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Preface

Managing today’s lands is becoming an increasingly difficult task. 
Complex ecological interactions across multiple spatiotemporal scales 
create diverse landscape responses to management actions that are often 
novel, counter-intuitive and unexpected. To make matters worse, exotic 
invasions, human land use, and global climate change further complicate 
this complexity and make past observational ecological studies limited in 
application to the future. Natural resource professionals can no longer rely 
on empirical data to analyze alternative actions in a world that is rapidly 
changing with few historical analogs. New tools are needed to synthesize 
the high complexity in ecosystem dynamics into useful applications for 
land management. 

Some of the best new tools available for this task are ecological and landscape 
simulation models. Few empirical databases and statistical analyses can 
account for the great environmental variability and complexity across the 
appropriate time and space scales needed for management applications. 
Natural resource management will need to integrate ecosystem simulation 
modeling with conventional analysis to make better decisions in our 
uncertain future. Land management professionals need to realize that 
ecological modeling must become an integral part of their assessment 
activities and embrace modeling as they have embraced the cell phone and 
personal computer.

This realization will probably come at a great cost. Many land management 
professionals and scientists have little expertise in simulation modeling, 
and the costs of training these people will probably be exorbitantly 
high because most ecosystem and landscape models are exceptionally 
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complicated and difficult to understand and use for local applications. 
Highly technical expertise in remote sensing, spatial analysis, statistical 
modeling, data management, and GIS is often needed to prepare and run 
ecosystem models and to understand their output, especially those models 
that are implemented in a spatial domain. These talents are rare across 
many resource professionals because modeling has never been a major 
part of their job. However, there are a few key concepts that most novice 
modelers can quickly learn to employ complex landscape models for local 
land management analysis in the future.

This book was written to provide natural resource professionals with the 
rudimentary knowledge needed to properly use ecological models and 
then to interpret their results in the appropriate context. It is based on the 
lessons learned from a career spent modeling ecological systems. The book 
is not intended to be a review of ecosystem models nor a modeling primer 
as there are plenty of these books already written. Rather, it is intended 
as a reference for novice modelers to learn how to correctly employ 
ecosystem landscape models in natural resource management applications 
and to understand subsequent modeling results. This book mostly deals 
with landscape and ecosystem simulation models, which are models that 
simulate ecological processes over time in a spatial domain. Stand-based 
models are discussed but not emphasized because most have already been 
integrated into landscape models. However, many of the principles and 
recommendations in this book could be applied across many other classes 
of ecosystem models from point, stand, landscape, regional, and global 
models. 

The first chapter identifies the need for modeling and the objectives of 
the book. It is in the second chapter where the generalized modeling 
terminology is introduced as context for the rest of the book. Various 
types of ecological models are discussed to provide the context for the 
main portion of the book. Then the phases of a model project are detailed 
in separate chapters. Chapter 3 describes the creation of a modeling 
project from the statement of modeling objectives to selecting the model 
and identifying various spatial data requirements. Chapter 4 deals with 
the initialization of the model, or what is needed to describe the starting 
conditions for the model. Next is a chapter on model parameterization 
or quantifying various coefficients used in model algorithms (Chapter 5). 



Chapter 6 concerns the laborious process of calibrating the model to ensure 
some degree of realism, while Chapter 7 is dedicated to the validation or 
evaluation of model results. Chapter 8 describes how to execute the model 
for implementation of the modeling project. Then there is a chapter that 
discusses the analysis of modeling results in both the calibration phase and 
the final phase of a project. The book ends with a chapter on the general 
barriers, limitations, and problems that may occur over the course of the 
modeling project.

The main goal of this book is to provide a generalized guide and reference 
for using landscape simulation models in natural resource management 
applications specifically for the manager, researcher, and resource 
professional with little to no experience in modeling. It is my sincere hope 
that the confidence level of novice ecosystem modelers will be bolstered 
by this book, and they will embrace simulation modeling as another 
powerful tool in the land management garage. I also hope that the material 
in this book will help create more accurate, realistic, and understandable 
model results for specific modeling projects. I firmly believe that the only 
way to become a proficient ecosystem modeler is to do it all the time, and 
most people, especially those in natural resource management, will have 
many other things to do other than modeling. Therefore, these people can 
rest assured that this book will be available to remind them of various 
tasks needed to successfully complete a modeling project.

Preface
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1
Introduction
Who Needs This Book?

“The computer is not, in our opinion, a good model of the mind, but 
it is as the trumpet is to the orchestra—you really need it. And so, we 
have massive simulations in computers because the problem is, of 
course, very complex.” 

Gerald Edelman

An ecosystem model—an abstract, usually mathematical, 
representation of an ecological system (ranging in scale from an 
individual population, to an ecological community, or even an entire 
biome), which is studied to better understand the real system (Hall 
and Day 1977).

ABSTRACT
Predicting what will happen as a consequence of management 
actions, or lack of action, is a fundamental goal of landscape 
planning. Historically, land management professionals used results 
from empirical studies, coupled with their own expertise and wisdom, 
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to make these predictions. But then climate change made most of the 
findings of field studies and the accrued wisdom of professionals 
over the last 100 years somewhat limited for the management of 
tomorrow’s landscapes. To fill this void will be ecosystem simulation 
models, which may become critically important tools for managing 
landscapes in the future because they synthesize highly complicated 
ecological interactions into complex computer programs that can 
be used to simulate alternative management actions. This book 
was written for those people who are unsure of how to properly 
develop and implement a modeling project to assess the impacts of 
management actions in local to regional applications. It is meant to 
be used as a generalized manual for employing ecological models 
to solve resource management problems. This chapter describes why 
this book is important and who needs to use this book.

Why Do We Need Modeling?

So much of natural resource management depends on scientifically 
credible projections of future conditions under both passive and 
active management. Predicting what will happen as a consequence of 
management actions, or lack of action, is a fundamental requirement 
of the planning process. Historically, land management professionals 
used results from empirical studies, coupled with their own expertise 
and wisdom, to make these predictions. But then something happened. 
The rapid influx of carbon dioxide and other greenhouse gases into the 
atmosphere from human activities over the last 100 years has changed 
everything (IPCC 2007). Changes in the earth’s climate systems because 
of greenhouse warming are now rapidly creating new climate futures that 
have no analog in the recent past (Flannigan et al. 2009, Fei et al. 2017), 
and as such, most of the findings of empirical studies and the accrued 
wisdom of professionals over the last 100 years may not be entirely valid 
for the management of tomorrow’s landscapes (Gustafson 2013). Yet, the 
valuable information gained from results of past studies should never be 
tossed in the trash bin or relegated to distant archives as these results still 
have great value to management. They do, however, need to be interpreted 
in a brand new context and used in other ways. No longer can we assume 
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that statistical correlations and empirical analyses done in the past will 
hold in our uncertain climatic future to effectively manage tomorrow’s 
resources (Scheller 2018). We need to integrate past study findings into 
a tool that is based on physical, chemical, and biological foundations 
to predict the consequences of alternative land management actions 
under various climate futures. And that tool has been around for the last  
50 years—ecosystem simulation modeling: the computation of ecological 
responses over time using a computer program.

Ecosystem simulation models will be a critically important tool for 
managing landscapes in the future for a number of reasons. First, models 
are needed because ecosystems are remarkably complicated. Myriad 
interacting ecological processes result in complex biotic and abiotic 
responses (Bachelet et al. 2000, Allen 2007, Bockino 2008). It is nearly 
impossible for one person to understand the complexity of all possible 
ecological interactions, nor is it possible to collect enough data on these 
interactions to completely understand their consequences. Models also 
provide a means to synthesize state-of-the-art knowledge, current research 
findings, and general information into a tool that explicitly recognizes 
interactions and predicts various ecosystem responses as a result of 
changing conditions. Next, models can be used to extrapolate spotty 
empirical data over larger areas and for longer time spans to provide greater 
spatiotemporal scope for management decisions. Models also identify 
those ecological processes that are poorly understood and need further 
research. Comparisons of alternative management actions are generally 
thought to be the greatest strength of ecological modeling in natural 
resource management, but models can also be used for many other phases of 
management, from planning to real-time decision making, risk and hazard 
analysis, prescription development, and treatment prioritization, and they 
can be used across the many scales of management actions (Figure 1.1). 
Most importantly, models can be used to evaluate ecosystem and landscape 
responses as novel climates and disturbance regimes change over time. 
Many are now finding that describing landscape and ecosystem response 
as climates change is best done with ecological simulations (Loehle and 
LeBlanc 1996, Bachelet et al. 2003). While models are far from perfect, 
they may be the best tools we have for future land management.
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Why is This Book Needed?

This book was written for those people who are unsure of how to properly 
develop and implement a modeling project to assess the impacts of 
management actions in local to regional applications. It is meant to be 
used as a generalized manual for employing ecological models to solve 
resource management problems. This book is not an introduction to 
modeling—the literature is teeming with books on that subject. It is also 
not a manual for a specific model nor does it describe the use of models for 
different ecosystems, and it is not a handbook for building models—that 

Figure 1.1. A summary of the ways ecological models can be used in natural resource 
decision-making across temporal and spatial scales. Management decisions are often 
made at three broad spatial scales—stand (< 100 ha), landscape (< 200,000 ha), and region  
(> 200,000 ha)—and at three temporal scales—years, decades, and centuries. There are specific 
uses of models for each combination of space and time scale. Adapted from Reinhardt et al. 
(2001). Citations for models: ABM-agent based models as reviewed by An (2012); Biome-
BGC-(Running and Hunt Jr. 1993); Climate Models-operational climate forecast models; 
FireBGCv2-Keane et al. (2011); FVS-FFE-Beukema et al. (1997); IBM-Individual based 
models such as Butler (2003); JABOWA-Botkin and Schenk (1996); LANDIS-Mladenoff 

(2004); LPJ-Spitfire-Bachelet et al. (2003); TOPMODEL-Beven and Freer (2001).
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would be a difficult and complicated task and far beyond the scope of only 
one book. More importantly, this book is not a comprehensive literature 
review of existing models and it is not a comparison of ecosystem models, 
as both would require a specific context in which to base the evaluation or 
comparison. This book was written with the primary purpose of providing 
general guidance on executing a modeling project for common natural 
resource management problems. I’ve found that, in many of the modeling 
projects, most people are not completely confident in how they prepared 
the model’s input and how they interpreted the output. This book is for 
them. If you are someone who has been assigned to evaluate landscape 
responses to management activities and you have decided that modeling is 
the appropriate tool but you have limited expertise in modeling, then this 
book is for you. In summary, the goal of this book is to provide enough 
information on how to employ a model for a natural resource management 
project so that the user has high confidence in the modeling results and is 
able to interpret model results in the proper context.

What Does This Book Contain?

It is important that the reader know that this book only deals with 
ecological simulation models, and specifically emphasizes those models 
that are implemented for terrestrial ecosystems in a spatial domain. 
It does NOT cover statistical modeling using multivariate analysis, 
although many ecological models have statistical sub-models embedded 
within their structures. Examples of statistical models are timber growth 
and yield models for simulating stand timber volume changes, species 
distribution modeling to determine species current and future ranges, 
and phenomenological modeling relating empirical data to measured 
biophysical gradients often using multivariate modeling. Moreover, this 
book does not cover coarse scale ecosystem models, such as Dynamic 
Global Vegetation Models (DGVMs), as these models simulate dynamics 
over spatial scales that are rarely used by resource managers. 

There are many computer models that simulate various environmental 
concerns for natural resource management. These include hydrological 
models, wildlife models, tree growth models, aquatic ecosystem models, 
and a host of other resource models. This book deals mostly with a special 
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class of ecological models that are often applied when solving natural 
resource management issues—Landscape Ecosystem Simulation 
Models (LESMs). The word “landscape” in LESM is used to denote that 
these models simulate processes in a spatial domain, which may or may not 
include spatially explicit models that directly simulate spatial processes 
such as seed dispersal and fire spread. The word “ecosystem” is used 
to emphasize that these models simulate multiple interacting ecological 
processes, and the word “simulation” is used to signify that the ecological 
processes are modeled over time. And last, the word “model” is used to 
represent that these are computer programs written to synthesize complex 
ecological ecosystem behaviors into algorithms that are programmed in 
a specific computing language. While LESMs are the central theme of 
this book, nearly all of the material would also apply to other non-spatial 
ecosystem simulation models (e.g., stand models) and other landscape 
simulation models that ignore spatial processes.

In general, the models that this book covers simulate four basic factors 
for terrestrial systems—climate, vegetation, disturbance, and management 
actions—at various resolutions and detail. Climate is important because 
it is the fundamental top-down process to which all ecosystems respond. 
However, due to the sheer number and incredible diversity of climate 
models, this book will only cover the types of data used in ecological 
models to represent climate; this book does not cover how to use climate 
models or how to select climate data sets. Vegetation is the major biota 
that is primarily responding to top-down processes of climate and it is 
also providing the energy and habitat for all other biota. Disturbances are 
perturbations that depend on climate and vegetation, and in turn, modify 
the two. Last, management actions are the primary feedbacks between 
ecosystem dynamics and human land use, and they provide managers the 
ability to craft alternative scenarios in natural resource management—the 
primary context of this book. 

As mentioned, this book is for the person or team of people that is at 
the beginning of implementing a modeling project for natural resource 
management. A generalized set of steps to complete any modeling project 
is found in Figure 1.2. The first step is to become familiar with modeling 
terminology and fundamentals to better understand the modeling process 
(Chapter 2). Then, the preliminary modeling project design steps, such 



7

Introduction—Who Needs This Book?

as setting an objective, forming the sideboards, selecting a model, 
defining the landscape, and designing the project are needed to develop 
a blueprint for the project (Chapter 3). Once the modeling project has 
been designed, the six essential phases of modeling must be completed 
(Figure 1.2). Initialization concerns quantifying the values of the starting 
conditions in the selected model (Chapter 4) and parameterization is 
quantifying the values of all parameters in the model (Chapter 5). Once 
these are done, it is necessary to calibrate the model to produce realistic 
output by adjusting input parameter and initial conditions (Chapter 6). 
Next, all modeling projects need some sort of evaluation to determine 

Figure 1.2. A generalize flow chart of all the steps involved in the planning, design, and 
implementation of a ecological modeling project as covered by this book. At the center 
of this chart are six critical phases in a modeling project (light gray) that form the critical 
chapters in this book. The remaining steps (white) are detailed in the context of the six 

critical phases.
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the quality and accuracy of simulated results, so Chapter 7 details steps 
used in how to validate model behavior using extensive evaluations.  
Then, the model must be executed to implement the project’s design  
(Chapter 8). Once all simulations are completed, the output must be 
analyzed to answer the project’s objectives. And last, there are various 
issues that are often encountered during any modeling project and 
information on how to address these issues is presented in Chapter 10. 
Readers of this book should be able to implement a comprehensive and 
successful modeling project using material from this book.

This book may appear to be a linear, step-by-step guide for implementing 
ecological models, but many phases presented in this book could overlap 
in some modeling projects. Therefore, it is suggested that the reader scan 
the entire contents of this book before starting a modeling project. There 
are suggestions and material in some chapters that refer back to previous 
chapters; analysis software, for example, is used in the validation, 
calibration, and analysis phases, but only discussed in Chapter 9.

What Doesn’t This Book Contain?

There are several caveats concerning the material in this book. While there 
is ample discussion on how to implement a successful modeling project, 
the reader may find that some chapters don’t include enough detail to help 
them actually complete the steps presented. This is primarily because it 
is extremely difficult to present a specific procedure or protocol for all 
modeling projects because each modeling project is inherently unique due 
to local conditions, specific modeling objectives, and the model used. It 
is difficult to craft a comprehensive set of steps for each phase without 
knowing the details of the project, such as what data are to be generated, 
what actions will be simulated, and what area is being simulated. This book 
should provide the initial steps for starting, implementing, and reporting 
a modeling project, but it does not give detailed protocols for each phase 
of the modeling process. Readers must figure out many of these steps on 
their own.

This book was written specifically for professionals in the natural resource 
management field, and as such, often does not contain detailed modeling 
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procedures that many ecological modelers often find in the literature. I 
purposely left out many citations in the interest of being brief rather than 
include a broad literature review specifically for the modeling audience. 
Hopefully, the level of detail in this book is sufficient for implementing 
a natural resource management modeling project, but it does not contain 
exhaustive reviews of the literature for every step or phase presented. 
While this book was written for the ecological professional, there should 
be enough information for all people in the natural resource management 
and research to guide the construction of a modeling project. 

Admittedly, there are several aspects in this book that are heavily biased 
to my area of expertise—the simulation of vegetation, climate, and 
disturbance dynamics across terrestrial landscapes. Many examples and 
references in this book are taken from that diverse field. Moreover, most of 
my modeling research has been done in the Pacific Northwest and northern 
Rocky Mountains of the United States. As a result, this book often uses 
examples that are taken from western North American conifer forest 
ecosystems and most disturbance examples concern wildland fire. This is 
a direct result of my familiarity with those systems and that disturbance. 
I hope that these examples will be understandable by those outside of this 
narrow scope.
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2
Modeling Fundamentals
What You Need to Know to Use This 
Book

“Excellence is achieved by the mastery of the fundamentals.” 

Vince Lombardi

A model—a system or thing used as an example to follow or imitate 
(OED).

ABSTRACT

This chapter presents the general knowledge and terminology needed 
to (1) understand modeling approaches, (2) complete a successful 
modeling project, and (3) communicate results with others. First, 
some fundamental concepts are presented to guide neophyte modelers 
and to provide a foundation in which to compare and evaluate 
models. Then, an abridged modeling terminology is provided to 
understand the book and to create a lexicon for communication with 
others. Following that is a quick tutorial on the types of models used 
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in natural resource management and the details of their design. And 
last, the reasons for using ecological modeling for land management 
and planning along with a description of the model used as examples 
throughout the book is presented.

What is an Ecosystem Model?

A model is a simplification of reality. More specifically, ecosystem models 
are computer programs that consist of algorithms that represent a set 
of important ecological processes to compute ecosystem or landscape 
dynamics over time. In this book, the term “model” is used in a general 
sense to encompass all types of computer programs used in ecology for 
research and management, from a statistical regression equation, to a 
state-and-transition model, to a complex set of algorithms integrated into 
a biophysical model that simulates ecosystem interactions. Landscape 
ecosystem simulation models (LESMs), the primary model type used in 
examples in this book, are those models that simulate those ecosystem 
processes over time and space. Models, in a general sense, can be simple, 
such as a flow diagram, a caricature of a person, or an if-then-else 
statement, or they can be quite complex, such as a mechanistic ecological 
process-based model, algorithms that select the most appropriate equation 
for a collection of regression equation, or a biophysical climate model 
based on mass and momentum physics. Each model is built for a specific 
purpose and each purpose is to solve or investigate a specific problem. 
This chapter presents the general knowledge and terminology needed to 
understand modeling approaches, complete a successful modeling project, 
and communicate results with others.

Understanding Modeling for Natural Resource 
Management

There some fundamental concepts that potential users of ecological 
models should know before they start a modeling project. Understanding 
and accepting these views will save countless hours worrying over model 
project details and will save time interpreting the results. They are:
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 1. Models may be the only tool available. It may be that the lack of 
comprehensive databases, the limited scope of previous studies, the 
lack of available expertise, or the advent of the Anthropocene has 
precluded conventional means of addressing ecosystem response to 
management actions and that ecological simulation models are the 
only tool remaining to address management issues. 

 2. Models are imperfect representations of the real world. It is 
impossible to build an ecosystem or landscape model that simulates 
everything, and even if it were possible, the computer resources 
needed to perform such a task would be tremendous. Therefore, 
all models simplify the world to explore ecosystem behaviors for a 
specific objective. As a result, all models have limitations, strengths, 
and weaknesses that should be addressed in the selection of a 
computer model and in the interpretation of that model’s results.

 3. Models reflect the modeler. Most ecological models and LESMs 
were built by one person, or sometimes a team of people, for a 
specific purpose. Modelers deliberately designed their models to 
answer a unique simulation objective, and as a result, only a small 
subset of ecosystem processes were included in their model. There 
are several reasons why the modeler left ecosystem processes out of 
the simulation design:

 a. Lack of expertise to properly build the algorithms needed to 
simulate the processes;

 b. Lack of data to parameterize the processes;
 c. Impossibly high levels of complexity in the processes that 

precluded model simplification;
 d. Inadequate or contradictory literature sources on how to build the 

algorithms;
 e. Assumption that the missing processes had low importance in 

completing the modeling objective;
 f. Neglected to include the processes or no knowledge of the 

processes;
 g. And most commonly, the modeler assumed that the ignored 

processes were ecologically unimportant. 
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  As a result, it is rare that existing models can fully satisfy the objectives 
of other modeling objectives without some modification. Again, 
there will never be a simulation model that is a perfect representation 
of nature nor one that is appropriate for every objective.

 4. Model results are best interpreted in a relative not an absolute 
context. It is rare that any model can provide accurate predictions 
over a wide range of conditions, especially highly complex 
models, because of the inherent uncertainty in model construction, 
initialization, parameterization, and interpretation. However, many 
models simulate ecosystems with great precision and while the results 
may not be accurate, the differences across runs or scenarios may be 
informative and useful. Therefore, the best way to use an ecosystem 
model is by comparing multiple runs over disparate simulation 
scenarios. Using a model to predict what will happen at some time in 
the future is not nearly as reliable as comparing model results across 
multiple scenarios to understand the factors that contribute to the 
differences in predications.

 5. Model results should be interpreted within the scope of model 
assumptions and design. It is best if all of the assumptions and 
limitations of the model are known before the actual modeling project 
is initiated. Then the user can design, prepare, and interpret simulation 
results in the context of those assumptions. This is important because 
many users feel that models should provide accurate projections but 
they forget that models are imperfect. They provide a good “guess” 
but they rarely provide consistently accurate predictions because of 
their various limitations. Users should interpret the results within the 
context of the strengths and weaknesses of the model.

 6. Modeling is both an art and a science. There are times during a 
modeling project when important decisions must be made based on 
educated guesses rather than on an abundance of supporting data 
or scientific knowledge. A critical parameter, for example, might 
be unknown for an important species and the user is faced with an 
important decision—measure it, approximate it, or use another model? 
An educated guess may be the only alternative for quantification, 
but it may lead to the introduction of additional uncertainty 
into model results. However, this additional uncertainty may be 
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acceptable under the modeling objectives and it can be incorporated 
into the interpretation of results. Understanding uncertainty and 
its propagation is critical to designing modeling experiments, but 
uncertainty is amazingly elusive to quantify. Therefore, modeling 
and project design is both a creative and a scientific process. Because 
of this, all creative solutions to the myriad problems encountered 
during modeling projects must be documented and then taken into 
account when interpreting the results.

It is important to remember that models are a direct reflection of the 
modeler, the modeling objective, the resources available for modeling 
(funding, computers), and the state of the science at the time of model 
release. Too often I’ve found that model users are disappointed or highly 
suspect of model results, and this is often because they did not understand 
the above principles before they started their modeling project. 

Understanding Modeling Terminology

The field of modeling science uses a set of specialized terms to promote 
efficient communication across modelers and users of models. However, 
this terminology is rarely consistent across the many ecosystem modeling 
publications that users will read during their projects. Therefore, a unique 
set of terms (in bold below) are defined below to be used throughout the 
book to describe models and modeling activities. These terms will also be 
important in communicating findings of a modeling project to others. 

Uncertainty

This is a quick and dirty short course into understanding uncertainty in terms 
of modeling science. Uncertainty occurs because limited knowledge makes 
it impossible to accurately predict a future outcome. As model complexity 
increases to better represent ecological systems, there is a concomitant 
need to both identify potential sources of uncertainty that result from this 
complexity and to quantify their impact so that appropriate management 
options can be evaluated with confidence and in the right context (Ascough 
et al. 2008). Uncertainty in model predictions is caused by many factors, 
such as imperfect values for parameters, limitations in model algorithms, 
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inadequate knowledge of the modeler or user, inconsistencies in scale and 
resolution within the model, and inappropriate initial values (Zimmermann 
2000, Jorgensen 2017). And, of course, all of these uncertainties can 
propagate throughout the model’s simulated processes (Beck 1987). 
In this book, sources of uncertainty are divided into two components - 
modeling error vs natural variation. Zimmermann (2000) refers to this as 
subjective impression vs objective fact, respectively. Modeling error is 
the uncertainty resulting from shortcomings of modeling, and it is further 
divided into two subcomponents: design and application errors. Design 
errors result from faults in model construction or limitations in model 
design, while application errors result from controllable sources when 
the model was wrongly implemented, such as improper parameterization, 
inappropriate use of the model, and inadequate initializations. These 
sources of error are often correctable in some modeling projects but may 
require abundant resources. Natural variation, often called white noise or 
chaos, is the amount of variation that occurs in nature due to the inherent 
complexities in ecosystems and is nearly impossible to reduce using better 
methods or data. This is true ecological variation that must be accounted 
for in land management actions. Natural variation is not considered model 
error but rather uncertainty that results from the complexity of ecosystems 
that precludes representation in models.

A simplistic illustration of the elements of error, accuracy, precision, 
and natural variation provides a context to understand model uncertainty 
(Figure 2.1). The smallest possible scatter of points from perfect data 
represents the natural variation that occurs in the ecosystem for a specific 
variable regardless of how accurately it is measured. This variation 
includes uncorrectable measurement errors, natural dynamics of change, 
and time-space influences. The size of the scatter above the smallest range 
indicates the consistency of model predictions, often called precision. 
While natural variation is the smallest possible scatter of points, larger 
point scatters include modeling design and application errors along with 
natural variation. The average distance of the points to the actual value is 
called accuracy. If a large scatter of points is directly over the actual value 
(Figure 2.1), then model predictions are considered accurate but not precise 
(Figure 2.1). And if a small scatter is not centered over the actual value, 
then the results are considered precise, but not accurate. If the scatter is 
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has a small range, predictions are probably the best the modeler or user can 
do, albeit it is nearly impossible to quantify the smallest possible scatter. 
But, if the scatter is wide or imprecise, then the model needs adjustment 
to fix the controllable errors (see Chapter 6). The entire scatter of points 
and its relative distance from the actual value is the modeling uncertainty. 
Complications arise when the “actual” value used as a reference to quantify 
accuracy and precision has great natural variation and large measurement 
errors.

The IPCC (2007) uncertainty evaluation guide can be used throughout this 
book as a way to informally rate various details involved in the modeling 
tasks (Table 2.1). This is a quick and easy way to rate uncertainty for 
a parameter’s value, a segment of simulated results, or a set of initial 
conditions. These uncertainty indexes can be entered into spreadsheets 

Figure 2.1. An illustration of the difference between accuracy and precision to understand 
uncertainty (from Circuit Globe). If the spread of points is the smallest possible, then 
the scatter represents a measure of natural variation, but as the scatter widens, model 
uncertainty in design, construction, and parameterization of the model becomes important. 

Accurate and 
Precise

Not Accurate 
but Precise

Not Accurate 
Not Precise

Accurate but 
not Precise

Circuit Globe
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and shared with others when model output is interpreted. For example, the 
project team may decide that the uncertainty of model results of vegetation 
projections has a level 2 “Very likely to occur” assignment based on the 
quality of the initialization, parameterization, and calibration phases. 
Even though the uncertainty assignments are highly subjective, they do 
provide some qualitative description of the value of the simulations to the 
management decision for which they will be used.

Modeling science

There is an entire lexicon on how “models” are scaled up or down to create 
a particular application (Figure 2.3). All models start from theory or 
research findings; theory and knowledge form the most fundamental layer 
of all model designs. From that knowledge, algorithms can be designed 
to represent basic ecological processes or fundamental modeling building 
blocks. The calculation of plant respiration, for example, may involve 
only one formula with two dynamic variables. Algorithms can be stitched 
together using computer code to create a function. Evapotranspiration, 
for example, may require over eight separate algorithms and a number 
of specific parameters to compute evaporation and transpiration (Federer 
1975). Functions are then sewn together for a specific purpose to create 
a module. The evapotranspiration function can be integrated with soil 
water functions to simulate soil moisture. Modules are then combined 

Table 2.1. A classification of uncertainty to use in a modeling project. Level numbers or 
terms can be used to describe how well a parameter is quantified, for example, or how well 
an algorithm represents an ecological process. The project team can even rate the model 

results using this scale based on all uncertainty evaluations.

Level Term Description (probability)
1 Virtually certain 99–100% likelihood of the outcome
2 Very likely 90–100% likelihood of the outcome
3 Likely 66–100% likelihood of the outcome
4 Maybe likely 33–660% likelihood of the outcome
5 Unlikely 10–33% likelihood of the outcome
6 Very unlikely 0–10% likelihood of the outcome
7 Extremely unlikely < 1% likelihood of the outcome
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and integrated to create a computer model. Using our examples, plant 
respiration, evapotranspiration, and soil moisture modules can be 
integrated with modules for photosynthesis to compute stand productivity 
(Collalti et al. 2014). And last, many computer models are combined along 
with user-friendly interfaces for data input and output to create a system. 
Systems are often used by managers or scientists when they need many 
executions of a particular set of models. Systems are usually composed 
of multiple models and sometimes modules that are sutured together for 
a specific purpose, and systems also contain user-interfaces for entering 
input data and summarizing output results. 

There are several spatial ecological terms that are often used in modeling 
science. In forestry, the word “stand” is often used to define an area with 

Figure 2.2. The scaling of various ecological models from theory to systems. Theory is 
first coded into algorithms and these algorithms are integrated into functions that represents 
ecosystem processes. Functions are then fit together to form modules that simulate 
a collection of interrelated processes. Modules are then put together to create a model 
that simulates some ecological entity. Then models are linked to other models to create a 
system that the user ends up using. An example is when an ecological model is linked to a 
graphical user interface and a statistical package that contains complex statistical analyses 

software. Taken from Mark Finney (pers. Communication).
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a homogeneous vegetation conditions; landscape ecologists often refer 
to this area as a “patch” and plant ecologists sometimes refer to this 
as a “community”. In digital mapping, the stand, patch, or community 
is represented by a polygon, a pixel, or a group of adjacent pixels. A 
vegetation community in this book is defined as a unique assemblage 
of plant species and their relative abundances and it is often an attribute 
of a stand. The pattern of stands across space is often called landscape 
structure and the various types of these stands across space is called 
landscape composition (e.g., percent of area in vegetation cover types) 
(Forman and Godron 1986). Landscape structure is usually described 
by various metrics, such as contagion, patch size and distribution, and 
interspersion (McGarigal and Marks 1995).

There are several other landscape ecology terms that are used to define 
resolution, grain, and scale of ecological models. The resolution of raster 
maps is usually defined by the pixel size (length of a side of the square 
pixel, also called the grain) and the area of the pixel defines the minimum 
map unit. Vector maps can be any resolution so usually a minimum 
mapping unit for a polygon is specified to define resolution. A minimum 
map unit indirectly relates to mapscale in resolution. 

Modeling variables

The computer program that represents the model is usually designed to 
have three types of variables (Swartzman 1979). State variables represent 
various ecological entities, attributes, or characteristics with values that 
change during the simulation (Figure 2.3). Common state variables are a 
stand’s basal area, carbon, or soil nitrogen. State variables are influenced 
by various ecosystem flows that cause increases and decreases in the state 
variables and these flows (flux variables) represent ecosystem processes. 
Examples include water loss from evapotranspiration, biomass consumption 
by fire, and nitrogen loss via decomposition. The computation of simulated 
fluxes and how they change state variables almost always require 
intermediate variables, which are variables used to determine transitional 
products within the algorithm. For example, stomatal conductance is first 
calculated from weather, soil, and species information, and then it is used  
to compute evapotranspiration and photosynthesis (Running and Hunt 
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1993). And last, there are many types of output variables that are written 
to computer files for later analysis. Response variables are those output 
variables that are used to directly answer the modeling project’s objectives 
and explanatory variables are used to explore and explain behaviors of 
the response variables. Diagnostic variables are used to explore model 
behavior while changing a specific parameter, process, or algorithm in the 
various phases of a modeling project. 

Each modeled flux or process is usually represented by a coded equation 
that almost always has constant or dynamic parameters, which are values 
that quantify coefficients or threshold values in that algorithm. Values 
for static parameters are set within the computer code and the user often 
cannot change these values, but dynamic parameters are usually input into 
the model by the user (Chapter 5). The computer model often reads values 
for input variables, which can be parameters or initial values. Initial 

Figure 2.3. An example of the various variables in a typical ecological model. State 
variables are represented by boxes, the ecological processes (flux variables) are represented 
by ovals and arrows, and the input variables are represented by the nested boxes. This 
modeling diagram is for the simulation of stand level processes in the FireBGCv2 model 

as documented in the Keane et al. (2011) model manual.
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values are the quantification of the starting value of a state, intermediate, 
or flux variable (Chapter 4).

Modeling tasks 

There are a number of other tasks that need to be accomplished before, 
during, and after a modeling project. First, the modeling project has to be 
designed (Chapter 3). This usually involves the crafting of a comprehensive 
objective, defining of the project design criteria, selecting of the best model 
to use to successfully accomplish the simulation objective, defining the 
simulation landscape, and creating the simulation plan. Model selection is 
a complex evaluation of multiple factors that many find difficult because 
of their lack of experience in modeling. The simulation landscape is the 
area to be simulated; it can be implied by the scale of the model (e.g., 
stand model) or it is explicitly defined by a digital map (e.g., LESM). The 
simulation plan is how the model will be used to answer the simulation 
objective and it usually involves a full factorial design of factors by levels 
(i.e., management alternatives) where each combination of factor and level 
is called a scenario (e.g., two factors of climate and management where 
climate has two levels—current and future hot, dry—and management has 
two levels—no action and thin 1% of the landscape per year).

Once the project is designed, there are six major modeling phases and 
these form the primary topics (chapters) of this book—initialization, 
parameterization, calibration, validation, and execution, and analysis 
(Figure 2.4). In the two beginning modeling phases, initialization is the 
process of quantifying the initial conditions that form the starting place for 
model simulation (Chapter 4), and parameterization is the quantification 
of the parameters needed by model algorithms (Chapter 5). These two 
phases (initialization, parameterization) can take place independently and 
can be accomplished as separate tasks in most modeling projects. They 
usually involve using the same data whether collecting new or compiling 
existing data in the field or synthesizing data from the literature. The 
input data can divided into two classes: data needed to define a starting 
point in the model (initialization) and data needed to quantify a parameter 
(parameterization). Each of these phases prepares the model for execution.
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In the two intermediate phases, calibration is the adjustment of model 
parameters to increase realism (Chapter 6), and validation is the estimation 
of the accuracy and precision of model results (Chapter 7). Calibration 
usually occurs after most parameters and initial conditions are quantified. 
Once the model is calibrated, it is possible that the modeling project it is 
ready for execution but an estimate of model uncertainty is often needed 
to evaluate and interpret model results. So, validation is usually done after 
calibration and is an independent task that indirectly determines model 
uncertainty. Validation may require that the simulated output be compared 
against measured data to determine accuracy. A sensitivity analysis is 
sometimes done on complex ecosystem models during the validation phase 
to determine a parameter’s importance to the simulation response variables. 
This involves changing an important parameter by a pre-determined amount 
and evaluating the influence of this change on model response variables 
(see Chapter 7). The response space is a multidimensional cloud of data 

Figure 2.4. The six critical phases of a modeling project. Six chapters in this book (Chapters 
4 through 9) contain flow diagrams of each of the steps involved in the implementation of 
these six phases and the color of each phase is used in the subsequent chapters. Initialization 
and parameterization are the first, or initial, phases of a modeling project and can be done 
simultaneously, while the calibration and validation are the intermediate phases. Execution 

of the model and analysis of the results are the final phases in a modeling project.
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points of important output or response variables that theoretically defines 
the entire range of model behavior. It is created by incrementally changing 
each of the important model parameters across a range of values to map 
the entire space of possible effects in the response variables. Calibration 
and validation, along with sensitivity analysis, provides several specific 
knowledge to the model user and team: (1) a notion of the uncertainty 
and accuracy of model results, (2) confidence in using the model, and (3) 
experience and knowledge of model behavior important in the interpretation 
of model results. 

Only after the previous four tasks are done, should the model actually 
be used in a simulation project. In the two final phases, execution is 
the process of actually running the model to complete the simulation 
design of the modeling project (Chapter 8), and analysis is the process 
of synthesizing and summarizing model results to complete the modeling 
project and answer the modeling objective (Chapter 9). Analysis usually 
involves importing the simulated data into a data management system, 
such as spreadsheets or data bases, and then linking these databases to 
statistical programs to perform advanced statistical and graphic analysis. 
Analysis tasks are also done during the previous initial and intermediate 
modeling phases for a wide variety of purposes; calibration, for instance, 
might involve the graphical output of all state variables over time with and 
without fire to evaluate if the model is working correctly (Chapter 6). 

Modeling people

There are several definitions used in this book to describe the type of 
people that are involved in a modeling project. The first is the modeler 
who is a person that built the model or it is an expert on modeling—it is 
not the person who is using the model for natural resource management 
applications. The modeler could also be an advanced user and  
co-developer of a specific model, or the developer of another model. 
The user is a generic term for anyone who uses a model and the primary 
person for who this book was written. The user could be the modeler, who 
is using the model for a specific purpose, the advanced practitioner, who 
has used the model extensively, or the technician that simply pushes the 
button to run the model. This book assumes that the user is involved in 
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the planning, design and implementation of a modeling project. However, 
most modeling projects rarely depend on just one person; usually modeling 
projects are implement by a team of people (modeling team). The head of 
the modeling team is called the project manager, and this book assumes 
that the project manager is the primary user. A programmer is a person 
who programmed the model or programmed revisions and modifications to 
the model; the programmer can be the modeler or the project manager, or it 
can be a software engineer employed by the modeler to write code. Often 
in ecological modeling research projects, the modeler, user, programmer, 
and project manager are the same person. Field crews are usually hired to 
collect the data needed to initialize, parameterize, validate, and calibrate 
the model.

Model descriptors

Pairs of contrasting terms are used to describe the design and application of 
the models presented in this book and they could be used by the modeling 
team to understand the intricacies of evaluated models (Table 2.2). This 
list of contrasting pairs is by no means exhaustive, but it does provide a 
lexicon for efficient communication. 

The first, and perhaps the most important, pair is simple vs complex. This 
straightforward gradient of complexity is a wonderful way to describe the 
general construct of many ecological models and provides an important 
context in which to evaluate and use models (Figure 2.5) (Canham et al. 
2004). For example, simple models are easy to learn, use, and understand, 
while complicated models require abundant training, greater computing 
resources, longer project times, and more data (Grant and Swannack 2011). 
Conversely, complex models provide greater exploratory power, extensive 
investigative output variables, and often the ability to explicitly simulate 
climate change impacts (Lucash et al. 2018), while simple models have a 
limited set of output variables and most of the results are highly dependent 
on input parameters, but they are cheaper to build, require less computer 
resources, and are less demanding in input parameter requirements 
(Jorgensen 2017). Complex models often require teams of people to build 
the various components; need abundant software and hardware resources; 
and take a long time to quantify all needed parameters (Elizabeth et al. 
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Table 2.2. A summary of the advantages and disadvantages of the contrasting terms 
defined in this chapter and used throughout the book.

Terminology Advantages Disadvantages
Simple vs Easy to learn, prepare, and run; 

uses few computer resources
Limited output; difficult to validate

Complex Broad range of output variables; 
novel results; gain valuable 
ecological insight

Uses abundant computing 
resources; requires extensive 
expertise in a wide variety of fields; 
difficult to understand and use

Stochastic vs Useful for unstudied or highly 
complex ecological processes 

Demands multiple runs to quantify 
variability

Deterministic Same result each time; need 
only one run; easy to debug and 
understand

Unavailable for many unstudied or 
complex ecological process 

Empirical vs Low uncertainty; easily 
validated; readily available

Can’t expand beyond scope of 
data; climate change and novel 
management strategies may make 
past empirical studies questionable

Mechanistic Incorporate interactions; learn 
new ecosystem behaviors; 
integrate climate change 

Unknown for many ecosystem 
processes; complex and difficult 
for managers to understand and 
interpret (i.e., black box) 

Equilibrium vs Easy to calibrate; understandable 
behaviors; evaluates potential

Often precludes disturbance 
simulation, especially severe 
disturbances; not entirely realistic 
in most ecosystems

Non-
equilibrium

Explore novel and anticipated 
responses; more realistically 
portrays landscapes and 
ecosystems

Difficult to calibrate; unstable in 
questionable parameterizations; 
small changes in parameters may 
yield large changes in response 
variables

Spatial vs Include effects of spatial 
relationships; stratify results 
by zone; impose area-based 
treatments

Difficult to initialize, parameterize, 
and execute; requires abundant 
computer resources; results 
complicated

Non-spatial Quicker; easier to initialize, 
parameterize, and understand 

Need to run multiple times for 
each simulated stand; no spatial 
influences; limited management 
applications

Vector vs Scales up or down depending 
on mapscale; computationally 
efficient

Difficult to include in simulations; 
difficult for managers to understand

Table 2.2 contd. …
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Raster Easy to integrate into models; 
compatible with remotely sensed 
products

Often results in more computation; 
inefficient mapping of management 
units in space

Prognostic vs Predict what will happen in the 
future

One-dimensional look at what 
could happen; doesn’t rectify time 
and space scales

Exploratory Understand ecosystems and 
models

Does not generate results 
management can include in 
planning documents

Research vs Explore landscape behaviors Rarely addresses management 
needs

Management Provide projections for 
alternative management 
strategies

Rarely provides insight into 
landscape behaviors

… Table 2.2 contd. 

Terminology Advantages Disadvantages

Figure 2.5. The tradeoffs between simple and complex models and the gradient of effort 
needed for simple to complex models for a number of tasks. The vertical width of the 
triangle at any given point represents the magnitude of effort relative to the base of the 

triangle.
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2003). The real value of complex models is that they often include the 
complicated interactions of ecosystem and landscape processes over the 
appropriate time and space scales (Gustafson 2013). However, the down-
side of this complexity is that the implementation of the algorithms that 
represent modeled ecosystem processes are rarely done at the same level of 
resolution, detail, and accuracy across all processes, and as a result, there 
is a great deal of uncertainty that propagates across the many interacting 
variables and algorithms so it is difficult to properly address the behavior 
and accuracy of the model across all possible situations (Jakeman et al. 
2006).

Another important term pair is stochastic vs deterministic. Stochastic 
models use probability functions to represent overly complex or poorly 
understood ecological processes (Black and McKane 2012). Wildland fire 
ignition, for example, is often represented by a probabilistic model based 
on fuel, weather, and topography variables because the process of ignition 
is dictated by the complex interactions of many processes operating over 
multiples scales of space and time, such as storm tracks, lightning strikes, 
and fine-scale fuel complex conditions (Fuquay et al. 1979, Balch et al. 
2017). Therefore, stochastic models rarely generate the same results after 
identical simulations. Deterministic models, however, always generate the 
same results each time the model is executed as long as parameters have 
not changed (May and Oster 1976). Deterministic models do not have 
stochastic functions, yet stochastic models may have many deterministic 
functions. Because of compounding errors and uncertainty, stochastic 
variation often increases with simulation time (Figure 2.6). The most 
important thing to remember when using a stochastic model, or a model 
with stochastic elements, is that it needs to be run multiple times to ensure 
you have captured most of the variation in modeling results. Most people 
use 10–20 stochastic model simulations to capture output variability, but 
this really depends on the model being used and how many stochastic 
algorithms are included in the model and their influence on model results. 
If time and computing resources are available, then it is best to perform 50 
simulations using the same set of input parameters, and then analyze results 
for one or more output variables using statistical bootstrap analysis to 
determine the minimum number of runs needed to capture the envelope of 
modeling results (Figure 2.6) (Durrett and Levin 1994, Black and McKane 
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2012). If time is short, then users should use at least 5–10 simulations 
and test at the end of the project if enough runs were made (calculate 
variability across replicates and test against the variability across factors 
in the simulation experiment). 

Models can be either empirical vs mechanistic. Empirical models are 
usually those built from actual data using statistical analysis and modeling, 

Figure 2.6. A figure showing the range of output data generated from stochastic models 
from Marin et al. (2017). Here the stalk biomass of five tropical seedling cultivar trees is 
shown over time. The black line is the daily average of 6000 stochastic simulated samples, 
the gray area refers to the variation of one standard deviation around the daily mean value, 
and red squares are the observed data. Note that the stochastic variation increases with time 

showing increasing and compounding uncertainties in the model.
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such as growth and yield models (Box and Draper 1987). Mechanistic 
models are those that use basic ecophysiological and physical equations 
and algorithms to simulate specific ecological processes (Schoener 
1986). Many mechanistic models use empirical modeling to parameterize 
mechanistic relationships, and vice versa. For example, some empirical 
models use process-based variables as independent variables (e.g., 
predicting basal area from weather) in regression analyses, while some 
mechanistic models are parameterized by statistical analysis. Most 
ecological models, especially LESMs, are built using a complex melding 
of mechanistic and empirical functions. As a result, these two terms 
are only used in a general sense—mechanistic models mostly model 
ecological processes using basic physical principles and empirical models 
are basically an integration of statistical models generated from field data, 
such as least square regression equations. 

Another dichotomy is between equilibrium vs non-equilibrium models 
(DeAngelis and Waterhouse 1987). Models that produce results that appear 
to level off or converge to a stable specific behavior or result are often 
called equilibrium models. Non-equilibrium models may not converge 
to a solution because of the many instabilities and interactions in the 
modeling design, or there may be multiple behaviors for the same set of 
inputs because of modeling uncertainty (Keane et al. 2015). It is important 
to interpret results from each model in different contexts. For example, 
if trends in a landscape conditions haven’t stabilized after some amount 
of simulation time and the model is an equilibrium model, then the more 
time must be added to the simulation to obtain equilibrium. And with some 
non-equilibrium models, the results may diverge in greater magnitude as 
time increases.

Models can also be spatial vs non-spatial models. As mentioned, spatial 
models simulate ecological processes over space (Sklar and Costanza 
1991), but not all spatial models explicitly simulate spatial processes 
(Turner et al. 2001). Spatially explicit models simulate spatial processes 
across the landscape, such as wildlife movement, water flow, and seed 
dispersal. Sometimes a spatial model is simply a stand-level model where 
the input and output apply to a specific pixel or polygon and the influence 
of ecological processes from surrounding pixels and polygons are ignored. 
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Non-spatial models are ecosystem models that represent a footprint on the 
ground, but the size, shape, and resolution of that footprint are intrinsic 
properties of the model.

For spatial models, there are usually two ways to represent entities 
in space—vector vs raster. Vector models simulate landscape units 
as polygons defined by line vectors. Raster models use grids of pixels 
to define the landscape and each pixel has a value associated with the 
simulation. Vector spatial models usually have algorithms that define and 
modify vectors based on complicated topology and this can be somewhat 
complicated. As a result, many ecological landscape models use raster 
designs because of the simplified representation. However, vectors are 
more accurate and often demand less computational and storage resources 
than raster structures. 

Usually, ecological models are used in two ways—prognostic vs 
exploratory. Prognostic applications involve predictions of what will 
happen to the landscape or stand at certain times in the future, while 
exploratory applications involve understanding responses in landscapes 
and ecosystems over time from changes in various biophysical factors such 
as climate, disturbance, vegetation, or management regimes. Prognostic 
models are commonly used in resource management and a common 
prognostic application is to use a mensuration model to determine increases 
in timber volume after 50 years (Stage and Wykoff 1993). Exploratory 
models are used in a broader sense; for example, to evaluate the changes 
in fire regimes and forest succession over time (Loehman et al. 2010). This 
is a subtle but important point. Prognostic models are used to predict what 
will happen in an absolute sense (e.g., landscape composition in 50 years), 
while exploratory models are used to evaluate over longer time spans 
(e.g., how will wildland fire regimes change under warming climates). 
The real difference between the two really comes down to uncertainty 
and stochasticity. Highly uncertain or highly stochastic models are rarely 
used as prognostic tools. An example would be in the assessment of 
spatially explicit fire regime shifts. Nearly all spatial fire models need to 
stochastically simulate fire ignition or fire starts because a deterministic 
approach is difficult at this time (Keane 2012). As a result, fires occur 
in different places and different times across each model run. Therefore, 
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it is difficult to predict landscape composition after 50 years because it 
all depends on where and when the fires occurred (Keane et al. 2006). 
An exploratory approach is the primary use of highly stochastic models. 
Moreover, if the model has a great deal of uncertainty in the parameter 
valuation and algorithm construction, then its use should be avoided for 
prognostic applications unless the inherent uncertainty can be quantified.

One last pair of terms specify the eventual application of the model – 
management vs research. A management model was developed 
specifically for a common land management analysis task, while a 
research model is usually used to explore various responses to changing 
parameters for higher level research analyses. Many believe that research 
models will eventually become management models, but that is not 
always the case. Most research models are so computationally demanding 
and so parameter heavy that they will never find a use in management. 
However, many management models are often used in research studies, 
but their limited flexibly and simplistic structure often confine model 
applications to simple comparisons. Some research models are built 
with no real management application; neutral models, for example, often 
employ derived hypothetical landscapes to explore landscape behaviors 
(Gardner and O’Neill 1991, Fall and Fall 1996). Generally, management 
models are simpler to use, easier to understand, and better designed to 
answer resource questions. The problem is that the research models often 
represent the best available scientific knowledge, so many users want to 
employ the more state-of-the-art program for a specific task because it is 
more acceptable to the public.

Understanding the Different Types of Models

Most of today’s ecological models, especially LESMs, are often built by 
merging components of many ecological models together into one program. 
As a result, it is difficult to classify complex models into generalized 
categories or types (Keane et al. 2004, Scheller and Mladenoff 2007, He 
2008). Using the terminology presented previously, the LANDIS II model 
(Scheller et al. 2007), for example, could be called a complex spatially 
explicit raster model that uses a mechanistic approach developed for both 
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management and research applications. Albeit, there are many types of 
models and many types of classifications in the modeling literature that 
may confuse many people, especially novice users. Instead of classifying 
models, this section presents a small introduction into the types of models 
available by important modeling topics by major topic areas.

Scale

Each model is designed for use at specific spatial and temporal scales 
(Turner et al. 2001) (Figure 1.1). Ecosystem dynamics are influenced 
by a plethora of interacting factors that act across scales, so ecosystem 
models must address the various scales of the processes being simulated 
(Figure 2.7). In natural resource ecological modeling, there are often three 

Figure 2.7. A diagram of major ecosystem process and their inherent temporal and spatial 
scales. Taken from Moritz et al. (2005). Often, ecological simulate the listed processes at 
finer scales, but results are usually summarized up to the inherent scale of process behavior.
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types of models named for the scales at which they operate. The point 
model is a computer program that simulates processes at a specific point or  
un-specified area on the ground, and the spatial extent of this point is often 
small (< 25 m2) and intrinsically build into model design. Many fire models, 
such as FOFEM (Reinhardt and Keane 1998), BEHAVE (Andrews 1986), 
and BURNUP (Albini 1994), are considered point models because their 
design is for small (< 100 m2) representative areas. The stand or patch 
model simulates processes at a patch scale (> 100 m2). An example might 
be a model that simulates stand-level processes such as tree growth in gap 
phase models (Botkin 1993), timber volume in growth and yield forestry 
models (Wykoff et al. 1982), or vegetation type change in common state 
and transition models (Kurz et al. 1999). Inputs to a stand model might be 
a list of trees within a pre-determined area, and usually, the size of that pre-
determined area represents the footprint of the model. As a result, many 
people call non-spatial models “point” models if the footprint is small or 
stand models if the footprint is large. The landscape model is a spatial 
model where ecological processes are simulated across many scales. 
A landscape model, for example, might simulate photosynthesis and 
respiration at the point level for an individual tree, then summarize these 
simulations over the trees in each stand on a landscape, and then scale 
those values up to the landscape level (White 1996). Another important 
aspect of the landscape model is that they often simulate spatial processes 
such as hydrology, seed dispersal, and disturbance spread (Scheller and 
Mladenoff 2007). There are coarser scale ecological models for regional to 
global applications, such as DGVMs (Purves and Pacala 2008), but these 
models are rarely used in natural resource management.

Simulation models often have one or more temporal scales. The minimum 
time it takes a model to go from one time to another time is called the 
time step and the length of time of the simulation is often referred to as 
the time span. As the model is working, the number of years that separate 
the printing of output is called the reporting interval. The time step is a 
model design criteria, while the time span and reporting interval are often 
decided by the user. Some landscape models not only have nested spatial 
scales, but they also have hierarchically nested time scales simulating 
ecosystem processes at the hour, day, month, and year time steps, such as 
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the FireBGCv2 model (Keane et al. 2011). Ecological models are often 
classified or described by their inherent temporal scale, or the scale at 
which the output is most appropriately interpreted (Figure 1.1). Daily 
models, such as weather and hydrology models, often simulate processes 
at minute or hour time steps, but their results are summarized over days. 
Daily time steps are usually used in year, decadal, and some century 
models, but many landscape models, such as S&T models, are decadal 
or century models that use a yearly time step. The complex landscape 
models often mix time steps to simulate ecological processes at the most 
appropriate temporal scale, but their output is best interpreted in a decadal 
or century view.

Vegetation models

Vegetation models are those that simulate the development processes 
of flora in a landscape. These models may range from simulating the 
growth of individual plants to the seral stage progressions of entire plant 
communities (i.e., states and transitions). Vegetation is represented by 
many classifications in management-oriented ecological models including 
individual plants, cohorts, species, plant functional types (i.e., species 
guilds), and community types (e.g., cover type). Some models have 
mixes of all of these attributes. An individual plant model has the plant 
as the finest resolution of simulation in the model, such as a tree, shrub, 
or grass plant. Each plant is usually represented by a set of attributes, 
such as biomass, diameter, height, and canopy cover, and the demographic 
processes of reproduction, regeneration, growth, and mortality of plants 
may be simulated from multiple ecosystem processes. Cohort models 
simplify the composition and structure of plants in a vegetation community 
into a specific classification of attributes. Examples of specific cohorts 
implemented in models are age, plant size, and health classes. Perhaps the 
most well-known LESM that uses cohorts is LANDIS (Mladenoff and He 
1999), which has cohorts of species by diameter classes. Species models 
simulate changes in state variables at the plant species level. For example, 
phenology in some ecological models is often simulated at the species 
level rather than the individual plant level. A plant functional type (PFT) 
is often composed of a suite of species that are grouped together for the 
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purpose of simplicity in the simulation architecture (Chapter 5) (Running 
et al. 1994, Lavorel et al. 1997). Other names for this type of vegetation 
representation are species functional types (Bonan et al. 2002), species 
guilds (Wilson 1999), and functional groups (Blondel 2003). In short, PFTs 
are a great way to group an assemblage of similar species together so that 
they can be parameterized as a group. Examples of PFTs are needleleaf 
conifers (used in DGVMs) (Running et al. 1994), fire tolerant shrubs (used 
in fire effects models) (Thonicke et al. 2001), and C3 vs C4 photosynthetic 
pathway grasses (used in carbon production models) (Kirschbaum 2004). 
And perhaps the coarsest vegetation representation is the community type 
which is a generalized classification of broad scale vegetation descriptions 
that is designed specifically for research and management applications. 
Cover types, which are often identified as the species with the plurality 
of some abundance measure (e.g., canopy cover, basal area, density), is 
the most common classification used to represent forest community types 
(Eyre 1980), but community types may also be classified by structure 
as well as composition (Oliver and Larson 1990). Zhu et al. (2006) 
integrated a cover type classification with a structural stage classification 
that was based on the height and cover of the canopy. There are coarser 
representations of vegetation in ecological modeling including biomes 
(Neilson 1995), ecoregions (Bailey 1995), life and crop zones (Merriam 
1898), climate zones (Fovell and Fovell 1993), but these are too broad 
for most natural resource management analyses. Coarser scale vegetation 
representations can’t facilitate the simulation of vegetation developmental 
processes in detail because of computing resources, redundancy, high 
uncertainty, and ecological scale problems (Purves and Pacala 2008). 

Several types of common vegetation models are referenced in this book. The 
simplest vegetation models are often state and transition (S&T) models 
where the development pathways of important vegetation communities 
(i.e., states) are defined and then time that it takes for each state to transition 
to another are quantified. Land management has used S&T models for 
many applications in the past (Barrett 2001, Keane et al. 2006, Wimberly 
and Kennedy 2008, Barros et al. 2017). Many have described “states” by 
vegetation composition, structure, age class, and density classes (Keane et 
al. 1996, Li 2002, Wimberly 2002, Chew et al. 2012). Next in complexity 



37

Modeling Fundamentals—What You Need to Know to Use This Book

are the cohort models that simulate groups of individuals instead of 
individuals alone (see previous paragraph). For example, LANDIS 
simulates a number of diameter cohorts (i.e., classes) by species for trees 
(e.g., 0–5 cm diameter, 5–10 cm diameter, and so on) (Mladenoff and He 
1999). And perhaps the most complex are the individual plant models 
that simulate the growth, regeneration, and mortality of individual plants 
across the stand and landscape. The well-known gap models, such as 
JABOWA (Botkin et al. 1972), SORTIE (Ribbens et al. 1994), and Zelig 
(Urban 1990), simulate regeneration, growth, and mortality of individual 
trees at a stand level (Figure 2.8). FireBGCv2 has an embedded gap model 

Figure 2.8. A representation of the gap model Forclim (Bugmann and Cramer 1998). In 
a gap model, a tree grows by computing a maximum diameter and height increment using 
theoretical mensuration growth curves and those maxima are reduced by various extrinsic 
(climate represented by degree days and drought curves) and intrinsic (dynamic stand 

conditions represented by shading and tree density) factors.
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simulates individual trees in portions of stands across entire landscapes 
(Keane et al. 2011). 

Disturbance models

Disturbance models and modules simulate effects of various perturbations 
on ecosystem dynamics. Some may argue that disturbance, not vegetation, 
is the major factor influencing landscape dynamics over time (Dale et al.  
2001, Keane et al. 2013), and therefore disturbances are incredibly 
important in ecosystem modeling. There are many disturbance models that 
simulate the dynamics of the disturbance agent (Logan and Bentz 1999, 
Hatala et al. 2010), but to realistically simulate ecosystem dynamics, 
those disturbance models must also simulate the interactions of that 
disturbance on other ecosystem entities, such as vegetation. It is important 
that the frequency and intensity of the disturbance and the impact of 
each disturbance event on ecosystem processes and characteristics be 
represented in a model (Keane et al. 2015).

Disturbances simulations in spatially explicit ecosystem models nearly 
always involve four separate phases—initiation, spread, effects, and 
termination (Keane 2013). In initiation, the start of a disturbance is 
often simulated based on climate, topography, and ecosystem conditions. 
Examples include the start of a wildfire from lightning, the commencement 
of grazing by ungulates, the start of an outbreak of bark beetles in pine 
forests, and the beginning of a flood from heavy rain. Once initiated, the 
disturbance is then spread across the landscape. Examples include the 
spread of fire along vectors of wind, slope, and fuels, the travel of grazing 
ungulates across a landscape, the flight of bark beetles as they mature 
and fly to new hosts, and the flow of floodwaters across the basin. As 
the disturbance is spread in a spatial domain, it impacts the ecosystem 
in a variety of ways and has various effects. Wildland fire, for example, 
may consume fuel, create smoke, and kill plants or plant parts, while 
cows may eat specific plant species, bark beetles may cause tree mortality 
and stress, and floodwaters may deposit nutrients and soil. And lastly, 
simulated disturbances must end (termination). This is perhaps the most 
difficult of disturbance phases to simulate as it usually involves complex 
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understanding of interacting ecosystem conditions. Limited fuels and wet 
weather may stop the spread of fire, while humans may round up cattle 
for slaughter, beetles may kill all the tree hosts, and rains will eventually 
subside to end flooding.

In this book, disturbance models are often described by the type of 
disturbance being simulated. Rarely are multiple disturbances simulated 
by the same module, but many ecosystem models may have multiple 
disturbance agents and modules. This brings up an interesting dilemma—
how many disturbances should be included in a model to realistically 
simulate ecosystem dynamics (Keane et al. 2015). Often, models contain 
only those important disturbance agents that create major changes in stand 
or landscape conditions, such as wildland fire, bark beetles, and spruce 
budworm in North America, but there are also minor disturbance agents 
that could create significant impacts if summed across the entire landscape 
or if there is a severe outbreak, such as dwarf mistletoe, grazing, and 
endemic diseases. Or, these minor disturbances may become major factors 
under climate change (Dale et al. 2001). Often modelers will include only 
the major disturbances in their model and ignore the minor agents. For 
example, Loehman et al. (2017) used the FireBGCv2 model to assess 
combined and individual effects of mountain pine beetle, white pine blister 
rust, and wildland fire on US northern Rocky Mountain landscapes, but 
FireBGCv2 did not contain the many other disturbance agents that may 
impact ecosystem dynamics, such as spruce budworm, dwarf mistletoe, 
and grazing. This does not mean that the model is inaccurate or unrealistic, 
it only means that the lack of these minor agents in model structure should 
be assessed in the interpretation of model results.

Climate models 

Because of the sheer number and types of climate models, a comprehensive 
review and synthesis is inappropriate for this book. However, there are 
some aspects of climate models that users of ecological models should 
be familiar with to understand and interpret model results. First, climate 
models are rarely integrated into landscape or ecological models; the 
outputs from climate models are almost always used as inputs to the 
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ecological model. Climate model output is often stored as daily streams 
(time series) of one or more of the major weather attributes: temperature, 
precipitation, humidity, radiation, and wind for example (Friend 1998). 
Each attribute is quantified using a wide variety of measurements; 
temperature, for example, is quantified by daily minimum and maximum 
temperature measured in degrees Celsius, while wind is measured as 
direction and speed. Historically, ecological models used downloaded 
weather files from a variety of sources that were reformatted to a native 
format for climate input. Sometimes, weather is extrapolated across 
the simulation landscape using a wide variety of computer programs 
(Hungerford et al. 1989, Thornton et al. 2000). However, raster grids of 
these measurements are now readily available and seem to be the primary 
means of representing climate across space in contemporary ecological 
models (Knutti and Sedlacek 2013, Rupp et al. 2013). These grids can be 
of varying extents and resolutions from 5o latitude-longitude at monthly 
time steps to 10 km pixels with daily weather estimates. Some ecological 
models access these grids directly, while others use specialized software 
to access a time-space “slice” taken from these grids and format into the 
ecological model’s native format. Many landscape models, for example, 
use computer programs to extract the daily weather from these large 
climate grids to summarize to monthly time steps for only the landscape 
area (Keane and Holsinger 2006). These grids can be historical climate 
reconstructions or climate forecasts into the future. 

In general, there are three scales of climate models that generate the data 
often used in landscape and ecological models. The global circulation 
models (GCMs) simulate coarse-scale climate dynamics across the earth 
often using mechanistic approaches. GCMs have broad spatial resolutions 
(e.g., 0.25 to 1 degree latitude and longitude) but fine temporal resolution 
(e.g., daily). Regional climate models simulate climate at finer scales  
(< 100 km pixel size) and may use GCM output to set the boundary 
conditions for the finer scale simulations. Many global and regional 
models use a mechanistic approach in simulating climate dynamics often 
employing conservation of mass and momentum approaches into the 
model. Local climate models are used at the finest scales and include both 
mechanistic and empirical approaches. Local climate grids can be 1 km 
and finer and include many weather variables at daily time steps.
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Users can create climate inputs to ecological models using a bottom up or 
top down method. In the bottom up approach, measured weather variables 
from weather stations constitute the finest resolution of data available for 
ecological modeling. These direct observations often include maximum 
and minimum temperatures, amount of precipitation, humidity, and wind 
speed and direction, and some weather stations also include cloudiness, 
soil temperature, and radiation (e.g., short and longwave). These point 
data can then be extrapolated upwards in scale and over large regions 
using statistical modeling (Thornton et al. 1997, Thornton et al. 2000). 
Most FireBGCv2 model applications, for example, often use extrapolated 
weather station observations across the landscape calculated from the 
MTCLIM program (Hungerford et al. 1989). Often, weather records from 
local weather stations have a limited temporal depth (only a few decades 
of daily data) which poses a problem for long term ecological modeling in 
that many climate oscillations and teleconnections are poorly represented 
in a short weather stream. The Pacific Decadal Oscillation, for example, has 
a multi-decadal variation, while El Nino Southern Oscillations are much 
shorter (Gershunov and Barnett 1998, Newman et al. 2003). If a weather 
record does not capture long-term teleconnections, then the temporal 
variability of that weather record is inadequately represented. One way 
to expand a short-term weather record is to compute summary statistics 
for that record and enter them into a weather generator (Nicks et al. 1987, 
Friend 1998). The weather generator can also be used to create several 
alternative climate scenarios. However, many ecological models demand 
multivariate weather records (e.g., temperature, precipitation, radiation) 
and most weather generators cannot accurately extrapolate synchronized 
multiple weather variables over time (e.g., the temperature time series is 
not matched to the precipitation time series). Another method to lengthen 
weather records is to use empirical methods to statistically model the 
missing data from a nearby weather station with a longer record. 

The climate grids created by GCMs or regional climate models constitute 
the base data for top down approaches (Wilby and Wigley 1997,  
Salathe et al. 2008). Here, the coarse scale calculations or simulations  
(e.g., 1 degree by 1 degree) can be directly used as inputs to ecological 
models, or more appropriately, that coarse data can be scaled down using 
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mechanistic modeling and statistical techniques. Mechanistic climate 
models can use coarse scale climate as input to simulate finer scale weather 
records (Pielke et al. 1992). Or, statistical extrapolation techniques can 
be used to calculate fine scale data (Nabel et al. 2014). Often, finer 
representations of spatial topography are also included to more accurately 
simulate weather interactions with aspect, slope, and elevation regardless of 
approach. The WXFIRE model extrapolated daily DAYMET climate grids 
(https://daymet.ornl.gov) with 1 km pixel resolution to finer resolutions 
(30 m) using statistical approaches (Keane and Holsinger 2006). 

Other models

There are several classes of ecological models that are different in design 
and implementation used in land management and deserve mention here 
(Jørgensen 2008). The agent-based model (ABMs) directly simulate 
autonomous “agents” in a spatiotemporal domain across various scales 
(Niazi and Hussain 2011, An 2012). These agents can be an individual, 
such as a beetle, seed, or person, or they can be a collective group 
(Bone and Altaweel 2014), such as a herd of cows, a clone of trees, or 
a colony of seals. The goal of ABMs is to explore collective behavior 
of ecological agents following natural rules rather than as prognostic or 
predictive implementations. ABMs are also referred to as individual 
based models (IBMs) (Grimm and Railsback 2013) in that the agents 
are commonly individuals. But IBMs can include a host of other types of 
individual models, such as those mentioned next under vegetation models. 
ABMs have been used for many purposes such investigating effects of 
alternative policies on land use patterns or resting social science concepts 
analysis (Matthews et al. 2007). Fuzzy or knowledge-based models use 
information technologies (e.g., artificial neural networks, fuzzy logic, 
artificial intelligence) to simulate ecological systems when little data are 
available to develop more comprehensive relationships (Chen et al. 2002). 
Population models date back to the Lotka-Volterra model where the focus 
is on the changes in biotic population structure over time (Law and Morton 
1993). These may be IBMs, but more commonly, the population is a state 
variable and number, age, and health, for example, are attributes of that 
population.

https://daymet.ornl.gov
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Reasons to Use Ecological Models

The number of complex interactions across the seemingly countless 
factors that influence ecosystem dynamics are so great that they boggle 
the human mind. This is especially true in climate change investigations 
(Keane et al. 2015). Educated guesses are meaningless in such complicated 
circumstances, especially for long-term forecasts. This is when people 
turn to modeling—a way to integrate numerous interactions to explore 
non-linear, unexpected responses. Therefore, many resource management 
professionals use ecological models when the prediction or assessment of 
“real world” ecosystem or landscape responses is so complicated that it is 
impossible to visualize, evaluate, and understand by the human mind or 
impossible to measure in the field using empirical approaches (Canham et 
al. 2004). 

Another common reason to use ecological models in natural resource 
management is to predict future conditions (prognostic application) for 
evaluation of alternative management strategies (see Figure 1.1). Here, 
models are executed for several management, disturbance, and/or climate 
scenarios to determine what the ecosystem or landscape may look like 
after a certain period of time. In this book, the term prediction, projection, 
and forecast are used to portray this application. While interesting, this 
application is not always the best for land management because it often 
misses some of the rare, larger disturbances events, such as wildfire in 
North American (Turner and Dale 1998, Scott et al. 2014). Models can 
simulate planned management activities, but it is incredibly difficult to 
simulate locations of future disturbances, such as fire and insects, because 
of high stochasticity of initiation and their large area of influence. Often, 
most of the natural variability in future landscape predictions comes from 
the randomness of disturbance initiation (e.g., wildfire starts) (Keane et 
al. 2011). Unplanned disturbances may overwhelm the subtle differences 
among scenarios of management alternatives. One can choose to ignore the 
impact of unplanned disturbances, but then the output becomes somewhat 
abstract and hypothetical. A better approach is to make the origin and 
footprint of the disturbance the same in all simulations or use the model 
for a non-prognostic application.
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An alternative to prognostic applications is to describe future long-term 
changes of landscape of ecosystem dynamics in terms of “regimes” that 
are often defined as the spatiotemporal expressions of ecological processes 
(Keane 2013). So, instead of simulating a landscape for 50 years, it would 
be simulated for 500 years and maybe multiple times. This would provide 
a comprehensive description of how the vegetation, fire, and hydrologic 
“regimes” have changed given a specific climate and management futures 
that, in turn, provides an envelope of possible responses. Changes in fire 
regimes, for example, would be described by differences in fire rotation 
or fire frequency, and changes in vegetation would be described using the 
distributions of community types. This approach simulates ecosystem 
dynamics over the temporal scales that are more appropriate for evaluating 
change and, as a result, is used in most modeling projects in my experience. 

People also use models when the spatiotemporal domain of empirical 
data is too limited for a valid analysis. Sometimes, a process model can 
be used to simulate tree growth in environments where existing in tree 
ring chronologies are rare (Hunt et al. 1999) or to estimate the intensity 
and extent of fires in a watershed catchment from paleoecological records 
(Solomon and Jr. 1984). Growth and yield predictions can be adjusted to 
account for climate change (Korol et al. 1996, Crookston et al. 2010) and 
impacts of fuel treatments can be summarized across an entire landscape 
(Diggins et al. 2010, Chung et al. 2013). 

Another common application of modeling in land management is to 
characterize some expression of ecological variation to use as a reference 
or benchmark for comparing to other outcomes or conditions. And the 
most common of these applications is the quantification of an expression 
of the historical range and variation (HRV) of landscape properties (Keane 
2012). Here, the model is initialized and parameterized for historical 
simulations, such as pre-European fire regimes and historical climate, and 
then run for hundreds to thousands of years to generate a comprehensive 
description of the ranges and variations of selected landscape variables, 
such as vegetation composition and structure. This can then be used as a 
reference for resilience (Keane et al. 2018), ecosystem health (Landres et 
al. 1999), or desired future conditions (Blocker et al. 2001).
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Landscape Model Used in This Book

The FireBGCv2 model (Keane et al. 2011) is used to provide examples 
and demonstrate many of the steps, tasks, phases in this book. It is 
a mechanistic LESM with stochastic elements that simulates basic 
ecophysiological processes and spatial dynamics to estimate the 
growth, mortality, and regeneration of individual trees, and shrub and  
herb guilds. This model was often applied to a specific landscape, the  
East Fork Bitterroot River (EFBR) basin, a snowmelt-dominated,  
105,487-ha watershed (elevations, 1,225–2,887 m) in west-central Montana,  
USA (Figure 2.9). Annual precipitation in the EFBR averages 41 cm 
(range, 26–57 cm) with most falling as snow from November to March. 
The area has primarily a mixed-severity historical fire regime (Arno et al. 
2000) with short intervals between low-to-medium intensity fires (mean 
frequencies of 11–30 years) except in steep terrain, lower-subalpine, and 
north-facing slopes where stand-replacing fires can occur. It is discussed in 
detail in several publications (Holsinger et al. 2014, Loehman et al. 2017).

Figure 2.9. The East Fork of the Bitterroot River landscape used as context for some of 
the examples throughout the book.
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3
Project Design
How to Plan a Modeling Project

“All problems are solved with good design.”

Stephen Gardiner

Modeling project—direct application of an ecological or landscape 
model for research or management purposes.

ABSTRACT
Designing a modeling project is covered in this chapter through a 
series of steps that starts with setting the modeling objective and ends 
with implementing a successful modeling project. Once an objective 
or set of objectives are decided, the user needs to decide on a set 
of design criteria that will set the boundaries of various decisions 
made during the modeling project. These criteria include cost, data, 
expertise, and computer limitations, along with target accuracies 
and spatial and temporal resolutions of the project. These criteria 
are then used to select the right model for the project. Once the 
model is selected, then the simulation landscape or spatial domain 
of the project can be delineated. Finally, the actual design of the 
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simulation scenarios is covered, especially the use of hierarchically 
nested scenarios to simulate ranges of management alternatives and 
environmental uncertainty. This is followed by various suggestions 
on how to ensure the design is properly implemented in the project.

Introduction

Hopefully, the reader now has a cursory understanding of modeling science 
and it’s time to start designing a modeling project. This can be as easy as 
applying an existing model that has been previously parameterized and 
initialized to a new situation, or as complex as modifying an existing model 
to be applied to a landscape and ecosystem that has never been studied. 
This chapter deals with the steps needed to design a modeling project  
(Figure 3.1), while the remaining chapters deal with the actual 

Figure 3.1. The steps involved in model project design. Suggestions on how to complete 
the steps is summarized on the left side of the figure.

Use SMART principles
Review with team

Set spatial domain
Set temporal domain
Identify resources

Set evaluation criteria
Balance practicality with realism
Evaluate each model

Define management area
Create a buffer
Minimize edge effects 

Decide on replicates
Decide on factors and their levels
Create factorial design

Develop Objective

Define Project

Select Model

Select Landscape

Create Simulation Design

Start Initialization and Parameterization
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implementation of that project for a natural resource management 
application. 

There are several tasks that must be completed to set a strong foundation 
and to design the simulation architecture of the project so that all decisions 
and activities concerning that project have a comprehensive context  
(Figure 3.1). All of the project steps mentioned in this chapter are sequential 
and build on each other. First and most important, a succinct objective 
must be stated so that a solid decision framework is created. Then the 
limiting factors of the project must be defined, such as available resources, 
timelines, expertise, and project area. A model is then selected based on 
those criteria. Once the model is chosen, the temporal and spatial domain 
of the simulation area can be decided. Last, the simulation project must be 
designed by deciding on the simulation parameters for model execution 
including scenario design, simulation time, and output reporting interval. 
Once these steps are completed, the initialization and parameterization 
steps described in the next two chapters can be started. 

Developing a Modeling Objective

Designing the modeling objective is easily the most important aspect in 
any modeling project. It is more important than model selection, parameter 
quantification, or computing resources. Setting the modeling objective 
sets the context for the entire modeling project and assures that model 
results will in fact meet decision-support needs. All modeling decisions 
made during the project will be done by referencing the objective. The one 
thing to remember from this chapter is to spend the time to craft a useful 
and comprehensive modeling objective.

While there are many guides on how to construct a practical modeling 
objective (Keeney 2007), the SMART principles are perhaps the best 
guidelines for setting objectives in the modeling environment. SMART 
stands for Specific, Measureable, Achievable, Relevant, and Time-
based (Lutes et al. 2006, Bovend’Eerdt et al. 2009). Objectives should 
avoid generalities and be specific about what is needed. An objective of 
“Simulate fire in northern Australia” is missing key specifics of: (1) where 
in northern Australia, (2) what attributes will be used to describe fire (e.g., 
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fire intensity, severity, and pattern), and (3) what time period should be 
represented or simulated. Once the specifics are set, then it is important 
that the specified objective be measureable so that model results can be 
compared against values reported in the literature and from local studies 
(see Chapter 7). An objective that states “Compare impacts on forest 
growth” should include specifics on the variables that will be used to 
measure forest growth, such as basal area, biomass, or tree diameter (i.e., 
attributes that are easily measured). It is also important that the simulated 
variables link directly to the natural resource management planning task. 
Obviously, all objectives must be achievable and relevant, but in this book, 
objectives must link directly to the model being used so that the desired 
variables are output by the selected model. Many projects have chosen 
models whose outputs were not useful in management planning and were 
nearly impossible to measure in the field, such as belowground carbon. 
And last, the objective must include a timeline, both for the project itself 
and also for the modeling context. For example, the objective might say 
“Compare impacts … across five decades of simulation and present results 
at the March 2023 conference”. I’ve found many users make the mistakes 
of: (1) using goals instead of defining objectives (not specific), (2) failing 
to mention what is being simulated and what variables should be output 
(hard to measure), (3) specifying too many tasks for a modeling effort (not 
achievable), (4) including aspects that are unrelated to the simulation effort 
(irrelevant), and (5) forgetting to add deadlines and scheduling concerns 
(not time-based). Without doubt, a well-stated objective is the keystone of 
a successful simulation design and the foundation of a successful project. 

It is strongly recommended that, once the modeling objective has been 
clearly articulated, the structure and format of the anticipated simulation 
results should be developed. This may sound odd—designing the tables 
and figures for a report before the model has actually been selected or run– 
but it will save time and resources by eliminating needless exploration of 
inappropriate models and unnecessary model analysis. There is nothing 
more frustrating than completing months of simulation only to find that 
the most appropriate variables for answering the objective were never 
available or output. Or conversely, a model might provide copious output 
for numerous variables, but when it comes down to writing the report, the 
user realizes that only a fraction of the terabytes of output was actually 
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needed. It is suggested that the modeler mock up the design of 3–5 
figures or tables that could be used to efficiently evaluate and complete 
the model objective. These tables can be summaries of response variables 
that represent the ecosystem processes, or syntheses of the relationship 
of the response variables to the factors (i.e., explanatory variables) 
that influence them. Think of these two kinds of variables as answers 
to the questions “What” (what happened=response) and “Why” (why 
did I get these results=explanatory). Decision theory uses the notion of 
“consequence tables” as a more in-depth application of the mock tables 
and figures presented here (Gregory et al. 2012). In consequence tables, 
the variables and their units are selected and their anticipated magnitude 
and direction are estimated by each management alternative. While the 
reader is encouraged to create more tables and figures to explore and 
interpret model results during the analysis phase (Chapter 9), the primary 
set of finished figures and tables will ensure the objective is answered.

Last, it is also recommended that modeling projects take a scenario-based 
approach to project design because of the high uncertainty in model design 
and implementation. Most models are so complex and demand such 
extensive parameterizations that accurate results are difficult to obtain. As a 
result, it is best that the model results be interpreted in a comparative sense 
rather than using modeling results as the absolute answer. The strengths 
of ecological models are best realized through comparison of alternatives. 
Another words, instead of simulating just one management goal or 
alternative, it may be best to create a set of scenarios that bound the range of 
possible responses given the modeling objective. For example, instead of 
simulating the future fire regime for a landscape using one climate change 
scenario, it is recommended that several nested scenarios be employed, 
such as three climate scenarios, three fire management scenarios, and 
three land use scenarios for a total of 27 different scenarios. This will  
provide a range of possible responses over all possible management 
alternatives and will give insight into model sensitivity and behavior. 
Moreover, it is suggested that the scenario results be analyzed across 
at least two time frames – the management horizon and ecological horizon. 
Often, the management horizon is one to five decades in the future, 
encompassing the time scales of planning. However, ecosystem response 
often can’t be evaluated with in that short of time span because many 
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simulated climate, disturbance, and vegetation regimes have yet to cause 
discernible impacts because of system inertia. Therefore, simulations of 
one to ten centuries may be necessary to see the cumulative ecological 
impacts of the simulated entities.

Defining the Project 

Once the modeling objective is clearly stated, the overall design of the 
modeling project can begin. There is a wide array of factors that must 
be addressed so that the six major modeling tasks in this book can be 
accomplished with the greatest efficiency. These elements will set the 
sideboards on various decisions that will need to be made throughout the 
project development and implementation. For example, these criteria may 
be used as a reference when deciding the timeline, detail, accuracy, and 
thoroughness for successful completion of each of the six phases. These 
criteria mirror the selection criteria for deciding on the most appropriate 
model discussed in the following section, but the project criteria pertain, 
not to individual models, but to the resources available to successfully 
complete the modeling objective. 

When does the project need to be completed?

The first specification for the project is the amount of time available for 
completion. I’ve found that the timeline is often the most important design 
element in a modeling project, and this includes report writing and publication 
of results. Modeling projects that must be completed quickly (months) will 
probably require simple models that are easy to use because the analyses will 
be uncomplicated and the interpretation of results straightforward with little 
exploration and insight (see Table 2.1). Complex modeling projects that use 
mechanistic models and complicated scenario designs will take a great deal 
of time and modeling project managers should plan for prolonged analysis. 
Many modeling projects have been abandoned because people spent too 
much time in the initialization and parameterization phases, and not nearly 
enough time in analysis and report writing because time spent in later phases 
(Figures 1.2, 2.4) is often compressed. Deciding on a “drop-dead” date for 
the project’s end is always best, and some have established three deadline 
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dates—best case (soonest), most likely, and drop-dead (latest). It is also 
advisable to set deadlines for each of the phases in the project based on the 
timeline of the project.

Are sufficient computing resources available?

The second specification is the amount of the computing resources available 
to do the project. Too often, simulation designs are so complex that they 
can’t be implemented on the available computers, or the generated output 
requires some much disk space that it can’t be stored on native disk drives, 
or output files are so big that it can’t be analyzed using conventional 
statistical programs. Limited computing resources may mean that simple 
models are the only alternative.

Both hardware and software demands should be considered. Not only does 
there need to be sufficient computing power to finish the simulations, there 
also needs to be the software available to perform all of the modeling 
tasks, such as GIS software for initialization tasks, graphical programs for 
calibration, and statistical packages for analysis. Often, computing power 
is measured in two ways—number and speed of processors and amount of 
resident memory (RAM). The most common problem that I’ve encountered 
is the lack of sufficient computer memory for running complex models 
and there often isn’t an informative error message when this happens. 
Hopefully, model developers have memory recommendations for their 
programs, but many times, modeling projects find hardware computing 
limitations by trial and error.

Who is available to help?

The third criteria is the identification of expertise available to help with 
modeling and analysis chores. It is highly recommended that the developer 
of the selected model be available for consultations, otherwise, it will be 
quite difficult to efficiently prepare, run, and evaluate model results. If the 
developer is unavailable, then it is critical that a relationship be started with 
other ecological modelers or someone who has used the selected model in 
the past. Countless modeling projects have spent inordinately long times 
on various modeling phases that could have been greatly shortened if they 
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had contacted the developer or a modeling expert. It is important that the 
project manager or primary user get firm commitments from the team and 
the modeling expert to lend a hand.

There is also a need for expertise for all phases of a modeling project. 
People must be available to help with installing the model, initializing 
and parameterizing the model, running the model, dealing with modeling 
software and hardware issues, and analyzing the results. I have seen people 
decide to use a complex spatial ecosystem model only to find that they 
have no idea of how to analyze and interpret the results or how to install it 
on their computer. It is important that the modeling team be constructed to 
best facilitate the successful completion of the objectives. 

Another important person to have on the project is someone who knows the 
ecology of the area, especially disturbance regimes, vegetation dynamics, 
and climate interactions. Many projects were stymied in the calibration 
phase because there were few available experts to evaluate if the results 
seem realistic. Another important person to have on the team is a computer 
specialist; it is critical that someone is around to deal with the common 
minor to major software and hardware issues that crop up in modeling 
projects. I’ve also found that a statistician is critical for helping design 
valid statistical analyses that evaluate significance because results from 
many landscape models have both spatial and temporal autocorrelation. 

What is the resolution of the project’s decision space?

Another criteria is the level of resolution that is needed to make the 
management decision, which should be able to be inferred from the modeling 
objective. If a “yes” or “no” decision is all that is needed, then a simple, 
parsimonious model may be appropriate thereby saving time and effort and 
requiring little expertise. However, if the decision demands a finer level of 
resolution of detail that must be quantified across a gradient of scenarios 
using abundant variables, then more complex models are indicated. Basal 
area, timber volume, and tree density, for example, might need to be 
evaluated for three climate scenarios over 100 years of simulation. A well-
articulated scale of management decision-making can save time and energy 
in other project phases. In one modeling project, I was asked to implement 
a complex S&T modeling effort simulating over 100 vegetation types to 
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develop future scenarios across the Interior Columbia River Basin (Keane 
et al. 1996), but when it was time to develop management plans, managers 
decided that the complicated results had to be summarized by grouping 
the 100 to only nine vegetation types for simplicity (Hann et al. 1997). We 
could have drastically decreased the time needed for model initialization 
and parameterization had we only modeled nine instead of 100 types.

Spatial resolutions are perhaps the most important criteria in landscape 
modeling projects. Finer spatial resolution landscapes (e.g., < 90 m 
pixel sizes) are particularly demanding in terms of computer resources 
and simulation times, while coarser resolutions usually result in greater 
uncertainty in the simulated spatial processes, such as fire spread, seed 
dispersal, animal movement (Karau and Keane 2007). Finer resolutions 
provide the greater spatial detail often needed by management (i.e., smaller 
mapping units and mapscales), but coarser scales reduce simulation times. 
In an ideal world, spatial and temporal resolutions should match the scale 
of the ecological processes being modeled and they must also fit with 
the management objectives. Wildland fire, for example, spreads at fine  
scales (e.g., < 50 m), whereas climate may vary at much coarser scales 
(> 1000 m). In the end, however, I’ve found that most modeling project 
resolutions are usually determined by available data, computing demands, 
and the selected model. 

Temporal resolutions will also be key in selecting the most appropriate 
models, but the scale must be consistent with the modeling objective. 
Several modeling projects in which I participated used models that had 
annual time steps as the finest temporal resolution, but the modeling 
objective specifically stated that monthly and daily estimates were needed 
for reporting. It is important that the finest resolution needed for the 
modeling objective be identified so that it can be used as a decision threshold 
in other modeling phases, specifically initialization and parameterization.

How accurate do the results need to be?

There is an old adage that it is impossible to achieve an acceptable balance 
across good, fast and cheap—people always compromise at least one of 
the three (Nogami 1982). Most modeling projects have the laudable goal 
of achieving the highest accuracy possible, but often end up compromising 
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accuracy for time and funding concerns. It is imperative that an accuracy 
estimate be integrated in the objective or the project specifications, not as a 
target, but rather as a concept for design. Many decisions made during the 
modeling project may sacrifice accuracy for expediency so it is important 
to know when the design of the project achieves an accuracy acceptable 
for the project. A notion of that threshold should be recognized by the 
project team. Accuracy, of course, goes hand and hand with the resolution 
of management decision-making process (previous section).

In summary, it is critical that most modeling projects have a preliminary 
estimate of the amount of uncertainty that is expected in the modeling 
results. During parameterization, for example, it is often best to rate 
the uncertainty in each parameterized value (see Chapter 5). And, when 
crafting the objective, it’s best to think about the amount of uncertainty 
that is acceptable in results (Table 2.1) and the consequences of making 
a wrong decision using those model results. Unfortunately, quantifying 
accuracy is difficult for most models (Chapter 7) because of data 
limitations, inconsistencies, and incompatibilities. Qualitatively describing 
uncertainty in the modeling process can go a long way in interpreting 
simulation results in the proper context.

Selecting the Right Model

The most common question land managers ask ecological modelers is “what 
model should I use?” This is entirely understandable because the literature is 
replete with research and management-oriented models that were developed 
by different people for different purposes and for different ecosystems. It 
would be impractical to expect land managers to devote enough time to 
develop a deep knowledge of all available modeling systems—it is just too 
complicated. Model selection is a complex evaluation of multiple factors 
that many find difficult and tedious because of their lack of experience in 
modeling. Therefore, the following is offered as a general guide to help 
users select the most appropriate model to accomplish the desired task. A 
more comprehensive selection guide is presented in Keane et al. (2019a). 
First, a list of questions are presented to define possible criteria for selecting 
a model (Table 3.1). Please note that many of the criteria for selecting the 
model trace back to defining the project (previous section).
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Questions to Define Evaluation Criteria

Which model can answer the modeling objective? 

If the modeling objective is well-written, it should be easy to speculate 
what response variables are needed, and the availability of these variables 
for output from models should be used as evaluation criteria for model 
selection. If a model doesn’t output those variables or proxies (variables 
that represent response variables), then it probably shouldn’t be selected 
(appropriateness in Table 3.1). For example, if the modeling objective is 

Table 3.1. The six major constraints that govern the selection of an ecological model for a 
natural resource management application.

Constraint Example What to check? 
Appropriateness Is it able to answer 

objectives?
Make sure variables match in 
model and objectives; ensure 
simulated processes match objective 
requirements; ensure resolution of 
the decision matches the resolution of 
simulated results.

Timeliness Does it take too long to 
prepare and run?

High number of variables indicate 
high levels of parameterization and 
initialization.

Suitability Can it be run on existing 
computer resources?

Inventory available computing 
resources and match with specifications 
for the model; interview past users as 
to requirements; obtain memory and 
processor speed requirements for model 
and match to available computers.

Expertise Are there experts 
available to help run 
the model and interpret 
results?

Are there people that can help running 
the model or interpreting the results? Is 
the model easy to learn and understand 
if there is a lack of experts; are there 
modelers available to help?

Data Are there enough data to 
initialize, parameterize, 
calibrate and validate the 
model?

Inventory possible local, regional, or 
national data sources to determine if 
available data matches what the model 
needs for preparation and execution.

Resolution Are the model’s inherent 
organizational, temporal, 
and spatial resolutions 
sufficient?

Match state variable resolution with 
objectives; determine if a spatial model 
is needed; match temporal requirements 
of the objective with model time steps 
and time spans.
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“to explore changes in tree growth for alternative management scenarios 
of …”, then the output variables might be diameter, basal area, and tree 
density by year. This means that only models that output these variables 
are appropriate. 

The model should also simulate those ecological processes important to 
the project objectives. A prospective model must contain a set of desirable 
ecosystem components and modules to simulate those processes that 
are critical to the modeling objective. For example, if the management 
objective states “evaluate effect of drought on basal area…”, then there 
should be a thorough simulation of the factors that control drought in the 
model, such as soil water dynamics, vegetation-water interactions, and 
topological influences. It is suggested that users list all possible ecological 
processes that they think are critical to their modeling project (see Figures 
2.3, 2.7 for example). Then, candidate models can be evaluated against 
this list to see if they are appropriate for the project.

Which model is most appropriate for project timelines?

All too often, the timeline of the project dictates model selection 
(timeliness). Projects that need to be done quickly will demand simple 
models that are easier to run. Longer projects can use more complicated 
models that will widen the scope of the evaluation. Users must remember 
that the execution time isn’t the only time-consuming phase in a modeling 
project—getting the model ready by implementing the phases detailed 
in this book takes more time than the actual execution of the model. 
Unfortunately, it is difficult to assess development and execution times 
for models that are unfamiliar to the user. The only way to obtain this 
information is from the literature or in consultation with the model 
developer, modeling experts, or past model users, so access to modeling 
expertise is critical for a successful modeling project.

Which model best fits with existing computing resources?

It is crucial that the complexity of an ecosystem model match the available 
computer resources (suitability). A complex model often requires abundant 
computing resources for normal simulations, which may be inappropriate 
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if only one computer with a single processor is available. Users should 
identify all possible computers that can used to run the selected ecosystem 
model and record their specifics and use this as another evaluation criteria. 

As mentioned, one of the most important computing resource is the 
amount of memory available for the model. Many models keep simulated 
variable values in resident memory instead of writing the values to disk to 
reduce execution times, so it is important that when this memory fills up, 
the program doesn’t crash or slow to a crawl. Users should address both 
the memory requirements of available models and the memory resources 
of the available computers. Sometimes, memory can be up-graded and the 
cost of upgrading could be also included as evaluation criteria.

A common problem is that some models may need long execution times 
and may require many computing systems, and this may make it difficult 
to get the modeling project done on time. Model execution times of 
over a week are somewhat problematic because there are always small 
problems that creep into the calibration and execution phases, and long 
execution times make it difficult to redo simulations if errors are found. 
Moreover, it is also difficult to keep complex computing systems running 
for weeks or more due to electrical shortages, operating system bugs, 
and administration updates. All these factors make it difficult to conduct 
projects with extensive modeling scenarios (next section). If a complex 
model is selected, then the user should build extra time into the timeline to 
anticipate errors in initialization, parameterization, and calibration. 

Is there available expertise to run each model?

Look around your agency or organization and determine how many people 
have the time, knowledge, and experience in complex modeling to help 
with your project (expertise). It may be beneficial to only use a modeling 
system in which some local people have expertise. This experience criteria 
can be met by one person, often the user, or by a team of people. A team 
of people can help in many aspects of the modeling project including 
providing expertise in parameterization and calibration; development of 
analysis plans, and review of model results. It is also important that the team 
have a broad ecological knowledge of the ecosystem(s) being modeled 
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to evaluate the degree of realism needed for model selection. It may be 
that expert participation needs to be formalized through organizational 
agreements, contracts, or memorandums of understanding.

Are there enough data to prepare each model? 

It would be best to do a quick inventory of available datasets and model 
input requirements to assess if there are enough data to quantify the initial 
conditions and parameters of any model (data). If data are scarce, then it may 
not make much sense to select a complex model because high uncertainty in 
inputs might result in greater uncertainty in outputs (i.e., garbage in, garbage 
out). Many of the modeling projects that I’ve been associated with have 
selected a complex model to answer project objectives only to find that input 
maps and accurate parameters were mostly unavailable. 

Which model best matches the resolution of the objective?

Some modeling objectives can be successfully completed with broad 
general estimates, and therefore, the resolution of the output variable can 
be coarse and the model results can be summarized to a generalized value 
(resolution). An example would be that the modeling project only needs 
the percent of the landscape occupied by a specific community type. Other 
projects may need complex output for many variables, such plant density, 
biomass, and productivity estimates summarized by vegetation type and 
management zones within a simulation landscape. If a project demands 
these types of detailed reports of ecosystem states, then complex models 
are often the only alternative.

Next, it is important that the model fulfill the resolution requirements 
defined in project design. If the model only outputs vegetation cover types 
when finer resolution variables, such as tree density and basal area, are 
needed for completion of the objective, then it is time to select another 
model. If the model outputs values of response variables at an annual time 
steps when monthly analysis is needed, then strike that model from the 
list. If the model outputs hundreds of variables when only a “yes” or “no” 
answer is needed, a simpler and easier model may be more appropriate to 
save the project a lot of time and money.
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It is also important, but not essential, that the detail of simulation be 
somewhat comparable over all ecological entities being modeled. If the 
model selected is an LESM, for example, then it is desirable that the 
same resolution, detail, and accuracy for simulating ecological processes 
and mapping output variables be consistent wall-to-wall. This means 
that grasslands should be mapped and simulated at the same resolution 
as forests, alpine be simulated at the same resolution as temperate forest 
zones, and rock-lands receive the same treatment as shrublands.

Which model is documented and published?

Users can look to the publication record of a model in the literature 
to demonstrate its acceptance within the science and management 
communities. Important items to assess include: (1) has the model been 
successfully implemented and reported on by others, (2) are model results 
published in high impact journals, and (3) is the application of the model 
consistent with the current modeling project? 

 From a user’s perspective, it is important that the model is well-documented, 
including ample information on using the model and available example 
input files to demonstrate model set-up. While not critical, a user’s manual 
is priceless for novice users. From a modeler’s perspective, it is important 
that the source code of the model is accessible, well-documented, portable 
(can be installed on a variety of operating systems), and stand-alone 
(doesn’t require commercial software to run). Open science principles are 
changing how models are developed and shared, such as Github for the 
LANDIS model (Tonini et al. 2018) and Frames for wildland fire models 
(https://www.frames.gov/models). Batch-processing scripts to execute 
multiple runs of a model are useful for stochastic models that must be 
run multiple times for a given scenario, and models with input and output 
structures that are easy to understand facilitate ready parametrization, 
calibration, and implementation.

How to Evaluate all Models 

If possible, the user should first identify a slate of models that might be 
appropriate for completing the modeling objective. This can come from a 

https://www.frames.gov
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review of the literature, but most often, from local modeling experts. Each 
model can be entered as a row on a spreadsheet. Then the user should 
identify a list of selection criteria, perhaps by synthesizing criteria from 
the questions presented above, or by crafting additional criteria that are 
specific to their project. For example, model flexibility has been important 
in some of my previous modeling projects, such as the ability of the model 
to answer questions unrelated to the objective. The language in which the 
model was programmed; presence of a user-friendly interface to enter 
input data; ability to link the model input/output to other products; and 
citation record of the model in the literature are other criteria that may be 
locally important. Each of these criteria is a column in the spreadsheet. 
Next, a rating system is created to rate each of the models against each 
of the criteria—a numbering system with zero being low and 10 being 
high is a possibility, or a simple low, moderate, and high rating may work 
in many cases. A weighting system should also be developed to weight 
each criteria as to its importance to the project objective and logistics. 
For example, one project might put more weight on scores for existing 
computing resources than available expertise. And last, the user, or entire 
modeling team, should rate each of the model using the information at 
hand. Obviously, model selection is more of an art than a science, but 
often, if this procedure is followed, it will become obvious that one or two 
models stand out as good fits to the project.

The most important thing for users to know when selecting a model is that 
there is no such thing as the perfect model for the project. No model will 
fit exactly with what all user wants, unless, of course, the model is built 
specifically for the modeling project. Invariably, compromises must be 
made and most of modeling projects in which I’ve participated selected a 
model that best fit the time, computing, and data constraints rather than the 
best ecological model available or the most cited model. The limitations 
of less complicated models were usually accepted so that the project could 
be successfully finished. Again, there is never a perfect fit for any model 
to a given modeling project—there are always problems with resolution, 
data, and output detail. 
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Delineating the Simulation Landscape

One of the most important aspects in a modeling project is to determine 
the spatial domain over which to simulate. This spatial domain defines a 
project’s analysis area and will be the spatial context in which to interpret 
all results. If a stand or point model has been selected, then this section 
is less important. However, if a LESM is selected, then here are a few 
recommendations which users might find valuable.

Delineate an area that fits with the modeling objective. It is important 
that the area to be simulated encompass enough of the right land to 
meet management objectives while still conforming to common land 
management mapping structures. For example, if land managers use 
hydrologic boundaries to define management zones, then the proper 
simulation area would be one or more watersheds. If the project area 
consists of a number of polygons, then the simulation area might be a 
square or rectangle around or within those polygons. The area should be 
big enough to encompass the spatial footprint of important ecological 
processes that occur on the landscape while also matching the spatial 
domain of the management objectives.

Ensure that the area is big enough to describe disturbance processes. 
A general rule of thumb is that the simulation landscape should be at 
least five times the size of the largest important disturbance event. For 
example, if the largest fire in the management area is 100,000 ha, then a 
landscape of 500,000 ha is needed. This is often difficult to accomplish, 
given the large size of disturbances in the fire-prone ecosystems of the 
world and the computing limitations of land management agencies. Often, 
the available data, computing resources, and time will dictate the size of 
the simulation landscape, instead of ecological issues. If a smaller area is 
used, the expression of disturbance regimes on the simulation landscape 
might be questionable and therefore have greater uncertainty which must 
be included in the interpretation of model results. 

Use round or square landscapes to minimize edge effects. Landscapes 
that are long and thin have a high perimeter to area ratio and therefore 
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will be subject to extensive edge effects if the selected model explicitly 
simulates spatial processes (Keane et al. 2003). The edges of the landscape 
will be missing the influences of those disturbance or vegetation events 
that are occur outside of the landscape and spread into the landscape. For 
example, seed dispersal from outside of the landscape perimeter is missing 
when computing the regeneration potential of stands near the edge of the 
landscape, or the fire regime is missing those fires that spread into the 
landscape.

Always use a buffer to minimize edge effects. The most common 
method to minimize edge effects is to create a buffer around the target or 
context landscape (Figure 3.2). The target landscape is the area delineated 
by management and only output from this area will be summarized to 
meet the modeling objective. The simulation landscape is defined as the 
entire simulation area, which is the target area plus buffer. As mentioned, 
the main reason for a buffer is that many spatial processes, such as fire 
spread and seed dispersal, are often underestimated near landscape 
boundaries because there is no movement into the landscape from outside 
the landscape (Figure 3.2) (Keane et al. 2006, Pratt et al. 2006). What 
happens is that processes from outside the simulation landscape are not 
spread into the target landscape (immigration) and processes from inside 
the landscape do not spread outside of the target landscape (emigration). 
This is important because fires, for example, do not spread into and out 
of the target landscape, and ignoring this means that the fire regime may 
not be realistically simulated, especially along landscape edge zones 
(Figure 3.2). Buffers are a great way to mitigate this problem, even when 
the simulation landscape is already sufficiently large. It is always best to 
include buffers on all landscapes when spatially explicit processes are 
simulated. Most of the landscape simulation projects that I’ve worked on 
usually created a buffer 3–5 km wide around target landscapes that were 
at least 50,000 ha in size. Usually, the bigger the buffer, the more accurate 
the simulation, but big buffers (> 5 km) usually result in long simulation 
times and high memory requirements, and as a result, the buffer size is 
often adjusted to fit a simulation time line. It is important to remember 
that buffers also need to be initialized and parameterized at the same level 
of rigor as the target landscape, but all buffer dynamics are ignored when 
analyzing simulation results to answer the objective.
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Creating the Simulation Design

The last stage of project planning is to decide on a simulation design that 
will fulfill the modeling objectives, and this is often the most critical phase 
of the design process. Another words, what kind of simulation results 

Figure 3.2. Example of edge effects on a square simulation landscape. (A) simulation of 
a fire regime within the target landscape; (B) the simulation of a fire regime using a 5 km 
buffer. Note the changes in fire frequency along the buffer-target landscape boundaries. 

From (Keane et al. 2006).
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should be generated to create the prototype tables and figures that will then 
be used to fulfill the project objective? Can I just run the model once and 
be done with the project, or do I need multiple runs in a comprehensive 
simulation design to fulfill my objectives? In this step a simulation design 
is created to implement using the selected model to answer the project’s 
objective.

What is important to project design?

The first task is to assess the level of stochasticity (randomness) inherent in 
the selected model. Highly stochastic models need to be run multiple times 
(i.e., repetitions=reps) to represent the variability among runs that result 
from stochastic algorithms. If models are deterministic, then no repetitions 
are needed and the model need only be run once, but stochastic models 
absolutely need multiple runs to represent the range of possible responses 
or predictions. Some landscape models may have minor stochastic modules 
that seldom influence overall model behavior, and as a result, the relative 
variability between identical runs may be small (< 5% of the mean) and 
therefore a lower number of reps are needed. However, most landscape 
models that simulate disturbance spread over a multitude of years often 
simulate a great deal of variability across runs (> 25%) because locations 
of disturbance initiations (e.g., fire start), and the subsequent fire effects, 
are different across runs (see Figure 2.6 as an example). This range of 
variability begs the question “how many runs do I need to make to quantify 
this variation?” If variation is low (< 25% of mean), then perhaps only  
3–5 runs are needed, but as the variation increases, there may be a need 
for at least 10 replications. To be absolutely sure, a confidence interval 
or sample size power analysis of the variance across runs is needed to 
estimate the minimum number of runs for a project. Kennedy (2019) has 
written a wonderful guide on how to determine the number of replicates 
needed for stochastic models. Sadly, there are few people on the modeling 
project who know how to do these complicated statistical analyses, and in 
these cases I would suggest that only five runs are needed if the variation is 
less than 5%; 10 runs if variation is less than 20%, and 20 runs if variation 
is > 20%. Often, the number of simulation replications is decided based 
on project deadlines rather than statistical accuracy or robustness (see later 
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in this section), and it is often much easier to skip the power analysis 
of variance and just deal with the variation in the statistical analysis and 
interpretation of model results (Chapter 9).

A second assessment is the reliability of the inputs (initial conditions and 
parameters) used in the model, especially climate inputs (Table 2.1). When 
the values of parameters are highly uncertain or unknown, it is suggested 
that a “scenario” approach be used to bracket the range of uncertainty in 
the model inputs. A scenario approach is used when the modeler decides 
how many parameterizations are needed to span the range of uncertainty 
in model parameters. Let’s take climate as an example. Most simulations 
of future climate impacts need to recognize the wide variation in potential 
climates as projected by the global circulation models (GCMs). Some 
GCMs may predict minor (< 3ºC) increases temperature for a geographic 
location while other GCMs may predict major increases. Therefore, many 
landscape and ecosystem modelers often select outputs from 2–5 GCMs 
to span the range of possible future conditions (Mote et al. 2005, Scholze 
et al. 2006). 

The next assessment concerns the set of management alternatives that are 
required to fulfill the modeling objectives. Wildfire management scenarios, 
for example, can include anywhere from zero fires suppressed (historical 
fire regime) to 98% of the fires suppressed upon initial attack (current 
target level of management on public lands in US) (Holsinger et al. 2014) 
(Table 3.2). If management treatments are being modeled in set of a 
scenarios, such as thinnings, ecosystem restoration cuttings, and timber 
harvests, then there may be a multiple hierarchy of treatment scenarios 
(e.g., treatment intensity, area treated, and silvicultural prescription). For 
example, if the objective is to restore fire to fire-excluded ecosystems, then 
there may be three treatment designs (silvicultural cuttings, prescribed 
fire, and a combination of both) that are implemented at three different 
intensities (no treatment, light treatment, and aggressive treatment where 
all fire-sensitive species are cut or burned), and at three different levels 
of extent (zero, 1% of landscape treated per year, and 5% per year). It is 
important that a “no treatment” or “no action” scenario be included in all 
simulation designs because landscapes and ecosystems are dynamic and 
constantly changing even without management actions, and as such, that 
change must be quantified for land management.
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Table 3.2. An example of a comprehensive simulation design for a research project that 
assessed possible thresholds in fire suppression effort along with the details of the simulation 

and the list of response variables used in the analysis. Taken from Keane et al. (2019a).

Factor or variable Levels, 
parameters, 
or units

Description

Simulation Design
Fire Suppression 
Level 

10 Proportion fires suppressed: 0.0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 10, 20, 30..90% 
suppression levels.

Fuel Treatment 
Effort

4 Mechanical thinning of fire sensitive species and 
subsequent prescribed burns at the following 
levels of implementation: none (N), 3% 
landscape treated (Business as Usual-BAU), 10% 
landscape treated (fully funded fuel treatment 
program FF); treat all lands that need it (no holds 
barred NHB). 

Climate 2 Historical climate (HIST) and the hot, dry 
RCP8.5 IPCC (2011) scenario for the US 
northern Rocky Mountains (RCP8) where 
temperatures are around 4.5ºC warmer and 
precipitation is around 90% of historical climate: 
Offsets were Tmax 4.3, 5.5, and 6.8ºC and Tmin 
4.8, 6.8, 6.8ºC for EFBR, YCP, CROWN, 
respectively, and precip 200%, 110%, and 120% 
more.

Landscape 3 East Fork Bitterroot River (EFBR), Yellowstone 
Central Plateau (YCP), Crown of Continent 
(CROWN) (Figure 2).

Simulation Specifications 
Simulation length 200 years Simulate landscape dynamics for 200 years 

to get a full representation of the fire and fire 
management regimes.

Simulation 
Replications

10 reps Needed to get sufficient observations to detect 
thresholds but low enough not to generate too 
many observations for statistics.

Simulation output 
interval

10 years Generated stand, site, and landscape level output 
at decade intervals; used the last 100 years  
(10 observations) in the analysis.

Time step Daily Cycle the 50+ year weather records for each 
landscape for 200 years.

Table 3.2 contd. …
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How do I design the simulation project?

Most simulation designs use scenario-based approaches that are analyzed 
for significant differences using statistical techniques (e.g., ANOVA, 
MANOVA). A multiple factorial design is often used as a simulation 
project design where all factors (e.g., climate, management actions) are 
evaluated for significant differences across all the levels (e.g., intensities, 
area treated, treatment designs). Each combination of factor and level is 
termed a scenario in this book. In our examples above, you may want 
a simulation design where two management treatments alternatives (no 
treatments and a prescribed fire on 1% of the landscape per year) is 
evaluated under two wildfire management scenarios (zero suppression 
and full suppression) and three climate scenarios (historical, RCP4.5, 
RCP8.5) (Table 3.2). Simulation designs can become quite complex with 
multiple hierarchical scenarios and many levels resulting in numerous 
scenarios and many model executions. For example, four management 
scenarios (no action, timber harvest only, restoration treatment only, and 
harvest+restoration) under three fire suppression levels (no suppression, 
50% suppression, and 98% suppression) and two exotic scenarios (with 
and with exotic species) by three climates (see above) with 10 replications 
would require 720 model executions (4x3x2x3x10=720).

Response variables
BA (m2 ha–1) Basal area of all trees across the landscape.
CBD (kg m–3) Canopy bulk density. 
CWD (kg m–2) Coarse woody debris-downed woody material 

greater than 10 cm diameter.
FWD (kg m–2) Fine woody debris-downed woody material less 

than 10 cm diameter.
TC (kg m–2) Total carbon of living and dead biomass.
PLFAS (%) Percent of the landscape composed of fire 

adapted species. 
PLBURN (%) Percent of the landscape burned annually. 

… Table 3.2 contd. 

Factor or variable Levels, 
parameters, 
or units

Description
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It may be useful to provide some examples of various simulation designs 
from modeling projects published in the literature along with the detailed 
example in Table 3.2. In one model comparison projects, Cary et al. (2006) 
evaluated area burned simulated from five models using a simulation design 
that included ten replicates of three factors—topography (two levels—
flat and dissected), weather (constant weather and highly variable), and 
climate (historical and hot, dry)—to determine the sensitively of these 
factors to fire dynamics. Several research modeling projects used three 
main factors—climate (historical, warm-dry, hot-dry), fire management 
(no suppression, 50% fires suppressed, and 98% suppressed, and fuel 
treatment (no treatment, 3% per year treated, 10% per year treated)—to 
assess changes in fire dynamics, vegetation distribution, and landscape 
pattern and structure (Loehman et al. 2011, Holsinger et al. 2014, Clark  
et al. 2017). 

It will be incredibly tantalizing for many readers to include numerous 
factors with many levels in the simulation design to really give punch to 
a modeling project. However, users should give some focused thought as 
to: (1) how long it will take to perform these simulations, (2) how much 
output will the runs produce; and (3) how many people have the expertise 
to perform the subsequent analysis for this design? Remember, the number 
of runs needed to complete a modeling project increases by a product 
rather than a sum. Using the design in a previous paragraph as an example, 
the number of runs to complete the project would be 720 simulations, and, 
if each run takes a day to complete on a laptop computer with only one 
processor, it would take too long to complete the project. As mentioned 
previously, it is usually available computer resources, not the statistical 
requirements that dictate simulation design. A parsimonious simulation 
design is always best as long as it answers the simulation objective. 

There are a few things you can do to make the simulation design more 
effective. First, it is important that the range of levels in any one factor 
encompass and capture the scope of decision or objective, especially if 
this is a research project. An example of this can be found in the Keane 
et al. (2019b) study where four levels of fuel treatment were simulated 
to find the tipping point of how much land must be treated to manage 
wildland fire. They simulated 0, 1, 5, and 100 percent of the landscape 
treated and found that the tipping point was somewhere between  
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5 and 100 percent. They probably could have better estimated the tipping 
point had they picked better levels or simulated more scenarios. The 
most common mistake people make is designing alternative management 
scenarios that produce results that are not statistically significant. Another 
suggestion is to design a simulation experiment so that it has a base 
case against which all other scenario results can be compared. In most 
management designs, the base case is often the no action scenario, but 
sometimes the base case is a scenario that captures the historical range 
and variation (Keane 2012), or it may be the “preferred” management 
scenario. And last, of course, it is important that the scenarios capture 
those elements that are important to the simulation objective. 

Implementing a Successful Project

There are many tasks that will maximize the success of your project. 
First, it is strongly advised that each phase of the simulation project be 
extensively documented so that the analysis and report writing phases 
are straightforward (Chapter 9). Graphics and word processing software, 
for example, can be used to document the findings of each of the phases 
of the project. A notebook, blog, or audio recording could also be used 
to document each phase. The most important items to document are any 
changes to the: (1) project’s objective, (2) agreed upon procedures, or (3) 
results summaries. Also important are any limitations or strengths of the 
model that are encountered during the modeling project. For example, 
the execution times of the model should be recorded as reference in 
the execution phase; the sources of all parameters should be recorded 
to document the parameterization; and the directory structure of both 
input and output files (Chapter 8) should be specified for ease of analysis 
(Chapter 9).

Next, it is advised that a team of people be identified to help with all model 
phases. If available, this includes the developer of the model; past users 
of the model; other resource professionals; and ecologists. These people 
can be consulted during the preparation (initialization, parameterization, 
calibration) and analysis phases. It is also important that there are people 
who understand the ecosystem and provide the expertise to evaluate 
realism in model predictions, especially during the calibration phase. 



78

Applying Ecosystem and Landscape Models in Natural Resource Management

Collaborative, iterative modeling approaches, such as that detailed by 
Gustafson et al. (2006), have been quite successful in many modeling 
projects; these approaches depends on collaboration among model experts, 
resource experts and decision-makers. 

In summary, the design of a successful modeling project includes crafting 
a succinct set of objectives; defining the bounds of the project; selecting 
the best model; selecting the simulation landscape; and then crafting the 
simulation design in that order. Hopefully, these steps will make project 
planning less stressful and more informative. Again, a well-designed 
modeling project defines the boundaries and context for all future decisions 
that will invariably need to be made in the six phases of a modeling project. 
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4
Initialization
How to Begin a Simulation

“Whenever I start a project, I have a broad range of possibilities.”

Shaun Tan

Initialization—the process of assigning starting values to modeled 
variables.

ABSTRACT

Initialization is the task of estimating and assigning initial values to 
all the state variables in the simulation model used in the project. 
This chapter covers the quantification of the initial conditions of 
the landscape or ecosystem to begin a simulation. Three types 
of initialization are covered—forward, past, and representative 
initializations. Then the six steps of initialization are provided 
including identifying input variables, collecting data for initialization 
of those variables, formatting the data for input to the model, running 
the model with newly created initialization, evaluating the results for 
possible mistakes, and revising any initial values that are in error. Last, 
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a comprehensive set of problems that might arise during initialization 
are presented and solutions are suggested.

Introduction

Initialization is the task of estimating and assigning initial values to all state 
variables for the simulation model used in the project. It involves searching 
for and obtaining data that describes the conditions of the plants, stands, 
communities, and regions in the simulation landscape, and compiling that 
data in the appropriate format, to start and execute the model. Models 
rarely require the user to input every initial value; usually models utilize 
a subset of user-entered information to initialize the remaining values 
in the model. For example, a landscape model might use a list of tree 
diameters, heights, and species to compute root, stem, and foliage carbon 
pools based on allometric equations found in the literature. Initialization 
does not include the quantification of model parameters; that is the subject 
of the next chapter. In this chapter, we deal with the quantification of the 
initial conditions of the landscape or ecosystem to begin a simulation. 
All initializations depend on the project objectives and simulation design 
(Chapter 3); this chapter assumes that the reader has designed a modeling 
project and identified an appropriate model for use. 

Some feel that initialization is the least important of all the modeling 
phases, but often, they would be sadly mistaken—initialization is 
every bit as important as all the other phases in this book for specific 
modeling projects. This is because there are some major consequences of 
initialization for evaluation of simulation output. A common dilemma I’ve 
often encountered when initializing landscapes in fire-prone ecosystems, 
for example, is that today’s landscapes often represent the influence of 
a century of fire exclusion; contemporary forest conditions, such as tree 
densities, fuel loadings, and standing biomass, are a result of decades of 
fire suppression. Therefore, if the modeling objective is to simulate the 
historical fire regime and the user employed today’s conditions as initial 
values, the effects of fire exclusion would be evident in the output for at 
least a century of simulation (Keane et al. 2006). Output from the first 
years of simulation may appear to be in error because there will be major 
declines in ecosystem biomass as fires burn on the simulated landscape 
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using historical fire return intervals. This dilemma has sometimes caused 
modelers to start a simulation from “bare ground” by assigning a zero 
values to many of the dynamic state variables then running the model 
until it reaches an “equilibrium” to populate the initial values. This may 
be a good idea in landscapes or ecosystems with minor disturbances or 
if the model is indeed an equilibrium model, but, in most ecosystems 
of the world, disturbances and changing climates complicate dynamic 
equilibriums, especially for complex mechanistic models, making bare 
ground initializations inappropriate or unrealistic. 

Another example of the importance of initialization is found in a project 
that simulated restoration in whitebark pine ecosystems of North America 
(Keane et al. 2017). The exotic disease white pine blister rust killed many 
whitebark pine trees over the last two or three decades in many portions 
of the tree species’ range (Kendall and Keane 2001). Therefore, many 
trees sampled in the field to obtain initialization data were dead from the 
disease. As a result, it was difficult to actually determine the historical 
dynamics of whitebark pine populations when these snags were input into 
a model as initial conditions. Loehman et al. (2011) modified the snag 
data to make them “living” trees in their simulations to better represent 
historical landscape dynamics and to reduce simulation time.

Initialization is also important for the calibration (Chapter 6) and validation 
(Chapter 7) modeling phases. Often, an evaluation of model output 
for realism requires that the model results be compared with observed 
reference conditions. The problem, of course, is that the data used to 
initialize the model represent today’s conditions and not the historical 
conditions that led to the formation of the reference data. For example, let’s 
assume that the only data set for model evaluation is a 20 year record of 
streamflow data that spans the years 1990–2010. Stand and tree inventory 
records for the year 1990 are often missing or incomplete so it is common 
that initialization data represent conditions at or near 2010 as used as a 
compromise. However, when if the user employed the 2010 conditions to 
represent the 1990 initial conditions, the resultant validation time series 
would have some serious limitations in that major landscape changes 
took place during those 20 years as a result of tree growth, disturbance, 
and human land use. In these cases, modelers often “grow” the landscape 
backward using reformulated allometric equations and/or trial-and-error 
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iterative techniques to approximate the 1990s conditions (see Chapter 7). 
Indeed, initialization is an important task in any modeling project and the 
user needs to know how best to initialize the model for their modeling 
project. 

Initializing the Model

In general, three types of initialization are used for most ecological 
simulations. First, the model uses today’s conditions and simulates forward 
in time. Second, the model uses data from the past, either historical data or 
manipulated data, and simulates to the present, and perhaps, into the future. 
As mentioned, this is primarily used as an initialization for validation 
(Chapter 8). And last, the model is initialized with “representative” 
data that do not reflect current or past conditions, but instead, reflect a 
standardized starting place for all simulations. 

Representative initializations are quantified using a wide variety of 
techniques. One technique is to use manipulated or mocked-up data to 
develop a series of initializations to capture a wide range of starting 
conditions to bracket some modeling objective. Xiao et al. (2000), for 
example, developed several “bogus” initializations to understand hurricane 
dynamics. Another technique is the “spin up” of an equilibrium model 
and use values from the last year of spin-up simulation as initialization 
values (Thornton and Rosenbloom 2005). Still another approach is to run 
a model for a period of time using contemporary or past initializations and 
then using the values from that landscape at a pre-determined time as an 
initialization for the project’s simulations. The FireBGCv2 model, as an 
example, allows the user to save results from any simulation year for an 
initialization (Keane et al. 2011). Landscape modelers often use “neutral” 
landscapes (contrived data layers) as initial conditions in landscape 
simulation experiments (Gardner et al. 1987). Cary et al. (2006), for 
example, used a checkerboard pattern to represent vegetation community 
ages on a neutral landscape to understand fuel treatment effects on fire 
regimes. At any rate, most initializations in natural resource management 
projects involve a representation of contemporary conditions. 
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The main challenge in the initialization process is to decide what initial 
methods and conditions to use. Knowing the type of model helps define 
the initialization process. As mentioned, equilibrium models may be 
initialized by zeroing out all state variables and then running the model 
until results obtain equilibrium (Thornton and Rosenbloom 2005). Other 
models must have realistic numbers to start the state variables otherwise 
chaotic results may result. Initialization will also depend on the modeling 
objective. If simulations are meant to characterize future conditions, then 
it is essential that the model be initialized using data that represent today’s 
conditions. However, if the model is used in a comparison exercise across 
various scenarios, then it may be acceptable to assign initial values to state 
variables based on the range of possible outcomes for each variable. For 
example, one may want to set the initial value for a variable based on a 
mean of past simulations or field data. Once the model has been selected 
and the modeling objective stated, then the following initialization steps 
should be somewhat easy. 

The steps involved in model initialization are similar across all models 
regardless of model complexity. In this book there are basically seven steps 
in model initialization (Figure 4.1). These steps don’t need to be done in 
order, but all of them need to be completed to properly initialize a model.

Identify input variables

The state variables that need to be initialized must first be identified. 
This can be done by referencing the user’s manual for the selected model 
and following the modeler’s instructions. Unfortunately, many stand and 
landscape models were developed for research applications and lack 
detailed user’s guides or instructional material. In these cases, the best 
approach to identifying variables is to obtain previously created input 
files that were used in other projects for that model. It is often difficult 
to determine the type of variable and its units from these files, especially 
if they were poorly documented. If old input files are missing or difficult 
to decipher, then the only alternative is to dive into the computer code 
and figure it out from the structure of the input routines. Hopefully, the 
modeler has extensively documented the code so understanding the code 
will be easy. Ideally, the modeler should be around for consultation and 
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help during this process. Many people prioritize the availability of the 
modeler and detailed documentation as an important criteria in model 
selection.

Collect data

Once the input state variables have been identified, data must be collected 
to quantify initial conditions for those state variables. This is often a 
difficult task because it is rare that there are sufficient data to initialize a 
model for a management application. It is rarer still to find data that match 
the scale and resolution of complex ecosystem models. Spatial models, 

Figure 4.1. The steps that are involved in the initialization of ecosystem models. Steps in 
italics indicate that the step is optional. Various tasks are summarized to the left of each 

step.
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such as LESMs for example, demand extensive input data layers (GIS 
maps) of a specific resolution and extent, and these layers, whether raster 
or vector, must represent landscape composition and structure for the start 
of the simulation. Plot data is usually needed to assign starting values to 
simulated composition and structure attributes, and digital maps need 
to be cross-walked so that the mapped values reference each data layer 
categories. For example, field measured plant biomass estimates collected 
on a plot with a geo-referenced location can be used to assign biomass 
estimates to a classification category represented in an input data layer, 
such as cover type.

Most modelers have found that a generalized scheme must be developed to 
guide the initialization process when there are inconsistent and spotty data. 
Such schemes should be designed to match the quality and coverage of the 
data to the scale and type of input variables needed for initialization. This 
is best illustrated by an example. To initialize the FireBGCv2 model for 
modeling projects, a tree list (number and sizes of trees per unit area) was 
needed for each mapped stand on the simulation landscape (Keane et al. 
2011). When few existing timber inventory databases were found, Keane 
et al. (2011) created two spatial data layers—biophysical setting and cover 
type—to guide the assignment of tree lists to all landscape polygons and 
pixels (Holsinger et al. 2014, Clark et al. 2017). The biophysical settings 
layer mapped a potential vegetation type classification where categories 
represent unique biophysical conditions (Pfister and Arno 1980), and the 
cover type layer was taken from existing map layers describing vegetation 
composition based on basal area (Eyre 1980). Then, Forest Inventory and 
Analysis (FIA) inventory field plots on or near that landscape were keyed 
to the mapped potential vegetation type and cover type combinations 
and FIA tree data recorded for a modal plot was assigned to each stand 
(Loehman et al. 2017). The search area was expanded to search for FIA 
plots for those habitat type-cover type combinations that had no plots. 
Many variations of this approach are possible, such as using timber 
inventory data instead of FIA plots, or adding in a structural stage layer to 
more accurately map the vegetation mosaic, or using topographic settings 
(combinations of elevation, aspect, and slope classes) to map biophysical 
variation instead of potential vegetation types.
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There are many sources for potential data to initialize models, but they vary 
in availability, quality, and quantity by geographic area, time period, and 
land ownership, so a comprehensive guide for selecting initialization data 
sources is impossible. However, there are a few data sources for initializing 
landscape models in the US that warrant mention. The LANDFIRE spatial 
data layers (Keane et al. 2007, Rollins 2009) maintained by EROS Data 
Center (https://www.landfire.gov/) has some excellent layers to use to 
represent biophysical conditions, vegetation composition, vegetation 
structure, fuel loadings, fire regimes, and many other interesting attributes 
that can be used for initialization. As mentioned, the FIA program provides 
extensive plot data collected on 5 km by 5 km grid throughout the forested 
US; these data have both vegetation and fuels information that can be used 
for a wide variety of initialization tasks (Jenkins and Birdsey 1998, Shaw 
et al. 2005, Woodall and Williams 2005) (https://www.fia.fs.fed.us/tools-
data/index.php). 

If there is ample time and funding to conduct a field campaign for collecting 
initialization data, then here are some important suggestions that might 
make that effort more effective:

 1. Confirm that the sampled data can be used for initialization. Too 
often, a sampling effort was implemented for a modeling project and 
the collected data was incompatible for initialization because of scale 
inconsistencies, improper units, and sampling compromises. One 
common problem in our modeling projects was that tree regeneration 
was ignored or inappropriately sampled for model initialization.

 2. Collect ancillary data that may be used to assist in initialization. 
Elevation, aspect, slope, or land use could be assessed in the field 
and then used to stratify results to aid in initializing the model from 
scanty data.

 3. Merge data collection efforts to help with three other modeling 
phases (parameterization, calibration, and validation). Since the bulk 
of sampling costs are in travel, it is important that data useful to all 
phases be collected during one field effort (see Chapters 5, 6, 7).

 4. Ensure collected field data are also useful to your organization. 
Collect ancillary data that may be helpful to your organization, 
especially data that can complement the management actions that 

https://www.landfire.gov
https://www.fia.fs.fed.us
https://www.fia.fs.fed.us
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are simulated in the modeling project. Wildland fuel data, for 
example, can be collected along with tree population data if the 
preferred management action that resulted from the modeling project 
suggested that prescribed burning is the best management alternative 
—the collected fuels data can be used to create the fire prescriptions 
(i.e., desired conditions for burning). 

 5. Use standardized methods and protocols that mesh with organizational 
requirements. It is highly desirable to merge the collected data into 
corporate databases once the initialization is finished. These data 
may be especially useful in other organizational projects.

If there are no corporate data standards, a number of standardized 
methodologies could be used as templates for field sampling in validation 
field campaigns. The FIREMON (Lutes et al. 2006) and FFI (Lutes et al. 
2009) packages are tools that could be used in field sampling campaigns. 
The selected system should include sampling designs, protocols, field 
codes, databases, and possible analysis reports. 

Format data

Once the data are collected, they must be reformatted to fit the input 
structure of the model. This is often one of the most odious tasks in 
initialization because if data are improperly reformatted, the next step 
(running the model) can be quite challenging. If the reader is skilled in 
programming, then the data can be reformatted using specially designed 
programs written in various computer languages or scripts, such as C++, 
Python, or Fortran. If this isn’t possible, then data can be imported into other 
data management packages, such as relational databases or spreadsheets, 
and the reformatting can be done using routines native to that software. 
Many modeling projects have reformatted the collected data into ASCII 
files using a standard text editor, spreadsheet, or word processor. 

There are three aspects of formatting the data that are important. The first is 
the most obvious—make sure the data are in the model’s required format. 
The second is less obvious but just as important—make sure the data are 
in the right units. Too often, the model will require metric units while 
inventory data were in English units. And last, it is important to make 
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sure the data are understandable to the user and the modeling team; the 
initialization data should be thoroughly documented and comprehensive 
meta-data information should be developed so that changes to the 
initialization dataset can be easily done. 

Run model

The simplest step in this phase is to execute the model to see if the input 
values are suitable for the model. The user simply runs the model using the 
recently created reformatted data files as input. The biggest challenge in 
this step is that when the model will not run (i.e., crash), it may be difficult 
to find the input data value that is in error. It could be that the values are in 
the wrong columns or the values contain special characters that the model 
can’t recognize. If the modeler included extensive error statements in the 
program, then finding all input errors may be somewhat easy. However, 
many research models have incredibly poor error statement structures and 
the model simply crashes without a notice or reason. In this case, a trial-
and-error method is used to identify erroneous values.

Evaluate results

Now comes the critical process of determining if the input data are 
acceptable for future modeling tasks. This is different from running the 
model because it involves detecting if the model correctly accepted the 
initial conditions and there are no apparent errors in the model execution. 
Model output for the first or more years should be carefully assessed to 
determine if there are any bizarre results that might indicate an erroneous 
initial value.

Revise inputs

If the evaluation described in the previous step finds that there are indeed 
problems with the input files, then the data need to be revised and the 
process of running and evaluating the model need to be repeated. These 
steps are repeated until the user has determined that the initialization is 
acceptable (no obvious errors) and other phases can be started.
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Initialization Concerns

Often, novice modelers will spend an inordinate amount of time collecting, 
synthesizing, and preparing data for model initialization because they 
want the data to be the best possible representation of initial conditions. 
While this is commendable, it probably isn’t as important as some of 
the other modeling phases or some other facets of initialization. In fact, 
initialization is one of the modeling phases in which the timelines can be 
modified to fit project timelines. One reason for this is that initialization 
data defines a starting point for modeling and the data are only important 
for the first few decades of simulation. Minor uncertainties in initialization 
make little difference toward the end of a 500 year simulation (Keane et 
al. 2011). However, studies have shown that large errors in initialization 
may influence a major slice of the initial simulation time span (Keane et 
al. 2002, Keane et al. 2006). Therefore, initialization, similar to all the 
other phases of modeling, is more an art than a science when timelines are 
tight. Small compromises during each initialization step (Figure 4.1) must 
be made to match the available data with the level of resolution needed to 
minimize the influence of initial conditions on model results. 

If the model selected is an LESM, then it is important that the initialization 
use the same resolution, detail, and accuracy for mapping initial conditions 
across the simulation landscape—wall-to-wall. This means that grasslands 
should be mapped at the same resolution as forests, alpine be mapped at 
the same resolution as temperate zones, and rock-lands receive the same 
treatment as shrublands. 

Determine Influence of Initial Conditions

Once the initialization has been deemed acceptable and the user feels 
that other modeling tasks can begin, an additional step is suggested but 
not required. The user should run the model multiple times and graph the 
results over time to determine the influence of initial conditions on the 
beginning years of the simulation, and if there is influence, users need 
to determine when the influence of initial conditions is minimal over the 
simulation time span. This step should be done once the parameterization 
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(Chapter 5) and calibration (Chapter 6) tasks are finished. This step is done 
to estimate the impact of initial conditions on subsequent results. 

As mentioned above, inappropriate initial conditions may lead to 
questionable simulation results. If the initial conditions accurately portray 

Figure 4.2. Effects of initial values on model output from the Keane et al. (2002) 
LANDSUM model initialization experiment. Note that the initial conditions at year 1 
are quite different than when the model comes into equilibrium. In this case, the model 
LANDSUMv4 was being used for the approximation of historical conditions and the 
starting conditions were taken from contemporary landscape that had over 100 years of fire 
exclusion. It appears the first 100 years need to be removed from the simulated time series 

to properly describe historical dynamics. 
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the state of the ecosystem or landscape for the start of a simulation, 
then no further work needs to be done to mitigate the effects of initial 
conditions. However, if initial conditions are inconsistent with simulation 
goals, such as in the previous fire exclusion example, then effects of initial 
conditions must be mitigated. Keane et al. (2006), for example, found that  
poor initializations affected up to 100 years in LANDSUM simulations 
(Figure 4.2).

Perhaps the only way to mitigate adverse effects of inappropriate initial 
conditions when simulating historical regimes or past landscape dynamics 
is to eliminate the first set of years from the analysis. A trial and error 
method is often used to determine how many years to remove from the 
simulated results. To do this, the user would run the model for hundreds of 
years and annual output would be graphed over time (Figure 4.2). The user 
then visually inspects the output to determine when the effects of initial 
conditions are the least evident. 

References
Cary, G. J., R. E. Keane, R. H. Gardner, S. Lavorel, M. D. Flannigan, I. D. Davies, C. Li, J. M. 

Lenihan, T. S. Rupp and F. Mouillot. 2006. Comparison of the sensitivity of landscape-
fire-succession models to variation in terrain, fuel pattern, climate and weather. 
Landscape Ecology 21: 121–137.

Clark, J. A., R. A. Loehman and R. E. Keane. 2017. Climate changes and wildfire alter vegetation 
of Yellowstone National Park, but forest cover persists. Ecosphere 8: e01636-n/a.

Eyre, F. H. E. 1980. Forest cover types of the United States and Canada. Society of American 
Foresters, Washington DC., USA.

Gardner, R. H., B. T. Milne, M. G. Turner and R. V. O’Neill. 1987. Neutral models for the 
analysis of broad-scale landscape pattern. Landscape Ecology 1: 19–28.

Holsinger, L., R. E. Keane, D. J. Isaak, L. Eby and M. K. Young. 2014. Relative effects of 
climate change and wildfires on stream temperatures: a simulation modeling approach 
in a Rocky Mountain watershed. Climatic Change 124: 191–206.

Jenkins, J. C. and R. Birdsey. 1998. Validation databases for simulation models: above ground 
biomass and net primary productivity (NPP) estimation using easwide FIA data. General 
Technical Report NC-212, USDA Forest Service, North Central Research Station, 
Boise, ID., USA.

Keane, R. E., L. Holsinger and S. Pratt. 2006. Simulating historical landscape dynamics using 
the landscape fire succession model LANDSUM version 4.0. General Technical Report 
RMRS-GTR-171CD, USDA Forest Service Rocky Mountain Research Station, Fort 
Collins, CO USA.

Keane, R. E., L. M. Holsinger, M. F. Mahalovich and D. F. Tomback. 2017. Evaluating future 
success of whitebark pine ecosystem restoration under climate change using simulation 
modeling. Restoration Ecology 25: 220–233.



93

Initialization—How to Begin a Simulation

Keane, R. E., R. A. Loehman and L. M. Holsinger. 2011. The FireBGCv2 landscape fire and 
succession model: a research simulation platform for exploring fire and vegetation 
dynamics. General Technical Report RMRS-GTR-255, U.S. Department of Agriculture, 
Forest Service, Rocky Mountain Research Station, Fort Collins, CO USA.

Keane, R. E., R. Parsons and P. Hessburg. 2002. Estimating historical range and variation 
of landscape patch dynamics: Limitations of the simulation approach. Ecological 
Modelling 151: 29–49.

Keane, R. E., M. G. Rollins and Z. Zhu. 2007. Using simulated historical time series to prioritize 
fuel treatments on landscapes across the United States: the LANDFIRE prototype 
project. Ecological Modelling 204: 485–502.

Kendall, K. C. and R. E. Keane. 2001. Whitebark pine decline: Infection, mortality, and 
population trends. pp. 221–242. Whitebark Pine Communities: Ecology and Restoration. 
Washington D.C.: Island Press c2001.

Loehman, R. A., A. Corrow and R. E. Keane. 2011. Modeling climate changes and wildfire 
Interactions: Effects on whitebark Pine (Pinus albicaulis) and implications for 
restoration, Glacier National Park, Montana, USA. pp. 176–188. In: The Future of High-
Elevation, Five-Needle White Pines in Western North America: Proceedings of the High 
Five Symposium. U.S. Department of Agriculture, Forest Service, Rocky Mountain 
Research Station, Missoula, MT.

Loehman, R. A., R. E. Keane, L. M. Holsinger and Z. Wu. 2017. Interactions of landscape 
disturbances and climate change dictate ecological pattern and process: Spatial modeling 
of wildfire, insect, and disease dynamics under future climates. Landscape Ecology 32: 
1447–1459.

Lutes, D. C., N. C. Benson, M. Keifer, J. F. Caratti and S. A. Streetman. 2009. FFI: A software 
tool for ecological monitoring*. International Journal of Wildland Fire 18: 310–314.

Lutes, D. C., R. E. Keane, J. F. Caratti, C. H. Key, N. C. Benson, S. Sutherland and L. J. Gangi. 
2006. FIREMON: Fire effects monitoring and inventory system. General Technical 
Report RMRS-GTR-164-CD, USDA Forest Service Rocky Mountain Research Station, 
Fort Collins, CO USA.

Pfister, R. D. and S. F. Arno. 1980. Classifying forest habitat types based on potential climax 
vegetation. Forest Science 26: 52–70.

Rollins, M. G. 2009. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel 
assessment. International Journal of Wildland Fire 18: 235–249.

Shaw, J. D., B. E. Steed and L. T. DeBlander. 2005. Forest Inventory and Analysis (FIA) annual 
inventory answers the question: What is happening to pinyon-juniper woodlands? J. 
For 103.

Thornton, P. E. and N. A. Rosenbloom. 2005. Ecosystem model spin-up: Estimating steady 
state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecological 
Modelling 189: 25–48.

Woodall, C. and M. Williams. 2005. Sampling protocol, estimation, and analysis procedures 
for the down woody materials indicator of the FIA program. General Technical Report 
NC-256, USDA Forest Service, North Central Research Station, St. Paul, MN, USA.

Xiao, Q., X. Zou and B. Wang. 2000. Initialization and simulation of a landfalling hurricane 
using a variational bogus data assimilation scheme. Monthly Weather Review 128: 
2252–2269.



94

5
Parameterization
How to Tune the Model for Local 
Applications

“However useful computer models may be, the one thing they cannot be 
is evidence. Computer climate models are simply conjectures.”

Nigel Lawson

Parameter—a numerical or other measurable factor forming one of a 
set that defines a system or sets the conditions of its operation.

ABSTRACT
Parameterization is the task of quantifying the static values needed 
by the algorithms in the selected model. Parameters may be 
equation coefficients, threshold values, and vegetation categories. 
Parameterization is a preliminary modeling phase that is absolutely 
required in all modeling projects because it will not only quantify 
the information needed to run the model, but it will also help the user 
understand the model and the algorithms that comprise the model. 
First, this chapter covers the five main methods of quantifying 
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parameters—field measurements, legacy data, literature, model 
approximations, and expert opinion. Then, the chapter covers how 
to design a comprehensive parameterization strategy to ensure the 
most appropriate values are assigned to all parameters. Then, the 
seven steps in a parameterization are presented: (1) develop strategy, 
(2) identify parameters, (3) collect data, (4) quantify parameters, 
(5) run model, (6) evaluate results, and (7) revise parameters. And 
last, various aspects of performing a successful parameterization are 
covered. 

Introduction

Parameterization is the task of quantifying the static values (i.e., 
parameters) needed by the algorithms in the model that mathematically 
represent simulated ecological processes. Some parameters are coefficients 
to equations (e.g., light compensation point), while others are threshold 
values that are used to decide a specialized procedure or algorithm in the 
model (e.g., cover of woody species). Some parameters are solely at the 
discretion of the user, such as the values that set simulation design (e.g., 
number of years to simulate, types of outputs, and size of pixels), and 
others are specific to the simulated module or ecosystem process (e.g., 
maximum leaf area, soil water holding capacity). Parameters are the heart 
of the model and represent the best way to tailor a model for a specific 
local application. 

Parameterization is a preliminary modeling phase that is absolutely 
required in all modeling projects (Grimm and Railsback 2013). This 
phase will not only quantify the information needed to run the model, 
but it will also help the user understand the model and the algorithms 
that comprise the model. Poor parameterizations are major problems in 
many modeling projects (i.e., garbage in, garbage out), so sufficient time 
should be dedicated to this effort (Jakeman et al. 2006). Unfortunately, it 
is also the phase when most users feel that they are “out of their element” 
—many of the parameters and their meanings might be unknown to users 
unless they are familiar with the literature. Hopefully this chapter will help 
novice users through this often demanding phase.

There is never a perfect parameterization, except for the simplest of 
ecological models, which are rarely used in land management activities. 
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It is difficult, if not impossible, to flawlessly parameterize mechanistic 
models because of their inherent complexity; compromises are always 
made in quantifying model parameters because of measurement limitations, 
scale, paucity of data, and context incompatibilities and inconsistencies 
(McCallum 2008). Because of this, users often become discouraged 
and disappointed with their parameterizations. But a disappointing 
parameterization is never a reason to abandon all confidence in model 
output; other phases of the modeling project, specifically calibration and 
validation, often help to address limitations of the parameterization and 
provide ways to improve the parameterization. And, the uncertainty can 
always be incorporated in the analysis and interpretation of model findings.

Parameterization Methods

There are five major methods that are often used to quantify model 
parameters and they involve estimating parameters from the following 
sources (in order of preference): field measurements, existing data 
syntheses, literature searches, iterative model approximations, and expert 
opinions. Each of these methods has advantages and disadvantages that 
must be addressed under any project design (Table 5.1). If time is short, for 
example, it may be impossible to collect field measurements or conduct 
model approximations. Most model parametrizations employ a blending 
of all methods to best estimate the diverse parameters that can be part of 
applying complex models, such as LESMs. 

Field measurements

Field measurements within the geographic area and environmental context 
of the modeling project can provide more accurate parameter values than 
nearly all other sources. Site, water, plant, and animal characteristics, for 
example, can be measured in the field to quantify parameters in the model. 
However, some parameters in the model may be difficult to measure 
because they require specialized equipment and/or demand inordinate time 
and resources. As examples, many forest gap models require the maximum 
height and diameter for each tree species to parameterize the growth 
algorithm, and these characteristics may be difficult to measure over a 
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limited seasonal field campaign (Botkin 1993). Many evapotranspiration and 
photosynthesis algorithms need highly specialized parameters, such as the 
light compensation point, maximum stomatal conductance, and temperature 
thresholds, that must be measured by expensive equipment such as gas-
exchange systems (Hari et al. 1990). And many fire models need an estimate 
of fire return intervals (FRIs) for a given landscape and estimating historic 
FRIs involves intensive sampling of fire-scars taken from live and dead 
trees and bringing the fire-scar samples into the lab for analyses (Maruoka 
and Agee 1994). Since field measurements are costly and time-consuming, 

Table 5.1. A summary of the various methods that can be used to quantify a model’s 
parameter. The methods are listed in order of preference. 

Method Advantages Disadvantages
Field
Sampling

Best method for 
estimating parameters; can 
target specific parameters; 
can be also be used to 
sample for initialization, 
calibration, validation.

Impractical in most projects 
because of lack of time, funds, or 
experience.

Existing Data 
Compilations

Popular; simple; can 
be localized; often best 
source for most projects.

Local data sources difficult to 
find; often need to reformat data; 
requires knowledge of data systems; 
may require specialized knowledge 
and high computing power to 
process data; limited for most areas; 
may have scale and organization 
inconsistencies.

Literature Searches Most common; easy; 
abundant information. 

Time-consuming; Never really 
finished; Often confusing and 
contradictory; Local studies difficult 
to find; Study measurements 
inappropriate to project’s location 
or conditions; units are often wrong 
and difficult to convert.

Model 
Approximations

Provides a safety net in 
case no other method 
possible; can be simple for 
some parameters. 

Difficult to perform for some 
parameters; Requires knowledge of 
model or computers; Only possible 
for a limited number of parameters.

Expert Evaluations Quick; easy; review other 
parameters at same time.

High degree of uncertainty; often 
disagreement among experts; High 
subjectivity because only one or 
two experts contribute.
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field sampling is only practical for model parameterization when there are 
sufficient resources. However, if field sampling is possible, users should be 
sure to read the important suggestions from Chapter 3 that might make that 
effort more effective (summarize here):

 1. Merge data collection with the three previously mentioned phases 
(initialization, calibration, and validation). 

 2. Ensure field data are useful to your organization after modeling. 
 3. Collect data that may be used to understand the parameter. 
 4. Use methods and protocols that mesh with organizational 

requirements. 
 5. Confirm that the sampled data can be used for parameterization. 

As mentioned in the previous chapter, there are a number of standardized 
methodologies that could be used as templates for field sampling in 
parameterization field campaigns, such as FIREMON (Lutes et al. 
2006) and FFI (Lutes et al. 2009). However, these packages will have 
limited use in measuring the diverse and specialized parameters found in 
complex models. Perhaps the best way to obtain sampling procedures for 
the specialized and exacting parameters is to find those published papers 
where the parameters were quantified by others.

Existing data compilation

There should be a comprehensive search for existing data to use for 
parametrization, and this search should be both extensive and flexible. 
First start within the home organization or agency to find unpublished data 
from reports and local databases that might be useful for parameterization. 
Then, identify any national efforts that collected appropriate field data 
that may be useful for parameterization. National programs such as the 
US Forest Service’s FIA (Bechtold and Patterson 2005), USGS grassland 
inventories (Council 1994), and the NSF NEON project (Senkowsky 2003) 
might have suitable data with easy access. Next, universities, government 
agencies, NGO’s and other potential partners that might have relevant data 
should be contacted. Global databases may also be a source of parameter 
data such, as the TRY Plant Trait Database, but may require requests for 
access (Kattge et al. 2011).
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Remotely sensed data (e.g., satellite imagery, Lidar, radar) might also 
provide a way of estimating some model parameters. Lidar products, for 
example, can be used to estimate canopy fuel characteristics (Andersen et 
al. 2005, Erdody and Moskal 2010), canopy cover and leaf area (Korhonen 
et al. 2011), and forest and tree structure and height (Lim et al. 2003). And 
ground-based Lidar can be used to estimate various characteristics of the 
forest floor (Loudermilk et al. 2009). Passive sensors, such as Landsat (e.g., 
TM, ETM, OLI), MODIS, Sentinel, and AVHRR, can be used to estimate 
phenological parameters (Ehrlich et al. 1994, Zhang et al. 2003, Delbart 
et al. 2006). Land cover and land use are often mapped and monitored 
using a wide variety of remote sensing platforms (Rogan and Chen 2004). 
However, the effective use of these spatial data resources may demand a 
high level of expertise from the user or project team.

Literature searches

The next alternative for quantifying parameters is to peruse the literature 
to glean values for parameters from published studies (White et al. 2000). 
This is easily the most popular approach among users because of the 
paucity of existing data to quantify important biophysical parameters. 
Especially precious are published synthesis papers that have compiled 
extensive summaries of some important modeling parameters; Hessl et 
al. (2004), as an example, published a set of ecophysiological parameters 
synthesized from the literature for the tree species of the Pacific Northwest 
USA. If these compilations are unavailable, then each parameter must be 
researched independently. Users should begin their search in the modeling 
literature starting with papers written for their selected model, as most 
modeling papers publish the list of parameters used in the modeling 
study. Then users should expand the search to similar models that may 
have used the same parameter. If fruitless, then users can move to the 
empirical literature that concerns field studies of the desired parameter and 
its estimation. Respiration coefficients, for example, could be published 
in the ecophysiological literature. And last, users should ask local experts 
at universities and research stations if they know of any literature or 
unpublished work that would help your parameterization.
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Users should also employ creative methods to find parameters in the 
literature. Some papers provide correlations of more easily measured 
variables to the difficult model parameters, and these regression equations 
can be used to estimate values for their project. Often, there will be 
another variable that is measured in the literature that can be easily 
converted to approximate a value for the desired parameter; canopy cover 
(%), for example, can be used to coarsely estimate leaf area (Carlson 
and Ripley 1997). Users can also query the author(s) of related papers 
asking them if they have any information on the desired parameter, such as 
from unpublished studies, and they may also contact author(s) of similar 
models to ask them to send input parameter files. Users should know that 
the literature will contain many contradictory and confusing values for 
some parameters. Sometimes, the range of values for a single parameter 
will be double its mean because it was measured for a different place, for a 
different species, or for a different time, or even with different equipment.

Abundant notes should be taken concerning details of literature searches. 
Values from the literature can be recorded in spreadsheets and the sources 
can be meticulously described along with any possible notes considering 
measurement of the parameter. The electronic copy of the paper is usually 
stored in a well-designed directory structure and the reference is imported 
into citation software or an electronic document. A well-documented 
parameterization will be invaluable to others who plan to use the model, 
especially those within the home organization of the user, and it will also 
help in the analysis and report-writing. It is important to record whether the 
discovered parameter values are appropriate for your specific ecosystem 
or location. Often only single values may be reported for a parameter, 
but if it was measured in a different place, under different conditions, or 
following a different protocol you may not be able to use the value for 
your model with confidence. 

Model approximations

Another less used, but often invaluable approach, is the use of the model 
itself to estimate the parameter’s value (Jakeman et al. 2006). This 
approach is only appropriate when there are ample field measurements 
on the algorithm in which the parameter is used. If a parameter’s value is 
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completely unknown, and there are few data or limited literature studies 
to help in its quantification, the user can make an educated guess as to the 
initial value of the parameter. That initial value is then entered into the 
model and the model is executed and results from the algorithm in which 
the parameter occurs are compared against real observations. This process 
is quite similar to that used in the calibration procedure (Chapter 6). If 
the resultant values disagree with observations, the parameter’s value is 
then altered and the model is run again. This procedure is repeated until 
the user is satisfied that the revised value of the parameter is providing 
realistic results. An alternative to this method is to use another, more 
focused, model or computer program to estimate the parameter. For 
example, the algorithm can be separately programmed for ease of use 
for model parameterization. Or, sometimes others have built computer 
programs specifically for estimating a particular parameter; Hill (1992), 
for example, created a model to estimate parameters in a transient ground 
water flow model and Kruuk (2004) estimated genetic parameters using 
maximum likelihood statistical models.

This iterative method assumes several things. First, all the other parameters 
in the algorithm are reasonably estimated. Second, the processes in the 
algorithm are accurately represented and programmed correctly. Next, 
the measurement of the reference observations that the user is using for 
comparison are consistent with modeled output (e.g., correct units). And 
last, the user has the experience and knowledge to iteratively run the model. 
Another variation to this method is to use experts instead of measured 
observations as reference in the evaluation. This model approximation 
method is time-consuming and quite demanding, especially if there a 
many parameters that need quantification, therefore many modelers use 
this as a last resort.

Expert evaluation

The last alternative is using expert opinion for model parameterization. 
In this approach, a panel of experts is employed to estimate parameter 
values. Invariability, experts often need some knowledge of the model 
and its behavior before they provide estimates, so it is important that the 
user provide a comprehensive package for the experts to review including 
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results of various model runs showing the influence of a gradient of 
parameter values (see Chapter 6). The same expert team can also be used 
to review the parameters after this parameterization phase is complete so 
the user can gain additional confidence in model results. Obviously, using 
experts to estimate parameters is less desirable than the other methods 
because of its inherent subjectivity and human biases, but many users will 
reluctantly find that this is an indispensable tool in parameterization.

Parameterization strategy

Because users often find that some model parameters are difficult to 
quantify, it is strongly suggested that the user develop a plan for dealing 
with inadequate and inconsistent information to quantify parameters. 
A hierarchical decision-making process can be developed to quantify 
those parameters whose values are unknown or suspect so that bias is 
kept to a minimum. During a parameterization, for example, there are 
many parameters that cannot be quantified because their values were 
never measured or there was little time to measure them for the project, 
especially for complex models. The question then is what to do about the 
missing parameter values? Do you select another model or try to find an 
alternative way to quantify missing parameters? The user should design a 
comprehensive plan that is employed every time an un-measured parameter 
is encountered. This will mitigate some of the subjectivity that can creep 
into a parameterization and it also will make the process more efficient. 
The hierarchy of selecting the method used to estimate a parameter’s value 
is the first thing to explicitly document in a parameterization effort. As an 
example, to quantify a parameter, values from field measurements might 
be selected first, then values from the literature are used if no field values 
are available, then values from existing data if no literature values, then 
experts, then best “guess”, and last model approximation. Or there may 
be some overriding criteria that need to be followed, such as proximity 
to simulation area, use in similar models, and rigor in measurement or 
estimation. At any rate, the melding of all approaches in a comprehensive 
plan is the best way to estimate parameter values.

If insufficient data exists for a parameter of a given species, one 
parameterization strategy is for the user to assign the same value as that of 
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another species of the same genus (e.g., the same parameter can be used 
for all Pinus genera). If the entire genera are missing parameters, then a 
parameter from species of the same plant functional type (PFT) (Smith 
et al. 1993) can be used. PFTs have been used by many modelers and 
ecologists as a way to synthesize species characteristics (Diaz and Cabido 
1997, Enright et al. 2014, Stahl et al. 2014). PFTs are also called plant 
guilds (Wilson 1999), functional groups, and functional classifications 
(Gitay and Noble 1997). Species are often grouped together based on their 
representation in the model, such as by ecophysiological characteristics 
(Thonicke et al. 2001), response to disturbance (Lavorel et al. 1997), life 
histories (Adler et al. 2014), successional dynamics (Noble and Gitay 
1996), and land use (Gondard et al. 2003). PFTs can be a powerful tool in 
other phases of the modeling project, such as validation (e.g., summarizing 
model results across PFTs), calibration (e.g., using PFTs as a way to stratify 
diagnostic variables), and initialization (e.g., assigning missing age data 
based on age distributions within a PFT). 

Perhaps the best way to illustrate a parameterization strategy is to provide 
a simple example. In a parameterization of a complex model, such as an 
LESM, a user might find that direct measurement of parameters in the 
growth algorithms for some tree species is impractical because of time 
and cost limitations; only existing unpublished data and data from the 
literature, in that order, are possible within the project’s timeline and 
budget (e.g., no time or funds to perform a field campaign, or model 
approximation effort). Therefore the user might decide that any species 
that are missing parameter values will receive the same value as that of 
other species of the same genus that have a value (e.g., the same parameter 
can be used for all Pinus genera). If the parameter value is missing for the 
entire genera, then a parameter from species of the same plant functional 
type (PFT) (Smith et al. 1993) might be used. The PFTs could be based 
on lifeform (conifer, broadleaf, shrub, and herb). If there are no genera 
or PFT parameter values for a certain species, then the parameter could 
be estimated as an average across all species. And as a last resort, the 
parameter is estimated from expert opinion. If multiple values of the same 
parameter are found in the literature for the same species, then the one that 
was measured closest to the simulation landscape could be the best option; 
the one that was measured directly or measured with the best procedures 



104

Applying Ecosystem and Landscape Models in Natural Resource Management

might be taken next; and last, an average across all parameter values could 
be used. Keane et al. (1996) used a similar form of this approach in the 
first parameterization of a complex LESM. This plan ensured consistency 
in parameter estimation and reduced possible subjectivity that may be 
encountered in the parameterization process. But most importantly, this 
plan provided a means of communication across the modeling team. A 
more complex strategy is presented as an example in Table 5.2.

A critical part of developing a parameterization plan is to document 
everything and provide ample detail describing each step. The value(s) 
of each parameter must be documented in the context of the simulation 
plan. Parameter estimations that use multiple methods will also need to be 
detailed. This information will be essential in several other project phases. 
Here’s a hypothetical example to illustrate the process of documentation. A 
simple model required a set of ecophysiological parameters for simulating 
photosynthesis (light compensation point), respiration (Q10 coefficient), 
and evapotranspiration (stomatal conductance) for multiple species. 
The user created a spreadsheet of the parameters (columns) by species 
(rows) and populated the spreadsheet with values measured in the field, 
found in the literature, and obtained using model iteration, in that order. 
The sources used for parameter estimation were documented on another 
spreadsheet as well as any other interpretive notes. However, about 10% 
of the parameters had missing values, so the user decided to employ PFTs 
used in the modeling literature (Running et al. 1994, Adler et al. 2014) as 
a way to assign missing values. The PFTs were designed to distinguish 
ecophysiological characteristics using criteria such as shade tolerance, 
leaf morphology, drought tolerance, and disturbance adaptations. The user 
then grouped species implemented in the model into PFTs and assigned 
missing parameter values across the PFT classification, documenting 
every step in the spreadsheet.
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Table 5.2. An example 10-level parameterization strategy for estimating the values of 
parameters for a plant species in a simple ecological model. Pretend the model is a spatial 
gap model that has 20 tree species included in its architecture and there are four parameters 
being estimated for each species: maximum DBH, maximum height, maximum age, and 
shade tolerance level (1-low, 5-high). The user would use the following hierarchy to 
quantify each of the four parameters. The level would then be recorded in the spreadsheet 
used to store the parameter values. This spreadsheet may have more than one column for 
each value in case multiple values are available in existing databases, in the literature, and 

from experts. 

Levels Procedure Notes
I Estimate from field data collected 

specifically for the project at or near 
the area to be simulated

Field campaigns can be used to sample 
one or more of the four parameters

II Estimate from field data collected 
by someone else and published in 
the peer-reviewed literature that is 
NEAR the landscape

Peruse the literature and determine if 
there were studies near the simulation 
landscape that measured the parameters

III Estimate from field data collected 
by someone else and published in 
the peer-reviewed literature that is 
DISTANT from the landscape

Be sure to set guidelines on how to 
determine near and far

IV Estimate from field data collected 
by someone else NEAR the 
landscape but remains unpublished

Inventory all existing databases to see if 
anyone sampled the parameter(s)

V Estimate from field data collected 
by someone else DISTANT 
from the landscape but remains 
unpublished

Be sure to use the same guidelines for 
near and far as above

VI Approximate using model iterations Use the model to iteratively estimate the 
parameter values

VII Obtain a value from experts Ask local experts (e.g., modelers, 
foresters, biologists) for values

VIII Use a value from a species of the 
same genus

Be sure to record at what level the 
original value was approximated

IX Use a value from a species of the 
same plant functional type

Must develop a PFT classification; could 
use one from the literature; be sure to 
record original level

X Estimate the value Use your own expertise in the model to 
approximate a value for a species
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Parameterization Steps

The steps involved in model parameterization can be synthesized into six 
primary actions (Figure 5.1). In this section, these six steps are outlined to 
illustrate an effective parameterization process for any modeling project.

Figure 5.1. The steps used in the parameterization phase of a modeling project. Steps in 
italics indicate that the step is optional. Various tasks are summarized to the left of each 

step.

Develop a parameterization strategy

This initial step in any parameterization, which is the creation of a 
parameterization plan as discussed above, will form the foundation 
on which to build a parametrization and provide a structure to make 
parameterization decisions. It is easily the most critical step because all 
decisions can be made in this context. Creation of the plan should use 
material presented in the previous section, along with any local knowledge 
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of the modeling project that may be important in parameterization. The 
plan should be thoroughly documented and revised as new situations are 
encountered during parameterization.

Identify parameters

In this step, the parameters that need quantification are identified using 
all reference material for the selected model. Some model parameters are 
relatively simple and their quantification can be done easily. For example, 
most simulation parameters (output variables, simulation time span, years 
in the weather record) are estimated in the context of the simulation design. 
However, parameters in key algorithms of the model may require more 
effort because they must be carefully estimated. When there are abundant 
parameters that need estimation, it is often beneficial to rate the parameters 
as to their importance in the simulation architecture or their influence 
on model output. Past sensitivity analysis results (Chapter 8), previous 
modeling projects, information from the literature or model manuals, 
objectives of the modeling project, and basic ecological knowledge can 
be used to rate model parameters. The most important parameters should 
receive the greatest time and effort in their estimation. 

Find data

All available data should be identified for quantifying model parameters. 
As mentioned in the previous section, data sources can be from field 
sampling efforts, existing data, the literature, model approximations and 
experts. Users may find that they use all these methods to estimate values 
for the diversity of model parameters. 

Quantify parameters

In this step, all available data and knowledge are used to quantify values for 
all parameters identified by the user. One or more of the above methods are 
used to estimate the parameter values, and often, a melding of methods is the 
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most effective approach in the estimation of all parameters. It is critically 
important that the sources used for parameter estimation are thoroughly 
documented because this will help in the calibration, validation, and 
analysis phases. Here is where the user implements the parameterization 
strategy to quantify parameters, which may involve prioritizing the 
methods used to assign a value; protocols to use when information on a 
parameter is unknown, the hierarchical ordering of procedures to use when 
more than one value exists for a parameter; and venues of documentation 
(e.g., spreadsheets, illustrations, modeling journal).

Run model

Once all parameters have been estimated, they are entered into the input 
files of the model or directly into the model, and the model is run to 
ensure that each parameter has been properly entered. Many modeling 
projects were stalled because the model improperly read the parameter 
value because of various circumstances, such as the wrong format, units, 
or decimal point. 

Evaluate results

Model output should be closely examined to determine if the parameters 
were input correctly and were appropriately quantified. The first evaluation 
is to detect any model error or warning messages that occurred because of 
the improper parameterization. Next, model output should be examined 
to ensure that the parameter is being properly accepted by the model. 
Many models produce a file documenting all the parameters as they were 
read by the computer program (e.g., “echo” files) and these output files 
are invaluable for debugging input files. Otherwise, the user is left with 
checking simulated results from a particular module to determine if they 
are believable. If this is the only alternative, then the user should evaluate 
the entire parameterization rather than evaluate one parameter at a time. If 
results appear to be in error, then the parameters need to be revised as they 
were probably improperly entered.
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Fix parameters

Fix all erroneous parameters and rerun the model until model output seems 
to reasonably represent ecological processes of interest in a landscape. This 
might be a good time to ensure that the units on all the parameter values 
are correct; many a modeling project was waylaid for weeks because of a 
simple error in a major parameter value’s units. Also, another useful error 
check is to examine the magnitude of model outputs. For example, some 
variables output by the model may be orders of magnitude higher or lower 
than from expected values due to incorrect parameterization.

Parameterization Concerns

Although model parameters are the core of the simulation effort and 
they provide the only way a model can be adapted to local situations, 
values for these important model inputs are sometimes extremely elusive. 
As mentioned, the lack of comprehensive assessments of parameters 
often leads to dissatisfaction and disappointment in model users. But 
the user must remember that there is a great deal of uncertainty in the 
entire modeling process and a “perfect” parameterization may never be 
possible. Moreover, spending time to obtain a parameterization that the 
user feels is sufficient may have not appreciably improve model results. A 
photosynthesis algorithm, for example, may have so many internal sources 
of variation that a perfect estimate of one parameter may do little to mitigate 
the underlying uncertainty in algorithm development. Or, an algorithm 
may be driven by one key parameter, while others in the equation have 
a relatively minor influence on model estimates. However, a thoughtful 
parameterization can provide confidence in model predictions, and it may 
also allow the user to more thoroughly understand the model. In the end, 
the user should take comfort in knowing that parameterization was done 
using the best available scientific information in a timeline appropriate for 
the project. If there are serious doubts about the parameterization, they can 
be addressed in the interpretation of the model’s results. 

In my experience, a good parameterization is often limited by the timelines 
of the project rather than the availability of the possible data sources to 
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quantify parameters. Literature searches for specialized ecophysiological 
parameters, for example, may take months to complete and, in fact, are 
rarely ever finished because new research is always being published. In 
addition, the compilation and analysis of newly published data to quantify 
parameters may take inordinate amounts of time. It is often best to select 
a “sunset” date for the parameterization phase and decide, on that date, 
if the parameterization is acceptable. If not, project timelines will need 
to be redone based on educated guesses on how much longer it will take 
to parameterize the model to an acceptable level. Obviously, it is best to 
involve the modeler in the parameterization to ensure the final product 
is acceptable. It’s also beneficial to have a group of experts review the 
parameter set after its initial quantification. The scientific and modeling 
community may have some ideas of how best to parameterize a model and 
if the parameters estimates are acceptable. This will provide additional 
confidence in the parameterization.

And last, it is important that the user never perform the evaluation of 
the initial conditions (Chapter 4) and parameterization at the same time 
because it may be difficult to determine which values are in error if the 
model performs poorly. Conduct each task separately, and perform the 
initialization evaluation first.
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6
Calibration
How to Tune the Model for Realism

“Our abilities to understand, adjust, and change make us wise.” 

Debasish Mridha M.D.

Calibration—to plan, adjust, or devise carefully to have a precise use 
or application. 

ABSTRACT
Calibration is the process of evaluating preliminary model output 
and adjusting parameters to get a more realistic result. Calibration 
performs many important tasks—the user (1) develops a solid 
feel for model behavior from the iterative runs, (2) becomes more 
confident in interpreting results, (3) detects obvious problems with 
initialization and parameterization, (4) learns the sensitivities of 
model parameters, and (5) prepares the model for the execution 
of the project. This chapter presents the eight steps of calibration:  
(1) identify important parameters to use as knobs for calibration,  
(2) develop a calibration strategy to ensure objectivity, (3) collect any 
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data or information useful in the calibration, (4) perform preliminary 
calibration simulations, (5) compile a final list of parameters, (6) 
adjust parameters, (7) run model, and (8) evaluate results and repeat. 
Last, a set of issues that emerge during calibration are addressed and 
solutions are presented.

Introduction

Calibration, also known as ‘conditional verification’ (Jakeman et al. 
2006), is the process of evaluating preliminary model output for realism 
and believability, and if results seem unrealistic, then adjusting parameters 
to achieve a higher level of realism (Rykiel 1996). This is often an 
exhausting and perplexing task, especially for novice users of complex 
models. It is exhausting because it employs a classic trial-and-error or 
iterative method of improving believability of model results by comparing 
them with existing information and changing the appropriate parameters to 
get better comparisons. It is perplexing because often the user has limited 
a priori knowledge of the model, influences of parameters, and model 
behavior, making the entire task somewhat of an paradox. Calibration 
can take substantial time, especially for large, complex models, such 
as LESMs, because complex models generate profuse results for many 
diverse variables, each of which may need to be evaluated for realism. 
Moreover, changing one parameter may cause output for one variable to 
become more realistic or acceptable, but it may also may result in another 
variable’s values being less believable. The model must be rerun many 
times to get to a point where the user feels that the model has sufficient 
realism and is ready for validation and execution phases in their specific 
project. Through this process, however, the user of the model gains a better 
understanding of the model and why it behaves the way it does, and it is 
the calibration process where the user develops the deep understanding 
needed to interpret the final results of the modeling effort.

Calibration is different from validation (Chapter 7) in that, in calibration, 
the initial conditions and parameters of the model are changed to get better, 
more believable model results, whereas in validation, the model results are 
evaluated against actual data to determine accuracy and precision and the 
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model is NOT modified based on the validation. Moreover, calibration 
should be done before the model is validated. 

Calibration is needed any time a model is applied to a new area or used in 
a new way because input parameters are often replaced or adjusted for the 
new situation (Janssen and Heuberger 1995). Parameters value are rarely 
perfect fits in the selected model for a variety of reasons. Their values 
may have been estimated rather than measured, or their values may have 
been extrapolated from a different situation and therefore may not be 
compatible with the current use. For example, parameters that drive a plant 
respiration algorithm may have been measured for a plant species, size, or 
condition that are different from what is simulated in the selected model. 
Moreover, these parameters may have been measured for a single plant 
under greenhouse conditions whereas the model may need to simulate an 
entire array of interacting plants in the natural environment. As a result, 
measured parameter values may not always be exactly what is needed by 
the model. Adjustments must be made, using the model as a sounding 
board, to ensure parameters are realistic and acceptable.

It may seem to many that calibration is “fudging” model results to get 
what the user wants for an answer or what the user believes to be the 
desired result. However, calibration is actually a little more involved 
than this simplistic perception. Calibration performs many important 
tasks. First, it allows the user to get a solid feel for model behavior from 
the iterative runs, and as a result, the user becomes more confident in 
interpreting results during the analysis phase of the modeling project. 
Second, calibration often detects obvious problems with initialization 
and parameterization, and those inconsistencies can be dealt with prior 
to model execution. A common problem encountered by many landscape 
modelers is the model is run for a century or two without disturbance and 
the shade tolerant species fail to outcompete the shade intolerant species 
because of inappropriate ecophysiological parameter values for some 
species. The sensitivities of some model parameters also become evident 
during the calibration stage; modification of one parameter may result in 
small changes in model results, and as such, may be a minor source of 
error in simulations.

It should be obvious that the process of calibration has a major challenge 
—how is the user able to determine realism and believability if they 
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acknowledged that they needed the model to understand what will happen 
in the future. However, calibration is more than addressing response 
variables only; it involves evaluating other diagnostic variables that 
are important influences on response variables. For example, say the 
modeling objective is to determine changes in tree species composition 
across two scenarios. Users may evaluate the response variable of tree 
density by species, but they should also evaluate disturbance, climate, 
and plant size diagnostic variables to ensure the model is acting properly 
and generating acceptable results. Output variables such as annual area 
burned by wildfire, average fire return interval, number trees killed by 
insects, potential evapotranspiration, and diameter of living trees might 
be included in the inspection for realism. These diagnostic variables are 
like the gauges on a car’s dashboard and calibration is the process of 
adjusting engine settings to ensure the needles on the gauges are at the 
right place. The engine settings are the parameters that were quantified for 
the modeling project (Chapter 5). Modelers often refer to these important 
parameters as “knobs” that can be adjusted to modify model behavior (i.e., 
the needle). Indeed, some parameters are so important to the simulation 
that small adjustments can lead to dramatic changes in simulation results 
(i.e., sensitive—see Chapter 7). So, even though it may appear that users 
are adjusting parameters to get desired results, calibration is a necessary 
task, and if done systematically with a comprehensive and objective 
strategy and suitable resource materials, it can be a rewarding and critical 
step in the modeling project.

There are seven steps involved in the calibration phase (Figure 6.1). The 
first four build on the last three, which are iterative. Users can calibrate 
all or parts of the parameterization input data set depending on time and 
resources. The first two of these steps can be done simultaneously. 

An example is used throughout this chapter that might help illustrate the 
power of a well-designed calibration strategy. As background for this 
example, we propose that initialization and parameterization were completed 
for a landscape modeling project whose objective was to evaluate changes in 
basal area over 50 years under four management scenarios. The calibration 
phase is ready to begin. The selected model was a mechanistic gap model 
implemented in a landscape context. The modeling team was composed 
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of a wide variety of resource professionals, including a hydrologist, fire 
management specialist, and two ecologists, but missing from the team 
were foresters who would actually understand basal area dynamics. The 
primary user, one of the ecologists, spent many years evaluating species 
interactions, especially involving trees, climate, and wildlife. There was 
ample information in the literature and from local studies on the historical 
vegetation and disturbance dynamics of the landscape. The modeling 
team designed four contrasting scenarios to comprehensively evaluate 
model behavior and calibrate accordingly. The first scenario was designed 
to simulate historical landscape dynamics using historical weather and 
wildland fire parameters because there were ample information in the 
literature to compare with the output. The second scenario was designed 
to simulate landscape dynamics in the absence of disturbance, specifically 

Figure 6.1. The steps used in the calibration phase of a modeling project. Steps in italics 
indicate that the step is optional. Various tasks are summarized to the left of each step.
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fire, because this would therefore highlight successional dynamics, an 
topic area well known by the primary user, an ecologist. A third scenario 
was designed to simulate historical landscape dynamics to replicate some 
semblance of a fire record that could then be assessed by the fire specialist. 
This scenario could also be evaluated by others on the modeling team under 
the umbrella of their own field of expertise. And last, the model would be 
run with a set of thinning management actions implemented on special areas 
and at special times within the landscape in the absence of any disturbance. 
This last scenario would allow for the evaluation of management-oriented 
parameters. The modeling team determined that to adequately capture 
landscape dynamics, the model would need to be run for at least 50 years 
and that results would need to be printed every 5 years across each scenario. 
For diagnostic variables, the basal area response variable was selected along 
with the explanatory variables of tree density and average DBH across 
all species, the area burned by fire severity level, and the timber volume 
harvested. The team also decided to add potential evapotranspiration, density 
of trees killed by insects and disease, and average soil water potential as 
other key diagnostic variables because of existing expertise on the team. The 
team also decided that the best way to evaluate model behavior would be 
to create time series graphs showing the values of each selected diagnostic 
variable (response, exploratory) over time at 5 year intervals. 

Calibration Steps

Identify parameters and associated diagnostic variables

In this step, a comprehensive list of parameters is compiled to create a 
framework for developing a calibration strategy (see next step). In addition, a 
set of diagnostic variables must be identified for all of the parameters to use 
as the “gauge” in adjusting each parameter. The specific parameters and their 
associated diagnostic variables should be selected based on criteria developed 
by the modeling team, such as: (1) their importance in understanding response 
and explanatory variable behavior; (2) their importance in their impact on the 
key processes simulated in the model; (3) their importance in successfully 
completing project objectives; and most importantly, (4) the amount of 
reference information available to compare and modify the parameters in 
question. The most important aspect about variable evaluation is that the user 



119

Calibration—How to Tune the Model for Realism

and modeling team should have a general knowledge of the nature of the 
variables because they can’t evaluate realism if they have no idea how the 
variable acts in the real world. Moreover, the variables selected to be diagnostic 
should also be well represented in existing data, literature, or textbooks. The 
diagnostic variables associated with each of the final parameters should be  
clearly documented. A common way to document and organize the parameters 
and associated diagnostic is to use a spreadsheet which can subsequently be 
used to track the iterative calibration process (next three steps) (Table 6.1). 

Let’s use the example above for illustrating this step. Since the modeling 
team has identified basal area as the response variable, it was decided 
to concentrate calibration on parameters in the growth algorithm, such 
maximum diameter at breast height (DBHmax) and height (HTmax). For 
response variables, they decided that the proportion of landscape area 
dominated by each species was appropriate (Figure 6.2, 6.3). In addition, 

Table 6.1. An example of a spreadsheet of parameters and associated response variables 
to document the calibration process. DBHmax-maximum diameter at breast height (cm); 
Agemax-maximum attainable age (yr); Q10-the Q10 coefficient in respiration function; 

NC-No change; AP-acceptable parameter; OP-overpredict; UP-underpredict.

Algorithm Parameter Species Value Adjusted Result Final
Growth DBHmax Douglas-fir 310 320 NC N

320 350 AC Y
Ponderosa Pine 410 500 OP N

500 450 OP N
450 425 AC Y

Mortality Agemax Douglas-fir 500 540 NC N
540 560 AC Y

Ponderosa Pine 610 700 OP N
700 650 OP N
650 625 AC Y

Respiration Q10 Douglas-fir 2.0 2.4 NC N
2.4 2.2 AC Y

Ponderosa Pine 1.9 2.5 OP N
2.5 2.3 OP N
2.3 2.2 AC Y
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they included basal area mortality by species to further understand 
growth dynamics. The fire suppression specialist also wanted to include 
parameters related to the fire regime, which includes fire return interval 
(FRI) and mean fire size (MFS), and evaluated their realism using the 
response variables of annual area burned and basal area lost from fire by 
species. And because fire regimes may be related to fuel conditions on the 
simulated landscape, which might impact FRI, the team also added fine and 
coarse woody fuel loading (Figure 6.4), area burned by fire, and canopy 
bulk density (Figure 6.4) The primary user, an ecologist, had studied 
successional and demographic dynamics of forested ecosystems and knew 
how forested landscapes change over time and decided to also include 
basal area by species in trees under 1 cm DBH to represent regeneration 
as additional diagnostic. The parameter and response variable selections 
were entered into a spreadsheet along with the values of all parameters 
(Table 6.1).

Develop calibration strategy

It is important that a comprehensive calibration strategy be developed to 
minimize subjectivity, increase model performance, gain deep knowledge 
of model behavior, and obtain information for interpretation of the 
modeling project’s results (Gupta et al. 1998). The strategy can be simple 
and target only one diagnostic variable for evaluation, or it can be complex 
and involve an intricate simulation design to set the stage for the evaluation 
of multiple diagnostic variables. 

A well-designed calibration strategy involves creating a simulation plan 
specifically designed to prod the model to generate results for contrasting 
investigative scenarios to compare against existing data, findings in the 
literature, and the experiences and knowledge of the modeling team. There 
are areas in which the user and modeling team will have great wisdom 
and the calibration should exploit these areas to ensure realistic results 
are being simulated. This will provide additional confidence, to both the 
user and the team, that the model is acting properly. Once the strategy is 



122

Applying Ecosystem and Landscape Models in Natural Resource Management

formulated, it is important that it be documented and followed closely so 
that subjectivity is mitigated. 

The first step is to come up with a set of contrasting simulation scenarios that 
capture comparative model behaviors in a context that is well understood 
by the modeling team. For example, two juxtaposing scenarios with and 
without fire simulated for 200 years might allow the modeling team to 
contrast successional dynamics and the effect of fire on the landscape 
(Figure 6.2). These contrasting scenarios could be designed to exploit the 
range of simulation results for a specific parameterization to positively 
identify any parameters that might be inaccurate. Examples might be 
contrasting climates (warm vs cold) (Figure 6.3), management strategies 
(prescribed burning vs thinning), and initial conditions (bare ground vs 
contemporary conditions) to evaluate changes in species productivity. 

The second step is to decide how long to run the model to capture parameter 
behavior. This, of course, depends on the data, research findings, and 
the collective knowledge of the project team. If data spanning a decade 
is available, then the model should be executed for that length of time. 
However, if all that is available are long term trends and coarse evaluations 
of disturbance regimes, then the model should be evaluated over hundreds 
of years. The user must match the simulation time with the temporal depth 
of the collective available knowledge.

A last important feature of a well-crafted calibration strategy is the 
format of the evaluation materials. How will the results from the model 
runs be synthesized and displayed for focused evaluation? Here, possible 
options are figures, graphs, tables, maps and any other format that may 
help with evaluation. Time series graphs were used in the majority of 
the simulation projects in which I was involved (Figures 6.2, 6.3, 6.4), 
but several other options may be more insightful for modeling projects. 
For example, a response variable may be plotted against all of the other 
diagnostic variables using scattergraphs using each year as an observation. 
Alternatively, a table may be created that presents a statistical summary 
(mean, range, standard error) of various diagnostic variables by different 
zones on the simulation landscape and by different plant functional types. 
Maps of the values of diagnostic variables can also be created for five 
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Figure 6.4. An example of the type of output product that was used to evaluate model 
results for model calibration. A truncated set of diagnostic variables are graphed over time 
for two contrasting scenarios (no fire=dashed line) and fire (solid line) to determine if the 
model is acting properly or realistically. Here a set of fuels variables (canopy bulk density, 
coarse woody debris, fine woody debris, and duff+litter) are used to evaluate the behavior 
of the model under a non-fire and historical fire regime over 500 years of simulation. Note 
that the duff+litter is represented by depth rather than loading as in the other surface fuel 
components (coarse and fine woody). This is because the results were being evaluated by a 
fire specialist and silviculturalist and those units were understandable to both. Often there 

will be many graphs for all the diagnostic variables selected for evaluation.

time intervals during the simulation time span to help with spatial patterns. 
Users should keep in mind the number of diagnostic variables, the number 
of calibration scenarios, and the number of investigative products (e.g., 
graphs, tables) that will be created from the calibration may overwhelm 
the modeling team.
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Collect available information 

The next step in calibration involves compiling all existing information on 
the target simulation landscape and ecosystems contained within so that 
model results can be compared to some semblance of realism (Janssen 
and Heuberger 1995). Available information might include existing data, 
findings in the literature, and the experiences and knowledge of the modeling 
team. This compilation need not be as extensive or as demanding as it 
was for the two preliminary phases (initialization, parameterization) and 
the other intermediate phases (validation). Usually it involves compiling 
a set of reference material from the literature to employ when interpreting 
model results. Papers related to the model, the modeling project, and the 
simulation landscape should be assembled, especially those from local 
ecological studies. Hopefully, information gathered from the previous 
two phases (initialization and parameterization) can be used again. As 
always, special attention was should be given to the fields of expertise of 
the modeling team. Experts should be identified and then warned that they 
may called upon to evaluate model output if the primary user does not 
feel comfortable in interpreting results. All reference material should be 
documented and be readily available for the modeling team.

Carrying on with our example, there was ample information in the literature 
and from local studies on the historical vegetation and disturbance dynamics 
of the landscape. The ecologist user identified all possible documents or 
data sets that can be used as reference in evaluating calibration runs, such 
as published findings, science textbooks, local reports, environmental 
impact statements, and related materials. Published papers were found in 
the fields of fire, hydrology, wildlife, and fuels that matched the expertise 
of the modeling team, and several of the papers were from landscapes near 
the simulation landscape. Especially important were a set of publications 
that contained time series of the response variable and two exploratory 
variables. Copies of these documents were stored on the computer under 
an understandable directory structure and the citations for these documents 
were included in the citation software for later use in the project. Keywords 
were added to the citations in the software for ease of searching. The team 
was now ready to start performing preliminary simulations.
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Perform preliminary simulations

The next step is to see if the model is running correctly and producing 
realistic results, and this step sets the stage for selecting those parameters 
that might be adjusted to improve model behavior. Here, the user would 
run the model under the devised calibration strategy and examine selected 
variables (i.e., diagnostic variables). Simulation results are then synthesized 
into the desired output products specified in the calibration plan and then 
the results are carefully evaluated for plausibility. Realism is determined 
from the information collected in the previous step and, more importantly, 
from the modeling team and primary user’s experience and knowledge. If 
unacceptable results are identified, the user and team would then identify 
the parameters that most influenced these results (see next step). A list is 
created of those questionable parameters that might be adjusted to make 
results more credible. 

Continuing with our previous example, the ecologist user has executed the 
model for all four of the calibration scenarios using the suite of diagnostic 
variables identified by the team. Model output was synthesized into a set 
of time series graphs and the graphs were imported into a word processor 
and that file was distributed to the modeling team to be evaluated for 
realism. Team members then discussed the results that they thought were 
unrealistic and they identified those parameters that might be the culprit. 
All parameters in the growth algorithm, such as DBHmax and HTmax, were 
listed along with several soil and fire parameters. The team populated a 
spreadsheet with these parameters (Table 6.1). 

Compile a final list of parameters and associated diagnostic 
variables

In this step, the modeling team must decide on a final set of parameters and 
corresponding response variables to complete calibration; the evaluation 
spreadsheet (Table 6.1) is reduced to produce a final set of parameters to 
use in calibration. The user and modeling team may decide to remove 
some parameters from the original list either because they are correlated 
to other parameters, or there simply is not enough time to evaluate every 
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parameter. There is never enough time to calibrate every parameter in a 
complex ecological model, so the final list of parameters should account 
for the allotted time for calibration, the expertise of the modeling team, 
the available computing resources, and the amount of reference materials. 

Let’s use the example for illustrating this step. The modeling team thought 
that the simulated time series of basal area created in the previous step did 
not make sense for the second scenario (no disturbances)—the basal area 
had a downward trend over time. The downward trend was also present in 
the first scenario (historical fire) but it was more pronounced. Therefore, 
the team decided that the two growth parameters should be in the final 
list (DBHmax and HTmax). The fire return interval (FRI) parameter was also 
selected because the team thought the landscape may be burning too much 
thereby causing the basal area decline; mean fire size did not seem to be 
important in fire dynamics. And because a decline in basal area might cause 
unrealistic fuel conditions on the simulated landscape, the user also added 
fuel loading to the final list.

Adjust parameters

The strategy has been finalized, the calibration scenarios have been 
designed; all reference material has been gathered; the preliminary 
runs have identified those parameters that may be inexactly quantified; 
and diagnostic variables for those problematic parameters have been 
identified. Now it’s time to actually adjust a parameter, run the model 
(next step), evaluate the results (step after next), and repeat these three 
steps until the model is generating acceptable results for that parameter. 
This iterative process starts with the first parameter in the parameter 
list, and then is repeated, one-at-a-time, for each of the parameters that 
have been identified for adjustment—a series of iterative loops. The user 
would then go through the entire parameter list one-by-one, calibrate each 
parameter using their specialized diagnostic variables as computed across 
each scenario, and evaluate the resultant output. 

The question asked by many users is “how much do I adjust the parameter 
in question?” This iterative process is often a trail-and-error method and 
involves subjective guesses as to the magnitude of increase or decrease 
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in the model parameter to generate more believable results (Vanclay and 
Skovsgaard 1997). The user should treat this as a process rather than a one-
time adjustment. First, the user has to decide which direction to change the 
parameter value (up or down), and this is based on: (1) experience with this 
algorithm, (2) knowledge gleaned from the literature, (3) estimated model 
uncertainty, and (4) consultation with other modelers or users (Gupta et al. 
1998). Once the direction of adjustment is identified, then the magnitude of 
that adjustment must be determined. If the preliminary results are deemed 
only a “little” off, then a small adjustment may be indicated, but if there 
is little knowledge of the behavior of this parameter’s algorithm, then a 
more systematic and less subjective method might be warranted. Some 
modeling projects use a “half-double” approach where the parameter is 
decreased by a half or increased by double, and this is repeated iteratively 
until an acceptable value is achieved. This may seem extreme and time-
consuming, but remember, calibration is an iterative process and the 
valuable knowledge learned from each iteration provides background and 
confidence for the completion of later phases. Other adjustment approaches 
can also be implemented, such as a percent increase/decrease (+ 20%), 
a proportional increase/decrease (ratio of the parameter to response 
variable), or subjective guess. More complex adjustment procedures are 
also available (Beven and Binley 1992). Users should also be aware that 
responses to adjustments may not be linear.

In our example, the user takes a half-double adjustment strategy and 
doubled the DBHmax of the species present on the simulated landscape 
upwards by 2.0 multiplier. Then the user made an educated guess that the 
FRI for the simulated landscape was too low and deduced that this frequent 
fire did not allow tree regeneration to become mature trees because the 
trees were burned before they reached a survivable size. The original value 
(FRI=25 years) was increased by 50% to FRI=38. These adjusted values 
were entered into the project spreadsheet.

Run model

In this step, the model is simply run with the newly adjusted parameter. 
Three things are important in this step. First, each parameter value, 
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before and after adjustment, should be documented to keep track of the 
adjustments during this very complex iterative procedure (Table 6.1). This 
can be done by saving each input file in a specialized directory structure, 
recording the adjusted parameter in a spreadsheet, writing the value in the 
simulation notebook, or typing the value into a word processing document. 
Many calibration exercises were delayed because the same steps were 
repeated because an adjustment record was unavailable. Next, the output, 
and associated graphs and figures, should be stored in a directory structure 
or system that identifies it with the parameter adjustment. A spreadsheet 
such as Table 6.1, could identify the new parameter value and also the 
name of the file where the results of the simulation with the new parameter 
are stored. And last, details of the model run should be noted, including the 
time it took to simulate the scenario, the amount of memory it took, and 
the amount of output generated. These could be important in the execution 
phase.

To continue with our illustrative example, the user ran the model for 50 
years for the four scenarios in the calibration strategy. Values for eight 
diagnostic variables were reported for each year over the 50 years which 
created a large data set (8 variables X 50 years X 4 scenarios=1600 
values). Output data were stored in a directory labeled “Interation1” to 
keep track of the results during the iterative modifications. A spreadsheet 
was updated with the newest parameter value and a link was included in 
the spreadsheet to the resultant reports from the output.

Evaluate results

This step involves the inspection of the new results after parameter 
adjustment. Some people on the modeling team won’t feel comfortable 
assessing model results, in which case, they should consult other local 
experts about the realism of the results. An outside person that should be 
consulted during the calibration process is the developer of the model. If that 
person is unavailable, then other users of the model should be consulted. 
Again, the graphs and tables are the “gauges” on our “dashboard” to 
evaluate model performance. If the parameter is still deemed to be in error, 
the previous two steps are repeated until the parameter value is acceptable. 
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And once that parameter is calibrated, the next parameter in the list is 
calibrated by iteratively repeating these last three steps.

In our example, after adjusting the DBHmax parameter and running the 
model, the user created the basal area, DBH, and fuels time series graphs 
(see examples in Figures 6.2, 6.3, 6.4) and passes them out to the team. 
This process created over 30 graphs (8 variables X 4 scenarios). After 
evaluation, the new DBHmax parameter seemed about right based on the 
team’s evaluation, but the FRI value seemed high as too many trees were 
becoming established on the site, so FRI was assigned a new value of 31  
(a mid-point between the previous two variables) to evaluate if that 
improved performance. Another model run revealed that the FRI was just 
right, and now the modeling team went to the next parameter, and then the 
next, and so on.

Calibration Issues

It is vitally important that the user document each step of the iterative 
calibration process. A project journal should be started and notes about 
model behavior and parameter adjustments should be recorded as needed. 
We often created graphics files (e.g., jpg or png) of model output and 
stored them in nested file directories named for specifics of the iterative 
step. These directories or files should be labeled as to version and iterative 
step in the calibration process. For example, a file whose parameters were 
adjusted to increase drought tolerance under colder climate conditions might 
receive the name parm_dry_cold.txt. All journal notes, adjusted data files, 
and graphed output must be stored using a heuristic organization so that 
steps aren’t repeated and adjustments can be quickly made. As mentioned 
throughout, spreadsheets are indispensable to organize the calibration details  
(Table 6.1 for example).

How do you know when you are done with calibration? Many 
calibration efforts linger on because of the overwhelming number of 
evaluation products created by the numerous diagnostic variables, 
the confusing and conflicting calibration output (adjusting of one 
parameter may improve the behavior of one diagnostic variable but 
worsen another variables behavior), and the inability to decide if the 
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results are truly realistic. This is again when science suddenly becomes 
art, and the modeling team must use subjective judgements to decide 
when a parameter is sufficiently calibrated. Some modeling teams set  
“drop-dead” date for calibration while other teams vote to determine when 
calibration is done. In my opinion, a calibration is never done, especially 
for highly complex, mechanistic models, so it is better to set goals and 
guidelines for termination rather than to calibrate until satisfied.

On a similar note, users should be wary of tangential investigative avenues 
that pop up during the calibration process. It may be difficult to stay on task 
while calibrating the model because new model behaviors often lead the 
team down interesting pathways—finding out why a parameter is wrong 
often adds additional time on an already tight project schedule. However, 
if there is time, users are encouraged to follow their curiosity and gain 
additional insight into model behaviors. A last warning is that users should 
try to not be discouraged during a laborious calibration process and focus 
on the importance that the calibration adds to the project rather than the 
subjectivity in the calibration. Sometimes it may seem like calibration is 
trying to adjust a blob of jello, yet many users are often appreciative of the 
results at the end of the calibration effort.

It is also common that the same analyses used in the validation and 
analysis phases are used during this calibration phase. Some of the same 
graphs, figures, tables, and maps may be common across all three phases, 
and because of this, figures from calibration are often used in the project’s 
final report. Therefore, it is important that all figures are of publishable 
quality. And often there isn’t time to examine all of the materials used 
in the calibration phase, so the final analysis should concentrate on a set 
of response and exploratory variables that are important to the project 
and are easily changed by modifying a parameter, or a set of parameters. 
Algorithms with a large number of parameters in their design will be 
extremely hard to calibrate in this phase.
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7
Validation
Determining Model Uncertainty

“We demand rigidly defined areas of doubt and uncertainty!” 

Douglas Adams, The Hitchhiker’s Guide to the Galaxy 

Validation—the action of checking or proving the validity or accuracy 
of something (OED). 

ABSTRACT
Validation is the task that quantifies uncertainty in model results. 
Validation differs from calibration in that no parameters are adjusted. 
Model validation is needed for several reasons: (1) provides the user 
a valuable estimate of model uncertainty, (2) gives the modeling 
team, organization leadership, and the general public a measure of 
confidence, or skepticism, in the simulation results, (3) identifies 
bugs, problems, or limitations in the model that were previously 
unknown, and (4) illustrates what organizational data is needed for 
inventorying and monitoring the response variables in the future. The 
chapter presents a set of five levels of detail in which to conduct a 
validation and then enumerates the four steps of validation: (1) collect 
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data, (2) format data, (3) run model, and (4) perform analyses. A set 
of analysis procedures are provided. Another form of validation is 
a sensitivity analysis, and details on conducting and interpreting a 
sensitivity analysis are also presented. Last, validation concerns are 
addressed.

Introduction

Validation is the task that quantifies uncertainty in model results so that 
users can integrate this knowledge into the interpretation of those results 
for completing project objectives (Rykiel 1996, Gardner and Urban 2003, 
Jakeman et al. 2006). This involves using the calibrated model to generate 
results that are then statistically compared to reference conditions (field-
measured ecological characteristics) to determine a level of accuracy or 
precision in model outcomes. This task usually requires a dataset that 
was NOT employed in the initialization, parameterization, or calibration 
procedure. Validation is different from calibration in that different datasets 
are used and the model is NOT modified based on the validation results. 
Most users will experience an overwhelming desire to modify model 
parameters to improve results during validation (Chapter 6), but, if the 
model and parameters are modified, then any estimates of uncertainty 
are gone and the validation has to be redone with another dataset. It is 
important that a model be validated for each application or modeling effort 
because parameter sets are different for each project. Previous validations 
of a model are important as reference, but they are not always applicable 
when a different parameter set is used. 

Model validation is needed for several reasons. First, it provides the 
user a valuable estimate of model uncertainty, which is critical when 
interpreting the results. Next, it provides the modeling team, organization 
leadership, and the general public a measure of confidence, or skepticism, 
in the simulation results. A comprehensive validation effort can also 
provide additional experience to the user and modeling team in using and 
understanding the model. It also can identify bugs, problems, or limitations 
in the model that were previously unknown. And last, a good validation 
will identify organizational data needs for inventorying and monitoring 
the response variables in the future.
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Use of the term “validation” has been extensively debated in the modeling 
literature. Some modelers feel the word “evaluation” or “testing” should 
be used instead of validation because a model’s behavior is never really 
“validated” (Augusiak et al. 2014). Some feel that the root of validation—
valid—implies legitimacy (Oreskes and Belitz 2001) and therefore 
validation implies that the model is deemed acceptable for its intended 
use because it meets specified performance requirements. Augusiak et al. 
(2014) believes that evaluation should be fused with validation to make 
the process easier to understand among decision makers. Verification is 
a term often used in the modeling literature to describe the process of 
assessing model accuracy (Oreskes et al. 1994). Rykiel (1996) believes 
that this debate about the term “validation “arises as much from semantic 
and philosophical considerations as from the selection of validation 
procedures”. He further states that “validation is not a procedure for 
testing scientific theory or for certifying the ‘truth’ of current scientific 
understanding”. All of these are excellent points, but validation is the 
term selected to be used in this book because its definition “the action of 
checking or proving the validity or accuracy of something (OED)” seems 
to fit the topic of this chapter. And while Rykiel (1996) believes validation 
is an optional task, I feel it should be required on all modeling projects that 
are used for management decisions even though I’ve often been remiss on 
performing validations because of time and data constraints.

Some terminology must be introduced to understand the material in this 
chapter. First, most validations involve the comparison of observed vs 
predicted variables. Observed values are reference data actually measured 
in the field or quantified by some other means (see next section). Remote 
sensing fields call these “ground truth” and other ecological studies call them 
“reference data”. Predicted values are the output generated from the model. 

As much as we want it to be true, there are never enough data of sufficient 
resolution, quality, and compatibility to properly validate ecosystem 
models, especially LESMs and other spatial models. As Oreskes et al. 
(1994) states “verification and validation of numerical models of natural 
systems is impossible”. This is because ecosystems and landscapes are 
never closed and because model results are rarely unique. He further states 
that “models can be confirmed by the demonstration of agreement between 
observation and prediction, but confirmation is inherently partial”. I’ve 
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found model validation efforts are often limited because of one or more of 
the following:

 1. Temporal depth. Often, data are available for only a limited 
time span, a few years or decades, but the model is being used to 
simulate for centuries or millennia. The weather for a short time 
span, for example, may fail to represent the climate over a century of 
simulation.

 2. Spatial domain. Data are available for only a small part of the 
project area or for a limited set of conditions being simulated. For 
example, data exist for ponderosa pine types but not for Douglas-fir 
types, both of which are simulated in the model.

 3. Scale and detail inconsistencies. The scale and resolution of 
the reference data may not match the scale and resolution of the 
simulated variables being validated. Empirical data, for example, 
were described in ways that are incompatible with simulated values 
(e.g., basal area was only measured for trees greater than 10 cm 
DBH). 

 4. Specialized model variables. The model may generate values for 
variables that are difficult to measure in the field, such as net primary 
productivity (NPP), potential evapotranspiration, and root growth. 
Moreover, the model’s output may include elements not found in 
the empirical data; simulated dead carbon, for example, must be 
compared with wildland biomass loadings but measured biomass 
pools may not be the same as pools for dead carbon.

 5. Inappropriate measurement. The measurement of the reference 
data may be inconsistent with model output. Model output may be 
compared against data that were outside the range of the original 
development data represented in the model. For example, a 
photosynthesis equation was only developed for temperature ranges 
of 35 to 90ºF, yet input data has days below freezing and above 
100ºF. Or, measured respiration estimates include both autotrophic 
and heterotrophic sources, yet only autotrophic estimates are only 
output from the model.

Validation is a critical task in a modeling project, but this phase is often 
ignored by many users and modelers because the above data limitations 
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often overwhelm many validation efforts. I believe that any evaluation of 
model performance, no matter how limited, trivial, or narrow, will be of 
value when interpreting model results. Therefore, several approaches to 
validation are presented to supply the user with enough ideas to conduct 
beneficial validations to evaluate model uncertainty.

Validation Approaches

Because of the aforementioned data limitations, a possible scheme that 
users can employ to perform a useful validation is proposed. There are 
basically five levels of rigor in conducting a validation (Table 7.2). The 
melding of all five approaches is often needed to comprehensively evaluate 
model uncertainty. Any approach, no matter how restricted, is better than 
none at all.

Table 7.1. A summary of the various levels of rigor for conducting model validation. 
The levels are listed in order of preference. For the example, the context is as follows: a 
complex mechanistic model is used to simulate changes in tree basal area and volume over 

50 years.

Level Name Description Example
I Primary Direct comparison of 

simulated vs observed 
response variables

Simulated basal area is directly 
compared with observed basal 
area

II Association Indirect comparison of 
simulated vs observed 
response variables

Tree ring growth data is 
summarized to estimate basal 
area to compare observed with 
predicted

III Module Comparison of intermediate 
output from a model’s 
module or algorithm with 
observed values

Intermediate output from 
the photosynthesis module 
is compared with measured 
photosynthetic rates for trees in 
the stand

IV Sensitivity 
Analysis

Simulation of model over 
systematic changes in 
selected parameters to 
evaluate changes in response 
variables

Parameters in the photosynthesis, 
respiration, and water use 
modules are incrementally 
changed and subsequent results 
are compared

V Opinion Experts evaluate modeled 
output

A panel of experts evaluate 
simulation results to estimate 
levels of uncertainty or reliability
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Level I

The best approach to validating a model is to compare the simulated 
response variables identified in the modeling objective (Chapter 3) to 
actual observations or measurements of the same variables within the 
area in question over the time period represented in the empirical data 
(Table 7.1). This is the Holy Grail of all validation efforts. When simple 
models are used, such as S&T or growth and yield models, there may 
be sufficient data available to accomplish an acceptable validation. But, 
more often, one-to-one comparisons of simulated to empirical response 
variables are difficult because of the data limitations. Therefore, modelers 
have developed some alternative approaches. 

Level II

The next level involves comparing response or explanatory variables 
with surrogate empirical data (Table 7.1). Here, a direct correspondence 
between predicted and observed variables might be missing for response 
variables, but there could be other available data sets that may be 
associated with the simulated variables to provide a useful comparison. 
In a simplistic example, the cover type categories that are simulated by 
an S&T model may be different from the categories available historical 
maps, so a cross-walk table could be developed based on field data to link 
the simulated cover type categories to the empirically mapped categories. 
Some simulated cover types may not have a common category across the 
predicted and observed so they can be removed from the analysis. Another 
variation of a Level II approach is to collapse scales to mesh empirical 
data with predicted data. Here, the desired reference data may be available 
at annual intervals or for a few stands or for small areas. Therefore, the 
user can summarize predicted variables to match the scale and detail of 
the reference data. Annual estimates of burned area, for example, may be 
unavailable for the simulation landscape, but fire history studies can be 
used to approximate average area burned per year from fire-scarred trees 
(Liu et al. 2011) then model results are synthesized to correspond to with 
results from fire history studies. In another example, I was involved in a 
project where we used MODIS NPP layers to validate modeled NPP over 
a high elevation landscape using FireBGCv2 only to find that the variation 
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of predicted NPP within the MODIS 500 m square pixel overwhelmed the 
comparison. 

Level III

Another approach is to validate output from a critical module or algorithm 
in the model rather than validate higher order variables, such as response 
variables (Lorscheid and Meyer 2016). Data may only be available to 
compare a small element of a model’s simulation, such as predicted leaf 
area, snow depth, or monthly evapotranspiration, so the user outputs those 
intermediate variables from the simulation and compares them to the 
available empirical data. These are not response or explanatory variables, 
but instead they are intermediate results from a particular simulation, and 
they may have nothing to do with the objective. The assumption here is 
that if one or more of the model’s algorithms are acceptable, then there 
may be higher confidence in the response variable output. In a couple 
of examples, Keane et al. (1996) validated simulated tree ring growth 
with actual measured tree chronologies in one effort and validated fire 
regimes from fire history studies. Holsinger et al. (2014) used streamflow 
measured by USGS to compare against simulated watershed outflow in 
the FireBGCv2 model to evaluate accuracy for a fish habitat study. The 
user should attempt to find data for the most critical algorithms first, and 
this can be identified from a sensitivity analysis (see next sections) or from 
the literature, and if this is unavailable, users should try to find data any 
possible algorithm, even less important modules.

Level IV

Another approach to validating models is to conduct a sensitivity analysis. 
A well-constructed sensitivity analysis can yield interesting insights into 
the behavior of the model and provide background into interpreting 
model results. While this approach does not directly assess accuracies 
or precisions of model predictions, it will help in establishing a level 
of confidence in model predictions. A general description of sensitivity 
analyses procedures is presented in a later section in this chapter.
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Level V

The last approach is the least accurate but perhaps the most popular. This 
involves having one or more experts evaluate model output to estimate 
a level of reliability and uncertainty in the predictions (Table 2.1). Here, 
a series of graphs and tables are created, similar to ones used in the 
calibration (Figure 6.3) or analysis (Figure 9.5) phases, and then given 
to the “validation” team for evaluation. They can rate the reliability, 
believability, or uncertainty of simulation results using a scale similar to 
the one presented in Table 2.1. This is a last resort approach and should 
be done only if few data can be found to help evaluate the model. This 
type of evaluation is somewhat contrary to the very reason a modeling 
project was needed; if the “experts” know the answer, then why do the 
modeling project? However, it is always best to have broader reviews of 
the modeling results to aid in output interpretation, and the expert team can 
provide excellent input into model behavior, and also in other areas of the 
modeling project as well, such as the length of simulation, the selection of 
response variables and their units, and possible avenues of data exploration 
(Chapter 9). Variations of this “Delphi” approach (Orsi et al. 2011) include 
literature syntheses (i.e., using information from the literature to compare 
with model findings), comparisons with other modeling efforts (i.e., using 
results from a previous validation of the model), and comparisons with 
results of a similar model (i.e., using validations of similar models).

Validation Steps

Unlike calibration, validation should be done with a sound dataset that 
hopefully has been compiled from actual data measurements in the field. 
The following is a step by step approach on conducting a validation. The 
steps involved in collecting the data are nearly identical to those presented 
in the initialization (Chapter 4), parameterization (Chapter 5) and 
calibration (Chapter 6) phases but the criteria for selection is somewhat 
more focused. These steps may be slightly different depending on the level 
of validation discussed above.
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Collect data

In Level I validations, field data provide a wonderful reference for 
simulated data and this is the best validation approach. Here, data are 
collected for the simulation area to compare against simulated predictions, 
especially the response variables. Tree chronologies, for example, can be 
constructed from tree ring cores and the radial or basal area growth can 
be compared against model predictions. Carbon dioxide and water flux 
measurements from eddy flux towers can be compared with predictions 
from mechanistic ecosystem process models (Amthor et al. 2001). 

If there is time and funding to conduct a field campaign for collecting 
validation data, then here is the summary of the important suggestions 
from Chapter 3 that might make that effort more effective:

 1. Merge data collection with the three previously mentioned phases 
(initialization, parameterization, and calibration). 

 2. Ensure field data are useful to your organization. 
 3. Collect data that may be used to understand validation results. 
 4. Use methods and protocols that mesh with organizational 

requirements. 
 5. Confirm that the sampled data can be used for validation. 

If there are no corporate data concerns for your organization, there are 
a number of standardized methodologies could be used as templates for 
field sampling in validation field campaigns, such as FIREMON (Lutes et 
al. 2006) and FFI (Lutes et al. 2009a). It is useful if the selected sampling 
system include sampling designs, protocols, field codes, databases, 
and possible analysis reports. These entered field data should be easily 
exported from the package into the statistical packages that are used to 
conduct validation analyses.

If collecting data is impossible, then there should be a comprehensive search 
for existing data, and this search should be extensive but flexible (Level 
II). The temporal and spatial domain could be modified to accommodate 
possible data sets that could be used in the validation. High priority data 
sets, for example, would come from the area bounded by the simulation 
landscape, but if data exist from outside or near the simulation landscape, 
the model parameter set and initialization data could be modified to 
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approximate the new spatial domain. Similarly, simulation specifics 
of the model can be modified to reflect the temporal scale and domain 
(reporting time, span of time) of a possible validation data set. A data set 
may have the wrong units or a coarser spatial scale than modeled output, 
so additional formatting of the data set can be done to more closely match 
the predicted vs observed formats. There may be many sources of data 
that could be used for validation and users should first evaluate possible 
data sets that have been compiled by their organization or agency. These 
will probably be the easiest and fastest to attain. Then, universities, other 
government agencies, and private organizations (NGOs) can be contacted. 
A literature review may also be especially useful as it can be used in all 
other modeling phases, and it may point to various datasets collected for 
research or management purposes.

Measured field observations are the most desirable validation data, but 
validations can be done with other data types (Level II). Remotely sensed 
data could be used for both Level I and Level II evaluations. Ecosystem 
productivity estimates such as NPP, GPP, and LAI (leaf area index), 
are remotely sensed from a variety of MODIS, AVHRR, and Landsat 
platforms. Information in the literature can also be used to calculate a 
model response or exploratory variable from remotely sensed imagery. 
However, nothing takes the place of field measured data. These data can be 
found from previous ecological inventories, such as timber assessments, 
population demographic surveys, species abundance studies, or they can 
be sampled as part of the modeling project.

Users will often find that few data sets exist to validate their modeling 
project, so another level approach might be warranted (Level III–V). 
Findings from studies in the literature can be compared with model results 
or a panel of experts can be convened to evaluate model results, but this 
evaluation should be carefully planned and the specifics of the simulation 
design should be specially tailored to the evaluation experts (Level V). 
If there are data sets, but they are somewhat limited, such as in variable 
representation, temporal depth, and spatial coverage, then it is suggested 
that the user combine several validation approaches into the validation 
effort. If data exists for only one response variable, for example, but there 
are ample data available for module validation (Level III), then a series 
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of module output can be validated along with the single response variable 
(Level I), but in addition, an expert panel can evaluate the remaining 
response variables (Level V). If funds and time exist, then a sensitivity 
analysis may be conducted to augment the validation (Level IV).

Format data

Once all possible data sets have been identified, it is time to reformat the 
data for direct comparison to model output and to reformat the model’s 
initial conditions, parameters, and simulation specifications to reflect the 
domain of the validation data sets. The reformatting of existing data are 
discussed extensively in other chapters and can be done with existing 
software packages. Care should be taken to ensure the right units, scale, 
and domain is reflected in the reformatting of the data.

Adjusting initial conditions to reflect the characteristics of the compiled 
validation data is one way to ensure that the reference data will correspond 
directly to the simulated data. For example, the US Forest Service has 
a comprehensive Forest Inventory and Analysis (FIA) program where 
sampling sites are established on a 5 km grid across the US and trees 
on these sites are measured at staggered time intervals (Bechtold and 
Patterson 2005). If validation involves comparing measured tree or 
stand growth to simulated tree or stand growth, then the model has to be 
initialized for the date at which the trees were first measured and the model 
should be executed until the date of the second measurement. Moreover, 
the weather record should reflect that time span. The model should then 
be executed to simulate tree and stand growth for the same years over the 
re-measurement period. For example, we often created stand conditions 
(tree size and density) in the past by growing the trees backward using a 
growth and yield model through a trial and error method (e.g., guess at the 
diameter 30 years ago and run the G&Y model to see if the diameter is the 
same as measured today).

Run model

The model can now be executed once all existing data are compiled and 
formatted. But, to run the model, the simulation parameters must be 
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modified to reflect the limitations and scope of the reference data. The 
length of simulation, for example, must be adjusted to reflect the temporal 
domain of the reference data. Moreover, the simulation landscape may 
need to be divided into smaller units if the reference data is only available 
for a stand, small area, or a specific plant community. Output variables 
must be selected to match or approximate the variables represented in 
the validation data set. One major concern in conducting validations of 
models with stochastic elements is how many runs should be executed to 
represent the inherent stochasticity. This depends on many elements of the 
model and simulation area so an estimate of the number of runs is difficult, 
but at least five replications is a good starting point. More on validation of 
stochastic models is presented in the Issues section.

Perform analyses

There are a number of statistical analysis that can be used to validate model 
predictions depending whether the response variables are continuous or 
categorical. It is impractical to detail every type of analysis as it is the 
subject of many statistical papers and books on modeling (Brown and 
Kulasiri 1996, Zar 1996, Vihinen 2012) . However, the following are some 
validation analyses that I’ve found useful in past projects. 

Residual analysis

In this analysis, the differences between predicted and observed values are 
calculated and analyzed using statistical means to provide some insight 
into model accuracy (Cox and Snell 1968). The mean of the differences of 
predicted vs observed (P-O) is often called “bias” and it provides a quick 
and easy estimate of the error in predicted values; perfect predictions have 
zero bias, while a negative difference indicate model underestimation in the 
response variable and positive bias indicate overestimation. The absolute 
value of the differences can be averaged to calculate the mean absolute 
error (MAE) (Pontius et al. 2008). The magnitude of the MAE can be 
compared to the mean of the observed values as another quick and easy 
estimate of error. However, bias and MAE are not especially diagnostic, 
especially when there are abundant outliers in the validation data set (e.g., 
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a large difference in one observation can dominate an estimate of bias 
or MAE, especially when there are few observations). Therefore, each 
difference is often squared and the sum of these squares is analyzed using 
statistical packages to determine more revealing validation statistics. One 
statistic that is especially useful is the root mean square error (RMSE), 
which is the square root of the summed squared differences divided by the 
number observations. This is perhaps the best estimate of error in model 
predictions and one that is reported in many modeling papers. 

Regression analysis

Another extremely useful tool to compare observed and predicted data is 
regression analysis (Helmreich 2016). Here, predicted values (dependent 
variable) are regressed against observed values (independent variable) and 
results are graphed and summarized using a set of insightful least squared 
regression statistics (Figure 7.2). The coefficient of determination (R2; 

Figure 7.1. The steps used in the validation phase of a modeling project. Steps in italics 
indicate that the step is optional. Various tasks are summarized to the left of each step.
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value between zero and one) is used to determine how well the predicted 
values are correlated the observed (tight correlations of > 0.80 validate 
high precision). However, R2 values do not provide a comprehensive 
measure of accuracy and should never be used alone for the validation 
assessment. The real strength in regression analyses is the computation 
of three other statistics. The slope of the regression line (beta coefficient) 
indicates if the predicted values are overestimating or underestimating the 
observed; slopes of 1.0 indicate perfect fit, below 1.0 means predictions are 
underestimated, and overestimation above 1.0 for observed vs predicted. 
The fitted intercept (alpha coefficient) provides an indication of how 
much bias there is in the predicted values. And last, the variation about the 
regression line is used as a measure of accuracy and is similar to RMSE 
when around observed mean. If the variation is high (> 50% of the mean) 
then the results have low certainty. 

Figure 7.2. An example of using regression analysis to evaluate model accuracy, precision, 
and uncertainty taken from Piñeiro et al. (2008). The graph show observed vs predicted 
for a modeling project where the model is over-predicting for values less than 250 t/ha 
and under-predicting when biomass is greater than 300 t/ha. The slope of the line is 0.6 
when it should be close to 1.0, and the intercept is 116 t/ha which should be zero. The R2 
of 0.77 is high indicating high precision, but the accuracy of the predictions is moderately 

acceptable.

Contingency tables

Contingency analyses are used with categorical data, such as output 
from S&T models, to determine how often the model predicted the right 
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category (Congalton 1991, Congalton and Green 1999). In this method, a 
contingency table or confusion matrix is created where predicted classes 
are the rows and observed classes are the columns (Table 7.2) (Sokolova 
and Lapalme 2009). The numbers in each cell indicate how many of the 
modeled predictions for a certain class matched each of the classes of the 
observed data. The diagonal of the table are the cells where the predicted 
class matched the observed and the sum of the diagonal cells divided by 
the total number of observations multiplied by 100 is an approximation of 
model accuracy—the percent correct. However, a contingency analysis can 
also provide insight into the distribution of the classes that were wrongly 
predicted—one class was most often observed when a certain class was 
predicted. A full discussion of contingency analysis is too lengthy for this 
book.

One of the most popular metrics used in validation of categorical data is 
the area under the ROC curve (Fawcett 2006). The ROC curve is created 
by plotting the true positive rate against the false positive rate at various 
threshold settings (Figure 7.3). A receiver operating characteristics (ROC) 
graph is a technique for visualizing, organizing and selecting classifiers 
based on their performance. ROC graphs have long been used in signal 

Figure 7.3. The area under the ROC curve provides a diagnostic indication of how well 
the model is predicting categorical data. Shown are 20 points that are classes where the 
false positive and true positive rates are plotted. The area under the “curve” provide insight 
into how well a model is predicting across all classes. This entire discussion of ROC is 

taken from Fawcett (2006).
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detection theory to depict the tradeoff between hit rates and false alarm 
rates of classifiers. The biggest advantage of using ROC curve is that it 
is independent of the change in proportion of responders. ROC graphs 
are two-dimensional graphs in which true positive rate is plotted on the 
Y axis and false positive rate is plotted on the X axis. An ROC graph 
depicts relative tradeoffs between benefits (true positives) and costs (false 
positives).

Sensitivity Analysis

It is best if a sensitivity analysis is done by the person who built the model, 
not by the user, and it would be nice if it were done just after model 
development, as well as during a new application of the model (Kleijnen 
et al. 1992). Unfortunately, these analyses are rarely done by modelers 
or users because they are just too demanding computationally (Cariboni 
et al. 2007). Some believe that a sensitivity analysis and comprehensive 
validation should be included in all journal articles involving ecological 
modeling (Kleijnen et al. 1992). While sensitivity analysis does not 
quantify accuracy and precision, it provides a number of other valuable 
insights into model behavior, such as the importance of critical parameters, 
the degree of parameter interactions in simulation results, and a level of 
confidence in parameter quantification (e.g., unknown parameters that we 
estimated by the user may be insensitive to model behavior).

In a sensitivity analysis, a small change in a major parameter is made 
and the resultant change in one or more response variables is calculated 
while keeping all other parameters constant (Saltelli et al. 2008). The same 
initial conditions are used for all adjustments. The parameter value may 
be modified across a gradient of possible realistic values (e.g., the plant 
respiration coefficient is assigned ten values that span the range of values 
found in the literature), or it can be simply computed as a percent change 
(e.g., the respiration coefficient is reduced by 10%) (Krieger et al. 1978). 
A sensitivity coefficient, the ratio of the change in the response variable to 
the change in input parameter while all other parameters remain constant, 
is a good diagnostic statistic to evaluate parameter sensitivity (Ambas and 
Baltas 2012). 
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Approaches to sensitivity analyses have been discussed in the literature 
(Xu et al. 2004). Here are some sensitivity methods that are commonly 
used and are summarized based on the structure presented by Hamby 
(1994):

 1. Single parameter and single response variable. A single parameter 
and a corresponding single response variable are used to evaluate 
sensitivity—often termed a one-to-one comparison. This is a simple, 
quick, and easy way to conduct a sensitivity analysis on the most 
important parameter in the model. It is up to the user to pick the 
parameter and the response variable so there is some degree of 
subjectivity.

 2. Single parameter and multiple response variables. Here a 
single parameter is evaluated over the response of several response 
variables. This allows the user to evaluate a parameter’s influence 
on several simulated processes to ensure that the model is acting 
acceptably.

 3. Multiple parameters and multiple response variables. A set of 
parameters is selected and each is altered using a systematic approach 
(i.e., alter one and leave the others constant, reset the first variable 
and alter another variable, and so on) and the results are compared 
against one or more response variables. Each parameter-response 
pair are subjectively selected and evaluated independently of the 
other pairs.

 4. Factorial design. All of the previous approaches were one-to-
one comparisons and did not evaluate changes of each parameter 
across all selected parameters and all selected response variables. 
In a factorial approach, the parameters are considered factors and 
the levels of parameter change are considered the treatments in 
statistical terminology. The model is then run for every combination 
of parameter and parameter adjustment and results are compared 
across one or more response variables. Because this approach allows 
the user to detect interactions between parameters, it is by far the 
most informative and interesting. But, it is also quite time-consuming 
and the analysis is quite complex.
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 5. Response space. This is an approach that has a factorial design but 
includes all appropriate parameters in the model and each parameter 
is given values across the entire range of possibilities using a 
systematic approach (e.g., percentiles, 10 evenly spaced values 
between a minimum and a maximum). This should define the range 
of all possible responses from the model for one or more variables 
(i.e., response space). This is an incredibly difficult simulation design 
that requires inordinate amounts of computer time and storage to 
complete. This is not suggested for the natural resource user.

Many of the methods presented in the previous sections can be used to 
compare changes response vs parameter changes. Saltelli et al. (2008) 
suggest that the scatterplots, regression analysis, variograms (exploration 
of the variance of the change in response variable), and probability 
distributions are also useful analysis techniques. 

A sensitivity analysis is impractical for most modeling projects due to the 
sheer number of simulations and the high degree of complexity in sensitivity 
analyses. However, if validation data are scarce, a sensitivity analysis may 
be the only way to: (1) gain confidence in the parameterization, (2) estimate 
the degree of uncertainty, and (3) provide experience and understanding 
into model behavior. However, an insightful sensitivity analysis demands 
a comprehensive knowledge of the model a priori because the user rarely 
knows which parameters are the most important or critical, and to what 
response variable are they the most critical. Therefore, it is beneficial if the 
modeler is available to help with the simulation design of the sensitivity 
analysis. In fact, the presence of an existing sensitivity analysis might be a 
good criteria for selecting a model.

Validation Concerns

Perfect validations for any model are impossible and users should 
accept that any validation will have limitations. Uncertainties in the data 
available to test models (observed data; measurements) lead directly to 
uncertainty in the accuracy of model predictions (Amthor et al. 2001). 
As mentioned for spatial model results, there is a lack of spatially explicit 
historical time series data that are in the appropriate context to compare 
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with model results. Validation data must have many characteristics to 
be useful for model validation and most data sets are missing some of 
these characteristics. As an example, validations of fire spread models are 
often constrained by accurate measurements of active wind fields at the 
right temporal and spatial scales because major changes in the spread of 
wildland fire can be caused by fine scale variations in fuel moisture and 
wind profiles on surface and canopy fuels (Finney 1998).

Model validation involves the complex melding of several difficult 
tasks, especially with landscape models that simulate vegetation and fire 
dynamics over millennial time spans (Keane and Finney 2003, Keane et 
al. 2015). It may be helpful to present examples of how other modelers 
have validated their models. Schaefer et al. (2012) used an analysis of 
residuals to evaluate gross primary productivity measured at various eddy 
covariance flux towers with a variety of simulation models. Stage et al. 
(1995) performed an extensive validation of succession parameters for the 
pathways in the Interior Columbia River Basin Ecosystem Management 
Project using results of another model (FVS stand growth model) 
(Crookston and Dixon 2005) and found greater than 80 percent accuracy. 
Keane et al. (2002) compared simulated fire area and pattern statistics from 
a 1,000 year LANDSUM run to the historical fire atlas created by Rollins 
et al. (2001) and found acceptable agreement between the distributions of 
fire size and patch shape. Amthor et al. (2001) used measured and derived 
daily CO2, evapotranspiration, and air temperature from a spruce forest 
in Canada to compare with output from nine ecosystem process models.

Perhaps the most important question in validation is how do you validate 
a stochastic model or a model with stochastic elements? First, the user 
should attempt to remove as much stochasticity from the validation runs 
as possible by crafting validation designs that include the least amount of 
stochastic processes in model simulations. Wildland fire, for example, is 
highly stochastic in landscape simulations because of the randomness of 
fire starts. Therefore, validations should be done without fires or with fire 
occurring at the same time and on the same piece of land as the observed 
fires, or validations can be done at longer time intervals to assess regimes 
rather than events (e.g., fire characteristics over long simulation times 
can be used to quantify the fire regime, and that regime can be compared 
with reference fire history data). Using the fire example, the simulated 
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landscape fire rotation, fire return interval, and area burned per year can be 
compared to studies that evaluated fire regimes using fire-scarred trees (Fall 
et al. 1997, Parsons et al. 2007). And last, the user can perform multiple 
validation runs and include these as additional observations in the analysis 
procedures mentioned in the section above. At any rate, stochastic models 
must be run several times and each replication should be considered an 
observation in the validation analysis.

Users should be careful when using and interpreting variance as an absolute 
measure of uncertainty or accuracy. In highly complex models, especially 
when results are multi-modal, other statistics may be more appropriate. 
Smaldino (2013), for example, mentions that entropy, not variance, 
is better when dealing with discontinuous or complex model output. 
Moreover, variance contains both model error and natural variation with the 
contributions of each are relatively unknown. Therefore, it will be difficult 
to determine if poor validation results are because of highly stochastic 
modeling algorithms, errors in the model and its parameterization, or high 
natural variability. 

And last, and mentioned in all other chapters, users should document 
the method, details, and results of the validation effort in a report or in 
computer files. In past validation efforts, a summary table and figure were 
often prepared for the modeling team to interpret the final simulation runs. 
Moreover, a journal will often demand extensive detail in the validation of 
the model and well-kept records will make this quite easy. 
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8
Execution
Implementing the Model Project

“Everyone has a plan: until they get punched in the face.”

Mike Tyson 

Execution—the carrying out or putting into effect of a plan, order, or 
course of action (OED). 

ABSTRACT
This chapter covers how the model is used to actually implement 
a simulation design in a modeling project. In the purest sense, 
“execution” is the running of the model, but here, the term is used in a 
broader sense—running the model for all replicates in the simulation 
design. There are five simple steps involved in project execution: (1) 
understand the model to know if there is a problem, (2) find computing 
resources, (3) design output storage structures, (4) develop computer 
scripts to efficiently run the model for all scenarios, and (5) start the 
simulations and scripts. Major execution concerns are addressed at 
the end of the chapter.
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Introduction

In this chapter we outline how the model is used to actually implement 
a modeling project. In the purest sense, “execution” is the running of a 
model, but in this book, the term is used in a broader sense—the execution 
phase involves running the model for all replicates in the simulation design. 
As an example, the execution phase may involve 120 executions of the 
model capturing four scenarios each with three levels and 10 replicates. 
This phase is by far the easiest and sometimes the quickest task in the 
entire project, and as a result, this chapter is somewhat short. However, 
there are a few aspects of executing a model that deserve mention. 

Execution Steps

Once the calibration is done (Chapter 6), and the user or modeling team 
feels that the initialization (Chapter 4) and parameterization (Chapter 5) 
are sufficient, then the model is ready for the execution of simulations in 
the modeling project design (Chapter 3). It is advised that the validation 
phase of the modeling project is complete (Chapter 7), but it need not be 
finished to conduct the execution of the model. The four steps involved in 
execution are simple but important (Figure 8.1).

Understand model

At this point in the modeling project, the user should have comprehensive 
knowledge of the details of the selected model including input/output 
requirements, important algorithms, and of course, the procedure needed to 
execute the model. It is critical that the user has read all publications about 
the model and understands many of the nuances of the selected model. If 
this is difficult, as it is when someone is new to the modeling field, then 
it is important to cultivate relationships with not only the modeler and 
developer, but also with other people that have used the model and other 
modelers (see next section). This is also important because the user needs 
to understand the modeled output for the project to properly implement the 
analysis phase (see next section).
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Users should practice running the model before starting the execution phase. 
Most modelers provide example input structures for easily executing their 
model to see how it works. Prior to or during the previous three phases 
(initialization, parameterization, and calibration), novice users can take 
these example input files and execute the model to become familiar with 
the model and gain the confidence to know when the model is working 
correctly. Then they should modify various parameters in the example 
input files to learn model behavior. By practicing, the user can make a 
more informed estimate of how long the model will take to simulation 
their project, and understand when the model is performing correctly. 

Figure 8.1. The steps used in the execution phase of a modeling project.
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Find computing resources

If the selected model is somewhat simple and executes in seconds to 
minutes on your laptop computer, then the reader can bypass this step 
and not worry about cobbling together computer resources to complete 
the project. However, most modeling projects that I’ve worked on were 
limited by available computing resources such as number of computers, 
configuration of processors, available memory, and CPU speed. Often, 
complex models take hours to days to run; may demand extensive memory 
and computing processing; and could produce tremendous amounts of 
outputs. This means that the user must find a computing “platform” that 
can handle all computing requirements of the project.

The user should first determine how long it takes for the model to run a 
given scenario replicate on a “local” computer (i.e., the user’s computer 
or local server). Some ecological models may take hours to finish one 
run; the FireBGCv2 model, for example, took 18 hours to simulate 400 
years on a 100,000 ha landscape. Once the execution time on the local 
computer is known, the user can then do the math to compute how long 
it will take to do all scenarios and replicates. If the estimated time is too 

Figure 8.2. A possible directory structure for storing output from a modeling project. The 
name of the project is the head director with subdirectories organized first by scenarios, 
then by replicates. then by the type of data file.  All of these files can be put in one directory 

but their filenames should reflect the simulation design.
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long then compromises must be made to complete the project within 
acceptable timelines, and the user must develop a computing plan. This 
involves finding other local computers to handle the load or finding 
other computing resources outside the project domain. Supercomputing 
resources, for example, are available on the web and government agencies 
and university organizations have supercomputing facilities. Purchasing 
computers specifically for the project may also be an option.

It would be beyond the scope of this book to detail all possible options 
and procedures to find and implement the computing resources needed for 
a specific modeling project. However, here are some tips and suggestions 
that may make project execution go easier:

 1. Ensure extensive disk storage. The output generated by some 
models can be overwhelming. It is important to have enough disk 
storage to hold all output for all scenarios and replicates. Buying 
additional USB disk storage is a must for some projects.

 2. Revisit project design. If the user finds out that there are insufficient 
computing resources to effectively execute the project and it would 
take substantial time and money to find these resources, perhaps 
the next step should be to see if the project design can be modified 
so that the available resources can handle the full implementation 
of the project. Are all the replicates needed? Can one scenario be 
eliminated? Can fewer years be simulated? However, users should 
thoroughly document all changes to the project implementation so 
results can be interpreted in the correct context.

 3. Identify computing resources beforehand. A concerted effort 
should be used to find all available computers during the project 
design phase rather than waiting until the model is ready to be actually 
executed. This may be difficult because details of the simulations are 
unknown, but at least a preliminary inventory will identify if outside 
resources are indicated.

 4. Interview other users. It often helps if the user contacts other users 
of the same model to determine the appropriate amount of computing 
resources needed for project implementation and to gain insight into 
possible solutions.
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 5. Foster relationships with IT folks. A healthy relationship with the 
resident computing staff at an organization is critical if the modeling 
project is to go off without a hitch. They will often have creative 
ideas on how to solve many of the unexpected problems involved 
in executing the model for the best results. Cloud computing, for 
example, might be an alternative to simulating the model on local 
computers.

Design output structures

The analysis phase (Chapter 9) of a modeling project will go much easier 
if the user has the forethought to design a comprehensive storage plan for 
the simulation results. This often involves designing a directory structure 
that stores modeled output in an understandable and accessible way so that 
analysis software can easily access these files for speedy investigation. The 
data should be easily accessible in a completely understandable format for 
sharing across the modeling team. For example, the top directory could 
be named for the project, the sub-directories named for the scenarios, and 
their sub-directories named for the replicates (Figure 8.2).

The most important step in this design structure is to revisit the selected 
variables to output from the model (Chapter 3). Now that the project is 
ready to be executed and all other preliminary phases have been completed 
(initialization, parameterization, and calibration), there may be additional 
variables that have been identified as important from analyses in previous 
phases, especially the calibration phase. Many projects had to redo their 
entire execution phase after it was revealed that an important variable was 
forgotten. Revisit the list of variables and have the modeling team review 
the list just to make sure all is ready.

Develop scripts

Most users would like to start the model and walk away while it simulates 
all of the identified scenario replicates (Chapter 3). It might take a model 
four hours, for example, to simulate one replicate in the project’s simulation 
design, so most people don’t want to sit around and wait for the model 
to be finished before starting the simulation of another run. Therefore, it 
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is critical that the user learn how to write scripts to run all scenarios in 
one “batch” run. Most operating systems provide the ability to execute 
multiple runs of a single or multiple programs using a script programming 
language. Sometimes it is quite simple to learn the steps to program the 
execution of multiple runs of the model under the simulation design of the 
project. 

Unfortunately, this section cannot provide the information needed to 
program scripts in the multiple operating systems currently available 
on most computer systems, such as MS-DOS, UNIX, and LINIX; users 
should reference the manuals for those systems. However, there are a few 
suggestions that might make the process easier. First, be sure the directory 
structure is integrated into the scripts so that the input/output data are 
easily available. Next, extensively test the script and then test it again. Try 
to avoid any potential problems by evaluating results of the script. And 
last, consult a software expert in the resident operating system to ensure 
your scripts are appropriate and effectively written.

Start Simulations

Results of all the hard work performed during the first three phases are 
now realized as the model is executed for all replicates. This step always 
seems anticlimactic because it takes the least amount of work, but many 
users have breathed a sigh of relief once the runs are started. To implement 
this step, the user simply executes the model or the programmed script. It 
is important that the first few runs of the model are monitored to determine 
how long the executions are taking and to ensure there are enough 
hardware resources (e.g., memory, nodes, processor speed) to handle the 
model executions. 

Execution Concerns

In my experience, no project has ever been completed with only one 
execution. Mistakes are always made in the design and implementation 
of the parameterization, initialization, and calibration phases that become 
evident when the execution of the entire project is finished and the user 
starts the analysis phase. As a result, the model must be re-executed for 
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all scenarios and replicates. This is somewhat problematic as simulation 
times on some of the projects I worked on were 1–2 months. There are 
several ways to mitigate the impact of this on project success. First, it 
is critical that the user evaluate results of the initialization (Chapter 4), 
parameterization (Chapter 5), and calibration (Chapter 6) in the context 
of the project’s objective to ensure everything is working properly. For 
example, the user should augment the project’s output variables with other 
exploratory variables to ensure that all output variables can answer the 
objective. Next, in any idle moments prior to project execution, the user 
can run the model ad hoc to prototype and validate the output structures 
(previous section) and also to evaluate the output for acceptability. Also, 
the user can thoroughly evaluate the quality of model output. Many times 
I’ve noticed one mistake in the model output and fixed that mistake only 
to notice yet another mistake after the entire project’s simulation was 
completed. And last, the user can extend the project’s timelines to include 
at least two full model executions of the project design. Regardless of how 
many safeguards and pro-active controls that were put in place to avoid 
running the model for the entire project again, some modeling projects will 
need to re-execute the model after mistakes are noticed. The user should 
expect this and hope that the project’s simulations need only two attempts.

Many ecosystem models do not have the sophisticated error handling and 
documentation that are common in commercial software packages such 
as spreadsheets, word processors, and statistics packages. As a result, it is 
often difficult for users to find exactly what went wrong during a simulation 
if the model stopped unexpectedly or it produced odd or erroneous output. 
Therefore, it is important that the user develop safeguards to make sure 
model bugs, system updates, hardware failures, and memory overruns are 
avoided. First, the user could attempt to “break” the model by running the 
model with odd parameters. For example, the user could try running the 
model for 10,000 years to determine if it overwhelms computer memory. 
Or the user could try inputting a parameter value that is illogical or 
ecological invalid to see how the model accepts and uses this abnormality. 
Next, the user should try to find someone who may be familiar with the 
model so that they can help debug program errors (see previous sections). 
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Analysis
Evaluating Model Results

“If you torture the data long enough, it will confess.”

Ronald Coase, Economist

Analysis—a detailed examination of anything complex in order to 
understand its nature or to determine its essential features (Merriam 
Webster 2018).

ABSTRACT
Ecological models often output terabytes of data that must be 
synthesized and summarized into salient facts to answer the modeling 
objective. This involves advanced statistical analysis of the simulated 
data in a spatial and non-spatial context to determine those significant 
differences between scenarios that will answer the questions raised 
by the modeling objective. First, this chapter covers the four steps of 
analysis: (1) decide on analysis software, (2) link output to analysis 
package, (3) perform analysis, (4) create final set of figures, tables, and 
maps. Then, various analysis issues are covered. Both response and 
explanatory variables are presented and various analysis summaries 
are presented.
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Introduction

Many people think that once the model has been executed for all of the 
project’s scenario replications, their work is done. Unfortunately, there is 
still yet another important step. Complex ecological models often produce 
terabytes of output data that must be now be synthesized and summarized 
into salient figures and tables that help answer the modeling objective. 
This often involves advanced statistical analysis of the simulated data in a 
spatial and non-spatial context to determine those significant differences 
between scenarios that will answer the questions raised by the modeling 
objective (Zuur et al. 2007). Moreover, it is important that the modeling 
team understand “why” a particular result occurred, therefore, additional 
analyses if often needed to summarize the simulated data to understand the 
reasons for a particular result. 

The most important goal of any analysis of simulated data in a modeling 
project is to answer the objective (Chapter 3). If there was a clear statement 
of objectives for the modeling project and the modeler implemented 
the steps outlined in Chapter 3 (namely prototyping tables and figures 
needed for successful completion of the objective), then the analyses of 
the model output data should be rather straightforward. However, I have 
never worked on a modeling project when the modeling objective didn’t 
change at some point during the project; often preliminary evaluations 
of the generated output reveal that a change in the project objectives was 
needed. It is extremely difficult to anticipate every possible result that 
the model will generate a priori (i.e., beforehand). Often, there will be 
simulation results that were unexpected which precipitates the need for 
further analyses to determine why the results seem odd. In most cases, 
explanatory variables are evaluated against response variables that create 
numerous series of graphs, tables, and statistical summaries to provide the 
user with the synthesized information needed to understand simulation 
results. 

As mentioned in Chapter 3, model results can be divided into two 
categories—response variable and explanatory variable output (GRIMM 
2002). Response variables are used to address the modeling objectives 
while explanatory variables are used to figure out why the model produced 
the unique results for those response variables. As an example, say that 
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the modeling objective was to determine the fate of a tree species on a 
landscape under two climate scenarios. The response variables might be a 
set of abundance measures, such as basal area, tree density, and leaf area by 
species. However, these response variables may not provide insight as to 
why a tree species’ abundance trended down or up—explanatory variables, 
such as climate (e.g., rainfall, evapotranspiration), disturbance (e.g., area 
burned by fire), and management (e.g., area thinned and prescribed burn) 
may provide insight into understanding the trends and explain how much 
each process drives a particular response. In a simple example, area by 
cover type is often reported from S&T models over simulation time, but to 
fully understand why a cover type increases or decreases, it is important 
to compare simulated cover type area with the area perturbed by fire and 
other disturbances.

It always seemed strange to me that high powered hypothesis-testing 
statistics were needed to analyze “simulated” data. These data were 
generated by an imperfect computer model that by definition would have 
a high amount of uncertainty and bias in the output that is impossible to 
capture in any statistical test. Moreover, it is relatively easy to generate 
more data if additional statistical power is needed by simply running the 
model a couple of more times (White et al. 2014). Statistics are wonderful 
tools for summarizing and comparing data, but they are not the final word 
when interpreting simulation output. Nothing takes the place of the human 
mind for understanding the subtle differences between modeled scenarios 
and incorporating known sources of uncertainty into the interpretation 
of the results. Simple box-and-whisker diagrams are sometimes more 
understandable, informative, and decisive than the most complex ANOVA 
analyses. Some users often stop their analyses when ANOVA tests for 
the factorial design are finished, but I feel that the ANOVA is only the 
start of the analysis and the really interesting part of a modeling project— 
interpreting modeled output—comes next. 

Conversely, it is important that the primary user, in their zeal to understand 
simulated results, try to avoid going down the “rat holes” of tangential 
analyses. Users often get so enthralled with the minutia of investigating 
simulation results that they forget to concentrate on the project’s 
objectives and get lost going down analysis pathways that are interesting 
but not important. To avoid this “scope creep”, it is important that the user 
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constantly pay attention to several things. First, the user must ask “does 
this analysis help answer the simulation objective?” Next, users should 
ask “do I have the time to conduct this ancillary analysis?” And last, they 
should ask “how can I integrate these analysis results into a report for 
the modeling project?” Too often, productive analysts become lost in 
interesting explorations because they didn’t sufficiently understand the 
project’s goals and products and they had a great fascination attempting to 
find unanticipated findings from the dense modeling output. 

This chapter presents the basics of analyzing simulation data for the 
modeling project. Obviously, details of any analysis are unique to the 
model, the modeling objective, and the output generated, but the following 
are some general steps to guide model output analysis. 

Analysis Steps

Decide on statistical software

Almost all simulation analyses tasks are accomplished using standard 
statistical analysis packages such as R (Team 2017), SAS (Inc. 1999), 
SPSS (SPSS 1999), and SYSTAT (Wilkinson 1988). In this book, all 
analyses are assumed to be accomplished using statistical software and 
that this software has the capability to efficiently synthesize the data, 
perform complex statistical analysis, and create high quality figures, 
tables, and graphs. Hopefully, the same software was used in previous 
modeling phases, especially validation and calibration, and therefore, this 
material would be relevant to those chapters as well.

The challenge, then, is to pick the most appropriate statistical software 
for analyzing the copious output from a modeling project. While the list 
of criteria for software selection may be quite long for some projects, 
I’ve found that there are three major factors that are most important in 
many projects. First, the user should identify what statistical packages are 
available from their organization that are within their budget—in other 
words, which packages are already resident on their computer or available 
for free. Most modeling projects can’t afford to purchase a brand new high 
end statistical package, so other low cost alternatives are often sought. 
Next, the selected software package must be able to ingest the abundant 
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simulated data and perform the desired analyses. I’ve participated in 
several modeling projects when the great amount of simulated data 
overwhelmed the computing ability of the program (i.e., the analysis took 
too much time). And last, there must be someone available within the 
user’s organization or nearby that can answer questions on the software’s 
useage and analysis results. 

Link data to analysis package

The next step is to link the output files to the analysis package (Figure 9.1). 
This might involve “massaging” the data to fit the input requirements of 
the analysis software, or programming the software to accept the data in its 
native output format. The formats of the output data are readily identified 

Figure 9.1. The steps used in the analysis phase of a modeling project.
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from the models user’s guides or programming code; the simulated 
output, for example, may be stored as comma-delineated fields in ANSI-
ASCII text files. But some models save output in special formats, such as 
binary, netCDF, or geotiff, which may be inaccessible to some statistical 
packages. Additional steps must then be taken, with additional software 
packages such as database management packages (e.g., Oracle, Access), 
C++ programs, and free-ware programs.

To ensure that input data are error-free and ready for analysis, it is 
recommended that a set of summary tables, figures, and data queries 
be created using the statistical software to scrutinize the data for 
abnormalities. Summary tables and figures that display results over time 
and space can be used to ensure the data are being read into the package 
correctly and to determine if there are any irregularities, outliers, or 
simulation errors. Sometimes, during model execution, the computer 
may malfunction and spurious values may be written to an output file 
that fall outside the bounds of acceptable conditions—such as a negative 
value or an alpha character in a numeric field. Data queries using a text 
editor can be used to find and fix these problems or they can be excluded 
from the analysis using the statistical packages. However, it may also be 
necessary to explore the possibility that model input or parameterization 
are responsible for the outliers, or in more exceptional cases, the inherent 
model design is the problem, such as the model was not constructed for 
the particular characteristics of the simulation landscape or its ecological 
components (e.g., topographic, climate, vegetation). Such issues are 
usually discovered and resolved in earlier steps of the modeling process, 
but some complications may only come to light when the model is fully 
implemented in the simulation phase. 

Perform analyses

In this step, the statistical software package is used to conduct analyses 
on the output needed to answer the objective. If the user has completed 
the tasks mentioned in Chapter 3, namely designed the figures, tables, and 
statistical tests, then this step is relatively easy. But as mentioned, analyses 
usually bloom into myriad investigative pathways and this can lead to new 
and often interesting areas. It is suggested that analysis efforts first focus 
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on answering the project’s main objectives, which may then set the context 
for additional analysis that may be necessary to understand the key results. 
The purpose of this chapter is NOT to prescribe a series of analysis tasks 
and statistical tests because those are dictated by the project’s objective 
which is highly unique. The purpose of this chapter is to suggest some 
common analysis techniques and products that are common to many 
modeling projects, and these are presented by the output products.

There are basically three types of products that are generated from 
simulation data during the analysis phase—tables, figures, and maps. 
Tables contain the summaries of complex statistical analysis for reference 
in report writing and are usually selected when the actual numbers 
summarized in the table will be cited by others for other purposes. Figures 
are illustrative diagrams that summarize and synthesize simulated data 
for results interpretation and report writing. And maps are georeferenced 
displays of the spatial distribution of modeled entities. Suggested analyses 
are presented by each of these products.

Tables

There are a number of statistical tables that might be considered for 
the interpretation of simulation results. First and foremost, results of a 
parametric (ANOVA) or non-parametric significance test of differences  
of response variables across simulated scenarios should be considered 
(Table 9.1). The simulated data should be first examined to see if they 
are normally distributed so that parametric statistics can be used, and if 
not normal, then non-parametric tests may be appropriate. After many 
consultations with statisticians, it appears that ANOVA with repeated 
measures (e.g., across replicates and years) is the preferable approach 
to detect differences in response variables between scenarios for time-
series simulation data that are normally distributed. For non-normal data, 
a generalized linear mixed model (GLMM) for repeated measures is a 
complementary and useful tool (Table 9.1) (Bolker et al. 2009). In many 
projects, the number of observations can be boosted by using years (or 
time intervals) across replicates (e.g., a 200 year simulation with results 
reported every 10 years with five replicates can generate 20 x 5=100 
observations). However care must be taken in interpreting results because 
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with high power (i.e., many observations), a significant effect might be 
detected that is actually unimportant (as discussed in more detail later in this 
chapter). Multiple comparisons, such as using Tukey’s honestly significant 
difference (HSD) test, can also be conducted to evaluate whether response 
variable means are significantly different among scenarios (Table 9.2). 
The final analysis and its interpretation should also be reviewed by the 
local statistician if available. 

Table 9.1. Results of generalized linear mixed models for the effects of planting, 
restoration, suppression climate and year for the amount of whitebark pine basal area and 
the proportion landscape area in whitebark pine dominated communities in the whitebark 
pine zone of the East Fork of the Bitterroot River (EFBR) for Future only, Historic only, 
and Future and Historic combined. Asterisk indicates significant interaction between 

effects. From Keane et al. (2017).

EFBR
Effect F Degrees of 

freedom
Numerator; 
denominator

P-value

Whitebark pine basal area (m2 
ha–1) 
Future 

 Restoration
 Planting
 Suppression 
 Year

145.80
0.98
2.05

760.92

2; 263
2; 263
2; 263
9; 2421

< .0001
0.38
0.13

< .0001

Historic
 Restoration
 Planting 
 Suppression 
 Supp X Restore
 Year

31.89
0.70
1.55
3.69

894.39

2; 259
2; 259
2; 259
4; 259
9; 2421

< .0001
0.50
0.21
0.006

< .0001
Future and Historic

 Restoration
 Planting
 Suppression
 Climate
 Climate X Year
 Year

130.97
0.03
2.29

234.11
356.83
1274.36

2; 532
2; 532
2; 532
2; 532
9; 4842
9; 4842

< .0001
0.97
0.10

< .0001
< .0001
< .0001
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Often, users find it difficult to decide if the output should be summarized 
in a table or figure. A general rule of thumb is that if the values of the 
summary statistics will be used by others in the project or organization, or 
if statistics are important to demonstrate the findings of a project, then a 
table is warranted. However, if a general trend, relationship, or association 
is needed to illustrate aspects of the modeling output, then figures are 
probably better than tables. As an example, if the historical range and 
variation (HRV) of wildfire burned area is needed to illustrate changes in 
vegetation types, then a box-and-whisker plot might be all that is needed, 
however, if the HRV of burned area is needed by the planning team to 
implement a particular scenario, then the results should be summarized in 
a table.

Figures

Box-and-whisker plots of each response variable across scenarios provide 
perhaps the best visual assessment of differences across scenarios (Figure 
9.2). The vertical length of the box and the whisker identify the range and 
percentiles in the data (often the 10th and 90th for the whisker and 25th and 
75th for the box) and the line in the box depicts a central tendency statistic 
(mean, mode, or median). Differences between scenarios can be easily 
visually assessed using this technique, but there are probably numerous 
other figure designs that could also be used. The primary challenge in 
designing a figure that accurately portrays simulation results is to show 
major differences in scenarios and their various levels across all factors 
(i.e., depicting multidimensional relationships). 

The main problem with box and whisker plots is that they portray only 
ONE response variable, and often the differences across scenarios and their 
levels will differ by which response variable is used. For example, the box 
and whisker plots for basal area (Figure 9.2) may be completely different 
when timber volume or fuel loading is used (Keane et al. 2018). Many 
users want to combine all response variables together in a single analysis 
to determine differences between scenarios. Various statistical procedures 
are available to perform this task, specifically Principal Components (PCA) 
(Keane et al. 2018) and non-metric multidimensional scaling (NMDS) 
(Kenkel and Orlóci 1986). In the PCA statistical procedure, values 
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of all response variables can be used to compute at least two principal 
components that hopefully explain over 50% of the variance. Then the 
cloud of points that are the component values for each replicate or year 
or both can be displayed and analyzed (Figure 9.3). Moreover, the values 
of these principal components can then be used to create box and whisker 
plots across the scenarios and levels similar to the ones in Figure 9.2.

After response variables have been analyzed, it’s time to start analyses 
of the explanatory variables to determine why there are differences 
across scenarios or not. And, perhaps the best first step is to create time 
series graphs of all response variables (i.e., values of response variables 
over time) (Figure 9.4) and repeat this for the explanatory variables 
(Figure 9.5). Rapid changes in response variables can be compared with 

Figure 9.2. An illustration comparing historical (HRV) and future (FRV) variability in 
basal area (m2 ha–1) variability compared with current conditions on the EFBR landscape 
(Present: the initial conditions at the start of the simulation). There appears to be a zone of 
overlap between HRV and FRV3, which may provide a possible reference for management. 
FRV1, FRV2, and FRV3 are future simulations with RCP4.5 climates with zero, 50% and 
98% of fire ignitions suppressed respectively. The box in this figure are the 25th and 75th 

interquartiles and the whiskers represent the range of the data. From Keane et al. 2018.
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the explanatory time series to see if they match in time. Moreover, the 
magnitudes and trends of response variables can be compared with the 
explanatory variables to detect any relationships. Examples provided in 

Figure 9.3. Results of PCA analysis of FireBGCv2 simulations for the EFBR landscape 
for the historical scenario (HRV; black dots, reference) and for the three future scenarios 
(FRV1, FRV2, FRV3; gray dots; Table 2) which are three fire suppression scenarios (no 
suppression, 50% ignitions suppressed, 98% ignitions suppressed) under an RCP8.5 
climate (A,C,E). Also shown are simplifications of the scatterplots with circles that contain 
68% of the variation in the spread of the points for the three FRV scenarios (B,D,F). The 
asterisk at the lower left of graphs A, C, E represents the condition of the landscape today 
(Present). FRV1 is shown in A and B, FRV2 is C and D, and FRV3 is E and F. Variable 
names in B, D, and F are defined in Table 3 and indicate the importance of the variables in 

the PC1 and PC2 scores.
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Figures 9.4 and 9.5 show that the majority of trees in a montane meadow 
on the EFBR were juniper and quaking aspen. Of course, any detected 
correlation between response and explanatory variables using graphs and 
statistical techniques is not proof positive that there is a relationship. Only 
by digging deeper into the model structure can the actual relationship or 
feedback be revealed (i.e., a focused sensitivity analysis; Chapter 7). For 
example, the user may find that a response variable varies in tandem with 
a fundamental explanatory variable, such as aspen cover varies with area 
burned. Perhaps if box-and-whisker plots of the amount of burned area 
were compared with the basal area plots in Figure 9.2, the decline in basal 
area in the future may be interpreted as a result of the increases in wildland 
fire. However consider that a beetle outbreak may have preceded those 
large fires, and perhaps the outbreak was the actual cause of basal area 
loss. In short, it is important to consider a range of underlying mechanisms 
at a variety of temporal and spatial scales that might explain variation and 
trends in a response variable. 

Another interesting explanatory analysis is to plot values of one variable 
against another across all years in a simulation and over all replicates 
(Figure 9.6). Here the user selects the more important response variables 
and plots them against explanatory variables to gain insight into model 
behavior and interpret model results. Different colors can be used for each 
scenario and scenario level.

Maps

Map products are only possible if the model was a spatial or landscape 
model and it contained options for outputting spatial data (Chapter 2). 
Some models can create digital maps of simulated output directly within 
the model structure, but most landscape models create files formatted 
for input into Geographical Information Systems (GIS) or other types 
of spatial software. Most maps created from simulation results simply 
present simulation results in a spatial display and rarely provide any spatial 
analyses (Figure 9.7). Many statistical packages, such as the R package 
(Team 2017), now have the ability to accept geo-referenced data to create 
colorful maps and perform important spatial analyses. 
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Most map products created from model output are usually for display 
purposes only, but some modeling projects conduct analysis on the map 
data to compute landscape metrics to describe landscape structure and 
composition. To perform these types of spatial data analysis, GIS and/or 
statistical software must be used to compute spatial statistics from output 
map data. Landscape metrics, such as contagion, average patch size, 
and juxtaposition, can be computed with landscape analysis software, 
such as FRAGSTATS (Baker and Cai 1992, McGarigal and Marks 1995, 
Dale 1999). Summaries of modeled output across geographic regions 
could be accomplished using GIS tools (Campbell et al. 1995, Akcakaya 
1996). Spatial statistics, such as semivariogram analysis, Moran’s I, and 
Geary’s C (Cressie and Ver Hoef 1993, Fortin and Dale 2005), can also 
be computed using those statistical packages that include spatial options, 

Figure 9.6. Graphs showing changes in four response variables over 10 fire suppression 
levels (proportion of fires suppressed) for historical (light boxes) and future (RCP8.5-dark 
boxes) climates for the East Fork of the Bitterroot River (EFBR, see Figure 2.9) generated 
by the FireBGCv2 landscape model. Response variables are: (A) average stand basal 
area (m2 ha–1), (B) proportion of landscape in fire adapted species, (C) average annual 
proportion of landscape burned each year, and (D) average coarse woody debris loading. 
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such as R package (Team 2017). If these types of analyses are desired, 
the user should be aware that the output of digital maps from the model 
demands abundant disk storage.

Create Final Figures, Tables, and Maps

Once all initial and explanatory analyses have been completed to the mutual 
satisfaction of the modeling team, then it is time to create the necessary 
figures and tables to write the report that summarizes the results of the 
modeling project. This report may be a small synthesis of the simulation 
findings or a comprehensive paper to be submitted to a peer-reviewed 
journal. In any case, it is important that the final set of figures and tables 
captures the seminal findings of the modeling project in the context of the 
objectives, and also in the context of a greater understanding of ecosystem 
or landscape dynamics. A well-designed figure can successfully portray all 
results of an entire project and it will live forever if published.

High quality figures and tables should always be the goal of any analysis 
as they could be used or cited by any number of publications, especially 
if the results are novel and unanticipated. The challenge in this step is 
deciding which figures and tables need to be built. Too few figures may 
fail to accurately portray the depth and scope of the simulation results, 
while too many may be difficult to read, understand, and interpret. Here 
is where the creativity of the user and the modeling team comes into 
play as they will need to design figures and tables that accurately and 
parsimoniously synthesize simulation findings into an inspiring set of 
products. Without doubt, this is incredibly difficult for many of us as it is 
challenging to envision a design that will summarize the findings across 
the broad dimensionality of the abundant and diverse simulated output 
(i.e., scenarios, levels, and variables). Maps, figures and tables created 
in the preliminary analysis discussed in the previous section may be 
plentiful, simple, and crude, but final products must be designed so the 
reader easily understands the findings in the least number of products. 
The best way to find possible product designs is to peruse the literature 
on similar simulation projects and attempt to replicate their illustrative 
methods, or to review other reports generated by the host organization to 
find suitable designs.



183

Analysis—Evaluating Model Results

Analysis Concerns

Statisticians often warn that there may be high spatial and temporal 
autocorrelation in simulated data that could influence many parametric 
statistical tests, such as analysis of variance (Strachan and Harvey 1996, 
Moreno-Fernández et al. 2016). Outputting spatial data across a landscape 
at individual time steps would obviously have unavoidable spatial and 
temporal autocorrelation in the data (Keane et al. 2006). But then again, 
all ecological data, empirical or simulated, have a certain amount of 
spatiotemporal correlation. Early modeling projects that I’ve worked on 
attempted to minimize spatiotemporal autocorrelation by outputting at 
long time intervals (> 50 years) and only reporting distant stands (> 5 km) 
(Holsinger et al. 2006, Pratt et al. 2006). These thresholds were identified 
by performing preliminary model runs for the selected landscape and 
outputting every year and then analyzing the time and spatial intervals 
that reflect the least temporal and spatial autocorrelation effects. However, 
some modelers feel that autocorrelation is part of the simulated system and 
it should be accepted as a component of natural variability so that important 
impacts and effects can be detected. For example, it may be that a 50 year 
reporting interval as used by Keane et al. (2006) was too long to detect 
significant impacts of frequent fire regimes in dry forest ecosystems or the 
prescribed burning programs implemented by management. Ultimately, the 
mitigation of the influence of spatiotemporal autocorrelation on modeled 
output is a decision of the modeling team in the context of the objective. 
Reporting every ten years, for example, may be needed to decide the 
success or failure of a simulated management alternative, but the analysis 
should recognize that there will be some temporal autocorrelation and 
decide if this autocorrelation matters to the overall result.

Simulation “oversampling” is often recognized as another challenge in 
modeling studies (White et al. 2014). In many projects, users employ 
parametric statistical tests of significance, such as ANOVA, to detect 
differences in simulated alternatives. However, the model that they used 
can be run for hundreds of years and scores of replicates to generate a 
profusion of observations to use in statistical testing. White et al. (2014) 
mention that this huge amount of observations may be inappropriate 
for two reasons: (1) p-values are calculated using great replication (i.e., 
statistical power), may produce significant p-values regardless of the 
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effect size, and (2) the null hypothesis of no difference between treatments 
may be known a priori to be false thereby invalidating the premise of the 
test. They further state that “use of p-values is troublesome (rather than 
simply irrelevant) because small p-values lend a false sense of importance 
to observed differences.” They argue that these analyses be abandoned and 
that the magnitude of differences between simulations be emphasized. In 
reality, there is no harm in performing the ANOVA to detect differences 
between alternatives, but the user should be aware of the effect of a high 
number of replicates on the significance test results, and perhaps create a 
design that keeps total observations less than 100–200. This is why it is 
always best to augment all ANOVA analyses with simple figures that show 
the magnitude of differences in response variables across scenarios.

Users should also be aware of using years as replicates (i.e., observations) 
in statistical significance tests such as ANOVA. The problem is that there 
are often trends in the simulated data that go undetected when response 
variables are summarized across all years. In one study, Keane et al. (2017) 
found few significant differences across modeled restoration scenarios, 
but there were significant declines over time in several climate change 
scenarios that were important to management actions that went undetected 
because the variability of the response variable was high because of the 
trends not the natural variablity of the processes. If years are used to boost 
the number of observations, be sure to also run significance test to evaluate 
the influence of years as an ANOVA factor or interaction.

Another analysis challenge for many users is deciding on the temporal span 
of analysis. A short temporal span may not detect long term differences 
across scenarios, and a span that is too long may be difficult to simulate 
with available computing resources. An example from Keane et al. (2017) 
depicts this conundrum. The statistical analysis for this project covered 
only the first 100 years of simulation (Figure 9.8) and the subtle differences 
across scenarios were a result of the rate of decline of whitebark pine. 
However, when a time span of 500 years was used, the impacts of climate 
and various management activities become manifest on the landscape and 
the differences between scenarios became evident. The small time slice 
was used because the climate projections only went out 100 years and this 
was the time span requested by managers, but ecosystem dynamics in this 
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ecosystem are slow to develop and important changes weren’t detected 
with such a small reporting interval.

The analysis phase is by far the most interesting and satisfying phase in 
the modeling effort. Users finally get to see the results of their extensive 
efforts expended during the previous phases. However, because this phase 
if often at the end of the modeling project, there rarely seems to be enough 
time to do a comprehensive analysis and acceptable exploration into the 
output data. Modeling projects without well-defined timelines are often 
delayed while unimportant analysis pathways are explored at the expense 
of report writing. To avoid over-analysis and timeline compression effect, 
users should remember the following:

 1. Involve a statistician in designing the analysis products.
 2. Be sure to answer the modeling objective.
 3. Prepare all analysis tables, graphs, and maps with the intention that 

they will be included in the final report. Avoid creating poor quality 
graphs because of the compressed timelines.

 4. Conduct a thorough review of the analysis results using the modeling 
team and modeling experts.

 5. Use the experience gained from the previous phases in interpreting 
results.
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10
Issues
Things to Think About When Using 
Models

“Computers are good at following instructions, but not at reading your 
mind.” 

Donald Knuth

Modeling issues—broad concerns in successfully completing a 
modeling project.

ABSTRACT
There are a number of issues that occur before, during, and after a 
modeling project that will certainly influence any decisions and 
interpretations of the modeled results. Knowledge of these issues 
may make project design easier and may facilitate a more successful 
outcome. These issues are presented by several topics: (1) people, (2) 
climate, (3) disturbance, (4) historical simulations, and (5) modeling 
science. And last, a summary of this book is presented.
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Introduction

In my experience, users of ecological models seem to be divided into three 
classes of people—those that think models are the answer to everything; 
those that think models are a necessary evil but are loathe to use them; and 
everyone else in between. The first class of people must temper their zeal 
for using ecological models by remembering that, at best, a model is an 
oversimplification of reality, and as a result, simulation results have a great 
deal of uncertainty that must be addressed during output interpretation. It 
is the user’s job to identify the possible sources of uncertainty in model 
structure, parameterization, initialization, and output generation using 
concepts from this book and also to account for these sources in the 
understanding, interpretation, and use of model results. 

The second class of people, the “model deniers”, must remember that 
simulation modeling, while an odious task, may be the only method 
available to provide the best possible assessment of future impacts of 
management actions. Models are much better than an educated guesses 
or expert opinions for many applications (Gustafson et al. 2010). The 
advent of climate change, exotic invasions, and novel human land uses 
(e.g., fire exclusion) has made it difficult to assess future impacts using 
experience or empirical data because there are no historical analogs to 
understand novel ecological responses (Millar et al. 2007). Certainly, 
empirical approaches are often more desirable than some modeling 
approaches (Keane et al. 2015b), but we are now in the Anthropocene 
and the value of past phenomenological studies to assess management 
actions may be inappropriate for projecting into our new uncertain future 
(Gustafson 2013). Land management and planning professionals must 
face a future where the integration of aggressive modeling efforts with 
resident expertise, local knowledge, and empirical analysis are needed to 
ensure that the best available scientific information are used to plan and 
implement management actions (Schmolke et al. 2010).

All three classes of people must understand that every model has things 
that it does well and things that it does poorly. In the end, it is how a model 
is used and how the results are interpreted that are the most important, not 
the design or complexity of the model. It is essential that the strengths and 
weakness of any model be understood and addressed before that model 
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is applied to a given situation. And, more importantly, it is important that 
users understand the assumptions made by the modeler during model 
construction. All information generated from the model can be useful 
depending upon the context in which it is interpreted. I’ve often found that 
the greatest thing learned during a modeling project is that the user often 
gains an understanding of great complexity of landscape and ecosystem 
dynamics from learning how to prepare, use, and interpret results from 
ecological models.

There are a number of important issues that occur before, during, and after 
a modeling project that will influence certain decisions and interpretations. 
Knowledge of these issues before embarking on a modeling project is 
started may make project design easier and may facilitate a more successful 
outcome. Some of these issues are not overly critical to the completion of 
a modeling project, but they do provide answers to questions that most 
novice users ask during a modeling project. These issues are presented by 
specific topics involved in a modeling project.

Common Issues

People

The most significant issue that I’ve encountered in my career is something 
I’d like to call user’s remorse. As discussed, people that use other peoples’ 
models, especially for applications not envisioned by the original modeler, 
often find the results somewhat unsatisfying, and often deem the results 
invalid or not useful. They look at the simulation findings through the lens 
of their own experience and come to the conclusion that the simulated 
outcomes are somehow unacceptable. This is in stark contrast to the reason 
that they decided to use a model in the first place—because they didn’t 
know what would happen when a particular action was implemented. 
While a healthy degree of skepticism is an important part of the modeling 
process (see Chapter 6), over-criticism of a model and its results may 
work against the objectives of the modeling project and compromise 
interpretation of the results. 

In a similar vein, some people in the modeling projects in which I’ve 
participated have often taken the position that the model results are 
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“wrong” and it is up to the modeler or model must prove to them that the 
results are indeed acceptable. This is an example of a person using a model 
to tell them what they already know as opposed to a person who uses 
the model to obtain new information. Modelers are constantly reassuring 
skeptical users that the model is behaving correctly and the results are 
indeed valid. It may be best for these skeptics to remember that all model 
results are wrong, and, as a result, it is up to them to determine which 
results are the most useful (Box and Tiao 1975). I often wonder how many 
times the results from modeling projects have been thrown away because 
they were perceived as wrong, but in fact, were actually valid. In one 
modeling project that I conducted, a simulated stand of trees established 
after fire became stagnated after 50 years and did not self-thin as expected. 
The forester reviewing these results insisted that model was not behaving 
correctly because of his intense belief in the self-thinning rule. It turned 
out that the stagnation resulted from water limitations simulated on the 
dry forest landscapes, a phenomenon that was actually observed on the 
landscape being simulated. The point of this discussion is that modeling 
results can never be completely validated or fully assessed for accuracy, 
especially those results that project into the future. Modeling is just one 
tool in the user’s bag of tools to make an educated guess about the impacts 
of management actions. Again, it is the user who decides how to interpret 
model results beneath the cloud of uncertainty. 

Often, model users want to associate additional management values to 
modeled entities or variables to expand the domain of modeled results 
(association). An example is when the states in an S&T model (e.g., 
cover types) are assigned additional attributes, such as fuel loadings or 
grazing potential, to expand the scope of the simulation results (e.g., 
habitat suitability indices for grizzly bear are assigned to each state in the 
S&T model). This practice assumes two things: (1) the assigned attribute 
is indeed meaningfully correlated with that state, and (2) the states in the 
model accurately discriminate the range of attribute properties. Many 
times this practice can be quite successful and subsequent products, such as 
future maps of the new associated variables, can be easily validated using 
existing ground data. But often, the attribute values assigned to S&T states 
are inadequately represented by the resolution of state categories (Menakis 
et al. 2000). If users wish to associate attributes to modeled variables, it 
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is essential that a validation analysis be conducted to ensure the assigned 
attributes are indeed distinctively discriminated by the simulated variable 
in question. For example, Keane et al. (2013b) performed a validation of 
a fuel classification and found that the classification categories did not 
adequately discriminate fuel loadings, yet these categories were being 
used throughout fire management. Similar validations of associated 
characteristics to modeled state variables are needed to establish the limits 
of uncertainty.

A last people issue is that many users often don’t want to include a buffer 
around the target landscape because it may involve too much work or 
require too much simulation time. This is acceptable if the landscape 
model is not spatially explicit (i.e., does not include spatial processes 
such as disturbance spread, seed dispersal, animal movement). However, 
if a spatially explicit model is used and if the project proceeds without a 
buffer, users should know that there are real consequences to these actions, 
namely that the areas around the edges of the target landscape will not be 
fully impacted by spatial processes outside of the landscape and therefore 
will not be modeled the same rigor as the area in the interior. These areas 
can be cleaved from the analysis (i.e., a post-simulation buffer), or they 
can be included but the implications are incorporated into the results 
interpretation. In general, it is always better to include a buffer even if it 
adds additional time to the project.

Climate

A dilemma often encountered by ecological modelers is that the historical 
reconstructions of today’s climates from GCMs or other finer scale climate 
models may inaccurately match observed weather (Taylor et al. 2012, 
Rupp et al. 2013). Comparisons of simulated to observed daily maximum 
temperature revealed that temperature was under-predicted by over 3ºC for 
a landscape simulation in the US northern Rockies (Keane et al. 2017) and 
historical predicted and observed weather for the EFBR landscape did not 
mesh with future predictions (Figure 10.1). Climate modelers sometimes 
suggest using an offset method to correct this uncertainty (i.e., calculate 
an offset factor from a summary of observed vs predicted weather), and 
this works well for many projects. But, climate modelers also suggest 
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that any comparisons of historical to future predictions should use only 
simulated data because both simulated weather streams contain the 
same levels of uncertainty. This may be difficult for many users because 
model calibration used observed weather, and those weather observations 
represent the major influences of the teleconnections that drive climate 
cycles, such as El Niño, La Niña, and the Pacific Decadal Oscillation 
(Newman et al. 2003). As a result, simulations with observed weather will 
more accurately match observed ecosystem responses than the gridded 
simulated weather reconstructions. In some of my modeling projects, 
we’ve found an alternative approach may be to compare the last decade 
of future predictions to the last decade of actual observations to determine 
offset factors that are then used to adjust the observed values based on the 
simulated time span (Keane et al. 1996, Holsinger et al. 2014).

Another challenge for ecological modelers is that weather streams required 
as inputs to models often contain variables that were never collected; 
temperature and precipitation, for example, were measured but solar 
radiation or wind speed and direction might be missing. There are a couple 
of reasons why these weather data are missing: (1) a variable may have 
missing vales in the input stream and/or (2) a variable may not appear in 
the input stream because it wasn’t measured. These two situations happen 
frequently for weather station observations. Methods must be developed 
to deal with these data limitation problems. Interpolation may be possible 
with missing weather values (e.g., use the previous 10 days to estimate 
the missing value), and correlation might be an alternative with missing 
variables (compute missing value from regression equation using other 
measured values) (Bristow and Campbell 1984). More often, missing 
variables can be obtained from other sources, preferably a nearby location 
where the original data was measured. As an example, most weather 
observations in the US commonly have only temperature and precipitation, 
therefore Keane et al. (2011) employed the MTCLIM model (Hungerford 
et al. 1989) to calculate radiation, humidity, and day-length from weather 
observations from a National Weather Service weather station to run 
the FireBGCv2 model. In later projects, we used DAYMET (Thornton 
et al. 1997) and PRISM (Daly et al. 2008) to obtain fine-scale weather 
observations in complex terrain (Keane and Holsinger 2006).
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A last challenge is the scale mismatch between the input climate data 
and the model’s simulation resolution. Often, climate grid data may be 
too coarse for use in small landscape or stand applications because fine-
scale interactions of climate with topography and vegetation are missing 
when the climate grid resolutions are coarse (Keane and Holsinger 2006). 
Adiabatic lapse rates, for example, may not be properly represented in 
the climate grid when the pixel size is so large that fine scale variations 
in topography are not included in the climate simulations (Thornton et 
al. 2000). In mountainous terrain, a coarse climate grid may have the 
same daily weather calculations for adjacent grids even though there 
may be a 3000 m difference in elevation. This confounds many fine scale 
ecological simulations, especially in remote areas with few ground-based 
weather stations, because the weather inputs may inaccurately represent 
climate dynamics for a given landscape. Adjusting grid values based on 
a statistical comparison to local or nearby weather observations may be 
the only way to obtain realistic weather and climate inputs across highly 
dissected landscapes (Keane and Holsinger 2006).

Disturbance

As mentioned in previous chapters, one of the biggest limitations of most 
ecological models is that they rarely simulate the dynamics of all of the 
disturbances that can occur on a simulation landscape; they only simulate 
dynamics of a selected set of disturbances that the modeler felt were 
important enough to include in the model. This is, of course, a necessary 
simplification of an overly complex and complicated system, and it 
also is done because information is often lacking for many disturbance 
agents (e.g., mistletoe, drought, and windthrow). This simplification 
may be acceptable to both modeler and users under today’s climate 
conditions, but, in the uncertain climate future, it is difficult to know 
if an un-modeled disturbance may become a major factor in dictating 
future ecosystem dynamics. Moreover, there may be some management 
practices that, when implemented, would facilitate the future initiation and 
spread of a disturbance that was not included in the model. The lack of 
other biophysical processes in model design is also important, not just 
disturbance; sublimation, for example, may not be included in a model 
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that simulates snow dynamics but sublimation may be an important 
water flux in the future. In one project, Keane et al. (2015a) explored 
interactions across three disturbances in a modeling project, but two of 
the three simulated disturbances only impacted shade-intolerant species 
even though the landscape was dominated by shade tolerant species in the 
future. Impacts of disturbance agents and other biophysical processes that 
were not simulated must somehow be factored into the interpretation of 
the results.

Users should also pay special attention as to how their selected model 
simulates the four stages of a disturbance event (Chapter 2). It is somewhat 
important that the rigor of disturbance simulation be similar across all four 
stages and that each stage is represented in the simulation. For example, 
the simulation of fire spread may be highly complex and mechanistic yet 
the computation of the effects of fire on the ecosystem may be overly 
simplistic. The representation of each disturbance stage in the selected 
model is important because it will factor into how users will evaluate model 
results. It will be important, for instance, to know that fire-caused tree 
mortality is computed from a three category classification of fire severity 
rather than a more mechanistic process that recognizes a tree’s species and 
size, and the intensity of the fire. In keeping with the ignition examples 
presented in previous sections, it may be important to know if ignition 
locations are tied to fuels and topography, or are they simply random 
across the simulated area. Spread dynamics are also important because 
the detail at which a disturbance agent proceeds across the landscape can 
dictate future patterns and processes; cell automata simulations of fire 
spread, for example, may create fire burn patterns that are rarely found on 
today’s landscapes (Andrews 1989, Ball and Guertin 1992, Finney 1998).

Another issue that often crops up during calibration and analysis is when 
the simulated disturbance regimes fail to match expected regimes. Often, 
information on a disturbance regime has been collected from an area 
outside of the simulation landscape, but for a similar set of vegetation types, 
biophysical settings, or structural stages. These data are used to quantify 
model parameters and to compare with model results. Unfortunately, 
each landscape is unique in terms of topography, soils, weather, and 
vegetation conditions. Therefore, the topographic structures and vegetation 
compositions of the simulated landscape may be quite different from the 
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landscape where the disturbance regime parameter data were collected. This 
may result in the characteristics of the simulated landscape overwhelming 
the influence of the parameters whose values were estimated elsewhere. 
Wildland fire regimes, for example, are often described using a fire return 
interval and an average fire size (Agee 1993), and many models incorporate 
these parameters into algorithms to simulate fire spread (Li 1997, Sturtevant 
et al. 2009). However, values for these parameters are often estimated from 
data collected in areas outside of the simulation area and for areas that 
may have are not representative of the simulation area. For example, fire 
history studies may collect data from flat areas and these data are then used 
to parameterize fire regimes for highly dissected terrain, yet we know that 
fire spreads much differently in flat vs mountainous areas. Users can accept 
the fact that the simulated fire regime is different from that reported in the 
literature and hopefully, they can be reassured that the model is simulating 
the effects of topography and weather on disturbance dynamics.

HRV simulations

There are several issues that are involved when ecological models 
are used to quantitatively describe the range and variation of historical 
disturbance and vegetation regimes (HRV) by simulating thousands of 
years of ecosystem response (HRV approximations). First, people often 
criticize this approach because the model did not use the true thousand 
year climate record and the model was not parameterized and initialized 
for the entire thousand years time slice. They are right to assume that the 
cycling of a limited weather record for 1,000 years does not fully describe 
historical climate conditions over that millennia. However, the primary 
purpose of the HRV modeling efforts is to describe variability in historical 
landscape dynamics, not to determine actual landscape conditions for 
each historical year. To capture this variability, field-based study findings 
are used to quantify parameters for the models, even though these data 
may represent a relatively small slice of time (300 to 400 years). The 
assumption here is that this small temporal data span is a good proxy for 
the creation of reference conditions used in HRV simulation. Since the 
field-based time slice represents only three or four centuries, it may seem 
that only 500 years of simulation are needed. However, the sampled fire 
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events that occurred during this time represent only one unique sequence 
of disturbance initiation locations, and the subsequent weather that caused 
the disturbance to spread. If these events had happened on a different 
timetable or in different areas, an entirely new set of landscape conditions 
would have resulted. It follows then that the documentation of landscape 
conditions from only historical records would tend to underestimate the 
variability of conditions that landscape could have experienced in the past. 
As a result, the entire range of historical conditions may be approximated 
by simulating the historical disturbance regime for thousands of years 
assuming that a thousand years are long enough to describe the complete 
manifestation of all disturbance events. 

A second issue is the appropriateness of simulation for quantifying 
HRV—many feel that modeling involves such oversimplification that 
the results may be inappropriate for accurately estimating HRV (Keane 
et al. 2009). This may be true in some cases, such as landscapes with 
extensive data and published information. But what are the alternatives 
for other areas? Chronosequences of historical data are mostly absent for 
most HRV applications, and even if the data were available, they would 
be limited in temporal and spatial scale (Humphries and Bourgeron 2001). 
Spatial chronosequences (i.e., estimating variability by comparing maps 
or conditions across similar landscapes) (Hessburg et al. 1999) have 
a great deal of uncertainty as well and don’t really capture historical 
variation (Keane et al. 2009). Simulation modeling may be the only 
viable alternative for constructing useful and meaningful HRV time series 
(Keane 2012). There are several advantages of using modeling for HRV 
quantification. First, the same model can be used to generate other ranges 
of variation, such as future ranges under climate change and management 
actions (Keane et al. 2018), that can be integrated with HRV to identify 
zones of overlap. Next, the model can be used to approximate the entire 
range of possible range of conditions that could have happened, rather 
than just the set of conditions that actually happened. The model can also 
be tuned to generate conditions along any segment of historical timelines, 
from recent to paleo dynamics (Prentice et al. 1991). And, the model can 
be used to identify those aspects of historical ecology that need further 
study. Many projects have augmented historical records with simulated 
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historical conditions to more accurately define HRV. Ecological modeling 
may provide the “safety net” for most HRV projects.

Modeling science 

Many people believe that complex models are somehow “better” than 
simple, parsimonious models because they appear to have more under the 
“hood”. Conversely, others feel that complicated models have so many 
moving parts that they are impossible to parameterize correctly and, as 
a result, often yield erroneous results because errors across interacting 
modules often multiply and compound (Perry and Millington 2008). After 
a career of oscillating back and forth between these two camps, I have 
come to realize that it is nearly impossible to compare existing models 
for quality without a well-defined context, which is often arbitrary and 
centered around unique modeling objectives. All models have their place 
in any given application; managers with limited computer resources, for 
example, may not be able to execute highly complex models if thousands of 
runs are needed. Or, a set of specific variables needed by managers for land 
planning may only be available from a set of complex models. Therefore, 
the selection and evaluation of models shouldn’t always prioritize model 
design and detail, but rather they should also take into account the original 
reasons for which the model was built (i.e., the original modeling objective) 
and how the model will be used (i.e., the current objective). Comparing 
individual models is a bit like comparing apples and oranges because they 
are so different in scale, scope, and application (Keane et al. 2004), yet all 
of them may have their place in the management decision space.

There are ample comparisons of different ecological models in the literature, 
and these evaluations provide a wonderful means of understanding the 
relative strengths and weaknesses of each model (Amthor et al. 2001, 
Barrett 2001). However, these comparisons should be carefully evaluated 
to determine if they are really relevant for the project’s modeling objective. 
Some comparisons may apply a model to situation for which it wasn’t 
designed, or the initialization and parameterization may not be of the 
same rigor across evaluated models. While model comparison studies are 
informative, they often have great inconsistencies that may not provide 
adequate evidence that a user’s selected model is either good or bad. 
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Therefore, user’s should evaluate comparison results in the context of the 
comparison only; for example, were the same data used for all models, or 
were the models properly calibrated, or was there sufficient time spend to 
properly run each model?

Another issue that is often important to some modeling projects is whether 
the results from the model were emergent (resulting from complex 
interactions of diverse simulated processes) or if the results were a direct 
consequence of the initialization and parameterization of the model 
(Wilson and Botkin 1990, Olson and Sequeira 1995, Stewart et al. 2013). 
In other words, can model results be estimated from the parameterization, 
or are the results dictated by intricate interactions across numerous 
modules. This is important because emergent results often lead to novel 
ecosystem behaviors, unexpected outcomes, and interesting insights into 
ecological systems, whereas models with largely deterministic results are 
simply large, complex calculators. An example would be the simulation 
of a landscape’s fire regime using an S&T model vs a spatially explicit 
mechanistic ecosystem model with wildland fire modules. In the S&T 
model, fire occurrence probabilities are often input parameters, and 
therefore, fire return intervals for the simulated landscape can be easily 
estimated prior to simulation from probability values. However, in more 
complex spatial models, fire return intervals might result from stochastic 
ignition processes coupled with mechanistic fire growth simulations, 
complex fire effects calculations, and diverse vegetation development 
pathways, all of which are dictated by topography, heterogeneous fuel 
mosaics, and climate. As a result, the fire return interval is an emergent 
property resulting from multifaceted interactions. In land management, it 
may not be that important to integrate climate, vegetation, topography and 
disturbance to obtain a prediction, such as simulating timber volume over 
the next 20 years, but some projects may need to explore changes in fire 
regime as a result of warming climates and changing land management 
activities, and therefore it is important that the simulated fire regimes are 
emergent due to the complexities of model design.

Some users don’t fully understand why it is so difficult to predict landscape 
conditions into the future. A thought experiment may serve to demonstrate 
why this is so hard, and it might provide a broader context in which to 
understand and interpret ecological models. Pretend a modeling project 
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is seeking to predict landscape or ecosystem conditions some 50 years 
from now. It is somewhat straightforward to simulate vegetation dynamics 
for that short time span, and many landscape models can do this quite 
well. However, the biggest obstacle preventing accurate predictions 
is the simulation of major exogenous (outside the simulation area) or 
endogenous (inside the area) disturbances. How does a stand or point 
model anticipate the timing and effects of an exogenous or endogenous 
disturbance? And, if a disturbance is spatially simulated in an LESM, 
the determination of the exact location, spread, intensity, and severity of 
disturbance is extremely difficult and subject to many fine-scale factors 
that are difficult to realistically represent and replicate in a model. Wildland 
fire, for example, often starts from a point (e.g., lightning strike) and 
spreads outwards along vectors of slope and wind. Prediction of the exact 
location of that lightning strike is nearly impossible because of the high 
stochasticity of lightning dynamics (Barrows et al. 1977), and subsequent 
spread is difficult because of the timing of the ignition determines fuel 
moistures and more importantly, highly variable wind fields. As a result, 
the future prediction of landscape or ecosystem conditions would rely 
heavily on where that fire started and where the fire spread making it is 
difficult to forecast conditions 50 years in the future. Because of this great 
uncertainty, many feel the most appropriate use of modeling is to simulate 
regimes rather than a specific disturbance event to approximate a range 
of future conditions that capture the variability for all possible fire starts.

Ensemble modeling has been used to reduce uncertainty and increase 
confidence in some modeling projects (Thuiller et al. 2009, Keane et al. 
2013a). These comparative approaches use several models to simulate 
the same set of scenarios and the subsequent results are compared across 
models to determine if they are comparable across all models (Horn 1966, 
Mellert et al. 2015). The assumption is that if a simulated result is similar 
across one or more models, it is more likely to be realistic or accurate. I 
was involved in a 25 year project that used a set of 3–5 models to simulate 
climate change and land management impacts on landscape fire dynamics 
and we learned a great deal about fire and vegetation dynamics using the 
ensemble approach (Cary et al. 2006, Keane et al. 2007, Cary et al. 2009, 
Keane et al. 2013a, Cary et al. 2016). One way that ensemble modeling 
can help in operational applications is to evaluate the uncertainty in 
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a selected model (e.g., if the selected model was used in an ensemble 
project and its results were similar to other models, then the modeling 
team can assume that results generated from that model are more generally 
applicable). Or, if there are two or more models that are available and 
are easily used to simulate a project’s scenarios, then it might be of great 
benefit to the project to do an ensemble approach. In the ensemble projects 
that I’ve been involved, we found a consensus among models with 
respect the relative importance of some important factors (e.g., climate, 
wildfire management) over others (e.g., fuel treatment effort). Ensemble 
results can genuinely influence operational decisions by identifying the 
most important factors that determine impacts of various alternatives. 
However, while providing great insights into the relative importance of 
factors governing fire dynamics in landscapes, the time and expense of 
initializing, parameterizing, and calibrating more than one model under an 
unbiased simulation design may be impractical for some natural resource 
projects. 

Summary

The purpose of this book was to help neophyte ecological modelers 
implement a complex modeling project with a high degree of confidence 
and interpret model results and uncertainties in an appropriate manner. 
Some of the material in this book may not be completely applicable to 
a specific modeling project because the details of model preparation are 
often dictated by local conditions, or some of the modeling phases may 
have already been done by others. Admittedly, this book emphasizes 
mechanistic landscape ecological models and their application in natural 
resource management so some of the steps presented may be immaterial 
when other ecological models are employed. Moreover, the steps and 
level of detail presented in each chapter may not be relevant to the project 
objective, selected model, or desired output resolution. Hopefully, there is 
sufficient material in this book to conduct a successful modeling campaign 
to achieve desired simulation objectives. Good modeling.
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