populate is the columns 

argument. You supply that argument with a Python list that contains the names you want 

to use for the columns.

�Step 12: Merge the dfReturnedUtterance data frame 
with the dfDocuments data frame

Here is the code needed to perform this step:

dfOutput = pd.merge(

    dfDocuments, dfReturnedUtterance,

    how='inner', left_on = 'id', right_on = 'index')

dfOutput = dfOutput[

    ['id', 'text', 'sad', 'frustrated', 'satisfied',

    'excited', 'polite', 'impolite', 'sympathetic', 'unknown']]
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You merge the dfReturnedUtterance data frame to the dfDocuments data frame using 

the merge method of pandas. The way this is accomplished is you provide the data frame 

that represents the left side of the join as the first argument of the merge() method and 

the data frame that represents the right side of the join as the second argument. Next, 

you tell the pandas what type of join you want to do using the how argument. In this 

example, you are performing an inner join. Lastly, you identify the columns you want to 

use in the join from each data frame. The column that you want to use from the left data 

frame is specified in the left_on argument, and the column you want to use from the right 

data frame is specified in the right_on argument.

�Step 13: Copy the complete script into Power BI

Here is the complete script that you need to copy and place in the Python script editor 

that you access via GetData. The script returns multiple data frames that will be exposed 

to Power BI. The one you want to add is the dfOutput data frame.

Listing 9-4.  Python script that uses IBM Watson to perform tone analysis

import json

import pandas as pd

import ast

import os

from ibm_watson import ToneAnalyzerV3

from ibm_watson.tone_analyzer_v3 import ToneInput

from ibm_cloud_sdk_core.authenticators import IAMAuthenticator

authenticator = IAMAuthenticator("<your API key>")

service = ToneAnalyzerV3(

    version='2019-12-22',

    authenticator=authenticator)

service.set_service_url(

    "https://gateway.watsonplatform.net/tone-analyzer/api")

dfDocuments = pd.read_csv(

    "<path to the documents csv file>")
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listReturnedUtterance = []

for index, row in dfDocuments.iterrows():

    submissionText = row["text"].replace("'","")

    submissionText = submissionText[0:500]

    PythonExpression = "[{'text':  '" + submissionText + "'}]"

    Submission = ast.literal_eval(PythonExpression)

    tone_chat = service.tone_chat(Submission).get_result()

    utterances = tone_chat["utterances_tone"]

    sad, frustrated, satisfied, excited, \

    polite, impolite, sympathetic, unknown = \

        0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

    tones = utterances[0]["tones"]

    for tone in tones:

        toneid = tone["tone_id"]

        if toneid == "sad":

            sad = tone["score"]

        elif toneid == "frustrated":

            frustrated = tone["score"]

        elif toneid == "satisfied":

            satisfied = tone["score"]

        elif toneid == "excited":

            excited = tone["score"]

        elif toneid == "polite":

            polite = tone["score"]

        elif toneid == "impolite":

            impolite = tone["score"]

        elif toneid == "sympathetic":

            sympathetic = tone["score"]

        else:

            unknown = tone["score"]

    listReturnedUtterance.append(

        [index, sad, frustrated, satisfied, excited,

        polite, impolite, sympathetic, unknown])
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colnames = ["index", "sad", "frustrated", "satisfied", "excited",

"polite", "impolite", "sympathetic", "unknown"]

dfReturnedUtterance = pd.DataFrame(

    listReturnedUtterance, columns=colnames)

dfOutput = pd.merge(

    dfDocuments, dfReturnedUtterance,

    how='inner', left_on = 'id', right_on = 'index')

dfOutput = dfOutput[

    ['id', 'text', 'sad', 'frustrated', 'satisfied',

    'excited', 'polite', 'impolite', 'sympathetic', 'unknown']]

In this chapter, we covered the technical details that you need to know to apply AI to 

your Power BI data models using custom models built in R and Python. You also learned 

how to easily perform data transformation required by your machine learning models 

that would be very hard to do in Power Query. Lastly, we covered how to use pre-built 

models from cloud-based services such as Microsoft Cognitive Services and IBM Watson 

Natural Language Understanding. The techniques in this chapter were self-service-

based techniques and are not meant to be an enterprise solution. In Chapter 10, you will 

learn how to use similar techniques on an enterprise scale!
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CHAPTER 10

Productionizing Data 
Science Models and Data 
Wrangling Scripts
The data wrangling scripts and data scoring scripts in the previous chapters work great in 

a self-service situation or in small shops where one person is responsible for maintaining 

the Power BI data models. That is because in those situations you can get away with 

using the personal version of the on-premises data gateway. But, the enterprise version 

of the on-premises data gateway is required for enterprise solutions, and it does not allow 

the use of R or Python scripts embedded in Power BI. Fortunately, you can overcome 

this limitation using a relatively new feature in SQL Server known as SQL Server Machine 

Learning Services (SSMLS). SSMLS is a feature of SQL Server that enables you to perform 

advanced data analytics inside the database via R and Python scripts that are wrapped in 

a special T-SQL stored procedure. Since you are able to fetch data via a stored procedure 

call using the on-premises data gateway, you can refactor your previously written data 

wrangling and data scoring scripts in Power BI to an enterprise solution by wrapping the 

scripts in a stored procedure.

In this chapter, we will go over some examples that show how to refactor a data 

wrangling script and a data scoring script, and as a bonus, we will show how to use a pre-

built model that comes with SSMLS to get sentiment scores for free! First, let’s refactor 

the Boston house price prediction example in SSMLS.

https://doi.org/10.1007/978-1-4842-5829-3_10#DOI
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�Predicting home values in Power BI using R in SQL 
Server Machine Learning Services
In this example, we will refactor the R script that was used to predict house prices in 

Chapter 9 and wrap it in a special stored procedure. Doing so will enable the R script to 

be used with the enterprise version of the on-premises data gateway. This change will 

enable you to use the solution in an enterprise situation. Here are the required steps.

�Build the R script that adds the model to SQL Server
Listing 10-1 shows the code needed to add the R model to SQL Server.

Listing 10-1.  Code needed to add R model to SQL Server

library(RODBC)

# Load model into our R session

model <- readRDS("./Models/Model.rds")

# Connects to the database

server.name = "DSVM2019"

db.name = "BostonHousingData"

connection.string = paste(

    "driver={SQL Server}", ";",

    "server=", server.name, ";",

    "database=", db.name, ";",

    "trusted_connection=true", sep = "")

conn <- odbcDriverConnect(connection.string)

# Define parameters

model_name <- "R Model"

modelbin <- serialize(model, NULL)

modelbinstr = paste(modelbin, collapse = "")

# Build the SQL Statement and execute it 

# using the sqlQuery command

sql_code <- paste0(

    "EXEC AddModel_R ",
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    "@ModelName='",

    model_name, "', ",

    "@Model_Serialized='",

    modelbinstr, "'")

sqlQuery(conn, sql_code)

odbcClose(conn)

Now let’s go over the code in steps.

�Step 1: Load the necessary packages

library(RODBC)

Only one package needs to be loaded in this script which is the RODBC package. 

The RODBC package will be used to interact with SQL Server.

�Step 2: Load the model into the R session

The following code is used to perform the task:

model <- readRDS("./Models/Model.rds")

In this step, you load the model into R using the readRDS() function which is a part 

of base R. You will be able to use a relative file path if your working directory is set to the 

R folder for Chapter 10.

�Step 3: Create a connection to the database

The following code is used to connect to the database:

server.name = "DSVM2019"

db.name = "BostonHousingData"

connection.string = paste(

    "driver={SQL Server}", ";",

    "server=", server.name, ";",

    "database=", db.name, ";",

    "trusted_connection=true", sep = "")

conn <- odbcDriverConnect(connection.string)
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A connection string is created based on the server and database name you used 

to set the server.name and db.name variables, respectively. That information is 

concatenated with some static information to build the connection string. The results are 

assigned to the connection.string variable. Lastly, the connection.string variable is passed 

to the odbcDriverConnection() function to create a connection object. The connection 

object that is created is named conn.

�Step 4: Define the model variables

The code for this step is as follows:

model_name <- "R Model"

modelbin <- serialize(model, NULL)

modelbinstr = paste(modelbin, collapse = "")

A model_name variable is used to hold the name of the model. It will be used later in 

a subsequent step to identify the model in the dbo.Models table. The model is serialized 

using the serialized() function, and the results of the serialization is stored in the 

modelbin variable. Next, the modelbin is converted to a scalar character vector by using 

the collapse option of the paste() function, and the results are stored in the modelbinstr 

variable. That modelbinstr variable is the representation of the model that will be 

inserted into the database.

�Step 5: Build the T-SQL statement to add the model 
to the database

The code to perform this task is as follows:

sql_code <- paste0(

    "EXEC AddModel_R ",

    "@ModelName='",

    model_name, "', ",

    "@Model_Serialized='",

    modelbinstr, "'")

The paste0() function is used to build the T-SQL that executes the AddModel_R 

stored procedure in SQL Server. The AddModel_R stored procedure uses the INSERT 

statement to insert the model into SQL Server using parameters that are based on 

the variables built in Step 4. The VALUES clause is used with the INSERT statement 
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to pass the model name that is defined in the model_name variable and the string 

representation of the model that is defined in the modelbinstr variable. The AddModel 

stored procedure is already configured in the database that you will add to your server in 

a subsequent step. After you add the database, you can view the T-SQL code that is being 

executed by inspecting the code inside the dbo.AddModel_R stored procedure.

�Step 6: Add the code needed to execute the T-SQL statement 
from R

Here’s the code for this step:

sqlQuery(conn, sql_code)

odbcClose(conn)

The T-SQL code built in Step 5 is executed using the sqlQuery() function from the 

RODBC package. It uses the conn object to connect to the database and sql_code variable 

to give the function the T-SQL statement to execute. The connection to the database is 

closed after the T-SQL code is executed.

�Step 7: Save the script

Make sure to save the script if you are starting from scratch. You will need to execute it 

in a later step to add the model to the SQL Server. Note that the script is available in the 

code repository of this book.

�Use SQL Server Machine Learning Services with R 
to score the data
In this section, we will go over the steps needed to add the database used in this example 

to your server. You will also go over the steps needed to configure the database and score 

the data.

�Step 1: Launch SQL Server Management Studio

If you are using the recommended Windows 2019 DSVM, then SQL Management Studio 

(SSMS) and SQL Server 2019 will already be installed with SQL Server Machine Learning 

Services enabled. Please refer to the installation instructions located in the introduction 

if those resources are not installed in your environment.
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�Step 2: Create a connection to the server you want to use

When you launch SQL Server Management Studio (SSMS), the server name should 

be populated in the textbox field. If it is not listed and you don’t know the name of the 

server, then you can type “.” and SSMS will open the local server in your environment.

�Step 3: Add the BostonHousingInfo database to your server

A starter database for this exercise is in the Databases folder for this chapter. The name 

of the file that you will use to restore the database is BostonHousingData.bak. Perform 

the following steps to restore the BostonHousingData database:

	 1.	 Copy the BostonHousingData.bak file to the Backup folder for SQL 

Server. The location in the DSVM is C:\Program Files\Microsoft 

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SSMS and right-click the Databases folder, then select 

Restore Databases….

	 3.	 The Restore Database pop-up form will appear. Make sure you are 

on the General page tab. In the Source section, select the Device 

radio button.

	 4.	 Click the eclipse button, the button with the three dots, then 

click the Add button. Next, browse to the location where 

BostonHousingData.bak is located. 

	 5.	 Select the BostonHousingData.bak file, then click the OK button to 

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form. Doing so will add 

the database.

The database added in this step will include the necessary infrastructure needed 

for this exercise and the data that will be scored. The Boston Housing data used in this 

example was obtained using the load_boston() function from sklearn.datasets. The code 

used to acquire the data set is in the code repository.

Chapter 10  Productionizing Data Science Models and Data Wrangling Scripts



335

�Step 4: Add the model to the database

Go back to AddModelToDatabase.R script in R Studio. Make sure that the working 

directory is set to the R folder. Execute the script. If you configured the script correctly, 

the R model will be added to the dbo.Models table in the BostonHousingInfo database.

�Step 5: Add the stored procedure to the database that will do 
the scoring

Listing 10-2 is the code that creates the stored procedure.

Listing 10-2.  The uspPredictHousePrices_R stored procedure

CREATE PROCEDURE [dbo].[uspPredictHousePrices_R]

AS

BEGIN

  -- Define variables

  DECLARE @model varbinary(max) =

      (SELECT MODEL

       FROM [dbo].[Models]

       WHERE ModelName = 'R Model');

  DECLARE @RScript nvarchar(max);

  DECLARE @Query nvarchar(max);

  DECLARE @InputDFName nvarchar(25);

  DECLARE @OutputDFName nvarchar(25);

  -- Define source data

  SET @Query='SELECT [crim], [rm], [tax], [lstat]

              FROM [dbo].[BostonHousingInfo]'

  -- R script to score data

  SET @RScript = N'

bhmodel_deserialized <-

    unserialize(as.raw(bhmodel_serialized));

model_data <- dfInputData

pred_medv <-

    predict(bhmodel_deserialized, model_data)
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dfOutputData <-

    cbind(model_data, pred_medv)'

  SET @InputDFName = 'dfInputData'

  SET @OutputDFName = 'dfOutputData'

  EXEC sp_execute_external_script

       @language = N'R'

      ,@script = @RScript

      ,@input_data_1 = @Query

      ,@input_data_1_name = @InputDFName

      ,@output_data_1_name = @OutputDFName

      ,@params = N'@bhmodel_serialized varbinary(max)'

      ,@bhmodel_serialized = @model

  WITH RESULT SETS((

       [crim] float

      ,[rm] float

      ,[tax] float

      ,[lstat] float

      ,[pred_medv] float

  ));

END

The preceding code performs the following actions:

	 1.	 Defines the following variables needed in the script:

•	 @model variable is used to hold the model. You retrieve the 

model from the dbo.Models table using T-SQL.

•	 @RScript variable holds the R script that does the scoring.

•	 @query_string variable holds the TSQL script that defines the 

data set that will be scored.

•	 @InputDFName variable holds the name of the input data set 

that Python will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set 

that R will use to refer to the output data set.
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	 2.	 Sets the @Query with the TSQL code that returns the input  

data set. The input data set represents the data that will be scored 

using R.

	 3.	 Sets the @RScript variable with the R code that will perform 

the scoring. The R script assigned to this variable performs the 

following steps:

•	 Loads the bhmodel_serialized in a raw format, then unserializes 

it using the unserialize() function and assigns the results to the 

bhmodel_deserialized variable.

•	 Create a variable named model_data that is based on the 

dfInputData data frame. You do this because it is best practice to 

not act directly on the input data set passed to R from SQL Server.

•	 Uses the predict() function from base R to score the data. The first 

parameter passed to the function is the model, and the second 

parameter is the data that needs to be scored. The output is a 

vector that contains the predictions, and it will be stored in the 

pred_medv variable.

Note that you were able to include the whole data frame. That is because it 
only contains the columns needed by the regression formula. In more advanced 
situations, you may need to perform transformation to the data passed to R to get 
it in the structure that is needed by the model’s formula.

•	 Creates a dfOutputData data frame using the cbind() function 

to do a column-based bind that combines the model_data data 

frame and the pred_medv vector into one data frame.

•	 Sets the names you want to use for the input and output data 

frames.
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	 4.	 Configures the sp_execute_external_script stored procedure.  

Most of this is self-explanatory, but the @params and  

@bhmodel_serialized parameters may need some explanation. 

The @params argument enables you to define extra parameters 

needed by the model. In this case, we are defining a parameter 

named @bhmodel_serialized with a varbinary(max) data type. 

This parameter will pass the model to the R script and will 

expose it to the script with the parameter name minus the @ sign 

which happens to be in this case bhmodel_serialized. The value 

of @bhmodel_serialized parameter is set in the succeeding line.

	 5.	 The WITH RESULT SETS clause is used to define the column 

names and column data types. This will give Power BI the 

information it needs to determine the column names and data 

types of the scored data set passed to it from SQL Server.

Execute the preceding script to add the stored procedure to the database. Now, you 

will be able to score the data by calling the stored procedure.

�Step 6: Fetch the scored data in Power BI from SQL Server

To fetch the scored data in Power BI, launch Power BI, then go to GetData ➤ SQL 

Server. Populate the Server and Database (optional) textbox. Next, expand the Advanced 

options section and type EXEC [dbo].[uspPredictHousePrices_R] in the SQL statement 

(optional, requires database) textbox. The Include relationship columns check box is 

checked by default, but it is not needed in this situation, so it is unchecked. Figure 10-1 

shows what the form looks like after it has been configured.
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Click OK to add the data to the Power BI data model.

The focused in this example should not be on the model. The model in this exercise 

was based on a simple linear regression formula, and it was made simple so that the 

focus would be on how to implement an R model to score data in Power BI via SSMLS. 

We did not focus on developing a complex model on purpose. Developing accurate 

machine learning models is well beyond the scope of this book. But if you or the data 

scientist on your team already knows how to develop complex models in R that produce 

Figure 10-1.  GetData form populated with information needed to execute the 
dbo.uspPredictedHousePrices_R stored procedure
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accurate predictions, then the steps outlined in this chapter can be used to apply those R 

models to Power BI data models via SSMLS. Next, you will learn how to perform a similar 

task in SSMLS using Python.

�Predicting home values in Power BI using Python 
in SQL Server Machine Learning Services
In this example, we will refactor the Python script that was used to predict house prices 

in Chapter 9 and wrap it in a special stored procedure. Embedding the Python script in a 

stored procedure will enable the Python script to be used with the enterprise version of 

the on-premises data gateway. Here are the required steps.

�Create the script needed to add Python model to SQL 
Server

�Step 1: Get the version of libraries used in this exercise
The libraries used in this exercise are pickle, os, pyodbc, scikit-learn, and pandas. You 

need to make sure that the versions of those packages that you use in development 

are the same as the versions in SSMLS. You can get the versions that are being used in 

SSMLS by running the following T-SQL script shown in Listing 10-3 in SQL Server.

Listing 10-3.  Script to get installed Python libraries

EXECUTE sp_execute_external_script

     @language = N'Python'

    ,@script = N'

import pkg_resources

import pandas as pd

installed_packages = pkg_resources.working_set

installed_packages_list =

  sorted(["%s==%s" % (i.key, i.version) for i in installed_packages])

df = pd.DataFrame(installed_packages_list)

OutputDataSet = df'

WITH RESULT SETS (( PackageVersion nvarchar (150) ))
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The preceding script returns a list of all of the packages that are installed in the 

installation of Python in SSMLS. As of the writing, here are the versions of the libraries 

used in SSMLS 2019:

•	 pyodbc 4.0.25

•	 scikit-learn 0.20.2

•	 pandas 0.23.4

Note that the os and pickle libraries are not listed. That is because those packages are 

included in all python installations by default.

�Step 2: Create a conda environment

We need to make sure that all development is done using the same version that is used 

in SSMLS to prevent unnecessary version conflicts, to ensure that we need to set up a 

special development environment known as a conda environment.

conda environment helps you isolate project development by letting you determine 
the version of python you want to use, the libraries you want to include, and 
the version of those libraries that you want to use. There are other environment 
management options in python. What makes conda different from the others is that 
it is language agnostic so it can be used with other programming languages.

Perform the following steps to create a conda environment:

	 1.	 Open VS Code

Open the command prompt and type the following code to 

change the working directory:

cd <"path to Python folder for Chapter One">

Next, type the following code to open VS Code from the preceding 

location:

code .
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	 2.	 Open a terminal shell in VS Code in the above location

Type CTRL+SHIFT+` to open a terminal shell. You are using the 

Command Prompt in this example. If you need to change the 

terminal shell, open the shell option window located in the upper 

right pictured in Figure 10-2.

Once you make the preceding selection, you will be given the 

following options depicted in Figure 10-3.

Make the highlighted selection to change the terminal shell to the 

Command Prompt.

	 3.	 Create a new conda environment called ssmls

We need a development environment that uses the same version 

of Python and the same version of the libraries that are used 

in SSMLS. The version of Python that is used in SSMLS 2019 is 

Python 3.73. Type the following code in the command prompt to 

create an environment using that version of Python:

conda create --name ssmls python=3.7.3

Figure 10-2.  The VS Code shell option window

Figure 10-3.  Terminal shell options
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	 4.	 Switch to the environment you just created

In Step 3, you created an environment, but you are not working 

out of it. If you are working in the recommended Data Science 

Virtual Machine, then you will have many pre-installed 

environments as well as any environments you created. You need 

to type the following code in the command prompt to get a list of 

the environments that are available to you:

conda env list

If you are working in the DSVM, you will see several environments 

plus the ssmls environment. If you are working on your personal 

machine, then you may just see the ssmls environment, the base 

environment, and any other environments you may have created 

personally. Type the following command in the command prompt 

to activate the ssmls environment:

activate ssmls

Now you are in the ssmls environment which is based on the same 

version of Python that is used in SSMLS 2019.

	 5.	 Install the required libraries in the ssmls environment

Now you need to install the pandas, scikit-learn, and pyodbc 

libraries. Let’s install pandas first. To install the version of pandas 

needed for this task, type the following code:

conda install pandas=0.23.4

The preceding code will begin the installation process. You will 

have to go through several prompts to complete the installation. 

Perform the same action for scikit-learn 0.20.2 and pyodbc 4.0.25. 

Make sure to put an = sign in between the library name and the 

version as illustrated in the pandas example.

�Step 3: Create the code that pushes the model to SQL Server

The code in Listing 10-4 is used to push the model to SQL Server.
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Listing 10-4.  Script to push the model to the database

import os

import pyodbc

import pickle

server = 'DSVM2019'

database = 'BostonHousingData'

con = pyodbc.connect(

    'Trusted_Connection=yes',

    driver = '{SQL Server}',

    server = server,

    database = database

    )

cursor = con.cursor()

model = pickle.load(open("./Models/model.pkl", "rb"))

modelstr = pickle.dumps(model)

cursor.execute(

    "INSERT INTO [dbo].[Models](ModelName, Model) VALUES (?, ?)",

    "Python Model", modelstr

    )

con.commit()

con.close()

The preceding code uses the os library to interact with the file system, the pyodbc 

library to interact with SQL Server, and the pickle library to load and save the model 

object. Here are the steps that are performed in the script:

	 1.	 A connection object named con is created based on a Windows 

Authentication type connection. The connection gets the server 

name and database name from the server and database variables 

that were defined earlier

	 2.	 A cursor object named cursor is created that will be used to 

execute a T-SQL statement.
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	 3.	 The model that was previously saved to disk is loaded into the 

Python session using the open() function and the pickle.load() 

function. The open() function opens the model using the “rb” 

access mode where “rb” stands for read binary. The results are 

then loaded to the session using the pickle.load() function which 

is assigned to a variable named model. Next, the model in the 

model variable is serialized using the pickle.dumps() function, and 

the result is assigned to the modelstr variable.

	 4.	 The execute method of the cursor object is used to execute a T-SQL 

statement on the targeted database. The first argument is the 

T-SQL statement. The TSQL statement is an INSERT statement 

that is used to insert the model and model name in the designated 

table. The ? symbols are used as place holders for the ModelName 

and Model parameters. The next two arguments are used to 

provide the parameters. Please note that order is important.

	 5.	 Save the script under the name AddModelToDatabase.py. Keep 

this file open. We will be coming back to it in a later step.

�Use SQL Server Machine Learning Services with Python 
from Power BI to score the data
In this section, you will add the BostonHousingData database to your server and the 

script you created in the previous step to add the model to that database, then create a 

Python stored procedure to predict house prices. What follows are the steps to do so.

�Step 1: Launch SQL Server Management Studio

If you are using the recommended Windows 2019 DSVM, then SQL Management Studio 

(SSMS) and SQL Server 2019 will already be installed with SSMLS enabled. I highly 

recommend using the DSVM because it greatly reduces the effort required to configure 

your environment. If you are not using the DSVM, you will need to manually install SQL 

Server 2019 with SSMLS enabled. You will also need to install SQL Server Management 

Studio. Installation instructions are included in the Introduction.
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�Step 2: Create a connection to the server you want to use

When you launch SQL Server Management Studio, the server name should be populated 

in the textbox field. If it is not listed and you don’t know the name of the server, then you 

can type “ . ” and SSMS will open the database server that is local to your environment.

�Step 3: Add the BostonHousingInfo database to your server

A starter database for this project is in the database folder for this chapter. The name of 

the file is BostonHousingData.bak. If you did the R version of this exercise, you can skip 

this step because the database will already be added to the server. Otherwise, perform 

the following steps to restore the database:

	 1.	 Copy the BostonHousingData.bak file to the Backup folder for SQL 

Server. The location in the DSVM is C:\Program Files\Microsoft 

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SQL Server Management Studio (SSMS) and right-click the 

Databases folder, then select Restore Databases….

	 3.	 The Restore Database pop-up form will appear. Make sure you are 

on the General page tab. In the Source section, select the Device 

radio button.

	 4.	 Click the eclipse button, the button with the three dots, 

then click the Add button. Browse to the location where the 

BostonHousingData.bak is located. 

	 5.	 Select the BostonHousingData.bak file, then click the OK button to 

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form.

The database added in this step will include the necessary infrastructure needed 

for this exercise and the data that will be scored. The Boston Housing data was obtained 

using the load_bostondata() function from sklearn.datasets. A script to get the data is 

included in the book’s code repository.
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�Step 4: Add the model to the database

Go back to AddModelToDatabase.py script in VS Code. Make sure that the working 

directory is set to the Python folder. Execute the script. If you configured the script correctly, 

the model will be added to the dbo.Models table in the BostonHousingInfo database.

�Step 5: Add the stored procedure to the database that will do 
the scoring

Listing 10-5 is the code that creates the stored procedure.

Listing 10-5.  The uspPredictHousePrices_Python stored procedure

CREATE PROCEDURE [dbo].[uspPredictHousePrices_Python]

AS

BEGIN

  DECLARE @model VARBINARY(max) =

      (SELECT MODEL

       FROM [dbo].[Models]

       WHERE ModelName = 'Python Model');

  DECLARE @PythonScript nvarchar(max);

  DECLARE @Query nvarchar(max);

  DECLARE @InputDFName nvarchar(25);

  DECLARE @OutputDFName nvarchar(25);

  -- Define source data

  SET @Query='SELECT [crim], [rm], [tax], [lstat]

              FROM [dbo].[BostonHousingInfo]'

  -- Python script to score data

  SET @PythonScript = N'

import pickle

from sklearn import linear_model

bhmodel_deserialized = pickle.loads(bhmodel_serialized)

pred_medv = bhmodel_deserialized.predict(dfInputData)

dfOutputData = dfInputData

dfOutputData["pred_medv"] = pred_medv

'
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  SET @InputDFName = 'dfInputData'

  SET @OutputDFName = 'dfOutputData'

  EXECUTE sp_execute_external_script

         @language = N'Python'

        ,@script = @PythonScript

        ,@input_data_1 = @Query

        ,@input_data_1_name = @InputDFName

        ,@output_data_1_name = @OutputDFName

        ,@params = N'@bhmodel_serialized varbinary(max)'

        ,@bhmodel_serialized = @model

  WITH RESULT SETS((

         [crim] float

        ,[rm] float

        ,[tax] float

        ,[lstat] float

        ,[pred_medv] float

  ));

END;

The preceding code performs the following actions:

	 1.	 Defines the following variables needed in the script:

•	 @model variable is used to hold the model. The Python model 

that is assigned to this variable is retrieved from the dbo.Models 

table using T-SQL.

•	 @PythonScript variable holds the Python script that does the 

scoring.

•	 @Query variable holds the TSQL script that defines the data set 

that will be scored.

•	 @InputDFName variable holds the name of the input data set 

that Python will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set 

that Python will use to refer to the output data set.

	 2.	 Sets the @Query with the TSQL code that returns the input data set.
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	 3.	 Sets the @PythonScript variable. The python script assigned to 

this variable performs the following steps:

•	 Loads the pickle package to handle interacting with the model

•	 Uses the pickle.loads() function to deserialize the bhmodel_serialized 

model object and assign the results to bhmodel_deserialized

•	 Uses the predict() method of the bhmodel_deserialized object to 

predict the medv using the dfInputData data frame

Note that you were able to include the whole data frame. That is because it 
only contains the columns needed by the regression model. In more advanced 
situations, you may need to perform transformations to the data passed to Python 
to get it in the structure that is needed by the model’s formula.

•	 Creates a dfOutputData data frame using the dfInputData data 

frame with pred_medv variable added as a new column

	 4.	 Sets the names you want to use for the input and output data 

frames using the @InputDFName and @OutputDFName variables.

	 5.	 Configures the sp_execute_external_script stored procedure. Most 

of parameters are self-explanatory, but explanations will be given 

for the @params and @bhmodel_serialized parameters. The  

@params argument enables you to define extra parameters 

needed by the model. In this case, you are defining a parameter 

named @bhmodel_serialized that has a varbinary(max) data 

type. This parameter will pass the model to the Python script 

and the model will be exposed to the script using the parameter 

name minus the @ sign. The value of the @bhmodel_serialized 

parameter is set in the succeeding line of code.

	 6.	 The WITH RESULT SETS clause is used to define the column 

names and column data types of the output. This information will 

be help Power BI determine the data types it should use and how 

to name the columns in the Power BI data model.

Execute the preceding script to add the stored procedure to the database. Now, you 

will be able to score the data by calling the stored procedure.
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�Step 6: Fetch the scored data in Power BI from SQL Server

To fetch the scored data in Power BI, launch Power BI, then go to GetData ➤ SQL Server. 

Populate the Server and Database (optional) textboxes with your server name and the 

name of the database that warehouses the model. Next, expand the Advanced options 

section and type EXEC [dbo].[uspPredictHousePrices_Python] in the SQL statement 

(optional, requires database) textbox. The Include relationship columns check box is 

checked by default, but it is not needed in this situation, so it is unchecked. Figure 10-4 

shows what the form looks like after it has been configured.

Figure 10-4.  GetData form populated with information needed to execute the 
dbo.uspPredictedHousePrices_Python stored procedure
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Click OK to add the data to the Power BI data model.

Just like in the R example, the focus in this example was not on the model but how 

to implement the model on Power BI data via SSMLS. Developing accurate machine 

learning models is well beyond the scope of this book. But if you or the data scientist 

on your team already knows how to develop complex models in Python that produce 

accurate predictions, then the steps outlined in this chapter can be used to apply those 

Python models to Power BI data models via SSMLS.

�Performing sentiment analysis in Power BI using  
R in SQL Server Machine Learning Services
You used a Python script in Chapter 9 to call Microsoft Cognitive Services to perform 

sentiment analysis. Most DBAs don’t allow API calls to be made from the database so 

Microsoft Cognitive Services will not be an option in most situations. Luckily, the pre-

built models that come with SSMLS enable you to perform sentiment analysis without 

the need of making API calls to Microsoft Cognitive Services. Here are the steps needed to 

perform sentiment analysis using a pre-built SSMLS model.

�Add pre-built R models to SQL Server Machine Learning 
Services using PowerShell

�Step 1: Check to see if the pre-trained models are  
installed
Check to see if the pre-built models are installed in the following path:

C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\R_SERVICES\

library\MicrosoftML\mxLibs\x64

You should see the following files in the preceding path:

•	 AlexNet_Updated.model

•	 ImageNet1K_mean.xml

•	 pretrained.model

•	 ResNet_101_Updated.model
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•	 ResNet_18_Updated.model

•	 ResNet_50_Updated.model

If you do, you can skip to the Use pre-built R sentiment model in SQL Server Machine 

Learning Services to score data in Power BI section. Otherwise, go to Step 2.

�Step 2: Open PowerShell as administrator

There are multiple ways to open PowerShell but an easy way is to search for PowerShell 

in the search bar next to the Windows icon on the taskbar. Doing so will cause the 

Windows PowerShell app to appear in the results. Right-click it and select Run as 

administrator.

�Step 3: Download PowerShell script

Go to https://aka.ms/mlm4sql to download the file Install-MLModels.ps1. This file 

contains the PowerShell script needed to add the Python models to SSMLS. Clicking the 

link should cause the file to get downloaded to your Downloads folder. Verify that the file 

was successfully downloaded to the Downloads folder because the next step assumes 

that it will be there.

�Step 4: Run the downloaded script in PowerShell

Run the following command in PowerShell:

C:\Users\<user-name>\Downloads\Install-MLModels.ps1 MSSQLSERVER

If the file was downloaded to your Downloads folder, then you will just needed to 

change the <user-name> to your username. Please refer to the “Troubleshooting” section 

if you are not able to successfully run the code.

�Troubleshooting

•	 If you can't run the script, you may not have rights. You can see what 

rights you have by running the following code in PowerShell:

Get-ExecutionPolicy
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•	 If it is set to restricted, you can change it to unrestricted using the 

following code:

Set-ExecutionPolicy unrestricted

•	 After you run the preceding code, you should be able to run the 

Install-MLModels.psi script. PowerShell should be returned back to 

restricted state if that is what it was originally in. You can do so with 

the following code:

Set-ExecutionPolicy restricted

�Use pre-built R sentiment model in SQL Server Machine 
Learning Services to score data in Power BI
If SQL Server Machine Learning Services is enabled and if you were successful at loading 

the pre-trained models, then you are in the position to be able to perform the sentiment 

analysis. Here are the steps you need to follow.

�Step 1: Begin defining the stored procedures

Here is the T-SQL code that will be used to begin defining the stored procedure:

CREATE PROCEDURE [dbo].[getSentiments_R]

AS

BEGIN

END

The CREATE PROCEDURE command is used to add a stored procedure to a 

database. You are adding a stored procedure named [dbo].[getSentiments_R] in the 

preceding script. The [dbo] in the name represents the schema that the stored procedure 

belongs to. Schemas are used to group database objects together. The default schema 

is dbo. The second part is the actual name. After the stored procedure has been named, 

you type AS and follow that with the T-SQL code that defines the stored procedure. In 

this example, the T-SQL code will be wrapped in a BEGIN… END statement so that it will 

be executed in a batch.
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�Step 2: Define variables

Here are the variables that will be used in the stored proc:

DECLARE @RScript nvarchar(max);

DECLARE @Query nvarchar(max);

DECLARE @InputDataFrame nvarchar(128) = 'dfInput';

DECLARE @OutputDataFrame nvarchar(128) = 'dfOutput';

The @RScript variable will hold the R code that is responsible for performing the 

sentiment analysis, the @Query variable is used to hold the T-SQL statement that is used 

to define the input data set that will be passed to R, the @InputDataFrame variable will 

hold the name that R will use to refer to the input data set, and the @OutputDataFrame 

variable will hold the name that R will use to refer to the output data set.

�Step 3: Set @Query variable

The following code is used to set the @Query variables:

SET @Query = 'SELECT [id], [text] ' +

             'FROM [dbo].[SentimentData]'

The code builds the T-SQL string needed to retrieve the input data for the script. 

The field that the sentiment analysis will be performed on is the text field. The id field is 

used to uniquely identify each record in the data set.

�Step 4: Set @RScript variable

The @RScript variable is set below with the R code that will do the scoring:

SET @RScript = '

dfInput$text = as.character(dfInput$text)

sentimentScores <-

  rxFeaturize(

    data = dfInput,

    mlTransforms = getSentiment(

      vars = list(SentimentScore = "text"))

)

sentimentScores$text <- NULL

dfOutput <- cbind(dfInput, sentimentScores)'
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The script is relatively short because the pre-trained model does the heavy lifting. 

In the preceding R script, the first line changes the text field in the dfInput data frame to 

a character data type. By default, R converts any character-based fields into a data type 

called a factor. Factor fields are used for categorical data.

Data stored as a factor data type is stored using a method similar to the dictionary 

enconding used in Microsoft’s tabular engine. Each unique element in the field is 

replaced with an integer that serves as an index, and a map is created that maps the 

index to the unique element it replaces. This technique is beneficial because integers are 

more efficient to work with and have a lower memory footprint than long strings. Factors 

are good for data analysis, but the benefits you gain from using them are not needed in 

this example. You just need the actual text, so you convert the field to the character data 

type using the as.character() function from base R.

The actual sentiment analysis is performed in this section of the script:

sentimentScores <-

    rxFeaturize(

        data = dfInput,

        mlTransforms = getSentiment(

                      vars = list(SentimentScore = "text")

        )

    )

The workhorse functions are the rxFeaturize() and getSentiment() functions from 

RevoScaleR. RevoScaleR is a package of R functions built to overcome many of the 

challenges of working with big data sets.

RevoScaleR is a very powerful package, and I highly recommend you learn 
how to use it if you plan to do serious R development in SSMLS. Here is the 
URL to a guide that provides a thorough coverage of RevoScaleR: https://
packages.revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_
Users_Guide.pdf.

The rxFeaturize() function is used to access data that has undergone a machine 

learning data transformation via MicrosoftML. It specifies the machine learning 

transformation that is being performed in the mlTransforms argument. The machine 

learning transformation that is occurring in this example is a sentiment transformation 
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via getSentiment(). The vars argument in getSentiment() is used to specify the fields in 

the data set that the sentiment analysis will be performed on. If you specify a named list, 

then the name of each element in your list represents the name of the column that will 

hold the sentiment score, and the value represents the field you want to perform the 

sentiment analysis on. A nice benefit that you get from using a named list is that you can 

use a named list with multiple elements and score multiple fields at once. Here is what 

the code would look like if you were scoring two additional fields named textB and field 

textC:

sentimentScores <-

    rxFeaturize(

        data = dfInput,

        mlTransforms = getSentiment(

                      vars = list(

                              SentimentScore = "text",

                              SentimentScoreB = "textB",

                              SentimentScoreC = "textC")

        )

    )

The getSentiment() function will return a numeric value between 0 and 1 for each 

sentiment analysis it performs. The closer to 0 the value is, the more negative the 

sentiment, and the closer to 1 the value is, the more positive the sentiment. Typically, 

at this point you will come up with a rule to determine how you want to categorize the 

results. The most common method is to make the outcome binary by using a cutoff point 

that will be used to determine what is a good sentiment and what is a bad sentiment. 

The most common cutoff point is 0.5. When that cutoff point is used, any text that is 

scored 0.5 or greater is considered positive and anything that is scored less than 0.5 is 

considered negative.

You are not limited to converting your scores to a binary category. For instance, 

you may want to convert it into three categories. You may decide to say that any score 

between 0.33 and 0.66 is considered neutral, any score that is greater than 0.66 is good, 

and any score that is less than 0.33 is bad. The way you categorize the output is totally up 

to you.
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�Step 5: Configure sp_execute_external_script

Here is the code that is used to configure sp_execute_external_script:

EXEC sp_execute_external_script

      @language = N'R'

     ,@input_data_1 = @Query

     ,@input_data_1_name = @InputDFName

     ,@output_data_1_name = @OutputDFName

     ,@script = @RScript

The sp_execute_external_script special stored procedure is used to execute code in 

SQL Server that is using a programming language other than T-SQL. At the time of the 

writing, the available languages are R, Python, and Java. The parameters that are needed 

for this special stored procedure depend on the script you are executing. In this scenario, 

you need to define five parameters. Here are the parameters with descriptions:

•	 @language is used to specify the language you are using.

•	 @input_data_1 represents the T-SQL code needed to create the input 

data set.

•	 @input_data_1_name represents the name that the R script will use 

to refer to the input data frame.

•	 @output_data_1_name represents the name that the R script will use 

to refer to the output data frame.

•	 @script will hold the R script that does the sentiment analysis.

�Step 6: Define the output

The output is defined using the following code:

  WITH RESULT SETS((

         [crim] float

        ,[rm] float

        ,[tax] float

        ,[lstat] float

        ,[pred_medv] float

  ));
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Without the preceding code, SQL Server will return the output without names or 

known data types. This can be a problem when you are calling the stored procedure from 

Power BI. The WITH RESULT SETS clause enables you to give the output names and data 

types to make it more consumable by third-party clients like Power BI.

�Step 7: Add the procedure to the database

Listing 10-6 contains the complete script.

Listing 10-6.  The getSentiments_R stored procedure

CREATE PROCEDURE [dbo].[getSentiments_R]

AS

BEGIN

     DECLARE @RScript nvarchar(max);

     DECLARE @Query nvarchar(max);

     DECLARE @InputDFName nvarchar(128) = 'dfInput';

     DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

     SET @Query = 'SELECT [id], [text], [likes] ' +

                  'FROM [dbo].[SentimentData]'

     SET @RScript = '

         dfInput$text = as.character(dfInput$text)

         sentimentScores <-

             rxFeaturize(

                 data = dfInput,

                 mlTransforms = getSentiment(

                 vars = list(SentimentScore = "text"))

             )

         sentimentScores$text <- NULL

         dfOutput <- cbind(dfInput, sentimentScores)'

      '
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      EXEC sp_execute_external_script

            @language = N'R'

           ,@input_data_1 = @Query

           ,@input_data_1_name = @InputDFName

           ,@output_data_1_name = @OutputDFName

           ,@script = @RScript

       WITH RESULT SETS (

            (

             [id] [bigint],

             [text] [varchar](8000),

             [score] [float]

            )

        )

END

Run the preceding code in the SentimentsDB database in SQL Server to add the 

stored procedure to the database.

�Step 8: Call the procedure from Power BI

To fetch the scored data in Power BI, launch Power BI, then go to GetData ➤ SQL Server. 

Populate the Server and Database (optional) textboxes. Next, expand the Advanced 

options section and type EXEC [dbo].[getSentiments_R] in the SQL statement 

(optional, requires database) textbox. The Include relationship columns check box is 

checked by default, but it is not needed in this situation, so it is unchecked. Figure 10-5 

shows what the form looks like after it has been configured.
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As in similar stored procedure calls, the result will be exposed to the Power BI data 

model.

Figure 10-5.  GetData form populated with information needed to execute the 
dbo.getSentiment_R stored procedure
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�Performing sentiment analysis in Power BI using 
Python in SQL Server Machine Learning Services
As stated in the R version of this example, you can’t use Microsoft Cognitive Services to 

perform sentiment analysis in SSMLS because of security reasons. But the sentiment 

pre-built model in SSMLS allows you to perform sentiment analysis without having 

to make API calls that may be a security risk. Here are the steps needed to perform 

sentiment analysis using the pre-built SSMLS model via Python.

�Add pre-built Python models to SQL Server Machine 
Learning Services

�Step 1: Check to see if the pre-trained models are  
installed
Check to see if the pre-built models are installed in the following path:

C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\PYTHON_SERVICES\

Lib\site-packages\microsoftml\mxLibs

You should see the following files in the preceding path:

•	 AlexNet_Updated.model

•	 ImageNet1K_mean.xml

•	 pretrained.model

•	 ResNet_101_Updated.model

•	 ResNet_18_Updated.model

•	 ResNet_50_Updated.model

If you do, you can skip to the “Use pre-built Python sentiment model in SQL Server 

Machine Learning Services to score data in Power BI” section. Otherwise, go to Step 2.
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�Step 2: Open PowerShell as administrator

There are multiple ways to open PowerShell, but an easy way is to search for PowerShell 

in the search bar next to the Windows icon on the taskbar. Doing so will cause the 

Windows PowerShell app to appear in the results. Right-click it and select Run as 

administrator.

�Step 3: Download PowerShell script

Go to https://aka.ms/mlm4sql to download the file Install-MLModels.ps1. This file 

contains the PowerShell script needed to add the models to SSMLS. Clicking the link 

should cause the file to get downloaded to your Downloads folder. Verify that the file was 

successfully downloaded to the Downloads folder because the next step assumes that it 

will be there.

�Step 4: Run the downloaded script in PowerShell

Run the following command in PowerShell:

C:\Users\<user-name>\Downloads\Install-MLModels.ps1 MSSQLSERVER

If the file was downloaded to your Downloads folder, then you will need to change 

the <user-name> to your username. Please refer to the “Troubleshooting” section if you 

are not able to successfully run the code.

�Troubleshooting

•	 If you can't run the script, you may not have rights. You can see what 

rights you have by running the following code in PowerShell:

Get-ExecutionPolicy

•	 If it is set to restricted, you can change it to unrestricted using the 

following code:

Set-ExecutionPolicy unrestricted
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•	 After you run the preceding code, you should be able to run the 

Install-MLModels.psi script. PowerShell should be returned back to 

restricted state if that is what it was originally in. You can do so with 

the following code:

Set-ExecutionPolicy restricted

The pre-trained models should now be added to SSMLS.

�Use pre-built Python sentiment model in SQL Server 
Machine Learning Services to score data in Power BI
You should be in a good position to score the data if you successfully performed the 

previous steps. The steps needed to score the data are as follows.

�Step 1: Begin defining the stored procedures

CREATE PROCEDURE [dbo].[getSentiments_Python]

AS

BEGIN

END

The CREATE PROCEDURE command is used to add a stored procedure to a 

database. You are adding a stored procedure named [dbo].[getSentiments_Python] in the 

preceding script. The [dbo] in the name represents the schema that the stored procedure 

belongs to. Schemas are used to group database objects. The default schema is dbo. The 

second part is the actual name. After the stored procedure has been named, you type AS 

and follow that with the T-SQL code that defines the stored procedure. The T-SQL code 

will be defined in a BEGIN… END statement so that it will be executed in a batch.

�Step 2: Define variables

DECLARE @PythonScript nvarchar(max);

DECLARE @Query nvarchar(max);

DECLARE @InputDataFrame nvarchar(128) = 'dfInput';

DECLARE @OutputDataFrame nvarchar(128) = 'dfOutput';
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The @PythonScript variable will hold the Python code that is responsible for 

performing the sentiment analysis, the @Query variable is used to hold the T-SQL 

statement that is used to define the input data set that will be passed to Python, the @

InputDataFrame variable will hold the name that Python will use to refer to the input 

data set, and the @OutputDataFrame variable will hold the name that Python will use to 

refer to the output data set.

�Step 3: Set @Query

The @Query variable holds the T-SQL string that is needed to retrieve the input data for 

the Python script. Here is the code:

SET @Query = 'SELECT [id], [text] FROM [dbo].[SentimentData]'

The @Query variable holds the T-SQL string that is needed to retrieve the input data 

for the Python script.

�Step 4: Set @PythonScript

The python code that will perform the sentiment analysis is set to the @PythonScript 

using the code below:

      SET @PythonScript = '

from microsoftml import rx_featurize, get_sentiment

sentiment_scores = rx_featurize(

    data=dfInput,

    ml_transforms=[get_sentiment(cols=dict(scores="text"))])

dfOutput = sentiment_scores'

The first line of code in the preceding script loads the required functions. They 

are the rx_featurize() function and get_sentiment() function from the microsoftml 

Python library. The next line uses the rx_featurize() function and getSentiment() 

function together to do the sentiment analysis. The rxFeaturize() function enables 

you to access data that has undergone a machine learning data transformation via 

microsoftml. It specifies the machine learning transformation that is being performed 

in the mlTransforms argument. In this example, the transformation is a sentiment 

transformation done using the getSentiment() function. The cols argument in 
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getSentiment() is used to specify the columns in the data set that you want to score. It 

uses a dictionary, with the key of each key/value pair in the dictionary representing 

the name of the new column that will contain the sentiment scores and the value 

representing the column that contains the text you are scoring.

Please note that you can perform sentiment analysis on multiple columns at once. 

You just need to add the necessary key/value pairs to your dictionary with the new keys 

representing the new columns that will hold the sentiment scores and the new values 

representing the columns you want to score.

The getSentiment() function will return a numeric value between 0 and 1 for each 

sentiment analysis it performs. The closer to 0 the value is, the more negative the 

sentiment, and the closer to 1 the value is, the more positive the sentiment.

�Step 5: Configure sp_execute_external_script

The sp_execute_external_script is configured using the following code:

      EXEC sp_execute_external_script

             @language = N'Python'

            ,@input_data_1 = @Query

            ,@input_data_1_name = @InputDFName

            ,@output_data_1_name = @OutputDFName

            ,@script = @PythonScript

In this step, you configure the sp_execute_eternal_script procedure. The configuration 

is almost identical to the one that we did for R. The only difference is the language 

parameter.

�Step 6: Define the output

The output is defined using the following code:

  WITH RESULT SETS((

         [crim] float

        ,[rm] float

        ,[tax] float

        ,[lstat] float

        ,[pred_medv] float

  ));
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Without the preceding code, SQL Server will return the output without names or 

known data types. This can be a problem when you are calling the stored procedure from 

Power BI. The WITH RESULT SETS clause enables you to give the output columns names 

and data types to make it more consumable by third party clients like Power BI.

�Step 7: Add the procedure to the database

Listing 10-7 contains the complete script.

Listing 10-7.  The getSentiments_Python stored procedure

CREATE PROCEDURE [dbo].[getSentiments_Python]

AS

BEGIN

      DECLARE @PythonScript nvarchar(max);

      DECLARE @Query nvarchar(max);

      DECLARE @InputDFName nvarchar(128) = 'dfInput';

      DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

      SET @Query = 'SELECT ID, [text] FROM dbo.SentimentData'

      SET @PythonScript = '

import pandas as pd

from microsoftml import rx_featurize, get_sentiment

sentiment_scores = rx_featurize(

    data=dfInput,

    ml_transforms=[get_sentiment(cols=dict(scores="text"))])

dfOutput = sentiment_scores

'
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      EXEC sp_execute_external_script

             @language = N'Python'

            ,@input_data_1 = @Query

            ,@input_data_1_name = @InputDFName

            ,@output_data_1_name = @OutputDFName

            ,@script = @PythonScript

      WITH RESULT SETS (

            (

             [ID] [bigint],

             [text] [varchar](8000),

             [score] [float]

            )

        )

END

Run the preceding T-SQL code via SSMS in the SentimentsDB to add the [dbo].

[getSentiments_Python] to the SentimentsDB database.

�Step 8: Call the procedure from Power BI

To score the data, launch Power BI, then go to GetData ➤ SQL Server. Populate the 

Server and Database (optional) textboxes. Next, expand the Advanced options section 

and type EXEC [dbo].[getSentiments_Python] in the SQL statement (optional, requires 

database) textbox. The Include relationship columns check box is checked by default, 

but it is not needed in this situation, so it is unchecked. Figure 10-6 shows what the form 

looks like after it has been configured.
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The results will be available to the Power BI data model.

Figure 10-6.  GetData form populated with information needed to execute the 
dbo.getSentiment_Python stored procedure
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�Calculating distance in Power BI using R in SQL 
Server Machine Learning Services
There are more benefits from having access to R in SQL Server than scoring data 

using machine learning models. Some of those benefits include performing data 

transformations or performing advanced mathematical calculations that are hard to do 

with traditional T-SQL. Here is an example of performing an advanced mathematical 

calculation that is hard to implement in T-SQL but easy to implement in R. You will 

learn how to implement the Haversine formula to calculate distance between two 

geographical points. Let’s go over the steps!

�Step 1: Make sure dplyr is loaded in SSMLS
The dplyr package will be available if you are using the DSVM. If you are not, refer to the 

book’s introduction for information on how to add R packages to SSMLS. You can run 

the following script shown in Listing 10-8 to get the available R packages in SSMLS.

Listing 10-8.  Script to get installed R packages

EXECUTE sp_execute_external_script

  @language=N'R',

  @script = N'

packagematrix <- installed.packages();

Name <- packagematrix[,1];

Version <- packagematrix[,3];

OutputDataSet <- data.frame(Name, Version);'

WITH RESULT SETS ((PackageName nvarchar(250), PackageVersion nvarchar(max) ))

�Step 2: Launch SSMS and connect to a SQL Server
Make sure to connect to a SQL Server that has SSMLS with the R enabled. It will be 

enabled by default if you are using the DSVM. If you are using an instance configured 

outside of DSVM, then it will need to be enabled. Please refer to the installation section 

of the book’s introduction to get information about how to enable R in SSMLS if the 

SQL Server instance that you are working on does not have R enabled. You can run the 

following code as a quick test to see if it is:
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EXEC sp_execute_external_script @language = N'R',

@script = N'

Test <- "Test R"

OutputDataSet = data.frame(Test)'

If R is enabled, a single cell table with the value Test R will be returned.

�Step 3: Add the CalculateDistance database to the server
The CalculateDistance database is pre-configured with the data set and tables needed 

for this example. It is included in the book’s repo. You will find it in the Databases folder 

for Chapter 10. Here are the steps you need to take in order to add the database to SQL 

Server:

	 1.	 Copy the CalculateDistance.bak file to the Backup folder for SQL 

Server. The location in the DSVM is C:\Program Files\Microsoft 

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SSMS and right-click the Databases folder, then select 

Restore Databases….

	 3.	 The Restore Database pop-up form will appear. Make sure you 

are on the General page tab. Select the Device radio button in the 

Source section.

	 4.	 Click the eclipse button, the button with the three dots, then 

click the Add button, then browse to the location where 

CalculateDistance.bak is located. 

	 5.	 Select the CalculateDistance.bak file, then click the OK button to 

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form. Doing so will add 

the database.
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�Step 4: Add the stored procedure that will calculate 
the distances
The T-SQL needed to create the stored procedure that will calculate the distance 

between the two addresses is shown in Listing 10-9.

Listing 10-9.  The calcDistance_R stored procedure

CREATE PROCEDURE [dbo].[calcDistance_R]

AS

BEGIN

      DECLARE @RScript nvarchar(max);

      DECLARE @Query nvarchar(max);

      DECLARE @InputDFName nvarchar(128) = 'dfInput';

      DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

      �SET @Query = 'SELECT [Employee_ID], [EmployeeAddress], 

[TerminalAddress], [lon_EmployeeAddress], [lat_EmployeeAddress], 

[lon_TerminalAddress], [lat_TerminalAddress]

                    FROM [dbo].[EmployeeList]'

      SET @RScript = '

            library(dplyr)

            ComputeDist <-

                  �function(addressA_long, addressA_lat, addressB_long, 

addressB_lat) {

                        R <- 6371 / 1.609344 #radius in mile

                        delta_lat <- addressB_lat - addressA_lat

                        delta_long <- addressB_long - addressA_long

                        degrees_to_radians = pi / 180.0

                        a1 <- sin(delta_lat / 2 * degrees_to_radians)

                        a2 <- as.numeric(a1) ^ 2

                        a3 <- cos(addressA_lat * degrees_to_radians)

                        a4 <- cos(addressB_lat * degrees_to_radians)

                        a5 <- sin(delta_long / 2 * degrees_to_radians)

                        a6 <- as.numeric(a5) ^ 2
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                        a <- a2 + a3 * a4 * a6

                        c <- 2 * atan2(sqrt(a), sqrt(1 - a))

                        d <- R * c

                        return(d)

                  }

            dfOutput <-

            dfInput %>%

            mutate(

                  Distance =

                        �round(ComputeDist(lon_EmployeeAddress,  

lat_EmployeeAddress, lon_TerminalAddress,  

lat_TerminalAddress), 1)

            )'

      EXEC sp_execute_external_script

             @language = N'R'

            ,@input_data_1 = @Query

            ,@input_data_1_name = @InputDFName

            ,@output_data_1_name = @OutputDFName

            ,@script = @RScript

      WITH RESULT SETS (

            (

             [ID] [bigint],

             [AddressA] [varchar](50),

             [AddressB] [varchar](50),

             [lon_AddressA] [decimal](10,8),

             [lat_AddressA] [decimal](10,8),

             [lon_AddressB] [decimal](10,8),

             [lat_AddressB] [decimal](10,8),

                   [Distance] [decimal](4,1)

            )

        )

END
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The script uses the same logic that was used in Chapter 8. The method in Chapter 8  

is good for self-service situations but not enterprise solutions. You are limited to using 

the personal version of the on-premises data gateway for refreshes when you use R scripts 

in Power BI. That limitation prevents you from using them in an enterprise solution. The 

situation changes when you use R in SSMS. You are able to use the enterprise version of the 

on-premises data gateway because your R script is embedded in a T-SQL stored procedure.

Now that you have the background about some of the benefits of using R-based 

stored procedures in SSMLS, let’s go over how the preceding stored procedure works:

	 1.	 Defines the following variables needed in the script:

•	 @RScript variable holds the R script that does the calculation.

•	 @Query variable holds the TSQL script that defines the data set 

that the calculation will be applied on.

One of the benefits of having the input data set defined by a T-SQL statement is 
that you can use the power of T-SQL to incorporate complex business logic or to 
perform complex data transformations to define the data set.

•	 @InputDFName variable holds the name of the input data set 

that R will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set 

that R will use to refer to the output data set.

	 2.	 Sets the @Query variable with the TSQL code that returns the 

input data set.

	 3.	 Sets the @RScript variable. The R script assigned to this variable 

performs the following steps:

•	 Loads the dplyr package. This package is used to add the column 

to the data set with the computed distance.

•	 Defines the ComputeDist() function. This is the same function 

that we used in Chapter 8. We are just using the R script in a 

stored procedure instead of calling it from Power Query.
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•	 Creates the dfOutput data frame that is based on the dfInput data 

frame that was passed to the R script, then adds a new column 

named Distance that is based on the ComputeDist function.

•	 Configures sp_execute_external_script using the variables we 

defined earlier.

•	 Configures the WITH RESULT SETS to explicitly define the 

column names and data types of the output data.

The preceding steps were explained in depth in Chapter 8. Please refer to that 

chapter if you need a more detailed explanation. Execute the T-SQL script in SSMS to 

add the dbo.calcDistance_R to the database.

�Step 5: Call the Power BI procedure from Power BI
To score the data via Power BI, launch Power BI, then go to GetData ➤ SQL Server. 

Populate the Server and Database (optional) textboxes. Next, expand the Advanced 

options section and type EXEC [dbo].[calcDistance_R] in the SQL statement (optional, 

requires database) textbox. The Include relationship columns check box is checked by 

default, but it is not needed in this situation, so it is unchecked. Figure 10-7 shows what 

the form looks like after it has been configured.

Chapter 10  Productionizing Data Science Models and Data Wrangling Scripts



375

The resulting data set will be available to the Power BI data model.

�Calculating distance in Power BI using Python 
in SQL Server Machine Learning Services
Just like with R, there are more benefits from having access to Python in SQL Server than 

scoring data using machine learning models. Some of those benefits include performing 

Figure 10-7.  GetData form populated with information needed to execute the 
dbo.calcDistance_R stored procedure
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data transformations or performing advanced mathematical calculations that are hard 

to do with traditional T-SQL. You just completed an exercise that refactored a relatively 

complex formula, the Haversine formula, using R in SSMLS. Now you will do the same in 

Python. Let’s go over the steps of how to do so.

�Step 1: Launch SSMS and connect to a SQL Server
Make sure your instance of SQL Server has SSMLS with the Python enabled. It is enabled 

in the instance of SQL Server that is in the DSVM. You can use the following code to 

check to see if Python is enabled:

EXEC sp_execute_external_script @language =N'Python',

@script=N'

OutputDataSet = InputDataSet;

',

@input_data_1 =N'SELECT 1 AS hello'

WITH RESULT SETS (([hello] int not null));

GO

If Python is enabled, the above script will return a table with one column and one 

row. The column header will be hello and the value in the row will be 1.

�Step 2: Add the CalculateDistance database to the server
The CalculateDistance database is pre-configured with the data set and tables needed for 

this example. It is included in the book’s repo. You will find it in the Databases folder for 

Chapter 10. Here are the steps you need to take to add the database to SQL Server:

	 1.	 Copy the CalculateDistance.bak file to the Backup folder for SQL 

Server. The location in the DSVM is C:\Program Files\Microsoft 

SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Backup.

	 2.	 Go to SSMS and right-click the Databases folder, then select 

Restore Databases….
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	 3.	 The Restore Database pop-up form will appear. Make sure you are 

on the General page tab. In the Source section, select the Device 

radio button.

	 4.	 Click the eclipse button, the button with the three dots, then 

click the Add button, then browse to the location where 

CalculateDistance.bak is located. 

	 5.	 Select the CalculateDistance.bak file, then click the OK button to 

close out the Locate Backup File form.

	 6.	 Click OK to close out the Select backup devices form.

	 7.	 Click OK to close out the Restore Database form. Doing so will add 

the database.

�Step 3: Add the stored procedure that will calculate 
the distances
The T-SQL needed to create the stored procedure that will calculate the distance 

between the two addresses is listed in Listing 10-10.

Listing 10-10.  The calcDistance_Python stored procedure

CREATE PROCEDURE [dbo].[calcDistance_Python]

AS

BEGIN

      DECLARE @PythonScript nvarchar(max);

      DECLARE @Query nvarchar(max);

      DECLARE @InputDFName nvarchar(128) = 'dfInput';

      DECLARE @OutputDFName nvarchar(128) = 'dfOutput';

      �SET @Query = 'SELECT [Employee_ID], [EmployeeAddress], 

[TerminalAddress], [lon_EmployeeAddress], [lat_EmployeeAddress], 

[lon_TerminalAddress], [lat_TerminalAddress]

                    FROM [dbo].[EmployeeList]'
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      SET @PythonScript = '

from math import cos, sin, atan2, pi, sqrt, pow

def ComputeDist(row):

    R = 6371 / 1.609344 #radius in mile

    delta_lat = row["lat_EmployeeAddress"] - row["lat_TerminalAddress"]

    delta_lon = row["lon_EmployeeAddress"] - row["lon_TerminalAddress"]

    degrees_to_radians = pi / 180.0

    a1 = sin(delta_lat / 2 * degrees_to_radians)

    a2 = pow(a1,2)

    a3 = cos(row["lat_TerminalAddress"] * degrees_to_radians)

    a4 = cos(row["lat_EmployeeAddress"] * degrees_to_radians)

    a5 = sin(delta_lon / 2 * degrees_to_radians)

    a6 = pow(a5,2)

    a = a2 + a3 * a4 * a6

    c = 2 * atan2(sqrt(a), sqrt(1 - a))

    d = R * c

    return d

dfOutput = dfInput

dfOutput["Distance"] = dfOutput.apply(lambda row: ComputeDist(row), axis=1)'

      EXEC sp_execute_external_script

             @language = N'Python'

            ,@input_data_1 = @Query

            ,@input_data_1_name = @InputDFName

            ,@output_data_1_name = @OutputDFName

            ,@script = @PythonScript

      WITH RESULT SETS (

            (

             [ID] [bigint],

             [AddressA] [varchar](50),

             [AddressB] [varchar](50),

             [lon_AddressA] [FLOAT],
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             [lat_AddressA] [FLOAT],

             [lon_AddressB] [FLOAT],

             [lat_AddressB] [FLOAT],

                   [Distance] [FLOAT]

            )

        )

END

The script uses the same logic that was used in Chapter 8. The method in Chapter 8 

is good for self-service scenarios that is being maintained by an individual analyst. This 

method is better for enterprise solutions for the same reasons given in the R version of 

the exercise.

Now, let’s go over how the preceding stored procedure works:

	 1.	 Defines the following variables needed in the script:

•	 @PythonScript variable holds the Python script that performs the 

calculation.

•	 @Query variable holds the TSQL script that defines the data set 

that the calculation will be applied on.

•	 @InputDFName variable holds the name of the input data set 

that Python will use to refer to the input data set.

•	 @OutputDFName variable holds the name of the output data set 

that Python will use to refer to the output data set.

	 2.	 Sets the @Query variable with the TSQL code that returns the 

input data set.

	 3.	 Sets the @PythonScript variable. The python script assigned to 

this variable performs the following steps:

•	 Loads the cos, sin, atan2, pi, sqrt, and pow functions from the 

math library. Those functions will be used by the distance 

calculation formula in the script.

•	 Defines the ComputeDist() function. This is the same function 

that we used in Chapter 8. We are just using it in a stored 

procedure instead of Power Query.
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•	 Creates the dfOutput data frame based on the dfInput data frame 

that was passed to the script.

•	 Add the Distance field to the dfOutput data frame by using a 

lambda function to apply the ComputeDist() function.

	 4.	 Configures sp_execute_external_script. Note that the parameters 

in this task are different than the Boston Housing example. We 

are not using a model to score data in this task, so the parameters 

needed to handle models were not required.

	 5.	 Configures the WITH RESULT SETS clause so that you can 

explicitly define the column names and data types of your  

output data.

The preceding steps were explained in depth in Chapter 8. Please refer to that 

chapter if you need a more detailed explanation. Execute the T-SQL script in SSMS to 

add the dbo.calcDistance_Python to the database.

�Step 4: Call the Power BI procedure from Power BI
To score the data in Power BI, launch Power BI, then go to GetData ➤ SQL Server. 

Populate the Server and Database (optional) textboxes. Next, expand the Advanced 

options section and type [dbo].[calcDistance_Python] in the SQL statement (optional, 

requires database) textbox. The Include relationship columns check box is checked by 

default, but it is not needed in this situation, so it is unchecked. Figure 10-8 shows what 

the form looks like after it has been configured.
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In this chapter, you learned how to productionize your R and Python scripts for use 

with Power BI via SSMLS. They remained accessible to Power BI because they were 

productionized by wrapping them in a special stored procedure in SQL Server. The 

coverage given to SSMLS was very high level. A thorough coverage of SSMLS would 

require its own book. SSMLS has tools that make doing data science on big data sets 

Figure 10-8.  GetData form populated with information needed to execute the 
dbo.calcDistance_Python stored procedure
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more efficient than the methods outlined in this book. They are designed to be used 

by data engineers and data scientists. If you are interested in studying SSMLS in more 

depth, I highly recommend that you research the following SSMLS topics:

•	 Native Scoring: Makes predictions via a T-SQL view using a trained 

model developed with certain revoscalepy or RevoScaleR algorithms. 

Native Scoring is faster than custom R and Python models because 

they use native C++ libraries and don’t have to call an R or Python 

interpreter.

•	 RevoScaleR: A collection of R functions for importing, transforming, 

and analyzing data at scale. You can find a thorough coverage 

of the RevoScaleR package at this URL: https://packages.

revolutionanalytics.com/doc/8.0.0/win/RevoScaleR_Users_

Guide.pdf.

•	 revoscalepy: A collection of Python functions for importing, 

transforming, and analyzing data at scale. You can find out more about 

revoscalepy here: https://docs.microsoft.com/en-us/sql/machine-

learning/python/ref-py-revoscalepy?view=sql-server-ver15.

•	 Real Time Scoring: Real-time scoring uses the sp_rxPredict system 

stored procedure for high-performance predictions. It has no 

dependencies on R or Python runtimes so it can be run on SQL 

Server instances where R and Python are not installed.

The methods outlined in this chapter work great when you are working with 

relatively small SQL Server data sets that can easily fit in your server’s memory. The 

above features have functionality that you can leverage when your data is too big to fit 

into memory.

In addition to SSMLS, Microsoft offers cloud-based enterprise solutions that you 

can leverage as well from Power BI. These solutions include Azure Machine Learning 

Services, Azure Databricks, and Azure Synapse, to name a few. Even more solutions are 

available if you are using Power BI Premium. This book purposely focused on the SSMLS 

because it is freely available to those who have SQL Server 2016 and later and does 

not require you to have premium compacity. Maybe the cloud-based solutions will be 

covered in the next version of this book!

I really appreciate you purchasing the book and I hope you find the book’s content 

very useful and educational!
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URL, 318

ToneAnalyzerV3 class, 318
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