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Preface

Classical electrodynamics is a vast and open field. It would be hard to summarize
all that is known in field within a few hundred pages. Still, classical electrodynamics
has been the first theory to incorporate vector calculus into the realm of theoretical
physics, and notably, the first theory that was (later) shown to be Lorentz covariant,
upon a proper identification and grouping of the physical quantities into so-called
four-vectors. When Stokes set his theorem as an inspired problem in the Cambridge
mathematical tripos examinations, he had no idea how instrumental vector calculus
would later be in the development of physics. We shall attempt to summarize the
most important aspects of classical electrodynamics, with an emphasis on those
concepts that will be useful for further studies in quantum electrodynamics and
field theory. Emphasis will be laid on Green functions.

A general survey of the Maxwell equations is given in Chap. 1, with an em-
phasis on the physical meaning of gauge transformations of the scalar and vector
potentials. The Green functions of electrostatics and the concomitant multipole de-
compositions, in various coordinate systems, are discussed in Chap. 2. In particular,
analytic (multipole) decompositions are contrasted with eigenfunction expansions
of the Green functions of operators. The considerations are generalized to the
Green functions of electrodynamics in Chap. 4. In particular, the resolution of the
action-at-a-distance paradox is discussed, which otherwise plagues the theory of
electromagnetic interactions in the Coulomb gauge.

In Chap. 3, we discuss some paradigmatic calculations in electrostatics, with
an emphasis on the variational principle, and on series expansions of potentials.
The Laplace and Poisson equations are treated. The Green function of the
Helmholtz equations and the theory of harmonically oscillating sources are dis-
cussed in Chap. 5. The multipole decomposition of the radiation into electric and
magnetic multipoles, and longitudinal components of the fields, is discussed on
the basis of vector spherical harmonics, separating the fields into transverse and
longitudinal vector multipole components. We also discuss the calculation of the
Liénard-Wiechert potentials generated by a moving point charge, in Lorenz and
Coulomb gauges.

Electrodynamics in media should not be ignored in any textbook on classical
electrodynamics (see Chap. 6). In view of their illustrative power and technical

vii
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relevance, waveguides and the resonant eigenmodes of cavities (both rectangular as
well as cylindrical) are discussed in Chap. 7.

Finally, in Chap. 8, we discuss special relativity and quantum field theory, and
the connection to electrodynamics. Classical electrodynamics can be augmented in
two ways, first, supplying a manifestly relativistic interpretation, and second, adding
a quantum-field theoretical aspect. These concepts are introduced in Chap. 8.
Among other things, the magnetic force ¢ x B is derived purely on the basis of the
relativistic Lorentz contraction of charge distributions. Also, the Lorentz transfor-
mation of electromagnetic fields is discussed on the basis of explicit calculations. It
is shown, e.g., that Gauss’s law in the laboratory frame transforms into a superpo-
sition of the Gauss’s law, expressed in terms of the coordinates of Lorentz-boosted
frame, and of the Ampere-Maxwell law. The quantum field-theoretical zero-point
energy is introduced in the calculation of the Casimir force between conducting
plates. Finally, the connection of electrodynamics and general relativity is high-
lighted on the basis of covariant derivatives.

The intended audience of this book is threefold. (i) First, the book is intended
for the advanced student who wishes to enhance his or her background knowledge on
an interesting subfield of theoretical physics, possibly supplementing a course on the
subject taught at a University. (i7) Second, we aim to reach the academic teacher
who wishes to give a one-semester course on electrodynamics, in a modern style.
Exercises represent challenges and serve as benchmarks for one’s own understanding
of the subject, but are designed not to represent insurmountable difficulties. The
use of SI mksA units in all derivations may enhance the applicability to different
subfields of physics where often, different unit systems are used. (%ii) Last, but not
least, the book is also intended as a partial encyclopedia for the active researcher
who would like to look up the treatment of, e.g., angular momentum decompositions.
A relatively new development in the latter context is the solution of the problem
of calculating the Liénard—Wiechert potentials for a moving charge in Coulomb
gauge, where, as opposed to Lorentz gauge, the seemingly instantaneous character
of the Coulomb interaction has been an obstacle for a deeper understanding of the
mechanism of retardation in the past.

In writing this book, we acknowledge helpful conversations with Benedikt
J. Wundt and Barbara N. Hale, of Missouri University of Science and Technology,
and help in the proofreading of the manuscript by Amanda Wetzel and Chandra
M. Adhikari. This book project has been supported by the National Science Foun-
dation (Grant PHY-1403973).

Rolla, Missouri, January 2017

Ulrich D. Jentschura

Missouri University of Science and Technology
Department of Physics, 1315 North Pine Street
Rolla, Missouri 65409-0640, USA, ulj@mst.edu
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Chapter 1

Maxwell Equations

1.1 Basics

1.1.1 Integral and Differential Forms of the Maxwell Equations

There are T-shirts being sold which carry the enigmatic and deep writing: And God
said

V-E==p, (1.1a)
€0
V-B=0, (1.1b)
Sxi--2p (1.1c)
ot )
.- -1 0 - . .
VxB=puod+— = (“T-shirt equations”), (1.1d)
c? ot

and there was light. God has spoken, but it generally takes a student a little while
to figure out and to interpret what He said. Still, it is instructive to consider the
“writing on the T-shirt” at the very beginning of this course. Please be reassured
that (i) the book is written while knowing the hardships of understanding electro-
dynamics very well, and that (ii) everyone needs to dwell on related questions for
quite some time before developing full mastery of the subject (hopefully). Classical
electrodynamics has a reputation for being a harder course than other courses in
the physics curriculum. The reason for this observation is that electrodynamics
combines, in quite a unique fashion, the intricacies of physics with those of mathe-
matics. Differential calculus in three and four dimensions, and mastery of GREEN

L are prerequisites for an understanding of electrodynamics. In contrast

functions
to analytic mechanics, quantum mechanics, relativistic quantum mechanics, and
thermodynamics, electrodynamics is a field theory (a classical field theory perhaps,
but still, a field theory).

We will not dwell on the philosophical question here regarding the success of the

description of nature by mathematics. Four observations, though, can be noted:

LGeorge Green (1793-1841)
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(i) Augustinus said that everyone who wishes to contribute to the understanding
of nature needs to be willing to overcome considerable personal and professional
obstacles to pursue his or her career; that was true then and it is still true today.
(i) The discovery of laws of nature by means of mathematics was alternatingly seen
as an act of recognizing and interpreting the works of the almighty in this world
(especially, if science was carried through by pious monks); or the work of the devil
who is taking apart the mysteries of nature by evil means (especially, if science was
carried through by doubtful characters). The truth probably lies in the middle;
there is good science and bad science, in regards to both the methods used to gain
insight into natural phenomena as well as the consequences for mankind. We cannot
really separate the two. We may refer to the famous saga of the goat driven over
the newly constructed bridge at the Gotthard pass, his soul being sacrificed as the
first living being passing the newly established bridge. It takes some invention to
use the fruit of one’s quest of knowledge or achievement without facing the evil that
always surrounds us in the current world, whether we like it or not. (%) Still, there
is nothing that has kept the curious characters of every generation from pursuing
science and the quest for knowledge, each one using their means. There is nothing
more gratifying and more adventurous than seeing the Laws of Nature unfold around
us. When these Laws are being explored by various techniques, such as high-
precision laser spectroscopy, or other means, we are happy to see the tiny wheels of
our imagination explain what we observe in the experiments. (iv) Finally, the self-
discipline required of any scientist serves, in the best possible sense of the word, as
a guide toward a deeper moral principle in all of us, and toward a factual approach
to the questions surrounding our life; it often solves problems that would otherwise
seem intractable.

It is useful, thus, to ponder the “T-shirt equations” (otherwise known as the
“Maxwell equations”) at the beginning of this book for two reasons: (i) in order to
clearly state that the subject of classical electrodynamics is nothing but the science
of solving the system of partial differential equations given on the above mentioned
T-shirt, and (%) in order to illustrate right at the beginning how much physics
can be summarized by a set of compactly written differential equations. Let us
remember that electrodynamics covers the physics underlying the telephone as well
as personal computers, the servo-steering of cars and planes, the navigation using
GPS and radar, as well as radio and television. Only in the microworld, where
quantum fluctuations play a role, or in curved space-times, do we need to depart
from Eq. (1.1).

Indeed, electrodynamics is one of the subfields of physics where nothing can be
learned by any means except by constant practice. A famous proverb, probably
invented by some Englishman, states that “understanding is equal to getting used
to something”, but understanding electrodynamics is impossible without getting
used to it, and without constant practice. We recall the equations on the T-shirt,



Mazwell Equations 3

which are the MAXWELL? equations,

V- E(7,t) = . p(7,t), (1.2a)
V- B(#,t) =0, (1.2b)
V x E(7,t) = - %B(m) , (1.2¢)
V x B(#,t) = po J (7, 1) + — %E(m) . (1.2d)

These equations are commonly referred to as Gauss’s law (1.2a), the law of the ab-
sence of magnetic monopoles (1.2b), Faraday’s law (1.2¢), and the Ampere-Maxwell
law (1.2d) (we will consistently suppress the accent grave on the name Ampére in
this book). Here, metric (SI mksA) units are employed, E is the electric field, B
is the magnetic induction field, po is the vacuum permeability, €y is the vacuum
permittivity, p is the charge density which measures the electric charge per test
volume, and j is the current density. In the SI mksA unit system, the vacuum
permittivity €y and the vacuum permeability o assume the numerical values
7 Vs 1

=47 x 10~ , = .
Ho = &T Am €0 1o 2

(1.3)

For the Maxwell equations, the use of SI mksA units implies that ¢y and pg are
universally kept in all formulas, and that the mechanical units [meter (m), kilogram
(kg), and second (s)], are supplemented by the Ampere (A) as the unit of the current,
which in turn fixed the unit of charge to be 1 A x 1s = 1 C, with the Coulomb being
denoted as C. Often, in different subfields of physics, different unit systems are
used. E.g., in atomic units one would use €y = 1/(47), h = 1, and €% = 1/c = a, where
« is the fine-structure constant, €y is the vacuum permittivity, A is the reduced
Planck constant, and ¢ is the speed of light. However, in natural units, one has
h=c=¢€y=1, and e? = 47, where e is the elementary charge. Keeping all factors
of ¢, €g (and h, where applicable) in the formulas, we hope to arrive at a more
general treatment. Finally, the symbol V in Eq. (1.2) is the gradient operator. The
quantity V- E is the divergence of the electric field, and the quantity ¥ x E is the
curl of the electric field. Also, - denotes the scalar product and
@:éw%+éy§y+@% (1.4)
is the so-called gradient operator, where &, &,, and &, are the unit vectors in
the z, y, and z directions. In writing Eq. (1.2), we have carefully observed that
all physical quantities in the Maxwell equations are functions of space and time.
Instead of Eq. (1.2), a reader may be more familiar with the integral form of the

2James Clerk Maxwell (1831-1879)
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Maxwell equations, which are familiar from undergraduate physics. These read

[8VE(F,t)~dfl %[/p(?’,t) &, (1.5a)

faVB(F,t) A =0, (1.5b)
ﬁgAE(E,t)-dE: —%fAB(F,t)dfl, (1.5¢)
£A3(5,t)-d§:uoAj(ﬁ,t)-dﬁ+é%[4f?(ﬁ,t)-dﬁ, (1.5d)

with the same identifications as before (Gauss’s law, law of the absence of magnetic
monopoles, Faraday’s law, and the Ampere-Maxwell law). In these equations, V is
an arbitrary test volume, and 9V is its surface, with the surface normal being ori-
ented outward. Also, A is an arbitrary (possibly curved) surface (a two-dimensional
manifold embedded in three-dimensional space), and the “surface” of the test area
A is denoted as JA. Specifically, OA is the closed loop (the curve) that constitutes
the outer edge of the area A and therefore is a one-dimensional manifold (line). The
sign convention is such that the following three vectors constitute a right-handed
system: (i) the line elements d§ which are tangent to OA (vector 1), (i) the vector
pointing from a line element to the inner region of the area (vector 2), (i) and the
surface normal dA (vector 3). The quantity

[ p(78) 4% = gena(t) (1.6)

is the enclosed charge genc(t) in the volume V| still a function of time, and the
quantity

[4 j(’th) : d;l = Iarea(t) (17)

is the vector-summed total current I,,e.(t) penetrating the area A as a function of
time.

1.1.2 Relation of the Differential to the Integral Form

We now investigate how to reconcile the differential form of the Maxwell equations
with the integral form, and we start with the first Maxwell equation. Indeed, we
start from the integral form Eq. (1.5a) of the first Maxwell equation,

L .1 o

AVE(T,t)-dA—g[/p(r,t)d . (1.8)
We consider a small, but not infinitesimally small, test volume V — Vj, where
Vs is the cubic volume extending over the intervals (z,z + dx), (y,y + dy), and
(2,2 + dy), where we counsider dz, dy, and dz as small quantities (see also Fig. 1.1).
The consideration of small test volume with side lengths dz, dy, and Jz enables
us to perform a Taylor expansion, and to discard terms of higher order in the
displacements dz, dy, and Jz.
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Let us consider the yz faces 9V* of the test volume Vj in Fig. 1.1. The outward
surface normals are +é, and —é&,. Sampling the electric field in the middle of the
test surface, the surface integral is approximated as

IE[@VW E(P,t)~dle[Ew(x+5x,y+%5y,z+%5z,t)
S5
—Em(x,y+%5y,z+%5z,t)] oydz. (1.9)

To first order in dz, we obtain

I gEm(x7y+%6y,z+%5z,t) 0xdydz. (1.10)
x

If we are interested only in the term proportional to dx dy dz, then we can replace
Y+ %5y -y, and z + %52 — z in the argument of the z component of the electric
field. Higher-order terms do not contribute to the order we are interested in. Thus,

d
I-= 8—Em(x,y, z,t) 0x 0y 0z + higher-order terms. (1.11)
x

With this notion in mind, the left- and right-hand sides of Eq. (1.8) can then be
written as follows,

[avé E(7 1) -dA
~ [Ex(a: +0x,y + %5y,z + %(52’,75) - E.(x,y+ %6y,z+ %(52,75)] oy dz
+ [Ey(x+ %6m,y+5y,z+%5z,t) -Ey(x+ %dx,y,z + %52,1%)] 0xdz
+ [Ez(x+%6x,y+%5y,z+5z,t) -E.(z+ %5m,y+%6y,z,t)] dxdy, (l.12a)

and

1 1
— p(F,t)dgrm—p(x+%5x,y+%6y,z+%6z,t)5a:(5y(5z. (1.12b)
€0 s €0

We now approximate as follows,

[Eu(z+ 0z, y+ 26y, 2+ 3 62,t) - By (2,y + 36y, 2+ 3 62,1)]

~ [EI(x +5x,y,z,t) - Ex(x,y,z,t)] ~ aéEm(x,y,z,t) (51’, (1133’)
z
[Ez(x + % ox,y + %5y,z +0z,t) - E.(v+ %Mc,y + % 5y,z,t)]
N [Ey(xay + 5y,2,t) - Ey(a:,y,z,t)] I gEy(x,y,z,t) 5?-/7 (113b)
Y
[Ez(a:+ %(5x,y+ %(5y,z+5z,t) -E,(z+ %(5x,y+ %(5y,z,t)]
~ B (x,y,2+0z2,t) - E.(x,y,2,t)] » agEz(x,y,z,t) 0z. (1.13c)
2

Here, we ignore terms of higher order in the small quantities dx, dy and dz, which
would otherwise lead to terms quadratic in the small expansion parameters, such
as 622 8y §z. Analogous approximations are made in Eq. (1.12b).
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z+ 6z

Test Volume Vs

Yy + 0y

T z + 6z

€

Fig. 1.1 Test volume for the transformation of the first and second Maxwell equations
from integral to differential form.

Inserting Eq. (1.13) into (1.12), we see that the volume dz dy dz cancels, and so

O B gat) + 2By (rynt) + LB (g 2t) = p(eyinnt).  (L14)
Ox dy 0z €0

This equation now needs to be transformed into vector form. For the position
vector, we write in this book

3
T =28y +yéy+26€, = inéi, (1.15)
i=1

identifying the components 1,2,3 with the x,y, z directions, respectively. The gra-
dient operator is a vector and reads, in Cartesian coordinates,

- 0 0 0 3 0
e Lo, Lia L v L 1.16
v=e 8x+ey8y+e 0z ;e Ox; (1.16)
We can thus write Eq. (1.14) as
L= 1
V-E(F,t) = — p(7,1), (1.17)
€0

which is the differential form of the first Maxwell equation (1.2a). The transforma-
tion of the integral form of the second Maxwell equation (1.5b) into the differential
form (1.2b) is analogous to the above derivation for the first Maxwell equation.

We now turn our attention to the discussion of the third Maxwell equation (1.5¢),
which involves the curl of the electric field. Its integral form is given as

0

Lo .0 __2 Lo R
faAE(s,t)-ds_-atch_ 8thB(r,t) dA, (1.18)
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where ®p is the magnetic flux. The closed-loop integral ¢8 A E (8,t)-ds involves the
electric field E(§,t) at the position s on the line integral. We assume that the test
area A: is oriented in the zy plane so that its surface normal is oriented along the
positive z axis. The test area extends over the interval (z,z+dx) in the z-direction
and over the interval (y,y+dy) in the y-direction, at an arbitrary z coordinate (see
Fig. 1.2).

We encircle the line integral about the infinitesimal test area A} — 0A} in
the counterclockwise direction and pick up the contributions. It is permissible to
approximate the right-hand side of Eq. (1.18) as follows,

5[32A E(3,t)-ds~ E,(z + %(h,y,z,t) 0z + Ey(x +dx,y + %(5y,z,t) oy
s

—Em(x+%6a:,y+5y,z,t) (5x—Ey(x,y+%6y,z,t) oy,

(1.19a)

—gf B(#,t) - dA w —QB (z+ Lox,y + Loy, 2,t) 2oy (1.19b)
ot J A, ’ ot ~° 27y 2 ' '

By a Taylor expansion, keeping all terms up to second order in the small quantities
dx, 6y, and dz, we obtain

gEy({E,y,zvt) ox (Sy N _g

—gEm(x,y,z,t) ox oy + 9 T

B.(z,y,z,t) dxdy. (1.20)
dy

Third-order terms have been neglected on both sides of the equation. One may now
cancel the test area dx dy and write

9 9 L 5
g -2 B -(YxE),=-2
ga v~ gy P = (VX EB): =5

B, (1.21)
where we suppress the space-time arguments of the fields. We identify %Ey - (%Ex
as the z component of the curl of the electric field, thus obtaining the z-component
of Eq. (1.18). In general, the curl of a vector field is defined as

&y &, &,

g 90 0

VxE=det] — =— —|. 1.22
VX ¢ Ox Oy 0z ( )

E, E, E,

With reference to Eq. (1.15) and (1.16), its components are given as
o 3 3
(VXE)i:ZZewk—Ek, i,j,k=1,2,3. (1.23)
G=1k=1

Here, €;51 is the totally antisymmetric Levi-Civita tensor, i.e., €123 = 1 and €1, is
equal to the sign of the permutation that transforms the triple (1,2,3) into (4,7, k).
If an even number of exchanges is required in order to transform (1,2, 3) into (¢, j, k),
then the sign of the permutation is 1, otherwise it is —1. So, €231 = 1, but €313 = -1.
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Normal to the Area

vty

z Y
x x+ oz

T

Fig. 1.2 Test area for the transformation of the third and fourth Maxwell equation from
integral to differential form.

If two of the indices are equal, such as in €125 = 0, the result is zero. We can also
write

3 3 3
@ XEI Z Z Zéieijk7Ek~ (124)

In the above derivation leading to (1.21), we have assumed the test area 0A is
oriented along the positive z axis. If we change the orientation of the test area As,
then we recover the x and y components of Faraday’s law

L - 0 -
F=-—B 1.2
V x 50 (1.25)

where we suppress the space-time arguments of the electric and magnetic fields. The
transformation of the fourth Maxwell equation from integral to differential form is
analogous.

For a macroscopic volume V or area A, the validity of the integral and differ-
ential forms of the Maxwell equations can be verified based on a partition of the
macroscopic volumes and areas into small test volumes and areas, “glued” together
along their boundaries (colloquially speaking, interpreting the small test volumes
as “bricks in Legoland” from which the entire “Legoland” is being assembled).

One of the most paradigmatic applications of the formalism outlined above in-
volves the so-called continuity equation. The continuity equation is a simple state-
ment that says that the charge leaving a test volume V through currents can be
obtained in two alternative ways: (i) as the current density j summed over the
surface area of the test volume OV, and (i) as the time derivative of the charge
density, summed/integrated over the test volume V. The integral form of the con-
tinuity equations is expressed as

f(w j(r,t)dﬁz—gfvp(m)d%. (1.26)

t
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Using the same test volume as given in Fig. 1.1, we obtain

[Jx(a: +0x,y + %5y,z + %(52’,75) - Jo(x,y+ %6y, Z+ %52,7&)] oyoz
+ [Jy(x + %&n,y + 0y, 2 + %52,1?) - Jy(z+ %5m,y,z + %5z,t)] d0xdz
+ [Jz(x + %(53:,34 + %5y,z +0z,t) - J(z+ %53:,34 + %(5y,z,t)] o0x oy

0
- _ap(x + %dx,y + %5y,z + %6z,t) oxdydz. (1.27)

We have taken the differences at the midpoint of the edges of the test volume.
Observing that, to leading order, the midpoint can be replaced by the “lower corner”
of the test volume, one can replace the first term in Eq. (1.27) by J,(z+dz,y, z,t) -
Jz(x,y,2,t). Then, expanding into a Taylor series and canceling the test volume
dx 0y dz, we obtain

%Jm(x,y,z,t) + %Jy(x,y,z,t) + %Jz(x,y,z,t) = —%p(m,y,z,t) . (1.28)

Finally, the differential form of the continuity equation is obtained,

. - 0
. —p= 1.2
\Y% J+8tp 0, (1.29)

where again we suppress the space-time arguments of the current and charge density.

1.1.3 Dirac 6 Function

Some readers of this book may be familiar with the Dirac-d function based on other
sources, but it is still instructive to recall some basic facts. One may define the
(one-dimensional) Dirac delta function by the condition

f(z) (a<xz<b)
0

(x<a or x>b) (1.30)

b
f f@)é(x-2a") dx':{
a
Essentially, the Dirac-d function extracts the value of the test function f at the
point z. If x = a or z = b, the integral is not well defined, but a common definition
is

fbf(a:')é(a:—a:') da’ =1 f () for xz=a or x=b. (1.31)

This definition is inspired by the fact that any representation of the Dirac-d function
which is symmetric about the center yields the result (1.31), as explained in the
following.

The Dirac-¢ function (or, more precisely, the Dirac-d distribution) is very useful
in physics. A possible representation of the Dirac-d function is

L _n
5(W)—’A(777w):;m7 n-0". (1.32)
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Fig. 1.3 Plot of the function A(n,w) defined in Eq. (1.32), for small n and w. The
emergence of the peak near w = 0 is clearly discernible.

The limit is 7 - 0 is approached nonuniformly. The A function has the properties

f dwA(n,w) =1, (1.33a)
lirg A(n,w)=0 (for w=0), (1.33b)
n—0+
h%l A(n,w) =00 (for w=0), (1.33¢)
n—0*

[T [lirg A(n,w)] F@)=0,  lim [ dwA@mw) f@)=F0). (133)
oo n—0+ n—0+ J_oo
The last two properties illustrate that one cannot take the limit n — 0 too early,
in the sense of non-uniform convergence. A graphical illustration can be found in
Fig. 1.3. In the limit n - 0%, then, A(n,w) — §(w), but the limit needs to be taken
after all integrals have been performed.

If the argument of a Dirac delta function is a function of z,

(-3 (|5

where the z; (i =1,...,n) with g(«;) = 0 denote simple zeros of g(x). The three-
dimensional delta function is equal to the product of three one-dimensional Dirac
delta functions,

-1
i ) o(x—x;), (1.34)

(T ) =0(x-2")o(y-y)o(z-2). (1.35)
Thus,
fv da'dy'dz’ f (7)) 6@ (7 =) = £ (7) (1.36)

if 7 is interior to the volume V and 0 otherwise. For multiple integrals such as
[, (over the three-dimensional volume V'), we here follow the convention that
the integration domain is being indicated by a subscript of the integral sign. In
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particular, the integration domain then automatically defines the dimensionality of
the integral.

1.1.4 Green Function of the Laplacian

The Dirac-d function enters the defining equation of the Green function correspond-
ing to the Laplacian operator,

V2g(r, i) =V g(F -7) = 6P (7 -7), (1.37)

where V? is the Laplace operator, which acts on # (not #') unless stated otherwise.
The desired solution is
1

Cdm|F -]

g(7,7") = g(F-7") = (1.38)

This result may be shown as follows. We recall Gauss’s theorem
f/*-dix:["-f/*dﬁ 1.39
[ V@ -dd= [ vV (1.39)

where V is an arbitrary volume and 9V is its surface. We apply the theorem to the
vector field

7?/

— F_
- P

V(i) =V (1.40)

and choose V' as a sphere S, of radius ¢ about the point 7#/. The surface of S; is
denoted 0S.. Then,

./5562(|f_1;r|)d3r:[ssﬁ'v(f)d3T=LS€V(F)-dﬁ

:fs( ror ) LT - #PdQ = 4 (1.41)

E-#p) -

Because we can choose ¢ to be arbitrarily small, we conclude that

el 1ﬁ = Ax s (F 7). (1.42)
=71

and hence Eq. (1.37) is fulfilled. Because the FOURIER? transform (see Chaps. 4 and
6) of the Dirac-¢ distribution is just a constant, the function G can be interpreted
as the inverse of the Laplacian operator.

1.2 Potentials and Gauges

1.2.1 Transverse and Longitudinal Components of a Vector Field

At any given point in time ¢, the electric and magnetic fields E(f’,t) and B(F,t)
represent vector fields. Central to the upcoming discussion is the fact that any
vector field can be separated into transverse and longitudinal components; we here
derive explicit formulas for this separation. Thus, let .J (7,t) be a vector field which

3 Jean-Baptiste Joseph Fourier (1768-1830)
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we would like to separate into transverse and longitudinal components. We seek a
separation
V(#E) =V, (7 + V(7 t),  V-Vi(Rt)=0,  VxVj(7t)=0. (143)
It is not obvious how to do this. We first write a seemingly innocent vector identity,
Vx (VxV(7,1) =V (V- V(1) - V>V (71). (1.44)
One may derive this identity on the basis of the Levi-Civita tensor €;;; and the
identity
€ijk €kem = 040 Ojm — Oim Oj¢ - (1.45)
Here, the EINSTEIN* summation convention for repeated subscripts has been used.
(This convention implies that a;a; = 3i-; a; a; for repeated superscripts or sub-
scripts, with an applicable upper limit n for the summation which is derived from the
context in which the equation is written. In the current case, for three-dimensional
space, 1, 7, k, £ and m may assume values of 1,2, 3; because k is being repeated, the
sum Yi_, is implicitly understood in Eq. (1.45).)
We now rewrite Eq. (1.44),
VAV (7,8) =V (V-V (7,1)) -V x (Vx V (7,1)) . (1.46)
We now appeal to Egs. (1.36) and (1.37) for the definition of the Green function

g =g (7 —7"). If we assume that boundary contributions at infinity will vanish, then
we obtain (the second step involves a double partial integration)

V (7,1) = [d%'v g(* Py V(7,8 = fd%g(* ) V2V (7, 1)

47rfd3 G [V (T E0) -8 (VT ()]

in T in T
1 = 1
- d3 / ! v -'lvt ’
471'/ I(VVEn)Y 7 — 7|
_i[dB /@/ 1 < (@'xf/(f",,t))
4 |7 — 7|
1. vV -V 1.
= __vfwd3r’+_vX[wd3 4 (1.47)
47 |7 — 7| 4 |7 — 7]

Thus, the longitudinal and transverse parts of the current density, denoted as VH
and V|, respectively, are given as

Vi (7,t) ——vfd?’ VLV (T t), (1.48a)

|7 = 7|

V' x V(7 t)

(1.48b)
7= 7|

- 1.
VL(F,t):EVdegr’

4 Albert Einstein (1879-1955)
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These are highly non-local functions of the full current density V (7,t), in the sense
that in order to define f/” (7,t) and V, (7,t), we have to sample values of the original
vector potential V (7,t) over wide areas of space.

Furthermore, if we define the scalar potential ¥ and the vector potential A as

3.7 V )
U (7, 1) fd P (1.492)
A (= 3 /v XV(T t)
A7, 47rfd o (1.49D)
then
Vi (7,t) = V¥ (7,t) , Vo (7,t) =V x A(7,1) . (1.50)

Given a vector potential V, we thus have the explicit formulas that tell us how to
calculate the scalar potential ¥ and the vector potential A. These potentials enable
us to write the longitudinal component of the vector field VH as the gradient of the
scalar potential ¥ and the transverse component of the vector field V, as the curl
of a vector potential A.

1.2.2 Vector and Scalar Potentials

The contents of the current discussion are merely restricted to the definition of the
scalar and vector potentials, but their significance reaches far beyond, namely, to
quantum electrodynamics, which is a gauge theory, and even to the construction of
the standard model of particle interactions. Without the scalar and vector poten-
tials, and the concept of a covariant derivation, we would not have the tools at our
hand to analyze the gauge theories that define the standard model.

A detour with an illustrative example, regarding the action of the covariant
derivative operator on a quantum mechanical wave function, is thus in order. We
restrict the discussion to a time-independent configuration. Let us define a covariant
derivative operator II as follows,

M=zp-eA(), p=-ihV, (1.51)

where e is the charge of the particle in question, A(F) is the vector potential
(assumed here to be time-independent), A is Planck’s constant, and p is the mo-
mentum operator (in quantum mechanics), or the mechanical momentum of the
particle (in classical mechanics). The precise meaning of A will be clarified be-
low. The decisive property of the gauge potential is this: Let us assume that the
covariant derivative operator II acts on a wave function (7). The addition of a
gradient

(7) = A(F) + VA(F) (1.52)

N
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is called a gauge transformation. Gauge covariance now means the following: If we
simultaneously transform the wave function and the vector potential as follows,

0() v e (3 [TRE) ds) 09 = U@ (), (1.532)
A(7) - A'(7) = A(7) + VA(F), (1.53b)

then it is easy to show that
exp (5 [7R()-d5) (5 e A) v
= (p- e A(F) - eVA(7)) exp(%e f;ﬁ(g) -ds) V(7). (1.54)

When we define the prime to indicate the gauge transformed quantity, then this
identity takes a particularly sensible form,

U#) (5-e A) () = (5-e A'(7)) UF) o(F) (1.55a)
(- A®)v(®) = (5-e A7) (7), (1.55b)

and simply says that the gauge transform of the covariant derivative is equal to
the covariant derivative of the gauge transformed wave function. We shall see that
different vector potentials A produce equivalent observable electromagnetic field
configurations. In differential geometry [1-4], the vector potential A has the mean-
ing of a connection 1-form. Roughly speaking it measures how space is “bent”
for the charged particle in the presence of the vector potential, just like a light
trajectory is “bent” alongside a geodesic in the theory of general relativity when
traveling near heavy stars. Or, in differential geometry, the “bending” of the tra-
jectory is due to the curvature of the embedding manifold on which the particle
is moving. There is thus a deep philosophical notion behind the definition of the
covariant derivative: namely, that we can view the minimal coupling of a charged
particle wave function to the field as a consequence of the “bending” of space in the
presence of vector fields, for a particle that happens to carry charge, in such a way
that gauge freedom exists. In differential geometry, a gauge transformation simply
corresponds to a change in the coordinate system that we are using to describe
the curved manifold. In electrodynamics, a gauge transformation corresponds to
a local phase change of the wave function, leaving the probability density [¢(7)[?
unchanged, under a simultaneous change of the scalar and vector potentials, which
leave the physically observable fields unchanged. A gauge transformation thus is
a “coordinate transformation” involving the phases of the wave function, and the
scalar and vector potentials. The gauge freedom corresponds to the freedom of
choice of the coordinate system in differential geometry. Incidentally, the gauge
freedom is central to the construction of the current standard model of particle in-
teractions. In non-Abelian gauge theories, one replaces A(7) by a field that carries
an additional (“color”) index, leading to a matrix-valued gauge transform factor.
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These remarks are intended to motivate the central character of gauge transforma-
tions, and their significance within theoretical physics; their understanding is not
required for the following derivation.

Having illustrated the significance of scalar and vector potentials for quantum
theory and theoretical physics in general, let us finish the detour and return to
the case of classical electrodynamics. The gauge freedom allows us to define vector
and scalar potentials, and to choose a particular gauge that makes the calculation
easy for a particular source configuration (current and charges). Still, a lot can
be learned from gauge transformations on the classical level, and we shall briefly
dwell on related questions. In the following, we thus restrict our investigation to
the microscopic form of Maxwell’s equations. We start with the two source free
equations. First, we consider Gauss’ law for the magnetic induction, V - B=0.In
this case, according to the discussion in the Sec. 1.1.3, a vector potential A can be
defined so that the magnetic induction vector is given by

B(#,t) =V x A(7,t) . (1.56)
The vector potential is used in Faraday’s law V x E + 8, B = 0 to yield
S B (7 1) + gt[ < A (7t )]:@X[E(F,t)+%fl(ﬂt)]:ﬁ. (1.57)

Note that, on the right-hand side, we use the zero vector 0 instead of a simple
zero in order to be fully consistent. It follows that the curl of the vector field
E (7,t) + ;A (7,t) vanishes, which is why we can find a scalar potential ® (7,t)
such that

E(7,t) + %A(m) = -V (7,1) (1.58)
and
E (F,t) = -V® (F,t) - 8A(r t) (1.59)

which expresses the electric field in terms of the scalar and vector potentials. The
fields constructed according to Egs. (1.56) and (1.59) automatically fulfill the homo-
geneous Maxwell equations V-B =0 and Vx E+8,B = 0. Given a field configuration
B= B(P t) we can obtain the vector potential A(7,t) by the integral (1. 49b) set-
ting V = B, and the scalar potential ® by Eq. (1.49a), setting V = -E - 8,4

Gauss’s law for the electric field and the Ampere—-Maxwell law couple the vector
and scalar potentials to their sources, which are the charge and current densities.
First we consider Gauss’ law and obtain

Lo o - 1
V-E=-V20 (7, t)——tv A(7, ):e—p(F,t), (1.60)
0
while the Ampere-Maxwell law
_ - N N N 1 o .
VxB(#,t)=Vx[VxA(#1)] = —Z%E(f,t)um J (7,1) (1.61)
C
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becomes
Fx[TxAC.0] 0 5 o [SAGD + TR (0] =0 T (50
2
< @{v A(F, 0+ ! g (f,t)}—@2ﬁ(f,t)+cl2%,i(f t) = po J (7,t) . (1.62)

From Egs. (1.60) and (1.62), we can conclude that the scalar and vector potentials
are coupled to the sources as follows, in a general gauge,

20 () - Qv A ):%p(?,t), (1.63a)

I 1 B 1 9% .

V{V-A(r,t) = 875(1)( t)}—V A(F,t) + 02 e A(7,t) = po J (7,t) . (1.63b)
These coupled second-order partial differential equations relate the potentials ® and
A to the sources p and J.

1.2.3 Lorenz Gauge

We should precede the discussion of the Lorenz gauge with a brief remark on the
difference in the naming conventions between the Lorentz force and Lorentz trans-
formation on the one hand, and the Lorenz gauge on the other hand. Indeed, the
Lorentz force and the Lorentz transformation are associated with LORENTZ® in con-
trast to the Lorenz gauge, which is due to LORENZ.® The two names are similar
but not the same.

At the beginning of the preceding Sec. 1.2.2, we briefly discussed the paradigm
of a gauge transformation, which is a local transformation of the vector potentials
A(7,t) - A(F,t) + VA(F,t) (now, we assume a time-dependent field configuration).
Another interpretation, which is somewhat global, for a gauge transformation is as
follows: If one measures lengths or heights, one always has the freedom to choose
the zero point of the measurement. If one is to hang a picture on a wall, a conve-
nient zero point for the elevation measurement is the floor of the room, while, for
measuring the altitude of a mountain, a convenient reference point is the sea level.
A trivial gauge transformation which leaves the electric field invariant is simply
O(7,t) > ©(7,t)+C, where C is a constant potential, which of course does not affect
the gradient (“global” gauge transformation). This amounts to choosing a zero for
the measurement of the “altitude” of the potential. The local character of the gauge
transformation implies that we are free to choose the zeros for the measurements
of the potentials any way we want, and moreover, to choose these zero points dif-
ferently at every space-time point, provided the fields E’(F,t) and B (7,t) are left
invariant. This would amount to measuring (in absolute terms) the elevation of the
picture on the wall differently today and tomorrow, provided the difference of the
elevation measurements is left invariant. Let us now explore this concept in detail.

5Hendrik Antoon Lorentz (1853-1928)
6Ludvig Valentin Lorenz (1829-1891)
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First, we observe that the addition of a term A (7,t) - A (#,t) + VA (7,t) to the
vector potential does not change the magnetic induction field, because

V x VA (7,t) =0. (1.64)
In this case we obtain the gauge transformed vector potential A’ (7,t),
A (7,t) = A(F,1) + VA (7,1) . (1.65)

We now insert the equation A (7,t) = A’ (7,t) - VA (7,t) for the gauge trans-
formed vector potential into the formula Eq. (1.58) for the electric field,

E(#,t) = - %A’ (7,t) + %W(m) -V (7,t)
I
- - (r,t)—V{@(r,t)—&A(r,t)}. (1.66)

Changing the vector potential will change the electric field unless the scalar potential
is also changed to the term that appears in curly brackets, which amounts to gauge
transform of the scalar potential,

o' (7,t) = ® (7,1) - %A(F,t) . (1.67)

The electric field remains unchanged under the gauge transformation,
E(7,t) = —%fl’(?,t) -V (7,t) = —%fl(?,t) — Vo (7,t) . (1.68)

Equations (1.65) and (1.67) can be summarized as the gauge transform of the vector
and scalar potentials,

A (7 t) = A(F,t) + VA(F, 1), @ (F,) = D (7,t) - %A (7,t) . (1.69)
The electric and magnetic fields, which are invariant under the gauge transforma-
tions, are said to be gauge invariant. In fact, they have to be gauge invariant as
they constitute physically observable field strengths.
We are now free to choose A so that the gauge transformed scalar and vector
potentials fulfill certain conditions. One possible requirement on the new potentials
is the Lorenz gauge condition,

L= 10
CA(F )+ = = (7,t) = 0. 1.70
VA1) 5 () (1.70)
One may ask how, given A and ®, A can be constructed to make the gauge trans-
formed vector and scalar potentials fulfill the gauge condition (1.70). The answer
is as follows. Given potentials A and ® which do not satisfy the Lorenz gauge

condition, we have for the gauge-transformed potentials,

N I D
VA (T,t)+c_2§(1) (T,t)ZV'[

—~

7,t) + VA (7,1) ]

+ Ci [@ (7.t) - %A(F,t)] =0, (L.71)

Sl
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or

o . 1 52

V- A(F 1) + VA (7, t)+ 1 e ® (7,t) - QatzA(r t)=0 (1.72)

Bringing now all terms with A to one 81de of the equation, we obtain a condition on
the gauge transform function A which mediates the transition to the Lorenz gauge,

(- % 5 ) A G0 =32 A0 5 S (). (1.73)

The gauge function A is required to satisfy the wave equation with the source
determined by the original potentials, i.e., by ® and A (the ones before the gauge
transform). We shall see later that the differential operator (V2 - ¢™2 9?) can be
inverted in much the same right as the operator V2. This implies that it is always
possible to find an adequate solution A to Eq. (1.73), given ® and A. In other
words, we do not exclude any important solutions to the Maxwell equations if we
impose the Lorenz gauge condition.

A remark is in order: If the vector and scalar potentials A and ® were to
fulfill the Lorenz condition in the first place, then the right-hand side of Eq. (1.73)
would vanish. The gauge transform function A has to fulfill an inhomogeneous wave
equation in which the source term is just equivalent to the “left-hand side of the
gauge condition Eq. (1.70)”. That means that if, accidentally, A and ® were to fulfill
the Lorenz condition even before being gauge transformed, then we could choose for
A any function that fulfills the homogeneous wave equation, and still retain fields
that fulfill the Lorenz condition, after the gauge transformation. This illustrates
that the gauge condition itself does not yet determine the potentials uniquely.

Let us now couple the gauge transformed potentials to their sources. We recall
that according to Egs. (1.63), Gauss’s law and the Ampere-Maxwell law relate the
sources to the potentials. In terms of the primed, gauge-transformed quantities, we
have

1
V20 (7,t) - gv A’ (7,t) = =p(7,1) (1.74a)
€0
for the coupling to the charge density, and
(e 1o, . I 1 o2 —
v{v-A' (F0)+ 5 o (r,t)}—v A (7 1) + _Q@A'( )= o J(Ft) (1.74D)

=0
for the coupling to the current density. If the primed potentials fulfill the Lorenz
gauge condition (1.70),
v,i'(f,t)+i2 ch’(f,t):o, (1.75)
c2 Ot
the equations are uncoupled. For the second equation, this is immediately obvious,
and for the first equation, this becomes obvious as follows,

R o - . 10(0 1
V2 (7,t) - =V - A (#,t) = -V’ (—cb):— 7it) . 1.
Vo' (7,1) 27 (F,1) =-V°®'(F,t) + 29\ 51 60p(wf) (1.76)
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The equations thus take the form of uncoupled, inhomogeneous wave equations, in
Lorenz gauge,

1o* .5\ ., . .

(62 ot? -V ) G %p(T,t) ’ (1.77a)
]. 82 > 9 2 T/
i v A (7, t) = po J (7,t) . (1.77b)

Once these are solved, we can compute the electric and magnetic fields according
to Egs. (1.59) and (1.56). In a source-free region of space-time, the scalar and
vector potentials thus satisfy homogeneous wave equations. This finding suggests
the existence of electromagnetic waves.

Let us add a remark on the relativistic formulation. It is customary to define
the “quabla” operator as

1 9% _,
D—gﬁ—v . (178)

Furthermore, the 4-vector potential is A* = (&, ¢ A), which summarizes the scalar
potential and the vector potential into a Lorentz-covariant 4-vector, denoted by a
Greek superscript . This means that if we have a Lorentz transformation that
transforms the space-time coordinates z* = (ct,7) according to

't =LYz (1.79)

then the 4-vector potentials, as seen from the moving observer, need to be trans-
formed in the same way,

A" = LI A7 (1.80)

which clarifies the combined transformation properties of scalar and vector potential
under Lorentz transformations. Note that here, the primed quantities refer to those
seen in a different Lorentz frame (not the gauge transformed quantities). Then, in
units with A = ¢ =€y =1 (Heaviside-Lorentz units, or just “natural units”), the two
equations (1.77a) and (1.77b) can be summarized into one equation, which takes a
particularly simple form, namely

oar = L (1.81)
€0

where the components of the four-vector potential A* and the four-current density
JH are

AF = (D, cA), JH=(p,c ). (1.82)

Greek indices pu,v = 0,1,2,3 describe space-time coordinates. Choosing potentials
which satisfy the Lorentz condition not only uncouples the equations for the po-
tentials but also yields equations which are invariant under the Lorentz/Poincaré
transformations, as is evident from Eq. (1.81). Both sides of Eq. (1.81) carry only
one Lorentz index.
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1.2.4 “Gauge Always Shoots Twice”

In the preceding Sec. 1.2.3, we have already observed that the gauge condi-
tion (1.70), which we recall for convenience,

L 10
AR — —®'(#.t) = 1.
T (1) ¥ (70) =0, (18)

does not determine ® and A uniquely. Indeed, the gauge transformed potentials,
defined according to Eqgs. (1.65) and (1.67),

A’ (7,t) = A(F,t) + VA (7,1) o' (7,t) = @ (7,t) - %A(F,t) ) (1.84)

fulfill the Lorenz gauge condition if the A function obeys Eq. (1.73), which consti-
tutes an inhomogeneous wave equation. Once A’ and @ fulfill the Lorentz condition,
it is possible to do a second gauge transform, using a function A’, and to still remain
within the family of potentials that obey the Lorenz gauge condition.

The Lorenz gauge condition is a first-order partial differential equation imposed
on the 4-vector potential. It is not an algebraic condition. We know that a partial
differential equation allows for many solutions. Therefore, Eq. (1.70) does not
determine the 4-vector potential uniquely, and even given the Lorentz condition,
we still have a certain freedom to choose our 4-vector potential within the “Lorenz
gauge family” without affecting the electric and magnetic fields. This is sometimes
expressed by saying that “gauge always shoots twice.”

Therefore, if A’ and @' satisfy the Lorentz condition (1.70) and A’ is yet another
solution of the homogeneous wave equation,

—@%18—2 A (7,t) =0 (1.85)
¢ Ot? O '
then the second gauge transform of vector and scalar potentials reads
A" (7,t) = A" (7,t) + VA (7,1) , (1.86a)
Q" (7,t) =" (¥,t) - %A' (7,t) . (1.86Db)

The second gauge transformation defines new vector and scalar potentials which
still satisfy the Lorentz condition and give the same E and B fields. The class of all
such combinations of vector and scalar potentials related by this restricted gauge
transformation belong to the Lorenz gauge.

1.2.5 Coulomb Gauge

Another gauge which is often used in radiation theory is the Coulomb, transverse,
or radiation gauge. The gauge condition is

V-A@FE) =0, AR t)= A (7t), (1.87)
where by A, we refer to the transverse component of the vector potential defined
according to Eq. (1.48b). In general, the vector and scalar potential are coupled to
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the sources according to Eq. (1.63). In the radiation gauge, the scalar and vector
potentials thus satisfy the equations

~V2® (7,t) = lp(ﬁt) ) (1.88a)
€o
P 1 0% . - 1.70 . .
VA + ez A = o d (7,0) - 9 [&fb(r,t)] , (1.88b)

respectively. Equation (1.88b) can be simplified further in terms of two simpler
equations.

We first observe that the left-hand side of Eq. (1.88b) is equal to its own trans-
verse part, because A (7,t) = A, (#,t) in Coulomb gauge [see Eq. (1.87)]; the trans-
verse character of a vector field is not changed by taking the Laplacian, as is imme-
diately obvious from Eq. (1.48a). Namely, for a general vector field v, if f/” vanishes
then so does @2‘7”, and because of the uniqueness of the separation of a vector field
into longitudinal and transverse components, we then have V2V = V2V,. Now we
analyze the right-hand side of Eq. (1.88b) in terms of longitudinal and transverse
components. First, we observe that the expression

110 1.170
—=V|=2(#t)|[==5V|=P(F 1t 1.89
c2v[8t G )] (CQV[(% G )])‘ (1.89)
is a longitudinal vector field because the curl of a gradient vanishes,
- 1.70 o
=V |=®((#t)[])=0. 1.90
vx (595 60)) (1.90)
The longitudinal component of Eq. (1.88b) is thus equivalent to
= -0
ORI (1.91)

while for the transverse component of Eq. (1.88b), only the transverse component of
the current density J(7,t) contributes on the right-hand side. So, we can establish
the three equations couple the scalar and vector potentials to their sources in the
Coulomb or radiation gauge,

V2O (7,t) = lp(m) , (1.92a)

€0
L &) A, (5.t) = o Ju (7 1.92b
g@—v L(7Ft) = po Iy (7, t) (1.92b)
€0 @%@ (7,) = Jy (7,t) . (1.92c)

Let us now consider, just like for the Lorenz gauge, a second gauge transformation
within the family of the radiation gauge, writing A’ as Y,

A" (7,t) = A (7,t) + Vx (7,1) | (1.93a)

3" (7,t) = & (7, t) - %X (7 t) . (1.93b)
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The gauge condition imposed on the second transformed vector potential implies
that

v-A"(Ft)=0,  Vix(71)=0. (1.93c)

Thus, any function y = x(7,t) that fulfills VZy (#,¢) = 0 describes a second gauge
transform of the vector and scalar potentials within the radiation gauge.

The radiation gauge is well suited for describing the propagation of radiation in
the absence of sources, i.e., in a region of space where there are no charges, and no
currents. If sources are absent, then V2® (#,t) = 0, and therefore ® (#,¢) = 0, and
SO

E (#,t) = —%A(m) : (1.94a)
B(#,t) = V x A (7). (1.94b)

Let us consider a typical vector potential describing a traveling electromagnetic
wave, of the form

A(7,t) = &g, Ag cos(k -7 - wt), (1.95)

where % is the wave vector, and w = ¢ |I%| The polarization vectors &;, are two unit
vectors perpendicular to k (in consequence, we have A = 1,2). Then,

V- A(F,t) = (- ég,) Ao sin(k -7 -wt) =0 (1.96)

holds because the polarization vector is always perpendicular to the propagation
vector, l%-éEA.

However, the gauge is also called the Coulomb gauge. This is because the
equation that couples the electrostatic potential to the source,

- 1
VQ(I)(’F7t) = __p(’Fat)a (197)
€0
has the instantaneous, action-at-a-distance solution

1 1
O(F,t) = —— fd%' ——p(7,1). (1.98)
dreg |7 — 7

The similarity of this solution with the Coulomb law, i.e., the simple presence of
the factor ﬁ, implies the nomenclature of Coulomb gauge. Moreover, in a time-
independent situation, the dependence on t cancels, and the Poisson equation from
electrostatics is immediately recovered. However, for time-dependent problems, the
action-at-a-distance solution poses important questions. If 7/ is in the Andromeda
Galaxy and 7 is near Alpha Centauri, then we have an apparent problem with the
causality principle because the field is generated at the same point in time as the
source acts, namely, at time ¢. The task then is to show that the perceived action-at-
a-distance character of the potential does not imply that the electric fields generated
by the charges violate the causality principle (see Chap. 4.2).
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1.3 Poynting Theorem and Maxwell Stress Tensor

1.3.1 Electric and Magnetic Field Energies

The introduction into basic properties of the electromagnetic field in the current
chapter would not be complete without a discussion of the field energy, or, energy
density stored in any nonvanishing electromagnetic field. NEWTON” invented the
concept of a physical field, as an entity which exists at every point in space-time
even if the existence of the field is not always detected or observed by a probe.
In consequence, it is a natural question to ask if we can assign an “energy” to a
field configuration, and if yes, how the corresponding “momentum flow” of the field
could be described.

Imagine an electrically charged, heavy object in the middle of a coordinate
system, and an oppositely charged test object far apart. The initial configuration
has a nontrivial, nonvanishing electric field configuration. Then, the test object is
accelerated toward the center of the heavy charged object. At the moment when
they meet, the field vanishes because the system is effectively electrically neutral.
(In practice, of course, there is still a small dipole moment.) The test object has
gained some kinetic energy; the electric force has performed work on the test body.
However, the potential energy of the initial configuration is gone. We can either
ascribe the initial potential energy to the position of the charges in their potentials,
or ascribe it to the field configuration as a whole. The latter aspect will be the
center of discussion here.

We first derive a seemingly innocent vector identity,

1.

v .

Ho

Lo o Lo 0 -
——E(T',t)'J(T',t)—EOE(T,t)'éE(T‘,t) - %B(rvt)'at
0

€0 =,/ =, 1 5 - (=
|5 B EGn o B0 BEa|. (199

In order to interpret the terms on the right-hand side of this we first recall that if
the current density J (7,t) is to be nonvanishing, charges have to move. We can

:_E(Fat)'j(Fat)_

write

Aq

= D, 1.100
AtAA ( )

where Agq is the charge moving in the time interval At through the cross-sectional

area AA, in a direction given by the unit velocity vector o.

J(7,t)

Sir Isaac Newton (1642-1726)
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The mechanical work done on the moving charges per unit time and unit volume,
by the electric force acting on the charges due to the electric field, is
N AgE (7,t) -T (AqE)-AZ
E(7,t)- t) ~ =
(00 * =X AA ALAV
(AFe) AT AW
O AtAV AtAV

(1.101)

We therefore identify
E(7,t)-J (7,1) = %w(?,t) (1.102)

as the time derivative of the work density w(7,t), i.e., as the power density. Note
that this is the work done by the electric field on the charges, i.e., the work done
to accelerate the charges, not the work necessary to move the charges against the
electric field.

We can naturally identify
w (i) = LEE D + —— [B(,0)]? (1.103)
2 240
as the energy density of the electromagnetic field. With these identifications,
Eq. (1.101) takes (almost) the form of a continuity equation,

1 - = I Ou (7,t)  Ow(#,t)
— V- |FE B =0. 1.104
" \V/ [ (7,t) x (r,t)] + 5 + P 0 (1.104)
We identify the Poynting vector S(7,t) as
S (7,t) = 1 E(7,t) x B(7,t), (1.105)

Ho

i.e., as the energy current density leaving a small test volume, where S has the
physical dimension of energy per time per area. We can write
.= ou(7,t)  Ow(7,1)
V N S 77 t + ! + ’ =
(7,0) ot ot

In view of the divergence theorem, this implies that

favﬁ(f,t)-dfx:-[VE(f,t).j(f,t)d%—fv%d%. (1.107)

The interpretation is clear: The rate at which energy leaves a region plus the

0. (1.106)

rate at which field energy is converted to mechanical energy is compensated by a
commensurate loss in field energy, i.e., equal to minus the rate at which the field
energy changes. Note that E(f’,t) . j(f',t) = Jyw(7,t) is positive when work is done
on the charges by the field, i.e., when the work is done “in the direction” of the
electromagnetic fields. This work leads to a loss in the field energy density, or
otherwise to an increase in the kinetic energy of the charges inside the reference
volume. Work done on the charges against the direction of the electromagnetic
fields (“actual work”) leads to a negative value for d;w(7,t), and to a positive value
for the radiated energy [y, S(7,t)-dA per time.
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For vanishing power density d;w(7,t) = 0, let us write the energy dissipation
equation (1.106) in a slightly different way,

_Ou(r,t) ow(r,t)

V- S(7,t) = , =0 1.108
(7,1) 5 5 (1.108)
and compare it to the continuity equation (1.29) (for the total current)

.- Op (7,t

T J(F ) :—%. (1.109)

Here, J is the current distribution, and p is the volume charge density. We can
observe the analogy S < J and u < p. The continuity equation states that a loss
in the local charge distribution can only occur if charge leaves the area. The energy
dissipation equation states that a loss in the local field energy distribution is com-
pensated when field energy leaves the area (Poynting vector), or when performing
work on the local charges.

1.3.2 Mazwell Stress Tensor

From the above discussion, it is clear that the Poynting vector describes the flow of
electromagnetic field energy. Furthermore, the quantity S(7#,t)/c has the physical
dimension of an energy density. Energy has the dimension of force multiplied by
length, and so the quantity (1/c?)0S(7,t)/0t has the physical dimension of a force
density, because ct has the dimension of length. One may thus ask if it is possible
to formulate the force density acting on an ensemble of charges in terms of the
electromagnetic fields, and conjecture that the resulting formula might contain a
term proportional to (1/c?)0S(7,t)/0t.
We start from the Lorentz force on a charged particle,
F=q(E(7t)+9xB(#,t)) . (1.110)

The force density, or force per unit volume, acting at point # and time ¢, is

AF  Aq - AgD -

—=—F+ x B. 1.111

AV AV AV ( )
Defining f as the force density, and identifying Ag/AV - p and Aqi/AV — J, in
the limit of a small reference volume AV, we have

f(#,t) = p(7,8) E(7,t) + J(F,t) x B(7,t). (1.112)

In the following, we suppress the space-time arguments (7,t) of the fields and
sources. We now use Gauss’s law and the Ampere-Maxwell law to express the
charge density p and the current density J in terms of the fields,

7 (eoﬁ.E)E+(iﬁxB—eoaa—f)xB
:eoE@-E+i(§xB)xB—eoa—ExB. (1.113)
Ho ot
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The time derivative of the Poynting vector may be written as
O,z = OE - - 0B 0E . . s
—(ExB)=—xB+Fx x B-F E 1.114
gi(ExB)=r xB+Ex—pr="r <(VxE). ﬁ( )
where Faraday’s law (1.2c) has been used. Solving this equation for 9;F x B, one
obtains

0E . 0 -
v B—a—(ExB)+E><(V xE) . (1.115)

Using this relation in Eq. (1.113), we have

1= - = .

+ —[B (V-B)—Bx(VxB)]—eog(ExB) (1.116)
Ho

where an “artificial zero” has been added in the form of the term
to render the (first part of the) resulting expression symmetric in

For any vector field V, one can write the identity
Vx (VxV) =6 €iVirem ViV = € (8it 8jm — 6im 65¢) ViVeVim

-B =0 in order
<>

@ —
E < B.

1., - Lo -
:Vjéivivj—vjvjém:§v(v-v)—(v-v)v, (1.117)
where we carefully keep track of the fields on which the gradient operator acts (only
those to the right of the operator). The force density can be written as follows,

Fco (B (9-B)+ (B-9) B] + = [B (v-B)+(B-9) 5]

1 0
+V (= E2+—B2)— —(ExB 1.118

v(2€0 20 0 (ExB). (1.118)
We are now in the position to define the stress tensor T of the electromagnetic field,

with components T;,

1 = 1 1 -
Tijzeo (EiEj——(SijEQ)-ﬁ-— (BiBj——(SijB2) , (]_119)
2 Mo 2
or in dyadic notation,
I 1 (5 - B?
T =¢ (E@E—713X3)+— (B®B_7]]-3x3) ZTijéi®éj. (1120)
Ho

Then,
. 1
vV-T-= ViTij éj =€ éj (Ej Vi:E; + B; ViEj) + M— (Bj V:B; + B; ViBj)
0

1 1
—éJvJ( co B + 2MOB?)
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We can finally write Eq. (1.118) as follows,

fz@-?l‘—eouogi(ExB):ﬁ-T—é%S. (1.122)
Here, S is the Poynting vector, defined in Eq. (1.105). Equation (1.122) is dimen-
sionally correct; all components of the stress tensor have a physical dimension of
energy per volume, or force per area, which is the same as the physical dimen-
sion of pressure. The relativistic generalization of the stress tensor, the so-called
stress—energy tensor, is discussed in Sec. 8.3.2.

1.4 Exercises

e Exercise 1.1: Repeat the derivation the equivalence of the integral and differen-
tial forms of Maxwell equations for the absence of magnetic monopoles, i.e., show
that the following two equations are equivalent:

(i) V- B(7,t) =0, (ii) faVB(F,t)dfl:O. (1.123)

e Exercise 1.2: Show that the Kronecker symbol d;; is a tensor under rotations.
Geometrically, this means that if two vectors d and b undergo a rotation @ - @’ =
R, b— bV = R-b, then d-b = @'-b’ (the rotation matrix is denoted as R). Component-
wise, it means that the components of the € tensor are invariant under rotations,
i.e., that

875 = Rig 6re Ry; = 635 - (1.124)

ij
The sum over k£ and ¢ is implicitly assumed by the Einstein summation convention.
Show the equivalence of both statements, refer to a general form of a rotation
matrix, and relate Eq. (1.124) to a well-known property of rotation matrices.

e Exercise 1.3: Show that €;;;, is a tensor. Geometrically, this means that if three
vectors d, b and ¢ undergo a rotation, @ - @’ = R-a, and b— bV =R-bas well as
¢ & =R-¢then ax (bx¢) =d - (b x&). Again, the rotation matrix is denoted
as R. Component-wise, it means that the components of the ¢ tensor are invariant
under rotations, i.e., that

6;jk = Ri¢ €tmn R;Fnj R}, = €ijk - (1.125)

The sum over ¢, m and n is implicitly assumed by the Einstein summation conven-
tion. Show the equivalence of both statements, and the invariance of the components
of the € tensor under rotations.

e Exercise 1.4: Using your favorite graphical and numerical computer package
(Mathematica, Maple, Matlab, Axiom, etc.) investigate the properties of the
integral

I(wo):foﬂ/deé(w—wo)f(w)—>I(77,o.;):fOW/deA(n,w—wo)f(w) (1.126)

wo =—, f(w) =sin*(w), (1.127)

ol
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where A is defined as in Eq. (1.32). Observe how I(n,w) converges to I(wp) =1 as
n— 0.

e Exercise 1.5: Show Eq. (1.34) by first convincing yourself that 6[a (z — z0)] =
§(x—x0)/a for a positive constant a. Then, expand the argument f(z) of 6(f(z)) in
terms of 6(f(x)) = 8[f(zo) + f'(x0) (z — 20)] and make an appropriate assumption
(which one?) about xg.

e Exercise 1.6: Show that, because the Fourier transform of the Dirac-d distri-
bution is just a constant, the function g = g(# — ') defined in Eq. (1.37) can be
interpreted as the inverse of the Laplacian operator. In particular, deliberate on
how you could formulate the quantity (1/V?)G(#,#') using the momentum-space
representation? (Consult Chaps. 4 and 6 for a systematic introduction to Fourier
transforms in space and time.)

e Exercise 1.7: Consider the scalar and vector potentials for a traveling wave [see
Eq. (1.95)],

(7)) =0,  A(Ft) =, AgeFTen (1.128)

where w = c|l%| (We here anticipate the complex formalism for the description of
fields; the real part of Eq. (1.128) is equivalent to Eq. (1.95).) (i) Show that the
scalar and vector potentials given in Eq. (1.128) fulfill both the Lorenz and Coulomb
gauge potentials. (i3) Consider the gauge function

A(F 1) = xo el FTen) (1.129)

Show that A(7,t) fulfills the condition (1.73), and calculate the gauge transformed
scalar and vector potentials ®' and A’. Show that these give rise to the same fields
E and B. Hint: You might obtain something like

O (7, 1) = iw yo e F7) (1.130)
and
A7) =ik o FTD + A7 1) (1.131)
e Exercise 1.8: Consider the scalar and vector potentials,
®(7,t)=-E(t)-7,  A(Ft)=0. (1.132)
Show that under the gauge transformation
A(7,t) = A(t) - 7, (1.133)
the following gauge-transformed potentials are obtained,
(7 t)=0,  A'(Ft)=A(t). (1.134)

You have transformed from a situation with a vanishing vector potential, to a gauge
with a vanishing scalar potential. Equation (1.132) is referred to as the length gauge,
and Eq. (1.134) is called the velocity gauge. A decisive feature is that E(t) and
fl(t) are time-dependent, but independent of the spatial coordinates.

e Exercise 1.9: Under which conditions can a gauge transformation be found which
implements the temporal gauge ®' (7,t) =07 This is a difficult exercise.



Chapter 2

Green Functions of Electrostatics

2.1 Overview

In the current chapter, we shall encounter basic techniques involved in the calcula-
tion of so-called Green functions. These functions are central to theoretical physics.
They have many applications; in particular, Green functions connect a physical sig-
nal to its source, in space or time. We shall start by discussing the Green function
of the harmonic oscillator (see Sec. 2.2), which connects the position of a classical
particle bound in a harmonic potential, to a “source” term, which for mechanical
problems, is simply a force acting on the particle. The Green function is calculated
by Fourier transformation with respect to time, or alternatively by matching solu-
tions of the homogeneous equation near the cusp which defines the Green function.
Both techniques for calculating the Green functions will be used in the following
chapters of this book.

The “matching near the cusp” technique will be used in Secs. 2.3 and 2.4, for
the calculation of the electrostatic Green function in spherical and cylindrical co-
ordinates. Here, the connection of the “signal” (the electrostatic potential) to the
source (the charge density) is mediated in three-dimensional space as opposed to the
time domain (as for the harmonic oscillator). The calculation of the Green function
in spherical coordinates (see Sec. 2.3) directly leads to the multipole expansion of
electrostatics. Finally, in Sec. 2.5, we shall encounter a third, alternative method
for the calculation of a Green function, namely, a so-called eigenfunction expansion,
which is inspired by ideas originally developed within quantum mechanics.

2.2 Green Function of the Harmonic Oscillator

One of the most basic applications of the Green function formalism concerns the
harmonic oscillator, which is introduced here as an example for the basic paradigm
of the formalism. Indeed, from our elementary education on electric circuits, we
know that a series resonant circuit consisting of a coil with inductance L, a resistor
with resistance R, and a capacitor with capacitance C' fulfills

dr Q

L +IR+ 5 =V(), (2.1)
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where V(t) is the applied, possibly time-dependent voltage. If one uses the fact
that the current I through the coil is equal to the time derivative of the charge Q,
then the equation reads
d?Q @ Q
L—+R—+—==V(1). 2.2
de? dt C ®) (22)

The mechanical analogue (damped harmonic oscillator) reads as follows,

m—+r%+Dz:O. (2.3)

Here, D is the spring constant, r is the coefficient of the damping term (linear in
the velocity), m is the inertia term (kinetic energy, corresponds to the inductance
L for the electric circuit), and z is the time-dependent elevation (z coordinate) of
the test object attached to the spring.

Both Egs. (2.2) and (2.3) can be brought into the following form by a trivial
scaling and reidentification of the parameters,

(1) +y i(t) +wg a(t) = f (1) , (2.4)
where the dot means differentiation with respect to the time. The Green function
g =g(t-t") for this equation fulfills the equation

G-t +ygt-tY+wigt-t)=6(-t"), (2.5)

where § is the Dirac-d distribution and the dot again denotes the differentiation
with respect to ¢ (not t'). Introducing the variable s = ¢ — ¢/, we could write the
defining equation as

2

S0+ g () +d g () =0 (9) (2.6)

The primary use of the Green function is as follows: It describes the response
of the system to a point-like (in time) perturbation, as described by a Dirac ¢
function. The response of the system to an arbitrary perturbation can be obtained
by summing (integrating) the response of the system to the perturbation f(t')
weighted with the Green function g(t - t'),

(t) = f t—t') f(¢)at. 2.7)

In view of Eq. (2.5), z(¢) defined according to Eq. (2.7) fulfills Eq. (2.4). The
relation (2.7) illustrates why the “natural” argument of the Green function is the
time difference s =t —t’. We note that Eq. (2.5) does not define the Green func-
tion uniquely. Given a particular solution g, we can always add a solution of the
homogeneous equation

2+ —h(8)+wO h(s) = (2.8)

and g + h will also be a Green function. This finding illustrates in very basic
terms that the Green function is only defined uniquely if it is supplied with suitable
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boundary conditions. For our problem, the general solution to the homogeneous
equation reads (s =t —t')

1 1
h(s)=A exp(—§'ys) sin(i \/Aws =2 8)
1 1
+Bexp(—§'ys) cos(E\/élwg—vQ s) , (2.9)

where A and B are integration constants that can be adjusted to fulfill specific
boundary conditions.

Let us now consider the Fourier representation of the Green function. Indeed,
writing the Green function as a Fourier transform

oodo‘) —jw(t—t
gt-t)= [ T2 gy, (2.10)

we note that g(t —t') and g(w) are different functions and have different physical
dimension; one of them is obtained from the other by integration over dw. One
might ask if this can be mathematically correct. The answer is that it can be
correct and unique if we interpret the symbols g to be “overloaded” in the sense of
an overloaded operator in “Fortran 90” or “C++" notation: The physical dimension
of the argument (time or frequency) defines the functional form to be used for g. It
is easy to show that

1 1
g(w):_w2+i'yw—w(2) N CEPRICErSE (2.11)

where the poles are given by

1 .
we= g (i\/4w(2) -2 —17) . (2.12)

For light damping (4w? > ¥2), both of these poles w, have a negative imaginary
part. In order to carry out the integration in Eq. (2.10), we now need to calculate
the residues

1 1
R = R - =F . 2.13
Reo R (o) e

For t —t' > 0, we have to close the contour in Eq. (2.10) in the lower half of the
complex plane because the expression exp[-iw(t —t')] is exponentially damped for
Im(w) < 0. In that case, we pick up nonvanishing residues at w = w; and obtain

(L JEZ = (-t
, Sin w, r}/ (t t)

g(t—t') =20(t—t) e 112 (5 V43 )
dwg —

where © is the Heaviside step function, which is unity for nonnegative argument,
and zero otherwise. A nonvanishing result is obtained only for ¢ > ¢/. For t < t/,
the contour needs to be closed in the upper half of the complex plane and no
pole contributions are picked up. The Green function (2.14) is the retarded Green
function; it vanishes when ¢ < ¢'. Furthermore, it vanishes in the limit ¢ — ¢’ — oo.

(2.14)
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An alternative way of constructing the Green function is as follows. We first
observe that the homogeneous and inhomogeneous Egs. (2.8) and (2.6), which we
recall for convenience,

2
S0+ g () +uR g () =0(5) (2.150)
%h(s%—y %h(sﬁ-wgh(s) =0, (2.15b)

are actually equivalent to each other except for the immediate vicinity of s = 0,
because d(s # 0) = 0. Now, the general solution of the homogeneous equation is
given in Eq. (2.9). Hence, we use an ansatz of the form

g(s)=0(s) [A+ e 78/ sin(% \Aws =2 s)
+B, e V52 cos(% \Aw? =2 s)]
+0O(-s) [A_ eTVe/2 sin(% \Awd -2 8)
LB 2 cos (% NI s)] . (2.16)

The integration constants A, and B, can be determined by (i) boundary conditions
and (i7) integrating Eq. (2.6) in an infinitesimal interval about s = 0. For the
retarded Green function, we have to require that A- = B_ = 0. This also follows
from the regularity requirement at s = —oo; the numerical value of the Green function
would otherwise diverge in that limit. Furthermore, as the Green function needs to
be continuous at s = 0, we have to impose the condition B, = 0; the cosine would
otherwise induce a kink. After setting A_ = B_ = B, = 0, the remaining parameter
A, can be determined by integrating Eq. (2.15a) in an infinitesimal interval around
s =0,
2

1= [:5(8) dszﬁe[%g(s)+7 %g(s)+w§g(s):| ds

€

= %g (5) - - %g (5) . +y [g(e) —g(—e)] +w8 g(O) €+ 0(62)
= %g(s) T %g(s) S=_6+O(€):(%A+\/4w8—72)—(0)+(’)(6). (2.17)

We have assumed that the Green function itself is continuous while its derivative
may have a kink. The result thus reads
2

Ay = ——. 2.18
" VAwd -2 (2.18)
Inserting this result into Eq. (2.16), we recover (2.14),
sin (2 \/4w2 -2s
g(s) =20(s)e™%/? (2 0 ) . (2.19)

4wd -2
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g(s)

Fig. 2.1 Plot of the Green function g(s) given in Egs. (2.14)
and (2.19) for v = wp/10 and wg = 100.

A plot of the Green function for typical parameters is given in Fig. 2.1. We shall use
the “concatenation approach” for the construction of the Green function in future
derivations, related to electrodynamics.

2.3 Electrostatic Green Function and Spherical Coordinates

2.3.1 Poisson and Laplace Equations in FElectrostatics

In generalizing the result of the previous section on damped harmonic oscillators
to electrostatics, we encounter the first example of a Green function relevant to
electrodynamics. Below, we formulate the Poisson equation of electrostatics as the
central inhomogeneous equation which gives rise to a Green function. In spherical
coordinates, the equations of electrostatics naturally split into angular and radial
parts. We shall find that the angular part of the equations is easily solved in terms of
so-called spherical harmonics, which constitute some of the most important special
functions of theoretical physics. For the radial equation, we shall first find the
solutions to the homogeneous equation. Near the turning point, the solutions to the
homogeneous equation will be matched such as to fulfill the defining inhomogeneous
equation of the Green function, in an approach similar to that used in Eqgs. (2.16)—
(2.19). The calculation of the Green function for electrostatics is more difficult than
for the damped harmonic oscillator because it is manifestly three-dimensional.

In electrostatics (no time dependence), the electric field E(7) is obtained from
the potential ®(7) as E(7) = -V®(7). If the charge distribution vanishes, p(7) = 0,
then the potential fulfills the Laplace equation

VEO(F) =0 (2.20)

by virtue of Gauss’s law (1.2a). For nonvanishing p(7), one obtains the Poisson
equation

92 0 (F) = —% (7). (2.21)
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The Green function G of the Poisson equation therefore has to fulfill the defining
equation

B} . 1
VEG(# ) = VEG(F-7) = —— 6O (F -7, (2.22)
€0

where V2 is the Laplace operator, which acts on 7 (not #') unless stated otherwise.
The three-dimensional Dirac-¢ function has been defined in Eq. (1.35). In view of
Egs. (1.37), (1.38) and (1.42), the desired solution can immediately be written down
as

1

GO =GO =) = e

(2.23)

The Green function provides a convenient way to evaluate integrals of the form
- 1
o) = [ dGEI) ), TRRE) = —— (7). (2.24)
€0

for extended charge distributions p(7*’), which are solutions to the Poisson equa-
tion (2.21).

We here anticipate the central result of our discussion of the electrostatic Green
function in spherical coordinates, which is the multipole decomposition

o 4 ¢

)= il " w2 O, 57eT 71 om (0.9) Yin (06 (225)
Here, r< = min(r, "), r~ = max(r,r"), while § and ¢ are the polar and azimuth angles
of the vector 7, and correspondingly for #” and ¢’. The Yy, functions are spherical
harmonics, as defined in Eq. (2.53). We shall now work toward deriving Eq. (2.25),
using spherical coordinates. To this end, we first have to analyze the Laplace equa-
tion in spherical coordinates, before “concatenating” the expression (2.25), which
is a solution of the Poisson equation, from the solutions of the Laplace equation, at
the cusp r< =75, in a way similar to the derivation outlined in Eqs. (2.16)—(2.19).

2.3.2 Laplace Equation in Spherical Coordinates

The Laplacian V2G(#,7') of the Green function G vanishes almost everywhere.
Indeed, it vanishes for all 7 except at the Dirac-d source §(3) (7 - 7). We thus have
to investigate the Laplacian operator V2 in spherical coordinates, which are defined

as
x =7 sinf cosp, y=rsinf sinp, z=7 cosf, (2.26a)
with
r=\22+y?+22, O:arcsin(é) , gpzarccos(L) . (2.26Db)
One writes, by the chain rule,
0 _Or 9 000 0Op 0 (2.27)

— e —t— — + — ,
Or Ox Or Ox 00 Ox ¢
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thereby expressing the partial derivative operator 9/0x as a linear combination of
d/0r, 0/00, and 0/0p. By a tedious, but straightforward calculation, one then
obtains the conversion of the Laplacian operator in spherical coordinates,
2.0 O &
0x2  0y? 022
o~ 20 L 9,0 1 &
or2 r Or 1r2sin6od 00  r2sin%0 0p? "

(In Chap. 8, we shall explore Christoffel symbols which provide a more systematic

(2.28)

view on the curvilinear coordinate systems.)

In quantum mechanics, one often introduces the angular momentum operator
L=7xp=-ihixV, where = —ihV is the momentum operator. This book is not
about quantum mechanics; however, the designation of the first subscript of the
spherical harmonic Yy, actually is inspired by the angular momentum quantum
number. In the context of classical electrodynamics, it is thus helpful to introduce
a dimensionless version L of the angular momentum operator as the vector product

L=-i7xV, (2.29)

so that the Cartesian components of L can be expressed in terms of the spherical
coordinates as

L,=-i (y%—z%):i (sinw%+cosap cotH%) , (2.30a)
0 0 0 0
N O W SRR 9 2.30b
L, 1(2 5 xaz) 1( cosp g +sing COtg&p)’ (2.30b)
0 d d
Lo=-ife L -y Z)=ul, 2.30
l(x({“)y yax) 1390 (2.30¢)

The square of the L operator reads as
vy - - 1 0 o) 1 92
=L - L=-(fxV) =————sinf— - ————.
V) =" 5n90 "% ~ st 02
We can thus write the Laplacian operator as follows,

2
g2o 0,290 1 (2.32)

(2.31)

This identity separates radial and angular variables in spherical coordinates. The
homogeneous (Laplace) equation in spherical coordinates becomes

V2O (r,0,0) =0,  ®(r,0,0)=R(r)Y(0,¢), (2.33)

where the latter equation constitutes an ansatz for the solution, obtained by sepa-
ration of variables. Inserting this ansatz into Eq. (2.32), one obtains

R(lr) {% [TZ% R(r)]} - y(;’ w)EQ Y(0,9). (2.34)
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This equation must be satisfied for all (r,6,¢), which are independent variables,
Equation (2.34) can only be satisfied if both sides are equal to a constant which we
write as £(¢ +1). Then,

LY (0,9) =L (£+1) Y (0,¢), (2.35)
and the radial part of the function fulfills
4 [TQER(T)] U+ 1R =0, R(r) =apr’ + byl (2.36)
dr dr

where we indicate the power law solutions. Equations (2.35) and (2.36) imply that
if we can find eigenfunctions Y of the dimensionless angular momentum operator L?
satisfying (2.35), then we obtain solutions for the radial equation (2.36) as simple
power laws.

It is useful to observe that the angular equation (2.35) can be further separated
into polar and azimuthal parts by setting Y (0, ¢) =V (0) W (),
1 0

sin @ L(L+1) V(0) = W) 8—302W(50) .
(2.37)

Again, since 6§ and ¢ are independent variables, both sides must be equal to a
constant (the second separation constant) which we take to be —m? and write
0? ; ;
a2V ()= ~m?W(p),  Win(p)=Ape™? + By e ™. (2.38)
2

Here, A,,, and B,, are arbitrary integration constants, and m needs to be an integer

sin92 (sin&gV(G)) +

1 1
Vo) " ae " ag V()

in order for the function W () to be uniquely defined. So, the remaining equation
in the polar angle 6 is given as

siHO% (sin@% V(9)) +(sin® 0 £(L+1) -m?) V(0) =0. (2.39)

Substituting u = cos 6 and defining F'(u) = V(6), we obtain the associated Legendre
equation,

m2

1-wu?

a4 [(1 _?) d%F(u)] . (e(u 1)-

- ) F(u)=0. (2.40)

It has two linearly independent solutions called the associated Legendre functions
of the first, P(lm‘(u), and second kind, Qlim‘(u) The general solution to the polar
equation reads as

Fym (u) = Aem Pp(u) + Beym Q7 (u) —-l<m</{. (2.41)

For —¢ <m < /¥, with £=0,1,2,..., the P]"(cosf) are finite in the interval 0 <6 < 7.
By contrast, the Q}*(cosf) diverge at u = cosf = £1 or 6 = 0,7 (i.e., on the “pole
caps” of the unit sphere). While the Q}*(cos#) are possible solutions when we can
manifestly restrict the range of allowed polar angles to |cosf| < 1, we must exclude
these solutions if we seek functions that converge to finite values on the entire unit
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sphere. The functions P;"(u) and P,™(u) are not linearly independent, but rather,
directly proportional to each other,

Given a solution Fy ., (u), the integration constants A ,,, and By ., from Eq. (2.41)

gm'(u) . (2.42)

are thus not uniquely determined, because Pgml(u) and Pe_lm‘(u) are not linearly
independent. However,the form of the solution given in Eq. (2.41) is still general.
One can make the expansion unique by choosing between Pe_lm‘ (u) and Pgml(u) de-
pending on the sign of m in the e”¥ phase term, i.e., e!”l® is multiplied by Pliml (u),
while e I"I¢ is multiplied by P[‘ml(u). This freedom of choice is incorporated into
the definition of the spherical harmonics to be discussed in Eq. (2.53).

We shall assume that the solution ® = ®(r,0,¢) of the Laplace equation (2.33)
is well defined on the entire unit sphere and so, we will write the general solution
to the homogeneous equation as

o 4
(r,0,0) Z Z (ae,m 7 4 bym r_z_l) P (cos ) ™ (2.43)
with arbitrary constants a¢ ., and by ,,. We have absorbed the integration constants
A¢ o from Eq. (2.41) into the ag ,, and by, that multiply the radial factors. From
Eq. (2.38), we might otherwise assume that the allowed range for m contains the en-
tire set of the positive and negative integers, and zero; however, the m in Eq. (2.38)
has to be the same as the one in Eq. (2.41), and thus have to fulfill the requirement
that —¢ < m < £. For |m| > ¢, the associated Legendre polynomials vanish because
the (Jm|+ 1)th derivative annihilates Py(cos€) [see Eq. (2.47a)].

Based on Eq. (2.43), we may proceed to solve the inhomogeneous equation defin-
ing the Green function (2.22) by matching the solution regular at the origin (r¢)
with the solution regular at infinity (r~¢~!) near the turning point, where the Dirac-d
function is nonvanishing, in analogy to the derivation outlined in Egs. (2.16)—(2.19).
However, before we proceed to this endeavor, we first dwell a little on the Legen-
dre functions, and spherical harmonics, which constitute examples of the “special
functions” of mathematical physics.

2.3.3 Legendre Functions and Spherical Harmonics

Let us first discuss the Legendre functions of the first kind. In our problem, we
expect the functions to be well behaved for all |x| = |cosf| < 1. A special case is
found when |m| = 0. These solutions,

L
S (CaR ) (2.44)

are called Legendre polynomials. They fulfill the recursion relation

(0+1) Prr(z) = (20+ 1) Py(2) — £ Pry (). (2.45)

P(z)=Pi(z),  Puz)=
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For non-integer ¢, the Legendre polynomials are generalized to Legendre functions,
which in turn are expressible in terms of so-called hypergeometric functions. It is
useful to indicate the first few P () which read

]30(.13):17 Pl(x):x, PQ(Z‘)Z%Z‘Q—%, (246&)
Pg(x):gm3—%x, P4(x):%x4—17;5m2+%. (2.46b)

The associated Legendre polynomials P;"(z) of degree ¢ and order m are related
to the Legendre polynomials by the relations,

B (@) = (1-22)™"? %‘fﬂﬁ), (2.47a)
Py = (cnym LD pi (2.47b)

(€ +[ml)!
where the first relation applies to P;”(z) with m > 0, and the second one, which we
have already encountered in Eq. (2.42), is to be used for m < 0. Because P () is a
polynomial of order £, the associated Legendre polynomials are only non-zero when
£ > |m|. There are orthogonality relations,
' Oppr (2.48)

[3d$Pﬁ(I)Pﬁ($): 20+1 ((—m)!

Finally, we note that PP (1) =1, P (-1) = (—1)6, and if m # 0, PJ* (1) = 0. The
general symmetry relation of these functions for x — —z is
Py (=z) = (1) P () (2.49)

The irregular solutions are the Legendre functions of the second kind, which are
the functions @, (z) that have singularities at = = £1. They are expressed as follows

([ <1),
_ Py(x) l+x
Qe (2) = — lﬂ(l_

() [Y(n+1) -Y(s+1)] s
W, “1)°, 2.50b
- 1 Z g(n—s)'(s')Q (J? ) ( )
_1(x)=0, Wo(x) =1, Wy (z) =2, WQ(Z‘):%Z‘Q—%. (2.50¢)
Here, ¥(z) = dIn[T'(x)]/dx is the logarithmic derivative of the Gamma function.
We note the logarithmic divergences of Q; () for x - +1. They fulfill a recursion

2 (L+m)!

) W (a), (2.50a)

relation analogous to Eq. (2.45),
(€+1) Qe (z) = 20+ 1)z Qe(x) ~ £Qe1(2), (2.51)

and the associated Legendre functions Q}*(x) of degree £ and order m are obtained
by relations analogous to (2.47),

m|/2 m| X
) = (1-a)™ %‘iﬂ()v (2.52a)
(£ —|m|)!

Q" (x) = (-1 T (). (2.52b)
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The logarithmic singularity of the Legendre @ functions near the poles x = cosf = +1
implies that we can ignore them in the physically relevant solutions of the Laplace
equation.

In Eq. (2.43), we have already seen that the solutions to the angular equa-
tion (2.35) can be expressed as being proportional to P;" (cos) "™#. The normal-
ization is canonically chosen to define the spherical harmonics Y, (6, ) as
20+1 (£L-m)!

. m Pgn (COSG) eim‘p. (253)

We note the occurrence of the factor (/-~m)!/(¢+m)! under the square root. Together

Yem (0,0) = (-1)™

with the prefactor in Eq. (2.47b), it ensures that the case of positive and negative
m are consistently defined. The spherical harmonics Yz, (0, @) are solutions to
Eq. (2.35), which we recall for convenience,

and they have the following property,

- .0

L. }/@m(g,ép) = _1% }/@m(g,ép) :mnm(aaw)ﬂ (255)
where L, = —10/0¢p is the z component of the operator defined in Eq. (2.29) [see
also Eq. (2.30)]. Other useful properties are given by

Yo-m (0,) = (_1)m Y-Ztn 0,¢) , (2.56a)
Yom (7=0,21 - ¢) = (-1)" Yoo (6,9) , (2.56b)
Yom (m=0,7+9) = (-1)" Yo (0, ) . (2.56¢)

Equation (2.56¢) is the parity transformation, which is mediated by the replacement
0 - m-60 and ¢ > ¢ + 7. Based on the convention (2.53), we can establish the
orthonormality conditions

27 T
fo fo Ye 1 (6,0) Yom (6,0) sin0d0 d = 6eer S » (2.57)

where the integral over the solid angle d) = sinfdf dy defines a scalar product.
We appeal to Eq. (2.48) for the derivation. The scalar product may also also be
written as (Yp | Yem ), if we use Dirac’s bra-ket notation, and we can interpret the
value of Yy, (0,¢) as the “matrix element”

Yo (0,¢) =(0,0Yem) , (2.58)

i.e., as the scalar product of the eigenvector |0, ¢) of the position on the unit sphere,
and the eigenket |Yy,,) of the modulus square of the total angular momentum L2,
and the z component L,. Furthermore, the integration over the solid angle in
Eq. (2.57) can be understood as a summation over the quantum numbers of the
eigenkets |0, ) of the position operator. With this interpretation, Eq. (2.57) can
be written as

I Vom0, 0) 0. 01Yem) = 612 S (259)
0,¢
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The scalar product of two eigenkets |0, ) and |0’, ') simply is the Dirac-d function
on the unit sphere,

! ! 1 A !
(0,¢10,0) = ——3d(0-0) 6 (p-¢") . (2.60)
sin @

These eigenkets also form a complete basis for functions defined on the unit sphere,
and we can thus write a completeness relation analogous to Eq. (2.59),

2(97@|nm> (Yémwla@I) = (91790,|9790> . (261)

,m

The aim of the detour into Dirac’s bra-ket notation, comprising Egs. (2.58)—(2.61),
has been to motivate the completeness condition

* A A 1 A A
=6(p-¢") d(cosh—cosb’), (2.62)

which is equivalent to Eq. (2.61). We have used Eq. (1.34). For ¢ =0, the spherical
harmonic with m = 0 is only a constant, Yoo (6, ¢) = (477)_1/2. For ¢ = 1, the spherical
harmonics read as follows,

Yio (6, ¢) =/ 4i cosf, (2.63a)
™
/3 . i [3 .
Y11 (0,0) =—1/ — sinf ¥, Yic1(0,9) =1/ = sinfe™?. (2.63b)
8T 8T

The spherical harmonics with ¢ = 2 are of second order in the trigonometric functions
sin@ and cos#, and Yo is proportional to Pa(cosf) = % cos? 6 — %,

5 (3 5, 1
v, )2 (Beos?o- t 2.64
20 (0, ¢) in (2005 0 2), (2.64a)
/15 i /15 . ~i
Y21 (6,0) ==/ — sinf cosf e'?, Yo_1(0,0) = \/ — sinf cosfe™?,
8m 8m

(2.64D)

1 : 1 .
Ya2 (0, ) =1/ % sin f ¥ | Yoo (0,0) =1/ % sin? f e 27, (2.64c)

These functions are illustrated in Fig. 2.2.

2.3.4 Expansion of the Green Function in Spherical Coordinates
We have found the general solution to the Laplace equation in spherical coordinates,

given in Eq. (2.43),

o 4
®(r,0,0)=> > (cem 4 dy 7'_4_1) Yom (0, 0), (2.65)
£=0 m=—-¢
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R L
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» » .
- -
Fig. 2.2 We illustrate the shape of the spherical harmonic functions Yy, (0, ¢) for £ =

0,1,2,3 by plotting £(6,¢) = |Yem(0,¢)|? as a function of the polar angle § and of the
azimuth angle ¢. The sequence of magnetic components is from m = —¢ to m = £.

with arbitrary constants ¢ ,, and dg,,, which are related to the ay,,, and bg , used
in Eq. (2.43) by the prefactor given in Eq. (2.53). For convenience, we recall the
Poisson equation (2.22) fulfilled by the Green function, which reads as

VEG(7, ) = 1 SO (F -7, (2.66)
€0

In order to solve this equation, we recall that the Dirac-§ function on the right-
hand side of Eq. (2.66) vanishes everywhere except for the immediate vicinity of
the region where 7 — 7. Hence, we can hope to construct a solution of Eq. (2.66) by
concatenating solutions of the homogeneous equation V2® = 0, given in Eq. (2.43),
using a method previously outlined in Egs. (2.16)—(2.19).

However, before we engage in this endeavor, we should first clarify the explicit
form of the three-dimensional Dirac-0 function used in Eq. (2.66), in spherical
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coordinates. In passing, we shall obtain an a posteriori justification for the form of
the Dirac-0 function on the unit sphere, given in Eq. (2.62). In order to express the
three-dimensional Dirac-d function in spherical coordinates, we use the ansatz

SO (=)= F(r,0,0)8(r-r")5(0-0) (0 -¢), (2.67)

which is justified because the coordinates 7, 6, and ¢ describe the position uniquely,
just like z, y and z. We fix the function F' by the condition

1:fd3r6(3)(F—F’):fdrr2d0 sinfde F(r,0,0)6(r —1')6(0-6") 5(o - ¢').

(2.68)

If this relation is to hold for all 7/, 6, and ¢’, then we must have

1
F(T,G, 30) = S5 - (269)
r2 sin 6
Finally, the three-dimensional Dirac—5 function is expressed as
6 (F-) = 5 0(r=r)8(6 -6 6(p-¢")
r sin 6

! 3 -0’ /

:T—Z(S(r—r)é(cosﬂ—cose)5(30—(,0), (2.70)

where again, use is made of Eq. (1.34). We now re-examine the defining equation for
the Green function (2.22), which is equivalent to the Poisson equation (2.21) with a
“charge distribution” (in incorrect physical dimension) p(7) = eg 63 (7 —7') located
at the point #/. We recall that the Laplace and Poisson equations are defined in
Egs. (2.21) and (2.20).

In spherical coordinates and with the convention

Gfr (T,G, SO) = G(f— /s ) G(ﬂ i’ (271)
we have

V2GQ(F-7) =V G (r,0,0) = - S(r=r8(0-0)0(p-¢'). (2.72)

The subscript 7 on G (r,0,¢) is meant to indicate that the Green function G is
proportional to the electrostatic potential generated by a point charge located at
7', measured at the point 7 whose spherical coordinates are given by r, 8, and ¢.

€or? sinf

Because the angular component of the Laplace operator takes a particularly simple
form when acting on a spherical harmonic, we use the following ansatz for the Green
function,

l
G (1,0, 0) = Z (r;7",0",0") Yom (0, ¢) . (2.73)

||M8

Inserting this into the deﬁnlng equatlon (2.22), using Egs. (2.3.2) and (2.35), we
obtain

92 20 ((+1) ,
a0 m 97 Ym 9;
;n(ar2+rar ) o 0 Wi 0,5

=———=d(r-r")d(cosf~cos0)d(p-¢'). (2.74)

€0
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One may wonder how it is possible that the right-hand side of this equation in-
cludes Dirac-§ functions in the angular variables while the left-hand side does not.
In fact, a further ansatz for the angular dependence of fo,,(r;7',6",¢"), given in
Eq. (2.79), implies that the solution for fo,,(r;r',6’,¢") includes a spherical har-
monic Y, (6',¢"). The completeness relation (2.62) implies that the summation
over ¢ and m generates a term which is equivalent to a Dirac-d function in the
angular variables, on the left-hand side of Eq. (2.74), corresponding to the equiv-
alent term on the right-hand side. We thus multiply both sides of Eq. (2.74) by
Y, (8,¢), and integrate over the solid angle

1 2 ™ 2
fdQ = [ d(cos&)f dy = [ df sinf f de. (2.75)
-1 0 0 0

Using the orthonormality of the spherical harmonics, we find that
¢

3 [(a 20 _ (€+1))fgm(r;r',9',<p')] Soer G

TQ =0 m=-£
= ,2(5(7“ r)f cos@)[ dpd (p—¢")d (cosh—cost )Y, (0,0),
60 T
(2.76)
where we use the operator identity
22 1
0 0 0 2 0 (2.77)

ﬁJrr@r r28r or’

After the 6 and ¢ integrations and the use of the Kronecker symbols, we obtain

1 1
[( 0,29 pps 1)) fgfm/(r;r',G',ga')] - s Vi (0. .
ar or €0 1r'?
(2.78)
It is suggestive to assume that the angular dependence of fy,, (r;7/,60',¢") is given
by Yyi (0',¢"). We now redefine ¢ - ¢ and m’ - m and write

Jom (r;7" 0,0 = Go (r,r") Y, (07,4 . (2.79)
Our ansatz (2.73) now looks like

4
G(r,) = Gy (r,0,) = Z ) Yem (0,0) Y5, (0,) (2.80)

||M8

where the radial equation that must be satisfied by the G, thus reads

(;T 25 0+ 1)) G (rr") =
We now solve Eq. (2.81) by the method outlined previously in Egs. (2.16)—(2.19),
obtaining solutions to the homogeneous equations for r < v’ and r > r’. Finally, we
render Gy (r,r") continuous at r = ', and satisfy the condition placed on Gy (r,r")
obtained by integrating Eq. (2.81) from r =7’ —¢ to r =7’ +¢. In Sec. 2.3.2, we have
already seen that the solution to the homogeneous equation in r has the general

(2.81)

form

Ge(r,r') = agr’ + Ber™ 1, (2.82)
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where oy and By may depend on r’. Assuming regularity of the Green function for
large and small arguments (boundary conditions) we choose the solutions as follows:

For r < 7/, we choose Gy (r,r") = aprt, and for r > r’, we have Gy (r,7") = Ber~t"1.
Contlnmty at r = r’ requires that
rt ,
é e pl L+17 r<r
Go(r,r') =as “1 = » (2.83)
r A
e r>r

where ro = min(r, "), and > = max(r,r’). The constant a; needs to be determined.
Integrating Eq. (2.81) from r = 7' — ¢ to r = v’ + ¢, after multiplying both sides by

r2, we obtain

r'+e a a 1 r'+e
f [ (r —Gg(r7"))—6(6+1)G4(7’,7")]d7':—— [ S(r—=r")dr.
r'—¢e or 0 € Jri—¢
(2.84)
The second term on the left is continuous at r = 7' and drops out of the equation
in the limit € - 0, and so

-1 (2.85)

r=r'—¢ €0

0 0
2 Y / _ 2 Y /
r arGE(rar) r arGZ(T7T)

r=r/+e
where we ignore higher-order terms in €. The radial Green function G¢(r, ") has to
be continuous at the cusp r = 7/, but the derivative may have a discontinuity. We
can thus approximate r2 ~ 7/? in the prefactors in Eq. (2.85) and write
0
- _GZ (T7 T,)

0 1
2 - /
( aT Ge (T7 " ) r=r/+e (97"

) . (2.86)
r=r'—¢ €0

where of course higher-order terms in ¢ have been neglected. For r =" +¢, r is a
little greater than 7/, so 7 = -, and we have to use the functional form r~*! for Gy,
whereas for 7 = 7/ — ¢, we have r = ., and we need to use the functional form r for
Gy. Thus, the condition (2.86) translates into the equation

e ‘
"2 a (%;;T - %JW _) - —% , (2.87)
and therefore
't el 1
r’ [ +1)— s —Em]:ag (-(t+1)-0)=—ay (2€+1):—;. (2.88)
We finally obtain the prefactor in Eq. (2.83) as
1
ag = @1’ (2.89)
and find that
Ge(r,r') = L re r< =min(r,r’), rs = max(r,r’). (2.90)

0 (20+1) 71’
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(b)

Fig. 2.3 Panel (a) has a plot of the function f(ri,72) = 7</r2 as a function of 71 for
ro = 0.2 (long dashes), r2 = 0.25 (medium dashes), r2 = 0.3 (short dashes) and r2 = 0.4
(solid line). The maximum is reached at r1 = ro, with f(r1,71) = 1/r1. This implies that
for ro = 0.2, the maximum (kink) is at f = 5. In panel (b), we have a plot of the function
f(ri,re) = r</r3 in the range 0 <71 < 0.3 and 0 <73 <0.3.

Our ansatz (2.73) with the intermediate result (2.80) and the result (2.90) finally
leads to the rather compact formula

(ﬁ _',) G (T 9;50) - _0 éz;) Z@ 2€+ 1r Zm (9a50) Y—Zm (01’50 ) (291)

confirming Eq. (2.25). On the other hand, we know that

7”Z

1
G(f - ’F,) = GW (7", 9, (,0) = . (292)
dreg |7 — 7|
Combining Egs. (2.91) and (2.92), we can thus write the formula
1 — g 47{- Tﬁ * ! A
=2 Yem (0,0) Y (0,¢7) (2.93)

|7 =7 3.2 —£2€+1 “1
which is the basis for the so-called multlpole expansion in electrostatics. This is
a good point to include a specific remark. Namely, the terms in ascending order
of ¢ are canonically referred to as the monopole (¢ = 0), dipole (¢ = 1), quadrupole
(¢ = 2), octupole (¢ = 3), and hexadecupole (¢ = 4) terms. The designation is
inspired by the numerals for the 0, 1, 4, 8 and 16-pole contributions. One may
easily convince oneself that in order to generate a 2¢ pole term, one has to form
a symmetric arrangement of positive and negative charges +¢, a linear distance d
apart, and a finite 2¢ pole is obtained upon letting d — 0, keeping the quantity gd*
constant.

The case-by-case differentiation according to r< and rs for £ =1 is illustrated in
Fig. 2.3. The kink at the turning point r = v’ is a characteristic property of radial
Green Functions.

2.3.5 Multipole Expansion of Charge Distributions

From the multipole expansion of the Green function [see Eq. (2.91)],

Gy — 1§ s 1oy 0.0) Y (60,¢),  (2.94)
dmeq |7 — 7| Goeom——e%*l ri+l m
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and the formula
o) = [ & G (). (2.95)

one can derive the multipole expansion of an electrostatic potential. If the charge
distribution is localized and we calculate the potential outside of the localized dis-
tribution (r > r’), then the relations r. = 7" and r~ = r are simultaneously fulfilled,
and we may express O(7) as

=L 5y L ImCD (L 06) . )

€0 4= 0m——€2€+1

The integral in round brackets in this expression defines the multipole moments gz,
of the charge distribution,

= fd?’rp(F) Y (0,9) . (2.97)

Furthermore, because of the relationship Yy _, (0,¢) = (-1)" Y;: (60,¢), it follows
that

G-m = (=1)"" @ - (2.98)
The potential is given as a sum over the multipole moments of the localized charge
distribution, as follows,

£~ 20+1 bl
The set of elements {qg,; m = —E, —€+ 17 ..., £=1, ¢} form a spherical tensor of
rank . There are two common representations of tensors: the familiar rectilinear
representation (in Cartesian coordinates) and the spherical representation.

A discussion of two example cases for the multipole decomposition of charge dis-
tributions in spherical coordinates is now in order. The main use of the multipole
decomposition (2.99) lies in the calculation of potentials outside the generating
charge distributions which are centered around the origin; i.e., one assumes that
the coordinate r’ always is the lesser radial coordinate as compared to the obser-
vation point r. In consequence, results obtained using Eq. (2.99) are valid only for
r > R, where R is a radial variable that characterizes the extension of the charge
distribution.

As a first example (see Fig. 2.4), let us consider a charge distribution

p(7') = % cost §(r' —a),  cosf' = \V 4% Yio(0',¢'), (2.100)
a

where we have identified the cosine as a spherical harmonic. This charge distribu-
tion describes a dipole-shaped charge distribution centered on a sphere. Because
of the orthogonality of the spherical harmonics, the only nonvanishing multipole
component is

U =/ 4 * 4 4 47T
ao= [ o) Vi (0, =\ 5 Qa, (2.101)
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Fig. 2.4 The left plot shows a sphere with a charge distribution p(7') = Q cos®' §(r'-a),
a?
proportional to cosf’. Positively charged areas are lighter than negatively charged areas.

The right plot displays a sphere with a charge distribution p(#') = —< sin? ¢’ §(+' - a).

which has the correct physical dimension (charge x length) of a dipole moment. In
terms of the multipole moments of the charge distribution, the potential for r > a
is found to be

1 & & @m Yem(09) 1 qio Yio(0,90)  quo 3
@ ») = — mArs = — — ! = _— 9
=3 ZZ Z L2041 3 2 V 1z °

‘0 €0 r 3eqr?
(2.102)
and thus, in view of Eq. (2.101),
a
O(7) = cosf. (2.103)
3egr?

As a second example (see also Fig. 2.4), we consider the charge distribution

p(7) = % sin® 0 o(r —a). (2.104)

In this case, the potential involves a monopole and a quadrupole term. Calculating
the moments qg9 and go9, we may convince ourselves that the dipole moments
vanish, and we obtain the result as a sum of a monopole and a quadrupole term,

2Q B Qa?

3eogr  15e€pm3

O(7) = (3 cos®-1). (2.105)

2.3.6 Addition Theorem for Spherical Harmonics

Suppose that in the expansion (2.93), which we recall for convenience,

4 rg ) o
2_: Z 2£+1 ol Yom (8:9) Yim (07,07 (2.106)

|r7"

we let 7 = r'¢,, which is tantamount to letting 68’ = 0. Only the m = 0 terms will
appear in the sum because Yy, (0,¢") vanishes for m # 0. This holds because the
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associated Legendre polynomials P;"(cosé = 1) vanish except for the case m = 0,
where PY(cosf) = Py(cosf). In this case, we use the expression for Yo, (6,¢). In
view of the equality Py(1) = PY(1) =1, we have

i

|7 =7’ ezl ;26 17 £+1 Yio (0,¢) Yo (0,)

= T 20+ 1 2( +1
Z €+1 7’;1 A Py(cos0) Py(1) = Z P/ (cosf) .
(2.107)
However, we also have the relation
1 1
= (2.108)

= 2+ 12 —2r1 cosO

where 6 is the polar angle of #, which is equal to the angle < (#,7") between the
unit vector # and # because # = r'é,. We can now use the derived relations in two
ways. First, we observe that we have chosen 7 to lie along the z axis somewhat
arbitrarily. We can thus conclude that, more generally,

1 1 rt

—— = = Py (cos « (7,7 2.109
[F=7#  \/r2+r2 =271 cos (7,") gz(:) g1 D1 ("7 ( )

where cos < (7,7#') = #-#. Here, # is the unit vector pointing in the direction of
7. The angle v connects the position vector locating the charge, 7, and the vector
locating the observation point, #. Second, the original multipole decomposition
must still hold for the expression 1/|7 - 7/,
¢ ¢
1 dm T

|7 — 7| [Z(:) Z J20+ 1 4+1 Yo (6,9) Yo (8,4 - (2.110)

The equality of (2.109) and (2.110) has to hold for each ¢ component separately,
and we finally obtain the addition theorem for spherical harmonics, which reads

47
20+1

PL(eos (RN = 557 3 Vi (0.9) Vi (06) . (210

By expressing all direction cosines in spherical coordinates, we also obtain

cos (7, 7") =77 =sinf sin® cos (p — ') + cosf cosh’. (2.112)

2.3.7 Multipole Expansion in Cartesian Coordinates

The multipole decomposition, in Cartesian coordinates, is based on the expansion

L SEE L oy, (2.113)

[F—7 r 73 25
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This leads to the following expansion for the potential,

(R = —— [ ()

" dreo |7 — 7]

= 2. 2\2 2,02
NLfd3r’(1+Tr +3(rr) rr +...)p(77')

47eq rr 2rd

7P 1 Qi Briry —diyr?
W@ TP 1 @y moyrt) (2.114)
dmegr 4Amegr®  4dmeg 25

where the total charge (), the dipole moment vector p, and the components of the
quadrupole tensor @;; are given as

Q= fd3r’p(f’), (2.115a)
p= fd37"'f’p(77')7 (2.115b)
Qij = fd37"' (3rf 7 =055 77) p(i). (2.115c¢)

Let us focus on the dipole term, which is given by the term with £ =1 in Eq. (2.99),

1
CI)(F)|Z:1 ~ i Z l M

€0 m=-1 3 7n2

([ v o) Vi @), 21
where we have already inserted the definition of the multipole moment according

to Eq. (2.97). The addition theorem (2.111) implies that for £ =1,

4 1
P, (cos4(f,f')):f.f':§ S Yim (6,9) Y1, (6,0 . (2.117)
m=-—1

Inserting this relationship into Eq. (2.116), one obtains

B (7)), ~ (fd?’“%f'f'r'ﬂ(?'))

3eor?
11 7B
. R ) AT R ): , 2.118
4meg 13 (./ i p (i) 4meq 13 ( )

Equations (2.116) and (2.118) express the conversion of the dipole term from spher-
ical to Cartesian coordinates.

It remains to clarify the relation of the components of the dipole moment vec-
tor, in the Cartesian versus the spherical representation. Indeed, in the spherical
representation, we find that

/3 . /3
qie1 = F\/ o= (p1 Fip2), qi0 =1/ — ps- (2.119)
8w 47

We here appeal to the fact that the multipole moments are defined with the complex
conjugate of the spherical harmonic entering the integrand, according to Eq. (2.97).
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The quadrupole term, by contrast, is given by the term with ¢ = 2 in Eq. (2.99),
1 201 Yo, (8,0
BPla+ 3 32RO [ ) Vi @0) . 2az0)
60 m=—2 5
The addition theorem implies that

4m 2 ,
Y. Yom (0,9) Yo, (0,¢7) . (2.121)
m=-2

Py (cos «(7,7)) = 5 (3(7-7)* - 1) =

l\>|’—‘

Inserting this relationship into Eq. (2.120), one obtains

2o = 5 ([ @0 @) = 5 36+ 1))
1 1

o5 ([ o) (3677 -7 )

- 4meq 27°

1 Qij(?ﬂ'i 7"j —51']'72)
e 2rd '

(2.122)

Equations (2.120) and (2.122) variously express the quadrupole term from the
charge distribution, in spherical versus Cartesian coordinates.
Let us count. We have five components of the quadrupole tensor ¢s,, with

m =-2,...,2. The quadrupole tensor in Cartesian coordinates has the form
Q11 Q12 Q13 Q11 Q12 Qi3
(Qij) =| Q21 Q22 Q32 | =| Q2 Q22 Q32 ; (2.123)

Q?)l Q32 C233 Ql?) Q2l _Qll _Q22

where we have used the symmetry Q;; = Q;; and the tracelessness of the quadrupole
tensor Zf’zl Q;; = 0 which holds in view of Zf’zl d;; = 3. Thus, because the quadrupole
moment of the charge distribution is a symmetric, traceless, second-rank tensor, it
is therefore specified by five parameters, as the second form in Eq. (2.123) suggests.

The simplest relationship occurs for gop and Q33. This simplicity is obtained
because the spherical tensors we are using have taken the z axis as a preferred axis,

Q33 = [(322—r2) p (7) d3r:f(3 00829—1) 2 p(7) d3r

=\/§[\/16E7T (3 00820—1) r? p(7) d*r
_4\/7fY20 (0,9) 1% p(7) d°r=4 \/7(]20 (2.124)

2.3.8 Multipole Expansion in an FExternal Field

Up to now, we have considered the multipole decomposition in spherical coordi-
nates, and we have considered the original charge distribution to be centered about
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the point 7 ~ 0, with a distant observation point #. An expansion of 1/|F — 7|
into multipoles (spherical coordinates) then leads to the multipole decomposition.
The total charge of the charge distribution that generates the potential at 7 is the
monopole.

In order to switch the formalism of the multipole decomposition to Cartesian
coordinates, we consider an opposite situation, in some sense. A charge distribution
is centered about the point 7 = 0, with the potential being generated by a distant
charge distribution that is centered about the point # # 0. The distant charge
distribution generates a potential ®(7) which interacts with the charge distribution
p(7). The potential energy of the configuration is given by the overlap integral

W= f p (7) Pexs (7) dr, (2.125)
7 1 3./ 1 =/
(I)ext (7") = 471—60 [ d’r |7_:_7_”| Pext (7" ) s (2126)

where pext (7') is the “external” charge distribution, which is located at a large
distance from the origin, while the “probe” charge distribution p (7) is located near
7~ 0. Hence, in particular,

) 3 3 82Dy (7)
0= L 20 5

because the potential ®ey; (7) is supposed to be due to charges external to the

-0, (2.127)
7=0

volume in which p(7) is nonzero.
Because the sources of the potential are external to the volume containing the
probe charge, the electric potential can be expanded in a Taylor series,

3. ey (7) 1 3.3 6 Doyt (7)
¢8X P = @EX 0 + [ —— - T~ s~ + e e
tO) = P (O 2 =50 52 0 aror |
(2.128)
Expressing the gradient of the external potential in terms of the electric field,
.o o (#
B@)-- 220 (2.129)
or; #=0

we obtain the expansion of the potential energy in Cartesian coordinates,
6) fd37'p(7"') —E(6)~fd3rfp(F)

3, 0% () 3 _
z ZZ e [d rriryp(7) +
0%® (7)

i=1
" 1 3 3
LOLREZOREF W

7=0

The first term is a kind of average potential energy, the second is the interaction
of the electric dipole distribution with the applied electric field, and the third term
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gives the interaction of the quadrupole moment of the charge distribution with
the gradient of the electric field. The formula for the total charge @, the dipole
moment vector p, and the components of the quadrupole tensor @;;, have been
given in Eq. (2.115). Equation (2.127) has been used in order to eliminate the term
with ¢ = j in Eq. (2.115¢).

2.4 Electrostatic Green Function and Cylindrical Coordinates

2.4.1 Laplace Equation in Cylindrical Coordinates

Up to now, we have analyzed the Green function in spherical coordinates, and ob-
tained a result which involves a case-by-case differentiation in terms of the mapping
(r,r") > (r< = min(r,r"),r> = min(r,7’)). It is very interesting to generalize the
formalism to cylindrical coordinates. In analogy with Eq. (2.26), let us first define
cylindrical coordinates as follows,

T =pCcosy, y=psing, z=z, (2.131)

with the backtransformation [cf. Eq. (2.26b)] into Cartesian coordinates,

p=vVz2+y?, gpzarccos(*) , z=z. (2.132)

., 1o o0 1 9* 02
1o 9 10 0 2.133
v pop’0p " ? 0p? " 022 (2.133)
The homogeneous equation [cf. (2.33)] is
V2®(p,,2) =0. (2.134)

As in the case of spherical coordinates, this equation is solved by a separation of

The Laplacian reads as

variables,
®(p,0,2)=U(p) V(e) W(z) . (2.135)
Substituting this ansatz into Eq. (2.133), we can separate all variable dependence:
11d d 11 d? 1 d2

L ) T N VM 2.136
Updppdp +Vp2 dp? +Vde2 ( )

The integration constants may be defined as

1 d? 9 1 a2 9
= —V=-m", ——W=k". 2.137
Ve ~ " W d22 (2.137)
Thus, W(z) can be written as a linear combination of two solutions,
W (2) = Ap € + By e7%% (2.138)

which are regular at z = —co and at z = +o0, respectively (provided k is positive).
However, if the z domain is confined to a finite interval, then k£ may be complex.
The dependence on the azimuthal angle is given by

V(p)=Cy ™ + D, e ™ (2.139)
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Again, m has to be an integer, because otherwise the function V () is not uniquely
defined. Using Eq. (2.137) in Eq. (2.136), one may show that the equation fulfilled
by U is [see Eq. (3.176)]

2
p2d—+pi+k2p2—m2 U(p)=0. (2.140)
dp? dp
This equation is solved by
U (p) = am Jm (kp) +bm Yim (kp) , (2.141)

where the J,, and Y,, are called Bessel functions of the first and second kind,
respectively.

The regular solution (at p = 0) is given by the Bessel J functions, while the
Bessel Y function (Neumann function) diverges for p — 0. The general solution to
Eq. (2.134) is thus given as

)

D(p,p.2)=. > [arm Jm (kp) +bim Yo (kp)] € €% (2.142)

%k m=—oo
where the expansion coefficients are ay ,, and by ,,. The sum over k entails all per-
missible values (including negative ones, as determined by the boundary conditions).
It would thus be redundant to indicate both terms exp(k z) and exp(—kz) in the
general solution; they are contained in the sum over k. Typically, the system fills
the region from ¢ = 0 to ¢ = 27. As already stated, the continuity of V () requires
that m be an integer. The values of k are determined by boundary conditions. If
we require the solutions to be periodic in z, then k& must be purely imaginary. If
the solutions are exponential in z, then k is purely real. Also, the sum over k may
be discrete, or continuous, in which case one has to integrate over k.

If k£ is continuous and the allowed k values are the real numbers, and the solution
is required to be regular at the origin, then it can be written as

D (p,p,z)= Y, Awdk (a(k,m) Jm (kp) ok oime

+0(k,m) J (kp) e7** eim“’) , (2.143)

where the discrete subscripts become continuous functions of their arguments and
we have denoted the expansion coefficient for positive versus negative k by a and
b, respectively. This form will be used later in Eq. (2.184). However, before we
get to this point in our discussion, we shall first discuss a number of properties
of the Bessel functions, which belong to the most important special functions of
mathematical physics.

2.4.2 Cuylindrical Coordinates and Bessel Functions

In the case of the representation of the Green function in the spherical basis, the
general solution to the homogeneous equation involves Legendre polynomials and
spherical harmonics [see Eq. (2.65)]. We recall that we explored properties of the
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Legendre polynomials and spherical harmonics in Sec. 2.3.3, before discussing the
Green function in spherical coordinates, in Sec. 2.3.4. Let us attempt the same
procedure in the cylindrical basis, where the general solution to the homogeneous
equation involves BESSEL! and NEUMANN? functions [see Eq. (2.142)].

Indeed, Bessel’s differential equation, which is fulfilled by the Bessel and Neu-
mann functions, reads [see Eq. (10.2.1) of Ref. [5]],

228—2+22+22—V2 Ju(2)=0 (2.144)

022 " 0z v ' '
Here, v is not necessarily integer-valued (in contrast to m), and the argument z
may be complex. The Bessel J function may be defined via the series expansion
[see Eq. (10.2.2) of Ref. [5]],

J,(2) = i(_il)j(f)wy, zeC. (2.145)

S T(w+ji+1)\2

which converges for all z € C. The Gamma function is defined as [see Eq. (5.2.1) of

Ref. [5]],
() = [Ooodtt””‘l et >0 (2.146)

For complex argument, the Gamma function has to be defined by a complex contour
integral (see Ref. [6] for a comprehensive discussion). For integer argument, the
Gamma function has the property [see Eq. (5.4.1) of Ref. [5]],

F(m+1)=ml!, meN. (2.147)
The complementary solution Y, is defined as

Y, (z) = lim # (Ja(2) cos(am) - J_o(2)) ], (2.148)
a-v | sin(am)
where the limit is nontrivial if v is an integer. The Neumann function Y, (Bessel
function of the second kind), which is sometimes denoted as N, is fundamentally
different from the spherical harmonic Yy,,. The notation Y, has found its way
into the literature and is currently adopted universally (including many current
computer algebra systems), and the symbol N, is used only very rarely.
The recurrence relations for the J functions (analogous relations are fulfilled by
the Y’s) read as follows [see Eq. (10.6.1) of Ref. [5]],

Jo-1(2) + Jpi1(2) = 271/;71,(,2) , (2.149a)

Jy-1(2) = Jus1(2) =2J,(2). (2.149b)

IFriedrich Wilhelm Bessel (1784-1846)
2Carl Gottfried Neumann (1832-1925)
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The latter equation expresses the derivative of the Bessel function of order v in
terms of Bessel functions of order v — 1 and v + 1. Alternatively, one has

J(2) = Jyo (2 )——J (2) =~ l,+1(z)+— (%) (2.150)

For non-integer order v and complex argument z with Re(z) > 0, an integral
representation of the Bessel J function is [see Eq. (10.9.6) of Ref. [5]]

rdo ©df g
Jy(2) = f — cos[zsin(0) - v] - sin(vr) [ — ¢ #sinh(0)-v 0 (2.151)
Jom o 7
while under the same conditions, the Bessel Y function has the integral representa-

tion [see Eq. (10.9.7) of Ref. [5]]

d_g —z@mh(t)( e -vt COS(Vﬂ')) . (2152)
T

Y. (z) = [ — sin[zsin(0) - v0] -

0\8

The asymptotic behavior for small argument of the Bessel J and Y functions is
given as

1 z\" I'(v) (2)”
T ()~ — (2) . V() ~-—Z(Z2) 0. 2.153

(2) F'(v+1) (2) (2) ™ \z d ( )
The asymptotic formula is for v > 0 for the Y function. For v < 0, one has to
consider a second term,

Yu(z)~—M(f)y—M(g)y, 2] > 0. (2.154)

T 2 ™ z

In the limit v — 0, the asymptotic formula reduces to
2 2
Yo(z) ~ = ln(§)+—'yE+O(z2 In(z)) , |z| = 0. (2.155)
™ T

Here, vg = 0.57721566... is the Euler-Mascheroni constant. For v = —n with
positive integer n, one has

Yon(2) ~ —(=1)" Q (%)n 2] > 0. (2.156)

For large arguments x > 0, the asymptotic behavior of the Bessel functions is
given by a damped harmonic oscillation, with a nontrivial phase,

2

Jo ()~ — cos(a:—y—ﬂ—z) , x — 00, (2.157a)
X 2 4
2

Y, (z) ~\/ — sin(x—ﬂ—z) , x> 00. (2.157b)
T 2 4

For intermediate values of x, the situation is more complicated. This is illustrated in
Fig. 2.5 for Jo(x) and Jy(z). Otherwise, it is helpful to know that the literature on
Bessel functions is abundant, with basic formulas being summarized in Refs. [7, 5]
and more intricate treatments in Refs. [8, 9].
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Jo(X) J1(x)

0.8
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(a) (b)

Fig. 2.5 Plot of the first oscillations of the Bessel functions Jo(z) and Ji(z) [panels
(a) and (b), respectively]. For z — 0, one discerns that limg;_ J1(z) = 0 and the linear
asymptotics for Ji(z) in the regime of small x.

2.4.3 Orthogonality Properties of Bessel Functions

While this is a textbook on physics, not on the theory of special functions, a cer-
tain familiarity with concepts related to the most important special functions of
mathematical physics is of universal importance for any theoretical physicist, and
the slight detour we are taking now will prove useful for a number of applications.
Indeed, of particular importance are the zeros of the Bessel and Neumann functions.
Let us denote the zeros of the Bessel and Neumann functions of integer order as
Tmn and Ypmn, respectively. These fulfill the relations

I (Tmn) =0 (2.158)

and Yy, (ymn) = 0, where 2, is the nth zero of the mth Bessel J function, and y,,., is
the nth zero of the mth Neumann Y function. In particular, because J,, (x) < 2™
for small z, a trivial zero of J,,(z) for m > 1 is = 0. Furthermore, in view
of Eq. (2.157), there exists an infinite number of zeros of the Bessel functions on
the real axis. However, it is rather nontrivial to calculate these numerically, for
intermediate ranges of the argument. Selected numerical values for x,,, are given
in Table 2.1. We also indicate numerical values for the zeros of derivative of the
Bessel functions, defined according to

T (Trnn) = 0 (2.159)

In computer algebra systems (e.g., Ref. [10]), one sometimes finds built-in algo-
rithms like BesselJZero or BesselYZero for the computation of zeros of Bessel
and Neumann functions; these can be used directly without recourse to any addi-
tional asymptotic formulas. Still, it is useful to know which asymptotic properties
determine the behavior of the roots of the Bessel functions in large order. A mod-
ern treatise on the intricate aspects of the calculation of Bessel functions, with
numerical examples in extreme parameter ranges, is given in [11].

Let now investigate whether the basis functions in our ansatz (2.142) for a
general solution of the Laplace equation in cylindrical coordinates can be interpreted
as orthogonal with respect to an appropriate integration measure. For a potential
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Table 2.1 Numerical values for the nth zeros x,, of the Bessel

functions of order m, with Jp (¢ = Zmn) =0, for m=0,...,5 and
n=1,...,5.
n m=0 m=1 m =2 m=3 m=4 m=5

1 2.405 3.832 5.135 6.379 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.323 14.796 16.224 17.616 18.980

5 14931 16.470 17.960 19.409 20.827 22.218

Table 2.2 Numerical values for the nth zeros T,,, of the deriva-
tives of the Bessel functions of order m, with J),(z = Tmn) = 0,
form=0,...,5and n=1,...,5.

n m=0 m=1 m=2 m=3 m=4 m=>5

1 3.832 1.841 3.054 4.201 5.317 6.415

2 7.016 5.331 6.706 8.015 9.282  10.520

3 10.174 8.536 9.969 11.346 12.682  13.987

4 13.324 11.706 13.170 14.585 13.540 17.313

5 16471 14.864 16.348 17.789 14.970 20.576

regular on the cylinder axis, with p = 0, we must concentrate on the terms with J
functions. Furthermore, the zeros of the Bessel functions play a special role in the
orthogonality properties. Based on Eq. (2.144), for an arbitrary scale parameter A,
it is straightforward to see that the function J,(Ax) fulfills

x% [x%«fn(/\a:)] +(N2?-n?) Jy(Az) =0. (2.160)

Now, we assume that A and p are two distinct zeros of the Bessel function J,, (),
In(A) =Jp(p) =0, A%, (2.161)

so that J,(Az) = Jp(px) = 0 for z = 1. Multiplying Eq. (2.160) by J,(nx)/z, we
obtain

2,2 .2
d ]+u.fn(ux).]n(/\a:):0, (2.162)

Jn(px) % [ann(/\ x)

and a trivial generalization is obtained by the replacement y < A,

2.2

Jn(Ax)%[xiJn(m)]+%Jn(w)Jn(m) -0, (2.163)

dx
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Furthermore, manipulating Eqgs. (2.162) and (2.163), one can show that a few terms
cancel in the difference,

In(px) % [m%Jn(Ax)] - Jn(A\x) % [xiJn(ux)]

dx
+ (A2—u2)mJn(ux) Jn(Ax) =0, (2.164)
which can be rewritten as
d d d d
i [Jn(,ua:) ann(/\a:)] "% [Jn()\x)xa.]n(ux)]
+ (N = p?)ady(pa) Jo(Az) =0. (2.165)

Finally, one integrates over x € (0,1) to show the orthogonality

folden(W)Jn(m):o, Atp, Jn(N) = Ja(p) =0, (2.166)

which concerns integrations up to specific zeros A and p, with A # .

The case A = p in Eq. (2.166) must be treated separately. First, we sidestep the
question and derive a helpful identity. From the recursion relations of the Bessel
function and its derivative, given in Eq. (2.150), one can conclude that, at a zero
x = A of the Bessel function,

(@)

In Eq. (2.165), one now sets p = A+¢, i.e., one slightly displaces one parameter from
the zero, integrates over z € (0,1) and obtains

= ~Jns1(N). (2.167)
=\

[Tn((A+ )AL ()] + (A2 = (A +6)?) fol dex J,((A+e€)x) J,(Az)=0. (2.168)
One then expands to first order in € to obtain
AT (V] -2\ foldxa: [J.(A2)]% =0, (2.169)
and thus shows that
foldxx [Jn(Az)]? = % [Jna (M) (2.170)
Equations (2.166) and (2.170) allow us to write
folda:xJn(/\a:) To(uz) = %m [Tt (V]2 (2.171)

where the Kronecker symbol is unity if the two (in this case, real rather than integer)
arguments are equal to each other and zero otherwise. Let now ., = kmn a Where
a is the radius of a cylinder. Then, a simple scaling of the integration variable in
Eq. (2.171) leads to the result (see Fig. 2.6)

a 1
fo 4p 0 Jon (o) Jin o) = 5 St [0 T G )] (2.172)
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Fig. 2.6 Illustration of the property (2.172) for the Bessel functions fn(p) = Jo (konp)
and fn(p) = Ji (kinp), with n = 1,2 (long dashes are for n = 1, short dashes denote the
curves for n = 2). We set a =1, so that kon, = zon, and kip = T1n. As n is increased, the
number of oscillations increases, and the Bessel functions scaled with different zo, and

T1n are orthogonal to each other upon integration with respect to the measure given in
Eq. (2.172).

Now, the orthogonality and normalization has should be generalized for an inte-
grations over the real axis, z € (0,00). One starts once more from Eq. (2.165), but
with the replacements A — k, and pu — £/,

L baieo]- Suieosbaws)

+(k* - k’Q)a:Jn(ka:) Jn(k’x) =0. (2.173)

The well-known asymptotics of the Bessel function given in Eq. (2.157) imply that
p = oo is a zero of the Bessel function. Thus, integrating Eq. (2.173) within the
interval x € (0, 00), one easily shows that

foodxxJn(kx)Jn(k'm):O, k. (2.174)
0

The limit & - k' remains to be evaluated. The only region which can size-
ably contribute to the integral in this limit is the one for very large x; otherwise
an infinitesimal displacement k& = k' + ¢ will lead to a vanishing integral due to
orthogonality. One writes the asymptotics (2.157) as an exponential,

Jn(kx) ~ %\/ % {exp[ (k}x— @)]

+exp|:—i(kx—@)]}, T - 00, (2.175)

and analogously for k replaced by k. The only relevant terms in the integrand

xJn(kx) J, (k' x) in Eq. (2.174) is given by the following replacement,

xJp (k) J, (K x) > {exp(i(k-k)z)+exp(-i(k-k") )} +...,

(2.176)

o \/_
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where the ellipsis denotes terms proportional to exp(i(k+k’)z) and
exp (—i(k + k') ). When integrated over the interval z € (0, 00), with the help of a
convergent factor exp(—nx), these terms give only finite corrections to the Dirac-d
function term proportional to §(k — k') which dominates in the limit & - k’. As a
last step, one symmetrize the the expression given in Eq. (2.176) for the interval
x € (—00,00) to show that

oo 11 o 1 . ’ . ’
dex J,(kx) J, (K x 2k Z dz ——— (el(-*) 7 4 omilkt) =
[; (k) Jn( ) 2 J- 27T‘/k}k'( )
1 1
=————n5(k-k") == 8(k-k"), 2.177
i T T R 24T

where we have used the fact that k = k' at the peak of the Dirac-d function. Equa-
tions (2.174) and (2.177) conclude the proof of the orthogonality relation
1

[ o (k) T (K ) =3 5 (k=K (2.178)

For spherical Bessel functions, which are defined via the relation

Je() =\ 57 Jeerja(@). (2.179)

the orthogonality relations are somewhat different. Identifying n = £+ 1/2 in
Eq. (2.178), one writes the relation

fom dz z* (\/%Jzﬂ/z(kﬂ?)) (\/%Jeﬂ/z(k'x)) = (\/2)2 klk, o(k -k,

(2.180)

which implies that
T dwa? jo(k) jo(k @) = —— 6(k — K'). 2.181
[ dza? giCka) jol @) = S 6k k) (2.181)
The above derivation has been lengthy but it serves to alert us to the beauty of the
theory of special functions, whose power we shall bring to bear on the calculation

of Green functions.

2.4.4 Ezxpansion of the Green Function in Cylindrical Coordinates

We now repeat the analysis of Sec. 2.3.4 regarding the construction of a Green
function, but this time in cylindrical coordinates. The integration measure reads

d3r=pdpdedz, (2.182)
and the Green function satisfies

F2G (7, ) = =6 ® (=) = = 5 (p=p) S (=) S(p=¢') . (2.183)
€0 € P

The right-hand side of Eq. (2.183) vanishes almost everywhere, except for the
point 7 = 7. We refer to Eq. (2.143) and write the following general form for
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G (7,7"), leaving one set of variables (in this case z and z’) in terms of an unknown
function, which we refer to as g, (k;z,2"). Then,

Gy =2 3 omlee) fooodkkgm(k;z,z’) T (B p) T (B ) . (2.184)

" or Moo
We now use the Laplace operator in cylindrical coordinates, given in Eq. (2.133),

S A 12 2 ia_Z 8_2 i S im(p=¢")
VG (7, T) = (ﬂappap+p2 072 022 )\ 2r m:z-:ooe

xfooodk k g (k3 2,2") T (Kp) Jm(kp’)dk) . (2.185)

In view of the equation fulfilled by the Bessel function, we can replace
1 1 92 2 2
10,0 10 (M 42 M) 42 (2.186)
pdp dp p20p? \ p? p?
Then,
R 1 (o] ) ’ oo
VG ) =5 2 @) [Tk (k) T (i)
™

m=—o0

><(‘k2 : )gm(k;z@’)i—ié(p—p') 0(z-2") d(p-¢').
€0 P

e
(2.187)
We now apply the integral operator
27 . oo
dg ™% [T dpp S (K'p) | (2.188)
0 0

and integrate both sides of Eq. (2.187) over dy and dp. The left-hand side (LHS)
of Eq. (2.187) becomes

1 27 el . 7 . ’ o
LHS = — f dp 3 emilm=mye guime f dk k T (kp')
21 Jo 0

m=—oo

oo 82
x ([) dp p I (kp) T (k'p)) (—k2 + @) gm (k;2,2") . (2.189)

We now use the orthogonality condition

1 2r .,
— f MM 4o = 5 (2.190)
21 Jo

to reduce the sum over m to a single term with m = m/, and the integral (2.178),

/(;oodpp T (k p) T (K p) = % 5 (k—k) (2.191)
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to carry out the integration over k. Then, the left-hand side of Eq. (2.187) becomes

. ’ 4 R 2
LHS =™ ¢ fo dk k Jp (kp') % §(k -k (—k2 + %) G (k5 2,2")
. 9?
e L () (’“a—) o (k2. ) (2199)

The right-hand side of Eq. (2.187) becomes

1 2 *° 1 / ’ —im’ /
RHsz—gf0 dsofo dps(p-p) 6(2-2") 6(p-¢) ™% Jor (K p)

1 o7
=——e % J(K'p) d(z-2"). (2.193)
€0
Equating LHS = RHS, we finally extract the differential equation for g, (k;z,2")
and substitute m’ — m,

2
(a——k2) gm (k;2,2") S §(z-2"). (2.194)
0z2 €0
This equation is easy to solve by integrating over the kink at r = r’. While the
function g, (k;z,2") is continuous, its derivative with respect to z should have a
discontinuity at z = 2’.
As in Eq. (2.84), we now integrate both sides over the interval z € (2" —¢, 2’ +¢)

and obtain
z'+e 2 1 z'+e 1
f dz 8__k2 gm (k;2,2") = —— / 0(z-2)dz=-—. (2.195)
z'-€ 82’2 €0 z'—€ €0
The left-hand side can be reformulated as
Z'+e 9 o ) z=2"+e
— = k;,')d:— kiz,2 2.196
Lo 5 (G (2 de = g iz)| (2.196)
The following ansatz
Gm (k;2,2") = Cy i exp(kz< =k 25) (2.197)

with z. = min(z, z’), 2, = max(z, z’), is inspired by the general solution [Eq. (2.143)]
to the homogeneous equation. Differentiation leads to

9 - z’+€— kz' 9 —k (2'+e) 9 k(2" -¢) -k | _ 1
et IR Ll P~ a B U=R Cad et
(2.198)
and thus
Conk (ekz’ (—k) e F'+e) _ ol (z'-9) e_kz,) =1. (2.199)
Ase -0,
Cori (—2k e’“'-’“'):—l Con o = — (2.200)
" € m 2¢0 k ’
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We now insert the solution

m (12, 2') = 5 exp[-h (3 - 20)] (220)

into the expansion (2.184) for the Green function and obtain

G (7,7 :% i 1m(€"<ﬂ)f dk‘kj(

m=—o0 60

k) ) g (k) T (kp) |

(2.202)
The latter result can be simplified slightly,

1 el . ’ hed

G (7,7 = S eimle=s) f dk e F =2 1 (kp) T (k')

AT ey oo 0

1
_ ) 2.203
dmeq |7 — 7| ( )
Multiplication by 4mey leads to the identity
1

LS amles) [ ke =7 g (o) i (k) (2.204)
|T—T’| m=—oo

A comparison of Eqgs. (2.203) and (2.204) with the corresponding expansions (2.91)
and (2.93) in spherical coordinates implies that in the spherical coordinate system,
we have to integrate over k in contrast to a summation over discrete values of £ and
m. The case differentiation is not carried out in the radial variables r. and rs, but
in the 2z, and z. coordinates. The dependence on z is such that the argument of the
exponential leads to exponential damping for both z,z’ — +oo, in agreement with
the boundary conditions imposed on the Green function.

2.5 Electrostatic Green Function and Eigenfunction Expansions

2.5.1 FEigenfunction Expansions for the Green Function

The calculation of Green functions may be mapped onto the inversion of linear
operators. This becomes clear if we take into account that the Dirac-é function,
which appears in the defining equation for a typical Green function, is equal to a
constant in Fourier space. We consider the inversion of the linear operator =,

Z=L-), (2.205)

where )\ is a constant and L is a linear differential operator. For the Green function
of electrostatics, we would have L = —eg V2. We wish to solve the defining equa-
tion (2.22) for the Green function, which can be mapped onto the special case A = 0
of the generalized equation

(L-X) G(#7)y=6(F-7). (2.206)
Let us suppose that we have a set {1, ()}, of eigenfunctions that satisfy

Lpn(7) = An hn(7) (2.207)
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with eigenvalues \,, and with appropriate boundary conditions on the 1, (#) so that
the eigenvalue equation for A, is properly defined.

A small detour for those readers who have already heard a lecture on quantum
mechanics is in order. If L is equal to the Hamiltonian for a quantum system,
then L = H has energy eigenvalues A\, = E,. The discreteness of the eigenvalues
for, e.g., the hydrogen atom, follows from the boundary condition for the bound
wave functions at infinity, i.e., from the condition that a bound state should be
normalizable. Otherwise, it would be possible to solve the Schrédinger equation for
any energy “eigenvalue”. The discreteness of the bound spectrum follows ezclusively
from the normalization condition, which therefore is of preeminent importance.

We assume that the {¢,, (7)} -, provide a complete set of eigenfunctions, in the
sense of Eq. (2.207), so that

[ @05 @) v () = G (2.208)
Completeness implies that
D (7) ¥y (i) = 6@ (7 =) (2.209)
for 7, ¥ in V. The solution is
— ~>I ,ll)n ,ll)n (77’)
G (AT, T Z ﬁ ) (2.210)
because
(L-)) G )\rr) Z()\ % an oy 5(3)(7” ~/).
(2.211)

In the case A =0, we have

Un (7) 45.(7).

G\ 7,7 = Z (2.212)
n An
This is a relation common to the Green function, because
LG\ 7,7) =Y 0 (F) i (7) = 6(F - 7). (2.213)

In practical cases, one may construct a Green function like so: One takes a dif-
ferential operator and formulates a discrete approximation to its spectrum and
eigenfunctions within a particular basis set of functions. Using the approximate
eigenstates, one can use Eq. (2.210) to calculate the Green function immediately.

One decisive feature of the Green function expansion in terms of eigenfunctions
is as follows. Let us reconsider Egs. (2.91) and (2.202) for the Green function of
electrostatics (in spherical and cylindrical coordinates, respectively). In both cases,
we have had to implement the “cusp” of the Green function at equal arguments by
an explicit dependence on 75 and ., or 2. and z., respectively. In an eigenfunc-
tion decomposition, this cusp is naturally implemented in the sum over eigenstates
¥, (7), leading to some sort of simplification. However, the sum over states leads
to an additional level of complexity in the calculation which we shall study in the
following.
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2.5.2 Application to Electrostatics in Spherical Coordinates

We discuss the calculation of the Green function of electrostatics in terms of an
eigenfunction decomposition of solutions of a corresponding eigenvalue problem. In
order to apply the formalism developed in the previous Sec. 2.5.1, we bring the
defining Eq. (2.22) of the Green function into the standard form (2.206),

VGG ) =67, P aGE] =00 -7, (2214)
so that
(L-N)G# ) =6®(F-7), L=-¢V?, A=0. (2.215)
One parameterizes the eigenvalue as
A=A = e k2. (2.216)
The corresponding eigenvalue problem is
(L= A) Ykem (F) = (—€0V? = €0k®) Ypem (F) = 0. (2.217)
We will seek to find solutions of the form
(V2 +5°) Yrem (F) =0, e (F) = Rie (1) Yo (0, 90) - (2.218)
The radial equation for Rye(r) reads
§2Rk£ (r) + = g Ry (1) = %Ru (r) + k? Ry (1) = 0. (2.219)

Solutions regular at the origin are given by the spherical Bessel functions j;(k7);
these vary as r’ for small 7. These are defined according to Eq. (2.179),

Rye(r) =je(kr),  je(kr) = i;]g% (kr) . (2.220)

A more thorough discussion on spherical Bessel functions follows in Sec. 5.2.2.
According to Eq. (2.181), the eigenfunctions satisfy the following orthogonality
condition

(Vrem|[Vrerms) = foo dr r? jo (kr) jo (K'r) f dQ Yy, (0,¢0) Yo (0,9)

(S(k k ) (S,ggr mm/’ - (2221)

Zkk’

Of course, we could have written replaced k k" — k? in the prefactor, but the above
expression is explicitly symmetric. For a discrete set of eigenfunctions, Eq. (2.221)
becomes analogous to Eq. (2.208).

So, alternatively, the completeness relationship is given by

= d *° 2kQ- . / * I -
> 0 [T G ) G () Yo (6,9) Y (8,6) =0 (57
£=0 m=—-¢

(2.222)
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For a discrete set of eigenfunctions, Eq. (2.222) is the analogue of Eq. (2.209). The
Green function thus has the form

;o 1 2k? .
R Ak 5= = e (k) e (k') Yon (0.0) Y (0.4)
0=0 m=-¢

(2.223)
where we have simply inserted the reciprocal of the eigenvalue according to

Eq. (2.212). It follows that

- 2 &
G = 255 [Tk (kr) Je (k') Y (0.0) Yi (00) . (2220)
0 ¢=0 m=—¢

In this formula, the cusp is formulated in terms of the eigenfunction expansion, as
anticipated near the end of Sec. 2.5.1. The radial component of the Green function
is formulated in terms of r and ', not r. and r.. However, we now have to sum
over the eigenfunctions, i.e., integrate over k. Comparing with the familiar formula

1 1a & 1
47760|F—F’| € 1 m s 20+1 it

G(7,7") = Yim (0,0) Y7 (0',¢"),  (2.225)

we find that the cusp at equal argument is implemented in the formula

oo ¥4
fo dk jo (kr) jo (k') =

T re

We may perform a consistency check on the result (2.224), by considering a
point charge qo located on the z axis at z = a. In order to describe a charge at the
origin, we shall consider the limit a — 0 near the end of the calculation. The charge
density for a point charge located at the point 7y = aé, is given as

p(7) = qo 6 (7 i) = §(r=mro) 6(0-00) 6 (v —0)

(2.226)

= % d(r—a) 0(cosf—-1) d(¢o—wo) - (2.227)

We have used the fact that 6y = 0 for a charge located at 7y = aé,, with a > 0 (hence,
also, 7o = |Fo| = a). In terms of the Green function, expanded in the spherical Bessel
functions and spherical harmonics the potential is

:2%f [ d(COSG)[ dg’ 5 (r' = a) 8 (cos8' 1) (¢ - @0)( ,)2

TEQ
X;) Z f dk jo (k7) e (k") Yom (6,0) Yoo, (0',¢")
_ 290

> [Tk G ) (k) Vi (0.0) ¥ (Goi0)
€0 =0 m= —1’

_ 2q0 20+ 1
o -0 A4

Py (cos (< (7,70))) fo dk jo (k) je (ka) . (2.228)
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The integration over ¢’ leads to the replacement ¢’ — g in the argument of the
spherical harmonic. We have used the addition theorem (2.111). We now consider
the limit a — 0. Since j¢ (0) =0 for £ # 0 and only the spherical Bessel function of
order zero survives, with unit value jo (0) = 1, the only surviving term in the sum
over { reads as

a— 2 1 = = * y = ]
o (7) Oﬂ_po(m( (r,ro)))f dk je (k) = 522 f dk jge (k)
Teo A 0 2w €y JO
(2.229)

where we have used the fact that Py(z) = 1. We thus have for a — 0,

.\ a=0 © sin(kr)
o (7) °2 W f dk jo (kr) = QHOTfO dr T2

L ([T L) (5) - 2w

2m2eqr 2m2egr \ 2 4meg T

This is equal to the familiar result for a point charge located at the origin.

2.6 Summary: Green Function of Electrostatics

The Green function of electrostatics, first encountered in Eq. (2.23),

PG, =~ 6D (F-F), G =
€0 dmeq |7 — 7|

(2.231)
has been the subject of our discussions. Let us summarize the three different repre-
sentations we have derived for the Green function of electrostatics. First, we have
the familiar decomposition in spherical coordinates, as derived in Sec. 2.3.4,
o £ 4
1

RO "

Z+1
€0 90 m= [2€+1

m (6,0) Vi (6,¢) - (2.232)

It relies on a matching of the regular solutions at the origin (r = 0) and at infinity
(r = 00). The corresponding representation in cylindrical coordinates is derived in
Sec. 2.4.4 and reads

1
G (7)) = eim(e=¢") [ dk e *=2) g (kp) Jo (kp') . (2.233)
Amey oo
It is based on a matching of the regular solutions at z = —oco and z = +co0. The

decomposition into eigenfunctions of the Laplacian operator is discussed in Sec. 2.5.2
and leads to Eq. (2.224)
2

G = =3 3 [Tk kr) G (1) Yo (0.0) Vi (0) . (2230)
TEO =0 m=—t

The results (2.232) and (2.224) are matched using the result (2.226), which we recall

for convenience,

ot

f dk je (kr) je (k') = 22U+ 1) o1

This result implements the cusp of the Green function at equal argument.

(2.235)
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2.7 Exercises

e Exercise 2.1: By directly inserting the result given in Eq. (2.14) into the left-hand
side of Eq. (2.5), verify the validity of the result given for the harmonic oscillator
Green function.

e Exercise 2.2: We investigate the harmonic oscillator using Green function tech-
niques and apply the Green function formalism to the harmonic oscillator. The
“displacement” x = x(t) of a damped, harmonic oscillator with unit mass m = 1
satisfies the equation

Frydrwia=f(t). (2.236)

(i) Obtain the Green function g = g(¢ —t') for this equation. Note that it has to
fulfill the equation

G-t +ygt-t)+wligt-t)=06(-t"). (2.237)

(#) Why is this Green function naturally obtained as the retarded Green function?
Why do you have to change the sign of the damping term in order to obtain the
advanced Green function? Consider the effect of time reversal on the equation of
motion, and provide an illustrative discussion.

(ii) In the case that the “force” is given by f (¢) = fo [© (t) + © (-t) exp (t/7)], with
vanishing boundary conditions in the infinite past, z (-c0) = 0, and & (-o0) = 0,
evaluate x (t).

(iv) Evaluate the work done by the driving force on the oscillator (per unit mass)
in the time interval from —oo to +oo as a function of wy, v, and 7.

(v) Now let v = 1—10w0. Plot the work done by the driving force divided by the final
(potential) energy stored in the oscillator as a function of L =1n (wor) from L = —4
to L =4.

e Exercise 2.3: Starting from Eq. (2.30), derive Eq. (2.31) by applying the ope-
rators given in Eq. (2.30) to a test function.

e Exercise 2.4: Show Eq. (2.57) by using the explicit definitions of the spherical
harmonics in terms of Legendre polynomials given in Eqgs. (2.44)—(2.47), as well
as Eq. (2.53), and the orthogonality properties of the Legendre polynomials [see
Eq. (2.48)].

e Exercise 2.5: Derive Eq. (2.77) by acting with it on a test function.

e Exercise 2.6: For the charge distribution given in Eq. (2.100), calculate the
potential in Eq. (2.103), i.e., fill the missing steps in the derivation.

e Exercise 2.7: Use the expansion (2.93) in order to generalize the potential (2.103)
for r < a, still assuming the charge distribution (2.100).

e Exercise 2.8: Consider the charge distribution

p(7) = a% sind 6(r —a). (2.238)
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Evaluate all multipoles of the given charge distribution with angular momenta ¢ =
0,1,2 and write down the final potential. Hint: The potential should finally be
obtained as follows,

7Q 7wQad?
degr 64 €T3
e Exercise 2.9: For the charge distribution given in Eq. (2.104), carry out the
multipole decomposition explicitly and calculate the potential in Eq. (2.105).

e Exercise 2.10: Show Eq. (2.119) based on the explicit form of the spherical
harmonics for £ = 1, given in Eq. (2.63).

e Exercise 2.11: Show Eq. (2.147) based on Eq. (2.146).

e Exercise 2.12: Show how to obtain Eq. (2.150) from Eq. (2.149).

e Exercise 2.13: Write a computer program in the language of your choice, im-
plementing the Newton—Raphson method for finding the zeros of Bessel functions.
Choosing the starting values of the Newton—Raphson method as integer-valued,
verify the entries in Table 2.1.

¢ Exercise 2.14: In establishing Eq. (2.166), we have ignored the fact that we must
actually treat the case n = 0 separately; it requires special attention at the lower
limit of integration because J,,(0) = 0,0 for n € Ng. Fill this gap in our derivation.
Hint: Use the known fact that J/ (0) = 0.

e Exercise 2.15: Treat the special case n = 0 in Eq. (2.174), observing that the
slope of Jo(x) vanishes at z = 0.

e Exercise 2.16: Show the relation

5 (7=7) =~ 8 (p=1) 8 (:=) (=) (2.240)

O(7) = (3 cos®-1). (2.239)

using similar arguments to those in the derivation of Eq. (2.70).

e Exercise 2.17: Use the expansions (2.203) and conceivably (2.204) in order
to calculate the potential (in the upper half space z > 0) generated by a charge
distribution in a “ring of Saturn” geometry located in the xy plane,

p(7) = % La<pes 0(2) - (2.241)
Here, 1q<p<p is the characteristic function of the interval p € (a,b), i.e.,
]]-a<p<b = @(P_a) _@(P—b) (2242)

Generalize your result for the lower half space, i.e., z < 0.

o Exercise 2.18: Generalize the ¢pem to eigenfunctions of the free Schrodinger
Hamilton operator H = -V2/(2u) and establish their orthogonality properties.
Hint: A remark is in order. The function

wkfm(r797§0) :jé (k?") Y[m (97410) (2243)
fulfills the Schrodinger equation
h2 @2
2p

2
HO wkfm(rvgvgo) = (_ ) d}kém(rvev@) = g_u 1/Jk£m(7"79790)7 p= hk. (2244)
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In view of Eq. (2.178), the eigenfunctions satisfy the following orthogonality
condition,

(Drtmlrerm) = fo T dr? o (k) je (K'r) f AQ Yo (8,0)" Yermr (6,)

T
=—— 6(k—-K") 600 O - 2.245
o 0 (k=) bia b (2.245)
This is immediately obvious if we take the prefactor \/7/(2z) in the definition of
the spherical Bessel function into account.
e Exercise 2.19: Using Eq. (2.224), calculate the potential generated by a charge

distribution
p(#) = L5(r' - a) (2.246)
a

where a is the radius of the sphere.
e Exercise 2.20: Using Eq. (2.224), reduce the potential generated by a charge
distribution without compact support, given in spherical coordinates,

p(7") = q—g exp(-Ar) cosf’, (2.247)
a

to a one-dimensional integral (a is a parameter). Choose convenient numerical val-
ues for the parameters qp, a and A, and evaluate the remaining integral numerically
for selected values of r and 6. Calculate the dipole moment of the charge distribu-
tion, and show analytically that it is equal to the long-range limit of the potential
just calculated, even if part of the charge distribution is always in the outer volume
" > r. Hint: Observe that cosf’ is proportional to a spherical harmonic in the
primed coordinates, and use the result

e Ty () e = U-a),
: TJgrrp(T)r e T 9172 \n+l+3/2

1
< o F) (i(2n+2€+3),i(2n+2€+5),€+g,—ﬁ) ,

(2.248)
where (a), =T'(a+n)/T'(a) is the Pochhammer symbol. The complete (Gaussian)
hypergeometric function is denoted as oF}. Part of the exercise is to look up the
definition of the hypergeometric function, and to become familiar with its numerical
properties.



Chapter 3

Paradigmatic Calculations in
Electrostatics

3.1 Overview

3.1.1 Differential Equations of Electrostatics

The previous chapter dealt with the Green functions of electrostatics, which fulfill
the differential equation (2.22), which we recall for convenience,

VEG(F-7) = 1 SO (7 7). (3.1)
€0

Given a formula for G, one can calculate the electrostatic potential due to charge
distribution p(7") with the help of the formula (2.24), which we write as

20 = [ @ GG ) = [ty L) )

=’

Given @, one can calculate the electric field according to Eq. (1.59),
E(F) = -V(7), (3.3)

for the time-independent (static) case where the time derivative of the vector po-
tential A vanishes.

In principle, one might assume that formula (2.24) solves all physically relevant
problems in electrostatics. However, that is not the case. Let us look at the Poisson
equation !

Vie(r) = P p(7), (34)

and analyze its properties, being a differential equation. We know that the solu-
tions of differential equations are never uniquely defined without the specification of
boundary conditions. Let us assume that the charge distribution p(7') in Eq. (3.2)
has no significant long-range tails, and that it is concentrated in the region around
the origin, #/ ~ 0. In this case, ®(#) vanishes for r = |F| — oo, as a potential pro-
portional to 1/r, commensurate with the leading (monopole) term in the multipole
expansion (2.99). The boundary condition implemented in Eq. (3.2) therefore reads

as

(7). =0, (3.5)

77— 00

and @ is defined for all 7 € R.

71
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Yet, this cannot be the whole story. E.g., one may ask how potentials should
be calculated in a volume V' of space whose surface manifold 9V, consisting of a
perfect conductor, is held at a constant potential ®(7)|..5y = Po. In this case, if
there are no charges present inside the volume V', the simple solution ®(7) = ¢ will
solve the differential equation (3.4) with p = 0. However, if the charge distribution
inside V' is nonvanishing, then the boundary-value problem cannot be solved using
Eq. (3.2) because the boundary condition ®(7)|..5, = Po is not fulfilled.

Let us also ask about the solution to a boundary-value problem given by a cube,
held at zero potential on five of the six side surfaces, with the remaining sixth
side surface held at potential ®g # 0. In this case, even if there are no charges
present inside the cube, then the solution to the Poisson equation V2®(7#) = 0
cannot be given by the simple ansatz ®(7) = 0, because it does not fulfill the
boundary condition on the sixth side surface. Even more generally, one may ask
how to calculate the solution to a boundary-value problem

P20(7) = 1 o), (Pl = £, (3.6)

with a nontrivial function f(7) describing the potential on the surface manifold.
In principle, all of the above questions can be traced to the availability of non-
trivial solutions to the Laplace equation (2.20)

V2O(7) =0, (3.7)

which can be added to the solutions of the Poisson equation (3.4), to fulfill the
boundary conditions. However, there are more sophisticated techniques available
in comparison to a simple guessing of the correct nontrivial solution of the Laplace
equation which will lead to a solution of a given boundary-value problem. We start
by temporarily falling back to a simpler one-dimensional model problem.

3.1.2 Boundary-Value Problems: One-Dimensional Analogy

We investigate a one-dimensional analogue of the Laplace equation V2®(#) = 0,

82
4
7"(@) = = f(2) =0. (38)
It is known that the solution of a differential equation in one variable can be made
unique on the basis of two boundary conditions. As an example, Eq. (3.8) is solved

by any function of the form
flx)=C+Dz, (3.9)

with constant coefficients C and D. A differential equation for f = f(z) is an equa-
tion describing a function on a one-dimensional interval = € [a,b]. The boundary
conditions are related to a zero-dimensional manifold of points, i.e., to the specific
points z = ¢ and x = b. Let us consider a slightly more complex “boundary-value
problem”,

ff@)=s(x), fla)=sa, f(b)=sp, (3.10)
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where s(z) is a source term. We shall later see that this situation corresponds to
a so-called Dirichlet boundary-value problem. We are free to choose functions g(x)
with ¢’(z) = 0 and add them to a particular solution f(z),

flx)-> f(x)+C+Dx. (3.11)
The boundary conditions then read as follows,
fla)=C+Da=s,, fb)y=C+Db=sy, (3.12)

and they fix the integration constants C and D uniquely, even if we have not used any
boundary conditions that involve the derivative f’(x). For a differential equation
in a single variable, the boundary of the integration interval is the set of points
[a,b] that define the interval a < < b. Boundary conditions that fix the derivative
f'(z) of the function at the end points = @ and = = b determine f(z) up to an
additive constant. This situation corresponds to a so-called Neumann boundary-
value problem.

The integration interval in this case is one-dimensional, whereas the boundary
conditions are defined on a zero-dimensional “surface”, namely, at the end points of
the interval (a,b). We can now figure an analogy: Namely, for the three-dimensional
case, the integration interval is three-dimensional, and the boundary conditions
must be defined on a two-dimensional surface. Indeed, the time-independent Poisson
equation V2® (7) = —p(7)/eo is a second-order differential equation whose solution
is defined for # € V. Consequently, its boundary conditions are relevant for the
boundary 9V of a three-dimensional volume V.

3.1.3 Green’s Theorem: Dirichlet and Neumann Green Functions

We have already stressed that the solution of the Poisson equation (3.4) is not
unique; it may be modified by the addition of a solution of the homogeneous
(Laplace) equation. This property can be taken advantage of in the analysis of
the Green function. Let us recall the defining differential Eq. (2.22),
1

/| ’

B, 1
V2G(F, )= -— 6 (F-7),  GFF)= ————
€0 dmeq |7 -7

(3.13)

as a suitable electrostatic Green function. Indeed, we may always add a solution
of the homogeneous equation, V2G(#,7#') = 0. Green functions can be unique by
the specification of boundary conditions, much in the same way as potentials are
uniquely specified by differential equations and boundary conditions.

This statement needs to be illustrated. We have already encountered, in
Eq. (3.6), what we now identify as a Dirichlet boundary-value problem,

P20(7) = 1 o), (Pl = F(7). (3.14)

One specifies the charge distribution p(7) and the value f(#) on the boundary 0V
of the volume V. A Neumann boundary-value problem is specified as

VO == o), B,y =30, (3.15)
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with a vector-valued function (7). This corresponds to a boundary condition for
the electric field instead of the potential on the surface V. Actually, we could have
stated the Neumann boundary-value problem as

Vo) = (), ) Ve[| =), (3.16)
rev €0 FedV
where 71(7) is the unit normal pointing away from the surface.

We shall now attempt to relate the boundary conditions fulfilled by the potential,
to the boundary conditions fulfilled by the Green function. It is useful to consider
Green’s theorem in that context, which will enable us to accomplish the goal. On
our way to Green’s theorem, we first observe that the divergence theorem (Gauss’s
theorem) states that for any 7 € V,

fd%v (1) G (7,7) - G (7,7) VO(F)]

:[8 i-[0(F)VG (7, 7) - G (7,7) 90(7)] - (3.17)
By carrying out the differentation on the left-hand side explicitly, we see that
f &rv-[8(F)V G (7 7) -G (7, 7) V(7))
:[d3r [2(7) VG (7,7") - G (7,7") VO(F) ]

=-= d37“5(3) (7 - 7") ®(F) —[d3rG(* 7 [——p( )]

60
=——P() + — 3G (7, 7)) p(F .
=)+ = [ dGET) p() (318)

where we assume that 7 € V. We solve Eq. (3.18) for ®(#'),

o) = [ drGEr) p() - [ dA-[0() VG () -G T) V)] -
(3.19)
This formulation involves a volume term (convolution term with the charge distri-
bution) and a surface term (integral over 9V'). It is known as Green’s theorem.

Equation (3.19) still does not solve the boundary-value problem. Moreover, the
right-hand side of Eq. (3.19) actually contains two terms, the evaluation of which
requires knowledge of both the values of the potential and of its gradient on the
surface V. However, one can show that knowledge of either ®(7) or of V®(7) is
sufficient in order to specify a unique boundary-value problem (in the latter case,
up to an additive constant).

At this stage, we recall that the Green function, (or just “Green’s function”
but without the “the”) is named after George Green, who was mentioned in this
book previously, and does not carry the Irish national color (which happens to be
green). Likewise, the PLANCK constant! is denoted as A, and sometimes referred

IMax Karl Ernst Ludwig Planck (1858-1947)
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to as “Planck’s constant” (but in the latter case, without the “the” in front of the
word).

In order to evaluate appropriate solutions to a boundary-value problem of the
form Eq. (3.14), (3.15), or (3.16), it is useful to employ a Green function that
fulfills additional boundary conditions. The goal is to discard one of the terms on
the right-hand side of Eq. (3.19). The defining equation for the so-called Dirichlet
Green function Gp is

o 7 1 = =l = =
VZGD (Fa T )| = __5(3) (T -r ) ) Gp (7“,7“ )|FEV,F’€8V =0. (320)

7 EeV €o

In this case, the solution to the boundary-value problem (3.14) becomes
op() = [ d'rGo (i) p(M) -0 [ dA-VGp (7,7) ()
v 1

= fvd3rGD (7,7) p(F) - € favdAﬁGD (7, 7) f(7). (3.21)

The second integral requires the values of the potential on the boundary. We have
fulfilled our paradigm: The function Gp depends only on the shape of the reference
volume V and can be used to integrate any given Dirichlet boundary-value problem
in the given volume. The solution is given by the general formula (3.21).

We now turn our attention to a Neumann boundary-value problem. In this case,
the gradient of the potential is given on the surface 9V, as indicated in Eq. (3.15).
Let us write Green’s theorem (3.19) in a slightly different form,

@(F'):fvd3rG(F,F')p(F)—eo favdﬁ-w(m') o(7)
+ € favd]lﬁq»(F)G(f,F'). (3.22)

Under Neumann boundary conditions, we do not know the potential ®(7) itself on
the surface. So, we would like the second term on the right-hand side of Eq. (3.22)
to become irrelevant if the Green function G fulfills special properties, summarized
in the Neumann Green function Gy. This is in analogy to the Dirichlet boundary-
value problem, where we had arranged Gp so that the third term on the right-hand
side of (3.22) becomes irrelevant.

Now, in a typical case, we cannot simply assume that VG (7,7") vanishes on the
surface QV; this would imply that all its three Cartesian components vanish, or in
other words, that the Green function G (7,7"), as a function of 7, for an arbitrary
but fixed 7/, is an extremum on the surface OV in all three spatial directions. There
is a way out of this dilemma. It is instructive to observe that the second term on
the right-hand side of Eq. (3.22) involves the expression

dA-vG (7,7) = dA (A(F) - VG (7,7)) . (3.23)

For reasons to be explained in the following, we shall assume that we can assign
a constant value to the projection of the gradient of the Neumann Green function
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Gy (7,7") onto the surface normal 7(7),

VEGN (P ) ey = — —5(3>( 7Y, (3.24a)
-~ R 1 -1
VG (7,7) 7 (T)‘r’eV,F’ESV e A (—60 fav dA) , (3.24Db)

where Aiotal 18 the total surface area of V. We first convince ourselves that the
second term on the right-hand side of Eq. (3.22) assumes the form of an irrelevant
constant term, independent of the position on the surface,

[8 o(7)dA- TGy (7,7 [ dAT (F) - VG (7,7) B(F)

dAd )
= - 7[8V (7) = —u. (3.25)

€0 [8\/ dA €0
This corresponds to the average value (®) of the potential @, taken on the surface
0V. With these assumptions on the Neumann Green function Gy, Eq. (3.19)

becomes

*’)—[d%GN(w)p(r) y +60[ A4 - () Gy (7,7
[d3rGN (7, 7") p () +€of dA7(7) - g(7) Gn (7,7)

:[Vd3rGN (7, 7) p(7) + () + o fanAh(F)GN(F,F’), (3.26)

where we have assumed Neumann boundary conditions as given in Eq. (3.15)
and (3.16). It becomes clear that in order write down a Neumann boundary-value
problem, it is sufficient to specify the component of the gradient of the potential
along the surface normal. Furthermore, it becomes clear that the solution to the
Neumann problem (3.26) involves a physically irrelevant constant term (@), which
can be chosen to be equal to the average value of the potential on the surface OV
if the condition (3.24) is fulfilled by the Green function.

3.1.4 Boundary-Value Problems and Laplace Equation

A special status must be attributed to electrostatic boundary-value problems where
the charge distribution vanishes, p(7#) = 0. In this case, the potential fulfills the
Laplace equation V2®(7) = 0 for # € V. As already mentioned, this equation still
allows for nontrivial solutions specified by boundary conditions. The first way of
solving this kind of problem refers to Green’s theorem as discussed in the previous
section. In this case, the solution is formally given by setting p to zero in Egs. (3.21)
and (3.26). For a Dirichlet problem, we have

op() = e [ dA-9Gp (i) @), p() =0, (327)
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and for a Neumann problem, the solution is given as
Py () = € fav dA-vo(7) Gy (7,7) , p(7)=0. (3.28)

However, the explicit calculation of the Dirichlet or Neumann Green functions
can be difficult for nontrivial geometries, and it is noteworthy that two alternative
methods exist which can be used in order to tackle boundary-value problems with
a vanishing charge distribution. These methods are based on two very fundamental
ideas which constitute recurrent themes throughout theoretical physics and there-
fore deserve special mention; the fundamental ideas are (%) the variational principle
and (7) series expansions.

The electrostatic field energy F, in the absence of charges, is given by

B=9 [ & (vom)’. (3.29)

A slight change (“variation”) of the integrand [V®(#)]? will lead to a concomitant
change in the field energy. As we shall see, variational calculus shows that the phys-
ically relevant, correct potential actually minimizes the integral E. The situation
bears a certain analogy to the shape of a soap film clamped within an irregularly
shaped closed wire loop: The wire acts as a boundary condition, and the soap film
minimizes its total surface area, which is tantamount to saying that its Gaussian
curvature vanishes locally [12]. The latter condition of vanishing local curvature,
translated into the variation of the electrostatic field energy, reads as

V2O(r) =0, (3.30)

which is, in fact, identical to the Laplace equation. Boundary conditions can be
implemented by the use of so-called Lagrange multipliers. In typical cases, a solution
to the boundary-value problem can be obtained through an explicit variation of
®(7). For example, one may assume for @, a particular functional form with free
parameters, and then find the particular set of expansion parameters that minimizes
the electrostatic field energy.

The other method is based on series expansions. Let us assume that we can
expand ®(7) in terms of a series of mutually orthogonal functions, say, in terms of
a Fourier series,

() = > a, exp(ikn - 7), (3.31)
n
where the &, are drawn from an “allowed” set of Fourier expansion coefficients. The
k., are complex, so that
V2 exp(ik, -7) =0,  k2=0. (3.32)

This condition does not imply that all components of k» need to vanish; in fact,
the components of k,, can be complex-valued. However, it simply means that, say,
oscillatory solutions in the x and y directions must be accompanied by exponential
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behavior in the z direction. Provided the surface 9V is such that the Fourier com-
ponents remain orthogonal upon integration over the surface area, we can typically
project out the expansion coefficient a,, with the help of an integral proportional to

. dS ®(F) e Fn T 3.33
anos [ ds@(i)e (3.33)

Using this approach, given appropriate boundary conditions on 9V, we can uniquely
determine the expansion coefficient a,. The basic idea for the series expansion
approach to the solution of boundary-value problems in the context of the Laplace
equation can thus be given as follows: One writes a suitable expansion for the
potential ®(7), hopefully in terms of mutually orthogonal functions (with respect
to a suitably defined scalar product, to be discussed in more detail in the following).
This renders the determination of the expansion coefficients unique. Then, one
projects out the expansion coefficients by evaluating overlap integrals like the one in
Eq. (3.33). Finally, all expansion coefficients are determined, and one can gradually
obtain better approximations to ®(#) by summing more terms of the (typically
infinite) series that describes the potential.

The main difficulties of the variational method and the series expansion method
are different; one difficulty lies in the implementation of structurally complex bound-
ary condition. In the case of the series expansion, the conditions imposed on
the expansion coefficients are defined uniquely only if the functions in the set are
orthogonal with respect to the integration measure (i.e., one must use a symmetry-
adapted basis). In the variational method, the form of the boundary conditions,
expressed in terms of the variational parameters, is easily tractable only if, again,
a symmetry-adapted basis is used.

In summary, we have three possibilities for solving Dirichlet problems in the
context of the Laplace equation. (i) The Dirichlet Green function method is very
convenient if we know the Dirichlet Green function. This function is uniquely
defined for a given reference volume, and incorporates the boundary conditions
naturally. (7) The variational method is guaranteed to converge provided we use
a sufficiently large basis for our trial functions. (%) The series expansion method
also is guaranteed to converge provided we use a complete set of functions, which
hopefully is orthogonal with respect to an integral measure. The latter two methods
will be illustrated by example calculations in the following Secs. 3.2 and 3.3, while
a nontrivial example for the conceptually difficult first method (Dirichlet Green
function) is relegated to Sec. 3.5.

3.2 Laplace Equation and Variational Calculations

3.2.1 Definition of the Functional Derivative

Let us first recall the formalism of multivariate functions, i.e., functions of many
variables. A function S of N arguments, denoted here as f; with ¢ =1,..., N, can
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be written as

S=8(f1,- fn). (3.34)

If S just singles out a particular argument (say, of subscript j), then, for example,
oS

S(fla"'afN):fj; a_f:(sij; (335)

where d;; is the Kronecker delta. For a function defined as the sum of the squares
of its (many) arguments, one has
N N 9 as
S:S(flwﬂva):Z;F(fi):Z;(fi) ; a—f:F'(fi):2fi~ (3.36)
i= i= i
Let us now interpret the sum, multiplied by a “standard step size” Az, as an
approximation to an integral,

N

> (" Aws [ (7)) dw=5(1). (3:37)

iz

Here, F is reinterpreted (with a slightly ambiguous notation) as a “function of the

function f.” A function of a function is commonly referred to as a “functional.”
Any function is specified by its values on an arbitrarily dense set of points,

which can be explained by the following correspondence (in a hopefully somewhat

self-explanatory notation),

{fro v} 2{f (@), fan)} & f = f(a). (3.38)

The generalization of Eq. (3.35) to the case of a continuous argument reads
respectively,

SIA= [ 1@ -a')da' = '), % ~S(r-a'), (3.39)
and for Eq. (3.36), the generalization reads as
SUT= [arFG@)e= [ @) s = FUE) =20).

(3.40)
This defines the functional derivative §S/df(x) for a functional of the form

58 OF
S[f] = fF(f(x))dx’ of(x) ~ of f=f(x)

An intuitive understanding is gained if we consider a discretized approximation

SF(f(2)). (341

to the integral and consider a “standard step size” of Az = 1 for the integral.
Alternatively, we may investigate the variation

65 =S[f+45f1-S[f]= f[F(f(af)+5f($))—F(f(af))] dz (3.42)
NfF'(f(fC))5f(x))dfﬂ=(F'(f(x))ﬁf(fc))7 (3.43)
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and define the scalar product of functions, as the scalar product in the sense of

Hilbert space vectors, i.e. = [dz f(x) g(x). Then, we can define the functional
derivative as the expresslon multlplymg 0f(x) under the integral sign, i.e.
5S OF
- - F(f(x)). (3.44)

5f(z) ~ of F=f(2)

A more systematic way of defining the functional derivative is as follows. Because
05/0f(x) probes the function f(z) near x, we can formulate it as

yF(f@) +ed(a’ —x)) - F(f(z))
= d . 3.45
7 " im 4 c (3.45)
Of course, if F' = F(f(x), f'(x)) is a function which depends not only on f itself,

but also, on the derivative f’, then we can calculate the variation as follows,

05 . F(f@) +ed(a' ), f'(a) +ed' (@' —a)) - F(f(), f' (=) .,
0f(x) _ll—{%[V € de’

(3.46)
i.e., if the variation of f (") is given by the Dirac-6 term € §(z'—z), then the variation
of f'(z') is given by the term €d’(2’ — x). Below we shall carry out the variation
of a functional S[®], which is proportional to the electrostatic field energy, and we
shall find that the fulfillment of the Laplace equation is equivalent to the vanishing
of the variation. Here, ® = ®(7) is the electrostatic potential.

3.2.2 Variational Principle and FEuler—Lagrange Equations

In order to understand basic aspects of the variational technique, it is instructive
to consider the functional derivative of a functional S = S[¢], where ¥ = ¥(F)
replaces f as defined in Sec. 3.2.1 as the argument of the functional. So, ¥ is to be
understood as a function of a vector-valued argument #. More formally, we consider
the variation of a functional 5,

Stl= [ P ). 7o (M) dr. (3.47)

The variation 1 — 1)+& implies the variation Vi) — Vi)+V 1, so that V¢ = V[d9]
is the variation of V1. Thus, the variation §S of S is found to be

68 =S [+ 09, Vip + VY] - Sy, V] (3.48)

for small ). To first order in §v), the variation 4.5 reads as

59 = f [—&p(

where in Cartesian coordinates,

OF 1 .4
8%] &Pr, (3.49)

oF

v Eg(axz ) 20wz (3:50)
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Using an integration by parts, one obtains

s (50 P v o (50 25\ suiy 5. 2F
58 = fd (&p (") 55+ ¥ (&z; 6%) So(F) ¥ 6%)' (3.51)
The divergence theorem implies that
3| 0F o OF -+ o (0F
59 = fd [ Ww] 5¢(r)+favd55w(r)(8w n) (3.52)

Generally, the values of the function 1 (7) are uniquely specified on the boundary
OV of the volume. Only those variations 0¢ () that vanish on the boundary are
permitted. If we could even vary the boundary conditions, then the variational
problem would be trivial: we would just choose the boundary conditions to be such
that F vanishes on the boundary (and perhaps everywhere), or even shrink the
volume V' to zero. The functional S immediately vanishes and becomes optimal.

Under the assumption that d¢(7) = 0 for # € 9V, the functional S has an
extremum when

e Jor o o ]
55—[Vd v 60b(F) [%—H 5o 300 | =" (3.53)

for all “permissible” variations 1) (7).
So, the requirement that the first-order variation vanishes implies that 1 ()
must be a solution of the familiar Euler-Lagrange equation,

8F i OF OF
{ Oz; 0(00]0x;) 8?1&(?)'

(3.54)

In order to determine whether the extremum is a minimum, maximum, or stationary
point, the second order term in d1) must be calculated.

The Euler-Lagrange equation (3.54) corresponds to a situation where the func-
tion 1 is a function of 7, that is, of three arguments = = 1, y = x2 and z = x3. E.g.,
for a functional of the form (3.29),

2F -
S[@] = 2= - f &*r (Vo) (3.55)
€0 \4
the Euler-Lagrange equations can be verified to read
V2o () =0, (3.56)

which is simply equal to the Laplace equation.

Other cases also are of practical interest. For example, let us consider the
variation of S[7(¢)] = [ L(7(t),7(t)) dt. Here, the argument function 7 = 7(t) has
three components but only one argument. This situation yields

oL &9 oL

570~ 5 5 BRE) (3.57)
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For the classical action of a single particle moving under the influence of a potential
V =V(#), the Lagrange function reads as

L(7(t),7(t)) = 2(?f) -V (#(1)). (3.58)
Under variation, the Euler-Lagrange equations then become the Newtonian equa-

tions of classical mechanics,

mi(t) = —%V(F} - TV (7 (1)) - (3.59)

3.2.3 Variations with Constraints

In an extension of the variational calculations, the function v (7) is required to
satisfy constraints in addition to the boundary conditions. Generally, these have an
integral form,

Calw)= [ Ka(w (7). 90 ()d’r = Do, (3.60)

where {D,, a=1,...,N} is a set of N constants. This places restrictions on the
01 () used in the variation of ¢ (7) in the previous formalism. Instead of

f F(o (7), 54 (7)) d°r, (3.61)

we now use the functional

S[{/\Q}Q:L...’N;w]:fVF(w(r) Vi (7)) d r+Z)\ “D.). (3.62)

Varying this functional with respect to the A,, which are normal arguments, we
obtain the N constraints back,

g [{Aatact, ni¥] = Calt] - Do = 0. (3.63)

Proceeding as before to set the §C,, = 0, we have = 1,2,3,..., N equations. Vari-
ation with respect to 1(7) leads to the modified variational equation,

OF i o OF
o) & 0w 0(0v]0w;)

where 9 is the function to be determined, and

3

wa ()= e -y O
is a set of “vectors” in a function space. Let us mention a subtle point. The
variation of the functional (3.60) with respect to the parameters A, gives us back
the constraints, given in Eq. (3.63). If the variation is carried out to respect the
constraints, then we must demand that 1 (#) lie in the subspace orthogonal to the
uq (7), in the sense that Oy, [¢+81)] = Oy [1], which implies that d3r u, () 9 (7) = 0.
The “expansion coefficients” A\, are constants, called Lagrange multipliers, which
are determined such that the constraint equations are satisfied.

+Z)\ Ug (7) =0, (3.64)

(3.65)
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3.2.4 Second Functional Derivative and Hilbert Space
Let’s consider once more the variation of the functional
o] = f &r (v0(7))” (3.66)
1%

this time using an explicit calculation, including the second-order variation. We
calculate

S[® + 60] = fd% m(f)+wq>(f))2
[d3 ()" + 29 (F) VOB(7) + (V68(7))")
- fvd% ((V8(1)* - 29°8(7) 50(7) + 68(7) (-¥2) 60(7)) . (3.67)
So, the following result actually is exact (no higher-order corrections),
S[® + 6] - S[B] = -2 fd3 T20(7 5<I>(7~)+fd3r5q>(f)(—§2)5q>(f), (3.68)

where we ignore boundary terms due to the obvious restrictions on the variation
d®(7), which is assumed to vanish on the boundary. The first- and second-order
variational derivatives read as follows,

5S
9% (7)

625
0D(7) 0P(7)

= —2V20(7), =26 (F-7) V2. (3.69)

The first functional derivative should vanish at the extremum. This implies that
V20(7) =0, (3.70)

at the minimum of the functional J, which is just the Laplace equation. How-
ever, we may ask, as well, how we intend to show that the second-order variation,
i.e., the second term on the right hand side of Eq. (3.68), is positive. The second
functional derivative is distribution-valued; it involves the Dirac-0 function (distri-
bution). First we need to define what the positivity of the operator ~V?2 could mean.
The operator —V? acts on a space of functions which, according to Chaps. 6 and 7
of Ref. [13], is infinite-dimensional and constitutes a so-called Hilbert space. The
determinant of an operator acting on an infinite-dimensional space is a so-called
Fredholm determinant; however, even the positivity of the Fredholm determinant
does not imply that the operator —V? is positive. Namely, we can understand the
operators —V2 in terms of its matrix representation, as it acts on a suitable set of
basis functions that span the Hilbert space. If we can show that all the eigenvalues
of —¥? in that basis are positive, then the matrix representation of —V? corresponds
to a positive definite matrix, and in that sense, we can understand the positivity of
the operator —V? that occurs in the second functional derivative. It should be pos-
itive for the solution of the Laplace equation given in Eq. (3.70) to be a minimum
of the functional S[®] given in Eq. (3.66).
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Let us consider a one-dimensional analogue in order to heuristically show that
~V? is a positive definite operator. On any finite interval {-L, L}, any function can
uniquely be decomposed into

f(x)=n§1°aneXP(%?m), (3.71)

in the sense of a Fourier decomposition. The eigenvectors of —V? are the functions
exp (inxz/L), because they fulfill

. 2 .
-v? exp(% x) = (%) exp(% x) . (3.72)
The eigenvalues are
2
(%), n=-co,...,00. (3.73)

If an operator only has positive eigenvalues, then it is positive definite. Generalizing
from the one-dimensional example case to three dimensions, and letting L — oo, we
can thus conclude that all eigenvalues of the operator —V? are positive, which again
confirms that any solution of the Laplace equation indeed minimizes the functional
S given in Eq. (3.66).

3.2.5 Variational Calculation of the Capacitance of Plates

We have learned that variational calculus corresponds to the search for a solution
of an optimization problem in the infinite-dimensional Hilbert space of functions.
One may require the functions to fulfill additional conditions, such as being square-
integrable, or impose additional boundary-conditions, or other restrictions. Tem-
porarily, we simplify the problem a bit, and limit the function space to a finite
number of parameters. In the simplest case, we let our potential be ® (7) = w (5, 7),
where 8 is a single free parameter, and the class of functions ® (#) = w (8,7) is
chosen to satisfy the boundary conditions on ® (#) but is otherwise arbitrary.

The functional equation now is a function of only a vector of variables B, and
we therefore replace square brackets by round brackets,

S(B) = [ dr P(.w(B.5), u(B.1). (3.74)
If w(f§,7) - ®(7) is just a “trial function” for the electrostatic potential, then
. - L 12
B(B)=5(B) =2 [ ar [vu(B.n] . (3.75)

We now aim to find the extremum of S( 8 ). Let us suppose that there are boundary
conditions, which relate to the surfaces dV = 9V, u 9V, of V,

w(B, 1) Vo, (3.76)

which can be implemented into our trial function w = w(f,7) via the use of La-
grange multipliers. In the presence of boundary conditions, some of the variational

meavy = 0 w(B,72) FoedVs
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parameters (components of B) constitute Lagrange multipliers. We then find the
extremum value of 3, say Bumin, for which

oFE

=0, 1=1,2,...,n. (3.77)
857‘ leémin
If the matrix of second derivatives with entries
0*FE
My = ——— (3.78)
’ 851 85'] leémin

is positive definite (all eigenvalues of M are positive), then the type of the extremum
is as required, and w(B ,7) is an approximation to (7).

The variational program should now be illustrated by way of an example. We
consider the potential between capacitor plates at z = 0 and z = d. The (large) plates
are held at zero potential and at Vp, respectively. We start from the following ansatz
for the potential inside the plates,

w(A,B,C,7) =w(z) = A+ Bz+C 2>, (3.79)

The energy E stored in the field assumes the role of a functional

z=d 2
E:E(A,B,C):%O[wa(A,B,c;f)fd%:%s fo (g—f) dz

- 6065 (3B% +6dBC +4d*C?) . (3.80)

Here, S is the surface area of the capacitor plates. The boundary conditions are
w(z=0)=A=0, w(z=d)=Vy=A+Bd+Cd*. (3.81)

Including Lagrange multipliers, the functional thus is

E=E(A,B,C A\, ) = %d (3B2+6dBC +4d>C?)

+MA+ X (A+Bd+Cd*-Vp). (3.82)
We now need to perform variations with respect to the five components of the vector
F=(A,B,C,M ). (3.83)
The two equations
0 0
—FE=0 —F=0, 3.84
o\ ’ 0Ao ( )
just give us the boundary conditions back. The other derivatives read
0
—E=X+A
8A 1t A2,
a%E d[Se(B+Cd)+ ],
o 2
—F= (S €0 (3B+4Cd) +3X2) . (3.85)

oC
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The solution of the system of equations

0 0 0 0 0
—F=—F=—F=—F=—F=0 3.86
0A 0B oC o\ 0o ( )

reads
Vi SV
A=C=0, B=22, =-)=227 (3.87)
d d
Our trial function turned solution function thus becomes
%
w(2) = Win(2) = OTZ . (3.88)
The value of the energy at the extremum (minimum) becomes
= [ Qwmin | 1eS
€0 Wmin €0 2
Emm:—sf ( )d:——V. 3.80
2% Lo \Taz ) Y727 0 (3.89)
Furthermore, from the equation
1
Emin = 5 C V()2 B (390)
we read off the capacitance
S
C= 607 , (3.91)

which is of course a well-known result. In our example calculation, the exact result
is contained in the set of trial functions and is recovered by the variational calculus.

We still need to check that the extremum really is a minimum (not a maximum
or a saddle point) of the energy functional. In order to write the second-order
variation of the energy functional in compact form, we write

Bi=A, pa=B, p3=C, Ps=X1, Bs=X. (3.92)
Furthermore,
5 8E 1 5 5 aQE
OB =2, 5500 % 3 770805, 3.93
205" 2 5 2 55,05, (3.93)

up to the second order in the 03;. At the extremum values for the parameters given
in Eq. (3.87), we have

oF
9B

Let us define the matrix M with components

0 0 0 11
0 €Sd €Sd?> 0 d

=| 0€Sd? 3e05d° 0 d* | . (3.95)
B=Bmin |1 0 0 00
1 d a2 00

15 5
:0, (SE:§ZZ

B:Enﬂin %

5B:68; . (3.94)

il
-
<
il
-
()

Bi 0B; 5.5

min

O*E

My = —o—
7 0B 08,
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According to a theorem from linear algebra, in order to establish that a matrix
is positive definite, it is sufficient to show that all its leading principal minors are
positive (Sec. 6.5 of Ref. [14], and Chap. 7 of Ref. [15]). The leading principal
minors are given as the determinants of the leading (k x k) submatrices of a given
matrix M, i.e., as

det (M;) = det (0) =0,

0 0
d“(hﬁ):(0<05d):0’

0 O 0
det (M3) = det| 0 egSd €Sd*> |=0,
0 605d2 %605d3

0 O 0 1
_ O Gosd EOSdQ 0 _ 1 2 o2 4
det (My) = det 0 coSd® 3egSd® 0 |~ 3608 d,

1 0 0 O

0 0 0 11

0 6()Sd 6()Sd2 0d 1

det (Ms) = det| 0 €9Sd® 260Sd® 0 d* | =~ Sd°. (3.96)
1 0 0 00

1 d a2 00

The fourth principal minor determinant is negative, indicating that M cannot be
positive definite: Namely, the product of the eigenvalues of M, must be negative,
indicating the presence of at least one negative eigenvalue (of My). A further
indication can be found by considering the case (setting aside physical units for the
moment) d =1, § =1, and considering the limit ¢y — 0. Then,

00011

00001
M-D=|00001]|, Dw=dwlw, i=1,...,5. (3.97)

10000

11100

(We do not consider the explicit form of the vectors w;.) The eigenvalues are

di=+V2+V2, i=1,...,4, ds =0. (3.98)

Two of these are negative, namely,

do=-V2+V2,  dy=-V2-V2, (3.99)

indicating again that D cannot be positive definite.

What happened here? We started from a minimization problem which, as we
showed in Sec. 3.2.4, concerns an operator which is manifestly positive definite,
and now we see that some eigenvalues of the matrix of second partial derivatives
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are negative. We notice that the first three minors det (M;) with ¢ = 1,2,3 are
nonnegative. These concern the variational parameters A, B, and C, which enter the
ansatz for the potential (3.79). The introduction of the Lagrange multipliers changes
the nature of the problem; in fact, it is easy to see that the term A1 A in Eq. (3.82)
does not attain any global (or even local) minimum near the values attained by the
parameters in the solution (3.87). Or, in other words, one observes that the function
f(A1,A) = M1 A has a hyperbolic structure as a function of its two arguments A;
and A and therefore cannot obtain a minimum. The Lagrange multipliers are not
“physical” terms that need to be minimized; they are just included in order to
recover the boundary conditions.

If we use the fact that A = 0 by virtue of the boundary conditions, then the
“physical” portion of M can be identified as the submatrix of M consisting of the
second and third rows and columns, namely,

M. _ 6()Sd 6()Sd2
Pvs T\ o Sd? degSd?

All the leading principal minors of the matrix Mpyys are positive; so it is indeed
positive definite.

1
) , det(Mppys) = 3 (e0Sd*)*>0. (3.100)

3.2.6 Variational Calculation for Coaxial Cylinders

Our solution for the energy stored in a plane-plate capacitor was exact, because
the exact solution was contained in the space of the trial functions. By contrast,
the problem of two coaxial, long cylinders is not so trivial. For a very cylindrical
capacitor, one may calculate the potential using Gauss’s law. Here, we would like to
use this exactly soluble problem in order to demonstrate the utility of the variational
method for a case where the exact solution is not contained in the space of trial
functions.

Consider two coaxial cylinders, aligned along the z axis, with radii b and c,
extending from z = -L/2 to z = L/2. We use cylindrical coordinates and set

T =pCcosy, y=psing, z=2z. (3.101)

In a numerical example, we will later use the inner surface of the cylinder to lie at
b=0.2cm and the outer surface to be at ¢ =4b=0.8cm. Let 22 + 3% = p? and let us
assume that the z axis defines the symmetry axis of the cylinders. Because of the
symmetry of the problem, the potential should only depend on the radial variable
p. Our trial potential therefore has the form

w(A,B,C,p)=A+Bp+Cp>. (3.102)

Our task is to estimate the potential between the plates, and eventually the capac-
itance per unit length. The inner surface is grounded, and the outer surface is held
at a potential Vj,

w(A,B,C,b) = A+Bb+Cbv =0, w(AB,C,c)=A+Bc+Cc*=V,. (3.103)
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We work in cylindrical coordinates, as defined in Eq. (3.101). In order to calculate
the energy functional, we need the gradient operator in cylindrical coordinates. It
is given by
—ep8—p+é<p ;8—¢+éz rr
The energy stored in the space in between the coaxial cylinders of radii b and c is
p=2 [@‘I)(F)f pdpdpdz, (3.105)
2 b<p<ce
where pdp dy dz is the volume element in cylindrical coordinates. We pull out the
constant prefactor €p/2 and a further factor 2rL from FE; these do not affect the
minimization process. The result is the functional .S,

6o 0% 100 00 (3104

E-= %0 27LS = eonL S, (3.106)
which can be expressed as
2 L/2 c
fdgpfdz[dpp[é Ow 6, 1% o 8“’]
P w a7 z a9~
T onL P ap p Op 0z
x[é a—w+é 18—w+é 8_w]
Pop T pop T Oz
or L2 5
w
2Lfd“”fdzfdp( )p
-L/2 b
= 532 (¢ -b*)+ 3 1 pc (¢ -b*)+C* (' -b). (3.107)

The two boundary conditions at p = b and at p = ¢ are added with the help of
Lagrange multipliers,

S(A,B,C, A1, \2) = %BQ (¢ -b*)+ %BC (¢ -b*)+C%(c*-b")

+ M (A+Bb+CH?) + X (A+Be+Cc®-Vp) . (3.108)
The vector S of variational parameters and the extremum condition read as follows,
=(A,B,C, A1, A2), 25:0, i=1,...,5. (3.109)
The system of equations
0
—S=A+A
gA” =TT
8885 B(c —b2)+ C(c “b)+ M b+Aac=0
%S——B(c3—b3)+2C(c4—b4)+)\1b2+)\202:O
8?\ S=A+b(B+bC)=0,
0

8/\5 A+c(B+c¢C)-Vp=0 (3.110)
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has the solution

b(b+2C)
A= Vo, B=——"V,
-2 ° b 0
1 2 b2 +4bc+c?
C:bQ——CQVb’ A :_)\2__g o 5. (3.111)
The solution w = wy,;, therefore reads
(b-p) (b + 2 c—p)
Wmin(p) = 2 o . (3.112)
The value of S at the minimum is
b2 +4bc+c? _,
Smin = W VO . (3113)
Restoring the prefactors, this translates into a field energy of
€0 b2 +4be+c?
Emin = 5 2L Smin = €0 L W V02 . (3114)
Solving the equation
1 2
Emin = 5 CVO (3115)
for the capacitance C, we obtain
2nLey b* +4bc+c?
Clpi = 20 2 220C 2 C (3.116)

3 c? - b2

It remains to show that the optimum solution for the potential within the space of
our trial functions, wmin(p), approximates the exact solution

(b-p)(b+2c-p) (p/b)
b2 -2 (c/b)

Furthermore, the approximate and exact formulas for the capacitance read

Winin(p) = Vo ® Wexact (p) = (3.117)

2nLey b2 +4bc+c? 2w L eq
~ Coxact = ——— - 3.118
3 2 - b? " In(¢/b) ( )

Cvmin =

For b =0.2cm and ¢ = 0.8cm, the approximate and exact formulas for the capaci-
tance read

Conin =4.608 Leg,  Cuoxact = 4.532 L e, (3.119)

with a 1.6 % deviation, which is quite good for a rational approximation with three
parameters (see also Fig. 3.1).
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Fig. 3.1 The variational solution wpn;, for the potential is shown for
b=0.2cm and ¢ = 0.8cm. The optimal approximation wmin(p) given
in Eq. (3.117) (dashed curve) approximates the exact solution quite
well. The latter is given by the solid curve, with V' (p) = wexact (p)-

3.2.7 Ezxact Integration of the Capacitance of Coaxial Cylinders

The variational calculation of the potential in between the capacitor plates led to
the polynomial approximation wmin(p) [see Eq. (3.117)] to the exact result

In(p/b)

D(p) =W n(cfb) (3.120)
which is valid in the limit of long cylinders, I — oo, where again, L is the cylinder
length measured parallel to the symmetry axis. When L is finite, the exact result
for the coaxial cylinders is non-trivial. It is extremely instructive to perform an
explicit and exact integration over the charge distributions. The two cylindrical
surfaces are assumed to be located at distances p = b and p = ¢ from the cylinder
axis. We assume a constant charge density of —og on the inner cylinder at p = b and
a constant charge density of +ogb/c on the outer cylinder at p = ¢, in order to make
the arrangement electrostatically neutral. Let us briefly comment on the relation of
the constant surface charge and the equipotential surfaces used in our variational
problem, which was based on the additional assumption of a long cylinder L — oo.
Namely, the constant surface charge density does not necessarily imply that the
cylindrical surfaces are equipotential surfaces. It is only in the limit of large L that
the equipotential surfaces will be surfaces of constant surface charge density. For
finite L, we here assume the constant surface charge density.

The solution can be obtained as follows. We have formulated the problem in
terms of the surface charge distributions on the two capacitor plates, not in terms
of the boundary conditions of the potential. Therefore, we may use the Poisson
equation (2.21) with the Green function G(7,7) = 1/(4dweg|F - 7'|) [see Eq. (2.23)]
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in order to integrate the potential,
- 1
f S G p(i),  VRO(F) = —— p(7). (3.121)
€0

Here, p(7') is the volume charge density corresponding to the uniform surface charge
density on the coaxial cylinder plates. A major difficulty is encountered in how
to express the volume charge density p(7) in terms of the surface charge density
o(7) = £o0¢ (here, we assume it to be uniform). This problem can be formulated
more generally. Let o(7) be a surface charge density on the boundary 7 € 9V defined
by an implicit equation F'(7) = 0. In our case, we would simply have F(7) = p—b
and F(7) = p—c for the inner and outer cylindrical surfaces. How is p(7) related to
o(7) and F(7)? This problem is of general interest and needs to be discussed.
The answer is as follows. On the surface defined by F(7) = 0, we have dF'(7) =0
when the argument 7 is varied within the surface according to ¥ — 7 + ds. Thus,

F(7)=F(f+d8) - F(¥)=d3-VF(¥) =0, (3.122)

where d§ is an infinitesimal displacement within the surface, and 7 is a point on
the surface. Because d3 is arbitrary, VF(#) must be normal to the surface. Now,
let £7 be the displacement of a point from the surface at 7, where £ measures the
distance from the surface. Then,

d3r=dA-(d¢ ) = [dS (7) 7] - (A7) . (3.123)
Here, 7 is the surface normal. If 7 is a point on the surface, then, using definition
of the V operator, one writes
OF (7" + &)

% ey

- VF(7) = (3.124)
where @ is an arbitrary unit vector. If @ =7 were a tangential vector to the surface,
then we would have dF(7) = 0 in the sense of Eq. (3.122), with d§ = 7d¢. We
conclude that the modulus of dF(7) = 0 becomes maximal (as a function of the
angle between VF(7) and ) when 7 is the surface normal. We now choose @ =7
to be the unit normal, parallel (not antiparallel) to VF(7), and write

OF (F+&m)| _ OF (€)

- VE () = 3.125
n-v (T) 35 o 35 o ) ( )
with an appropriately defined function F = F (£) = F (#+£ 7). So
PO . (VE®) L
P€ oy =n-VF(F) = RFO| VF(7) = |VF (7)]. (3.126)

We have thus reduced our problem to a one-dimensional problem, replacing ¥ — &.
Application of Eq. (1.34) then shows that

or (5)

(&) = 3(F(£)) =0(F(€)) [VF ()] = 6(F (7)) [VF(7))] - (3.127)
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Because £ measures the distance from the surface, we finally obtain a suitable
expression for the volume charge density,

p(7) = 0(7) 3(€) = o(7) 3(F (7)) [FF(7)] - (3.128)
In our case, the two surfaces are simply given by
F(#)=p-b=0, F(f)=p-c=0. (3.129)
For the inner cylinder surface, we thus have
p(7) = -0 6 (p=b) [¥(p-b)|. (3.130)
In Cartesian coordinates, the gradient is expressed as
p=vVz2+y?, VF(F)=V(p-b) =8, < +é < (3.131)

and thus
V(p-0)=1,  p(7)=0(7)d(p-b)=-00d(p-b). (3.132)

We denote the potential as ®(7) = ®(p, ¥, 2) in cylindrical coordinates. The source
point 7 is expressed as

P =e,p cosp’+é,p singp’ +é,2, (3.133)

Of special interest is the point 7 = €, p which is at a distance p from the z axis.
Then,

F-7 =8, (p-pcosp’)+é, (-p'sing’)-&,2". (3.134)
This implies that

7= 7| =\/p? + p'2 = 2pp cos’ + 22 (3.135)
We thus need to calculate the following contribution to the potential from the inner

cylindrical surface at p = b, taking into account that the observation point 7 = é, p
has cylindrical coordinates ¢ =0 and z =0,

) 27 L/2
Binner(p,0,0) = f W [ag [ a (a0 b -b) L
2 i |7 — 7]
L/2

fd(p fdz b
47T60 i \/p2 + b2 —2bpcosy’ + 22

o L/2

b
- [d [dz
27760 /P2 + b2 —2bpcosy’ + 2"

__ oob [d ln( (z +/p? + b2 = 2bpcosy! +z’2))]

27‘(’60

2'=L/[2

z'=0

(3.136)
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In principle, this expression already expresses the exact result for finite L in terms
of an integral, which has to be evaluated numerically. The full result ®(p,0,0)
is obtained after adding the contributions from the inner and outer surfaces,
D(p,0,0) = Pinner(p,0,0) + Pouter(p,0,0), where Pouter(p,0,0) is obtained from
Dinner(p,0,0) by the replacement b — ¢ and a sign change in ¢g. Then,

i ’
@(p,0,0) = 2?:0 f d¢’ [ln (2 (Z, + \/P2 +c2—2cpcos’ + z’Q))]Z:jm
;;f;~/~d¢> [in(2(2 + o2+ 2 - 2bpcos¢>+—z@))]jzg/2. (3.137)

It is difficult to express these integrals in closed analytic form; a numerical evaluation
of Eq. (3.137) for given parameters b, ¢ and L is to be preferred.

Let us now consider the limit L - oo in Eq. (3.136), which corresponds to the
situation considered in our variational calculation described in Sec. 3.2.6. At the
upper limit, the logarithm in the integrand of Eq. (3.136) assumes the form

_ 2,
1n(2(z'+\/p2+b2—2bpcosg0’+z’2)) % In(2L) + b — 2bpeos ¢’ O(L3)

12

(3.138)
The constant In(2L) is independent of p and can be absorbed into an additive
constant potential ¢ which can always be added to any electrostatic potential
without changing the physics. The term of order 1/L? vanishes in the limit L — oo,
which we are interested in here. We can thus replace, in the integrand of Eq. (3.136),
the logarithm by its value at the lower limit 2z’ = 0,

2'=L/2
[ln (2 (z' +/p% + b2 = 2bpcos ¢’ + 2’2))] . T In (2\/;)2 +b2 - 2bpcos<p’) .
2=
3.139
The remaining L-independent integral ( )
2T
b
Dinner(p,0,0) = 202 f dy'In (2\/;)2 +b2% - 2bp cos go’) (3.140)
2meg 2

is still difficult; in particular, a direct evaluation leads to an elliptic function.

The integral (3.140) becomes easier if we first differentiate with respect to p,
then integrate over ¢, and then, integrate back again with respect to p. This only
adds a physically irrelevant constant to the potential. In particular, we have

2m
0 b (2p-2bcosy’

—@mam:ﬁljhd (29 = 2bcos’) (3.141)
dp 4reg J b2 + p2 — 2bpcosp’

A partial-fraction decomposition of the integrand leads to

b(2p—2bcosy’) b b(b? - p?) (3.142)
b2+ p2 —2bpcosy’  p  p(b2+ p?—2bpcosy’) '
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The integral of this expression with respect to ¢’ is

! 2 !
byl 2 arctan(m—p tan(ﬁ)) . (3.143)
PP b 2

At face value, we have
by' 2 b AN 200 2
[ LA arctan( P tan(ﬁ))] 2.2 [arctan (0) — arctan (0)] ,
pp b-p 2/ g PP
(3.144)

where we simply insert the upper and lower integration limits; this would lead to

a value of 27 b/p for the integral. However, this result is incorrect. At ¢’ = 7, the
second term with the arctan function receives a jump by

’ p'=m+e
[—arctan(m—p tan(ﬁ))] :—z—(+ﬁ):—7r, b<p, (3.145)
b-p 2 2 2

p'=mr—€
(downward) because of the singularity of the tangent function. In order to define
the integral so that it becomes smooth at ¢’ = 7, we have to add a compensating
term in the form of a Heaviside © step function,

(b b(b? - p?
fd(p o 2 (2 o) T
p p(b%+p*—2bpcosy’)

14 2 14
:b_<p+_b [—arctan(b+ptan(g))+ﬂ@(<ﬂ’—ﬂ)] . (3.146)
pp b—p 2

Then,

fozw 0 (b b(b? - p?) ) _dnb (3.147)

p p(b2+p*—2bpcosy’) P
The final result for the expression given in Eq. (3.141) therefore is

0 4md
_(I)inner(pyo,o) = 9o L (3148)
dp dmeg p
and so
b
(I)inner(P;O,O) = O—L In (B) . (3149)
€0 b

The argument of the logarithm has to be dimensionless for physical reasons; in
principle, one can ascertain that In(p/C) is a valid integral for any constant length
C'; our choice implements the condition ®(p =0,0,0) = 0.

We recall that in view of Eq. (3.145), the result (3.149) is valid for p > b. On
the outer layer, we have a charge density +o¢ b/c in order to make the arrangement
neutral, and calculate its contribution to the potential.

At radial distance p, we have a corresponding integral which replaces Eq. (3.145)

by )
c+p @' g g T
—arctan tan | — :——(——):w, p<ec, (3.150)
c—p 2 R 2 2

= —
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[the arctan(-) function jumps in the other direction here], so that

2w 2 _ 2
f dgp’(f— 5 c(2c ) - ):O, p<c. (3.151)
0 p p(c+p?—2cpcosy’)

Hence,
0 (p<c)
q)outer(p70;0) = _Uib h’l(B) (p> C) . (3.152)
€0 b
We thus verify that
oob p)
— In| = b
(I)(p,0,0) :(I)inner(PaO;O)+(I)outer(P70,0) = €0 n(b ( <P<C) 5 (3153)

0 (p>c)
a result which could have been obtained by the application of the integral form
of Gauss’s law, given in Eq. (1.5a), to appropriate cylindrical surfaces inserted in
between the plates. In this case, only the inner cylinder matters as the “charge
inside” the Gaussian surface.
Using the result from Eq. (3.149) and solving the equation

2n(5)= 5 m(5) - 2
Vo = ®(c,0,0) - ®(b,0,0) = — In[ -] = In{-)=—= 3.154
0 (Cva) (7;) o nb 27TL60nb Ca ( )
we obtain the capacitance as
2wL €
= 3.155
In(c/b)’ ( )

as already noted and used in Eq. (3.118). We recall that the area of the inner
cylinder is 27b L, so that o¢ = Q/(27b L). We thus verify Eqgs. (3.117) and (3.118)
by an alternative calculation.

We have already stated that the approach based on Eq. (3.137) is easily gener-
alizable to cases where L is finite, e.g., within a numerical approach. One just has
to keep L finite at the places where we have taken the limit L — oo within the z
integration. Let us illustrate this procedure by calculating the first nonvanishing
correction term to the potential for large, but finite L. To this end, we keep the
term of relative order 1/L? in Eq. (3.155) and carry out the integration over ¢’ as
indicated. The same procedure has to be applied to the outer layer, i.e., we have
to replace b - ¢ and (-og) — (+00)b/c in the first line in Eq. (3.136). One finds
that the correction term of order 1/L? to the potential (3.149) vanishes. Taking
into account the next order (1/L*), one obtains after some algebra

(p,0,0) = 220 1n(3) LU Gt VA m(ﬁ) Rl G Viay

€ b L ¢ 2nL €gy b 7w L5 €
(3.156)

This result leads to the following correction term for the capacitance,
C - 2L €0
In(c/b) —6 (b2 - c2)2/L4"
The denominator of the latter expression involves the difference of the potential
®(p,0,0) given in Eq. (3.156) for p=c and p =b.

(3.157)
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3.3 Laplace Equation and Series Expansions

3.3.1 Coordinate Systems and Special Functions

After discussing the variational approach to the solution of the Laplace equation
V2®(#) = 0, we now turn our attention to the series expansion method. The basic
paradigm is that one writes down mutually orthogonal functions (with respect to a
particular integration measure); all of these fulfill the Laplace equation individually.
The expansion coefficients are fixed by the boundary conditions. The relevant
equations look fundamentally different in the Cartesian coordinate system (x,y, 2),
in the spherical system (r,0, ), and in the cylindrical coordinates (p, p, 2).
Suppose we are given the problem of solving the Laplace equation in a system
with a given symmetry. In general, functions may be expanded in terms of a com-
plete set of other functions, suitably chosen so that the chosen “basis set” reflects
the defining properties of the function. Let us assume that we know that f(z) has
a period length L. Then, the (discrete) Fourier decomposition of f(x) is given by

f(z)= n:im F(n) exp (i 2% nx) ) (3.158)
where
F(n)= % fo% dz f(x) exp (—i%nx) . (3.159)

The basis functions in this case are the exponentials
2
exp (i % nx) (3.160)

for integer n, all of which are periodic functions with period length L. Here, we will
encounter different sets of functions in which the solutions of the Laplace equation
are expanded.

We will also encounter the V2 operator in different coordinate systems. Let us
suppose that we transform the gradient operator V from the Cartesian coordinate
system with coordinates x, y, and z, to a different coordinate system with coordinate
&, 0, and @ (here, &, 0, and ¢ can be any coordinates in any system, say, spherical,
in which case we would replace & — r, while in cylindrical coordinates, we would
replace £ - p, 6 - p, and ¢ — 2z). Then, we can rewrite the differentials as follows,

9 _006 089 dp b
dx  Ox 06 Oz 00 Oz Do’
and likewise for 9/0y and §/dz. Also, the unit vector in the & direction becomes
OF N\t oF  (10F|\ " [0z dy 0z
ée=||=— — == — 8t —&+—¢&,]. 3.162
¢ (65) ¢ (‘65‘) (ag” o v a¢ ) (8.162)

Inverting these relations, we obtain &, &,, and €, as functions of &, é and é,. So,

(3.161)

we can rewrite the entire gradient operator V in terms of the “new” unit vectors
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and “new” differential operators as

@—éa+ea+e8 ef(f@ 888)
T Ty T, TS 5 90 b,
o 0 0 g 0 0
¢ 0,0, —, —, — 1
+89f2(£, P As ag 89 8 )+e<pf3(£a » @5 85780’8(,0) (3 63)

where f1, fo and f3 are functions that may contain derivative operators. This
is a general algorithm for reformulating the gradient operator for a general non-
Cartesian coordinate system.

The calculation of V2 then proceeds in a straightforward manner, but we have
to pay attention: the differentiations may incur additional terms because of the
intertwined base vectors &g, & and é,. For example, the partial derivative 0és/00
does not necessarily vanish, nor does 9é9/9¢. Additional insight into the problem
can be gained through the definition of Christoffel symbols, see Ref. [16]. The
entire program has been carried through a long time ago. While respective formu-
las are contained in reference pages of other textbooks on related subjects (e.g.,
Refs. [17-19]), it is useful to summarize them, for the gradient operator (in Carte-
sian, cylindrical and spherical coordinates)

- 0 0 0
a_ic*éyai“ ajzc
o, 0, 100 9

Pop 7 p op 0z

of Alaf 1 of

=&, — _ 3.164
¢ or e r 00 eWrsinG de ( 2)

for the Laplacian operator,
—o 82f i 82f i 82f
T 022 9y2 022
:ﬁ+1af 182f+82f
0p* pdp p?Op? 022
Ff 20f 1 0 g 8f 1 9%f

= — sinf — — 3.164b
o2 " or  r2sn6os T 0 7'2 72 sin20 02’ ( )

for the divergence,

04, A, 10A, 0JA,
+ + = +
ap pp Oy 0z
0A, 2A. 104y coth Ay 1 0A

= - L .164
8r+ r +r89+ r +rsin9 Op ’ (3.164c)
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and the curl,

doe, (Mo D) o (0 0 (0, 0y
T\ oy 0z Y\ 0z Ox “\ oz Ox
. (104, 0A,\ . (04, 8Az) . (3A<p 8Ap)
= — —_ —_ B A _ "
ep(p dp 8z)+ew(82 dp e dp T Op
_s (1 8Ag,+cot0A<p_ 1 8A9) . ( 1 8Ar_8A¢_ﬂ)
r 00 r rsinf dy rsinf Jy or r

In our investigations on the Laplace equation, let us start with Cartesian coor-
dinates, where
N 0? 0? 0?
2 _ -
\Y4 (I)(I',y,Z)—(@‘Fa—yQ‘Fﬁ @(x,y,z)—(). (3165)
The separation constant is the wave vector k= kyéy +kyéy +k.&,. The general
solution reads

O(a,9,2) = Y [elk)e"T +d(k)e" " {(az+b)d, 0 + (cy + d)d, 0 + (2 + )k 0)}]
%-k=0

+(dz+b)(y+d)(ez+f"). (3.166)

The k vector may have complex rather than real components, and the summation
is over all permissible vectors k& (as defined by the geometry). Note that if the
components of k are complex, then the condition k-k = 0 does not necessarily imply
that k& = 0. One possibility for k= kyo, + kyé, + k.€, is to be an exponential ek
with k; , = +i|ks ,| being purely imaginary and k. being real. This leads to an
exponential factor

efC'F - ei(|km\m+\ky\ ) eikz z (3167)
We thus have a sinusoidal dependence in x and y and an exponential in z. The
special terms in Eq. (3.166) are generated as polynomial solutions to the equation
f"(z) =0, in the directions where specific components of the k vector vanish.

The condition k -k = 0 implies that if k, and k, are given, then k, can be
determined (up to a sign). So, the summation over the possible values of k (a
discrete set of values, in a typical case) will in general be a double summation, not
a triple summation. Another possibility is k. = +i|k.|, with k, and k, being real.
Then,

exp(k-7) = exp (k. x + kyy) exp (xilk.|2) (3.168)

with a sinusoidal dependence in z and y, and an exponential in z.
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Let us now switch to spherical coordinates. From Sec. 2.3.1, we recall that the
Laplace equation reads

1 92 1 9 . 0 1 92

V2D(r,0,¢0) = | =757+ 5o—p s SN0+ ————
Ve®(r,0,0) ror? s oe 80+r2sin98s02

19> L2 102  4(L+1)
_(7'87'2 2)¢(r505¢)_(_ﬁ - r2 (I)(T797<)0)_07
(3.169)

with |m| < ¢, and £ € Ny. The operator L = -i7 x ¥ has already been discussed in
Sec. 2.3.1. The general solution

)@(r,@,(p)

I4
d(r,0,p) = Z (aem " +bem ™) Yom (0, 9) (3.170)

||M8

involves the spherical harmonics,

2
o L0 0 139

L2 Yy (0,0) = £(£+1)Ye (6 — Zene Ll - % 31m
em(6:0) = Ll 1) Yo (0, 0) 096 %5 ~maaz 17V
whose explicit form we recall from Eq. (2.53),
1/2
20+1 (£-m)! |m| ;
Yim - (-1)™ P 0) ™ 172
o(60.2) = (-1) (M (“m)l) 1l (cos ) e (3.172)

The associated Legendre polynomials Pgml(cos ) enter this expression. Using the
fact that

102 102
(—8—7“) rb=t0(+1)rt, (—8—7“) rl e (-1 (4 1) T
r
(3.173)
it becomes clear that all basis functions in the expansion (3.170) fulfill the Laplace
equation separately. In cylindrical coordinates, the Laplace equation reads

o o0 109> 9?

@2@(@@,2):(;8_[) i 82) (p,0,2)=0. (3.174)

With a,m =0,+1,+2,..., the solution reads

D(p,0,2) = Y. (aam Jm(ap) +bam Yin(ap)) ™ e**2. (3.175)
a,m

)

The « parameters may be complex. The basis functions of the expansion (3.175)
fulfill the Laplace equation provided
( 0?2 190 m?

_+___—+a2).]ma =0. 3.176
dp* pdp p? () ( )
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Bessel’s differential equation [Eq. (2.144)] and other important properties of the
Bessel functions have been summarized in Sec. 2.4.2. The equivalence of Egs. (3.176)
and (2.144) can be shown by explicit differentiation with respect to p. Bessel func-
tions have the orthogonality properties (2.171) and (2.178), which we recall for
convenience,

folda:xJn(/\a:) To(uz) = %m [nt (V]2 (3.177a)
[T o hp) 2k p) =2 5 (K. (3.177D)

where J,(\) = J,(n) = 0. This property ensures the orthogonality of the Bessel
functions with respect to the volume integral in cylindrical coordinates. Indeed,
the general idea is to expand the boundary condition to the solution of a Laplace
equation in cylindrical coordinates, into the basis functions of the solution later
used for the entire space, and then, to use the orthogonality properties of the Bessel
functions in order to project out specific components.

3.3.2 Laplace Equation in a Rectangular Parallelepiped

We have discussed solutions of the Laplace equation in Cartesian, spherical and
cylindrical coordinates. It is illustrative to consider a nontrivial example, and we
shall choose the case of a rectangular box, which corresponds to Cartesian coordi-
nates. The potential is specified on each of the six rectangular surfaces of the box.
A simplified version of this problem is given by the solutions to Laplace’s equation
in a rectangle, which is tantamount to assuming uniformity of the potential in the
z direction. The reference volume V is chosen as follows with the x and y direc-
tions being restricted to finite intervals, and the z direction extending from z =0
to z = oo,

0<z<a, 0<y<b, z20. (3.178)

We assume that the charge density inside the volume V vanishes, so that the electro-
static potential fulfills the Laplace equation V?®(#) = 0. Furthermore, in the sense
of Dirichlet boundary conditions, the potential is held constant near the boundaries
in the x and y directions,

®(0,y,2) = P(a,y, z) = (x,0,2) = P(x,b,2) =Dy (3.179)
The potential tends to a constant value at infinity,
(I)(xayvz_) OO) :(I)O; (3180)

and in the zy plane (z = 0), we have a given, possibly non-constant, distribution for
the potential

®(x,9,0) = @of(z,y), (3.181)
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where f(x,y) is a given function. This defines our problem. In the first step of the
calculation, one identifies the expansion (3.166) as the appropriate expansion for
Cartesian coordinates. So,

B(z,y,2) = Y [c(k)e" +d(k)e™ {(az+b) Oy 0+ (cy +d) Gy 0 + (2 + ) Gs 0)}]
k2=0
+(ax+b)(cy+d)(ez+f). (3.182)
First, we note that any terms linear in x, y, or z in our approach given by Eq. (3.182)
do not satisfy the boundary conditions (3.179). If we eliminate the linear terms,

then the general solution can be written as a sum over the exponential terms alone,
and a physically irrelevant constant Cj,

O(r,y,2)= Y e(k)FT+Co,  where  BP=k2+k2+k2=0.  (3.183)
k2=0

The overall constant term Cp is not eliminated (yet).

In the second step of the calculation, we observe that the deviation of the solution
from the constant Cy must vanish in the limit z - oco0. So, we take a solution which
is periodic in z and y and exponentially damped for large, positive z. This implies,

in particular, that
f=ikg by +ikyby +hsé.,  ky=\/KZ+K2. (3.184)

Then, the solution becomes

<I>(:C,y,z) _ ZC(];) ei(mC T+Ky Y) e—a/ﬁih%g z Co. (3.185)
E

In general, if (k1,k2) is an admissible combination of wave vectors, then (-k1,—k2)
will also be admissible. We here restrict our approach, at first somewhat arbitrarily,
to the combinations

@(m,y,z) _ Zci(l_{}) (eimma: ie—inwa:) (eimyy ie—imyy) e—‘/ﬁgﬁ—n% z " CO . (3186)
Fx

In a third step of the calculation, we let (k1,k2) = (u,v) where u and v are real
positive numbers. Then, our ansatz for the potential becomes

®(z,y,2) = ), cu(u,v) [eim + e‘ium] [ei”y + e_i”y] exp (—[u® + v2]1/2z) +Cy.

v, E
(3.187)
Finally, according to our assumption (3.179), we have
®(0,y,2) = ®(a,y,2) = (,0,2) = ®(z,b,2) = Do .. (3.188)

We now force the periodic terms to vanish on the x and y boundaries and identify
Cy = ®g. We are now in the position to specify the admissible wave vectors even
more accurately, because they have to fulfill the condition that all terms except for
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Fig. 3.2 Plot of the functions sin(mmaz/a) for a = 1 in the interval
z € (0,1) with parameters/indices m = 1,2,3. The basis functions
sin(mmx/a) vanish at the boundaries and are mutually orthogonal
when integrated over 0 < z < a.

Cy = ¢ vanish on the boundary. Let au = m7m and bv = nm where m,n € N. This
singles out the following solutions as admissible,

oo [ee] 1
(I)(xalhz) = Z Z d(m,n) - [exp (lmx) —exp (_1@33)]
m=1n=1 2i a a
x l [eXP (lﬂy) — exp (—iﬂy)] + Qo (3.189)
2i b b

where the d(m,n) represent expansion coeflicients which will be determined later.
Then,

o oo 2 2
O(z,y,2)= Y, >, d(m,n) sin(mx) sin(ﬂy) exp(—wz (m) + (E) ) +®g.
m=1n=1 a b b
(3.190)
A plot of the first few basis functions sin(wmaz/a) for a = 1 is given in Fig. 3.2.
In the last step, we recall that at z = 0, we have to satisfy the boundary condi-
tion ®(z,y,0) = &g f(z,y). To this end, we note that at z = 0, the exponential
suppression factor in the z direction is just unity,

o= ET-6T)

The boundary condition ®(x,y,0) = g f(x,y) then reduces to

-1. (3.191)

i i d(m,n) sin(mx) sin(%y) =g {f(z,y)-1}. (3.192)

m=1n=1 a
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In order to determine the coefficients d(m,n), we now multiply both sides by
sin(mm’z/a) sin(7n’y/b) and integrate over = and y,

a b m’ '
(I)O./o dx./o dy [f(x,y) —1] sin( ?x) sin( :y)

-5 St farsn (5 o2 o) )

m=1n=1

i id(m,n) (% fo d¢ sin(mé) sin(m'f)) (% fowdx sin(ny) sin(n'x)) ,
S (3.193)

where £ = Ty and X = %y Using the orthogonality of the sine and cosine functions,
a

f sin(mé) sin(m’€) d¢ = gdmmr, f cos(ny) cos(n"y) dx = gdnnr,
0 0

(3.194)
the right-hand side of Eq. (3.193) thus becomes

i::i:: (m,n) — ( mm’)%(gfsnn’)=d(m,,n,)%b. (3.195)

Renaming m’ — m, n’ - n, we can thus write a general expression for all expansion
coefficients d(m,n),

d(m,n) = %‘I)O /Oadx fobdy [f(z,y)-1] sin(%x) sin(%y) . (3.196)

We recall that the general solution for the potential ®(z,y,z), in terms of the
d(m,n), is then given as

oo oo 2 2
(z,y,2 Z Z d(m,n) sin(m x) sin(ﬂ y) exp (—wz (m) + (E) )+ D .
m=1n=1 a b a b
(3.197)
Our boundary value problem involves the boundary conditions ®(0,y,z2) =
D(a,y,z) = ®(x,0,2) = ®(x,b,2) = ®g, with ®(z,y,2z - o0) = 0 and ®(z,y,0) =
Do f(x,y). We consider it for the choice

1 a 1 x x

f(x,y):1+[¥(x—§)2—1]:1—5+(5)2, O<z<a, O<y<b. (3.198)

This boundary condition depends only on z [see Fig. 3.3(a)]. The expansion coeffi-
cients d(m,n) in this case are given by

: [1-CD7 -0t @em+ 1)33(22ﬁ+ rt’

d(m,n) = - (3.199)

m3nmt
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(b)

Fig. 3.3 Panel (a) illustrates the boundary condition (3.198) for a = b =1. The function
G(z,y) is defined in Eq. (3.201). The right panel (b) displays the function F(z,y) =
P(z,y,2) - Po for z = 5.5, for a = b = 1. Note the smaller scale of the ordinate axis.
Indeed, the departure from the boundary value assumed near z = 0,a and y = 0,b becomes
numerically smaller as we go up the z axis; observe the scale of the ordinate axis in
panel (b).

where m = 2m+ 1 and n = 2n + 1. The full solution is then given as

> 2 32 ®
@w,2) == 2 2 Gy (20ﬁ+1)7r4

m=0n=0

XSin(7r(2m+1) x)sin(w(mbu) y)

a

— 2 — 2
X exp —71'2\/(2m+1) +(2nb+1) + 9. (3.200)
a

For z = 0, we finally have to convince ourselves that the boundary condition is
fulfilled. To this end we investigate the function

G(z,y) = (z,y,0) - Po
o sm(”@T”) x)sm(w@zu) y)
B _%0;)32 o (2m+1)3 27+ 1)
- @, (—§+(§)2) O<r<a, 0<y<b, (3.201)

but still ®(0,y,0) = ®(a,y,0) = &(z,0,0) = ®(x,b,0) = &y. We define G, (z,y)
to be the function obtained from the defining formula (3.201) by truncating the
summations over m and 7 at n,

G(z,y) = lim Gn(z,y), (3.202a)
T(2m+1) x)sm(w@m 1) y)

sin( b
a

320

000 (2m+1)3 (2n+1)r

M=

Gn(z,y) = _i:o (3.202b)

3
Il
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Gs(x, ¥)

() (b)

Fig. 3.4 Panel (a) illustrates how the partial sums over m and T approximate the solu-
tion (3.200), by plotting the function Gy (z,y) with n = 3, given by Eq. (3.202). The sum
is terminated at n =M =7 = 3. Panel (b) displays a better approximation with the sum
being terminated at n =m =7 = 20.

As evident from the left panel in Fig. 3.4, with both summations over m and 7
truncated at n = 3, the boundary condition on the edges of the rectangle are fulfilled
by our solution (3.200), at z =0, z = a, y = 0, y = b. However, as soon as we depart

from the lines with y = 0 and y = b, there is a discontinuity because the term

_z
a
discontinuity implies oscillations in the y direction for the truncated approximation,

as visible in Fig. 3.4(a) and Fig. 3.4(b).
It is interesting to consider what happens as we depart from the z = 0 plane and

2
+ (%) does not vanish for 0 <z < a and 0 < x <b. The approximation of this

go up to z axis, to arrive, say, at z = 5.5. This is illustrated in Fig. 3.3(b). The value
of the expression F(z,y,z) = ®(,y,2) — g becomes much smaller (of order 107%)
at z = 5.5 than at z = 0, where it amounts to G(z,y) = F(x,y,0) and is of order
unity. Because of the smallness of the function G(z,y), the discontinuity near the
edges of the rectangle z =0, x = a, y = 0, and y = b gradually disappears as we go
up the z axis. This is compatible with the boundary condition ®(z,y, z - c0) = ®y.

3.3.3 Laplace Equation in a Two-Dimensional Rectangle

A simplified version of the zero-charge-density problem is given by the solutions
to Laplace’s equation in a rectangle, which is tantamount to assuming uniformity
of the potential in the z direction. In this case, the Laplace equation V2®(7) = 0
reduces to an equation with differential operators that only act in the x and y
directions. The technique used for the two-dimensional problem (for a rectangle)
thus is a specialization of the previously discussed problem for the rectangular
parallelepiped. Let us consider boundary conditions given on a two-dimensional
rectangle, with a potential ® = ®(x,y) that fulfills

82 2
(@_Fa_yQ)@(x’y):O’ 0<x<a, 0<y<b. (3203)
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We take our boundary conditions to be
®(0,y) =P (a,y) =2 (2,0)=0,  (x,b) = f(2), (3.204)

where f(z) is a given function. According to the above sections, we should search
for a series solution involving exponentials,

O (z,y) = Y e(k) eFile ey 4 ¢ (3.205)
;

where each term in the series satisfies the Laplace equation in two dimensions and
$0 |k1| = |kz|- In order to select the proper solution to these equations we refer to the
boundary conditions. Since ® (z,b) is specified in the boundary we use a (complete)
set of orthogonal functions for the x dependence in the interval z € (0,a). Since
®(0,y) = ®(a,y) = 0, we use sine functions which are equal to zero at = = 0 and
x = a. The y dependence has to be adjusted so that the functions vanish at y = 0,
which singles out the hyperbolic sine (as opposed to the cosine) functions. It follows
that

b (z,y) = i ansin(%r m)

(
(

(3.206)

The denominator term sinh (nmb/a) is a normalization. This ansatz automatically
fulfills

®(0,y) =P (a,y) =P (x,0)=0. (3.207)
In order to also fulfill
@ (z,b) = f(2), (3.208)
we have to demand that
2 a
ap = — f f(x) sin(@) dz. (3.209)
a Jo a
If we now specialize further to f (x) = ®g, then
2 ra 29
an = = f @osin(w)dx ey (3.210)
a Jo a nw

Finally, the potential is found to be

B (2,y) - 4%@0 i sin[(2n + 1) mz/a] sinh[(2n + 1) wy/a]

= 2n+1 sinh [(2n + 1) 7b/a]’

(3.211)
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09.
D1o(x, ¥)

09
Dao(X, y)

(c) (d)

Fig. 3.5 Plot of the function ®(z,y) as defined in Eq. (3.211) for &9 =1 and a =b =1.
We define @, (z,y) to be equal to the series expansion given in Eq. (3.211), where the
sum is truncated at n. Panels (a), (b), (c) , and (d) show the truncated functions at
n =5, n=10, n =20 and n = 80.

where the sum is over the odd integers 2n + 1, with n =0,1,2,.... For 0 < y < a,
this series and its first derivatives converge absolutely. A plot of the sum of the
terms up to n = 20 is shown in Fig. 3.5. Quite naturally, there are oscillations in
the (slow) convergence pattern near the discontinuities of ® (x,y) which occur near
the points (0,b) and (a,b).

3.3.4 Boundary Conditions on the Finite Part of a Long Strip

We also consider a two-dimensional boundary problem, but this time, one of the
regions covered by the potential has an infinite extent, in contrast to the example
discussed in Sec. 3.3.3. The problem is given as

82 82
(@4_6_?;2)@(1‘,2/):0’ 0<Jj<a—)007 0<y<b. (3212)

We define the boundary conditions to be

¢ (:U,O) =0 (va) =0, o (07y) =9 (y) . (3213)
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For these boundary conditions, the appropriate choice is

P (z,y) =) an sin(%) eXp(—?) . (3.214)
n=1

The boundary condition ® (x,0) = ® (x,b) = 0 is automatically implemented via the
sine function, and the boundary condition ® (0,y) = g (y) implies that

=S a, sin(@) . (3.215)
n=1 b
In view of the orthogonality of the sine functions, we have

- % fobdyg(y) sin(n—zy) . (3.216)

The coefficients b, depend on the particular choice of the boundary condition. If
we let

(3.217)

o
SRS

g(y) =

then the expansion coefficients are given by

o= 2% f dyy bm( ) (3.218)
) 21%0 % fobd ( { (Ty)}) (3.219)
B Z?f; [_y {CO ( )} f ( COb( y))] (3.220)

2d,
= ——— b cos(nm) =-2(- 1) (3.221)
anm
The potential thus is given as
20 & (-1)" . (mry) ( mrx)
O (r.y) = - Ty S 222
(z,y) - > —— sin| == ] exp 5 (3.222)

The sum over n can be performed by writing the entire expression in terms of
exponentials,

B (r,y) = - 20 3

S Ly ] feo ()

|
|
[\
KA
o
8
~
|
—_
N—r
3
—
—
<
4
=
3
|
—_—
| <
~—
3
—

u=e v=eT0 (3.223)

SV (1), (3.224)
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Fig. 3.6 Plot of the function ®(z,y) given in Eq. (3.225), for &9 =1 and b = 1.

to obtain

D (x,y) = —% {ln(1+%) —ln(1+uv)} = —(,I)—O 1n(u7+1})

im u(l+uw)

d, ei71'y/b + e—ﬂ'w/b d, 1+ e—ﬂ'w/b—iﬂ'y/b
= eimy/b (1 + eiTl'y/b—Tr.’E/b) = u 1 + eimy/b-mz/b

—
o e—i7ry/b + e7ra:/b P ei7ry/b + e7ra:/b

= = —— . (3.225)
iT eimy/b 4 gmz/b im e-imy/b 4 omz/b
Somewhat counter-intuitively, this result is purely real, not complex. This can be
seen as follows. If we consider the complex conjugate of the expression, the imagi-
nary unit in the prefactor changes sign, but the numerator and the denominator in
the argument of the logarithm are also exchanged. Inverting the argument of the
logarithm, one restores the original expression. A plot of the solution is found in

Fig. 3.6.

3.3.5 Cauchy’s Residue Theorem: A Small Digression

)

Helpful mathematical techniques are sometimes compared to the “toolbox” of a
theoretical physicist; within this analogy, one might identify the Cauchy residue
theorem with a “leatherman”. It has many physical applications; e.g., it becomes
important to the understanding of time ordering in electrodynamics. Another very
important application concerns the evaluation of integrals over an infinite domain
of integration, closing the integration contour along an appropriate curve in the
complex plane. This latter technique is important in the evaluation of certain inte-
grals occurring in Fourier transformations, which naturally arise in boundary-value
problems in electrostatics. Preparations for a graduate course in electrodynamics
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should in principle include deep familiarity with the Cauchy theorem; yet experi-
ence shows that this preparation may be lacking. A detour on this subject therefore
is in order.

Let us start innocently, recalling that the Taylor expansions of a function f =
f(z) about the origin reads as

f0) "= a,2”. (3.226)
n=0

f(x) = F(0)+ f'(0) + %f”(o) 2.

n=0 n!

Here, the a,, with n = 0,1,2,... are constant coefficients, the coefficients of the
Taylor expansion. However, functions like

z)= ———— 3.227

9(2) z4sin(z) ( )

obviously cannot be expanded in a Taylor series about z = 0, because the first
(leading) term is not a constant; the function diverges for z — 0. At best, we can
use the well-known expansion, sin(z) = z - 23/3! + 2° /5! + ... and write

(2) 1 1 1
z) = = =
g 24sin(z) 4( 22 2P ) r( 22 2t )
2 lz——+—=+... 22 l-—=+—=+...
3! 5l 3! 5l
1 1 1
_ T3 oy (3.228)

= — +— +
z5 623 360z 15120

This expansion obviously does not start from the term of order zero, but from a
term proportional to z7°. It is called a Laurent expansion. The general formula for
the Laurent expansion reads

9(z) = i an 2" . (3.229)

In contrast to the Taylor expansion (3.226), the Laurent expansion starts at n = —oco
instead of n = 0. We can formulate a Laurent expansion about a point zg, which
reads

9(2) = i bn (2= 20)" . (3.230)

If all coefficients b,, with n <0 vanish, we say that g(z) is analytic about the point
z = zg. If all a,’s with n < =M vanish, then we say that g has an Mth order pole
at the origin.

Of preeminent importance is the integral

I-= %g(z) dz = fcg(z) dz = fc(ni:oo an, z”) dz, (3.231)

where the contour C is an anticlockwise circle (i.e., in the mathematically positive
sense) of radius R around the origin. We shall see that only a very limited number
of a, coefficients (in fact, just one of them) contributes to the integral. Let us
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therefore consider the integral
1
J = fcdz — . z=Rexp(i6), 0¢(0,27), (3.232)
an

where z = z(#) thus describes an anticlockwise circle about the origin. Furthermore,
m is assumed to be integer. Now, for m # 1, we have

I- [ 746 (i) exp(i0) [Rexp(i0)] ™ = iR A " 0 expl-i (m - 1) 6]

_iRl-m [eXp[—i(m ~-1)6] :|9=27r __pim [exp[—i(m 1) 6] :|0=27r

e D) B =0. (3.233)

6=0

However, for m = 1, the correct result is obtained by first replacing m — 1 + ¢ and
doing a Taylor expansion,

1 6=2m 1-i 6=2m
limJ=-R"° [lim - exp(—ie@)] = —[ 169]
m—1 e~>0¢€ 6=0 € lg=0

1 7% peoan .
= - [— —19] =[i0],_," =2mi. (3.234)

€ 0=0
Of course, this result could have been obtained by a direct calculation, without
letting m — 1, but the above derivation illustrates that the special case m = 1
actually follows from the more general case by a limiting process. For a function
g(z) that has a Laurent expansion of the form g(z) = Yo _ ay 2™ about the point
zp = 0, we therefore have

I-= §l§Cdz f(z)= idz (mim G Zm) =2mia_q =27 fzizeos f(z), (3.235)

where the last term constitutes a definition of the residue at the point z = zg = 0.
Only the coefficient a_; contributes. We write the residue as

fZ{:eOs f(z)=a-q, fédz f(z)=2ri fZ{:eOs f(z). (3.236)

This result can be generalized easily, as follows. Let us assume that we have an
expansion about an arbitrary point zp,

f(z) = i b (2= 20)™ . (3.237)

In view of the above considerations, a contour integral that encircles zy in the
mathematically positive sense can be written as

?2 dz f(2)=2riby = 27i Res f(2). (3.238)

Z=20

Only the coefficient b_; contributes. Closed contour integrals in regions where the
integrand is analytic, simply vanish. This enables us to generalize the result as
follows. For a contour C that encircles n residues located at the points z = z; with
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i€{l,...,n}, the result is

édzf(z) =97 3 Res f(2). (3.239)

~ 2=2z;
i=1 v

All the z; lie in the interior of the contour C. This is Cauchy’s residue theorem.
The calculation of residues and the application of this theorem should be illus-
trated on a few example cases. For functions that have a single pole, like
1 1
9(z) = ~ o Resg(z)=1, (3.240)

sin z z—%z3+...

the calculation of the residue is obvious. For functions that have poles of higher
order, it becomes more complicated. In Eq. (3.228), we have already derived the
result

1 7
R —_— = . 3.241
50 (z4 sin(z)) 360 ( )

g(z) = <o) (=) (&S’(’Z)) . (3.242)

z4sin(z) sin(z)

Let us also consider

We have split the function into a prefactor 1/z° and term which is unity for z - 0.
A simple Taylor expansion of numerator and denominator shows that

. 2 4
zeos(e) |y 2 2 (3.243)
sin(z) 3 45
and so, for z - 0,
1 22 2t 1
g(z)%;(l—g—gﬁ-) s ]::j»:eos g(Z)—_4_5, (3244)

where the latter result is simply obtained by an expansion of the former, and reading
off the term that multiplies z~*. The residue always is the factor multiplying 1/(z -
20) in the Laurent expansion of F'(z), independent of how many other terms of the
form (z — 20)", with positive or negative integer n, occur in the Laurent expansion
of g(z). One just has to expand g(z) to the required order and read off the term of
order (z-z) L.

Let us now investigate a generalization of this result, namely, the case where
f(2) has an Mth order pole. For the example in Eq. (3.244), we have M =5. We
are interested in finding out about the term of order (z-2p)~! in f(z). To this end,
one can follow the ad hoc procedure outlined above: We just expand numerator and
denominator to the required order and then read off the term of order (z - z) ™.
However, it is also possible to follow a more systematic approach. If one multiplies
the terms {a_nr (2=20) ™M, a_pr1 (2=20) ™M, .. a1 (2—20)7L,... } by afactor (2
20)M | then they transform into the set {a_ns,a_nre1 (2=20)5- .., a-1 (z=20) 71, ..}
Expressed differently,

a-pM a-p+1 a-1
f(z) = -

(Z—ZQ)M + (Z—ZO)M—l 4o 4 (Z_ZO) +"'+an(Z—Zo)n+.,,, (3.245)
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(=200 f(2)=apr+ (2= 20) acppar + -+ (2 —20) M a +... . (3.246)

In consequence, if we differentiate the expression (z—20) f(z) a total of M ~1 times
with respect to z, and set z = zg after the differentiation, then the only contributing
term is the one proportional to a_;. Terms of lower order are explicitly annihilated
by the differential operator, and terms of higher order give rise to positive powers
of (z-zp); these are annihilated if we set z = zq after the differentiation. This leads
to the general formula, valid for an Mth order pole,

I Cn (CEE RO
Res 1) = iy, Az

(3.247)
Z=20

A paradigmatic application of the above consideration is as follows. For an
integral such as

d 7:[ dw—o0uT 3.248
[oo ww2+n2 —o0 w(w+in)(w—in) ( )

we can close the integration contour either in the upper or the lower complex plane
because the modulus of the half-circle integral behaves as R~2*! — 0 for R — oo,
where |z| = R is the radius of the half circle along which the contour is being closed.
At the singularity, at w = in, we have

n n

. — ~ — . (3.249)
(w+in)(w-in) 2in(w-in)
and hence
n
Res —mMm ————— = —. 3.250
wiin (w+in) (w—i7) 21 (8:250)
The result is
f dw—"1— =2mi— =1. (3.251)
—o w242 21

Reversing the argument, for closing the contour in the lower half of the complex
plane, we have

dw ——— =(-27i (——):77. 3.252
[oo w? +n? ( ) 21 ( )
The first minus sign is due to the reversed sense of revolution around the singularity.
The second minus sign is due to an additional sign reversal of the residue at w = —in.

3.3.6 Boundary Conditions on the Infinite Part of a Long Strip

We now consider again a long strip, as in Sec. 3.3.4, but this time, the boundary
condition is imposed on the infinite part of the long strip rather than the short
(finite) part. Our boundary conditions are thus given as

®(0,y) =®(x,0)=0, O (z,0) = f(z), O<z<a—>o0, O<y<b.
(3.253)
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The boundary condition is given on the semi-infinite strip y = b. In this case, we
switch from a summation to an integration. The expansion functions are labeled by
a continuous variable, say k, for which the following relations are useful. In view of
the boundary condition ®(0,y) = ®(x,0) =0, we choose the ansatz

sinh (ky)
dk « (k kx 3.254
®(ay) = [ dka (k) sin(ke) T (3.254)
so that
®(x,b) = f(2) = f dka (k) sin (k) . (3.255)
0
It is nontrivial to show that
2 [}
alk)="= fo d f (2)sin (k) . (3.256)
™
First, one proves the following relation,
~ 3 ! : _ © i ik'z _ -ik'z i ikx _ —ikx
A dz sin(k'z) sin(kz) = A dz 5 [e e ] 5 [e e ]
_ Lot e ke | ike —ike
=1 [(e e+ e e )
_ (eik'we—ikw e—lk T +1ka:)] dx
2 1 hed N B N .
:__7'(' _ [ (elkl'elkx_elk.’l,‘e—lk.’b)dx
4 27 —o0
:g [6(K - k) -o6(K + k)] . (3.257)

We verify that
2 [ . 2 &S} , , oo . , .
- f dz f(z) sin(kx) = — f dk" (k") [[ dz sin (k' ) sin (kx)]
7w Jo m Jo 0
_2 foodk’ a(K') 5 [5(K k) + 6K + k)] dls = a(K').
m Jo
(3.258)
For the boundary condition ®(z,b) = f(z), we now choose
F(z) = . (3.259)

As we shall see later, this example can be used in order to illustrate the properties
of complex integrals. The Fourier-sine transform of f(x) = ®g is given by

28, 2@0

f desin(kz) = — ; “ de [ —ohe]

In the sense of Riemann, this improper integral is formally divergent. We thus

a(k) =

introduce the convergent factor exp(—ex) in the integrand, where € > 0 is real
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and small. Under this assumption, we can assign a finite value to the expansion
coefficient a(k),

b . b _
a(k) = @ lim lim [[ e (e-ik)z 0. _ f e—(e+1k)xdx:|
0 0

271 e=0* b>+oo

|
—

_ - 3.260
0 e—1k e+ik ( )

20y . ( 1 1 )_2‘1)0
T 27 es0 7wk’

Using this result for a(k), the potential can be written as a convergent integral,

B (2,y) - 2% foodk sin (k x) si.nh(ky) _ % [‘X’dk sin (k x) slnh(ky) 7
m  Jo k sinh (kb) 7 J-oo k  sinh(kb)
(3.261)

where we notice the change in the integration limits in the second step. Integrals
from —oo to oo are naturally prone to an evaluation by the method of residues,
as one can close the contour from +oo to —oo along a circle either above or below
the real axis, preferably along a large circle whose radius tends to infinity. We
shall evaluate the integral using the theory of residues. If the integrand falls off
sufficiently rapidly for large modulus of the argument, then the contribution of the
large circle closing the contour is zero. Closing the contour, one then picks up the
contributions from the pole terms only.

As it stands, the integral (3.261) has no poles along the real k axis. In partic-
ular, for k - 0, we have the finite limit sin(kz)/k — x. However, pole terms are
encountered as we use the formula

exp(ik x) — exp(-ik )

sin (kz) = 5
i

(3.262)
In performing the k integral, we thus have two alternatives for encircling the poles
on the real k axis. We can either shift the contour infinitesimally below the real k
axis, letting k = k—ie and later let € — 0%, or we can shift the contour infinitesimally
above the k axis, letting k = k +ie and later calculate the limit € — 0*. Yet, we have
to make a decision and then stick to it. In the end, both alternatives must lead
to equivalent results. The notion is that we later split the integrand into terms for
which we can close the contour along either side of the real axis. We write

20 f°° exp (ikx) — exp (—ikz) sinh (k y)
2mi J-oo k —ie sinh (k b)

® (z,y) dk

@9 f P (ikx) sinh(ky) @0 / dkexp(—ik;x) sinh (ky) .
27i Jo, k—-ie sinh(kb) 27 Jco k—-ie  sinh (kD)
(3.263)
The contour will be closed along a half-circle of large radius in the upper complex
half-plane (denoted as C, in the first integral), which leads to exponential damping
for the term proportional to exp (ikz). The contour C- involves a large half-circle in
the lower complex half plane and suppresses the term exp (-ikx). The contour C_
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is traversed in the mathematically negative direction, leading to an overall minus
sign for the residue from the contour closed in the lower half plane.

We now appeal to the discussion in Sec. 3.3.5 and attempt to identify the poles
in the integrand in Eq. (3.263). Notably, we shall use the method outlined in
Egs. (3.248)(3.252)] for the evaluation of relevant indefinite integrals. The poles
come from three locations. The first of these is (i) from the 1/(k-ie) factor at k = ie
with € - 07. There are (i) poles at kb = irn from the sinh(kb) term (contour C\)
and (iii) poles at kb = —imn from the sinh(kb) term (contour C_). The ensemble
of the poles thus is a equidistant string of singularities along the imaginary axis,
extending over all kb = imm with m € Zy. Cauchy’s residue theorem, as discussed
in Sec. 3.3.5, is thus brought to bear on the subject. The single pole of the first
category at k = ie leads to the following residue

Qo exp (ikz) sinh(ky)) _ lim Po exp (i-iez) sinh (iey)
2w k—ie sinh (kb)) >0t \2mi 1 sinh (ieb)
_ Do ley Doy

Res

k=ie*

= = ) .264
2mi ieb  27ib (3:264)
The contribution to the potential ®(z,y) is
) ® exp (ikx) sinh (k y) Doy
P =271 Res | — = . 3.265
i(w,y) = 2m Res (27ri k—ic sinh(kb) b (8.265)

For the poles of the second category, we have kb = n7i and investigate the sinh(kb)
term. Indeed, we have sinh(kb) = 0 at kb = nnxi for the integrand in the upper half
plane (n € N). The hyperbolic sine can be expanded near the pole, as follows,

1 1
sinh (kb)  sinh (in7 + (kb - inm))
N 1
o d . .
sinh (in7) + ( — sinh(§) ) (kb -inm)
df E=inm
1 1

cosh(irn) (kb—inm) b(-1)" (k—-ina/b)’ (3.266)

This corresponds to a simple pole at k = nwi/b, with a coefficient as indicated. We
therefore have for the residue,

kRes/b (& exp (ikz) sinh (k y)) _ ‘};0' (-1)" exp (i-inmx/b) sinh(nmy)
C=NT1

omi k-ie sinh(kb)) 2mi b(nmi/b) b
2o gy oxp Cnma/t) sin(@)
2mi nmi

_ 2o _yynexpcnma/b) sin(@) . (3.267)
27i nmw b
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The contribution to the potential ®(z,y) therefore is

- b
Bis () = g (1) SR g, (100 (3.268)
nm b
For the poles of the third category, at kb= —nmi with n € N, we expand
1 1 1
(3.269)

sinh (kb)  sinh (—in7 + [kb+inn])  b(-1) [k + inn/b]’

finding a simple pole at k = nwi/b. We therefore have for the residue,

] ®y exp (-ikz) sinh (k y) n exp (-nmz/b) . nwiy
k-l_)ﬁ/b(_% k—ic  sinh(k b)) _%( S gy “nh(_ b )
nexp (- mrx/b) nmwy
g (R ()

(3.270)
We encircle these poles in the clockwise direction, which is the mathematically
negative direction. The third category of residues therefore is

O (z,y) = ®o (1) wsin(@) ) (3.271)

nmw b

The potential is obtained from the sum over all the residues

[e)

¢ (2,y) = P1(z,y) Z (P (2,y) + Prrn (e, y))

d 2 = (=D
= —0¥, 200 Z( ) exp(—@) sin

b ™ np=1 n b
_ (I’Zy+_9 3 (=1) {exp(_@+~ﬂ)_ (_@_1@)}
mmon b b b b
Doy P & (- [ ( T wy)]
b " mi nzz:l n P b 1b
q)o oo ( 1)n+1 [ ( ,n_y):ln
p ;1 " exp 7 1b

) ) )
:%y+7r_? 1n[1+exp(—%—iﬂ—5)]—?? ln[1+exp(—ﬂ-—bx +i7r—by)]
) Yy
b
Ty
b

oy oy (oo () o

exp (”T) + exp( =
We recall that according to Eqs. (3.253) and (3.259), the boundary conditions ful-
filled by this solution are

®(0,y) =®(x,0) =0, O (x,b) = Dg, 0O<z<oo. (3.273)

Convergence at the point x = 0, y = b is nonuniform as is evident from Fig. 3.7. The
nonuniform convergence can be verified explicitly. On the one hand, we have for
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Fig. 3.7 Plot of the function ®(z,y) as defined in Eq. (3.272) for
$p=1and a=1.

the approach along the y axis,

(0] - () 1 +exp (—ir e
lim ® (0,b—¢) = lim Lolb-) , oy, Lbb)
0" e—0* b i 1+exp (iw—ge)

o b— 1 +exp (irl=s
lim < &g + —(,) In exp(—iw 6) p(- bﬁ )
=0+ i b 1+exp (17TT€)

- lim {cpo . % (-m)} -0, (3.274)

e—0*

The approach parallel to the z axis for y = b leads to

lim @ (¢,b) = lim {(I)Lb + (};9 1n(w)} = lim {M + (};(_) ln(l)} =g
e—~>0+ e—~>0* b 1 s e—>0* b e!

(3.275)
The potential is discontinuous at (z,y) = (0,b); the boundary condition itself is
discontinuous at this point. The discontinuity persists even though the result (3.272)

is expressible in closed analytic form. The sum of the result

:M+% N exp(%)+exp(—i”—by)
b " e () e ()

D(z,y) (3.276)

and the result given in Eq. (3.225) reads as ®(y/b, which also is a solution of the
Laplace equation, and fulfills appropriate boundary conditions.

3.3.7 Cuylinders and Zeros of Bessel Functions

In Secs. 2.4.2 and 2.4.3, we have discussed a number of useful properties of Bessel
functions. Equipped with this general knowledge on Bessel functions, we can now
turn our attention to the application of the general solution of the Laplace equation
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in cylindrical coordinates, given in Eq. (2.142), to various example problems of
cylindrical symmetry.

We start with a grounded outer rim of a cylinder of radius a, i.e., ® = 0 for
p =a. In this case, the solutions are Bessel functions of the first kind satisfying the
condition Jy, (kmn p) = 0 for p = a. This implies that we must choose 1, = kinn @
to be a zero of the mth Bessel function. Furthermore, we must discard solutions
that involve Bessel Y functions as these are singular at the cylinder axis p = 0. This
requirement determines values of k = k,,,, that is, k., with n = 1,2,..., where
ZTmn = kmn @ is the nth root of the Bessel function of order m (see Table 2.1). The
general solution to the Laplace equation V2®(p, ¢, z) = 0 with a vanishing potential
at p = a is a specialization of Eq. (2.142) and reads

[e)

D(p,0,2)= > Y amn I (kmn p) €™ ethmn = D(p=a,p,z)=0. (3.277)

m=—oo n=1

The condition to be fulfilled by the allowed wave numbers k., is
T (bn @) =0, Ky = % : (3.278)
where Z,,, is the nth zero of the mth-order Bessel function.
The following boundary conditions
O(p=a,p,z)=0, D(p,p,z=+L[2) =Dy, (3.279)
describe a zero potential on the outer rim of the cylinder, and constant potential

on the endcaps. The potential is symmetric under z <> —z, and the ansatz (3.277)
thus is modified to read

D(p,0,2)= 2. > @mn I (kmn p) €™ cosh(kpn 2) - (3.280)

m=-oo n=1
The area element on the cylinder endcaps is dA = depdpp with integration
domains ¢ € (0,27) and p € (0,a). Hence, the expansion coefficients are given
by the condition

a 27
fdppfdgp@(p7ap,j:L/2)e_imWJm/(km,n,p)
0 0

a 27
=P [ dpp [ d(pe—imﬂp er(k}mlnr p) . (3281)
0 0

However, the determination of the expansion coefficients can be simplified some-
what, using the azimuthal symmetry of the potential. The only nonvanishing term
is the one with m =0, and Eq. (3.280) is thus simplified to

®(p,,2) = Y, an Jo(kon p) cosh(kon 2) . (3.282)
n=1

We now use the formula

[ avp e - g (ca), (3.283)
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(lpl, 2)
15

Fig. 3.8 Plot of the partial sums up to terms with n = 25 and n = 50 of the expres-
sion (3.288) which describes a zero potential on the outer rim of a cylinder, but constant
potential on the cylinder endcaps. The parameters are chosen as a = 1, L = 3 and
Pg =2.3. Slow convergence (oscillatory behavior, so-called Gibbs phenomenon) is clearly
visible near the boundaries of the cylinder. Note that the potential ®(p,z) has azimuthal
symmetry and is independent of ¢. The plot of ®(|p|,z) with —a < p < a corresponds to
a plot from one outer rim of the cylinder to the other.

which can be shown as follows. One first differentiates the expression = Jq (x) with
the help of Eq. (2.149b)

% [ 11 (2)] = ) + & [ol) = Ja(a)] (3.284)
The recursion relation (2.149a) leads to
Ta () = —Jo(z) + % Ti(x). (3.285)
Plugging this relation into the right-hand side of (3.284), one has
% [z J1(x)] =z Jo(x), (3.286)

and a trivial scale transformation leads to (3.283). Finally, with the help of (3.283)
and the orthogonality condition (2.172), one verifies that

20, 1

= . 3.287
"= Fona cosh(konL/2) J1 (kon @) (8.287)
The solution to the boundary-value problem (3.279) thus reads as
200 & 1 Jo(kon h(kon
(p.prz) = 220 5 L olkon p) _coshiko, 2) (3.288)

a 2 kno Ji(kona) cosh(ko,L/2) "
A plot of the partial sums of this expansion up to n = 5 and n = 50, is given in
Fig. 3.8.

Another question is how to modify the calculation when the potential vanishes on
the cylinder endcaps at z = £L/2. In this case, we must choose linear combinations
of the functions exp(k z) that vanish at z = +L/2. The only way to achieve this
goal is to choose k as a complex rather than real number. We thus form linear
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regular at the cylinder axis p = 0, we again discard the Neumann functions and
write

‘I’(Pa%z) - Z Zamn

combinations proportional to sine and cosine functions. Provided the potential is

(kD p) ™% cos(kD 2)
—oo n=0
+ Z Z bn T (i p) €™ sin(k(? z),
m=-oo n=1

(3.289a)
JACO M £(2) = 271_7r
n L n

7 D (p,p,2==L[2)=0. (3.289b)
Observe that the sum over n goes through n =0, 2,

oo in the first sum, whereas
it starts from unity in the second sum. A convenient reformulation can be achieved
in terms of the modified Bessel functions [5, 7-9],

I (z)=1T

Im(iz). (3.290)
The asymptotic behavior of the Bessel I functions is given as
(@) ~ T () ~ (“)m 0 (3.291)
~ ~— = - .291a
mA I S Ty \2) 0 T
I, () ~ 75 XD (z), T — 00. (3.291b)
(27x)

The general solution (3.289) to the homogeneous equation becomes

—ocon=1

D(p,p.2) = z > tuun I (KD ) &7 cos(k(D) 2)

\ll Mg

Z in L (K2 p) ™% sin(k(? 2)

(3.292)
The sine terms are asymmetric under z < -z, whereas the cosine terms are
symmetric.

We choose as boundary conditions a zero potential on the endcaps of the cylin-
der, and constant potential on the outer rim

(I)(p:a7<paz):(1)07 q)(pa<p7Z:iL/2):O-
The potential is symmetric under z <> —z. Hence

(3.293)

Q(p,p,2) = Z Z Qmn L k‘(l) p)e™? cos(kj(l) z),
m=-oo n=1

(3.294)
where we recall that k(l)

(2n+1)7/L. The infinitesimal area element on the outer
rim of the cylinder is dA = adypdz with the integration domains ¢ € (0,27) and

(=L/2,L/2). Hence, the expansion coefficients a,, can be determined based on
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(b)

Fig. 3.9 Plot of the partial sums up to terms with n = 5 and n = 50 of the expres-
sion (3.298) which describes a zero potential on the cylinder endcaps, but constant poten-
tial on the outer rim of the cylinder. The parameters are a =1, L =3 and ®g = 2.3. Note
that the potenial ®(p,z) has azimuthal symmetry and is independent of ¢. Our plot of
P(|p|,z) with —a < p < a corresponds to a plot from one outer rim of the cylinder to the
other.

the conditions that

27 L/2 27 L/2
fdap f dz®(a,p,z) e ™¥ cos(ks)z):@()/dgo / dze ¢ cos(ks)z),
0 -L/2 0 -L/2

(3.295a)
2m L/2 27 L/2
fdap f dz@(a,ap,z)e_im"" sin(kflg)z):tbofdap f dze ™' sin(kff)z).
0 -L/2 0 -L/2

(3.295b)

However, again, there is a more direct way in view of the simplicity of the boundary
condition which implies azimuthal symmetry. The only contributing term is the
one with m =0, and we have

®(pip,2) = 2 an I (kD p) cos(ky) 2). (3.296)
n=1
One verifies that
4(-1)"d,
an = o
Cn+ D)7 Io(ky’ a)

(3.297)

The solution to the boundary-value problem (3.293) thus reads as (see Fig. 3.9)

D(ppz) = 120§ CU" Lok p)
S T n=0 (2’1’L+1) I()(k),(ll)a)

cos(k{Vz). (3.298)

A few final remarks are in order. A general cylindrical problem with boundary
conditions on the cylinder boundaries (both outer rim as well as endcaps) can be
separated into one with a vanishing solution on the cylinder endcaps and one with
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a vanishing solution on the outer cylinder boundaries. One adjusts the coefficients
in Eq. (3.277) so that the boundary conditions on the endcaps are fulfilled, and
then, one adjusts the coefficients in Eq. (3.289) so that the boundary conditions
on the outer rim of the cylinder are fulfilled. A general boundary value problem
on the cylinder thus involves both types of solutions and can be broken into pieces
according to the above analysis.

3.4 Laplace Equation and Dirichlet Green Functions

3.4.1 Dirichlet Green Function for Spherical Shells

In Sec. 3.2, we have considered approximate solutions to the Laplace equation using
the variational principle. In Sec. 3.3, the solution of the Laplace equation using
series expansions was treated. Now, we shall turn our attention to the third method
listed in Sec. 3.1.4, namely, the Dirichlet Green function. Let us consider grounded
concentric spheres, with radii a < b. As discussed in Sec. 3.1.3, the Dirichlet Green
function fulfills

v2Gp (7,7

1
=——6OGF-7),  Gp T sy weny = 0- (3.299)
€0 ’

7,7V

In order to illustrate the Green function techniques, we consider systems which lie
in a spherical region a < r < b bounded by two concentric conducting spherical shells
of radii @ and b. In this case, we assume that the potentials (rather than the field
strengths) on the conductors are specified and the Dirichlet Green function (rather
than the Neumann Green Function) is required.

In view of the spherical symmetry, we follow the approach outlined in Sec. 2.3.2
and use the following ansatz for the Dirichlet Green function,

o /£
Gp (7, 7)) =2 Y ge(ryr’) Yom (8,9) Yo, (6',¢") . (3.300)
=0 m=—~

We proceed as in the case of the ordinary Green function, i.e., we exclude the
value at r = r’ and concatenate two solutions to the homogeneous equation, one for
a <7 <7’ and the other for 7/ <r <b. Just as in the case of the free Green function
(Sec. 2.3.2), we can combine the solution regular at the origin, and the one regular
at infinity, in such a way that they fulfill the homogeneous equation everywhere
expect at the cusp r = 7/. We then adjust the coefficients such as to ensure that
ge (r,7") =0 at the surfaces of the conductor. A suitable combination is

, , ,ré a2€+1 ,
gg(r,r):ag(r)(m—m), asr<r, (3.301a)
¢
rr' 7't
ge (ryr") = Be (1) (— (b214+)1 + MT) ., r'<r<b. (3.301b)

For a - 0 and b - oo, both of these equations reproduce the structure encountered
for the free Green function. The ansatz (3.301) is justified by the idea that the radial
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terms of the free Green function are supplemented by a product of regular terms
(at the origin, or at infinity) of products of solutions of the homogeneous equations,
symmetric under r <> . Furthermore, in view of the boundary conditions imposed
on the Green function, we need to have gy (r,7') = 0 at r = ¢ and at r = b. Continuity
of go (r,r") at r =1’ requires that

¢
NI NG
aé(r)(p—ww = Be(r") —EnT T =0 (3.302)
In order to satisfy the differential equation
- 1
VGp(7,7) = - 6(F -7), (3.303)
€0

one needs to integrate Eq. (3.301) from r =7' —e to r =1 + €.
This procedure results in the following equation,

(0 (0+1) ot e (01 1
ae(?“)(;+%)+ﬁg(r)(b%ﬂ+( )):eor" (3.304)

T,

The two Eqgs. (3.302) and (3.304) can be solved for ap(r") and Se(r'),

1 1 1 _ (T[/b)2£+1 1 _ (a/r/) 20+1

R AT e 1—( DI
(3.305)

The overall result for the Green function is

Gp (7,7") Z

b2£+1 2£+1 7,2£+1 2Z+1 Vi .
( ) ( ’ )421 Z Yim (9’50) Yim( 790,)

(3.306)
The Green function vanishes on the two concentric spheres at r = a and at r = b.
Two remarks are in order here. We have considered a system with an inner shell of
radius a and an outer shell of radius b, both held at a constant zero potential. If we
set a = 0, then this gives the Dirichlet Green function for the system confined to lie
inside a spherical shell of radius b. If we let b — oo, then this is the Dirichlet Green
function for the region outside a spherical shell of radius a.

2@ +1 (b24+1 _ a2£+1) (7’

3.4.2 Boundary Condition of Dipole Symmetry

We now turn to the application of the Dirichlet Green function to a boundary-value
problem. We recall that, using the Dirichlet Green function and a suitable Dirichlet
boundary condition ®(7) for 9V, and vanishing charge distribution, we can evaluate
the potential ® (') using Eq. (3.27), which we recall for convenience,

®p () = —€ [ dA-9Gp (7,7) - @ (7) . (3.307)
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Let us formulate a boundary condition which has a dipole structure on the inner
sphere, whereas the outer sphere remains grounded,

D (a,0,p) = fu(0) =Py cosb, D (b,0,p) = f(0)=0. (3.308)

The task then is to find the electrostatic potential everywhere. Using the symmetry
property G (7,7') = G (7',7) of the Green function, the solution can be written as

D (r,0,¢) = a’e /dQ' ®q cost’ %GD (7,7
r

(3.309)

r’'=a
Using the orthogonality of the Legendre polynomials which are “hidden” in the
spherical harmonics, this reduces to

2 p3 -3 13 _ 3
‘I)(Tﬁ,sa):%%coso i([ w1l a])

o'\ (¥ =a®) (rr)” )],
a2 bS _ T3
= (I)O cosf 7’_2 m, (3310)

which interpolates between zero (at r = b) and ®g cosd (at r = a). The concept of
the multipole decomposition, outlined in Sec. 2.3.5, has been used with advantage
in the analysis.

3.4.3 Verification Using Series Expansion

In order to establish contact with the series expansion method (3.3), it is useful to
rederive the result given in Eq. (3.310) using the multipole decomposition, with a
suitable projection of the multipole components. Azimuthal symmetry implies that
in Eq. (3.170), we should only select the spherical harmonics with ¢ = 0. Alterna-
tively, in view of Eq. (2.53), we may formulate the angular part as being proportional
to the Legendre polynomial Py(cos#), to obtain

®(r,0) = 2 (et +Ber™Y) Pr(cost), @ (a,0)=fu(0), ®(b,0)=fp(0).

(3.311)
A rather straightforward calculation shows that the ay and Gy are given by
a€+1 Ig (a) _ b€+1 I@ (b)

o= Q201 _ p2tel ; (3.312a)

es1 0" g (a) —a" I (b)
Be= - (ab) Q20+ _p2trl (3.312b)

where the overlap integrals Iy (a) involve the boundary conditions f,(8) and f,(0),

I (a) = 2271 foﬂ £u(8) Py (cos) sin0dg, (3.313)

o (b) = %;1 foﬁfb(o) Py (cosf) sinfdf. (3.313b)
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Using the boundary conditions (3.308), we obtain I;(b) = 0 for all ¢, and the only
nonvanishing ay and S, coefficients are found for £ =1,

a? a’b?
Ii(a) = o, ay =0y ——= pEEER p1=P0——7 PERTE (3.314)
Plugging these coefficients into Eq. (3.311), we confirm that
(L2 b3 _ 7,3
d (7",9,90) = (I)() cosf 7"_2 m 5 (3315)

and thus, the validity of the result given in Eq. (3.310).

3.5 DPoisson Equation and Dirichlet Green Functions

3.5.1 Source Terms with Boundary Conditions

In Sec. 3.1.3, we had developed the formalism for the treatment of boundary-value
problems (of the Dirichlet and Neumann type) with nontrivial source terms and
nontrivial boundary conditions. Given a Dirichlet boundary condition ®(7) = f(7)
for r € OV, we recall that the solution is given by Eq. (3.21),

op() = [ drGo () p() - [ dS-TGo () J(),  (3:316)
where the defining relations for the Dirichlet Green function are [see Eq. (3.20)],

2GD = ﬂl)

1
=-—0O@FE-7),  Gp (R ey peor =0 (3317)
€0 ’

7, eV

If the charge distribution vanishes, p(7) = 0, then the solution to the boundary-value
problem is given by the second term on the right-hand side of (3.316). By contrast,
if the potential is supposed to vanish on the boundary, then the solution is given
by the first term on the right-hand side of (3.316).

A hybrid approach can be taken to problems which involve both nontrivial
boundary conditions as well as nontrivial source terms. Namely, one can split
Dirichlet boundary-value problems into two parts, the first of which is given by the
charge distribution and needs to be integrated using the Dirichlet Green function,
and the second of which is given by the boundary condition and can be integrated
using a series expansion, using the variational principle or with the Dirichlet Green
function itself. In the following, we shall consider the first term on the right-hand
side of (3.316), and its integration using the Dirichlet Green function.

3.5.2 Sources and Fields in a Spherical Shell

We consider the Dirichlet Green function for concentric spheres with radii a < b [see
Eq. (3.306)],
1 2 (b2€+1 _ T2€+1) (r2€+1 _ a2€+1) ¢
>

Gp (7,7') = — - Yo (8,0) Yom (¢',¢)
b €0 Z(:) (20+ 1) (b20+1 — g20+1) (1 7,/)“1 mg_e em (0,0) Yo ( )
(3.318)
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For concentric spheres with radii a < b, we consider a uniformly charged annulus
(ring) with total charge Qo, located in the plane 6 = 7/2 (xy plane), i.e., stretched
between the two concentric spherical shells. This corresponds to a nontrivial source
term in Eq. (3.316); we recall that nontrivial boundary conditions have been treated
using two alternative approaches in Sec. 3.4. The potential in the interior region
between the concentric spheres, due to the uniformly charged annulus, can be cal-
culated with the help of the Dirichlet Green function (3.318), as follows,

p(F) = fv d&*r' Gp (7,7) p(7') . (3.319)

The (constant) surface charge density on the ring (annulus) between the spheres is
Qo

=5 3.320

90 =7 (b2 - a?) ( )

where Qo is the total charge on the annulus [see also Fig. 3.10(a)]. The volume
charge density on the annulus therefore is

p(#)=006(2") =006 (r cost') =22 5(cost'), a<r<b, (3.321)
T

where the latter equality is valid for purposes of the integration over €', in which
case 1’ can be assumed to be a constant. The boundary conditions, which are
automatically implemented by the use of the Dirichlet Green function, read as
D(r=a,0,p)=d(r=>0,0,0) =0. We use Eq. (3.319) and write

o(ro.)= [ &G ) p()

1 dB,rl oo (b2£+1 _ rg(fﬂ) (TEZH _ a2€+1)

€0 Jasr'sb 120 (20 + 1) (D241 — q26+1) (r 7,/)1f+1

¢
X Z Yim (0,0) Yo, (0',¢")" 000 (17 cosd’)

m=-/
1 00 b2£+1 _ 7,.2£+1 7,.2£+1 _ a2£+1
=— dr’ 7% (27) dcos§’ ) ( o) (2 421
€0 Ja<r'<b =0 (2( + 1) (b2€+1 _ a2€+1) (7” 7“')

2

20+1

x ( + ) Py(cosf) Py(cost) %05 (cos®)
4T i

b2€+1 _ r31€+1) (T3€+1 _ a2€+1)

_ 0o <X’chosH)PpO)[d,,

2 € = bp2e+1 _ g26+1 (7“ T,)€+1
(3.322)
For the Legendre polynomials of zero argument, one can use the formula
¢\ T(:+1¢
P(0)= T :cos(l) (2721) (3.323)
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@(x, 0, 2)

(a) (b)

Fig. 3.10 Panel (a) shows the schematic arrangement consisting of the two concentric
spheres, with the annulus centered in the z = 0 plane. Panel (b) shows a plot of the po-
tential (3.326) in the plane of azimuth angle ¢ = 0, i.e., in the y = 0 plane. The potential
has a peak at z = 0, as outlined in the plot. Panel (c) shows the position of the annulus in
plot (b), confirming that the potential peaks where the annulus is. The problem is symmetric
with respect to the azimuth angle, i.e., symmetric with respect to rotations about the z axis.

The integral over r’ can be carried out for the first few £ by an explicit calculation,
where we use the general identity

b T b
[ dr’ f(re,ms) = [ dr’ f(r',r) + f dr’ f(r,r"). (3.324)
a a i
The result for the first two novanishing terms (monopole and quadrupole) is

oo (a—7r)(r->5)
©  Ar

500 b* (b—r)rt+a® (b* — 1) + a’(
326 (b% —ad®)r3

O(r,0,¢) =

5 _ b5
! )(300520—1)+....
(3.325)
The general result consists of the even multipoles,
(77_6) (L+3)T(3+30)
2] /rD(1+30)
y (b?“)ul (ber _ b’l“e) + a2€+1 (b€+2 _ ,r€+2) + a€+2 (,r2€+1 _ b2€+1)
Pl (p26+l — g26+1) (42 4 f - 2) ’

D(r,0,0) = 7 > cos Py(cosh)

€0 ¢=0

(3.326)
0Odd ¢ are eliminated under the sum by the factor cos(n¢/2). The plot in Fig. 3.10
shows the sum of the first 40 multipoles in the expression (3.326) for the solution
of the charged annulus inside the two concentric, grounded, spherical shells. It is
given in the zz plane. The annulus lies in the plane z = 0 and is located where the
potential is large. As we cannot realistically plot the potential as a function of the
three coordinates x, y and z, we have chosen the x and z coordinates. The potential
is rotationally symmetric about the z axis.
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3.5.3 Induced Charge Distributions on the Boundaries

In Sec. 3.5.2, we have considered a situation where a nonvanishing charge distribu-
tion leads to a nontrivial potential in the interior region between the two spherical
shells. The boundary condition for the potential, namely, the assumption that
®(7) =0 for r = @ and r = b, is automatically implemented through the use of the
Dirichlet Green function. Given the charge density on the annulus as in Eq. (3.321),
Dirichlet boundary conditions on the two concentric spheres actually imply that
compensating charge must be brought onto the two concentric spheres in order to
annihilate the electrostatic potential there.

The charge on the inner surface of the outer sphere can be calculated as follows
(rs = r, and 7« = 7). We invoke a Gaussian cylinder surrounding the surface,
and take into account that the outer layer is grounded, i.e., held at zero potential.
Hence, the electric field outside of the concentric sphere vanishes. Furthermore, this
implies that the contribution to the surface integral (through the Gaussian cylinder)
comes exclusively from the “inner” region where the surface normal is —¢é,.. So, there
isn’t a “factor 1/2 coming in from the other cap of the Gaussian cylinder” as one
might otherwise suggest. We simply have o(7) = —¢p E, where E, is the normal
component of the electric field (which is pointing in the negative radial direction
for the outer sphere),

Qb:f A2 o (F) = f AQ7? (=0 E,) = b2 e[dQ re’“”)
" " r=b
00 b? Pz (cosf) Py (0)
=——(2r )Z f deos 0= r e
b b2£+1 _ n20+1 20+1 _ 20+1
x 2 [ d’l“’ rl ( r )( a )
or a ( ,)Z+1 -
2 1 r_
_oob (2r) f deosd Py(cosb) Py (0) f dr ,b rar-a
2 -1 b-a or (A

2 _
:O'()b (271’) 2 (g b-r
or r

' dr’ (r' - a)
).

om0 () [ 0w 60, 327

which has the correct physical dimension. In the derivation, we have started from
the integral representation in the last line of Eq. (3.322). On the inner spherical
shell (r = a), we have o(7) = ¢g F, because the normal component of the electric
field is pointing in the positive radial direction. Furthermore, on the outer surface
of the inner sphere, we have rs = r’ and r. = r, and the surface charge therefore is
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given by

- [_dorte(m) = [ dr (+eo B) = -a*eo [ w
r=a r=a r

r=a

b2€+1 _ a2€+1

2 o) 1
B 002a 2m) 3 f deosd Py (cosb) P, (0)
=071

Pl b (b22+1 _ T/2€+1) (r22+1 _ a2£+1)

A A
X o [a r - r’)eﬂ dr
r=a

aoa Po(c059 PO(O) o9 rbb-r"r-a
(2w )f( dcosf o L r dr

r’ r b
b
) / (b-r")dr'

Jd r—a

2
gpa 2 (
- D) =

2 (W)b—a or

r

an

(2m) (2) — (%) fab (b-1') &' = -mo0a (b-a) . (3.328)

The two charges @, and @, both have the same sign but are manifestly different;
the ratio is b/a. This is in line with intuition because of the following consideration:
Namely, if the induced charge density on both concentric spheres were the same,
then the ratio would be equal to the ratio of the surface areas, i.e., b?/a. However,
the average distance to the surface elements of the inner concentric sphere is smaller,
and because the potential goes with the inverse distance, the change in the ratio
from b%/a® to b/a is in line with intuition. In the derivation, we have used the
orthogonality of the Legendre polynomials in the form

[11 P, () P, (0)da = P, (0) fl1 Py () dz = P, (0) [fPe () Po()da

2
=P (0) 7e1 fei =240, (3.329)

where Py(0) = Py(x) = 1. The orthogonality property (2.48) has also been employed.

3.6 Exercises

e Exercise 3.1: For ' € 9V, Eq. (3.21) reduces to

®p () = [ dA-vGp (7,7) f (). (3.330)

ov

#edV

By applying the divergence theorem to the right-hand side, show that the right-hand
side is equal to f (#'), tantamount to the Dirichlet boundary condition.
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e Exercise 3.2: For ' € 9V, Eq. (3.26) can be written as

v = [ @G () p() +eo [ (Frdd- T:0(0)Gy (7,7))
(3.331)

Show that the right-hand side of Eq. (3.331) is indeed equal to g(7), where g(7') is

defined as in Eq. (3.15), by applying the divergence theorem to the third term on

the right-hand side of Eq. (3.331).

e Exercise 3.3: For a functional of the form

- [ de F(f(z), f'(2)), (3.332)

@fI(I)N (77,)

show that
608  OF d OF
6f(x) 0f(x) dwdf'(x)
where you treat the partial differentiations as if f and f’ were independent variables.
Hint: In carrying out the variations, you still need to take into account that a change
in f - f+0Jf implies a concomitant change in f' — f' +4df’.
e Exercise 3.4: Consider the three-dimensional generalization of Eq. (3.45),

fdg ,F(F() + 0™ F))—F(f(F’)).

(3.333)

5f T) lim . (3.334)
Show that, for
*)]:%fvd%'[@f(f')]?, (3.335)
one has
5}5(5?) = -V2f(7). (3.336)

e Exercise 3.5: For the functional
_ fvd3r (Vo) (3.337)

show that
528

= 2§ (7 - ) V2, :
s on) - (3.338)

Verify the result in two ways, (i) with recourse to the definition (3.45), suitably gen-
eralized to a three-dimensional integral, (%) by writing the first functional derivative
as an integral, and then reading off the second functional derivative “under the in-
tegral sign”, as in Eq. (3.44).

e Exercise 3.6: Carry out the generalization of Eqgs. (3.71)-(3.73) to three dimen-
sions explicitly. For an infinite integration volume, consult Chaps. 4 and 6 for an
introduction to Fourier transforms.
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e Exercise 3.7: Write the following ansatz for the potential energy stored in the
potential in a long coaxial cylinder,

2

& F o |20
B-3 (27T)Lb[dpp ‘8[) , (3.339)

where w = w(p) is your trial function for the potential, and L is the cylinder length.
This ansatz is inspired by Eq. (3.105) upon dropping the dependence on ¢ and z of
the potential, which is irrelevant in the limit of large L. By variation of this function
using the Euler-Lagrange equations, obtain the exact form given in Eq. (3.117).

e Exercise 3.8: Show Eq. (3.124) by expressing the unit vector @ in Cartesian
coordinates, and using the definition (1.16) of the gradient operator.

e Exercise 3.9: Calculate the surface area of an ellipsoid given by the equation

F(7) = (2* +yH)]a* + 2%/ -1=0 (3.340)

using Eq. (3.128).

e Exercise 3.10: Calculate the potential on the symmetry axis due to a uniform
charge density o¢ on the surface of an ellipsoid given by Eq. (3.340). Employ
Eq. (3.128).

o Exercise 3.11: Exercise: Verify the result (3.147) by a numerical integration,
choosing convenient numerical values of the parameters (proposal: b = 0.2cm, p =
1.0cm).

e Exercise 3.12: Treat the following boundary-value problem for a cube with
volume 0 < x < a, 0 <y <a, and 0 < z < a, whose upper side at z = a is at a potential
®, with grounded five other surfaces (zero potential on five of the six surfaces).
Hint: you may want to choose the ansatz

O(z,y,2) = %Cnm sin(?) sin(m;ry) sinh(\/(%)2 + (%)2 z) . (3.341)

Now set ® = & for z = a, resulting in the condition

a

a ’ ’
[dm[dy@(m,y,a) sin(nﬂx)sin(mﬂy)
a a
0

0

a

a ’ 1
=P, fdm[dysin(nﬂx)sin(mﬂy). (3.342)
a a
0

0

e Exercise 3.13: Repeat the calculation in Sec. 3.3.4 for the boundary condition

v\2
9(y) =P (3) : (3.343)
e Exercise 3.14: Show that (maybe with the help of computer algebra)
1 db [ . ( sin(2) 2
- — —_— =—. 3.344
6! dz6 {Z (zﬁ cos(z) J)|,., 15 ( )
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Thus, calculate the residue

R_eos [tan(z) 2_6] . (3.345)
o Exercise 3.15: Show that
Res (— exp(z)) % , (3.346a)
1
Bl — .346b
Res 5 exp(2) - 5 (3.3460)
( ! eXp(lz)) 0, (3.346¢)
25 sin(z)

1 1
Res (— exp(z) cos(z)) -~ 3 (3.346d)
Res (ir exp(z) cos(z)) ! . (3.346¢)

z=0 \ z° 6

e Exercise 3.16: Repeat the derivation outlined in Egs. (3.264)—(3.272) upon an
alteration of the pole prescription in Eq. (3.263), i.e., 1/k — 1/(k + ie) instead of
1/k - 1/(k - ie).

e Exercise 3.17: Fill in the missing intermediate steps in the derivation of
Eq. (3.288) for the boundary conditions given in Eq. (3.279). Then, generalize
the treatment for the following boundary-value problem:

®(p=a,p,2)=0, Q)(p7(p,Z::I:L/2)=:i:(I)0, (3.347)

i.e., for an upper, positively charged endcap, and a lower, negatively charged endcap.
e Exercise 3.18: Fill in the missing intermediate steps in the derivation of
Eq. (3.298) for the boundary conditions given in Eq. (3.293). Then, generalize
the treatment for the following boundary-value problem:
2

®(p=a,p,z2) :@sza (I)(p,QD,Z::I:L/2)=0, (3.348)
i.e., for grounded endcaps, and a nonvanishing potential on the outer rim of the
cylinder, which is odd under z < —z.
e Exercise 3.19: Derive (3.304) based on (3.302) and ideas outlined in Egs. (2.81)—
(2.90). Hint: Consider Eq. (2.86), in the form

0
- —Gy(r,7")

0
2 - /
( aT Ge (T7 " ) r=r/+e (97"

e Exercise 3.20: Fill in the missing intermediate steps in the derivation of
Eq. (3.310), starting from Eq. (3.308). In particular, clarify why the expression
VGp (7,7) -dA can be replaced by [(8/0r)Gp (7,7 )]dA. Generalize the solution
for the boundary-value problem

D (a,0,p) = f.(0) =0, D (b,0,¢0) = fp(0) =Dy cosb. (3.350)

1

) -1 (3.349)
r=r/—¢g €0
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e Exercise 3.21: Fill in the missing steps in the derivation extending from
Eq. (3.311) to (3.315). Hint: Use the orthogonality relation (2.48) and Eq. (2.44).
e Exercise 3.22: Repeat the analysis in Secs. 3.4.2 and 3.4.3 for the boundary
conditions

@ (a,0,¢) = fa(0) = ®o (3cos®0-1), D (b,0,90) = f,(0) =0. (3.351)

e Exercise 3.23: Derive Eq. (3.326), using as input all other formulas presented
in Sec. 3.5.1.
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Chapter 4

Green Functions of Electrodynamics

4.1 Green Function for the Wave Equation

4.1.1 Integral Representation of the Green Function

In contrast to electrostatics, electrodynamics describes time-dependent sources, vec-
tor potentials and fields. Of prime importance are electromagnetic wave phenomena.
In consequence, it is natural to start the discussion of electrodynamics by consider-
ing the wave equation, first, in the context of a model problem. Namely, we assume
that a signal function ¥ (7,t) is generated by sources F'(#,t) and has the general
form

LI e e - L P (@.1)

—— - 7,t)= — F (7,t) . .
c? Ot? €0 ’

One approach to the solution of this equation is to work with the space-time Fourier

transforms of the fields and sources. The space-time functions are related to the

corresponding functions in Fourier space, referred to as ¥(k,w) and F(k,w),

3 w - -

(7, t) = [ % (;—Wlb(k,w) exp (ik-?—iwt) , (4.2a)
3 w - ~

F(#,t) = f ((217:;3 (;_ﬂ F(k,w)exp (ik‘ T - iwt) . (4.2b)

Here, we denote the original function as well as its Fourier transform by the same
symbol, as already done in Sec. 2.2. The wave vector is k£ and the angular frequency
is denoted as w. The Fourier backtransformation is given as

Y(k,w) = [d37"fdt Y(7,t) exp(—i/%~?+iwt), (4.3a)
Flk,w) = fd3rfdt F(7,t) exp (=ik -7 +iwt) | (4.3b)

where we use the relationship

[oo dv e = 5(u). (4.4)

o 2T
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The Fourier transform of the wave function fulfills the Fourier transformed version
of Eq. (4.1),

A3k dw ., 102 = oo

- _ | = + k‘ ik-r—iwt

(27r)3 f o ( v c? Ot2 v(k,w)e

- f oy F(/%,w) elf vt (4.5)

Because the differential operators only act on the exponential terms, the equation
is converted into an algebraic equation,

3 w (=0 W2\ - R

Since each Fourier component exp(ik-7—iwt) is linearly independent, all the Fourier
coefficients must be zero. In other words, if a function vanishes, then its Fourier
transform vanishes, and vice versa. The solution of the algebraic equation fulfilled
by the Fourier transform therefore is
w(ff’w) - 1 M
€ k2 - (w/c)
The problem of calculating v (7,t) is now reduced to taking the inverse Fourier
transform of the expression F(k,w)/[k* - (w/c)?]. There is at least one difficulty.
The integrand has singularities at w = +c ‘Z}‘, which need to be handled when evalu-
ating the w integral. The different choices for the contour will later be understood
in terms of the different choices for the boundary conditions imposed on the Green
function. In the case of electrostatics, the Green function G(7#,#') = 1/(4meo |7 = 7/|)
can be modified to fulfill different boundary conditions (in space), by adding to the
Green function a solution of the homogeneous equation. Likewise, here, we will
see that the Green function can fulfill the defining equation and still fulfill different
boundary conditions in space and time.
The Green function G(7 — #,t — t') with its Fourier transform G(k,w) solves
Eq. (4.1) with the source term given by

(4.7)

~ _<(3) (= ik (7= ) —iw(t— t)
F(i8)=6® (F =) §(t—1t') = f oK e (4.8)
i.e., the Green function in coordinate space fulfills
1 6?
- Y 7 53 4
(628t2—V)G(r =t = o (F-7)o(-t), (4.9)

where V = §/07 is a differential operator with respect to 7 (not #’). In the case of
translation invariance, the dependence of the Green function on 7 is absorbed in
the notation

G(r-7,t-t")= G(#t,#,t), (4.10)

where the latter form explicitly indicates the dependence on the four independent
arguments. One can find the Fourier transform G(k,w) by applying the operator
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(1/¢*)0?/0t? - V? under the integral sign, to the Fourier decomposition. This oper-
ation is analogous to the calculation that leads to Egs. (4.6) and (4.7), and results
in the identity

Bk dw [[+9 w? - T (e i (bt
f (27_(_)3% {(kQ—g)G(k,W)—%}ek( ) (t t):O, (411)

which must be valid for all Fourier components separately. In Fourier space, the
Green function therefore reads as

Glkw)= — ——— (4.12)
’ €0 2 - (wfe)®
Furthermore, in terms of space-time coordinates, the Green function for the
wave equation is found by Fourier backtransformation

1 d3]€ dw eifc-(?—ﬁ')—iw(t—t')

G(f"—f",at—t’) = ; W g W (413)

The integrand has singularities at k = +w/c.

As already anticipated in the discussion following Eq. (4.7), we must invoke
Cauchy’s residue theorem in evaluating the pole contributions in Eq. (4.13) (in the
w integral), after a suitable choice of the integration contour. In view of the identity

1 _L( w—clk| ~ w+clk| )_L( 11 ) (4.14)
k2 -w?/c2 20k \w?-(ck)? w2-(ck)?) 20kl \w+c|k| w-c|k])

we write the Green function as follows,

3 1k(r r) x . ,
P t—t') = f dk_ce d—“e-wﬁ-t)( LI 1ﬁ).(4.15)
(2m)3 2|k|60 J2m wteclk| w-clkl

The w integration over the interval w € (—oo,+00) cannot be properly defined in
the Riemannian sense; the integration contour has to be deformed into the complex
plane in order for the residue theorem to be applicable. The integrand has two
first-order poles along the real w axis. We write G as follows,

L celk ()
G-t —t') = f(2 5 F(B) Po(t -t k), )= — (10

where the following characteristic frequency integral needs to be studied,

Pc(t—tl,|]2|)= fd_we—iw(t—t’) 1 _ 1 _
Jo2m w+eclk] w-clkl

- fd—we‘i“(t‘t') ( LI ) (4.17)
2 2 w+clk] w-clkl
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Im w
Imw
Contour Cg Contour Cy
A4 \W
Re w
Re w

(a) (b)

Fig. 4.1 The w integration contours Cr and C4 in the complex plane are illustrated.
Panel (a) shows the contour that gives the retarded Green function, while panel (b) leads
to the advanced Green function. The contour Cg used in evaluating the integral in
Eq. (4.17) encircles the poles from above the real axis. For ¢t < ¢/, we have to close the
contour Cg in the upper complex half plane, and the result for the integral (4.17) is zero;
the retarded Green function vanishes for ¢ < ¢. By contrast, the contour C4 is below the
real axis. So, if C4 is used, then for t > ¢/, the contour C4 is completed below the real
axis and the advanced Green function vanishes.

Here, C'is a contour that is infinitesimally displaced from the poles. We will discuss
its explicit form below; there is some freedom of choice. Indeed, the value of Pc (-
t',|k|) depends on the choice of the contour. Integrating w over the interval (—oo, 00),
one encounters poles at w = —¢|k| and w = +¢|k|. The question then is how these poles
should be handled. Indeed, all reasonable ways of treating the poles on the initial
integration contour lead to Green functions that solve the defining Eq. (4.9). One
may, for example, treat the pole terms using a principal-value integration, which
is equivalent to the arithmetic mean of the results obtained using the “upper” and
“lower” contours, which encircle the poles infinitesimally above and below the real
axis. Alternatively, one may either encircle both of the poles infinitesimally above or
below the real axis, or one above and one below. All Green functions thus obtained
fulfill the defining equation (4.9). In order to apply the residue theorem, we must
close the contour C' in Eq. (4.17). The poles have been infinitesimally displaced
from the real axis, and the contour initially extends from w = —co to w = oo; we need
to close it alongside a semi-circle at |w| = oo, with exponential damping in the upper
or lower half plane to ensure the convergence of the integral. In our derivations, we
thus assume that the integral along the infinite semi-circle S at |w| = oo,

Qc(t—t’,lffl)zf;—:e‘i“(t‘t')( L 1! ) (4.18)
S

wt+clk| w-clk|

vanishes because of the exponential suppression of the integrand for large |w|. As
we shall see, the way in which the contour has to be closed may depend on the sign
of t —t'. Details are discussed in the following. Possible choices for the contour C
are given in Fig. 4.1 and Fig. 4.2.
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4.1.2 Why So Many Green Functions?

In the following considerations, we shall encounter the retarded, advanced, and
FEYNMAN! Green functions. All of these solve the basic, defining equation for the
Green function, given in Eq. (4.9), which we recall for convenience,

2
(ia— - @2)G(F—F’,t ~t') = Ei SO F-)s(t-t). (4.19)
0

However, the Green functions differ in their causal behavior and in their analytic
structure.

In terms of a classical interpretation, let us first consider the case where the
Green function describes a string. The retarded Green function Gg(x,t,z’,t") gives
the response of the string (initially at rest) to a “unit of momentum” (Dirac-§
disturbance) applied to the string at a point in time ¢’ at a point 2’ along the
string, with the response being recorded at space-time point (z,t) with ¢ > ¢'. The
advanced Green function Ga(z,t,2',t") gives the initial field configuration of the
string, designed such that a “unit of momentum” applied at (z',t") causes it to
come to rest. The initial configuration is described at the space-time points (x,t)
with ¢ < ¢. The advanced Green function “propagates into the past”, the retarded
Green function “propagates into the future”.

In electrodynamics, the retarded Green function describes outgoing waves [scalar
and vector potentials ®(7,t) and A(7,t)], generated by the sources p(7,t') and
J(#,t"), with t > ¢/, i.e., the electromagnetic potentials and fields are generated by
a unit disturbance (Dirac-d function) at (#,t'), with the fields being zero for ¢ < ¢'.
The advanced Green function in electrodynamics describes incoming waves, i.e., it
describes the scalar and vector potentials ®(7,t) and A(7,t)] which converge to a
unit disturbance at (7#,t"), with ¢ < ¢/, with the fields being zero for ¢t > t'.

The Feynman Green function was originally devised by STUECKELBERG? and
Feynman. The Feynman Green function essentially relies on a complex formalism, in
the sense of a Fourier transform of the source configuration. Positive-frequency com-
ponents of the source configuration are interpreted as sources for outgoing waves,
which propagate into the future, whereas negative-frequency components are inter-
preted as sinks of incoming waves, which propagate into the past. This enables one
to describe both field quanta creation as well as field quanta annihilation processes
with one and the same Green function; one thus summarizes a number of different
time orderings in the expansion of the time-dependent perturbation theory, into one
and the same Green function [20].

The necessity of introducing yet a third Green function, namely, the Feyn-
man Green function comes from field theory, notably, quantum electrodynamics.
Roughly speaking, in field theory, in order to describe processes which involve the
time evolution of the quantum fields, one needs to consider the so-called time-

IRichard Phillips Feynman (1918-1988)
2Count Ernst Carl Gerlach von Stueckelberg (1905-1984)



142 Advanced Classical Electrodynamics

ordered T product of field operators [see Eqgs. (3.124) and (3.125) of Ref. [20]],

(O[T A% () A (/)] 0) = O(t - ') (0] 4% () A” ()] 0) + (¥ - 1) (04" (a') A" ()]0} ,

(4.20)
where O is the Heaviside step function, = = (¢,7) is a space-time coordinate four-
vector, and A*(x) is a four-vector potential operator (u,v =0,...,3). The vacuum
state is denoted as |0). The Green function

G (z-a")=g" Gp(z—-2") = -1 (0T A*(z) A”(z")|0) (4.21)

contains both retarded [oc ©(t - t')] as well as advanced [e< ©(¢' —t)] components
and is proportional to the Feynman propagator Gr. The space-time metric is
g =diag(1,-1,-1,-1).

A final point: The three Green functions (retarded, advanced, and Feynman)
differ by a solution of the homogeneous equation, i.e.,

1 0% .

— -V (Gp(F -7 t-t') - Gr(F-7,t-1)) =0, (4.22)
2 o2

and the same relation holds for Gp— G4, and Ggr—G 4. In our electrostatic analogy

the different Green functions would correspond to different solutions of the defining

equation (2.66) of the electrostatic Green function, which we recall as

. 1
VIQ@FE-7) = —= 6B (7 -7), (4.23)
€0

with different boundary conditions, implemented for the “boundaries” of space-time
which can include the half-spaces ¢ > ¢’ and t' < . Pursuing the analogy further,
one may remark that the Green function of electrostatics has the representation
-1/ k% in wave number space, but in coordinate space, one may add a solution of
the homogeneous equation V2G(7 —#') = 0, which leads to the Dirichlet and Neu-
mann Green functions. Analogous considerations are true for the Green function of
electrodynamics, with —1/k? being replaced by (eo (k2 - (w/c)?))™" [see Eq. (4.12)].

4.1.3 Retarded and Advanced Green Function

We recall once more that according to Egs. (4.16) and (4.17), the Green function is
given as

G- t—t') = f(2 y FR) Pe(t—t' k), f(E) = —— e&(-7) | (4.24)

2|k|€0
We recall the following characteristic frequency integral, defined in Eq. (4.17),
- dw _; / 1 1
Po(t -t |k :f—e‘“”(t‘t)( - ﬁ). 4.25
e I+ c 2m wtclk] w-clkl (4.25)

The contour C' consists two elements, the first being equal to the real axis, with an
appropriate choice regarding the poles of the integrand, the second being the semi-
circle, with infinite radius, in either the upper half complex w plane or in the lower
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complex w half plane. Unlike the way in which the pole terms are encircled, the
choice of the semi-circle actually is determined by the requirement for the integral
to converge to a finite value.

Together with the choice of the integration contour for the pole terms, this
requirement determines the behavior of the Green function for positive and negative
time difference ¢t —¢'. Let us consider the term in round brackets in the integrand
of Eq. (4.25), which causes the integrand to vanish, on either semi-circle, as |(,u|_2
for large |w| provided the exponential in the numerator is well behaved. In order to
analyze the behavior on the semi-circle, we set w = Re(w) + i Im(w). The absolute
value of the exponential in the integrand of Eq. (4.25) is determined by the relation

exp [-iw(t-1t)]

= exp[lm(w) (t- t')] : (4.26)

If t—¢ >0 and Im(w) — +o0, then this expression diverges. However, if t —t' > 0
and Im(w) — —oo, then this expression vanishes exponentially. Thus, for ¢ > ¢', the
path used in evaluating (4.17) must be closed in the lower half of the complex w
plane. Conversely, for ¢t < t/, the path must be closed along a semi-circle in the
upper half of the complex w plane. The first path gives a nonvanishing contribution
for the retarded Green function (contour Cg, see Fig. 4.1), whereas the second
yields a nonvanishing contribution for the advanced Green function (contour Cjy).
For completeness, we should point out that two obvious further possibilities for
distorting the path exist which encircle the poles on opposite sides of the real axis;
these are not shown in Fig. 4.1.

Both integration paths outlined in Fig. 4.1 have their justification, and both
results for the Green function are valid solutions of the defining equation (4.9), i.e.,
they lead to solutions of the inhomogeneous differential equation

2

(%a_ - @2)G(F—F’,t ~t') = EIE (F-7)o(t—-t"). (4.27)
c 8t2 €0

The different solutions fulfill different boundary conditions, which is natural for a

second-order partial differential equation.

The results obtained for Po(t — ¢, |k|) along the different contours differ in
the boundary conditions fulfilled by the corresponding Green functions. For the
Dirichlet Green function in electrostatics, the boundary conditions are given along
two-dimensional submanifolds (surfaces) of three-dimensional space. The Dirichlet
Green function is required to vanish whenever one of the two arguments 7 or #' is on
the defining surface. For the time-dependent Green function, boundary conditions
are defined on submanifolds of four-dimensional space-time. Intuitively, one would
associate boundary conditions with limiting cases of the variables, e.g., in the infi-
nite past or the infinite future. In all cases considered, we have so far defined our
Green function to vanish in the infinite past or future, or, for large distances.

Theoretically, we could have added to any of our Green functions a solution
to the homogeneous equation to the Green function (e.g., a constant term) that
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changes the behavior as t,t’ — oo or ||, || > co. However, we choose not to do so.
Or, we could have added a solution of the homogeneous equation, proportional to a
plane and uniform wave cos(k-7—wt). This wave does not vanish for [t—#'| - oo, and
| = 7| > oo. Indeed, the difference of the retarded and advanced Green functions is
just a solution of the homogeneous equation.

Let us now evaluate both the retarded as well as the advanced Green function,
explicitly. We consider the w or angular frequency part of the integrand

. dw . / 1 1
Po(t—t k) = S griw(tt) ( - . ) , (4.28)
27 w+clk] w-clkl

closed

where C' is the path of integration. If the path Cr for the retarded Green function
in Fig. 4.1 is used and ¢ < ¢/, then we must close the integration path in the upper
half of the complex plane, and the result for Po is zero. However, if Cr is used
and t > t', then the poles are encircled in the clockwise (mathematically negative)

direction, and we obtain
—iw(t-t") —iw(t-t")
Res eiﬁ — Res 67#
w==ck \ w+c|k| w=tck \ w —clk]|

—i0(t-t) (e—i(—ck)(t—t’) _ e—i(+ck)(t—t'))

—@@(t—t’)

Pe,, (t-t,]k]) o

-i® (t _ t,) (eick(t_t’) _ e—i(!k(t—t’))
=26(t-1) sin(ck{t-£)). (4.29)

The function P, (t - t,|k|) is nonvanishing only for ¢ > ¢/; this is manifest in the
step function. By looking at the integration contour, one might superficially assume
that the pole of the integrand is only half-encircled. However, the continuation of
the integration contour into the lower complex plane actually makes it a full pole.
The factor 1/(27) of the w integration thus is compensated by the factor 27 from
the residue theorem.

On account of Egs. (4.16) and (4.29), we obtain the retarded Green function
Gr,

3
Gr(F =7t =1)= [ 555 1) et [R)
N C d?’k ei%.(F_F’) - ’
:@(t—t)%[(27T)3Tsm(ck(t—t)), (4.30)

where we recall the definition of f(k) given in Eq. (4.16). Now we do the k inte-
gration in spherical k space, assuming (without loss of generality) that 7 — 7 points
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along the &, direction [ug = cos(6y)]:

9 exp (1 k|F = 7| ug) . o
Gr=0(t-t") 60(8773)./dkk fdapk fdu 7 sin(ck (t-t"))

_ 9 exp (1 k|7 — 7] ug) .
-o(t- 60(871'3)[ dk k f duy t sin(ck (t—t'))

—O(t-t') — f dk k2 eXp(lkV_r')?_eXp,( =) ek (£- 1))
43¢ 1k2|7 — 7|
' c < AT '
~0U=1) g Jy Ok [ sk (t-1)

+el R sin(c(=k) (- )] - (4.31)

In view of the symmetry under k < -k, we can extend the integration domain to
the entire real axis,

Gr=0(t-t) ,|f dkexp (ik | — 7]) sin(ck(t )

471'2601 |7 -7

—r ick (t-t") _ —ick (¢t-t")
o(t-t) 7471'2601 T / dk ( ) exp (k|7 —7]) [e e ]
C e . = = B 7 B 7
Ot -+ _ [ dk ik|F-7| ick (t-t") _ —ick (t-t")
( ) ( 877260|F—f’|) —oo ¢ [e ¢ ]

_ Nl c > ik (|77 |+c(t-t")) _ ik (|F-7|-c(t-t"))
=0(t t)( 877260|F—F’|)[ dk[e * e ]
(4.32)

The k integration is now trivial in view of the formula
f dke™™ = 27 §(z). (4.33)

The retarded Green function thus is given as

Gr(F-7 t-t")=- c - ﬂ,| O(t- t){ (|* 7+ c(t- t)) (F—F’ —c(t—t'))},

dmeg |7
(4.34)
which can be simplified to read

Gr(F-7t- t)_4mo e ﬁ,| o(t- t){(s(;_;' _c(t—t’)) (I* 7|+ c(t- t))}

(4.35)
One might otherwise argue that it should be possible to discard the last term in
curly brackets in Eq. (4.35), because the expression |7 — 7| + ¢ (t —t") cannot vanish
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if t—t' > 0, which in turn is necessary for the step function to be nonvanishing. One
might thus think that the Green function should be expressible as

c O(-t)
drey |F -7

Gr(F-7,t-t)w S(F-7|-c(t-t")). (4.36)
In many cases, it is indeed possible to discard the second term in curly brackets in
Eq. (4.35), as done in Ref. [21]. However, as argued in Ref. [22], the approxima-
tion (4.36) can only be used if no partial integrations are to be carried out, i.e., if
we have manifestly ¢ — ¢ > 0 for all contributing source terms in a calculation. The
deeper reason is the following: In any representation of the Dirac-d distribution,
e.g., formulated in terms of normalized Gaussians whose width tends to zero, the
step function will assume values of unity within the width of the representation
of the Dirac-d function when |¥ - 7| - 0" and ¢ (¢ - t") - 0*. In other words, for
any representation of the Dirac-§ distribution in terms of Gaussians with a small
width, the Dirac-d function §(|F=7'|+c (t-t")) will start to “ramp up” already when
|7 — 7|+ c(t—t") assumes slightly positive, nonvanishing values (¢t —¢' > 0), which lie
in the domain where ©(t —t") > 0. One thus cannot discard any term in Eq. (4.35)
if one would like to carry out partial integrations (with respect to time or space)
correctly. Such partial integrations are useful in the investigation of the coupling of
the sources to the potentials and fields in classical electrodynamics [22].
It is sometimes useful to note that G can be written as

Gr(F-7,t-t")= 4;60 |F_—1f,| o(t-t') 5(|F—F'|—c(t—t'))
N GONE @(t—t’)6(|F—F’—(—c)(t—t’)), (4.37)

dmeq |7 — 7|

i.e., as the sum of two terms, the second of which is derived from the first by a
change in the sign of the speed of light. Likewise, the approximation

o(t-t) 5((?—?’)2 - (t—t’)Q) (4.38)

Cc

Gr(F-# t-t')w
2meg

is valid provided we can discard the second term in curly brackets in Eq. (4.35).
Indeed, if the only contributing zero of the argument of the Dirac-§ is the one at

|7 -7 -c(t-t)=0, t—-t'>0, (4.39)
then in view of Eq. (1.34),
5(|F—F’|—c(t—t’))
S| (F-7)2 = (t-t')? ] = S— , t—t'>0. (4.40)
2|7 = 7|

Under these assumptions, the approximations (4.38) and (4.36) remain valid.

The advanced Green function obtained using the path C4 (see Fig. 4.1) is similar
to the retarded Green function but is nonvanishing only for ¢ < ¢'. Note that one
must repeat all the steps leading to the expression (4.35) for the retarded Green
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Im w

Contour Cp

£\

Rew

Fig. 4.2 The Feynman contour Cr corresponds to the time-ordered
product of photon field operators in field theory.

function but use the contour C4, rather than C'r. The net result of this calculation
is that the advanced Green function is obtained from Eq. (4.34) by the substitution
t—t >t —t,

Goa(F -7 1 t)—4m |7'17"| (t’—t){ (r 7+ e (t- t)) ( - e (t- t))}
(4.41)

This can be rewritten as

Ga(F-7,t-t")= ! e(t’—t){ (* 7| -c(t t)) (|* Pl +c(t t))}

47T60 |7 — 7
(4.42)

Under appropriate assumptions (manifestly ¢ — ¢ < 0, and no partial integrations)

we can approximate the advanced Green function as
1

Galr-rt- t)~47re |7 — 7]

OW-t) s(|fr-+c(t-t)), (4.43)

or as

Ga (F—F’,t—t')mzﬂi ot -t) 5(( — )2 —c2(t—t')2), (4.44)

where the latter form is valid if we neglect the overlap region of the © function
with the chosen representation of the Dirac-¢; this approximation is generally valid
unless partial integrations have to be taken [22].

4.1.4 Feynman Contour Green Function

We recall the definition of the P¢o function, which for the Feynman contour as given
in Fig. 4.2 reads

- . ’ 1 1
Pop(t—t i) = § Weiw() ( - . ) . (4.45)
2 27 w+clk] w-clk|
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For t—t' > 0, the Feynman integration contour has to be closed in the mathematically
negative sense, and the pole at w = ¢|k| is relevant. For ¢ —t' < 0, the contour is
closed in the upper complex half plane, and the pole at w = —C|f€| is relevant. It
is encircled in the mathematically positive sense. Alternatively, we could include
infinitesimal imaginary contributions into the denominators,

PCF(t—t',|/2|):fd—we-iw(t-t’>( L1 ) (4.46)

2 wrclk|-ie w-clkl+ie

—00

So,

. —iw(t-t")
Peo (t-2.J) = - 2D 641 Res (7)

w=+ck o.)—c|k|

: —iw(t-t")
20 (1) Res (87)
21

w==ck \ w+c|k|
=i0(t-t") e Lo (1 —t) et (4.47)

The second term equals the first under the replacement ¢t —t’ — ¢’ —t. The Feynman
Green function G is thus obtained as

Bk colFE-7)

Gr(F-7,t-1t")= WW

(1@ (t—t') R Lig (¢ - 1) eic’“(t‘t'>) .

(4.48)
Now we do the k integration in spherical k space, assuming, without loss of general-
ity, that # -7 is aligned along the &, direction [uj = cos(8x)]. The Feynman Green
function G consists of two terms, the first of which reads

, o 2 ! GRF =7 ur) iy
W —ie-t) —- f dk ka d f duy SR ick(t=t')
=16 ) 2¢€ (873) Jo o PR T k| ¢

_ie(-t) c(27r) [ dksz duy exp (1 k|7 — 7] ug) oick(t-t')

2¢€q (873) IE|
—i0(t-t) foodk 2 P (R[F =) —exp (Z1k[F =) ice-v)
8m2eg k2|7 — 7|
c o0 e lr , R ,
=io(t-t) ———— f dk [eiklF=7I=ick (t=t") _ ~ik|F=i"|-ick (t-t")
16(-1) 872eoi |- | Jo [e e ]

=ie(t-t) ¢ f‘”dk [eik(lf—F'\—c(t—t’)+ie) otk (1F= e (t=t')- 16)]
0

8m2egi |1 — 77|
(4.49)
In the last step, we have introduced infinitesimal convergent factors +ie, which
enables us to carry out the k integration. The limit € — 0, after performing the
integrations, is understood here and in the following unless stated otherwise. We
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finally obtain

. , c 1
G -iet-t) (_i i

8m2epi |7 — 7| -7 —c(t-t") +ie)

. 1 )
T =7+ ct—t) —ie)
—i0(t-t) ¢ (# __ 1 )

8m2eo [P — 7| \|[F-7|-c(t-t")+ie |[F—F|+c(t—t')—ie
=i0(t-t) !
- 47‘(260 (F=7)2-c2(t-t)2+in
1
= -10(t-t") (4.50)

47r260 (-t - (F-i)2—in

Here nn = 2ec(t-t") > 0 is an infinitesimal quantity. The second term in the Feynman
Green function G is analogously obtained as

. o 2m (k|7 — 7| ug)
G(Q) — @ tl —t C f dk kQ f d f d exp i 1ck(t -t )
F 1 ( ) 260 (87T3) 0 Pk Uk |k|

=it -t) [ dk k2 exp (k|7 = 7]) —exp (=ik |7 — 7)) oick(t=t")
877260 ik2|F — 7|

SOt 1) f "k [eik(lf—f'|+c<t—t'>+ie) otk (7= = (t=t') 16)]
8m2epi |7 — 7| Jo

1 1
—i0(t' ) ¢ — A .
8m2eg |F = 7| \|[F=7|+c(t-t)+ie |[F-7F|-c(t—1t')-ie

1

= 1Ot -t ,
i6( )47'('260 -t -(F-1)2-iy

(4.51)

where ' = 2ec(t' —t) > 0 in this case, because of the prefactor © (¢ —¢). Adding
the two contributions for G = Gg) + Gg) and interpolating trivially for ¢ = ¢/, we
obtain the following result for the Feynman propagator,

c 1
' dne A(t-t)2-(F-7)2-ie’

Grp(F-7,t-t")=-i (4.52)

Here, we have substituted n — € for the infinitesimal quantity in the denominator.
Two important alternative forms of this propagator are as follows. First, because
of the prescription
1
g-ie

=(P.V. )§+17r5(g) (4.53)
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we have
Gr(F-7t-1t)= i —— (P.V.) L
F ’ T dn2q s Rt —t)2— (7 —1)2
SRt - (7)), (4.54)
47eg
Here, (P.V.) denotes the principal value. Another representation is
1 1
Gr(F-7 t—t') =i ¢ - .
P =) = e 7] (c(t—t’)—|F—F’|—ie c(t—t’)+|F—F’|+ie)
(4.55)
The poles are at
c(t—t")=|F-7|+ie, c(t-t')=-F-7|-ie. (4.56)

We consider the Fourier transformation with respect to 7 = ¢ —t’ of the Feynman
Green function for real rather than complex w,

Gr(F-7w) = =i [ drem — IR S S
—oo 8m2eo|F = 7| \7—|F —7|[c—ie T+|F-7|[c+ie
o 1
3 s Alw|P=7|/c
pamie selr=l 70 wsemore
(i) (2ri) e L gy Amelr=T

8m2eg |7 — |
(4.57)

Here, sgn(x) is the sign function, which equals +1 for > 0 and -1 for = < 0. For

complex w, the Fourier integral would diverge either at 7 = —oc0 or at 7 = +o0 and

could not be directly calculated. The result (4.57) can be understood as follows:

There are two poles in the 7 integration, namely, at

-7

+1e, T=- —ie. (4.58)
c c

If w > 0, then the 7 integral needs to be closed in the upper half plane, i.e., the pole
at T = |F — |/c + ie contributes. Conversely, if w < 0, then the 7 integral needs to
be closed in the lower half plane, i.e., the pole at 7 = —|7 - #'|/c — ie contributes. For
real w, we have in view of wsgn(w) = |w|,

. - «;I
ol lo] [/

Gr(F-7,w) (4.59)

B dreg |7 - 7]

The question now is how to analytically continue the modulus function for mani-
festly complex w. First of all, for real w, we can write

wsgn(w) = |w| = Vw?, (4.60)

and this relation gives us a hint about how the analytic continuation needs to be
done. The boundary condition in frequency space translates into the condition that
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the contribution of frequencies of very large complex modulus to the Feynman prop-
agator needs to vanish. This boundary condition can be implemented as follows.
We first supply an infinitesimal imaginary part under the square root,

Viw? > Vw? +ie. (4.61)

This is compatible with the requirement that vVw? = |w| for real w, no matter whether
we lay the branch cut of the square root along the positive or the negative real axis.
Then,

-
exp(i\/w2+ie "~ r|) exp(—bu)

Gp(i - w) = c /. /. (4.62)
dmeg |7 — 7| dreg |7 — 7|

! !
b= -iVw? +ie, Re(b) >0, Im Vw? +ie>0. (4.63)

This condition is fulfilled if we choose the branch cut of the square root function
along the positive real axis. The argument of the square root function vanishes for
w = +\/€ exp( ”r). If we define the branch cut of the square root function to be
along the positive real axis, then branch cuts, as a function of w, extend to w — + oo,
from the branch points, and the latter possibility is the one that allows us to use
the Feynman contour for the w integration in the usual manner.

Having specified the infinitesimal imaginary part as Vw2 + ie, and defining the
branch cut to be along the positive real axis, we may deform the Feynman contour
to the entire real axis, and we have the Fourier backtransformation,

=
exp (i Vw? +ie u - in)
Gr(7 f'T)—fwd“ ¢
F -y - a_

—o0 2 dreg |7 — 7|
R

e T
—-iT-n i iT+n|w
dw e ¢

(o]
[ dw
_ + e —
2 47reo CAre|F- | 2 dmweg |7 — 7|
0 —o0

B 1 1 1
8m2eo|F— || . [F -7 . F=7] .
i——-iT-np i——+irt-1n
c c
1 ic ic
" 8 2e|F =7\ —[F=7|+cT—in —|F-F|-cT-in
1
S (4.64)

dn2eg 212 - (F-7)2-in’

where 7 in the second line is a convergent factor. The limit n - 0 is again un-
derstood in intermediate steps after all integrations have been carried out; n is
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an auxiliary infinitesimal parameter which we could have labeled as €. A priori, one
has in the limit € — 0, simply Vw? +ie — |w|, but one can justify the occurrence of
the convergent factor based on the expansion

Vw? +ie = [w| + =— + O(?), (4.65)

2| |
which leads to an infinitesimal exponential suppression factor, in accordance with
Eq. (4.63).

Alternatively, for 7 > 0, we can evaluate the Fourier backtransformation by eval-
uating the cut of the photon propagator, along the positive real axis, by bending the
Feynman contour into a segment C\,;,, infinitesimally above the real axis, extending
from zero to w = coxexp(ic), and a segment Cyown, extending from w = co xexp(—ie),
to the origin of the w plane,

|F—F'\ . . E=7)
c

dw eiw —lwT—€ew dw e ¥ —lwT-—ew
Grp(F-7,7>0)= e e —
2 dweg |7 - 7| 2 Adweq [T — |
up down
(' ‘T_F,l—if—e)w
> dw e

=] )
1 —1T—€|Ww
["" dw e( ¢
0

0o 21 dmeoli-7| 21 Ameo |7 — 7|

B 1 ic N ic
S 8m2e|F - |\ -|F-|+cT—ie |[F—F|+cT-ie

c 1
T Ar2ey 272 (F—7)% —iesgn(T)
1
S . (4.66)

dr2eq 212 - (F-17")2 -

where the last transformation holds because we have assumed 7 > 0 in the first
place.

Let us also carry out a full Fourier transformation with respect to space and
time. With the definition of the Feynman propagator, we have

exp( Vw? +ie |7“—r|)

dmeq |7 — 7|

Gr(i -7, w) = (4.67)

and with p=7 -7,

Gr(k,w) = f BF -7) Gp(7 -7, w) e FE=)

- [ & Gr(pw) e, (4.68)
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with two obvious variable substitutions. Assuming, without loss of generality, that
the k vector is parallel to the z axis, we can perform the calculation as follows,

Gp(k,w) = f d3r GF(F,w)e_iET

r
- 1 exp(i\/w2+ie—) _
:27rf drrzf du €/ gmikru
0 -1 dmeg T

1 dr exp (i Vw? +ie - ) sin(kr) 1 = ! . (4.69)
0 c

€0 k € k2 -w?/c? -ie

The poles of the Fourier transform of the Feynman Green function are thus seen to
be at w = ¢|k| —ie and at w = —c|k| + i¢, consistent with Fig. 4.2.

4.1.5 Summary: Green Functions of Electrodynamics

A summary of relevant formulas for the retarded, advanced, and Feynman Green
functions appears to be in order. All of these Green functions fulfill Eq. (4.9), which
reads

(la_Q_v )G(r Pt—t)=— 6@ F-F)o(t-t). (4.70)
C €0

According to Eq. (4.42), the advanced Green function G4 reads

Ga(F-7,t- 75)—47T6 |7*~—177'| @(t’—t){ (|ﬂ = C(t’_t)) (|ﬂ Pl +c(t t))}

(4.71)
Its Fourier transform with respect to time is
e iw [7=7"|/c
Ga(F -7 w)= —-—" (4.72)
dmeg |7 = 7]
and the full Fourier transform into frequency-wave-number space is
1 1 1 1
Galhw) = ( SR )— . . (473)
2|k| €0 \w+clk|-ic w-clk|-ie) €0 k? —w?/c? —iesgn(w)

This result is immediately obvious from Fig. 4.1. The retarded Green Function G
can be found in Eq. (4.35),

Gr(F-7 t- t)_FGOV r|@(t t){(* 7| - c(t- t)) (* Pl +c(t- t))}

(4.74)
Its Fourier transform is

. «:_a’
elw [7=7#"|/c

Gr(i -7 w) = (4.75)

dreg |7 — 7]
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The full Fourier transform into frequency-wave-number space is

Grb,w) = — ( 1 ): 1 1 . (4.76)

kleo \w+ck|+ie w—clk|+ie € k2 — w?/c? +iesgn(w)

The Feynman propagator Gr [see Eq. (4.52)] reads

c 1
Grp(F-7,t-t")=-i ,
a ) dm2ey 2 (t—t')2 - (F-7)% —ie

(4.77)

and its Fourier transform is

. — |7 =7
exp|iVw? +ie

c

Grp(F-7,w) =

, ImVw? +ie>0. (4.78)

dmeq |7 = 7|

The latter condition clarifies how the branch cuts of the square root should be
defined. The full Fourier transform of the Feynman Green function is

Gy w) C( ! ! )1;. (4.79)

- 2k eo \w+c|k| - ie _w—c|E|+ie T k2 —w?/c? —ie

The Feynman Green function is important in field-theoretical calculations [20, 23].

4.2 Action-at-a-Distance and Coulomb Gauge

4.2.1 Potentials and Sources

It is generally acknowledged that some mystery surrounds the so-called action-at-a-
distance solution for the scalar potential which can be obtained in the Coulomb, or
radiation, gauge. Due to the gauge condition in radiation gauge, the divergence of
the vector potential vanishes, or, expressed differently, the vector potential is equal
to its own transverse component [see Eq. (1.87)],

VAo (7)) =0, Ao (7,t) = Ay (7,1) . (4.80)

In the following, we distinguish the scalar and vector potentials by the subscripts
C for Coulomb gauge, and L for Lorenz gauge. In Coulomb gauge, the coupling to
the sources is governed by the following equations [see Eq. (1.92)],

V0o (7,t) = - ip(f,t) ) (4.81a)
€o
L 52) de, (7.8) = o i (7 4.81b
C_Qw_ CL (Tat) = Ko Jl (’I",t), ( .81 )
J - R 2
€0 av(bc (7,t) = J| (7,1) . (4.81c¢)

We recall that the longitudinal and transverse components of a general vector field
are analyzed in Egs. (1.48a) and (1.48b). Equation (4.81a) couples the electrostatic
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potential to the source; it has the instantaneous, action-at-a-distance solution given
in Eq. (1.98), which we recall for convenience,

1 1
O (7, 1) = —— [ B’ —— p(7£) + Brom (7, 1), (4.82)
4reg |7 — 7|

where ®pom (7,t) is a solution to the homogeneous equation. The instantaneous
coupling of the electrostatic potential to the charge density gives rise to a number
of concerns, which we have already discussed near the end of Chap. 1.2.5. Our task
is to show that the instantaneous character of the solution (1.98) does not lead to
a contradiction with respect to the causality principle; an electromagnetic signal
cannot travel faster than light and the fields (as opposed to the potentials) should
be manifestly retarded.

The Lorenz condition for the scalar potential ® and the vector potential A has
been given in Eq. (1.70),

Lo 10 .
V'AL(T,t)‘FC—Q&@L(T,t):O. (483)

In Lorenz gauge, the scalar and vector potentials are coupled to the sources by
inhomogeneous wave equations [see Eq. (1.77)],

L& o) g, (7t)= L p(t) (4.84a)
2 92 L\r, _€0p r,t), .04a
]. 82 =9 e _ T/

C—Q@—V AL (T,t)zqu(T‘,t). (484b)

We here provide two perspectives on the problem. The first perspective (see
Sec. 4.2.2) relies on the fact that the solution of Eq. (4.81a) might otherwise indicate
that the scalar potential in Coulomb gauge is non-retarded. However, once charges
move, currents are generated in view of the continuity equation. The seemingly in-
stantaneous scalar potential in Coulomb gauge is connected to the longitudinal part
of the current density by Eq. (4.81c). It is instructive to observe that Eq. (4.81c)
cannot alone provide the solution of the problem; its divergence simply is the time
derivative of Eq. (4.81a). However, Eq. (4.81c) shows that the situation is not so
easy: We cannot argue that the seemingly instantaneous Coulomb interaction auto-
matically gives rise to instantaneous fields; there is the additional condition (4.81c)
which has to be fulfilled by the scalar potential. We shall see that the vector po-
tential, in the Coulomb gauge, receives an additional contribution as compared to
the Lorenz gauge. The additional term corresponds to the longitudinal part of the
current density which has to be subtracted in order to obtain Eq. (4.81b). With
the help of Eq. (4.81¢), we are finally able to show that the supplementary term in
the vector potential, in the Coulomb gauge, cancels the instantaneous contribution
to the electric field and leads to manifestly retarded expressions.

Expressed differently, the additional constraint (4.81c) implies that the action-
at-a-distance solution (4.82) is not universally a valid solution; it does not
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automatically fulfill Eq. (4.81c). Indeed, we shall see that the homogeneous term
in Eq. (4.82) plays a crucial role in showing causality, together with Eq. (4.81c).
The second perspective (see Sec. 4.2.3) addresses the fact that the instantaneous
interaction integral can alternatively be written as a retarded integral, but with a
different source term, in accordance with arguments presented in Ref. [24]. Finally,
in Sec. 4.2.4 (third perspective), we find an explicitly retarded expression for the
Coulomb-gauge scalar potential, which fulfills both Eqs. (4.81a) as well as (4.81c¢).

4.2.2 Cancellation of the Instantaneous Term

According to Eq. (1.59), the electric field (in Coulomb gauge) is given as

E(#,t) = -V®c(7,t) - %Acl(fyt} , (4.85)
and therefore
Lo R = Lo 0 - .
EH(T,t) =-Voc(7,t), E (7,t) = —&ACL(T,t). (4.86)

These components fulfill, explicitly, V x E’”(F,t) = —(? X @) do(7,t) = 0, and
V- E (7,t) = —%? . flcl(F,t)ﬂ: 0. Therefore, the full longitudinal component
of the electric field is given by E)(7,t) = ~V®¢ (7, ), and the transverse component
in Coulomb gauge is purely given by the time derivative of the transverse vector
potential, without any “admixture” from the scalar potential. In Coulomb gauge,
the longitudinal component of the electric field is calculated as

= - 1 . -
Ey(.t) = =V ) =~V [ 4% (", 8) = Vuom (7, 1) . (487)

4reg |7 — 7]

where @y, is the solution to the homogeneous equation, adjusted so that
Eq. (4.81c) is fulfilled.

The retarded Green function (4.35) enters the solutions of the Lorenz-gauge
couplings given in Eqgs. (4.84a) and (4.84b),

Oy (7 1) = fd3r’dt’GR(F—F’,t—t’)p(?’,t’) , (4.884)
Ap (F,t):i?[d?’r'dt’GR(F—F’,t—t')j(?’,t’). (4.88b)
C

As has been stressed in Sec. 1.2.4, the potentials are not uniquely defined even
within the family of potentials that fulfill the Coulomb gauge condition; a gauge
re-transformation within the Coulomb gauge is possible according to Eq. (1.93). A
permissible way to proceed is to use the retarded Green function to solve Eq. (4.81b),
and to find the vector potential A (7,t) = A, (7,t). The solution A (7,t) can be
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written in terms of the Lorenz-gauge expression AL(F,t) and the supplementary
term Ag(7,t). We have,

Ac(Ft) = = fd3 'fdt Gr(F—7 ¢~ ) JL(7 1) = AL (7,t) + Ag (7, 1),

(4.89a)
R 1 R
AL = f & f A’ Gr(F -7t —t') J(F '), (4.89b)
. 1 -
As(7,t) = —C—Qfd?’r'[dt' Gr(7 -7 t—t') Jy(7 1), (4.89¢)

where we have used the identity J, (#',t') = J(#,t') - jH (#,t"). The supplementary
term AS(F,t) is relevant to the Coulomb gauge and reads

Ag(t) = [d3 ’fdt Gr(7—7t—t) Jy (7, t'). (4.90)

02

The time derivative of the supplementary term Ag (7,t) contributes a supplementary
term Es to the electric field,

Es(f,t):—gAs(r £ [d3 'fdt[ Gr(F -7t - t)] I (7 )

=5 [ d°r’ f dt’ [@ Gr(F-7',t —t')] Jy(#,t")
l[d%'[dt'a (F=7, 1~ 1) [ij(f' t')] (4.91)
2 R ’ ot I ) ’ .
where we have first transformed 9/t — —-9/0t' and then used integration by parts

to move the derivative on the current. Using Eq. (4.81c), this can be rewritten in
terms of the potential as

2

I / / - ol AR=1 1 8 S
Es(7,t) = € [d3r fdt Gr(r-7,t-t")V [C—QW@c(r,t)]
= ’ ’ - Sf gl 1 82 =/ =’ ]
:60V[d3T fdt GR(T7t’T’t)[(C_ZW_v2)+v2:|(I)C(r’t)
_eovfd3 ’fdt [(gﬁ—v )GR(r,t,r t)] o (7.t

+60@[d%'[dt'aR(f,t,f',t') $ 200 (1) . (4.92)

For the first term, we use partial integration twice, and we also take advantage of the
symmetry properties of the retarded Green function. With Egs. (4.81a) and (4.9),



158 Advanced Classical Electrodynamics

we find
o N 1
ES(F,t):eovder’[dt’—6(3) (F =) 6(t - ) Do (7,1
€0
N 1
_eov[dBT’fdt'GR(F,t,F’,t') 2ot
€0
- P (7 ) - ¥ [ &3 f At Gr(F,t, 7, 1) p (7, t')
=V®c (7,t) -V (7,1) . (4.93)

In Coulomb gauge, the supplementary term Eg = -9; Ag due to the time derivative
of the supplementary vector potential cancels the gradient of the Coulomb gauge
scalar potential and adds the Lorenz gauge gradient of the scalar potential. Com-
paring the formulas for the electric field in Coulomb and Lorenz gauge, the following
identity follows immediately,

Ec(7,t) = - V®c(7,t) - %flc(?,t) = -V (7,t) - % (AL(7,t) + As(7,1))

- V®c(7,t) - %AL(f,t) + (VO (7,t) - VOL(7,1))

~ VO (F,t) - %ZLL(F,@ = Ep(7,t). (4.94)
We have temporarily denoted the “Coulomb gauge” electric field as EC(F,t) and
the “Lorenz gauge” electric field as Ef(7,t), even if both are actually equal due to
gauge invariance, as shown.

Let us briefly summarize: In Coulomb gauge, there is an additional term Ag in
the vector potential which is generated by the negative of the longitudinal compo-
nent of the current density. The (negative of the) time derivative of the supplemen-
tary term in the vector potential yields an additional contribution to the electric
field, in Coulomb gauge. The additional term in the electric field can be transformed
into two parts, the first of which cancels the seemingly instantaneous electric field
contribution in Coulomb gauge, obtained from the Coulomb-gauge electric poten-
tial, and the second yields the same result (the retarded one) as the gradient of the
electric potential @7 in Lorenz gauge. In the end, the action-at-a-distance integral
cancels, and the gauge invariance of the electric field is shown [Eq. (4.94)]. The
overall conclusion is that in Coulomb gauge, in view of the condition (4.81c), the
homogeneous solution @y, in Eq. (4.82) has to be chosen so that the contribution
of the action-at-a-distance term to the electric field cancels.

4.2.3 Longitudinal Electric Field as a Retarded Integral

We recall once more Eq. (4.87), which for the longitudinal component of the electric
field reads as follows,

o L 1 Lo e B}
Ey(7,t) = -V®c(F,t) = “Tre v f a3 o p(7',t) = VOhom(7,t) . (4.95)



Green Functions of Electrodynamics 159

The first term in this expression has an action-at-a-distance form, which could in
principle lead to a contradiction with respect to the causality principle, were it not
for the additional constraint (4.81c), which implies the necessity of adding a suitable
solution of the homogeneous equation. We recall that the decomposition of the elec-
tric field into longitudinal and transverse components is unique; an instantaneous
character of the longitudinal component also would have disastrous consequences.
We should thus investigate if, taking into account Eq. (4.81c), the longitudinal
component of the electric field can alternatively be written as a manifestly retarded
integral, for which we guess the form [24]

Ey(7,t) =~ [d3 ’[dt Gr(F-7,t- t)( 5 at"]”( t’)+§’p(f’,t’)). (4.96)

In this expression, we use Eq. (4.81c) in order to substitute for .J; and Eq. (4.81a)
in order to substitute for p(#,t'),

Bt = [ @ [atCaG-#i- t)[ o (0¥ o))

+v' (—60 @’2(1)(;(7?,, t’))]

92
- f a3’ [ dt' Gr(7,t,7,t") ( ? 5y V'Q) e V' Oc(,t").  (4.97)
A double partial integration and use of Eq. (4.9) leads to the relation

E||(F,t):—fd3r’ [dt'5<3>(f—f')5(t—t')v'cbc(f',t):—wc(f,t), (4.98)

which was to be shown.

In summary, we have demonstrated that the instantaneous integral for the longi-
tudinal part of the electric field (4.87) can be rewritten as an integral involving the
manifestly retarded Green function, with a nonstandard source term that does not
only involve the charge density but also the longitudinal part of the current density.
In the derivation, we have used Eq. (4.81c) which relates the charge density to the
longitudinal part of the current density in Coulomb gauge.

4.2.4 Coulomb-Gauge Scalar Potential as a Retarded Integral

The last step in the analysis of the Coulomb gauge entails the calculation of the
scalar potential, which is tantamount to finding an explicit expression for the ho-
mogeneous term Ppon in Eq. (4.82). We start from Eq. (4.96), which we recall,

By =- [ & [aGpr-7.i- t)( s at,JH(F' )+ ¥ ol ')). (4.99)

Here, in view of Eq. (1.48a), we can write the longitudinal component of the current
density as the gradient of a scalar field J(#,t"),

VTGASEMVIGASE (4.100)
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So, the longitudinal component of the electric field becomes

Ey(7,t) = —/d3 ’fdt Gr(r -7t~ t)v( —J( t')+p(F',t'))

2 8tl
= fd%’fdt’ﬁ’GR(f 7ot - t)( 5 8#\7(*’ ") + p(7, t))

—ﬁfd?’r’fdt’GR(f 7t —t) (— —JF ')+ p(# t)) (4.101)

2 ot'

Because E’” (7,t) = -V®c(7,t), a valid ansatz for the scalar potential is

O (7,t) = fdt fd3r Gr(F-7,t- t)(——j(f’ ")+ p(7 t)) (4.102)

2 ot'

where J is given in Eq. (4.100).
The decisive step is to show that our ansatz (4.102) fulfills Eq. (4.81c),

0 - -
€0 avq)c (7,t) = J| (7,t). (4.103)
The proof is relatively straightforward. One first integrates by parts,

8~ _, _ 8~ / 37 - ﬂ/ -/ =/
eoavfbc(r,t)—eoatvfdt [ Gr -t - t)( 28t,j(7~ )+ p(F, t))

= € [dt’[d3r’GR(F—F’,t—t’)

1 62 =/ ! ! 8 =/ —/ !
x(— VI )+ 50V p(r,t)). (4.104)

c? ot'?

Use of Eq. (4.102) and of the continuity equation leads to
Ve (7,t) = dt' | &r'Gr(F-7 t -t ia—zj 7 1)+ 9Dt
€0 Ut C(?",)—Eo r R(r T ) 2 o2 H(Tv ) 8,(7" )
= o fdt’fd3r’GR(F—F’,t—t’)

(012 8875/2‘]”( t)+?'(—@’~fn(?'7t’))). (4.105)

This can be summarized as follows,

2 8t12

2 -
€0 VP (F,t) = €0 fdt fd3r Gr(F-7 t- t)( —%’2) Jy(#,t"). (4.106)

After a double partial integration, and use of Eq. (4.9), one can finally show that
Eq. (4.102) fulfills Eq. (4.103). Because Eq. (4.102) is manifestly retarded, we
have explicitly shown that the particular form of the scalar potential in Coulomb
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gauge, given in Eq. (4.102), does not lead to a contradiction with respect to the
causality principle; the additional constraint (4.81¢) ensures that the scalar potential
is manifestly retarded.

4.3 Exercises

e Exercise 4.1: Show that all contour choices Cr, C4 and Cr shown in Figs. 4.1
and 4.2 lead to valid representations of Green functions that fulfill Eq. (4.9). Hint:
Apply the differential operator (1/c¢?)9?/9t?> — V2 under the integral sign, invoking
a Fourier representation of the Green function.

e Exercise 4.2: Generalize the steps outlined in Egs. (4.29)-(4.35), for the
advanced as opposed to the retarded Green function, using the contour C'4 given
in Fig. 4.1. Thus, verify the results given in Eqs. (4.41)—(4.44).

e Exercise 4.3: Generalize Eq. (4.66) to the case 7 < 0. How would you have
to deform the integration contour in this case in order to identify the cut (in the
complex plane) of the photon propagator?

¢ Exercise 4.4: Pick some (7,t) = cos(wo t)/ (72 +a?)? and o (7,t) = 5(t—to) /(7% +
a?)? and propagate these wave packets using (a) the retarded (b) the advanced,
and (c) the Feynman Green function. The dynamical equation is (4.1).

e Exercise 4.5: Show that the supplementary term in the vector potential, defined
in Egs. (4.89a) and (4.90), can be written as a gradient vector and therefore does
not affect the result for the magnetic field, which thus is the same in Coulomb and
Lorenz gauges.
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Chapter 5

Paradigmatic Calculations in
Electrodynamics

5.1 Overview

5.1.1 General Considerations

In electrodynamics as opposed to electrostatics, the emphasis is on the radiation
emitted by moving charge distributions, i.e., current distributions. In practically
important cases, the source oscillates at a specific frequency. Yet, the radiated
fields are needed at specific points in space, and one can assume that the radiation
is emitted continuously. In that case, it makes sense to transform the Green func-
tion to the mixed frequency-coordinate representation. In this representation, the
defining equation for the Green function becomes the so-called Helmholtz equation.
For classical fields, the radiation pattern from oscillating sources is described by the
retarded Green function, which has been given in Eq. (4.75) in the mixed frequency-
coordinate representation (see Sec. 4.1.5). In a typical case, the oscillating source
(antenna) is a dipole. However, higher-order multipole radiation can also be impor-
tant. It is thus imperative to expand the Green function of the Helmholtz equation
(which is equal to the retarded Green function in the mixed coordinate-frequency
representation) into multipoles. Appropriate integrations then lead to the relevant
formulas for the radiation pattern.

Finally, when calculating antenna problems, it is usually assumed that the an-
tenna (oscillating charge distribution) remains static during the emission process,
i.e., it does not move. In Secs. 2.3.4 and 2.3.5, we encountered the multipole de-
composition of the electrostatic Green function, which led to the multipole de-
composition of the electrostatic potential generated by a static charge distribution
[Eq. (2.99)]. The Helmholtz Green function fulfills a defining equation with a scalar
structure [see Eq. (5.19)]. In consequence, the angular momentum decomposition of
the Helmholtz Green function given in Eq. (5.72) involves the spherical harmonics,
which are scalar (not tensor) quantities. Indeed, in antenna problems, the equation
which relates the scalar potential to the oscillating charge distribution (5.77) retains
a scalar structure. By contrast, the equation which relates the current density to
the vector potential [Eq. (5.78)] has a vector structure, and the Green function,
strictly speaking, therefore is promoted to a tensor Green function. This is not
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obvious from Eq. (5.78), but becomes more evident as one considers Eq. (5.158).
The tensor structure of the Helmholtz Green function necessitates an analysis of
the angular algebra which goes beyond the scalar structure of the scalar Helmholtz
Green function; the “spin” of the photon (the vector structure of the vector po-
tential) needs to be integrated into the formalism. This endeavor proceeds via the
introduction of vector spherical harmonics (Sec. 5.4.2).

By contrast, the emission of radiation by a moving point charge constitutes a
complementary problem where the charge distribution is trivial but the radiation
is due to the motion of the charge relative to the observer. The scalar and vector
potentials due to a moving point charge are otherwise known as the LIENARD!-
WIECHERT? potentials, which can be given in Lorenz and Coulomb gauges. It
is instructive to go through the alternative derivations because the final formulas
reveal a concrete realization of the cancellation mechanism originally described in
Sec. 4.2.

5.1.2 Wave Equation and Green Functions

We consider how general solutions to the wave equation can be obtained using
the retarded Green function. We integrate the source term directly (no partial
integrations) and may thus use the approximate simplified version of the retarded
Green function already given in Eq. (4.36). This is admissible because no additional
partial integrations need to be carried out. We recall the wave equation (4.1) with
sources, which has the general form
2

(ia——@Q) \Iu(f,t):eiF(f,t). (5.1)
0
Here, U is the signal generated by the source F. In the approximate form (4.36),
the retarded Green function is given by

c 1
dmeq |7 - 7|

Gr(F-7,t—t')~ Ot —t") (| -7 -c(t-t")). (5.2)

Using the retarded Green function and an arbitrary solution Wy, (7,t) to the
homogeneous wave equation,

1 9% R
(6—2@ - VQ) ‘I’hom (T,t) = 07 (53)

we obtain the general solution to the inhomogeneous wave equation as follows,

) (F,t) = Uhom (F,t) + f GR (F—’F’,t —t,) F(f’,t,)dgrl da+

1 t 1 r—r
= Wpom (7, 1) + f d%’f ar—— s(v - [e- =N Fen
drey JR? —o T =7 c

1 1 -
= Wpom (7, 1) + fd%' F(F',t— 7 7”|). (5.4)

4reg |7 = 7| c

L Alfred-Marie Liénard (1869-1958)
2Emil Johann Wiechert (1861-1928)



Paradigmatic Calculations in Electrodynamics 165

Here, the expression

7 =7
—<

broy =t — t (5.5)

c
is the retarded time, which expresses the fact that the electromagnetic perturbation
propagates at the speed of light. Because we have .4 < t for 7 # 7/, the integration
over t’ from —oo to t always gives a nonvanishing result.

The same steps, applied to the advanced Green function, lead to

U (7,t) = Upom (F,t)+fGA (7=, t—t") F(# t')d>" dt’

R 1 s 1 R e
= Uhom (F,t) + —— fd r—— F |7, t+ , (5.6)
dreg |7 — 7|

c

where
|* _

=7
tadv =t + ——

>t (5.7)

is the advanced time; this solution describes an electromagnetic signal (or a signal
of a different physical origin) that propagates from the future into the past.

5.2 Helmholtz Equation

5.2.1 Helmholtz Equation and Green Function

It is rather straightforward to apply the formalism developed in Sec. 5.1.2 to elec-
tromagnetic radiation phenomena. A simple radiating system consists of a localized
charge density p (7,t) and a localized current density .J (7,t). The system is consid-
ered to be localized if its dimensions are small compared to the wavelength of the
radiation. We consider radiating sources in a vacuum and begin with the equations
for the vector and scalar potentials in the Lorenz gauge [Eq. (1.77)],

(ia_z_v)q)(r t)_—p(r t), (5.8)

c2 ot?
1 62 =92 N T/
(C—Zﬁ—v )A(?”,t)I/LoJ(T,t). (59)
The second of these equations can be written as
19 o\ 4 1 1 (1 -
19 A0 =102 T == (—J(F,t)). (5.10)
c? ot? 2 € \c

The latter form is suggested by the relativistic formalism; indeed, one can order the
scalar and vector potentials, and the charge and current densities, into 4-vectors as

(CI),CA) and (p,% j) . (5.11)

The consistency of the physical units of the components of the first 4-vector can
be verified immediately, as follows: The electric field has the dimension of the
expression V®, the magnetic induction field has the dimension of VxA. For traveling
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plane waves, one has |E| ~ ¢|B|, and so, in terms of physical units, the factor ¢ in the
four-vector (®,cA) is explained. The charge density has units of [p] = [Q]/[r]® =
[Q1/([t] [71?) ([t]/[]) = [J]/[c], which explains the units for the components of
the second 4-vector given in Eq. (5.11).

We integrate the wave equation as before,
O (7,t) = Brom (7, ) + f ErdtGr (7 -7t —t') p(7,t') (5.12a)
. . 1 .
A (7,1) = cApom (F,t) + — f SrACr (F - t—1) T (7, 1) . (5.12b)
c

Here, ®1,,n and flhom are solutions to the homogeneous wave equation. Using the
identity

1 = _nl
6(|F—f|—c(t—t’)):—6(t—t’—u), (5.13)
c c
we may carry out ¢’ integration, and find
1 1 P -7
O (7,t) = Prom (7,1) + f &' ——p|#,t - = , (5.14a)
dreg |7 — 7] c
- - 1 1 - P =7
CA (7,t) = cApom (7,t) + f A —— J|#,t - =1 : (5.14b)
dmege |7 = 7| c
The latter equation can of course be rewritten as
< < 1 - F—7 1
A(F 1) = Apom (F,t)+fd3r'[—] Jlwe 1= ~ . (5.15)
€o 2 c 4r|it — 7|
———
=Ko

and we see that the vacuum permeability pg naturally appears in the calculation.
The equation fulfilled by the retarded Green function,

2
19 e Gr(F-7,t-t") = 1 s5® (F-7)o(t-t'), (5.16)
c? Ot? €0
transforms to Fourier space as follows,
w? - 1
(——2—v2) Gr(F-7,w)y==0(F-7). (5.17)
c €o
Setting k = w/c, and defining
Ggr(k,7-7)=Gr(F -7, w=ck), (5.18)

we obtain the (inhomogeneous) Helmholtz equation

(V2 +k?) GR(k,f—f'):—elé(f—f' . (5.19)
0

" of the Helmholtz equation is the wave number k, not the

The “natural parameter ’
frequency w. The frequency argument in the expression G g (7—7',w) is generated by
the Fourier transform of Gr(7—7',t—¢"); it is thus natural to write w in the second

argument slot. However, when k becomes a mere parameter of the (inhomogeneous)
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Helmholtz equation (5.19), then it is natural to write it as the first argument of the
Green function. The Helmholtz equation is solved by the Green function given in
Eq. (4.75),

. R
el k |F—7']

Gr(k,7-7') = (5.20)

dreg |7 — 7]
The electrostatic Green function G defined in Eq. (2.22) is recovered as the static
limit of the electrodynamic Green function,

1
B dmeo|T — 7|

lim Ga(7 ~,w) = lim Gp(k,7F - 7') = = G(#,7). (5.21)

In Fourier space, we have by convolution,

® (7,w) = fd?’r'GR(%,f—F') w)= [ e rl/c|p( W) . (5.22a)

dreg |7

+ 1 . 1 elwlF=#lfe
CA(F7UJ):_ [d3 ,GR(_ F_T) J(Fl’w) = fd3r, J(fl7w
¢ c dmeg |7 — 7|
(5.22b)

This calculation identifies Eqgs. (5.22a) and (5.22b) as the Fourier transforms of
Eqgs. (5.12a) and (5.12b). Convolution in time is equivalent to multiplication in
frequency space.

5.2.2 Helmholtz Equation in Spherical Coordinates

The theory of Green functions of the wave equation is connected with the Helmholtz
equation (5.19), whose homogeneous form reads as follows,

(V2 + k%) ®(r,0,0) =0. (5.23)

We eventually aim to expand the Helmholtz Green function (5.20) into multipole
components, in the spherical basis. To this end, we first need to study the solution of
the homogeneous Helmholtz equation in the spherical basis, before connecting them
at the cusp, in order to calculate the multipole expansion of the Green function.
Therefore, we need to study the solutions of the homogeneous Helmholtz equation,
expressed in spherical coordinates r, 6, and ¢,

s 1 92 G 0o 1 0%,
k%) ®(r,0 =|-= 0— — + k7| O(r,0
(V2 +82) 2(1,0. ) (7“ o2 " 72sing 96 sin 96 " r2sind 0p? ! (r.0,%)
0> 20 L[* ,
=|l—=+—-——=—-—=+Ek°|9(r,0 0, 5.24
(87“2 " ror r2 " (r.0,0) = ( )
with |m| < ¢ = 0,1,2,.... The operator L? has been defined in Eq. (2.31). The

general solution of the homogeneous Helmholtz equation can be written as

7" 9790 Z Z agm JZ /{7") +bom yé(kr)) nm(ea 50) ) (525)
£=0 m=—4
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where the separation constants ag,, and b, can take arbitrary values, and each
function in the set fulfills the Helmholtz equation, separately. The spherical Bessel
and Neumann functions are written as jp, and y,. One uses lowercase letters instead
of the uppercase notation, which is used for the ordinary Bessel function Jy and Y,
discussed in Sec. 2.4.2. The spherical Bessel functions have been mentioned very
briefly in Sec. 2.4.3 [see Eq. (2.179)]. We recall that they are defined as follows,

jz(-’f)=(%)l/2 Jeeaya(), y4<x)=(%)1/2 Yeup(z).  (5.26)

The defining differential equation for spherical Bessel functions is given as

P 20 0(+1) N
(@ E&- xQ +1)j[(1’)—0 (527)

Spherical Bessel functions fulfill the following recursion relations,

20+1 .
Je(z), (5.28a)

Je-1(x) + jes1(x) = .

Clea(@) = (1) Jon(r) = 204 1) ji(2), (5.28b)
where j)(x) = 0j¢(x)/0x is the derivative with respect to the argument (not param-
eter). Alternatively, one can express the derivative as follows,

) . l+1 . ‘.
Ji) = e () = S u(@) = = ean (@) + i)
1. . 1
=5 (e (@) + je-r (@) — 5= je(@) . (5.29)
2 2z

By a straightforward generalization of formulas given in Sec. 2.4.2, we can establish
the following asymptotic behavior

, zt (20+1)!

Je(x) ~ m ’ ye(w) ~ IS r—0, (5.30)

jg(:c)~l sin(x—e—ﬂ) , yg(x)~—l cos(x—e—w) , T —>00. (5.31)
x 2 T 2

The double factorial fulfills the general relations (if ¢ is an integer)

(2¢+2)!  27TD(0+3/2)
201 (L4 1)! JT
where the latter formula provides the generalization of the result (5.30) to non-
integer order /.

In order for Eq. (5.25) to represent a general solution to the Helmholtz equation,
we have to demand that

2 20 (U+1) ).
(6_3_7 # k) elkr) =0, (533)

(20+ 1)1 = (20+1)(20-1)(2(~3)...5-3-1 = , (5.32)

which is in fact equivalent to Eq. (5.27), under the specialization x — k.
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Let us try to find a connection of the ordinary and spherical Bessel functions.
Indeed, from Bessel’s differential equation (2.144), we may infer that the function
Z =x% Jp (B x7) fulfills the relation

2 2_ 2.2
T @)+ 12 20‘8 Z(x)+ |82+ ) Z(2) = 0. (5.34)
ox? 2
For our case, we set v =1, a:——, B=k,and n=¢+1/2. Then,
822 207 2, T+ 2)
- = 7 = .
o2 1 0z (kj 22 0, (5:35)

which is trivially equivalent to

0?°Z 207 , L(+1) T
2t oot (k - Z=0, Z:Z(m)=\lﬂje+1/2(/f$)~ (5.36)

This is just the desired Eq. (5.33). The complementary solution y, also fulfills the
defining equation. Let us verify some asymptotic properties by way of example. For
£ =10, we have

1‘10

o= ~—_—— | - 0. 5.37

Jeo(@)~ Frgsioss " (5.37)
This is illustrated in Fig. 5.1(a). For intermediate, finite values of z, there are
deviations from the asymptotic behavior [see Fig. 5.1(b)]. For large argument, we
have

1
O”), z 00, (5.38)

1
Je=10(x) ~ — sin (x -—
T 2
This is verified in Fig. 5.1(c). The spherical Bessel functions can be expressed in
terms of trigonometric functions,
) sinx ) sinx cosx ) 31y . 3
Jo(w) = ) Ji(z) = > ) J2 (@) = ~3 ) smar——5 COST,
x x x x

x x
(5.39a)

and we have for the Neumann functions,

COSX cosr sinz
Yo(x) = - — yi(x) = -

2 x

1 .

, ya(x) = (——3 + —) cosz — — sinz.

3z x

(5.40a)

The Hankel function of the first and second kind are given as

WY (2) = jo (@) +iye (z) . P (@) = jo () ~iye () . (5.41)
They can be written in terms of exp(iz) and powers of z. Based on Egs. (5.39)
and (5.40), we can easily show that

1T 1T 1xr L’I,' ix 1xr
W@ ==, W= W@ =i - )
x x x x x x
For large x,
o ) ei(x—@‘rr/Q) it el®
he (J?) —> -1 T = (—1) ? T —> 00, (543)

i.e., the Hankel functions differ by a complex phase in the limit z — +oco.
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Fig. 5.1 Panel (a) illustrates the verification of Eq. (5.37), i.e., of the asymptotics of the
spherical Bessel function jig(z) for z — 0. In panel (b), we verify Eq. (5.37) on a larger
scale; the oscillations of the Bessel function become evident. Finally, panel (c) verifies
Eq. (5.38), in a regime where the asymptotic behavior is approximated by a trigonometric
function, with a phase and a prefactor. In all panels, the solid curve is for the exact Bessel
function, whereas the dashed curve is the approximation.

5.2.3 Radiation Green Function

We have come across the inhomogeneous Helmholtz equation (5.19),

- 1
(V2+k%) Gr(k,7-7)=-—68(F-7), (5.44)
€0
and the Helmholtz Green function given in Egs. (4.75) and (5.20),
el
G (k=) = SPUETZ 7D (5.45)
dreg |7 — 7|

Then, using the relation Vr = #/r, it is instructive to independently verify that G
fulfills the defining inhomogeneous Helmholtz equation. One needs to carefully keep
track of all singular terms in order not to miss the Dirac- function,

Ol g goRlhn) g (e G| E9r+92])

.o Lo (1) ik L1 o1
:exp(ikr)(——Vr-Ver VT'V(—) WS SrvikVr-v-+ VQ—)
r r) o r r

e (22 (E)E ) ()

k% ik 2ik ik _,1
—exp(lk‘r)(——r—2+r—2—r—2+v ;)
k2 21 k2 . B (= =
=exp (ik r) —+V =——exp (ik r)-4mo\ (F-7") . (5.46)
r

Thus, the validity of Eq. (5.45) is verified once more.
The central result of the current derivation is the multipole expansion of the

radiation Green function, which is analogous to the electrostatic case discussed in
Sec. 2.3.5, but a little more involved. An appropriate ansatz for the Green function
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in spherical coordinates reads as follows,

. exp(ikjF-7|) & I
k _ - 7 k m 9, m 9
Cr(k,7 =) = = T ZEO:mE_:lGe 7,7") Yo (0,9) Yom (0',¢")

(5.47)
It is our task to find an appropriate expression for Gy (k,r, 7). We proceed as in
Sec. 2.3.5, by recalling that the operator V2 + k? acts onto a test function of the
form R(7) Yy (7) as follows,

- 1 1
(V2 + k%) R(r) Yo (7) = 9,20 o LEEDY by (), (548)
r2or or r2
The Dirac-é function is expanded as follows,
0(F=7") = 5——0d(r-r") (0 -0")d(p-¢"). (5.49)
r2 sin 6
The completeness relation for the sum over spherical harmonics reads
N Uk A 1 / ’
2 Yo (7)Y (7) = —— 6(0-0") 6(p - ¢). (5.50)
o sin

The radial Green function Gy (k,r,r") as defined in Eq. (5.47) thus has to fulfill the
following relation,

or or

Let us start with the “homogeneous domain” away from the peak of the Dirac-d

9 (Tzé Go (k.. r')) V(K220 (04 1)) G (rr') = -% S(r-1").  (551)

function. We shall assume that the radial part of the Green function has the func-
tional form Gy (r,7") = fe(kr, k") and seek solutions to the homogeneous equation

92 (r22f4 (kr,kr')) S (K22 004 1) fo (kr k') =0, (5.52)

or or
The general solution is a linear combination of the two spherical Bessel functions,
fo(krkr'y =ap(kr") jo(kr) +be(kr") ye(kr). (5.53)

We now appeal to Eq. (5.26) for the behavior of the Bessel and Neumann functions
near the origin. Since the Green function is regular at r = 0, and in particular, for
r <r', we must choose the regular solution, i.e., the spherical Bessel function j, in
this domain,

foelkr kr')y=Ge(k,r,r") =ae(kr") joe (k) , r<r. (5.54)

For r > r’, we certainly need a contribution of the Bessel y, which is not regular at
the origin. However, if we wish to construct a Wronskian upon action of the radial
differential operator, then we need to add a contribution from j, as well. A natural
assumption is to make an ansatz for the solution G, to be a superposition of an
incoming and an outgoing wave,

o< exXp [—i (kr - %T)] (incoming) , o< exp [ (kr - %T)] (outgoing). (5.55)
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Two considerations support the outgoing wave. The first is that the Green function
“propagates”, as it were, the point 7/ to the point 7. An incoming wave converging
to the point 7' should be propagated to point 7. In an eigenfunction decomposition
of the Green function, we would use outgoing and incoming waves as given in
Eq. (5.55). These considerations are valid for r > 7', in which case the wave is
outgoing at point 7. From the analogy with the Green function for electrostatics,
we also conjecture that the solution should fall off as 7~ for large . We thus assume
that

felkr kr')y=Go(k,r,r") =co(kr") [ige(kr) —ye (k)] , r>r. (5.56)
Then, for kr > 1,

1 L
G (kyr,r") =co (k') [ide (kr) —yo (kr)] — co (k7") o OXD [i (kr - g)] )
r
(5.57)
Continuity at r = r’ is automatically fulfilled if we write the radial component of the
Green functions as a product, supplementing for ay(r’) and cy(r’) the respective
“other” solution of the radial Helmholtz equation. The result of this operation is

G (r,7") = ao(k) je(kre) [ije(krs) —ye (krs)] (5.58)

where ag(k) is a prefactor which can only depend on k, and remains to be
determined. In order to convince ourselves of the continuity, we consider r’ to
be constant and vary r, starting at r = 0. As we increase r, the variable r assumes
the role of r. until » =’ (cusp). At the cusp, it does not matter which identification
we make, because r and r’ are equal. For r > r’, the identification of r. and 7 is
different, but we have gone through the cusp. In some sense, the cusp thus ensures
the continuity.

The constant ag is determined from the discontinuity in the derivative of
Go(k,r,r") at r =r'. Note that G (k,r,r") is continuous at r = 7/, but the derivative
%Gz (r,7") is discontinuous. Only the region

r—e<r<r+e (5.59)

gives a non-zero contribution. Taking notice of the continuity of the Green function
and of the discontinuity of its derivative at the cusp, we have

r'+e
, ) ) , ,
15%[ [E( 25 Gy (k,r,r ))+(k2r2—€(€+1))G4((kj,r,r )] dr
1 7‘,+€
=—— d(r=r") dr. (5.60)
€ Jr'—e

This implies that the derivative of the radial component of the Green function must
have a discontinuity at the cusp, of magnitude [see Eq. (2.85)]

0 1
- r?—Gy(r,r") == (5.61)
or

r=r'—¢ €0

0
2 Y /
T arGE(rar )

r=r'+e
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We can now identify the places where the differentiations take place, immediately to
the right and left of the cusp, based on the formulation of the radial Green function
in terms of r. and rs,

a ) . T’=T’I+€ 1
r? a—ao(k)jg (kro) [ije(krs) —ye (krs)] =——. (5.62)
T r=r'—¢ €0
The differentiations are carried out as follows,
. Vi d ..
rag(k) (s (') (5 e (k) =g (er)]| )
T r=r’+e
d . . . ! ! ]‘
—(d—]g(kT) )[132 (kr)—yg(kr)]}:——. (5.63)
T r=r/—¢ €0

Finally, we evaluate the resulting expression in the limit € — 0, which implies r = 7/,
and obtain
, a d o : 1
reao(k) (Je(kr) — [ije(kr) = ye(kr)] = | —je(kr) | [Lje(kr’) = ye(kr)] ) = ——.
dr dr €0
(5.64)
The term proportional to the mixed product of Bessel functions and derivatives
cancels, and we have

a0 (k) 72 (—jg (k) %yz (k) + e (k) %jg (kr)) - —% . (5.65)

From the differential equation (5.33) fulfilled by the j, and y,, we can easily derive
that

% [7“2 (—je (kr) %ye (kr) +ye (kr) %jé (]““))] =0, (5.66)

and so the Wronskian —j, ¥+ j; can be evaluated for any argument. In particular,
we can use the form for the two spherical Bessel functions as r’ — 0,

ao (k) —(kr)* [g(_(2@-1)!!)]+(_(2e—1)!!)[g (kr)* ] _ 1
0 2+ DI [dr \ (k) (kr)™t ) [dr 20+ 1) €
(5.67)

Carrying out the differentiation, we find that

(kr)' (-(t+1)k 1 ok (k)| 1
ao(k) 1 l(2€+1) ( (er)Ers )+(_(kr)£+1)( @i+ D) )]——;. (5.68)

Assembling all factors, we finally obtain the relation

ao(k)r2 [%] :ao(k) (—%) :—%. (569)

The explicit expression for the overall coefficient thus reads as

aO(k) =) (570)
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and the final form for G, (k,r,r") is
1

— i ko (kre) h{Y (krs)
0

(5.71)
where the Hankel functions have been defined in Eq. (5.41). We conclude that

in spherical coordinates, the Green function has the following angular momentum
decomposition,

Gy (k,r,r") = % kje(kre) [ige (krs) —ye (krs)] =

Ll
Gk, -y = SROET =)
dmeq |7 = 7|
_ ik & . (1) * o
=— > > Je(kre) by (krs) Yo (0,0) Yo, (0',¢) . (5.72)
€0 =0 m=—t
By contrast, we recall the angular momentum decomposition [Egs. (2.25) and (2.91)]
of the Green function of electrostatics,
1 1a & 1o

- 2 <y (0.0)Y (0. (5.73
dreg |77—F'| €0 5.5, 20+ 1 T£+1 fm( 530) Em( ,80) ( )

The matching is successful if
¢
. R A oo . . . (1) _ 1 T<
]lvl_I)I(I)GR(k,T ) =G(r,7), llql_r)l’(l)lk]g (kre) by (krs) S0+ et (5.74)

The asymptotic relations (5.30) lead to the following expansion,

ik o (kre) h$Y (k) =ik je (ko) Ge (kre) +iye (krs))

"20 kg (kro) ye (krs)
14 _ n 4
k20 ) (kro) _(2( nn _ 1 Tt 7 (5.75)
@+1)0 L (kry)t? 20+ 1 ri+t

confirming Eq. (5.74).

5.3 Localized Harmonically Oscillating Sources

5.3.1 Basic Formulas and Multipole Expansion

We consider sources which oscillate at a fixed angular frequency w,
p(#,t) = po(F) exp (-iwt) ,  J(Ft) = Jo(¥) exp(-iwt) . (5.76)

The real part of these source functions and of the potentials are the physical pa-
rameters, but it is computationally useful to add the imaginary part, in order to be
able to restrict the discussion to a single Fourier component. In view of Eq. (5.22b),
the scalar and vector potentials generated by this current source are given as

o= [ GR(f,f—f') po(7), (5.77)
C

SN

) 1 .
(7,t) = e fdgr’C—QGR(%,F—F’) Jo (7). (5.78)
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It is natural to assume that the vector potentials and fields have the same harmonic
dependence,

A(7,t) = Ay (F) exp (iwt) , B(#t) = By (F) exp (-iwt) ,
E (7,t) = Eo (7) exp (-iwt) . (5.79)

The spatial variation of the vector potential is contained in the quantity Ay (1)
which only depends on space (but not on time),

AO ( ) [ d3 ; €XP (10') |7' T |/C) jo(ﬁl) ) (580)

dmegc? |7 — 7|

The magnetic induction field is given by

By (7) = V x Ag () . (5.81)
At the observation point, which is far away from the source, the current density
vanishes, Jo (7) = 0, and the electric field is given by the Ampere-Maxwell law

N 1 .
V x By (’F,t) = — gEo (’I“,t) = —i% Ey (f,t) . (582)
c
The spatial dependence of the electrlc field thus reads as
(r)—_ (V x By (r)):fﬁx(@xﬁo ) . (5.83)

Equations (5.81) and (5.83) imply that the knowledge of the vector potential Ag(7)
is sufficient for the calculation of both Eq(7) and By(7) in the source-free region; it
is not necessary to consider the scalar potential (5.77) at all.

We have already restricted our sources configurations (the domain where Jo is
nonvanishing) to be localized with a characteristic dimension, d, satisfying

d« <= A , (5.84)
w 27

i.e., with a spatial dimension much less than the wavelength of the radiation. This
restriction only pertains to the dimension d of the sources configuration, not to
the distance r from the source itself. The exponential term in the integrand for
the vector potential suggests that the potential will have a drastically different
spatial dependence depending on the range of #. The condition d < r < cjw is
relevant to the near field or static zone, less than a wavelength away, while the
condition r > ¢/w characterizes the far field or radiation zone, many wavelengths
away. The vector potential, given by Eq. (5.78), can be evaluated using the angular
momentum decomposition (5.72) for the Helmholtz Green function, which we recall
for convenience,

Grk,7-7) = é (kre) h$Y (k1) Yom (0,9) Y5, (0',¢)) . (5.85)

||M8

In view of Eq. (5.78)7 the vector potential Ag(7) can be decomposed into multipoles
as follows,

Ao(1)= 255 DYin0re) [ a0 B )ielkroh(D (k)i (0.6). (550)
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We here introduce the notation ¥,,, for the sum Y52, ¥ __,: it will be used in the
following. This expansion ignores, in some sense, the intrinsic angular momentum
of the current density Jo (7). The current density Jo(7') transforms as a vector, just
like the spherical harmonics Yz, (6, ). A more systematic expansion is found if one
adds the angular momentum inherent to the vector field to the angular momentum
of the spherical harmonic. As it stands, in order to obtain a valid expansion in
Eq. (5.86) and use the orthogonality properties of the spherical harmonics, one has
to expand each individual Cartesian component of the vector-valued current density
Jo(7) into spherical harmonics. This procedure mixes Cartesian and spherical
coordinate systems and is somewhat unsystematic. A better way will be described
in Sec. 5.4; but Eq. (5.86) is good enough for our purposes, for the time being. In
fact, we shall first discuss dipole radiation based on Eq. (5.86), before generalizing
to arbitrary multipole orders using the tensor Green function.

If the source current is localized near r’ ~ 0, we can set r- =7’ and rs = r, and
the radiated vector potential reads

N ik 5T oIy - ’ * ro
Ao (1) = 5 S (60 Yo (0:9) [ @07 Jo (e (+0') V5, (06) - (5.87)

If the wavelength emitted by the radiating source is much larger than the character-
istic length scale d of the charge distribution, then we have kd <« 1. Furthermore,
in this case, the argument k1’ of the Bessel function j, (k') fulfills kr' < kd « 1,
and the spherical Bessel function can be approximated with its asymptotic form
near ' = 0, that is, jo (2) ~ 2¢/(2¢ + 1)!!. One then obtains

ik &G kY (k) ” : '
ZZWYML(WD)[W MfdQJo ) Vi (0',¢") -

(5.88)
We define the near-field region to be the spatial region closer than a wavelength

away from the antenna, but still large compared to the spatial extent of the charge

distribution,
20— 1)1
d<r<<£, kd<kr<«l1, h(l)(kr)~+1yg(kr)~—1w, (5.89a)
w (k )Z+1

e _ 1 s £ Yém 9;30 /W I 7 /=l * 14 /
Ay (7) » 3 Z 2€+1()”r2+1[dr Mfdsz Jo (F) Y (0,0) .

5.89b
So, in the near-field region, the double factorial (2¢ - 1)!! cancels, and we (have ;
very compact expression for a long-wavelength emitter. In the far zone, still for a
long-wavelength emitter, we have in view of Eq. (5.43),
ei(k: r—4m/2)

ikr

kd<1, Er>1, hgl) (kr)~ (5.90a)

e — > £ ké l(kT W[/Z)Y/m 5%0) I ! * 14 !
A~y ¥ e [ [ a0 R YiL @)

(5.90b)
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By dimensional analysis, the source integral is proportional to

dr’ "2 [ dAQ Jo () Y, (0/,¢)) ~ jod™2, 5.91
m

where jj is a characteristic scale of the current density. The expansion in multipoles
thus is seen to be an expansion in powers of the parameter (k d)z, where k = we,
and can be evaluated term by term. The lowest nonvanishing term then gives the
dominant contribution. In evaluating the source integral (5.91), one has to multiply
each of the three spatial components of Jy (7') by the spherical harmonic Y5, (6', ")
and evaluate the overlap integral over the entire solid angle d€)'.

5.3.2 Asymptotic Limits of Dipole Radiation

The lowest nonvanishing contribution to electromagnetic radiation comes from an
oscillating dipole and is referred to as dipole radiation. By contrast, the integral
over Jo (') for £ = 0 and m = 0 in Eq. (5.91) projects out only the spherically
symmetric part of the Jo (r,6’,¢’),

B T * / / 1 T (=l /
= [ JO (7_:,) T,2 YOO (9,a SDI) dr'dQ) = \/T [ JO (T ) d37ﬂ ) (592)
7I

If Jo (7') were a scalar, then this integral would naturally be referred as a monopole
radiation integral. Somehow, we have to relate the vector-valued space integral
over Jo (7") to the total oscillating dipole moment. Charge conservation helps. In
the mixed frequency-coordinate representation, the charge conservation condition
reads as

V- Jo (F) = = (<iwpo (7)) = iwpo (7) . (5.93)

This suggests the following trick in order to convert the integral over the current
distribution into an integral over the charge distribution: just multiply the current
density by a coordinate and calculate the divergence. The result consists of two
terms, one of which reproduces the current density, and the second yields the charge
density by virtue of current conservation. The integral over the total divergence
vanishes, and the charge density is obtained in the final result.

This program is implemented as follows. The integral over the current density
is converted to one over the charge density using the identity

3 3
6 (Z‘m .]0 7“)) Z_: ai Z‘m .]Qm, (’F)] = Z .]Qm, (’F) Onm + Tm ﬁjo (’F)

n=1
= Jom (7) +iwam po (7) (5.94)

where Jo , (7) refers to the mth Cartesian component of Jo(7). So,

~ 1 - w 3
D=—— fJ ) 3 = i f Em .. po (') 3
\/E 0( ) \/E /rrlzz:l pO( )

fF' po (7)) A3 = i Z Bo, ﬁosz’ po (Y. (5.95)
™

L w
i
Vamr
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This last integral is the electric dipole moment of the charge distribution, i.e., .
We recall Eq. (5.90); for the dipole case, this formula is exact for a localized, long-
wavelength source with kd <« 1, because the Hankel function h(()l)(k‘ r) consists of
only one term [see Eq. (5.42). Then, the ¢ = 0 component amounts to

L k exp(ikr) 1 T R L
o) = L S0 o ([ B o man
ko exp(ikr) { .w . .k po

ke () kn

4dmeg kr 47 4dmege

The magnetic induction generated by an oscillating electric dipole is

Bo (7) = ¥ x Ay (7) = -i— W[ﬁo(exp(;kr))]:i’fﬁo N(exp(”“’))

(5.96)

4meg ¢ 4meg T
_i k po y d exp(ikr) O - i k (fxﬁo) exp (ikr) (ik—l)
4meg dr r dmege \r r r

k% exp (ikr) (1—i
N dmegcr ikr

where 7 = 7/r. The leading term, for large r, is the magnetic field in the radiation

) (7 % po) , (5.97)

zone,

2 .
FepOrr) ooy kr o oo (5.98)

B (7) ~
0 () dmeger

We can use Eq. (5.83) in order to calculate the electric field,

Bo(®)= 'S (9% Bo(9) =i £ (95 B0 () = 1o x[ (£ ) 10)]

ik 1
f(r):w(l_._) . (5.99)
r ikr
The leading term, for large r, is generated by the gradient operator pulling down a
factor k from the exponential, and can be written as
S ik - T d ik 7 T ik exp (ikr
Fo(7) = 2 (9) ¢ (2 xp0) () » e [ Do (Do) | o2 iRr)
47eg r dr 4meg L1 r r
k? exp (ikr)

=y LX) 7] (5.100)

So, the electric field in the radiation zone is given as
k% exp (ikr)

EO (7) ~ dregr

[(7xpp) x 7], kr—>oo. (5.101)
Together with the corresponding asymptotic formula for the magnetic field given in
Eq. (5.98), one infers that

Eo(7) ~c¢Bo (F)x#,  kr—oo. (5.102)

In the radiation zone, the electric field, the magnetic field as well as the position
unit vector 7 || Ey x By form a right-handed system.
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It is very instructive to calculate the energy density radiated by the oscillating
dipole. To this end, we need the Poynting vector S (7,t). From the electric and
magnetic fields E(7,t) and B(#,t) (which are functions of the spatial coordinates
and of time), the instantaneous Poynting vector S (7,t) is calculated as follows,

1 - .
S(7,t) = — E(7,t) x B(#,t) . (5.103)
Ho
With the electromagnetic energy density
1 = .
w(it) = — B2 (7, 1) + 2 B2 (7,t) (5.104)
2#0 2

which measures the amount of energy stored in the electromagnetic field per unit
volume, we have the Poynting theorem (1.106)

V- S(7,t) + %u(?’,t) + E(7,t)- J(7,t) = 0. (5.105)

Energy leaving the reference volume per unit time is obtained by integrating fv V-
S(7,t)d%r = Jov S(#,t) -dA. The Poynting theorem states that energy leaving the
reference volume, as described by the integral of the Poynting vector over the surface
normal, plus the work done on the charge in the reference volume by the electric
field, is accompanied by a loss in field energy within the reference volume. For
an oscillatory field described by a frequency component exp(-iwt), the physically
relevant quantity is the real part which is proportional to Re[exp(-iwt)] = cos(wt).
The average value of cos(wt) over a period of oscillation is just equal to 1/2. So, for
a component of angular frequency w described by Eq. (5.79), the average Poynting
vector (S(7)) (over a period of oscillation) is given as
(S(F)) = —— Bo(7) x BL.(F). (5.106)
240
The vector identity ax (bx &) = b x (d-¢) —&x (@-b) can be used to calculate this
expression,
2 2
(5)) = = Bol7) % By () = g e [ 0) %7 % (7 x70)
c E* 1 ec Kkt 1 2

= —WWT—Q (TXPO)X[(TXPO)XT]:TWT—QT
€oC k4ﬁg 1

€oC If4 1 592 A 2 \2 ~ 2
) (r. _ — ¢ (1-cosf 1
2 (4mep)? r2 " (po (7 o) ) 2 (4mep)? r2? " ( €08 )’ (5.107)

where cosf = 7 - pg. The angular distribution of the average radiated power dP,y,
per area dA is
4 =2
Wore (D s (5ry) = 00 K00 L
(4meg)2 7
The average intensity radiated parallel to the dipole vector is zero. The time aver-
aged power (P) radiated by an oscillating electric dipole is obtained as

coc k*pg [ 1 2 2 c k' pg
P)=— — (1-cos“0 dQ) = - . 5.109
(P) 2 (4mep)? 72 (1-cos”6) (v ) 3 4meo ( )

(1-cos?) . (5.108)
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The radiated power is proportional to the fourth power of the frequency of the
oscillation.

5.3.3 FExact Expression for the Radiating Dipole
Our exact result for the magnetic field generated by oscillating dipole (5.97) is given
as
. k2 ik 1
Bo(7) = exp (ikr) (1_._) (7 x po) . (5.110)
dreger ikr

In Eq. (5.101), the electric field is obtained as

ic2 . . 2 exp (ikr
Eo (7)) =< (9 x Bo (1)) ~ 22 k7

[(7# xpg) x 7], kr—oo. (5.111)
w dmeg T

The exact expression for E’O(F) remains to be derived. Certainly,

- ic k2 . (T exp (ikr) 1
E = — - XxPy | —Z (1 - —
0 (") k 4megc (vx(r xpo) r ( ikr)

S (@x(Fxﬁo)L(p?gkr) (1— L ))

=

- 4meg ikr
ik . T d [exp(ikr) ( 1 )
= — | — 7 1__
47eq (VT)X(TXpo)rdr( r2 ikr
ik [exp(ikr) ( 1 ) -
— | —— |1 - — . 112
+47r60 ( 72 ikr (VX(TXPO)) (5 )

According to the rule that a x (13 x C) :B(ZL~5) - E(&~5),
(V x (#x o)) = (V- o) # o (V- ) = fio ~ 3o = 2o .-

We have taken into account the fact that the ¥V operator acts on everything to the
right. So,

Ao (o) (222 (55|

(=R (1 L) o

4d7eq r2 ik

ik . . . ik 3 3i . ik exp(ikr)( 1 ) .
= Zoc 2 )+ — (ST 2 ) (-2
47T60[r><(7“><p0)](r r2 kjr3)eXp(1 T)+47reo( 72 ikr (=2p0)
o ()] exp () + o [ )] (-5 - ) ex k)
47eg r 47eg 2 kr3

4d7eq r2

+1(M(1—%))(—2ﬁ0). (5.113)
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- K2 . ik T ., 3ik 3 .
Eo(7) = o [(# x Po) x 7] exp (ik7) + [7 (7 Po — Po)] (——12 +—3)exp(1kr)
TEQ r 4meg T T

L(M(ik_%))(_gﬁo), (5.114)

47eg 72

The first term is the leading term. The remaining terms have the structure of a
quadrupole term component when projected onto the dipole vector gy,

L K exp(ikr 1 o . 1 ik _
Eo(7) = pr— [(7 x Do) x 7] # + Tres [37 (7 - Po — 3P0) ] (7“_3 - T—Q)exp (ikr)
ik 1
. exp(ikr)(—1—2+—3)(+2ﬁo)
Ty r2 r
K2 exp(ikr | 1 ik _
= [(7 x Do) x 7] p (ikr) —[3r(r~p0—3p0)](—3——Q)exp(lkr)
4meq r 4meg r r
1 1 ik
+— ﬁo)(——l— exp (ikr)
4me o7
K2 ., exp (ikr 1 P 1 ik .
= o) A1 D L (o )] (5 - e k)
4meg T 4meg T T

(5.115)
Finally, we have found the exact result for the electric field radiated from the dipole,
valid for all r,

2 exp (ik7)

2O [ i) x 7] - R U ¢

1
1-— ) [37(7-Po—Do)] -
dmegr 4deq 1?2 ikr) [37 (7 Po = Po)]
(5.116)
In the near field, kr < 1, we can replace exp (ikr) - 1 and find for the magnetic
field in the near zone,
ik

Bo(r) ~ 4dmeq cr?

(Pxpo),  kr—0, (5.117)
and for the electric field in the near zone,
1

Eo(7) ~ 4degrd

(37 (7 Po-po)],  kr—0. (5.118)
Even for dipole radiation, the derivation of the exact result (5.116) for the electric

field is a nontrivial exercise, and it is helpful to include all intermediate steps.

5.4 Tensor Green Function

5.4.1 Clebsch—Gordan Coefficients: Motivation

Angular momentum algebra is connected to the so-called Clebsch—Gordan or vector
addition coefficients. These coefficients are of rather universal applicability over
wide ranges of physical theory. One uses them in order to find the expansion
coefficients of a tensor of higher rank as it is composed out of elements of tensors of
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lower rank, hence the name “vector” addition coefficients (while “tensor” addition
might otherwise be a more precise formulation).

One of the most important symmetries in physics concerns the group of rota-
tions, or, the special orthogonal group in three dimensions, called SO(3). We know
that the scalar product -9 of two vectors is invariant under rotations. The vector
product @ x ¥ transforms as a (pseudo-)vector itself. We recall that a pseudo-vector,
in contrast to a vector, conserves its sign under parity, 4 x ¢ - (=) x (-9). Vec-
tors do not mix with scalars under rotations. The vectors are of rank one, whereas
scalars are tensors of rank zero. Furthermore, from the tensor product of two vec-
tors, we can extract a third quantity which is a quadrupole tensor of rank two,
which also does not mix with tensors of different rank under rotations. From the
tensor product of two vectors, one may thus extract tensors of rank zero, one, and
two. The components of these “constructed” tensors are linear combinations of
products of the components of the vectors. The corresponding formalism, in the
spherical basis, involves the vector addition, or Clebsch—Gordan, coefficients.

The procedure is illustrated most effectively by way of an example. We consider
a second-rank tensor from the tensor product of two vectors,

Ugp Vg Uy Vy Uy Vs
T=1U®0 =] uyvy uyvy uyv, |- (5.119)
Uy Ug Uy Uy Uy Uy

We can decompose T as follows,

T= T+ Tlpey + Tlpey (5.120)
tre(T
T, = % Lsxs, tre(T) = g vy + Uy vy + Uz U, (5.121)
1 0 % (uxvy_uyvx) _% (uz Ve — Uz v,)
T, = §(T_TT): _% (ug vy — Uy vy) 0 % (uy vz = uzvy)
% (uzva:_uwvz) _% (uyvz_uzvy) 0
(5.122)

The (£ = 0)-component is invariant under rotations. The entries of the matrix T,_,
can be identified as the components of the vector product of % and ¥, with details
to be discussed below. Finally, the (¢ = 2)-component reads as

Ty = % (T+T")- @ Lsus (5.123)
2Ug Vg — Uy Vy — U Vs Ug Vy + Uy Uy Ugp Vy + Uy Vg
3 2 2
B Ug Vy + Uy Vg 2Uy Vy — Ug Vg — Uz Vs Uy Uz + Uy Uy
- 2 3 2
Ugp Vy + Uy Vg Uy Uz + Uz Uy 2U, U, — Uz Vg — Uy Vy

2 2 3
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As already anticipated, and with reference to Eq. (1.23), we can order the non-
vanishing components of the antisymmetric tensor T|,_; into a vector, namely, the
vector product of % and v,

Uy Vs — Uy Uy
UXT=| Uy Uy — Uz Vs |, (4 xD); = €k wj Vk (5.124)
Ug Vy — Uy Vg

where a summation over j and k is understood by the Einstein summation conven-
tion [see Eq. (1.45)]. The fact that TJ,_, transforms as a (pseudo-)vector shows
that it is possible to construct a vector whose components themselves are products
of vector components. In Cartesian components, the “coupling coefficients” can
directly be read off from Eq. (5.124), in the sense that the components of a tensor
of rank one (of the vector product) are obtained by multiplying the products w; v
of the components of the vectors @ and ¥ by the coupling coefficient e;;y,.

However, the canonical formalism employs the spherical basis. We recall from
Eq. (2.30) that the z component of the angular momentum operator has a particu-
larly simple form in spherical coordinates [see Eq. (2.30¢)],

0 0 0
L,=-1|x— - —):—i—. 5.125

: ( Jy Ox de ( )

The spherical basis of vector components is chosen to generate an explicit ¢ depen-

dence of the form exp(imy), i.e., it consists of eigenfunctions of L,. In the spherical
basis, the components are denoted as z,1, ¢ and x_1; they read as follows,

1 1 : 4
Ty1= - —= (v +1iy) = ——=|F[sinfe¥ = \/ —|F|Y11(8,¢), 5.126a
+1 \/5( Y) \/§|| 3|| 11(0,¢) ( )

4
wo=2 = || cosf = /g 17 Yi0(0, ) , (5.126b)

1 1 ; 4
ro1 = —=(x-iy) = —=|F|sinfe™™? =1/ —|7|Y1_1(6, ), 5.126¢
1 \/5( Y) \/§|| 3|| 1-1(0, ) ( )

where we have allowed ourselves the luxury to write r = |F| = \/22 + y? + 22 explicitly.
The emergence of phase factors of the form exp(im ) with m =-1,0,1 is evident.
The spherical components are complemented by spherical basis vectors as follows,

o .. .. . R - |
€41 = VG (éz +iéy), €g= €, €_1= E(em—ley). (5.127)
The coordinate vector can easily be expanded into the spherical basis,
1 1
=Yy xgéy= . (-1)Ta_qé,, ér=(-1)7é_,. (5.128)
q=-1 q=-1

The spherical basis vectors are normalized as follows,

Eq g =(-1)"00—q,  EqEy=04q- (5.129)
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The sum over ¢ runs over the indices ¢ = —1,0,1. For absolute clarity, we should
mention that the latter Kronecker symbol in Eq. (5.128) is to be understood as
dq,-q'» 1.€., ¢ has to be equal to —¢" in order for the Kronecker symbol to be equal
to unity rather than zero. Components can be extracted by calculating the scalar
product of the coordinate vector # with a spherical basis vector,

1

1
reéq = Z Ty €+ Eq = Z Tq Og q = Tq- (5.130)

q'=-1 q'=-1
The paradigm of the vector coupling, or Clebsch—Gordan, coefficients, is that
one obtains a tensor component of magnetic quantum number m for a tensor of
rank j by coupling two tensors of rank j; and jo as follows,

v(gjm) = Z Z s jams W1 M) u(G2M2) - (5.131)

mi=—j1 ma=—j2

Here, u(j1 m1) and u(ja2ma) are two distinct vectors. In our example, we couple
two tensors of rank one (the vectors 4 and ¥ with spherical components w1, ug
and u_1, as well as v;1, vo and v_1), to a tensor of rank one, which is the vector
product W = 4 x ¥. So, we have j; = jo = j = 1 for our example, which is given by
Eq. (5.124) in Cartesian coordinates. The Clebsch-Gordan coefficients are tabu-
lated and nowadays implemented in most modern computer algebra systems. Using
tabulated values, one finds

we= Y, Clq’ 1q7 U’ Vg 5 (5.132a)

q'q"

Jtavoruova | L rGg) digaxe .

wo = L\/_ulv“ [ ] 7). (5.132¢)

w_y :“0“‘17&“‘1“0 :[%] {%[(axﬁ)x—i(ﬂxﬁ)y]}, (5.132d)
where the subscripts x, y, z denote the Cartesian components of the vector product,
e., (Wxv), = uy vy — Uy vy and further by cyclic permutation. A comparison of
Eq. (5.124) with Eq. (5.126) shows that the components of @ are equal to those

obtained by writing % x @ in the spherical basis, up to a prefactor i/v/2, i.e.,
i

1
D= 3 (1) = —= (
q=-1 \/5
One can form two further linear combinations of the spherical basis vectors &,
which are of interest,

1
EaxEy=iV2 Y ClNy 6\, TF=-V3 Z Z C g Tq g - (5.134)
A=-1

q=-1 ¢’=-1

x V) . (5.133)

N

The first of these illustrates that the vector product of two basis vectors in the
spherical basis again is a vector; the second clarifies that the coordinate vector 7
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actually is a scalar under rotations, obtained as the scalar combination (tensor of
rank zero, component number zero) composed out of the spherical coordinates x,
and the spherical basis vectors €;. Of course, the vector composed of the components
x4 is not a scalar. However, the scalar product of the vector composed of the z, with
the vector composed of the €, constitutes a physical vector 7 which does not change
just upon a change of the reference frame [see Eq. (5.128)]. Upon rotation, this scalar

product is equal to the coordinate vector obtained using the new coordinates zj,, but
!

q7
vector 7 invariant. This corresponds to a passive interpretation of the rotation.

multiplied with the rotated basis vectors €, which leaves the physical coordinate
Let us now investigate the (¢ = 2)-component given in Eq. (5.123). It is sym-
metric and traceless and has five independent components. The counting works as
follows: We have five independent components, because the matrix is symmetric and
traceless. This leaves three off-diagonal and two diagonal components to be deter-
mined; the third component on the diagonal is fixed by the condition trc (T|,_,) = 0.
A scalar (¢ =0) has one component, a vector (¢ = 1) has three magnetic components
Zym (which depend on ¢ as exp(imep) with m = -1,0, 1), and a quadrupole tensor has
five magnetic components [which depend on ¢ as exp(im¢) with m =-2,-1,0,1,2].
The generalization calls for 2¢ + 1 magnetic components for a tensor of rank /.
Again, using tabulated values for Clebsch-Gordan coefficients of the form C?4

1q’ 1¢’">
with ¢’,¢" =-1,0,1 and ¢ =-2,-1,0,1,2, we have
2
tq = Z Clz{zl’ 1q” uqr ’Uqﬂ 5 (5135&)
qlql’
U4+1 Vo + UV
tyo = Us1 V41, ty1 = % » (5'135b)
3’(1,0 Vo — U-v
tg= —m—, 5.135¢
G (3:135¢)
_ + _
t_1= w t_o=u_1v_1 , (5135d)

7 ;

where the spherical components u_1, ug and w4 are defined in Eq. (5.126). If the
operators Ly and Lo address the vectors @ and & separately, then the functions ¢,
are eigenfunctions of the operator L? = (L; + Lo)? with eigenvalue L? » £(£+1) = 6
and of the z component L, = Ly, + Lo, with an eigenvalue ¢ of L.

5.4.2 Vector Additions and Vector Spherical Harmonics

Vector spherical harmonics are obtained upon adding the “spin” of the photon,
namely, the spherical basis vectors which are used in the expansion of the vector
potential, to the spherical harmonics which represent the “orbital” angular momen-
tum of the photon. Photons (light particles) are spin-1 objects. The spherical basis
vectors are components of a tensor of rank one. To this tensor we add, vectori-
ally, the orbital angular momentum /¢ of the photon, as manifest in the spherical
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harmonic. Hence, in view of Eq. (5.131), the vector spherical harmonic is given as

1
u) = X 3 Cong Yim(0:0) . (5.136)
—¢ q=—
Because neither the total angular momentum quantum number j nor the orbital
angular momentum ¢ can be negative, the vector spherical harmonics with 7 = -1
and ¢ = -1 vanish; this observation comes in handy in regard to a number of
summations discussed in the following. From Eq. (5.127), we recall the basis vectors
in the spherical basis,
- .. .. . . |
€= ——=(éx+1€éy), €o= €., €= —(é;-1éy). (5.137)

The Clebsch—Gordan coefficients CZT’; 1q assemble a tensor of angular symmetry ju
from a spherical harmonic of angular symmetry ¢m and a spherical basis vector of
angular symmetry 1g. We prefer the above notation for the vector spherical har-
monic; the magnetic projection p may assume values from —j to j. The superscript
¢ reminds us of the orbital momentum which was used in the construction of the
vector spherical harmonic. The spin of the photon (equal to one) is added to the
orbital angular momentum; hence the total angular momentum 5 can differ from ¢
by at most unity; otherwise the vector spherical harmonic vanishes.

The spin operators of the photon are given by the matrices $; (i = 1,2,3),
(Br)ij = —lekis (5.138)

where €51, is the Levi-Civita tensor [see Eq. (1.23)]. The explicit representation for
k=1,2,3 reads as

000 00i 0-i0
$.=[00-i $,={0oo00|, $3=|lioo0]. (5.139)
0i0 -i00 000

The matrix IM given above is identified as the lower right 2x2 submatrix of IM;, and
also as the upper left 2 x 2 submatrix of M3. These matrices and the corresponding
components of the angular momentum vector fulfill the algebraic relations

[$:,8; ] =iein Bi, (5.140)

where the Einstein summation convention is used for the sum over k = 1,2,3 on the
right-hand side. The vector square of the $ matrices is

200
$2=1020]=5(S+1)13.3, S=1, (5.141)
002

demonstrating that the photon is a spin-1 particle (with S =1). The total angular
momentum operator of the photon is given by

J=Ll33+9%, (5.142)
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where we are pedantic in multiplying the orbital angular momentum operator by the
three-dimensional unit matrix, implying that, say, the z component L, A= L,1- A
acts on the entire vector A, i.e., on all of the components of A separately. The z
component of .J acts on a vector-valued function as J. V(6,¢) = L. V(6,) +$. -
‘7(9, ©). The vector spherical harmonics have the properties

T2Y,(0,0) = (G +1)Y},(0,9), (5.143a)
L2Yj,(0,0) =0(£+1) Y}, (0,¢), (5.143b)
a4 a4
J.Y;,(0,0) =1Y;,(0,0). (5.143¢)
The orthonormality relations are

f AV (0,0) - VE,(0,0) = 8,50 S1r Sy (5.144a)

: o0 S0 2j +1
Z‘f A, (0,9) @ ¥ (0.9) = = Lusg, (5.144D)

where we assume that the vector spherical harmonic is nonvanishing, i.e., |j — €| < 1.
In the second sum, j and ¢ are held constant; they just have to be the same for
both vector spherical harmonics but are not summed over. For given j, there are
three possible values of £, namely, ¢ = j -1, 7,7+ 1; summing over these, one obtains
a factor (25 + 1) instead of (25 +1)/3 on the right-hand side.

There is also a completeness relation,

3 J \/ Y / / d * 1o
2 >, Y (b.9) @Y (0,¢") = 2 Yim(0.0) i (0'.¢) Ly (5:145)
J=t=1 p=-j m=—

which implies that

oo l+1

J \/ A* (! / 1 / /
Y L YL0.9) eV (0,¢) = ——=8(0-0)6(p-¢) Iss.  (5.146)
0=0j=0-1 p=—j sin 6

The relation analogous to Eq. (2.56a) is

Vil (0,0) = (1) (1) YL (0.9). (5.147)
Explicit representations are given as follows,
ny 1 .
" ViG+n "
gy 1 -
VI 0,0) = ——x (j7+7V) Yju(6,
70, ) D (J ) Yiu (8, )
1 .
= —-—— (ifxL-j7) Yu(0,9), (5.148D)
J(25+1)
- 1 -
Y0, 0) = - i+ 1)F—rV) Y;.(0,
1 .
= - (if x L+ (j+1)7) Y;,(0,0). (5.148c¢)

(G+1)(25+1)
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Here, p can take on the values p = —j,...,j. Again, we emphasize that vector
spherical harmonics with |j — ¢| > 1 vanish.

The two equivalent representations of the vector spherical harmonics can recon-
ciled with each other on the basis of the operator identity

(ifx L) f(0,0) =1 V(0,90), (5.149)

which is valid for any test function f that only depends on the angular variables.
We can write a representation of the vector spherical harmonics in terms of
Clebsch—Gordan coefficients. For example, we have in the case £ = j,

f/jﬂ(&, ©) =Cl111 €1 Y u-1(0,0) + Ol €0 Yju(0,0) + Oy 1 1 €1 Y (0, 9)

(5.150)
Using known formulas for the Clebsch—Gordan coefficients, the vector spherical
harmonics with £ = j find the following representation,

i _ Grw)G-p+1),, ﬂ [

YJH(97<‘0) - _\ 2](]+1) Y]vlt—1(97¢)e+1 + lij(j-ﬁ-l) lei( 7@)60
(G- (+p+l) B}

+ \ 25(j+1) Y ue1(0,0) €1 . (5.151a)

For the case £ =j -1, one has

+ 1 +
VI (0,0) = \j J+u-1)0j ”)%_1,,L_1(9,<p)é+1

2j(2j-1)
| G=mGr) 3
\ ](2j—1) Yj—lw(ea@) 0
G-p-DG-p N
+ 2](2] — 1) 5/}_17“_‘_1(9, (p) €_1. (5151b)

Finally, for the case £ =j + 1, one has

(-p+1)(-p+2) »
2(] T 1)(2] T 3) Yrj#—l,p,—l(gv 90) €41

G-p+)(G+p+l) .
(J+1)(25+3) Yjs1,u(0,9) €0

jrp+2)(J+p+1l .
( 2(/; + 1))((2j +N3) ) Vi (B 9) € (5.151c)

Y7 (0,¢) =

JH

+

Here, one easily discerns the addition of the magnetic quantum number, of the
spherical harmonic and the spherical basis vector, to the total magnetic projection
of the vector spherical harmonic.
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5.4.3 Scalar Helmholtz Green Function and Scalar Potential

We recall that the Helmholtz Green function is given as follows [see Eq. (5.20)],

exp(ik |7 — 7])

Gr(k,7-7") = (5.152)

dreg |7 — 7|

This Green function couples the scalar potential to the source, according to
Eq. (5.77),

(1) =Ry (7),  Bo() = [ & G (— . r)po(F"). (5.153)

For definiteness, we also recall the angular decomposition of the Green function for
the Helmholtz equation according to Eq. (5.72),

P (ot
Gr(k,i=7)=— 3 ko (k) B (krs) Yom (8, 0) Y (7). (5.154)

l,m

Outside of the charge distribution, the scalar potential is thus given by

k [e<] ,
Py () = 1—0 > X pem b (k7) Y (60,), (5.155)
=0 m=—4

with

3., - — * ké 3 4 — *
- [ () P Vi (0 0) ~ oo [ &t o) Vi (0.9) . (5.156)

The py., generalize the multipole components of a static charge distribution, defined
according to Eq. (2.97), for a dynamical process, namely, the emission of radiation.
In the notation, we suppress their dependence on the wave number k. Indeed, for
k — 0 (zero-frequency radiation), the leading term in the expansion of py,, according
to Eq. (5.156) is proportional to gz, a fact which is obvious from Eq. (5.30).

5.4.4 Tensor Helmholtz Green Function and Vector Potential

The tensor Helmholtz Green function is obtained from the Helmholtz Green function
by a multiplication with the unit matrix,

Gr(k,7—7) = 133 Gr(k, 7= 7). (5.157)

It enters the equation that couples the vector potential to the source, Eq. (5.78),
which we write as follows,

A = Ao, Ao@) = [ S Gr (L) D). (5.159)

Note the explicit matrix product of the tensor Green function and the current
density, which differentiates Eq. (5.158) from (5.78).

In order to proceed with the analysis of the tensor Green function, we first need
to write a tensorial decomposition. The unit matrix in Eq. (5.157), which describes
the spin of the photon, needs to be incorporated into the analysis. Of course, the
hope is that once we form the tensor product of all the vector spherical harmonics
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pertaining to the same orbital angular momentum ¢, we would somehow recover
the angular structure in Eq. (5.72), namely, Y,,, Yo (0,0) Y, (0',¢"), multiplied
by the unit matrix Lsx3. Indeed, we recall Eq. (5.145),

£+1 j V4
> Z 5 (0,0)8Y (0 ,0) = Y Yem(0,9) Y (0',¢)) Tans. (5.159)
Jj=€-1 p=-j m=—{

For the case ¢ = 0, we recall the observation reported in the text following
Eq. (5.136). Essentially, in Eq. (5.145), for given ¢, one sums over the possible
values of 7, namely, j = /—1,¢,£+1, and then over the possible magnetic projections
1, and obtains an angular structure which is familiar from Eq. (5.72). Here, the ten-
sor product is the one which transforms the two vectors Y, (6,¢) and Y, (6',¢")
into a matrix; pedantically, one might otherwise have indicated the transpose of the
latter vector.

The angular decomposition of the tensor Green function (5.72) for the vector
Helmholtz equation can thus be given in terms of the vector spherical harmonics,

exp (k|7 —7])

GR(k,f—'F’) = 47r60 |7,. —Z | ]13><3
ke LR (1) Y L3t
:_Z Z Z je(k'f"<)hz (kr>)Y;u(05¢)®Y (0530)
€0 j=0 p=—j ¢=j-1
ik & J : J— rj=1*x/pnr 1
=2 Y (G nE (k) Vi (0,0) 0 Vi (0, ¢)
€0 j=0 p=—j
+ 55 (kr) WD (k) YI,(0,0) @ V)1 (0.¢)
+ip(kr) WG (k) Vi (0.9) V7 (0,¢)) . (5.160)

So, outside of the charge distribution, the vector potential is thus given by
1 -

o) == [ & Gk 7 =) To(7)
c2
[d3 ,exp(1k|7“—7' |)

L33 - Jo (7
dmegc? |7 = 7| 33~ Jo(T)

g+l

o J R
=ik Y YN phu by (kr) Vi (0.0), (5.161)
with
pg’:u:fd?’rjg(kr) Jo(7) - VE2(0, ) » 2“1)” fd Pl Jo(7)- VL5 (0,0) . (5.162)

The advantage of Eq. (5.161) over Eq. (5.87) lies in the fact that the vector structure
of the radiated vector potential is resolved and the spin of the photon is incorporated
into the formalism.

But we are not quite there yet. Namely, the decomposition (5.161) does not
clearly separate the longitudinal and transverse components to the electric and
magnetic fields generated by the vector potential. An alternative decomposition,
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which accomplishes a separation into electric and magnetic multipole radiation,
reads as follows,

Gr(k,7-7")=

+ N;Q(k, ) ® N;,?*(k, o)+ Eﬁ}(/f, i) ® LSO (k, ﬂ)) . (5.163)

From the above discussion, it is clear that ¢ takes the role otherwise taken by j,
because we have added the spin of the photon to its orbital angular momentum. We
shall later see that the angular dependence of the functions M J(f), N, J(f), and L;f),
is given by vector spherical harmonics with a total angular momentum number j.
The notation is to be explained in the following. For the magnetic (M), electric

(N), and longitudinal (L) multipole moments, we have

M;K)(’f r) = \/ﬁ f(K)(kr) LY;,.(0,9), (5.164a)
NGO (k,7) = 2? MO (k,7) (5.164b)
LS (k,7) = % v (k) Yiu(0,9)) | (5.164c)
and conversely
Mff)(kf)béﬁxﬁff)(k,f). (5.165)

The definition of Méé{)(kf) needs to be clarified for Eq. (5.164). In principle, we
are dividing zero by zero because the application of the L operator to Yy leads to
zero, but the prefactor 1/1/j(j + 1) has a zero in the denominator. The solution is
to allow for an infinitesimal displacement of the angular momentum j — j+¢ before
applying the L operator and then letting ¢ — 0 at the end of the calculation. This
clarifies that

NGO (e, 7) = NG (,7) = 0. (5.166)
The f;K)(k r) with K =-1,0,1 are Bessel and Hankel functions, as follows,
Oy =j;kry, f PR =P Gy, ) =hP (k). (5.167)

The vector multipole decomposition involves the following moments,

My = f ' Jo(#) - MG (0, ), (5.168a)
- f & Jo(#) - NO* (0,0, (5.168b)
- fd3r’J0(F')~E§2)*(9’,¢’), (5.168c)

whose dependence on k is suppressed. (This dependence is due to the f;K) func-
tions defined in Eq. (5.167), which enter the ]\ZT;S)*, N;g)*, and E;g)*, according
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to Eq. (5.164).) We note that the curl operator in Eq. (5.168b) admixes Bessel
functions j;-1 and jj,1 to j;. The approximation

(kr)’

(0) s o
[ (kr) =jj(kr) ~ @i+ Dl (5.169)
is otherwise applicable for a localized source, in much the same way as in Egs. (5.156)

and (5.162). Finally, the decomposition of the vector potential reads as

o J
Ao(F) =ik po 3 (mm W (,7) 4 g N (B, 7) + 15, L) (k7)) . (5.170)
J=0 p==j
Here, the m;, are the magnetic multipole moments, the n;, are the electric mul-
tipole moments, and the [;, are longitudinal multipole moments which do not
contribute to the fields.
A (perhaps) more systematic expansion writes the J\Zf;f)(k, 7), N;f)(kf), and
E;fj)(k,?) in terms of the vector spherical harmonics with ¢ = 5 —1,7,5 + 1, but
definite 7,

(K)o =y _ p(K) 3

M;, 0 (k,7) = f;7 (k) Y;,(0,0), (5.171a)

- . 7j+1 . o

NGO = =[5 10N Y 0,00+ [5G Vi 0.6),
(5.171b)

LSO (h,7) = PO Y7 (6,0) + (K><kr)w;1(e,go).

27 +1
(5.171c¢)

From Eq. (5.171b), one might think that Nég()(k,F) could incur a nonvanishing
contribution proportional to %%(9,(,0), but the prefactor of this term vanishes.
Equation (5.171c) teaches us that the term proportional to Y (6,¢) is part of
the longitudinal component of the vector potential, which does not contribute to
the electric and magnetic fields. There is no such thing as a photon with vanishing
total angular momentum j = u = 0. Yet another representation is as follows,

MO (1, 7) = £ (k) Y700, ), (5.172a)
. kr £ (ke r v
N}f)( T) = {%[ (0,0)] -7/3(+1) f(K) (kr)Y;.(0 7<P)},

(5.172b)

. d[ Y9 (ke r L
L§f>(k,f>:f%mm—\/j(j+1)%f;“<kr) (i x Y7,(0,¢)).
(5.172c)
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Let us now try to interpret the contributions M;f)(k,ﬁ), N;f)(k,P), and
E;f)(kf) physically. From Eq. (5.164c), we infer that E;f)(k,F) is the “longi-
tudinal” solution constructed by taking the gradient of a scalar solution of the
Helmholtz equation. The magnetic and electric fields are obtained from the vector
potential, via the equations

Bo(7) = V x Ag(7), Ey(7) = % V x By(7), (5.173)

in the source-free region. Because E;f)(k,F) is a gradient of a scalar solution of
the Helmholtz equation, its curl vanishes. Furthermore, in view of Eq. (5.173), the
fields generated by the longitudinal components of the vector potential vanish. We
note that in view of the relation E(7,t) = ~V®(7,t) - 8, A(7, 1), the electric field can
alternatively be calculated as

Eo(7) = =V (7) +iwAy (7). (5.174)
We note that i§f)(k,F) is longitudinal, just like V®q(#) (finally, it is just a gradi-
ent). We shall thus later have to show that in calculating Eo(7), the gradient of @
given in Eq. (5.155) actually cancels against the time derivative of the longitudinal
contribution proportional to iw E;f)(l{,ﬁ) from the time derivative of the vector

potential.
Hence, we have

Eo(7) = iwdo, (7)), (5.175a)

Aos() =ik 337 (e M (1) iy ND(E.7)) (5.175D)
J=0 p=-j

Fo(F) = K cpo io Zj_:‘(mw D (k) iy N (k7)) (5.175¢)

From Eq. (5.164a), we infer that Mju is the (normalized) elementary solution
consisting of a Bessel function times f/Yju(G, p) o< YJ .(0,¢). It is (by construction)
purely transverse, because 7 - f@j (0,p) o< 7 (7 x V)Yw( ,©) = 0. The general
rationale is this: The M terms are the magnetlc multipoles. We have B = V x A
and E o< V x B. The electric field E oc M in this case is transverse, i.e., - E = 0.
This is the right characteristic of a magnetic multipole.

In view of Eq. (5.164b), we infer that Nju is the solution constructed by the
taking the curl of Mju' The Nju terms are the electric multipoles. Forming the
curl of N, one obtains an expression for B which is proportional to Mj/u which
evidently is transverse. In this particular case, one has 7- B = 0. The general result
is as follows,

Bo(7) = k2 o Z Z (o N5 (s 7) = gy N (7)) (5.175d)

J=0 p=-j
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as will be shown below. A transverse magnetic field is characteristic of an electric
multipole. One observes, for the electric dipole, that the exact expression for the
magnetic field, given in Eq. (5.97), is transverse, while the exact expression for the
electric field, given in Eq. (5.116), is not transverse.

It is perhaps instructive to discuss the “construction principle” that leads to
Eq. (5.170), i.e., the rationale behind the transformation from Eq. (5.161) to (5.170).
For given j and p, one first identifies the maximal longitudinal subcomponent and
calls it E;L)(k, 7). One then constructs the maximal transverse component whose

scalar product with 7 vanishes, and identifies it as Mj(;)(kf) = 0. The rest of the
component of the vector potential with given j and pu finally is the electric multipole,
called NV (k,7) = 0

A remark is in order. For the magnetic multipoles, the corresponding term in
Ao(7) [the term containing J\ij(;)(ki)] is transverse, i.e., its scalar product with
7 vanishes. The electric field is parallel to the time derivative of the sum of the
non-longitudinal components of AO(F) The electric field involves the combination
My M;;)(k, T)+n,, N( )(k 7), so it is transverse for the magnetic multipoles. The

magnetic induction ﬁeld has the combination m;, N;M)(k, T) —nju M;i)(k,r), so it
is transverse for the electric multipoles. This observation generalizes the behavior
found in Egs. (5.97) and (5.116), for the exact expressions pertaining to the elec-
tric and magnetic fields radiated by a dipole (the magnetic field was found to be
transverse).

5.5 Radiation and Angular Momenta

5.5.1 Radiated FElectric and Magnetic Fields

We shall now try to verify Eq. (5.175d) explicitly. The magnetic radiated field is
calculated as follows,

Bo(7) = V x Ag(7)

=ik po Y (mg ¥ x M) (k,7) 40 ¥ % NG (6, 7) 4 13, ¥ x L) (7))
m

=ik ug Z(mj” (—ik]vj(i)(k r))+n m (1kM 1)(k‘,F)))
Jh

= K2 o Y (mg NS (h, 7) = g MG (e, 7 )) , (5.176)
Jjn

where we have used Egs. (5.164) and (5.165). In order to calculate the electric field,
one observes that in a source-free region, the Ampere-Maxwell law implies that [see
also Eq. (6.87)]

@XB()(’F):—IC—L;E()(’F)ﬁEo(f):ﬁﬁxgo(f) (5177)



Paradigmatic Calculations in Electrodynamics 195

Using Eqgs. (5.164b) and (5.165), this is evaluated as

Lo ic2 N N
E()(T) = UV X Bo(f)

ic? = (1 = = or(1 -
=K o (;) 3 (s ¥ x NG 7) g 5 32 G5.)
ik po ¢ (D = (D) =
ST %}(mm (liju (k,r)) ~Mjp (_lkNju (/fﬂ')))
_ (ik)ik? po c2

~ Z(mw M (k,7) + 1 N;;)(k,F))

Ju
=~ K epo Y (mg MG (,7) + gy N (8,7)) (5.178)
K

confirming the result anticipated in Eq. (5.175c¢).

5.5.2 Gauge Condition, Vector and Scalar Potentials

We have defined the multipoles for the radiated scalar potential in Eq. (5.156); the
longitudinal components of the vector potential have been discussed in Egs. (5.168c¢)
and (5.164c). In our discussion of the radiated electric field, we anticipated the
cancellation of the longitudinal contributions, in between the gradient of the scalar
potential and the time derivative of the vector potential, in Eqgs. (5.174) and (5.175).
In consequence, we anticipate a simple relation between the py,, coefficients from
Eq. (5.156) and the [;,, coefficients from Eq. (5.168c). The derivation of this relation
is necessary in order to establish the fulfillment of the Lorenz gauge condition and
will be discussed in the following. We remember that the equations used by us
in order to relate the sources to the potentials, namely, Eqs. (5.153) and (5.158),
precisely are the Lorenz gauge versions, equivalent to Eq. (1.77).

In the derivation, we shall use the representation (5.164c) for the L;f)(k,f)
functions. Furthermore, we have the charge conservation condition V - J(7,t) =
~0ip(7,t) and so V - J(7) = iwp(7). A simple partial integration then leads to the
formulas

bu= [ @I L @)

- a9 (S ve.)
- [ @ [E T L) Vi)
_fd%’iwp(?’)%jj(kr,)yju(g,’@,)

i [ o)y (k) Yiu(0') = iy (5.179)
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With pj, = [ &' p(i) jj (k") Y[, (0',¢"), we thus verify the relation
lj# = —iijM. (5180)
Let us recall the gauge condition (1.70) fulfilled by the potentials,

. 10®
v-A+C—2%—t:0. (5.181)

In view of the decompositions (5.155) and (5.170), we have for the scalar and vector
potentials,

ik &

o(f) == Z Piu h(l (k) Yju(0,0), (5.182)
€0 j=0 p=—j
and
A (7) =i SN (1) (1) (1)
Ao(T’) :lkMO Z Z (m.]/"fM (k 70) +njy,N (k T) +l]/'LL (k 7")) . (5.183)
§=0u="j

In the mixed frequency-coordinate representation, the Lorenz gauge condition reads
as

V- Ao(7) - = %0(7) =0. (5.184)

Because the magnetic and electric multipole terms are divergence-free [see
Eq. (5.175b)], the Lorenz gauge condition is equivalent to

. I . —iw
ik {uo - LD k) + 2 n O e v, 0. sa)} -0, (5.185)

Ju €¢
which implies that

ik 0 {15 V- L) (b, 7) = ikepyn P (k1) Y (0,0) } = 0. (5.186)
JH

We use Eq. (5.164c), in the form

LY (k,7) %@(h;l)(kr)ﬁ/}u(&ga)), (5.187)
— 1 1. 1
VLG (k) = 2 9 (00 (k1) 3,0.0))
kh$D (k) Y (0, 9). (5.188)

Advantage has been taken of the fact that the function h§1)(k r)Y;,.(0, ) fulfills
the Helmholtz equation, i.e., (V2 + k2)h§.1)(k r)Y;.(0,¢) = 0. Inserting Eq. (5.187)
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into (5.186), we see that the gauge condition is equivalent to the relation
> (i +iepsu) B, (k1) Yu(8,) = 0, (5.189)
in

which is fulfilled in view of Eq. (5.180).

Using Eq. (5.180), we should now be able to verify the cancellation of the lon-
gitudinal contributions to the electric field, in the steps leading from Eq. (5.174)
o (5.175a). To this end, we calculate

Eo(7) = = V& (7) +iwdo(7)

( pr j k’r)Yé (7"))

+iw (uguo 3 {mw M (k,7) + 15 N (h,7) + E;.ll)(k,f)})

m

,uocZ{mwM (k,7) +nj, N(l)(k; )}+€(r) (5.190)

where the first term is the result given in Eq. (5.175a) and the additional term & (7)
must be shown to vanish,

80 = =2 X {oan ¥ (W 0 i) (52 i) LD (8.7
:—%;&wvwﬁwmmﬁnlmMmML (k7))

again in view of Eq. (5.180). We have shown that the longitudinal components of
the electric field cancel, as they should, in the source-free region. A few remarks
are in order. The factor [—¢o/(ik)] in the first line is simply introduced in order
to cancel the first prefactor. Alternatively, one may observe that the extra term in
the electric field, from the longitudinal components of the vector potential, simply
reads as —k*cpo ¥, i E;L)(k‘, 7'), with the prefactor being fixed in Eq. (5.178).

5.5.3 Representations of the Vector Spherical Harmonics

In the following, we shall endeavor in rather difficult calculations. It is a good
moment to rest and to write down the most important representations of the vector
spherical harmonics, and of the multipole functions. We start from Egs. (5.148a)
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and (5.151a),

ey 1 .
Y7 (0,0) = ———=LY;,(0,¢),
3u(0:0) [eED iu(8,)
G+m)(G-p+1) = K :
= - i Y10, 9) E1 + Y;u(0,p)e
N 26+ it (0:€) 8t Vi(i+1) 0N

G- G+p+l) _
+ 25+ 1) Y ue1(0,0) E_1. (5.192a)

Equations (5.148b) and (5.151b) state that

yJ-1 S S P +1rV)Y;
Yju (Ga@) - \/m (] V) YJN(Ga@)
= —m (irxL-j7) Yju(0.9),
|G- G ), "
) J 2 et e)ea
G- G+ _
+ \ WYJ—LM(@,@)GO
| L 0. (5.1920)
Finally, we have from Eq. (5.148¢) and (5.151c),
i+l — ! i+1)F-7rV)Y;
Y7, (0,0) = G0 @D (G+1)7=rV) Yu(0.9)
- e (7 L D) Y.9)

j—p+1)(7-—p+2
:\J(j p+1)(G-p )5/}4.17/‘—1(9790)5*'1

2(7+1)(25 +3)

(G-p+1)(G+p+l) .
(J+1)(25+3) Yie1,u (6, ) €0

J+u+2)(J+pu+1 R
( 2(/; + 1))((2j +“3) : Vietpe1 (0,0) €1 (5.192¢)
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The spherical harmonics are given by Eq. (2.53), which we recall for convenience,

- . 1/2 .
Yju(0,9) = (—1)“(2]47T1 8+Z§:) P (cosB) et (5.193)

We also summarize Eqs. (5.164), (5.171), and (5.172) as follows,

H(K) (1 = 1 (K)
M;, (K, T) = ——= kr)Y;.(0,
) = s L(f (k) Yiu(0,9))
= 1 (k) Y; (9,s0)———VxN(K)(k, ), (5.194a)
Nj([f()(k )_EVXM](H )(kvf)v
_ J+l FUO 1 £ i1
- 2]+1 J ( r)}/;jlt ( ’90)+ 2 +1 j+1 (kr)}/;jlt (9790)7

dlkr £ (kr
= % {%[W Vi,00.0)] = iV5(G + D (k) Yju(&w)},
(5.194b)

LG (.7 >—% % (/) Y3006.))

J+
=/ 2; = k)Y 0.0) +y / jﬁ%kr)yﬁl(e,@)

AL (k)] Lo
ZTWY u(0,0) - (]+1)kr (k) (i x Y7,(6,0)) -
(5.194c)
These results will be needed in the analysis of the Poynting vector.
5.5.4 Poynting Vector of the Radiation
We start from the relations (5.175¢) and (5.175d),
- x J — N7
Eo(F) =K e 3 (mj“ M (k,7) + 1y N}/?(k,?)) , (5.195)
=0 p=—j
and
T) k Ho Z Z (mJH jn (k T) nJN ]u (k )) (5196)

J=0 p=-j
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The Poynting vector, which carries the physical dimension of radiated power per
area, is [see Eq. (5.106)]

G 1 = = z 1 = _
S(F,t) = — E(Ft)x B(F,t),  So(F) = — Eo(7) x BL (7). (5.197)
Ho 2410
From Eq. (5.164a), we recall the relation
() (1 =y = p(K) 7
M, (k,7) = f;7 (kr)Y;,(0,0), (5.198)
which implies that
M, (k) = £1D (k1) Y, (8.0) = 15D (k1) Y, (6.0) (5.199)
In view of the asymptotics (for large kr)

el kr=(j+1)im/2

(1)
hj (kT) - ]f?" )

(5.200)

we have
eikr—(j-*—l)i7r/2 o i eikr =i
k‘?“ YT],LL(97SO) = (_l)j WY;N(Q’SD).
(5.201)

W 2y (D) J
Mju (kar)_hj (kr)iju(&,@)e

From Eq. (5.164b), we infer that

- j+1
NGO (k1) ==\ 5=y A BN VN0.0) + 2g H ) V0. 0).

(5.202)
This implies that for large r,

- R j+1 .
N (k,7) = - th;g(mw 0.9) ) 55 o hﬁl(kr)yj?;l(e,@)
o J+1 (j- 1)+1e 7j-1
\/2j+1( i) p Y (0. ¢)
J Geyat €57 o
v Jj+1)+ J 0
+\/2j+1(1) T (0. ¢)
etk j+1 .
il e TesRiTACoN Vi (0.0)) . (5.203)

We use the fact that h(l1 and h(+1 only differ by a phase (-i)? = —1 in the long-
distance limit. From Egs. (5.148b) and (5.148c¢), one may derive the relation

g+1 -4
V 2j+1YJ’ju g \/ ﬁl 0.9 (TXYJ (0.9)) - (5.204)

> - (1)
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The long-range asymptotics of N ;;)(k, 7) are thus given by

j j+1 j+1
- (Y (\/2]+1 0.9\ 570 ,@)

) (1 T,0,00) == T (1, 0.0)).

=
=
N
—~
“@‘
=
~
Il

- (- 1)’

We now use Egs. (5.175¢) and (5.175d) and the long-range asymptotic formulas,

ikr ikr
T = N1 E i v (g = i+l € J
Mjp, (kﬂa) - (_I)J WY;M(GaSO)a NJ‘M (k,’l") - _(_l)j W (T X Y (0550))
(5.206)
Hence,
) 1kr oo j 1 L. oo
Eo(7) - -k* c o ZE} > ()7 (my Y),00, ) = ng (7 < Y7,(0,9)))
J=0 p=-j
(5.207)
and
. _ 9 elk‘T‘ oo i1 . oy o
BO(T) - _k /’I’O Z Z 1) (m.]/"f (r X }/;“(9’%0)) +njy, }/ju(aﬂsp)) :
J=0 p=-j
(5.208)

The Poynting vector evaluates to
S 1 - S
S0(7) = 5— Eo(7) x By (7)

240

1k
2 kr)2

Z Z (- 1)j+1 (mw i(&@) N (fx%ju(97<p)))

Jj=0 p=—j

x(mj, , (rxw (9,¢))+n;,u,17;;;;(9,<p)), (5.200)

which is a double-infinite sum. The total power radiated through a sphere of radius
T is

P= fer2f~5‘0(f) ST 4Ty, (5.210)
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and considerable simplifications occur in its calculation. Here,

k2 g =il %
le%[dgp. S (mmm,,Y (0, ¢) x (fxyjjrufw#ﬂ))
J3" !

_n_]u n]’p, (72 x Yj (97§0)) x ?J’,*’(97§0)) I

k C/'LO * ] il
Ty = [er Z i7" (mwnﬂ,u, Y7, (0,0) x Y], (0, 9)
33" !
g (7 < V7,00,0)) x (7 x ¥4 5(0,9))) - (5.211)
Now the angular integrals have to be evaluated. We recall Eq. (5.148a),
o 1 . o 1 N
Y? (0,p) = ——LY;,.(0,0), 7 Y? (0,0) = ———=7-LY;,(0,0) =0,
]M( ) ](]+1) jﬂ( ) J/,(,( ) ](]+1) j“( )

(5.212)
where L = i (7 x V). Hence,

[ Qi 7,0.0) x (72 ¥50.6))
:fdm- [7 (V1,(0.90) - V1 2 (0,90)) - Vi (6 <p)( '( )]

= [ 40 [¥,6.0)- V1 0.0) - (7 Y10(0.0)) (7-7,(6,)]
= [ 4@, (0.0) V75(0.0) = b5 By (5.213)
where we have used Eq. (5.212). Similarly, one shows that
f A7 [(F V7, (0.9)) x Virn (0.9)] = =031 Sy (5.214)
The two identities
f Q- (V7,0,0) x Vi 5(6,2)) =0 (5.215)
fdm. fxi/”(e,@))x(fxf/j?;;,(e,gp)):o, (5.216)

are a little harder to show and are left as exercises. Armed with the results (5.213)—
(5.216), we can show that T» = 0 and simplify Eq. (5.209) drastically,

k% c o
P === % (fmgul® +Injul®) (5.217)
in

5.5.5 Half-Wave Antenna

Let us carry out the multipole decomposition explicitly for an example problem.
We consider a half-wave antenna with a current inside the antenna,

2 .
I =1 cos (%) e W, (5.218)
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where —\/4 < z < A/4. The length of the antenna therefore is exactly equal to half
the wavelength, hence the name. In order to invoke our formalism, we first need to
translate the current into a current density. A first guess might be

J(7) = Jo(7) et Jo(r)—eZIOCOS(Q ) 5(2)8(y) . (5.219)

because the antenna is oriented parallel to the z axis. However, this expression
leads to problems as we put in the formulas x = r sinf cos¢ and y = r sinf sing
for the coordinates. How are we supposed to evaluate the integrals over # and ¢
if they enter the arguments of the Dirac-¢ function in such an awkward way? We
therefore use the apparent radial symmetry of the problem, with respect to the z
axis, and write

1

Jo(r,0,0) = &, I cos(zA )[25(9)”5(” N 5o

(5.220)

We use the convention [see Eq. (1.31)]

fabda: 5(x - a) f(x) = %f(a) , fabdxé(x b f(a) = % ), (5.221)

for a Dirac-d function “on the boundary”. One may thus calculate the integral over
the (partial) surface area of a sphere, centered at the origin, which encompasses the
antenna. The infinitesimal area element is

dA = R*sinfdfdyp. (5.222)

The surface integral, with the polar angle 0 € (0, ¢), samples points whose z coordi-
nate is just z = R, i.e., points in the vicinity of the “pole” of the “sampling sphere”.
It evaluates to

N € 27 R
fdAJO(R,H,w):RQf d@sin@[ do Jo(R,0,0)
0 0

2R 2m € 1
=8, ] - f d [ dfsind R% [26(0)] ——————
€70 COS( A ) 0 4 0 sind 17 [26(0)] 27 R? sin(0)

=e, I cos( ) / do [26(0)]=¢é, I 005(2)\2) . (5.223)

Assembling the current density from terms near the “North” and the “South” pole,
one has
(271'7“) 5(0)+0(m-0) o1

Iy
Jolr.6.¢) = A 712 sin(6)

IA-T)e.. (5.224)

In order to calculate the magnetic multipoles using Eq. (5.164a), one recalls that
according to Eq. (5.148a),

Y, (7) = ——=—=—=LYu(7), (5.225)
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and so
» 1
e, Y! (7)) = ——=L.Y;,.(7 (P 5.226
7 () NG () = \/7M (7). (5.226)
Thus,
mj, = [d r Jo(7) - M(O)*(r [d rjo(kr) Jo(7) - Yj*( ®)
fdgpfd@ sin @ fdrr jo(kr) Iy cos (kr )5(7(3)7';21&1719)9) Y“(@ ©)

—;)T [dgp fdrjo(kr) cos (kr) [é.- YJJJ(O,ap)+éZ i 7 (m,0)]

:I_;)T fdgp fdrjo(kr) cos(kr) —— [ YW( Q) + 1 Ju(”’@)]-

\/j(j+1)

(5.227)
From Eq. (2.53), one has
27+ 1
Y;,(0,0)=46 ,
JIJ«( 50) ©0o A
27+1
Yju(0,0) = (~1)7 6,0/ L. (5.228)

47

Both results are independent of ¢, as they should be on the pole caps of the unit
sphere. The latter result follows from the former by the parity transformation
6 - m—0, and ¢ - ¢+ 7 (parity transformation). In view of pud,o = 0, it follows
that

mj, =0, (5.229)
or in other words, all the magnetic multipoles vanish.

Now we turn our attention to the electric multipoles. From Eq. (5.148b), we
have

G- G+p)
3(25 - 1) Y

GG
B CEDRE

because €4 €, = dqq. At the “North” pole of the unit sphere, one therefore has the
relation,

& Y71 (0,0) = \ (0,0)¢. -&;

~1u(0, ), (5.230)

(G-w)(+p)
J(2j-1)

& Y ,so)=\ Yi-1..(0,¢)
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while at the “South” pole of the unit sphere, one has

éz'i}jjlzl*( 7‘)0) \‘ % J- 1;/,(:“ 90)
(vl ‘(] M)(J+M /2(3—1
=(-1) (2 -
= (- 1)] 15@\/; (5.232)

Let us also investigate, at the “North” pole of the unit sphere, using Eq. (5.148c)

A~ ] * 1)(]+M+1)
Ly | G-pr v,
€ i (0530) \ (]+1)(2]+3) J"’LH(O)@)
| Gmpr)(Gp+l) 2(j+1)+1
G+1)(2j+3) M 4
i1
=~ %. (5.233)

Conversely, at the “South” pole of the unit sphere, one has

N it —p+1)(j+p+1 - j+1
ez'ij;l (ﬂ-a@):_\} (T )Yj+1,,u(77a50):_(_1)j 15H0 n

(7+1)(25+3) 47’
(5.234)
where the intermediate steps are left as an exercise to the reader. From Eq. (5.164b),
we recall that

. j+1
N ) =[5 N R0 Y 0.0) -\ [ L fIOENYI0,0).
(5.235)

We may now calculate the electric multipoles,

_ 3.7 (0)* rj—1%
—deJo( N [dr(bllﬂ") j+1J()‘YJ€L (0, )
jj+1 (/f?") j— J(T) }/;jljl*(gv 90))

I() X j+1 1%
=5 fdgp fdrr2 cos(kr) (jj_l(kr)\/2j+1 [ez ij“ (0,¢)

. j A~ <7 * *
e Vi m o)) - dpa (k) [ 3207 (o Vi (0 w6 ¥ <w)])~

(5.236)
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With the help of the results (5.231), (5.232), (5.233) and (5.234), one simplifies this
expression to the form

= i—fr J e [ arcostin) (jj-l(km/% [1+ (1] 5”0\/%
N ( [1+ (-177] %M%))

iG+1)

=15,
OPRON| 47 (25 + 1)

[1 + (—l)j_l] f dr cos(kr) (jj-1(kr)+jjs1(kr)) .

(5.237)
Recalling the recursion relation for spherical Bessel functions, given in Eq. (5.28),
we find that the multipole moment is given as follows,

o JG+) ) f
Ny =1Io 00 TR [ -1) dr cos(kr) ]](k‘r)
ot W 7] [ ar ( ) e
A4

J+1)(2j+1)
47

o6 [1+(-1)7"] [dryo(kr)jj(kr) (5.238)
0

where yg of course is the spherical Neumann function. The spherical Bessel and

Neumann functions fulfill the differential equation (5.27). Hence, one can show

that

2
[dxfj(x) gj,(x) = j/(j/+ 1) _](] + 1) [f](x) g;"(x) _fg,(x) gj'(x)] : (5239)
Now we set f; = yo and g; = j;, and have
22
fdxyo(a?)Jj( ) = ( ) (yo( )jj(x) yo(x)]](a:)) (5.240)

For the case of interest, we have in view of k = 27/, as well as yo(7/2) = 0, and
yo(m/2) =2/,

A4 /2
[dryo (kr)jj(kr)=— [dxyo(x )J;i(x)
1 (n/2)
O R 2) 1y 12) = =g Uy f2).
(5.241)
Hence,
”f‘*‘zﬂz—? o %[ + (=17 G (x/2). (5.242)
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The results (5.229) and (5.242) enter the relations (5.175¢) and (5.175d), which in
our case simplify because m;,, =0 [see Eq. (5.229)],

Eo(7) = —K*cpo Y mjo N (k,7) (5.243a)
7=0
Bo(7) = —k*po 3 mjo M (k7). (5.243b)
j=0

For the half-wave antenna, one can drop the m;, terms and restrict the sum over
the n;, terms to those with p = 0.

We now intend to use Eq. (5.217) in order to evaluate the radiated power in
the far field. It is instructive to rewrite Eq. (5.217) somewhat and to introduce the
factor

fo € = =Zy=~ 37742, (5.244)

€0 Mo
which is commonly referred to as the vacuum impedance. The radiated power P
can be written as a product of the vacuum impedance and the square of the current
Iy, times some numerical factor,

k2 2 2 k? 2
P = Zo Y Almul + Injul’} = 5 Zo 2lnjul
in Jn

k2 T 25 +1 5
=— 7 Injol*> = Zo I3 = —_ [j;(7/2)]" . (5.245)
2 j;dj %M;UU+U !
The sum
2j +1
S= 3 L1 [i(n/2)]? =0.246986 (5.246)

_joddj(j+1)

is rapidly converging as j is increased. The term with j = 1 is 0.246 384, implying
that dipole radiation accounts for 99.76 % of the radiated power. Equating the
radiated power with the “resistance to radiation emission”, one has

1
P=3 Rual}, ‘mm:%SE:BQWQ. (5.247)

The physical interpretation is that the antenna acts just like a resistor, as it emits
energy in the form of outgoing radiation. The power absorbed by the antenna is
proportional to Zy I3. For given ¢, if the speed of light were infinitely fast, then
in view of g ep = 1/c%, we would have pp - 0 and Zy — 0; it would be “easier” to
emit radiation, or in other words, the emitted electromagnetic waves would carry
less energy. With a grain of salt, we can remark that, because the impedance of the
vacuum has an appreciable numerical value of ~ 3772, radio communication works
well.
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5.5.6 Long-Wavelength Limit of the Dipole Term

The somewhat elegant formalism we have discussed obscures the leading contribu-
tions to the dipole terms, and to other, higher-order multipole terms; we shall now
attempt to recover these terms, at least in the long-wavelength limit. In particular,
we attempt to show that the dipole term is part of the expression Nl(u)7 and is
hidden in the contribution of j;_1(kr) = jo(kr). It remains to verify the prefactor.
Let us therefore investigate

- [ & Jo(F) - N O (k,7) (5.248)
Now, in view of Egs. (5.164a) and (5.164b), we have
N (k,7) = - =V x MO (k, 7)

Vo (7% V) 4 (kr) Y;,(0,0). (5.249)

The expression V x (f X @)jj(k r)Y;,.(0, ) is tricky; one can simplify it but must
remember that the leftmost gradient operator acts on everything that follows. The
result is that

9% (7x ) 1) = [F92- 9 20| 50, (5.250)
and so
N b M2 (9 )
w ) - j(j+1)k[ v v(a )]]J(k) 2 (0,0). (5.251)

One uses Eq. (5.250), the fact that j;(kr)Y;, (6, @) satisfies the Helmholtz equation,
integration by parts, and the continuity equation, to write

—ﬁ% fd%.fo(fy[—MQ—@(%r)]jj(kr)m(e,@

[ asterr ) - (£ (60 7 2] ¥ 0.0)

o]
\/ﬁfd?’ [kjj(kr)r Jo(7) - (grjg(lﬂ”)) (1CP0(7’))] 1.(0,9) .

(5.252)

In the long-wavelength limit, i.e, small-k limit, the dominant term obviously is the
second one, as it carries no explicit factor k. Using the long-wavelength (small-k)
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asymptotics of the Bessel function, we have

Nju = = ]+1 fd3 ( 75 ( /ﬂ")) Y;,.(0, ) po(7)

o kIpitl

" /iGeD fdgT(E(gju)u
(k e [ (@) Y@ m)

j+1

ed

) Y:4.(0.0) polF)

-ik ¢

Q

W [dgijjZ(ﬂ@)po(F)

i T
SRR LR FAES R 08 (5.253)
27+ 1) J

Here, the qj(.g) are the multipole moments defined in Eq. (2.97), as familiar from
electrostatics, but this time evaluated using the spatial part po(7) of the oscillating
charge density p(7,t) = po(7) exp(—iwt). Setting j = 1, one recovers the long-
wavelength limit of the electric-dipole term.

5.6 Potentials due to Moving Charges in Different Gauges

5.6.1 Mowving Charges and Lorenz Gauge

The cancellation of the instantaneous interaction in the calculation of the electric
field in Lorenz gauge has already been discussed in Sec. 4.2, leaving the charge and
current distributions general. It is very instructive and nontrivial to verify the gen-
eral results on the basis of a concrete problem, namely, the potentials generated by
a moving point charge. In classical electrodynamics, all electric and magnetic fields
can in principle be described as a superposition of fields generated by infinitesi-
mal moving point charges, so that the specialization to a moving point charge does
not necessarily imply a loss of generality. Again, the intriguing problem is that
in Coulomb gauge (radiation gauge), the scalar potential ® can be written as an
instantaneous integral over charges that are far away from the observation point. A
change in a charge distribution light years away would thus lead to an instantaneous
change in the scalar potential at an observation point on Earth. In order to address
this latter question, we here not only calculate the scalar potential, but also the
vector potential generated by a moving charge, in Coulomb gauge and in general
form. This problem has independently attracted some interest [25].

The representation (4.35) of the retarded Green function in coordinate space
contains two Dirac-d functions. It is highly singular. Therefore, it is certainly
sensible to verify the conclusions reached thus far on the basis of a concrete problem
where the actual form of the retarded Green function needs to be used, and partial
integrations are required. We thus consider the potentials generated by a moving



210 Advanced Classical Electrodynamics

point charge (Liénard—Wiechert potentials). The charge and current densities for
the moving point charge are given as

p(7,t) =q 6P (7 - R(t)), (5.254a)

- . d -

J (1) = q 6@ (7 - R (1)) [aR (t)] , (5.254b)
where ]j?(t) is the particle trajectory. If we keep only the first term in square brackets
in Eq. (4.35) and write [see Eq. (4.36)]

¢ (t—t') (=] - c(t 1)) , (5.255)

ey |F -7

GR(’Fa t7 77,7 t,) N

then the integration of the Lorenz-gauge potentials [see Eqgs. (4.88a) and (4.88b)] is
almost trivial,

L (7 t) = der’dt Gr(F b7 ) p (7,1 (5.256a)
Ar (7,1) = —2[d3r'dt'GR(F,t,F’,t')j(F',t'). (5.256D)
C

After the integration over d3r’, one easily obtains

-t') 7|f—;2(t’)| 5(t’— (t— L_lj(tlﬂ)) . (5.257a)

_RE) ([, =R
47T€OCQ fdt Ot Ey Y 5(t (t )) (5.257b)

The § function peaks at

o q
(I)L (Tat) = 471'60

Ap (7,t) =

o |

= =4 / - =
t, — tret —t— |’I“ R(t )| =t |T R( 1et)| (5258)
c c
or
r— R tre 2
tret =t — W , et —teer)? = (F - R(tret))z , (5.259)

so that the step function is always unity at the point where the Dirac-é peaks. That
means that all points on the trajectory of the particle for which the retardation
condition is fulfilled, contribute to the integrals. Let us assume that the Dirac-d
peaks only once, namely, at ¢’ = t,t. The integration over d¢’ in Eq. (5.257) still
leads to a nontrivial Jacobian. Indeed, we have

g(t,_t+| R(tn) | LdR() 7-R(t')
de’ ¢ c At |[F-R@)|’

(5.260)
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at t’ = tret. S0, the Liénard—Wiechert potentials in Lorenz gauge read

. L -1
By (7 ) - ! (1—R(t"et)-;‘g§tf“)) , (5.261)

47reo |7 — ( ret)| c |7 = R(tret )|
5 = 7 -1
AL (ﬁ ) q . R( 1et) 1— R(tret) . r= {{( 1et) . (5261b)
ATeoc? | - R(trer)| ¢ |7 = R(teet)|
With the definitions f = B(tet) = M? as well as n = ;::;EZM;| and R = |7 -
]—?(tret)|7 we can write the scalar and vector potentials in the familiar form,
. ) -
B, (7yt) = — Ay (1) = =2 £ (5.262)

dmeg R(1-6-7n)’

where we keep SI mksA units.

dmegc? R(1-6-7n)’

5.6.2 Liénard—Wiechert Potentials in Coulomb Gauge

The calculation of the Liénard—Wiechert potentials in Coulomb gauge crucially relies
on a careful consideration of the longitudinal and transverse parts of the current
density of a point charge. We recall the formulas (5.254a) and (5.254b) in the form

p(#,t) =¢8P (7= R(1)), (5.263a)
J(#,0) = q 6@ (F - R (1)) [ R(t)] g6@ - R(1) B(t). (5.263D)

According to Eq. (1.48a), the longitudinal part of the current density can be
extracted as follows,

Jy (7, t)———v[d3 VT8 (5.264)

7=

The divergence of the current density is easily calculated:
G- T (1) = qR(t) -6 (7~ R(1)). (5.265)

We now calculate an integral, which we call for convenience £ (its gradient is pro-
portional to J)

L- de’ = Tt) fd3' L qR(t)v5<3>( “R@®)

[k (‘ﬁ'v—lm) SO - R(1)
S R(t)-V [ &' A 5O - R(1)

[t

—qB(t)- @m. (5.266)
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The longitudinal component j” is finally calculated as follows,

- 1 v T t)
= t - ___ - _ d3 A
DY) 47Tv£ 47rv./ |7 — 7|
q - - 1 q (= ~\ = 1
=-—VI|R(t) - V———— -—|R(t) V)V—=—.
Cdn ( ") IF—R(t)I) 47T( 2 ) |7 = R(1)]
- . (5.267)
We can verify that J) carries the entire divergence of J,
™ q 3 = =2 1
V- Jy(#,t) = =—R(t) VV ——=——
1(78) = = - R(1) RO
S qR(t) - 8@ (- R(t) =V J (7,1) . (5.268)

In principle, we could now simply calculate the transverse component J L(7,t)
as the difference of the total current density J(7,t) and the longitudinal component
jH(F,t), namely, J,(7,t) = J(7,t) - j||(F,t). However, it is more instructive to
calculate the transverse component according to Eq. (1.48b),

- 1 . t
S =—9x [ & AULDIGIDY
47 |7 — 7]
We calculate the vector-valued integral

- fdg,vx”t) [ - #,*'x(q(s@)(f'—é(t))é(t))

(5.269)

=g [d3 ' R(t) x V6O (7 - R(t))
=q fd?’r'(s(?’)(f'—é(t)) R(t) x ¥'— 1ﬁ
7= 7|
B xT— (5.270)
|7~ R(t)|
The result for the transverse component of the current density therefore is
- 1 O x Kk 1 1
J(Ft) = — T x K= —qR(#) x ¥ x ¥———— . 5.271
) = T R = a0 < ¥ 1 s (5-271)

The transverse component finally is found as follows,

jL(f,t): 4—qR(t)><V><V

|7 - R(t)|
_ 4 AN o 1 4 B o2 1
YR = Y R
"3 RO 6If—;%(t)l +a R() 0O (7~ R() = ~Jy(7.1) + (7.1

. 3 ) (5.272)
verifying the identity J)(7,t) + J, (7,t) = J(7,1).
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The results can be summarized as follows,

= = q = N 1 = .
J” (F,t) =V (_ER(t) . Vm) =VJ(7t), (5.273a)
1
J(7,t) = ——R —_—, 5.273b
(1) = =) Vs (5:273b)
B T
J (7, t) = y qR(t) x V x Vm , (5.273¢)

where we define the function J in Eq. (5.273b). The longitudinal and transverse
components of J enter the formulas for the scalar and vector potentials in Coulomb
gauge. We recall Eq. (4.102),

do(it) = [t [ @ Gr -7 t-t) (p(f',t) L9 7, ')). (5.274)

2 ot'

As before, the retarded Green function may be used in the approximation [see
Eq. (4.36)],

GR(F—F',t—t’)m47Tceo %50 —#-c(t-t)). (5.275)
So,
Do (7 1) = Dp (7, 1) '[d?’r' Gr(F -t ') %ﬁ(t')-@'%
7 = R(t')]
=0 (7,1) + ©5(7,1), (5.276)

where @, is the Lorenz-gauge expression (4.88a). No attempt is made here to
simplify the expression found for the supplementary term ®g. We can also write
the Coulomb-gauge Liénard—Wiechert vector potential as

Ac(f,t):C%[d?’r’dt’GR(f—f’,t—t’)L (7, ")
1 / / = ol / T (=l 4l T (=l gl
:C_2[d3r At Gr(F—7,t—t') (J (7, t) - J) (7, 1))

i ) N = 1
A s g [ Gntr- -0 (7)) (¢

Ap(7,t) + Ag(7,1), (5.277)

where A (7,t) is the Lorenz-gauge expression, given in Eq. (4.88b). It is instructive
to write the supplementary term Ag(7,t) as a gradient, after an integration by parts
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and a change V' - —V when acting on the Green function,

- . - q 3 7 14/ - Ny =/ 1
A ,t:v—fd At Gr(F -7t —t)YR(') -V ——=—— . (5.278
SC.0 =Vt [ @GR VRO Y s (5278)
Evidently, the curl of Ag vanishes and there is no additional contribution to the
magnetic induction field. The supplementary electric field must necessarily vanish,

. . 9 -
ES(ﬁat) = - V(I)S(ﬁvt) - &AS(fvt)

_ ! 3 /& - A
_47Tc2fdt fdrVGR(r 7t t)at’R()

| '~ R(1")|

q [dgr'dt’gG (a_a/ Yy Y Ry Avid 1
r(F-7t t)R(t)Vvi
ot |7 = R(t")]

4mc?
Lo 1
= dt’ [ a3 Fot—t t’ e
4m2 f f Gr(r- )8t'R( ) vV 7 - R(t')]
q 3.7 g =, , Ay 1
43’ dt’ -t t =
Arc? [ At GR(r -7t ) 5L R(E) V'Y | Rt
(5.279)

and it does, confirming the gauge invariance of the fields.

5.7 Exercises

e Exercise 5.1: Fill in the missing intermediate steps in Eq. (5.4). In particular,
explain why the Heaviside step function ©(¢—t") does not figure in the final result.
e Exercise 5.2: Show that the function Z(x) = 2% J, (8 ") fulfills

0*°Z 1-2007 a? —n2~2
s st (62 20272 4 T'Y)Z:O. (5.280)
Hint: Start from the relations
1/~
Z(z) =2 Jo(B2"), z=pa7, mz(%) : (5.281)
2\~ 2\ 1/
Tn(2) = 27 Z(z) = (5) Z[(B) ] (5.282)

Then, insert these into Bessel’s differential equation which reads as

2 2,2 2 2,2 —afy 1/~
022 =z 82 22 022 20z 22 8 I6]
(5.283)
In particular, carry out all differentiations with respect to z and then replace

z— B,
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e Exercise 5.3: Tabulate the first few Hankel functions and convince yourself that
these can be written in terms of exp(ip) and powers of p. Show that

ip

h§Y(p) = -1, (5.284a)
p
ip ip
WD (p) = - -iss, (5.284D)
PP
el 3elP  3ZjelP
WD (p) = - - -2 (5.284c)
PP
Show, by an explicit calculation for the three example cases above, that as p - +oo,
i(p—tm/2) ip ) . ¢
M) » i = ()" = ST (@) - () e,
P p
(5.285)

i.e., that the Hankel functions of different order only differ by a complex phase in
the limit p - +co. Then, repeat the above exercise for the Hankel functions of the
second kind, h(()2)(p), h?)(p), hg2)(p).

e Exercise 5.4: Verify (i) the property (5.140) and (ii) Eq. (5.141) with explicit
reference to the Levi—Civita tensor.

e Exercise 5.5: We saw that the action of the photon spin operator is given by
the matrices (Sx)ij = —i€;jk, where Sy is the kth Cartesian spin matrix. Verify that
you can alternatively write the spin operator as $ = ilsy3x, where x is the vector
product. Hint: You first have to think about how to interpret the expression 13x3x.
e Exercise 5.6: Consider the two-dimensional Pauli matrices,

01:((1)(1)), 02:(?3) 03:((1)_01). (5.286)

Verify that the spin operator matrices s; = 0;/2 (with ¢ = 1,2, 3) fulfill an analogous
relation as compared to Eq. (5.140), namely,

[$i7 $j:| = ieiijk 5 (5.287)
where the Einstein summation convention is used on the right-hand side [even if
the indices are all lower indices, see Eq. (1.45)].

e Exercise 5.7: Verify that M;f)(k,F), N;f)(kf), and ng)(ki) fulfill the
Helmholtz equation
= “(K) (7. = = G(K) g = = F(K) (1 =
(V2 + &%) MO (h,7) = (924 k) NSO (k) = (92 +£2) LU (k,7) = 0. (5.288)
e Exercise 5.8: Show Eq. (5.149).
o Exercise 5.9: Verify the equivalence of the representations (5.164), (5.171),

and (5.172). In the proof, one uses Egs. (5.29) and (5.148).
e Exercise 5.10: Show that Eq. (5.178) can alternatively be written as

Eo(F) =~k Zo ¥ (mgm M (k7 + g N (k, F)) . (5.289)

m

where Zy = \/po/e€o is the impedance of the vacuum, around 377 Q.
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e Exercise 5.11: We have encountered the Clebsch—Gordan coefficients. Show
that
1
s= 3 O g vg = ——=1-D (5.290)
qu:” q’' 1q q vq \/g
where the components u, and v, are given in the spherical basis, i.e., we would have

for the reference vector 7 = ¥z, €, [see Eq. (5.126)],

1 . 1 :
$+1:—7§($+ly)7 To = %2, x_1:—2(x—1y), (5.291)
with [see Eq. (5.127)]
A A _ . .
€41 = —E (éz +iéy), €9 = &, €_1= %(ex—ley). (5.292)

Which summation limits have to be used for the sums over ¢’ and ¢”'?
e Exercise 5.12: Consider the relations (5.148a) and (5.148c¢),

1 .
VIiN0,0) = - ——— (ifx L-j7) Y;.(0,0), 5.293a
7 (0,9) j(2j+1)( J7) Yiu(6,0) ( )
Yj;l(@,gp) = - L (ifxf/+(j+1)f*) Y. (0,0). (5.293b)

V(+1)(2j+1)

With the help of these relations, and the recursion relations for the Bessel functions,
show that

NIO (e, 7) = \/ f<K> (kr) Y71 (0,¢) - \/ BN Y6.0),

kr £ (kr
= i{w[mw (0.9)] -+ 1) (kr) Yy (0 ,@}

d(kr)
(5.294)
and that
LY (k,7) = 2]+1 FOO ) V70, 0) + / j(f? )71 (6,9)
) (k
D) 1 0O ) (i dlf, (k)]
JG+) o fi (k) (7 Y7 (0,9)) - WYJM(@,@)-
(5.295)

e Exercise 5.13: Show that

j+1 rj—1 ]+1 J
,/2j+1yju L \/2 =V 0,0)=-i (Fx Y7 (0,9)). (5.296)

e Exercise 5.14: Show that

@x(fx@)f(f):[f@Q—ﬁ

7"] f(7), (5.297)

S

for any test function f(7).
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e Exercise 5.14: We have shown that in the long-wavelength limit [see Eq. (5.253)],

I ic j+1qu,
25+ )N j .

(5.298)

Complete the calculation of the corresponding electric dipole (j = 1) contribution
to Ag(7), based on the representation (5.170),

Ao(7) = ik po Z Z (g M) G, 7) + gy NS (h,7) + L L) (7))

J=0 p==j
-3 Z i N (k, 7). (5.299)
370 p=j
and verify that you obtain the familiar form of the electric dipole term.
e Exercise 5.15: Show that
x

d (x) =
f 2 fe(@) 90(*) = Ty Tae
with the help of the differential equation (5.27),

( 92 +Z£_M_1) fo(z) =0, (5.301)

0x? x0x 2

2

[fe(@) g (2) = fo (@) ger ()], (5.300)

where fy can be jy or y,, or a superposition (spherical Hankel function).

e Exercise 5.16: This exercise summarizes important formulas and can be used
as a reference as well. We know that the coupling of the vector potential to the
current density reads as [see Eq. (5.158)],

Ao(7) = fd3r'(I}R(k o) - Jo (7). (5.302)

We had encountered three ways to expand the potential into multipole moments.
(i) The first expansion [Eq. (5.87)] reads as follows:

GR(F_f,ak) - Z Z 1kj€ (k’l‘<) hgl) (k’l‘>) Y/m (97410) Yz:n (9,7410,) ]13><3-

€0 ¢=0 m=—¢
(5.303)
We define multipole moments as follows:

= [ rgelkr) o) Vi (6:0) (5.304)

The vector potential is obtained as follows,

oo l
AR =ipok Y S Bom h$ (k7) Yo (0, 0) (5.305)
£=0 m=—4

(#1) The second expansion [Eq. (5.161)] involves the vector spherical harmonics,

j+1

Gr(F-7 k)-—z S ulkr) b (ers) VL (0.0)@VE (0, ). (5.306)

0 j=0 p=-j (=j-1
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The multipole moments read as follows [see Eq. (5.162)],

Pl = f &Erjekr) Jo(7)- Y (8, 0) » [ &Pret Jo(7)- Y7 (8,0) . (5.307)

28 1)”
The vector potential is given as follows,

Ao(7) =ip i i i (k) YEL(6,9). (5.308)

(iii) The third expansion [Eq. (5.170)] involves the following formula for the
tensor Helmholtz Green function,

NS (h,7) @ ND™ (i) + L3) (k. 7) © L) (,720) ) - (5.309)

The multipole moments are [see Egs. (5.168a), (5.168b) and (5.168c)]

My = fd3r’j0(F')-]\ZI;S)*(O’,@'), (5.310a)
- fd%’Jo(f')N;g)*(e',@'), (5.310D)
:[d3r’f0(F’ L0, ). (5.310c)

The vector potential is obtained as follows [see Eq. (5.170)],
o J
Ao(F) =ikpo Y. > (mm (k F)+mn; N (k; 7)+1; Lm (k, 7“)) (5.311)
370 u="j

The magnetic, electric and longitudinal multipole functions read as follows [see
Egs. (5.164a), (5.164b) and (5.164c)],

MO (k,7) =~ F (k) LY;,0(0,0) | 5.312a
o (k,T) = \/ﬁfJ (kr) (6,9) ( )
NI (k,7) = — @ x MU (k,7), (5.312b)
O (k) = 1 9 (19000 V3 6.0)) (5.312)

Treat the following current distributions in all three variants of the multipole
expansion.
(i) Assume that

R 1. 2 2
Jo(7) = =2 (372:—2 - 1) exp(—%) &, (5.313)
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and use all three multipole formalisms. You may replace the Bessel functions by
their leading asymptotic behavior for small argument. Hint: You might obtain

nio = —257T—\/ék2 a3 I(), ngo = —% §k2 (L3 I(), (5314)
m 3
lig= -——=k*d® I, lsgg= ——=k*ad®1I,. 5.315
10 2573 0 30 5077 0 ( )
Do all the magnetic multipoles vanish, i.e., m;, = 07
(ii) Assume that
BN [ 22 2\
Jo(7) = a—g (3T—2 - 1) exp (_E) B (5.316)
Hint: You might obtain
m 2 3 T 2 3
Mol = — k“a” Iy, ni = — k“a” Iy, 5.317
21 10v/10 0 11 WG 0 ( )
2
n3y = - % ?kz a’ Iy, li1 = 507T—\/§k2 a’ I, (5.318)
3
I31 = 215 Rl (5.319)
Do all the other multipoles vanish, i.e., m;, =07
(#i) Now here is another current distribution,
> Iy z . T r?
JO(T):G_(;E (%ew—gey) exp(—;) , (5.320)

which needs to be analyzed in terms of the electric and magnetic multipoles. Hint:
You might obtain
7r

4v/30

Do all the electric and longitudinal multipoles vanish?

Mmoo = i E2a® Iy . (5.321)

e Exercise 5.17: Consider the equation defining the retarded time, et =t — |7 —
R(tret)|/c, for uniform motion in only one dimension (along the x direction), i.e.,
for ¥ =ré;, r >0, and R(t) = vgté,. We thus consider only observation points 7
lying in the x axis, reducing the problem to one dimension.

(i) Solve the defining equation for t,e, replacing all vector quantities by their z
components.

(#) Calculate the scalar and vector potentials (Liénard-Wiechert potentials),

-1

® (7 1) = — ! 1- R(tzo) 7= Rlt) (5.322a)
7 471'60 |7_: - R(tret)| c |7_: - R(tret)| ’ .
A(7,t) = %;’t)ﬁ(tret), (5.322b)

C
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and show that for the particular case, the final formulas are consistent with “no
retardation occurring”, because

1 R "
: L AE s s
471'60 T — Uot

& (7,1) = - .
(7 1) dmegc? r—wvgt

(5.323)

The change in the interaction distance |7 — R(t.et)| by the retardation is exactly

| - Blter) | P=R(tier)

-1
= \F—R(tret)l) . Show your work and

compensated by the Jacobian factor (
all intermediate steps.

e Exercise 5.18: Investigate the scalar and vector potentials (5.323), but this time
for general 7, constant speed %y,

2, o 'UO RO i BO 1 2 1 2 6
t) = =— — = 0p)=1-=065+—=0;+0(0)). (5.324
RO)=to,  fo=p il =cosbo) =1 g g6 0@R). (5320
Show that the first retardation correction for small 8y reads as follows,
. q 1 535 63 4
D (7,t) = 1 +0O(0 . 5.325
(1) = |F—170t|( 250 o) (5.325)

Hint: The formulas 7 — vgtret = ¢ (t = tret), With et = (¢t —7)/(c — vp), may be
helpful. Then, calculate the term of order 6.

e Exercise 5.19: Verify that Ac(7,t) given in Eq. (5.277) is transverse, by an
explicit calculation. Hint: This may be explicitly verified in various ways; for
example, one may take the divergence of both sides of Eq. (5.277), then use the
identity VGr(7F-7,t-t") = -V'Gr(7#-7,t-t"), integrate by parts under the integral
sign, and take into account that jH carries the entire divergence of J, according to
Eq. (5.268).



Chapter 6

Electrodynamics in Media

6.1 Overview

The purpose of this chapter is threefold. (i) We shall derive, based on a microscopic
model, the phenomenological Maxwell equations which involve the so-called dielec-
tric displacement D(7,t) and the magnetic field H(7,t). This allows us to give
a definite physical interpretation of the dielectric displacement and reaction of the
material. We shall also study the frequency ranges over which the phenomenological
treatment is valid. (45) We shall introduce Fourier transforms, and briefly discuss
the Maxwell equations in the mixed coordinate-frequency representation. This also
provides for an alternative viewpoint on the electromagnetic waves. (iii) We apply
the wisdom gathered to the frequency-dependent dielectric constant €,.(w) of both
dilute materials as well as dense materials, and explore how causality dictates the
Kramers—Kronig relations which have to be fulfilled by the dielectric constant.

In particular, three examples of possible functional forms of dielectric permit-
tivities are discussed. First, based on a modification of the Sellmeier equation,
we shall study the connection of the atomic polarizability and the so-called Drude
model, which is relevant to the analysis of near-perfect conductors (see Sec. 6.4).
The dielectric permittivity is analyzed for dense materials, in Sec. 6.4.4, with con-
comitant necessary modifications to the functional form describing the dielectric
response function. Wave propagation in a dispersive medium (Sec. 6.5) is an
excellent testbed for the study of advanced mathematical techniques like the method
of steepest descent. Finally, the Kramers-Kronig relationships (Sec. 6.6) allow us
to connect the real (dispersive) and imaginary (absorptive) parts of the dielectric
response function, and add important tools in the study of the optical properties of
a medium.

6.2 Microscopic and Macroscopic Equations

6.2.1 Macroscopic Equations and Measurements

We consider the derivation of the macroscopic (phenomenological) Maxwell equa-
tions which involve the dielectric displacement D(7,¢) and the magnetic field

221
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H(#,t). To this end, it is instructive to first consider the response of materials
to electromagnetic radiation in different frequency ranges, as this determines the
physical conditions under which the phenomenological equations are valid. Let us

consider a light frequency range
V~£, A~ag, (6.1)
ao
where v is the frequency of the electromagnetic radiation, and A\ the wavelength.
The speed of light is ¢ = Av. The Bohr radius is
h

amec

ap = ~0.529A (6.2)

where m, is the electron mass, and A is the wavelength. The wavelength range (6.1)
is commonly used for x-ray crystallography. This is because in a dense crystal
lattice, the distance among atoms is of the order of a Bohr radius, and therefore,
incoming x-rays are collectively scattered by crystal planes. In a Laue photograph,
a single crystalline sample is irradiated by a coherent x-ray source, which results
in defined maxima of the scattered intensity (corresponding to the bright spots
in the photograph). In a Debye-Scherrer photograph, a polycrystalline sample is
irradiated by x-rays. The crystalline grains are oriented in all spatial directions,
and therefore the Laue spots become concentric rings.

Note that Laue and Debye—Scherrer crystal diffraction could never have been
discovered on the basis of the macroscopic Maxwell equations alone. Rather, the
macroscopic Maxwell equations describe the perturbations to the average propaga-
tion velocity of light waves due to the presence of a medium, which is being felt
by the traveling light wave as a uniform medium. For that approximation to be
valid, the wavelength of the traveling wave must be much longer than the average
structural distances in the sample,

v <, A a. (6.3)

ao

Specifically, the Bragg condition n A = 2d siné governing the refracted waves from
the crystal planes could never have been discovered on the basis of the phenomeno-
logical Maxwell equations (in order to derive the Bragg condition, one investigates
the path difference of light rays emerging from crystal layers displaced by a dis-
tance d). The Bragg condition can be derived based on a consideration of the path
difference of light rays emitted from different crystal planes, with 6 being the inci-
dent angle of the x-ray with respect to the crystal plane, or, equivalently the angle
of the normal to the crystal plane with the normal to the incident light “sheet”.

In the frequency range

v < , Ay K ag, (6.4)

ao
the scattering takes place not from individual atoms, but from individual electrons
inside the sample. We can even treat the electrons as stationary, the reason being
that the momentum p of the incoming photon is much larger than the average
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momentum of a bound electron. According to the de Broglie formula p = h/\, we
can write for the frequency range (6.4),

h h h
Lo > — =2Tamec ~ aAMmecC. (6.5)

p)\ c ap

The classical “speed” of a bound electron is of the order of ae, where a » 1/137
is the fine-structure constant, and so amec is a typical electron momentum in the
bound state of an atom. In the frequency range (6.4), the photon momentum is
much larger than amec, implying that the electron can be assumed to be stationary.

We thus expect to use the macroscopic equations and tabulated electric and
magnetic susceptibilities only if the electromagnetic fields have wavelengths which
are large compared to the characteristic lengths of the system. Specifically, we must
assume that simultaneously

A>>ag, A>>(d), A>T, (6.6)

Here, (d) is the average spacing of atoms in the medium (for dilute gases, the
corresponding frequency range is far in the infrared). Furthermore, r, is a length
scale that characterizes density fluctuations inside the sample. For the frequency of
the perturbation (light frequency), this means that simultaneously,

c c c

V< —, VK —, VK —. (6.7)

ao (d) T,

We can then choose a distance R, subject to the condition

A>> R > ag,{d),r,, (6.8)

and average the fields over a volume of dimension R3. This averaging operation (spa-
tial average at constant time) leads to the macroscopic Maxwell equations formu-
lated in terms of the magnetic field H(7,t) and the dielectric displacement D(F7,t).
These quantities include the response of the medium to the external perturbations,
and an averaging of the fields over certain length scales.

6.2.2 Macroscopic Fields from Microscopic Properties

We consider the limit of low-frequency perturbations, characterized by the condi-
tions (6.6) and (6.7),
/\>>fi>>6l0,<d>,’l“p7 y<<%<<i,i <

ap {d) ' r,’ (6.9)

where R® measures the dimension of our sampling (or averaging) volume. The
dimension of the sampling volume is larger than the Bohr radius, larger than the
average interatomic distance, and larger than the distance scale r, over which den-
sity fluctuations in the sample average out. Our classical approach is inspired by
the treatment described in Ref. [26] and provides for an intuitive interpretation of
the macroscopic Maxwell equations.
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We consider a material with a typical density of ~ 10%* atoms (or molecules) per
cubic centimeter, cm?, i.e., one gram per mol. In a typical case, we can choose
100A < R<1000A. (6.10)
In the volume R3, there are approximately 10® atoms, and the charge constituents
(electrons, nuclei) can be treated as point charges. There is a subtle point. We
have previously classified the regime (6.9) as the regime of very-low-frequency light
waves. Indeed, the condition

A>>ag, V<K i, (6.11)
ag

means that the wavelength is much longer than the typical size of an atom. This
condition is fulfilled by the frequencies corresponding to typical optical transitions of
atoms. These wavelengths typically are much larger than the Bohr radius. Namely,

we have for a typical atomic wavelength Ag,
c  a’mec?

Ao~ 2010004, vea— = 2TC L3510 Hy. (6.12)
o ao h

This is just in the range of atomic transition frequencies, or, in a classical picture,
equal to the typical frequency of electronic charge vibrations in a typical atom. In
the optical frequency range