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Preface

The term metric is derived from metre (English) or metriqué (French), which
means measure. Maurice Fréchet (1878–1973) is usually credited with the first
major effort to develop an abstract theory of spaces in his 1906 doctoral thesis.
An E-class was later named a “metric space” (une classE) by the German
mathematician Felix Hausdorff (1868–1942) in 1914.

The development of the Euclidean geometry has preceded mainly general
theory of metric spaces and topological theory of metric spaces. Also the
nature of particular metric plays an important role in the investigation of
cases such as non-Euclidean geometry, differential geometry, mechanics, and
physics.

These days, the study of metric spaces is considered fascinating and highly
useful because of its increasing role not only in mathematics but also in applied
sciences. It has been increasingly realized that this branch of mathematics is
a convenient and very powerful way of examining the behavior of various
mathematical models, and many major theorems were given a simpler proof
in a more general setting.

Looking at the current scenario and in the interest of students of applied
sciences to become acquainted with the basic ideas of metric spaces in their
early studies, a semester course on “Metric Spaces” has been prescribed in al-
most all universities throughout India and abroad either at the undergraduate
or graduate level.

There are, indeed, a number of books available on “topology” or “func-
tional analysis” which contain metric spaces only as a chapter, usually too
concise to be intelligible to the students, particularly when the course is given
at the undergraduate level.

This book is aimed to serve as a textbook for an introductory course in
metric spaces for undergraduate or master students. It has been our goal to
present the basics of metric spaces in a natural (intuitive) way that encourages
geometric thinking and makes the students participate actively in the learn-
ing of the subject. Very often, we have tried to give the strategy (sketch) for
the proofs, rather than directly giving the “textbook proof”, and we motivate
the reader to complete the proof on their own. Bits of pertinent history are
scattered throughout the text, including brief biographies of some of the cen-
tral players in the development of metric spaces. The textbook is composed
of seven chapters which contain the main materials on metric spaces; namely,

ix
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introductory concepts, completeness, compactness, connectedness, continuous
functions, and metric fixed point theorems with applications.

Some of the noteworthy features of this book are:

• Pictures are included to encourage the reader to think geometrically.

• Focus on systematic strategy to generate ideas for the proofs of theo-
rems.

• A wealth of remarks and observations along with a variety of exercises.

• Historical notes and brief biographies appearing throughout the text.

The chapters in this book are arranged in a logically linear fashion. Through-
out the text, we have also tried to keep in mind not to introduce a concept
without covering its prerequisites. Therefore, a first time reader would find it
easy, reading the text linearly and solving the exercises one-by-one to improve
the understanding of the subject. In fact, we strongly recommend the reader
to solve all the exercises with geometric intuitions and making appropriate
diagrams, wherever needed. Also, the readers should look at hints/solutions
only after they have given sufficient time and thought on the problem.

Chapter 1 deals with basic set theory and the theory of functions and rela-
tions. In this chapter, the reader is introduced to the notion of sets, relations
and functions, and some major outcomes of these notions. The important
parts of this chapter include equivalence relations, partial order relations, im-
ages and pre-images of sets under functions and countability of sets. Although
most of the material presented in this chapter would have been studied by the
reader in an analysis course (if the reader has taken one), this would help
brush up certain concepts of importance which we will be using further in the
text. Also, many books on set theory and basic analysis deal with cardinal
numbers and their arithmetic. Since it was not of much use in the theory of
metric spaces, we have not included cardinal numbers in this chapter. Rather,
we deal with countability and uncountability of sets through bijective func-
tions, which is natural, intuitive, and useful in developing theory of metric
spaces.

Chapter 2 introduces the reader to the notion of (arbitrary) metric space.
The chapter starts with the set of real numbers, where the reader knows how
to measure “distances” and gradually abstracts properties of this distance to
define an abstract metric space. A lot of examples are provided and a variety
of exercises are given in the text itself to clear the concepts easily. Throughout
the text, three sets remain of interest to us: One, the set of real numbers and
its Cartesian products (called the n-space), the set of sequences of certain type
(see text for more information), and the set of continuous functions. Major
remarks about these sets considered as metric spaces are given in this chapter.
Immediately after defining metric spaces, we move toward the consequences
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of the definition. We look at open balls, open sets, closed sets, bounded sets,
types of points in a set of a metric space, and other related concepts. At the
end of this chapter, we ask a major question concerning different metrics on
the same set and try to answer it.

Chapter 3 is where we start developing the theory of metric spaces. First, we
go through a recap of sequences and subsequences and then define their con-
vergence in (arbitrary) metric spaces. Indeed, this definition is also motivated
from our experience in the set of real numbers. The major portion of this
chapter deals with making a metric space “complete”, in terms of sequences
we have in it. Finally, a theorem due to René–Louis Baire, famously known
as the “Baire category theorem” is discussed along with its applications to
complete metric spaces.

Chapter 4 deals with compactness of metric space and the consequences of
compactness. We start with the basic intuitive definition of compactness, see
some examples, and then proceed to define this concept in different ways. In
the process of doing so, we come across other concepts such as total bound-
edness, sequential compactness, and Lebesgue number. Finally, we form a
characterization of compact metric spaces in terms of these new-found con-
cepts.

Chapter 5, the shortest chapter reader will encounter in this text, is about
connectedness of a metric space. As usual, we start with the intuitive defi-
nition of connectedness and then develop relevant theory. Since most of the
“remarkable” theorems on connectedness require the knowledge of continuous
functions, we postpone these until Chapter 6, and throughout the chapter
encourage the reader to think only geometrically and prove facts using the
intuitive definition only.

Chapter 6 is again a major chapter in the text. It deals with continuous
functions, indeed abstracted from our experience in the set of real numbers.
This chapter starts with the usual definition of continuity, and then we form
some equivalent definitions which help us proving or disproving the continu-
ity of any function. This is the point where the keen reader is ready to start
learning general topology. After looking at sufficient examples and exercises
of continuous functions, we “upgrade” this idea to uniform continuity and
Lipschitz continuity (although, we only scratch the surface of Lipschitz conti-
nuity without going into depth). We then look at the consequences of applying
continuous functions on various types of metric spaces (compact, connected,
complete, bounded, etc.) dealt with earlier in the text. Finally, as a close of
this chapter, the reader is introduced to the homeomorphisms, the very core
of general topology and all the theory that develops further.

Chapter 7 is all about introducing the reader to fixed point theory. After
covering the preliminaries, a basic fixed point result due to Banach, called
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the “Banach contraction principle” is stated (and proved). The remaining
chapter deals with the applications of this fixed point result in various fields
of mathematics such as (but not limited to) numerical analysis, differential
equations, integral equations, and the solution of linear algebraic equations.

Without claiming originality of the results, we do claim simplicity and
lucidity of presentation coupled with comprehensiveness of the materials. We
have been influenced by many books on the same subject and have listed in
the bibliography those books which have been of particular assistance to us
in preparing this book.

We greatly admire and are deeply indebted to our teachers, colleagues,
and students who helped us directly or indirectly in preparing this book.
Our deepest gratitude and thanks are also due to our family members who
extended moral support throughout the execution of this project.

A special thanks to Mr. Thekku Veettil Abhitjih for making the diagrams
and illustrations from our paper-made illustrations.

The authors are very thankful to Aastha Sharma, Shikha Garg, and the
staff from CRC press for their unfailing support, cooperation, and patience in
publishing this book.

We would like suggestions, edits, and/or corrections of the text at
gopaldhananjay@yahoo.in, aniruddha480@gmail.com, asranadive04@

yahoo.co.in, or yshubh305@gmail.com.

https://www.routledge.com/An-Introduction-to-Metric-Spaces/
Gopal-Deshmukh-Ranadive-Yadav/p/book/9780367493486
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A Note to the Reader

Two matters require comment: the problems and the proofs.
Working on problems is a crucial part of learning mathematics. No one

can learn the subject merely by pouring over the definitions, theorems, and
examples that are worked out in the text. One must be a part of it for oneself.
To provide that opportunity is the purpose of the exercises.

They vary in difficulty, with the easier ones usually given first. Some are
routine verifications designed to test whether you have understood the def-
initions and examples of the preceding section. Other are less routine. You
may, for instance, be asked to prove a theorem. The main purpose of such an
exercise is to encourage you to work carefully through the proof in question.

It is a basic principle in the study of mathematics, and one too seldom
emphasized, that a proof is not really understood until the stage is reached at
which one can grasp it as a whole and see it as a single idea. In achieving this
end, much more is necessary than merely following the individual steps in the
reasoning. This is only the beginning. A proof should be chewed, swallowed,
and digested, and this process of assimilation should not be abandoned until
it yields a full comprehension of the overall pattern of thought.

For those readers who are pursuing their undergraduate studies, we would
like to mention that there are two “types” of proofs that we usually write: One
is that which shows the ideas, steps, and methods which we shall implement.
We call this a “rough” proof or a sketch. The other type of proof gives the
exact logical sequence of arguments. Such type of proof is given in most of
the textbooks, and therefore we call it a “textbook proof”. However, one
disadvantage of writing textbook proofs directly is that it emphasizes way too
much on arguments that it loses the track of intuition. This causes confusion
among first time readers, and most students then try to remember the proof.
One must understand that this is not a correct way to do mathematics.

Keeping this in mind, in this text, we always try to give the sketch of the
proof rather than the textbook proof and leave the writing of textbook proof
up to the reader. We suggest the students as well as teachers to use geometric
intuitions to sketch the proof first, and then start writing the proof.

xiii
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Chapter 1

Set Theory

In this chapter, we shall see some basic concepts of set theory which will be
used further. The aim of this chapter is to make the reader familiar with
concepts of sets, relations, and functions, which probably have been covered
in the high school level. We shall, in the text, try to give as much intuition
as possible with appropriate diagrams and illustrations wherever required.
However, the reader is advised to keep making illustrations on their own to
have a better understanding of the concepts. We shall start with revising about
sets and slowly develop the theory on functions.

1.1 Sets

A collection of elements or objects is often called a set . Although almost
no book gives what is called a formal definition of sets, this statement is often
taken as a definition. The reason for no formal definition is that if we keep
this as the formal definition, we would need to define what is meant by a
“collection” and in fact, we will also need to define what is meant by “object”
or “element”. But, we need to stop somewhere! So henceforth, we shall treat
the above statement as our definition of a set.

One should keep in mind that if at all we want to collect objects, we need
something from which we can do so. Such a thing is again a set and is often
called the universal set or sometimes, even referred to as the “universe of
discourse”. Such a universal set is often used to form other sets, given the
context. Also, whenever we consider a universal set, we will keep ourselves
restricted to the elements of that set itself. In other words, we shall act like
we do not know anything “outside” our universe of discourse.

1



2 An Introduction to Metric Spaces

As a matter of notations and conventions that is followed by almost every
mathematician and author, we shall use CAPITAL letters to denote sets
and small letters to denote the elements of a set. The elements of any set
are enclosed between (curly) braces, i.e., “{” and “}”. Also, if an object x
belongs to a set X, we shall denote it as x ∈ X. Similarly, if an element does
not belong to the set, we write x /∈ X.

Although we have defined sets and also have seen some intuitions that
arise, we have not yet seen how to write the sets. Let us, through examples,
see how to write sets.

Example 1.1 (Writing sets). Suppose that our universe of discourse (uni-
versal set) is the set of real numbers, R. We would like to collect elements
(in this case, numbers) of the form which are positive, integers, and (strictly)
less than 6. We name this collection (set) A. The easiest way to write A is
{1, 2, 3, 4, 5}. We often write this as A = {1, 2, 3, 4, 5}.

Now, moving one step ahead, we now wish to make a collection B of
elements of R which are: positive, integers, and divisible by 2. If we are to list
all the elements, our lifetime would prove to be short since there will be no
end finding such numbers which are divisible by 2. Hence, we may write a few
elements of the set and then use · · · to denote that the list goes on forever.
So, we have B = {2, 4, 6, · · · }.
Such a method of writing sets is called the listing or roaster form of sets.
Although this looks simple and convenient, it is not so when we start dealing
with different types of sets especially when elements are not really such which
can be listed. Let us take an example to look at this.

Example 1.2. Consider the collection C, which we shall make from our
universe R, of real numbers of the form greater than or equal to 0 and less
than or equal to 1. Let us see if we can list the elements as above. Clearly, 0
is a real number which follows our criterion for being in the collection and so
does 1. Is there any other real number in between 0 and 1 which also satisfies
the criterion? Yes! One such number is 1

2 . In fact, there are infinitely many
such numbers and to list a few elements and then use · · · in a fashion that
explains the criterion well is difficult! So, we shall use the criterion itself to
write our set. We write:

C = {x ∈ R|0 ≤ x ≤ 1} .

This reads as, “collection of all those elements x of R such that 0 is less than
or equal to x and x is less than or equal to 1”. Such a way of writing is called
the set-builder form of writing sets.

The set-builder form is convenient especially when we deal with abstract sets
where we do not really know what elements we have in our set, but rather the
properties which they follow. We shall come to abstraction later, once we are
really familiar with concepts we know by experience.
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Considering the two ways of writing sets dealt with in Examples 1.1 and
1.2, we shall make the following sets out of the set of real numbers R.

N = {1, 2, 3, · · · } ,
Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } ,

Q =

{
p

q
∈ R
∣∣p ∈ Z and q ∈ N

}
,

Q
+ = {x ∈ Q|x > 0} ,

Q
− = {x ∈ Q|x < 0} ,

Q
∗ = {x ∈ Q|x �= 0} ,

R
+ = {x ∈ R|x > 0} ,

R
− = {x ∈ R|x < 0} ,

R
∗ = {x ∈ R|x �= 0} .

In the complete text that follows, we shall use these notations for the sets
defined above. Here, the set N is called the set of natural numbers , Z is called
the set of integers, and Q is called the set of rational numbers. A set which
we did not yet write and give a notation to is the set of irrational numbers.
This will be dealt with later.

We have tactfully avoided defining natural numbers, integers, rational
numbers, etc. We have seen until now that we can form sets which contain
numbers. A natural question arises: Are there any sets which contain ele-
ments that are not only numbers? Well, as all of us might have seen in our
high school, sets can contain any type of elements: numbers, alphabets, words,
or in fact, a set of books or papers is also a set! At this stage though, a better
question can be asked: Can the elements of a set be themselves sets? Let us
try to figure it out through an example.

Example 1.3 (Family of sets). Consider the set of real numbers, R. We wish
to collect all those sets constructed from the elements of R which contain 0.
Now, we are collecting sets instead of individual elements from R. Can we have
one such set? Yes, R itself. Can we have another? Again, the answer is yes!
{0} is another such set. Clearly, listing all such sets would be impractical. So,
we will use the set-builder form to write our collection which we shall name
F . We then have

F = {S|S is constructed from the elements of R and 0 ∈ S} .

As seen in Example 1.3, the elements of sets can themselves be sets. Whenever
such a thing happens, i.e., we have a collection of sets, we shall use script
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letters (such as the F we used in Example 1.3) to write them. Before moving
ahead, let us try to get collection of sets, where the sets will be constructed
from N.

Example 1.4 (Indexing sets). Let us consider, as our universe, the set of
natural numbers N and for each natural number n ∈ N, let us try to collect
sets (constructed from N) which have all elements from 1 through n. This
means to say, we collect sets Sn for every n. Here, if we try to give different
symbols (letters) to each of these sets, we will get short of symbols! Hence,
we try to “index” these sets. That is, we write Sn = {1, 2, · · · , n}, where it is
understood that as n changes, the elements of the set Sn also change.

Therefore, S1 = {1}, S2 = {1, 2}, S3 = {1, 2, 3}, and so on. Hence, we
write our family of sets as

F = {Sn|n ∈ N} .

Here, we say that F is a family of sets which is indexed by N; the set of
natural numbers N is called the index set and n is called the index .

Unlike Example 1.4, sets are not always indexed by natural numbers. We can
also index sets by other sets such as integers, rational numbers, real numbers,
or even by a set which is not necessarily a set of numbers. Most of the time,
we shall consider an arbitrary index set, which we denote by Λ (throughout
the text), whose elements are not exactly known to us. We shall use capital
Greek letters to denote arbitrary index sets and the (corresponding) small
Greek letters to denote the elements of the index set. Therefore, in general,
an indexed family of sets will be written as

F = {Aλ|λ ∈ Λ} .

Exercise 1.1. Give an example of a family of sets which is indexed by the
set of real numbers, R.

1.1.1 The empty set

Before moving ahead, let us try to see a special type of collection. Suppose
our universe is the set of all humans living on earth. Suppose a person like
us wishes to collect all those humans who have 8 hands, 4 legs, and 2 tails.
Is there any such living human on earth? The answer is no! So, our collection
has no elements at all. A set with no elements is called the empty set and is
denoted by ∅.

A person of good experience in logic can ask a question at this point:
Everywhere it has been written “the” empty set. Is the use of “the” justified?
In other words, is the empty set unique? We shall address this question later,
after we have seen enough on operations and equality of sets.
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1.1.2 Operations on sets

Once we have sets, we can now start playing with them. The very first
thing we can do at this point is to compare two sets. First, we shall address
the question: When can we say that two sets are equal? At the beginning, we
defined our sets to be collections. First we notice that while collecting, we do
not give importance to the order in which they are collected. As a result, the
sets {1, 2} and {2, 1} are the same. What do we observe? Given any two sets
X and Y, when can we say that these are equal? An answer based on complete
intuition and observation is: Whenever every element of X is an element of
Y and every element of Y is an element of X. The formal (mathematical)
definition of equality will be given a bit later.

The next thing we can do is to observe the sets we defined in the above
section. If we look carefully, every natural number is also an integer (positive).
Are these two sets equal? Intuitively, the answer to this question is: No! 0 is
one such element in Z which is not a natural number. However, the set of
integers has all the elements of the set of natural numbers. In such a case,
we call the set of natural numbers a subset of the set of integers. We are now
ready for the formal definitions of subset and equality.

Definition 1.1 (Subset). A set X is a subset of a set Y if ∀x ∈ X,x ∈ Y .
This is denoted by X ⊆ Y .

Note.

1. If the set Y (from Definition 1.1) has at least one element which is not
in X, then X is called a proper subset of Y . This is denoted by X ⊂ Y
throughout this book.

2. If X is a subset of Y, then Y is called the superset of X.

Definition 1.2 (Equality). Two sets X and Y are said to be equal if ∀x ∈
X,x ∈ Y and ∀y ∈ Y, y ∈ X. This is equivalent to X ⊆ Y and Y ⊆ X.
Equality is denoted by X = Y .

Exercise 1.2. Compare for subsethood and/or equality the sets which we
made from the set of real numbers above.

Now, we try to make more new sets from the sets which we already have.
Given any two sets X and Y, one way to make a new set is to collect all the
elements from X and all the elements from Y into a single collection, say Z.
Thus, any element of Z is either from X or from Y (or even both, if they have
it in common). A set formed in this manner is called the union of X and Y .
Another way to make a new set is by collecting those elements which are in
both X and Y and put them in a single collection, say U . Such a collection is
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called the intersection of X and Y . We now move to the formal definition of
union and intersection.

Definition 1.3 (Union). Given two sets X and Y, their union Z is the collec-
tion of elements which are in X or in Y . This is denoted by X ∪Y . Formally,
we may write

X ∪ Y = {x|x ∈ X or x ∈ Y } .
Definition 1.4 (Intersection). Given two sets X and Y, their intersection Z
is the collection of elements which are both in X as well as Y . This is denoted
by X ∩ Y . Formally, we may write

X ∩ Y = {x|x ∈ X and x ∈ Y } .
Exercise 1.3. From the sets constructed from R, for every pair, give the
union and the intersection. What do you observe?

The definitions of union and intersection are only made for two sets. But,
we would like to make a general definition for arbitrary collection of sets
whose union and intersection we need to find. Simply extending the definitions
(made from our intuition), we get the following definitions for unions and
intersections of arbitrary family of sets.

Definition 1.5 (Arbitrary union). Given an arbitrary indexed family of sets
F = {Aλ|λ ∈ Λ}, the union of this family is the collection of elements which
are in at least one of the sets of the family. We write it as

⋃
λ∈Λ

Aλ = {x|∃λ0 ∈ Λ such that x ∈ Aλ0
} .

Similarly, arbitrary intersection can be defined as follows.

Definition 1.6 (Arbitrary intersection). Given an arbitrary indexed family
of sets F = {Aλ|λ ∈ Λ}, the intersection of this family is the collection of
elements which are in all the sets of the family. We write it as

⋂
λ∈Λ

Aλ = {x|∀λ ∈ Λ, x ∈ Aλ}

As an observation from Exercise 1.3, we may see that intersection of some sets
can be the empty set, i.e., there can be sets X and Y such that X ∩ Y = ∅.
Such sets are called disjoint . In particular, the reader must have observed that
Q

+ and Q
− are disjoint. If we take the union of such sets (whose intersection

is empty), the union is called disjoint union. As an immediate observation,
we can conclude that Q∗ is the disjoint union of Q+ and Q

− (Exercise 1.3).
Similarly, if F = {Aλ|λ ∈ Λ} is an arbitrary indexed family, then F is

said to be a disjoint family if
⋂

λ∈Λ

Aλ = ∅. Here, we can have another concept,

often called, pairwise disjointness. The family F is said to be pairwise disjoint
if ∀λ1, λ2 ∈ Λ with λ1 �= λ2, we have Aλ1

∩Aλ2
= ∅.
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Exercise 1.4. Prove that every pairwise disjoint family of sets is disjoint, but
the converse is not necessarily true.

Exercise 1.5. As an extension to Exercise 1.4, can we have a disjoint family
where there is no disjoint pair?

Another way to get new sets from old ones is to collect all those elements
which are not in the given set. We call this collection a complement of the
given set.

Definition 1.7 (Complement). Given a set A, its complement is the collection
of elements which are not in A. We write it as

Ac = {x|x /∈ A} .

Here, we must note that we do not know anything “outside” our universe of
discourse. Hence, to define a complement, we need a universal set. We call
it, for the time being, X. Since we do not know what is outside X, clearly,
Xc = ∅ and also, ∅c = X, since none of the elements of X are in ∅. Thus, a
better way to write complements is

Ac = {x ∈ X|x /∈ A} .

Apart from taking complements, a way to get new sets from two given sets A
and B is by collecting those elements which are only in one of the sets and
not in other. We call this relative complement or set difference.

Definition 1.8 (Set difference). Given two sets A and B, the set difference
A \B is the collection of all elements of A which are not in B. We write it as

A \B = {x|x ∈ A and x /∈ B} .

With these definitions made, it is clearly seen that Ac = X \ A and for any
set A, A \ ∅ = A.

Exercise 1.6. For given sets A and B, prove that A \ B = A \ (A ∩B) =
A ∩Bc.

We now look at some properties of the definitions we have made above in
terms of a theorem. Since the proof is easy and many of us might have gone
through it at the high school level, it is left as an exercise for the reader.

Theorem 1.1. Let A, B, and C be given sets and X be the universal set.
Then, the following properties hold:

1. (Ac)
c
= A. [Involution]

2. A ∪B = B ∪A and A ∩B = B ∩A. [Commutativity]

3. A∪(B ∪ C) = (A ∪B)∪C and A∩(B ∩ C) = (A ∩B)∩C. [Associativity]
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4. A∩ (B ∪ C) = (A ∩B)∪ (A ∩ C) and A∪ (B ∩ C) = (A ∪B)∩ (A ∪ C).
[Distributivity]

5. A ∪A = A and A ∩A = A. [Idempotence]

6. A ∪ (A ∩B) = A and A ∩ (A ∪B) = A. [Absorption]

7. A ∪X = X and A ∩ ∅ = ∅. [Absorption by X and ∅]
8. A ∪ ∅ = A and A ∩X = A. [Identity]

9. A ∩Ac = ∅. [Law of contradiction]

10. A ∪Ac = X. [Law of excluded middle]

11. (A ∪B)
c
= Ac ∩Bc and (A ∩B)

c
= Ac ∪Bc. [De Morgan’s laws]

Exercise 1.7. Prove Theorem 1.1.

We now make a few observations on the union and intersection of a family of
sets. First, it is clearly seen that the definition of union and intersection of
two sets is just a special case, where our family of sets contains only two sets.
An important observation that can be made here is that whenever we take
union, our resultant set cannot get smaller, in a sense that the resultant set
has all the elements of at least one of the sets in the family. Similarly, when
we take intersection, our resultant set cannot get bigger than the sets under
consideration, in a sense that it cannot have elements from outside of the sets
of the family.

We would like to mention here that when we say “arbitrary index set”,
it can also be empty! So, we must ask a question: What family of sets can
be indexed by the empty set? The answer is the empty family! A family
which does not contain any sets at all is called the empty family. So, our next
question is: What about the intersection and union of an empty family?

Intuitively and from the observations made above, we are looking for the
largest possible set in our universe which could be the result of an intersection
and the smallest possible set in our universe which could be the result of a
union. Clearly, the largest possible set is the universe itself and the smallest
possible set is the empty set, ∅. We make this intuition as a theorem.

Theorem 1.2. The union of empty family of sets is empty and the intersec-
tion of empty family of sets is the universal set.

Proof. We wish to prove that
⋃
λ∈∅

Aλ = ∅ and
⋂
λ∈∅

Aλ = X.

Let us see what will happen if this is not true, i.e.,
⋃
λ∈∅

Aλ �= ∅ and ⋂
λ∈∅

Aλ �=
X. In the first case, ∃x ∈ ⋃

λ∈∅
Aλ, hence this x must be in one of Aλ. This

means ∃λ ∈ ∅, such that x ∈ Aλ, which is not possible. Hence,
⋃
λ∈∅

Aλ = ∅.
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Similarly, if
⋂
λ∈∅

Aλ �= X, then ∃x ∈ X such that x /∈ ⋂
λ∈∅

Aλ. This would

mean that x is not in at least one of the Aλ, i.e., ∃λ ∈ ∅ such that x /∈ Aλ,
which is again not possible. Hence,

⋂
λ∈∅

Aλ = X.

1.1.3 Uniqueness of the empty set

In Section 1.1.1, we asked a question: Is the use of “the” in saying “the
empty set” justified? The question means, is there only one empty set? We
have seen in that section that when we try to collect humans with features
not of humans, we get the empty set. Another way to make an empty set
is by collecting all the real numbers whose square is negative. Are these two
empty sets different? At first sight, it does seem that these two empty sets are
different, since they are constructed in different context. But we must notice
that set theoretically, two sets are equal if and only if they are subsets of
each other. Suppose that someone wants to prove that there are indeed two
different empty sets, say ∅1 and ∅2, with ∅1 �= ∅2. Then, they must produce an
element from ∅1 which is not in ∅2 (or vice versa). Since this is not possible,
the two empty sets considered must be equal. Such statements, which happen
to be true due to lack of premise, are called vacuously true statements. Hence
the empty set is unique, i.e., there is only one empty set. This justifies the use
of the word “the” as well as a unique symbol ∅.

1.1.4 Power sets

Given a set X, we now try to collect all the subsets of X. We call this
collection the power set and denote it as

P (X) = {S|S ⊆ X}
A natural question arises: Is P (X) non-empty for any set X? It is easy to see
that it is, since X ∈ P (X). Also, ∅ ∈ P (X).

Exercise 1.8. What is P (∅)?

1.1.5 Cartesian products

Given any two sets X and Y, we define the Cartesian product as

X × Y = {(x, y) |x ∈ X and y ∈ Y } .
An element of X × Y is called an ordered pair or a 2-tuple. Each entry in
a tuple is often called a coordinate.1 Notice that while writing the Cartesian

1Indeed, the intuition of coordinates comes from our experience in R
2 and R

3, which is
the Cartesian product of R with itself.
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product, it is important to keep in mind the order of the sets. If X and Y are
two different sets, the two Cartesian products X × Y and Y × X will have
different elements. Indeed, the elements of one will be elements of the other
with the order of writing reversed. Therefore, we observe that while writing
tuples, the order of writing (or listing) is important. Similarly, we can define
an n-tuple as (x1, x2, · · · , xn), where the order of writing is important. Now,
we would not like to restrict ourselves to Cartesian product of two sets (or
for that matter, finitely many sets). Therefore, we now define an arbitrary
Cartesian product for an arbitrarily indexed family of sets. If F is an indexed
family, indexed by the index set Λ, then the Cartesian product for the family is
given by

∏
λ∈Λ

Aλ. Although we cannot explicitly write the elements (as tuples)

in this product, axiom of choice2 guarantees us that there will be at least one
element in the product, i.e., a “tuple” where each entry (or coordinate) will
be from individual sets. Rigorously (and through the axiom of choice), the
arbitrary Cartesian product can be defined as

∏
λ∈Λ

Aλ =

{
f : Λ →

⋃
λ∈Λ

Aλ

∣∣f (λ) ∈ Aλ

}

Note. Notice that the arbitrary Cartesian product is defined only for a family
which does not contain an empty set. In case the family contains the empty
set, the Cartesian product remains empty.

Some of the known sets produced from Cartesian products include the plane
R

2 = R × R and the space R
3 = R × R × R. Similarly, we can define R

n for
any natural number n.

Exercise 1.9. Are the sets R3, R× (R× R) and (R× R)×R equal? Justify.

Exercise 1.10. What can you say about the empty product, i.e.,
∏
λ∈∅

Aλ?

1.2 Relations

When we have two sets, say X and Y, we would like to see if the elements
of X are somehow related to the elements of Y . For example, if X is the set
of all living males on earth and Y is the set of all living females on earth, we
would like to see which males are brothers of which females. Clearly, one man
can have more than one sister, and hence, one element of X can be related to

2Axiom of choice states that if X is a non-empty collection of non-empty sets, then
there is a function f : X → ⋃

A∈X
A such that for every set A ∈ X, f (A) ∈ A. Such a

function is called a choice function.
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one or more than one elements of Y . Suppose we collect all the ordered pairs
of the form (males, females) which are related (as brother-sister); we get a
subset of X × Y. We make this intuition a definition of relation.

Definition 1.9 (Relation). A relation between two sets X and Y is a subset
R of X × Y.

Note.

1. Given any two non-empty sets X and Y, we always have at least two
relations:

(a) The empty relation ∅ ⊂ X × Y , which suggests that no element of
X is related to any element of Y .

(b) The universal relation X × Y itself, which suggests that every ele-
ment of X is related to every other element of Y .

2. If we take a subset R ⊆ X ×X, we call it a relation on X.

If (x, y) ∈ R, then we say that x is related to y through the relation R, and to
make the notations short, we often write it as xRy. There are a few relations
we know by experience and have already been using.

Example 1.5 (Known relations). We know a relation R on R defined by xRy
if and only if x ≤ y. Another relation we know is on P (X), for any set X,
given as ARB if and only if A ⊆ B. These two relations are special types of
relations, which we will deal with later.

Another special type of relation known to us is the equality relation, i.e.,
on any set X, define a relation R as xRy if and only if x = y. This is also
called an identity relation or diagonal relation.

If we take N as our set, we can define a relation R ⊆ N×N as mRn if and
only if m|n, i.e., n is a multiple of m. As another example, for a fixed n ∈ N,
we can define a relation3 R as m1Rm2 if and only if n|(m1 −m2).

As the next step, we would like to get new relations from old. In particular, we
would like to get a relation on X ×Y if two relations R and S are given on X
and Y respectively. We must note here that we need a relation on X×Y , i.e.,
if we name our relation T , then T ⊆ (X × Y )× (X × Y ). Also, we have been
provided with R ⊆ X×X and S ⊆ Y ×Y . What is the most natural method to
use these two relations for our purpose? We can define T as (x1, y1)T (x2, y2)
if and only if x1Rx2 and y1Sy2. However, this is not the only method! Before
getting another way, let us look at an example.

3The readers who have some experience in elementary number theory might have
guessed that this relation is the congruence relation.
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Example 1.6 (Dictionary order). Suppose we are searching a dictionary for
words with two letters . We want to locate the words: an, be, and am. First
we see the words “an” and “be”. We know that “a” comes prior to “b” in the
English alphabet. So, we deduce that “an” must come first. Then, we look
at the words “an” and “am”. Since “m” comes prior to “n”, we deduce that
“am” comes first. Thus, we complete our search by saying that “am” comes
first, followed by “an” and then “be”.

What did we do here? We were given relation on the set of letters, namely
the usual order, which tells us which letter comes prior. Then, given words
with two letters, we first compared the first letters. If the first letter of the
first word came prior to the first letter of the other word, we deduced that the
first word came prior to the second. If the first letters were the same for both
the words, we checked the second letters. If the second letters are the same,
then the words are the same! If the second letters are not same, then one of
the words would have the second letter which came prior to the second letter
of the other word and then we placed the words accordingly.

Such a system of ordering or relating words (or elements), is called dictio-
nary order or the lexicographic order .

We wish to do the same for arbitrary relations on arbitrary sets. If we are
given two relations R and S on the sets X and Y respectively, we define the
lexicographic relation, L on X × Y as follows

(x1, x2)L (y1, y2) if and only if ((x1 �= y1 ⇒ x1Ry1) and (x1 = y1 ⇒ x2Sy2)).

Exercise 1.11. Write the lexicographic relation of a finite Cartesian product
X1 × X2 × X3 × · · · × Xn for any n ∈ N, given relations Ri on Xi for i =
1, 2, · · · , n.

1.2.1 Types of relations

Relations which follow certain special properties have been given special
names. A few of them are listed below.

Definition 1.10 (Reflexive relation). A relation R on X is said to be reflexive
if ∀x ∈ X, xRx, i.e., every element of X is related to itself.

Definition 1.11 (Symmetric relation). A relation R on X is said to be sym-
metric if xRy ⇒ yRx.

Definition 1.12 (Anti-symmetric relation). A relation R on X is said to be
anti-symmetric if (xRy and yRx) ⇒ x = y.

Definition 1.13 (Transitive relation). A relation R on X is said to be tran-
sitive if (xRy and yRz) ⇒ xRz.

Remark. Sometimes, the definition of anti-symmetric relations seems counter
intuitive. As the name suggests, an anti-symmetric relation should be just the
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opposite of a symmetric relation. So, while the symmetric relation forces y to
be related to x, whenever x is related to Y, an anti-symmetric relation should
never allow y to be related to x whenever x is related to y. However, we must
note that there might be some element which is related to itself, i.e., xRx. If
we go by our intuition, then x will not be allowed to be related to itself! We
do not want this. Therefore, we have made a statement where we can allow
an element to be related to itself. However, in our definition, we do take care
that if x and y are distinct elements and x is related to y, then y cannot be
related to x, thereby satisfying our intuition.

Exercise 1.12. From the known relations in Example 1.5, find out which
relations are reflexive, symmetric, anti-symmetric, and transitive.

1.2.2 Equivalence relations

Definition 1.14 (Equivalence relation). A relation R on X is said to be an
equivalence relation if R is reflexive, symmetric, and transitive.

Clearly, the equality relation is an equivalence relation on any set. Also, the
relation R on N (for a fixed n ∈ N) defined by m1Rm2 if and only if n|(m1 −
m2) is an equivalence relation. We call it the congruence relation modulo n
and write as m1 ≡ m2 (mod n), which is read as “m1 is congruent to m2

modulo n”.
Once we have relations, we would like to see what are the elements that

are related to a particular element x ∈ X. Although such a collection can be
defined for any relation, we shall define it only for equivalence relations for its
use later. We will call this collection equivalence class of x.

Definition 1.15 (Equivalence class). If R is an equivalence relation defined
on X, then the equivalence class of x ∈ X, denoted by [x], is defined as the
collection of all those elements which are related to x through the relation R.

[x] = {y ∈ X|xRy} .

The first question that we should ask is: Is [x] non-empty for any x and any
equivalence relation R? The answer is yes! Since R is an equivalence relation,
in particular, it is reflexive. Hence, xRx always holds for any x. Therefore, we
always have at least one element in each equivalence class. Let us look at an
example to see how can we construct equivalence classes.

Example 1.7. Consider the congruence (modulo) relation. We shall extend
it to the set of integers, Z. We define the relation for n = 2 and the reader
is advised to do it for any n ∈ N. Let the relation R be defined as m1Rm2 if
and only if 2|(m1 −m2). First, we will check if this relation is an equivalence
relation.

Clearly, for any m ∈ Z, 2|(m − m). Hence, R is reflexive. Similarly,
if m1Rm2 holds, we have 2|(m1 − m2). So, (m1 − m2) = 2k for some
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integer k. Therefore, (m2 − m1) = −2k = 2k′, where k′ = −k ∈ Z. Hence,
2|(m2−m1), i.e.,m2Rm1 also holds. Thus,R is symmetric. Finally, ifm1Rm2

and m2Rm3 holds, then 2|(m1 − m2) and 2|(m2 − m3) would give us that
2| (m1 −m2)+(m2 −m3) = (m1−m3). Hence, m1Rm3 must also hold. Thus,
R is also transitive.

Therefore, we conclude that R is an equivalence relation. We will keep the
same notation for the congruence relation, i.e., m1 ≡ m2 (mod 2). Now, let
us look at the equivalence class of 0. By definition, [0] = {m ∈ Z| 2|(m− 0)},
which is same as saying that [0] = {m ∈ Z| 2|m}. Thus, the equivalence class
of 0 under this relation is the set of all even integers. Similarly, let us look at
the equivalence class of 1. By definition, we have [1] = {m ∈ N| 2|(m− 1)}. If
2|(m− 1), then m = 2k + 1 for some integer k. Thus, the equivalence class of
1 is the set of all odd integers.

Now, let us take any other even integer and denote it by 2k. Then, [2k] =
{m ∈ Z| 2|(m− 2k)}. But this would mean that m = 2k′+2k, i.e., m is even.
Thus, the equivalence class of any even integer is the set of all even integers
(same as [0]). Similarly, we can see that the equivalence class of any odd
integer is the set of all odd integers (same as [1]).

Thus, under this relation, there are only two equivalence classes, namely
[0] and [1]. The equivalence class of any other integer is one of these two as
shown above.

Exercise 1.13. Generalize the equivalence relation of congruence modulo n
for any n ∈ N on the set of integers, Z. Also, find all the equivalence classes.

Exercise 1.14. For the relations which are equivalence relations from Exam-
ple 1.5, give all the equivalence classes.

Let us make certain observations from the example and exercises above. First,
the distinct equivalence classes of an equivalence relation are all pairwise dis-
joint. Second, if an element y is in the equivalence class of x, then their equiv-
alence classes are the same. Third, all the equivalence classes form a disjoint
union of the setX on which the relation is defined. We make these observations
as a theorem.

Theorem 1.3. If R is an equivalence relation on X, then

1. For any two elements x, y ∈ X, either [x] = [y] or [x] ∩ [y] = ∅.
2. For an element y ∈ X, y ∈ [x] if and only if [x] = [y].

3. X is the disjoint union of equivalence classes.

Proof.

1. Both the conditions cannot hold simultaneously, since [x] = [y] and
[x] ∩ [y] = ∅ would imply that [x] = [y] = ∅. But, we know that x ∈ [x]
and y ∈ [y]. Hence, only one of the two conditions can hold at a time.
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Given two equivalence classes, [x] and [y], they can either be disjoint
or not. If they are disjoint, then we are done! So, we consider the case
where [x]∩ [y] �= ∅ and then prove that the second condition must hold.

Let z ∈ [x]∩[y], i.e., z ∈ [x] and z ∈ [y]. Also, for any element u ∈ [x], we
have zRx and uRx. Now, by symmetry and transitivity, we have zRu.
But, zRy is also true since z ∈ [y]. Therefore, again by symmetry and
transitivity uRy holds true, i.e., u ∈ [y]. Hence, [x] ⊆ [y].

Similarly, we can show [y] ⊆ [x]. By the definition of equality, we get
[x] = [y].

2. First we will prove that if y ∈ [x], then [x] = [y].

Since y ∈ [x] and y ∈ [y], we have, [x] ∩ [y] �= ∅. Hence, from above
[x] = [y].

Conversely, if [x] = [y], then we have y ∈ [y] = [x].

3. Clear from 1 and 2.

1.2.3 Partition of sets

We observe that the set X can be expressed as a disjoint union of equiv-
alence classes on X due to a given equivalence relation. We consider this
property of equivalence classes and make a definition.

Definition 1.16 (Partition). A family F = {Aλ ⊆ X|λ ∈ Λ} of subsets of
a set X is said to form a partition of X if F is pairwise disjoint and

⋃
λ∈Λ

Aλ = X.

Clearly, from the discussion above, every equivalence relation gives a partition
of X. A natural question arises: Given a partition, can we form an equivalence
relation?

Let F = {Aλ ⊆ X|λ ∈ Λ} be a partition of X. We define a relation R on
X as xRy if and only if ∃λ0 ∈ Λ such that x ∈ Aλ0

and y ∈ Aλ0
. As F is a

partition of X, any x ∈ X is in some Aλ, so xRx by definition. Therefore, R is
reflexive. Also, if xRy holds, then x and y are in some Aλ for some λ ∈ Λ, but
then y and x are in same Aλ. This means yRx, i.e., R is symmetric. Finally,
if xRy and yRz holds, then all three elements x, y, and z are in the same set
Aλ0

of the partition. Therefore, xRz also holds, and R is transitive. Hence
R is an equivalence relation. What is the partition of X corresponding to this
equivalence relation? It is the same as F . We summarize this discussion in
the form of a theorem.

Theorem 1.4. For any set X,

1. Every equivalence relation on X induces a partition of X.

2. Corresponding to every partition of X, there is an equivalence relation
whose equivalence classes form the given partition.
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1.2.4 Partial order relations

We have seen a relation on R given by ≤. We call it the (usual) order on R.
By experience, we know that given two elements, this relation tells us which
one comes first. We would now like to generalize this notion to arbitrary sets.
Before generalizing, we see that in Example 1.5 and the exercise that followed,
we have proved that ≤ is reflexive, anti-symmetric, and transitive. Taking into
consideration these properties of the order relation, we define it in an abstract
setting and call it a partial order relation. The reason for naming it partial
order will be dealt with later.

Definition 1.17 (Partial order relation). A relation R on a set X is said to
be a partial order relation if it is reflexive, anti-symmetric, and transitive.

As a matter of notations and conventions accepted by the mathematical com-
munity, we shall write a partial order relation as ≤ or � (when the context
is confusing). The ordered pair (X,≤), i.e., a set X equipped with a partial
order relation, is called a partially ordered set or as a shorthand notation, a
POSET.

We have seen from Exercise 1.12 that the natural order ≤ on R forms a
partial order. In fact, the definition of partial order takes its motivation from
here! Also, the relation of subsethood, ⊆ on the power set P (X) of a set X
forms a partial order. Is there a difference in these two? In the usual order
on R, given any two elements, x, y ∈ R, either x ≤ y or y ≤ x always holds.
Thus, we see that in (R,≤), any two elements are comparable.

But this is not true in the case of ⊆. To see this, consider the power set of
the setX = {1, 2, 3}, i.e., P (X) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , X}.
From the definition of ⊆, we have {1} � {2} and {2} � {1}. This shows us
that in (P (X) ,⊆), two elements need not always be comparable. Hence, in
general, we call the relation a partial order relation.

A partial order relation ≤ defined on a set X, for which any two elements
of X are comparable, i.e., given x, y ∈ X either x ≤ y or y ≤ x, is called total
order and (X,≤) is called a totally ordered set. Before moving further, let us
see another example of partial order.

Example 1.8. Consider the set N of natural numbers. Define a relation R
on N as mRn if and only if m|n. Clearly, the relation is reflexive since
∀m ∈ N, we always have m|m. Now, if m|n and n|m is true, we have
m ≤ n and n ≤ m, i.e., m = n. Therefore, R is anti-symmetric. Also,
if m|n and n|l, then m|l, i.e., R is transitive.4 Hence, R is a partial order
relation.

Clearly R is not a total order relation since neither 2 � | 3 nor 3 � | 2.

4The readers who are facing some difficulty in understanding how we reached the three
conclusions of reflexive, transitive, and anti-symmetry are advised to attack the definition
of divisibility. We know that m|n if and only if there is an integer k such that n = mk.
Write all the divisibility relations mentioned in terms of this definition to notice that all
conclusions are indeed true.
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From this example, it is evident that there are many ways to define a partial
order relation on a set. We have exhibited (explicitly) two different partial or-
ders on N, one being the natural order (≤) and the other being the divisibility
relation (|).

Often Hasse diagrams are used to represent partially ordered sets. In such
diagrams, we “join” elements which are related to each other through the
partial order. Hasse diagrams of the partially ordered sets discussed above are
shown in the Figure 1.1a–c.

As an immediate consequence of partial order, we make the following def-
initions for the elements of a POSET.

Definition 1.18 (Least element). An element x ∈ X is called the least ele-
ment of X if ∀y ∈ X, we have x ≤ y.

Definition 1.19 (Greatest element). An element x ∈ X is called the greatest
element of X if ∀y ∈ X, we have y ≤ x.

Definition 1.20 (Maximal element). An element m ∈ X is called a maximal
element of X if ∀x ∈ X, we have m ≤ x⇒ m = x.

Definition 1.21 (Minimal element). An element m ∈ X is called a minimal
element of X if ∀x ∈ X, we have x ≤ m⇒ m = x.

Note.

1. The definition of maximal element suggests us that there is no element
greater than this element. Some elements may still be incomparable to
this element. Similarly, the definition of minimal element suggests that
there is no element smaller than this element.

2. An alternative way to define maximal element is, “An element m ∈ X
is called a maximal element if ∀y ∈ X, either y is not comparable to m
or y ≤ m”. Similarly, we can define minimal element in this fashion.

3. The definition of least (greatest) element suggests that this element is
smaller (greater) than all other elements of the POSET.

Theorem 1.5. The least and the greatest elements of a POSET, if they exist,
are unique.

Proof. Let (X,≤) be a POSET and if possible, let l1, l2 ∈ X be least elements
and g1, g2 ∈ X be greatest elements. Then, considering l1 as a least element,
we have l1 ≤ l2. Similarly considering l2 as a least element, l2 ≤ l1. Since ≤ is
anti-symmetric, we have l1 = l2.

In the same fashion, considering g1 as a greatest element, we have g2 ≤ g1
and considering g2 as a greatest element, we get g1 ≤ g2. Therefore, g1 =
g2. Hence, the least element and greatest element of a set, if they exist, are
unique.
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FIGURE 1.1: Hasse diagrams for different POSETs. (a) Hasse diagram for
R with usual ordering. (b) Hasse diagram for P (X) with X = {a, b, c} and
ordered by subsethood. (c) Hasse diagram for N with ordering given by divis-
ibility.

Exercise 1.15. Give an example of a POSET where the least and greatest
elements do not exist.

Exercise 1.16. Give an example of a POSET where there are more than one
maximal elements and more than one minimal elements.

If we look at the set of natural numbers, N, we have a least element, namely
1 but no greatest element. This is because if there was a greatest element, say
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g ∈ N, then g + 1, which is a natural number, would be less than or equal
to g, a contradiction! In fact, any non-empty subset of N always has a least
element but may or may not have a greatest element. Taking this property,
we define a new property of partially ordered sets.

Definition 1.22 (Well ordered sets). For a given POSET (X,≤), if every
subset of X has a least element, then X is said to be well-ordered.

Exercise 1.17. As an immediate consequence of the definition of well-ordered
sets, we can see that every well-ordered set has a least element. Is the converse
true, i.e., is every POSET with a least element well-ordered?

Since we have been generalizing our experiences with R and its usual order
on arbitrary partially ordered sets, the next natural thing to ask for is a
generalization of upper bound, lower bound, supremum, and infimum. Since
these terminologies are defined for sets (subsets of R), we shall do the same
for subsets of a POSET. For the definitions, we shall consider (X,≤) as our
POSET and A ⊆ X.

Definition 1.23 (Upper bound). An element u ∈ X is said to be an upper
bound of A if ∀x ∈ A, we have x ≤ u.

Definition 1.24 (Lower bound). An element l ∈ X is said to be a lower
bound of A if ∀x ∈ A, we have l ≤ x.

We note here that there can be more than one upper (or lower) bound of a
set, just as in the case of R with usual ordering.

Definition 1.25 (Supremum). An element l ∈ X is said to be the supremum
or least upper bound of A if it is the least element of the set of upper bounds
of A. It is often denoted by supA or lub (A).

Definition 1.26 (Infimum). An element g ∈ X is said to be the infimum
or greatest lower bound of A if it is the greatest element of the set of lower
bounds of A. It is often denoted by inf A or glb (A).

It is clear from the definitions that a set may or may not have bounds, supre-
mum or infimum.

If we go back to R, we make another note that every non-empty subset of R
which is bounded above (has an upper bound in R) has a supremum. We call
this the order completeness property (or the LUB property). In an abstract
setting, a POSET (X,≤) is said to have the order completeness property
axiom if and only if every non-empty subset of X which has an upper bound
in X, has a supremum.

Another observation we can make out of the definitions is that since supre-
mum and infimum are the least and greatest elements of some sets, they are
unique (Theorem 1.5).
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Finally, we shall generalize a last concept that arises due to the ordering
on R, namely intervals. We first see that intervals in R are sets that satisfy
certain properties. In particular, as a part of an elementary analysis course,
one may have observed that there are only the following types of intervals:
[a, b], [a, b), (a, b], (a, b), (a,∞), [a,∞), (−∞, b), (−∞, b], and R, where a ≤ b
(or more preferably, a < b). Here, the first four intervals are bounded intervals
in R and the next five intervals are unbounded intervals. On a similar note,
we shall define intervals in our POSET (X,≤) for two elements a, b ∈ X with
a ≤ b as follows:

[a, b] = {x ∈ X|a ≤ x and x ≤ b} ,

(a, b] = {x ∈ X|a ≤ x and x �= a and x ≤ b} ,

[a, b) = {x ∈ X|a ≤ x and x ≤ b and x �= b} ,

(a, b) = {x ∈ X|a ≤ x and x ≤ b and x �= a and x �= b} .

Here, we must note that to define the unbounded intervals, we cannot use the
symbols −∞ and ∞ since they are specifically used in the context of number
systems. However, in a similar manner, unbounded intervals can be defined by
just giving one of the bounds and not mentioning anything about the other.
Let us look at an example to see how can we actually construct intervals in
any partially ordered set.

Example 1.9 (Intervals in R
2). Consider the set R

2 with the partial order
defined by the lexicographic ordering, i.e., (x1, y1) ≤ (x2, y2) if and only if
x1 ≤ x2 and if (x1 = x2) then (y1 ≤ y2). Now, we shall construct the interval
[(0, 0) , (1, 1)]. Since this is a bounded interval of the first type (as mentioned
above), we need to find all those (x, y) ∈ R

2 such that (0, 0) ≤ (x, y) and
(x, y) ≤ (1, 1). First, we ask ourselves a question: Is this interval non-empty?
For if this is empty, we cannot really construct and exhibit it! We observe
that we have at least elements (0, 0) and (1, 1) in our interval and hence it is
non-empty.

Now, we look for other elements, if there are any in the interval. What type
of elements (x, y) satisfy the first condition (0, 0) ≤ (x, y)? By the definition
of ordering, we see that for y ≥ 0, (0, y) satisfies the criterion. Hence, whole
of non-negative Y -axis satisfies the criterion. Other elements include (x, y) for
x > 0. Therefore, the totality of elements (x, y) that satisfy (0, 0) ≤ (x, y) is
the right half plane (open) including the non-negative Y -axis.

Similarly, if we look at the elements that satisfy the second criterion, we
see that any element (1, y) for y ≤ 1 satisfies the criterion. Other elements
include (x, y) for x < 1. Thus, the totality of elements which satisfy the second
criterion is the part of plane left of the line x = 1 (open) including the line
x = 1 for y ≤ 1.

Hence, the interval [(0, 0) , (1, 1)] is the intersection of these two parts of
the plane. Geometrically it is exhibited as in Figure 1.2a–c.
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FIGURE 1.2: Constructing the interval [(0, 0) , (1, 1)] with the lexicographic
ordering for R2. (a) Elements in R

2 satisfying the first criterion. (b) Elements
in R

2 satisfying the second criterion. (c) The required interval.
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Exercise 1.18. Construct the interval ((0, 0) , (1, 1)) for the POSET
(
R

2,≤),
where the ordering is defined as (x1, y1) ≤ (x2, y2) if and only if

x21 + y21 ≤ x22 + y22 and

(
x21 + y21 = x22 + y22 ⇒ tan−1

(
y1
x1

)
≤ tan−1

(
y2
x2

))

and for any element of the type (0, y), we have tan−1
(
y
x

)
= π

2 for y > 0,

tan−1
(
y
x

)
= −π

2 for y < 0 and it is not defined for y = 0.

As a consequence of ordering, we have two theorems (principles) which use
the axiom of choice in their proof. We shall not prove these statements since
it is beyond the scope of the text. However, the reader is encouraged to look
for the proofs which are readily available.

Theorem 1.6 (Zorn’s lemma). In a partially ordered set X, if every totally
ordered subset has an upper bound in X, then X has a maximal element.

Theorem 1.7 (Well-ordering theorem). Every set can be well-ordered.

In fact, the axiom of choice, Zorn’s lemma, and the well-ordering principle
can be proved to be equivalent. Since in set theory, we assume the axiom of
choice to be true, by the equivalence, these two principles also hold!

Remark. If one carefully observes, the well-ordering theorem states that any
set can be well-ordered. In particular, R can be well-ordered. Is it true with
the usual order? No! R has no least element in the usual order. Sometimes, this
can be confusing for first-time readers. Although the well-ordering theorem
guarantees a well-ordering for any set, the proof of the statement does not tell
us how to construct one! Thus, we can say that there is indeed a well-ordering
of R but we do not know, as of now, how to construct it. Similarly, the proof
of Zorn’s lemma is an existential proof and not a constructive proof, i.e., it
guarantees us the existence of a maximal element (whenever the hypothesis
holds) but does not tell us how to construct it. As a consequence, we can prove
in linear algebra that every vector space has a basis (using Zorn’s lemma), but
we do not know, as of now, how to construct a basis for vector spaces such as
C [a, b] or even R when considered as a vector space over Q.

1.3 Functions

Earlier, we compared two given sets by means of subsethood. However,
this is possible only when the elements in the given sets are of the same type
(otherwise they cannot be subsets). Now, we would like to compare any two
sets in terms of the number of elements they contain. In this section, we shall
develop some prerequisites that will help us in comparing given sets.



Set Theory 23

Definition 1.27 (Function). A function from a set X to a set Y, often denoted
by f : X → Y, is a rule that assigns to each element x ∈ X a unique element
y ∈ Y .

Frequently, a function is referred to as a “special type of relation” between
two sets X and Y, where the ordered pair (x, y) occurs exactly once for each
x ∈ X, i.e., in this type of relation an element x ∈ X can be related to only
one element from Y and every element in X must be related to some element
of Y . However, we shall not use this as our definition.

If for a particular x ∈ X, a function f assigns y ∈ Y to it, we denote it
as f (x) = y. It is read as, “The value of f at x is y”. Here, y is called the
image of x and x is called the pre-image of y. Also, the set X is called the
domain of f , denoted by D (f) and the set Y is called the codomain of f .
The set of all the images of elements of X is called the range of f , denoted by
R (f) = {f (x) ∈ Y |x ∈ X}. We shall also use the notation f (X) to denote
the range of f .

We note here that although the definition of function demands every el-
ement of X to be associated to a single (unique) element of Y, it does not
specify as to how many elements of X can be associated to a single element
of Y, neither does it specify how many elements in Y are assigned to elements
of X. This gives rise to two new definitions.

Definition 1.28 (Injection). A function f : X → Y, is said to be injective,
or one-to-one, if f (x1) = f (x2) ⇒ x1 = x2.

Definition 1.29 (Surjection). A function f : X → Y, is said to be surjective,
or onto, if for any y ∈ Y , ∃x ∈ X, such that f (x) = y.

Remark.

1. The contrapositive of the definition of injection is x1 �= x2 ⇒ f (x1) �=
f (x2). This suggests that for injective functions, distinct elements of X
are assigned distinct elements of Y. Sometimes, this is also taken as a
definition of injective functions.

2. A function which is both injective and surjective is called a bijection
or bijective function.

Exercise 1.19. Is f : R → R defined as ∀x ∈ R, f (x) = 1
x a function?

Justify.

Exercise 1.20. Give an example of a function f : R → R which is

1. Injection but not surjection.

2. Surjection but not injection.
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3. Neither surjection nor injection.

4. Bijection.

Exercise 1.21. If possible, exhibit a function with a non-empty domain and
empty co-domain. If it is not possible, give a justification.

Before moving ahead, let us answer one question: When are two functions
equal? From a natural intuition of equality, we can define that two functions
f : X → Y and g : X → Y are equal if and only if ∀x ∈ X, we have
f(x) = g(x). This means that not only the domain of these functions should
be the same, but also at each point, these two functions must take the same
values.

1.3.1 Composition of functions

If we are given two functions f : X → Y and g : Y → Z, we wish to
construct another function h : X → Z which makes use of the given ones. In
other words, we know how the elements of X are associated to element(s) of
Y and similarly, we know how elements of Y are associated to element(s) of
Z. What is more natural than to assign each element x of X, that element z
of Z which is assigned, through the function g, to the image y in Y of x under
the function f? We call such an assignment composition of the maps. Thus,
for given f, g, the composition is defined as ∀x ∈ X, (g ◦ f) (x) = g (f (x)),
where g ◦ f is called the composite map. A diagrammatic representation of
composite maps is shown in Figure 1.3.

A natural question to ask here is that what properties of f and g are
preserved through their composition? We answer this question in the theorem
that follows.

FIGURE 1.3: Diagrammatic representation of composition of functions.
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Theorem 1.8. Let f : X → Y and g : Y → Z be functions.

1. If f and g are injective, then so is g ◦ f .
2. If f and g are surjective, then so is g ◦ f .
3. If f and g are bijective, then so is g ◦ f .
4. If g ◦ f is injective, then f is injective.

5. If g ◦ f is surjective, then g is surjective.

Proof. The general strategy to prove these properties is by “utilizing” the
definitions we have made.

1. Since f and g are injective, we have f (x1) = f (x2) ⇒ x1 = x2 and
g (y1) = g (y2) ⇒ y1 = y2. Therefore, (g ◦ f) (x1) = (g ◦ f) (x2) ⇒
g (f (x1)) = g (f (x2)) ⇒ f (x1) = f (x2) ⇒ x1 = x2. Hence, g ◦ f is also
injective.

2. Since f and g are surjective, we have for any y ∈ Y , ∃x ∈ X such that
f (x) = y and for any z ∈ Z, ∃y ∈ Y such that g (y) = z. From these
two statements, we have for any z ∈ Z, ∃x ∈ X such that g (f (x)) = z.
Hence, g ◦ f is surjective.

3. Since f and g are bijective, they are both injective and surjective. From
above two parts (1) and (2), we get that g ◦ f is both injective and
surjective and hence, bijective.

4. Since g ◦ f is injective, we have (g ◦ f) (x1) = (g ◦ f) (x2) ⇒ x1 = x2.
Now, we have the following: f (x1) = f (x2) ⇒ g (f (x1)) = g (f (x2)) ⇒
(g ◦ f) (x1) = (g ◦ f) (x2) ⇒ x1 = x2. Hence, f is injective.

5. Since g ◦f is surjective, for any z ∈ Z, ∃x ∈ X such that (g ◦ f) (x) = z.

Therefore, for any z ∈ Z, ∃y (= f (x)) ∈ Y such that g (y) = z. Hence,
g is surjective.

Exercise 1.22. Give examples of functions f and g such that

1. g ◦ f is injective but g is not.

2. g ◦ f is surjective but f is not.

3. g ◦ f is bijective but neither is f nor is g.

It is natural to ask now, what properties does composition satisfy? Is it as-
sociative? Commutative? Is there any function whose composition with any
other function gives back the other function? Clearly, the answer to the last
two questions is no! In general, notice that for arbitrary sets X,Y, Z, both f ◦g
and g ◦ f may not be defined. However, we shall answer the first question.
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Theorem 1.9. If f :W → X, g : X → Y and h : Y → Z are functions, then
h◦(g ◦ f) = (h ◦ g)◦f . In other words, composition of functions is associative.

Proof. Let w ∈W . Then,

(h ◦ (g ◦ f)) (w) = h ((g ◦ f) (w))
= h (g (f (w)))

= (h ◦ g) (f (w))
= ((h ◦ g) ◦ f) (w)

Since w ∈ W was arbitrary, we have ∀w ∈ W , ((h ◦ g) ◦ f) (w) =
(h ◦ (g ◦ f)) (w). Hence, h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Exercise 1.23. Let f and g be functions such that both f ◦ g and g ◦ f are
well-defined. Is it true, in general, that f ◦g = g ◦f? In other words, whenever
the composition from both sides is well-defined, is it commutative?

1.3.2 Inverse of a function

In the previous sections, we have seen the general idea of a function and
even some special classes, namely injective, surjective, and bijective functions.
Of these three, bijective functions have a very special property that we will be
exploring in this section. For bijective functions, every element of the domain
set has a unique image and every element of the codomain has a unique pre-
image. Thus, if f : X → Y is a bijective function, then for each y ∈ Y ,
∃!x ∈ X such that f (x) = y.5 We now define another mapping g : Y → X
given by for each y ∈ Y , g (y) = x where f (x) = y. Is this a well-defined
function? By well-defined, we mean to ask does every element of Y have a
unique image in X, or is there some element which have two or more images
(or no image) under g? If an element y ∈ Y has two images x1 and x2, then
by the definition of g, f (x1) = y = f (x2) and by the fact that f is bijective,
and hence in particular, injective, x1 = x2. Thus, every element of Y has at
most one image in X. Is there any element in Y which has no image under
g? If an element y ∈ Y has no image under g, then by the definition of g, it
would imply that y is not an image of any element of X under f , i.e., f is
not a surjection. But, this contradicts the fact that f was considered to be a
bijection. Hence, under g every element in Y has a unique image in X, i.e.,
the function g is well-defined.

Thus, we have seen that if we have a bijection from X to Y, then we can
define another function from Y to X, which practically takes back the images
under f to their pre-images. Such a function is called the inverse of f .

We now make a formal definition for inverse of a function.

5The symbol ∃! is read as “there exists a unique”.
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Definition 1.30 (Inverse). Given a bijective function f : X → Y , a function
g : Y → X is said to be the inverse of f if ∀y ∈ Y , g (y) = x, where f (x) = y.
We denote the inverse of f by f−1 and write x = f−1 (y), whenever f (x) = y.

Exercise 1.24. Give two examples of a function f : X → Y for which the
mapping g : Y → X defined as above is not a well-defined function. Of the
two examples given, one example should be for the failure of well-defined g
due to an element having two (or more) distinct images under g and the other
example should be for the failure of well-defined g due to an element having
no image.

It is natural to ask about the properties of inverse of a function. Is it injective?
Surjective? We answer these questions in the following theorem.

Theorem 1.10. If f : X → Y is a bijection, then f−1 : Y → X is also a
bijection.

Proof. First, we prove that f−1 is injective. If f−1 (y1) = f−1 (y2) = x, then
since f is well-defined, we have f (x) = y1 = y2. Hence, f

−1 is injective.
Now, since f is well-defined, ∀x ∈ X, ∃!y ∈ Y such that f (x) = y. Hence,

by the definition of inverse ∀x ∈ X, ∃y ∈ Y such that f−1 (y) = x, i.e., f−1 is
surjective.

Therefore, f−1 is bijective.

If we carefully observe, in the text, we have been using the word “the” for
inverse of a function. Is it justified? We answer this in the following theorem.

Theorem 1.11. Inverse of a function is unique.

Proof. Let f : X → Y be a bijection and g : Y → X and h : Y → X be
inverses of f . Let y ∈ Y . If g (y) = x1 and h (y) = x2, then by the definition of
inverse f (x1) = y = f (x2). Since f is a bijection, in particular, it is injective.
Hence, x1 = x2, i.e., g (y) = h (y). Since y ∈ Y was arbitrarily chosen, we
have g = h, i.e., the inverse of a function is unique.

Thus, we have justified the use of “the inverse”. Another natural question
to ask is about the result when function is composed with its inverse. Before
answering it, we define a special kind of function.

Definition 1.31 (Identity function). The identity function is defined as, id :
X → X, where ∀x ∈ X, id (x) = x.

Theorem 1.12. If f : X → Y is a bijection, then f ◦ f−1 = idY and f−1 ◦
f = idX , where idX and idY denote identity functions on the sets X and Y
respectively.

Proof. By the definition of f−1, ∀y ∈ Y , f−1 (y) = x, where f (x) = y.
Hence, ∀y ∈ Y ,

(
f ◦ f−1

)
(y) = f

(
f−1 (y)

)
= f (x) = y. Therefore,

f ◦ f−1 = idY .
Using the same argument, ∀x ∈ X,

(
f−1 ◦ f) (x) = f−1 (f (x)) =

f−1 (y) = x. Therefore, f−1 ◦ f = idX .
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Exercise 1.25. Let f : X → Y and g : Y → X be functions. If f ◦ g = idY
and g ◦ f = idX , then prove that f and g are bijections and g = f−1. Hence
conclude that inverse of inverse is the function itself.

Exercise 1.26. Give an example of functions f : X → Y and g : Y → X
such that f ◦ g = idY but f is not a bijection. Similarly, give an example
where g ◦ f = idX but f is not a bijection. (In both the cases, g cannot be
the inverse of f .)

Now that we have formulated quite a lot of theory about bijective functions
and their inverses, let us try to construct bijections between sets which are
known to us.

Example 1.10 (Bijection between intervals). As a start, let us consider a few
cases for the type of intervals we can have. We may have bounded, unbounded,
closed, or open (or their combinations) intervals. In this example, we shall
take closed and bounded intervals. The reader is encouraged to try forming
bijections between intervals not included in this example.

First, let us consider two intervals [0, 1] and [0, 4]. How can we form a
bijection between them? First we see that one end of the interval is fixed
while the length of the interval is made 4 times the original one. Thus, a
natural way to form a function between these two intervals is f : [0, 1] → [0, 4]
given by ∀x ∈ [0, 1], f (x) = 4x. Under this function, 0 is associated to 0 and 1
is associated to 4. Is this a bijection? Before asking about bijection, one should
always ask: Is this function well-defined? In this case, it is! Every element in
[0, 1] has a unique image. Is f injective? To check if it is injective, we consider
f (x1) = f (x2), i.e., 4x1 = 4x2, which implies x1 = x2 (since 4 �= 0). Thus, f
is injective. Is f surjective? If y ∈ [0, 4], then 0 ≤ y ≤ 4, i.e., 0 ≤ y

4 ≤ 1 (since
4 > 0) and f

(
y
4

)
= y. Thus, ∀y ∈ [0, 4], ∃x (= y

4

) ∈ [0, 1] such that f (x) = y.
Hence, f is also surjective and therefore a bijection.

Now we have a way to construct bijection between two intervals when one
end of the interval is fixed to 0 and the length is changed. Such a bijection is
also called scaling . This is shown in Figure 1.4.

Now, suppose we have the intervals [0, 1] and [2, 3]. First we observe that
the lengths of the two intervals are the same. However, their end points are
shifted. One can ask: by how much have they shifted? A simple observation

FIGURE 1.4: Scaling between the intervals [0, 1] and [0, 4].
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leads to the answer that the complete interval seems to be shifted by 2 units.
How can we describe this effect as a function? We construct f : [0, 1] → [2, 3]
as ∀x ∈ [0, 1], f (x) = x + 2. The reader should check that this is in fact, a
bijection!

Therefore, we have a method of constructing bijection between any interval
with unit length and the interval [0, 1]. Such shifting is called translation. This
is shown in Figure 1.5.

But, we would like to have a more general method to construct bijection
between any two intervals [a, b] and [c, d], where a < b and c < d. To have
it, first we have to somehow get [a, b] to [0, 1] and then by using the above
methods and composition of functions, we can have the desired bijection.

First, we construct a bijection f : [a, b] → [0, 1]. To do so, we first trans-
late our interval [a, b] so that the left end coincides with 0 by constructing
a function f1 : [a, b] → [0, b− a] given by ∀x ∈ [a, b], f1 (x) = x − a. Then,
we scale the interval [0, b− a] to [0, 1] by the bijection f2 : [0, b− a] → [0, 1]

given by ∀x ∈ [0, b− a], f2 (x) =
x

b− a
. Hence, the required bijection f is

f2 ◦ f1.
Now, we wish to have a bijection g : [0, 1] → [c, d]. To get g, we perform

the exact reverse process as above. First we scale [0, 1] to [0, d− c] by means
of the bijection g1 : [0, 1] → [0, d− c] given by ∀x ∈ [0, 1], g1 (x) = (d− c)x.
Now, we translate the interval [0, d− c] to [c, d] by means of the bijection
g2 : [0, d− c] → [c, d] given as ∀x ∈ [0, d− c], g2 (x) = x + c. Hence, the
required bijection g = g2 ◦ g1.

Finally, the bijection between [a, b] and [c, d] is given by (g ◦ f) (x) =(
d−c
b−a

)
x+ c, as shown in Figure 1.6.

Exercise 1.27. In Example 1.10 what would happen if a = b or c = d?

Exercise 1.28. Give a bijection for open bounded intervals.

FIGURE 1.5: Translation between the intervals [0, 1] and [2, 3].
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FIGURE 1.6: Bijection between any two intervals [a, b] and [c, d].

From above, we have method(s) to construct bijection between two closed
(open) and bounded intervals. Is it possible to have a bijection between one
open interval and one closed interval? In particular, is it possible to have
a bijection between [0, 1] and (0, 1)? We answer this question in the next
example.

Before beginning with the construction of aforementioned bijection, we
shall see an interesting property of the set of natural numbers, N. Suppose
we want to construct a bijection between N and N∪ {0,−1}. Is it possible? A
simple thought would tell us that if we map every natural number to a natural
number ahead of it by 2 units, we are left with 1 and 2 which can be assigned
to 0 and −1 respectively, thereby making a bijection.

Example 1.11. For the interval (0, 1), we see that 1
n ∈ (0, 1) and 1

n ∈ [0, 1]
for every n ∈ N \ {1}. The only two numbers we cannot accommodate are 0
and 1 from the interval [0, 1]. To accommodate those two, we shift 1

n by two
units. Thus, 0 is associated to 1

2 and ∀n ∈ N, 1
n is associated to 1

n+2 . All other
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elements from [0, 1] are mapped to themselves in (0, 1). Thus, the required
bijection is f : [0, 1] → (0, 1) given by

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
, x = 0.

1

n+ 2
, x =

1

n
for n ∈ N.

x, otherwise.

The reader is encouraged to check that f is indeed a bijection and find its
inverse.

Exercise 1.29. Exhibit a bijection between the intervals (a, b) and [c, d] where
a < b and c < d. What will happen in the case when a = b or c = d?

As a closing to this article of bijections and inverses, we try to answer a
question: Can we have a bijection between a set X and its power set P (X)?
Before answering the question, we look at a classic example, known as the
barber’s paradox.

Example 1.12 (Barber’s paradox). Suppose in a village, a barber is a man
who shaves those and only those who do not shave themselves. The question
is: Who shaves the barber? Here, we have a definition of barber and we cannot
deviate from it while analyzing the situation. We observe that the barber has
only two choices: either he shaves himself or he doesn’t. If he shaves himself, he
violates the definition. This is because he is supposed to shave only those who
do not shave themselves! However, if he does not shave himself it is concluded
that another barber must shave him. But this means that he does not shave
himself and being a barber, he should have shaven himself. Hence, in such a
definition, a barber cannot be shaven!

It will not be out of context to give an elegant and symbolic proof using the
same paradox.

Theorem 1.13 (Cantor’s theorem). We cannot have a bijection between a
set X and its power set P (X).

Proof. We shall prove this theorem by contradiction. So, let f : X → P (X)
be a bijection. First, observe that to each element of X, there is associated a
unique subset of X. Now, we look at one subset of X given by the definition

B = {x ∈ X|x /∈ f (x)} .

Such a definition is possible since f (x) is a set. Now, since f is bijection, in
particular, it is surjective. Hence, ∃b ∈ X, such that f (b) = B. Since B ⊆ X,
we have two choices: b ∈ B or b /∈ B. If b ∈ B, then by the definition of B,
b /∈ f (b) = B, which is a contradiction. Next if b /∈ B = f(b), we get by
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definition of B that b ∈ B, again a contradiction. Since there cannot be an
element which is both in a set and not in it, our assumption was wrong, i.e.,
f cannot be a bijection.

1.3.3 Images of sets under functions

Until now, we have been looking at what happens to elements, given a
function. Now, we move a step ahead to look at what happens to sets (subsets),
given a function. Such analysis will be useful in the concepts that follow,
especially when we consider special properties of metric spaces later. In this
section, we try to cover as many proofs as possible with all the explanation
required. However, the reader is advised to complete some of the proofs which
will be left as an exercise.

In all the text that follows, we shall assume that a function f : X → Y
is given. Also, before moving ahead, we must answer an important question:
How do we define the image of a (sub)set (of X)? It is quite natural to make
use of the elements in the set. Thus, the definition of image of a set A ⊆ X is
given as follows

f (A) = {f (x) ∈ Y |x ∈ A} .

Note here that when we write f (x) in Y, we mean to say “collect all those
elements of Y, whose pre-image(s) under f are in A”.

Whenever we talk about subsets, there are two special subsets that should
always come to our mind: the empty set, ∅, and the whole universe,X. Clearly,
f (X) is the range of the function and we have already defined it. We need to
see what is f (∅). What kind of elements are in f (∅)? Are there any elements
at all?

To answer these questions, let us consider y ∈ f (∅). But, by the definition
of images of sets, this would mean ∃x ∈ ∅ such that f (x) = y, which is
impossible! Hence, f (∅) = ∅. Also, when can we say that for a set A ⊆ X,
f (A) = ∅? If A �= ∅, then ∃x ∈ A for which f (x) ∈ f (A), by the definition.
Hence, if f (A) = ∅, then A = ∅.

Therefore, we have proved here f (A) = ∅ if and only if A = ∅.
Let us see what happens to the relation of subsethood when a function

is applied on sets. If A1 ⊆ A2 ⊆ X, can we conclude f (A1) ⊆ f (A2)? To
conclude so, we need to show that every element in f (A1) is also in f (A2).
Let y ∈ f (A1). Then, ∃x ∈ A1 such that f (x) = y. Since A1 ⊆ A2, we have
∃x ∈ A2 such that f (x) = y. Therefore, y ∈ f (A2), i.e., f (A1) ⊆ f (A2).

When can we say that f (A1) = f (A2)? Clearly, if A1 = A2, we have
f (A1) = f (A2). Can we have an example where A1 ⊂ A2 and f (A1) =
f (A2)? The next exercise asks the reader to get such an example.

Exercise 1.30. Construct a function f : X → Y (your choice of X and Y )
and two subsets A1 and A2 of X such that A1 ⊂ A2 and f (A1) = f (A2).
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Next we look at what happens to union. If we have A1, A2 ⊆ X, then we
expect f (A1 ∪A2) = f (A1) ∪ f (A2) to hold. We try to prove it. If at some
point during the proof, we get stuck, we can look for a way of constructing a
counterexample to disprove the statement. To prove equality of two sets, we
need to show that all the elements in one set are also in the other. First,
let y ∈ f (A1 ∪A2). This means that ∃x ∈ A1 ∪ A2 such that f (x) = y,
which further means that ∃x ∈ A1 such that f (x) = y or ∃x ∈ A2 such
that f (x) = y. By our definition of images of sets, we reach a conclusion
that y ∈ f (A1) or y ∈ f (A2), i.e., y ∈ f (A1) ∪ f (A2). Thus, we have
obtained a subsethood relation, f (A1 ∪A2) ⊆ f (A1) ∪ f (A2). Similarly,
we take an arbitrary y ∈ f (A1) ∪ f (A2), i.e., y ∈ f (A1) or y ∈ f (A2).
This would mean, ∃x ∈ A1 such that f (x) = y or ∃x ∈ A2 such that
f (x) = y, i.e., ∃x ∈ A1 ∪ A2 such that f (x) = y. Hence, we also have y ∈
f (A1 ∪A2), i.e., f (A1)∪f (A2) ⊆ f (A1 ∪A2). Therefore, we have proved our
statement.

In the same way, we would want f (A1 ∩A2) = f (A1) ∩ f (A2). Let
y ∈ f (A1 ∩A2). Then, ∃x ∈ A1 ∩ A2 such that f (x) = y, i.e., ∃x ∈ X
such that x ∈ A1 and x ∈ A2 and f (x) = y. Thus, y ∈ f (A1) and y ∈ f (A2),
i.e., y ∈ f (A1) ∩ f (A2). Therefore, we have obtained a subsethood relation,
f (A1 ∩A2) ⊆ f (A1)∩f (A2). Now, we would try to prove the reverse subset-
hood. Let y ∈ f (A1)∩f (A2), i.e., y ∈ f (A1) and y ∈ f (A2). Then, ∃x1 ∈ A1

such that f (x1) = y and ∃x2 ∈ A2 such that f (x2) = y. Now, we are stuck!
Nothing guarantees us that x1 = x2 and therefore, a common element from
A1 ∩A2 has the image y need not be obtained. Therefore, in general, we can-
not have the reverse subsethood. However, this try also gives us an idea about
construction of a counterexample.

Example 1.13. Consider a function f : R → R defined as f (x) = x2 for every
x ∈ R. We take two subsets A1 = [−2,−1] ⊆ R and A2 = [1, 2] ⊆ R. Clearly,
A1 ∩A2 = ∅ and hence, f (A1 ∩A2) = ∅. Now, f (A1) = [1, 4] = f (A2). Thus,
f (A1)∩ f (A2) = [1, 4] �= ∅. Thus, we get f (A1 ∩A2) ⊂ f (A1)∩ f (A2). This
is shown in Figure 1.7.

In the try that we made above to prove f (A1 ∩A2) = f (A1) ∩ f (A2),
we could not prove one subsethood because in general, two different ele-
ments (from two different sets) can have the same image. If we do not allow
this to happen by defining f in such a way, then is it possible to get the
equality?

Exercise 1.31. Prove that if f : X → Y is a function, then for any two
subsets A1, A2 ⊆ X, f (A1 ∩A2) = f (A1)∩f (A2) if and only if f is injective.

Next, we would like to establish a relation between the image of complement
and complement of image, i.e., if A ⊆ X, then we would like to relate f (Ac)
and (f (A))

c
. First, we try to see if f (Ac) ⊆ (f (A))

c
is possible. As a try,
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FIGURE 1.7: Image of intersection need not necessarily contain intersection
of images of sets.

FIGURE 1.8: Image of complement and complement of image need not
contain one another.

let y ∈ f (Ac). Then, ∃x ∈ Ac such that f (x) = y. Does this mean that
y ∈ (f (A))

c
? If so, then y /∈ f (A) would further mean ∀x ∈ A, f (x) �= y. Is

it true in general? The next example answers this question negatively.

Example 1.14. For the function defined in Example 1.13, we consider A =
[0,∞). Then, Ac = (−∞, 0). Thus, f (Ac) = (0,∞). Also, f (A) = [0,∞] and
hence (f (A))

c
= (−∞, 0). Clearly, f (Ac) � (f (A))

c
. Here, we can also see

that (f (A))
c
� f (Ac). This is shown in Figure 1.8.

Now, we try to look at conditions when we can get the required subsethood.
We first observe that in our try, we were not guaranteed the non-existence
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of another element from X whose image is y. This is because, in general,
we do not consider f to be injective. What happens when f is injective?
Do we get the desired subsethood? Clearly, if f is injective and ∃x1 ∈ Ac

such that f (x1) = y and ∃x2 ∈ A such that f (x2) = y, we would have
x1 = x2 ∈ A and x1 = x2 ∈ Ac, which is not possible. Hence, if f is injective,
then f (Ac) ⊆ (f (A))

c
. One can, at this point, ask the dual question: What

if for every subset A ⊆ X, we have f (Ac) ⊆ (f (A))
c
? Can we conclude that

f is injective?

Let x1 �= x2 and f (x1) = f (x2) hold. Consider A = {x1}. Clearly, x2 ∈
Ac. Hence, f (x1) = f (x2) ∈ f (Ac) ⊆ (f (A))

c
, i.e., f (x1) /∈ f (A), which

is a contradiction! Hence, f (x1) = f (x2) ⇒ x1 = x2, i.e., f is injective.
Therefore, we have characterized injective functions in another way as: For
any set A ⊆ X, f (Ac) ⊆ (f (A))

c
if and only if f is injective.

Looking at Example 1.14, we can say that (f (A))
c
� f (Ac) in general.

When can we get this subsethood? Is it true when f is injective? Let us try!
Suppose that f is injective and let y ∈ (f (A))

c
. This means that y /∈ f (A),

i.e., ∀x ∈ A, f (x) �= y. Does this mean that ∃x ∈ Ac such that f (x) = y? In
general, the answer is no! As seen in Example 1.14, (f (A))

c
� f (Ac) because

there is no real number whose square is negative. This gives us a hint that if,
instead of an injection, we have a surjection, the subsethood might hold. If f
is surjective and ∀x ∈ A, f (x) �= y, then ∃x ∈ Ac such that f (x) = y, i.e.,
y ∈ f (Ac), thus giving the relation. Again asking the dual question, if the
subsethood holds for every set A, then we would want f to be surjective.

To prove a function to be surjective, we just need to prove that the range is
the same as the codomain, i.e., f (X) = Y . Clearly, f (X) ⊆ Y . Now, consider
A = ∅. Then, Ac = X. Therefore, from our hypothesis, Y = ∅c = (f (∅))c ⊆
f (∅c) = f (X). Hence, f (X) = Y , i.e., f is surjective. Therefore, we have
also characterized surjections as: For any set A ⊆ X, (f (A))

c ⊆ f (Ac) if and
only if f is a surjection. As an immediate consequence, we get the following
corollary: f (Ac) = (f (A))

c
if and only if f is a bijection.

We conclude the discussion by summarizing as a theorem.

Theorem 1.14. Let f : X → Y be a function and A,A1, A2 ⊆ X. Then,

1. f (A) = ∅ if and only if A = ∅.

2. f (A1 ∪A2) = f (A1) ∪ f (A2).

3. f (A1 ∩A2) ⊆ f (A1) ∩ f (A2) and f (A1 ∩A2) = f (A1) ∩ f (A2) if and
only if f is injective.

4. f (Ac) ⊆ (f (A))
c
if and only if f is injective.

5. (f (A))
c ⊆ f (Ac) if and only if f is surjective.

6. f (Ac) = (f (A))
c
if and only if f is a bijection.
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Exercise 1.32. Let f : X → Y be a function and {Ai ⊆ X|i ∈ I} be an
family of subsets of X indexed by the index set I. Prove that:

1. f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f (Ai).

2. f

(⋂
i∈I

Ai

)
⊆ ⋂

i∈I

f (Ai).

1.3.4 Inverse images of sets under functions

Earlier, we defined images for elements of the domain and pre-images for
elements of the codomain, when provided with a function. In the previous
section, we have seen images of sets under functions. Now, we will see pre-
images of (sub)sets (of codomain). We call them inverse images and define for
a subset B ⊆ Y , where f : X → Y is a function,

f−1 (B) = {x ∈ X|f (x) ∈ B} .

Note. Writing f−1 is an abuse of notation and it is not related to the inverse
of the function. While the inverse of a function associates to every element in
the codomain, a unique element in the domain, here, by writing f−1 (B), we
are trying to collect all the pre-images of all the elements of the set B. The
definition so made is natural and makes use of the concept of pre-images of
elements.

Let us try to establish relations similar to those discussed for images of sets.
For the complete discussion, we shall make use of a function f : X → Y and
sets B,B1, B2 ⊆ Y . First, let us see what happens to the empty set. Just as
in case of images of sets, our guess is that f−1 (∅) = ∅. If ∃x ∈ f−1 (∅), then
f (x) ∈ ∅, which is not possible. Hence, f−1 (∅) = ∅. Asking the dual question,
when is f−1 (B) = ∅? The following example answers this question.

Example 1.15. Consider the function f : R → R defined by ∀x ∈ R, f (x) =
x2. If we take B = (−∞, 0), clearly f−1 (B) = ∅ but B �= ∅.

Is it possible to have some functions for which f−1 (B) = ∅ ⇒ B = ∅? Looking
at the above example, one can guess that for a function which is not surjective,
this implication cannot hold. To prove it, let y ∈ Y be an element for which
there is no pre-image image (and hence, f is not a surjection). For B = {y},
we have f−1 (B) = ∅ and B �= ∅. What happens when f is a surjection? Can
we say that f−1 (B) = ∅ ⇒ B = ∅? Let, if possible, ∃y ∈ B. Since f is a
surjection, ∃x ∈ X such that f (x) = y ∈ B, i.e., x ∈ f−1 (B) = ∅, a con-
tradiction! Thus, the implication f−1 (B) = ∅ ⇒ B = ∅ holds exactly when
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f is a surjection and in no other conditions. Therefore, we have character-
ized surjections in a way that f−1 (B) = ∅ ⇒ B = ∅ if and only if f is a
surjection. Now, let us see if subsethood is preserved in the inverse images.
If B1 ⊆ B2, we would like to have f−1 (B1) ⊆ f−1 (B2). We consider an ar-
bitrary element x ∈ f−1 (B1). By our definition of inverse image of sets, we
have f (x) ∈ B1 ⊆ B2. Hence, f (x) ∈ B2, i.e., x ∈ f−1 (B2). Therefore, we
conclude that subsethood is preserved.

Exercise 1.33. Is it possible to have proper subsets B1 ⊂ B2 such that
f−1 (B1) = f−1 (B2)?

Now, we look at what happens to the union and intersection of (sub)sets
under inverse images. As always, our first try will be to prove f−1 (B1 ∪B2) =
f−1 (B1)∪f−1 (B2) and f

−1 (B1 ∩B2) = f−1 (B1)∩f−1 (B2). If we get stuck
somewhere in the proof, we get a way to find a counter example to disprove
our claim!

For the first equality, let x ∈ f−1 (B1 ∪B2). Then, f (x) ∈ B1 ∪ B2, i.e.,
f (x) ∈ B1 or f (x) ∈ B2. Therefore, x ∈ f−1 (B1) or x ∈ f−1 (B2), i.e., x ∈
f−1 (B1) ∪ f−1 (B2). Hence, f−1 (B1 ∪B2) ⊆ f−1 (B1) ∪ f−1 (B2). Similarly,
let x ∈ f−1 (B1) ∪ f−1 (B2), i.e., x ∈ f−1 (B1) or x ∈ f−1 (B2). Therefore,
f (x) ∈ B1 or f (x) ∈ B2, i.e., f (x) ∈ B1 ∪B2. Hence, x ∈ f−1 (B1 ∪B2) and
the desired equality is achieved.

On similar lines, the other equality can be proved and hence is left as an
exercise for the reader.

Exercise 1.34. Prove that f−1 (B1 ∩B2) = f−1 (B1) ∩ f−1 (B2).

We may now ask: What happens to complements of sets under inverse images?
Let x ∈ f−1 (Bc). Then, f (x) ∈ Bc, i.e., f (x) /∈ B. Hence, x /∈ f−1 (B), i.e.,
x ∈ (f−1 (B)

)c
. Thus, we have proved, without imposing any conditions on

f , that f−1 (Bc) ⊆ (f−1 (B)
)c
. Similarly, if x ∈ (f−1 (B)

)c
, i.e., x /∈ f−1 (B),

then f (x) /∈ B, i.e., x /∈ f−1 (B). Therefore, we have proved f−1 (Bc) =(
f−1 (B)

)c
without imposing any conditions on f . Unlike the images of sets,

this equality holds true for any f .

Note. Since all the set operations, i.e., union, intersection, complements, sub-
sethood, are preserved under the inverse images, we say that these operations
are “well-behaved” under inverse images. On the other hand, only subsethood
and union are well-behaved under images of sets.

Now, we try to establish relations between images and inverse images of sets.
If A ⊆ X and B ⊆ Y , what can we say about f−1 (f (A)) and f

(
f−1 (B)

)
?

Let us try to see if f−1 (f (A)) = A. Let x ∈ f−1 (f (A)). Then, f (x) ∈ f (A).
Does this mean that x ∈ A? In general, the answer is no as can be seen in the
following example.
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Example 1.16. Define a function f : R → R as f (x) = x2 for every x ∈ R.
Let A = [−2,−1]. Then, f (A) = [1, 4] and f−1 (f (A)) = [−2,−1] ∪ [1, 2].
Thus, we get A ⊂ f−1 (f (A)).

In the example, the problem occurs when we can choose an element in f (A)
for which we get two distinct pre-images, like 2 (in the example) for which
two distinct pre-images are

√
2 and −√

2 one of which is not in A. However,
in the same example, we see that A ⊂ f−1 (f (A)). Is it true in general? If
x ∈ A, then clearly, f (x) ∈ f (A) and hence x ∈ f−1 (f (A)). Therefore, for
any function f , A ⊆ f−1 (f (A)).

When can the equality be guaranteed? From the example itself, it seems
that the equality did not hold because our function was not injective. Our
guess is that if we consider an injective function, then the equality should
hold. Let x ∈ f−1 (f (A)). Then, f (x) ∈ f (A). By the definition of f (A),
∃a ∈ A such that f (a) = f (x). Since f is injective, x = a ∈ A. Hence, the
equality is obtained. Also, if for every set f−1 (f (A)) = A holds, then we would
like our function to be injective. Let f (x1) = f (x2). We take A = {x1}. Since
f−1 (f (A)) = A = {x1}, we have f−1 ({f (x1)}) = f−1 ({f (x2)}) = {x1}, i.e.,
x2 ∈ {x1} and hence x1 = x2. Therefore, we have now characterized injection
in another way: f−1 (f (A)) = A if and only of f is injective.

Similarly, let us try to establish f
(
f−1 (B)

)
= B. If y ∈ f

(
f−1 (B)

)
,

then ∃x ∈ f−1 (B) such that f (x) = y. By the definition of f−1 (B), we
have f (x) = y ∈ B. Hence, for any function f , f

(
f−1 (B)

) ⊆ B. We
now try to establish the reverse subsethood. Let y ∈ B. To say that y ∈
f
(
f−1 (B)

)
, we would require an x ∈ f−1 (B) such that f (x) = y. Is it always

possible?

Example 1.17. In Example 1.16, if we take B = (−∞, 0), then f
(
f−1 (B)

)
=

f (∅) = ∅ and hence f
(
f−1 (B)

) ⊂ B.

Why did this happen? Since B had no pre-images, we could not get equality.
Thus, our guess is that if f is surjective, then the equality should hold. Now,
if f is surjective and y ∈ B, then ∃x ∈ X such that f (x) = y. Clearly,
x ∈ f−1 (B) and hence f (x) = y ∈ f

(
f−1 (B)

)
, thereby yielding the equality.

Now, if f
(
f−1 (B)

)
= B holds for every subset B of Y, can we conclude that

f is surjective? Clearly, f−1 (Y ) = X. Then, Y = f
(
f−1 (Y )

)
= f (X), i.e., f

is indeed surjective. Thus, we have also characterized surjections in another
way: f

(
f−1 (B)

)
= B if and only if f is surjective.

We conclude the discussion by summarizing it in the form of a theorem.

Theorem 1.15. Let f : X → Y be a function, A ⊆ X and B,B1, B2 ⊆ Y .
Then,

1. f−1 (∅) = ∅.
2. f−1 (B) = ∅ ⇒ B = ∅ if and only if f is surjective.

3. B1 ⊆ B2 ⇒ f−1 (B1) ⊆ f−1 (B2).
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4. f−1 (B1 ∪B2) = f−1 (B1) ∪ f−1 (B2).

5. f−1 (B1 ∩B2) = f−1 (B1) ∩ f−1 (B2).

6. f−1 (Bc) =
(
f−1 (B)

)c
.

7. A ⊆ f−1 (f (A)) and A = f−1 (f (A)) if and only if f is injective.

8. f
(
f−1 (B)

) ⊆ B and f
(
f−1 (B)

)
= B if and only if f is surjective.

Exercise 1.35. Let f : X → Y be a function and {Bi ⊆ Y |i ∈ I} be a family
of subsets of Y indexed by the index set I. Prove that:

1. f−1

(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1 (Bi).

2. f−1

(⋂
i∈I

Bi

)
=
⋂
i∈I

f−1 (Bi).

1.4 Countability of Sets

As promised in the previous section, we will now start comparing two sets
by means of functions.

Humans, by nature, have always had a habit of counting whatever we get.
Keeping this habit, we shall now try to count the number of elements in a
given set. Before proceeding, we shall deal with a few important theorems in
set theory which shall help us in developing theory on counting the number
of elements.

Theorem 1.16. Let A be any set, C ⊆ A and f : A → A be an injective
map. If f (A) ⊆ C, then A is bijective with C.

Proof. First, we see that since C ⊆ A, we have f (C) ⊆ f (A). Also, f (A) ⊆
C ⊆ A. So, f maps A into a smaller version of itself (with maybe some elements
shifted from place). We want to harness this property of f to construct a
bijection between A and C. So, first we construct a set X1 = A \ C and then
define Xn+1 = f (Xn) for n ∈ N. This is depicted in the Figure 1.9 by shaded
portions of A.

Now, let X =
⋃

n∈N

Xn. We define a function g : A→ A as

g (a) =

{
f (a) , a ∈ X

a, a /∈ X
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FIGURE 1.9: Pictorial representation of situation.

We claim that this is the required bijection between A and C. First,
we prove that g is injective. We note that g maps X into X and Xc into
Xc. This mapping is indeed injective because the individual mappings f ,
which maps X into X, and the identity map, which maps Xc into Xc, are
injective.

Now, for any a ∈ A, either a ∈ X or a /∈ X. If a ∈ X, then g (a) = f (a) ∈
f (A) ⊆ C and if a /∈ X, then a ∈ Xc ⊆ C. Therefore, in any case, g (a) ∈ C
or, in other words g (A) ⊆ C.

Now, let c ∈ C be any arbitrary element. Clearly, c /∈ X1, since X1 = A\C.
Again, we have two choices here: c ∈ X or c /∈ X. Note that when we say
c ∈ X, we mean c ∈ Xn for some n ≥ 2. For a pictorial representation, see
Figure 1.9. If c ∈ X, then ∃n ∈ N \ {1} such that c ∈ Xn. Therefore, ∃x ∈ A
such that g (x) = f (x) = c. If c /∈ X, then g (c) = c ∈ C. Thus, in any case
c ∈ g (A) (since it has a pre-image in A). Therefore, g (A) = C.

Therefore, we have exhibited a function g : A → C which is a bijection,
and hence these two sets are bijective.

Theorem 1.17 (Schröder-Berstein). Let A and B be two sets. If f : A→ B
and g : B → A are two injective functions, then A and B are bijective.

Proof. Define a function g ◦ f : A → A. Clearly, (g ◦ f) (A) ⊆ g (B) ⊆ A and
g◦f is injective. Hence, using Theorem 1.16 there is a bijection h : A→ g (B).
Since g is injective, it has in inverse g−1 : g (B) → B. Therefore, g−1 ◦ h :
A→ B is the required bijection.

Theorem 1.18 (Knaster-Tarski). Let X be any set and f : P (X) → P (X)
be a map. Let the map f satisfy the property that for every A ⊆ B we have
f (A) ⊆ f (B). Then, ∃S ⊆ X such that f (S) = S.

Proof. Let C = {C ⊆ X|C ⊆ f (C)}. Clearly, ∅ ∈ C and hence C �= ∅. Now,
let S be the union of all members of C . Then, ∀C ∈ C , we have C ⊆ S,
which implies that f (C) ⊆ f (S). Also, C ⊆ f (C) and hence C ⊆ f (S).
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Therefore, S ⊆ f (S) (why?). This further gives f (S) ⊆ f (f (S)) and there-
fore f (S) ∈ C . But then as S is the union of all members of C , we have
f (S) ⊆ S and therefore f (S) = S.

Here, we call S a fixed point6 of f .

We note that in all the above discussion, we are concerned more about bi-
jections rather than arbitrary functions between sets. Why so? Let us look
at how we learned counting. In the very beginning, when mathematical tools
were not so developed, humans used to count using pebbles. Given a set of
objects, we used to assign each object a pebble. Then, we used to say that
there are as many objects as we have assigned pebbles. We are trying to do the
same with sets. The only difference in our case is that the sets are arbitrary
and we do not really know how many elements they contain.

By means of bijection between two sets A and B, we assign to each member
of A a unique member of B and no member of B is left out. This, by intuition
from the experience of counting, tells us that A has as many elements as B.
However, yet we have not devised any method to give the exact number of
elements. We shall do so in the proceeding sections.

1.4.1 Finite sets

As discussed above, we started counting for finitely many objects. The
resultant pebbles which were assigned were finite and we gave it a number
(notation), say n. We shall apply the same strategy for sets. As a notation,
we define for any n ∈ N, In = {1, 2, · · · , n}.
Definition 1.32 (Finite sets). A set A is said to be finite if either A = ∅ or
∃n ∈ N and ∃f : A→ In such that f is a bijection.

A set which is not finite is called an infinite set . We shall deal with infinite
sets a bit later. First, we shall develop some theory on finite sets.

We also note that for each n ∈ N, the set In is finite. Also, for finite sets, by
definition there is a bijection to In or in other words, every finite set contains
as many elements as In for some n ∈ N. Thus, for our interest, it is the same
if we study arbitrary finite sets or the sets In. Keeping this in mind, we shall
now develop some intuitive results on In rather than arbitrary finite sets.

Let us first consider two sets Im and In. By the definition, if m = n, we
have Im = In and hence this does not interest us. Therefore, we shall consider
m �= n. In particular, we shall consider m < n without loss of generality.
Clearly, there are less number of elements in Im than those in In. What will
happen if we start assigning to each element in Im a unique element in In?
We will exhaust all the elements of Im but there will be some elements left in
In which will not be assigned. What happens when we start assigning to each

6Indeed, for any function f : X → X, an element x ∈ X is called a fixed point if
f (x) = x. We shall study fixed points in some depth in this text later.
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element in In a unique element in Im? If we try to assign distinct elements in
Im to distinct elements in In, we will again exhaust all elements of Im before
we exhaust all elements of In and then we will have no choice but to repeat
the assignment for remaining elements. We now present this intuition formally
as theorems.

Theorem 1.19. If m < n then there is no injective map from In to Im.

Proof. We prove this statement by principle of strong mathematical induction
on m. Our statement P (m) will be “m < n ⇒ f : In → Im cannot be a
injection”.

For m = 1, we have Im = {1} and for n > 1, any function f : In → I1
gives f (1) = f (n) = 1. Therefore, f is not injective. Hence, P (1) is true.

Now, we make our induction hypothesis as ∀k < m, let P (k) be true. We
now wish to prove P (m) to be true.

Let, if possible, f : In → Im be an injective function. If f (n) = m, we
define g : In−1 → Im−1 as g (i) = f (i). Clearly, g is injective. But this
contradicts the inductive hypothesis. Therefore, f (n) �= m. Then, since f
is injective, there is atmost one k < n such that f (k) = m. We define a

function g : In−1 → Im−1 as g (i) =

{
f (i) i �= k

f (n) i = k
. Again, this function is

also injective, thereby contradicting the inductive hypothesis. Hence, f cannot
be an injective function.

Theorem 1.20. If m < n then there is no surjective map from Im to In.

Proof. Let, if possible, f : Im → In be a surjection. Define g : In → Im
by g (i) = min

(
f−1 (i)

)
.7 Since minimum is unique and f is surjection, g is

well-defined. Now, we look at what happens when g (i) = g (j). This means
that min

(
f−1 (i)

)
= min

(
f−1 (j)

)
. Clearly, f−1 (i) ∩ f−1 (j) �= ∅. There-

fore, ∃k ∈ f−1 (i) ∩ f−1 (j), or f (k) = i = j. Thus, g is injective. However,
this is a contradiction to Theorem 1.19. Hence, f : Im → In cannot be a
surjection.

As an immediate consequence of the above two theorems, we get the following
theorem.

Theorem 1.21. If f : Im → In is a bijection, then m = n.

Exercise 1.36. Prove Theorem 1.21.

We are now in a position to define what is the number of elements in a
finite set.

7Here, f−1 (i) denotes the set of all pre-images of i and not the inverse of f . The readers
should not confuse themselves with this abuse of notations.
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Definition 1.33 (Cardinality). A set A is said to have n elements if there is
a bijection f : A→ In. We denote it as |A| = n, called the cardinality of A.

As a matter of convention, we take |∅| = 0. Also, we note that |In| = n.
We now make certain observations about arbitrary finite sets and their

subsets. What can we say about the number of elements in a set A if we
have an injective map from A to In? This means that for every element of A,
we have assigned a unique element of In and in fact, no two elements of A
are assigned the same element of In. Intuitively, it seems that the number of
elements in A can be at most n. We make this intuition a theorem.

Theorem 1.22. If f : A→ In is an injection, then |A| ≤ n.

Proof. Let r1 = min {f (a) |a ∈ A}, r2 = min ({f (a) |a ∈ A} \ {r1}), and for
k ≥ 2, we have rk = min ({f (a) |a ∈ A} \ {r1, r2, · · · , rk−1}). Clearly, i < j ⇒
ri < rj and in fact, r1 < r2 < · · · < rk < · · · . Since In is finite, this process
must stop somewhere, say at k. We claim that k ≤ n. By the construction of
rk, we have r1 ≥ 1, r2 > r1 and hence r2 ≥ 2. Proceeding in this manner,
we can conclude that rk ≥ k. If k > n, then rk > n and rk /∈ In, which is a
contradiction. Hence, the process stops at k ≤ n.

We now wish to show that |A| = k so that |A| ≤ n. First we note that for
every a ∈ A, f (a) ∈ {r1, r2, · · · , rk}. Thus, we define a function g : A → Ik
such that g (a) = i, where f (a) = ri. Since f is injective, so is g and for every
ri, we have a unique a and consequently for every i ∈ Ik, we have a unique
a ∈ A for which g (a) = i. Thus, g is a bijection and we have our result.

Exercise 1.37. Prove that if f : In → A is surjection, then |A| ≤ n.

What can we say about subset(s) of a finite set? Can it have more elements
than its superset? Intuitively, the answer is no!

Theorem 1.23. If A is a finite set and B ⊆ A, then |B| ≤ |A|.
Proof. Since A is finite, ∃n ∈ N such that there is a bijection f : A → In
and |A| = n. Define the inclusion map g : B → A as g (x) = x. Clearly, g is
injective. Therefore, the composite map f ◦ g : B → In is injective. Therefore
by Theorem 1.22, |B| ≤ n = |A|.
What can we say about proper subsets? Intuitively, if A is a finite set and B
is a proper subset of A, then there is at least one element in A which is not
in B. Also, from previous theorem, we know that |B| ≤ |A|. With at least
one element missed out, there is no possibility of equality. Thus, we expect
|B| < |A|.
Theorem 1.24. If A is a finite set and B ⊂ A, then |B| < |A|.
Proof. Let us first take the case where a proper subset C misses exactly one
element of A, i.e., C = A \ {a} for some a ∈ A. Since A is finite, there is
a bijection f : A → In for some n ∈ N. Let f (a) = i. We define another
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map g : C → In−1 as g (x) =

{
f (x) when f (x) < i

f (x)− 1 when f (x) > i
. First, we check g

is injective. If we take distinct element x1 �= x2 in C, we have the following
cases:

Case I: g (x1) = f (x1) and g (x2) = f (x2). Since f is injective, g (x1) =
f (x1) �= f (x2) = g (x2).
Case II: g (x1) = f (x1) and g (x2) = f (x2) − 1. This means f (x1) < i and
f (x2) ≥ i. Hence, g (x1) = f (x1) �= f (x2) = g (x2).
Case III: g (x1) = f (x1)−1 and g (x2) = f (x2)−1. Again, since f is injective,
g (x1) �= g (x2).

Therefore, in all the cases, distinct elements of C are mapped to distinct
elements of In−1. Therefore, g is injective. Let j ∈ In−1. If j < i, then ∃x ∈ A
such that f (x) = j. Also, x �= a. Therefore, ∃x ∈ C such that g (x) = j. If
j ≥ i, then ∃x ∈ A such that f (x) = j + 1 > i. Again, x �= a. Therefore,
∃x ∈ C such that f (x) = j + 1. By the definition of g, ∃x ∈ C such that
g (x) = f (x) − 1 = j. Therefore, ∀j ∈ In−1, ∃x ∈ C such that g (x) = j, i.e.,
g is surjective. Hence, |C| = n− 1 < n = |A|.

Now, if B is any proper subset of A, then ∃a ∈ A (a /∈ B), i.e., B ⊆ A\{a}.
Therefore, by Theorem 1.23, |B| ≤ |A \ {a}| < |A|.

Exercise 1.38. If A and B are disjoint finite sets, then prove that |A ∪B| =
|A|+ |B|.

1.4.2 Countable sets

Moving a step ahead, we now deal with infinite sets. An important question
is: How do we count the number of elements in an infinite set? Note here that
by counting, we now mean in terms of bijections. Let us look at sets which we
know by experience. First, we know the set of natural numbers N, then the
set of integers Z, set of rational numbers Q, and also, the set of real numbers
R. Of these sets, we give special attention to N and R.

We have seen that if we can have a bijection between two sets, then they
have the same number of elements. As discussed earlier, the intervals having
more than a single element are all bijective and hence have the same number of
elements. It can also be shown easily that R and (0, 1) have the same number
of elements.

Exercise 1.39. Exhibit a bijection between (0, 1) and R and hence conclude
that they have the same number of elements.

Let us see if R and N have the same number of elements. If so, then (0, 1) and
N will also have the same number of elements.

Example 1.18 (R and N are not bijective). Let, if possible, there be a bi-
jection f : N → (0, 1). Every number in (0, 1) has a decimal expansion of
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the form 0.a1a2a3 . . . . Let f (i) = 0.ai1ai2ai3 . . . . We construct a new number

0.b1b2b3 . . . where bn =

{
ann + 1 if ann ≤ 8

5 if ann = 9
. Note that for ann = 9, we can

choose any digit. There is nothing special about 5! Clearly, this number is
different from all other f (i) from its construction, since it differs at the nth
place after decimal. Hence, this does not have any pre-image under f , which
is a contradiction to the fact that f is a bijection. Therefore, (0, 1) and N

are not bijective. This also leads us to the conclusion that R and N are not
bijective.

What can we say about Z and N?

Exercise 1.40. Prove that Z and N are bijective. Hint: Use the trick used
in proving [0, 1] and (0, 1) are bijective. However, this time we would have to
shift infinitely many elements.

Now, it remains to be seen if N and Q are bijective. Before that, we see another
example of a non-trivial set which has as many elements as N.

Example 1.19. Consider the set N × N = {(m,n) |m,n ∈ N}. Consider a
function f : N → N× N given by f (n) = (n, 1) for every n ∈ N. Clearly, f is
injective. Also, consider the function g : N×N → N given by g (m,n) = 2m3n.
The reader should check that g is injective. Therefore, by Theorem 1.17, N is
bijective to N× N.

Now, we are ready to check, in fact prove, that Q is bijective to N. We observe
that any rational number can be written in the form p

q , where p ∈ Z and q ∈ N.

Therefore, there is a natural bijection f : Q → Z×N given by f
(

p
q

)
= (p, q).

Also, from Exercise 1.40, we have a bijection g : Z × N → N × N given
by g (m,n) = (g1 (m) , n), where g1 : Z → N is a bijection. Finally, from
Example 1.19, we have h : N×N → N, a bijection. Therefore, the composition
h ◦ g ◦ f : Q → N is a bijection and we conclude that Q and N have the same
number of elements.

From all the above discussion, we know (by our experience) a few sets
which have as many elements as the set of natural numbers and a set which
does not hold this property. Based on this, we make the following definition.

Definition 1.34 (Countable sets). A set A is said to be countable if either
A is finite or there is a bijection f : A → N. A set which is not countable is
called uncountable.

Therefore, N, Z, Q are all countable, while R is uncountable and so is (0, 1).
The number of elements in a set has been called cardinality . However, in

the case of infinite sets, this is not possible. We cannot have an actual number
for cardinality. However, we do have a method to know if a set contains as
many elements as natural numbers or not. Therefore, we define the cardinality
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of N and denote it by |N| = ℵ0.
8 Any set which is bijective to N is said to

have cardinality ℵ0.
By Cantor’s theorem, we know that there cannot be any bijection between

P (N) and N. However, there is one question to ask: Is P (N) finite? To see
this, observe that the singleton sets {n}, where n ∈ N are all in P (N). Since
there are infinitely many such singleton sets, we can conclude that P (N) is
also infinite. Since P (N) is neither finite nor countable, it is uncountable.
We now look at another special set 2N = {f : N → {0, 1}} of all functions
from N to {0, 1}. Consider a function φ : 2N → P (N) defined as φ (f) =
{n ∈ N|f (n) = 0}. Now, consider φ (f) = φ (g). Then, ∀n ∈ N such that
f (n) = 0, we have g (n) = 0. Therefore, ∀n ∈ N, f (n) = g (n), i.e., f = g.
Hence, φ is injective. Similarly, consider a function ψ : P (N) → 2N defined

by ψ (S) = f , where f (n) =

{
1, for n ∈ S

0, otherwise
. Now, if ψ (S1) = ψ (S2), then

we can easily verify that S1 = S2. Therefore, ψ is also injective. By Theorem
1.17, we conclude that 2N and P (N) are bijective.

Exercise 1.41. Prove that P (N) and [0, 1) are bijective. Hint: Use deci-
mal expansion to have two injective functions and then use Schröder-Berstein
theorem.

From above discussions, we can conclude that P (N) , 2N,R, and any other
interval with more than one point all have the same cardinalities.

Now, we develop some theory about infinite sets through theorems.

Theorem 1.25. For a set A, the following statements are equivalent:

1. A is countable.

2. There is an injection from A to N.

3. There is a surjection from N to A.

Proof. (1) ⇒ (2) is true since A is countable implies that there is a bijection
f : A→ N, which, in particular, is an injection.

We prove (2) ⇒ (3). Let f : A → N be the given injection. Fix a point

a ∈ A. Define a function g : N → A as g (n) =

{
f−1 (n) , if n ∈ f (A)

a, if n /∈ f (A)
.

Clearly, g is a surjection.
To prove (3) ⇒ (1), let na = min

(
f−1 (a)

)
. Then, either the collection

{na|a ∈ A} is finite or infinite. In either case, using the well-ordering principle,
we arrange the elements in the form n1 < n2 < · · · < nk or n1 < n2 < · · · .
Therefore, in the first case, we can define a bijection between A and Ik, while
in the other case, we can define a bijection between A and N. Therefore, A is
countable.

8The symbol ℵ0 is called “aleph-naught” or “aleph-null”.



Set Theory 47

Exercise 1.42. Give the bijections mentioned in the last part of the above
theorem.

Exercise 1.43. Prove the following:

1. If f : A→ B is injective and B is countable, then so is A.

2. If f : A→ B is surjective and A is countable, then so is B.

3. A subset of a countable set is countable.

Theorem 1.26. Countable union9 of countable sets is countable.

Proof. Let {Ai|i ∈ I} be a countable collection of countable sets, i.e., I is
countable and ∀i ∈ I, Ai is countable. This means we have f : I → N and
gi : Ai → N for each i ∈ I as bijections. Let A =

⋃
i∈I

Ai. Define a function

g : A→ N×N as g (a) = (n, gn (a)), where n = min {f (i) |a ∈ Ai}. Clearly, g
is injective since gn is a bijection. Hence, A is countable.

Exercise 1.44. From the above discussion conclude that Qc, the set of irra-
tional numbers is uncountable.

Problem Set

1. Identify the following sets:

(a)

{
x ∈ R|x+

1

x
> 2

}
.

(b)
{
x ∈ R|∃y ∈ R such that y2n = x

}
, where n ∈ N is fixed.

(c)
{m
n
|m,n ∈ Z where m and n have the same sign and n is a

divisor of m
}
.

(d) S ⊆ N such that 1 ∈ S and for every k ∈ S, k + 1 ∈ S.

(e)
{
x ∈ R|∃a, b ∈ Z with a > 0 and x2 + ax+ b = 0

}
.

(f) {x ∈ R|ex = 0}.
(g) {x ∈ R| |x− a|+ |x− b| = c}, where a, b, c ∈ R with a < b.

(h) {x ∈ R| ||x− a| − |x− b|| = c}, where a, b, c ∈ R with a < b and
c ≥ 0.

9A countable union indeed means that the family whose union is considered is indexed
by a countable set.
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(i)
{
(x, y) ∈ R

2| (1− x) (1− y) > 1− x− y
}
. Draw a picture of this

set.

(j)
{
(x, y) ∈ R

2| |x| ≤ |y|}. Draw a picture of this set.

(k)
⋂

n∈N

(
0,

1

n

)
.

2. Let A be the set of all integers divisible by m and B be the set of all
integers divisible by n, where m,n ∈ N are fixed. What is A ∩B?

3. If B ⊆ C, then show that:

(a) A ∪B ⊆ A ∪ C.
(b) A ∩B ⊆ A ∩ C.

4. (a) For a set A, what is A \A?
(b) If A and B are disjoint, what is A \B?

(c) If A ⊆ B, what is A \B?

5. Let A be the set of all n× n real symmetric matrices and B be the set
of skew-symmetric matrices. Describe A \B.

6. For two sets A,B, show that (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A).
For two sets A and B, we define the symmetric difference as

AΔB = (A \B) ∪ (B \A).

Clearly, this set contains the elements exactly in one set and not in the
other. In some sense, this forms an exclusive union.

(a) Prove that symmetric difference is commutative.

(b) Prove that symmetric difference is associative.

7. For two sets A and B, show that the following are equivalent:

(a) A ⊆ B.

(b) A ∪B = B.

(c) A ∩B = A.

(d) Bc ⊆ Ac.

8. Let C be the set of all circles. Express this as an indexed family of sets
of R2, indexed by Λ = R

2 × (0,∞). Is this family disjoint?
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9. If the set A contains n elements, show that the power set P (A) contains
2n elements.

10. Let C =
{
(x, y) ∈ R

2|x2 + y2 = 1
}
. Can this set be written as a Carte-

sian product of two sets?

11. Let A,C ⊆ X and B,D ⊆ Y . Prove or disprove the following:

(a) A×B ⊆ C ×D if and only if A ⊆ C and B ⊆ D.

(b) (A ∩ C)× (B ∩D) = (A×B) ∩ (C ×D).

(c) (A ∪ C)× (B ∪D) = (A×B) ∪ (C ×D).

12. For sets A,B,C prove or disprove the following:

(a) A× (B ∪ C) = (A×B) ∪ (A× C).

(b) A× (B ∩ C) = (A×B) ∩ (A× C).

(c) A× (B \ C) = (A×B) \ (A× C).

(d) A×B = A× C implies B = C.

(e) P (A×B) = P (A)× P (B).

13. Are the functions f : R → R and g : R → [0,∞) defined as f (x) = x2

and g (x) = x2 equal?

14. For a function f : X × Y , we define the graph of f as

G (f) = {(x, y) ∈ X × Y |y = f (x)} .

Are the following sets graphs of functions?

(a)
{
(x, y) ∈ R

2|x2 + y2 = 1
}
.

(b)
{
(x, y) ∈ R

2|x2 + y = 0
}
.

(c)
{
(x, y) ∈ R

2|x = |y|}.
15. Check if the following function is injective. f : N → N defined as

f (n) =

{
n+ 2, n is odd.

2n, n is even.

16. Let M (2,R) denote the set of all 2× 2 matrices with real entries. Con-
sider determinant of these matrices as a function det :M (2,R) → R. Is
it injective?

17. Which of the following functions are surjective?

(a) f : Z → N defined by f (m) = m2.

(b) f : R → R defined by f (x) = x2 + x+ 1.
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(c) f : R → R defined by f (x) = ex.

(d) f : (0,∞) → R defined by f (x) = lnx.

(e) f : R → R defined by f (x) = sinx.

18. Let f : N → A and g : N → B be surjective for some sets A and B. Is
there an onto map h : N → A ∪B?

19. Show that the following functions are bijections and hence find the in-
verse.

(a) f : R → R defined as f (x) = x+ 1.

(b) f : [0, 1] → [0, 1] defined as f (x) =
1− x

1 + x
.

(c) f : [0,∞) → [0, 1) defined as f (x) =
x2

1 + x2
.

20. For two bijective functions f : X → Y and g : Y → Z, prove that
(g ◦ f)−1

= f−1 ◦ g−1.

21. Let f : X → Y and g : Y → Z be such that g ◦ f is surjective and g is
injective. What can we say about injectivity and surjectivity of f?

22. Let f : R → R be defined as f (x) = sinx. What is f−1 ([0, 1])?

23. Let f : M (n,R) → M (n,R) be defined as f (A) = An. What is
f−1 ({0})? Here, M (n,R) denotes the set of all n × n real matrices
and 0 denotes the matrix with all entries zero.

24. Consider the set

R =
{
(x, y) ∈ R

2|xy > 0
} ∪ {(0, 0)} .

Is R an equivalence relation? If so, what are the equivalence classes?

25. Consider the relation R defined on R
2 as (x1, y1)R (x2, y2) if and only

if x21 + y21 = x22 + y22 . Is this an equivalence relation? If so, what are the
equivalence classes?

26. Can there by an injective map f : P (X) → X for any set X?

27. For a finite set X and a function f : X → X prove that the following
are equivalent:

(a) f is bijective.

(b) f is injective.

(c) f is surjective.

Can we generalize this to infinite sets?
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28. Is the set NN of all functions from N to N countable?

29. If X is uncountable and A is countable, can X \A be countable?

30. For n ∈ N, define Hn = {kn|k ∈ Z}. Let X = {Hn|n ≥ 2} and let ⊆ be
the partial order relation on X. What are the maximal elements in X?

31. Show that every finite totally ordered set has a maximum and a mini-
mum.

32. Are there any partially ordered sets in which maximal elements are the
same as minimal elements?
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Chapter 2

Metric Spaces

In this chapter, we shall first review our experience in the real number system
and measuring what we call in natural language as “distances”, and then
generalize this concept to define metric spaces. Once we achieve this, all other
concepts that arise due to notion of distances, such as sequences and their
convergence and continuity of functions, will be generalized in the succeeding
chapters.

2.1 Review of Real Number System and Absolute Value

In a course of analysis (or, what is often called Real Analysis), the reader
might have studied various algebraic properties of real numbers, sequences
and series of real numbers, real valued functions, and their continuity. In this
section, we specifically focus on an important function from real analysis,
called the absolute value of a real number. Formally, it is defined as |·| : R →
[0,∞), and satisfies the following properties

1. |x| = 0 ⇔ x = 0.

2. ∀x ∈ R, |−x| = |x|. [Symmetry]

3. ∀x, y ∈ R, |xy| = |x| |y|. [Homogeneity]

4. ∀x, y ∈ R, |x+ y| ≤ |x|+ |y|. [Triangle inequality]

Physically, it measures the distance of any real number x from the real number
0. Often, it is called the length of x. The readers who have taken a course in
linear algebra might know that this notion of length has been generalized to
the notion of norm in a vector space, which is often denoted by ||·|| : V →
[0,∞), where V is the vector space under consideration.

55
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Although we shall not use the notion of norms as long as possible, we advise
the reader to go through the concept since in many applications, distances
can be measured by the help of norms easily, in addition to certain other
special properties which norms provide to us. In this text, however, we shall
assume that the reader is not familiar with norm and construct all the theory
accordingly.

Coming back to the concept of absolute value, let us see what insights
can we get from the properties discussed above. From the four properties
discussed above, the first two properties and the last property are of interest
to us. The third property, called the homogeneity is of interest when one
studies norms explicitly. We write the properties of interest in words for a
better understanding.

1. The only real number whose length or distance from 0 is 0 is the number
0 itself.

2. It does not matter on what side of 0 a real number x lies. The length
remains same if we measure toward the left or toward the right.

3. This property is called the triangle inequality and as the name suggests,
it tells that the sum of lengths of two sides of a triangle is greater than
or equal to the length of the third side.1

As studied in Real Analysis, we make use of this absolute value function to
measure distances between points, especially to study convergent sequences,
Cauchy sequences, and continuity of functions. The question is: How do we
do so? By experience, we know that to measure the distance between two real
numbers x and y, it is enough to measure the length of the line segment joining
the two points. But, the only way we know to measure the length is measuring
from 0. Therefore, we shift one of the points, say x, to 0. Consequently, y gets
shifted to y−x. Then, the length of the real number y−x is given by |y − x|,
which is precisely, the distance between the real numbers x and y as shown
in Figure 2.1. Since it does not matter on what side of zero we measure the
length, we often write the distance between x and y as |x− y|. Here, the
readers are advised to make an illustration by shifting y to 0, instead of x,
and convince themselves that the distance still remains the same.

With this notion, what properties do we observe of the distance between
two real numbers x and y?

1. ∀x, y ∈ R, |x− y| ≥ 0 and |x− y| = 0 if and only if x = y.

2. ∀x, y ∈ R, |x− y| = |y − x|.
3. ∀x, y, z ∈ R, |x− y| ≤ |x− z|+ |z − y|.

1This will be geometrically more intuitive to the reader if they look at distances in R
2.
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FIGURE 2.1: Measuring the “distance” between two real numbers by means
of absolute value function. (a) Line segment joining two points x and y in R.
(b) Line segment after shifting x to 0.

Exercise 2.1. Prove the properties of distance between two real numbers
discussed above.

With this in mind, we are now ready to generalize the notion of distance to any
set. But, before doing so, we go through some important inequalities which
will be helpful further.

2.2 Young, Hölder, and Minkowski Inequalities

In this section, we shall prove important inequalities for real numbers,
finite sum of real numbers, series of real numbers, and integrals of real valued
functions. These inequalities will further help us in making examples for metric
spaces in the next section. Throughout the section, we shall make use of two
notations for exponents p and q, where p > 1 and 1

p +
1
q = 1. These exponents

are often mentioned in textbooks as conjugate exponents.

Theorem 2.1 (Young’s inequality). Let x, y be non-negative real numbers.
Then,

xy ≤ xp

p
+
yq

q
. (2.1)

The equality holds if and only if xp = yq.

Proof. If x = 0 or y = 0, then the inequality holds trivially since the left side
is 0 and the right side is the sum of non-negative real numbers, which remains
non-negative. Therefore, in the proof, we shall assume that x �= 0 and y �= 0.
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Let y > 0 be fixed. We construct a function f : (0,∞) → R as f (x) =
xp

p + yq

q −xy. Now, consider f ′ (x) = xp−1−y. For x = y
1

p−1 , we have f ′ (x) = 0,

i.e., x = y
1

p−1 is a point of minima or maxima for the function f . Now, using
the second derivative test, f ′′ (x) = (p− 1)xp−2 > 0 since p > 1 and x > 0.

Hence x = y
1

p−1 is a point of minima, i.e., ∀x > 0, we have f (x) ≥ f(y
1

p−1 ).
This gives us

xp

p
+
yq

q
− xy ≥ y

p
p−1

p
+
yq

q
− y

1
p−1 y.

∴ xp

p
+
yq

q
− xy ≥ yq

p
+
yq

q
− yq = 0.

∴ xy ≤ xp

p
+
yq

q
.

Now, the equality holds if and only if x = y
1

p−1 , i.e., if and only if xp

= y
p

p−1 = yq.

Theorem 2.2 (Hölder’s inequality for finite sum). Let x1, x2, · · · , xn and
y1, y2, · · · , yn ∈ R. Then,

n∑
i=1

|xi| |yi| ≤
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

. (2.2)

The equality holds if and only if ∃c1, c2 ∈ R, with c1 �= 0 and c2 �= 0 such that
c1 |xk|p = c2 |yk|q for k = 1, 2, · · · , n.

Proof. We consider

(
n∑

i=1

|xi|p
) 1

p

�= 0 and

(
n∑

i=1

|yi|p
) 1

p

�= 0, because if

any of them is zero, then the inequality is trivially true (why?). Clearly,
|xi|(

n∑
j=1

|xj |p
) 1

p

≥ 0 and
|yi|(

n∑
j=1

|yj |q
) 1

q

≥ 0 for i = 1, 2, · · · , n. Applying Young’s

inequality for each i, we get

|xi| |yi|(
n∑

j=1

|xj |p
) 1

p
(

n∑
j=1

|yi|q
) 1

q

≤ 1

p

|xi|p
n∑

j=1

|xj |p
+

1

q

|yi|q
n∑

j=1

|yj |q
.
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Summing over i = 1 through n, we get

n∑
i=1

|xi| |yi|(
n∑

j=1

|xj |p
) 1

p
(

n∑
j=1

|yj |q
) 1

q

≤
n∑

i=1

⎛
⎜⎜⎝1

p

|xi|p
n∑

j=1

|xj |p
+

1

q

|yi|
n∑

j=1

|yj |q

⎞
⎟⎟⎠.

∴

n∑
i=1

|xi| |yi|
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

≤ 1

p

⎛
⎜⎜⎝

n∑
i=1

|xi|p
n∑

i=1

|xi|p

⎞
⎟⎟⎠+

1

q

⎛
⎜⎜⎝

n∑
i=1

|yi|q
n∑

i=1

|yi|q

⎞
⎟⎟⎠

=
1

p
+

1

q
= 1.

∴
n∑

i=1

|xi| |yi| ≤
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

.

Since the inequality occurs due to the Young’s inequality, the equality in
this case shall occur if and only if the equality occurs in the use of Young’s
inequality. This part of the proof is left as an exercise for the reader.

Exercise 2.2. Prove the second part of Theorem 2.2 by finding the constants
c1 and c2.

Theorem 2.3 (Minkowski’s inequality for finite sum). For real numbers
x1, x2, · · · , xn, y1, y2, · · · , yn, we have

(
n∑

i=1

|xi + yi|p
) 1

p

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

. (2.3)

Proof. If either
n∑

i=1

|xi|p = 0 or
n∑

i=1

|yi|p = 0, then Equation (2.3) holds trivially

(why?). Therefore, we assume that
n∑

i=1

|xi|p �= 0 and
n∑

i=1

|yi|p �= 0 and hence

proceed for the proof.

n∑
i=1

|xi + yi|p =

n∑
i=1

|xi + yi| |xi + yi|p−1

≤
n∑

i=1

(|xi|+ |yi|) |xi + yi|p−1
(Triangle inequality)

=
n∑

i=1

|xi| |xi + yi|p−1
+

n∑
i=1

|yi| |xi + yi|p−1

≤
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|xi + yi|q(p−1)

) 1
q

+
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(
n∑

i=1

|yi|p
) 1

p
(

n∑
i=1

|xi + yi|q(p−1)

) 1
q

[From Equation (2.2)]

=

⎛
⎝
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

⎞
⎠
(

n∑
i=1

|xi + yi|p
) 1

q

.

∴
(

n∑
i=1

|xi + yi|p
)1− 1

q

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

.

∴
(

n∑
i=1

|xi + yi|p
) 1

p

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

.

Before moving to the case of infinite series, let us state a fact about convergent
series in which the terms are non-negative. The proof of this fact can be found
in a typical analysis book and hence is not covered here.

Theorem 2.4. If
∞∑
i=1

ai is a series where ∀n ∈ N, an ≥ 0, then the series is

convergent if and only if the sequence of partial sums
n∑

i=1

ai is bounded and

the value of the series is given by sup
n∈N

{
n∑

i=1

ai

}
.

Now, we prove the Minkowski’s inequality for an infinite sum.

Theorem 2.5 (Minkowski’s inequality for infinite sum). Let (xi)i∈N
and

(yi)i∈N

2 such that
∞∑
i=1

|xi|p and
∞∑
i=1

|yi|p converges. Then,

( ∞∑
i=1

|xi + yi|p
) 1

p

≤
( ∞∑

i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

. (2.4)

Proof. From Equation (2.3), we know that

(
n∑

i=1

|xi + yi|p
) 1

p

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

.

2We shall use this notations to denote sequences of real numbers. Notice that when we
write (xi)i∈N

, it means the list (x1, x2, · · · ) which goes on forever. The explanation for this
notation will be provided shortly. Until then, the reader is advised to accept the notation
and proceed for the proof.
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Since
∞∑
i=1

|xi|p and
∞∑
i=1

|yi|p are convergent, we have

n∑
i=1

|xi|p ≤
∞∑
i=1

|xi|p ,

n∑
i=1

|yi|p ≤
∞∑
i=1

|yi|p .

Also, since both the sums are non-negative, we have

(
n∑

i=1

|xi|p
) 1

p

≤
( ∞∑

i=1

|xi|p
) 1

p

,

(
n∑

i=1

|yi|p
) 1

p

≤
( ∞∑

i=1

|yi|p
) 1

p

.

Therefore, we have

(
n∑

i=1

|xi + yi|p
) 1

p

≤
(

n∑
i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

≤
( ∞∑

i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

.

Therefore, for every n ∈ N, the partial sum
n∑

i=1

|xi + yi|p is bounded

above by

(( ∞∑
i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

)p

and therefore using Theorem 2.4,

the series
∞∑
i=1

|xi + yi|p is convergent, with the value of the sum given

by sup
n∈N

{
n∑

i=1

|xi + yi|p
}
. Since

(( ∞∑
i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

)p

is an upper

bound for the set

{
n∑

i=1

|xi + yi|p
∣∣∣n ∈ N

}
, we have

∞∑
i=1

|xi + yi|p = sup
n∈N

{
n∑

i=1

|xi + yi|p
}

≤
⎛
⎝
( ∞∑

i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

⎞
⎠

p

.

Hence, we get the Minkowski’s inequality for an infinite sum,

( ∞∑
i=1

|xi + yi|p
) 1

p

≤
( ∞∑

i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

.
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Now, we shall consider a special set C [a, b], the set of all real valued continuous
functions on the interval [a, b]. It is to be noted here that every element of
C [a, b] is a function f : [a, b] → R and being a continuous function on a closed
interval, it is Riemann integrable.

Now, we prove the Hölder’s and Minkowski’s inequalities for these inte-
grable functions on similar lines as above.

Theorem 2.6 (Hölder’s inequality for integrals). Let f, g ∈ C [a, b]. Then,

b∫
a

|f (x)| |g (x)| dx ≤
⎛
⎝

b∫
a

|f (x)|p dx
⎞
⎠

1
p
⎛
⎝

b∫
a

|g (x)|q dx
⎞
⎠

1
q

. (2.5)

Proof. Clearly, if one of the functions f or g is identically zero, then the in-
equality holds trivially (why?). Therefore, we assume that both these functions
are not identically zero so that none of the integrals involved in Equation (2.5)
are zero. Now, we have from Equation (2.1)

b∫
a

|f (x)|(
b∫
a

|f (x)|p dx
) 1

p

|g (x)|(
b∫
a

|g (x)|q dx
) 1

q

dx

≤
b∫

a

⎛
⎜⎜⎜⎝
1

p

|f (x)|p
b∫
a

|f (x)|p dx
+

1

q

|g (x)|q
b∫
a

|g (x)|q dx

⎞
⎟⎟⎟⎠ dx

=
1

p
+

1

q
= 1.

∴
b∫

a

|f (x)| |g (x)| dx ≤
⎛
⎝

b∫
a

|f (x)|p dx
⎞
⎠

1
p
⎛
⎝

b∫
a

|g (x)|q dx
⎞
⎠

1
q

.

Theorem 2.7 (Minkowski’s inequality for integrals). Let f, g ∈ C [a, b]. Then,

⎛
⎝

b∫
a

|f (x) + g (x)|p dx

⎞
⎠

1
p

≤
⎛
⎝

b∫
a

|f (x)|p dx

⎞
⎠

1
p

+

⎛
⎝

b∫
a

|g (x)|p dx

⎞
⎠

1
p

.

(2.6)

Proof. If one of f or g is identically zero, then the inequality holds trivially
(why?). Therefore, we assume that both are non-zero (identically) and proceed
for the proof.
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Since the exponentiation, xα, is a convex function3 for non-negative inputs,
we have ∣∣∣∣12f (x) +

1

2
g (x)

∣∣∣∣
p

≤ 1

2
|f (x)|p + 1

2
|g (x)|p .

∴ |f (x) + g (x)|p ≤ 2p−1 (|f (x)|p + |g (x)|p).
Which means that |f (x) + g (x)|p is bounded and being continuous, it is also

Riemann integrable, i.e.,
b∫
a

|f (x) + g (x)|p colorreddx exists.

b∫
a

|f (x) + g (x)|p dx =

b∫
a

|f (x) + g (x)| |f (x) + g (x)|p−1
dx

≤
b∫

a

(|f (x)|+ |g (x)|) |f (x) + g (x)|p−1
dx

(Triangle inequality)

=

b∫
a

|f (x)| |f (x) + g (x)|p−1
dx+

b∫
a

|g (x)| |f (x) + g (x)|p−1
dx

≤
⎛
⎝

b∫
a

|f (x)|p dx
⎞
⎠

1
p
⎛
⎝

b∫
a

|f (x) + g (x)|q(p−1)
dx

⎞
⎠

1
q

+

⎛
⎝

b∫
a

|g (x)|p dx
⎞
⎠

1
p
⎛
⎝

b∫
a

|f (x) + g (x)|q(p−1)
dx

⎞
⎠

1
q

[From Equation (2.5)]

=

⎛
⎜⎝
⎛
⎝

b∫
a

|f (x)|p dx
⎞
⎠

1
p

+

⎛
⎝

b∫
a

|g (x)|p dx
⎞
⎠

1
p

⎞
⎟⎠ ·

⎛
⎝

b∫
a

|f (x) + g (x)|p dx
⎞
⎠

1
q

.

3A function f : R → R is convex if f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ) f (x2) for
any λ ∈ [0, 1].
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∴

⎛
⎝

b∫
a

|f (x) + g (x)|p dx
⎞
⎠

1− 1
q

≤
⎛
⎝

b∫
a

|f (x)|p dx
⎞
⎠

1
p

+

⎛
⎝

b∫
a

|g (x)|p dx
⎞
⎠

1
p

.

∴

⎛
⎝

b∫
a

|f (x) + g (x)|p dx
⎞
⎠

1
p

≤
⎛
⎝

b∫
a

|f (x)|p dx
⎞
⎠

1
p

+

⎛
⎝

b∫
a

|g (x)|p dx
⎞
⎠

1
p

.

With this, we are now completely equipped and ready to define an abstract
metric space and look at examples.

2.3 Notion of Metric Space

In the first section, we tried to understand how to calculate distance be-
tween two real numbers. Now, our aim is to do the same but in an abstract
setting. This means, we want to know the distance between points of any given
set, say X. An intuitive reasoning tells us that the procedure seems simple if
we know how to calculate the lengths of line segments. But this has a problem!
We are provided with a set X, where making these line segments need not
be always possible. Making line segments is possible when we have what is
called an algebraic structure, in particular two operations that can be called
addition and scalar multiplication, and indeed, a set of scalars called a field.4

The first thing we wish to do in this section is to avoid all these restrictions.
To do so, let us look what the distance between two points means mathemati-
cally. Firstly, to find the distance, we need two points (values) which need not
be distinct and what we get after measuring the distance is a non-negative
real number (our intuition tells us that distance cannot be negative). There-
fore, we can look at distance as a function d : X ×X → [0,∞). What other
intuitive properties should distance satisfy?

1. The distance between two points should be zero only when the two
points are identical and for every two distinct points, we should have a
positive distance.

4If we have a vector space, say V , over a field F, then we can easily make “line segments”
in the space with the help of two operations “addition” and “scalar multiplication”, which
are available in the vector space. If we want to make a line segment between two points
(vectors), say x and y in V , we form the set L = {λ · x+ (1− λ) · y|λ ∈ [0, 1]}. Notice that
this is precisely the set containing all the points “between” x and y. Indeed, for λ = 0, we
get y and for λ = 1, we get x.



Metric Spaces 65

2. It should not matter from where we measure the distance. If x and y are
two points in the given set X, we would want the distance from x to y
and the distance from y to x to remain the same, i.e., d (x, y) = d (y, x).

3. If we take a third stop z while measuring the distance between two
points x and y, the distance measured by us cannot be less than the
distance between the two points x and y. This will be later called triangle
inequality .

Based on this intuition, we now make a formal definition of distance, which
henceforth we shall call metric, and hence a set equipped with metric will be
called a metric space.

Definition 2.1 (Metric). Given a set X, a function d : X ×X → [0,∞) is
called a metric on X if ∀x, y, z ∈ X, the following properties hold.

1. d (x, y) = 0 if and only if x = y.

2. d (x, y) = d (y, x). [Symmetry]

3. d (x, y) ≤ d (x, z) + d (z, y). [Triangle inequality]

A set X equipped with a metric d is called a metric space and is denoted as
the tuple (X, d).

Remark.

1. In the definition, X is the universal set. It may or may not have other
structures (such as vector space or field structure) in it. In general,
throughout the text, we shall assume that the sets under consideration
do not have any other structure on it except when mentioned explicitly.

2. Since in the text we shall be mostly dealing with metric spaces and not
other type of “spaces”, we shall not denote a metric space by the tuple
(X, d) but by simply X, except when the context seems ambiguous or
there is a need to specify the tuple.

As seen in the definition and discussion above it, rather than abstracting the
concept of length of line segment, we have abstracted the concept of distance
directly. But, by our experience, distance came as a result of length in R. Since
intuitively these distances must mean the same, our original idea of distance
between two real numbers should satisfy our definition of distance. This is left
as an exercise to the reader.

Exercise 2.3. Prove that the function d : R×R → [0,∞) defined as d (x, y) =
|x− y| is indeed a metric.

Now, let us look at examples of metric spaces, which we somewhat know by
experience and to some extent, we also use them in our daily lives.
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Example 2.1 (Euclidean metric). Let us consider a plane. We want to mea-
sure distance between two points on the plane and for a while, we assume
that we can move freely on the plane. So, intelligent humans such as our-
selves would travel along a straight line from one point to another and try to
measure the distance. Doing so when we have measuring tapes is easy! But
theoretically, we have nothing more than the definition of plane and some of
its properties which we can exploit.

By definition, a plane is simply the set R
2 of ordered pairs (x, y) where

each entry is a real number. Inherently, when we write (x, y), a notion of axes
comes to our mind. To reach the point (x, y) from our “origin” (0, 0), we first
need to travel along the X-axis for x units and then parallel to Y -axis for
y units.

Now, suppose we want to measure the distance between two given points
(x1, y1) and (x2, y2). Since we are free to move any way we want in R

2, the
most natural way is by walking straight to the point (x2, y2) from the point
(x1, y1) and measuring the distance on the way. As discussed earlier, since
with R

2, the notion of X- and Y -axes automatically comes to our mind, a way
to reach the point (x2, y2) from (x1, y1) is by first getting to the X-axis by
traveling y1 units, then traveling along the X-axis for |x1 − x2| units and then
traveling a distance y2 units parallel to the Y -axis. So, how much distance did
we travel? As shown in Figure 2.2, parallel to the X-axis, we moved |x1 − x2|

FIGURE 2.2: Measuring distance from (x1, y1) to (x2, y2) in R
2.
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units and parallel to the Y -axis, we moved |y1 − y2| units. But initially, we
wanted to measure the distance when we traveled along a straight line between
the points. Pythagoras tells us that this distance is given by

d ((x1, y1), (x2, y2)) =

√
|x1 − x2|2 + |y1 − y2|2. (2.7)

Thus, we have a method to find the distance between two points on the plane
by the function d : R2 ×R

2 → [0,∞), where d is defined as in Equation (2.7).
Now, our next job is to check if this definition is really a metric on R

2. First,
we see that d is well defined since by definition, we take the non-negative
square root of a non-negative number. Next, let us see when can the distance
between two points be 0, i.e., when is d ((x1, y1), (x2, y2)) = 0?

√
|x1 − x2|2 + |y1 − y2|2 = 0 ⇔ |x1 − x2|2 + |y1 − y2|2 = 0,

⇔ |x1 − x2|2 = 0 and |y1 − y2|2 = 0,

⇔ |x1 − x2| = 0 and |y1 − y2| = 0,

⇔ x1 = x2 and y1 = y2,

⇔ (x1, y1) = (x2, y2).

The reader should note that in the above proof, we have used many properties
from analysis such as sum of two non-negative numbers is zero if and only if
each of them is zero, and the equality of ordered pairs. Here, we advise the
reader to take a pause and go through the proof to assimilate it!

We have proved that d ((x1, y1), (x2, y2)) = 0 if and only if (x1, y1) =
(x2, y2). It is clear from the very definition of d that d ((x1, y1), (x2, y2)) =
d ((x2, y2), (x1, y1)), i.e., it does not matter from where we measure the dis-
tance. Also, in the Minkowski’s inequality [Equation (2.3)] for n = 2 and
p = 2, we get the triangle inequality. Hence, d is indeed a metric. This is
called the Euclidean metric on the plane.

Just as in the above example, we can define a Euclidean metric in any of the
R

n by simply doing the same procedure for each axis. We do not mention
it specifically here since making an illustration for R

3 is difficult on a page
and anything beyond R

3 cannot be illustrated through diagrams but can be
explained mathematically. Thus, if we are given what is called the n-space,
R

n of n-tuples, we can define the Euclidean metric as d : Rn × R
n → [0,∞),

d (x,y) =

(
n∑

i=1

|xi − yi|2
) 1

2

. (2.8)

where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) are elements (n-tuples)
in R

n.

Exercise 2.4. Prove that the function d as in Equation (2.8) is indeed a
metric on R

n.
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Remark. Since the way of finding distance which led us to defining the Eu-
clidean metric was to go from one point to another along a straight line, it is
also sometimes called the crow-fly distance.

At this point, one can ask a question: Is this the only way to define a metric
on R

n? Well, the answer is no! Another way to define a metric on R
n can be

found in the method by which we defined the Euclidean metric. We see that
in another example where we define a metric again on R

2.

Example 2.2 (Taxi-Cab metric/Manhattan metric). Let us consider again
the problem of finding the distance between two points (x1, y1) and (x2, y2) in
R

2. We follow a similar procedure but this time we do not go to Pythagoras
for help. Instead, we measure the distance we walk along or parallel to the
axes. How much distance did we travel along the X-axis? It was |x1 − x2|.
Similarly, we traveled a distance |y1 − y2| parallel to the Y -axis. So, for us the
distance we traveled will be

d ((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| . (2.9)

Of course, it is the next task to verify that this function d : R2 ×R
2 → [0,∞)

is indeed a metric. However, we do not show the proof here. The proof is easy
and involves even fewer arguments than the proof for the Euclidean metric.
Hence, we shall leave it as an exercise to the reader.

Instead, we make a comment on the name of the metric. Often, it is called
the taxi-cab metric or the Manhattan metric. This is because, if one looks
at the map of Manhattan, they would observe that to go from one place to
another, only paths along two perpendicular roads (which in our case were
parallel to the X-axis and the Y -axis) can be taken. So is the case with taxis.
They cannot “fly” or go “through” the buildings. They have to follow the
roads. Hence, the name of this metric follows.

Exercise 2.5. Verify that the function d : Rn × R
n → [0,∞) defined as

d (x,y) =

n∑
i=1

|xi − yi| . (2.10)

is a metric, where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn).
Again, these are not the only ways to define distance. Given a p ≥ 1, we can
define distance on R

n as

d (x,y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(2.11)

where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn). It is left as an exercise to
the reader to verify that d is indeed a metric. As a hint, we advise the reader
to use Minkowski’s inequalities.
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We can observe that for p = 2, Equation (2.11) gives us our Euclidean
distance and for p = 1, it gives the Taxi-Cab/Manhattan distance.

Let us take a step ahead and instead of being limited in finite tuples, let us
go for infinite tuples. First, let us understand what is even meant by infinite
tuples. In analysis, we have seen real-valued sequences. By definition they are
just functions which map every element in N to an element in R and the nth
term of the sequence is denoted by xn. Clearly, if we change the order of two
elements in the sequence, the sequence changes! Hence, we shall refer to these
sequences as infinite tuples and the set of all real-valued sequences as RN. As
a matter of notations, we shall denote sequences as (xi)

∞
i=1, or (xi)i∈N

, and
they will all be elements of RN.

At a first glance, it seems that we have a structure similar to R
n apart

from the fact that now we have infinite tuples, instead of finite tuples. So, let
us try defining the Euclidean metric on R

N. Define d : RN × R
N → [0,∞) as

d ((xi)
∞
i=1 , (yi)

∞
i=1) =

√√√√ ∞∑
i=1

|xi − yi|2.

As usual, our next task will be to verify that d is indeed a metric. For that
d has to be well-defined. Clearly, we have taken the non-negative square root
and hence d will never give a negative output. But will it give any output
in R? Since we are taking non-negative square root of a sum of non-negative
real numbers, we are guaranteed that whenever there is an output, it will be
a real number. The crucial question that we must ask is: Will we always get
an output for any choice of (xi)

∞
i=1 and (yi)

∞
i=1? Since we are dealing with

infinite sums, we must check the convergence of series in play, and we know
from analysis that not all series converge. One such series which we know does

not converge is
∞∑
i=1

1. So, if for some choice of (xi)
∞
i=1 and (yi)

∞
i=1, we get this

series, d will not be well defined.

Well, one such choice is (xi)
∞
i=1 = (1)

∞
i=1, the constant sequence which

takes the value 1 everywhere, and (yi)
∞
i=1 = (0)

∞
i=1, the constant sequence

which takes the value 0 everywhere. Hence, d is not even well-defined on R
N!

However, based on this observation, we can in fact create sets and then
define metric on them. This is shown in the following example.

Example 2.3 (Sequence spaces). Let p ≥ 1 be given. Define a set �p ={
(xi)

∞
i=1 ∈ R

N

∣∣∣ ∞∑
i=1

|xi|p <∞
}
. Here, by

∞∑
i=1

|xi|p < ∞, we mean that the se-

ries is convergent. Now, we define d : �p × �p → [0,∞) as

d ((xi)
∞
i=1 , (yi)

∞
i=1) =

( ∞∑
i=1

|xi − yi|p
) 1

p

. (2.12)
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First, we remember that f : [0,∞) → [0,∞) defined by f (x) = xp for p ≥ 1
is a convex function. Thus, we have

∣∣∣xi
2

+
(
−yi

2

)∣∣∣p ≤ 1

2
|xi|p + 1

2
|−yi|p .

∴ 1

2p
|xi − yi|p ≤ 1

2
(|xi|p + |yi|p).

∴ |xi − yi|p ≤ 2p−1 (|xi|p + |yi|p).

Once this is achieved, we make an observation: the sequence |xi|p has all

terms non-negative and hence the sequence of partial sums
n∑

i=1

|xi|p is non-

decreasing. Therefore, by Theorem 2.4, we can say that for every n ∈ N,
n∑

i=1

|xi|p ≤
∞∑
i=1

|xi|p. Hence, we have

n∑
i=1

|xi − yi|p ≤ 2p−1
n∑

i=1

(|xi|p + |yi|p)

= 2p−1

(
n∑

i=1

|xi|p +
n∑

i=1

|yi|p
)

≤ 2p−1

( ∞∑
i=1

|xi|p +
∞∑
i=1

|yi|p
)
.

Thus, the set of partial sums
{ n∑

i=1

|xi − yi|p
∣∣∣n ∈ N

}
is bounded and by The-

orem 2.4, we conclude that the series
∞∑
i=1

|xi − yi|p is convergent.

Therefore, d is well-defined. When will d ((xi)
∞
i=1 , (yi)

∞
i=1) be 0?

( ∞∑
i=1

|xi − yi|p
) 1

p

= 0 ⇔
∞∑
i=1

|xi − yi|p = 0,

⇔ sup
n∈N

{
n∑

i=1

|xi − yi|p
}

= 0,

⇔ ∀n ∈ N,

n∑
i=1

|xi − yi|p = 0,

⇔ ∀i ∈ N, |xi − yi| = 0,

⇔ ∀i ∈ N, xi = yi,

⇔ (xi)
∞
i=1 = (yi)

∞
i=1 .
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Thus, we have proved that d ((xi)
∞
i=1 , (yi)

∞
i=1) = 0 if and only if (xi)

∞
i=1 =

(yi)
∞
i=1. Also, it is clear from the definition of d that d ((xi)

∞
i=1 , (yi)

∞
i=1) =

d ((yi)
∞
i=1 , (xi)

∞
i=1) and Minkowski’s inequality [Equation (2.4)] gives us the

triangle inequality. Therefore, �p is a metric space with the metric d defined
as above.

In the sequence spaces discussed above, all the sequences in any of the �p have
a special property: all the sequences (xi)

∞
i=1 converge to 0 or otherwise the

series
∞∑
i=1

|xi|p would not converge. This seems like a bit of limitation to the

sequences we have in our hand to play with! So, instead of sequences which
converge to 0, we now consider sequences which are bounded. These may or
may not be convergent.

Example 2.4. Define a set

�∞ =
{
(xi)

∞
i=1 ∈ R

N|∃M > 0 such that ∀i ∈ N we have |xi| ≤M
}
,

namely the set of all bounded sequences. Now, instead of trying to get a dis-
tance in terms of series, we find the distance between corresponding values of
given sequences. The distance between these two sequences will be the supre-
mum of the individual distances. To find distance between each corresponding
value, we use the absolute value function we know from R. The only question
that remains to answer is: Will the supremum always exist?

To answer this question, we first observe that for any i ∈ N, |xi − yi| ≤
|xi|+ |yi|. Since (xi)∞i=1 and (yi)

∞
i=1 are bounded sequences, ∃M1,M2 > 0 such

that ∀i ∈ N we have |xi| ≤M1 and |yi| ≤M2. Hence, the set {|xi − yi| |i ∈ N}
is bounded above by M1 +M2 and by the LUB axiom in R, we can conclude
that the supremum exists.

Therefore, we can now define d : �∞ × �∞ → [0,∞) as

d ((xi)
∞
i=1 , (yi)

∞
i=1) = sup

i∈N

{|xi − yi|} (2.13)

Let us now check if this function d forms a metric. We have already shown
that d is well-defined. Let us now see when does d ((xi)

∞
i=1 , (yi)

∞
i=1) = 0.

sup
i∈N

{|xi − yi|} = 0 ⇔ ∀i ∈ N, |xi − yi| = 0,

⇔ ∀i ∈ N, xi = yi,

⇔ (xi)
∞
i=1 = (yi)

∞
i=1 .

Therefore, we have shown that d ((xi)
∞
i=1 , (yi)

∞
i=1) = 0 if and only if

(xi)
∞
i=1 = (yi)

∞
i=1. From the definition, it follows that d ((xi)

∞
i=1 , (yi)

∞
i=1) =

d ((yi)
∞
i=1 , (xi)

∞
i=1). However, this time, we cannot seek help from Minkowski
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to prove the triangle inequality! To see if the triangle inequality holds, consider
the following for three sequences (xi)

∞
i=1 , (yi)

∞
i=1 , (zi)

∞
i=1 ∈ �∞.

|xi − yi| ≤ |xi − zi|+ |zi − yi|
≤ sup

i∈N

{|xi − zi|}+ sup
i∈N

{|zi − yi|}

= d ((xi)
∞
i=1 , (zi)

∞
i=1) + d ((zi)

∞
i=1 , (yi)

∞
i=1).

This is true for any i ∈ N. Therefore, the set {|xi − yi| |i ∈ N} is bounded
above by d ((xi)

∞
i=1 , (zi)

∞
i=1) + d ((zi)

∞
i=1 , (yi)

∞
i=1). Hence,

sup
i∈N

{|xi − yi|} = d ((xi)
∞
i=1 , (yi)

∞
i=1) ≤ d ((xi)

∞
i=1 , (zi)

∞
i=1)+d ((zi)

∞
i=1 , (yi)

∞
i=1).

Hence, the triangle inequality holds and we conclude that �∞ is indeed a
metric space.

In the example above, we found out the distance between two sequences using
the supremum of the distance between corresponding values of each sequence.
A natural question to ask at this time is: Why only supremum? We could
have as well taken infimum of the set {|xi − yi| |i ∈ N}, which we know exists
since the set is bounded below by 0. Let us, for once, try defining the distance
d : �∞ × �∞ → [0,∞) as

d ((xi)
∞
i=1 , (yi)

∞
i=1) = inf

i∈N

{|xi − yi|} .

Clearly, this function d is well defined. Let us now see when do we get
d ((xi)

∞
i=1 , (yi)

∞
i=1) = 0.

inf
i∈N

{|xi − yi|} = 0 ⇒ ∀i ∈ N, |xi − yi| ≥ 0.

But, this is something we already know! Infimum of a set being zero is not
equivalent to each element in the set being 0. Therefore, it seems that there is
some problem with this definition of distance. In what axiom of metric does
the problem occur? The problem, as seen from this inspection, is that there
may be distinct sequences in �∞ whose distance may come out to be zero,
i.e., (xi)

∞
i=1 �= (yi)

∞
i=1 but inf

i∈N

{|xi − yi|} = 0. Let us try constructing such

sequences.
We know that the sequence

(
1
i

)∞
i=1

converges to 0 and moreover, inf
i∈N

{
1
i

}
=

0. Therefore, if we choose (xi)
∞
i=1 =

(
1
i

)∞
i=1

and (yi)
∞
i=1 = (0)

∞
i=1 (the constant

sequence which takes the value 0 everywhere) then we get

d ((xi)
∞
i=1 , (yi)

∞
i=1) = inf

i∈N

{∣∣∣∣1i − 0

∣∣∣∣
}

= inf
i∈N

{
1

i

}
= 0.

Clearly,
(
1
i

)∞
i=1

�= (0)
∞
i=1. Hence, d cannot form a metric!
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Exercise 2.6. Analogous to the metric defined on �∞, we try to define another
metric on R

n as d : Rn × R
n → [0,∞),

d (x,y) = max {|xi − yi| |1 ≤ i ≤ n} .
where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn). Check if d forms a metric.

Remark. The sequence spaces �p, all depend on the choice of p. Hence, the
metric on �p is usually denoted by dp. Even on R

n, this notation can be
followed. Therefore, d1 is the taxi-cab metric and d2 is the Euclidean metric.
Also, as a notation, we shall use d∞ to denote the supremum or maximum
metric.

A natural question one can ask about the dp metric is: Why should p be at
least 1? What would happen is we take p < 1? First, let us take the case where
p = 0. We try to define the metric d0 : Rn × R

n → [0,∞) as

d0 (x,y) =

(
n∑

i=1

|xi − yi|p
) 1

p

.

where x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn), and p = 0. Clearly, this is
not defined! Hence, we cannot have a d0 metric.

Let us try p < 0. In that case, if xi = yi for some i, then |xi − yi|p
will not be defined and overall dp will not be defined. Now, we are left with
0 < p < 1. There does not seem any problem with at least the definition of
dp. Also, the two properties that follow while checking that dp is a metric
do not really depend on the choice of p. What does depend on the choice
of p are the Minkowski’s inequalities, and hence if 0 < p < 1, our guess
is that there will be some problem in the triangle inequality. Therefore, let
us try to find three elements x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn), and
z = (z1, z2, · · · , zn) ∈ R

n such that dp (x,y) > dp (x, z) + dp (y, z).
Consider x = (1, 0, · · · , 0),y = (0, 1, 0, · · · , 0), and z = (0, 0, · · · , 0). Then,

dp (x,y) = (|1|p + |−1|p) 1
p

= (1p + 1p)
1
p

= 2
1
p .

dp (x, z) = (|1|p) 1
p = 1.

dp (z,y) = (|−1|p) 1
p = 1.

Now, since 0 < p < 1, we have
1

p
> 1 and hence 2

1
p > 2. Therefore,

dp (x,y) = 2
1
p > 2 = dp (x, z) + dp (z,y).

However, it seems that our proof works for Rn, where n ≥ 2. What about R?
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First, we observe that for any p > 0, (|x|p) 1
p = |x|. Hence, for any choice of

p > 0, on R we have

dp (x, y) = (|x− y|p) 1
p = |x− y| .

Therefore, in R, we have for any p, only one metric, namely, the absolute
value.

Note. In a similar manner, one can prove that even for the sequence spaces,
we need to have p ≥ 1. This is left as an exercise to the reader.

Exercise 2.7. Consider the set Mm×n (R) of all m × n matrices with real
entries. Define the dp metric for p ≥ 1 on Mm×n (R). Hint: Notice that
an m × n matrix contains mn elements in which changing any two distinct
elements changes the matrix.

Now, let us define a new metrics on R
2 which does not involve p.

Example 2.5. Suppose in R
2, we have a restriction that to go from one point

to another, we need to compulsorily go through the point (0, 0). For notational
purpose, we shall denote this point, as 0. Suppose we know the distance of
each point (x, y) from 0. To calculate the distance between the two points
(x1, y1) and (x2, y2), all we need to do is, first reach 0 from (x1, y1) and then
go to (x2, y2). The distance will be the total of the distance we would have
traveled in the process. Mathematically, we can write d : R2 ×R

2 → [0,∞) as

d ((x1, y1), (x2, y2)) =

{
0, if (x1, y1) = (x2, y2)

d′ ((x1, y1),0) + d′ ((x2, y2),0), otherwise

where d′ is known to us.
All the axioms of metric, except the triangle inequality, are satisfied au-

tomatically as a consequence of its definition. Therefore, our task is to verify
the triangle inequality. If (x1, y1) = (x2, y2), then for any (x3, y3) ∈ R

2, we
have d ((x1, y1), (x2, y2)) = 0 ≤ d ((x1, y1), (x3, y3)) + d ((x3, y3), (x2, y2)).

If (x1, y1) �= (x2, y2), then d ((x1, y1), (x2, y2)) = d′ ((x1, y1),0) +
d′ ((x2, y2),0). Since d′ is non-negative, for any (x3, y3) ∈ R

2, we have

d′ ((x1, y1),0) ≤ d′ ((x1, y1),0) + d′ ((x3, y3),0),

d′ ((x2, y2),0) ≤ d′ ((x2, y2),0) + d′ ((x3, y3),0).

Hence, we have

d ((x1, y1), (x2, y2)) = d′ ((x1, y1),0) + d′ ((x2, y2),0)

≤ d′ ((x1, y1),0) + d′ ((x3, y3),0)

+ d′ ((x2, y2),0) + d′ ((x3, y3),0)

= d ((x1, y1), (x3, y3)) + d ((x2, y2), (x3, y3)).

Thus, the triangle inequality holds and d is indeed a metric on R
2.
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Exercise 2.8. In Example 2.5, while proving the triangle inequality we in-
herently assumed that (x1, y1) �= (x2, y2) �= (x3, y3). Give a proof for triangle
inequality when (x1, y1) = (x3, y3) or (x3, y3) = (x2, y2).

Remark. While defining the metric above, we did not need any property of
R

2 as such. All we needed was a point from where the distance to every other
point is known. Once this is achieved, we can define a metric such as above on
any set X. So, in the abstract sense, if we fix a point x0 ∈ X from where the
distance to every other point in X is known, we can always define a metric as
d : X ×X → [0,∞),

d (x, y) =

{
0, if x = y.

d′ (x, x0) + d′ (y, x0), otherwise.

In a similar manner, we shall now define metric on an arbitrary set X without
knowing the properties of its elements.

Example 2.6 (Discrete metric). Let X be a given set. We define the distance
between any two points as 1 if the points are distinct and 0 if they are the
same. Such a metric is called discrete metric. We write d : X ×X → [0,∞) as

d (x, y) =

{
1, x �= y.

0, x = y.
(2.14)

Clearly, all the axioms of metric are satisfied by d directly from the definition,
except for the triangle inequality. For x, y, z ∈ X, we have we have d (x, y) ≤ 1.
If x = y, then d (x, y) = 0 and then d (x, z)+d (y, z) ≥ 0 = d (x, y). Therefore,
we consider x �= y. Then, d (x, y) = 1. Now, we have two cases: either x = z
(or y = z, but not both) or x �= y �= z. In the first case d (x, z) + d (y, z) =
1 = d (x, y). In the second case, d (x, z)+ d (y, z) = 2 > d (x, y). Therefore, for
any x, y, z ∈ X, the triangle inequality holds and d forms a metric.

Remark. From Example 2.6, we can say that given any set X, we always
have at least one metric on it, namely the discrete metric. Therefore, any set
can be a metric space irrespective of whether or not it has algebraic properties
as in R

n.

Example 2.7 (Hilbert cube). From the sequence spaces discussed above, let
us take into consideration, special type of sequences. We make a set I∞ ={
(xi)

∞
i=1 ∈ R

N

∣∣∣∀i ∈ N, 0 ≤ xi ≤ 1
i

}
. This set is called the Hilbert cube. We

define a metric on I∞ as d : I∞ × I∞ → [0,∞),

d ((xi)
∞
i=1 , (yi)

∞
i=1) =

( ∞∑
i=1

|xi − yi|2
) 1

2

. (2.15)
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It seems that we have taken a set and applied the metric from the �2 metric
space. Therefore, it will be enough for us to prove that d is well-defined. All
other properties are shown to hold in �2. Note that d will be well-defined if

the series
∞∑
i=1

|xi − yi|2 converges. We note that from the construction of I∞,

we have

−1

i
≤ xi − yi ≤ 1

i
,

i.e., |xi − yi| ≤ 1
i and hence |xi − yi|2 ≤ 1

i2 . From the comparison test, we

now know that
∞∑
i=1

|xi − yi|2 converges and hence d is well defined. Therefore,

we have another metric space!

Exercise 2.9. Just as in the above example, can we also borrow metric from
any lp space for p ≥ 1 (or l∞ space) and define a metric on Hilbert cube?
Justify.

Exercise 2.10. Consider the set RN of all real-valued sequences. If we denote
any element in R

N as x = (xi)
∞
i=1, does the following function define a metric?

d : RN × R
N → R, d (x, y) =

∞∑
i=1

1

2i
|xi − yi|

1 + |xi − yi| .

Tuples and sequences are not the only spaces we can define metric on. Another
useful space is given in the next example.

Example 2.8 (Function space). Consider the space C [a, b] of all real-valued,
continuous functions defined on the interval [a, b]. Given any two functions f
and g from this space, we wish to find the distance between them (Figure 2.3).
A natural thinking would lead us to determining the distance of the values

FIGURE 2.3: Physical interpretation of d∞.
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of the functions at each point in [a, b] and then using that distance to find
the distance between the functions (by taking the supremum). Therefore, we
define our metric as d∞ : C [a, b]× C [a, b] → [0,∞), where

d∞ (f, g) = sup
x∈[a,b]

{|f (x)− g (x)|} . (2.16)

Here, the notation d∞ is borrowed from the notations of the sequence space.
The proof that this indeed forms a metric is analogous to that in the sequence
spaces and hence is left as an exercise to the reader.

Also, this is not the only way to define a metric on C [a, b]. Another way
to do so is by measuring the area between given functions. To get an intuition
that this will form a distance, we first observe that if there are two distinct
continuous functions, they will have some positive area between them. Hence,
by this definition, the distance between two functions can be zero if and only
if the functions are identical. Now, measurement of area does not depend from
where we start. Therefore, we may define the metric as

d1 (f, g) =

b∫
a

|f (x)− g (x)| dx. (2.17)

To see that the triangle inequality holds, consider the following

d1 (f, g) =

b∫
a

|f (x)− g (x)| dx

=

b∫
a

|f (x)− h (x) + h (x)− g (x)| dx

≤
b∫

a

|f (x)− h (x)| dx+

b∫
a

|h (x)− g (x)| dx

= d (f, h) + d (h, g).

Hence, d1 indeed forms a metric (Figure 2.4). Similarly, we can also have for
p > 1, a metric

dp (f, g) =

⎛
⎝

b∫
a

|f (x)− g (x)|p
⎞
⎠

1
p

dx. (2.18)

Exercise 2.11. Prove that for p ≥ 1, the function dp defined above is indeed
a metric. Also prove that d∞ is a metric.

Finally, we see another example of a metric space which is not trivially con-
structed.
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FIGURE 2.4: Physical interpretation of d1.

Example 2.9 (p-adic metric). Consider the set of rational numbers Q and
fix a prime p. Now, any element in Q is of the form a

b , where a ∈ Z and b ∈ N.
We now take out p from both the numerator and denominator and cancel any
terms that can be canceled. So, any x ∈ Q can now be written as x = pk m

n
so that k ∈ Z and p neither divides m nor n. Here, this integer k is special to
us. That integer tells us “how much” of p do we have in our rational number.
We call it the valuation number for x and write it as vp (x).

The reader may note here that the valuation number may not be always
non-negative. To see this, consider the rational number 1

p , where p is the prime
number fixed above. Then, the valuation number is −1, which is negative.

Here, we may ask ourselves a question: Can we find the valuation number
for each rational number? At the first glance, it does seem so. If we have
integers, we can always take out factors and the knowledge of factorization
from basic arithmetic does guarantee us that we will stop at some stage. But
looking closely to it, that guarantee is only given for natural numbers! So, if
we take something which is not a natural number, we may problems. If we take
a negative integer, it is just the additive inverse of a natural number so that
its natural counterpart does the job to find the valuation number. However,
for the number 0, how many p’s can we take out? There is no limit to it!
So, our valuation number is not really defined for 0. We shall come to this
problem later.

The way we started defining the valuation number, our minds may have
thought of a natural way to define a metric using them. That way is to simply
find the distance between valuation numbers. This means, we can try defining
the metric as d : Q × Q → [0,∞), where d (x, y) = |vp (x)− vp (y)|. But, the
rational number 0 creates a problem. Any element of type (x, 0) or (0, y) in
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Q×Q cannot have a distance defined! Well, these are just too many elements
to manipulate. So, instead we try defining the metric as d (x, y) = |vp (x− y)|.
Now, only the elements of type (x, x) in Q × Q do not have distance defined
for them.

But, we do know what to do with such elements in case of defining distance.
Since (x, x) denotes a pair of identical elements, their distance must be zero!
Thus, we now define our metric as

d (x, y) =

{
|vp (x− y)| , x �= y.

0, x = y.

It does seem like things are getting in control! But, as the next step, we must
check if this really forms a metric. Clearly, for any input (x, y), the function
d gives a non-negative output since the absolute value function gives a non-
negative output. Also, for identical elements in Q, the distance is defined to be
zero. However, we must check the reverse implication. Whenever the distance
is zero, the elements should be identical. Is it always possible? What happens
when x− y does not have any p in its representation?

In fact, one can get easily a counterexample, where we take x = p′ to be any
prime number other than p and y = 0. Therefore, vp (x− y) = vp (p

′) = 0.
However, 0 is not a prime number and hence x �= y. Therefore, the above
definition of d does not define a metric!

It seems like all the trivial and natural options are exhausted. Looking at
all the functions we might know from a course on analysis, the exponential
function is never zero. In fact, it is always positive (when the base is positive).
Since prime numbers are positive, we exploit this fact and define the metric as

d (x, y) =

{
p−vp(x−y), x �= y.

0, x = y.
(2.19)

This definition clearly solves all problems of the first two axioms of defining a
metric. Note that the second axiom is satisfied since a number and its negative
will have the same valuation. This part is left as an exercise to the reader. We
now look at the triangle inequality.

Let x, y ∈ Q be such that x �= 0, y �= 0, and x �= y. Now, we have the
representations x = pk1 m1

n1
and y = pk2 m2

n2
. Therefore, x−y = pk1 m1

n1
−pk2 m2

n2
.

Therefore, we can take out the minimum power of p and form another rep-

resentation pk
m

n
, where k = min {k1, k2}. However, we cannot assure that p

does not divide m or n. However, the usual method of calculating the subtrac-
tion of two rational number does tell us that since p does not divide n1 and p
does not divide n2, it cannot divide their LCM which must be n. Hence, no
p’s taken out will be canceled off. However, there may be additional p’s that
could be taken out from the numerator m. Therefore, we make an observation
here

vp (x− y) ≥ min {vp (x), vp (y)} .
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Therefore, we also have

p−vp(x−y) ≤ p−min{vp(x),vp(y)}.

Now, let z ∈ Q be such that x �= z and y �= z. Therefore, we have

x− y = (x− z) + (z − y)

= pmin{vp(x−z),vp(z−y)}m
n
.

∴ d (x, y) ≤ pmax{−vp(x−z),−vp(z−y)}

= max
{
p−vp(x−z), p−vp(z−y)

}

= max {d (x, z), d (y, z)} .

Hence, we have,

d (x, y) ≤ d (x, z),

d (x, y) ≤ d (y, z),

∴ d (x, y) ≤ d (x, z) + d (y, z)

2
≤ d (x, z) + d (y, z).

Note that if x = y, y = z, or x = z, the triangle inequality gets converted to
equality. Readers are suggested to check the claim and satisfy themselves.

Hence, we have another way to define metric on Q. This is called the p-adic
metric and depending on the value of p, we get different metrics.

Exercise 2.12. Define the 2-adic metric on Q by putting p = 2 in the above
example. What is the distance between 1 and 3? What is the distance between
1024 and 32? Lastly, what is the distance between 125

31 and 1
31?

Exercise 2.13. In the above example, we defined the p-adic metric as
p−vp(x−y). Can we define it as pvp(x−y)? Justify.

Remark. While proving the triangle inequality for the p-adic metric, we in
fact proved a stronger inequality

d (x, y) ≤ max {d (x, z), d (y, z)} .

This inequality is sometimes called the ultra-metric inequality and the p-adic
metric is called an ultra-metric or a super-metric.

Now, we look at some examples where we can obtain new metrics from previ-
ously known metric spaces.

Example 2.10 (Bounded metric). Suppose we have (X, d), a metric space.
We define another function d′ : X ×X → [0,∞) as

d′ (x, y) = min {d (x, y), 1} . (2.20)
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Clearly, this function is well-defined since the minimum of non-negative num-
bers is non-negative. Also, the function takes the value zero if and only if
d (x, y) = 0 which is possible if and only if x = y. Since d is a metric, we have
d′ (x, y) = d′ (y, x). Finally, since d (x, y) ≤ d (x, z) + d (y, z), we have,

d′ (x, y) = min {d (x, y), 1} ≤ min {d (x, z) + d (y, z), 1}
≤ min {d (x, z) , 1}+min {d (y, z), 1}
= d′ (x, z) + d′ (y, z).

Example 2.11 (Subspace). Given a metric space (X, d) and a subset Y ⊆ X,
we can have the metric space (Y, d) by restricting d to the elements of Y . In
this case, the universe now becomes Y and we shall act like we do not know
what is outside of it. Clearly, (Y, d) is a metric space since it is given that d
satisfies all the axioms. Here, Y is called the subspace of X.

Example 2.12 (Product metric). Given two metric spaces (X, d1) and
(Y, d2), we can define a metric on the Cartesian product X × Y as d :
(X × Y )× (X × Y ) → [0,∞), where,

d ((x1, y1), (x2, y2)) = max {d1 (x1, x2), d2 (y1, y2)} . (2.21)

The metric space (X × Y, d) is called the product space of X and Y , and the
individual spaces (X and Y ) are called the coordinate spaces . The proof that
this is indeed a metric is left as an exercise to the reader.

Exercise 2.14. Prove that the product metric function defined above is in-
deed a metric. Can we get some motivation from R

n to have another metric
on X × Y ?

2.4 Open Sets

Up until now, we have only been looking at some preliminaries and exam-
ples required for developing theory on metric spaces. From this section, we will
start developing the theory of metric spaces. To do so, we will apply the same
methodology as we have been for all the preceding sections. We take what
we know from experience and then abstract its properties so that a similar
concept can be defined on any set.

By our experience in the real numbers R taken as a metric space with the
metric defined by absolute value function (|·|), we know that open sets are one
of the consequences of the absolute value. In R, we define a set to be open,
if for any point x in the set, we can get a room completely inside the set.
Mathematically, we say that to each x, there is some positive real number ε
so that the interval (x− ε, x+ ε) lies within the given set.
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This particular interval (x− ε, x+ ε) is of special interest to us. If we can
abstract the properties of this particular interval, generalizing open sets to any
metric space will be an easy task. First, we see that if any y ∈ (x− ε, x+ ε),
then we have the inequality

x− ε < y < x+ ε.

This can also be written as

−ε < y − x < ε.

Which further can be written as

|x− y| < ε.

Since the absolute value gives a method of finding the distances between two
real numbers, we see that any element in (x− ε, x+ ε) is within a distance of
ε from x. Also, the point x seems to be in the center of the interval.

Coming to abstract metric spaces, we want to have a similar concept to
this interval. First, note that to define an interval on any set, we would require
a partial order. However, it would then mean that any metric space without
a partial order specified cannot have open sets! We do not wish this. This is
because, originally, the open sets were a consequence of a metric in R and not
its partial order. Therefore, we now take into account the properties discussed
above of the interval (x− ε, x+ ε) and define a special type of a set.

Definition 2.2 (Open ball). In a metric space (X, d), we define the open ball,
centered at a point x ∈ X and of radius r > 0 as the following set

B (x, r) = {y ∈ X|d (x, y) < r} .
We may ask ourselves a question: Can any open ball be empty? To answer
it, we first observe that since r > 0 and d (x, x) = 0 < r, we always have
x ∈ B (x, r). Hence, every open ball is a non-empty set and it always contains
its center.

Remark. The name open ball is motivated from the structure of the set in the
Euclidean space R

2 and R
3. This is emphasized in the example that follows.

Exercise 2.15. Justify that the interval (x− ε, x+ ε) is indeed an open ball
about x ∈ R of radius ε in the metric space (R, |·|). Is every interval (a, b) in
R where a < b also an open ball?

In the examples that follow, we try to see the structure of open balls in various
metric spaces.

Example 2.13 (Open balls in the plane). Consider the set R2. We have seen
many ways of defining a metric on R

2. We shall now see what an open ball
looks like here. First, we take the metric in R

2 we are used to with, namely,
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the Euclidean metric d2. Instead of defining an arbitrary open ball, we confine
ourselves to defining an open ball centered at (0, 0) and of radius 1. This is
called the unit open ball . To make the notations short, we shall use 0 to denote
the point (0, 0). Then,

B (0, 1) =
{
(x, y) ∈ R

2|d2 ((x, y),0) < 1
}
.

The condition d2 ((x, y),0) < 1 gives us
√
x2 + y2 < 1, which is same as

x2 + y2 < 1. But, we know that x2 + y2 = 1 defines the unit circle centered at
origin. Therefore, B (0, 1) (in this case) gives the set of all points inside the
circle (excluding the circle).

This is where the term “open ball” gets its motivation. As seen in
Figure 2.5, the open unit ball is everything inside the circle of radius 1 cen-
tered at origin. Similarly, for an arbitrary open ball in the Euclidean metric,
the shape of the “boundary”5 remains the same: a circle!

Since this open ball was formed by the metric d2, we denote it as B2 (0, 1).
Since for p ≥ 1, we can define metric on R

2 and we denote that metric as
dp, we shall denote the open ball constructed using dp as Bp (x, r), where
x = (x, y) ∈ R

2.

FIGURE 2.5: A circle in the Euclidean plane used in determining the open
unit ball.

5We are cheating here by using the word “boundary”. Since we have not yet defined
what boundary means in our context, it is not really appropriate to use it. However, we
believe that the reader will get a geometric sense of the boundary from the condition used
to construct the circle. In the text that follows, we shall eventually define the boundary of
any set and this shall become clear. However, until then, the readers are advised to take the
geometric intuition of the boundary and currently forget about the definition they might
have gone through in a course of analysis.
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Let us consider the d1 metric defined as in Equation (2.9). An open unit
ball in this metric is the set,

B1 (0, 1) =
{
(x, y) ∈ R

2|d1 ((x, y),0) < 1
}
.

We shall first see what d1 ((x, y),0) = 1 can lead us to. We have,

|x|+ |y| = 1.

Depending on the values of x and y, we can have one of the following four
cases:

Case I: x ≥ 0 and y ≥ 0. Then, |x| = x and |y| = y. Therefore, the description
above gives the line

x+ y = 1.

This line has slope −1 and a y-intercept 1.

Case II: x ≥ 0 and y < 0. Then, |x| = x and |y| = −y. Therefore, we have
the line

x− y = 1.

This line has a slope 1 and a y-intercept −1.

Case III: x < 0 and y ≥ 0. Then, |x| = −x and |y| = y. Therefore, we get
the line

−x+ y = 1.

This line has a slope 1 and a y-intercept 1.

Case IV: x < 0 and y < 0. Then |x| = −x and |y| = −y. Thus, we get

−x− y = 1.

This line has a slop −1 and a y-intercept −1.

Hence, the condition d1 ((x, y),0) = 1 gives us the union of the four line
segments stated above and the condition d1 ((x, y),0) < 1 gives us every-
thing inside the union of these line segments excluding the lines themselves.
Geometrically, the shape of B1 (0, 1) is as shown in Figure 2.6.

Now, we look at the metric d∞. To construct an open unit ball in the d∞
metric, we will require the condition d∞ ((x, y),0) < 1. However, we first look
at d∞ ((x, y),0) = 1. This gives us max {|x| , |y|} = 1. Therefore, we have two
cases, either |x| = 1 or |y| = 1. This gives us the union of lines x = 1, x = −1,
y = 1, and y = −1 as can be seen in Figure 2.7. Then, the open unit ball,

B∞ (0, 1) =
{
(x, y) ∈ R

2|d∞ ((x, y),0) < 1
}

is everything inside the union of lines excluding the lines themselves.
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FIGURE 2.6: A unit “circle” in R
2 with the Manhattan metric, used to

construct open unit ball.

FIGURE 2.7: A unit “circle” in R
2 with d∞, used to determine the open

unit ball.

Similarly, we can have any open unit ball Bp (0, 1). However, for values of
p other than those discussed above, making the curves is difficult and hence
omitted from the text.

We can keep making open balls in any metric space we have. In particular, we
can also make open balls, similar to those discussed above, in the 3 dimensional
space R

3 and even in the sequence spaces. However, visualizing them may
not be that easy, especially for R

n where n ≥ 4 and the sequence spaces �p

and R
N.
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Exercise 2.16. Describe the open balls B1 (0, 1), B2 (0, 1), and B∞ (0, 1)
in R

3.

We now move one step ahead and look at open unit ball in the function space
C [a, b] with different metrics.

Example 2.14 (Open balls in function space). Consider the set C [a, b]
equipped with the metric d∞. We shall make the open unit ball

B∞ (0, 1) = {f ∈ C [a, b] |d∞ (f,0) < 1} .

First, we look at the condition d∞ (f,0) = 1. This gives us sup
x∈[a,b]

{|f (x)|} = 1.

From the definition of supremum, we know that ∀x ∈ [a, b], we will have
|f (x)| ≤ 1. Hence, any function in the region specified in the figure will satisfy
the criterion d∞ (f,0) = 1. Now, the criterion d∞ (f,0) < 1 will be satisfied
by those functions that do not touch (or cross) the constant functions which
take value 1 and −1 everywhere in the interval [a, b].

The region where the functions in the unit open ball lie can be seen in
Figure 2.8.
Similarly, we can look at the open unit ball

B1 (0, 1) = {f ∈ C [a, b] |d1 (f,0) < 1}

FIGURE 2.8: The region in XY plane where the functions inside the unit
open ball lie with d∞.
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constructed from the metric d1 on C [a, b]. The condition d1 (f,0) < 1 leads
us to

b∫
a

|f (x)| dx < 1.

Physically this means that the function f has an area less than 1. Although
at first glance it may appear that such functions lie within some region as in
the previous case, it is not true! We can have a triangle with a very small base
and correspondingly large height so that it has the same area as a triangle
with unit base and unit height. By this we mean to say that if we fix a number
r < 1, then there can be infinitely many functions with increasing heights so
that the integral involved is exactly r and hence all those functions lie in the
open unit ball. This can be seen in Figure 2.9.

We have been looking at open balls in some special metric spaces where we
knew how the elements behave. Now, we shall look at open balls in the discrete
metric space.

Example 2.15 (Open balls in the discrete space). Consider the discrete met-
ric space from Example 2.6. We do not have an origin to make a open unit
ball. However, the metric function d does not take many values in [0,∞).
For distinct points, it takes the value 1 and for identical points, it takes the
value 0. Therefore, if we fix any point x ∈ X, where X is the set where
the discrete metric is defined, and fix a radius r ≤ 1, then, the open ball
B (x, r) = {y ∈ X|d (x, y) < r} will contain only x. This is because for any

FIGURE 2.9: Functions in C [0, 1] with the same area b−a
2 but different

“heights”.
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y �= x, we have d (x, y) = 1 ≮ r and hence y /∈ B (x, r). Similarly, if we have
r > 1, then ∀y ∈ X, d (x, y) ≤ 1 < r. Hence, B (x, r) = X.

Therefore, in the discrete metric space, about any point we have only two
possible open balls: One which contains only the center and other, the whole
space X. We may write this as

B (x, r) =

{
{x} , r ≤ 1.

X, r > 1.

Now that we have seen sufficient examples of open balls in various metric
spaces, we can now move to defining open sets in an arbitrary metric space.
However, it is necessary to comment upon why we looked at so many examples
of open balls (and their structures) in various metric spaces. In the beginning
of this section, we mentioned that to abstract the properties of an open set in
R, we would need to abstract the properties of the interval (x− ε, x+ ε) that
arose due to the definition of “openness”. In the process we had to define, in
an abstract metric space, an open ball. Therefore, we shall now make use of
this concept (open ball) to define open sets in any metric space. The formal
definition of open sets is as follows.

Definition 2.3 (Open set). A set G ⊆ X is said to be open in the metric
space (X, d), if ∀x ∈ G, ∃r > 0 such that B (x, r) ⊆ G.

Now, we are ready to find open sets in a metric space. Given any non-empty
set X, we always have at least two subsets available with us ∅ and X itself.
Therefore, it is natural to ask whether these are open or not. First, we look
at X. As discussed in Chapter 1, whenever we are given a universal set, we
shall act like we do not know what is outside this universe. Therefore, for any
point x ∈ X, we have B (x, 1) ⊆ X, which means X is open.

Looking at ∅, we claim that it is open. Suppose someone wants to prove
us wrong. Then, the person will have to prove that ∅ is not open. To do so,
they will have to negate the definition of open set and obtain the statement:

∃x ∈ ∅ such that ∀r > 0, B (x, r) � ∅.

This means the person will have to get an element x from the empty set, ∅,
which is not possible. Since the person cannot do this, we win and ∅ is open!

Another natural question to ask is: If we know open sets in a metric space,
what about their union and intersection? In particular, is the union (finite
as well as arbitrary) of open sets again open? Is the intersection (finite and
arbitrary) of open sets again open? Let us answer these questions one by one.

Let G1, G2 be two given open sets in a metric space (X, d). Consider their
union G1 ∪ G2 and let x ∈ G1 ∪ G2. This means that x ∈ G1 or x ∈ G2. In
either case, since both G1 and G2 are open, ∃r > 0 such that B (x, r) ⊆ G1

or B (x, r) ⊆ G2. Therefore, we get B (x, r) ⊆ G1 ∪G2 and since the choice of
x was arbitrary, we may conclude that G1 ∪G2 is open.
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FIGURE 2.10: Intersection of two open sets.

Similarly, if we take x ∈ G1 ∩ G2, then it would mean that x ∈ G1 and
x ∈ G2. Since G1 and G2 are both open, ∃r1 > 0 such that B (x, r1) ⊆ G1 and
∃r2 > 0 such that B (x, r2) ⊆ G2. A similar scenario is depicted in Figure 2.10.
Now, if we consider r = min {r1, r2} and take the ball B (x, r), then we will
have ∀y ∈ B (x, r), d (x, y) < r = min {r1, r2} ≤ r1 and hence B (x, r) ⊆
B (x, r1). Similarly, we also have ∀y ∈ B (x, r), d (x, y) < r = min {r1, r2} ≤ r2
and hence B (x, r) ⊆ B (x, r2). Therefore, B (x, r) ⊆ G1 and B (x, r) ⊆ G2.
Hence, ∀x ∈ G1 ∩ G2, ∃r > 0 (given by r = min {r1, r2} as discussed above)
such that B (x, r) ⊆ G1 ∩G2. Therefore, G1 ∩G2 is open.

Exercise 2.17. Prove that
n⋃

i=1

Gi and
n⋂

i=1

Gi are open, given that Gi are open

sets for i = 1, 2, · · · , n.

We shall now see arbitrary unions and intersections of open sets. Let F =
{Gλ ⊆ X|λ ∈ Λ} be a family of open sets indexed by Λ. It is easy to prove
that the union

⋃
λ∈Λ

Gλ is open. We exploit the fact that any element in the

union is contained in at least one of the Gλ and the corresponding open ball is
again inside the union. The complete proof is left as an exercise to the reader.
However, we look at arbitrary intersections

⋂
λ∈Λ

Gλ. If we take any element

x ∈ ⋂
λ∈Λ

Gλ, then ∀λ ∈ Λ, ∃rλ > 0 such that B (x, rλ) ⊆ Gλ. If we are to

adopt the same strategy as we used in the case of intersection of two open
sets, we would now have to find r = inf

λ∈Λ
{rλ}. However, we note that this

need not be always positive but can also be zero. Therefore, we may not get
any positive r for which B (x, r) ⊆ ⋂

λ∈Λ

Gλ.

Keeping this in mind, we now construct a counterexample.
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FIGURE 2.11: A pictorical representation of the family F .

Example 2.16. Consider the family F =
{(− 1

n ,
1
n

) ⊆ R

∣∣∣n ∈ N

}
indexed by

N, in the metric space (R, |·|). This is a family of nested intervals, in which
each interval is centered at 0 as seen in Figure 2.11. Therefore, we know that
0 ∈ ⋂

n∈N

(− 1
n ,

1
n

)
.

Now, let x ∈ ⋂
n∈N

(− 1
n ,

1
n

)
. Then, we have ∀n ∈ N, − 1

n < x < 1
n which

we may write as |x| < 1
n . Let ε > 0 be arbitrary. Then, by the Archimedean

property6 of N in R, ∃n0 ∈ N such that n0ε > 1, i.e., 1
n0

< ε. Hence, from

above, we have |x| < 1
n0

< ε. Since ε was arbitrary, we can conclude that
∀ε > 0, |x| < ε and hence x = 0.

This gives us the following result:

⋂
n∈N

(
− 1

n
,
1

n

)
= {0} .

Now, since this set has only one element, if we can find an r > 0 such that
B (0, r) ⊆ {0}, then it will be proved that {0} is open. So, let us see what
happens to B (0, r) for r > 0. We know that B (0, r) = (−r, r). Therefore,
r
2 ∈ B (0, r) for each r > 0. Since r �= 0,

r

2
�= 0 and hence B (0, r) � {0}. This

is true for any r > 0 and therefore, {0} is not an open set.
This example proves that an arbitrary intersection of open sets need not

be open.
To see where the problem occurs in finding the infimum (from where we got

an idea of construct the counterexample), consider the point 0 which is in each
of
(− 1

n ,
1
n

)
. For every set

(− 1
n ,

1
n

)
, the corresponding open ball is B

(
0, 1

n

)
,

i.e., rn = 1
n . Therefore, when we find the infimum, we get inf

n∈N

{
1
n

}
= 0 ≯ 0.

Exercise 2.18. Prove that arbitrary union of open sets is open.

We summarize all of the above discussion as the following theorem.

6Archimedean property says that if x, y ∈ R are given with x > 0, then ∃n ∈ N such
that nx > y. Indeed, this has a philosophical meaning, which we would like to mention
here! If we have some goal in our lives (y), all we need to do is take some positive steps (of
size x) toward it and one day (after taking n such steps) we will reach the goal (in fact,
exceed it).
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Theorem 2.8. In a metric space (X, d), the following statements hold:

1. The whole space X and the empty set ∅ are open.

2. Arbitrary union of open sets is open.

3. Finite intersection of open sets is open. However, arbitrary intersection
of open sets is not necessarily open.

In defining an open set, we made use of an open ball. As the name suggests,
we expect an open ball to be open. This is dealt with in the following theorem.

Theorem 2.9. Any open ball in a metric space is an open set.

Proof. Let (X, d) be a metric space and let B (x, r) be any open ball in X.
Let y ∈ B (x, r). Then, we know that d (x, y) < r.

We define B (y, r′), for r′ = r − d (x, y).
Let z ∈ B (y, r′). Then, from the triangle inequality we have

d (x, z) ≤ d (x, y) + d (y, z)

< d (x, y) + r − d (x, y)

= r.

Hence, z ∈ B (x, r) so that B (y, r′) ⊆ B (x, r). Therefore, B (x, r) is open.
This can be seen in Figure 2.12.

FIGURE 2.12: A diagrammatic representation of an open ball.
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Let us get back to finding open sets in some metric spaces. First, let us look
at the discrete space (X, d). Consider any subset S ⊆ X and let x ∈ S. Then,
the open ball B (x, 1) contains only its center as discussed in Example 2.15.
Therefore, {x} = B (x, 1) ⊆ S. Hence, S is an open set. Since S was arbitrary,
we can conclude that every subset of X is open when X is equipped with the
discrete metric.

Let us get back to R and its known subsets. We shall try to answer which
of N, Z, Q is open in R. First, looking at N, let n ∈ N and r > 0. Then,
min

{
n+ 1

2 , n+ r
2

} ∈ B (n, r). If min
{
n+ 1

2 , n+ r
2

}
= n+ 1

2 ∈ B (n, r), since

n+ 1
2 /∈ N, we have B (n, r) � N. On the other hand, if min

{
n+ 1

2 , n+ r
2

}
=

n+ r
2 ∈ B (n, r), then n + r

2 ≤ n + 1
2 and since r > 0, n+ r

2 > n. Therefore,
n+ r

2 /∈ N and again, B (n, r) � N. Hence, N is not open in R.

Exercise 2.19. Check if Z is open in R.

For Q, we shall use the property that both rationals and irrationals are dense
in R. This means, given any two real numbers x and y such that x < y, we can
always have a rational number r such that x < r < y and an irrational number
s such that x < s < y. Therefore, if q ∈ Q and r > 0, we have q+ r

2 ∈ B (q, r)
and q < q + r

2 . From the density of Qc in R we have an element s ∈ Q
c such

that q < s < q + r
2 so that s ∈ B (q, r) and hence B (q, r) � Q. Therefore, we

may conclude that Q is not open in R. Similarly, we can prove that Qc is not
open in R.

The question is: What are the open sets in R? We know that any interval
of the form (a, b) for a < b, being an open ball (Exercise 2.15), is open and
hence an arbitrary union of open intervals is also open. But can there be any
set which is not a union of intervals and still open?

To see this, consider an open set G in R and let x ∈ G. Then, since G is
open, there is at least one open interval, say J , such that x ∈ J ⊆ G. Define
Jx to be the union of all such intervals which contain x and are contained in
G. Now, let a, b ∈ Jx such that a < b. Also, let c ∈ R such that a < c < b.
Since Jx is the union of intervals, a and b lie in some interval. If they lie in the
same interval, then c also lies in that interval and hence lies in Jx. However,
if a lies in an interval J1 and b lies in an interval J2 where J1 �= J2, then we
would like to show that c still belongs to Jx. To see this, we first observe that
x ∈ J1 and x ∈ J2. We have the following cases:

Case I: x ≤ a < b. In this case, since J2 is an interval, x ≤ a < c < b
holds and hence c ∈ J2. Since Jx is the union of intervals which contain x and
contained in G, c ∈ Jx.

Case II: a < x < b. From the argument above, c ∈ Jx.

Case III: a < x = b. Then, since J1 is an interval and a < c < b, we have
c ∈ J1 and hence c ∈ Jx.

Case IV: a < b < x. Again since J1 is an interval and a < c < b, we have
c ∈ J1 and hence c ∈ Jx.
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Therefore, in any case for a < c < b with a, b ∈ Jx we have c ∈ Jx and
hence Jx is an interval.

Therefore, G =
⋃

x∈G

Jx, i.e., G can be written as a union of (open) intervals.

Now, consider a relation ∼ defined on G as x ∼ y if and only if Jx = Jy.
Clearly, the relation is an equivalence relation so that the intervals Jx and Jy
are either identical or completely disjoint. Therefore, G =

⋃
i∈I

Ji for some index

set I. Now, let ri ∈ Ji be a fixed rational number. Define a map f : I → Q

as f (i) = ri. Then for i �= j, we have ri �= rj since Ji �= Jj . Hence, f is
one-to-one and I is countable. Therefore we have proved a much stronger and
useful result which is stated as the following theorem.

Theorem 2.10. Any open set in R is a countable union of open intervals.

Let us move to the Euclidean plane R
2. Consider any set of the form{

(x, 0) ∈ R
2|a < x < b

}
. If we drop the second coordinate, it is just the in-

terval (a, b) from R. Is this open in R
2 equipped with the d2 metric? To see

if it is open, consider any open ball of radius r > 0 centered at any point x
in the set considered. The point

(
x, r2
)
lies in the ball B (x, r) but not in the

set. Therefore, the set
{
(x, 0) ∈ R

2|a < x < b
}
is not open. The situation is

represented in Figure 2.13.
Therefore we see that taking intervals and adding another coordinate will

not give us open set in R
2. Looking at the definition of R2, we realize that it

is but the Cartesian product of R with itself. So, what would happen if we
take Cartesian product of two intervals? Will (a, b) × (c, d) be open in R

2?

FIGURE 2.13: An interval on the X axis is not open in R
2.
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FIGURE 2.14: Cartesian product of open intervals is open in R
2.

Let (x, y) be any point in the set (a, b) × (c, d). Consider the following real
numbers: r1 = |b− x| , r2 = |a− x| , r3 = |c− y| , r4 = |d− y|. If we choose
r = min {r1, r2, r3, r4} and make an open ball B ((x, y), r), then we expect it to
be completely contained in the set (a, b)× (c, d) as can be seen in Figure 2.14.
We leave the text book proof of this fact to the reader.

Just as in the case of R, we would like to have open sets in any metric space
to be more intimately related to open balls. This is shown in the following
theorem.

Theorem 2.11. In any metric space (X, d), a set G ⊆ X is open if and only
if it is a union of open balls.

Proof. First we see that a union of open balls is open since open balls are
open sets. We shall prove the converse. For the same, we will apply the same
strategy used to prove that any open set in R is the union of open intervals.

Let G ⊆ X be open. Then, for each x ∈ G, there is an open ball B (x, rx) ⊆
G. Also, we know that x ∈ B (x, r). Therefore, we can write G =

⋃
x∈G

B (x, rx),

which completes the proof!

Proceeding a step ahead, can we say that open sets are a countable union of
open balls, like in the case of R? Well, looking at the proof for the case of R,
we observe that there was a set Q which was countable and had a property,
“density”, which enabled the open sets in R to be a countable union of open
intervals (balls). Since in an arbitrary metric space, we may not have such a
set, in general we would like to answer the question negatively.
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Example 2.17. Consider a discrete metric space X, where X is uncountable.
Fix a point x ∈ X. We know that X \ {x} is open and uncountable. Also, in
a discrete space, there are only two types of open balls available, singletons
and the whole space. Since X \ {x} �= X, the only way to write the set as a
union of open balls is ⋃

y∈X\{x}
{y} .

Clearly, this is a union of family indexed by an uncountable set.

However, later in this text, we shall try to see some special metric spaces
where we may get open sets as a union of countably many open balls.

Before we close this section, we point at a very special property enjoyed by
metric spaces. Suppose there are two distinct points x and y in a metric space
(X, d). Then, by the definition of metric, we have d (x, y) > 0. If we construct
open balls around each of these points with radius 1

2d (x, y), then these two
open balls will contain the center but not the other point, i.e., B

(
x, 12d (x, y)

)
will contain x but not y and similarly B

(
y, 12d (x, y)

)
will contain y but not

x. In fact, these two open balls do not intersect at all! This is true for any two
points and is called the Hausdorff property . A formal definition is as follows.

Definition 2.4 (Hausdorff property). In a metric space X, ∀x, y ∈ X,
∃ε1, ε2 > 0 such that B (x, ε1) ∩ B (y, ε2) = ∅. This property of metric spaces
is called Hausdorff property.

We have been looking at open sets for quite a while now. Therefore, it is of
importance that we mention here about the collection of all open sets. Since
in the further study of metric spaces, open sets are going to play a major
role, we will give a name to this collection. Formally, the collection of all open
sets is called a topology on X, and is often denoted by T . Notice that it is a
collection of subsets of X which satisfies the following properties:

1. ∅, X ∈ T .

2. For any family F = {Gλ ∈ T |λ ∈ Λ}, we have
⋃

λ∈Λ

Gλ ∈ T .

3. For G1, G2 ∈ T , we have G1 ∩G2 ∈ T .

We introduced this technicality here (although it will not be used much in
the study of metric spaces), because often when we study subspaces of metric
spaces and their product spaces, we do not say “Open sets in subspace/product
space”. Rather we simply say subspace topology and product topology . We will
shortly see what is exactly the subspace and product topology, i.e., what are
all the open sets in a subspace and a product space. The important part of
this study will be to see if we can have the open sets in subspace and product
space in terms of open sets of the original metric spaces.
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2.4.1 Subspace topology

Here, we prove a major result for finding open sets in a subspace of a
metric space by using the open sets at hand.

Theorem 2.12. Let (X, d) be a metric space and (S, d) its subspace. A set G
is open in S if and only if there is an open set G′ in X such that G = G′ ∩S.
Proof. We shall use two notations: BX (x, r) and BS (x, r) to denote the open
balls centered at x and of radius r, in the space X and S respectively. First,
let G be open in S. We know that,

G =
⋃
x∈G

BS (x, rx),

for suitable choices of rx > 0. Now, the definition says

BS (x, rx) = {y ∈ S|d (x, y) < rx} ,
and

BX (x, rx) = {y ∈ X|d (x, y) < rx} .
It is clear from these definitions that BS (x, rx) = BX (x, rx) ∩ S. Hence, we
have

G =
⋃
x∈G

(BX (x, rx) ∩ S) =
(⋃

x∈G

BX (x, rx)

)
∩ S.

This proves the first part of the result.
Conversely, let G = G′ ∩ S, where G′ is open in X. We need to show that

G is open in S. Consider x ∈ G. Then, x ∈ G′ and x ∈ S. Since G′ is open
in X, there is some r > 0 such that BX (x, r) ⊆ G′. Also, we have seen that
BS (x, r) = BX (x, r)∩S ⊆ G′ ∩S = G. Hence, G is open in S. This is shown
in Figure 2.15.

FIGURE 2.15: Open set in subspace topology.
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This result directly gives us all the open sets in the subspace topology. Indeed,
all we have to do is take an open set in the whole space and intersect it with
our subspace. Whatever is common is the new open set.

Exercise 2.20. Consider (0, 1] as a subspace of (R, |·|). Is ( 12 , 1] open in this

subspace? What about
[
1
2 , 1
]
?

2.4.2 Product topology

Just like the previous section on subspace topology, here we will see what
are the open sets in the product space. However, we shall deal with the result
for the product of two metric spaces and leave it to the reader for product of
n metric spaces.

Theorem 2.13. Let (X, dX) and (Y, dY ) be metric spaces. Then, a set G is
open in the product space (X × Y, d) if and only if G = G1 ×G2, where G1 is
open in X and G2 is open in Y .

Proof. First, let G be an open set in X × Y . Then,

G =
⋃

(x,y)∈G

BX×Y ((x, y), r).

Now, consider BX (X, rx) and BY (y, ry). For any point (x′, y′) ∈ X × Y , we
have

d ((x, y), (x′, y′)) = max {dX (x, x′), dY (y, y′)} < r ⇔ dX (x, x′) < r

and dY (y, y′) < r.

That is to say

BX×Y ((x, y), r) = BX (x, r)×BY (y, r).

Hence, we have

G =
⋃

(x,y)∈G

(BX (x, r)×BY (y, r)) = (∪BX (x, r))× (∪BY (y, r)).

This completes the first part of the proof.
Now, let G = G1 × G2 ⊆ X × Y , where G1 is open in X and G2 is open

in Y . Let (x, y) ∈ G. Then, x ∈ G1 and y ∈ G2. Since G1 and G2 are open in
the respective spaces, we have rx and ry > 0 such that BX (x, rx) ⊆ G1 and
BY (y, ry) ⊆ G2. Then, consider r = min {rx, ry}. We have,

BX×Y ((x, y), r) = BX (x, r)×BY (y, r) ⊆ G1 ×G2 = G.

Hence, G is open.
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FIGURE 2.16: Open set in product topology.

Thus, a typical open set in X × Y is a product of open sets in X and Y as
shown in Figure 2.16.

Exercise 2.21. Find the open sets in the product space X1×X2×X3×· · ·×
Xn. Can we generalize it to arbitrary products?

2.5 Closed Sets

As an immediate consequence of defining open sets, it is now time to define
closed sets in any metric space. In a course on analysis, one may have studied
various definitions of closed sets in R which may include terminologies such
as limit point, sequences, convergence, and others. However, we avoid using
those terminologies since we have not yet defined them. Therefore, we make
the most natural definition of closed sets as follows:

Definition 2.5 (Closed set). A set S ⊆ X in a metric space (X, d) is closed
if its complement is open.

Remark. One may argue that a more natural definition for closed sets would
be those sets which are not open. Although this seems intuitive and natural,
we must take care that sets are not like doors: they may be open and closed
at the same time and can also be neither open nor closed. This is dealt with
in the text that follows.
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As we have been proceeding in Section 2.4, we first see the two trivial subsets
of any metric space: the empty set, ∅, and the whole space, X. Since Xc = ∅
and ∅c = X, and both these sets are open, from the definition of closed sets we
can conclude that both these sets are also closed. We also have other properties
of closed sets analogous to open sets. We state them and leave the proof as
an exercise to the reader.

Theorem 2.14. In a metric space (X, d), the following statements are true:

1. The empty set, ∅, and the whole space X are closed.

2. Finite union of closed sets is closed. However, arbitrary union of closed
sets may not be closed.

3. Arbitrary intersection of closed sets is closed.

To look at a counter example to show that arbitrary union of closed sets

may not be closed, consider the family F =
{[

1
n , 1
] ⊆ R

∣∣∣n ∈ N

}
of closed

intervals. First, our claim is that
⋃

n∈N

[
1
n , 1
]
= (0, 1]. To prove this claim, we

consider x ∈ ⋃
n∈N

[
1
n , 1
]
. Therefore, we have 0 < 1

n0
≤ x ≤ 1 for some n0 ∈ N,

i.e., x ∈ (0, 1] so that
⋃

n∈N

[
1
n , 1
] ⊆ (0, 1]. Conversely, if x ∈ (0, 1], then we have

x > 0 and x ≤ 1. By Archimedean property of N in R, ∃n0 ∈ N such that

n0x > 1, i.e., x > 1
n0

. Hence, x ∈
[

1
n0
, 1
]
and we get

⋃
n∈N

[
1
n , 1
]
= (0, 1]. We

advise the reader to draw appropriate diagrams for a better understanding.
Now, (0, 1]

c
= (−∞, 0] ∪ (1,∞). If we consider the point 0 ∈ (0, 1]

c
, for

any r > 0 we always have min
{

1
2 ,

r
2

} ∈ (0, 1] so that for any r > 0, B (0, r) �
(0, 1]

c
. Hence, (0, 1]

c
is not open and therefore (0, 1] is not closed. This proves

that arbitrary union of closed sets is not necessarily closed.

Exercise 2.22. Prove parts 2 and 3 of Theorem 2.14 which are not discussed
above.

Now, we shall look at known subsets of R and check if they are closed. First,
we look at N. Take any element x in N

c. If x < 0, then x + 1 < 1 so that
B (x, 1) ⊆ N

c. If 0 < x < 1, we can choose r = min
{

x
2 ,

1−x
2

}
so that B (x, r) ⊆

N
c. Similarly, if x > 1, then ∃n0 ∈ N such that n0 < x < n0 + 1. Therefore,

if we choose r = min
{

x−n0

2 , n0+1−x
2

}
, we have B (x, r) ⊆ N

c. Therefore, Nc is
open and hence N is closed. This working is depicted in Figure 2.17.

FIGURE 2.17: Method of construction of open balls around each point
in N

c.
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Exercise 2.23. Is Z closed in R?

We know that neither Q nor Qc are open in R. Therefore, we can also conclude
that these two sets are not closed as well.

Example 2.18. Let us try to find closed sets in a discrete metric space. We
know any subset of a discrete metric space is open. Therefore, if we take any
subset of the space and then consider its complement, it is again a subset of
the original space and hence open. Therefore, each set in a discrete metric
space is closed.

Exercise 2.24. Check if the following sets are closed in R
2 equipped with

the Euclidean metric.

1. S =
{
(x, y) ∈ R

2|xy = 0
}
.

2. The set of points on the unit circle x2 + y2 = 1.

3. S =
{
(x, y) ∈ R

2|x ∈ Q
}
.

What can you say about the sets when R
2 is equipped with the Manhattan

metric, d1, and when it is equipped with the maximum metric, d∞?

Before ending this section, we make an observation about finite sets in a metric
space.

Theorem 2.15. A finite set in a metric space is always closed.

Proof. Let (X, d) be a metric space and S = {x1, x2, · · · , xn} be a finite
set in X. Consider any point x ∈ Sc. We know the distances of each of
the point of S from x. Let ri = d (x, xi) for i = 1, 2, · · · , n. If we choose
r = min {r1, r2, · · · , rn} and construct an open ball B (x, r), we expect that
B (x, r) ⊆ Sc. This is shown in Figure 2.18. Suppose that this is not true.
Then, ∃y ∈ B (x, r) such that y /∈ Sc. But, y /∈ Sc means that y ∈ S and
hence y = xi0 for some i0 ∈ {1, 2, · · · , n}.

Now, we also have ri0 = d (x, xi0) < r = min {r1, r2, · · · , rn}. However, this
is not possible since r = min {r1, r2, · · · , rn} ≤ ri0 . Therefore our assumption
is wrong and B (x, r) ⊆ Sc. Hence, S is closed.

Exercise 2.25. Prove that the set
{
n+ 1

n

∣∣∣n ∈ N \ {1}
}

is closed in R,

equipped with the usual metric. Hint: Draw a picture of the set on the real
line and then try proving that the complement is open.

Exercise 2.26. What are the closed sets in subspace topology and product
topology, in terms of the closed sets of the original metric spaces in hand?
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FIGURE 2.18: Method of construction of open balls in the complement of
a finite set in any metric space.

2.6 Interior, Exterior, and Boundary Points

In the previous two sections, we tried to characterize sets in a metric
space based on certain properties. In this section, given a set, we shall try to
characterize the points of the metric space with respect to the given set. First,
we look at the motivation of open sets. We motivated the definition of open
sets by saying that every element in a set should have some “space” inside the
set. That space provided for each point was given through open balls.

These points are special to us. Since their personal open ball space lies
completely inside the set, we shall call them interior points . Similarly, sup-
pose there is a point in the metric space whose personal open ball space lies
completely outside a given set. Such points are called exterior points. Finally,
there may be points for which every personal open ball space is neither com-
pletely inside nor completely outside the given set. Such points will be called
boundary points. We now make the formal definitions of these concepts.

Definition 2.6 (Interior point). A point x ∈ X is called an interior point of
a set S ⊆ X if ∃ε > 0 such that B (x, ε) ⊆ S.

Definition 2.7 (Exterior point). A point x ∈ X is called an exterior point of
a set S ⊆ X if ∃ε > 0 such that B (x, ε) ⊆ Sc.

Definition 2.8 (Boundary point). A point x ∈ X is called a boundary point
of a set S ⊆ X if ∀ε > 0, B (x, ε) ∩ S �= ∅ and B (x, ε) ∩ Sc �= ∅.
Note. If the formal definition of boundary point seems intimidating (or con-
fusing), we can think of it like every open ball constructed around the point
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FIGURE 2.19: Pictorical representation of interior point (x1), Exterior point
(x3) and a boundary point (x2) in a metric space.

x has points from both the given set and outside it. Therefore, x is neither
properly interior nor exterior.

A pictorical representation of interior, exterior, and boundary points is given
in Figure 2.19.

Example 2.19. Consider any metric space (X, d). Earlier, we have con-
structed open balls around some points. Let x0 ∈ X be fixed and consider
an open ball

B (x0, 1) = {y ∈ X|d (y, x0) < 1} .

Then, we can easily see that every point in B (x0, 1) is an interior point.

The following exercises will help the reader in actually finding these special
types of points for known sets.

Exercise 2.27. Consider the following sets in R
2 equipped with the Euclidean

metric. Determine the interior, exterior, and boundary points for each of the
sets:

1.
{
(0, y) ∈ R

2|y ∈ R
}
.

2. Q×Q =
{
(x, y) ∈ R

2|x, y ∈ Q
}
.

3.
{
(x, y) ∈ R

2|xy �= 0
}
.

Hint: Think geometrically for each of these sets before starting to write a
rigorous proof.
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Exercise 2.28. Find out the interior, exterior, and boundary points of the
following subsets of R.

1. (a, b) ⊆ R where −∞ < a < b <∞.

2. N.

3. Q
c.

Since we have defined these special types of points, we can now start collecting
them to form sets. As a matter of notation, the collection of interior points
of a set S, called the interior of the set, will be denoted by Int (S) or So.
Similarly, the set of boundary points, called the boundary of the set, will be
denoted by ∂S and the set of all exterior points will be denoted by Ext (S),
and will be called exterior of S.

The first observation we make is that the interior of any set is open. To
prove it, assume any point x ∈ So. Then, ∃ε > 0 such that B (x, ε) ⊆ S. Now,
since open ball is an open set, ∀y ∈ B (x, ε), ∃δ > 0 such that B (y, δ) ⊆
B (x, ε) ⊆ S. This gives us that y is also an interior point of S. Since y was
arbitrary, we can conclude that B (x, ε) ⊆ So and So is open.

Also, suppose for any given set S, let there by an open set R such that
So ⊆ R ⊆ S. Suppose we assume the strict inclusion So ⊂ R. This would
mean that ∃x ∈ R and x /∈ So. However, since R is open, ∃ε > 0 such that
B (x, ε) ⊆ R ⊆ S so that x is an interior point of S. This is a contradiction!
Therefore, the strict inclusion cannot hold. What does this mean? It means
that there is no open set “between” a set and its interior. Mathematically
speaking, the interior of a set is the largest open set contained in the given
set. We summarize this as a theorem.

Theorem 2.16. In a metric space (X, d), given a set S ⊆ X, the interior of
S is the largest open set contained in S.

For an open set, every point is its interior point. This follows trivially from
the definition of open set. Conversely, if every point of a set is its interior
point, then to each point we can have a personal open ball space inside the
set. Therefore, we have a characterization of open sets in terms of its interior
points as follows:

Theorem 2.17. In a metric space (X, d), a set G ⊆ X is open if and only if
G = Go.

Exercise 2.29. Give an example of a non-empty set in a metric space with
empty interior. What can you say about its boundary?

On similar lines, we can observe that the exterior of a set is actually the
interior of its complement and hence open. But, what can we say about the
boundary? Is the boundary of a set open? Clearly, it is not. This is because
the open ball about any point on the boundary also intersects the exterior.
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A next natural question we can ask is: Is the boundary of the set closed? We
see that any point in the complement of the boundary of a set is either an
interior point or an exterior point, i.e., (∂S)

c
= Int (A) ∪ Ext (A). Since both

interior and exterior are open sets, we can conclude that ∂S is a closed set.
From the same arguments we gave to conclude that boundary is not open, we
can also conclude that boundary of a set and that of its complement are the
same. The textbook proof of this result is left as an exercise to the reader.

Exercise 2.30. In a metric space (X, d), for any set S ⊆ X, prove that
∂S = ∂Sc.

Note. ∂Sc and (∂S)
c
are, in general, two different sets. The first denotes the

boundary of the complement of S while the latter denotes the complement of
the boundary of S.

2.7 Limit and Cluster Points

Consider visiting a mathematics convention where all great mathemati-
cians of our time have been invited. An interesting phenomenon that is bound
to occur is that once any of the great mathematicians enters the convention,
everyone tries to get as close to the person as possible (maybe for taking an
autograph or a photograph). On the other hand, people such as ourselves, who
are not so famous in the community, can have our own space where no one
bothers us. Based on this phenomenon, we will be defining two special types
of points for a given set in a metric space: limit point and cluster point .

Definition 2.9 (Limit point). In a metric space (X, d), a point x ∈ X is
called a limit point of a set S ⊆ X if ∀ε > 0, B (x, ε) ∩ S �= ∅.
Definition 2.10 (Cluster points). In a metric space (X, d), a point x ∈ X is
called a cluster point of a set S ⊆ X if ∀ε > 0, B (x, ε) ∩ (S \ {x}) �= ∅.
In the situation described above, the famous mathematicians invited to the
convention are the cluster points of the set of people in the convention while
all the non-famous mathematicians (such as ourselves) are limit points. It
is to be noted that many books do not keep a difference between limit and
cluster points. The definition of cluster points which we have given is the
definition of limit points in various books. Such books then name our limit
points as adherent points. If the reader has gone through a course on analysis,
then he or she might have come across adherent points and limit points in
R. However, throughout this book we shall make sure to keep a difference
between limit points and cluster points and will not name any point in the set
as an adherent point. The cluster points can also be named as accumulation
points or condensation points .
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Note that the main difference in limit and cluster points from the definition
we gave above is that every open ball around a limit point can contain itself
as the only member in the intersection. On the other hand, this is not allowed
for cluster points. Every open ball constructed around a cluster point must
have at least one point of the set other than itself.

Based on the definition, we can make the following observations immedi-
ately, which we state as a theorem. The textbook proof for this is left to the
reader.

Theorem 2.18.

1. Every point of the set is a limit point.

2. Every cluster point of a set is a limit point.

Exercise 2.31. Prove Theorem 2.18

An intuition may tell the reader, at this point, that the points on the boundary
of a set are cluster points. This thinking is natural and is in fact encouraged.
However, whatever we think to be true needs to be proved with mathematical
rigor. So, let us first see why do we think that boundary of a set consists of
cluster points.

Firstly, the definition of boundary of a set mentions that every open ball
constructed about a boundary point has a non-empty intersection with the
given set and its complement. This is similar to our definition of cluster point.
However, there is a small glitch! What if the boundary point is included in
the set? There may be a possibility of getting an open ball which contains no
point other than itself in the intersection. To illustrate this, let us look at an
example.

We have seen that N has an empty interior and in fact, every point in N

is a boundary point. So, if we take any n ∈ N and construct the open ball
B
(
n, 12
)
=
(
n− 1

2 , n+ 1
2

)
, then we get

(
n− 1

2 , n+ 1
2

) ∩ N = {n}. Therefore,
N is an example where the boundary points are not cluster points. In fact,
we have also proved that no point in N is a cluster point. Let us move a step
ahead and ask whether N has any real cluster point.

To see this, let r ∈ R. Then, we have one of the two cases r < 1 or r > 1.
The case where r = 1 is already handled since we know that 1 is not a cluster
point of N. If r < 1, then we construct an open ball B

(
r, 1−r

2

)
which has no

natural number inside it. Similarly, if r > 1 and r is a natural number, then we
know that r is not a cluster point. Therefore, we consider the case where r > 1
and r is not a natural number. Therefore, ∃n ∈ N such that n < r < n + 1.
Now, we construct the open ball B

(
r, 12 min {r − n, n− r + 1}) which contains

no natural number. Therefore, we can conclude that N has no cluster points.
Previously we made an observation that every point in a given set is a

limit point. Is the converse true? Does every limit point of a set always lie in
the set? The answer to this is no! A simple example is the unit open ball in
R

2. All points on the unit circle are limit points of this open ball but none
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of them is inside the open ball. Therefore, in general, we may say that limit
points may not always lie in the set. But an interesting question that arises
is: What would happen if all limit points lie in the set?

In this case, any point outside the set will have a personal open ball space
which does not intersect with our set. This is because, if not, then that point
will again be a limit point and would contradict the hypothesis we assumed.
This would further imply that the complement of the set is open and hence
the given set is closed.

Here, we have proved that if a set contains all of its limit points, then it
is closed. One may now ask the converse question: If a set is closed, will it
contain all of its limit points? Suppose not! Then, there is at least one limit
point outside the given closed set and hence is in its complement. However,
the complement is open and therefore this limit point has a personal open ball
space with no intersection with the given set. This contradicts the definition
of limit point.

Therefore, we have characterized closed sets in terms of limit points as the
following theorem mentions.

Theorem 2.19. A set F in a metric space is closed if and only if it contains
all of its limit points.

We leave the textbook proof as an exercise to the reader.

Exercise 2.32. Prove Theorem 2.19.

As a next step, let us collect all the limit points of a given set S and make
another set, say S̄. This set will be called closure of S and contains all of its
limit points. As the name suggests, we expect S̄ to be closed. So, let x be a
limit point of S̄. Then, ∀ε > 0, B (x, ε)∩ S̄ �= ∅. Hence, ∃y ∈ B (x, ε)∩ S̄. This
means that y is a limit point of S and also is in the open ball B (x, ε). Hence,
∃δ > 0 such that B (y, δ) ⊆ B (x, ε) and also, B (y, δ)∩S �= ∅. This proves that
x is a limit point of S and therefore, S̄ contains all of its limit points. From
the above characterization (Theorem 2.19), we can conclude that closure of a
set is a closed set.

Now, just as we did in the case of interior of a set, let S ⊆ R ⊆ S̄. Can
the strict inclusion R ⊂ S̄ hold when R is closed? Suppose it does hold. Then,
there is at least one point x in S̄ which is not in R. Since R is closed, it
must contain all of its limit points and hence x is not a limit point of R.
Therefore, we have an ε > 0 such that B (x, ε) ∩R = ∅, which further implies
B (x, ε) ∩ S = ∅. Thus, we reach at a conclusion that x is not a limit point
of S, which is a contradiction to the fact that x ∈ S̄. Therefore, there is no
closed set “between” S and its closure. We summarize this in the following
theorem.

Theorem 2.20. The closure of a set S is the smallest closed set containing S.
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Let us look at the boundary of a set once again. We have already mentioned
that the boundary of a set contains limit points of the set. Can it contain any
interior point? The answer is no! It is clear from the definition of boundary
and interior itself. Therefore, for any set S, we can conclude that ∂S ⊆ S̄ \So.
The real question that needs to be asked is: Are they equal? Or do we have
examples where the inclusion is strict?

Let us try to prove the equality. If we get stuck in the proof, we shall get
an idea of constructing an example for strict inequality. Let x ∈ S̄ \So. Then,
x is a limit point of S and we have ∀ε > 0, B (x, ε) ∩ S �= ∅. If for some ε > 0
we get B (x, ε)∩Sc = ∅, then x would be an interior point of S. This would be
a contradiction to our hypothesis. Therefore, ∀ε > 0, we get B (x, ε) ∩ S �= ∅
and B (x, ε) ∩ Sc �= ∅. Hence, ∂S = S̄ \ So. Note that many authors consider
this as the standard definition of the boundary, and it can be found in many
books on metric spaces.

Before closing this section, we define another special type of set which will
be interesting to study once we have developed the notion of sequences.

Definition 2.11 (Dense sets). A set S in a metric space X is said to be dense
if every point in X is a limit point of S.

An immediate consequence of this definition is that every metric space is dense
in itself.

Let us look at the metric space we know by experience, (R, d), where d
is given by the absolute value function. Now, what are the dense sets in R?
Those who have taken a course in analysis will know that Q and Q

c are both
dense. The set of rational numbers is countable, while the set of irrational
numbers is not. Similarly, if we look at (Rn, d2), then the set Q

n is dense in
R

n and is countable. Therefore, it seems that these metric spaces are special.
Based on this idea, we now make the following definition of what is called a
separable metric space.

Definition 2.12 (Separable). A metric space (X, d) is separable if it has a
countable dense subset.

Note that since every metric space is dense in itself, if X is countable, then
(X, d) is separable.

Example 2.20. Consider the metric space �p for p ≥ 1 and consider the set
S = {(ri)∞i=1 ∈ �p|ri ∈ Q, where ri = 0 for i > n for n ∈ N}. This means the
set is a collection of all rational sequences which, after finitely many terms,
take the value 0. Let x = (xi)

∞
i=1 be any point in �p. Since Q is dense in R,

∀ε > 0, there is a sequence r =
(
r
(ε)
i

)∞
i=1

∈ S such that d (x, r) < ε. This

is because (xi)
∞
i=1 ∈ �p means

∞∑
i=1

|xi|p converges. Consequently,
∞∑

i=n+1

|xi|p

also converges to that
∞∑

i=n+1

|xi|p < ε
2 for some n ∈ N. From the density of
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rationals, we can also have
n∑

i=1

|xi − ri| < ε
2 . Now, combining these two we get

the estimate for d (x, r) as mentioned above. This shows that S is dense in
�p. Also, S is countable (why?). Hence, �p is separable metric space for each
p ≥ 1.

Let us now look at another example of a separable metric space which is not
so trivial. If the reader feels that the proof is not understandable, the reader
is advised to visit this proof after studying continuity, uniform continuity, and
density in R. The proof uses all three concepts together.

Example 2.21. Consider the set C [0, 1] equipped with the metric d∞ (sup
metric). Let f ∈ C [0, 1]. Then, it is easy to see that f is uniformly continuous7

on [0, 1].
Therefore, ∀ε > 0, ∃n0 ∈ N such that ∀x, y ∈ [0, 1] with |x− y| < 1

n0
, we

have |f (x)− f (y)| < ε. This is just a consequence of the definition of uniform
continuity and we have done nothing new. Now, we define a polygonal function
g : [0, 1] → R as follows:

(i) ∀k ∈ {0, 1, · · · , n0}, g
(

k
n0

)
= f

(
k
n0

)
.

(ii) The function g is linear in each of the subintervals
(

k
n0
, k+1

n0

)
for k ∈

{0, 1, · · · , n0 − 1}.
Construction of g is represented in Figure 2.20.

By this definition of g, it is easy to check that d∞ (f, g) < ε
2 . We leave

this computation as an exercise to the reader and move forward. We make

another function h such that h
(

k
n0

)
is rational and d (h, g) < ε

2 . Now, by

simple application of triangle inequality we get d (f, h) < ε, thereby making
the set of all such functions h dense in C [0, 1]. Also, this set is countable
(why?) so that C [0, 1] is separable.

There is another proof of this fact that C [0, 1] is separable. It uses a famous
result called the Weierstraβ approximation theorem, which states that any
continuous function on a closed and bounded interval can be approximated
by a sequence of polynomials which converge uniformly to the given func-
tion. Since it uses too many technical terms, we skipped the approach in this
text. However, we encourage the reader to search up on the proof involving
Weierstraβ approximation of functions.

7The readers who are not familiar with uniform continuity are advised to postpone this
example until Chapter 6, where we have formally defined the concept and developed some
theory on it. Otherwise, one may refer to any Real Analysis book for reference on uniform
continuity of real-valued functions.
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FIGURE 2.20: Approximating a continuous function with a polygonal func-
tion.

Exercise 2.33. Prove that the sets considered to prove that �p and C [0, 1]
are separable are indeed countable.

Exercise 2.34. What can you say about the separability of an uncountable
set equipped with discrete metric?

Now, let us look at a question posed by us in the section on open sets. We
asked: Is every open set (in any metric space) a countable union of open balls?
Indeed, we answered the question negatively as in Example 2.17. We would
now like to see when can the question be answered affirmatively.

Theorem 2.21. In a separable metric space, every open set is a countable
union of open balls.

Proof. Let X be a separable metric space and let Y be its countable dense
subset. Let G be an open set in X. Since Y is dense, the points of G can be
made as close to the points of Y as we please. Therefore, if we consider the
set G ∩ Y , and around each point in this set, we construct an open ball of
appropriate radius, we expect to get the whole union as G. First, we observe
that ⋃

y∈G∩Y

B (y, ry) ⊆ G,

for appropriate ry > 0 because G is open. Now, we would like the other
subsethood relation.

Let x ∈ G. Then, there is a rx > 0 such that B (x, rx) ⊆ G. Let y ∈ Y
be such that d (x, y) < rx

2 and choose ry > 0 such that d (x, y) < ry <
rx
2 .
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Clearly, now x ∈ B (y, ry) ⊆ ⋃
y∈G∩Y

B (y, ry). Hence, the desired equality is

obtained.

Clearly, since the discrete space defined on an uncountable set is not separable
(Exercise 2.34), there are open sets which cannot be written as a countable
union of open balls. One can also ask the converse question: If every open set
in a metric space is a countable union of open balls, is the metric space sepa-
rable? To answer this question, we would require the knowledge of continuum
hypothesis and a few technical terms beyond the scope of this text. Hence, we
do not discuss the details here. However, we give the reader a hint that if one
assumes the continuum hypothesis to be true, then our question is answered
positively.

2.8 Bounded Sets

The notion of bounded sets in R must be intuitively clear to almost every
reader. However, we review it once again before we can abstract its properties.
In R, we call a set S to be bounded above if there is a real number u ∈ R such
that ∀x ∈ S we get x ≤ u. Similarly, we call the set S to be bounded below if
∃l ∈ R such that ∀x ∈ S we get l ≤ x. Overall, a set is said to be bounded if
∃M > 0 such that ∀x ∈ S we have |x| ≤M .

All these three notions of boundedness are not really useful in an abstract
metric space. This is because the first two notions use partial order on R,
which may not be available in every metric space. On the other hand, the
third notion uses norm instead of metric and we have decided in the beginning
of this chapter not to talk about norms. However, the third notion does give
to us an idea to define a bounded set in arbitrary metric space.

To do so, let us first look geometrically in R
2 which is easy to visualize. Let

us look at B (0, 1), the open unit ball in the Euclidean plane R
2. Geometric

intuition tells us that this set is bounded. Why do we have this intuition?
This is because of a simple yet a non-trivial reason. As a part of natural
processing, we start looking at distances between points in a given set. If the
distance goes on increasing for certain points, our intuition tells us that this
set must be unbounded. We shall use this natural intuition to define bounded
sets.

Definition 2.13 (Bounded sets). A set S in a metric space X is said to be
bounded if the set {d (x, y) |x, y ∈ S} is bounded in R.

Remark. One may argue that in the definition, we may have excluded the
empty set. Since intuitively, the empty set seems bounded, we would like it
to satisfy the definition of our bounded sets. We observe that for the empty
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set, the corresponding set {d (x, y) |x, y ∈ ∅} is itself empty. From analysis, we
know that ∅ is bounded in R

8, and therefore, ∅ is bounded in any arbitrary
metric space X.

An immediate consequence of this definition is the concept of diameter of a
set. Since for a bounded set in R, supremum exists (by the LUB axiom), we
can exploit this property to get the following definition.

Definition 2.14 (Diameter). The diameter of a bounded set S in a metric
space X is defined as

diam (S) = sup {d (x, y) |x, y ∈ S} .

Note that the diameter of a set is the measure of how far two points in the set
can be. However, it is not guaranteed that the set will contain points x and y
such that d (x, y) is the diameter of the set. A classic example is the unit open
ball in R

2, equipped with the Euclidean metric. A simple computation would
lead us to the fact that the diameter of the unit open ball is 2. However, for
any two points in the open ball, the distance is always strictly less than 2.

Also, the name diameter is misleading in a sense that one may think
B (x, r) has the diameter 2r. But, this is not always the case. Consider the
discrete metric space and an open ball B (x, 1) about any point x ∈ X. Then,
we have B (x, 1) = {x} and diam (B (x, 1)) = 0.

However, consider the following for any two points y, z ∈ B (x, r) (for an
arbitrary metric space).

d (y, z) ≤ d (y, x) + d (x, z)

< r + r = 2r.

Therefore, the set {d (y, z) |y, z ∈ B (x, r)} is bounded above by 2r and hence
diam (B (x, r)) ≤ 2r. That is to say that the diameter of an open ball never
exceeds twice its radius.

We now characterize bounded sets as follows.

Theorem 2.22. A set S in a metric space X is bounded if and only if ∃x0 ∈ X
and r > 0 such that S ⊆ B (x0, r).

Proof. First, consider that S is bounded. Therefore, the set {d (x, y) |x, y ∈ S}
is bounded in R. Let r = diam (S). For a fixed x0 ∈ S, consider the open
ball B (x0, r + 1). Now, if y ∈ S, then d (x0, y) ≤ r < r + 1. Hence, y ∈
B (x0, r + 1), i.e., S ⊆ B (x0, r).

8Notice that if we want to prove that ∅ is bounded, all we have to do is produce a real
number M > 0 such that ∀x ∈ ∅, |x| ≤ M . We claim that M = 1. If someone wants to prove
us wrong, they will have to find an element x ∈ ∅ such that |x| > 1, which is not possible.
Therefore, we win and the empty set, ∅, is bounded in R.
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Conversely, let there be a point x0 ∈ X and a positive number r such that
S ⊆ B (x0, r). Now, for any two points x, y ∈ S we have

d (x, y) ≤ d (x, x0) + d (x0, y) < r + r = 2r.

Hence, the set {d (x, y) |x, y ∈ S} is bounded in R and consequently S is
bounded in X.

This is sometimes used as an equivalent definition of boundedness of sets in a
metric space. We leave some simple results regarding the diameter of a set as
an exercise to the reader.

Exercise 2.35. Let A and B be non-empty subsets of a metric space (X, d).
Prove the following:

1. diam (A) = 0 if and only if A is a singleton set.

2. If A ⊆ B, then diam (A) ≤ diam (B).

3. For each x ∈ A and y ∈ B, d (x, y) ≤ diam (A ∪B).

4. If A ∩B �= ∅, then diam (A ∪B) ≤ diam (A) + diam (B).

2.9 Distance Between Sets

Until now, we tried to measure the distance between two points in a metric
space. Now, we may take a step forward and ask ourselves: How far is a point
from a given set? This means we wish to find out the distance between a
given point and a given set. The first thing we should ask ourselves is: Is this
question meaningful? In other words, is there any known method to calculate
the distance of a point from a set? Well, there isn’t! But, there is an intuition.
Since we are provided with a metric function, we know the distances between
any two points. Now, for notational purposes, let x ∈ X be the given point
and A ⊆ X be the given set, where (X, d) is a metric space. The first thing
that comes to our mind is let us find out all the distances of the point x with
each point in A. Then, by intuition, the distance of x from A would be the
distance between x and the closest point to x in A. In mathematical terms,
the closest point (or distance) will be given by infimum. Therefore, we now
make the formal definition.

Definition 2.15 (Distance between a point and a set). The distance between
a point x ∈ X and a set A ⊆ X of a metric space X is given by

d (x,A) = inf {d (x, y) |y ∈ A} .
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Note. One may question that instead of infimum, why could we not use
minimum? One must observe that there could be infinitely many points in
the set and therefore, the minimum may not always exist. However, since the
distance between points is bounded below by 0, the set used in Definition 2.15
is bounded below and the infimum always exists. In fact, we can also comment
that the distance between the point and the set is non-negative, as per our
intuition.

Let us, as an example, try to find the distance between a point and a set in
R, with the usual metric.

Example 2.22. Consider R with the usual metric and the set [0, 1]. Let us find
the distance of 2 ∈ R from the set [0, 1]. First, we observe that for any point
0 ≤ x ≤ 1, 1 ≤ |2− x| = 2 − x ≤ 2. Therefore, the set {d (2, x) |x ∈ [0, 1]}
is bounded below by 1. Now, let ε > 0 and consider x = max

{
0, 1− ε

2

}
.

Therefore, we have

|2− x| = 2− x

≤ 2−
(
1− ε

2

)

= 1 +
ε

2
< 1 + ε.

Hence, 1 + ε is not a lower bound for the set {d (2, x) |x ∈ [0, 1]} and we have
d (2, [0, 1]) = 1.

Let us now ask ourselves a question: What would happen if the point belongs
to the set? Clearly, if x ∈ A, then d (x, x) = 0 ∈ {d (x, y) |y ∈ A}. Also, this set
is bounded below by 0, which suggests that the infimum must be 0. Therefore,
we have the following result.

Theorem 2.23. If x ∈ A, then d (x,A) = 0.

One may ask the converse question, Does d (x,A) = 0 imply x ∈ A? To see
this, let us consider the following example.

Example 2.23. Again, let us consider R with the usual metric and the set
A = (0, 1). Let us find d (0, A). First, we see that the sequence

(
1
n

)
n∈N

con-

verges to 0, which means that some points of (0, 1) can be made as close to
0 as we like. Now, consider ε > 0. Then, we know that ∃n0 ∈ N such that
1
n0

< ε. Hence, if we choose 0 < x < 1
n0

, then we have d (0, x) = x < ε and
therefore inf {d (0, x) |x ∈ (0, 1)} = 0.

The above example shows us that it is possible for the distance between a
point and a set to be 0 even if the point does not belong to the set. Therefore,
the converse question asked above is negatively answered.

In the above example, we observe that 0 was an accumulation point of
(0, 1). Therefore, it is natural to ask: Is the distance between a set and its
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accumulation point (which does not belong to the set) 0? Let us try to answer
this question affirmatively.

Consider a set A ⊆ X of a metric space (X, d) and its accumulation
point l /∈ A. By the definition, we know that ∀ε > 0, ∃x ∈ A such that
d (l, x) < ε. Therefore, ε > 0 is not a lower bound for the set, {d (l, x) |x ∈ A}
and at the same time, the set is bounded below by 0. Hence, d (l, A) =
inf {d (l, x) |x ∈ A} = 0.

Conversely, suppose that d (l, A) = 0 for some l /∈ A. Then, ∀ε > 0,
∃d (l, x) ∈ {d (l, x) |x ∈ A} such that d (l, x) < ε. This further means that
∀ε > 0, ∃x ∈ A such that d (l, x) < ε, i.e., l is an accumulation point of A.
Therefore, we have proved the following.

Theorem 2.24. Consider a point l ∈ X and a set A ⊆ X, where (X, d)
is a metric space such that l /∈ A. Then, d (l, A) = 0 if and only if l is an
accumulation point of A.

Now, we move another step ahead and define the distance between two sets
in a metric space. The basic intuition remains the same and therefore, we do
not provide all the details as above.

Definition 2.16 (Distance between sets). Given two sets A and B in a metric
space (X, d), the distance between A and B is given by

d (A,B) = inf {d (x, y) |x ∈ A, y ∈ B} .
Exercise 2.36. It is clear that if A∩B �= ∅, then d (A,B) = 0. Is the converse
true? Justify. What can you say when d (A,B) = 0 but A ∩B = ∅?
As first time readers, we would have guessed that if A and B are two disjoint
open sets with a common accumulation point, then their distance can be zero.
However, this is not restricted to disjoint open sets alone. The next example
shows the same from disjoint closed sets.

Example 2.24. Consider the metric space (R, |·|) and the two sets N

and A =
{
n+ 1

n |n ∈ N \ {1}}. Clearly, N and A are closed in R. Also,
N ∩ A = ∅, since all elements of A are rational numbers. We know that the
set
{∣∣m− n− 1

n

∣∣ |m ∈ N, n+ 1
n ∈ A

}
is bounded below by 0.

Let ε > 0. By Archimedean property, ∃n ∈ N such that 1
n < ε. Then, for

n ∈ N and n+ 1
n ∈ A, we have∣∣∣∣n− n− 1

n

∣∣∣∣ = 1

n
< ε.

Hence, ε > 0 is not a lower bound for the set, and we get d (N, A) = 0.

Exercise 2.37. If A and B are non-empty subsets, of a metric space (X, d),
then prove the following:

1. diam (A ∪B) ≤ diam (A) + diam (B) + d (A,B).

2. ∀x, y ∈ X, d (x,A) ≤ d (x, y) + d (y,A).
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2.10 Equivalent Metrics

In earlier sections, we saw that on the same set X, we can define as many
metrics as we want and as a consequence, each yields a collection of open sets.
The question remains whether these open sets defined by different metrics are
truly different. In this section, we try to answer this question. But, before that,
we first look at an example from the very common metric space R2, for which
we have gained quite a lot of experience and which is also easy to visualize.

Example 2.25. Consider the set R2 equipped with two different metrics: d1
and d2, given by Equations (2.9) and (2.7), respectively.

Now, consider the open balls B1 (0, 1) and B2 (0, 1), the open unit balls in
d1 and d2 metrics, respectively.

B1 (0, 1) =
{
(x, y) ∈ R

2| |x|+ |y| < 1
}
,

B2 (0, 1) =
{
(x, y) ∈ R

2|
√
x2 + y2 < 1

}
.

If we draw the open balls (boundary), it will look as in Figure 2.21. As is
visible, B1 (0, 1) ⊆ B2 (0, 1). However, we need to prove such an observation.
First, notice that

(|x|+ |y|)2 = x2 + y2 + 2 |x| |y| ≥ x2 + y2 ≥ 0.

FIGURE 2.21: d1 open unit ball “fits” inside the d2 open unit ball.
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Hence, we have √
x2 + y2 ≤ |x|+ |y| .

Therefore, if we consider (x, y) ∈ B1 (0, 1), then we have the following

√
x2 + y2 ≤ |x|+ |y| < 1,

which further means (x, y) ∈ B2 (0, 1), i.e., B1 (0, 1) ⊆ B2 (0, 1).

Now, consider another open ball with respect to d2,

B2

(
0,

1√
2

)
=

{
(x, y) ∈ R

2
∣∣∣√x2 + y2 <

1√
2

}
.

The situation now looks as shown in Figure 2.22.

Notice that (|x| − |y|)2 ≥ 0 leads us to

x2 + y2 ≥ 2 |x| |y| ,

which further gives

x2 + y2 ≥ 1

2
(|x|+ |y|)2 .

FIGURE 2.22: There is a d2 open ball which “fits” inside the d1 open unit
ball.
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Therefore, for any (x, y) ∈ B2

(
0, 1√

2

)
, we have

|x|+ |y| ≤
√
2
√
x2 + y2 < 1.

Hence, B2

(
0, 1√

2

)
⊆ B1 (0, 1).

What did we observe in the example? We saw that for the two metrics d1 and
d2 defined on R

2, in each of the open unit balls, we can have another smaller
open ball with the same center. Also, in R

2, we are equipped with the two
operations of addition and scaling, so that this holds true not only for the
open balls around origin, but for any open ball about any point in R

2 and
of any positive radius. To put this rigorously, we have the following amazing
property of the two metrics d1 and d2 in R

2:

∀x ∈ R
2 and ∀r > 0,∃r′ > 0 such that B1 (x, r

′) ⊆ B2 (x, r),

and

∀x ∈ R
2 and ∀r > 0,∃r′′ > 0 such that B2 (x, r

′′) ⊆ B1 (x, r).

One may ask: Why is such a property important? This means we now have
to comment upon the consequences of this property. Let us look at open sets
defined with respect to the two metrics d1 and d2. Let U be an open set with
respect to d1. Now, take any point x ∈ U . Since U is open, there is a d1-open
ball around this which is completely contained in U . By the translation and
scaling properties, we can take this open ball to origin and make it the unit
open ball. From the above example, we see that there is a smaller d2-open ball
inside this one and again by translation and scaling, we can take the whole
setting back to our set U . Therefore, in U , about every point x, there is also
a d2-open ball completely contained in U . This means that U is open in d2.
Similarly, we can say that if U is open in d2, then it is open in d1. However,
the arbitrary choice of U forces us to conclude that the open sets defined by
d1 are exactly the same as those defined by d2. We leave the textbook proof
of the above explanation as an exercise to the reader.

Exercise 2.38. Prove that the open sets defined with respect to d1 are exactly
the same as those defined with respect to d2 in the set R2.

The next question one can ask is: Can we generalize this to more metrics and
more sets? Since the arguments required for answering this question affirma-
tively, at least in some cases, is essentially the same as above, we leave it as
exercises to the reader.

Exercise 2.39. Prove that the open sets in R
2 defined with respect to d2 and

d∞ are exactly the same.
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Exercise 2.40. Prove that the metrics dp1
and dp2

, where p1, p2 ≥ 1 and
p1 �= p2 defined on R

n as

dp (x,y) =

(
n∑

i=1

|xi − yi|p
) 1

p

for p ≥ 1 and x = (xi)
n
i=1 ,y = (yi)

n
i=1 ∈ R

n define the same collection of
open sets.

Based on these observations, we now define what is called equivalent metrics .

Definition 2.17 (Equivalent metric). If d1, d2 are two metrics defined on the
same set X, they are said to be equivalent if for all open sets U with respect
to metric d1, U is also open with respect to d2 and vice-versa.

Remark. From Exercise 2.40, we can conclude that all p-metrics on R
n are

equivalent. This further means that to study (Rn, dp) for p ≥ 1, it is sufficient
to study only one of them. All others will have the same properties.9

In all the above description, we saw that if we can have open balls (with
respect to different metrics) inside one another, then metrics can be equivalent.
However, they were just examples! Can we have such a result for any two
metrics? And, can we answer the converse question also? First, let us answer
the converse question, i.e., if there are two equivalent metrics, then can we
have open balls inside one another? Let X be the given set and d1, d2 be two
equivalent metrics defined on X.

Consider B1 (x, r), the d1-open ball centered at x ∈ X and of radius r >
0. Since the metrics are equivalent, B1 (x, r) is also open with respect to
d2, i.e., ∃r′ > 0 such that B2 (x, r

′) ⊆ B1 (x, r). Similarly, we can argue for
B2 (x, r). Therefore, for equivalent metrics, we can have the open balls inside
each other.

Now, suppose that we can have these balls inside one another, i.e., if d1, d2
are two metrics on the same set X, then

∀x ∈ X and ∀r > 0,∃r′ > 0 such that B1 (x, r
′) ⊆ B2 (x, r),

and

∀x ∈ X and ∀r > 0,∃r′′ > 0 such that B2 (x, r
′′) ⊆ B1 (x, r).

9This will be clear when we study further properties like convergence, continuity, and
compactness further in the text.
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Let U be an open set with respect to d1 and let x ∈ U . Then, ∃r >
0 such that B1 (x, r) ⊆ U . Also, ∃r′ > 0, such that B2 (x, r

′) ⊆ B (x, r) ⊆ U .
Therefore, U is also open with respect to d2. Similarly if U is open with respect
to d2, from the above reasoning, it is also open with respect to d1.

Hence, we have the following result.

Theorem 2.25. Two metrics d1 and d2, defined on the same set X, are
equivalent if and only if

∀x ∈ X and ∀r > 0,∃r′ > 0 such that B1 (x, r
′) ⊆ B2 (x, r),

and

∀x ∈ X and ∀r > 0,∃r′′ > 0 such that B2 (x, r
′′) ⊆ B1 (x, r)

where B1 (x, r) denotes the open ball centered at x ∈ X of radius r, with
respect to the metric d1 and B2 (x, r) denotes the open ball centered at x ∈ X
of radius r, with respect to metric d2.

Exercise 2.41. Is the discrete metric equivalent to the metric d1, each defined
on R

2?

In Exercise 2.40, the reader must have proved that any two p-metrics on
R

n are equivalent. Moving a step further, we may ask: Are the �p metrics
equivalent? The question is natural in the sense that the metric is defined with
the motivation from R

n, except that we have certain additional conditions of
series convergence. First, we see that for two metrics to be equivalent, they
must be defined on the same set. Therefore, we first check if two sets �p1 and
�p2 are same when p1 �= p2. With the usual notation, �p is defined to be the

set of all sequences (xi)
∞
i=1 such that the series

∞∑
i=1

|xi|p converges.

Now, consider the two sets �p1 and �p2 , where p1 �= p2, and without loss of
generality let us assume that p1 > p2. Consider the sequence

(
1

np2

)
n∈N

. Since

p1

p2
> 1, the series

∞∑
n=1

1

n
p1
p2

converges, while the series
∞∑

n=1

1
n is not convergent.

Therefore,
(

1
np2

)
n∈N

∈ �p1 but
(

1
np2

)
n∈N

/∈ �p2 . Hence, �p1 �= �p2 . Therefore,
we cannot talk about the equivalence of the metrics dp for �p.

Finally, we consider another set of interest, and of importance, C [a, b] for
a < b. Recall that it is the set of all continuous real valued functions defined
on the interval [a, b]. We can define the metrics on C [a, b] in the following
way:

dp (f, g) =

⎛
⎝

b∫
a

|f (x)− g (x)|p dx
⎞
⎠

1
p

,
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for p ≥ 1. And,
d∞ (f, g) = sup

x∈[a,b]

{|f (x)− g (x)|} .

We want to see if these metrics are equivalent. We shall see the easy case, d1
and d∞.

Observe that

d1 (f, g) =

b∫
a

|f (x)− g (x)| dx

≤ (b− a) sup
x∈[a,b]

{|f (x)− g (x)|}

= (b− a) d∞ (f, g).

Based on our observation, it seems that we can have a d∞-open
ball inside the d1 open unit ball. Therefore, consider B1 (0, 1) ={
f ∈ C [a, b]

∣∣∣ b∫
a

|f (x)| dx < 1

}
. Construct the open ball

B∞

(
0,

1

b− a

)
=

{
f ∈ C [a, b]

∣∣∣ sup
x∈[a,b]

{|f (x)|} < 1

b− a

}
.

Now, for any f ∈ B∞
(
0, 1

b−a

)
, we have

d1 (0, f) ≤ (b− a) d∞ (0, f) < 1.

Hence, f ∈ B1 (0, 1) and B∞
(
0, 1

b−a

)
⊆ B1 (0, 1). Since C [a, b] is equipped

with the operations of addition and scaling, this holds true for any open ball
centered at any point f ∈ C [a, b] and of any radius r > 0.

Can we have the converse, i.e., can we construct an open ball with respect
to d1 inside the open unit ball with respect to d∞? First, observe that both
d1 and d∞ have some geometrical meaning. While d1 gives the area between
two functions, d∞ gives the maximum distance between the two functions.
Therefore, the functions in B∞ (0, 1) can never attain the value 1 in their
domain [a, b].10 This is shown in Figure 2.7. On the other hand, we can have a
function with large maximum value but area as small as we please. Therefore,
our intuition tells us that the converse question is answered negatively. The
next step is to prove it!

10This is because continuous functions on closed and bounded intervals attain their
bounds.
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Let δ > 0. Define B1 (0, δ). If δ >
b−a
2 , consider the function f : [a, b] → R

defined as

f (x) =

⎧⎪⎨
⎪⎩

2

b− a
(x− a), a ≤ x <

a+ b

2
.

− 2

b− a
(x− b),

a+ b

2
≤ x ≤ b.

The construction of this function is shown in Figure 2.23.

It is easy to check that f is continuous and sup
x∈[a,b]

{|f (x)|} = 1. Also,

b∫
a

|f (x)| dx =

a+b
2∫

a

(
2

b− a
(x− a)

)
dx+

b∫
a+b
2

(
− 2

b− a
(x− b)

)
dx

=
1

b− a

[
(x− a)

2
] a+b

2

a
− 1

b− a

[
(x− b)

2
]b

a+b
2

=
1

b− a

(
b− a

2

)2

+
1

b− a

(
b− a

2

)2

=
b− a

2

< δ.

Therefore, f ∈ B1 (0, δ) but f /∈ B∞ (0, 1).

FIGURE 2.23: Constructing a counterexample for the case δ > b−a
2 .
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Similarly, if δ ≤ b− a

2
, then consider the function f : [a, b] → R defined as

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

δ
(x− a), a ≤ x < a+

δ

2
.

−2

δ
(x− a− δ), a+

δ

2
≤ x < a+ δ.

0, a+ δ ≤ x ≤ b.

The construction of this function is shown in Figure 2.24.
It is again easy to check that f is continuous and sup

x∈[a,b]

{|f (x)|} = 1. Also,

b∫
a

|f (x)| dx =

a+ δ
2∫

a

(
2

δ
(x− a)

)
dx+

a+δ∫

a+ δ
2

(
−2

δ
(x− a− δ)

)
dx

=
1

δ

[
(x− a)

2
]a+ δ

2

a
− 1

δ

[
(x− a− δ)

2
]a+δ

a+ δ
2

=
δ

2
< δ.

Hence, f ∈ B1 (0, δ) but f /∈ B∞ (0, 1). Therefore, we cannot have a d1-
open ball inside the d∞-open unit ball for the set C [a, b], as suggested by
our intuition. Hence, the two metrics d1 and d∞ defined on C [a, b] are not
equivalent.

FIGURE 2.24: Constructing a counterexample for the case δ ≤ b− a

2
.
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Similar comments can be made about other dp metrics on C [a, b]. However,
it is beyond the scope of this text and therefore we omit it. We do encourage
the reader to dig up on this subject. Before we end this section, we now
comment on certain abstract metrics. Until now, we were very particular about
the sets and the metrics defined on them. Now, we take an arbitrary metric
space (X, d) and then try to comment on the equivalence of other metrics
defined on it.

Example 2.26 (Bounded metric). Consider a metric space (X, d). Consider
the bounded metric δ : X ×X → R.

δ (x, y) = min {d (x, y), 1} .
Now, let U be an open set with respect to the metric d. Then, ∀x ∈ U, ∃r >
0 such that Bd (x, r) ⊆ U . We can very well assume, without disturbing any
concept, that r < 1. In this case, Bδ (x, r) = Bd (x, r) ⊆ U , and as a conse-
quence, U is also open with respect to δ.

Similarly, if U is an open set with respect to the metric δ, we consider the
open ball Bδ (x, r) ⊆ U for an arbitrary x ∈ U . Choose an r′ > 0 such that
r′ < r. Then, for any x, y ∈ Bd (x, r

′), we have δ (x, y) ≤ r′ < r. Hence, U is
open with respect to d.

Finally, we can conclude that the two metrics d and δ are equivalent.

Remark. Although the two metrics in Example 2.26 are equivalent, notice
that X is bounded with respect to metric δ but may not be bounded in metric
d. Hence, equivalent metrics do not preserve bounded sets. This is because
bounded sets are not defined in terms of open sets. Since equivalent metrics
define the same open sets, all the properties defined in terms of open sets (or
for that matter, closed sets) are preserved by equivalent metrics.

Problem Set

1. Consider the metric space R
2 equipped with d2. Which of the following

sets are open?

(a)
{
(x, y) ∈ R

2|xy �= 0
}
.

(b)
{
(x, y) ∈ R

2|x /∈ Z, y /∈ Z
}
.

(c)
{
(x, y) ∈ R

2|x2 + y2 �= 1
}
.

2. What are all the open sets in a finite metric space?

3. Consider the set B [0, 1] of all bounded real-valued functions defined
on [0, 1]. Clearly, the set of continuous functions C [0, 1] is a subset of
this set. Let B [0, 1] be equipped with the d∞ metric. Is C [0, 1] open in
B [0, 1]?
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4. Let f : [0,∞) → [0,∞) be a continuous function with the following
properties:

(a) f (t) = 0 if and only if t = 0.

(b) f is non-decreasing, i.e., x ≤ y ⇒ f (x) ≤ f (y).

(c) f is subadditive, i.e., f (x+ y) ≤ f (x) + f (y).

Prove that if (X, d) is a metric space then (X, f ◦ d) is also a metric
space. Are these metrics equivalent?

5. Consider a plane in R
3 with a general equation, ax+ by + cz = d. Is it

open? Is it closed? Here, let R3 be equipped with the Euclidean metric.

6. For two sets A,B ∈ R
n, we define the addition of these sets as

A+B = {x+ y|x ∈ A,y ∈ B} ,
where x and y are n-tuples. Now, if A and B are open, is A+B open?
If A and B are closed, is A+B closed?

7. What is the relation between the closures of A ∪B and A ∩B in terms
of Ā and B̄?

8. Show that every point in an open set of Rn (equipped with the Euclidean
metric) is a cluster point.

9. Let A be a subset of a metric space X. Then, show that a point x ∈ X
is a cluster point of A if and only if every open set containing x contains
infinitely many points of A.

10. Consider the set M (n,R) equipped with the metric defined as follows:

For a matrix A, consider ATA. Then, the distance from 0, the zero
matrix, will be given by the Euclidean distance of ATA from 0 for Rn2

.
Investigate if the following sets are bounded.

(a) The set of all orthogonal matrices.11 This set is often denoted by
O (n,R).

(b) The set SL (n,R) of all matrices with determinant 1. This is often
termed as special linear group of order n.

11. Does there exists a finite set which is dense in R?

12. What can we say about a metric space with a finite dense set?

13. If in a metric space X, the only dense set is X itself, what can we
comment upon the metric structure or topology (i.e., the collection of
open sets) of this space?

11A matrix A is orthogonal if AAT = ATA = I, where AT denotes the transpose of A.
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Biographical Notes

William Henry Young (20 October, 1863 to 7 July,
1942) was an English mathematician. Young was edu-
cated at City of London School and Peterhouse, Cam-
bridge. He worked on measure theory, Fourier series,
differential calculus, among other fields, and made con-
tributions to the study of functions of several complex
variables.

Otto Ludwig Hölder (22 December, 1859 to 29
August, 1937) was a German mathematician born in
Stuttgart. Hölder first studied at the Polytechnikum
(which today is the University of Stuttgart) and then
in 1877 went to Berlin where he was a student of
Leopold Kronecker, Karl Weierstrass, and Ernst Kum-
mer. He is noted for many theorems including: Hölder’s
inequality, the Jordan-Hölder theorem, the theorem
stating that every linearly ordered group that satisfies
an Archimedean property is isomorphic to a subgroup
of the additive group of real numbers, the classification
of simple groups of order up to 200, the anomalous
outer automorphisms of the symmetric group S6, and
Hölder’s theorem, which implies that the Gamma func-
tion satisfies no algebraic differential equation. An-
other idea related to his name is the Hölder condition
(or Hölder continuity) which is used in many areas of
analysis, including the theories of partial differential
equations and function spaces.



126 An Introduction to Metric Spaces

Hermann Minkowski (22 June, 1864 to 12 January,
1909) was a German mathematician and professor at
Königsberg, Zürich, and Göttingen. He created and
developed the geometry of numbers and used geo-
metrical methods to solve problems in number the-
ory, mathematical physics, and the theory of relativ-
ity. Minkowski is perhaps best known for his work in
relativity, in which he showed in 1907 that his for-
mer student Albert Einstein’s special theory of rela-
tivity (1905) could be understood geometrically as a
theory of four-dimensional spacetime, since known as
the “Minkowski spacetime”.

Euclid (300 BC), sometimes called Euclid of Alexan-
dria to distinguish him from Euclid of Megara, was a
Greek mathematician, often referred to as the “founder
of geometry” or the “father of geometry”. He was ac-
tive in Alexandria during the reign of Ptolemy I (323-
283 BC). His Elements is one of the most influential
works in the history of mathematics, serving as the
main textbook for teaching mathematics (especially
geometry) from the time of its publication until the
late nineteenth or early twentieth century. In the El-
ements, Euclid deduced the theorems of what is now
called Euclidean geometry from a small set of axioms.
Euclid also wrote works on perspective, conic sections,
spherical geometry, number theory, and mathematical
rigor. The “Euclidean distance” is named in his honor
since the Eulidean geometry pops up when we measure
distances in R

2 by the “Euclidean distance”.

Henri Leon Lebesgue (28 June, 1875 to 26 July, 1941)
was a French mathematician known for his theory of in-
tegration, which was a generalization of the seventeenth-
century concept of integration–summing the area between
an axis and the curve of a function defined for that axis.
His theory was published originally in his dissertation
Intégrale, longueur, aire (“Integral, length, area”) at the
University of Nancy during 1902. The notation �p was
made in his honor after the notation Lp which denotes
the space of Lebesgue integrable functions in some sense.
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David Hilbert (23 January, 1862 to 14 February, 1943)
was a German mathematician and one of the most influen-
tial and universal mathematicians of the nineteenth and
early twentieth centuries. Hilbert discovered and devel-
oped a broad range of fundamental ideas in many areas,
including invariant theory, calculus of variations, commu-
tative algebra, algebraic number theory, the foundations
of geometry, spectral theory of operators and its appli-
cation to integral equations, mathematical physics, and
foundations of mathematics (particularly proof theory).

Felix Hausdorff (8 November, 1868 to 26 January,
1942) was a German mathematician who is considered to
be one of the founders of modern topology and who con-
tributed significantly to set theory, descriptive set theory,
measure theory, function theory, and functional analysis.
The term “Hausdorff property” is named in honor for his
work in topological spaces and their separation axioms.
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Chapter 3

Complete Metric Spaces

Functions with domain as natural numbers N, sequences as they are called,
play a crucial role in analysis. Be it defining the continuity of a function or
the compactness of a set, sequences provide a very natural way to quantify
these rather abstract concepts. In this chapter, we take a quick glance at the
properties of sequences and study in detail a special type of sequences known
as Cauchy sequences and how they relate to complete metric space. The main
aim of this chapter is to look at the process of making a metric space complete.
Finally, we prove the Baire category theorem, which is a powerful tool used to
provide non-constructive proofs to some rather not-so-straightforward results
in analysis.

3.1 Sequences

To begin with, we give the formal definition of sequences which is surpris-
ingly straightforward for such an elegant concept. For any given set X, we
define:

Definition 3.1 (Sequence). A sequence in X is a function from N, the set of
all natural numbers, to X.

Note that this definition is not universal, far from it. But among all the def-
initions used, this one is the more natural way of doing so. The reader may
have experience with “real sequences”, which are sequences in R. We will look
at a few of those but before that, we must look at the customary notations
for sequences.

Instead of looking at sequences as functions, we look at them as a “list” of
elements of X. The list need not necessarily be exhaustive, i.e., the function
need not be surjective and indeed it rarely is, nor non-repetitive. Thus the
notation for sequence follows: We use xn to denote the nth entry in the list.
More formally, a sequence defined by the function f : N → X is denoted as
(xn)n∈N

where xn = f (n). The use of the subscript n ∈ N will become clear
when we deal with subsequences. We first look at a few examples.

129
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Example 3.1. We look at a few real sequences and the corresponding
notations

1. The sequence defined by the identity function I : N → N, I (n) = n can
be “listed” as (1, 2, 3, 4, · · · ) and is denoted by (n)n∈N

.

2. The sequence
(
1, 12 ,

1
3 ,

1
4 , · · ·

)
is denoted by

(
1
n

)
n∈N

.

3. Sequences can also be characterized by iterative schemes, in which the
next term depends on the previous terms of the sequence in some way.
The most notable of such examples is the sequence of Fibonacci numbers
(1, 1, 2, 3, 5, 8, · · · ) denoted by (Fn)n∈N

. It follows the iterative scheme
Fn = Fn−1 + Fn−2, for n ≥ 2 with F1 = F2 = 1.

4. The sequence of successive rational approximations of
√
2 given by

(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, · · · ) .

While real sequences are important in their own right, sequences go far be-
yond real numbers. We have sequences of functions, sequences of sequences,
sequences of sets, and so on. It thus becomes imperative that we dedicate a
few examples to such sequences.

Example 3.2.

1.
(
1, x, x2, x3, x4, x5, · · · ) is a sequence of polynomials.

2. (sinx, cosx, sin 2x, cos 2x, sin 3x, cos 3x, · · · ) is a sequence of trigonomet-
ric functions.1

3.
(
(−1, 1) ,

(−1
2 ,

1
2

)
,
(−1

3 ,
1
3

)
,
(−1

4 ,
1
4

)
,
(−1

5 ,
1
5

)
, · · · ) is a sequence in R

2.

4. Another example is the sequence of functions fn : �∞ → R defined by
fn (x) = ξn where x = (ξk)k∈N

.

3.1.1 Subsequences

Sometimes, it is useful to have a way to “take out” some entries from a
“list”. Subsequences play that role for sequences. They are defined as follows:

Definition 3.2 (Subsequence). A subsequence for a given sequence (xn)n∈N

is the sequence
(
xφ(k)

)
k∈N

where φ : N → N is a strictly increasing function.2

1Note that although, the two sequences in parts 1 and 2 are sequences of functions, at
a particular x ∈ R, we get a real-valued sequence.

2Note that a function f : R → R is strictly increasing if for x1 < x2 we have f (x1) <
f (x2). The same definition works for any subset of R as the domain (and codomain) of the
function f .
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It is usually denoted by (xnk
)k∈N

where it is assumed that nk ∈ N strictly
increases with k. The subscript is thus used to show the “running index”. The
definition looks overloaded at first, but is rather simpler if we continue to look
at it from the “list” analogy. What we’re basically doing is traversing the list
one element at a time and “picking” the elements we want in the subsequence
and noting down their indices with the help of φ without disturbing their
relative positions.

Example 3.3. Notice that the function φ (n) = 2n gives the subsequence
(2n)n∈N

of the sequence (n)n∈N
.

The reader may verify that
(

1
n2

)
n∈N

is a subsequence of
(
1
n

)
n∈N

.

Exercise 3.1. The Fibonacci sequence does not form a subsequence of
(n)n∈N

. Justify.

Exercise 3.2. Find the function φ which proves that
(

1
n2

)
n∈N

is a subse-

quence of
(
1
n

)
n∈N

, as per the notations of Definition 3.2.

3.2 Convergence of Sequence

Take a look at the following sequences:

•
(
1,

1

2
,
1

3
,
1

4
, · · ·

)

• (1, e−1, e−2, e−3, · · · )

•
(
sin

(
1

n

))
n∈N

They all seem to “tend” to 0. As the sequence progresses, the value of each
term gets closer and closer to 0. This tendency of some sequences to go close
to a particular value is characterized by convergence. First, to talk about
getting “close” to a particular value, we need to have a notion of distance.
The definition of convergence then easily follows:

Definition 3.3 (Convergence). The sequence (xn)n∈N
converges to a limit x

in a metric space (X, d) if

∀ε > 0,∃n0 ∈ N such that ∀n ≥ n0 we have d (xn, x) < ε.

This is often written as

d (xn, x) → 0 as n→ ∞.
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Example 3.4. The sequence
(
sin
(
1
n

))
n∈N

as we already know, converges to
0 in the usual metric on R.

To prove this we note that sinx < x, for x > 0. Thus for given ε > 0
from the Archimedean property, there is an n0 ∈ N such that n0 >

1
ε and for

n ≥ n0, we have ∣∣∣∣sin 1

n
− 0

∣∣∣∣ < 1

n
≤ 1

n0
< ε.

The definition of convergence puts no restriction on the number of limits a
sequence can have. So, we wonder what happens if a sequence is convergent to
two distinct limits. It turns out that in a metric space the triangle inequality
prevents a sequence from having more than one limit.

Theorem 3.1. In a metric space (X, d), a convergent sequence converges to
a unique limit.

Proof. Let (xn)n∈N
be a convergent sequence such that it converges to both

x and y in X. Thus, by definition of limit, we have

∀ε > 0,∃n0 ∈ N such that ∀n ≥ n0, d (xn, x) <
ε

2
,

and

∀ε > 0,∃n1 ∈ N such that ∀n ≥ n1, d (xn, y) <
ε

2
.

The triangle inequality gives

0 ≤ d (x, y) ≤ d (x, xn) + d (xn, y) , ∀n ∈ N.

Taking n > max {n0, n1}, we get

d (x, y) ≤ d (xn, x) + d (yn, y) < ε.

Thus, d (x, y) = 0 so that x = y and the limit of convergence is unique.

We now wish to ask whether the convergence of a subsequence necessarily
implies the convergence of a sequence. The answer is no! Consider the sequence
(1, 0, 1, 0, 1, 0, · · · ). Its subsequences (1, 1, 1, 1, · · · ) and (0, 0, 0, 0, · · · ) are both
convergent; however, the sequence is not. In fact, a sequence with subsequences
convergent to distinct limits is not convergent. We leave the proof of this fact
as an exercise to the reader (see Problem Set).

As is apparent from the definition, the convergence of a sequence very
much depends on the metric space it is considered in. Given two metrics on
the same set, a sequence may converge in one but not in another. We now
look at a few examples to illustrate this concept.
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Example 3.5. On the space of all continuous real-valued functions, C [0, 1],
we define two metrics: the metric d∞ as d∞ (f, g) = sup

x∈[0,1]

{|f (x)− g (x)|}

and the metric d1 as d1 (f, g) =
1∫
0

|f (x)− g (x)| dx.
Consider the sequence fn (x) = e−nx. This sequence converges point-wise3

to 0 at each point except x = 0, where it converges to 1. But the function
that is non-zero at only one point is discontinuous and thus, does not belong
to C [0, 1].

First, we look at the convergence of the sequence to the constant function
0 : R → R, defined as 0 (x) = 0, ∀x ∈ [0, 1].

d1 (fn, 0) =

1∫
0

|fn (x)− 0| dx =

1∫
0

e−nx dx =
1− e−n

n
→ 0 as n→ ∞

and
d∞ (fn, 0) = sup

x∈[0,1]

{|fn (x)− 0|} = sup
x∈[0,1]

{
e−nx

}
= 1.

Since the limit of convergence is unique, fn converges to 0 in C [0, 1] with the
metric d1. As for the convergence of the sequence with metric d∞, we have
seen that it is not convergent to 0. How do we know that fn does not converge
to any other function? To see this, consider the following.

If f is not identically 0, it must be non-zero throughout an open interval
say (c, d) and thus, |f(x)| ≥M ∀x ∈ (c, d) for some M > 0. Also since for any
fixed x ∈ (c, d), lim

n→∞ e−nx = 0, ∃N1 > 0 such that |e−nx| < M, ∀x ∈ (c, d).

Now, ∣∣f (x)− e−nx
∣∣ ≥ ∣∣|f (x)| − ∣∣e−nx

∣∣∣∣ ,
which for n > N1 gives

∣∣f (x)− e−nx
∣∣ ≥ |f (x)| − ∣∣e−nx

∣∣ .
Therefore,

sup
x∈(c,d)

{∣∣f (x)− e−nx
∣∣} ≥M − e−nc, ∀n > N1

which gives
lim

n→∞ sup
x∈(c,d)

{∣∣f (x)− e−nx
∣∣} ≥M.

3Recall that a sequence of real-valued functions (fn)n∈N
is said to converge point-wise

to a limit function f : R → R if for each x in the domain of fn, the real-valued sequence
(fn (x))n∈N

converges to f (x).
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Therefore, we have

lim
n→∞ d∞ (fn, f) = lim

n→∞ sup
x∈[0,1]

{|f (x)− fn (x)|} ≥M > 0.

Thus, fn does not converge to any other function in C [0, 1].

As one can note from the above examples, the major drawback of the def-
inition of convergence is that one has to know the limit of convergence to
prove the convergence of the sequence. We would like to try to formulate a
new definition of convergence that does not depend on the limit. A crucial
observation would be the fact that for terms of a sequence to come “closer”
to a particular limit, they have to come close to each other. Thus, we try to
look at sequences whose terms come close to each other as we move to higher
indices. Unfortunately, such sequences are not always convergent, as we will
shortly see. Such sequences are of great importance nevertheless. They are
called Cauchy sequences.

Definition 3.4 (Cauchy sequences). A sequence (xn)n∈N
in metric space

(X, d) is said to be a Cauchy sequence if ∀ε > 0,∃n0 ∈ N so that ∀m,n ≥
n0, d (xm, xn) < ε.

Or equivalently, the sequence is Cauchy if ∀ε > 0,∃n0 ∈ N so that ∀n > n0
and ∀m ∈ N, d (xm+n, xn) < ε.

The latter definition is equivalent to saying lim
n→∞ d (xm+n, xn) = 0. We will

use this definition a lot in the proceeding sections.

Exercise 3.3. In a metric space (X, d), prove that if sequences (xn)n∈N

and (yn)n∈N
are Cauchy, then the real-valued sequence (d (xn, yn))n∈N

is also
Cauchy.

Exercise 3.4. Prove that every convergent sequence is Cauchy.

The converse of Exercise 3.4 is not true. The most interesting example is that
of rational approximations of irrational numbers. Consider,

√
2 for instance.

It can be approximated recursively by

an+1 =
an
2

+
1

an
, for any positive a1 ∈ Q and n ∈ N

or any other approximation technique. After obtaining approximation up to
any nth decimal place, the error in approximation can be made less than 10−n

for any n ∈ N. The sequence of such approximations say (an)n∈N
is Cauchy

since for m,n ∈ N, we have

|am+n − an| <
∣∣∣am+n −

√
2
∣∣∣+
∣∣∣√2− an

∣∣∣ < 10−n + 10−(m+n) → 0 as n→ ∞.
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However, the sequence of said rational approximation (an)n∈N
is not conver-

gent in Q since there is no
√
2 in Q for it to converge to. Note that the sequence

here has a “tendency” to converge, in the sense that it seems to converge. It
just doesn’t have a point to converge to. In a certain sense, we can say that
our set is not “complete”: it does not contain the points to which a lot of
sequences tend to converge to.

Another example of an “incomplete” space is given below.

Example 3.6. Consider the space C [0, 1] with the metric d1 defined by

d1 (f, g) =

1∫
0

|f (x)− g (x)| dx.

Consider the following sequence of functions in C [0, 1], for n ≥ 2

fn (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ x < 1
2 − 1

n .

n
2

(
x− ( 12 − 1

n

))
, 1

2 − 1
n < x < 1

2 + 1
n .

1, 1
2 + 1

n < x ≤ 1.

One such function is shown in Figure 3.1.

To prove that this sequence is Cauchy, consider another function

f (x) =

⎧⎨
⎩
0, 0 ≤ x ≤ 1

2 .

1, 1
2 < x ≤ 1.

FIGURE 3.1: One of the functions from our sequence.
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Note that f /∈ C [0, 1]; however, it is integrable. Then we have

d1 (fm+n, fn) =

1∫
0

|fm+n (x)− fn (x)| dx

≤
1∫

0

|fm+n (x)− f (x)| dx+

1∫
0

|fn (x)− f (x)| dx.

Now note that the value of integral is given by the area of the shaded portion
as shown in Figure 3.2.

This gives

d1 (xm+n, xn) ≤ 1

2n
+

1

2 (m+ n)
→ 0 as n→ ∞.

If we assume that the sequence converges to, say, g ∈ C [0, 1], then we must
have

d1 (fn, g) =

1∫
0

|fn (x)− g (t)| dx

=

1
2− 1

n∫
0

|g (x)| dx+

1
2+

1
n∫

1
2− 1

n

|fn (x)− g (x)| dx+

1∫
1
2+

1
n

|1− g (x)| dx.

Since each integral is non-negative, each must tend to 0 as n→ ∞.

FIGURE 3.2: The area between fn and f .
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By properties of the Riemann integral, we know that the middle integral
tends to 0 as n→ ∞. Finally,

lim
n→∞

1
2− 1

n∫
0

|g (x)| dx = 0 =⇒ g (x) = 0, for 0 ≤ x <
1

2
.

lim
n→∞

1∫

1

2
+ 1

n

|g (x)| dx = 0 =⇒ g (x) = 1, for
1

2
< x ≤ 1.

This is contradictory to the assumption that g ∈ C [0, 1]. Thus the sequence
is not convergent in C [0, 1].

Now, we provide the reader with a few results on sequences and their conver-
gence, and relate convergence with Cauchy sequences.

Theorem 3.2. A Cauchy sequence is convergent if it has a convergent sub-
sequence.

Proof. Let (xn)n∈N
be a Cauchy sequence in a metric space (X, d) such that a

subsequence (xmk
)k∈N

converges to x ∈ X. Thus, ∀ε > 0, ∃N1 ∈ N such that

d (xmk
, x) <

ε

2
, ∀mk > N1.

Also since (xn)n∈N
is Cauchy, ∃N2 ∈ N such that

d (xmk
, xn) <

ε

2
∀mk, n > N2.

Therefore from triangle inequality, we obtain

d (xn, x) ≤ d (xn, xmk
) + d (xmk

, x) .

Picking any mk > max{N1, N2}, we get

d (xn, x) < ε ∀n > N2.

Thus, (xn)n∈N
converges to x.

We now take a slight detour to look at how convergence works in the more
complex setting of a product space. Briefly, the convergence of a sequence in
a product space is equivalent to the convergence of each of the coordinate
sequences. Before we proceed to the theorem, we take a quick look at the
notation we will be using for the theorem.



138 An Introduction to Metric Spaces

Given the metric spaces (X1, d1) , (X2, d2) , (X3, d3) , · · · , (Xm, dm), we de-
fine a metric d on the Cartesian product X = X1 ×X2 × · · · ×Xm by

d ((xi)
m
i=1 , (yi)

m
i=1) = max

1≤i≤m
{di (xi, yi)} . (3.1)

Theorem 3.3. In the product space (X, d) (defined as above), the sequence

(xn)n∈N
where xn =

(
x
(n)
1 , x

(n)
2 , · · ·x(n)m

)
is convergent iff the sequence(

x
(n)
k

)
n∈N

is convergent in Xk for k = 1, 2, · · · ,m.

Proof. Consider a sequence (xn)n∈N in X where xn = (x
(n)
1 , x

(n)
2 , · · ·x(n)m ).

If the sequence (xn)n∈N
converges to x ∈ X where x = (x1, x2, · · · , xm),

then for any k = 1, 2, · · · ,m, we have

dk

(
x
(n)
k , xk

)
≤ max

r=1,2,··· ,m

{
dr

(
x(n)r , xr

)}
= d (xn,x) → 0 as n→ ∞.

Thus, the corresponding coordinate sequences converge in the respective co-
ordinate spaces.

Conversely, if the coordinate sequences each converge, i.e., (x
(n)
k )n∈N

converges to xk ∈ Xk for each k = 1, 2, · · · ,m, then ∀ε > 0, we have
N1, N2, · · · , Nm ∈ N so that

dk

(
x
(n)
k , xk

)
< ε, for n ≥ Nk and for each k = 1, 2, · · · ,m.

We pick N = max {N1, N2, · · · , Nm} so that

d (xn,x) = max
k=1,2,··· ,m

{
dk

(
x
(n)
k , xk

)}
< ε, ∀n ≥ N

where x = (x1, x2, · · · , xm) ∈ X. Thus, the sequence (xn)n∈N
converges to x

in X.

Before ending the section, let us look at the range of a sequence (xn)n∈N
, i.e.,

the set

R = {xn|n ∈ N} .
Suppose that the sequence is convergent to x ∈ X. Then, by the definition
of convergence, for each ε > 0, there is at least one xn0

∈ R such that xn0
∈

B (x, ε). This is equivalent to saying that B (x, ε) ∩ R �= ∅ for every ε > 0 so
that x is a limit point of R.

However, a question can be asked in a converse manner: If S is a set and
x is its limit point, does there exist a sequence in S that converges to x? To
answer this question, we “attack” the definition of limit point. Clearly, for each
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ε > 0, ∃xε ∈ S such that xε ∈ B (x, ε). Hence, in particular, for each n ∈ N we
have xn ∈ B

(
x, 1

n

)
. Therefore, we have a sequence (xn)n∈N

in S that seems
to get “close” to x. To prove this, however, consider any ε > 0. Then, by the
Archimedean property, ∃n0 ∈ N such that n0ε > 1. Also, for n1 < n2 we have
B(x, 1

n2
) ⊆ B(x, 1

n1
) so that for all n > n0 we have d(xn, x) <

1
n < 1

n0
< ε.

Hence, the sequence indeed converges to x. We summarize this discussion as
a theorem.

Theorem 3.4. In a metric space (X, d), a point x ∈ X is a limit point of
S ⊆ X if and only if there is a sequence (xn)n∈N

that converges to x.

3.3 Complete Metric Spaces

In the previous section, the concept of Cauchy sequences was introduced.
We also saw a metric space where a Cauchy sequence was not convergent, due
to some “missing” points. A natural question to ask is: What would happen if a
metric space does not “lack” any point (for convergence of Cauchy sequences)?
We call such spaces complete. The formal definition follows:

Definition 3.5 (Complete metric space). A metric space (X, d) is said to be
complete if every Cauchy sequence is convergent.

Let us look at a few examples of complete metric spaces.

Example 3.7. The simplest example of a complete metric space is R with
the usual metric (|·|).To prove that it is complete, one needs to recall the least
upper bound property of real numbers. It states that every subset of R that
has an upper bound has a least upper bound (also known as the supremum).
The property, in turn, also implies the existence of a greatest lower bound
(also known as the infimum) if a subset of R has a lower bound.

Consider a real sequence (xn)n∈N
that is Cauchy.

For εn = 1
2n , ∃Nn ∈ N such that

|xm − xNn
| < εn, ∀m > Nn.

∴ xNn
− εn < xm < xNn

+ εn, ∀m > Nn.

Thus (xNn
− εn) is a lower bound for the set {xm|m > Nn} and (xNn

+ εn) is
its upper bound. We define the sequences αk = sup

n≥k
{xn} and βk = inf

n≥k
{xn}.

Therefore by definition of supremum and infimum, we obtain

xNn
− εn ≤ βNn

≤ xm ≤ αNn
≤ xNn

+ εn, ∀m > Nn.
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This in turn gives, αNn
− βNn

< 2εn → 0 as n → ∞ which leads us to
lim

n→∞αNn
= lim

n→∞βNn
. Thus, by sandwich theorem the limit lim

n→∞xn exists.

In other words, the sequence (xn)n∈N
converges in R.

The assumption that R has least upper bound property is equivalent to say-
ing that R is complete. Hence, the property is also known as “completeness
axiom”.4

Example 3.8. The space Rm equipped with the Euclidean metric is complete
for any m ∈ N.

Let (xn)n∈N be any Cauchy sequence in R
m and let xn =

(x
(n)
1 , x

(n)
2 , · · ·x(n)m ) = (x

(n)
k )mk=1. The superscript (n) denotes the terms of

the sequence and the subscript k the coordinate.
(xn)n∈N

is any Cauchy sequence implies ∀ε > 0, ∃N1 > 0 such that

d2 (xn, xr) =

√√√√ m∑
k=1

∣∣∣x(n)k − x
(r)
k

∣∣∣2 < ε, ∀n, r > N1.

Thus for a fixed k0, we have

∣∣∣x(n)k0
− x

(r)
k0

∣∣∣ ≤
√√√√ m∑

k=1

∣∣∣x(n)k − x
(r)
k

∣∣∣2 < ε, ∀n, r > N1.

This means the sequence
(
x
(n)
k0

)
n∈N

is Cauchy for k0 = 1, 2, · · · ,m and thus

convergent in R. Let lim
n→∞x

(n)
k0

= xk0
and x = (x1, x2, · · · , xm).

We shall prove that (xn)n∈N
converges to x in R

m

∀ε > 0, ∃M1,M2, · · · ,Mm ∈ N such that for k = 1, 2, · · · ,m
∣∣∣x(n)k − xk

∣∣∣ < ε√
m
, ∀n > Mk.

Finally, we have,

d2 (xn,x) =

√√√√ m∑
k=1

∣∣∣x(n)k − xk

∣∣∣2 <
√√√√ m∑

k=1

∣∣∣∣ ε√
m

∣∣∣∣
2

= ε, ∀n > max
1≤i≤m

{Mi}.

Thus, the sequence converges to x.

4The names least upper bound “property” and completeness “axiom” are largely due
to historical reason and both act as axioms in this context.
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Example 3.9. The sequence space �p is complete for 1 ≤ p <∞.
Consider a Cauchy sequence (xn)n∈N

in �p. Note that for each value of n,

xn itself is a real sequence. With this in mind, we denote xn =
(
x
(n)
k

)
k∈N

where x
(n)
k ∈ R.

Then, ∀ε > 0, ∃N1 ∈ N such that

dp (xm+n,xn) =

( ∞∑
k=1

∣∣∣x(m+n)
k − x

(n)
k

∣∣∣p
) 1

p

< ε, ∀n > N1 and m ∈ N.

∴
∣∣∣x(m+n)

k − x
(n)
k

∣∣∣p < εp, ∀m, k ∈ N, n > N1.

(3.2)

Therefore, for a fixed k0, the sequence
(
x
(n)
k0

)
n∈N

is Cauchy in R and hence

convergent.

Let lim
n→∞x

(n)
k0

= xk0
.

We claim that xn → x ∈ �p where x = (xk)k∈N
. We begin with proving

that x ∈ �p.
For some fixed r ∈ N, Equation (3.2) implies

(
r∑

k=1

∣∣∣x(m+n)
k − x

(n)
k

∣∣∣p
) 1

p

< ε, ∀n > N1,m ∈ N.

As m→ ∞, we obtain

(
r∑

k=1

∣∣∣xk − x
(n)
k

∣∣∣p
) 1

p

< ε, ∀n > N1.

Since the right side of the preceding inequality is independent of r, by Theo-
rem 2.4, we get ( ∞∑

k=1

∣∣∣xk − x
(n)
k

∣∣∣p
) 1

p

≤ ε, ∀n > N1. (3.3)

Thus by definition of �p, we have (x− xn)n∈N
∈ �p. Therefore, x = (x− xn)+

xn ∈ �p. Finally, Equation (3.3) gives xn → x.

Exercise 3.5. Prove that if x,y ∈ �p, then α · x + β · y ∈ �p for α, β ∈ R.
Here + and · are two algebraic operations of addition and scaling defined for
any x = (xi)i∈N

,y = (yi)i∈N
∈ �p as

x+ y = (xi + yi)i∈N
,

α · x = (αxi)i∈N
.

This will confirm the second-last line of the proof of Example 3.9.
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Exercise 3.6. Is �∞ complete?

Example 3.10. Consider the space of continuous real-valued functions
C [a, b] equipped with the metric d∞.

Consider a Cauchy sequence (fn)n∈N
in C [a, b]. Then, ∀ε > 0, ∃N1 ∈ N

so that

sup
x∈[a,b]

{|fm+n (x)− fn (x)|} < ε, ∀n > N1 and m,∈ N.

∴ |fm+n (x)− fn (x)| < ε, ∀n > N1, ∀x ∈ [a, b] and m,∈ N.

Thus, for a fixed x0, the sequence (fn (x0))n∈N
is Cauchy in R and hence

convergent. We define a function f : [a, b] → R by

f (x) = lim
n→∞ fn (x) , ∀x ∈ [a, b] .

By definition of the limit, there exists N2 ∈ N such that

|fn (x0)− f (x0)| < ε

3
, ∀n > N2.

Since fn ∈ C [a, b], there exists δ > 0 such that,

|fn (x)− fn (x0)| < ε

3
, whenever |x− x0| < δ.

Thus for n = max{N1, N2, N3}+ 1 and |x− x0| < δ we have

|f (x)− f (x0)| ≤ |f (x)− fn (x)|+ |fn (x)− fn (x0)|+ |fn (x0)− f (x0)| < ε.

Since the choice of ε and x0 was arbitrary, we have f ∈ C [a, b]. Finally, since
fn is a Cauchy sequence,

d∞ (fm+n, fn) < ε, ∀n > N1,m ∈ N.

∴ sup
x∈[a,b]

{|fm+n (x)− fn (x)|} < ε.

Taking m→ ∞, we obtain

sup
x∈[a,b]

{|f (x)− fn (x)|} < ε.

Thus, the sequence (fn)n∈N
converges to f and we conclude that C [a, b], is

complete.

Exercise 3.7. Discuss all the Cauchy sequences in a discrete space. What
can we say about its completeness?
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Before ending this section, we would like to expose the reader to a few theorems
involving complete metric spaces.

Theorem 3.5. For a subspace Y of (X, d), if Y is complete then Y is closed
in X.

Proof. Let x ∈ X be a limit point of Y. Then there is a sequence (yn)n∈N
in Y

such that lim
n→∞ d (yn, x) = 0. Since every convergent sequence is Cauchy, the

sequence (yn)n∈N
is Cauchy in X. From the definition of Cauchy sequences,

we have ∀ε > 0, ∃N1 ∈ N so that (in Y )

d (yn, ym) < ε, ∀m,n > N1.

Thus the sequence is Cauchy in Y as well. Now since Y is complete, the
sequence converges in Y, i.e., ∃y ∈ Y such that lim

n→∞ d (yn, y) = 0. Again by

definition of subspace, we have lim
n→∞ d (yn, y) = 0 in X and thus the sequence

converges to y in X as well. But since the point of convergence is unique in
a metric space, we get x = y and hence the limit point x ∈ Y implying Y is
closed.

Theorem 3.6. For a subspace Y of a complete metric space (X, d), if Y is
closed then Y is complete.

Proof. Let, (yn)n∈N
be any Cauchy sequence in Y . Thus, from reasoning sim-

ilar to Theorem 3.5 it is Cauchy in X as well. Since X is complete, the se-
quence must converge to a point in X, say x. Thus, x is a limit point of Y
and Y being closed implies x ∈ Y . Finally, from the definition of subspace,
lim
n→∞ d (yn, x) = 0 in Y, i.e., the sequence (yn)n∈N

converges in Y and therefore,

Y is complete.

3.4 Completion of Metric Spaces

We have seen the definition of Cauchy sequences. Less rigorously, we can
say that Cauchy sequences are ones in which the elements “come close” to
each other as we move to higher indices. Recall the completeness axiom of a
real number system. It ensures that every Cauchy sequence is convergent in R

as we have seen in earlier sections. We have also seen that the subset Q of R is
not complete. Thus, it is “missing” some of the points, namely, the irrational
numbers.

A natural question arises: Can we find and fill up all such missing elements?
Can we do it for any metric space? The answer is yes! We will see how we can
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construct a “complete extension” of any set and also, what it means to have
such an extension.

We first need to understand what we mean by an extension. We have a
set with a certain property (or a certain operation defined on it) or the lack
of a certain desired property. We use it to define a new set which contains
the original one in such a way that the property is retained (or in the case
of operations, the operation remains the same when operating on elements of
the original set) or the new set has the desired property. For our complete
extension, we pick any space X and we wish to construct a new space Z so
that X ⊆ Z and Z is complete. This, however, poses a problem. The condition
X ⊆ Z requires that the new constructed set contains elements of the original
set, which in turn requires that the construction we make must be in such
a way that the original elements remain. This is a restriction we wish to
overcome.

We do it by “embedding” X in Z. Before we get to what we mean by
embedding, let’s first get accustomed to some concepts that will help us build
a complete picture.

Recall that the main property a metric space has is the notion of distance
on a set. What if we have two different metric spaces on two different sets that
behave alike (in terms of distances) on their corresponding set? Such metric
spaces are said to be isometric. Formally we define:

Definition 3.6 (Isometry). Given two metric spaces (X, dX) and (Y, dY ), a
map f : X → Y is said to be an isometry if

dX (x1, x2) = dY (f (x1) , f (x2)) , ∀x1, x2 ∈ X.

Two metric spaces are called isometric if there is a bijective isometry from
one to another.

An isometry is automatically injective since

f (x1) = f (x2) =⇒ dY (f (x1) , f (x2)) = 0 = dX (x1, x2) =⇒ x1 = x2.

For a fixed a ∈ R, the translation function fa : x �→ x + a is an isometry.
The identity function from Q to R is an example of an isometry that is not
bijective.

Carefully examine the isometry from Q to R discussed earlier. The set Q
is nearly identical to R with respect to the distance between points. It is only
“missing” some points for it be exactly identical. We are now in a position to
define embedding:

Definition 3.7 (Embedding). A metric space (X, dX) is said to be embedded
in (Y, dY ) if an isometry f : X → Y exists.

Coming back to our original question of how to define the complete extension,
we see that we now have eliminated the need for our complete set to be a
superset of the original set. We can simply require the existence of an isometry
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from our original set to the new complete set. There is still a problem here,
though! Once we have the required completion, nothing stops us from adding
more and more points and thus making the set unnecessarily bigger. That
is to say, nothing stops us from extending Q to R and then to C. There is
nothing wrong with such an extension, it just won’t be very useful.

Thus, we add an extra criterion which will ensure that our extension re-
mains “small enough” to be useful. We will require that the set f (X) be
dense in Z. This is again consistent to the fact that Q is dense in R. Finally,
we define the complete extension of a metric space.

Definition 3.8 (Complete extension). A complete metric space (Y, dY ) is said
to be a complete extension of a metric space (X, dX) if X can be embedded in
Y through an isometry f : X → Y in such a way that f (X) is dense in Y .

We finally give the main result of this section.

Theorem 3.7. Given any metric space, its complete extension exists. More-
over, such an extension is unique up to an isometry.

By uniqueness up to an isometry we mean that if there exist any two complete
extensions of a metric space, they are both isometric to each other. The proof
of the above theorem, although straightforward, is rather lengthy. We therefore
divide the proof into four parts (presented as subsections that follow):

For a metric space (X, dX), we will

1. Construct a set Z by using Cauchy sequences on X and define a metric
dZ on it.

2. Prove that X can be embedded in Z.

3. Prove that Z is complete and is the desired complete extension.

4. Prove that Z is unique up to an isometry.

3.4.1 Construction of the set Z

Consider all the Cauchy sequences in X. We define an equivalence rela-
tion ∼ between two such Cauchy sequences as follows (xn) ∼ (yn) ⇐⇒
lim
n→∞ dX (xn, yn) = 0.5

As we have seen earlier the sequence dn = dX (xn, yn) is Cauchy if both
(xn) and (yn) are Cauchy. The completeness of R implies that lim

n→∞ dn exists.

5We omit the subscript n ∈ N while denoting sequences to make the notations short.
The reader should understand the notations automatically.
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To prove that the above relation∼ is an equivalence, consider the following:

1. For every sequence (xn), dX (xn, xn) = 0 and hence (xn) ∼ (xn), i.e., ∼
is reflexive.

2. The symmetry of metric d implies that ∼ is symmetric.

3. If (xn) ∼ (yn) and (yn) ∼ (zn), then we have 0 ≤ d (xn, zn)≤ d (xn, yn)+
d (yn, zn) → 0 as n→ ∞.

Thus, lim
n→∞ d (xn, zn) = 0 which in turn implies (xn) ∼ (zn), i.e., ∼ is

transitive.

This equivalence ∼ gives rise to equivalence classes of the set of all Cauchy
sequences in X. The set of all such equivalence classes is the desired Z. We
denote an element of Z by x̃. Remember that x̃ is a collection of Cauchy
sequences in X that are related by the equivalence ∼.

To proceed further, we will need a metric on Z. The natural way to create
one is to define

dZ (x̃, ỹ) = lim
n→∞ dX (xn, yn) , where (xn) ∈ x̃ & (yn) ∈ ỹ.

Before we try to prove that dZ is a metric, careful readers will note that
we first have to ensure that dZ is well-defined. This is because the choice of
(xn) ∈ x̃ and (yn) ∈ ỹ is ambiguous. We claim that nevertheless, the limit in
the definition remains the same.

For (xn) , (x
′
n) ∈ x̃ and (yn) , (y

′
n) ∈ ỹ, we have lim

n→∞ dX (xn, x
′
n) = 0,

limn→∞ dX (yn, y
′
n) = 0 and that

dX (xn, yn) ≤ dX (xn, x
′
n) + dX (x′n, y

′
n) + dX (y′n, yn) ,

which can be rewritten as

dX (xn, yn)− dX (x′n, y
′
n) ≤ dX (xn, x

′
n) + dX (yn, y

′
n) .

Starting with dX (x′n, y
′
n) and proceeding in a similar manner, we obtain

dX (x′n, y
′
n)− dX (xn, yn) ≤ dX (x′n, xn) + dX (yn, y

′
n) .

Combining both the above inequalities gives

|dX (xn, yn)− dX (x′n, y
′
n)| ≤ dX (xn, x

′
n) + dX (yn, y

′
n) .

The right side goes to 0 as n→ ∞ and subsequently so does the left. Therefore,

lim
n→∞ dX (xn, yn) = lim

n→∞ dX (x′n, y
′
n) .
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Since the choice of sequences was arbitrary, dZ is well defined. We leave it as
an exercise to the reader to prove that dZ forms a metric on Z.

Exercise 3.8. Prove that the function dZ , as defined above, is indeed a metric
on Z.

3.4.2 Embedding X in Z

For any x ∈ X, consider the sequence (x, x, x, · · · ). This sequence is con-
vergent and hence Cauchy. Let x̃ denote the equivalence class which contains
the above sequence.

Define a function f : x �→ x̃. The uniqueness of equivalence class implies
that the function is well defined. Also, for x, y ∈ X, we pick (x, x, x, . . . ) ∈ x̃
and (y, y, y, . . . ) ∈ ỹ so that

dZ (f (x) , f (y)) = dZ (x̃, ỹ) = lim
n→∞ dX (x, y) = dX (x, y) .

Therefore f preserves distance, i.e., it is an isometry.

We will prove the existence of a sequence in f(X) that converges to x.
Let Y = f (X). Now, for any arbitrary x̃ ∈ Z, pick any sequence (xn) ∈ x̃.
Since (xn) is Cauchy, ∀ε > 0, ∃N ∈ N such that dX (xn, xN ) <

ε/2, ∀n ≥ N .
Also, f (xN ) = x̃N ∈ f (X) = Y .
To find dZ (x̃, x̃N ), we pick (xN , xN , xN , . . . ) ∈ x̃N . Then,

dZ (x̃, x̃N ) = lim
n→∞ dX (xn, xN ) ≤ ε

2
< ε.

Thus, Y is dense in Z.

3.4.3 Proving Z is complete

Let (z̃n)n∈N
be a Cauchy sequence in Z. Since Y is dense in Z, we have

∀n ∈ N, ∃ỹn ∈ Y such that dZ (z̃n, ỹn) < 1/n.

∴ dZ (ỹn, ỹm+n) ≤ dZ (ỹn, z̃n) + dZ (z̃n, z̃m+n) + dZ (z̃m+n, ỹm+n)

<
1

n
+ dZ (z̃n, z̃m+n) +

1

m+ n
, ∀m ∈ N.

Since (z̃n) is Cauchy, dZ (z̃n, z̃m+n) → 0 as n→ ∞ and therefore

lim
n→∞ dZ (ỹn, ỹm+n) ≤ lim

n→∞

(
1

n
+ dZ (z̃n, z̃m+n) +

1

m+ n

)
= 0.

Thus, (ỹn)n∈N
is a Cauchy sequence. Now since f is an isometry and subse-

quently injective, we have
(
f−1 (ỹn)

)
n∈N

is Cauchy. Or in simpler notation,
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(yn)n∈N
is Cauchy in X where yn = f−1 (ỹn). Since this sequence is Cauchy,

∃ ỹ ∈ Z which contains (yn).
We claim that the sequence (z̃n) converges to ỹ. To prove this, we proceed

as follows:

dZ (z̃n, ỹ) ≤ dZ (z̃n, ỹn) + dZ (ỹn, ỹ)

<
1

n
+ dZ (ỹn, ỹ) .

To find dZ (ỹn, ỹ), we have to pick a representative of each of the classes.
Since ỹn ∈ Y = f (X), we pick (yn, yn, yn, . . . ) ∈ ỹn.
Also, let (ym)m∈N

∈ ỹ be the Cauchy sequence mentioned above. We use
m as index to avoid confusion.

Now, dZ (ỹn, ỹ) = lim
m→∞ dX (yn, ym).

∴ dZ (z̃n, ỹ) < 1/n+ lim
m→∞ dX (yn, ym) .

Finally, since (ym)m∈N
is Cauchy, ∀ε > 0 ∃N1 ∈ N, so that dX (yn, ym) <

ε
2 , ∀n,m > N1, which implies lim

m→∞ dX (yn, ym) ≤ ε
2 , ∀n > N1. For n such

that n > 2
ε and n > N1, we have

dZ (z̃n, ỹ) < 1/n+ lim
m→∞ dX (yn, ym) < ε.

Thus, (Z, dZ) is a complete metric space.

3.4.4 Uniqueness of extension up to isometry

Lastly, we have to prove that the extension thus obtained is unique up to
an isometry. As discussed earlier, we have to prove that if there exists another
complete extension (W,dW ) of X with isometry g : X → W then Z and W
are isometric.

We have isometry f : X → Z such that f (X) is dense in Z. Thus for
any z ∈ Z, there is a sequence (xn)n∈N

that converges to z where xn ∈
f (X). Since (xn)n∈N

is convergent, it is Cauchy as well. Now f being an

isometry gives
(
f−1 (xn)

)
n∈N

is Cauchy in X. Finally, g being an isometry

gives
((
g ◦ f−1

)
(xn)

)
n∈N

is Cauchy in W . But W is complete by hypothesis

and hence the sequence
((
g ◦ f−1

)
(xn)

)
n∈N

converges in W to, say, w. We

define a mapping h : Z →W by h (z) = w.
To prove that the function h is well defined, we note that the only

point of ambiguity in the definition is the choice of sequence converg-
ing to z. Consider another sequence (x′n)n∈N

that converges to z with
x′n ∈ f (X). Thus the sequence (x1, x

′
1, x2, x

′
2, x3, x

′
3, · · · ) converges to

z. Following similar argument as before we obtain that the sequence((
g ◦ f−1

)
(x1) ,

(
g ◦ f−1

)
(x′1) ,

(
g ◦ f−1

)
(x2) ,

(
g ◦ f−1

)
(x′2) , · · ·

)
is conver-

gent in W . But, we already know one of its subsequences
((
g ◦ f−1

)
(xn)

)
n∈N
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converges to w. Thus the sequence itself converges to w. This is turn means
its other subsequence

((
g ◦ f−1

)
(x′1) ,

(
g ◦ f−1

)
(x′2) ,

(
g ◦ f−1

)
(x′3) , · · ·

)
con-

verges to w as well. Hence, h is well defined.
Finally for any two points z1, z2 ∈ Z, let h (z1) = w1 and h (z2) = w2 and

let (xn)n∈N
, (yn)n∈N

be any two sequences in f (X) converging to z1 and z2
respectively. Therefore we have

dZ (z1, z2) = lim
n→∞ dZ (xn, yn) .

But, f and g being isometries, we have,

dZ (xn, yn) = dX
(
f−1 (xn) , f

−1 (yn)
)
= dW

((
g ◦ f−1

)
(xn) ,

(
g ◦ f−1

)
(yn)

)
.

By definition of h, we have
(
g ◦ f−1

)
(xn) → w1 and

(
g ◦ f−1

)
(yn) → w2 as

n→ ∞.

∴ lim
n→∞ dW

((
g ◦ f−1

)
(xn) ,

(
g ◦ f−1

)
(yn)

)
= dW (w1, w2) .

Bringing all of it together,

dZ (z1, z2) = lim
n→∞ dZ (xn, yn)

= lim
n→∞ dW

((
g ◦ f−1

)
(xn) ,

(
g ◦ f−1

)
(yn)

)

= dW (w1, w2)

= dW (h (z1) , h (z2)) .

Therefore, h : Z →W is an isometry.
For any w ∈ W , since g (X) is dense in W , there is a sequence (un)n∈N

that converges to w where un ∈ g (X). Proceeding in a similar manner as
before, we obtain that

((
f ◦ g−1

)
(un)

)
n∈N

is convergent in Z to say, z. It is

then easy to see that h (z) = w.
Therefore h is bijective and Z and W are isometric.

3.5 Baire Category Theorem

3.5.1 Category of sets

In his dissertation, René-Louis Baire described what is now known as a
Baire space. The Baire category theorem is one of the most important tools
used to study complete metric spaces and is one of the reasons why such spaces
are so important. But before we get ahead of ourselves, let us first understand
what the category in the name of the theorem refers to:
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Definition 3.9 (Rare set). A subset M ⊆ X is said to be rare if its closure
has no interior points. It is also referred to as nowhere dense set.

Definition 3.10 (Meager set). A union of countably many rare sets is said
to be of first category or a meager set. The complement of a meager set is
called co-meager.

Definition 3.11 (Non-meager set). A subset that is not meager is said to be
non-meager or of second category.

Example 3.11. We begin with some examples from R as the reader is very
familiar with the usual metric on it.

1. Singleton sets are rare in R as they are closed and contain no open
interval.

2. The set N is rare in R since it is closed and no open set is contained in
it.

3. The set Q is meager in R since it is a countable set and subsequently, a
countable union of rare singleton sets. It is not rare since its closure is
the entire R.

4. The set R is non-meager (as we will see in the later part of this section).
This means that Qc cannot be meager.

Exercise 3.9. Prove that the union of finite number of rare subsets is rare.
Notice that this is not the case with a countable union. Hence the requirement
of a new nomenclature for such sets. We urge the reader to closely follow the
example of Q ⊆ R. As we have already seen, Q is meager. However, it is not
rare. In fact, it is dense in R!

Theorem 3.8.

1. The complement of a rare set is dense.

2. A subset of a meager set is meager.

3. The union of countably many meager sets is meager.

Proof.

1. Let A ⊆ X be a rare. Thus, it contains no open subset. Subsequently,
every open set intersects Ac. Hence, Ac is dense.

2. Let, M be a meager subset of X.

For any subset N ⊆ M , we have N̄ ⊆ M̄ . Since, M̄ contains no open
set, neither will N̄ . Hence, N is meager.
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3. Let, (Mn)n∈N
be a countable collection of meager sets. Then, each Mn

is the countable union of rare sets.

Since the countable union of countable collection is countable, it follows
that

⋃
n∈N

Mn is meager.

The following corollary easily follows from the definition of co-meager sets.

Corollary 3.8.1.

1. A superset of a co-meager set is co-meager.

2. The countable intersection of co-meager sets is co-meager.

Now, a metric space (the definition works even for a topological space) is a
Baire space if every non-empty open set is of second category in X.

3.5.2 Baire category theorem

Theorem 3.9. A complete metric space is non-meager in itself.

Proof. Suppose that (X, d) is a complete metric space that is meager in itself.
That is, X =

⋃
k∈N

Mk such that each Mk is rare in X.

X contains at least one open subset (itself) while M̄1 does not. Thus, M̄1
c

is a non-empty open subset.
∴ ∃x1 ∈ B (x1, ε1) ⊆ M̄1

c
where we can make ε1 <

1
2 .

Now, M̄2 does not contain any open set. So, it does not contain B
(
x1,

ε1
2

)
.

Thus, M̄2
c ∩B (x1, ε12 ) is a non-empty open set.

∴ ∃x2 ∈ B (x2, ε2) ⊆ M̄2
c ∩B (x1, ε12 ).

Proceeding in this manner, we will obtain a sequence (xn) such that

xn ∈ B (xn, εn) ⊆ M̄n
c ∩B

(
xn−1,

εn−1

2

)
.

Thus, we have Mn ∩B (xn, εn) = ∅ and εn < εn−1/2 with ε1 <
1
2 .

For m > n, we have xm ∈ B
(
xn,

εn
2

)
. Thus, d (xm, xn) <

εn
2 .

But, ε1 <
1
2 and εn <

εn−1

2 gives us εn < 2−n.

∴ d (xm, xn) <
εn
2 < 2−(n+1) → 0 as n→ ∞.

Thus, the sequence (xn) is Cauchy in X and hence, convergent. Let, xn →
x.

For, m > n we have d (xn, x) ≤ d (xn, xm) + d (xm, x) <
εn
2 + d (xm, x).

d (xm, x) → 0 as m→ ∞ and hence, x ∈ B (xn, εn) , ∀n ∈ N.
But, as shown earlier Mn ∩ B (xn, εn) = ∅ and therefore x /∈ Mn, ∀n ∈ N

which is contradictory to our assumption that X =
⋃

n∈N

Mn.
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Corollary 3.9.1. Q
c is non-meager in R.

Proof. Baire category theorem implies that R is non-meager. Now, since R =
Q ∪Q

c and that Q is meager, Qc must be non-meager.

Exercise 3.10. Consider discrete metric defined on a countable set. Then
the whole space can be written as a countable union of singleton sets. Does
this contradict the Baire category theorem? Justify.

Although the version of the theorem we have proved is more than enough for
most applications, we feel compelled to present a slightly stronger version,
which deals with meager sets in a complete metric space.

Theorem 3.10. A meager set has an empty interior in a complete metric
space.

Proof. Consider a meager set M =
⋃

n∈N

Mn in a complete metric space X so

that each Mn is rare in X.
We will show that every open set intersects M c and thus M contains no

open subset, i.e., it has an empty interior.
Since, M1 is rare, M̄1

c
is a dense open set so that for every open subset

U ⊆ X, M̄1
c ∩ U is a non-empty open set.

∴ ∃x1 ∈ B (x1, ε1) ⊆ M̄1
c ∩ U where ε1 <

1
2 .

Now, M̄2
c
is dense and so B

(
x1,

ε1
2

) ∩ M̄2
c
is a non-empty open set.

∴ ∃x2 ∈ B (x2, ε2) ⊆ B
(
x1,

ε1
2

) ∩ M̄2
c
.

Proceeding in this manner, we obtain a sequence (xn) such that xn ∈
B (xn, εn) ⊆ M̄n

c ∩B (xn−1,
εn−1

2

)
.

We have seen that the sequence (xn) constructed in this manner is Cauchy
and hence convergent in X and that if xn → x then x ∈ B (xn, εn) , ∀n ∈ N.

Now, x ∈ B (x1, ε1) ⊆ U and x ∈ B (xn, εn) ⊆ M̄n
c
.

∴ x ∈ U ∩
(⋂

n∈N

M̄n
c

)
=⇒ x ∈ U ∩

(⋃
n∈N

M̄n

)c

,

i.e., U ∩M c is non-empty. Thus, M c intersects every open subset U ⊆ X. It
is dense in X. Consequently, M has empty interior.

To understand the theorem better, consider once again the case of Q with the
usual metric. As we have already seen, this space is not complete. Q itself is
a meager set in this space since it is countable and singleton sets are rare.
However, it does not have an empty interior; in fact, its interior is the entire
set Q.

We yet again emphasize that a meager set having an empty interior is
different from it being rare since its closure may still have a non-empty interior.
As is our ritual, consider the case of Q in R.
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In real analysis, we tend to associate nowhere dense sets with being
“small”. Similarly, in Lebesgue theory of integration, we associate sets of mea-
sure zero as being “small”. It is then but natural to try to find any connection
between the two. We will show via an example that both these concepts are
very different.

Example 3.12. First, we wish to find a meager set of measure greater than
zero. Equivalently, we would rather construct a co-meager set of measure zero.
We begin by noting that Q is countable.

Let Q = {qk}k∈N and let B (qk; 1/n) denote an open ball centered at qk of
radius 1

n in R.

We define Vn =
⋃
k∈N

B
(
qk,

2−k

n

)
so that its measure mVn ≤

∞∑
k=1

2. 2
−k

n =

2/n. We denote the complement of Vn by Vn
c.

Vn is open because it is a union of open balls. Therefore, Q ⊆ Vn is con-
tained in the interior of Vn, which in turn implies that Vn

c does not intersect
Q. Finally, since Vn

c is closed and every open interval in R intersects Q, Vn
c

contains no open interval and subsequently has an empty interior, i.e., it is a
rare set.

Thus, Vn is a co-meager set and so is
⋂

n∈N

Vn. But, m(
⋂

n∈N

Vn) ≤ mVn ≤ 2
n

for every n ∈ N. Thus m(
⋂

n∈N

Vn) = 0.

Exercise 3.11. Prove that the Baire category theorem implies that complete
metric spaces are Baire spaces.

3.5.3 Applications of Baire category theorem

Baire category theorem is a non-constructive theorem, i.e., it does not give
any construction method to the “thing” it is trying to prove.

One simple application of the theorem would be the following:

Theorem 3.11. The set [0, 1] is uncountable.

Proof. If [0, 1] were countable, we would have [0, 1] = {xn}n∈N. But, the sin-
gleton set {xn} is rare ∀n ∈ N and thus the set [0, 1] =

⋃
n∈N

{xn} is a meager

set which, due to Baire category theorem, contradicts the fact that [0, 1] is
complete.

Moving ahead, let us consider the “raindrop function” defined on R

(Figure 3.3)

f (x) =

{
1/q, x = p

q , where gcd(p, q) = 1.

0, otherwise.
(3.4)
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FIGURE 3.3: The raindrop function (also known as Thomae’s function).

It is continuous on Q
c but discontinuous on Q. The natural curiosity arises

whether the reverse is possible. Specifically, is there a function that is contin-
uous on Q but discontinuous on Q

c? The answer is no, and again a result of
Baire category theorem. To prove this, however, we will first need to look at
some concepts from real analysis.

Definition 3.12 (Fσ and Gδ sets). A countable union of closed sets is an Fσ

set. A countable intersection of open sets is a Gδ set.

It is easy to see that the complement of an Fσ set is a Gδ set and vice versa.
Also, the set Q is countable and since singleton sets are closed, it is an Fσ set.
Therefore, Qc is a Gδ set. A natural question arises whether it is possible to
write Q as a Gδ set. The answer is no. The reason is not straightforward and
comes from Baire category theorem as follows.

We already know that Q is a Fσ set. If Qc were a Fσ set then, we would
have R as a Fσ set.

∴ R =
⋃

n∈N

Fn where each Fn is closed and is either contained in Q or in

Q
c. But, both Q and Q

c have empty interior so each Fn is rare. Now, R is
complete and thus Baire category theorem implies that at least one of Fn has
a non-empty interior which is a contradiction.

The concept of Fσ and Gδ sets is a very important tool in the study of
continuity of a function as the following theorem shows.

Theorem 3.12. The set of points of continuity of a function is Gδ set. Sub-
sequently, the set of points of discontinuity is Fσ set.

Proof. A function f : X → Y is continuous at point p ∈ X iff ∀n ∈ N, ∃U ⊆ X
which is open with p ∈ U such that ∀x, y ∈ U we have

dY (f (x) , f (y)) <
1

n
.

For a fixed n ∈ N, we denote by Gn the set containing all p ∈ X for which an
open neighborhood U exists so that dY (f (x) , f (y)) < 1

n , ∀x, y ∈ U .
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Note that for any other point q ∈ U , the above condition holds as well,
and hence q ∈ Gn, i.e., U ⊆ Gn. Since Gn is the union of all such open sets,
Gn is open.

It is then easy to see that the set of all points at which f is continuous is⋂
n∈N

Gn, a Gδ set as required.

Since as proved earlier, Q cannot be a Gδ set, the following corollary easily
follows:

Corollary 3.12.1. There exists no real function which is continuous at
only Q.

The theme of the above proof is very common in most applications of Baire
category theorem. We try to construct a meager set inside a complete space
and hence, claim the existence of a point outside the set or use it as a contra-
diction. Another interesting application is the proof for existence of a highly
non-monotonic real function that is continuous.

Theorem 3.13. There exists a continuous real-valued function that is not
monotonic in any subinterval of [0, 1].

Proof. We know that the space C [0, 1] with the sup metric d∞ is complete.
Let I ⊆ [0, 1] be any interval and let A (I) and B (I) be the set of all functions
in C [0, 1] that are non-decreasing and non-increasing respectively on I.

We claim that both the sets are closed in C [0, 1].
Consider f to be the limit of a sequence (fn) in A (I).

For x, y ∈ [0, 1] with x > y, let M = f(x)+f(y)
2 .

If f (x) = f (y) then f (x) ≥ f (y).
For f (x) �= f (y), both are on the opposite sides of M on the number line.
Pick ε > 0 such that

0 < ε <
|f (x)− f (y)|

2
.

Then, ∃n0 ∈ N such that

d∞ (fn, f) < ε, ∀n > n0.

Thus |fn (x)− f (x)| ≤ d∞ (fn, f) < ε and similarly |fn (y)− f (y)| < ε.
Therefore, both fn (x) and f (x) are on the same side of M and also fn (y)

and f (y) are one the same side of M . But, f (x) and f (y) are on the opposite
side of M and fn (x) ≥ fn (y) since fn ∈ A (I).

∴ fn (x) ≥M ≥ fn (y) =⇒ f (x) ≥ f (y) .

That is, f ∈ A (I) and thus A (I) is closed. Similarly, we can show that B (I)
is closed as well. Since the choice of the interval I ⊆ [0, 1] was arbitrary, this
is true for each interval.
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Subsequently, the set K (I) = A (I)∪B (I) is closed. It also has an empty
interior as we will show next.

Let g ∈ K (I), then g is either a non-increasing or a non-decreasing
continuous function. Then due to the continuity of g, for any x0 ∈ I and
∀ε > 0, ∃δ > 0 such that |g (x)− g (x0)| < ε

3 whenever |x− x0| < δ.

We will add to g a small “spike” function (Figure 3.4) around x0 so that
the resulting function is no longer monotonic. For this, we define a new func-
tion ζ as follows

ζ (x) =

⎧⎪⎪⎨
⎪⎪⎩

ε
2δ (x− (x0 − δ)) , x ∈ [x0 − δ, x0] .

ε
2δ ((x0 + δ)− x) , x ∈ [x0, x0 + δ] .

0, otherwise.

(3.5)

Now, note that the function g̃ = g + ζ is continuous. Also, it is monotonic
(strictly) increasing in (x0 − δ, x0) since ζ is strictly increasing. However for
x2 ∈ [x0, x0 + δ], we have

g̃ (x2)− g̃ (x0) = (g (x2)− g (x0)) + (ζ (x2)− ζ (x0)) .

The expression in the first parenthesis, even though positive, cannot exceed ε
3

whereas the expression in the second parenthesis approaches the value − ε
2 as

x2 moves toward x0+δ. Therefore at some point, the above difference becomes
negative overall, and hence, g̃ is strictly decreasing in some sub-interval of
(x0, x0 + δ).

FIGURE 3.4: The spike function.
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Thus the function g̃ = g + ζ is continuous and non-monotonic with
d∞ (g, g̃) < ε.

Thus, we have proven that every neighborhood of g contains a point (in
C [0, 1], which is, in fact a function) outside K (I). Therefore K (I) has an
empty interior.

The set of intervals {(q − 1/m, q + 1/m) ∩ [0, 1] | q ∈ Q and m ∈ N} is
countable and and let us denote it by {In | n ∈ N}.

Then, the set of functions in C [0, 1] that are monotonic in any sub-interval
of [0, 1] is given by

⋃
n∈N

K (In) which is a meager subset of C [0, 1]. Since C [0, 1]

is complete, Baire category theorem dictates that
⋃

n∈N

K (In) �= C [0, 1].

Hence there exists a continuous function which is not monotonic at any
sub-interval of [0, 1].

Most of the applications of Baire category theorem go far beyond the scope
of this book. Most notably, it can used to prove the three major theorems
of functional analysis, namely the open mapping theorem, the closed graph
theorem, and the uniform boundedness principle. Apart from these, it can also
be used to prove that functions which have a finite derivative on at least one
point in an interval are rare in the set of all continuous functions similar to
how we have proved the same for monotonic functions.

Problem Set

1. We define the range of a sequence (xn)n∈N
as the set {xn | n ∈ N}. Is

the range of a subsequence always the same as that of the corresponding
sequence? If not, then in which case would it be the same, if at all?

2. Is there a limit to the number of subsequences a given sequence can
have? Count the number of subsequences of the following:

(a) 1, 1, 1, 1, ...

(b) 1, 2, 1, 2, 1, 2, ... Hint: It is not finite

(c) e, π, e, e, e, ...

3. Prove that every subsequence of a convergent sequence is convergent
and it converges to the same limit. Subsequently, prove that a sequence
is convergent if and only if all its subsequences are convergent to the
same limit.

4. Prove that a subsequence of a Cauchy sequence is Cauchy.
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5. Is it possible that the sequence of rational approximation (an)n∈N
of

√
2

is convergent to some other limit in Q? If yes, find the limit.

Hint: If an → a ∈ Q then in R, an → a (why?) and an → √
2 =⇒ a =√

2 ∈ Q.

6. Consider the set X of all bounded real functions on the closed interval
[a, b] with a metric d defined on it is as follows:

For x, y ∈ X
d (x, y) = max

t∈[a,b]
{|x (t)− y (t)|} .

Prove that convergence in this metric implies uniform convergence. Re-
call that a function f : D ⊆ R → R is uniformly continuous if ∀ε > 0,
∃δ > 0 such that whenever |x− y| < δ, we have |f (x)− f (y)| < ε.

7. On the interval (0, 1], consider the function d defined by

d (x, y) =

∣∣∣∣ 1x − 1

y

∣∣∣∣ , ∀x, y ∈ (0, 1] .

Does d constitute a metric on the set? Is the metric space complete?

Biographical Notes

Baron Augustin-Louis Cauchy (21 August, 1789 to
23 May, 1857) was a French mathematician, engineer,
and physicist who made pioneering contributions to sev-
eral branches of mathematics, including mathematical
analysis and continuum mechanics. He was one of the
first to state and rigorously prove theorems of calculus,
rejecting the heuristic principle of the generality of alge-
bra of earlier authors. He almost singlehandedly founded
complex analysis and the study of permutation groups in
abstract algebra. Cauchy was a prolific writer; he wrote
approximately eight hundred research articles and five
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Chapter 4

Compact Metric Spaces

The notion of compactness is perhaps the least intuitive but plays a central
role in analysis. It was Fréchet who coined the term “compact” in his 1906
doctoral thesis and gave the definition for what we now know as countable
and sequential compactness. However, Alexandroff and Urysohn get credit for
defining open cover compactness.

To give a vague idea, compact spaces are the ones which are not “too
large”; indeed, we will see that compact spaces are always bounded (in fact,
it is a generalization of finite set). So, part of saying that something is not
too large means that it cannot extend to infinity. However, the open interval
(0, 1) in R is also bounded and yet, is not compact, as we shall see in the text.
Therefore, “not too large” in the above sense must mean more than simply
being bounded.

There are two possible definitions (as we mentioned above) that we can
give for compactness: one is easier to state but gives no hint at its deeper
meaning, and the other which is trickier to state but starts to get to the heart
of the sense in which compact sets are “not too large”.

In this chapter, we begin with the first definition of covering compactness,
give examples, and prove some basic facts, and then we will give the second
definition (of sequential compactness) and do the same. Finally, we shall es-
tablish characterization theorem(s) for compactness including the Lebesgue
covering lemma.

4.1 Open Cover and Compact Sets

Definition 4.1 (Open cover). Let (X, d) be a metric space and A ⊆ X. We
say that the family of sets C = {Gλ ⊆ X|λ ∈ Λ} is an open cover of A if
∀λ ∈ Λ, the sets Gλ are open and A ⊆ ⋃

λ∈Λ

Gλ. Given an open cover C of

A, we will say that the family C ′ = {Aα ⊆ X|α ∈ Δ} is a subcover of C if
Δ ⊆ Λ, C ′ ⊆ C and C ′ is an open cover for A.

The definition is really as straightforward as it sounds. We need the sets in
the family to be open, and for them to cover A. A subcover is just a subfamily
of sets in the family which also covers A. Let us look at an example from R.

161
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Example 4.1. Consider the following sets A in the metric space (R, d), where
d (x, y) = |x− y|:

1. A = {x ∈ R|0 ≤ x ≤ 1}, i.e., the closed interval [0, 1]. For any ε > 0, the
family of intervals {(α− ε, α+ ε) |α ∈ A} is an open cover. There are
many subcovers. One of the examples is {(β − ε, β + ε) |β ∈ Q ∩ [0, 1]}.

2. A = R and consider the family of intervals {(α− 1, α+ 1) |α ∈ Z}. This
family is an open cover for R which has no non-trivial subcovers. By this
we mean that any proper subset of the family cannot cover R.

3. A =
{

1
n

∣∣∣n ∈ N

}
. Consider for any ε > 0, the family C = {Gn|n ∈ N},

where Gn = ( 1n − ε, 1
n + ε). The family C is an open cover for A. Also,

by the Archimedean property of N in R, ∃n0 ∈ N such that n0ε > 1.
It follows from this that ∀n ≥ n0,

1
n ∈ Gn0

. Hence, the family C has a
finite sub-family, given by {G1, G2, · · · , Gn0

}. Here we say that A has a
finite subcover.

4. A = (0, 1). If we consider the family of intervals

{
Gn =

(
1

2n
− 1

2n+1
,
1

2n
+

1

2n+1

) ∣∣∣n ∈ N ∪ {0}
}
,

then these intervals get smaller and smaller and both the end points
converge to 0.

In fact,
⋃

n∈N∪{0}

(
1
2n − 1

2n+1 ,
1
2n + 1

2n+1

)
=
(
0, 32
) ⊃ (0, 1). Therefore,

the family we have considered is an open cover for A. However, no
finite subcollection of this family can cover A. This is because if we
take any finite subfamily, say {Gn1

, Gn2
, Gn3

, · · · , Gnk
} and consider

N = max {n1, n2, · · · , nk}, then
N⋃
i=1

Gni
⊆ (

1
2N

− 1
2N+1 ,

3
2

)
and hence

does not contain the points in A which are “sufficiently” close to 0.
Note that by “sufficiently close” we mean those points which lie be-
tween 0 and 1

2N
− 1

2N+1 . We shall use this property further to show that
the open interval (0, 1) is not compact.

5. The collection of open intervals above is not an open cover for A = [0, 1]
because none of the intervals contain 0. We can get an open cover for A
from the above family of intervals by adding another interval about 0,
(−δ, δ), where δ > 0. In this case, if we choose N ∈ N sufficiently large
so that 1

2N
− 1

2N+1 < δ, the the set {G0, G1, · · · , GN} ∪ {(−δ, δ)} is a
finite subcover for A.

Exercise 4.1. Let X = Q
c be the set of irrational numbers. Can you find an

open cover for X?
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Exercise 4.2. Let X = Z be the set of integers. Can you think of an open
cover for X which does not admit a finite subcover?

Exercise 4.3. Give a non-trivial open cover for an arbitrary metric space.

Exercise 4.4. Let A =
{
(x, y) ∈ R

2|x2 + y2 < 4
}
, where we consider the

Euclidean metric space R
2. Can you think of an infinite cover of A which

admits a finite subcover?

We shall now give the definition of compactness for a set which, at the first
glance, may appear intriguing or rather intimidating! However, it is advised
to the reader that attention is to be paid to the consequences of the definition,
which are often easier to grasp, rather than the subtleties and technicalities
of it. The definition notably has a topological flavor (i.e., it is purely defined
in terms of open sets) and we will try to relate it to more familiar notions in
the text.

From all the above examples, one thing which we can observe is that open
covers are not interesting in themselves. Finding an open cover and then its
subcover is merely a computational task. What is not so trivial, and also very
intimately related to many (topological) properties of metric spaces, is that
what can we say about every open cover for a given set? Based on this query,
we have the following definition.

Definition 4.2 (Compactness). Suppose (X, d) is a metric space and A ⊆ X.
We will say that A is a compact set in X if every open cover of A has a finite
subcover.

Note here that by “finite subcover” we mean that the subcollection of the
cover contains finitely many sets and not that the sets which cover the set
have finitely many elements. More explicitly, if {Gλ|λ ∈ Λ} is an open cover
for A, then there should exist finitely many indices λ1, λ2, · · · , λn such that

A ⊆
n⋃

i=1

Gλi
. Then, we say that the given cover has a finite subcover given by

{Gλ1
, Gλ2

, · · · , Gλn
}.

Let us look at the previous examples and try to find the finite subcovers
whenever possible.

Example 4.2. In the very first example, we took A = [0, 1] and the open
cover as

C = {Gα = (α− ε, α+ ε) |α ∈ [0, 1]} ,
for a fixed ε > 0. While this family has uncountably many sets, there is a lot
of “overlap” in the sets. Any x ∈ [0, 1] is “covered” by every set Gα, where
α ∈ (x− ε, x+ ε). We want to remove as much as redundancy as possible.

What we will do is, instead of taking every α in [0, 1] continuously, we
shall take discrete jumps. If we jump by an appropriate amount, we should
not exclude any element from the covering. It should not take much convincing
to agree that the family

C ′ = {S0, Sε, S2ε, · · · , Snε} ,
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FIGURE 4.1: Pictorial representation of the finite subcover found in the
example.

where, Siε = ((i− 1) ε, (i+ 1) ε) and n ∈ N ∪ {0} is the largest such number
such that nε < 1 (How do we know that a largest n exists?). This is shown
in Figure 4.1. It is clear that every set in C ′ is also in the family C and this
family is finite. So, we have done our job!

Note. This example does not prove that the set [0, 1] is compact. To prove so,
we would have to find a finite subcover for every open cover of [0, 1]. However,
in the example, we have found a finite subcover for only one of the open
covers. We will, in fact, prove that this set is compact once we are equipped
with proper tools to do so!

Example 4.3. We have seen that the family {(α− 1, α+ 1) |α ∈ Z} is an
open cover for R. Clearly, this family is not finite since Z is not finite and the
family has a one-to-one correspondence with Z. Now, suppose we remove one
of the intervals (α0 − 1, α0 + 1). Then, the point α0 ∈ R cannot be covered by
any other interval in the family (otherwise the distance between two integers
would becomes less than 1). Hence, for this cover, we cannot have a finite
subcover, and therefore, we can conclude that R is not compact.

Example 4.4. We have considered the set A =
{

1
n

∣∣∣n ∈ N

}
and also found

an open cover C = {Gn|n ∈ N}, where Gn =
(
1
n − ε, 1

n + ε
)
which admits a

finite subcover. Again, as mentioned earlier, this is not enough to show that
this set is compact! We will have to do this for every open cover of A.

Now, consider the collection C ′ =
{
B
(
1
n , rn

) ∣∣∣n ∈ N

}
, where rn = 1

n(n+1) .

Notice that for this choice of rn, we have

1

n+ 1
<

1

n
− rn <

1

n
<

1

n
+ rn <

1

n− 1
.

Therefore, no two elements of the set A are contained in the single ball
B
(
1
n , rn

)
. Hence, if we remove any of the open balls from C ′, the collec-

tion will no longer cover A. Therefore, C ′ admits no non-trivial subcovers.
Also, C ′ is infinite. Therefore, this particular open cover of A does not admit
a finite subcover and thus, A is not compact.

One may ask a question: How did we know that this open cover will work to
prove that A is not compact? Mathematics is not magic. Some reasoning is
required for everything we do. First, we observed that if we take any two points
in A, then we can have open balls around each of them so that each of the
open balls contain no point of A other than the center itself. Such points are
called isolated points . Since every point in A was isolated and A had infinitely
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many points, we could construct an open cover of precisely those open sets
(balls) which made these points isolated in the first place. This open cover
cannot have any finite subcover. Note that this method is not only applicable
to this particular set A. Any set with infinitely many isolated points can be
proved to be non-compact by this method.

Example 4.5. Consider the metric space �2 and the closed unit ball given by

B (0, 1) =
{
x ∈ �2|d2 (x,0) ≤ 1

}
.

Now, consider the set {en} ⊆ �2, where en is that real-valued sequence where
the nth term is 1 and all other terms are 0. Clearly, d2 (en,0) = 1 so that
∀n ∈ N, en ∈ B (0, 1). Also, notice that d2 (en, em) =

√
2, whenever n �= m.

Now, consider the family C =
{
B
(
x, 12
) ∣∣∣x ∈ B (0, 1)

}
. Suppose this has a

finite subcover C ′ =
{
B
(
xi,

1
2

) ∣∣∣1 ≤ i ≤ n
}

for some n ∈ N. Since {en} is an

infinite set, at least two en, em for m �= n must be inside one ball B
(
xi0 ,

1
2

)
.

Then, we have

d2 (en, em) ≤ d2 (en,xi0) + d2 (em,xi0) <
1

2
+

1

2
= 1.

This is a contradiction! Hence, the open cover C cannot have any finite sub-
cover and the closed unit ball in �2 is not compact.

Exercise 4.5. Show that the metric space (X, d), where X is an infinite set
and d is the discrete metric, is not compact.

Exercise 4.6. Show that the closed unit ball in (C [0, 1], d∞), where
d∞ (f, g) = sup

x∈[0,1]

{|f (x)− g (x)|}, is not compact.

4.2 General Properties of Compact Sets

All the above examples were well and good, but none of them gave actual
insights about what compact sets really are, or why are they useful. Therefore,
we shall now consider some properties of compact sets specified in terms of
theorems.

Theorem 4.1. Let (X, d) be a metric space and S ⊆ X be a compact set.
Then,

1. S is bounded.

2. S is closed.

3. Every infinite subset K ⊆ S has a cluster point in S.
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Proof.

1. Let x ∈ X be fixed. Then, by Archimedean property, ∀y ∈ X,
∃n ∈ N such that n > d (x, y). Therefore, the family of open balls
{B (x, n) |n ∈ N} is an open cover for X and hence for S. Since S is com-
pact, this cover has a finite subcover for S. Let {B (x, ni) |1 ≤ i ≤ n0}
be the subcover. If we take N = max {n1, n2, · · · , nn0

}, then for i =
1, 2, · · · , n0, we have B (x, ni) ⊆ B (x,N). Therefore, S ⊆ B (x,N) and
thus, S is bounded.

2. Consider a point p ∈ Sc. For each point y ∈ S, we can construct open
balls B (y, ry), where ry = 1

2d (p, y). Now, ∀y ∈ S, y ∈ B (y, ry) and
also being open, the family of balls C = {B (y, ry) |y ∈ S} is a cover
for S. Since S is compact, C has a finite subcover of open balls, say
{B (yi, ryi

) |yi ∈ S and 1 ≤ i ≤ n} for some n ∈ N. Also, note that from
the construction of these open balls, it is evident that p /∈ B (y, ry) and
in particular, ∀i ∈ {1, 2, · · · , n}, p /∈ B (yi, ryi

).

Now, let r = min
1≤i≤n

{ryi
}. The open ball B (p, r) cannot intersect with

any of the open balls B (yi, ryi
) and hence cannot intersect S. Therefore,

B (p, r) ⊆ Sc so that Sc is open and S is closed. The method of finding
r is diagrammatically represented in Figure 4.2.

3. Given an infinite subset K ⊆ S, suppose that K does not have a cluster
point in S. Then, ∀x ∈ S, ∃rx > 0 such that the open ball B (x, rx)
does not contain any point of K except possibly x (if x ∈ K). Now, the
family {B (x, rx) |x ∈ S} is an open cover for S and since K ⊆ S, it is
also a cover for K. Given that S is compact, we know that this family

FIGURE 4.2: Compact sets are closed: Diagrammatic representation.
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must have a finite subcover, say {B (xi, rxi
) |xi ∈ S and 1 ≤ i ≤ n} for

some n ∈ N. Consequently, this subcover also covers K. However, each
of the balls have the property that B (x, rx)∩K has at most one element.
Hence, either K is finite or this subcover cannot cover K, both of which
are contradictions! Therefore, K must have a cluster point in S.

Note that we have proved a very important property of compact sets: Every
compact set is closed and bounded. What can we say about the converse? In
Example 4.5, we see that the closed unit ball in �2 is not compact. However, it
is both closed and bounded. Therefore, closedness together with boundedness
is not a characterization of compactness. However, they are necessary condi-
tions for a set to be compact. If we have an encounter with a set which is
either not closed or not bounded, we can surely say that it is not compact.

Also, we see that any infinite subset of a compact set must have a cluster
point. We call this property the Bolzano-Weierstrass property . The formal
definition is given as follows.

Definition 4.3 (Bolzano-Weierstrass property). A metric space (X, d) is said
to have Bolzano-Weierstrass property (BWP) if every infinite subset of X has
a cluster point in X.

Theorem 4.2. A closed subset of a compact metric space is compact.

Proof. Let (X, d) be the given compact metric space and let S ⊆ X be closed.
Let C = {Gλ|λ ∈ Λ} be an open cover for S. We know that X = S ∪ Sc so
that the family C ∪ {Sc} is an open cover for X. However, X is compact and
hence this family has a finite subcover. We denote this finite subcover as C ′.
Note that C ′ may or may not include Sc. If it includes Sc, we make another
family C ′′ which has all the members of C ′ except for Sc. We do this because
we know Sc will never help us cover S. Now, the family C ′′ must cover S or
otherwise, C ′ cannot cover X. Since C ′ is finite, C ′′ is also finite and we have
proved that S is compact. This is represented in Figure 4.3.

In the case when C ′ does not contain Sc, the family also acts as a cover
of S, thereby proving our claim.

Consider the family of open sets F =
{(

0, 1
n

) ∣∣∣n ∈ N

}
. What is their inter-

section? This is a nested family of open sets whose right end point goes on
decreasing to 0. Clearly, their intersection is empty. However, if we take any
finite number of sets from this family we get a non-empty intersection. Sim-
ilarly, consider the family of closed sets F ′ = {[n,∞) |n ∈ N}. Again, if we
take a finite number of sets from this family, their intersection is non-empty.
On the other hand, if we take infinite intersection, it is empty because N is
unbounded in R.
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FIGURE 4.3: Pictorical representation of the fact that the finite cover for
compact space is also a cover for a closed set.

Therefore, we have families of sets F = {Sλ|λ ∈ Λ} such that

∀n ∈ N,
n⋂

i=1

Sλi
�= ∅,

while ⋂
λ∈Λ

Sλ = ∅.

The question is: Can we have a family where the intersection still remains
non-empty? The answer to this is given by compactness of the sets in the
family.

Theorem 4.3. Let (X, d) be a metric space. Suppose {Sλ|λ ∈ Λ} is a family of
compact non-empty subsets of X and that for any finite subset {Sλi

|1 ≤ i ≤ n}
of the family, we have

n⋂
i=1

Sλi
�= ∅.

Then, we also have ⋂
λ∈Λ

Sλ �= ∅.

Proof. Suppose that the theorem is not true! Then, for a fixed λ0 ∈ Λ, we will
have

Sλ0
∩
⎛
⎝ ⋂

λ∈Λ\{λ0}
Sλ

⎞
⎠ = ∅.
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Let us denote S =
⋂

λ∈Λ\{λ0}
Sλ. It follows that Sλ0

⊆ Sc. Also, S is an inter-

section of closed sets (compact sets are closed) and hence Sc is open. In fact,
Sc =

⋃
λ∈Λ\{λ0}

Sc
λ. Therefore, the family {Sc

λ|λ ∈ Λ \ {λ0}} is an open cover

for Sλ0
.

However, Sλ0
is compact, and therefore, this family must have a finite

subcover, say
{
Sc
λ1
, Sc

λ2
, · · · , Sc

λn

}
, for some n ∈ N. Now, we have

Sλ0
⊆

n⋃
i=1

Sc
λi

=

(
n⋂

i=1

Sλi

)c

.

Therefore, the finite intersection Sλ0
∩ Sλ1

∩ · · · ∩ Sλn
is empty, which is a

contradiction to the hypothesis. Hence, the theorem must be true!

4.3 Sufficient Conditions for Compactness

In the previous section, we saw the consequences of compactness, i.e., we
saw what happens when a set is compact. However, we paid no attention to
check if a given set is compact. It is evident from the examples that we have
seen, proving a set to be non-compact is easier than proving that it is compact!
This is because to prove that a set is not compact, we simply have to find one
open cover which does not admit finite subcover. However, to prove that a set
is compact, we need to examine every possible open cover for the set. This
is tedious, requires a lot of analysis, and in many metric spaces, is challeng-
ing. In this section, we shall try to formulate certain sufficient conditions for
compactness.

Theorem 4.4. In the metric space (R, d), where d (x, y) = |x− y|, any closed
and bounded interval [a, b], with a ≤ b is compact.

Proof. Suppose that this theorem is false! Let {Gλ|λ ∈ Λ} be that open cover
for [a, b] which does not admit any finite subcover. Then for the point c = a+b

2 ,
one of the intervals [a, c] or [c, b] does not have a finite subcover. We denote
I0 = [a, b] and I1 as that interval from the choices [a, c] or [c, b] which does
not admit a finite subcover.

Inductively, we form a sequence of intervals In, for n ∈ N, which do not
have a finite subcover. Note that this sequence of intervals is decreasing in the
sense that

I0 ⊇ I1 ⊇ I2 ⊇ · · ·
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Also, for each n ∈ N, In is not covered by finitely many members of the family
{Gλ|λ ∈ Λ}. And for any two points x, y ∈ In we have

d (x− y) = |x− y| ≤ b− a

2n
.

Now, we denote In = [an, bn] and the set of end points as I+ = {b1, b2, · · · }
and I− = {a1, a2, · · · }. The set I− has an upper bound, namely b, in R and
thus has a supremum. Similarly, the set I+ has a lower bound, namely a, in
R and thus has an infimum. Also, we have sup I− ≤ inf I+ (why?). Therefore,
∃x0 ∈ R such that sup I− ≤ x0 ≤ inf I+ and therefore, x0 ∈ In for each n ∈ N.

This is to say that
⋂

n∈N

In �= ∅. Also, the family {Gλ|λ ∈ Λ} covers each of

the In so that ∃λ0 ∈ Λ such that x0 ∈ Gλ0
. Since Gλ0

is open, ∃r > 0 such
that B (x0, r) ⊆ Gλ0

.
By the Archimedean property of N in R, ∃n0 ∈ N such that r2n0 > b− a.

Therefore, ∀y ∈ In0
, we have

d (y, x0) ≤ b− a

2n0
< r.

Hence, In0
⊆ B (x0, r) ⊆ Gλ0

. This means that In0
is covered by a single open

set from the cover of [a, b], which contradicts the construction of In0
. Hence,

our initial assumption that [a, b] is not compact must be wrong.

We now move to a more general case of Rn, where we in fact characterize the
compactness of sets.

Theorem 4.5 (Heine-Borel). In the Euclidean space (Rn, d2), a set is compact
if and only if it is closed and bounded.

Proof. The necessary part is already proved in Theorem 4.1. For the sufficient
part, we give a sketch of the proof and leave the “textbook” proof as an
exercise to the reader. The strategy remains the same as in the case of R,
except that we now have to play with multiple coordinates rather than a
single coordinate. Also, analogous to breaking the intervals into subintervals,
in R

n, we can carve boxes and since a closed and bounded set must fit into
one of these boxes, we can use the fact that closed subset of a compact set is
compact to prove that the given set is compact.

Note that the Heine-Borel theorem works also for R. As an application, we
consider the following example.

Example 4.6 (Cantor set). Consider the cantor set in R constructed by the

intersection C =
∞⋂
i=1

Ci, where each Ci is a union of 2n closed subintervals

of [0, 1]. To see the complete construction, we first divide the interval [0, 1]
into three equal parts and then remove the middle open interval

(
1
3 ,

2
3

)
. We

are left with two closed intervals
[
0, 13
]
and

[
2
3 , 1
]
each of length 1

3 . We define
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C1 =
[
0, 13
] ∪ [ 23 , 1]. Next, we divide each of these closed intervals into three

equal parts again and then remove the middle open interval. Again, we are
left with 4 = 22 closed intervals, the union of which we call C2 and the length
of each remaining interval is 1

32 . We continue this process (inductively) to
generate Cn and thus C as defined above.

First, notice that each Ci is closed being a finite union of closed sets, and
finally C is closed, being an intersection of closed sets. Also, C ⊆ [0, 1] so that
C is bounded. Hence, by Heine-Borel theorem, the Cantor set is compact.

Note. It is important to recognize that the proof of compactness fails for
intervals in R which are either not closed or not bounded. We deal with these
cases as follows:

1. Suppose that an interval I ⊆ R is closed but not bounded, i.e., it is of the
form (−∞, b], [a,∞) or R itself. While we can subdivide this interval,
we cannot guarantee that the resulting sequence of intervals constructed
are such that their lengths decrease. Therefore, the result cannot hold
in this case.

2. Suppose that an interval I ⊆ R is bounded but not closed, i.e., it is of the
form (a, b), (a, b] or [a, b) for a < b. Here, we can subdivide the interval
to form a sequence In with decreasing lengths but the existence of an x0
which shall be in each In is not guaranteed. Therefore, the result again
does not hold!

It is fair at this point to wonder how could a set be closed and bounded
and yet not compact. We have already seen an example, �2, where the closed
and bounded set, namely the closed unit ball, was not compact. Therefore,
it seems that in more general sets than R

n with more pathological metrics
that d2 it is possible for converse to fail. We now see some examples for
the same.

Example 4.7. Consider the metric space (�∞, d∞). Consider the closed ball

B
(
0, 12
)
in �∞. It is clear that the set is both bounded and closed. Now,

consider an open cover for B
(
0, 12
)
, given by C = {Gn|n ∈ N}, where Gn ={

x ∈ �∞
∣∣∣ |xi| < 1 for i < n, |xi| < 1

2 for i ≥ n
}
. This family is an open cover

for B
(
0, 12
)
with no finite subcover. Therefore, B

(
0, 12
)
is not compact.

Example 4.8. The reader has already proved in Exercise 4.5 that an infinite
set with discrete metric is not compact. However, we see that the whole space
is closed and since for any two points x, y in the space, d (x, y) ≤ 1, the space
is also bounded. Hence, this is another example where closed and bounded
sets are not compact. The same technique can be used to prove that any
infinite subset of a discrete metric space is not compact although it is closed
and bounded.
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4.4 Sequential Compactness

It seems that the motivation of defining sequential compactness in
Fréchet’s 1906 thesis came from his desire to generalize a theorem due to
Bolzano and Weirstrass (which states that every bounded infinite set of real
numbers has a cluster point) to an abstract topological (metric) space.

Definition 4.4 (Sequential compactness). A subset A of a metric space (X, d)
is said to be sequentially compact if every sequence in A has a convergent
subsequence in A.

Note. We say that every sequence in A must have a convergent subsequence
“in A”. This means the subsequence must have its limit inside A. Otherwise,
it may be possible that there are subsequences which converge but their limits
are outside A, and therefore, A may not be compact.

We usually abbreviate sequential compactness as compactness but sometimes
we distinguish explicitly between the two definitions: sequential compactness
and open covering compactness.

Remark. Since a metric space can always be viewed as a subset of itself, it
makes sense to ask whether or not a metric space itself is compact (sequen-
tially). The point is that unlike the definitions of open and closed, compactness
is not a relative notion; we do not ask whether or not a space is compact in
some larger space. For instance, we have seen that closed intervals [a, b] as
compact subsets of R, but the point here is that [a, b] is compact when viewed
as a metric space in its own, regardless of the fact that it is a subset of R.

So, according to this definition, a space is not too large if no matter what
sample points we choose, we can always find a subsequence among them which
converges.

Example 4.9. In Example 4.4, we have seen that the set A =
{

1
n

∣∣∣n ∈ N

}
is not compact. If we consider the points of that set itself, they form a se-
quence which converges to 0 in R. However, 0 /∈ A. Since any subsequence of
a convergent sequence converges to the same limit, there is no subsequence
which converges in A. This is a classic example of working of the definition of
sequential compactness.

Exercise 4.7. Show that the set A = Q ∩ [0, 1] is not compact.

Exercise 4.8. Show that the Hilbert cube (Example 2.7) is compact subset
of �2.

The following theorem shows that the Bolzano-Weirstrass property is equiva-
lent to sequential compactness.



Compact Metric Spaces 173

Theorem 4.6. A metric space (X, d) is sequentially compact if and only if it
has the BWP.

Proof. First, we assume that X is sequentially compact. Let A ⊆ X be an
infinite set. We can extract a sequence (xn)n∈N

of distinct points from A.
Since X is sequentially compact, this sequence has a convergent subsequence,
say (xnk

) converging to x ∈ X. We claim that x is a cluster point of A.

Let ε > 0. Since (xnk
) converges to x, ∃n0 ∈ N such that ∀k ≥ n0 we have

xnk
∈ B (x, ε). Since (xn) consists of distinct elements from A, so does (xnk

).
Hence, there is at least one xnk

�= x in the open ball B (x, ε). This proves that
x is a cluster point of A. Since A was arbitrary, we have proved that X has
BWP.

Conversely, let us assume that X has BWP and let (xn)n∈N
be any se-

quence in X. Let A denote the range set of the sequence (xn)n∈N
.

Case I: If A is finite, at least one term of the sequence (xn) is repeated
infinitely many times. The subsequence consisting of this term is constant
and hence convergent in X.
Case II: If A is infinite, then by BWP, A must have a cluster point in X. Let
x be the cluster point. Therefore, ∀ε > 0, ∃y �= x ∈ A such that y ∈ B (x, ε).
In particular, ∀k ∈ N, ∃xnk

�= x ∈ A such that xnk
∈ B

(
x, 1k
)
. Therefore,

we get a subsequence (xnk
). This subsequence has the property that ∀k ∈ N,

d (xnk
, x) < 1

k . Now, if ε > 0 is arbitrarily chosen, then we can find a k0 ∈ N

such that k0ε > 1 (by Archimedean property). Hence, ∀k ≥ k0, we have
d (xnk

, x) < 1
k ≤ 1

k0
< ε. Hence, the subsequence is convergent in X and X is

sequentially compact. This can be seen in Figure 4.4.

FIGURE 4.4: Capturing the (sub)sequence.
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From Theorem 4.1 and Theorem 4.6, we immediately have the following
corollary.

Corollary 4.6.1. A compact metric space is sequentially compact.

4.5 Compactness: Characterizations

In this section, we will discuss the main result of the present chapter which
gives us important characterizations of compactness. To do this, we first in-
troduce the following.

Definition 4.5 (Totally bounded). We say that a metric space (X, d) is
totally bounded if ∀ε > 0, there exists finitely many points xi ∈ X for i =
1, 2, · · · , n such that

X =

n⋃
i=1

B (xi, ε) .

Typically, the number n of points required to cover X through open balls,
increases as ε becomes small. But no matter how small ε gets, for a totally
bounded metric space, we shall always get finitely many points as mentioned
above.

We say that a subset A ⊆ X is an ε-net for X if given any x ∈ X, ∃y ∈ A
such that d (x, y) < ε. Thus, we can conclude that X is totally bounded if and
only if there is a finite ε-net for X for any ε > 0.

Note.

1. Since a finite union of bounded sets is bounded, a totally bounded set
is bounded.

2. In the metric space (R, d), with d given by the absolute value function,
every bounded subset of R is totally bounded. Indeed, if A ⊆ R is
bounded, then A ⊆ (−δ, δ) for some δ > 0. Given ε > 0, the set A is

certainly covered by the intervals
{(

−δ + (i−1)ε
2 ,−δ + iε

2

) ∣∣∣1 ≤ i ≤ n
}
,

where n ∈ N is such that nε ≥ 4δ.

3. A subset of Rn is bounded if and only if it is totally bounded. In fact,
any bounded subset of Rn lies in some cube Cn = [−N,N ]

n
for some

N ∈ N. But Cn can be written as a union of finitely many subcubes with
arbitrarily small length and thus arbitrarily small diameter. The decom-
position of a square into smaller squares of arbitrarily small lengths is
shown in Figure 4.5.
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FIGURE 4.5: Decomposing a square into finitely many squares of length
arbitrarily small.

Example 4.10.

1. An infinite subset of a discrete metric space is bounded but not totally
bounded. This is because if x is any point in the set, then for any ε < 1
we have B (x, ε) = {x} so that no collection of finitely many open balls
can cover the infinite set.

2. Closed unit balls in �2 (Example 4.5) and C [0, 1] (Exercise 4.6) are
bounded but not totally bounded.

Exercise 4.9. Let (X, d) be a metric space which is bounded but not totally
bounded. Show that there is a positive number δ and a sequence (xn)n∈N

in
X such that ∀n �= m, d (xn, xm) ≥ δ.

Exercise 4.10. Prove that every compact metric space has a finite diameter.

Exercise 4.11. Prove that a metric space is totally bounded if and only if it
is bounded in every equivalent metric.

Exercise 4.12. Prove that a totally bounded metric space is separable.

Definition 4.6 (Lebesgue number). Let (X, d) be a metric space and C =
{Gλ|λ ∈ Λ} be an open cover for X. A real number l > 0 is called a Lebesgue
number for C if every set A ⊆ X with diam (A) < l is contained in Gλ for
some λ ∈ Λ.

A Lebesgue (covering) number is a certain “uniformity” across the covering.
The mere fact that {Gλ|λ ∈ Λ} covers X ensures that each point x ∈ X
belongs to at least one Gλ and since Gλ are open, each point is the center of
some open ball contained in Gλ. If we now move to another point y ∈ X, we
may be forced to decrease the radius of our open ball in order to squeeze it
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into Gλ. Under special circumstances, it may not be necessary to take radii
below a certain level as we move from point to point over the entire space.
That “certain level” is given by Lebesgue number.

Example 4.11. Consider an open cover {(−1, 2)} for the set A = [0, 1]. Then,
any real number l > 0 is a Lebesgue number for this cover. This is because
whatever set S ⊆ A we consider, whenever diam (S) < l, S ⊆ (−1, 2) always
holds.

Example 4.12. Consider the open sets U0 =
(− 1

5 ,
1
5

)
and Uα =

(
α
2 ,

5
4

)
for

0 < α ≤ 1. Then, the family {U0} ∪ {Uα|0 < α ≤ 1} is an open cover for
A = [0, 1]. Here, l = 1

5 is a Lebesgue number for this cover. This is because
whenever for a subset S ⊆ A, diam (S) < l holds, its infimum exists and
inf S ≥ 0. If inf S = 0, then S ⊆ (− 1

5 ,
1
5

)
and if inf S > 0 then S ⊆ Uinf S .

Exercise 4.13. Let U0 =
(− 1

8 ,
1
8

)
and Uα =

(
α
2 , 2
)
for 0 < α ≤ 1. Find a

Lebesgue number for the family {U0}∪{Uα|0 < α ≤ 1} which is an open cover
for [0, 1].

Exercise 4.14. Is a Lebesgue number unique?

Exercise 4.15. Let (R, d) be the metric space with metric given by absolute
value function and A = [0, 1] ⊆ R. Find a Lebesgue number for the cover of
A given by

C =

{(
−1,

1

4

)
,

(
1

6
,
2

3

)
,

(
1

3
,
3

2

)}
.

Now to prove the characterization theorem for compact metric spaces, we need
the following lemma.

Theorem 4.7 (Lebesgue covering lemma). In a sequentially compact metric
space (X, d), every open cover has a Lebesgue number. Equivalently, if a metric
space has BWP, then every open cover has a Lebesgue number.

Proof. Suppose that the theorem is not true. Let {Gλ|λ ∈ Λ} be an open
cover for X for which there is no Lebesgue number. This is to say that ∀l > 0,
∃xl ∈ X such that the open ball B

(
xl,

l
4

)
, for which diam

(
B
(
xl,

l
4

)) ≤ l
2 < l

is not contained in any of the open sets Gλ. In particular, ∀n ∈ N, ∃xn ∈ X
such that ∀λ ∈ Λ, B

(
xn,

l
4n

)
� Gλ. Since X is sequentially compact, (xn)n∈N

has a convergent subsequence and consequently, has a cluster point. Let that
cluster point be named c. Since the family mentioned covers X, ∃λ0 ∈ Λ
such that c ∈ Gλ0

. Also, Gλ0
being open, ∃δ > 0 such that B (c, δ) ⊆ Gλ0

.
Also, being a cluster point, there is at least one point xN of the sequence
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(xn)n∈N
such that xN �= c and xN ∈ B

(
c, δ2
)
and 1

N < 2δ. Now, consider any

y ∈ B
(
xN ,

1
4N

)
. Then, we have

d (y, c) ≤ d (y, xN ) + d (xN , c) <
1

4N
+
δ

2
<
δ

2
+
δ

2
= δ.

Hence, B
(
xN ,

1
4N

) ⊆ B (c, δ) ⊆ Gλ0
, which is a contradiction to the construc-

tion of the sequence (xn)n∈N
.

Therefore the theorem is correct and every open cover has a Lebesgue
number.

We now characterize all the concepts we have dealt with so far.

Theorem 4.8 (Characterization of compactness). Let A be a subset of a
metric space (X, d). Then, the following statements are equivalent:

1. A is compact.

2. A is sequentially compact.

3. A is totally bounded and complete.

Proof. First let us clear the way by proving the easier implications (1) ⇒ (2)
and (2) ⇒ (3).

Assume the conditions of (1), i.e., A is compact. Let (an)n∈N
be a sequence

in A and suppose that this sequence does not have a convergent subsequence
in A. This means either the sequence has no cluster points at all or if it
has one, it is not in A. Therefore, ∀x ∈ A, ∃rx > 0 such that B (x, rx)
has at most finitely many terms of the sequence (an)n∈N

. Also, the family
{B (x, rx) |x ∈ A} is an open cover for A. Since A is compact, this has a finite
subcover, say {B (xk, rxk

) |1 ≤ k ≤ n0} for some n0 ∈ N.
Now, we note that since (an)n∈N

has no cluster point, its range cannot
be finite. Also, each B (xk, rxk

) contains at most finitely many terms of the

sequence (an)n∈N
so that

n0⋃
i=1

B (xi, rxi
) contains finitely many terms of the

sequence. This means that either the range of the sequence is finite or the
remaining terms are outside of A, both of which are contradictions!

This proves (1) ⇒ (2).
Now, assume the conditions of (2), i.e., A is sequentially compact. Let

(an)n∈N
be a Cauchy sequence in A. Since A is sequentially compact, the

sequence (an)n∈N
has a convergent subsequence and hence, being Cauchy, it

is convergent and in fact to the same limit as its subsequence. Therefore, A is
complete.

Now, suppose that A is not totally bounded. Then, ∃ε > 0 such that
A cannot be covered by finitely many open balls. Let a1 ∈ A be arbitrar-
ily chosen. Now, choose a2 ∈ A with the property that a2 /∈ B (a1, ε). By
induction, we can construct the sequence (an)n∈N

, where an /∈ B (ai, ε), for
i = 1, 2, · · · , n − 1. Notice that the method of construction of the sequence
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guarantees that for any two distinct points of the sequence (an)n∈N
, the dis-

tance is at least ε. Hence, this sequence cannot have a convergent subsequence,
contradicting the hypothesis of (2). Therefore, A must be totally bounded and
(2) ⇒ (3) is proved!

To complete the proof of the theorem, it is enough to show (3) ⇒ (1).
This gives us the illusion that there is only one step remaining to complete the
proof! Unfortunately, a direct attack on this implication seems to be hopelessly
difficult. Maybe we should try establishing the implications (3) ⇒ (2) and
(2) ⇒ (1).

The implication (3) ⇒ (2) is not so easy; however, it is “manageable”.
So, let us assume the hypothesis of (3), i.e., A is totally bounded and

complete. Let (an)n∈N
be a sequence in A for which we have to find a cluster

point. Once this is achieved, the corresponding convergent subsequence is also
obtained. In order to “catch” a cluster point, we have to construct a nested
sequence of “traps” (Fk)k∈N

, diminishing in size. These traps will narrow down
to the cluster point of the sequence.

More precisely, we define, inductively, subsets Fk for k ∈ N such that

(i) (Fk)k∈N
is decreasing in the sense F1 ⊇ F2 ⊇ F3 ⊇ · · ·

(ii) Each Fk contains infinitely many terms of the sequence (an)n∈N
.

(iii) The size of Fk shrinks to 0; more precisely, there is a sequence of open
balls B (xk, rk) with the property that lim

k→∞
rk = 0 such that Fk ⊆

B (xk, rk).

Set F1 = A. Assume that the sets F1, F2, · · · , Fk−1 have been constructed.
We construct Fk in the following manner. Cover A by finitely many balls of
radius 1

k , say B
(
y1,

1
k

)
, B
(
y2,

1
k

)
, · · · , B (yN , 1k). This is possible because A

is totally bounded. Since Fk−1 contains infinitely many terms of the sequence
(an)n∈N

, one of the sets Fk−1∩B
(
yi,

1
k

)
, for i = 1, 2, · · · , N , contains infinitely

many terms of the sequence, say Fk−1 ∩B
(
yj ,

1
k

)
. Set Fk = Fk−1 ∩B

(
yj ,

1
k

)
.

It is clear that the sequence (Fk)k∈N
has all the properties required.

Now, in each Fk, choose a point bk. We claim that the sequence (bk)k∈N

is Cauchy. In fact, by property (iii), Fk ⊆ B (xk, rk) for each k ∈ N and
lim
k→∞

rk = 0. Therefore, after a certain stage k0 ∈ N any two terms of the se-

quence (bk)k∈N
have the property that d (bk, bm) < 2rk and hence the sequence

is Cauchy.
Since A is complete, this Cauchy sequence is convergent, to say c ∈ A.

Let δ > 0. We will show that B (c, δ) contains infinitely many terms of
(an)n∈N

, thereby completing the proof. To prove this claim, it is enough to
show that B (c, δ) contains Fk for some k. Choose a large enough k0 ∈ N

so that d (bk0
, c) < δ

3 and rk0
< δ

3 . Since bk0
∈ Fk0

⊆ B (xk0
, rk0

), we have

d (xk0
, bk0

) < δ
3 . Hence,

d (xk0
, c) ≤ d (xk0

, bk0
) + d (bk0

, c) <
δ

3
+
δ

3
= 2

δ

3
.
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Now, the ball B (xk0
, rk0

) has a radius less than δ
3 and is within 2 δ

3 distance of

the center of the ball B (c, δ), which is a ball of radius δ = δ
3 + 2 δ

3 . Hence, we
have B (xk0

, rk0
) ⊆ B (c, δ) and consequently, Fk0

⊆ B (c, δ). This completes
the proof (3) ⇒ (2)!

It remains to prove that (2) ⇒ (1). This, perhaps is the most difficult part
of the proof. Once we overcome this difficulty, the proof will be completed.

We assume the condition in (2), i.e., A is sequentially compact. Let C =
{Gλ|λ ∈ Λ} be an open cover for A. By Lebesgue covering lemma, there is
a Lebesgue number l > 0 for this cover. What should we do next? This is a
question worth pondering. The answer to this question (given below) is rather
surprising!

Earlier, we have proved that (2) ⇒ (3). Therefore, we have condition (3) in
our hands, i.e., A is totally bounded and complete. Since A is totally bounded,
A can be covered by finitely many open balls, sayB

(
xi,

l
4

)
, for i = 1, 2, · · · , n0,

for some n0 ∈ N. Now, diam
(
B
(
xi,

l
4

)) ≤ l
2 < l. Since l is a Lebesgue number

for the covering C , each of the open balls B
(
xi,

l
4

)
is contained in exactly one

of the Gλ. Hence, the finite subcollection {Gλi
|1 ≤ i ≤ n0} of C covers A.

Hence, A is compact.

Problem Set

1. Does every metric space have an open cover?

2. Find an open cover for the metric space (A, d), where A = {cosx|x ∈ R}
and d is the restriction of the usual metric on R to A.

3. For the following spaces and subsets, determine which of the sets are
compact and sequentially compact:

(a) Any metric space and any finite subset.

(b) R with the usual metric and

{x ∈ (−1, 1) | the only digits appearing in the decimal expansion

of x are 0 and 1} .

(c) C with the usual metric and {enrπι|n ∈ Z}, where r is a fixed real
number.

(d) R
2 with the Euclidean metric and

{
(x, y) ∈ R

2|x+ y = 1
}
.

4. Prove that the spaces R
n, �1, �2, c0 and �∞ are not compact. Here c0

denotes that subset of RN which contains all sequences that converge
to 0.
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5. Let X1, X2, · · · , Xn be a finite collection of compact subsets of a metric
space. Prove that X1 ∪X2 ∪ · · · ∪Xn is compact. Show, by an example,
that this cannot be generalized to infinite union.

6. Prove that a compactness is preserved in equivalent metrics.

7. Prove that the product of compact spaces is compact.

8. Is there any relation between Lebesgue number and ε-nets?

Biographical Notes
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matics. His overall philosophical stance was that, con-
trary to much of the prevailing mathematics of the era,
it was better not to introduce intuitive ideas such as
time and motion into mathematics. Bolzano gave the
first purely analytic proof of the fundamental theorem
of algebra, which had originally been proven by Gauss
from geometrical considerations. He also gave the first
purely analytic proof of the intermediate value theo-
rem (also known as Bolzano’s theorem). Today he is
mostly remembered for the Bolzano-Weierstrass theo-
rem, which Karl Weierstrass developed independently
and published years after Bolzano’s first proof and
which was initially called the Weierstrass theorem until
Bolzano’s earlier work was rediscovered.

Karl Theodor Wilhelm Weierstrass (31 October,
1815 to 19 February, 1897) was a German mathemati-
cian often cited as the “father of modern analysis”.
Despite leaving university without a degree, he stud-
ied mathematics and trained as a teacher, eventually
teaching mathematics, physics, botany, and gymnas-
tics. Weierstrass formalized the definition of the conti-
nuity of a function, proved the intermediate value the-
orem and the Bolzano-Weierstrass theorem, and used
the latter to study the properties of continuous func-
tions on closed and bounded intervals.

Heinrich Eduard Heine (16 March, 1821 to October,
1881) was a German mathematician. Heine became
known for results on special functions and in real anal-
ysis. In particular, he authored an important treatise
on spherical harmonics and Legendre functions (Hand-
buch der Kugelfunctionen). He also investigated basic
hypergeometric series. He introduced the Mehler-Heine
formula.
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Felix Edouard Justin Emile Borel (7 January, 1871
to 3 February, 1956) was a French mathematician and
politician. As a mathematician, he was known for his
founding work in the areas of measure theory and
probability. Along with René-Louis Baire and Henri
Lebesgue, Emile Borel was among the pioneers of mea-
sure theory and its application to probability theory.
The concept of a Borel set is named in his honor. One
of his books on probability introduced the amusing
thought experiment that entered popular culture un-
der the name infinite monkey theorem or the like. He
also published a series of papers (1921–1927) that first
defined games of strategy.



Chapter 5

Connected Spaces

In the previous chapter, we studied a property of metric spaces, which we
called compactness. Indeed, it was the generalization of finite sets. In this
chapter, we shall study another such property, namely, connectedness. Intu-
itively speaking, we say that something is “connected” if it cannot be broken
into two chunks far away from one another. Although this intuition appears
to be vague, in the sense of the terms used, this will be our motivation in
defining connectedness of a metric space. Once this is achieved, as usual, we
shall start looking at some consequences and characterizations of connected
spaces, along with finding connected spaces among those we know by ex-
perience. Finally, before ending the chapter we shall introduce some stronger
concepts such as total connectedness and disconnectedness. Although it seems
that there is nothing interesting in connectedness of a metric space (especially
due to such short length of this chapter), we advise the reader to go through
continuity (Chapter 6) as well, since many interesting results arise as a result
of continuous functions. Also it becomes a lot easier to find (or prove) con-
nected sets in a metric space once we have studied the concept of continuity.
This chapter, though, scratches the surface of the concept of connected spaces,
thereby giving a kick-start to its study.

5.1 Connectedness

As mentioned earlier, we want to say that a metric space is connected if it
cannot be broken into “two chunks” far apart. However, we need to convert
all the intuition into proper mathematical form. Clearly, by “breaking” our
space, we mean that we would want to have the whole space as a union of
two of its subsets. Also, to convert “far apart” into mathematics, we would
either like to take their intersection (which should come out to be empty) or
the distance between them (which should turn out to be positive). However, a
major obstacle is, how should we define these “chunks”? From Chapter 2, we
have been emphasizing that open sets play a major role in the study of metric
spaces and their properties. Therefore, what would be more logical than to
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define these chunks in terms of open sets? Based on this reasoning, we now
give the formal definition of connected space.

Definition 5.1 (Connected space). A metric space (X, d) is said to be con-
nected if it cannot be written as a union of two non-empty disjoint open sets.
In other words, if X = A ∪ B, where A and B are disjoint and open, then
either A = ∅ or B = ∅.
Immediately, by taking the negation of the statement, we see that a metric
space is disconnected if it can be written as a disjoint union of non-empty
open sets. That is to say, X is disconnected if there are two non-empty open
sets A and B with A∩B = ∅ and A∪B = X. In such a case, the pair (A,B)
is called a disconnection or a separation of X.

Let us look at a few examples of metric spaces and inspect whether they
are connected or not.

Example 5.1. Recall that in a discrete space, every set is open. Thus, if X
is the discrete space with at least two elements, then for any fixed x ∈ X,
{x} and X \ {x} are non-empty and open. Also, they have the properties,
{x} ∩ (X \ {x}) = ∅ and {x} ∪ (X \ {x}) = X. Thus, we can say that the
discrete space with at least two elements is disconnected.

Example 5.2. Consider the set R∗ = R\{0}, equipped with the usual metric
on R. Since this is a subspace of (R, |·|), the open sets in (R∗, |·|) are precisely
those obtained by intersecting open sets of R with R

∗. In particular, (−∞, 0) =
(−∞, 0) ∩ R

∗ and (0,∞) = (0,∞) ∩ R
∗ are open in (R∗, |·|). Also, (−∞, 0) ∩

(0,∞) = ∅ and (−∞, 0)∪ (0,∞) = R
∗. Hence, we can conclude that R∗ is also

disconnected.

In Example 5.2, we effectively saw that if a point from whole of R is removed,
then the resulting metric (sub)space is disconnected. However, the reader must
note that it does not mean R will become connected if we just add this point
back! To claim that R is connected, we will have to show that there is no
disconnection possible for R. Indeed, we shall look at this a bit later.

Exercise 5.1. Let X be finite with a metric d. Is, in general, X connected
or disconnected? When can we surely say that it is connected?

Let us look with some depth at examples above. In the discrete case, we saw
that the sets in disconnection were not only open but also closed. In Example
5.2, let us see if this holds. Consider the sets A = (−∞, 0) and B = (0,∞).
Clearly, Ac = B and Bc = A, in R

∗ and both (complements) are open. Hence,
A and B are also closed. Therefore, we have observed an important property
of disconnection! Whenever we have a disconnection in terms of two open sets,
these two sets are also closed. Also, since both are non-empty and disjoint,
they must be proper subsets of the whole space. We make this observation a
theorem.
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Theorem 5.1. For a metric space (X, d), the following are equivalent:

1. X is connected.

2. X cannot be written as a disjoint union of non-empty closed subsets.

3. The only subsets of X which are both open and closed are X and ∅.
Proof. As usual, we shall prove the statement in a cyclic manner. However,
we shall do so taking the contrapositive.

Let X = A ∪B, where A ∩B = ∅, A and B are closed. Therefore, Ac and
Bc must be open. Clearly, Ac ∪ Bc = (A ∩B)

c
= (∅)c = X. And, Ac ∩ Bc =

(A ∪B)
c
= Xc = ∅. Thus, Ac and Bc form a disconnection of X so that X is

disconnected. Therefore, we have proved (1) ⇒ (2).
Similarly, suppose that there is a proper non-empty subset A of X, which

is both open and closed. Therefore, Ac is also both open and closed. We know
that X = A∪Ac so that X is written as a disjoint union of non-empty closed
subsets (Ac �= ∅, since A is a proper subset of X). Hence, we have proved
(2) ⇒ (3).

Finally, let X be disconnected so that X = A ∪ B, where A ∩ B = ∅ and
A, B are open. Notice that Ac = X \ A = (A ∪B) \ A = B \ A = B, since
A ∩ B = ∅. Therefore, A is also closed. Since B �= ∅, Ac �= ∅ and thus, A
is proper subset of X which is both open and closed in X, thereby proving
(3) ⇒ (1).

Let us make some analysis on the connectedness of R, which we know by
experience.

Example 5.3. Consider the metric space (R, |·|). We want to see if this is
connected. If not, then R will have a proper non-empty subset which is both
open and closed. Let this subset be A. Notice that since A is a proper subset,
there is some x ∈ Ac. Also, either A∩ (−∞, x] �= ∅ or A∩ [x,∞) �= ∅. Without
loss of generality, let A∩ (−∞, x] �= ∅. Then, this set is bounded above (by x)
and therefore has a least upper bound, say l. Since A is closed, l ∈ A. Also, l
is a limit point of the interval (l, x], and we also have (l, x] ⊆ Ac. Thus, l is
a limit point of Ac. Since A is both open and closed, so is Ac and therefore,
l ∈ Ac, contradicting the fact that a set and its complement can have nothing
in common. Therefore, there cannot be any such set! Thus, we have proved
that R is connected.

Let us now look at the subsets of connected spaces.

5.1.1 Connected subsets

A natural question to ask at this point is: What can we say about con-
nectedness of subsets of a metric space? To answer this question, let us first
understand that the subspace topology, induced from the parent metric, effec-
tively does not change the structure of the subset under consideration. Thus,
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for any subset, if we just look at its subspace topology, we can answer if it is
connected or not. Therefore, we make the following definition.

Definition 5.2 (Connected subset). A subset S ⊆ X, where (X, d) is a metric
space, is connected if the metric (sub)space (S, d) is connected.

Looking at the definition, we can ask if connectedness can be inherited. That
is, if X is connected, then will all its subsets be connected? Conversely, we
can also ask if there are any connected subsets in a disconnected space.

Looking at Examples 5.2 and 5.3, we can immediately say that a subset of
connected space need not be connected. Therefore, connectedness is not an in-
heritable property. Also, from Exercise 5.1, the reader must have noticed that
singleton sets are connected, so that disconnected spaces may have connected
subsets.

Given a set X, we immediately have at least two subsets, namely ∅ and
X itself. Previously, we have talked about connectedness of X. Now, we shall
address the question on the connectedness of ∅. We claim that it is connected.
To see that this claim is true, suppose that someone wants to prove us wrong.
Then, that person would have to come up with two non-empty disjoint subsets
of ∅, whose union is ∅. Since is this not possible, our claim must be true! (We
remind the reader that such statements are vacuously true, i.e., they are true
because the premise itself does not hold.)

In the exercise that follows, the reader is supposed to inspect subsets of R
for connectedness.

Exercise 5.2. Check if the sets N and Z are connected in R. Hint: First see
what are all the open sets inherited in the subspace topology.

Example 5.4. Let us see if Q is connected. Let z ∈ Q
c. Consider two sets

A = Q ∩ (−∞, z] and B = Q ∩ [z,∞). We claim that A ∪B = Q. To see this,
first observe that A ∪ B ⊆ Q, by their definition. Let x ∈ Q. Since the law
of trichotomy1 holds in R, and we know that x �= z, either x < z or x > z.
Therefore, either x ∈ A or x ∈ B. This proves that Q = A ∪B.

Now, A ∩ B = (Q ∩ (−∞, z]) ∩ (Q ∩ [z,∞)) = Q ∩ ((−∞, z] ∩ [z,∞)) =
Q∩ {z} = ∅. Also, since (−∞, z] and [z,∞) are closed in R, A and B are also
closed in Q (in the subspace topology). Therefore, by Theorem 5.1, we can
conclude that Q is disconnected.

Exercise 5.3. Is Qc connected in R?

From the above example and exercises, it seems that the subsets of R are
failing to be connected because either they do not have any accumulation
points or their accumulation points are outside of the sets. Let us look at one

1The law of trichotomy suggests that given any two elements in R, exactly one of the
following three things hold: x = y, x < y or x > y. In fact, this can be true for any totally
ordered set.
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example of a set, for which the accumulation points are inside the set and
then comment upon its connectedness.

Example 5.5. Consider the set A =
{

1
n

∣∣∣n ∈ N

}
∪ {0}. First, we shall find

the open sets in (A, |·|). To do so, we shall simply see how open balls look.
First, consider a point 1

n ∈ A \ {1}. Then, we know that

1

n+ 1
<

1

n
<

1

n− 1
.

Also,
1

n
− 1

n+ 1
=

1

n (n+ 1)
<

1

n (n− 1)
=

1

n− 1
− 1

n
.

Therefore, consider the open ball

B

(
1

n
,

1

n (n+ 1)

)
=

{
x ∈ A

∣∣∣
∣∣∣∣x− 1

n

∣∣∣∣ < 1

n (n+ 1)

}
.

Clearly, B
(

1
n ,

1
n(n+1)

)
=
{

1
n

}
(verify!). Similarly, for the singleton set {1},

we have B
(
1, 12
)
= {1} (verify!). Therefore, it seems that the induced metric

is equivalent to the discrete metric (since all singletons are open). However,
we have not looked at one singleton set, namely {0}. If we are able to prove
that this is open, then indeed it would have the open sets the same as those
in discrete spaces and thus A would immediately become disconnected.

Consider any open ball B (0, ε). Then, by the Archimedean property, there
is some n ∈ N such that nε > 1, or 1

n < ε so that 1
n ∈ B (0, ε). In particular,

{0} is not open! So, is A connected?
Intuitively, it does not seem so! This is because we can actually “see”

elements of A far apart from one another. Let us now try to prove our intuition.
Consider the open ball B (0, 1). Clearly, B (0, 1) = A \ {1} (verify!). Since

open balls are open, this set is open. Also, A = (A \ {1}) ∪ {1}, where {1} is
open. Hence, there is a disconnection of A and A is not connected.

This process can be seen in Figure 5.1.

Indeed, we have not found many connected sets in R. A natural question
arises: Are there any connected subsets of R? We address this question in the
next result.

Theorem 5.2. A subset of R is connected if and only if it is an interval.

Proof. Suppose that a subset J of R is not an interval. Then, there are ele-
ments x, y ∈ J and z ∈ Jc such that x < z < y. Now, consider the two sets
A = J ∩ (−∞, z) and B = J ∩ (z,∞). Clearly, A and B are open and disjoint
in J . Also, A ∪ B ⊆ J . Now, let a ∈ J . Since z /∈ J , a �= z. Also, by the law
of trichotomy in R, either a < z or a > z, i.e., a ∈ A or a ∈ B. Therefore, we
have J = A ∪ B and hence is not connected. Therefore, we have proved that
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FIGURE 5.1: The working of Example 5.5: (a) Constructing open balls
around each point in A and (b) finding a disconnection of A.

if a subset of R is not an interval, then it is disconnected. Equivalently, if a
subset of R is connected, then it is an interval.

Conversely, let a subset J of R be an interval, and let, if possible, J be
disconnected. Then, there is a separation A and B of J , where A and B are
non-empty, closed and disjoint. Consider x ∈ A and y ∈ B. Without loss of
generality, let x < y. Since J is an interval, [x, y] ⊆ J and consider the sets
A1 = A∩ [x, y] and B1 = B ∩ [x, y]. Since A1 is bounded above, it has a least
upper bound, say l. Since A is closed and [x, y] is closed, so is A1 and therefore,
l ∈ A1. Clearly, for any z > l, z /∈ A1. Since J is an interval, all z with the
property l < z < y must be in J . Also, z /∈ A1 as mentioned above so that

z ∈ B1. Now, let ε > 0 and consider l+ ε. Clearly, l < l+min{y,l+ε}
2 < y so that

l is the greatest lower bound for B1. Again, B1 is closed so that l ∈ B1, which
is a contradiction to A1 ∩B1 = ∅. Therefore, an interval is connected.

The above results give all the connected sets in R. Indeed, R itself is an interval
and is connected!

Talking about connected subsets, the thought of operating (unions, inter-
sections) connected subsets comes to the mind. Therefore, let us see if the
unions and intersections of connected sets remain connected. Looking at Ex-
ample 5.2, we can say that R

∗ = (−∞, 0) ∪ (0,∞) is not connected, but
(−∞, 0) and (0,∞) are connected (being intervals). Therefore, in general, the
union of connected sets need not be connected.

We will look at some results about the unions and intersections of con-
nected sets once we have dealt with continuity and have seen what we call the
“magic wand” of connectedness.

Exercise 5.4. Is the intersection of two connected sets connected? Hint:
Take two non-concentric circles which intersect at at least two points.

Let us see a result concerning a connected subset of a disconnected space.
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Theorem 5.3. If X = A∪B, where A∩B = ∅ and A,B are closed, then for
any connected subset E of X, E ⊆ A or E ⊆ B.

Proof. Let if possible, E∩A �= ∅ and E∩B �= ∅. Let P = E∩A and Q = E∩B.
Since A and B are closed in X, P and Q are closed in E with the property
that P ∩Q = ∅. Now,

E = E ∩X
= E ∩ (A ∪B)

= (E ∩A) ∪ (E ∩B)

= P ∪Q.
Therefore, P and Q forms a separation of E, which is a contradiction to the
fact that E is connected. Therefore, the theorem must be true!

In all the above examples and results, we saw that whenever there was a
disconnection, there were two points x and y in two separate sets. Now, we
ask the question that if we consider two distinct points in a connected metric
space, what can be said about the sets which contain both of them?

Theorem 5.4. A metric space (X, d) is connected if and only if for any pair
of distinct points, there is a connected set containing the two points.

Proof. First, ifX is connected and x �= y are two points inX, clearly, x, y ∈ X.
Here X is the required connected set, thereby proving the first part of the
proof.

Conversely, let for any x �= y there is a connected set S containing the two
points. Let, if possible, X be disconnected. Then there is a separation A and
B of X. Consider the points x ∈ A and y ∈ B ∩ (X \ {x}). Clearly, x �= y and
by hypothesis, there is a connected set S such that {x, y} ⊆ S. Now, since
S is connected, by Theorem 5.3, S ⊆ A or S ⊆ B, which is a contradiction!
Hence, X must be connected.

Theorem 5.5. Let (X, d) be a metric space and let S be a connected set in
X. Then, any subset A with the property S ⊆ A ⊆ S̄ is also connected.

Proof. Let, if possible, A be disconnected and have the property as given
in the statement of the theorem. Then, there is a disconnection of A, say,
P and Q. Here, A = P ∪ Q, P and Q are open in (A, d), non-empty, and
disjoint. Therefore, there are open sets P1, Q1 of X such that P = P1 ∩A and
Q = Q1∩A. Thus, we may write A = (P1 ∩A)∪(Q1 ∩A). Now, S ⊆ A implies
S ∩ A = S. Therefore, S = S ∩ ((P1 ∩A) ∪ (Q1 ∩A)) = (S ∩ (P1 ∩A)) ∪
(S ∩ (Q1 ∩A)) = (P1 ∩ S)∪ (Q1 ∩ S). Since P1 and Q1 are open in X, P1 ∩S
and Q1∩S are open in (S, d). Thus, there will be a disconnection of S if these
sets are non-empty and disjoint. The proof that these are disjoint follows from
the fact that P and Q are disjoint. Therefore, we shall only prove that these
are non-empty.



190 An Introduction to Metric Spaces

To see that these are non-empty, first we observe that since P1 ∩ A �= ∅,
P1 ∩ S̄ �= ∅. Let x ∈ P1 ∩ S̄. Therefore, x is a limit point of S and P1 is an
open neighborhood of x. Thus, P1 ∩S �= ∅. Similarly, Q1 ∩S �= ∅. This finally
implies that S is disconnected, which is a contradiction! Hence, A must be
connected.

Corollary 5.5.1. Closure of a connected set is connected.

Let us ask the converse question for Corollary 5.5.1, i.e., if the closure of a
set is connected, can we say that the set itself is connected? To answer this
question, consider Example 5.2. Clearly, R∗ is disconnected in R and R∗ = R,
which is connected. Therefore, the converse of Corollary 5.5.1 is, in general,
not true.

Exercise 5.5. Prove that if in a metric space (X, d), an open set G is dis-
connected, then its disconnection is open in X.

5.2 Components

In the previous section, we saw a few examples of connected and discon-
nected sets. We make a small observation here: In Example 5.1, we saw that
any set containing two or more points is disconnected in the discrete metric.
On the other hand, the singleton sets in discrete space were connected, by
Exercise 5.1. Similarly, in Example 5.2, we saw that the two intervals (−∞, 0)
and (0,∞) were connected but any set properly containing them was discon-
nected. Therefore, in a sense, these connected sets were largest. Although, we
know that using largest is wrong! This is because while we order sets with ⊆,
we do not have a total order and therefore we do not know if these sets are
really larger than every other connected set. However, we do know that these
are maximal (see Chapter 1, for reference). Based on this observation, we now
define what is called connected components of a metric space.

Definition 5.3 (Connected components). In a metric space (X, d), a set
A ⊆ X is said to be a connected component of X if it is a maximally connected
set in X. In other words if A ⊆ B and B is connected, then A = B.

Note. Henceforth, we shall not use the phrase “connected components” when-
ever it can be avoided. Rather we will use only “components”, and the reader
must understand that they are connected.

It is clear that the components of the discrete space are singleton sets and
that of R∗ are (−∞, 0) and (0,∞).

Exercise 5.6. What are the components of a connected metric space?
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It seems that it is not interesting to find components in a connected metric
space. Therefore, we shall look at a few disconnected spaces and see what
could its components be.

Example 5.6. From Example 5.5, we take the set A and try to find its
components. First, we observe that A \ {0} has a topology equivalent to the
discrete one, so that each of

{
1
n

}
is a component. Indeed, if we take any set

S ⊆ A \ {0}, which is not singleton, then it can be written as a union of
two open sets so that it is disconnected, while singletons are connected (from
Exercise 5.1).

Therefore, let us look at any set S which properly contains {0}. In that
case, there is some n ∈ N such that 0, 1

n ∈ S. Therefore, consider the open

ball B
(
0, 1

n

)
which is open in S and the set

{
1
k

∣∣∣k ≤ n
}
∩S, which is also open

in S (why?). We leave it to the reader to verify that these two sets actually
form the disconnection for S so that any set properly containing {0} is not
connected. Therefore, {0} is also a component.

Remark. For a first time reader, it is natural to think that only discrete
space has the property that singletons are the only components. However, the
above example shows that it is not so. We advise the reader to take some time
and go through the proof thoroughly!

Exercise 5.7. What are the components of Q? Hint: Use density of rationals
and irrationals in R.

Let us look at a few properties of components and how we can write the whole
space in terms of its components.

Theorem 5.6. Let (X, d) be a metric space and C be a collection of all
components of X. Then,

1. For A,B ∈ C , either A = B or A ∩B = ∅.

2. Each component of X is closed.

3. X =
⋃

A∈C

A.

Proof. To prove the theorem, we will assume a result, which we will prove in
Chapter 6 (Corollary 6.25.1). We state the result here: “A union of connected
sets with non-empty intersection is connected.”

1. Let A,B ∈ C . If A ∩ B = ∅, then we are through! Therefore, assume
that A ∩ B �= ∅. Since A and B are components, they are connected
and by the statement mentioned above, we have A ∪ B is connected.
However, we have A ⊆ A ∪ B and B ⊆ A ∪ B so that by the definition
of components, A = A ∪B = B.
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2. Let A be a component of X. We know that A ⊆ Ā and by Corollary
5.5.1, we also know that Ā is connected. Therefore, by the definition of
components, A = Ā so that A is closed.

3. It is clear that
⋃

A∈C

A ⊆ X. Therefore, let x ∈ X. We shall show that it

must lie in some component of X. Consider the set

Ax = {S ⊆ X|S is connected and x ∈ S} .

Then, Ax �= ∅ since {x} ∈ Ax. Consider

A =
⋃

S∈Ax

S.

We will show that A is a component of X. Let B be a connected set
such that A ⊆ B. Then, we know that x ∈ A ⊆ B so that B ∈ Ax.
Thus, A = B. Also, from the result mentioned above, A is connected
since x ∈ ⋂

S∈Ax

S. Therefore, A is indeed a component and the result is

proved!

A natural question to ask is: Are components open? We leave it as an exercise
to the reader to answer this question, by looking at the examples we have
discussed for components.

Exercise 5.8. Are the components of any metric space necessarily open?

5.3 Totally Disconnected Spaces

We have studied connectedness of metric spaces to some depth (if not
much), and it has been made clear what components do. To quickly sum-
marize, a disconnected space is “shattered” into its components. While they
are “far apart”, they still make the whole space, just not in a single piece.
Therefore, it is very natural to look at a highly shattered space. How will this
space look? Although we cannot experiment on metric spaces, smash them,
and see what remains when they are completely shattered, intuition can help
us. Based on our intuition, we shall define our highly shattered spaces and
call them totally disconnected.

Definition 5.4 (Totally disconnected spaces). A metric space (X, d) is totally
disconnected if the only components are singleton sets.
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From the examples studied above, it is clear that any discrete space and the set
A from Example 5.5 are totally disconnected. We shall see one more example
for totally disconnected spaces.

Example 5.7 (Cantor’s set). Recall the construction of Cantor’s set C from
Example 4.6 (Chatper 4). Let S be a non-empty connected subset of C. Then,
S ∈ Cn for each n. Also, each Cn is a union of pairwise disjoint closed intervals
so that Cn itself is disconnected. Then, by Theorem 5.3, we can conclude that
S lies in exactly one of these subintervals of length 1

3n . Since this is true for
all n, we must have diam (S) ≤ 1

3n for each n ∈ N so that diam (S) = 0, i.e.,
S is a singleton set. Since the only connected sets in C are singletons, they
are also the components. Hence, the Cantor’s set C is totally disconnected.

Problem Set

1. What can we say about a non-empty connected subset of R which con-
tains only rational points?

2. Give an example of nested sets An, i.e., An ⊆ An−1 for each n ∈ N, such
that each An is connected but

⋂
n∈N

An is not connected.
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Chapter 6

Continuity

Around the secondary school level, when we were being taught the concept of
functions for the first time, a major thing we used to do is to graph them. When
we graphed them, consciously or unconsciously, we made certain decisions
about the function being “good” or “not good”. And as it has been observed,
as students, we (used to) like the functions which we could graph “without
lifting our pencil”.

Later in our studies, maybe in higher secondary education, most of us
came across the mathematical concept of “not lifting the pencil”. Rigorously,
that was called continuity. A very vague and not-so-rigorous definition was
given to us at that time by means of limits.

Those who have taken a course in analysis might have already encountered
the rigorous definition of continuity in terms of epsilon and delta.

As we have been doing so far, we will take into account what we know from
our experience in the real numbers, and since we know that R is a metric space,
try to generalize it for any metric space. In this chapter, we shall see what we
mean by continuity of functions on arbitrary metric spaces. However, first we
review what we know from our experience of real numbers.

6.1 Continuity of Real Valued Functions

As mentioned earlier, we were first introduced to continuity, by means of
limits. Let us recall that if f : D → R is a (real-valued) function, where
D ⊆ R is its domain, then we say that f is continuous at a point x0 ∈ D if
the following holds:

195
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1. f (x0) is well-defined.

2. lim
x→x0

f (x) exists.

3. lim
x→x0

f (x) = f (x0).

Later, we were introduced to the rigorous definition (in a course of analysis),
which is as follows.

Definition 6.1 (Continuity). A function f : D ⊆ R → R is said to be
continuous at a point x0 ∈ D, if ∀ε > 0, ∃δ > 0 such that ∀x ∈ D with
|x− x0| < δ, we have |f (x)− f (x0)| < ε.

Before moving toward understanding the definition, let us note that continuity
is a local property, i.e., it is defined at a particular point in the domain. If a
function is continuous at every point in its domain, we say that it is continuous
throughout the domain. Therefore, whenever we are asked about the continuity
of a function, we must ask back: At what point in the domain?

Now, let us look at what this means geometrically. Since for real valued
functions, we can graph the function on a plane, we try to understand conti-
nuity through it. First, we give a small analogy for the situation. Suppose that
f is a machine which gives the product f (x) when we supply it with x. As
the creators of this machine, we know that if we put exactly x0, we shall get
the exact product f (x0). However, the customer (or the manufacturer who
is using this machine) wants to get as close as possible to the exact product.
Therefore, they give us the error tolerance (ε) and say that the product should
not deviate more than this value from the actual (exact) product. In return,
we (creators) give the customer a condition (δ) and tell them that if they
supply within the bounds of δ, their error will be managed.

Moving on to the graph of function f , suppose that we want the error to
be ε about the point f (x0). Suppose we are able to find a δ so that whenever
the input is within an error range of δ from x0, the output is also within
an error range of ε from f (x0). Since ε > 0 is arbitrary, this means that we
can get as close to f (x0) as possible. This will be our main motivation to
define continuity for an arbitrary metric space. A pictorial representation of
this concept is given in Figure 6.1.

Also, we can get the definition of discontinuity by just negating the defi-
nition of continuity, i.e., if we are able to find an ε > 0 such that no matter
how close we get our inputs to x0, the error is at least ε for some input, then
we can say that the function is discontinuous at x0. Mathematically, this can
be written as

∃ε > 0 such that ∀δ > 0,∃x ∈ D with |x− x0| < δ and |f (x)− f (x0)| ≥ ε.

We believe that the reader is thorough with continuity in R and therefore
we do not give its examples. Rather, we now move on to define continuous
functions on arbitrary metric spaces.
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FIGURE 6.1: Pictorial representation of dependence of δ on ε. (a) Choice
of δ with “large” ε. (b) Choice of δ with “small” ε.

6.2 Continuous Functions in Arbitrary Metric Spaces

In the previous section, we looked at the meaning of continuity in R and
we wanted to take that as a motivation for generalizing the definition to arbi-
trary metric spaces. First, let us ask ourselves: What are the things that are
required? We must be given an error range ε for elements in the codomain for
which we have to find an error range δ for elements in domain. Also, those error
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ranges cannot be directly applied to the elements of domain and codomain.
Recall that |·| defines a metric on R. Therefore, these error ranges are for the
distances between the elements of the domain and codomain. With all the
motivation we obtained from the description in the previous section, we now
define continuity as follows:

Definition 6.2 (Continuity). A function f : X → Y defined from a metric
space (X, dX) to another metric space (Y, dY ) is said to be continuous at a
point x0 ∈ X, if ∀ε > 0, ∃δ > 0 such that ∀x ∈ X with dX (x, x0) < δ, we
have dY (f (x) , f (x0)) < ε.

Remark. Notice that both the domain and the codomain must be metric
spaces to talk about continuity. If any of them does not have a metric, then
we cannot comment on the continuity of a function, since we do not know (at
least for now) the meaning of “closeness” without a metric.

Now, let us look at some continuous functions that we can have on metric
spaces.

Example 6.1 (Constant function). Consider metric spaces (X, dX) and
(Y, dY ). Fix y0 ∈ Y and define the constant function f : X → Y as f (x) = y0,
∀x ∈ X. We know that in R, constant functions are continuous. Can we
have the same in this case? To answer this question, fix x0 ∈ X and let
ε > 0 be given. We need to find a δ > 0 such that whenever we have
x ∈ X with dX (x, x0) < δ, we also have dY (f (x) , f (x0)) < ε. Note that
f is a constant function and therefore, ∀x ∈ X, f (x) = f (x0) = y0. Hence,
dY (f (x) , f (x0)) = 0 < ε for any x ∈ X. Therefore, in particular, if we choose
δ = 1, we have continuity of f at x0 ∈ X. Also, the choice of x0 was arbitrary,
which makes the function f continuous throughout X.

Remark. In the above example, any δ > 0 works. However, for a textbook
proof, we always need to mention what δ are we choosing. In this case, we have
chosen δ = 1. The reader may choose δ = 1

2 or δ = 2 or any other positive
real number.

Example 6.2 (Identity function). Consider a metric space (X, d) and the
identity function id : X → X as id (x) = x, ∀x ∈ X. Fix an x0 ∈ X and
let ε > 0 be given. Again, we need to find a δ > 0 which will help us prove
the continuity. Observe that d (id (x) , id (x0)) = d (x, x0). Therefore, if we
choose δ = ε, we are through! Hence, identity function on a metric space is
continuous.

Example 6.3. Recall that in a metric space (X, d), the distance of a point
x ∈ X from a set A ⊆ X, is given by

d (x,A) = inf {d (x, a) |a ∈ A} .
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If we fix the subset A, then the above expression is a function of x alone. We
denote it as dA : X → R. Now, we want to check its continuity. Here, we shall
use the usual metric (|·|) on R. First, we shall see certain inequalities that
follow.

Let x, y ∈ X and a ∈ A be arbitrarily chosen. Then, by triangle inequality,
we have

d (a, x) ≤ d (a, y) + d (x, y) ,

or, what is same,

d (a, y) ≥ d (a, x)− d (x, y) .

However, d (a, x) ≥ dA (x), so that we have the inequality,

d (a, y) ≥ dA (x)− d (x, y) .

Hence, dA (x)− d (x, y) is a lower bound to the set {d (a, y) |a ∈ A}, so that

dA (y) ≥ dA (x)− d (x, y)

or, what is the same,

dA (x)− dA (y) ≤ d (x, y) .

Interchanging the roles of x and y, we also arrive at

dA (y)− dA (x) ≤ d (x, y) .

This leads us to

|dA (x)− dA (y)| ≤ d (x, y)

so that if ε > 0 is given, we can choose δ = ε and whenever d (x, y) < δ, we
have

|dA (x)− dA (y)| ≤ d (x, y) < δ = ε.

Hence, the function dA is continuous onX. In fact, we can comment something
more on this function, but we shall keep it until later when we would be
equipped with the appropriate tools.

Remark. Example 6.3 shows that there are abundant non-constant continu-
ous functions from a metric space to R. In fact, given any two points x, y ∈ X,
we can construct a function f : X → R such that f (x) = 0 and f (y) = 1.
Hence, we now have a method to separate two points in a metric space through
continuous functions. But, this is not it! We can also separate two disjoint
closed sets in a similar manner. We shall see this later in this text.
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Exercise 6.1. Let x ∈ R. What is the value of dQ (x)?

We have seen in Chapter 3 the concept of an isometry between metric spaces.
Let us quickly recall the definition. A function f : (X, dX) → (Y, dY ) is an
isometry if for all x, y ∈ X, we have dY (f (x) , f (y)) = dX (x, y). Thus, if
we want to control the distance between f (x) and f (y), all we need to do is
control it in x and y by the same amount. Thus, it tells us that any isometry
is continuous.

Writing this with mathematical rigor, we see that given an ε > 0, we
can choose δ = ε so that whenever dX (x, y) < δ, we immediately have
dY (f (x) , f (y)) < ε. In other words, f is continuous. We make this obser-
vation as a result.

Theorem 6.1. Any isometry between two metric spaces is continuous.

Before moving ahead, we would like to comment upon two important functions
in R

n, namely rotations and translations. First we will define them and then
will comment upon their continuity.

Definition 6.3 (Translation). A translation Ta : Rn → R
n is defined as

Ta (x1, x2, · · · , xn) = (x1 + a1, x2 + a2, · · · , xn + an)

where a = (a1, a2, · · · , an) ∈ R
n is a fixed vector.

To define rotation in R
n for n ≥ 3, a bit of knowledge from inner product

spaces is required. Therefore, we shall be satisfied by defining rotations in R
2,

where we have the knowledge of X- and Y -axes and their property of being
perpendicular.

Definition 6.4 (Rotation). A rotation in R
2 by an angle θ ∈ [0, 2π) is defined

as Rθ : R2 → R
2, where

Rθ (x, y) = (x cos θ + y sin θ,−x sin θ + y cos θ) .

The geometric representation of translation and rotation is shown in
Figure 6.2.

Now, let us look at a major property of translations and rotations in the
Euclidean metric. Notice that for translations, we can use any other metric as
well (this will be clear in the explanation that follows). However, for rotations
we will not be able to do so (since we will be wanting to use the identities
of sine and cosine which include square terms). Also, we know that on R

n,
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FIGURE 6.2: Geometric representation of translations and rotations in R
2.

(a) Translation in R
2. (b) Rotation in R

2.

any two p-metrics are equivalent. Therefore, the properties (of continuity) of
translation and rotations will remain same in all other metrics as well.

Consider two points x = (x1, x2, · · · , xn) ,y = (y1, y2, · · · , yn) ∈ R
n, where

R
n is equipped with the Euclidean metric d2. Therefore, we have

d2 (Ta (x) , Ta (y)) =

√√√√ n∑
i=1

|(xi + ai)− (yi + ai)|2

=

√√√√ n∑
i=1

|xi − yi|2

= d2 (x,y) .
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Similarly, we have for two points x = (x1, x2) ,y = (y1, y2) ∈ R
2,

d2 (Rθ (x) , Rθ (y))

=
(
|(x1 cos θ + x2 sin θ)− (y1 cos θ + y2 sin θ)|2 +

|(−x1 sin θ + x2 cos θ)− (−y1 sin θ + y2 cos θ)|2
) 1

2

=
(
|x1 − y1|2 + |x2 − y2|2

) 1
2

= d2 (x,y) .

With this we have proved that translations and rotations are isometries and
hence by Theorem 6.1, we can conclude that translations and rotations are
continuous mappings.

Although this definition of continuity helps us to prove the continuity of
functions, it can sometimes be tedious and really difficult to deal with. One
such example is the square function in real numbers. While it is possible
to prove the continuity through the ε-δ definition, it becomes tedious and
time consuming. Therefore, we now move to some other characterizations of
continuity, which can also be considered as equivalent definitions.

6.2.1 Equivalent definitions of continuity and other
characterizations

We know that to define continuity, we have used the notion of “getting close
to the exact value”. In sequences, we have seen that convergent sequences also
“get close enough” to some point in the metric space. Also, every metric space
has some “special sets” which we call open and these are, in fact, a result of
defining a metric. Therefore, the equivalent definitions of continuity will be
given in terms of these concepts.

Theorem 6.2 (Equivalent definitions of continuity). Let (X, dX) and (Y, dY )
be metric spaces. Let f : X → Y be defined. Then, the following are equivalent.

1. For every sequence (xn) in X such that xn → x for some x ∈ X, we
also have f (xn) → f (x) in Y .

2. f is continuous at x ∈ X.

3. Given an open set V ⊆ Y containing f (x), there is an open set U ⊆ X
containing x such that f (U) ⊆ V .

Proof. We will prove the theorem in a cyclic manner: (1) ⇒ (2) ⇒ (3) ⇒ (1).
To prove (1) ⇒ (2), we shall use the method of contradiction. Therefore,

assume that (1) is true, but f is not continuous at x. Therefore, ∃ε > 0 such
that ∀δ > 0, ∃x′ ∈ X with dX (x′, x) < δ and dY (f (x′) , f (x)) ≥ ε. In partic-
ular, ∀n ∈ N, ∃xn ∈ X such that dX (xn, x) <

1
n but dY (f (xn) , f (x)) ≥ ε.
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Hence, (xn) is a sequence in X which converges to x; however, f (xn) does
not converge. This is a contradiction and hence (1) ⇒ (2) holds.

Now, we shall prove (2) ⇒ (3). Let V ⊆ Y be the given open set which
contains f (x). Therefore, ∃ε > 0 such that BY (f (x) , ε) ⊆ Y . Since f is
continuous at x, ∃δ > 0 such that ∀x′ ∈ X with dX (x′, x) < δ, we have
dY (f (x′) , f (x)) < ε. So, we consider the open set BX (x, δ) ⊆ X. Clearly,
f (BX (x, δ)) ⊆ V and we are through!

Finally, to prove (3) ⇒ (1), consider a sequence (xn) in X which converges
to x. Also, for a given ε > 0, consider BY (f (x) , ε). Since this open ball is open
in Y , ∃U ⊆ X an open set containing x such that f (U) ⊆ BY (f (x) , ε). Also,
U being open, ∃δ > 0 such that BX (x, δ) ⊆ U . Since xn → x, ∃n0 ∈ N such
that ∀n ≥ n0, xn ∈ BX (x, δ). Therefore, f (xn) ∈ f (BX (x, δ)) ⊆ f (U) ⊆
BY (f (x) , ε), ∀n ≥ n0. Hence, f (xn) → f (x).

As mentioned earlier, these equivalent definitions help us in checking if the
given function is continuous or not with more ease than that provided by our
initial definition. We will see that most of the time, the sequence definition
will help us checking if a function is continuous. However, we will also see
that the open set definition can also help if we have abundant open sets. We
will come to this later. However, the reader must note that when we move
to arbitrary topological spaces, which are in fact motivated by metric spaces,
we do not have the first two definitions of continuity. Therefore, sooner or
later, we will have to use the open set definition. Indeed, in this text, we shall
use the sequence definition in most places. This is because, wherever possible,
using algebra of limits (of sequences) is easier than finding ε-δ or open sets.
Let us begin with an example.

Example 6.4. ConsiderM (2,R), the set of all 2×2 matrices with real entries.
We equip this set with the metric d :M (2,R)×M (2,R) → R, defined as

d (A,B) =

√
|a11 − b11|2 + |a12 − b12|2 + |a21 − b21|2 + |a22 − b22|2

where A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
. We look at the function

det :M (2,R) → R.

To check the continuity, we shall use the sequence definition. First, observe

that for any sequence of matrices (An) in M (2,R), where An =

[
an bn
cn dn

]
,

An → A for some matrix A =

[
a b
c d

]
if and only if an → a, bn → b, cn → c,

and dn → d. Hence, if An → A, then we have

det (An) = andn − bncn,
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which, by algebra of limits converges to ad − bc = det (A). Hence, det is a
continuous function. In fact, for any n ∈ N, det :M (n,R) → R is a continuous
function. However, we do not include the proof here. If the reader wants to
prove this result, a small hint is that it goes on the same lines as done for
M (2,R), but also includes some results from permutations.

Do you appreciate the ease with which we could prove the continuity of de-
terminant as a function? If we were to use the ε-δ definition, the same proof
would have been tedious and too difficult to handle. The exercises that follow
will enable you to take a grasp on other definitions of continuity, especially
the sequence definition.

Exercise 6.2. Check the continuity of the following functions:

1. f : Rn × R
n → R

n, defined as f (x,y) = x+ y. (Vector addition)

2. f : R× R
n → R

n, defined as f (α,x) = α · x. (Scalar multiplication)

3. f : Rn ×R
n → R, defined as f (x,y) =

n∑
i=1

xiyi, where x = (xi)
n
i=1 ,y =

(yi)
n
i=1 ∈ R

n. (Usual inner product)

Exercise 6.3. Check if the following functions are continuous:

1. f :M (n,R) →M (n,R), defined as f (A) = AT , where AT denotes the
transpose of A.

2. f : M (n,R) → M (n,R), defined as f (A) = A2. What can you say
about Ak, for k ∈ N?

Exercise 6.4. Let X,Y be metric spaces and f, g : X → Y be continuous
functions. Prove that the set {x ∈ X|f (x) = g (x)} is closed in X. What can
you say about the set {x ∈ X|f (x) �= g (x)}?
Example 6.5. Recall that every subset of a discrete metric space is open.
Let (X, d) be a discrete metric space and (Y, dY ) be any other metric space.
Let f : X → Y be any function. For an arbitrary x ∈ X, consider an open
set V ⊆ Y such that f (x) ∈ V . Since every set in X is open, {x} ⊆ X is
also open and satisfies the property that f ({x}) = {f (x)} ⊆ V . Hence, f
is continuous. Since the choice of f was arbitrary, we have proved that every
function from a discrete space to any other space is continuous.

Example 6.6. Consider a function f : X → Y , where Y is the discrete space.
What can we say about the continuity of f? To see this, let us look at the
identity function id : R → R, where the domain is equipped with the usual
metric (|·|) and the codomain is equipped with the discrete metric. Let x ∈ R.
In the discrete metric, {x} is an open set which contains x. Now, if U ⊆ R

is open with respect to the usual metric, and contains x then it also contains
elements other than x. In particular, x + r

2 ∈ U for some r > 0. However,
id
(
x+ r

2

)
= x+ r

2 /∈ {x}. Hence for any open set U of (R, |·|), id (U) � {x}.
Therefore, id is not continuous.
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Remark. Examples 6.5 and 6.6 are of importance. This is because they tell
us the true value of open sets in a metric space. When we have a different
collection of open sets, the same function can behave differently. Even the
identity function, which seems to be continuous, is discontinuous in some
cases! We therefore advise the reader to take a pause and go through the
above two examples and assimilate them.

Also, in Example 6.5, we saw a fantastic property of discrete spaces. This
was possible because the discrete space has a lot of open sets. In fact, it can
be proved that if a metric space has more open sets than the other, then
any function from the first (which has more open sets) to the second will be
continuous. However, we do not cover it in this text. It will be more clear and
interesting once the reader is introduced to general topology.

Let us look at another example of a continuous function.

Example 6.7. Consider the metric spaces (Rn, d2) and (R, |·|). We define a
function Π : Rn → R, as

Π (x1, x2, · · · , xn) = x1.

This is called the projection onto the first coordinate. Consider a sequence((
x
(m)
1 , x

(m)
2 , · · · , x(m)

n

))
m∈N

in R
n, which converges to (x1, x2, · · · , xn). Re-

call that this is true if and only if the coordinates converge individually, i.e.,

x
(m)
i → xi for i = 1, 2, · · · , n. Therefore, the projection function is continuous.

Remark. Often, the projection function defined in Example 6.7 is called
the projection on the first coordinate and is denoted by Π1. In general, we can
define the projection on ith coordinate and can denote it as Πi. Apart from this,
there are also projections onto some subspaces,1 by taking into consideration
only a few coordinates and discarding the others. All such projections are
continuous. The proof goes on the same lines as Example 6.7 and therefore
we do not include it here.

We have seen projections of Euclidean space R
n. However, we can abstract

from our experience in geometry and define projections from product spaces
to the coordinate spaces. We give the formal definition below.

Definition 6.5 (Projection). Let (X, dX) and (Y, dY ) be metric spaces and
let (X × Y, d) be the product space. A function ΠX : X × Y → X defined by

ΠX (x, y) = x

is called the projection map onto the coordinate space X. Similarly, we can
define the projection map ΠY onto the coordinate space Y .

1The readers who have not taken a linear algebra course can consider a subspace as a
subset of Rn, in which some coordinates are not considered. However, we do encourage them
to go through vector spaces and subspaces since those concepts occur almost everywhere in
mathematics.
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Let us talk about continuity of the projection map. We know that a sequence
in the product space is convergent if and only if the corresponding coordinate
sequences are convergent, i.e., (xn, yn) → (x, y) if and only if xn → x and
yn → y. Therefore, it is clear that ΠX (xn, yn) → ΠX (x, y). Therefore, the
projections are indeed continuous.

Exercise 6.5. Generalize the concept of projection on an n-product space.
Is the projection continuous?

Let us now look at some other characterizations of continuity. These charac-
terizations are again in terms of sets and their properties and their proof will
use the open set definition of continuity.

Theorem 6.3. A function f : X → Y , where X and Y are metric spaces, is
continuous if and only if the inverse image of open sets in Y is open in X.

Proof. Let f be continuous and V ⊆ Y be open. We need to prove that f−1 (V )
is open in X. Let x ∈ f−1 (V ). Then, f (x) ∈ V . Since V is open, ∃r > 0 such
that BY (f (x) , r) ⊆ V . Since f is continuous, there is an open set U such that
x ∈ U and f (U) ⊆ BY (f (x) , r) and hence, ∃r′ > 0 such that BX (x, r′) ⊆ U .
We also have U ⊆ f−1 (f (U)) ⊆ f−1 (BY (f (x) , r)) ⊆ f−1 (V ). Thus, we
have BX (x, r′) ⊆ f−1 (V ) so that f−1 (V ) is open.

Conversely, consider that inverse image of open sets is open. Let V ⊆ Y
be an open set containing f (x). Then, f−1 (V ) is open in X and contains x.
Also, f

(
f−1 (V )

) ⊆ V . Therefore, f is continuous.

An amazing application of the above theorem is the following example.

Example 6.8. Consider the metric space
(
R

2, d2
)
and the set (a, b)× (c, d),

often termed as a rectangle. We have seen that this set is open (see Figure
2.14, Chapter 2). We wish to prove this through continuous functions. The
question is: Given only this set, where should we start finding our desired
continuous function? Observe that any point in this set is an ordered pair
(x, y), where a < x < b and c < y < d. Therefore, if we consider the two
individual projections, we can get to the individual open intervals (a, b) and
(c, d), respectively.

So, consider Π1 : R
2 → R and Π2 : R

2 → R, given by ∀ (x, y) ∈ R
2,

Π1 (x, y) = x and Π2 (x, y) = y. Geometrically, these projections yield the
X- and the Y -axis respectively. We also know from Example 6.7 that these
two functions are continuous. Therefore, we now must start to look at open
sets in the codomain and their inverse images, which might lead to our set
(a, b)× (c, d).

However, also notice that if we consider only one of the projections, we
always get an infinite strip. This can be seen in Figures 6.3 and 6.4. Therefore,
what we need to have is a combination of inverse images of the projections.
Therefore, consider the sets Π−1

1 (a, b) and Π−1
2 (c, d), which are open in R

2.
Clearly, (a, b)×(c, d) = Π−1

1 (a, b)∩Π−1
2 (c, d) (Verify!). Since finite intersection

of open sets is open, our set is open in R
2. This is shown in Figure 6.5.
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FIGURE 6.3: Inverse image of (a, b) under Π1.

FIGURE 6.4: Inverse image of (c, d) under Π2.

FIGURE 6.5: (a, b)× (c, d) as an intersection of the two inverse images.
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Remark. In the above example, any equivalent metric can be used. Therefore,
the set (a, b) × (c, d) is open in any of the metric space (Rn, dp) for p ≥ 1,
which have the same collection of open sets. It is also open in discrete space
since every set in a discrete space is open.

Exercise 6.6. Show that the set of all invertible matrices inM (n,R) is open.
This set is often represented by GL (n,R), and stands for general linear group
of invertible n× n real matrices.

Exercise 6.7. Let f : R → R be a function such that ∀a ∈ R, the sets
f−1 (a,∞) and f−1 (−∞, a) are open. Prove that f is continuous.

Based on similar lines as in Theorem 6.3, we can also prove the following
result. We leave it as an exercise to the reader.

Theorem 6.4. A function f : X → Y , where X and Y are metric spaces, is
continuous if and only if inverse image of closed sets in Y is closed in X.

Exercise 6.8. Prove Theorem 6.4.

We now give an application of this result.

Example 6.9. Consider the metric spaceM (n,R) and the set of all nilpotent
matrices. From linear algebra, we know that a matrix A is nilpotent2 if and
only if all the eigenvalues of A are zero, which is equivalent to saying An = 0,
from Cayley-Hamilton theorem.3 Also, the function f :M (n,R) →M (n,R),
given by f (A) = An, is continuous. And, the set {0}, is closed in M (n,R).
Hence, the set of all nilpotent matrices, given by f−1 ({0}), is closed in
M (n,R).

We now give other characterizations of continuous functions.

Theorem 6.5. A function f : X → Y , where X and Y are metric spaces, is
continuous if and only if for every subset A ⊆ X, we have f

(
Ā
) ⊆ f (A).

Proof. Let f be continuous. We know that f (A) is closed in Y , so that

f−1
(
f (A)

)
is closed in X. Also, f (A) ⊆ f (A). This gives

A ⊆ f−1 (f (A)) ⊆ f−1
(
f (A)

)
.

2The exact definition of a nilpotent matrix is as follows: A square matrix A is nilpotent
if Ak = 0, where 0 denotes the matrix with all entries zero, for some positive integer k.

3Cayley-Hamilton theorem states that every square matrix (with real/complex entries)
satisfies its own characteristic equation. The characteristic equation for a square matrix A
is given by det (A− λI) = 0.
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Hence, Ā ⊆ f−1
(
f (A)

)
= f−1

(
f (A)

)
. This further leads to f

(
Ā
) ⊆ f (A).

Conversely, let for every subset A ⊆ X, f
(
Ā
) ⊆ f (A) hold. Let F be any

closed set in Y . Then, we have

f
(
f−1 (F )

)
⊆ f (f−1 (F )) ⊆ F̄ = F.

This leads us to f−1 (F ) ⊆ f−1 (F ). Therefore, f−1 (F ) is closed in X and f
is continuous.

Exercise 6.9. Let X and Y be metric spaces. Prove that a function f : X →
Y is continuous if and only if for every subset B ⊆ Y , we have f−1 (B) ⊆
f−1

(
B̄
)
.

Exercise 6.10. Let D be a dense set in a metric space X, and Y be another
metric space. Let f : X → Y be continuous and surjective. Prove that f (D)
is dense in Y .

A natural question to ask at this stage is: Can we have a characterization
of continuity in terms of interior of a set? We have seen characterizations in
terms of open and closed sets and how it leads to a characterization in terms of
image of closure of a set. Can we have similar results? The following example
answers this question negatively.

Example 6.10. Consider f : R → R, where R is equipped with the
usual metric, defined as f (x) = sinx. Clearly, f is continuous. Consider
A = (0, 3π). Then, Int (A) = (0, 3π) and int (f (A)) = (−1, 1). Hence,
f (Int (A)) = [−1, 1] � (−1, 1) = Int (f (A)).

Let us look at another example where the characterization of continuity in
terms of reverse inclusion also cannot hold.

Example 6.11. Consider the Dirichlet function f : R → R, defined by

f (x) =

{
1, x ∈ Q.

0, x /∈ Q.

We consider that R is equipped with the usual metric, |·|. For any set A ⊆ R,
we have f (A) ⊆ {0, 1}. Hence, Int (f (A)) ⊆ f (Int (A)) always holds, while
f is clearly discontinuous. To prove the discontinuity, let x0 ∈ R. If x0 ∈ Q,
consider a sequence (xn) of irrationals such that xn → x0. Then, (f (xn)) is
the constant sequence that takes the value 0 everywhere and hence does not
converge to f (x0) = 1. Similarly, if x0 is irrational, a sequence of rationals
does the job! Therefore, the characterization of continuity cannot be done in
terms of images of interior of a set.

However, we can characterize continuity in terms of inverse images of interiors
of sets, as the following theorem states.
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Theorem 6.6. Let f : X → Y be a function, where X and Y are met-
ric spaces. f is continuous if and only if for every subset B ⊆ Y , we have
f−1 (Int (B)) ⊆ Int

(
f−1 (B)

)
.

Proof. Let f be continuous and B ⊆ Y be given. We know that Int (B) is
open in Y and therefore, f−1 (Int (B)) is open in X. Also, Int (B) ⊆ B and
therefore, f−1 (Int (B)) ⊆ f−1 (B). Finally, we have

Int
(
f−1 (Int (B))

)
= f−1 (Int (B)) ⊆ Int

(
f−1 (B)

)
.

Conversely, let for every subset B ⊆ Y , f−1 (Int (B)) ⊆ Int
(
f−1 (B)

)
hold. Let G be any open set. Then, we have f−1 (Int (G)) = f−1 (G) ⊆
Int
(
f−1 (G)

)
. Hence, f−1 (G) is open in X and f is continuous.

Exercise 6.11. Consider a function f : X → Y ×Z, where X,Y, Z are metric
spaces and Y × Z has the product metric. Suppose f (x) = (f1 (x) , f2 (x)),
where f1 : X → Y and f2 : X → Z are well-defined. Then, prove that f is
continuous if and only if both f1 and f2 are continuous.

6.2.2 Results on continuity

In this section, we shall see some consequences of continuity. We start
with the easiest, i.e., when the codomain of functions is R, equipped with the
usual metric. In the proof that shall follow, we shall again use the sequence
definition of continuity, and the reader will appreciate how it makes the job
easy!

Theorem 6.7. Let f, g : X → R be continuous functions. Then, f+g, fg and
α · f are continuous for every α ∈ R. Also, if g (x) �= 0 for any x ∈ X, then f

g
is also continuous. Here, · denotes the scalar multiplication and is defined as

(α · f) (x) = αf (x) .

Proof. We shall prove only the first part of the proof and the remaining parts
will be left as an exercise to the reader.

Consider a sequence (xn) in X such that xn → x. Since f and g
are continuous, we know that f (xn) → f (x) and g (xn) → g (x). Hence,
(f + g) (xn) = f (xn) + g (xn) → f (x) + g (x) = (f + g) (x), by the algebra of
limits (of sequences) in R. Therefore, f + g is also continuous.

Exercise 6.12. Prove the remaining parts of Theorem 6.7.

Remark. Theorem 6.7 is often called algebra of continuous functions and is
very useful in checking continuity of functions with difficult expressions. From
Theorem 6.7, we can further prove that the set of all continuous functions
from a metric space to R, themselves from a vector space. However, it is
not only restricted to the codomain being R. If the codomain is any vector
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space V , equipped with a metric (where the algebra of sequences hold), the
set of continuous functions, often denoted by C (X,V ), forms a vector space.

Theorem 6.8. Composition of continuous functions is continuous.

Proof. Let X,Y, Z be metric spaces and f : X → Y , g : Y → Z be given
continuous functions. We want to prove that g ◦ f : X → Z is continuous.
Let (xn) be a sequence in X converging to x. Since f is continuous, the
sequence (f (xn)) converges to f (x) in Y . Consequently, by the continuity of
g, the sequence (g (f (xn))) converges to g (f (x)) in Z. This concludes the
proof!

Theorem 6.9. Let X,Y be metric spaces and D ⊆ X be a dense set. Let
f, g : X → Y be continuous functions such that ∀x ∈ D, f (x) = g (x). Then,
f = g.

Proof. Suppose that the theorem is false! Then, ∃x0 ∈ X such that f (x0) �=
g (x0). Using the Haussdroff property of Y , ∃U, V ⊆ Y , open such that f (x0) ∈
U , g (x0) ∈ V and U ∩ V = ∅. Since f is continuous, there is an open set
W1 ⊆ X such that x0 ∈ W1 and f (W1) ⊆ U . Also, g is continuous so that
∃W2 ⊆ X, open such that x0 ∈ W2 and g (W2) ⊆ V . Let W = W1 ∩ W2.
Then, x0 ∈ W , and W is open in X. Since D is dense in X, ∃x ∈ D ∩W .
Here f (x) = g (x) and also, f (x) ∈ U ∩ V , which is a contradiction! Hence,
the theorem must be true.

We now move to an important theorem due to Urysohn. This theorem tells
us how to separate two disjoint closed subsets in a metric space through con-
tinuous real valued functions.

Theorem 6.10 (Urysohn’s lemma). Let A,B be two non-empty closed dis-
joint sets in a metric space X. Then, there is a continuous function f : X → R

such that ∀x ∈ X, 0 ≤ f (x) ≤ 1 and ∀x ∈ A, f (x) = 0 and ∀x ∈ B, f (x) = 1.

Proof. Since we want a continuous function which satisfies certain properties
on certain sets, we are tempted to use dA and dB . Clearly, if we use only
dA, we shall get f (x) = 0 for any x ∈ A. However, f need not be 1 on B.

Therefore, somehow, we want dA(x)
dA(x) , whenever x ∈ B. This can be achieved

easily by defining the function as

f (x) =
dA (x)

dA (x) + dB (x)
.

Now, we need to check only two things: f is continuous and it takes values
between 0 and 1. First, observe that if dA (x) �= 0, then we can have

f (x) =
1

1 +
dB (x)

dA (x)

.
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So that

0 < f (x) ≤ 1, ∀x ∈ X.

Also, for x ∈ A, f (x) = 0. Hence, 0 ≤ f (x) ≤ 1, ∀x ∈ X.

Now, by the algebra of continuous functions, f is continuous and we are
through!

Exercise 6.13. Let A and B be two non-empty disjoint closed subsets of
a metric space X. Prove that there exist two open sets U and V such that
A ⊆ U , B ⊆ V and U ∩ V = ∅.

Remark. The property shown in Exercise 6.13 is important in general topo-
logical spaces. Such spaces are called normal . It gives a way to separate closed
sets through open sets. However, Urysohn’s lemma gives a stronger condition.
It separates closed sets through continuous functions.

Now, suppose that we are provided with continuous functions on open sets
of a metric space. Can we have a function continuous on the whole metric
space? A similar question can be asked for closed sets. The following theorem
answers these questions positively.

Theorem 6.11 (Gluing lemma). Let X,Y be metric spaces.

1. Let {Ui|i ∈ I} be an indexed family of open sets of X such that
⋃
i∈I

Ui =

X. Also, let fi : Ui → Y be given continuous functions for each i ∈ I
with the property that fi (x) = fj (x), for all x ∈ Ui∩Uj, ∀i, j ∈ I. Then
the function f : X → Y , defined as f (x) = fi (x), whenever x ∈ Ui for
some i ∈ I, is well-defined and continuous on X.

2. Let {Fi|i ∈ In} be a finite family of closed sets of X, where In =
{1, 2, · · · , n} is the finite index set, such that

⋃
i∈In

Fi = X. Also, let

fi : Fi → Y be given continuous functions such that fi (x) = fj (x),
whenever x ∈ Fi ∩ Fj, ∀i, j ∈ In. Then, the function f : X → Y defined
as f (x) = fi (x), whenever x ∈ Fi for some i ∈ In is well-defined and
continuous on X.

Proof.

1. Observe that under all the conditions given, f is well-defined. We do not
include the “textbook” proof for well-defined-ness of f here. Let V ⊆ Y
be a given open set. We want to prove that f−1 (V ) is open in X. First,
we claim that f−1 (V ) ∩ Ui = f−1

i (V ) ∩ Ui for every i ∈ I.

To prove this, observe that x ∈ f−1 (V ) ∩ Ui iff x ∈ Ui and f (x) ∈ V ,
which is equivalent to fi (x) ∈ V . Hence, f−1 (V ) ∩ Ui = f−1

i (V ) ∩ Ui.
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Now,

f−1 (V ) = f−1 (V ) ∩X

= f−1 (V ) ∩
(⋃

i∈I

Ui

)

=
⋃
i∈I

(
f−1 (V ) ∩ Ui

)

=
⋃
i∈I

(
f−1
i (V ) ∩ Ui

)
.

Since, ∀i ∈ I, fi is continuous, f
−1 (V ) is a union of open sets and hence

open. Therefore, f is continuous.

2. Left as an exercise to the reader.

Remark. At first, gluing lemma might seem trivial to the reader. However,
it must be kept in mind that however trivial the lemma looks, it has its own
beauty. We shall shortly see how gluing lemma is helpful to us in many cases.
In fact, from gluing lemma, we can see that for a disconnected metric space
X, we can have a non-constant continuous function f : X → {0, 1}. Indeed,
we shall comment on this later in this text.

Exercise 6.14. Prove part (2) of Theorem 6.11.

Exercise 6.15. In Exercise 6.14, the reader must have noticed that the col-
lection of closed sets must be finite for the proof to work. Intuitively, it seems
that if we have an arbitrary collection of closed sets, then gluing lemma may
not hold. Find a counterexample for the same. In particular, find a collection
of closed sets {Fi|i ∈ I}, where I is not a finite index set, and continuous
functions fi : Fi → Y satisfying the conditions of gluing lemma such that the
function f : X → Y defined by f (x) = fi (x), whenever x ∈ Fi for some i ∈ I
is not continuous on X.

The following exercises are a few applications of gluing lemma.

Exercise 6.16. Let f, g : [0, 1] → X be continuous, where X is a metric
space. Further assume that f (1) = g (0). Define h : [0, 1] → X as

h (x) =

⎧⎪⎨
⎪⎩
f (2x) , 0 ≤ x ≤ 1

2
.

g (2x− 1) ,
1

2
≤ x ≤ 1.

Comment on the continuity of h.
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Exercise 6.17. Consider a function f : Rn → R
n, given by

f (x) =

⎧⎪⎨
⎪⎩
x, if ||x|| ≤ 1.

x

||x|| , if ||x|| > 1.

where ||·|| denotes the length of a vector in R
n and is given by

||(x1, x2, · · · , xn)|| =
√
x21 + x22 + · · ·+ x2n.

Is f continuous?

We now give two amazing applications of gluing lemma. The reader will appre-
ciate the theorem after assimilating these applications. The first application
is from complex analysis.

We denote by C, the set of all complex numbers and C
∗, the set of extended

complex numbers, i.e., C∪{∞}. We know from high school mathematics that
if z ∈ C, then a number θ ∈ R such that z = |z| eιθ is called the argument of z.
Also, any two arguments of the same complex number differ by integer multiple
of 2π. It is well known that there is no continuous function θ : C∗ → R such
that z = |z| eιθ(z) for z ∈ C

∗. However, if we just exclude the non-positive real
axis from C

∗, then we can have a continuous function. The following theorem
gives the details for the same.

Theorem 6.12. Let X = C \ {z ∈ C|z ∈ R and z ≤ 0}. Then, there is a
continuous function α : X → (−π, π) such that z = |z| eια(z).
Proof. Consider the following open half planes: H1 = {z ∈ C|Re (z) > 0},
H2 = {z ∈ C|Im (z) > 0}, and H3 = {z ∈ C|Im (z) < 0}. Notice that H1 ∪
H2 ∪H3 = X.

Let z ∈ H1. Then, Re (z) = |z| cos θ for some θ ∈ (−π
2 ,

π
2

)
. Therefore,

define α1 : H1 → (−π
2 ,

π
2

)
as α1 (z) = sin−1

(
Im(z)
|z|
)
. Similarly, we can define

α2 : H2 → (0, π) and α3 : H3 → (−π, 0) as α2 (z) = cos−1
(

Re(z)
|z|
)

and

α3 (z) = cos−1
(

Re(z)
|z|
)
. All the functions, α1, α2, and α3 are continuous and

agree on their common domain and hence, by a simple application of gluing
lemma, we can have a continuous function α : X → (−π, π) with the desired
property.

We conclude this section by giving another application of gluing lemma, which
is called the Tietze extension theorem. It tells us that if we are provided with
a continuous function on a closed subset, then we can extend it to the whole
space without disturbing the continuity.

Theorem 6.13 (Tietze extension theorem). Let A be a closed subset of a met-
ric space X. Given a continuous function g : A→ [1, 2], there is a continuous
function f : X → [1, 2] which is an extension of g, i.e., ∀a ∈ A, f (a) = g (a).
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Proof. We define f : X → [1, 2] as

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g (x) , when x ∈ A.

inf {g (a) d (x, a) |a ∈ A}
dA (x)

, when x /∈ A.

Note that since ∀a ∈ A, we have 1 ≤ g (a) ≤ 2, 1 ≤ f (x) ≤ 2 also holds
∀x ∈ X. Also, on A, f = g. Hence, f is an extension of g. All that remains to
prove is that f is continuous.

To do so, we wish to incorporate the gluing lemma. We know that X =
A∪(X \A). However, for the gluing lemma to work, both sets should be either
open or closed. Since A is already closed, we close the second set by taking

its closure. We have, X = A ∪
(
X \A

)
. It is clear that f is continuous on A,

since g is continuous. We now wish to prove that f is continuous on X \A.
Note that when we take a point in X \A, it can either be in the interior

or on the boundary. Those points on the boundary also lie inside A, since A
is closed. On the other hand, those in the interior lie completely outside A.
Therefore, we shall consider them as two different cases.

Case I: Let x ∈ X \A. Since A is closed, dA (x) > 0. Also, dA is a continuous
function. Therefore, we only need to prove that h : X \ A → [1, 2] defined as
h (u) = inf {g (a) d (u, a) |a ∈ A} is continuous (Figure 6.6).

FIGURE 6.6: Pictorial representation of Case I of the Tietze extension
theorem.
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Let ε > 0 be given. Consider u ∈ (X \A)∩B (x, ε2). Then, for any a ∈ A,
we have

d (x, a) ≤ d (x, u) + d (a, u) <
ε

2
+ d (a, u) .

Multiplying by g (a) on both sides, we get

g (a) d (x, a) < g (a)
ε

2
+ g (a) d (a, u) ≤ ε+ g (a) d (a, u) .

On taking the infimum as a ∈ A varies, we get

h (x) ≤ ε+ h (u) .

On interchanging the roles of x and u, we also get

h (u) ≤ ε+ h (x) ,

which further leads us to

|h (x)− h (u)| ≤ ε.

Since ε > 0 was arbitrary, we can conclude that h is continuous on X \A and
so is f .

Case II: Now, let x ∈ ∂A. Notice that ∂A = ∂ (X \A) and in this case
x ∈ A. Let ε > 0 be given. By the continuity of g on A, ∃δ > 0 such that
|g (a)− g (x)| < ε for all a ∈ A ∩B (x, δ) (Figure 6.7).

FIGURE 6.7: Pictorial representation of Case II of the Tietze extension
theorem.
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In particular, we have |f (u)− f (x)| < ε for all u ∈ A ∩B (x, δ4).
The same thing should now holds for u ∈ (X \A) ∩ B (x, δ4). Notice that

if a ∈ A \B (x, δ), then

d (a, u) ≥ d (x, a)− d (x, u) > δ − δ

4
= 3

δ

4
.

Since g (a) ≥ 1, we get

inf {g (a) d (u, a) |a ∈ A \B (x, δ)} ≥ 3δ

4
.

On the other hand, since x ∈ A ∩B (x, δ4), we have

g (x) d (x, u) ≤ 2d (x, u) <
δ

2
<

3δ

4
.

Hence, for u ∈ (X \A) ∩B (x, δ4), we have

inf {g (a) d (a, u) |a ∈ A} = inf {g (a) d (a, u) |a ∈ A ∩B (x, δ)} .

A similar argument shows that

inf {d (u, a) |a ∈ A ∩B (x, δ)} = inf {d (u, a) |a ∈ A} = dA (u) .

And, from the continuity of g, we have

g (x)− ε < g (a) < g (x) + ε.

So, that we have

(g (x)− ε) dA (u) ≤ inf {g (a) d (u, a) |a ∈ A ∩B (x, δ)} ≤ (g (x) + ε) dA (u) .

Finally, we get

|f (u)− g (x)| ≤ ε.

Since on A, we have f = g, continuity of f follows also on ∂A.

6.3 Uniform Continuity

In the previous section, we saw what continuity of functions meant and
made a major remark. We said that continuity of a function is a local property,
i.e., it is defined for each point in the domain of a function and can vary with
varying points. However, it is natural to ask: Can we have a global property
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similar to continuity? First, note that when we want to make a local property
into a global property, we are actually strengthening the conditions. So, if at
all such a property exists, we expect the functions exhibiting this property to
be necessarily continuous. Apart from this, the functions must satisfy certain
other conditions, which we will see in some time.

To upgrade continuity, let us look at the definition and find some places
which can be upgraded. According to the very first definition of continuity
given in this text, given a function f : X → Y , where X,Y are metric spaces,
for each given ε > 0, we need to find a δ > 0 such that some conditions are
satisfied. However, before all this, we are provided with a point x0 ∈ X and
depending on whether or not all conditions of the definition are satisfied, we
comment upon the continuity of f at point x0. Hence, the choice of δ not
only depends on ε, but also (in general) depends on x0. To see this, let us
look at f : (0, 1) → R, given by f (x) = 1

x . As we approach 0, f (x) becomes
unbounded. Therefore, to remain within the ε distance in the codomain, we
need to make our δ distance smaller and smaller in the domain.

Therefore, to upgrade continuity, we want another condition that the
choice of δ should be independent of x0. Although, it will (in general) al-
ways depend on ε. Motivated by this, we now give the formal definition of
what is called uniform continuity.

Definition 6.6 (Uniform continuity). Let f : X → Y be a function,
where X,Y are metric spaces. Then, f is said to be uniformly continuous
if ∀ε > 0, ∃δ > 0 such that ∀x1, x2 ∈ X with dX (x1, x2) < δ, we have
dY (f (x1) , f (x2)) < ε.

From the above description, it is clear that 1
x : (0, 1) → R is not uniformly

continuous. We will now prove it.

Example 6.12. Consider ε = 1 and let δ > 0 be arbitrary. By Archimedean
property, ∃n0 ∈ N such that n0 >

1
δ . Consider two points 1

n0
, 1
2n0

∈ (0, 1). We

have
∣∣∣ 1
n0

− 1
2n0

∣∣∣ = 1
2n0

< δ. However, |n0 − 2n0| = n0 ≥ 1. Hence, 1
x is not

uniformly continuous.

What can we say about the same function on [1,∞)?

Example 6.13. We shall estimate |f (x)− f (y)| for x, y ∈ [1,∞). From this
estimate, we can choose our δ, if possible. If not possible, we get to know how
to construct the counterexample by choosing the correct ε.

Observe that

|f (x)− f (y)| =
∣∣∣∣y − x

xy

∣∣∣∣
≤ |x− y| ,

since x ≥ 1 and y ≥ 1. Therefore, given ε > 0, if we choose δ = ε, we are
through! Hence, 1

x is uniformly continuous on [1,∞).
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Remark. It is to be noted that 1
x is not uniformly continuous over any interval

with boundary 0 and is uniformly continuous over any closed interval where
it is well-defined.

One of the major concerns of this upgradation is that the original properties
must remain intact. This means that every uniformly continuous function
must be necessarily continuous. The proof of this fact is left as an exercise to
the reader.

Exercise 6.18. Prove that every uniformly continuous function is continuous
on its domain.

Exercise 6.19. Prove that composition of uniformly continuous functions is
uniformly continuous.

Let us look at another example from R.

Example 6.14. Let f : R → R be defined as f (x) = x2. We want to check if
this function is uniformly continuous. Indeed, it is continuous. If |x| is large
enough, f (|x|) becomes much larger. Therefore, for small increments in x, we
can have large differences in the value of the function. Therefore, our guess is
that x2 is not uniformly continuous.

To see this, consider ε = 1 and let δ > 0 be arbitrary. Then, by the
Archimedean property, ∃n ∈ N such that nδ > 1. Now,

∣∣n+ 1
n − n

∣∣ = 1
n < δ.

However, ∣∣∣∣f
(
n+

1

n

)
− f (n)

∣∣∣∣ =
∣∣∣∣2 + 1

n2

∣∣∣∣ ≥ 2 > 1.

Hence, x2 is not uniformly continuous on R. What happens if we take a closed
and bounded interval?

Consider [−M,M ]. Then, ∀x, y ∈ [−M,M ], we have |x+ y| ≤ 2M . Hence,

∣∣x2 − y2
∣∣ = |x+ y| |x− y|
≤ 2M |x− y| .

Therefore, for a given ε > 0, if we choose δ = ε
2M , then we are through! In

fact, such a proof works for any bounded interval and not only closed ones.

The two above examples might lead us to think that whenever function be-
comes unbounded in its domain, it is not uniformly continuous. However, this
is not true as the next exercise will show.

Exercise 6.20. Prove that the identity function on any metric space (X, d)
to itself is uniformly continuous. In particular id : R → R is uniformly contin-
uous, although it is unbounded.
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Exercise 6.21. Let f : R → R be a function such that f ′ (x) exists for all
x ∈ R and is bounded on R. Comment upon the uniform continuity of f .

Exercise 6.22. Show that any function from a discrete space to any other
metric space is uniformly continuous.

Before moving to some consequences of uniform continuity, let us look at
another example of a uniformly continuous function.

Example 6.15. Let (xn) be a sequence in a metric space (X, d). Define
f : X → R as

f (x) = inf {d (x, xn) |n ∈ N} .
We want to estimate |f (x1)− f (x2)| for arbitrary x1, x2 ∈ X. Notice that
if we consider A = {xn|n ∈ N}, the range set of the sequence, then f (x) =
dA (x). From Example 6.3, we know that if we choose δ = ε, we can not only
prove the continuity, but also uniform continuity.

Remark. As promised at the end of Example 6.3, we now formally state that
the function dA is uniformly continuous for any non-empty set A ⊆ X of a
metric space.

Let us now look at some consequences of uniform continuity.
Let f : X → Y be a uniformly continuous function and A ⊆ X be a

bounded set. We want to know the fate of f (A), i.e., we want to ask: Is f (A)
bounded? Although it may seem that the answer is “yes”, the next example
shows that this is not true.

Example 6.16. Consider f : N → R, defined as f (n) = n. Here, N is
equipped with the discrete metric and R is equipped with the usual metric.
Then, N is bounded (in discrete metric); however, f (N) = N is not bounded in
R. Also, from Exercise 6.22, we know that f is uniformly continuous. Hence,
we conclude that uniformly continuous functions need not take bounded sets
to bounded sets.

However, uniformly continuous functions do preserve Cauchyness of sequences.
The details of this fact are given in the following result.

Theorem 6.14. A uniformly continuous function takes Cauchy sequences to
Cauchy sequences.

Proof. Let f : X → Y be a uniformly continuous function, where X,Y are
metric spaces. Let (xn) be a Cauchy sequence in X. By the uniform continuity,
we know that

∀ε > 0,∃δ > 0 such that ∀xn, xm ∈ {xn|n ∈ N} with dX (xn, xm) < δ

we have dY (f (xn) , f (xm)) < ε.
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Since (xn) is Cauchy, ∃n0 ∈ N such that dX (xn, xm) < δ for all n,m ≥ n0.
Hence, for the same n0, we also have dY (f (xn) , f (xm)) < ε for m,n ≥ n0.
Therefore, (f (xn))n∈N

is Cauchy in Y .

Exercise 6.23. Show that a function f : (X, dX) → (Y, dY ) is uniformly
continuous if and only if it satisfies the following condition: if (sn) and
(tn) are two sequences in X such that dX (sn, tn) → 0 as n → ∞, then
dY (f (sn) , f (tn)) → 0 as n→ ∞.

As the next step, we now ask the question if uniformly continuous functions
can be extended. If we are given a uniformly continuous function f : A→ Y ,
where A ⊆ X, X,Y are metric spaces, we want to know whether there exist a
uniformly continuous function g : X → Y such that g = f on A. Indeed, there
are certain conditions that need to be satisfied by the set A and the metric
space Y .

In particular, we saw in Theorem 6.14 that uniformly continuous functions
preserve Cauchy sequences. This is a very “nice” property and we would like
to make use of it. However, Cauchy sequences are no use to us if the metric
space is not complete. Therefore, in order to have some concrete result, we
would want Y to be a complete metric space. In addition, since we are using
sequences, the closedness of A is not sufficient as in Theorem 6.13. We would
now want the set A to be dense.

With all these conditions satisfied, we can define g : X → Y as

g (x) = lim
n→∞ f (an)

where (an) is a sequence in A which converges to x. Note that this is possible
due to density of A in X. Then, we are left to check that g is well-defined and
uniformly continuous. We first give a concrete statement of this result and
then provide all the details in the proof.

Theorem 6.15. Let (X, dX) be a metric space and (Y, dY ) be a complete met-
ric space. Let A ⊆ X be dense in X and f : A→ Y be uniformly continuous.
Then, there is a unique function g : X → Y which is uniformly continuous
and moreover, ∀a ∈ A, f (a) = g (a), i.e., g extends f .

Proof. Let x ∈ X. Since A is dense in X, there is a sequence (an) in A such
that an → x. Consequently, (an) is Cauchy. Since f is uniformly continuous,
the sequence (f (an)) is Cauchy in Y and by the completeness of Y , it is
convergent. To be able to define g as in the above description, it must be well
defined, i.e., if there are two sequences (an) and (bn) converging to the same
x, then lim

n→∞ f (an) = lim
n→∞ f (bn) must hold.

Let y1 = lim
n→∞ f (an) and y2 = lim

n→∞ f (bn) and let ε > 0 be arbitrary. By

the uniform continuity of f , ∃δ > 0 such that ∀c1, c2 ∈ A with dX (c1, c2) < δ,
we have dY (f (c1) , f (c2)) <

ε
3 .
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Now, by the definition of convergence of sequences, ∃n0, n1 ∈ N such that
∀n ≥ n0 we have dX (an, x) <

δ
2 and ∀n ≥ n1, we have dX (bn, x) <

δ
2 .

Therefore, for n ≥ n2 = max {n0, n1}, we have

dX (an, bn) ≤ dX (an, x) + dX (bn, x) < δ.

Hence, by the uniform continuity of f we have,

dY (f (an) , f (bn)) <
ε

3
.

Also, by the convergence of sequences (f (an)) and (f (bn)) in Y , ∃n3, n4 ∈
N such that ∀n ≥ n3, we have dY (y1, f (an)) <

ε
3 and ∀n ≥ n4, we have

dY (y2, f (bn)) <
ε
3 . Hence, ∀n ≥ n5 = max {n2, n3, n4}, we have

dY (y1, y2) ≤ dY (y1, f (an)) + dY (f (an) , f (bn)) + dY (y2, f (bn)) < ε.

Therefore, we can conclude that y1 = y2. Now, we define g : X → Y as
g (x) = lim

n→∞ f (an), where (an) is a sequence in A such that an → x. Clearly,

g is well-defined from the above description. First, we check if g extends f .

Let x ∈ A. Then, the constant sequence (an), where an = x, ∀n ∈ N,
converges to x. Also,

g (x) = lim
n→∞ f (an) = lim

n→∞ f (x) = f (x) .

Therefore, g is an extension of f . Now, we look at the uniform continuity of g.

Let ε > 0 be given. Then, by the uniform continuity of f , ∃δ > 0 such that
∀c1, c2 ∈ A with dX (c1, c2) < δ, we have dY (f (c1) , f (c2)) <

ε
3 .

Now, let x1, x2 ∈ X with dX (x1, x2) <
δ
3 . Since A is dense in X, there are

sequences (an) and (bn) which converge to x1 and x2 respectively. By the defi-
nition of convergence, ∃n0, n1 ∈ N such that ∀n ≥ n0, we have dX (an, x1) <

δ
3

and ∀n ≥ n1, we have dX (bn, x2) <
δ
3 . Hence, for n ≥ n2 = max {n0, n1}, we

have,

dX (an, bn) ≤ dX (an, x1) + dX (x1, x2) + dX (bn, x2) < δ.

Consequently, dY (f (an) , f (bn)) <
ε
3 .

By the definition of g, f (an) → g (x1) and f (bn) → g (x2). Hence,
∃n3, n4 ∈ N such that ∀n ≥ n3 we have dY (f (an) , g (x1)) <

ε
3 and for

n ≥ n4, we have dY (f (bn) , g (x2)) <
ε
3 . Hence, for n ≥ n5 = max {n2, n3, n4}

we have,
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dY (g (x1) , g (x2)) ≤ dY (g (x1) , f (an)) + dY (f (an) , f (bn))

+ dY (f (bn) , g (x2))

<
ε

3
+
ε

3
+
ε

3
= ε.

This proves the uniform continuity of g. Note that the uniqueness follows from
Exercise 6.18 and Theorem 6.9.

We now give an application of Theorem 6.15. Before we formally state the
result and give the details of the proof, let us recall how we learned exponen-
tiation, starting from primary school. Initially, when we were taught multipli-
cation, we were told that a square of a number is the number multiplied by
itself, cube is the number multiplied with itself three times, and so on. Soon,
we abstracted the meaning of an, for a real number a and n ∈ N. Then, we
were introduced to radicals and started looking for square roots, cube roots,
and so on. It is only in the analysis course that one is exposed to the nth
root of a non-negative real number in a rigorous fashion. We assume that the
reader is thorough with the existence of nth root. Once we had nth roots,
we started looking at integer powers of those roots and we represented them
by a

m
n , where m ∈ Z and n ∈ N. Thus, so far we rigorously defined ar for

r ∈ Q. But, we have been using the exponentiation ax for any real number x.

How do we know that a
√
2 makes sense? In the following result, which is an

application of Theorem 6.15, we shall answer this question. In particular we
shall show that ax can be defined for any x ∈ R and a ≥ 0.

Theorem 6.16. Let a ∈ R
+ and M ∈ N. Then, the function f : Q ∩

[−M,M ] → R, defined as f (r) = ar is uniformly continuous. Hence, this
extends to a function on [−M,M ], which we denote by ax.

Proof. All we need to prove is that f is uniformly continuous. The extension
will follow from the density of Q and Theorem 6.15. We shall consider the
case a ≥ 1. The case 0 < a < 1 reduces to our case by considering b = 1

a .

Let x, x + h ∈ Q ∩ [−M,M ]. Then, by the increasing nature of ar on Q,
we have ∣∣ax+h − ax

∣∣ = ax
∣∣ah − 1

∣∣ ≤ aM
∣∣ah − 1

∣∣ .
Now, we know that as h → 0, ah → 1. Hence, the right hand side of the
inequality can be controlled as much as we please. Hence, f is uniformly
continuous on Q ∩ [−M,M ].

Remark. SinceM ∈ N used in the above theorem was arbitrary, ax is defined
on all of R.

We end this section by giving an upgradation of uniform continuity.
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Definition 6.7 (Lipschitz continuity). A function f : X → Y , where X,Y
are metric spaces, is said to be Lipschitz continuous if ∃L > 0 such that
∀x1, x2 ∈ X, we have

dY (f (x1) , f (x2)) ≤ LdX (x1, x2) .

The constant L is called Lipschitz constant.

Exercise 6.24. Prove that every Lipschitz continuous function is uniformly
continuous.

Remark. Lipschitz continuity is stronger in both continuity and uniform
continuity and is useful in the theory of ordinary differential equations. In
particular, it is used to prove the existence and uniqueness of a solution to an
initial value problem.

6.4 Continuous Functions on Compact Spaces

In this section we shall study how continuous functions behave when their
domain is compact. We shall also study the fate of the compact domain in
terms of its continuous image. We start with the following result.

Theorem 6.17. A continuous function f from a compact metric space
(X, dX) to any metric space (Y, dY ) is bounded, i.e., the range f (X) is a
bounded subset of Y .

Proof. We fix a y ∈ Y . Notice that for any y′ ∈ Y , ∃n ∈ N such that n >
d (y, y′) (by Archimedean property). Therefore, we have

⋃
n∈N

BY (y, n) = Y .

Also, each of the open balls is an open set and since f is continu-
ous, each of f−1 (BY (y, n)) is open in X, and

⋃
n∈N

f−1 (BY (y, n)) =

f−1

( ⋃
n∈N

BY (y, n)

)
= f−1 (Y ) = X. Hence,

{
f−1 (BY (y, n)) |n ∈ N

}
is an

open cover for X.
SinceX is compact, this has a finite subcover, say,

{
f−1 (BY (y, n)) |n ∈ IN

}
for some N ∈ N, where IN = {1, 2, · · · , N}. Notice that ∀n1 ≤
n2, BY (y, n1) ⊆ BY (y, n2). Hence, f−1 (BY (y,N)) = X so that
f
(
f−1 (BY (y,N))

)
= f (X) ⊆ BY (y,N). Therefore, f is bounded.

Now, let us consider a subset S ⊆ R
n, for some n ∈ N. Also, suppose that every

continuous real valued function on S is bounded. What can we say about the
compactness of S? Let us, for instance, assume that S is not compact. Then,
by the Hiene-Borel theorem, either S is not bounded or not closed. Suppose
that S is not bounded. Then, for a fixed p ∈ S, ∀r > 0, S � B (p, r). Hence,
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the function f : S → R defined as f (x) = d (x, p) is not bounded. On the other
hand, if S is not closed, then there is an accumulation point x0 of S which is
not in S. In this case, the function f : S → R defined by f (x) = 1

d(x,x0)
is

unbounded.
Based on this, we have proved the following result, which is indeed a char-

acterization of compactness in terms of continuous functions.

Theorem 6.18. A subset X ⊆ R
n is compact if and only if every continuous

real valued function on X is bounded.

Exercise 6.25. Suppose that (X, d) is a non-compact metric space. Give an
example of a function f : X → R such that f is continuous but not bounded.

Now, we give an important consequence of continuity on compact sets, called
the extreme value theorem. We have been using this result for long, especially
when dealing with C [a, b].

Theorem 6.19 (Extreme value theorem). A real valued continuous function
on a compact metric space attains its bounds.

Proof. Let X be a compact metric space and f : X → R is continuous. Then,
we know that f (X) is bounded, i.e., ∃m,M ∈ R such that m ≤ f (x) ≤ M ,
∀x ∈ X. All we need to prove is that ∃x0, x1 ∈ X such that f (x0) = m =
inf {f (x) |x ∈ X} and f (x1) =M = sup {f (x) |x ∈ X}.

Suppose that f does not attain its upper bound, i.e., there is no x ∈ X
such that f (x) =M . Consider the collection of open sets Un, where each set
is given as

Un =

{
x ∈ X

∣∣∣f (x) < M − 1

n

}
.

The reader is advised to verify that each Un is indeed open.
Now, by the Archimdean property, ∀x ∈ X, ∃n ∈ N such that n > 1

M−f(x) .

Therefore,
⋃

n∈N

Un = X, or what is the same, {Un|n ∈ N} is an open cover

for X. Also, notice that Un ⊆ Un+1. Since X is compact, we conclude that
X = UN for some N ∈ N and hence ∀x ∈ X, f (x) < M − 1

N . This leads
us to sup {f (x) |x ∈ X} ≤ M − 1

N < M , which is a contradiction. Similar
arguments can be made for the infimum.

Now, we give one application of the above result, a theorem due to Dini. But
before that, we brush up some concepts that one might have encountered in the
analysis course. Recall that we can define a sequence of functions in a similar
manner as we defined a sequence of real numbers. We have done this for real
valued functions on R. Then follows point-wise and uniform convergence of
sequence of functions. If X,Y are metric spaces, then we can do the same for a
sequence of functions fn : X → Y . The definitions of point-wise and uniform
convergence then remain similar to the real valued case. We encourage the
reader to write these definitions with mathematical rigor.
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Theorem 6.20 (Dini’s theorem). Let X be a compact metric space and fn :
X → R be continuous for each n ∈ N. Moreover, let the sequence of functions
(fn) be monotone, i.e., ∀x ∈ X, let the sequence of real numbers (fn (x)) be
monotone. If (fn) is a point-wise convergent sequence such that its point-wise
limit is continuous, then it converges uniformly to its point-wise limit.

Proof. For the proof, we assume that (fn) is increasing. The decreasing case
is analogous. Let fn → f point-wise. Define gn : X → R as gn (x) = f (x) −
fn (x). Then, gn is continuous for each n ∈ N and decreases to 0. For a given
ε > 0, consider the sets

Uk = {x ∈ X|gk (x) < ε} .

Then, Uk = g−1
k (−∞, ε), each of which are open due to continuity of gk. Also,

we observe that Uk ⊆ Uk+1. Since gn decreases to 0, ∀x ∈ X, ∃k ∈ N such
that |gk (x)| = gk (x) < ε. Hence,

⋃
k∈N

Uk = X, i.e., {Uk|k ∈ N} is an open

cover for X.
Since X is compact, it has a finite subcover and in fact, X = UN for

some N ∈ N. Notice that this N is independent of x. Therefore, ∀n ≥ N and
∀x ∈ X, we have

|f (x)− fn (x)| = |gn (x)| < ε.

Hence, fn → f uniformly.

We now look at the fate of compact sets under continuous functions.

Theorem 6.21. Continuous image of a compact space is compact.

Proof. Let f : X → Y be a continuous function and X be a compact metric
space. Let {Ui|i ∈ I} be an open cover for f (X). Then, by the continuity of
f , the collection

{
f−1 (Ui) |i ∈ I

}
is an open cover in X. Since X is compact,

it has a finite subcover, say
{
f−1 (Ui) |i ∈ In

}
for some n ∈ N. Then, we have

n⋃
i=1

f−1 (Ui) = X.

So that,

f (X) = f

(
n⋃

i=1

f−1 (Ui)

)
=

n⋃
i=1

f
(
f−1 (Ui)

) ⊆
n⋃

i=1

Ui.

Hence, f (X) has a finite subcover and therefore is compact.

Remark. The theorem also works for compact subsets of a metric space.
Therefore, continuous image of a compact (sub)set is compact.
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When we are dealing with compact spaces, we can say something more about
continuous functions.

Theorem 6.22. A continuous function from a compact metric space to any
other metric space is uniformly continuous.

Proof. Let f : X → Y be a continuous function, where X is a compact
space. For each x ∈ X and a given ε > 0, by the continuity of f , ∃δx such
that whenever dX (x, y) < δx, we have dY (f (x) , f (y)) < ε

2 . Consider the

open cover
{
BX

(
x, δx2

) ∣∣∣x ∈ X
}
for X. Since X is compact, it admits a finite

subcover, say
{
B
(
xi,

δi
2

) ∣∣∣i ∈ In

}
for some n ∈ N, where δi = δxi

.

Choose δ = min
i∈In

{δi}. Then, for x, y ∈ X with dX (x, y) < δ
2 , we also have

x ∈ B
(
xi,

δi
2

)
so that

d (xi, y) ≤ d (x, xi) + d (x, y) <
δi
2
+
δ

2
≤ δi.

Hence, y ∈ BX (xi, δi). Finally, we have

dY (f (x) , f (y)) ≤ dY (f (x) , f (xi)) + dY (f (xi) , f (y)) < ε,

so that f is uniformly continuous on X.

Exercise 6.26. Let f : (0, 1) → R be continuous, monotone, and bounded.
Prove that it is uniformly continuous.

Recall that in Example 2.21, we used some special type of continuous func-
tions, which were linear in subintervals. We now give a few formal definitions
in that context.

Definition 6.8 (Linear function). A function f : R → R is said to be linear
if it is of the form f (x) = αx+ β for some α, β ∈ R.

Definition 6.9 (Piecewise linear function). A function f : R → R is said to
be piecewise linear on some interval [a, b] if there is a partition a = x0 < x1 <
x2 < · · · < xn = b such that f is linear on each of the subinterval [xi, xi+1]
for i = 0, 1, · · · , n− 1.

Remark. The definition of piecewise linear function can be extended to any
interval (or in fact, any set) by making suitable modifications in finding the
partition.

In Example 2.21, we saw that the set of piecewise linear function satisfy-
ing certain special properties at rational points in the domain is dense in
(C [0, 1] , d∞). We now see that it is true even for the set of all piecewise linear
functions.
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Example 6.17 (Density of piecewise linear functions). Consider the metric
space (C [0, 1] , d∞) and the set D of all piecewise linear functions. We want
to prove that D is dense in C [0, 1]. To do so, we would need to prove that
∀f ∈ C [0, 1] and given ε > 0, ∃g ∈ D such that d∞ (f, g) < ε.

Since f is continuous on [0, 1], a compact interval, it is uniformly con-
tinuous. Hence, ∃δ > 0 such that ∀x, y ∈ [0, 1] with |x− y| < δ, we have
|f (x)− f (y)| < ε

2 . By Archimedean property, ∃n0 ∈ N such that n0δ > 1.
We now partition the interval [0, 1] as 0 = x0 < x1 < x2 · · · < xn0

= 1,
where xi =

i
n0

. Clearly, |xi+1 − xi| = 1
n0
< δ. Define g : [0, 1] → R as

g (x) = n0 (x− xi) (f (xi+1)− f (xi)) + f (xi) , for x ∈ [xi, xi+1] .

Note that g is piecewise linear, continuous, and agrees with f on the end
points of each subinterval [xi, xi+1]. Hence, we have

|f (xi)− g (x)| ≤ |f (xi)− f (xi+1)| < ε

2
.

Finally, we have

|f (x)− g (x)| ≤ |f (x)− f (xi)|+ |f (xi)− g (x)| < ε.

Hence, d∞ (f, g) = sup
x∈[0,1]

{|f (x)− g (x)|} ≤ ε and D is dense in (C [0, 1] , d∞).

The working of this theorem can be seen in Figure 6.8.

Remark. The proof works for any [a, b]. We took the particular case [0, 1]
due to its ease in handling.

We end this section by giving a beautiful property of bijective continuous
functions on compact sets.

FIGURE 6.8: Density of piecewise linear functions.
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Consider f : X → Y , a bijective and continuous function defined on a
compact space X. Let F ⊆ X be a closed set. Then, we know that F is
compact and hence f (F ) is compact in Y and hence closed (why?). Also,
f−1 : Y → X is well-defined. Also, for any set S ⊆ X, its inverse image under
f−1 is given by f (S). Therefore, inverse image of closed sets under f−1 is
closed and hence f−1 is continuous. Thus, we have proved the following.

Theorem 6.23. A bijective continuous function from a compact metric space
has continuous inverse.

Remark. Indeed, such functions are special in the study of metric spaces
and we shall deal with them later in this chapter. It is also easy to see that a
continuous function on a compact space takes closed sets to closed sets.

Exercise 6.27. Give an example to show that Theorem 6.23 may not hold if
X is not compact.

6.5 Continuous Functions on Connected Spaces

In this section, we shall study the behavior of continuous functions on
connected sets and the fate of connected sets under continuous functions.
However, we start with an amazing property of connected sets, which we like
to call the magic wand for connectedness.

Theorem 6.24. A metric space X is connected if and only if the only con-
tinuous functions from X to the discrete space {0, 1} are constant.

Proof. Suppose that there is a non-constant continuous function f : X →
{0, 1}. Define a set A = {x ∈ X|f (x) = 1}. Then, f−1 ({1}) = A is both open
and closed in X. Also, since f is non-constant, ∃x ∈ X \ A so that A is a
proper subset which is both open and closed. Hence, X is disconnected.

Taking the contrapositive, if X is connected, the only continuous functions
are the constant ones. This proves the necessary part.

Now, to prove the sufficient part, let A ⊆ X be both open and closed. We
look at the characteristic function χA : X → {0, 1}, defined as

χA (x) =

{
1, if x ∈ A.

0, if x /∈ A.

Since A is both open and closed, χ−1
A (∅) = ∅, χ−1

A ({0}) = X \A, χ−1
A ({1}) =

A and χ−1
A ({0, 1}) = X are all both open and closed. In particular, χA is

continuous and hence constant. Therefore, either χ−1
A ({0}) = X \A = ∅, i.e.,

A = X or χ−1
A ({1}) = A = ∅. Hence, the only sets in X which are both open

and closed are ∅ and X itself. Therefore, X is connected.
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Now, let us see the importance, rather the usefulness of our magic wand. The
next result(s) tell us about the fate of unions of connected sets. Although, this
could have been analyzed using the open set definitions of connectedness, we
purposely put this here to show the reader that Theorem 6.24 is very helpful
and makes proving/disproving connectedness easy. Indeed, this is the reason
we like to call it the magic wand of connectedness. Before looking at the result,
we would like to define a small technicality that we will be using further.

Definition 6.10 (Chained collection of sets). A family F of sets is called
a chained collection if for any A,B ∈ F , there is an n-tuple of sets
(U1, U2, · · · , Un), where each Ui ∈ F for i = 1, 2, · · · , n, and U1 = A, Un = B,
such that Ui−1 ∩ Ui �= ∅. Such a tuple is then called a chain from A to B.

Theorem 6.25. Let (X, d) be a metric space and let F be a chained collection
of connected subsets of X. Then,

⋃
S∈F S is also connected.

Proof. Let F =
⋃

S∈F

S. Let f : F → {0, 1} be a continuous function. We know

that for each S ∈ F , the restriction of f on S, given by f |S : S → {0, 1}
is constant. Let x, y ∈ F be arbitrary. And, let A,B ∈ F such that x ∈ A
and y ∈ B. Since F is a chained collection, there is a chain (U1, U2, · · · , Un)
such that U1 = A, Un = B and for i = 2, · · · , n, we have Ui−1 ∩ Ui �= ∅. Let
ui ∈ Ui−1 ∩ Ui. In particular, ui ∈ Ui−1 and ui ∈ Ui.

Now, this leads us to the fact that x, u2 ∈ A, u2, u3 ∈ U2, u3, u4 ∈ U3, · · · ,
un−1, y ∈ B. Since the restriction of f on each of these sets is constant, we
have

f (x) = f (u2) = f (u3) = · · · = f (y) .

In particular, we have proved that for any x, y ∈ F , f (x) = f (y), so that f
is constant. By Theorem 6.24, we can conclude that F is indeed connected.
Figure 6.9 shows the working of this theorem.

FIGURE 6.9: Diagrammatic representation of working of Theorem 6.25.
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Immediately, by just looking at the definition of chained collection and prop-
erties of intersection, we have the following result.

Corollary 6.25.1. If F is a collection of connected sets in a metric space,
with non-empty intersection, then the union of this family is also connected.

Exercise 6.28. Prove Corollary 6.25.1.

Exercise 6.29. Prove Theorem 5.4 using Theorem 6.25 and/or Corollary
6.25.1.

Now let us see what happens to an image of connected spaces under contin-
uous functions. The reader will appreciate the ease with which we can prove
connectedness using the above criterion in the following proof.

Theorem 6.26. Continuous image of connected space is connected.

Proof. Let f : X → Y be a continuous function, whereX is a connected space.
Let g : f (X) → {0, 1} be continuous. Then, g ◦ f : X → {0, 1} is continuous
and since X is connected, g ◦f must be constant. Further, g must be constant
so that f (X) is connected.

Let us look at an immediate consequence of this result.

Theorem 6.27. Any line segment in R
2 is connected.

Proof. Let AB be a line segment in R
2. Define A to be origin, i.e., A = (0, 0)

and B to be a point on the X-axis. Notice that if this is not so, then we can
always translate and rotate this line segment to get it on the X-axis. Similarly,
any line segment on the X-axis can be translated and rotated to get AB as
required. Therefore, if we analyze the line segment on the X-axis with one
end at origin, we would essentially be studying all line segments in R

2.
Let the line segment on the X-axis have the end points A = (0, 0) and

B = (b, 0), where b > 0. Consider the function f : [0, b] → R
2, defined as

f (x) = (x, 0) .

Then, we shall prove that f is continuous. To show this, let (xn) be a sequence
in [0, b] such that xn → x0, for some x0 ∈ [0, b]. Then,

f (xn) = (xn, 0) → (x0, 0) = f (x0) .

Thus, f is continuous and hence, by Theorem 6.26, f ([0, b]) is connected
in R

2. However, we have not yet proved that f ([0, b]) is the line segment
AB. To prove it, we shall show that f is a bijection from [0, b] to the set
AB =

{
(x, 0) ∈ R

2|0 ≤ x ≤ b
}
.

Indeed, if f (x1) = f (x2), then (x1, 0) = (x2, 0) implies x1 = x2. Thus, f
is injective. And for any point (x, 0) ∈ AB, since 0 ≤ x ≤ b, we have x as the
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inverse image, so that f is also surjective. Therefore, we can conclude that
f ([0, b]) is the line segment AB.

This completes the proof of the fact that any line segment AB in R
2 is

connected.

In fact, it can be easily proved that every line in R
2 is connected, using the

strategy above.

Note. We can indeed generalize this proof to R
n by doing the exact same

analysis. However the rotation required will be complicated and will require
the knowledge of inner product spaces. We urge the reader to look up to rota-
tions of line segments in R

n, which will be readily available in an intermediate
level linear algebra book.

Exercise 6.30. Prove that R2 is connected. Can you generalize this to R
n?

Exercise 6.31. Prove that the circle
{
(x, y) ∈ R

2|x2 + y2 = 1
}
in R

2 is con-
nected.

Exercise 6.32. Prove that the set of all invertible matrices given byGL (n,R)
is not connected.

Let us look at the product space (X × Y, d) of two metric spaces (X, dX) and
(Y, dY ). We want to know: When is the product space connected? Indeed, as
it may be intuitively clear, whenever X and Y are connected, we would want
the product space to be connected as well. The next result tells us that this
is exactly when the product space is connected.

Theorem 6.28. Let (X, dX) and (Y, dY ) be metric spaces and let (X × Y, d)
be the product space. Then, the X×Y is connected if and only if the individual
coordinate spaces X and Y are connected.

Proof. First, let us consider that the product space is connected. Consider the
projection map ΠX as in Definition 6.5. Since projection map is continuous,
we have from Theorem 6.26, ΠX (X × Y ) = X is connected. Similarly, Y is
also connected.

Conversely, let X and Y be connected metric spaces. Then, we want to
prove that X × Y is also connected. To see this, we will prove that for any
two elements (x, y) and (x′, y′) in X × Y , there is a connected set containing
both. Consider the two subsets {x} × Y and X × {y′}. Consider the maps
f : Y → {x} × Y defined as f (z) = (x, z) and g : X → X × {y′} defined as
g (z) = (z, y′). Clearly, f and g are continuous and bijective so that {x} × Y
and X × {y} are connected (since X and Y are connected).

Now, (x, y) , (x, y′) ∈ {x} × Y and (x, y′) , (x′, y′) ∈ X × {y′}. Therefore,
({x} × Y ) ∩ (X × {y′}) �= ∅ and by Corollary 6.25.1, the set ({x} × Y ) ∪
(X × {y′}) is connected. This is precisely the set which contains both the
points (x, y) and (x′, y′). Hence, the product space X × Y is connected.



Continuity 233

Exercise 6.33. Let f : (X, dX) → (Y, dY ) be a continuous map, where X is
connected. Prove that the graph, G (f), is connected in the product metric.
Here,

G (f) = {(x, f (x)) ∈ X × Y |x ∈ X} .

Before moving on to further consequence of continuous functions on connected
sets, let us look at a cliché example (found in almost every book on metric
spaces and topology) which utilizes the fact that continuous images of con-
nected sets are connected.

Example 6.18 (Topologist’s sine curve). Consider the set A ={(
x, sin 1

x

) ∈ R
2
∣∣∣0 < x ≤ 1

π

}
. We want to see if A is connected. Consider the

function f :
(
0, 1

π

]→ R
2 as

f (x) =

(
x, sin

1

x

)
.

Let (xn) be a sequence in
(
0, 1

π

]
such that xn → x ∈ (0, 1

π

]
. Then, we have

f (xn) =

(
xn, sin

1

xn

)
→
(
x, sin

1

x

)
= f (x) .

Hence, f is continuous and it is easy to see that f
((
0, 1

π

])
= A so that A is

connected.
However, we can move another step ahead! We know that closure of

a connected set is connected. To see what the closure of A is, first let
us observe (0, 0). Notice that if we consider a sequence

(
1
nπ

)
n∈N

, then we

have
((

1
nπ , sinnπ

))
, a sequence in A, which converges to (0, 0). Therefore,

(0, 0) ∈ Ā.
What did we do here? We know that as x → 0, the frequency of sin 1

x
crossing the same y-coordinate increases. Can we do this for any other point
on the Y -axis? Indeed, if (0, y) ∈ R

2 with |y| ≤ 1, we can always translate the
whole plane so that this point becomes the origin and do the analysis as above.
Therefore, every point in the set

{
(0, y) ∈ R

2| |y| ≤ 1
}

is an accumulation
point of A.

It is clear that any point of the plane other than these cannot be accumu-
lation points since they are “far away” from the sine curve itself. Therefore,
Ā = A ∪ {(0, y) ∈ R

2| |y| ≤ 1
}
is also connected. The set A is called a Toplo-

gist’s sine curve and can be seen in Figure 6.10.

Remark. It is astonishing at first sight that the set Ā as mentioned in Ex-
ample 6.18 is connected. This is because we can see that the sine curve never
actually touches the Y -axis, yet the union of the curve and a part of Y -axis
is in a single piece. Indeed, this is an example where the disjoint union of two
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FIGURE 6.10: The Topologist’s sine curve.

connected sets can be connected. The small observation of not touching the
Y -axis will be dealt with later in the text, when the reader is introduced to a
concept called path connectedness.

Now, we look at a consequence of continuous real-valued functions on con-
nected sets in R. The following theorem, called the intermediate value theo-
rem, is well known in analysis and the reader might have encountered its proof
earlier. However, we wish to show the role of connectedness.

Theorem 6.29 (Intermediate value theorem). Let f : [a, b] → R be a continu-
ous function. Let y be a point between f (a) and f (b), i.e., let f (a) ≤ y ≤ f (b)
or f (b) ≤ y ≤ f (a) hold. Then, ∃x ∈ [a, b] such that f (x) = y.

Proof. We know that [a, b] is connected in R and hence f ([a, b]) is also con-
nected. As a consequence, f ([a, b]) must be an interval. From the definition
of interval, y ∈ f ([a, b]) so that ∃x ∈ [a, b] with f (x) = y.

We now supply the reader with a consequence of intermediate value theorem.

Theorem 6.30. Any polynomial with real coefficients and of odd degree has
a real root.

Proof. Let p (x) = anx
n+an−1x

n−1+ · · · a0 be a polynomial where ai ∈ R for
i = 0, 1, 2, · · · , n, an �= 0 and n is odd. We may assume that an = 1, without
loss of generality. Because if not, we can divide by an and get p (x) = anq (x),
where q (x) is a polynomial of odd degree with leading coefficient 1 and the
roots of p and q coincide. Hence, we shall consider the polynomial

p (x) = xn + an−1x
n−1 + · · ·+ a0.
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For x �= 0, we can rewrite this as p (x) = xnf (x), where

f (x) = 1 +
an−1

x
+
an−2

x2
+ · · ·+ a0

xn
.

For |x| > 1, we have

|f (x)− 1| ≤ |an−1|
|x| +

|an−2|
|x|2 + · · ·+ |a0|

|x|n

≤ 1

|x|
n−1∑
i=0

|ai| .

Let A =
n−1∑
i=0

|ai|. For |x| > max {1, 2A}, we have

|f (x)− 1| < 1

2

so that for such an x, we have f (x) > 0. So, we choose an x0 > max {1, 2A}.
Then, f (x0) > 0 and f (−x0) > 0. However, xn0 > 0 and (−x0)n < 0 so that
p (x0) > 0 and p (−x0) < 0. Therefore, by intermediate value theorem, p has
a root in [−x0, x0].
Exercise 6.34. As a consequence of the intermediate value property, prove
that for any α ∈ [0,∞) and n ∈ N, there is an x ∈ [0,∞) such that xn = α.
This proves the existence of nth roots of non-negative real numbers. Can we
apply this to negative real numbers?

Exercise 6.35. Let f, g : [0, 1] → R be continuous functions. Assume that
f (x) ∈ [0, 1] for all x ∈ [0, 1] and g (0) = 0, g (1) = 1. Show that ∃x ∈ [0, 1]
such that f (x) = g (x).

Exercise 6.36. Give an example which explains that if X is not connected,
then there is a function f : X → R which does not have the intermediate
value property.

Exercise 6.37. Let f : [−1, 1] → [−1, 1] be continuous. Show that ∃x ∈
[−1, 1] such that f (x) = x.

Let us now look at an example which explains the importance of the above
mentioned results.

Example 6.19. Suppose we want to construct a continuous function f : R →
R such that f takes irrational values on rational points and rational values on
irrational points. Is it possible? Let us assume that it is! Suppose we are able
to construct such a function. What will be its consequences?
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FIGURE 6.11: A locally continuous function.

First, observe that since R is connected, f (R) will be an interval. There-
fore, either f (R) is a singleton or it is uncountable. Also, since f takes at least
one rational value and one irrational value, it is not constant and f (R) is not
a singleton set. Therefore, f (R) is uncountable.

Now, f can take each value from Q to a unique value in f (Q). There-
fore, f (Q) is countable. Also, f takes irrational points to rationals so that
f (R \Q) ⊆ Q and therefore, f (R \Q) is also countable.

Finally, we know that R = Q ∪ (R \Q) so that f (R) = f (Q ∪ (R \Q)) =
f (Q)∪ f (R \Q) is countable, which is a contradiction! Therefore, there is no
such continuous function.

Definition 6.11 (Locally constant function). A function f : X → Y is locally
constant if for every x ∈ X, there is an open set Ux ⊆ X such that x ∈ Ux

and f is constant on Ux (Figure 6.11).

Exercise 6.38. Is the function f : R → R, given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩
−1, if x < 0

0, if x = 0

1, if x > 0

locally constant?

We now give a result for locally constant functions on connected spaces.

Theorem 6.31. Let X be a connected metric space. Then, any locally con-
stant function f : X → Y is constant on X.

Proof. Let x0 ∈ X and consider the set

S = {x ∈ X|f (x) = f (x0)} .
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Notice that S �= ∅ since x0 ∈ S. Let x ∈ S. Then, ∃Ux ⊆ X, open such that
x ∈ Ux and f is constant on Ux. Hence, ∀y ∈ Ux, f (y) = f (x) = f (x0) so
that Ux ⊆ S. Therefore, S is open.

On the other hand, let x ∈ X \S. Again, ∃Ux ⊆ X, open such that x ∈ Ux

and f is constant on Ux. Therefore, ∀y ∈ Ux, we have f (y) = f (x) �= f (x0)
so that Ux ⊆ X \ S. Hence, X \ S is open and S is closed.

This proves that S is both open and closed. Since X is connected and
S �= ∅, we must have S = X so that f is constant.

Exercise 6.39. Suppose that every locally constant function f : X → Y
is constant for metric spaces X,Y with at least two distinct points. Is X
connected?

Exercise 6.40. Let f : X → R be a non-constant continuous function on a
connected metric space. Show that f (X) is uncountable and so is X.

Before we end this section, which enhances our understanding of connected-
ness through continuous function, we would like to introduce the reader to a
stronger concept of connectedness, what is called path connectedness.

6.5.1 Path connectedness

In Chapter 5, we have seen what is meant by connectedness. Intuitively,
it means to have the whole space in a single piece. Now, we wish to have
another property in our metric space. We want to travel from one point to
another. A first time reader may argue that this is simple! Just draw a straight
line between two points and then travel along this line. However, it must be
understood that in an arbitrary setting, this is not always possible. This is
because to make “lines”, we would require the two operations, called addition
and scalar multiplication, which need not be at our hands.

Thus, our curiosity demands us to first understand how can we travel from
point to point in a metric space. Suppose that we could do so. Then, we would
be tracing a path between two points. Therefore, we first understand what is
meant by a path.

Suppose x and y are two points of a set X. Then, the path must start at
one of these points, say x for the time being, and should end at the other.
Physically speaking, let the “time” taken to do so be 1 unit. Then, between
the time 0 and 1, we should be somewhere along the path. Also, there must
not be any breaks in the path, i.e., the path must be continuous. Based on
this intuition, we now define a path in arbitrary metric space.

Definition 6.12 (Path). Let (X, d) be a metric space and x, y ∈ X. A path
from x to y is a continuous function f : [0, 1] → X such that f (0) = x and
f (1) = y.

The following exercise gives the reader basic but important properties about
paths.



238 An Introduction to Metric Spaces

Exercise 6.41. Prove that a path is uniformly continuous, connected, and
compact.

Exercise 6.42. Prove that if in a metric space (X, d), there is a path from x
to y, then there is also a path from y to x.

Based on the definition of path, we now define a path connected metric space.

Definition 6.13 (Path connectedness). A metric space (X, d) is path con-
nected if for any two points x and y of X, there is a path between them.

An amazing consequence of this definition is that in a path connected metric
space, we can travel from one point to the other.

Let us look at a few examples of path connected spaces.

Example 6.20. Consider the metric space (R, |·|) and x, y ∈ R. Define f :
[0, 1] → R as

f (z) = (y − x) z + x.

Clearly, f is continuous and f (0) = x, f (1) = y so that f is a path. Hence,
R is path connected.

Example 6.21. Consider the set R2, with any p-metric. We will check if this
is path connected. Let (x1, y1) , (x2, y2) ∈ R

2. Then, we know we can always
have a line segment from (x1, y1) to (0, 0) and then from (0, 0) to (x2, y2). The
union of these two segments will give us our path. These two line segments
can be given by the functions f : [0, 1] → R

2 and g : [0, 1] → R
2 defined as

f (z) = ((1− z)x1, (1− z) y1) ,

and

g (z) = (zx2, zy2) .

We leave it to the reader to verify that there are continuous and indeed are
paths. Thus, the function h : [0, 1] → R

2 defined as

h (z) =

⎧⎪⎨
⎪⎩
f (2z) , 0 ≤ z ≤ 1

2

g (2z − 1) ,
1

2
≤ z ≤ 1

is well-defined since f (1) = g (0). Also, h is continuous (verify!). Thus, h is
the required path between (x1, y1) and (x2, y2), which proves that R2 is path
connected.

Exercise 6.43. Is Rn path connected?

Let us now look at what happens to R when one point is removed.
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Example 6.22. Consider R
∗. We know that it is disconnected. Therefore,

we intuitively know that we cannot “cross” the 0-barrier, i.e., if we take a
negative number and a positive number it would not be possible for us to
make a path between them. Indeed if f : [0, 1] → R is a path between two
points x < 0 < y, then by the intermediate value theorem, there must be a
point z ∈ [0, 1] such that f (z) = 0. Since we do not have 0 to be mapped to,
such a path is not possible in R

∗. Hence, R∗ is not path connected.

Now, we can also ask what happens when a point from R
2 is removed. Does it

still stay path connected. Let us answer this question in the following example.

Example 6.23. Consider the set R
2 with any p-metric. Define R

2∗ = R
2 \

{(0, 0)}. We want to check if this set is path connected. In this example, we
shall explain how to get paths between two points and leave it to the reader
to write it rigorously. First, given any two points (x1, y1) and (x2, y2), either
(0, 0) will lie on the line segment joining the two points, or it won’t. If it
does not lie on the line segment, this is the required path. If it does lie on
the line segment (but the points are not on the axes), we will avoid origin
by either traveling along the x-direction or the y-direction first and then the
other direction to reach the required point. If we choose to travel along the
x-direction first, then there will be a path between (x1, y1) and (x2, y1) and
then another path between (x2, y1) and (x2, y2). The union of these two paths
will give the required path. Now, suppose that the two points lie on the axes.
We shall take the case where they lie on the X-axis. A similar idea can give
a path between them when they lie on the Y -axis. If the points are (x1, 0)
and (x2, 0) such that origin lies on the line segment joining them, then one of
them is on the positive side and the other is on the negative side. Suppose that
(x1, 0) is on the positive side. Then, we can have a straight line path between
(x1, 0) and (0, 1) and another straight line path between (0, 1) and (x2, 0). The
union of these two line segments will be our required path to complete the
proof that R2∗ is path connected. The complete idea is shown in Figure 6.12.

Exercise 6.44. Complete the proof that R2∗ is path connected by following
the steps of Example 6.23.

Remark. Since we can have translations in R and R
2, the results would

remain the same for removal of any point. There is nothing special about 0
and (0, 0). We chose to remove these points because it makes further analysis
easier. For the removal of any other point, we can always translate the whole
space to make the removed point as origin.

Exercise 6.45. Is the discrete space path connected?

In Example 6.21, we had an idea that since we know paths from each point to
(0, 0), the whole space must be path connected. We now generalize this idea
to arbitrary metric spaces.

Theorem 6.32. Let (X, d) be a metric space and x0 ∈ X be fixed. Then, X is
path connected if and only if there is a path between x and x0 for each x ∈ X.
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FIGURE 6.12: Geometrical representation of idea behind Example 6.23. (a)
Path between (x1, y1) and (x2, y2) when (0, 0) does not lie on the line segment
joining the two points. (b) Path between (x1, y1) and (x2, y2) when (0, 0) lies
on the line segment joining the two points but the two points do not lie on
either of the axes. (c) Path between (x1, y1) and (x2, y2) when (0, 0) lies on
the line segment joining the two points and the two points lie on the X-axis.
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Proof. First, if X is path connected, then it is clear that there is a path
between x and x0 for each x ∈ X.

Conversely, if there is a path between x and x0 for each x ∈ X, we want
to show that X is path connected. Let x and y be two points in X and let
f : [0, 1] → X and g : [0, 1] → X be the paths between x and x0 and x0 and
y. Define the function h : [0, 1] → X as

h (z) =

⎧⎪⎨
⎪⎩
f (2z) , 0 ≤ z ≤ 1

2
.

g (2z − 1) ,
1

2
≤ z ≤ 1.

Then, h is well-defined, continuous, and h (0) = x, h (1) = y. Therefore, X is
path connected.

In Example 6.22, we made a comment that since we know R
∗ is disconnected,

we expect it to be path disconnected. Generalizing this idea, if we know that
a metric space is disconnected, then it has its components far apart so that we
cannot always travel from one point to another. This is equivalent to saying
that if we can always travel from one point to another, then the whole space
must be in a single piece, i.e., it must be connected. The next theorem tells
us that this is indeed true.

Theorem 6.33. A path connected space is connected.

Proof. Let (X, d) be a path connected metric space. Fix a point x ∈ X. Since
it is path connected, for every point y ∈ X, there is a path, say fy : [0, 1] → X
joining x and y. Also, x, y ∈ fy ([0, 1]). Therefore, X =

⋃
y∈X

fy ([0, 1]). We also

note that since each path fy starts at x,
⋂

y∈X

fy[0, 1] �= ∅. Hence, by Corollary

6.25.1, we can conclude that X is connected.

As usual, we now ask the converse question: Is every connected set path con-
nected? If so, then we have not being studying anything different! The next
example shows that this is not the case.

Example 6.24. Consider the closure of topologist’s sine curve as in Example
6.18. We have seen that this is a connected set. Now, we will show that it is
not path connected.

Let, if possible, it be path connected. Consider the two points (0, 0) and
(1, 0) in Ā. By our assumption, there should be a path f : [0, 1] → Ā such
that f is continuous and f (0) = (0, 0) and f (1) = (1, 0). We shall consider
the following notation: B =

{
(0, y) ∈ R

2| |y| ≤ 1
}
. Then, B is a closed subset

of Ā (why?) and 0 ∈ f−1 (B). Since f−1 (B) ⊆ [0, 1], it is bounded and hence
has a least upper bound, say l and in fact, l ∈ f−1 (B).

Since (1, 0) /∈ B, it is clear that 0 < l < 1. Now, we shall denote f (x) =
(f1 (x) , f2 (x)), where f1 (x) = x and f2 (x) = sin

(
1
x

)
. We know that f is

continuous if and only if f1 and f2 are both continuous. Let δ > 0 such that
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l + δ ≤ 1. Then, f1 (l + δ) > 0 so that by the Archimedean property, there
is some n ∈ N with the property that f1 (l) <

2
(4n+1)π < f1 (l + δ). Applying

the intermediate value property, there is some z with l < z < l + δ such
that f1 (z) =

2
(4n+1)π . Hence, f2 (z) = 1 so that |f2 (l)− f2 (z)| ≥ 1, although

|l − z| < δ. Hence, f2 is not continuous at l, which is a contradiction to the
fact that f was a path! Therefore, Ā cannot be path connected.

The next theorem gives the fate of path connected spaces under continuous
functions.

Theorem 6.34. Continuous image of path connected sets is path connected.

Proof. Let f : (X, dX) → (Y, dY ) be a continuous function, where X is path
connected. Let y1, y2 ∈ f (X). Then, ∃x1, x2 ∈ X such that f (x1) = y1 and
f (x2) = y2. Since X is path connected, there is a path g : [0, 1] → X that
joins x1 and x2. Consider the function h : [0, 1] → Y defined as h ≡ f ◦ g.
Then, h is continuous. Also, h (0) = y1 and h (1) = y2. Hence, h is a path and
f (Y ) is path connected.

Exercise 6.46. Prove that the unit circle and parabola are path connected.
Is the complete hyperbola path connected?

6.6 Equicontinuity and Arzela-Ascoli’s Theorem

In this section, we shall study families of functions for continuity and
then state an important theorem due to Arzela and Ascoli. We begin with a
definition.

Definition 6.14 (Equicontinuity). Let X,Y be metric spaces and x0 ∈ X.
A family A of functions from X to Y is said to be equicontinuous at x0 if
∀ε > 0, ∃δ > 0 such that ∀f ∈ A and ∀x ∈ X with dX (x, x0) < δ, we have
dY (f (x) , f (x0)) < ε.

A stronger version of equicontinuity is uniform equicontinuity, which can be
defined as follows.

Definition 6.15 (Uniform equicontinuity). Let X,Y be metric spaces. A fam-
ily A of functions from X to Y is said to be uniformly equicontinuous if
∀ε > 0, ∃δ > 0 such that ∀f ∈ A and ∀x, y ∈ X with dX (x, y) < δ, we have
dY (f (x) , f (y)) < ε.

Remark. Note that equicontinuity does not only mean that every member is
continuous. Also, each member is continuous to the “same extent” around a
point x0 ∈ X. This is because we are first given an ε > 0 for which we have to
find a δ > 0 such that the conditions of continuity work for this common δ on
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each f ∈ A . Same is true for uniform equicontinuity. Indeed, every member
of (uniformly) equicontinuous family is (uniformly) continuous.

Exercise 6.47. Let f : X → Y be a function, where X,Y are metric
spaces. Give equivalent conditions for {f} to be equicontinuous and uniformly
equicontinuous.

Let us now look at an example which shows a family of equicontinuous func-
tions.

Example 6.25. Let X be a compact metric space and F : X ×X → Y be
continuous, when X×X is equipped with the product metric. For each x ∈ X,
define fx : X → Y as fx (u) = F (u, x) and consider the family of functions
A = {fx|x ∈ X}. Indeed, each element of A is continuous (verify!). Fix a
point u0 ∈ X. We want to estimate dY (fx (u) , fx (u0)) for an arbitrary x.
Since X is compact, F is uniformly continuous. Therefore, for a given ε > 0,
choose δ same as that for the uniform continuity of F , and we prove that A
is equicontinuous.

Exercise 6.48. Let X,Y be metric spaces where X is compact. Let A be a
family of equicontinuous functions from X to Y . Prove that A is uniformly
equicontinuous.

We now state and prove the Arzela-Ascoli’s theorem.

Theorem 6.35 (Arzela-Ascoli). Let X be a compact metric space and let
C (X,K), the set of all continuous functions from X to K, be equipped with
the metric d∞. Here K is either R or C. Then, a set B ⊆ C (X,K) is compact
if and only if B is bounded, closed, and equicontinuous.

Proof. First, let us assume that B is compact. Then, we know that it is
closed and bounded. In fact, it is totally bounded. All we need to prove is
that B is equicontinuous. So, let ε > 0 be given. By the compactness, there
are finitely many functions fi ∈ B for 1 ≤ i ≤ n (for some n ∈ N) such that
B ⊆ B

(
fi,

ε
3

)
. This means ∀f ∈ B, ∃fi ∈ B such that d∞ (f, fi) <

ε
3 . Hence,∀x ∈ X, we have dK (f (x) , fi (x)) ≤ d∞ (f, fi) <

ε
3 . Let δi > 0 such that

∀x, y ∈ X with dX (x, y) < δi, we have dK (fi (x) , fi (y)) <
ε
3 . This is possible

because X is compact and hence each element of B is uniformly continuous.
Now, define δ = min

1≤i≤n
{δi}. Then, for any points x, y ∈ X with dX (x, y) < δ

and f ∈ B, we have

dK (f (x) , f (y)) ≤ dK (f (x) , fi (x)) + dK (fi (x) , fi (y)) + dK (fi (y) , f (y))

<
ε

3
+
ε

3
+
ε

3

= ε.

Hence, B is uniformly equicontinuous and, in particular equicontinuous.
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Now, conversely, assume that B is closed, bounded, and equicontinuous.
Since X is compact, B is uniformly equicontinuous. Also, (C (X,K) , d∞) is
complete so that B is complete. Therefore, to prove that B is compact, it will
be sufficient to prove that it is totally bounded.

Let ε > 0 be given. Let M > 0 be such that |f (x)| ≤M for all x ∈ X and
f ∈ B. Using the uniform equicontinuity of B, ∃δ > 0 such that ∀f ∈ B and
∀x, y ∈ X with dX (x, y) < δ, we have dK (f (x) , f (y)) < ε

4 .
Since X is compact, there are finitely many xi ∈ X for 1 ≤ i ≤ n, for

some n ∈ N such that X =
n⋃

i=1

BX (xi, δ). Also, the closed ball BK (0,M) is

compact in K and hence is totally bounded. Hence, there are finitely many

yi ∈ K for 1 ≤ i ≤ m, for some m ∈ N such that BK (0,M) ⊆
m⋃
i=1

BK

(
yi,

ε
4

)
.

Let A be the set of all functions from the set {xi|1 ≤ i ≤ n} to
{yi|1 ≤ i ≤ m}. Then, ∀α ∈ A, define a set

Uα =
{
f ∈ B

∣∣∣dK (f (xi) , α (xi)) <
ε

4
, for 1 ≤ i ≤ n

}
.

Now, let x ∈ X and f, g ∈ Uα. Then, x ∈ BX (xi, δ) for some xi. Therefore,
we have

dK (f (x) , f (xi)) <
ε

4
,

dK (g (x) , g (xi)) <
ε

4
.

Also,

dK (f (xi) , α (xi)) <
ε

4
,

dK (g (xi) , α (xi)) <
ε

4
.

Hence

dK (f (xi) , g (xi)) ≤ dK (f (xi) , α (xi)) + dK (g (xi) , α (xi)) <
ε

2
.

Finally, we can conclude that

dK (f (x) , g (x)) ≤ dK (f (x) , f (xi)) + dK (f (xi) , g (xi)) + dK (g (xi) , g (x))

<
ε

4
+
ε

2
+
ε

4
= ε.

Hence, the diameter of Uα is at most ε. Finally, we shall show that B =⋃
α∈A

Uα. For the same, for a given f ∈ B and any i, with 1 ≤ i ≤ n, choose a

j with 1 ≤ j ≤ m such that f (xi) ∈ BK

(
yj ,

ε
4

)
. Then, consider the function

α defined so that α (xi) = yj . Clearly, dK (f (xi) , α (xi)) <
ε
4 for every xi and
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1 ≤ i ≤ n. Hence, f ∈ Uα for some α, or what is the same, B =
⋃

α∈A

Uα.

Therefore, {Uα|α ∈ A} is an ε-net for B. Since A is finite (why?), B is totally
bounded and hence compact. This completes the proof.

6.7 Open and Closed Maps

Earlier, in characterization of continuity, we talked about inverse images
of open and closed subsets. In this section, we shall see the images of open
and closed subsets and then comment upon some properties of functions.

Definition 6.16 (Open and closed maps). A function f : X → Y , where X
and Y are metric spaces, is open (closed) if the image of every open (closed)
set in X is open (closed) in Y .

Remark. It is natural for a first time reader to think that talking about
open and closed maps is the same as talking about continuity of the map.
Also, one may get confused that every open map is also closed and vice-versa.
The following examples will help to clear this confusion.

Example 6.26. Consider a function f : X → Y defined as f (x) = y0, for
some y0 ∈ Y . This is a constant function and f (X) = {y0} is closed in Y .
Therefore, f takes closed sets in X to a closed set in Y but does not take open
sets in X to open sets in Y . Hence, this is an example of a continuous map
which is closed but not open.

Example 6.27. Consider the projection map Π1 : R
2 → R defined as

Π1 (x, y) = x. Let U ⊆ R
2 be any open set and let x ∈ Π1 (U). Let y ∈ R

such that (x, y) ∈ U . Then, ∃r > 0 such that B ((x, y) , r) ⊆ U . Hence,
Π1 (B ((x, y) , r)) = (x− r, x+ r) ⊆ Π1 (U) and therefore, Π1 (U) is open.
This means that Π1 is an open map.

Now, consider the closed set F =
{
(x, y) ∈ R

2|x > 0 and xy = 1
}
. Then,

Π1 (F ) = (0,∞) is not closed. Therefore, projection maps are examples of
continuous maps which are open but not closed.

Exercise 6.49. Give an example of a continuous map which is

1. Both open and closed.

2. Neither open nor closed.

Exercise 6.50. Give examples, if possible, of discontinuous maps which are

1. Open but not closed.

2. Closed but not open.
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3. Both open and closed.

4. Neither open nor closed.

Exercise 6.51. Prove that a bijection f : X → Y is open if and only if it is
closed.

Exercise 6.52. Prove the following:

1. If f : X → Y is a continuous surjection, then a map g : Y → Z is open
if g ◦ f is open.

2. If g : Y → Z is a continuous injection, then a map f : X → Y is open if
g ◦ f is open.

3. Do these results remain true for closed maps?

6.8 Homeomorphism

Throughout this chapter, we have given a lot of importance to continuous
functions. Earlier, we had given importance to bijections. Indeed, these are
important in their own way and provide a lot of useful results. Before ending
this chapter, we would now like to combine these two important properties
that a function may exhibit and ask ourselves: What can we say about contin-
uous bijections? Well, when we say the term “bijection”, the inverse function
immediately strikes our mind. Therefore, it is only natural to add continu-
ity to the inverse as well. Based on this motivation, we now define the term
homeomorphism rigorously.

Definition 6.17 (Homeomorphism). A continuous bijection f : X → Y is
said to be a homeomorphism if its inverse f−1 : Y → X is also continuous.

Two metric spaces X and Y are homeomorphic if there is a homeomor-
phism between them.

Let us look at the simplest homeomorphism (other than the identity function)
one can have. Define f : (0, 1] → [1,∞) as f (x) = 1

x . We know that f is
continuous, bijective, and in fact, it is self inverse (involution). Hence, f is
a homeomorphism of (0, 1] and [1,∞). We observe a few things here. Notice
that (0, 1] is bounded but [1,∞) is not. Also, [1,∞) is complete but (0, 1]
is not. Therefore, we can conclude that homeomorphisms do not preserve
boundedness and completeness.

It is natural to ask: What do homeomorphisms preserve? Earlier, we have
seen that continuous images of compact sets are compact and those of (path)
connected sets are (path) connected. Therefore, if X is homeomorphic to Y ,
then X and Y are together compact and (path) connected. These properties,
which are preserved by homeomorphisms, are called topological properties .
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Remark. It might have struck to the mind of every reader: What is the
importance of homeomorphisms? They do not even preserve all properties!
However, we advise the reader to look at homeomorphisms as continuous de-
formations. Of course, this will be much more clear when the reader takes
a course in topology and sees some applications from algebraic topology or
(differential) geometry. But, here we try to give a flavor of the subject. Usu-
ally, metric spaces (or in general, topological spaces) can be considered to be
made of rubber/clay, in which open sets are special ingredients. Now, we can
mold this rubber into whatever shape we want provided we do not disturb
these special ingredients. Homeomorphisms help us achieve this! If the reader
pursues general topology and/or algebraic topology in the future, they will
be astonished to find that we can transform a bottle into a sphere without
causing any cuts/tears (i.e. in a continuous fashion). Similarly, as most topol-
ogists give this example, we can transform a coffee mug into a doughnut in a
continuous fashion. Although all this is theoretical, it can be achieved through
homeomorphisms. Moreover, once we prove that two spaces are homeomor-
phic, we need to study only one of them. In a way, homeomorphisms create
equivalence classes (see next exercise). Because of such fantastic abilities of
topological (and hence metric) spaces, topology is also called “geometry of
rubber sheets”.

Exercise 6.53. Prove that homeomorphism is an equivalence relation.

Exercise 6.54. Prove that a homeomorphism is both open and closed.

Theorem 6.36. Two metrics d1, d2 on X are equivalent if and only if the
identity map id : (X, d1) → (X, d2) is a homeomorphism.

Proof. We already know that id is a bijection. Let d1, d2 be equivalent. We
need to prove that id is continuous and its inverse is also continuous. Notice
that id−1 = id. Now, for any open set U ∈ (X, d2), we have id−1 (U) = U is
open in (X, d1). Therefore, id is continuous and by the same argument, it is
a homeomorphism.

Conversely, let id be a homeomorphism. Then, it is both open and closed.
Let U be an open set in (X, d1). Then, id (U) = U is open in (X, d2). Also,
id−1 = id and therefore, every open set in (X, d2) is also open in (X, d1).
Hence, d1 and d2 are equivalent.

Let us now look at some homeomorphic spaces.

Example 6.28. We know that any two (open) closed intervals are bijective
and in fact in a continuous fashion. Therefore, they are homeomorphic. Also,
there is a continuous bijection between R and (−1, 1), given by tan

(
π
2x
)
. It

is easy to check that this is a homeomorphism.

Exercise 6.55. Is (0, 1) homeomorphic to [0, 1]? What can you say about
any open and a closed (bounded) interval? What can you say about R and a
closed interval?
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Example 6.29 (Stereographic projection). Consider R
n+1 and the sur-

face of the unit sphere S
n =

{
(x1, x2, · · · , xn, xn+1) ∈ R

n+1
∣∣∣ n+1∑
i=1

x2i = 1

}

in R
n+1. We shall consider the case when n = 2, i.e., the sphere S

2 ={
(x, y, z) ∈ R

3|x2 + y2 + z2 = 1
}
in R

3. We shall call the point p = (0, 0, 1)
the “North Pole” for this sphere. Similarly, p′ = (0, 0,−1) can be called the
“South Pole”.

Let (x, y, z) ∈ S
2. Then, a line passing through (0, 0, 1) and (x, y, z) �=

(0, 0, 1) also crosses the XY plane at some point (x′, y′, 0). Also, to each point
(x, y, z), there is a unique line through this point and the North pole and
therefore, a unique point on the XY plane which lies on this line. Therefore,
our intuition tells us that the XY plane and S

2 \ {p} must be bijective.
Since the XY plane can be identified as R2, we can intuitively conclude that
S
2\{p} and R

2 are bijective. This is shown in Figure 6.13. Therefore, it is only
natural to ask whether this bijection is a homeomorphism. We shall answer
this question soon. But first, let us construct this bijection explicitly.

Let us see what is the equation of line through the North pole and any
point (x, y, z) �= p ∈ S

2. Now, we shall use vector algebra to construct lines.
Any vector on the line is parallel to the vector (x, y, z − 1) and the line passes
through (0, 0, 1). Hence, the equation of the line in vector form will be given by

(x′, y′, z′) = (λx, λy, λz − λ+ 1)

FIGURE 6.13: Construction of stereographic projection (strategy).
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where λ ∈ R is a parameter. At the point where this line meets the XY plane,
we have

λ (z − 1) + 1 = 0,

so that

λ =
1

1− z
.

Therefore, we define a function f : S2 \ {p} → R
2 as

f (x, y, z) =

(
x

1− z
,

y

1− z

)
.

Similarly, if we consider the line through p and any point (x, y, 0), then it
intersects the sphere at a unique point. For this, we can define a function
g : R2 → S

2 \ {p} as

g (x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

It is just a matter of computation to check that f ◦ g = idR2 and g ◦ f = idS2 .
Hence, both f and g are bijections and g = f−1. Also, each “component” of f
and g is a composition of continuous functions well-defined everywhere so that
f and g = f−1 are both continuous. Hence, S2\{p} and R

2 are homeomorphic.

Exercise 6.56. Generalize stereographic projection for any S
n and R

n. Hint:
You will require help from linear algebra.

Example 6.30. Consider the sets B2 (0, 1) and B∞ (0, 1), the closed unit balls
in (Rn, d2) and (Rn, d∞), respectively. We study the case for n = 2, since it
is easy to visualize. It is clear that B2 (0, 1) ⊆ B∞ (0, 1). This is because if
x2 + y2 ≤ 1, then |x| ≤ 1 and |y| ≤ 1.

Now, consider (0, 0) �= (x, y) ∈ B∞ (0, 1) and the ray {t (x, y) |t ≥ 0}.
This ray intersects the boundary of B∞ (0, 1) exactly once. To see this,
suppose (x0, y0) , (x1, y1) be the points on the ray which are also points
on ∂B∞ (0, 1). Then, we have x0 = t0x, y0 = t0y and x1 = t1x and
y0 = t1y for some t0, t1 ≥ 0. Then, being on the boundary we will have
max {t0x, t0y} = max {t1x, t1y} and since (x, y) �= (0, 0), this is possible if
and only if t0 = t1. Hence, the ray intersects the boundary at only one point.
In fact, this point is 1

max{|x|,|y|} (x, y).
Although the construction of these two unit closed balls are in different

metrics, we shall now work only in one metric, namely d2. First, observe that
max {|x| , |y|} ≤

√
x2 + y2 so that the function g : B∞ (0, 1) \ {(0, 0)} →

∂B∞ (0, 1) defined by g (x) = 1
max{|x|,|y|} (x, y) is continuous. Now, the line

segment [(0, 0) , g (x)] needs to be “fit” inside B2 (0, 1). We know how to do
it. To bring the end point g (x) on the boundary of B2 (0, 1), we need to
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scale it by its length. Hence, a natural choice will be to define a function
f : B∞ (0, 1) → B2 (0, 1) as

f (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max {|x| , |y|}√
x2 + y2

(x, y) , when (x, y) �= (0, 0) .

(0, 0) , when (x, y) = (0, 0) .

Notice that the method of construction tells us that f is a bijection. Also,
f−1 : B2 (0, 1) → B∞ (0, 1) is given by

f−1 (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
x2 + y2

max {|x| , |y|} (x, y) , when (x, y) �= (0, 0) .

(0, 0) , when (x, y) = (0, 0) .

Clearly, both f and f−1 are continuous when (x, y) �= (0, 0). When (x, y) =
(0, 0), we have

d2 (f (x, y) , f (0, 0)) ≤
√
x2 + y2,

since

√
x2+y2

max{x,y} ≥ 1. Hence, continuity of f follows. Similarly, f−1 is also con-

tinuous. Therefore, the two sets: B2 (0, 1) and B∞ (0, 1) are homeomorphic in(
R

2, d2
)
.

Remark. The example above is quite non-trivial. Therefore, we advise the
reader to take a minute, go through the proof again, if required, and assimilate
it. Also, draw diagrams (similar to those we have shown for stereographic
projection) for better understanding of the construction of homeomorphisms.
We have purposefully left out the diagram for this example so that the reader
gets in the habit of making the diagram by themselves.

We now give an important result about continuous functions and their graphs.

Theorem 6.37. Let f : X → Y be a continuous function, then the graph of
f , defined as G (f) = {(x, f (x)) ∈ X × Y |x ∈ X} as a subset of X × Y , is
homeomorphic to X.

Proof. There is a natural bijection φ : X → G given by φ (x) = (x, f (x)).
Also, its inverse is the projection Π1, which is continuous. We only need to
prove that φ is continuous. We have already proved that Π1 is an open map
and since φ = Π−1

1 , we have the continuity of φ. Therefore, G is homeomorphic
to X.
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As an immediate consequence of the theorem, we have the following example.

Example 6.31. The parabola
{(
x, x2

) ∈ R
2|x ∈ R

}
is homeomorphic to R

since x2 is a continuous function.

Exercise 6.57. Prove that a circle and an ellipse are homeomorphic.

Exercise 6.58. Prove that separability of a metric space is a topological
property.

We end this section with an important result.

Theorem 6.38. R and R
2 are not homeomorphic.

Proof. Assume that there is a homeomorphism f : R → R
2. Let f (0) = (a, b).

Then, f : R \ {0} → R
2 \ {(a, b)} is also a homeomorphism. However, this is

not possible since R\{0} is disconnected but R2 \{(a, b)} is connected. Hence,
the two sets cannot be homeomorphic.

Exercise 6.59. Using topological properties, prove that the circle x2 + y2 =
1, the parabola y = x2 and the hyperbola x2 − y2 = 1 are mutually non-
homeomorphic.

Problem Set

1. Define S
1 ⊆ C as S

1 = {z ∈ C| |z| = 1}. Can we have a continuous
function f : C∗ → S

1, where C∗ = C\{0} and both the sets are equipped
with the subspace topology of C having usual metric?

2. Investigate if the following functions are continuous:

(a) The conjugation map f : C → C defined as f (z) = z̄, where C is
equipped with the usual metric.

(b) In a metric space X, fix a point x ∈ X. Define f : X → R as
f (y) = d (x, y).

3. Consider C (1) [0, 1], the set of all differentiable functions, as a subspace
of C [0, 1] equipped with d∞. Is the derivative D : C (1) [0, 1] → C [0, 1],
defined as D (f) ≡ f ′ continuous?

4. Let f : Rn → R
m be continuous. Show that f takes bounded sets to

bounded sets.

5. Let f : X → (0,∞) be a continuous function on a compact space X.
Show that there is an ε > 0 such that for every x ∈ X we have f (x) ≥ ε.
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6. Show that a function f : X → Y , where Y is compact, is continuous if
and only if the graph of f is a closed subset of X×Y under the product
metric.

7. Show that the unit sphere S
n =

{
(x1, x2, · · · , xn) ∈ R

n|
n∑

i=1

x2i = 1

}
is

path connected.

8. Show that an annulus
{
(x, y) ∈ R

2|a < d2 ((x, y) , (0, 0)) < b
}
, where 0 <

a < b, is path connected.

9. Prove that for a compact space X, there are points x, y ∈ X such that
d (x, y) = diam (X).

10. Let S be a compact subset of a metric space X. If y ∈ Sc, prove that
there is a point a ∈ S such that d (a, y) ≤ d (x, y) for all x ∈ S. Give an
example to show that the conclusion may fail if “compact” is replaced
by “closed”.

11. Give an example of metric spaces X and Y and a continuous function
f from X onto Y such that Y is compact but X is not compact.

12. Let X be a compact metric space and f : X → X be a continuous
function. Show that there is a non-empty setA ⊆ X such that f (A) = A.
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differential geometry, as well as number theory, algebras
with involution, and classical mechanics.

Ulisse Dini (14 November, 1845 to 28 October, 1918)
was an Italian mathematician and politician, born in
Pisa. He is known for his contribution to real analysis,
partly collected in his book “Fondamenti per la teorica
delle funzioni di variabili reali”. Dini worked in the field
of mathematical analysis during a time when it was be-
gun to be based on rigorous foundations. In addition to
his books, he wrote about sixty papers. He proved the
Dini criterion for the convergence of Fourier series and
investigated the potential theory and differential geome-
try of surfaces, based on work by Eugenio Beltrami. His
work on the theory of real functions was also important
in the development of the concept of the measure on a
set. The implicit function theorem is known in Italy as
the Dini’s theorem.
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Cesare Arzela (6 March, 1847 to 15 March, 1912) was
an Italian mathematician who taught at the University
of Bologna and is recognized for his contributions in the
theory of functions, particularly for his characterization
of sequences of continuous functions, generalizing the
one given earlier by Giulio Ascoli in the Arzel-Ascoli
theorem.

Giulio Ascoli (20 January, 1843 to 12 July, 1896)
was a Jewish-Italian mathematician. He made contri-
butions to the theory of functions of a real variable
and to Fourier series. For example, Ascoli introduced
equicontinuity in 1884, a topic regarded as one of the
fundamental concepts in the theory of real functions.
In 1889, Italian mathematician Cesare Arzel general-
ized Ascoli’s theorem into the Arzelà-Ascoli theorem, a
practical sequential compactness criterion of functions.



Chapter 7

Banach Fixed Point Theorem
and Its Applications

Historically the idea of successive approximation in solving differential equa-
tions appeared in some work of E. Picard. But, it was Banach who rightly
observed the power of metric structure and its properties, making it a suit-
able tool and introducing his famous theorem, which is now known as Banach
contraction principle that has a wide range of applications in pure and applied
mathematics.

In this chapter, we discuss mainly Banach contraction theorem and illus-
trate its applicability in the theory of differential equations, integral equations,
algebraic equations, as well as in proving implicit function theorem.

7.1 Banach Contraction Theorem

We shall first define a fixed point and contraction mapping, which will be
supplemented by some examples and other preliminaries.

Definition 7.1 (Fixed point). Let X be a non-empty set, and f : X → X be
a mapping. The point x ∈ X is called a fixed point of f if x mapped to itself,
i.e., f (x) = x.

Example 7.1.

1. Constant mapping from a metric space to itself has a fixed point. (Can
you tell what is the fixed point?)

2. Identity mapping has a fixed point. In fact, in this case every point is a
fixed point.

3. A translation has no fixed point.

255
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Definition 7.2 (Contraction). Let (X, d) be a metric space. A mapping f of
X to itself is said to be contraction (or contraction mapping) if there exists a
fixed constant 0 ≤ α < 1, such that for all x, y ∈ X,

d (f (x) , f (y)) ≤ αd (x, y) . (7.1)

A contraction mapping is also known as Banach contraction. If Equation (7.1)
has a strict inequality and it holds for α = 1 and x �= y, then f is called
contractive (or strict contractive). If Equation (7.1) holds for α = 1, then f is
called nonexpansive, and if Equation (7.1) holds for a fixed α > 0, then f is
called Lipschitz continuous, as we have seen earlier. Clearly, for any mapping f ,
the following implications hold:

Contraction ⇒ Contractive ⇒ Nonexpansive ⇒ Lipschitz continuous.

Exercise 7.1.

1. Show that if x = (xn) ∈ �2 then f (x) =
(
xn

2

)
is a contraction mapping

on �2.

2. Let f : [a, b] → [a, b] be a differentialable function. Assume that there
exist a real number k < 1 such that |f ′(x)| ≤ k, for all x ∈ [a, b]. Show
that f is a contraction.

3. Is the mapping f : [0,∞) → [0,∞) defined by f (x) = 1
1+x2 , ∀x ∈ [0,∞)

a contraction?

Any contraction mapping is clearly continuous, and in fact, uniformly contin-
uous (why?).

Next, we consider an example which shows that a contraction mapping
may not have a fixed point.

Example 7.2. Let X =
(
0, 14
)
be a metric space with the usual metric on X.

Let f : X → X be given by f (x) = x2. Then

|f (x)− f (y)| = ∣∣x2 − y2
∣∣ = (x+ y) |x− y| < 1

2
|x− y| , for all x, y ∈ X.

So, f is a contraction mapping. If x0 is a fixed point of f then we must have
f (x0) = x0, i.e., x

2
0 = x0. So, x0 = 0 or 1. Neither 0 nor 1 lies in X =

(
0, 14
)
.

So f has no fixed point in X.

In the above example we have shown that a contraction mapping may not
have a fixed point. It may be noted that the space X is not complete here,
and we will see later that it is not a coincidence.
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Definition 7.3. Consider f : X → X, where X is a metric space. Let x0 ∈ X.
We determine successively the elements of a sequence starting from x0 as
follows:

x1 = f (x0) , x2 = f (x1) , x3 = f (x2) , . . . , xn+1 = f (xn) , . . .

This procedure of constructing a sequence of elements from an element is called
iteration method.

Clearly,
x1 = f (x0) ,

x2 = f (x1) = f (f (x0)) = f2 (x0) ,

and in general,

xn = fn (x0) . (7.2)

The following theorem is known as Banach’s fixed point theorem. Sometimes
it is also called Banach contraction principle (BCP).

Theorem 7.1 (Banach). Let (X, d) be a complete metric space and f : X →
X be a contraction. Then, f has a unique fixed point in X.

Proof. Let x0 ∈ X be an arbitrary element. Starting from x0 we form the
iteration as Equation (7.2), i.e., xn = fn (x0) = f (xn−1) for all n ∈ N. Now,
we verify that (xn) is a Cauchy sequence. We have

d(x1, x2) = d (f (x0) , f (x1)) ≤ αd(x0, x1) = αd (x0, f (x0)) ,

d(x2, x3) = d (f (x1) , f (x2)) ≤ αd(x1, x2) ≤ α2d (x0, f (x0)) ,

d(x3, x4) = d (f (x2) , f (x3)) ≤ αd(x2, x3) ≤ α3d (x0, f (x0)) .

In general, for any positive integer n, we can prove by principle of mathemat-
ical induction that

d(xn, xn+1) ≤ αnd (x0, f (x0)) .

Also, for any positive integer p,

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ αnd (x0, f (x0)) + αn+1d (x0, f (x0)) + · · ·
+ αn+p−1d (x0, f (x0))

= (αn + αn+1 + · · ·+ αn+p−1)d (x0, f (x0))
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≤ αn − αn+p

1− α
d (x0, f (x0)) (7.3)

≤ αn

1− α
d (x0, f (x0)) . (since 0 < α < 1) (7.4)

Because α < 1, the relation Equation (7.4) shows that d(xn, xn+p) → 0 as n→
∞. Therefore (xn) is a Cauchy sequence. Since X is complete, the sequence
(xn) is convergent. Suppose

lim
n→∞xn = x∗ ∈ X. (7.5)

We show that x∗ is a fixed point of the mapping f , i.e., f (x∗) = x∗. We have

d (x∗, f (x∗)) ≤ d(x∗, xn) + d (xn, f (x
∗))

= d(x∗, xn) + d (f (xn−1) , f (x
∗))

≤ d(x∗, xn) + αd(xn−1, x
∗).

In view of Equation (7.5), we get d (x∗, f (x∗)) = 0. So that f (x∗) = x∗.
Therefore, x∗ is a fixed point of f .

We now verify the uniqueness of fixed point of f . Suppose y∗ ∈ X be such
that f (y∗) = y∗ �= x∗. Then

d(x∗, y∗) = d (f (x∗) , f (y∗)) ≤ αd(x∗, y∗) < d (x∗, y∗) . (7.6)

This is a contradiction and hence, f has a unique fixed point in X.

Note. We consider Equation (7.3).

d(xn, xn+p) ≤ αn − αn+p

1− α
d (x0, f (x0)) .

Fix n ∈ N, then as p → ∞, the right hand side tends to αn

1−αd (x0, f (x0))
(since α < 1) and the left hand side tends to d(xn, x

∗) because xn+p → x∗. So

d(xn, x
∗) ≤ αn

1− α
d (x0, f (x0)) for all n ∈ N. (7.7)

The relation Equation (7.7) gives an estimation for the error of the nth ap-
proximation.

Remark. It is important that the contractive constant α should be strictly
less than 1 in the proof of BCP. It gives us control over the rate of convergence
of (xn) = (fn (x0)) to the fixed point since αn → 0 as n→ ∞. If we assume f
a contractive mapping instead of a contraction, then we lose that control over
the convergence, and then the fixed point of f need not exist.
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Example 7.3. Consider the usual metric space (R, |·|). Define f : R → R as:

f (x) = x+
π

2
− tan−1 x.

Then for x, y ∈ R, with x < y, we have

f (y)− f (x) = (y − x)− (tan−1 y − tan−1 x)

= y − x− y − x

1 + z2

where x < z < y, by Lagrange’s mean value theorem. Therefore

f (y)− f (x) = (y − x)

(
1− 1

1 + z2

)
.

So,

|f (x)− f (y)| = |x− y|
∣∣∣∣1− 1

1 + z2

∣∣∣∣ < |−y| .

Therefore, the mapping f is contractive. But f has no fixed point. For, if there
exists p ∈ R such that f (p) = p, then

p+
π

2
− tan−1 p = p

i.e. tan−1 p =
π

2
,

which is not true because tan−1 x < π
2 for every x ∈ R.

Note. The mapping f in Example 7.3 is contractive but is not a contraction.
Because, if it were a contraction, R being a complete metric space, f would
have a fixed point.

We have seen that a contractive mapping need not have a fixed point. But
the following theorem due to Edelstein shows that if the space is considerably
restricted (in fact compact) then a unique fixed point of a contractive mapping
is ensured.

Theorem 7.2 (Edelstein). Let (X, d) be a compact metric space and f : X →
X be such that

d (f (x) , f (y)) < d(x, y), ∀x, y ∈ X, x �= y. (7.8)

Suppose that there exists a point x0 ∈ X such that the sequence of iterates
(fn (x0)) has a subsequence converging to x ∈ X. Then x is the unique fixed
point of f .

Similarly, a nonexpansive mapping on a complete metric space need not have a
fixed point. For instance, consider the translation operator by a nonzero vector
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in a R
n (or, any other vector space equipped with a metric), which is clearly

a nonexpansive, fixed point free mapping. On the other hand, a fixed point
of a nonexpansive map need not be unique. For instance, consider an identity
operator, which is nonexpansive and rich with fixed points. Thus, the fixed
point theory of nonexpansive mappings is fundamentally different from that
of the contraction mapping, and thus we shall not discuss it in this chapter.

7.2 Applications of Banach Contraction Principle

7.2.1 Root finding problem

Let T : I → I be a map, where I is any closed interval of real numbers.
We consider the problem of finding a solution of the equation T (x) = x. It is
clear that the solution of this equation is a fixed point of T .

Theorem 7.3. Let T : I → I, where I ⊆ R is a closed interval, be a differen-
tiable function and there exists λ > 0 such that

|T ′ (x)| ≤ λ < 1

for all x ∈ I, where T ′ stands for the first derivative of T with respect to x,
then the equation T (x) = x has a unique solution in I and for any x0 ∈ I the
sequence (xn) defined by xn = T (xn−1) , n ∈ N converges to the solution of
the equation.

Proof. We consider that I is equipped with the usual metric, |·|. Then (I, |·|) is
a complete metric space. By Lagrange’s mean-value theorem we have ∀x, y ∈ I,
with x < y, ∃w ∈ (x, y) such that

T (x)− T (y) = (x− y)T ′ (w) .

Therefore,

|T (x)− T (y)| = |(x− y)T ′ (w)|
= |x− y| |T ′ (w)|
≤ λ |x− y| .

Since λ < 1, T is a contraction mapping on I and by BCP, T has a unique
fixed point in I, and the sequence (xn) converges to this fixed point.

Let us look at an application of Theorem 7.3. Suppose we have to find a root of
the equation f (x) = 0. Then, we rewrite this equation in the form T (x) = x,
in such a way that |T ′ (x)| ≤ λ < 1 for some λ > 0 and for all x ∈ I. Then,
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by an application of Theorem 7.3 we can find the solution of T (x) = x which
is a root of f (x) = 0. The following example will help the reader understand
this situation thoroughly.

Example 7.4. Consider the equation f (x) = cos2 x − 3x = 0. We rewrite
this equation in the following form:

T (x) =
cos2(x)

3
= x

It is clear that there is a root of equation f (x) = 0 in the interval I = [0, 1]
(why?). Also, we can find λ > 0 such that |T ′ (x)| ≤ λ < 1 for all x ∈ I. In
particular, λ = 1

3 . Therefore, by Theorem 7.3, there is a unique solution of
the equation T (x) = x which is the root of f . Now one can find the root as a

limit of sequence (xn), xn = cos2(xn−1)
3 , for n ∈ N, with arbitrary x0 ∈ I. We

encourage the reader to actually do the iterations and plot a few of them to
see the convergence.

Remark. The readers who might have taken a course in numerical methods
or numerical analysis would know that this is a common technique used for
finding the numerical roots of a function. It is often termed as “fixed point
iteration method”.

7.2.2 Solution of system of linear algebraic equations

We consider the following system of linear algebraic equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

an1x1 + an2x2 + · · ·+ annxn = bn.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.9)

A rearrangement of the above system is:

x1 = x1 − [a11x1 + a12x2 + · · ·+ a1nxn] + b1,

x2 = x2 − [a21x1 + a22x2 + · · ·+ a2nxn] + b2,

...

xn = xn − [an1x1 + an2x2 + · · ·+ annxn] + bn.

In matrix form, the above system can be written as

x = x−Ax+ b (7.10)
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where A = [aij ]n×n is the coefficient matrix, x = [x1, x2, . . . , xn]
T
, b =

[b1, b2, . . . , bn]
T
. Denote αij = −aij + δij , 1 ≤ i, j ≤ n, where δij is the

Kronecker delta defined by

δij =

{
1, if i = j.

0, otherwise.
(7.11)

Then the system Equation (7.10) can be written as

x = Ax+ b (7.12)

where A = [αij ]n×n. We first convert the above problem into a fixed point
problem. Define a mapping T : Rn → R

n by:

T (x) = Ax+ b.

It is obvious that x ∈ R
n is a solution of Equation (7.9) if and only if it is a

fixed point of T .

Theorem 7.4. If
n∑

j=1

|αij | ≤ λ < 1, 1 ≤ i ≤ n for some positive number λ,

then the system Equation (7.9) has a unique solution. Furthermore, for any
y0 ∈ R

n the sequence (ym) defined by ym = Aym−1 + b, m ∈ N converges to
the solution of the system.

Proof. Consider the space R
n equipped with the metric d∞. We know that

(Rn, d∞) is a complete metric space. Therefore, we only need to show that
the mapping T is a contraction on X. Indeed, ∀x, y ∈ X we have

d∞ (T (x) , T (y)) = d∞ (Ax+ b,Ay+ b)

= max
1≤i≤n

⎧⎨
⎩
∣∣∣∣∣∣

n∑
j=1

αij(xj − yj)

∣∣∣∣∣∣

⎫⎬
⎭

≤ max
1≤i≤n

⎧⎨
⎩

n∑
j=1

|αij | |xj − yj |
⎫⎬
⎭

≤ max
1≤i≤n

⎧⎨
⎩

n∑
j=1

|αij |
⎫⎬
⎭ max

1≤p≤n
{|xp − yp|}

= max
1≤i≤n

⎧⎨
⎩

n∑
j=1

|αij |
⎫⎬
⎭ d∞ (x, y)

≤ λd∞(x, y).
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This shows that T is a contraction, and the existence and uniqueness of the
solution of system Equation (7.9) follows from BCP.

Example 7.5. Consider the following system of equations:

−20x1 + 4x2 + 3x3 = −32,

12x1 − 45x2 + 20x3 = 300,

3x1 − 4x2 − 16x3 = −36.

⎫⎪⎬
⎪⎭ (7.13)

The above system can be written as:

x1 = −1

4
x1 +

1

4
x2 +

3

16
x3 + 2,

x2 =
1

5
x1 +

1

4
x2 +

1

3
x3 − 5,

x3 =
1

4
x1 − 1

3
x2 − 1

3
x3 + 3.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.14)

Here, A =

⎡
⎢⎣

− 1
4

1
4

3
16

1
5

1
4

1
3

1
4 − 1

3 − 1
3

⎤
⎥⎦, x = [x1, x2, x3]

T
, b = [2,−5, 3], and

3∑
j=1

|α1j | = 11
16 < 1,

3∑
j=1

|α2j | = 47
60 < 1,

3∑
j=1

|α3j | = 11
12 < 1. Therefore,

3∑
j=1

|αij | ≤ 11
12 < 1 for 1 ≤ i ≤ 3 and by Theorem 7.4, System Equation (7.13)

has a unique solution which is the limit of the sequence (yn) defined by
yn = Ayn−1 + b, n ∈ N and y0 ∈ R

3 is arbitrary.

Corollary 7.4.1. Let αij = −aij + δij, 1 ≤ i, j ≤ n, aij ∈ R, where δij is the

Kronecker delta. If
n∑

j=1

|αij | ≤ λ < 1, 1 ≤ i ≤ n for some positive number λ,

then the following homogeneous system of the linear algebraic equations has
no nontrivial solution:

a11x1 + a12x2 + · · ·+ a1nxn = 0,

a21x1 + a22x2 + · · ·+ a2nxn = 0,

...

an1x1 + an2x2 + · · ·+ annxn = 0.

Proof. Assuming b = 0 in Theorem 7.4, and using the fact that the given
system always has trivial solution, the proof follows.
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Note. The reader who has gone through numerical methods, might recall
that the iterates discussed above are similar to those in Gauss-Seidel method.

7.2.3 Picard existence theorem for differential equations

Many problems in a course is elementary differential equation involve the
solution of equation of the form

dy

dx
= f(x, y) (7.15)

with an initial condition,

y(x0) = y0. (7.16)

Here, f is, indeed, some real valued function defined on all or a part of R2.

Finding a solution means to construct a function φ with domain containing
some interval [x0 − δ, x0 + δ] such that φ(x0) = y0 and

φ′(x) = f (x, φ(x)) , for |x− x0| ≤ δ. (7.17)

Indeed, this is equivalent (via integration) to the equation

φ(x) = y0 +

∫ x

x0

f (t, φ(t)) dt, for |x− x0| ≤ δ. (7.18)

Thus the question of the existence of a solution to the problem posed by
Equations (7.15) and (7.16) is equivalent to the existence of a function φ
satisfying Equation (7.18) for some δ.

We now prove a theorem, due to Picard, which gives condition on f suffi-
cient to ensure both the existence and the uniqueness of a function φ satisfying
Equation (7.18).

Theorem 7.5. If f is continuous on some rectangle

D = {(x, y) : |x− x0| ≤ a, |y − y0| ≤ b} ,

for some a, b > 0, whose interior contains (x0, y0) and if there exist k > 0
such that ∀ (x, y1) , (x, y2) ∈ D, we have

|f(x, y1)− f(x, y2)| ≤ k|y1 − y2|, (7.19)

then there exists δ > 0 and a unique function φ : [x0 − δ, x0 + δ] → R, such
that Equation (7.18) holds.
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Proof. Since f is continuous on the compact set D, the image of D under f
is bounded in R. Therefore, ∃M > 0 such that ∀ (x, y) ∈ D, we have

|f (x, y)| ≤M.

Choose δ > 0 such that

kδ < 1 (7.20)

where k is as in (7.19) and the rectangle D′ defined as

D′ =
{
(x, y) ∈ R

2| |x− x0| ≤ δ, |y − y0| ≤Mδ
}
, (7.21)

is contained in D.

Let C ∗ be the subset of C [x0−δ, x0+δ] consisting of all functions φ which
are continuous on [x0 − δ, x0 + δ] and such that

|φ(x)− y0| ≤Mδ, for |x− x0| ≤ δ.

This implies, C ∗ is complete metric subspace of (C [x0 − δ, x0 + δ] , d∞). Note
that by (7.21) we have (t, φ(t)) ∈ D if |t− x0| ≤ δ and φ ∈ C ∗.

We now define a function T on C ∗ as follows:

For φ ∈ C ∗ define T (φ) = ψ as:

ψ(x) = y0 +

x∫
x0

f (t, φ(t)) dt for |x− x0| ≤ δ. (7.22)

Then φ satisfies (7.18) if and only if T (φ) = φ.

We shall show that T is contraction on the complete metric space C ∗. First
we show that T maps C ∗ into C ∗. Indeed, if φ ∈ C ∗ and ψ = T (φ) it is easy
to show that ψ is continuous on [x0− δ, x0+ δ]. Moreover, if |x−x0| ≤ δ, then

|ψ(x)− y0| ≤
∣∣∣∣
∫ x

x0

f (t, φ(t)) dt

∣∣∣∣ ≤M |x− x0| ≤Mδ.

Hence, |ψ(x)− y0| ≤Mδ if |x− x0| ≤ δ, and so ψ ∈ C ∗. Hence T : C ∗ → C ∗.
To show that T is contraction suppose φ1, φ2 ∈ C ∗ and let ψ1 = T (φ1),

ψ2 = T (φ2). Then, from (7.22), if |x− x0| ≤ δ we have

ψ1(x)− ψ2(x) =

∫ x

x0

(f (t, φ1(t))− f (t, φ2(t))) dt,
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and we get,

∣∣∣∣ψ1(x)− ψ2(x)

∣∣∣∣ ≤
∫ x

x0

|f (t, φ1(t))− f (t, φ2(t))| dt.

Using (7.19) we then obtain

∣∣∣∣ψ1(x)− ψ2(x)

∣∣∣∣ ≤ k

∫ x

x0

|φ1(t)− φ2(t)|dt

≤ kδd∞(φ1, φ2).

Thus,

d∞(ψ1, ψ2) ≤ kδd(φ1, φ2),

or, what is the same,

d∞ (T (φ1) , T (φ2)) ≤ kδd∞(φ1, φ2).

In view of Equation (7.20) this proves that T is a contraction on C ∗. Hence,
there is precisely one φ ∈ C ∗ such that T (φ) = φ. But the definition
Equation (7.22) of T shows that T (φ) = φ means that Equation (7.18) holds.
This completes the proof.

Remark. The Lipschitz condition (Equation 7.19) is necessary in order to
prove the uniqueness of the solution in Theorem 7.5.

Let us look at an example to understand the necessity of Lipschitz condition.

Example 7.6. Consider the initial value problem

dy

dx
= 3y

2
3 . (7.23)

y (0) = 0. (7.24)

Clearly, φ1 ≡ 0 is a solution to the problem, since φ
2
3
1 ≡ 0 ≡ φ′1. Also,

φ2 (x) = x3 is a solution to the same problem. Why did this happen? Our

guess (from the proof of Theorem 7.5) is that 3y
2
3 is not Lipschitz continuous,

as said in the remark. Indeed, this is because the difference quotient

∣∣∣∣f(0, y)− f(0, 0)

(y − 0)

∣∣∣∣ = 3y
2
3

y
=

3

y
1
3

,

is unbounded in every neighborhood at (0, 0).

Remark. In Theorem 7.5, if we drop the Lipschitz condition, and assume
only that f(x, y) is continuous on R

2 or some part of R
2, then it is still



Banach Fixed Point Theorem and Its Applications 267

possible to prove that the initial value problem (7.15) and (7.16) has a solution.
This result is known as Peano’s theorem. However, its proof depends on more
sophisticated arguments than those we have used above.

Exercise 7.2.

1. Show that φ is a solution to

dy

dx
= x+ y, y(0) = 0

iff φ(x) =
∫ x

0
(t+ φ(t))dt.

2. Show that f(x, y) = y
1
2 does not satisfy Lipschitz condition on the

rectangle |x| ≤ 1 and 0 ≤ y ≤ 1.

7.2.4 Solutions of integral equations

SupposeK1,K2 : [a, b]×[a, b]×R → R and g : [a, b] → R are given functions.
We consider the following integral equation:

u(t) = βA(t, u(t)) + γB(t, u(t)) + g(t), t ∈ [a, b], (7.25)

where

A(t, u(t)) =

∫ t

a

K1(t, s, u(s))ds,

B(t, u(t)) =

∫ t

a

K2(t, s, u(s))ds,

and β, γ ∈ R. We assume that |β| + |γ| > 0, otherwise the above equation
reduced into a trivial form. To study the existence and uniqueness of solution
of integral Equation (7.25), we first reduce it into a fixed point problem.
Let C (I,R) be the space of all real-valued continuous functions on I, where
I = [a, b] with the Bielecki metric.1 This metric d on C (I,R) is given by:

d(u, v) = sup
t∈I

{|u(t)− v(t)|e−θt
}
, for all u, v ∈ C (I,R),

for some fixed θ > 0.
We now define a function T : C (I,R) → C (I,R) by:

(T (u)) (t) = βA(t, u(t)) + γB(t, u(t)) + g(t), t ∈ I. (7.26)

1This metric is induced by a norm, called the Bielecki norm, given by ‖u‖θ :=
sup
t∈I

{|u(t)|e−θt
}
, u ∈ C(I,R), where θ > 0.
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A function u∗ is called a solution of Equation (7.25), if u∗ ∈ C (I,R) and it
satisfies Equation (7.25). It is clear that the problem of finding the solution
of Equation (7.25) is equivalent to the problem of finding the fixed point of
T . We now ensure the existence and uniqueness of fixed point of function T
by applying some constraints on the functions K1 and K2.

Theorem 7.6. Suppose the functions K1,K2 : I×I×R → R and g : I → R are
continuous and the following condition is satisfied: ∀t, s ∈ I,∀u (s) , v (s) ∈ R,
∃L1, L2 : I × I × R× R → R

+, continuous, such that:

|Ki(t, s, u(s))−Ki(t, s, v(s))| ≤ Li(t, s, u(s), v(s)) |u(s)− v(s)| , i = 1, 2.
(7.27)

If there exists α > 0 such that Li(t, s, u(s), v(s)) ≤ α, i = 1, 2, ∀s, t ∈ I, then
the integral Equation (7.25) has a unique solution in C(I,R).

Proof. It is well-known that (C (I,R), d) is a complete metric space. Define
T : C (I,R) → C (I,R) by Equation (7.26). We shall show that the function T
is a contraction on C (I,R). If u, v ∈ C (I,R), then by the definition of T we
have

d(T (u), T (v)) = sup
t∈I

{|βA(t, u(t)) + γB(t, u(t))− βA(t, v(t))− γB(t,v(t))|e−θt
}

= sup
t∈I

{∣∣∣∣β
∫ t

a

[K1(t, s, u(s))−K1(t, s, v(s))] ds

+ γ

∫ t

a

[K2(t, s, u(s))−K2(t, s, v(s))] ds

∣∣∣∣ e−θt

}

≤ sup
t∈I

{(
|β|
∫ t

a

|K1(t, s, u(s))−K1(t, s, v(s))| ds

+ |γ|
∫ t

a

|K2(t, s, u(s))−K2(t, s, v(s))| ds
)
e−θt

}

≤ sup
t∈I

{(
|β|
∫ t

a

L1(t, s, u(s), v(s)) | u(s)− v(s) | ds

+|γ|
∫ t

a

L2(t, s, u(s), v(s)) | u(s)− v(s) | ds
)
e−θt

}

≤ d(u, v) sup
t∈I

{∫ t

a

(|β|L1(t, s, u(s), v(s))+

|γ|L2(t, s, u(s), v(s))) e
θ(s−t) ds

}

≤ d(u, v)α(|β|+ |γ|) sup
t∈I

{∫ t

a

eθ(s−t) ds

}

≤ d(u, v)
α(|β|+ |γ|)

θ

[
1− e−θ(b−a)

]
.
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For θ = α(|β| + |γ|), we get T as a contraction. By BCP, there exists a
unique fixed point u∗ of T in C (I,R), which is the unique solution of integral
Equation (7.33) in C (I,R).

Example 7.7. Let I = [0, π/2] and we have to find a function u : I → R such
that:

u(t) = sin(t) +

t∫
0

ln(1 + s+ |u(s)|)ds, t ∈ I. (7.28)

Then, we consider the space C (I,R) with the suitable metric Bielecki metric,
d. Define a function T : C (I,R) → C (I,R) by:

(T (u)) (t) = sin(t) +

t∫
0

ln(1 + s+ |u(s)|)ds.

By Lagrange mean value theorem we have

|ln(1 + s+ |u(s)|)− ln(1 + s+ |v(s)|)| ≤ |u(s)− v(s)| , ∀s ∈ I, and ∀u, v ∈ R.

Therefore, all the conditions of Theorem 7.6 are satisfied with

L1(t, s, u(s), v(s)) = L2(t, s, u(s), v(s)) = α = β = 1,

γ ∈ R, g(t) = sin(t), K1(t, s, u(s)) = ln(1+s+ |u(s)|),K2(t, s, u(s)) = 0 for all
s, t ∈ I, u ∈ R. Thus, there exists a unique solution of integral Equation (7.28)
which is the limit of sequence (un) defined by un = T (un−1), n ∈ N and
u0 ∈ C (I,R) is arbitrary.

Next, we consider the following integral equation:

u(t) = u(a) +

t∫
a

K(s, u)ds, (7.29)

where K : [a, b]× R → R is a continuous function.

Corollary 7.6.1. Suppose, the following condition is satisfied: ∀t, s ∈ I =
[a, b],∀u (s) , v (s) ∈ R, ∃L : I × R× R → R

+, continuous, such that:

|K(s, u(s))−K(s, v(s))| ≤ L(s, u(s), v(s)) |u(s)− v(s)| .

If there exists α > 0 such that L(s, u(s), v(s)) ≤ α for all s ∈ I, then the
integral Equation (7.29) has a unique solution in C (I,R).

Remark. In the above corollary, one can take any t0 ∈ [a, b] instead of a
as lower limit of the integral in Equation (7.29), the conclusion remains the
same.
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We now consider the following Fredholm type integral equation:

u(t) = βA(t, u(t)) + γB(t, u(t)) + g(t), t ∈ [a, b], (7.30)

where

A(t, u(t)) =

∫ b

a

K1(t, s, u(s))ds,B(u(t), t) =

∫ b

a

K2(t, s, u(s))ds, β, γ ∈ R,

andK1,K2 : [a, b]×[a, b]×R → R and g : [a, b] → R are given functions. Again,
we assume that |β|+ |γ| > 0, and d as the Bielecki metric on C (I,R). Define
T : C (I,R) → C (I,R) by:

(T (u)) (t) = βA(t, u(t)) + γB(t, u(t)) + g(t), t ∈ I, (7.31)

where I = [a, b]. A function u∗ is called a solution of Equation (7.30), if
u∗ ∈ C (I,R) and it satisfies Equation (7.30). Then, the problem of finding
the solution of Equation (7.30) is reduced to the problem of finding the fixed
point of T , i.e., u∗ is a solution of Equation (7.30) if and only if it is a fixed
point of T .

Theorem 7.7. Suppose the functions K1,K2 : I×I×R → R and g : I → R are
continuous and the following condition is satisfied: ∀t, s ∈ I,∀u (s) , v (s) ∈ R,
∃L1, L2 : I × I × R× R → R

+, continuous, such that:

|Ki(t, s, u(s))−Ki(t, s, v(s))| ≤ Li(t, s, u(s), v(s)) |u(s)− v(s)| , i = 1, 2.
(7.32)

If Li(t, s, u(s), v(s)) ≤ e(t−b)θ1 , i = 1, 2, ∀s, t ∈ I, where θ1 = |β| + |γ|, then
the integral Equation (7.30) has a unique solution in C (I,R).

Proof. Following the same lines as in the proof of Theorem 7.6, we obtain:

d (T (u) , T (v)) ≤ sup
t∈I

{(
|β|
∫ b

a

L1(t, s, u(s), v(s)) |u(s)− v(s)| ds

+|γ|
∫ b

a

L2(t, s, u(s), v(s)) |u(s)− v(s)| ds
)
e−θt

}

≤ d(u, v) sup
t∈I

{∫ t

a

(|β|L1(t, s, u(s), v(s)) ds+

|γ|L2(t, s, u(s), v(s))) e
θ(s−t) ds

}

≤ d(u, v)(|β|+ |γ|) sup
t∈I

{∫ b

a

e(t−b)θ1eθ(s−t) ds

}
.
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For θ = θ1, above equation yields:

d (T (u) , T (v)) ≤
[
1− e−θ(b−a)

]
d(u, v) = λd(u, v)

where λ =
[
1− e−θ(b−a)

]
< 1. Thus, T is a contraction on C (I,R). The

existence of unique fixed point, i.e., the unique solution of Equation (7.30)
follows from BCP.

7.2.5 Solutions of initial value and boundary value problems

We consider the Cauchy initial value problem. Suppose K : [a, b]×R → R

is a continuous function and we want to find a differentiable function u on
[a, b] such that:

du

dt
= K(t, u); u(t0) = u0. (7.33)

Such a problem is called the Cauchy initial value problem.

Theorem 7.8. Suppose, the following condition is satisfied: ∀t, s ∈ I = [a, b],
and ∀u (s) , v (s) ∈ R, ∃L : I × R× R → R

+, continuous, such that:

|K(s, u(s))−K(s, v(s))| ≤ L(s, u(s), v(s)) |u(s)− v(s)| .

If there exists α > 0 such that L(s, u(s), v(s)) ≤ α, ∀s ∈ I, then Equa-
tion (7.33) has a unique solution.

Proof. To prove the existence and uniqueness of initial value problem Equa-
tion (7.33), we first convert it into an integral equation. Integrating Equa-
tion (7.33) from t0 to t ∈ [a, b]:

u(t) = u0 +

t∫
t0

K(s, u)ds. (7.34)

Therefore, to find a solution of problem Equation (7.33) is equivalent to find
a solution of the integral Equation (7.34). Let X = C [a, b]. Then (X, d) is a
complete metric space, where d is a suitable Bielecki metric on C [a, b]. Now,
the existence and uniqueness of solution follows from Corollary 7.6.1.

Example 7.8. Consider the following initial value problem:

du

dt
= u, u(0) = 1, t ∈ [0, T ], T > 0.
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For this problem, we have K(t, u) = u, and so,

|K(s, u)−K(s, v)| = |u− v| .
Therefore, all the conditions of Theorem 7.8 are satisfied with L(s, u(s), v(s)) =
α = 1, and so, the initial value problem has a unique solution. The solution
of initial value problem is the limit of sequence (zn) , zn = T (zn−1), n ∈ N

and z0 ∈ C [0, T ] is arbitrary with

(T (u)) (t) = u(0) +

t∫
0

u(s)ds.

Suppose we start with z0 ≡ u(0) = 1, then we obtain the following terms of
the sequence:

z1(t) = (T (z0)) (t) = 1 +

t∫
0

1 · ds = 1 + t,

z2(t) = (T (z1)) (t) = 1 +

t∫
0

z1(s) ds = 1 + t+
t2

2
,

...

zn(t) = (T (zn−1)) (t) = 1 +

t∫
0

zn−1(s) ds =

n∑
i=0

ti

i !
.

The limit of this sequence, i.e., lim
n→∞ zn(t) = et for all t ∈ [0, T ], is the unique

solution of the initial value problem.

Example 7.9. Consider the following initial value problem:

du

dt
= t+ tan−1(u), u(0) = 0, t ∈ [0, π/2].

In this problem, we have K(t, u) = t + tan−1(u), and so, by Lagrange mean
value theorem we have

|K(s, u)−K(s, v)| = ∣∣tan−1(u)− tan−1(v)
∣∣ ≤ |u− v| .

Therefore, all the conditions of Theorem 7.8 are satisfied with L(s, u(s), v(s)) =
α = 1, and so, the initial value problem has a unique solution. The solution
of the problem is the limit of sequence (zn) , zn = T (zn−1), n ∈ N and
z0 ∈ C [0, T ] is arbitrary with

(T (u)) (t) =

t∫
0

[s+ tan−1(u(s))] ds.
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Note that, unlike the previous example, the calculation of the terms of se-
quence is not an easy task. Yet, the BCP ensures the existence and the unique-
ness of the solution of the problem.

7.2.6 Implicit function theorem

The classical proof of the implicit function theorem uses the theory from
calculus (the Taylor’s expansion, the mean-value theorem, and estimates on
derivatives). Here, we use contraction mapping principle to get a quick, soft,
and easy (although abstract form) proof of this theorem. Here, we consider
this theorem in two-dimensional Euclidean space R

2.

Theorem 7.9. Let f be a continuous real valued function of two variables
x and y with a continuous partial derivative fy in a square D ⊆ R

2 with a
center (x0, y0). Assume that

f(x0, y0) = 0 = fy(x0, y0). (7.35)

Then there exists unique function φ continuous in a neighborhood of x0, such
that

φ(x0) = y0 and φ(x) = φ(x, φ(x)) + y0. (7.36)

Proof. Since, fy (x0, y0) = 0 and fy is continuous onD, which is bounded, with
center (x0, y0), we infer that fy(x, y) is “small” for all (x, y) “near” (x0, y0).

We choose δ1 > 0 and δ2 > 0 so that whenever |x−x0| < δ1 and |y−y0| <
δ2, then

|fy(x, y)| ≤ 1

2
. (7.37)

Since, f(x, y0) is continuous at x = x0 and f(x0, y0) = 0, we can assume, by
choosing “smaller” δ1, that |f(x, y0)− y0| ≤ δ2

2 for all x with |x− x0| < δ1.

Let X be set of continuous functions φ on [x0 − δ1, x0 + δ1] such that
φ(x0) = y0 and |φ(x)− y0| ≤ δ2 if |x− x0| ≤ δ1.

We let d(φ1, φ2) = sup
|x−x0|≤δ1

{|φ1(x) − φ2(x)|}. Then we know that (X, d)

is a metric space.

We shall now introduce an operator T on X. For φ ∈ X, we define
(T (φ)) (x) = f(x, φ(x)) + y0, for |x− x0| ≤ δ1. Then we have,
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| (T (φ)) (x)− y0| = |f(x, φ(x))|
≤ |f(x, φ(x))− f(x, y0)|+ |φ(x, y0)|

≤ |φ(x)− y0||fy(x, y′)|+ δ2
2
, (φ(x) < y′ < y0)

≤ δ2
2

+
δ2
2

= δ2.

Thus T maps X to itself.
Now, for φ1 (x) < η < φ2 (x), we have

| (T (φ1)) (x)− (T (φ2)) (x)| = sup
x∈[x0−δ,x0+δ]

{|f(x, φ1(x))− f(x, φ2(x))|}

= sup
x∈[x0−δ,x0+δ]

{|φ1(x)− φ2(x)||fy(x, η)|}

≤ 1

2
|φ1(x)− φ2(x)|.

Therefore, T is contraction on X and hence by Banach contraction theorem,
there exist unique φ ∈ X such that T (φ) = φ, i.e., φ(x0) = y0 and φ(x) =
f(x, φ(x)) + y0 for x ∈ [x0 − δ1, x0 + δ1]. This completes the proof.

Problem Set

For the problems involving R, use the usual metric.

1. Check whether or not the following maps are contractions on the corre-
sponding metric spaces. If yes, find the associated fixed point.

(a) X = R
+, f (x) =

√
x+ 1.

(b) X = R, f (x) =
√
x2 + 1.

2. Show that f (x) = ln (x+ 1) has a unique fixed point in [0, 2].

3. Show that f (x) = x3 is a contraction on
(
0, 12
)
but it has no fixed point

in this interval. Does this contradict Banach contraction principle?

4. Show that f :
[
1, 52
]→ [

1, 52
]
defined by

f (x) = 1 + x− x3

10

is a contraction mapping on
[
1, 52
]
. What is the fixed point of f?
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5. Let B [0, 1] denote the set of all bounded real-valued functions defined
on [0, 1]. Define T : B [0, 1] → B [0, 1] as

(T (u)) (x) =
u (x) + x2

2
.

Is T a contraction mapping? If so, find its unique fixed point. Here
B [0, 1] is equipped with the metric d∞.

6. Let T : X → X be a contraction mapping where X is a discrete metric
space. Show that T is constant.

7. Let X = {x ∈ Q|x ≥ 1} and let f : X → X be defined by f (x) = x
2 +

1
x .

Show that f is a contraction mapping and that f has no fixed point in
X.

8. Let f : [a, b] → [a, b] be differentiable over [a, b]. Show that f is a con-
traction mapping if and only if there is a number K ≤ 1 such that
|f ′ (x)| ≤ K for every x ∈ (a, b).

9. Show that T : (C [0, 1] , d∞) → (C [0, 1] , d∞) defined as

(T (f)) (x) =

x∫
0

(x− t) f (t) dt

is a contraction mapping.

10. Consider the metric space (C [0, 1] , d∞). Define f : C [0, 1] → C [0, 1]

as (F (f)) (x) =
x∫
0

f (t) dt. Show that for all f, g ∈ C [0, 1] and for all

x ∈ [0, 1] we have:

(a) (F (f)) (x)− (F (g)) (x) ≤ xd∞ (f, g).

(b)
(
F 2 (f)

)
(x)− (F 2 (g)

)
(x) ≤ x2

2 d∞ (f, g).

Here F 2 denotes the composition F ◦ F . Hence deduce that F 2 is a
contraction mapping, however, F is not.

11. Use Banach Fixed Point Theorem to show that

x1 =
1

3
x1 − 1

4
x2 +

1

4
x3 − 1,

x2 = −1

2
x1 +

1

5
x2 +

1

4
x3 + 2,

x3 =
1

5
x1 − 1

3
x2 +

1

4
x3 − 2

has a unique solution.
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Biographical Notes

Prof Charles Émile Picard (24 July, 1856 to 11
December, 1941) was a French mathematician. Pi-
card’s mathematical papers, textbooks, and many
popular writings exhibit an extraordinary range of in-
terests, as well as an impressive mastery of the math-
ematics of his time. He made important contributions
in the theory of differential equations, including work
on Picard-Vessiot theory, Painlevé transcendents, and
his introduction of a kind of symmetry group for a lin-
ear differential equation. He also introduced the Pi-
card group in the theory of algebraic surfaces, which
describes the classes of algebraic curves on the surface
modulo linear equivalence. Apart from these works,
he has also made significant contributions in complex
variables, function theory, and algebraic topology.

Stefan Banach (30 March, 1892 to 31 August, 1945)
was a Polish mathematician who is generally consid-
ered one of the world’s most important and influential
twentieth-century mathematicians. He was the founder
of modern functional analysis. Some of the notable
mathematical concepts that bear Banach’s name in-
clude Banach spaces, Banach algebras, Banach mea-
sures, the Banach-Tarski paradox, the Hahn-Banach
theorem, the Banach-Steinhaus theorem, the Banach-
Mazur game, the Banach-Alaoglu theorem, and the
Banach fixed-point theorem.

Brook Taylor (18 August, 1685 to 29 December, 1731)
was an English mathematician who is best known for
Taylor’s theorem and the Taylor series. Taylor was
elected a fellow of the Royal Society early in 1712, and
in the same year sat on the committee for adjudicating
the claims of Sir Isaac Newton and Gottfried Leibniz,
and acted as secretary to the society from 13 January,
1714 to 21 October, 1718. From 1715, his studies took
a philosophical and religious bent.



Appendix A

Inner Products, Norms, and Metrics

Before concluding the book, we would like to introduce the reader to two
important concepts other than metric: norms and inner products. Indeed, we
had promised in this book (Chapter 2) that we will not talk about norms
while dealing with metric spaces. However, as one moves ahead in the study
of a particular subject, it is very difficult to isolate metrics. Many applications
of metric spaces, especially those on the fixed point theory, arise on sets which
have certain special properties of addition and scaling. We call such sets vector
spaces, and the elements of these sets as vectors . Once we have the notion of
vectors, we can think of measuring their lengths and angles between them, as
we used to do in the plane R

2 and space R
3.

We begin with recalling that vectors in plane and space had two opera-
tions defined on them: vector addition and scalar multiplication. Based on the
properties of these operations, we shall define formally what is called a vector
space. But first, to define “scalar multiplication”, we would need to define
what are scalars. For the same, we give the concept of field .

Definition A.1 (Field). A set F equipped with two operations + : F×F → F

and · : F× F → F is called a field if:

1. For each x, y, z ∈ F, we have x+ (y + z) = (x+ y) + z. [Associativity
of addition]

2. There is an element (denoted as) 0 ∈ F such that ∀x ∈ F, we have
0 + x = x+ 0 = x. This element is called the additive identity.

3. For each x ∈ F, there is some y ∈ F such that x + y = y + x = 0. The
element y is called the additive inverse of x. The element y is denoted
as −x.

4. For each x, y ∈ F, we have x+ y = y + x. [Commutativity of addition]

5. For each x, y, z ∈ F, we have x · (y · z) = (x · y) · z. [Associativity of
multiplication]

6. There is an element (denoted as) 1 ∈ F such that for each x ∈ F, we
have 1 · x = x · 1 = x. This element is called multiplicative identity.
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7. For each 0 �= x ∈ F, there is some y ∈ F such that x · y = y · x = 1. The
element y is called multiplicative inverse of x.

8. For each x, y ∈ F, we have x · y = y · x. [Commutativity of
multiplication]

9. For each x, y, z ∈ F, we have x · (y + z) = x · y + x · z and (x+ y) · z =
x · z + y · z. [Distributivity of multiplication over addition]

Here, the elements of F are called scalars. By experience, we know that R, C,
and Q are fields. Once we have scalars, we can now define scalar multiplication
and hence a vector space.

Definition A.2 (Vector space). A set V equipped with two operations + :
V × V → V and · : F× V → V is called a vector space if:

1. For any x, y, z ∈ V we have (x+ y) + z = x+ (y + z). [Associativity]

2. For any x, y ∈ V , we have x+ y = y + x. [Commutativity]

3. There is an (denoted as) element 0 ∈ V such that for every x ∈ V we
have x + 0 = 0 + x = x. This element is called the additive identity or
the zero vector.

4. For each x ∈ V , there is an element y ∈ V such that x + y = y + x =
0. The element y is called the additive inverse of x. The element y is
denoted as −x.

5. For each α ∈ F and x, y ∈ V , we have α · (x+ y) = α · x+ α · y.

6. For each α, β ∈ F and x ∈ V , we have (α+ β) · x = α · x+ β · x.

7. For each α, β ∈ F and x ∈ V , we have α · (β · x) = (αβ) · x = β · (α · x).

8. For each x ∈ V , we have 1 · x = x, where 1 ∈ F is the multiplicative
identity of F.

When the field F is associated with the vector space V , we say that V is
defined over F. Most of the times, we deal with either vector spaces over R

or C, i.e., the field associated with vector spaces is either the set of real or
complex numbers. Immediately, one can observe that every field is a vector
space over itself. In this book, we have dealt with three major vector spaces:
R

n, �p, and C [a, b]. In fact, in further study of topics related to metric spaces,
these vector spaces always come into picture at some point. Therefore, the
reader is advised to get themselves familiar with these spaces.

Now, from the experience in R
2 and R

3, we know that we can measure
lengths of vectors. Based on the properties that these lengths follow, we shall
now define what is called a norm.
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Definition A.3 (Norm). A function ‖ · ‖ : V → [0,∞), where V is a vector
space is called a norm if:

1. For each x ∈ V , ‖x‖ = 0 if and only if x = 0.

2. For each x ∈ V and α ∈ F, we have ‖α · x‖ = |α| ‖x‖. [Homogeneity]

3. For each x, y ∈ V , we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖. [Triangle inequality]

A vector space equipped with a norm is called a normed linear space (NLS).
The study of NLS is important, especially in fixed point theory and answering
questions about existence of solutions to differential and integral equations.

Notice that since in vector spaces, we can have lines and line segments, we
can measure the distance between two vectors using the line segment joining
them. Therefore, given a norm ‖ · ‖ on a vector space V , we immediately have
a metric d : V × V → [0,∞) as

d (x, y) = ‖x− y‖.

The reader should verify that this indeed forms a metric. We say that d is in-
duced by the norm ‖·‖. Notice that the p-metrics defined for Rn, �p, and C [a, b]
are all norm induced. We give the p-norm in R

n and the reader is supposed to
construct the norms for the other two spaces. For x = (x1, x2, · · · , xn) ∈ R

n,
we define

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

. (A.1)

We can also have

‖x‖∞ = max
1≤i≤n

{|xi|} . (A.2)

Thus, once we know how to measure lengths of vectors in a vector space, we
can talk not only about the algebraic properties of the space, but also about
the topological properties such as compactness, connectedness, completeness,
etc. We would like to mention here that a complete normed linear space is
called a Banach space. Therefore, Rn, �p, �∞, and (C [a, b] , d∞), studied in
this book, are Banach spaces.

The norm induced metrics follow certain “good” properties. We mention
those here without a proof, since it is trivial.

Theorem A.1. If a metric d is induced by a norm ‖ · ‖, then
1. For each x, y ∈ V and a fixed a ∈ V , we have d (x+ a, y + a) = d (x, y).

[Translational invariance]

2. For each x, y ∈ V and α ∈ F, we have d (α · x, α · y) = |α| d (x, y).
[Homogeneity]
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These are in fact, necessary conditions for a metric to be norm induced. Indeed,
the reader can verify that the discrete metric does not enjoy homogeneity and
hence is not a norm induced metric.

Now, we are not only limited to finding lengths of vectors. By experience
in the plane and space, we know that given two vectors, we can find the
projections and hence the angle between them. The projections were a result
of the dot product defined in R

2 and R
3. Again, keeping in mind its properties,

we define what is called an inner product on an arbitrary vector space V .

Definition A.4 (Inner product). A function 〈·, ·〉 : V × V → R is called an
inner product if:

1. For each x ∈ V , we have 〈x, x〉 ≥ 0.

2. For each x, y, z ∈ V we have 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉. [Additivity]

3. For each x, y ∈ V , we have 〈x, y〉 = 〈y, x〉. [Symmetry]

4. For each x, y ∈ V and α ∈ R, we have λα·x, y〉 = α〈x, y〉. [Homogeneity]

Notice that the definition stated above is valid for vector spaces over R. If a
vector space is over C, then R is replaced by C everywhere, and the symmetry
is changed to conjugate symmetry, i.e.,

〈x, y〉 = 〈y, x〉.

A vector space equipped with an inner product is called an inner product
space (IPS). Again, the study of IPS is interesting and a vast subject in itself.
Therefore, we do not go to depth of it in this book. However, we would like to
mention that once we have an inner product, we can measure lengths of vectors
(by taking projections of vectors on themselves), i.e., norms and eventually get
topology due to the norm induced metric. If 〈·, ·〉 is the given inner product,
then a norm can be defined as

‖x‖ =
√
〈x, x〉.

The reader is advised to verify that this is indeed a norm. Just like complete
NLS are called Banach spaces, complete IPS are called Hilbert spaces .

Before concluding, we would like to mention that since we have topological
properties once we have inner products, vector spaces are of major interest
to many mathematicians of varied fields. These spaces play roles in algebra,
topology, differential equations (both ordinary and partial), and integral equa-
tions.
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absolute value, 55
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accumulation point, 104
additive identity, 277–278
additive inverse, 277–278
adherent point, 104
aleph-naught, 46
algebraic structure, 64
algebra of continuous

functions, 210
anti-symmetric relation, 12
arbitrary Cartesian product, 10
arbitrary intersection, 6
arbitrary union, 6
Archimedean property, 90
argument, 214
Arzela-Ascoli theorem, 243
associativity, 7
axiom of choice, 10

Baire category theorem, 151
Baire space, 151
Banach contraction, 256
Banach contraction principle, 257
Banach space, 279
Barber’s paradox, 31
bijection, 23
Bolzano-Weierstrass property, 167
boundary, 103

point, 101
bounded metric, 80
bounded set, 110

Cantor set, 170
Cantor’s theorem, 31
cardinality, 43, 45
Cartesian product, 9

Cauchy initial value problem, 271
Cauchy sequence, 134
Cayley-Hamilton theorem, 208
chained collection, 230
characteristic function, 229
choice function, 10
closed map, 245
closed set, 98
closed unit ball, 165
closure, 106
cluster point, 104
codomain, 23
co-meager set, 150
commutativity, 7
compactness, 163
complement, 7
complete extension, 145
complete metric space, 139
completeness axiom, 140
component, 190
composition, 24
condensation point, 104
congruence relation, 11
conjugate exponents, 57
conjunction operator, 15
connected, 184
continuity, 196, 198
contraction, 256
contractive, 256
convergence, 131
convex function, 63
coordinate, 9

space, 81
countable set, 45
countable union, 47
crow-fly distance, 68
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De Morgan’s laws, 8
dense, 107
diagonal relation, 11
diameter, 111
dictionary order, 12
Dini’s theorem, 226
Dirichlet function, 209
disconnected space, 184
disconnection, 184
discontinuity, 196
discrete metric, 75
disjoint family, 6
disjoint sets, 6
disjoint union, 6
distance, 55
distributivity, 8
domain, 23

Edelstein fixed point theorem, 259
embedding, 144
empty family, 8
empty relation, 11
empty set, 4
equality of functions, 24
equality of sets, 5
equality relation, 11
equicontinuity, 242
equivalence class, 13
equivalence relation, 13
equivalent metric, 118
Euclidean metric, 66
extended complex numbers, 214
exterior, 103

point, 101
extreme value theorem, 225

family of sets, 3
field, 64, 277
finite set, 41
finite subcover, 163
first category, 150
fixed point, 41, 255
Fσ set, 154
function, 23

space, 76

Gδ set, 154
general linear group, 208
gluing lemma, 212
graph, 49
greatest element, 17
greatest lower bound, 19

Hasse diagram, 17
Hausdorff property, 95
Heine-Borel theorem, 170
Hilbert cube, 75
Hilbert space, 280
Hölder’s inequality, 58, 62
homeomorphism, 246
homogeneity, 55

idempotence, 8
identity, 8

function, 27
relation, 11

image, 23
index, 4

set, 4
indexed family of sets, 4
infimum, 19
infinite set, 41
initial value problem, 271
injection, 23
inner product, 280

space, 280
integers, 3
integral equation, 267
interior, 103

point, 101
intermediate value

theorem, 234
intersection, 6
intervals, 20
inverse, 27
involution, 7
isolated point, 164
isometric spaces, 144
isometry, 144
iteration method, 257

Kronecker delta function, 262
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law of contradiction, 8
law of excluded middle, 8
law of trichotomy, 186
least element, 17
least upper bound, 19
Lebesgue covering lemma, 176
Lebesgue number, 175
lexicographic order/ordering,

12, 20
lexicographic relation, 12
limit, 131

point, 104
linear algebraic equations, 261
linear function, 227
Lipschitz continuity, 224
listing, 2
locally constant function, 236
local property, 196
lower bound, 19

Manhattan metric, 68
maximal element, 17
maximum metric, 73
meager set, 150
metric, 65

space, 65
minimal element, 17
Minkowski’s inequality, 59–60, 62
multiplicative inverse, 278

natural numbers, 3
nilpotent matrix, 208
non-decreasing, 124
nonexpansive, 256
non-meager set, 150
norm, 279
normal space, 212
normed linear space, 279
nowhere dense set, 150
n-space, 67

one-to-one, 23
onto, 23
open ball, 82
open cover, 161
open map, 245

open set, 88
order, 16
ordered pair, 9
orthogonal matrix, 124

p-adic metric, 78
pairwise disjoint, 6
partially ordered set, 16
partial order, 16
partition, 15
path, 237
path connected, 238
Piecewise linear function, 227
point-wise convergence, 133
polygonal function, 108
power set, 9
pre-image, 23
product metric, 81
product space, 81
product topology, 97
projection, 205
proper subset, 5

raindrop function, 153
range, 23
rare set, 150
rational numbers, 3
reflexive relation, 12
relation, 11
relative complement, 7
roster form of sets, 2
rotation, 200

scalar multiplication, 204
scalars, 278
second category, 150
separable, 107
separation, 184
sequence, 129

of functions, 226
space, 69

sequential compactness, 172
set, 1

-builder, 2
difference, 7

special linear group, 124
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stereographic projection, 248
strong mathematical

induction, 42
subadditive, 124
subcover, 161
subsequence, 130
subset, 5
subspace, 81

topology, 96
super-metric, 80
superset, 5
supremum, 19

metric, 73
symmetric difference, 48
symmetric relation, 12

taxi-cab metric, 68
Thomae’s function, 154
Tietze extension theorem, 214
topological property, 246
topologist’s sine curve, 233
topology, 95
totally bounded, 174
totally disconnected

space, 192
totally ordered set, 16
total order, 16
transitive relation, 12
translation, 29, 200
translational invariance, 279

triangle inequality, 56, 65
tuple, 9

ultra-metric, 80
inequality, 80

uncountable set, 45
uniform continuity, 218
uniform equicontinuity, 242
union, 6
unit open ball, 83
universal relation, 11
universal set, 1
universe of discourse, 1
upper bound, 19
Urysohn’s lemma, 211

vacuously true, 9
valuation number, 78
vector, 278

addition, 204
space, 278

Weierstraβ approximation
theorem, 108

well-ordering, 19
theorem, 22

Young’s inequality, 57

zero vector, 278
Zorn’s lemma, 22
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