
 I

ARDUINO + PYTHON

PROGRAMMING FOR ROBOTS

NARESH KUMAR T & THILEEPAN S

Introduction to UI based computer control

 II

Arduino + Python

Programming for Robots

 III

ARDUINO + PYTHON

PROGRAMMING FOR ROBOTS

NARESH KUMAR T & THILEEPAN S

 IV

CONTENTS
About the Book I

For the readers II

About the Authors IIi

1. Getting started with Arduino 1

 1.1 What is Arduino? 2

 1.2 How to program an arduino? 2

 1.3 How to install Arduino IDE? 2

 1.4 Launch & Flash your first program 5

2. Introduction to Python 8

 2.1 What is Python? 9

 2.2 Installing Python 9

 2.3 Spyder IDE 10

 2.4 First python program 10

 2.5 Installing Python modules 11

 2.5.1 Tkinter 11

 2.5.2 TK Tools 12

 2.5.3 PySerial 12

 2.5.4 TK Color picker 13

 2.5.5 PyFirmata 13

3. GUI Programming with Python Tkinter 14

 3.1 Graphical User Interface 15

 3.2 Python’s GUI Frame Work 16

 3.3 Tkinter Window 17

 3.4 Tkinter Widgets 18

 3.5 Adding Tkinter Widgets using PILLOW 30

 3.6 Event Calls with Tkinter Widgets 31

 3.7 Demystifying PySerial module 34

4. Exploring High level Tkinter widgets 35

 4.1 High level widgets with Tk tools 36

 4.2 Seven segment display 37

 4.3 Rotary Scale 38

 4.4 Smart Options menu 39

5. Challenge–1: Digital Control of LED 42

6. Challenge–2: Control of Digital servos 52

7. Challenge–3: DC Motor control 62

9. Challenge–4: Plotting sensor data 73

10. Challenge–5: Sensor data logging 84

11. Challenge–6: Control of RGB LED 95

12. Challenge–7: Wireless control of Arduino 105

13. Challenge-- 8: Tkinter Using Firmata 113

14. Capstone Project: Build and Control a Robotic vehicle 120

15. Conclusion 138

Source Code: GitHub repository 139

 I

ABOUT THE BOOK

 This book is about creating interactive GUI –Graphical User interface

projects with help of Python and Arduino. Advancements in Open Source com-

puter programming and electronics has led to the growth of STEM education,

DIY (Do-it-Yourself) activities and maker’s movement. The world of robotics is

crowded with various hardware and software platforms with different types of

communication protocols. The easy way to learn Robotics is to start with the

right hardware and software. Arduino is a powerful, opensource embedded

hardware used widely in the field of robotics, automation and IOT. Python is a

opensource powerful programming language used world wide by program-

mer’s, developer’s and DIY enthusiast’s. This book is a step by step guide for

the students to get started with hands-on-experience with coding and control

of robots.

• Familiarize with the Python Tkinter GUI widgets

• Interfacing and controlling Arduino

• Write code with both Python and Arduino

• Get examples of real world application

• Learn by doing - Challenges/ Capstone Project

WHAT WILL YOU LEARN

 II

 Arduino & Python programming for Robots is intended for anyone who already

know a basic of Python and/or who is learning Python and wish to integrate Arduino hard-

ware control with a graphic user interface to their applications. This book will serve as a

useful guide for intermediate Python or Arduino programmers to develop user interface

based control system for their Robotic applications. Over all you get to understand the real

world application with an example and exercises filled with events, function calls and Serial

FOR THE READERS

 III

 Naresh Kumar Thanigaivel is a a Front-end Product developer and digital artist and

holds a Master’s degree in Mechanical Engineering. He has 3 Years of Work experience in both

academic research and Industrial domain in Bio-inspired robotics & Consumer electronics field.

He aims to fuse his creativity and innovation in User-Centric design to improve the way of hu-

man interaction with Products. He loves to design and fabricate robots, develop hardware and

digital Illustrations as his passion.

 Thileepan Stalin is a passionate Engineer with master’s degree in Mechatronics. Previ-

ously, he worked as an Assistant Professor for 3 Years in India. Now, he is building team for his

dream company, Team DNA Robotics. He developed various robots, interactive games, soft-

ware applications for desktop and mobile phones. He also authored a book on “Computer Vi-

sion with OpenCV and Python 3: Practical examples workbook”.

 In this book, we are going to learn about the familiarizing of python programming,

creating Graphical User Interface, Communicating with embedded hardware and software.

Though, Robotics is like an Ocean, In this book, we tailored the experiments to give a founda-

tion for the beginner’s. All the codes are tested and it works well. In case of any difficulties,

Don’t panic, try to understand the code and try to rewrite and align the code based on the

ABOUT THE AUTHORS

ACKNOWLEDGEMENT

 We would like to acknowledge Python and Arduino for their open source data and

examples. We dedicate this book to all open source enthusiasts and people who inspired us to

write this book.

 1

Getting started with Arduino 1

This chapter will let you get started with Arduino and steps

required to set up arduino IDE (Integrated development envi-

ronment) on your PC. Then, we will use an example program

to upload into Arduino microcontroller.

1.1 What is Arduino

1.2 How to program an arduino

1.3 How to install Arduino IDE

1.4 Launch & Flash your first program

 2

 Arduino is an open-source platform used for rapid prototyping of electronics projects.

Arduino programming requires a physical programmable microcontroller board and an Arduino

IDE (Integrated Development Environment) that runs on your computer. Arduino IDE is useful

in writing control programs and uploading the code to the physical board.

 Arduino platform is easy to learn and widely used by electronics beginners and hobby-

ist so it is very popular. Previous programmable boards, needs a separate hardware

(programmer) for uploading the code into board. In Arduino, you can upload a new code with

your USB without any additional hardware. Arduino programming is easy because of it’s simpli-

fied C++ syntax and active documentation and blogs of open source community. It has a wide

range of libraries and support for various hardware’s (Sensors, LED’s, motors) and breakout

1.1. WHAT IS ARDUINO?

1.3. INSTALL ARDUINO IDE

 The Arduino IDE, open source software available on multiple platforms: Windows,

Mac, and Linux. There is a offline version of Arduino IDE which works on your laptop/ comput-

er (without the need for internet) and web-based version which works on the browser (needs

internet). The IDE helps you to write code faster with syntax and to upload the code to the mi-

crocontroller board in a simple button click. There are few VPL (Visual Programming Language)

softwares like Scratch for Arduino, ArduBlock and Minibloq which makes Arduino programming

easier for Kids. In this book, we will use Arduino IDE offline version for all our programs and

1.2. HOW DO I PROGRAM AN ARDUINO?

Required Materials

 A computer (Windows, Mac, or Linux)

 An Arduino-compatible microcontroller (Prefer Arduino UNO if you are beginner)

 A USB A-to-B cable, or another appropriate way to connect your Arduino-compatible mi-
crocontroller to your computer

Arduino Uno

Micro-controller

 3

Arduino Uno

Micro-controller

Data Cable for Powering /

Programming Arduino

Notebook / Work station with

WINDOWS / MAC OS installed

 4

Download the Arduino Software (IDE)

Get the latest version from the download page. (https://www.arduino.cc/en/Main/Software)
You can choose between the Installer (.exe) and the Zip packages. We suggest you use the
first one that installs directly everything you need to use the Arduino Software (IDE), including
the drivers. You can also manually install the Zip package if you are comfortable with.

When the download finishes, proceed with the installation and please allow the driver installa-
tion process when you get a warning from the operating system. Then Choose the components
to install. Choose the installation directory (we suggest to keep the default one).

Find your

installer here

Select all and Click

“NEXT”

Leave the default location to

‘C: drive’ and click ‘INSTALL’

https://www.arduino.cc/en/Main/Software

 5

1.4. LAUNCH & UPLOAD YOUR FIRST PROGRAM

After following the appropriate steps for your software install, we are now ready to test your
first program with your Arduino board!

 Launch the Arduino application

 If you disconnected your board, plug it back in

 Open the Blink example sketch by going to: File > Examples > 1.Basics > Blink

The process will extract and install all the required files to execute properly the Arduino Soft-
ware (IDE)

Give some time to complete the

installation. Grab a cup of Coffee

Double Click on Arduino Icon on

your desktop or in your START

menu to open the IDE

Then Open the “BLINK”

code from example section

 6

Select the type of Arduino board you're using: Tools > Board > your board type

Select the serial/COM port that your Arduino is attached to: Tools > Port > COMX

Make sure to check the COM

PORT every time before you

upload your code

 7

• If you're not sure which serial device is your Arduino, take a look at the available ports,
then unplug your Arduino and look again. The one that disappeared is your Arduino.

 With your Arduino board connected, and the Blink sketch open, press the 'Upload' button

• After a second, you should see some LEDs flashing on your Arduino, followed by the mes-
sage 'Done Uploading' in the status bar of the Blink sketch.

 If everything worked, the onboard LED on your Arduino should now be blinking! You just
programmed your first Arduino!

Your first program to try out.

Upload the Program to Arduino

by clicking “UPLOAD” button

On-board LED starts blinking

Well done!

Remember to Connect

the Arduino to laptop

using USB Cable

 8

Introduction to Python 2

This chapter will guide you through setting up Python and

installing Spyder IDE on your computer. Then you can check

your python version and install suitable Python modules re-

quired for our experiments.

2.1 Python

2.2 Installing Python

2.3 Spyder IDE

2.4 A Simple program

2.5 Installing Python modules

2.5.1 Tkinter

2.5.2 TK Tools

2.5.3 PySerial

2.5.4 TK Color picker

2.5.5 PyFirmata

 9

 Python, a popular programming language is widely used for software development,

scripting and web development (server side). It was developed in 1991 by Guido van Rossum.

Python has a simple syntax and works on multiple platforms (Windows, Mac, Linux, Raspberry

Pi, etc). Python’s syntax allows developers to write programs with countable lines of code. As

the Python runs on a interpreter system, the code can be executed faster. In simple terms,

Python is simple, faster and powerful to write complex programs in few lines of code.

2.1. PYTHON

2.2. INSTALLING PYTHON

Install Python 3.6

Step 1: Go to https://www.anaconda.com/download/

Step 2: Download Python 3.7 version (Select 64 bit or 32 bit version based on your system)

Step 3: Install Python 3.7 by running the downloaded file.

SPYDER IDE

Go to START, Search for SPYDER (anaconda 3) and open it! It looks similar to below depending

upon the theme you set. (Light theme or Dark theme)

Programming Pane

Python Console

RUN button

Spyder IDE

https://www.anaconda.com/download/

 10

2.3. TEST THE INSTALLED VERSION

Type the following in the Python Console

It will display the version of Numpy installed. Numpy is a numerical python module to work on

numbers and basic math operations.

2.4. FIRST PYHTON PROGRAM

Type the following in the Python Console

print("Hello World!")

It will print the “Hello World!” in the Python console.

Import numpy

numpy.__version__

Python Console of

Spyder IDE

Try adding numbers.

Type 2 + 3

and click enter

 11

2.5. INSTALLING PYTHON MODULES

In the upcoming exercises, we will get introduced to various Python modules that is useful

for creating Graphical user interfaces and making Serial communication with external hard-

ware. So, lets have a short overview of each modules and the procedures to install it. At first,

lets open Anaconda command prompt shell. Go to Start, Search and open Anaconda Prompt.

2.5.1. TKINTER

The tkinter package (“Tk interface”) is the standard Python interface to the Tk GUI toolkit.

Both Tk and tkinter are available on most Unix platforms, as well as on Windows systems.

Tkinter is installed along with Pythion installation and no other setup is required. To check

tkinter installation, run the following command in Anaconda command prompt shell.

python -m tkinter

This should open a window demonstrating a simple Tk interface and letting you know that

tkinter is properly installed on your system, and also showing what version of Tcl/Tk is in-

stalled, so you can read the Tcl/Tk documentation specific to that version.

Usage:

>> import tkinter

Or

>> from tkinter import *

Output

Anaconda command

Prompt

 12

In the case, your tkinter is not installed, use the following command in Anaconda Prompt to

install Tkinter.

for installation in pip and windows, run:

>> pip install tk

2.7. TK TOOLS

The tk_tools package has a collection of widgets and tools for efficient and easy creation of

GUI elements. These can be classified into three types of widgets:

There are three categories of widgets:

 groups of widgets that are useful as a group

 visual aids using the canvas

 useful improvements on existing widgets

We will learn more in next chapter.

for installation in pip and windows, run:

>> pip install tk-tools

Usage:

>> import tk_tools

2.8. PYSERIAL

This module is useful in accessing the serial port using Python programming. The module

named “serial” takes care of the necessary process involved

for installation in pip and windows, run:

>> pip install pyserial

Usage:

>> import serial

 13

2.9. TK COLOR PICKER

This module contains a ColorPicker class which implements the color picker and an askcolor

function that displays the color picker and returns the chosen color in rgb and html formats.

for installation in pip and windows, run:

>> pip install tkcolorpicker

Usage:

>> from tkcolorpicker import askcolor

2.10. PYFIRMATA

pyFirmata is a Python interface for the Firmata protocol. pyFirmata is a useful package for

working with arduino microcontrollers with direct access to input and output pins of Arduino.

There is no need to program your Arduino every time. This gives flexibility and reuse of hard-

ware for multiple projects without reprogramming it.

for installation in pip and windows, run:

>> pip install pyfirmata

Usage:

>> from pyfirmata import Arduino, util

We have the required modules installed.
Let’s jump into Tkinter now >

 14

GUI Programming Python Tkinter 3

This chapter takes you through python's tkinter module for

creating basic GUI widgets and performing event calls over it.

You will learn to arrange various widgets in a defined canvas

area, apply colors, fonts and assign functions based on your

design needs.

3.1 Graphic User Interface

3.2 Python’s GUI Frame Work

3.3 Tkinter Window

3.4 Tkinter Widgets

3.5 Adding Tkinter Widgets using PILLOW

3.6 Event Calls with Tkinter Widgets

3.7 Demystifying PySerial module

 15

3.1. Graphic User Interface (GUI)

 A Graphic user interface (GUI) is a user based interaction that contains various ele-

ments from buttons, icons, windows, labels, switches in digital form. It lets users to interact,

send commands and perform operations to a connected system. Without an user interface, it

wouldn’t be intuitive to work with a computer program or a hardware system. So, a GUI is an

integrated communication interface for users to interact with computers or hardware. We can

also call a GUI to be a gateway for Human to computer interaction (HMI).

 Many of us write algorithms in a form of code using a IDE (Integrated development

environment) and compile the code to get an output. Everything from compiling and visualiz-

ing your output happens with in IDE application. What If you want to share your code to other

users? What if other users don’t have the IDE or knowledge about codes? So, here comes a

need to develop a GUI and make it easy for users to make use of your application. It has to be

fancy and institutive to use. A great examples of a simple GUI is a Calculator app that lets us-

ers to input numbers and perform mathematical operations and get an output displayed.

A GUI not only lets you to do basic functions like addition or subtraction on digital interface

but also lets you to control complex hardware interfaces such as drones, humanoid robots

and self-driving cars. In these applications, your GUI will look simple in its design and outlook

but it can perform complex functions at a click of a button. You can show a video feed from a

camera fixed over your drone, make analysis of video captured and even store them to a spe-

cific folder of your need. You can monitor, log your sensor’s data and even watch the sensor’s

data in real time graphs. A GUI’s design and application is countless and tied to designers

needs. So, lets get started to create GUI’s using python modules.

Software in “code” form Vs GUI form

A Software in

the form of

 16

3.2. PYTHON’s GUI FRAMEWORKS
There are different libraries available in Python to create GUI. Each of them has it’s pros and

cons. We will discuss few of them to get an overview:

Tkinter is Python’s standard GUI framework which comes integrated with Python. It is sim-

ple to use and available under Python open-source license.

PyQt is a multi-platform targeted python bindings implementing the Qt library

for Qt application development framework. PyQT gives rich UI elements/widgets similar to

desktop apps. It gives the freedom for the developer to create program with python and to

use Qt Designer to create visual UI elements.

Kivy is an open-source Python library for developing multi-touch apps with polished UI. Kivy

supports almost all platforms like Windows, MacOSX, Linux, Android, iOS. Kivy is best suited

for developing GUI’s for touch screen based mobile devices and tablets.

WxPython, also known as WxWindows (WxWidgets library), is an open-source abstract-level

wrapper for cross-platform GUI library. It is implemented as a Python expansion module. With

WxPython, a programmer can develop native applications for multiple OS.

PyGUI is a graphical application cross-platform framework for Unix, Macintosh, and Win-

dows. PyGUI is a simple and lightweight platform which can display UI elements with few lines

of code. It is useful for native application development.

Pyforms is a cross-environment framework for developing GUI applications. The framework

offers a Python layer of desktop forms, based on PyQt, OpenGL and other libraries. This is use-

ful for applications to run Desktop GUI, Web and terminal without requiring code modifica-

tions. Pyforms promotes modular software design and code reusability with minimal effort.

In this book, we will focus on Tkinter module based GUI development. It is simple and has

tools to interface with third party API’s. By learning to use Tkinter module in creating GUI

widget’s and arranging the layout of UI elements, the user has an edge to explore other GUI

development modules. With this foundation of Tkinter knowledge, a user can do advanced

GUI development.

TKinter

Kivy

PyQT

WxPython

PyGUI

PyForms

 17

3.3. TKINTER WINDOW

 Let’s get started with creating a window by importing Tkinter package in python.

Then we initialize a window manager using tkinter.Tk() method. You can assign this to a any

variable name. In this exercise, lets assign it to variable called window. This method creates a

blank window with options to close, maximize, and minimize. You can then give this window

a title using window.title(“your_title”) method. Finally, let’s use the mainloop() method to

display the window until you manually close it. It runs an infinite loop in the backend. And,

when you execute the program, it displays the output in a separate window.

If you get the output as depicted above, Hurrah! Well done.

You can even fix the size of window using window.geometry() method and by specifying the

required dimensions in pixels. If you are detailed person and want to assign a specific color to

window, window.configure() method allows you to assign background color for your window.

Go ahead and add the following code before the mainloop() to see the changes.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.mainloop()

Python

window.configure(background="pink")

window.geometry("500x100")

Python Color names includes:

"red"
"orange"
"yellow"
"green"
"blue"
"purple"

You can assign

any color

 18

3.4. TKINTER WIDGETS
 Now that we created a empty window for our GUI, its time add widgets to it. We can

call these widgets to be elements of our GUI. Every element has its own properties and configu-

rations that can be defined according to our need. Lets understand each of the widget and use

them in our GUI.

A Button widget can be named and used to trigger an event whenever its clicked. Its basically

a on/off switch assigned to a specific event. A button can be configured to add a text, shape,

color and even control its state to act ad ‘normal’ or ‘disabled’. (In a ’disabled’ state, you cannot

click the button)

Syntax: button_widget = tkinter.Button(window, options=value)

where window is the argument for the parent window while option is a placeholder that can

have various values like foreground & background Color, font, command (for function call), im-

age, height, and width of button.

Once you define the button, the next step is to arrange it to your window. There are few meth-

ods to arrange the widgets on to your window provided by geometry manager. They are,

pack(): It organizes the widgets in a block manner, and the complete available width is oc-

cupied by it. It's a conventional method to show the widgets in the window.

grid(): a grid is another way to organize the widgets. It uses the Matrix row-column con-

cept. Grid primarily takes two parameters: row and columns as shown in example below.

place(): It helps to place the widgets at a specific position as instructed by the user in the

parent widget.

For our learning, we will only use the grid method to arrange our widgets in desired location.

Since its based on rows & columns like a table, we can specify them relatively simple way. The

following example will help you to create a button widget and arrange them into your window.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="pink")

window.geometry("200x100")

button = tkinter.Button(window, text = "Click me",

 font = ('Verdana',14), bg ="white", state=
tkinter.NORMAL)

button.grid(row=0, column=0)

window.mainloop()

Python

BUTTON

Try Changing the button

state to be

“tkinter.DISABLED” and

see what happens to

your button.

 19

A label is a useful widget to indicate a function about other widgets in our GUI. A label can

also be used to show images if required. We can call labels to be a place holder.

Syntax: label_widget = tkinter.Label(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like the text, font type, font size, background color, image,

width, and height of button.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="pink")

window.geometry("100x50")

label = tkinter.Label(window, text = "Hello world",

 font = ('Verdana',14), bg ="orange")

label.grid(row=0, column=0)

window.mainloop()

Python

LABEL

ENTRY A Entry widget is used to create input fields or to get input text from the user within the GUI.

Syntax: entry_widget = tkinter.Entry(window, option= value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="pink")

window.geometry("300x50")

label = tkinter.Label(window, text = "Please enter your text",

 font = ('Verdana',14), bg='pink')

label.grid(row=1, column=0)

entry = tkinter.Entry(fg="black", bg="white", width=50)

entry.grid(row=0, column=0)

window.mainloop()

Python

Output

 20

Now you’ve got some text entered into the Entry widget, but that text hasn’t been sent to

your program yet. You can use .get() to retrieve this text and assign it to a variable of your

own.

text_input = entry.get()

print(text_input)

Python

>>> hello world

CHECK BUTTON A Check Button presents the user a set of predefined options in the form of boxes. The

user is allowed to select more than one available option.

Syntax: Check_Button = tkinter.Checkbutton(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

window.geometry("210x150")

label = tkinter.Label(window, text = "Please choose your food",

 font = ('Verdana',12), bg='white')

label.grid(row=0, column=0, pady=20)

Check_button1 = tkinter.Checkbutton(window, width = 15,text= "Burger",

 font = ('Verdana',12), bg='white')

Check_button1.grid(row=1, column=0)

Check_button2 = tkinter.Checkbutton(window, width = 15,text= "Pizza",

 font = ('Verdana',12), bg='white')

Check_button2.grid(row=2, column=0)

window.mainloop()

Python

Output

 21

Note:

In this Check button GUI, we used a option called “pady” for arranging the la-

bel in our window. This option allows you to add space between your widgets

in x and y direction. You can use padx, pady option and specify the spacings

in pixel values. A quick example is as follows:

label.grid(row=0, column=0, padx=10, pady=20)

RADIO BUTTON A radio button is a Tkinter GUI widget that allows the user to choose only one of a prede-

fined set of mutually exclusive options.

Syntax: Radio_Button = tkinter.Radiobutton(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

window.geometry("210x150")

label = tkinter.Label(window, text = "Please choose your food",

 font = ('Verdana',12), bg='pink')

label.grid(row=0, column=0, pady=20)

Python

Output

 22

Radio_button1 = tkinter.Radiobutton(window, width = 15,text= "Burger",

 font = ('Verdana',12), bg='pink', value = 0)

Radio_button1.grid(row=1, column=0)

Radio_button2 = tkinter.Radiobutton(window, width = 15,text = "Pizza",

 font = ('Verdana',12), bg='pink',
value = 1)

Radio_button2.grid(row=2, column=0)

window.mainloop()

Python

LIST BOX A list box offers a list to the user from which the user can accept any number of options.

Syntax: list_box = tkinter.Listbox(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

window.geometry("210x150")

List_box = tkinter.Listbox(window)

List_box.insert(1, 'Apple')

List_box.insert(2, 'Mango')

List_box.insert(3, 'Grape')

List_box.insert(4, 'Any other')

List_box.grid(row=0, column=0)

window.mainloop()

Python

Output

 23

FRAME Frame acts as a place holder to hold the widgets. It is used for grouping and organizing the

widgets independent of window. A frame can be very useful while adding many widgets into

window where certain elements should be independent on other elements position.

Syntax: frame = tkinter.Frame(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

window.geometry("100x100")

frame = tkinter.Frame(window)

frame.grid(row=0, column=0)

bottomframe = tkinter.Frame(window)

bottomframe.grid(row=1, column=0)

redbutton = tkinter.Button(frame, text = 'Red', fg ='red')

redbutton.grid(row=0, column=0)

greenbutton = tkinter.Button(frame, text = 'Brown', fg='brown')

greenbutton.grid(row=0, column=3)

bluebutton = tkinter.Button(frame, text ='Blue', fg ='blue')

bluebutton.grid(row=1, column=2)

blackbutton = tkinter.Button(bottomframe, text ='Black', fg ='black')

blackbutton.grid(row=0, column=0)

window.mainloop()

Python

Output

 24

CANVAS A canvas is very useful for drawing images and other graphics in our tkinter window. It is also

useful in adding complex widgets in our window.

Syntax: canvas = tkinter.Canvas(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

window.geometry("100x100")

canva = tkinter.Canvas(window, width=80, height=80)

canva.grid()

canvas_height=20

canvas_width=200

y = int(canvas_height / 2)

canva.create_line(0, y, canvas_width, y)

window.mainloop()

Python

Output

Output

 25

MENU BUTTON A Menu Button lists down top down options in the top of window. It always stays on the

top of window and useful for creating a like to various functions of your GUI.

Syntax: menu = tkinter.MenuButton(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

window.geometry("100x100")

mb = tkinter.Menubutton (window, text= "Menu")

mb.grid()

mb.menu = tkinter.Menu (mb, tearoff = 0)

mb["menu"] = mb.menu

a = tkinter.IntVar()

b = tkinter.IntVar()

mb.menu.add_checkbutton (label ='Contact', variable = a)

mb.menu.add_checkbutton (label = 'About', variable = b)

mb.pack()

window.mainloop()

Python

MESSAGE BOX A Message Box is similar to label widget for showing texts/messages whenever needed.

Syntax: menu = tkinter.MessageBox(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

Output

 26

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

window.geometry("100x100")

ourMessage ='This is our Message'

messageVar = tkinter.Message(window, text = "Hello:")

messageVar.config(bg='pink')

messageVar.grid(row =0, column=0)

window.mainloop()

Python

SCALE A Scale provides a graphical slider that allows to select any value from that scale. You can

assign the limits of the scale, orientation and length/width of scale as well.

Syntax: menu = tkinter.Scale(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

scale = tkinter.Scale(window, from_=0, to=50)

scale.grid()

scale2 = tkinter.Scale(window, from_=0, to=100, ori-
ent=tkinter.HORIZONTAL)

scale2.grid()

window.mainloop()

Python

Output

 27

SCROLL BAR A Scroll bar provides slide controller to slide long all available options, texts etc. Its much

like a scroll bar in MS Word or website.

Syntax: menu = tkinter.Scrollbar(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

scrollbar = tkinter.Scrollbar(window)

scrollbar.grid(row=0,column=1)

mylist = tkinter.Listbox(window, yscrollcommand = scrollbar.set)

for line in range(50):

 mylist.insert(tkinter.END, 'line number' + str(line))

mylist.grid(row=0,column=0)

scrollbar.config(command = mylist.yview)

window.mainloop()

Python

Output

Output

 28

TEXT A Text widget provides the user to add a multi-line text and format to required style ac-

cordingly.

Syntax: menu = tkinter.Text(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

T = tkinter.Text(window, height=2, width=30)

T.grid()

T.insert(tkinter.END, 'Have a great day\n')

window.mainloop()

Python

SPIN BOX A spin box is type of entry widgets where the inputs are defined by a limits. User can able

to spin between multiple inputs to choose from.

Syntax: menu = tkinter.Spinbox(window, option=value)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

window.configure(background="white")

box = tkinter.Spinbox(window, from_ = 0, to = 10)

box.grid()

window.mainloop()

Python

Output

Output

 29

MESSAGE BOX A Alert / message box provides the user to create a pop up altert message based on

an event. It can be a click of a button or a notification of time or anything.

Syntax: alert = tkinter.messagebox.showinfo(“alert box name”, “your message”)

where window is the parameter for the parent window/frame while option is a placeholder

that can have various values like border-width, background color, width & height of button etc.

import tkinter

window = tkinter.Tk()

window.title("My GUI")

alert = tkinter.messagebox.showinfo("Alert", "You are good at this")

window.mainloop()

Python

Note:

You can use multiple types of alter / message boxes such as,

Showinfo() : Displays a info message

showerror() : Displays error

showwarning(): for displying warning

Askquestion(): Asks a yes or no question

Usage example:

alert = tkinter.messagebox.showwarning("Alert", "Warning! Stop this
action")

Output

 30

Pillow is a python imaging library (PIL) used for handling images. We can open, manipulate,

save images using this module. We make use of Pillow package to add images to our tkinters

widgets. You can import JPG or PNG images of your wish and display it in tkinter canvas or

buttons or labels.

Usage: from PIL import Image

The following code lets you to assign an image to a variable and open an image.

3.5. ADDING IMAGES TO TKINTER WIDGET USING PIL-

from PIL import Image

right = Image.open("right.png") #please change the file path to your
directory

right.show()

Python

Now let’s try binding the same image to a tkinter button. You can modify the size of your image

according to button dimension. A good way is to resize in external application such as Paint.

But before we begin, to insert an image into tkinter window, we need make use of ImageTK

module. The ImageTk module contains support to create and modify Tkinter BitmapImage and

PhotoImage objects from PIL images. Try the following code to display a image on tkinter’s

button.

Usage: from PIL import ImageTk

from PIL import Image, ImageTk

import tkinter

window = tkinter.Tk()

window.title("My GUI")

right = ImageTk.PhotoImage(Image.open("right.png"))

button = tkinter.Button(window, image = right)

button.grid(row=0, column=0)

window.mainloop()

Python

If you get “PyImage doesn’t exist” error after

you Run the code, Please restart your kernel

Or Close your Spyder and Open again.

Output

Picture inside

Tkinter window

 31

So far, we have created various tkinter widgets, configured them and packed them in desired

position on out tkinter window. All the widgets meant to do its function. For example, if a

button is clicked, it has to give us an output. This output can be in the form of printed messages

or can even send a data to external application. Let’s begin with a basic event call with an ex-

ample below. We will be using the command option of tkinter widgets to connect a function.

So, we also need to define a function call for this. If your never defined a function in python, no

worries. We will cover this here.

In the following example, let us create a button and label widget and add events to them.

Whenever the “ON” button is clicked, the label is updated to a defined text “Lights is ON”. Sim-

ultaneously, if the user clicks “OFF” button, the label is updated to “Lights is OFF” text. Isn’t

cool! Lets try out.

3.6. EVENT CALLS WITH TKINTER WIDGETS

import tkinter

def lights_on():

 label.configure(text='Lights is ON', font= ('Verdana',16))

def lights_off():

 label.configure(text='Lights is OFF', font= ('Verdana',16))

window = tkinter.Tk() #create tkinter window

window.title("Events with buttons") #give title

window.configure(background="white") #change background color

button_on = tkinter.Button(window, text="ON",

 font= ('Verdana',16), padx=50, pady =20,

 bg="green",fg="white",

 command = lights_on) #Command links to function

button_on.grid(row=1,column=1)

button_off = tkinter.Button(window, text="OFF",

 font=('Verdana',16), padx=50, pady =20,

 bg="red",fg="white",

 command = lights_off) #Command links to function

button_off.grid(row=1,column=2)

label = tkinter.Label(window, text="Lights OFF", font= ('Verdana',16))

label.grid(row=0, column=1, columnspan=3)

window.mainloop()

Python

Function definitions

Buttons with commands

and paddings to arrange

properly

Import tkinter module

Initialize tkinter

window

Define label widget

 32

Task:

Its seems the event function works as programmed.

But did you notice the buttons never change their state as seen in physical

switches in our daily life? What do you think should be added to our button

configuration to achieve this?

Refer to Button widget to add a state of NORMAL & DISABLED to button func-

tion call.

Usage: button.configure(state= tkinter.DISABLED)

We will cover this in our exercise 1 if you can’t solve it.

Still not satisfied!

Let’s give a try to another GUI to add 2 numbers together. We will define a addition function

and return the values to a text widget. This time we are performing a mathematical function

by getting inputs from users and showing outputs to a text widget.

import tkinter

def add():

 x = int(in1.get()) #get value from entry box

 y = int(in2.get()) #get value from entry box

 z = x + y

 label.configure(text= z, font= ('Verdana',16))

window = tkinter.Tk() #create tkinter window

window.title("Addition") #give title

window.configure(background="white") #change background color

button_on = tkinter.Button(window, text="Add",

 font= ('Verdana',16), padx=60, pady =5,

 bg="green",fg="white",

 command = add)

Python

Function to perform

addition

Button definition with

command traceback

Output

 33

button_on.grid(row=1,column=0, columnspan=2)

in1 = tkinter.Entry(window, width = 5, borderwidth=1, font= ('Verdana',16))

in1.grid(row = 0, column =0, padx=20, pady =10)

in2 = tkinter.Entry(window, width = 5, borderwidth=1, font= ('Verdana',16))

in2.grid(row = 0, column =1, padx=20, pady =10)

label = tkinter.Label(window, text="0", font= ('Verdana',16), bg="lightgreen")

label.grid(row=0, column=2, rowspan=2)

window.mainloop()

Python

Input fields

Output of

added numbers

What else can you do based on this example?

Try creating a simple calculator to perform basic arithmetic functions.

Enter numbers here

Output value

 34

Serial communication is a method or a process in which data is transmitted between devices/

systems at a sequential manner. It uses various communication channel to send/receive data

between devices/ systems.

We know that our embedded electronics are made of multiple electronics components. And all

these electronic components are interlinked to forma symbiotic system. Such complex systems

needs a communication protocol and channel to talk between themselves and to external sys-

tems. One such method of sending data across systems is a serial communication.

This chapter assumes you have a basic knowledge in Serial and parallel communication proto-

col and how its being used in electronics. Since we will be dealing with Arduino based micro

controllers, We need Serial data to be transmitted from or to Arduino at a specific baud rate. A

baud rate is the speed at which data bits are transmitted over serial communication channel. In

our case in following exercises, we will be transmitting data via USB serial cable from arduino

to our Python program via USB port of our PC.

So, in order to communicate to external devices from Python, we need to make use of python

modules built for this purpose. PySerial package helps us to make such communication with

external applications/ devices.

3.7. DEMYSTIFYING PYSERIAL

Installation:

1. Open Anaconda command prompt

2. Enter: pip install pyserial

3. Complete the installation

PySerial

Now that we had an overview of Tkinter widgets and programming them appropriately, let’s

learn a bit on High level tkinter widgets available for our usage.

 35

Explore High level widgets

with TK-Tools 4
This chapter gives you a glimpse of high level widgets that

you can make use of in your GUI development. You will learn

to import them into tkinter window, control them based on

function calls and even get inputs from them for further use.

3.1 High level widgets with Tk tools

3.2 Seven segment display

3.3 Rotary Scale

3.4 Smart Options menu

 36

The tk_tools module has advanced GUI implementations for Tkinter interface. The standard

collection of widgets in Tkinter allows for limited configuration changes like colors, looks and

basic functionalities. In order to enhance the process of building complex widgets, tk_tools

allows for maximum customization of UI elements. We will setup the tk_tools and use few

widgets to explore it’s capabilities.

4.1. HIGH LEVEL WIDGETS WITH TKTOOLS

import tkinter

import tk_tools

window = tkinter.Tk()

Place your Tkinter widgets here

window.mainloop()

Python

Installation:

1. Open Anaconda command prompt

2. Enter: pip install tk-tools

3. Complete the installation

Widget Groups

 LabelGrid

 EntryGrid

 ButtonGrid

 KeyValueEntry

 Calendar

 MultiSlotFrame

 SevenSegment

Canvas Widgets

 RotaryScale

 Gauge

 Graph

 LED

Smart Widgets

 SmartOptionMenu

 SmartSpinBox

 SmartCheckbutton

 SmartListBox

 BinaryLabel

 ByteLabel

Following widgets and widget categories are available in tk_tools module. Let’s try to make use

of one widget from each categories in our examples that follows.

Visit this GitHub to learn more about all the widgets mentioned above:

https://github.com/slightlynybbled/tk_tools

 37

4.2. SEVEN SEGMENT DISPLAY

In this example, we will see how to use seven segment display widget in our tkinter window.

We will take our previous example of addition of numbers. Instead of displaying our results in a

text widget, we will display it in a seven segment display widget.

import tkinter

import tk_tools

def add():

 x = int(in1.get()) #get value from entry box

 y = int(in2.get()) #get value from entry box

 z = x + y

 #Convert the integer value to string to display in Seven segment widget

 ss_int.set_value(str(z)) # Update the value of seven segment display widget

window = tkinter.Tk() #create tkinter window

window.title("Addition") #give title

window.configure(background="white") #change background color

window.geometry("400x110")

button_on = tkinter.Button(window, text="Add",

 font= ('Verdana',16), padx=60, pady =5,

 bg="green",fg="white",

 command = add)

button_on.grid(row=1,column=0, columnspan=2)

button_on.grid(row=1,column=0, columnspan=2)

in1 = tkinter.Entry(window, width = 5, borderwidth=1, font= ('Verdana',16))

in1.grid(row = 0, column =0, padx=20, pady =10)

in2 = tkinter.Entry(window, width = 5, borderwidth=1, font= ('Verdana',16))

in2.grid(row = 0, column =1, padx=20, pady =10)

ss_int = tk_tools.SevenSegmentDigits(window, digits=5, background='white',

digit_color='black')

ss_int.grid(row=0, column=6, rowspan=2)

ss_int.set_value(str(0))

window.mainloop()

Python

Seven segment widget

definition

Function of adding

2 numbers

Button to perform

addition function

Initialize Tkinter

widget

Declare Entry widgets

 38

4.3. ROTARY SCALE

Next, we will try to implement one of the canvas widgets category. These widgets provides

users with visual output. Even though you can create such widgets on your own (which will

take you time to build), its good to start with ready to use widgets.

This time, we will make it interesting. Lets try to use rotary scale widget and control it accord-

ing to slider position of our scale widget.

import tkinter

import tk_tools

def update(y):

 rs.set_value(int(y))

window = tkinter.Tk() #create tkinter window

window.title("Speed control") #give title

window.configure(background="white") #change background color

window.geometry("120x180")

scale = tkinter.Scale(window, from_=0, to=100, orient=tkinter.HORIZONTAL,

command = update)

scale.grid(row=0, column=0)

rs = tk_tools.RotaryScale(window, max_value=100.0, size=100, nee-

dle_thickness=5, needle_color='black',unit='km/h')

rs.grid(row=1, column=0)

window.mainloop()

Python

Rotary scale widget

definition

Seven segment display

Input your values here

Slider bar widget

Function to update

Rotary scale widget

 39

4.4. SMART OPTIONS MENU

In this last example, we will see how to use smart options menu widget in our tkinter window.

This widget provides a Classic drop down entry with built-in tracing variable compared to

tkinter menu widget.

import tkinter

import tk_tools

window = tkinter.Tk()

create the dropdown and grid

som = tk_tools.SmartOptionMenu(window, ['one', 'two', 'three'])

som.grid()

define a callback function that retrieves

the currently selected option

def callback():

 print(som.get())

add the callback function to the dropdown

som.add_callback(callback)

window.mainloop()

Python

Output

Move the slider to con-

trol the rotary scale

Menu button

Smart Option

widget creation

 40

OTHER WIDGETS TO TRY

There are other widgets to try and implement in your Tkinter Project depending upon the need.

Some examples could be the use of Entry widgets, Calendar widgets and so on. It’s a best ap-

proach to look into documentation page and understand how other widgets work in its func-

tionality and implementation. Some examples are shown below.

Calendar widget

Button Grid

Graph widget

 41

EXERCISES

USEFUL TIPS FOR TROUBLESHOOTING ERRORS:

Arduino:

 Every time before you Upload a new Sketch to arduino board, Make sure to choose the correct COM Port!

 Close the Arduino’s Serial Monitor while communicating to Arduino microcontroller from Python IDE

Python:

 If you get “Serial Port busy error” or “Could not open port ‘COM6’’ error while communicating with Arduino,

Unplug the Arduino cable and plug it back in and try again. Also make sure to use correct COM port of your

Arduino is connected with in your Python program.

 If you get “PyImage doesn’t exist” error, Please restart your Kernel / Close your Spyder IDE and reopen again.

 42

Control an LED using an Arduino micro controller with a help

of script written in Python language. You will be creating a GUI

consisting of a tkinter button with an interactive LED interface

to control the LED connected to your Arduino. We will make

use of Serial module from python to send or receive data from

Arduino to our python GUI.

 5 Challenge–1

DIGITAL CONTROL OF LED

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, tkinter-tools to control the state of an LED connected to a micro-

controller. You will learn to create buttons, arrange buttons on tkinter window,

assign a state of a button based on the event call. You will also learn to create

variables & define function calls.

ex1_led_control.py

e1_led_control.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 43

This exercise is about controlling a LED connected to arduino micro-controller

from a computer using a GUI built with Python script.

Hardware required

 Arduino Uno – 1 Pc

 LED – 1 Pc

3. Jumper wires (M to F)- 2 Pc

4. Bread Board—1 Pc (optional)

Circuit schematic

Exercise

Circuit connections explainer:

LED’s anode (longer leg) is connected to PIN 13 of arduino

LED’s cathode (shorter leg) is connected to GND of arduino via a resistor

You can also prefer to use inbuilt Arduino’s LED at PIN 13

 44

Blue LED

1K-Ohm resistor

Arduino Uno

Hardware setup

 45

Work Flow

//Declare variable

char serialData;

//Setup your baudrate & arduino pins

void setup()

{

 pinMode(13, OUTPUT); // LED pin on arduino

 Serial.begin(9600);

}

//Run your program again and again using loop

void loop()

{

 if (Serial.available() > 0) // send data only when you receive data from python

 {

 serialData = Serial.read(); //read serial data and assign to variable

 Serial.print(serialData); //Print to check your data

 //Condition statement

 if(serialData == '0')

 {

 digitalWrite(13, HIGH); //Make your LED glow

 }

 }

Arduino script

 46

This arduino sketch assigns the pin 13 to be an output. This is where your LED

is connected with. You can also make use of arduino’s inbuilt LED to perform

this operation. At the beginning of the loop, a serial read is triggered to read

any data that comes in via serial port. Once the data is read, an if_else condi-

tion is set to change the LED’s state. If the incoming data is ‘0’, LED is set to

HIGH and if incoming data is ‘1’, the LED is set to LOW state.

Once you compile and upload this sketch to your arduino, then try to send ‘0’

or ‘1’ via arduino IDE’s serial monitor. This should make your LED to turn ON/

OFF accordingly. This is a basic sketch to begin with our exercises. Once you

understand the logic of if_else statements to trigger an event, then its conven-

ient to make other complex functions. You will get to explore this in upcoming

exercises.

Verification

How it works

else if(serialData == '1')

 {

 digitalWrite(13, LOW); //Make your LED off

 }

 }

import serial

import tkinter

import tk_tools

Import Packages: Lets begin with Python script to build our GUI. At first we

should import respective modules to be used in our script. This includes Pyseri-

al: for establishing serial port communication with external devices (in our case,

its arduino Uno connected to computer via USB), tkinter: an interface for creat-

ing GUI widgets, tk-tools: a package for creating ready made interactive GUI.

Establish Serial Connection: Next we need to establish a serial connection to

our controller. The method “serial.Serial(‘COM6’, 9600)” establishes a serial

connection to COM port 6 at a baud rate of 9600.

Python script break down

arduino = serial.Serial('com6', 9600)

Create tkinter window: A Tkinter window can be created using tkinter.TK

method. You can add titles, fix geometry, change background color of your

window and so on.

window = tkinter.Tk() #create tkinter window

window.title("Arduino RGB Led Control") #give title

window.configure(background="white") #change background color

 47

button_on = tkinter.Button(window, text="ON",

 font= ('Verdana',16), padx=50, pady =20,

 bg="green",fg="white",

 command = led_on)

Create buttons: Based on our exercise, we are going to create 3 buttons for our

GUI. A button to switch ON the led, a button to switch OFF the led and a button

to destroy tkinter window and close our GUI. Each button is linked with its own

function call and configurations. You can assign the size, position using a grid

method, text size, text type, foreground color, state of button and so on. For

this exercise we will use the following arguments for our buttons. Following is

an example of button_on that is created in tkinter window. Refer to figure (a) for

the display of our button.

Pack buttons: Once we create the buttons according to our need, then we have

to pack them in our tkinter window. There are methods such as Pack, Grid and

place are available. We will use grid method to pack our buttons according to

desired columns and rows.

button_on.grid(row=1,column=1)

button_off.grid(row=1,column=2)

Function call: We have to define a function call to perform events whenever a

button is pressed/Clicked. In our case, if button ON is clicked, python writes a

value ‘0’ to arduino via serial Write method. After this, we can set the button to

turn into disabled state using widget config method of tkinter. This will add an

intuitiveness to our GUI. Since we also have an interactive LED (from tk-tools

module) in our tkinter window, we can also set it to glow state by giving a True

value to led.to_green() function call.

def led_on():

 arduino.write(b'0') #write this value to arduino

 led.to_green(True) #Glow the led to green

 button_on.config(state = "disabled") #disable button_on

 button_off.config(state = "normal") # enable to normal state

 48

Tkinter GUI

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

Execution: Once everything is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following ac-

tion check list.

 49

#Import following packages

import serial

import tkinter

import tk_tools

#Connect to arduino via serial port

#com6 --> Change port accordingly to yours

arduino = serial.Serial('com6', 9600)

#Function call for led_on button

def led_on():

 arduino.write(b'0') #write this value to arduino

 led.to_green(True) #Glow the led to green --> Refer to tk-tools docs

 button_on.config(state = "disabled") #disable button_on

 button_off.config(state = "normal") # enable button_off to normal state

#function call for led_off button

def led_off():

 arduino.write(b'1') #write this value to arduino

 led.to_green() #Switch off the led --> Refer to tk-tools docs

 button_off.config(state = "disabled") #disable button_off

 button_on.config(state = "normal") #enable button_on to normal state

#exit function call for closing the program

def close_window():

 arduino.close() #close Serial connection with arduino

 window.destroy() #destro tkinter app

MAIN

window = tkinter.Tk() #create tkinter window

window.title("Arduino RGB Led Control") #give title

window.configure(background="white") #change background color

#Create buttons

button_on = tkinter.Button(window, text="ON",

 font= ('Verdana',16), padx=50, pady =20,

 bg="green",fg="white",

 command = led_on)

Python script

 50

button_off = tkinter.Button(window, text="OFF",

 font=('Verdana',16), padx=50, pady =20,

 bg="red",fg="white",

 command = led_off)

button_exit = tkinter.Button(window, text="Exit",

 font=('Verdana',16),

 padx=130, pady =20,

 command = close_window)

#Pack buttons

button_on.grid(row=1,column=1)

button_off.grid(row=1,column=2)

button_off.config(state = "disabled")

button_exit.grid(row=2,column=1, columnspan =2)

#Create interactive led using tk-tools

led = tk_tools.Led(window, size=100)

led.to_green() #set led to green switch off condition) --> Refer tk-tools docs

led.grid(row=0,column=1, columnspan =2)

#execute the loop

window.mainloop()

LED ‘ON’ State LED ‘OFF’ State

Python GUI Output

 51

POTENTIAL APPLICATIONS

 Automation of Industrial process flow with Switches and light indicators with GUI

 To output the status of Smart lights in our homes with an interactive mobile GUI.

WiFi / Bluetooth

Connected

CONCLUSION

In this chapter, we understood the use of Tkinter button widget and created a

program to control the state of LED’s.

GUI app to control lights

 52

Control a digital servo motor using an Arduino micro control-

ler with a help of script written in Python language. You will

be creating a GUI consisting of a tkinter slider widget with an

interactive dial gauge interface to set a position angle to a

digital servo motor connected to your Arduino. We will make

use of Serial module from python to send or receive data

from Arduino to our python GUI.

 6 Challenge–2

CONTROL OF DIGITAL SERVOS

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, tkinter-tools to control the position of a servo motor connected to a

micro-controller. You will learn to create slider widgets, dial gauge widget, ar-

range buttons on tkinter window, send a angle data to micro-controller based

on the slider position. You will also learn to create variables & define function

calls.

e2x_servo_control.py

e2_servo_control.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 53

This exercise is about controlling a Servo motor connected to arduino micro-

controller from a computer using a GUI built with Python script.

Hardware required

 Arduino Uno – 1 Pc

 Digital servo motor – 1 Pc

3. Jumper wires (M to M)- 3 Pc

4. Bread Board—1 Pc (optional)

Circuit schematic

Exercise

Circuit connections explainer:

Servo motor GND wire(Brown/Black) is connected to GND PIN of arduino

Servo moto VIN wire (Red) is connected to 5V PIN of arduino

Servo motor SIG wire (Yellow/Orange/White) is connected to PIN 11 of arduino

 54

Arduino Uno

Servo motor

Hardware setup

 55

Work Flow

#include <Servo.h> //Include servo library

Servo myservo;

//Declare variables

String inByte;

int pos;

void setup() {

 myservo.attach(11); //Digital pin that your servo is attached

 Serial.setTimeout(80); //time in which Serial port will wait for serail data

 Serial.begin(9600);

}

void loop(){

 // send data only when you receive data from python

 while (Serial.available() > 0)

 {

 // read the incoming byte:

 String c = Serial.readString();

 //Convert string to integer

 pos = c.toInt();

 delay(2);

Arduino script

 56

 // Print your value back

 Serial.print("C is ");

 myservo.write(pos);

 Serial.println(pos);

 }

}

This arduino sketch assigns the pin 11 to be an output. This is where your

servo signal wire is connected with. You can also connect to other PWM pins

of arduino to perform this operation. At the beginning of the loop, a serial

read is triggered to read any data that comes in via serial port. The incoming-

data is read as a string value, it is then converted to in type using

string.toInt() function. Then this int value is sent to servo.write() function to

set the position of servo.

Once you compile and upload this sketch to your arduino, then try to send

values from 0 to 180 via arduino IDE’s serial monitor. This should make

your servo to move to respective angle accordingly as well as it prints the

reached angle into your serial monitor. If it works, then you are good to go

with Python scripts for creating your GUI.

Verification

How it works

Lets begin with Python script to build our GUI. As referred with exercise 1, we

should import respective modules to be used in our script. This includes Pyse-

rial: for establishing serial port communication with external devices (in our

case, its arduino Uno connected to computer via USB), tkinter: an interface for

creating GUI widgets, tk-tools: a package for creating ready made interactive

GUI. Then establish a serial connection by assigning a respective COM ports.

As described in previous exercise, create a tkinter window.

Scale widget: Next, instead of creating buttons, we will be creating a Scale

widget. You can set the dimensions of your scale, limits of your scale, (in our

case its 0 to 180) and assign a event call using command method as shown

below. Once you move your slider in scale widget, the respective values can be

pulled stored in a variable and can used further.

servo = tkinter.Scale(window, activebackground="blue",

 label = " Set the Angle of your servo",

 bg = "white", font=('Verdana',16), from_=0, to=180,

 orient=tkinter.HORIZONTAL, length= 400,

 command = move_servo)

Python script break down

 57

Then we pack the widgets in tkinter window using grid method and place them

in respective rows and columns.

speed_gauge = tk_tools.Gauge(window, max_value=180, bg='white',

 label='Servo angle', unit=' deg',

 red=90, yellow=10, height = 300, width = 500)

Dial Gauge widget: In this GUI, we will be using an interactive dial gauge

widget for visualizing our angle. The dial in the widget will move to a respec-

tive position from 0 to 180 degrees based on the user’s slider position input

by using the function speed_gauge.set_value(var).

Execution: Once everything is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following ac-

tion check list as done in previous exercise.

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

Tkinter GUI

 58

#Import following packages

import serial

import tkinter

import tk_tools

#Connect to arduino via serial port

#com6 --> Change port accordingly to yours

arduino = serial.Serial('com6',9600)

#Function call to close your program

def close_window():

 arduino.close()

 window.destroy()

#Function call to move_servo button

def move_servo(var):

 speed_gauge.set_value(var) #set value to the speed gauge

 print(var) #print value for cross-check

 #send servo angle value to arduino

 arduino.write(str(var).encode()) #write this value to arduino

 #get servo angle ack from arduino to cross-check

 reachedPos = str(arduino.readline()) #get value back from arduino

 print (reachedPos)

MAIN

window = tkinter.Tk() #create tkinter window

window.title("Servo angle control") #give title

window.configure(background="white") #change background color

Create a slider for servo position

servo = tkinter.Scale(window, activebackground="blue",

 label = " Set the Angle of your servo",

 bg = "white", font=('Verdana',16), from_=0, to=180,

 orient=tkinter.HORIZONTAL, length= 400,

 command = move_servo)

Python script

 59

#Create a speed-gauge using tk-tools module

speed_gauge = tk_tools.Gauge(window, max_value=180, bg='white',

 label='Servo angle', unit=' deg',

 red=90, yellow=10, height = 300, width = 500)

button_exit = tkinter.Button(window, text="Exit", font=('Verdana',16),

 padx=100, pady = 10,

 command=close_window)

#pack your buttons, sliders

servo.grid(row=1, column=0)

speed_gauge.grid(row=0, column=0)

button_exit.grid(row=2,column=0, columnspan =2)

#execute the loop

window.mainloop()

 60

Inactive state

Active state

Python GUI Output

 61

POTENTIAL APPLICATIONS

 Control of opening and closing of Electric Window shades

 Controls of rudders/elevators in robot aircrafts and boats

 Joint control of robotic arms using a interactive GUI

Robotic arm

A GUI for controlling the

Joints of Robotic arm

CONCLUSIONS

In this chapter, we controlled servo motors using a python program and

Tkinter GUI. This is useful in building servo based control arms and robot’s.

 62

Control a DC (Direct current) Motor using an Arduino micro

controller with a help of script written in Python language.

You will be creating a GUI consisting of a tkinter slider widget

with an interactive dial gauge interface to set a speed to a DC

motor connected to your Arduino. We will also create direc-

tion control button to spin the motor in desired direction. We

will make use of Serial module from python to send or receive

data from Arduino to our python GUI.

 7 Challenge–3

DC MOTOR CONTROL

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, tkinter-tools to control the speed and direction of rotation of a dc

motor connected to a micro-controller. You will learn to create slider widgets,

dial gauge widget, arrange buttons on tkinter window, send a speed and di-

rection data to micro-controller based on the slider position and button event

calls.

e3x_dc_motor_control.py

e3_dc_motor_control.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 63

This exercise is about controlling a DC Motor connected to arduino micro-

controller from a computer using a GUI built with Python script.

Hardware required

 Arduino Uno – 1 Pc

 DC motor – 1 Pc

3. Jumper wires (M to M)- Few Pcs

4. Bread Board—1 Pc (optional)

5. Any L293D 2 channel motor driver of your choice—1 Pc

6. 9V or 7.4V Battery of your choice—1 Pc

Circuit schematic

Exercise

 64

Work Flow

Circuit connections explainer:

EN1 PIN of motor driver is connected to PIN 5 of arduino

IN1 PIN of motor driver is connected to PIN 9 of arduino

IN2 PIN of motor driver is connected to PIN 6 of arduino

VCC PIN of motor driver is connected to 5V PIN of arduino

GND PIN of motor driver is connected to GND PIN of arduino

 65

Arduino Uno

DC Motor

Motor driver

Battery

Hardware setup

 66

//Declare variables

char serialData;

//Declaring Pins of arduino to pins of Deek robot 2 Channel motor driver

(L293D)

//Play around your driver to control the direction of motors

int m1=6; //connects to IN2 pin of Deek Robot motor driver -->Sets the direction

int m2=9; //Connects to IN1 pin of Deek Robot motor driver --> Sets the direc-

tion

int e1=5; //Connects to EN1 pin of Deek Robot motor driver -->Sets the speed

int x =0; //Variable to store the speed value from Python

void setup() {

 pinMode(m1, OUTPUT);

 pinMode(m2, OUTPUT);

 pinMode(e1, OUTPUT);

 Serial.begin(9600);

 }

void loop() {

 // send data only when you receive data from python

 if (Serial.available() > 0)

 {

 serialData = Serial.read();

 Serial.print(serialData);

 if(serialData == '1') //Clock wise rotation of motor

 {

 analogWrite(e1, x); //Set the speed

 digitalWrite(m2, 0); //Clock wise rotation

 digitalWrite(m1, 1);

 }

 else if (serialData == '2') //Anti-Clock wise rotation of motor

 {

 analogWrite(e1, x); //Set the speed

 digitalWrite(m2, 1); //Anti-Clock wise rotation

 digitalWrite(m1, 0);

 }

Arduino script

 67

This arduino sketch assigns the digital pins 6,9,5 to be an output. This is

where your dc motor driver pins are connected with. Arduino pins 6 and 9

are connected with IN1 and IN2 pins of motor driver. Arduino Pin 5 is con-

nected to EN1 (Enable pin) of motor driver. This enable pin is set to analog

value between 0 to 255 to control the speed of motor. In our case, we will

only set to 170 and 255. (slow and full speed). As we seen in previous exer-

cise, the incoming value from python is read in arduino via serial.read() and

a conditional if_else statement is executed accordingly. For example: If the

incoming value is ‘1’, the DC motor is set to spin in clockwise direction.

Once you compile and upload this sketch to your arduino, then try to send

values from 1 to 5 via arduino IDE’s serial monitor. This should make your

DC motor to perform respective actions based on inputs. If it works, then you

are good to go with Python scripts for creating your GUI.

Verification

How it works

 //Stop your motor

 else if (serialData == '3')

 {

 digitalWrite(m1, 0);

 digitalWrite(m2, 0);

 }

 //set Speed level 1

 else if (serialData == '4')

 {

 x=80;

 }

 //set Speed level 2

 else if (serialData == '5')

 {

 x=150;

 }

 //set Speed level 3

 else if (serialData == '6')

 {

 x=255;

 }

 }

 68

Lets begin with Python script to build our GUI. As referred with previous exer-

cises, we should import respective modules to be used in our script. This in-

cludes Pyserial: for establishing serial port communication with external devic-

es (in our case, its arduino Uno connected to computer via USB), tkinter: an

interface for creating GUI widgets, tk-tools: a package for creating ready made

interactive GUI. Then establish a serial connection by assigning a respective

COM ports. As described in previous exercise, create a tkinter window. Then

we create respective buttons, dial gauge widget, scale widget and pack the

them in tkinter window using grid method and place them in respective rows

and columns.

Python script

Execution: Once everything is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following

action check list as done in previous exercise.

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

Tkinter GUI

 69

#Import following packages

import serial

import tkinter

import tk_tools

from PIL import Image, ImageTk

#Connect to arduino via serial port

#com6 --> Change port accordingly to yours

arduino = serial.Serial('com6',9600)

#Function call to close your program

def close_window():

 arduino.close()

 window.destroy()

#function call to set speed of motor

def set_speed(var):

 speed_gauge.set_value(var) #set the value for speed gauage

 print(var) #print value to cross-check

 value = int(var) #conver to int

 #condition statements

 if(value <=170 and value > 0):

 arduino.write(b'4') #write to arduino

 elif(value <=255 and value > 170):

 arduino.write(b'5') #write to arduino

#function call to forward button

def forward():

 arduino.write(b'1') #write to arduino

#function call to reverse button

def backward():

 arduino.write(b'2') #write to arduino

#function call to stop button

def stop():

 arduino.write(b'3') #write to arduino

Python script

 70

MAIN

window = tkinter.Tk() #create tkinter window

window.title("Servo angle control") #give title

window.configure(background="white") #change background color

window.geometry("500x700") #set size of tkinter window

#create frame are to place your buttons

f1 = tkinter.Frame(window)

f1.grid(row=2, column=0, sticky="nsew", pady=40)

f1.configure(background="white")

'''

Declare the images

Change the file path accordingly as per your folder

var = ImageTk.PhotoImage(Image.open("<---your file path--->"))

'''

stopped = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/scripts/

stop.png"))

left = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/scripts/

left.png"))

right = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/scripts/

right.png"))

Create a silder slider to set speed of DC motor

motor = tkinter.Scale(window, activebackground="blue",

 label = " Set the speed of your motor",

 bg = "white", font=('Verdana',14), from_=0, to=255,

 orient=tkinter.HORIZONTAL, length= 400,

 command = set_speed)

#create speed guage from tk-tools module

speed_gauge = tk_tools.Gauge(window, max_value=255, bg='white', la-

bel='Motor speed', unit=' Km/hr', height = 300, width = 500)

#Create label

label_text = tkinter.Label(f1, text="Control your Motor direction using the but-

tons below", font=('Verdana',12), bg="white", fg="#8B0000")

#create buttons

button_exit = tkinter.Button(window, text="Exit", font=('Verdana',14),

 padx=100, pady = 10,

 command=close_window)

 71

#create you buttons

buttonback = tkinter.Button(f1, image = left, bg = "white", command= forward)

buttonquit = tkinter.Button(f1, image = stopped, bg = "white", command= stop)

buttonnext = tkinter.Button(f1, image = right, bg ="white", command= back-

ward)

#pack your widgets

motor.grid(row=1, column=0)

speed_gauge.grid(row=0, column = 0)

label_text.grid(row=1, column=0, columnspan =3)

button_exit.grid(row=6,column=0, columnspan =2)

buttonback.grid(row =3, column =0,pady =20, padx=50)

buttonquit.grid(row =3, column =1, pady =20, padx=50)

buttonnext.grid(row =3, column =2, padx=50, pady =20)

#execute the loop

window.mainloop()

Python GUI Output

 72

POTENTIAL APPLICATIONS

 Direction and speed control of mars Rover

 Direction and speed control of a Drones

Speed and direction control

of Rover wheels

CONCLUSION

 In this chapter, we programmed buttons to switch between various

speed levels and control the direction of a DC Motor. This is a first step need-

ed to build your ROVERS.

 73

Plot a sensor’s data as a graph over a period of time using

an Arduino micro controller with a help of script written in

Python language. You will be creating a GUI consisting of a

tkinter canvas widget, matplotlib library to plot graphs

based on sensor’s data. We will make use of Serial module

from python to send or receive data from Arduino to our py-

thon GUI.

 8 Challenge–4

PLOTTING SENSOR DATA

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, matplotlib to plot a graph using a data of a sensor connected to a

micro-controller. You will learn to create canvas, graph plot, arrange buttons

on tkinter window, read a data from micro-controller and plot the data in real

time graph.

e4x_ping_sensor_data_Read.py

e4_ping_sensor_data_Read.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 74

This exercise is about getting & plotting a real time data from a ping sensor con-

nected to arduino micro-controller from a computer using a GUI built with Py-

Hardware required

 Arduino Uno – 1 Pc

 Ping sensor (4 Pin Ultrasonic sensor) – 1 Pc

3. Jumper wires (F to M)- 4 Pcs

4. Bread Board—1 Pc (optional)

Circuit schematic

Exercise

Circuit connections explainer:

Ping sensor VCC PIN is connected to 5V PIN of arduino

Ping sensor TRIG PIN is connected to D3 PIN of arduino

Ping sensor ECHO PIN is connected to D2 PIN of arduino

Ping sensor GND PIN is connected to GND PIN of arduino

 75

Arduino Uno Ping sensor

Hardware setup

 76

Work Flow

//Declare variables

char serialData;

//Ping sensor pins

int trigPin = 11; // Trigger

int echoPin = 12; // Echo

long duration, cm;

void setup() {

 //Serial Port begin

 Serial.begin (9600);

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 Serial.setTimeout(80);

}

void loop() {

 // The sensor is triggered by a HIGH pulse of 10 or more microseconds.

 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

Arduino script

 77

 digitalWrite(trigPin, LOW);

 delayMicroseconds(5);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 // Read the signal from the sensor: a HIGH pulse whose

 // duration is the time (in microseconds) from the sending

 // of the ping to the reception of its echo off of an object.

 pinMode(echoPin, INPUT);

 duration = pulseIn(echoPin, HIGH);

 // Convert the time into a distance

 cm = (duration/2) / 29.1; // Divide by 29.1 or multiply by 0.0343

 Serial.println(cm); //This will be sent to python for displaying graph

 delay(500);

}

This arduino sketch assigns the digital pins 10, 11 to be an output to trig and

echo pin of your ultrasonic ping sensor. Then the trig pin is sent with HIGH

pulse for 10 micro seconds followed by a LOW pulse for 5 micro seconds. Then

the echo is read back and the time difference is calculated accordingly based

on speed of sound and distance calculation. Then this data is printed over seri-

al port for further use by our python script.

Once you compile and upload this sketch to your arduino, then try to get the

distance data from arduino IDE’s serial monitor. Make sure to play around the

sensor for various distance. If it works, then you are good to go with Python

scripts for creating your GUI.

Verification

How it works

 78

Lets begin with Python script to build our GUI. As referred with previous exer-

cises, we should import respective modules to be used in our script. This in-

cludes Pyserial: for establishing serial port communication with external devic-

es (in our case, its arduino Uno connected to computer via USB), tkinter: an

interface for creating GUI widgets, tk-tools: a package for creating ready made

interactive GUI. Apart from this, we should also import matplotlib library as we

are going to plot graphs in our tkinter canvas area. Other than this, we should

also make use of nympy library as we are going to work on data arrays and

list. Then establish a serial connection by assigning a respective COM ports. As

described in previous exercise, create a tkinter window. Then we create respec-

tive buttons, a canvas widget to fix and plot the graph and a Seven segment

display widget to display our sensor data. Arrange these widgets accordingly

using a grid method.

Python script

Execution: Once everything is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following

action check list as done in previous exercise.

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

Tkinter GUI

 79

#Import following packages

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

from matplotlib.figure import Figure

import tkinter

import numpy as np

import tk_tools

import serial

#Declare Global variables

data = np.array([])

condition = False

#Connect to arduino via serial port

#com6 --> Change port accordingly to yours

arduino = serial.Serial('COM6',9600);

#Plot your data

def plot_data():

 global condition, data #declare global variables again

 if (condition == True):

 a = arduino.readline() #read data from arduino

 b= int(float(a[0:len(a)-2].decode("utf-8"))) #convert to integer

 a.decode() #decode a for later use

 print(b)

 ss.set_value(str(b)) #set the value to seven segment display

 if(len(data) < 100):

 data = np.append(data,float(a[0:4]))

 else:

 data[0:99] = data[1:100]

 data[99] = float(a[0:4])

 lines.set_xdata(np.arange(0,len(data)))

 lines.set_ydata(data)

 canvas.draw()

Python script

 80

in after method 1 miliseconds

 # is passed i.e after seconds

 # main window will get plotted with data

 window.after(1,plot_data)

#start the plot

def plot_start():

 global condition

 condition = True

 start_button.config(state = 'disabled')

 stop_button.config(state = 'normal')

 arduino.reset_input_buffer()

#pause the data plot

def plot_stop():

 global condition

 condition = False

 stop_button.config(state = 'disabled')

 start_button.config(state = 'normal')

#exit function

def close_window():

 arduino.close()

 window.destroy()

#-Main GUI code

window = tkinter.Tk()#create tkinter window

window.title('Ping sensor data plot')#give title

window.configure(background = 'white')#set background color

window.geometry("900x700") # set the window size

#-create Plot object on GUI

fig = Figure(figsize=(8, 4), dpi=100);# add figure canvas

ax = fig.add_subplot(111)

 81

#display only 100 samples

ax.set_title('Ping sensor data');

ax.set_xlabel('time')

ax.set_ylabel('Distance in cm')

ax.grid(True, linestyle='-.')

ax.set_xlim(0,100)

ax.set_ylim(0,500) #change this value according to max distance of your dis-

tance

lines = ax.plot([],[], color='C2',marker='o', markersize=6)[0]

canvas = FigureCanvasTkAgg(fig, master=window) # A tkinter drawing area

canvas.get_tk_widget().grid(row=0,column=0, rowspan =2, columnspan =2,

padx=30, pady=30)

canvas.draw()

#create buttons, other widgets

start_button = tkinter.Button(window, text = "Start data logging",

 font=('Verdana',14),padx=10,

 pady =10, bg = 'green', fg= 'white',

 command = lambda: plot_start())

stop_button = tkinter.Button(window, text = "Pause data logging",

 font=('Verdana',14), padx=10, pady =10,

 command = lambda:plot_stop())

button_exit = tkinter.Button(window, text="Exit", font=('Verdana',14),

 padx=300, pady =10,

 command = close_window)

name_tag = tkinter.Label(window,

 text= "Proximity distance from your sensor: ",

 font=('Verdana',18), bg="White")

ss = tk_tools.SevenSegmentDigits(window, digits=4, background='white',

 digit_color='black', height=60)

 82

#pack all your widgets

start_button.grid(row=3,column=0, pady=20)

stop_button.grid(row=3,column=1, pady=20)

button_exit.grid(row=4,column=0, columnspan =2)

name_tag.grid(row=2, column=0, columnspan =2)

ss.grid(row=2, column=1, pady=10)

arduino.reset_input_buffer()

window.after(1,plot_data) #plot data every 0.001 second

#execute the loop

window.mainloop()

Inactive GUI

Python GUI Output

 83

Python GUI Output

Active GUI

CONCLUSION

 In this chapter we programmed to plot a sensor’s data using Python

and tkinter. We also displayed the sensor’s output value in real time using

tk_tools widget.

 84

Plot a sensor’s data as a graph over a period of time using

an Arduino micro controller with a help of script written in

Python language and also save a log of data by exporting to

csv format. You will be creating a GUI consisting of a tkinter

canvas widget, matplotlib library to plot graphs based on

sensor’s data and exporting to csv file. We will make use of

Serial module from python to send or receive data from Ar-

duino to our python GUI and csv module to work on CSV

files.

 9 Challenge–5

SENSOR DATA LOGGING

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, CSV, datetime, matplotlib to plot a graph using a data of a sensor

connected to a micro-controller and then save the data into csv file. You will

learn to create canvas, graph plot, arrange buttons on tkinter window, read a

data from micro-controller and plot the data in real time graph. Then simul-

taneously write a code to create, open and save a data to csv file.

ex5_temperature_logging.py

e5_temperature_logging.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 85

This exercise is about getting & plotting a real time data from a Temperature

sensor connected to arduino micro-controller from a computer using a GUI built

Hardware required

 Arduino Uno – 1 Pc

 Temperature sensor (2 pin sensor) – 1 Pc

3. Jumper wires (F to M)- Few Pcs

4. 10K ohm resistor—1 Pc

5. Bread Board—1 Pc (optional)

Cir-

Exercise

Circuit connections explainer:

LM35 sensor VCC PIN is connected to 5V PIN of arduino

LM35 sensor ANALOG OUT PIN is connected to A5 PIN of arduino

LM35 sensor GND PIN is connected to GND PIN of arduino

 86

Arduino Uno
Temperature sensor

Hardware setup

 87

Work Flow

//Declare variables

char serialData;

const int sensorPin= 0; //Sensor pin connects to analog pin A0

int data; //the variable that will hold the temperature value reading

void setup()

{

Serial.begin(9600); //sets the baud rate at 9600 so we can check the values the

sensor is obtaining on the Serial Monitor

Serial.setTimeout(80);

}

void loop()

{

 data= analogRead(sensorPin); //the sensor takes readings from analog pin A0

 float value= (data/1024.0)*5000;

 float Celsius = value/10;

 #Use the following line if necessary

 #int Celsius = data - 546; //adjust this value accordingly to your sensor

 Serial.println(Celsius); //send this data to python

}

Arduino script

 88

This arduino sketch assigns the analog PIN 0 of arduino to get the input from

Temperature sensor. This data is read by micro controller and adjusts the ana-

log value to readable temperature unit. Then this data is printed over serial

port for further use by our python script.

Once you compile and upload this sketch to your arduino, then try to get the

temperature data from arduino IDE’s serial monitor. Make sure to play around

the sensor for changes in temperature. If it works, then you are good to go

with Python scripts for creating your GUI. You may need to spend a bit of time

in adjusting your temperature measurements.

Verification

How it works

Lets begin with Python script to build our GUI. As referred with previous exer-

cises, we should import respective modules to be used in our script. This in-

cludes Pyserial: for establishing serial port communication with external devic-

es (in our case, its arduino Uno connected to computer via USB), tkinter: an

interface for creating GUI widgets, tk-tools: a package for creating ready made

interactive GUI. Apart from this, we should also import matplotlib library as we

are going to plot graphs in our tkinter canvas area. Other than this, we should

also make use of nympy library as we are going to work on data arrays and

list. Then establish a serial connection by assigning a respective COM ports. As

described in previous exercise, create a tkinter window. Then we create respec-

tive buttons, a canvas widget to fix and plot the graph and a Seven segment

display widget to display our sensor data. Arrange these widgets accordingly

using a grid method.

Python script

Execution: Once everything is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following

action check list as done in previous exercise.

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

 89

Tkinter GUI

#Import following packages

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

from matplotlib.figure import Figure

import tkinter

import numpy as np

import tk_tools

import serial

import csv

import datetime

#Declare Global variable

data = np.array([])

condition = False

#Connect to arduino via serial port

#com6 --> Change port accordingly to yours

arduino = serial.Serial('COM6',9600);

Python script

 90

#Plot your data

def plot_data():

 global condition, data #declare global variables again

 if (condition == True):

 a = arduino.readline() #read data from arduino

 b= float(a[0:len(a)-2].decode("utf-8")) #convert to integer

 a.decode() #decode a for later use

 print(b)

 ss.set_value(str(b)) #set the value to seven segment display

 #Open a csv file and save data to it

 with open("test_data.csv","a", newline='') as f:

 writer = csv.writer(f,delimiter=",")

 writer.writerow([datetime.datetime.strftime(datetime.datetime.now(), '%

Y, %m, %d, %H, %M, %S'),str(b)])

 if(len(data) < 100):

 data = np.append(data,float(a[0:4]))

 else:

 data[0:99] = data[1:100]

 data[99] = float(a[0:4])

 lines.set_xdata(np.arange(0,len(data)))

 lines.set_ydata(data)

 canvas.draw()

 # in after method 1 miliseconds

 # is passed i.e after seconds

 # main window will get plotted with data

 window.after(1,plot_data)

#start the plot

def plot_start():

 global condition

 condition = True

 start_button.config(state = 'disabled')

 stop_button.config(state = 'normal')

 arduino.reset_input_buffer()

 91

#pause the data plot

def plot_stop():

 global condition

 condition = False

 stop_button.config(state = 'disabled')

 start_button.config(state = 'normal')

#exit function

def close_window():

 arduino.close()

 window.destroy()

#MAIN LOOP

window = tkinter.Tk() #create tkinter window

window.title('Temperature sensor plot') #give title

window.configure(background = 'white') #set background color

window.geometry("900x720") # set the window size

#-create Plot object on GUI

add figure canvas

fig = Figure(figsize=(8, 4), dpi=100);

ax = fig.add_subplot(111)

#display only 100 samples

ax.set_title('Temperature sensor data');

ax.set_xlabel('time')

ax.set_ylabel('Temperature in deg C')

ax.grid(True, linestyle='-.')

ax.set_xlim(0,100)

ax.set_ylim(0,100)

lines = ax.plot([],[],color='C1',marker='o', markersize=6)[0]

canvas = FigureCanvasTkAgg(fig, master=window) # A tk.DrawingArea.

canvas.get_tk_widget().grid(row=0,column=0, rowspan =2, columnspan =2,

padx=30, pady=30)

canvas.draw()

 92

#create buttons, other widgets

start_button = tkinter.Button(window, text = "Start data logging",

 font=('Verdana',14),padx=10, pady =10,

 bg = 'green', fg= 'white',

 command = lambda: plot_start())

stop_button = tkinter.Button(window, text = "Pause data logging",

 font=('Verdana',14), padx=10, pady =10,

 command = lambda:plot_stop())

button_exit = tkinter.Button(window, text="Exit", font=('Verdana',14),

 padx=300, pady =10,

 command = close_window)

name_tag = tkinter.Label(window, text= "Ambient temperature data from sen-

sor: ",

 font=('Verdana',18), bg="White")

ss = tk_tools.SevenSegmentDigits(window, digits=4, background='white',

 digit_color='black', height=60)

#pack your widgets

start_button.grid(row=3,column=0, pady=20)

stop_button.grid(row=3,column=1, pady=20)

button_exit.grid(row=4,column=0, columnspan =2)

name_tag.grid(row=2, column=0, columnspan =2)

ss.grid(row=2, column=1, pady=10)

arduino.reset_input_buffer()

window.after(1,plot_data)

#execute the loop

window.mainloop()

 93

Python GUI Output

Temp log saves into

test_data.csv file

 94

POTENTIAL APPLICATIONS

 IoT plant sensor real time data logging and Saving to a file

 Self driving Robot sensor data logging and analyses

CONCLUSION

 In this chapter, we learned to log our sensor’s data over a time period

and save it to a file in our computer. This is an additional step as compared to

our previous challenge. This can be extended to new possibilities in Wireless

sensing and IOT.

IOT Plant sensor

Sensor data

logged

 95

Pick and set a color to a RGB LED connected to an Arduino mi-

cro controller with a help of script written in Python language.

You will be creating a GUI consisting of a tkinter color picker

widget. We will make use of Serial module from python to

send or receive data from Arduino to our python GUI and set

a color to a RGB led.

 10 Challenge–6

CONTROL OF RGB LED

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, color picker widget to assign a color value to a RGB LED connected to

a micro-controller.

ex6_rgb_led_control.py

e6_rgb_led_control.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 96

This exercise is about a control of RGB LED connected to arduino micro-

controller from a computer using a GUI built with Python script.

Hardware required

 Arduino Uno – 1 Pc

 RGB LED – 1 Pc

3. Jumper wires (F to M)- Few Pcs

4. Bread Board—1 Pc (optional)

Circuit schematic

Exercise

Circuit connections explainer:

RGB LED ANODE (Long leg) PIN is connected to 5V PIN of arduino

RGB LED RED PIN (1st Pin) is connected to D11 PIN (PWM pin) of arduino

RGB LED GREEN PIN (3rd Pin) is connected to D10 PIN (PWM pin) of arduino

RGB LED BLUE PIN (4th Pin) is connected to D9 PIN (PWM pin) of arduino

 97

Arduino Uno

RGB LED

RED Color of RGB LED PURPLE Color of RGB LED

Hardware setup

 98

Work Flow

//Declare variables

int incomingByte = 0; // for incoming serial data

String myString;

long myStringInt = 0;

//Set RGB led pins. Mke sure its connected to PWM pins of arduino

int redPin = 9; //Red led connected to arduino PWM pin

int greenPin = 10; //green led connected to arduino PWM pin

int bluePin = 11; //blue led connected to arduino PWM pin

//Setup your baudrate & arduino pins

void setup()

{

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(bluePin, OUTPUT);

 Serial.begin(9600);

 Serial.setTimeout(10); // improves the serial response time

 //set initial color of your LED to red

 analogWrite(redPin, 0);

 analogWrite(greenPin, 255);

 analogWrite(bluePin, 255);

}

Arduino script

 99

void loop()

{

 myString = getSerial(); //get serial functions gets the data from python

 if (myString.startsWith("#"))

 {

 String value;

 myString.remove(0, 1); // removes "#" to only have the numbers

 Serial.println(myString); // print this value for cross-checking

 char charbuf[8];

 myString.toCharArray(charbuf,8);

 long int rgb= strtol(charbuf,0,16); //=>rgb=0x001234FE;

 //Convert values for red, green, blue from hex value

 byte r=(byte)(rgb>>16);

 byte g=(byte)(rgb>>8);

 byte b=(byte)(rgb);

 //Set your RGB led to respective analog value

 Serial.println(r); // print this value for cross-checking

 Serial.println(g); // print this value for cross-checking

 Serial.println(b); // print this value for cross-checking

 //As LED's are connected to PWM pins, you need to subtract from 255

 // (255, 0, 0) --> RED color is mapped --> (0,255,255) for PWM pins

 analogWrite(redPin, 255-r); //Subtract value from 255 as its PWM pin

 analogWrite(greenPin, 255-g);

 analogWrite(bluePin, 255-b);

 }

}

//function to get data from python

String getSerial()

{

 String a;

 while (Serial.available())

 {

 a = Serial.readString();

 Serial.println(a);

 return (a);

 }

}

 100

This arduino sketch assigns the Digital PIN 9, 10, 11 of arduino to control the

RGB LED values. Make sure that it has to be connected to PWM pins in order to

control the intensity of RGB led. A serial data consisting of RGB values in string

format is read by micro controller from python and converts to long int type

and assigns respective analog values to individual R, G, B LED’s.

Once you compile and upload this sketch to your arduino, then try to send a

RGB value in hexadecimal format (Ex: #FFFF00) from arduino IDE’s serial moni-

tor. If it works, then you are good to go with Python scripts for creating your

GUI. You may need to spend a bit of time in adjusting your temperature meas-

urements.

Verification

How it works

Lets begin with Python script to build our GUI. As referred with previous exer-

cises, we should import respective modules to be used in our script. This in-

cludes Pyserial: for establishing serial port communication with external devic-

es (in our case, its arduino Uno connected to computer via USB), tkinter: an

interface for creating GUI widgets, tkcolorpicker: a package for using a color

palette and choosing a color from it. This color picker opens a pop up color

palette and asks you to choose a color. Then the chosen color can be sub-

scribed and used for other purpose. Then establish a serial connection by as-

signing a respective COM ports using PySerial module. As described in previ-

ous exercise, create a tkinter window. Then we create respective buttons, a la-

bel/button to show the color the user picked and a link to open color picker.

Arrange these widgets accordingly using a grid method.

Python script

Execution: Once everything is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following

action check list as done in previous exercise.

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

 101

Tkinter GUI

import serial

import tkinter

from tkcolorpicker import askcolor

#Connect to arduino via serial port

#com6 --> Change port accordingly to yours

arduino = serial.Serial('com6',9600)

def close_window(): #exit the window

 arduino.close()

 window.destroy()

def led_on():

 cc = askcolor((255, 0, 0), window) #open color picker and get color

 r = cc[0][0] #get red value from tuple

 g = cc[0][1] #get green value from tuple

 b = cc[0][2] #get blue value from tuple

 c= cc[1] #get the hex value from tuple

 color_label.config(bg= str(c))

 label.config(text= "Your color is:" + str(c))

 print(r,g,b) #print value for cross-check

 print(c) #print value for cross-check

 arduino.write(str(c).encode()) #write hex value to arduino

Python script

 102

MAIN

window = tkinter.Tk() #create tkinter window

window.title("RGB LED control") #create title

window.configure(background="white") #set background color

#create widgets

button_on = tkinter.Button(window, text="Choose your color",

 font=('Verdana',12), padx=60, pady =10,

 bg="green",fg="white",

 command = led_on)

label = tkinter.Label(window, text="Your color is: #FF0000",

 font=('Verdana',12),fg="black", bg ='white')

color_label = tkinter.Label(window,padx=135, pady =30, bg="red", fg="black")

button_exit = tkinter.Button(window, text="Exit", font=('Verdana',12),

 padx=120, pady =10,

 command = close_window)

#pack widgets

button_on.grid(row=2,column=0, columnspan =2, pady=10)

label.grid(row=0,column=0)

color_label.grid(row=1,column=0, columnspan =2)

button_exit.grid(row=4,column=0, columnspan =2)

#execute the loop

window.mainloop()

 103

Before color picker selection

Color picker

Python GUI Output

After color picker selection

 104

POTENTIAL APPLICATIONS

 Wireless control of RGB lamp in your living room by picking your favourite

Color

CONCLUSION

 In this chapter, we programmed an interactive color picker for setting

a color to a RGB LED. Now, you can build a RGB lamp for your living room.

GUI app to control

color of lights

RGB LED light

 105

Send data to arduino micro controller from Python with a

help of a Bluetooth module connected with Arduinio. We will

make use of Serial module from python to send or receive

data from Arduino to our python GUI and control an LED but

in a wireless way.

 11
Challenge–7

WIRELESS CONTROL

OF ARDUINO

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, tkinter-tools to control the state of an LED connected to a micro-

controller in wireless way using Bluetooth.

ex7_bluetooth_python_itnterface.py

e7_bluetooth_python_itnterface.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 106

This exercise is about a wireless control of LED connected to arduino micro-

controller from a computer using a GUI built with Python script with Bluetooth.

Hardware required

 Arduino Uno – 1 Pc

 LED – 1 Pc

3. Jumper wires (F to M)- Few Pcs

4. Bread Board—1 Pc (optional)

5. Bluetooth (HC-05)—1 Pc

Circuit schematic

Exercise

Circuit connections explainer:

LED’s anode (longer leg) is connected to PIN 13 of arduino

LED’s cathode (shorter leg) is connected to GND of arduino via a resistor

Bluetooth TX PIN is connected to RX PIN of arduino

Bluetooth RX PIN is connected to TX PIN of arduino

Bluetooth VCC / GND PIN is connected to 5V / GND PIN of arduino accordingly

 107

Arduino Uno Bluetooth

LED

Hardware setup

 108

Work Flow

 109

//Declare variable

char serialData;

//Setup your baudrate & arduino pins

void setup()

{

 pinMode(13, OUTPUT);// LED pin on arduino

 Serial.begin(9600);

}

//Run your program again and again using loop

void loop()

{

 if (Serial.available() > 0) // send data only when you receive data from python

 {

 serialData = Serial.read();//read serial data and assign to variable

 Serial.print(serialData); //Print to check your data

 //Condition statement

 if(serialData == '0')

 {

 digitalWrite(13, HIGH); //Make your LED glow

 }

 else if(serialData == '1')

 {

 digitalWrite(13, LOW); //Make your LED off

 }

 }

}

Arduino script

 110

This is similar to Chapter 7 except the communication of data is performed

over Bluetooth. This arduino sketch assigns the pin 13 to be an output. This is

where your LED is connected with. You can also make use of arduino’s inbuilt

LED to perform this operation. At the beginning of the loop, a serial read is

triggered to read any data that comes in via serial port. Once the data is read,

an if_else condition is set to change the LED’s state. If the incoming data is ‘0’,

LED is set to HIGH and if incoming data is ‘1’, the LED is set to LOW state.

Once you compile and upload this sketch to your arduino, then try to send ‘0’

or ‘1’ via arduino IDE’s serial monitor. This should make your LED to turn ON/

OFF accordingly. This is a basic sketch to begin with our exercises. Once you

understand the logic of if_else statements to trigger an event, then its conven-

Verification

How it works

The Python script remains same according to Chapter 7 exercise.

Python script

Execution: Once the code is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following

action check list as done in previous exercise.

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

LED ‘ON’ State LED ‘OFF’ State

Python GUI Output

 111

#Import following packages

import serial

import tkinter

import tk_tools

'''

Connect to HC-05 Bluetooth via serial port: Password: 1234

Goto --> Device manager to find the serail port number of BLE module

com7 --> Change port accordingly to yours as the bluetooth is connected

'''

arduino = serial.Serial('com6', 9600)

#Function call for led_on button

def led_on():

 arduino.write(b'0') #write this value to arduino

 led.to_green(True) #Glow the led to green --> Refer to tk-tools docs

 button_on.config(state = "disabled") #disable button_on

 button_off.config(state = "normal") # enable button_off to normal state

#function call for led_off button

def led_off():

 arduino.write(b'1') #write this value to arduino

 led.to_green() #Switch off the led --> Refer to tk-tools docs

 button_off.config(state = "disabled") #disable button_off

 button_on.config(state = "normal") #enable button_on to normal state

#exit function call for closing the program

def close_window():

 arduino.close() #close Serial connection with arduino

 window.destroy() #destro tkinter app

MAIN

window = tkinter.Tk() #create tkinter window

window.title("Arduino RGB Led Control") #give title

window.configure(background="white") #change background color

Python script

 112

#Create buttons

button_on = tkinter.Button(window, text="ON",

 font= ('Verdana',16), padx=50, pady =20,

 bg="green",fg="white",

 command = led_on)

button_off = tkinter.Button(window, text="OFF",

 font=('Verdana',16), padx=50, pady =20,

 bg="red",fg="white",

 command = led_off)

button_exit = tkinter.Button(window, text="Exit",

 font=('Verdana',16),

 padx=130, pady =20,

 command = close_window)

#Pack buttons

button_on.grid(row=1,column=1)

button_off.grid(row=1,column=2)

button_off.config(state = "disabled")

button_exit.grid(row=2,column=1, columnspan =2)

#Create interactive led using tk-tools

led = tk_tools.Led(window, size=100)

led.to_green() #set led to green switch off condition) --> Refer tk-tools docs

led.grid(row=0,column=1, columnspan =2)

#execute the loop

window.mainloop()

CONCLUSION

 In this chapter, we were able to control arduino wirelessly using a Blue-

tooth interface. This can be further expanded to WiFi and mobile network con-

trol based on our application needs. Usually this is applied in IOT sensor plat-

form for data logging sensor’s.

 113

In this Chapter, lets use Pyfirmata to control arduino via Py-

thon program. Instead of uploading for a unique program into

arduino for each application, we will learn to use a Standard

Firmata program for our microcontroller. Then we will learn to

call each PINS of our micro-controller directly from python

program.

 12 Challenge–8

Fun with Pyfirmata

In this exercise you will get to learn to use python modules such as Pyfirmata

tkinter, tkinter-tools to control the state of an LED connected to a micro-

controller.

ex8_pyfirmata_led_control.py

Refer to GitHub repository mentioned in Page 139 for the codes:

 114

Hardware required

 Arduino Uno – 1 Pc

 LED – 1 Pc

3. Jumper wires (M to F)- 2 Pc

4. Bread Board—1 Pc (optional)

Circuit schematic

Circuit connections explainer:

LED’s anode (longer leg) is connected to PIN 13 of arduino

LED’s cathode (shorter leg) is connected to GND of arduino via a resistor

You can also prefer to use inbuilt Arduino’s LED at PIN 13

 115

In the previous section, we uploaded a unique sketch to your Arduino board with respect to

each exercises. Arduino sketches are written in a language similar to C++ and are compiled and

recorded on the flash memory of the microcontroller when you press Upload. While you can

use another language to directly program the Arduino microcontroller, it’s not a trivial task!

However, there are some approaches you can take to use Arduino with Python or other lan-

guages. One idea is to run the main program on a PC and use the serial connection to com-

municate with Arduino through the USB cable. The sketch would be responsible for reading the

inputs, sending the information to the PC, and getting updates from the PC to update the Ar-

duino outputs. In our previous exercise, we didn’t directly control the arduino from our PC.

Instead, we were sending inputs to arduino or getting inputs from arduino via serial protocol.

To directly control Arduino from the PC, you’d have to design a protocol for the communica-

tion between the PC and Arduino. For example, you could consider a protocol with messages

like the follow:

VALUE OF PIN 13 IS HIGH: used to tell the PC about the status of digital input pins

SET PIN 11 LOW: used to tell Arduino to set the states of the output pins

With the protocol defined, you could write an Arduino sketch to send messages to the PC and

update the states of the pins according to the protocol. On the PC, you could write a program

to control the Arduino through a serial connection, based on the protocol you’ve designed. For

this, we can use Python and the Firmata library. This protocol establishes a serial communica-

tion format that allows you to read digital and analog inputs, as well as send information to

digital and analog outputs.

 The Arduino IDE includes ready-made sketches that will drive Arduino through

Python with the Firmata protocol. On the PC side, there are implementations of the protocol in

several languages, including Python. To get started with Firmata, let’s use it to implement a

“Hello, World!” program

Exercise

Uploading the Firmata Sketch

Before we write your Python program to drive Arduino, you have to upload the Firmata
sketch so that you can use that protocol to control the board. The sketch is available in the
Arduino IDE’s built-in examples. To open it, access the File menu, then Examples, followed by
Firmata, and finally StandardFirmata:

 116

The sketch will be loaded into a new IDE window. To upload it to the Arduino, you can follow
the same steps you did before:

1. Plug the USB cable into the PC.

2. Select the appropriate board and port on the IDE.

After the upload is finished, you won’t notice any activity on the Arduino. To control it, you still
need a program that can communicate with the board through the serial connection. To work

for installation in pip and windows, run:

>> pip install pyfirmata

Usage:

>> import pyfirmata

 117

Sample Python script to try

import pyfirmata

import time

board = pyfirmata.Arduino('/dev/ttyACM0')

while True:

 board.digital[13].write(1)

 time.sleep(1)

 board.digital[13].write(0)

 time.sleep(1)

Here’s how this program works. You import pyfirmata and use it to establish a

serial connection with the Arduino board, which is represented by the board

object in line 4. You also configure the port in this line by passing an argu-

ment to pyfirmata.Arduino(). You can use the Arduino IDE to find the port.

board.digital is a list whose elements represent the digital pins of the Arduino.

These elements have the methods read() and write(), which will read and write

the state of the pins. Like most embedded device programs, this program

mainly consists of an infinite loop:

In line 7, digital pin 13 is turned on, which turns the LED on for one second.

In line 9, this pin is turned off, which turns the LED off for one second.

How it works

Python script with tkinter

#Import following packages

import pyfirmata

import time

import tkinter

import tk_tools

board = pyfirmata.Arduino('com6')

#Function call for led_on button

def led_on():

 board.digital[13].write(1) #write this value to arduino's 13th PIN'

 led.to_green(True) #Glow the led to green --> Refer to tk-tools docs

 button_on.config(state = "disabled") #disable button_on

 button_off.config(state = "normal") # enable button_off to normal state

 time.sleep(1)

 118

#function call for led_off button

def led_off():

 board.digital[13].write(0) #write this value to arduino

 led.to_green() #Switch off the led --> Refer to tk-tools docs

 button_off.config(state = "disabled") #disable button_off

 button_on.config(state = "normal") #enable button_on to normal state

 time.sleep(1)

def close_window():

 window.destroy() #destro tkinter app

window = tkinter.Tk() #create tkinter window

window.title("Arduino RGB Led Control") #give title

window.configure(background="white") #change background color

button_on = tkinter.Button(window, text="ON",

 font= ('Verdana',16), padx=50, pady =20,

 bg="green",fg="white",

 command = led_on)

button_off = tkinter.Button(window, text="OFF",

 font=('Verdana',16), padx=50, pady =20,

 bg="red",fg="white",

 command = led_off)

button_exit = tkinter.Button(window, text="Exit",

 font=('Verdana',16),

 padx=130, pady =20,

 command = close_window)

button_on.grid(row=1,column=1)

button_off.grid(row=1,column=2)

button_off.config(state = "disabled")

button_exit.grid(row=2,column=1, columnspan =2)

led = tk_tools.Led(window, size=100)

led.to_green() #set led to green switch off condition) --> Refer tk-tools docs

led.grid(row=0,column=1, columnspan =2)

window.mainloop()

 119

Arduino Uno

Blue LED

1K-Ohm resis-

 Connect your hardware according to circuit diagram provided.

 Upload your Firmata arduino sketch to your arduino microcontroller via USB

cable connected to your PC.

 Now run your Python script from Spyder IDE.

 Ta da! Control the LED using your GUI and real time control of arduino.

You will get the same output as Challenge-1 with GUI buttons to control ON/

OFF the LED on your arduino / external LED connected to PIN 13.

CONCLUSION

 In this chapter, we experimented an alternate way of hardware inter-

facing with Arduino from Python using Firmata library. This is very useful as

we don’t have to program the arduino each and every time when we update

our Python program.

Hardware setup

 120

In this exercise, you will learn to build a 4-wheeled robot

from scratch, program it and control it in wireless protocol

using Bluetooth with a help of tkinter GUI developed over

python.

 13
Capstone Project

BUILD & CONTROL OF

A ROBOT VEHICLE

In this exercise you will get to learn to use python modules such as pyserial,

tkinter, tkinter-tools to control the speed and direction of 4-wheeled robotic

vehicle connected to a micro-controller. You will learn to create slider widg-

ets, dial gauge widget, arrange buttons on tkinter window, send a speed and

direction data to micro-controller based on the slider position and button

event calls.

ex8_4wheel_car_control_bluetooth.py

e8_4wheel_car_control_bluetooth.ino

Refer to GitHub repository mentioned in Page 139 for the codes:

 121

This exercise is about to build, program and wireless control of 4-Wheel robotic

vehicle connected to arduino micro-controller using a Tkinter GUI built with Py-

thon script.

Hardware required

 Arduino Uno – 1 Pc

 7.4V/9V Battery – 1 Pc

3. Jumper wires (F to M)- Few Pcs

4. Bread Board—1 Pc (optional)

5. DC Motors—4 PCs

6. Wheels - 4 PCs

7. Motor driver—1 PC (Any motor driver of your choice)

8. Bluetooth (HC-05) - 1 Pc

9. Masking tape

10. Card board for making chassis (You can use any chassis if you have already)

11. Glue gun (For fixing motors to car board)

Circuit schematic

Exercise

 122

Let’s Build

This build tutorial is based on Scrap-o-bot concept. So, we will make use of

scraps around our house like carb board, masking tapes etc. .

Let’s make CHASSIS!

Chassis forms the base of our robotic vehicle.

To begin with, take a piece of Cardboard and Cut them according to dimen-

sions given below. Use scissors/ cutter to achieve this step. Take the help of

elderly person to handle scissors.

01
16 cm

20
 c

m

Card board

 123

Make a hole from bottom for letting Motor wires to pass through it. You can

make use of screw driver / Scissors to make a hole. Then mark dimensions

with a marker pen/pencil for gluing your motors to chassis as shown below.

This will act as a reference for fixing your motors in next step. 02

 124

The next step is to glue your Geared DC Motors (Any motor of your wish) to

the chassis with a help of Hot glue gun / Hot melt.

Align the wires of each motor and use a electrical tape or masking tape to fix

them in place. This will result you with tidy circuitry.

Refer to motor connection as shown in Circuit diagram. The 2 motors on the

left side are synchronous together and so connected together. This applies to

set f right side motors.

03

Top View

Bottom View

 125

Mount the electronics!

As a next step, lets mount our Arduino, Motor driver, Battery and

Bluetooth on our chassis. By mounting, it means we can fix them

using masking tape or using Hot glue gun melt.
04

 126

Mount the Wheels and Hook up electronics!

Next, mount the wheels that fits your motor and hook up the

electronics according to circuit diagram shown previously.

Before connecting the arduino to Bluetooth, Please make sure to

upload the arduino sketch.

05

Final look of a robot vehicle

 127

Work Flow

 128

//Declare variables

char serialData;

//Declaring Pins of arduino to pins of Deek robot 2 Channel motor driver

(L293D)

//Play around your driver to control the direction of motors

int m1=6; //connects to IN2 pin of Deek Robot motor driver -->Sets the direction

int m2=9; //Connects to IN1 pin of Deek Robot motor driver --> Sets the direc-

tion

int e1=5; //Connects to EN1 pin of Deek Robot motor driver -->Sets the speed

int m3=10; //connects to IN3 pin of Deek Robot motor driver -->Sets the direc-

tion

int m4=11; //Connects to IN4 pin of Deek Robot motor driver -->Sets the direc-

tion

int e2=3; //Connects to EN2 pin of Deek Robot motor driver -->Sets the speed

int x =0; //Variable to store the speed value from Python

//Setup your baudrate & arduino pins

void setup()

{

 pinMode(m1, OUTPUT);

 pinMode(m2, OUTPUT);

 pinMode(m3, OUTPUT);

 pinMode(m4, OUTPUT);

 pinMode(e1, OUTPUT);

 pinMode(e2, OUTPUT);

 Serial.begin(9600);

}

void loop()

{

 // send data only when you receive data from python

 if (Serial.available() > 0)

 {

 serialData = Serial.read();

 Serial.print(serialData);

Arduino script

 129

//Forward motion of car

 if(serialData == '1')

 {

 //Motor set 1

 analogWrite(e1, x);

 digitalWrite(m1, 1);

 digitalWrite(m2, 0);

 //Motor set 2

 analogWrite(e2, x);

 digitalWrite(m4, 1);

 digitalWrite(m3, 0);

 }

 //Reverse motion of car

 else if (serialData == '2')

 {

 //Motor set 1

 analogWrite(e1, x);

 digitalWrite(m1, 0);

 digitalWrite(m2, 1);

 //Motor set 2

 analogWrite(e2, x);

 digitalWrite(m4, 0);

 digitalWrite(m3, 1);

 }

 //Apply brakes

 else if (serialData == '3')

 {

 //Motor set 1

 digitalWrite(m1, 0);

 digitalWrite(m2, 0);

 //Motor set 2

 digitalWrite(m3, 0);

 digitalWrite(m4, 0);

 }

 130

//set Speed level 1

 else if (serialData == '4')

 { x=80;

 }

 //set Speed level 2

 else if (serialData == '5')

 { x=150;

 }

 //set Speed level 3

 else if (serialData == '6')

 { x=255;

 }

 //Turn left

 else if (serialData == '7')

 {

 //Motor set 1

 analogWrite(e1, x);

 digitalWrite(m1, 1);

 digitalWrite(m2, 0);

 //Motor set 2

 analogWrite(e2, x);

 digitalWrite(m4, 0);

 digitalWrite(m3, 1);

 }

 //Turn right

 else if (serialData == '8')

 {

 //Motor set 1

 analogWrite(e1, x);

 digitalWrite(m1, 0);

 digitalWrite(m2, 1);

 //Motor set 2

 analogWrite(e2, x);

 digitalWrite(m4, 1);

 digitalWrite(m3, 0);

 }

 }

}

 131

This is similar to Chapter 9 except the communication of data is performed

over Bluetooth. Additional functions are included for robot vehicle navigation

such as going forward, backward, left, right and stop. The number of speed

levels remains the same. And the code functionality remains the same with

if_else statements.

Once you compile and upload this sketch to your arduino, then try to send ‘0’

or ‘1’ via arduino IDE’s serial monitor. This should make your motor to func-

tion accordingly. Try all the navigation options by sending numbers from 1 to

6 via serial monitor. You can use the arduino serial monitor to trouble shoot

your motor connections from your motor driver to arduino micro controller.

You can make changes in code or you can make changes to electronics wiring.

Verification

How it works

The Python script remains almost same but with additional functions according

to Chapter 9 exercise. We have added new functions for Moving forward, back-

ward of the robotic vehicle.

Python script

Execution: Once the code is combined together, we are ready to execute our

python. But before doing this, make sure you have completed the following

action check list as done in previous exercise.

 Connect your hardware according to circuit diagram provided.

 Upload your arduino sketch to your arduino microcontroller via USB cable

connected to your PC.

 Verify the program using Arduino IDE Serial monitor.

 Once verified, Close the Serial monitor of Arduino IDE.

 Now run your Python script from Spyder IDE.

 Ta da! You will see your GUI opened.

 132

#Import following packages

import serial

import tkinter

import tkinter.messagebox

from PIL import Image, ImageTk

'''

Connect to HC-05 Bluetooth via serial port: Password: 1234

Goto --> Device manager to find the serail port number of BLE module

com7 --> Change port accordingly to yours as the bluetooth is connected

'''

arduino = serial.Serial('com6',9600)

#Function call to close your program

def close_window():

 arduino.close()

 window.destroy()

#function call to set speed of motor

def speed1():

 speed_scale.config(image = speed_low) #set image to button

 arduino.write(b'4') #write to arduino

def speed2():

 speed_scale.config(image = speed_medium) #set image to button

 arduino.write(b'5') #write to arduino

def speed3():

 speed_scale.config(image = speed_high) #set image to button

 arduino.write(b'6') #write to arduino

#function call to move your car forward

def upp():

 arduino.write(b'1')

#function call to move your car backward

def downn():

 arduino.write(b'2')

Python script

 133

#function call to turn your car left

def left():

 arduino.write(b'7')

#function call to turn your car right

def right():

 arduino.write(b'8')

#function call to stop your car

def stop():

 arduino.write(b'3')

MAIN

window = tkinter.Tk() #create tkinter window

window.title("4 Wheeled robot control") #give title

window.configure(background="white") #change background color

window.geometry("1400x1000") #set size of tkinter window

#create frame to stack your control buttons

f1 = tkinter.Frame(window)

f1.grid(row=2, column=0, sticky="nsew", pady=40)

f1.configure(background="white")

#Declare the images

stopped = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/scripts/

stop.png"))

up = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/scripts/

up.png"))

down = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/scripts/

down.png"))

left_turn = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/

scripts/left_turn.png"))

right_turn = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/

scripts/right_turn.png"))

car = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/scripts/

car.png"))

speed_low = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/

scripts/exercises/speed1.png"))

speed_medium = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/

scripts/exercises/speed2.png"))

speed_high = ImageTk.PhotoImage(Image.open("C:/Users/User/Documents/

scripts/exercises/speed3.png"))

 134

#Create your widgets

low_button = tkinter.Radiobutton(f1, text="Low",

 indicatoron=False, value="low", width=8,font=('Verdana',14),

command = speed1)

medium_button = tkinter.Radiobutton(f1, text="Medium",

 indicatoron=False, value="medium", width=8, font=

('Verdana',14), command = speed2)

high_button = tkinter.Radiobutton(f1, text="High",

 indicatoron=False, value="high", width=8, font=

('Verdana',14), command = speed3)

l1 = tkinter.Label(window, text="Control your Motor speed & direction using the

buttons below",

 font=('Verdana',12), bg="white", fg="black")

button_exit = tkinter.Button(window, text="Exit", font = ('Verdana',14),

 padx=100, command=close_window)

buttonup = tkinter.Button(f1, image = up, bg = "white", command= upp,

 relief= tkinter.FLAT)

buttonstop = tkinter.Button(f1, image = stopped, bg = "white", command= stop,

 relief= tkinter.FLAT)

buttondown = tkinter.Button(f1, image = down, bg ="white", command= downn,

 relief= tkinter.FLAT)

buttonleft = tkinter.Button(f1, image = left_turn, bg ="white", command= left,

 relief= tkinter.FLAT)

buttonright = tkinter.Button(f1, image = right_turn, bg ="white", command=

right,

 relief= tkinter.FLAT)

#fun image for your car

#you can replcae with your car image

car_image = tkinter.Button(window, image = car, bg ="white",

 relief= tkinter.FLAT)

 135

speed_scale = tkinter.Button(window, image = speed_low, bg ="white", padx

=100, pady=100, relief= tkinter.FLAT)

#pack all your widgets

low_button.grid(row=2, column=0, pady=5)

medium_button.grid(row=2, column=1, pady=5)

high_button.grid(row=2, column=2, pady=5)

l1.grid(row=1, column=0, columnspan =3)

button_exit.grid(row=2,column=3)

buttonup.grid(row =3, column =1,pady =30, padx=50)

buttonstop.grid(row =4, column =1, pady =20, padx=50)

buttondown.grid(row =5, column =1, padx=50, pady =20)

buttonleft.grid(row =4, column =0, padx=50, pady =20)

buttonright.grid(row =4, column =2, padx=50, pady =20)

car_image.grid(row =0, column =3, rowspan = 2)

speed_scale.grid(row =0, column =0)

#execute the loop

window.mainloop()

 136

Active GUI

Python GUI Output

GUI explained

 137

POTENTIAL APPLICATIONS

 Self driving delivery vehicle control and monitoring

 Robot based surveillance system

Self driving robotic vehicle

CONCLUSION

Based on this capstone project, we were able to build a robotic vehicle from

scratch, combine the electronics together and create a python tkinter program

to develop a GUI with interfaces to control our robotic vehicle. This basic robot-

ic systems can be further developed to solve the real world problems.

 138

CONCLUSION
 From this book, we hope you got introduced to Arduino and Python

programming. We discussed the procedure to install Arduino and Python IDE

on your PC. We had an overview to Tkinter modules and various elements

available for building an effective Graphical User interface from scratch. We

also got introduced to Tkinter high level widgets and the ways to implement it

in our project. Various challenges and the final capstone project that you came

across are designed carefully to give you an idea about the possibilities of GUI

creation for your mechatronics/ robotics projects. “Learning by doing is a best

way to learn new things” so try to implement your learnings in your upcoming

projects to get more familiar in programming electronics.

We wish you good luck for future projects!

Keep learning!

 139

SOURCE CODE

https://github.com/robots-guy/Arduino_Python_programming_for_Robots

Or alternatively you can Click me!

The Source code for the exercises in this book is available in GitHub repository.

https://github.com/robots-guy/Arduino_Python_programming_for_Robots

 140

POWERED BY

PYTHON 3

ARDUINO + PYTHON

PROGRAMMING FOR ROBOTS

Introduction to UI based computer control

		2020-07-14T16:36:26+0000
	Preflight Ticket Signature

