

HOW TO USE THIS BOOK

The prerequisite will be to understand the use of Arduino, a little bit of electronics, C language programming for Arduino, as well as a lot of desire to move on, go further and create. Thus, my first book, already mentioned, is a perfect match for this one.

Arduino is a platform formed by equipment electronic and an integrated programming environment (Integrated Development Enviroment - IDE) for electronic prototyping and

software.

The electronic equipment of the Arduino platform consists of an integrated circuit board, properly equipped with its electronic components, the central component of which is Atmel AVR type microprocessor. The software that will be used to program the Arduino are free and free.

Much has been discussed recently about the use of Arduino in technology projects, but little about how actually use that component, and what it actually gives to build with it. This book, a work prepared by Fernando Bryan, that throughout his academic life has been creating, testing and innovating projects, it brings us many projects with Arduino. THE

material presented here has the purpose of presenting possible designs that can be made with some electrical components.

The projects are designed to use only components easy to find in specialized electronics stores, which low cost and which can be, as far as possible, shared between projects.

PREFACE

emergence of new ideas and how to put them into practice. Will be 10 chapters with projects ready to follow step by step, giving guidelines for automating a door (opening it) with password), control the speed of an object with a radar, automate a lighting system via remote control,

build electronic data, create a video game, among several other ideas, even the construction of a spider robot.

This book was not written for anyone who wants to learn electronics, but for those who want to learn to program Arduino through of these projects that don't exactly require much knowledge electronics, but programming. Therefore, this book is for those who know or want to learn to program, and if they know how to program - regardless of language or operating system - at least

intermediate.

We thank Fernando Bryan, for the support and dedication during these two years that Arduino has been introducing us and surprising more and more, not only with this tool technological, but with its willingness to teach, excite and revolutionize thoughts and ideas.

It is with great satisfaction that we present this book, we believe in working with Arduino. We get inspired a lot with the book Arduino: Guide to putting your ideas into practice in our classes, and we appreciate the opportunity to present this second book, which will bring us many projects and new concepts of works. In addition, it will stimulate and involve new

interested in that work.

Move on. It's time to learn. Feel free!

1 How to set up projects

2 Project n 01 - Creating our own Arduino

2.1 Materials used in this project

2.2 Developing the project

2.3 Challenge

3 Project n 02 - Automating a door with a password via

keyboard

3.1 Materials used in this project

3.2 Developing the project

3.3 Challenge

4 Project n 03 - Creating a radar to check the speed

of an object

4.1 Materials used in this project

4.2 Developing the project

4.3 Challenge

5 Project n 04 - How about turning on the lamps in your house with

Remote Control?

5.1 Materials used in this project

5.2 Developing the project

5.3 Challenge

6 Project n 05 - An electronic data for games

6.1 Materials used in this project

6.2 Developing the project

6.3 Challenge

7 Project n 06 - Creating a video game for you

7.1 Materials used in this project

7.2 Developing the project

7.3 Challenge

8 Project n 07 - Refrigerator alarm with monitoring of

opening the door

8.1 Materials used in this project

8.2 Developing the project

8.3 Challenge

9 Project n 08 - Building an offline GPS tracker

9.1 Materials used in this project

9.2 Developing the project

9.3 Challenge

10 Project n 09 - Hot, hot ... hot ... burnt potatoes!

10.1 Materials used in this project

10.2 Developing the project

10.3 Challenge

11 Project n 10 - The simplest spider robot in the world!

11.1 Materials used in this project

11.2 Developing the project

11.3 Challenge

12 General Bill of Materials

The projects in this book are designed to be put together using real equipment and components, without using a simulator.

Therefore, it is important to obtain all the resources before you begin.

Only one Arduino and one test plate will be used, or prot-o-board and several other components that are indicated and detailed in each project. But if you want to keep them assembled, you will need to provide a set for each project.

You will also need to have a computer to perform the Arduino programming, as well as having an internet connection. THE latest version of the Arduino IDE can be downloaded at

http://arduino.cc
 . Note that it is always a good idea to use the

updated.

HOW TO ASSEMBLE THE

PROJECTS

[image:]

Figure 1.1: The Arduino website (https://arduino.cc), accessed on March 18, 2016

Give preference to mount the projects on a table or a

stand. After everything is up and running, you can decide

about finishing, adaptations and installation in an appropriate place.

Before starting, try to correctly identify the

components and wiring diagrams.

All source codes featured in the projects in this book

are available at
 https://github.com/fbryan/fontes/
 .

The libraries used for the projects are available at

https://github.com/fbryan/
 , the direct paths are

made explicit in the projects.

Source codes

It is always worth emphasizing that these codes can and should

be improved. Study them, understand how they work,

modify, improve and adapt, so you can use them

on their own projects.

Now that you know what you'll need to get started, let's

start and in style: how about creating your own Arduino?

[image:]

Figure 2.1: The Arduino UNO R3, where the microcontroller will come from

Let's start with a simple program, the simplest of

all: flash the LED on pin 13.

void
 setup () {

pinMode (13, OUTPUT);

}

void
 loop () {

digitalWrite (13, HIGH);

delay (1000);

digitalWrite (13, LOW);

delay (1000);

}

Compile and load the program on your Arduino and verify that

everything works fine. That is, if the LED on digital pin 13 is on

for a second and then also deleted for a second,

blinking.

Turn off the Arduino by disconnecting it from the computer and

be very careful, remove the microcontroller from the board. For that, you

you can use your own tweezers to remove integrated circuits,

[image:]

Figure 2.2: Removing the microcontroller from the Arduino board

Use extreme care when removing the

microcontroller. If you damage any pin, it will not

will neither work out nor connect back to the board of the

Arduino. In particular, make sure you do not bend

any of the pins.

[image:]

Figure 2.3: The Arduino board without the microcontroller and the microcontroller outside the board

Arduino

One of the things you should pay close attention to is

position of the microcontroller. Note that at the top, where there is

brand and model inscriptions (ATMEGA328), there is also a

chamfer and a point engraved in low relief. See figure a

follow:

[image:]

Figure 2.4: The microcontroller with the chamfer and the low relief point highlighted at the

left of image

[image:]

Figure 2.7: The ATMEGA328 microcontroller connected to the prot-o-board

You will also need a 9 volt battery holder

to power the entire circuit:

[image:]

Figure 2.8: The 9-volt battery holder

Let's enjoy and also connect the battery holder to the

prot-o-board:

[image:]

Figure 2.9: The battery holder connected to the horizontal tracks on the prot-o-board

A voltage regulator of at least 20 volts to 5 volts.

The used will be a 7805 transistor, easily found in stores

electronic materials at a low cost.

[image:]

Figure 2.10: A 7805 voltage regulator

Transistor 7805 is a linear voltage regulator capable of

keep the output voltage constant at a certain value, in the

5V case, which is required by the microcontroller. The minimum voltage

input voltage is approximately 7V and maximum 25V, with

maximum current of 1.5A. Then, a 9V battery will handle the

enough message and the circuit will not require more than that

in current.

The three pins are numbered in the following figure:

[image:]

Figure 2.11: A 7805 voltage regulator with numbered pins

Pin 1 is the voltage input, according to the specifications already

previously mentioned. Pin 2 is the common (that is, GND), and the

pin 3 is the voltage output already set.

So let's put the voltage regulator on the prot-o-board,

connecting pin 1 of the regulator to the positive of the battery, pin 2 of the

regulator to the negative battery (GND) and pin 3 of the regulator to the

pin 7 of the microcontroller (VDC + 5V).

[image:]

Figure 2.12: Connections between the voltage regulator, battery and pin 7 of the microcontroller

Let's take the opportunity to connect pin 20 of the

microcontroller to the battery positive, and pins 8 and 22 also

microcontroller to battery negative (GND).

[image:]

Figure 2.13: Pins 8 and 22 of the microcontroller connected to the negative and pin 20 connected to the

positive battery

Pin 21 of the microcontroller (AREF) must also be connected

battery positive.

We also need an oscillating crystal to generate

clock frequency, so that the microcontroller can work.

[image:]

Figure 2.14: The oscillating crystal, used as a clock

The oscillator crystal will be used as a clock signal generator

for the microcontroller. It is important because it guarantees the

timing and timing so that the microcontroller

function properly.

When you buy a crystal, you will see that there are several frequencies

possible that are generated by them. The microcontroller

ATMEGA328 used in Arduino UNO works in frequency

maximum of 20MHz, but by default, Arduino UNO boards are

16MHz crystals are used.

Connect pins 9 and 10 of the microcontroller to the oscillator crystal. THE

crystal has no polarity.

[image:]

Figure 2.15: The crystal connected to the microcontroller

There are just a few more to go, just three components. First,

two 22pF ceramic capacitors:

[image:]

Figure 2.16: The two ceramic capacitors

These capacitors will be connected each between a terminal of the

oscillating crystal and battery negative (GND), as in the figure

follow:

[image:]

Figure 2.17: Capacitors between the oscillator crystal terminals and the battery negative

The last component is a 10KΩ resistor, which will be connected

between the voltage regulator output (+ 5V) and pin 1 of the

microcontroller. As previously explained, this pin is the

reset and, when you set it to a low level (GND) on it, the

microcontroller will be reset and program execution will begin

again. So, with this resistor, between it and the + 5V,

we guarantee that it will always have a high level (
 HIGH
).

If you want to include a reset button, simply turn it on

that when pressed, connect pin 1 of the microcontroller to the

GND (battery negative).

[image:]

Figure 2.18: The 10KΩ resistor between the voltage regulator and pin 1 of the microcontroller.

Ready! There's your Arduino mounted on the prot-o-board. What

what name will you give? Now, I was in doubt if I keep the idea of

Bryanduno, or if I call him Fernanduno. But the toast in

tribute to him is guaranteed.

But, and to test it? Remember that we program the

microcontroller at the beginning of this project to flash an LED that

connected to pin 13? So, let's turn on the LED set and

resistor on pin 13 of the Arduino.

Connect the resistor between pin 19 of the microcontroller (which is 13

Arduino) and the positive LED terminal. Connect the terminal

negative from LED to battery negative (GND).

other things not so obvious.

But for this specific project, a good challenge will be to record

the microcontroller without removing it from the prot-o-board, and placing it in

an Arduino UNO board. The tip is that, for that, just use a

USB / Serial converter and connect the serial RX pins of the converter to the

Serial TX of the microcontroller, the TX of the converter to the RX of the

microcontroller and the GND of the converter to the battery negative.

The next project could be the first to receive the Arduino

built into it. So that everything fits in a box that also

can contain the keyboard, you can build your own Arduino

to reduce the need for space inside that box. also

it will be a project that can be of practical use and help you not to have

more than remembering the keys to open doors and gates. Let's go

over there!

In this project, we will consider that your door has already

doorknob and lock, and that you don't necessarily want to change it

it for a new one. So the idea is to use an electric lock

common, of those used in gates and residential doors. With

this, the cost will be reduced and the ease of adaptation will be

increased.

Let's set it up, and then you can decide the best way

to install wherever you want. We will need an Arduino UNO:

[image:]

Figure 3.1: The Arduino UNO R3

You will also need a prot-o-board to support

the entire circuit, which will be very small:

3.2 DEVELOPING THE PROJECT

[image:]

Figure 3.2: The prot-o-board used, and you can use any one you have

available

We will also need a membrane matrix keyboard

with at least 12 keys:

[image:]

Figure 3.3: The membrane keyboard, numeric only, with 12 keys, three columns for four

lines

The 12-key membrane keypad, like the shown in the previous figure, has 7 wires, three of which are for access to columns and four to rows. Pin 1 is the most left, looking at the keyboard from the front, and pin 7 is the rightmost right.

The keyboard will occupy most of the digital pins of the Arduino,

that each pin on the keyboard must have a corresponding Arduino. To capture the keys that will be pressed, we will use the
 Keypad
 library which is available at

https://github.com/fbryan/keypad
 .

On this page, there will be a link for you to download the latest version of the library. This will bring some functions that map the pins of the button matrix which is actually this

keyboard.

To import the library, open the Arduino IDE and click on the
 Sketch
 menu . Then select the
 Include
 option

Library
 :

[image:]

Figure 3.4: The Arduino IDE's Sketch menu with the Include Library option selected.

Click the
 Add .ZIP library
 option , which will open the

following box for selecting files:

[image:]

Figure 3.5: The window for selecting the keypad library in .zip format

Find where you saved the
 keypad.zip
 file you obtained

by the previous download. Then, click the
 Open
 button . Ready, the

library has been added. If you open the
 Sketch
 menu again

and select the
 Include Library
 option , see that the Keypad is already

is available, as we see below:

[image:]

Figure 3.6: The Sketch menu with the Include Library option selected. View the Keypad library

available.

We can already start assembling our project for real, from

from now. Let's connect and program the keyboard to understand how it works and how to capture what the user is going to type. That it will also advance part of the project.

We will connect the keyboard directly to the Arduino. For this, you will need 7 wires. I will not connect via prot-o-board, because it won't be necessary, and that would only increase our use of wires.

Looking at it from the front, starting from left to right, turn on

all pins on the keyboard to digital pins 9, 8, 7, 6, 5, 4 and 3 on the

Arduino, in this sequence:

[image:]

Figure 3.7: The keyboard connected to the Arduino digital pins

With everything connected, let's go to the schedule:

#
 include
 <Key.h>

#
 include
 <Keypad.h>

const
 byte n_lines = 4;

const
 byte n_columns = 3;

char
 keys [n_lines] [n_columns] = {

{
 '1'
 ,
 '2'
 ,
 '3'
 },

{
 '4'
 ,
 '5'
 ,
 '6'
 },

{
 '7'
 ,
 '8'
 ,
 '9'
 },

{
 '*'
 ,
 '0'
 ,
 '#'
 }

};

byte mapa_linha [n_linhas] = {9,8,7,6};

byte mapa_coluna [n_colunas] = {5,4,3};

Keypad keyboard = Keypad (makeKeymap (keys), row_map, column_map,

n_lines, n_columns);

void
 setup () {

Serial.begin (9600);

}

void
 loop () {

char
 key = keyboard.getKey ();

if
 (key! = NO_KEY) {

Serial.println (key);

}

}

With the help of the
 Keypad
 library , everything is easier, but let's go step by step. Includes adds the
 Keypad
 library and its
 Key
 complement to the project. This library will offer

all objects and methods needed to read the keys. We need define the number of lines, which we do with the variable
 n_lines
 , and also the number of columns, made with the variable
 n_columns
 ,

that exist on the keyboard that we're going to use.

The values of the keys that exist are defined in the matrix
 keys
 , which reflects the position and what the keys are. Note that there something extremely interesting can happen: you can define

any values for the keys. If you want that when the number one on the keyboard is pressed, the
 %
 value is read , for example, just define this in this matrix. The user will find that the

key 1 sends a value, but not really.

We will, of course, use the "normal" values for the keys, if he would not confuse his studies a bit. But this is a possibility that deserves to be mentioned.

With the vectors
 mapa_linha
 , we define which digital pins Arduino are connected to the pins corresponding to the lines on the keyboard. We do the same with the pins corresponding to the

keyboard columns with
 map_columns
 , as shown previously when connecting the keyboard to the Arduino.

THE

line

Keypad

keyboard

=

Keypad (makeKeymap (keys), line_map, column_map, n_line

s, n_columns)
 transforms all of these previous definitions into

object called the keyboard, which is of the
 Keypad
 type , and receives the matrix

with the key map called
 keys
 , the pin maps for the

rows
 map_line
 and
 map_column
 , for columns. also

receives the number of rows and columns of the keyboard.

In the
 setup ()
 function , we started the serial connection with 9,600

bauds with the
 Serial.begin
 line
 (9600)
 . In the function
 () loop
 is

read the key pressed for the
 key
 variable , done with the line

char key = keyboard.getKey ()
 . Then, with the

if
 selection , we check if any key was pressed with

if (! = NO_KEY key)
 . This structure will make sure that if a key

is pressed, its corresponding value is shown in the output

serial with the line
 Serial.println (key)
 .

Let's test what we have so far. Compile and upload the

your program for Arduino.

[image:]

Figure 3.8: Serial monitor after pressing all keys

With that ready, we already have the core of our project almost

concluded. Since the idea is to read a password, compare with a password

and whether or not to release the lock. Very little to go, one

Since controlling the lock will be almost the same as

control an LED: on, release the input; off, does not release.

First, following this logic, let's simulate the lock

electrical with the LED of the digital pin 13 of the Arduino: we will type

numeric sequence and we will compare it with a sequence

preset. If they match, we will access the LED; otherwise,

nothing will happen.

Change the previous code to look like the code shown at

follow:

#
 include
 <Key.h>

#
 include
 <Keypad.h>

const
 byte n_lines = 4;

const
 byte n_columns = 3;

char
 keys [n_lines] [n_columns] = {

{
 '1'
 ,
 '2'
 ,
 '3'
 },

{
 '4'
 ,
 '5'
 ,
 '6'
 },

{
 '7'
 ,
 '8'
 ,
 '9'
 },

{
 '*'
 ,
 '0'
 ,
 '#'
 }

};

byte mapa_linha [n_linhas] = {9,8,7,6};

byte mapa_coluna [n_colunas] = {5,4,3};

Keypad keyboard = Keypad (makeKeymap (keys), row_map, column_map,

n_lines, n_columns);

int
 pos = 0;

int
 led = 13;

char
 password [12];

correct
 char
 [] =
 "123456"
 ;

void
 setup () {

pinMode (led, OUTPUT);

Serial.begin (9600);

}

void
 loop () {

char
 key = keyboard.getKey ();

if
 (key! = NO_KEY) {

if
 (key! =
 '#'
) {

password [pos] = key;

pos ++;

}

if
 (key ==
 '#'
) {

Serial.println (password);

if
 (!
 strcmp
 (correct, password)) {

Serial.println (
 "Correct password"
);

digitalWrite (led, HIGH);

delay (5000);

}

for
 (
 int
 i = 0; i <
 strlen
 (password); i ++) password [i] =
 ''
 ;

pos = 0;

digitalWrite (led, LOW);

}

}

}

The code hasn't changed much from the previous one, since the use of
 Keypad
 libraries was unchanged. What has changed is that we created the
 pos
 variables that will indicate the reading position of the password being entered. We also created a
 led
 , which will indicate

the digital pin of the Arduino with the LED that we will turn on if the password is correct, in this case pin 13. The
 password
 variable you will receive the password and has a maximum size of 12

characters, that is, we limit the password length to 12 numbers.

Finally, we create the
 correct
 variable
 []
 , which contains the password that should be used to light the LED.

In the
 setup ()
 function , we start the LED digital pin as
 OUTPUT
 , that is, output. We are still using the connection serial so that we can verify the correct functioning of the

program. If something goes wrong, you can check what's happening.

In the
 loop ()
 function , we read what is typed on the keyboard to
 key
 variable and we use the
 if
 selection structure to check if any key was pressed, exactly as in the first

code that we did. After that, things change a little bit.

We use an
 if
 selection structure to check whether the key entered was not
 #
 and, if not, we store the key typed in the
 password
 variable at the position defined by the
 pos
 variable , incremented in sequence. That is, each digit is stored in the next position of the vector up to the size limit determined for the
 password
 variable .

If the key pressed is
 #
 , we send the password entered to the serial connection. You can see it on the Serial Monitor. With another
 if
 structure , we compare the typed password with the expected one using the
 strcmp
 command
 (correct, password)
 . It will return
 0
 if the

variables have the same content; a value less than zero if the correct variable is less than the
 password
 variable ; and a value greater than zero if the correct variable is greater than the password

typed.

All of this is in the specification of the
 strcmp
 command from language and causes a problem in
 if
 : zero is false. Being so, we need to use the operator
 !
 (
 NOT
) to reverse the

return leaving it true for the same strings.

If the password is entered correctly, we send the serial connection to message

password

correct

with

The

Command

Serial.println ("Correct password")
 , which you can check
 on the Serial Monitor. The LED on digital pin 13 is lit with
 digitalWrite (led, HIGH)
 and will remain so for 5 seconds

thanks to the
 delay
 command
 (5000)
 .

Next, we use
 for (int i = 0; i <strlen (password); i ++)

password [i] = ''
 to clear the password that was entered and wait

a possible new typing. We also reset the
 pos
 variable with

pos = 0
 for the same reason. We also have to turn off the LED on the

pin 13; for this, we use
 digitalWrite (led, LOW)
 .

With this code, we have the project practically ready!

Got it? We just have to replace the LED on pin 13 with a relay,

so that we can control the electric lock with 110V using

the Arduino. Instead of turning on the LED, we will activate the relay which, for

turn, turn on the lock and open the door.

Before proceeding, remember to take great care

necessary when using electricity. Follow all

safety standards such as carrying out assembly with all

equipment disconnected, protect and isolate contacts and do not

touching metal parts and contacts while the equipment

is in operation. The risks are serious and you must

really be careful not to have an accident. In case of

doubt, review, re-study and seek help.

A relay is an electromechanical switch that has a

coil with a metallic core that is transformed into a

electromagnet when this coil is connected. When the electromagnet,

shown in the next figure, goes into action attracts metallic contacts

existing inside the relay making an electrical connection between them.

There are two types of metallic contacts in a relay: normally

open and normally closed which are moved by the action of the

electromagnet, as we will see below.

[image:]

Figure 3.9: A relay seen from below with its terminals and the coil connection in evidence

In this figure, terminals numbered 1 and 2 are the contacts for

drive the coil. The relay we are going to use must have the coil

driven by only 5V, so it can be controlled by

Arduino. So with just 5V, we can activate the contacts by

where 110V will pass to activate the electric lock.

Let's see the contact scheme:

[image:]

Figure 3.10: The relay seen from below with its terminals and the connection of the contacts in evidence

In the case of this figure, the terminals connecting the coil are not

numbered, but you've met them before. The set formed

through terminals 3 and 4 are normally closed contacts, and the

set of terminals 3 and 5 are normally open.

This means that, with the coil disconnected, the connection will be between

the set of terminals 3 and 4. And if the coil is activated, the

connection will be between the set of terminals 3 and 5. And this is how

we will make our switch for the lock.

The following figure shows the position of the terminals when viewed from

up for easy viewing.

[image:]

Figure 3.11: The relay seen from above with the numbered terminals

There is one last detail before we set everything up. It's not possible

connect the relay directly to the Arduino digital pin. The relay coil

has, in general, a resistance of approximately 70Ω, and a voltage of

5V which results in a current of 0.07A - well above 0.04A

tolerated by Arduino.

However, we can activate it by pin 5V, which is connected

directly to the Arduino voltage regulator which can supply

0.5A. As our total circuit will not consume current above

of that maximum limit, we can use it without problems. For

able to do all of that, we will use a transistor that will make the

interface between the Arduino digital pin and the 5V pin to trigger the

Arduino coil.

First, see the connection of the TIP102 transistor on the prot-o-board:

[image:]

Figure 3.12: The TIP102 transistor connected to the prot-o-board and connected to the Arduino

Connect the base terminal of the transistor to a 1KΩ resistor, and the

another terminal of the resistor to the digital pin 13 of the Arduino. Like this,

we will not change anything in the program at all.

To the emitter terminal of the transistor, connect one of the GND pins of the

Arduino. The collector terminal of the transistor must be connected to one of the

terminals of the relay coil. And the other terminal of the relay coil

must be connected to the 5V.

[image:]

Figure 3.13: The transistor connected to the Arduino's GND and the relay coil, and the relay connected to the 5V

Arduino

Among the contacts of the normally open relay, we will place

our electric lock: just disconnect one of the wires and connect it to the relay,

normally open contacts. So when we trigger the

relay coil, the lock will also be activated.

[image:]

Figure 3.14: One of the lock drive wires in the sectioned relay with the relay between the

lock and fountain

The following is a panoramic picture of the project:

[image:]

Figure 3.15: The complete project

With everything set up and ready, just enter the correct password and see the lock is activated.

A video of this project in operation can be seen at
 https://youtu.be/dR3-ssrLrWA
 .

There are plenty of additions to this project. The possibilities are practically endless!

3.3 CHALLENGE

You can include a buzzer and, with each key, you can emit a beep to indicate that the typing has happened. It is also possible include an LCD display to indicate messages to the user, such as like "access denied", "enter your password" or even "welcome coming! ".

It is also important to give the user the possibility to generate and

record your own password from an initial password. For this, you can leave the password saved in the EEPROM memory.

In the EEPROM memory, you can still save who opened the gate (through password identification) and when this occurred.

Then, through a serial connection (you can also think of bluetooth) with a computer, you can download this log and know how was the traffic in it local.

In the next project, we will measure the speed of any thing that moves, but relatively closely. So, get ready and run!

[image:]

Figure 4.1: The ultrasonic sensor with its numbered terminals

Terminal 1 must be connected to the 5V and the 4 to the Arduino GND,

which are the electrical power terminals of the sensor. Terminal 2

is the trigger and should be set to high (
 HIGH
) and then

then down (
 LOW
). This is the signal for the sensor to start

emit the ultrasound pulses and wait for the return.

After the trigger is triggered, the sensor emits eight pulses

(40 KHz), which cannot be heard by humans

because of the frequency used. After emitting the pulse, it leaves the

Echo terminal (3) high (
 HIGH
) until this pulse is detected

after reflecting (echoing) on some obstacle, when will the

Echo terminal for
 LOW
 . With the relationship between the speed of sound

and the time that the Echo terminal was at
 HIGH
 , it is possible

determine how far away the obstacle is.

Let's get it up and running! Connect the VCC terminal of the

sensor to the Arduino's 5V and then the sensor's GND terminal

to one of the Arduino GNDs, as in the following figure.

[image:]

Figure 4.2: VCC (1) and GND (4) terminals connected to the Arduino

Now connect the Echo terminal to the digital pin 2 of the Arduino, and the

Trig terminal to digital pin 3 of the Arduino.

[image:]

Figure 4.3: Echo (3) and Trig (2) terminals of the sensor connected to the Arduino

With the calls made, we can test it. Before you start anything, you will need to download and install it on your Arduino IDE the Ultrasonic library. It is super useful, as it saves us from having to perform various calculations to count the time the pulse ultrasonic goes to an obstacle and comes back, and then convert everything in centimeters, meters or even inches.

You can download the Ultrasonic library at
 https://github.com/fbryan/ultrasonic
 .

To install the library on your Arduino IDE, use the same steps already presented in project n 02 (chapter 03).

Finally, let's go to the code:

#
 include
 <Ultrasonic.h>

Ultrasonic sensor (3, 2);

void
 setup ()

{

Serial.begin (9600);

}

void
 loop ()

{

measured
 float
 ;

long
 time = sensor.timing ();

measure = sensor.convert (time, Ultrasonic :: CM);

Serial.print (
 "Round trip time ="
);

Serial.print (time);

Serial.print (
 "microseconds -"
);

Serial.print (
 "Measured distance ="
);

Serial.print (measure);

Serial.println (
 "cm"
);

delay (1000);

}

The first step is to import the
 Ultrasonic.h
 library with

#include <Ultrasonic.h>
 . Then, we created the object

sensor as being of the
 Ultrasonic
 type . The parameters passed

are where the Trig and Echo terminals are connected, with the Trig

is on digital pin 3, and Echo on digital pin 2 on the Arduino.

In the
 setup ()
 function , we only start serial communication 9600 baud computer using the command
 Serial.begin (9600)
 . In the
 loop ()
 function , we declare a
 float
 type variable , called
 measure
 , which will store what is measured by the sensor.

We also declare a variable of type
 long
 called
 time
 , which is already initialized with the return of the
 timing ()
 method of the
 sensor
 object , which is the total time that the ultrasonic pulse

it takes to be emitted, reflected in an object and be detected in a return. This method already includes the routine of firing the sensor trigger and control it. The
 measured
 variable then receives the return of the method
 convert
 from the
 sensor
 object . This method should receive as

microseconds parameter of round trip pulse time ultrasonic and the unit of measurement to be used. The measure to be used can be
 Ultrasonic :: CM
 to return the measurement in

centimeters, or
 Ultrasonic :: IN
 to return in inches.

In the rest of the code we send the data to the Monitor

Serial and we use a
 delay (1000)
 to make a measurement every

second. To test, compile and send Sketch to your Arduino.

Open the Serial Monitor and you should see something

similar to the figure below.

[image:]

Figure 4.4: Serial Monitor showing the measurement results

Ok, we know how the ultrasonic sensor works and how

program it, but it's not quite what we want yet. We need

make a measurement and, immediately after, make another and, for the difference

of distance between them, calculate the displacement. Recalling the

High School Physics classes and with the following code,

we solved this:

#
 include
 <Ultrasonic.h>

Ultrasonic sensor (3, 2);

previous
 float
 = 0;

float
 distance = 0;

displacement
 float
 = 0;

void
 setup ()

{

Serial.begin (9600);

}

void
 loop ()

{

long
 time = sensor.timing ();

measure
 float
 = round (sensor.convert (time, Ultrasonic :: CM));

distance =
 abs
 (measure - anterior);

displacement = (distance * 10) / 100;

Serial.print (
 "previous ="
);

Serial.print (previous);

Serial.print (
 "-"
);

Serial.print (
 "measure ="
);

Serial.print (measure);

Serial.print (
 "-"
);

Serial.print (
 "distance ="
);

Serial.print (distance);

Serial.print (
 "-"
);

Serial.print (
 "speed ="
);

Serial.print (offset);

Serial.println (
 "m / sec"
);

delay (100);

previous = measure;

}

This code is basically a modification of the previous one. In him

we declare the sensor object of type
 Ultrasonic
 , as in the code

above, and three global
 float
 variables .

The first variable is called the
 previous one
 , which will store the

immediately previous measurement, so that we can make the relationship

between two measurements and calculate the displacement, which also has

its variable (
 offset
) to store it. The variable

distance will
 store the subtraction between the
 previous
 variable

(with the measurement in the previous instant) and the
 measured
 variable ,

contains the measurement at the current time.

In the
 setup ()
 function , again we start the communication

serial with the computer with a baud rate of 9600 baud.

In the
 loop ()
 function , we declare the variable of type
 long

called
 time
 , which is already initialized with the return of the method

timing ()
 of the
 sensor
 object , being the total time that the pulse

ultrasound takes to be emitted, reflected in an object and be

detected back. The variable
 measured
 this time will receive the value of

convert
 method of
 sensor
 in centimeters already rounded,

not to contain too many decimal places.

Next, we calculate the distance traveled between the measurement

previous and current (
 measured
 variable). To do this, simply subtract a

the other. We use the
 abs
 function to return the value in

module, ie ignoring the signal. This result will be stored

in the
 distance
 variable .

To find out the displacement, we multiply the distance covered

by 10, because we want to know the measurement in seconds, since the time

data is 100 milliseconds between measurements (command
 delay (100)
 further down in the code). Then, we need to divide everything for 100, since the desired is to obtain the data in meters and

not centimeters, as the
 convert
 method of the
 sensor
 object

Returns.

The
 Serial.print
 and
 Serial.println
 command sequence

will send all data to the Serial Monitor, so you can

track measurements. Finally, we match the variable

[image:]

Figure 4.6: The button connected to the Arduino

As we are not using prot-o-board, we have no way

share digital pin 4 or 5V with more than one

component. So I'm going to use the Arduino's internal PULL-UP resistor

on digital pin 4.

The Arduino's internal PULL-UP resistor is activated via software and has a value between 20KΩ and 50KΩ. It will have the effect of ensure the function of the button. That is, when the button is

open, we will read on digital pin 4 the
 HIGH
 value , and when it is closed (pressed), we will read the
 LOW
 value on that same pin.

Let's change our code so that only measurements take place

when the button is pressed:

#
 include
 <Ultrasonic.h>

Ultrasonic sensor (3, 2);

int
 button = 4;

previous
 float
 = 0;

float
 distance = 0;

displacement
 float
 = 0;

void
 setup ()

{

Serial.begin (9600);

pinMode (button, INPUT_PULLUP);

}

void
 loop ()

{

if
 (digitalRead (button) == LOW) {

long
 time = sensor.timing ();

measure
 float
 = round (sensor.convert (time, Ultrasonic :: CM));

distance =
 abs
 (measure - anterior);

displacement = (distance * 10) / 100;

Serial.print (
 "previous ="
);

Serial.print (previous);

Serial.print (
 "-"
);

Serial.print (
 "measure ="
);

Serial.print (measure);

Serial.print (
 "-"
);

Serial.print (
 "distance ="
);

Serial.print (distance);

Serial.print (
 "-"
);

Serial.print (
 "speed ="
);

Serial.print (offset);

Serial.println (
 "m / sec"
);

delay (100);

previous = measure;

}

}

The changes from this code to the previous one are really few

again: I declared an entire variable called a
 button
 , initialized with number 4, indicating which digital pin it is on button on. With
 pinMode (button, INPUT_PULLUP)
 ,

initialize the button pin with the activation of the PULL-UP resistor

as explained above.

If the button is pressed, the return of the digital pin will be

LOW
 , so I used the
 if
 selection structure
 (digitalRead (button)

== LOW)
 to read the pin return and compare it with
 LOW
 . If

comparison is true, the code that performs the

ultrasonic sensor measurements and calculates speed.

Only two things are missing: include a two-segment 7-segment display

digits or two single-digit 7-segment displays to show the

speed and put everything somewhere to make it more practical

than the table. So, let's go to him.

A 7-segment display is a display for numbers

just (although I really like to invent with him, making him

show other things).

[image:]

Figure 4.7: A 7-segment display

The display consists of 7 LEDs that, on or off in

together show shapes of numbers. There is also the point

decimal, which is also a segment that can be lit or not.

Look the following picture:

[image:]

Figure 4.9: The identified segments

The 7-segment display that I will use will have two digits. That is,

will consist of two conjugated displays, each terminal

will link the segments of both displays. But for the segment

lights up, it will also be necessary to supply the common terminal, which

my case will be anode (positive).

[image:]

Figure 4.10: The 7-segment display with two digits

The terminals are connected to the segments, the decimal point and the

common, as enumeration shown in the figure below that

I will detail shortly after:

[image:]

Figure 4.11: The display terminals numbered 1 through 10

The segment pins are common to two digits. For

show a number in just one segment, just trigger it

through the common anode pin of the desired digit. To show

different numbers in each of the two digits of the display, just

trigger the segments of one of the digits for a few milliseconds,

then activate the segments of the other digit also for some

milliseconds and alternate between them. The change is so fast

which, to the human eye, it will appear that the two digits are lit as

all the time.

The terminal sequence is:

1. Segment D

2. Decimal point

3. Segment E

4. Segment C

5. Common anode (+ 5Vdc) of the digit on the right

6. Segment B

7. Segment A

8. Segment F

9. Segment G

10. Common anode (+ 5Vdc) of the digit on the left

To activate the display, we will use an existing library that

it will make our life much easier. It’s called
 SevSeg.h
 , from Seven

Segments, and can be obtained from

https://github.com/fbryan/sevseg
 . Use what was explained in

project n 02 (chapter 3) to install it.

For this library, we will have to pass the pins where they are LED segments of the 7-segment display are connected and where common display pins will be connected. We can use both

digital and analog pins for this task - which is excellent, as we don't have many digital pins left to connect the display, and if we depended on them, we wouldn't have enough.

To connect the display to the Arduino, use the following scheme:

1. Place a resistor of at least 330Ω in each terminal

common anode, that is, on pins 5 and 10, as shown in the figure:

[image:]

Figure 4.12: Resistors on the display anodes

2. Now connect the resistors of the common terminals to the Arduino,

the digit on the right (5) must go on the analog pin

A0, and the digit on the left on analog pin A1.

[image:]

Figure 4.13: Common anodes connected to Arduino

3. Call:

The terminal of segment A (7) to digital pin 5 of the

Arduino;

The terminal of segment B (6) to digital pin 6 of the

Arduino;

Terminal of segment C (4) to digital pin 7;

Terminal of segment D (1) to digital pin 8;

E segment terminal (3) to digital pin 9;

Terminal of segment F (8) to digital pin 10;

Terminal of segment G (9) to digital pin 11;

Decimal point terminal (2) to digital pin 12.

[image:]

Figure 4.14: All display terminals connected to the Arduino

Let's test to see if it's working properly. Use the following code to show the number
 1.2
 on the 7-

segments:

#
 include
 <SevSeg.h>

SevSeg display;

void
 setup () {

byte digits = 2;

byte pino_digitos [] = {A0, A1};

byte pino_segmentos [] = {5, 6, 7, 8, 9, 10, 11, 12};

display.begin (COMMON_ANODE, digits, pin_digits, pin_segment

s);

}

void
 loop () {

display.setNumber (12,1);

display.refreshDisplay ();

}

After compiling and uploading to your Arduino, you should see the

number
 1.2
 (the number 1 in the left digit, first dot lit decimal, the number 2 in the right digit and second point decimal), as in the figure before the code.

For this code, we included the
 SevSeg.h
 library with the line

#include <SevSeg.h>
 and then we declare the object

display
 as being of the
 SevSeg
 type with the
 SevSeg
 line

display
 . In the
 void setup () function
 , we declare the variable

digits
 as being
 byte
 type and initialized with the number

2. It will determine the number of digits in our

7-segment display.

The typo
 byte
 vector , called
 pino_digitos []
 , stores

the pins where the anodes (or cathodes, if applicable) are connected

display digits. The
 byte
 vector , called

pin_segments []
 , stores where the segments of

Display LED, in alphabetical sequence of segments and, for

last, the decimal point.

With the
 display.begin
 method
 (COMMON_ANODE, digits,

pino_digitos, pino_segmentos)
 , we initialize the display

indicating
 COMMON_ANODE
 , because it is a common anode. If it were

common cathode, we would use
 COMMON_CATHODE
 . Then,

we indicate the number of digits on the display, where the pins are

common and segment pins.

In the
 loop ()
 function , we only use the
 setNumber
 method

as
 display.setNumber (12.1)
 , indicating that the numbers

shown are 1 in the left digit, 2 in the right digit, and

the first lit decimal point (1). To light the second point

decimal, we should use 0 instead of 1.

Just remember that the display can only show at most

the number of digits you have. The method

display.refreshDisplay ()
 causes the number to be

actually shown.

[image:]

Figure 4.15: 1.2 on the 7-segment display

Now let's enjoy and do another test with a code

to run the counter from zero to 99. So we can now

envision how to put it all together.

#
 include
 <SevSeg.h>

SevSeg display;

void
 setup () {

byte digits = 2;

byte pino_digitos [] = {A0, A1};

byte pino_segmentos [] = {5, 6, 7, 8, 9, 10, 11, 12};

display.begin (COMMON_ANODE, digits, pin_digits, pin_segment

s);

}

void
 loop () {

for
 (
 int
 i = 0; i <= 99; i ++) {

display.setNumber (i, 0);

display.refreshDisplay ();

delay (10);

}

}

The configuration was the same, so I just changed the function

loop ()
 putting a repeating
 for
 structure to count from

0 to 99 and increments of 1:
 for (int i = 0; i <= 99; i ++)
 .

Then, I changed the line of the
 setNumber
 method to use the

variable
 i
 , which is the accountant
 is
 :

display.setNumber (i, 0)
 . Then just make the numbers

shown with
 display.refreshDisplay ()
 and wait for a

small time (10 milliseconds), so you can see them

change with
 delay (10)
 .

Now that we understand how it all works, it's easy.

Let's put it all together and finish our radar!

Let's use the codes of the ultrasonic sensor that we already made

previously with that of the 7-segment display that we just

do:

#
 include
 <Ultrasonic.h>

#
 include
 <SevSeg.h>

Ultrasonic sensor (3, 2);

SevSeg display;

int
 button = 4;

previous
 float
 = 0;

float
 distance = 0;

displacement
 float
 = 0;

void
 setup ()

{

pinMode (button, INPUT_PULLUP);

byte digits = 2;

byte pino_digitos [] = {A0, A1};

byte pino_segmentos [] = {5, 6, 7, 8, 9, 10, 11, 12};

display.begin (COMMON_ANODE, digits, pin_digits, pin_segment

s);

}

void
 loop ()

{

if
 (digitalRead (button) == LOW) {

long
 time = sensor.timing ();

measure
 float
 = round (sensor.convert (time, Ultrasonic :: CM));

distance =
 abs
 (measure - anterior);

displacement = (distance * 10) / 100;

previous = measure;

}

display.setNumber (offset, 1);

display.refreshDisplay ();

}

After compiling and sending to Arduino, you must press the

button and move something in front of the ultrasonic sensor

to see the speed on the 7-segment display. When you release the button,

the number of the last measurement should remain on the display.

[image:]

Figure 4.16: Everything assembled and working

You can see a video of this project in operation at

https://youtu.be/wOZspVR4sT8
 .

All of this became irresistible to put in a pistol from

video game, and let the kids play as I suggested in the introduction:

[image:]

Figure 4.17: The project mounted on a video game gun

Try to put the whole project inside a pistol, as I did and

I showed you earlier, to mimic the police radars that we see

on Brazilian roads! You can build your own pistol if

you don't have one that fits your remote controls

video game. Thus, your project gains mobility, and for sure

may be useful to explain concepts of physics, in the case of propagation

and speed of sound, at science fairs and classes.

After so much movement in this project, the next one is for

those who like convenience and don't want to move around that much:

how about turning on the lamps in your house with a remote control?

4.3 CHALLENGE

These receivers usually come with the

remote control and can be found in specialty stores

electronics and Arduino. But if you want to use any other

remote control is also possible. So, if you wish,

just get the infrared receiver only. Imagine, you can

use the television control and, with the correct key sequence,

control any light!

Assembly is simple. The receiver has a pin marked with

a letter
 S
 , and this is the signal pin. For him, we will receive the

values of keys pressed. The middle pin is the + 5V and the

left is the GND.

[image:]

Figure 5.2: The infrared receiver with the signal pin marked with the letter “S”

The assembly is to connect the signal pin of the receiver to the pin

digital 3 from Arduino; the + 5V pin on the receiver to the 5V pin on the

Arduino; and the GND pin on the receiver to one of the GND pins on the

Arduino.

[image:]

Figure 5.3: The connection between the infrared receiver and the Arduino

In order to be able to capture the keys on the remote control via

infrared receiver, we will have to use an IRLib library, which

can be obtained at
 https://github.com/fbryan/irlib
 . Just do

download the ZIP file and, to include it in the Arduino IDE, make the

same way that was also presented in project n 02

(chapter 3).

With the library already included in the IDE, let's first test the

receiving the remote control keys you want to use. Each

key sends a different value to the receiver, which needs to be read and

interpreted to perform tasks according to your program

to determine.

We will use the small program below to get these

values and write them down, so we can put everything together and make the program

that will control the light.

#
 include
 <IRLib.h>

Decoder IRdecode;

IRrecv receptor (3);

void
 setup () {

Serial.begin (9600);

receptor.enableIRIn ();

delay (100);

}

void
 loop () {

if
 (receiver.GetResults (& decoder)) {

decoder.decode ();

delay (100);

Serial.println (decoder.value, HEX);

receiver.resume ();

}

}

Load it onto the Arduino and open the Serial Monitor. Point the

control to the receiver and start pressing the keys. You will see

the values corresponding to each of them after they are

decoded.

[image:]

Figure 5.4: Key values from 0 to 9 on the remote control that came with the receiver

With this program, we can know the value of the any remote control. You can use it to test with the control of the TV, pay-TV receiver, sound, in short, from any control. Just test them out.

We started by importing the library we downloaded and we incorporated the Arduino IDE,
 IRLib.h
 . She will give us a series tools that will make work easier to receive and

decode the signal we are receiving.

With
 IRdecode decoder
 , we are instantiating a object called an
 IRdecode decoder
 , which allows you to decode and interpret various aspects of the received signal, such as the number of bits, value and protocol.

With
 IRrecv receiver (3)
 , we instantiate an object called a receiver that passes the digital pin as a parameter where the signals from the receiver will be received. This object is of type

IRrecv
 which, like
 IRdecode
 , allows us to obtain a series of
 controls on the receiver, such as initializing or resetting it.

In the
 setup ()
 function , we initiate a serial communication with
 Serial.begin (9600)
 so that we can then see the values received by the Serial Monitor. We use
 receptor.enableIRIn ()

to initialize the infrared receiver, and we give it an

100 milliseconds time to start with
 delay (100)
 .

In the
 loop ()
 function , we use an
 if
 selection structure

(receiver.GetResults (& decoder))
 to check for

a received signal. If it exists, the Arduino tries to decode it; case

otherwise, he must do nothing. That is, only if there is a

signal to be decoded we will try to decode it.

The
 decoder.decode ()
 line causes the signal to be decoded and its data stored in a structure within the decoded object, with some of the fields that can be accessed are:

Field

Type

description

decode_type

char

Protocol name of the decoded signal (NEC, SONY, RC5

etc.)

value

long

Decoded value

bits

char

Number of bits in the decoded value

You need to allow time for the Arduino to process the

decoding. So, we use
 delay (100)
 to give you 100

milliseconds for that, which is enough.

In the line
 Serial.println (decoder.value, HEX)
 ,

we show the
 value
 field mentioned earlier in Serial Monitor in hexadecimal format. That is, we show the value of signal corresponding to a key on the remote control that was

Received. To end the cycle, before starting all over again, restart the receiver with
 receiver.resume ()
 , so that it can do the next reading.

Well, we already have the values we want, now let's go to program that will control the lamp. I will use the same strategy as project n 02 (chapter 3): first we will make the pin LED

digital 13 lights up when the correct key is pressed, then we will make the circuit for the relay with the lamp itself.

#
 include
 <IRLib.h>

Decoder IRdecode;

IRrecv receptor (3);

int
 led = 13;

long
 value = 0;

void
 setup () {

pinMode (led, OUTPUT);

receptor.enableIRIn ();

delay (100);

}

void
 loop () {

if
 (receiver.GetResults (& decoder)) {

decoder.decode ();

delay (100);

value = decoder.value;

if
 (value == 0xFF4AB5) {

digitalWrite (led, HIGH);

delay (1000);

digitalWrite (led, LOW);

}

receiver.resume ();

}

}

This program is just a change from the previous program,

few changes as you can verify. We just declare variables to identify the digital pin where the LED is connected, and another to receive the value that is read by the receiver

infra-red.

In the
 setup ()
 function, we
 set
 the LED digital pin as

output, and we start the infrared receiver, giving it 100

milliseconds to complete the task. In the
 loop ()
 function , if

we have some signal to be decoded, we do that and

we save the value read in the
 value
 variable , with the line
 value =

decoder.value
 .

With an
 if
 selection structure
 (value == 0xFF4AB5)
 ,

we can verify that the zero key on the remote control has pressed. We used this value because it was read with the program previous where we tested our keys of interest of the control remote. For your control, it can be a different value, so the importance of using the test program before.

Well, when the key we want is pressed, we light the LED for a second and then we leave it off. What, let's face it, it doesn't make any sense: nobody will want

turn on the light using a remote control so that it stays on only

one second! We will greatly improve our program so

very simple.

#
 include
 <IRLib.h>

Decoder IRdecode;

IRrecv receptor (3);

int
 led = 13;

long
 value = 0;

void
 setup () {

pinMode (led, OUTPUT);

receptor.enableIRIn ();

delay (100);

}

void
 loop () {

if
 (receiver.GetResults (& decoder)) {

decoder.decode ();

delay (100);

value = decoder.value;

if
 (value == 0xFF4AB5) {

digitalWrite (led,! digitalRead (led));

delay (1000);

}

receiver.resume ();

}

}

Note that we only switch the lines that were inside the

if
 selection structure
 (value == 0xFF4AB5)
 , in which we verify

if the value read is the zero key on the remote control. We removed

also the lines:

digitalWrite (led, HIGH);

delay (1000);

digitalWrite (led, LOW);

They lit the LED on digital pin 13 for just a second.

So, we add the lines:

digitalWrite (led,! digitalRead (led));

delay (1000);

In them, we read the status of digital pin 13 (
 HIGH
 or
 LOW
), and

we apply its reverse to itself. For this, we use

! digitalRead (led)
 , where the exclamation sign means the

logical operator
 NOT
 , that is, the inversion of the signal which, if in

HIGH
 , will be inverted to
 LOW
 and vice versa.

Still, we give you a second to wait in case you

keep the button pressed, which would cause the ignition and

repeatedly switching off the light very quickly,

damaging the relay or even burning the lamp. With that, the

minimum time between turning on and off, or between turning off and on, will be

of a second.

So let's go to the most critical part: turning on a real lamp

and control it with the Arduino through a relay.

Before you start, remember to take all necessary care

when using electricity. Follow all

safety such as carrying out the assembly with all

disconnected equipment, protect and isolate contacts, and do not

touching metal parts and contacts while the equipment

is in operation.

The risks are serious and you should really be careful not to

suffer an accident. If in doubt, review, re-study and

seek help.

How this project works in the same way as project n 02

(chapter 3), there you already have all the explanations of the operation and

circuit to connect the relay. So, I'm going to skip that part. You

you can re-read it if you don't remember any details.

First, let's connect the TIP102 transistor to the prot-o-board:

[image:]

Figure 5.5: The TIP102 transistor connected to the prot-o-board and connected to the Arduino

Connect the base terminal of the transistor to a 1KΩ resistor, and the

another terminal of the resistor to the digital pin 13 of the Arduino. Like this,

we will not change anything in the program at all. Note in the figure

previous that I changed the 5V power supply of the

infrared to facilitate feeding the relay as well.

To the emitter terminal of the transistor, connect one of the GND pins of the

Arduino. The collector terminal of the transistor must be connected to one of the

terminals of the relay coil. And the other terminal of the relay coil

must be connected to the 5V, which can be used on the prot-o-board in

together with infrared sensor power.

[image:]

Figure 5.6: The transistor connected to the Arduino GND and the relay coil, and the relay connected to the 5V

Arduino

Between the relay contacts for switching normally

open, let's put our lamp. In my case, I will use a

lamp, which is an old companion and which, from now on,

receive an upgrade! I'll put the relay in parallel with the button

turns it on / off.

[image:]

Figure 5.7: The lamp

With proper care, the wires that go into the relay will be connected

button contacts:

[image:]

Figure 5.8: The wires that will be connected to the normally open contacts of the relay

Note that I'm using thin, ordinary wires, because the lamp

that is on the lamp is of low power (7W), so the current that

flow through the wires is very low (approximately 0.05A). IT'S

It is strongly recommended that you use suitable wire sizes

for the amount of current that will be used for the type of

lamp you are using in your project.

The connection between the switch and the relay is very simple,

connect the wires to the terminals of the normally open contact of the relay.

[image:]

Figure 5.9: The switch wires to the normally open contact terminals of the relay

After everything is connected, you can test the general operation.

Now, put the lamp in the socket and connect your Arduino to the

computer. Be careful not to touch any contact that

result in electric shock.

Point the remote control directly at the sensor

infrared and press the zero key. The lampshade lamp should

light up. Wait a second and press the zero key again,

for the lamp shade to go out.

[image:]

Figure 5.10: Overview of the assembled project

You can now use this same assembly scheme to

automate any lamp in your home, from lamps to

general lighting.

You will find a video of this project in operation

at
 https://youtu.be/MWAEu2303jM
 .

The first challenge for everyone is to make this circuit small

enough to be discreetly embedded in lamps or in

home lighting switches. If not, within the

switches, discreetly in a box next to or near

their.

For that, you can use project n 01 (chapter 2) and start

building your own Arduino. Then you can add the

other components and, of course, create a PCB (Printed Circuit Board

5.3 CHALLENGE

- printed circuit board) specific to all this - which is

always an excellent idea.

Another challenge that can still be tested on the prot-o-board is to create

key combinations to activate the lighting. For example, you uses the TV's own remote control and, from a combination that doesn't represent a channel, you turn on the light.

There is also the possibility to activate several lamps from

a single Arduino. In that case, just replicate the set transistor / relay and, with just one sensor, you can trigger the number of lamps corresponding to the number of pins

digital devices that are free.

Unleash your imagination. Challenge yourself and good fun!

Do you like playing board games? How about resuming these games,

but with a new attraction: an electronic data? In the next

project, we will develop a data using a matrix of LEDs.

Try to guess what will be the next number drawn, and come on!

The idea is to imitate a given, showing the numbers

(balls) from 1 to 6 and drawing the values randomly. But

first of all, you need to build an array of LEDs from

three columns by three rows, that is, 9 LEDs.

[image:]

Figure 6.1: Possible faces of a four-sided common die. Note the need for a

3x3 matrix

So let's start at the beginning: the LED. With an LED in hand, see

that it has a shorter terminal than the other. This terminal

the shortest is the negative, and the longest is the positive of the LED.

6.2 DEVELOPING THE PROJECT

[image:]

Figure 6.2: An LED with different sized terminals

You will have to pay attention to connecting the negative terminals without

mix them with the positives, so pay attention to that detail.

We will need to place the LED terminals one for each side, but

this side must be the same for all LEDs. To facilitate, warp

the shortest negative terminal, closer to the LED "head":

[image:]

Figure 6.3: Negative terminal to one side, with the fold close to the "head" of the LED

Now fold the positive terminal, longer, forming a

90 angle to the negative, to visually leave

easier to identify. Make the fold farther from the "head" of the

LED.

[image:]

Figure 6.4: Positive terminal 90 to the other side, with the fold away from the LED "head"

See in the image below the folded terminals, seen from another

angle.

[image:]

Figure 6.5: Folded LED terminals

Do the same thing for all nine LEDs that will form

our matrix. Then solder the positive terminals of three LEDs,

as in the following figures.

[image:]

Figure 6.6: The first two LEDs with the positive terminals welded together

[image:]

Figure 6.7: Now the third LED with the positive terminal soldered to the previous ones

In the following figure, see the three LEDs seen from another angle.

[image:]

Figure 6.8: The three LEDs with the soldered positive terminals seen from below

Now test the functioning of this first set: place

the resulting positive terminal, which is actually the terminals that

they are welded together, on the prot-o-board. To that terminal, connect a

220Ω resistor and, to the other terminal of the resistor, connect the 5V pin of the

Arduino. Then switch a wire connected to the Arduino GND pin

to the negative terminals of the LEDs.

[image:]

Figure 6.9: Assembly test - First LED

[image:]

Figure 6.10: Assembly test - Second LED

[image:]

Figure 6.11: Test of the set - Third LED

With that first set working, let's move on.

Make a second set of 3 LEDs and solder the negative terminals

between sets, as in the following figure:

[image:]

Figure 6.12: A second set of 3 LEDs joined to the first by the negative terminals

Just make sure that the positive and negative terminals do not

lean anywhere.

[image:]

Figure 6.13: The second set welded to the first, seen from below

Finally, make the third set of our LED array, and

solder the negative terminals of this set to the negative terminals

of the other two sets, as in the figure:

[image:]

Figure 6.14: The three assemblies joined by the negative terminals

See now from another angle:

[image:]

Figure 6.15: The three assemblies joined by the negative terminals, seen from below

Finally, at the positive terminals, solder 220Ω resistors,

as in the next figure.

[image:]

Figure 6.16: Resistors to the positive terminals of the matrix

Now let's go to the connection scheme between the LED matrix and the

Arduino. Connect the positive terminals to digital pins 2, 3 and 4 on the

Arduino. Use a string, but considering that the terminal of the

middle is always the second, and it must be on digital pin 3.

[image:]

Figure 6.17: Positive terminals of the LED array connected to the Arduino

Next, connect the negative terminals to digital pins 8, 9

and 10 from Arduino. Use a string, but considering that the

middle terminal is always the second, and that must be on the pin

digital 9.

[image:]

Figure 6.18: Negative terminals of the LED array connected to the Arduino {W = 100%}

To test if everything is working, we will use the following

program:

void
 setup () {

pinMode (2, OUTPUT);

pinMode (3, OUTPUT);

pinMode (4, OUTPUT);

pinMode (8, OUTPUT);

pinMode (9, OUTPUT);

pinMode (10, OUTPUT);

}

void
 loop () {

digitalWrite (2, HIGH);

digitalWrite (3, HIGH);

digitalWrite (4, HIGH);

digitalWrite (8, LOW);

digitalWrite (9, LOW);

digitalWrite (10, LOW);

}

It is a very simple program and does not require any

explanation of the commands used. The detail is in using the

pins with
 HIGH
 output to supply voltage to the LEDs, and the pins

with
 LOW
 output to function as ground, making the

current flow and turn on the LED.

When we have digital pin 2 at
 HIGH
 and digital pin 8 at

LOW
 , we have the positive-negative connection to light all

LEDs of the first line of the LED array. If we put the pin

digital 2 in
 LOW
 and / or digital pin 8 in
 HIGH
 , the current will flow

unlike the LED, which will be off.

[image:]

Figure 6.19: All LEDs on

Now let's change this program to show exactly

this operation between
 HIGH
 and
 LOW
 on the digital pins, to

turn the LEDs on and off:

void
 setup () {

pinMode (2, OUTPUT);

pinMode (3, OUTPUT);

pinMode (4, OUTPUT);

pinMode (8, OUTPUT);

pinMode (9, OUTPUT);

pinMode (10, OUTPUT);

}

void
 loop () {

for
 (
 int
 i = 1; i <= 3; i ++) {

for
 (
 int
 j = 1; j <= 3; j ++) {

lights (i, j);

delay (500);

}

}

}

void
 lights up (
 int
 row,
 int
 column) {

if
 (line == 1) digitalWrite (2, HIGH);
 else
 digitalWrite (2, LOW);

if
 (line == 2) digitalWrite (3, HIGH);
 else
 digitalWrite (3, LOW);

if
 (line == 3) digitalWrite (4, HIGH);
 else
 digitalWrite (4, LOW);

if
 (column == 1) digitalWrite (8, LOW);
 else
 digitalWrite (8, HIGH);

if
 (column == 2) digitalWrite (9, LOW);
 else
 digitalWrite (9, HIGH);

if
 (column == 3) digitalWrite (10, LOW);
 else
 digitalWrite (10, HIGH)

;

}

The
 setup ()
 function has not changed, it just adjusts the digital pins

as an output, ie
 OUTPUT
 . At the end of the program, I created a

void
 function
 lights up (int row, int column)
 , which is
 void
 ,

then it will not return any value and will receive two parameters

integers called
 row
 and
 column
 .

This function lights a specific LED, in the row and column

desired, checking which line is informed, and places the value

HIGH
 on the respective digital pin, to turn on the LED. However, if

line is not the one informed by the
 line
 parameter , the value on the pin

respective digital will be
 LOW
 , extinguishing the LED. The column works as

Similarly.

In the function
 () loop
 , created two repeating structure
 is
 to

count the three rows and the three columns, and pass the LED exactly

that I want to light up with an interval of 500 milliseconds between

turn each LED on and off.

Watch a first LED matrix test video, available at

https://youtu.be/4KByD_i8E1A
 .

Since we can turn on a specific LED, we will create the

data numbers with the following program:

void
 setup () {

pinMode (2, OUTPUT);

pinMode (3, OUTPUT);

pinMode (4, OUTPUT);

pinMode (8, OUTPUT);

pinMode (9, OUTPUT);

pinMode (10, OUTPUT);

}

void
 loop () {

one (1);

two (1);

three (1);

four (1);

five (1);

six (1);

}

void
 lights up (
 int
 row,
 int
 column) {

if
 (line == 1) digitalWrite (2, HIGH);
 else
 digitalWrite (2, LOW);

if
 (line == 2) digitalWrite (3, HIGH);
 else
 digitalWrite (3, LOW);

if
 (line == 3) digitalWrite (4, HIGH);
 else
 digitalWrite (4, LOW);

if
 (column == 1) digitalWrite (8, LOW);
 else
 digitalWrite (8, HIGH);

if
 (column == 2) digitalWrite (9, LOW);
 else
 digitalWrite (9, HIGH);

if
 (column == 3) digitalWrite (10, LOW);
 else
 digitalWrite (10, HIGH)

;

}

void
 one (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 1000)) {

time = millis ();

lights (2,2);

}

}

void
 two (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 998)) {

time = millis ();

lights (1,1);

delay (1);

lights (3.3);

delay (1);

}

}

void
 three (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 997)) {

time = millis ();

lights (1,1);

delay (1);

lights (2,2);

delay (1);

lights (3.3);

delay (1);

}

}

void
 four (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 996)) {

time = millis ();

lights (1,1);

delay (1);

lights (1,3);

delay (1);

lights up (3.1);

delay (1);

lights (3.3);

delay (1);

}

}

void
 five (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 995)) {

time = millis ();

lights (1,1);

delay (1);

lights (1,3);

delay (1);

lights (2,2);

delay (1);

lights up (3.1);

delay (1);

lights (3.3);

delay (1);

}

}

void
 six (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 994)) {

time = millis ();

lights (1,1);

delay (1);

lights (1,2);

delay (1);

lights (1,3);

delay (1);

lights up (3.1);

delay (1);

lights (3.2);

delay (1);

lights (3.3);

delay (1);

}

}

The
 setup ()
 function remains the same as before. The function

loop ()
 calls the functions that light specific LEDs for

each data number, passing the time as a parameter, in

seconds, so we want that number to be kept on.

And the function
 lights up
 remains the same as before.

In the sequence, we have six
 void
 functions , which do not

return value and receive a parameter of type integer, called

of
 t
 . This parameter is the number of seconds that the LEDs

must remain lit.

We will not be able to use the
 delay
 function to pause the program

with the LEDs on, as we will need to multiplex them. note that

it is not possible to light more than one LED at a time, so in the case of

more than one LED is required for the number, the functions light up

the first, keep it lit for a millisecond, erase it and

light the second, also keeping it lit for a

millisecond - and so on, by the number of LEDs

necessary to form the number on the die.

All of this is done using the
 millis ()
 function , which returns in

millisecond how long the program has been running. For

To begin, I declare two variables with the largest possible data type:

unsigned long tempo
 and
 unsigned long tempo_anterior
 .

They start with the same value and, while the difference between

they are less than the time passed by the function parameter

subtracted from a millisecond for each LED, they maintain the

multiplexing between the LEDs. That is, it turns on and off so fast

that the human eye will perceive everyone as lit.

You can see the result of this program in operation

in the video available at
 https://youtu.be/i0mJV4R2tfw
 .

To finish the project, we just need to make the data

draw a random value and show the number in the LED array.

Let's go to the last program:

void
 setup () {

pinMode (2, OUTPUT);

pinMode (3, OUTPUT);

pinMode (4, OUTPUT);

pinMode (8, OUTPUT);

pinMode (9, OUTPUT);

pinMode (10, OUTPUT);

randomSeed (analogRead (A0));

int
 number = random (1,6);

if
 (number == 1) one (5);

if
 (number == 2) two (5);

if
 (number == 3) three (5);

if
 (number == 4) four (5);

if
 (number == 5) five (5);

if
 (number == 6) six (5);

delete ();

while
 (1);

}

void
 loop () {

}

void
 clears () {

digitalWrite (2, LOW);

digitalWrite (3, LOW);

digitalWrite (4, LOW);

digitalWrite (8, HIGH);

digitalWrite (9, HIGH);

digitalWrite (10, HIGH);

}

void
 lights up (
 int
 row,
 int
 column) {

if
 (line == 1) digitalWrite (2, HIGH);
 else
 digitalWrite (2, LOW);

if
 (line == 2) digitalWrite (3, HIGH);
 else
 digitalWrite (3, LOW);

if
 (line == 3) digitalWrite (4, HIGH);
 else
 digitalWrite (4, LOW);

if
 (column == 1) digitalWrite (8, LOW);
 else
 digitalWrite (8, HIGH);

if
 (column == 2) digitalWrite (9, LOW);
 else
 digitalWrite (9, HIGH);

if
 (column == 3) digitalWrite (10, LOW);
 else
 digitalWrite (10, HIGH)

;

}

void
 one (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 1000)) {

time = millis ();

lights (2,2);

}

}

void
 two (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 998)) {

time = millis ();

lights (1,1);

delay (1);

lights (3.3);

delay (1);

}

}

void
 three (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 997)) {

time = millis ();

lights (1,1);

delay (1);

lights (2,2);

delay (1);

lights (3.3);

delay (1);

}

}

void
 four (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 996)) {

time = millis ();

lights (1,1);

delay (1);

lights (1,3);

delay (1);

lights up (3.1);

delay (1);

lights (3.3);

delay (1);

}

}

void
 five (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 995)) {

time = millis ();

lights (1,1);

delay (1);

lights (1,3);

delay (1);

lights (2,2);

delay (1);

lights up (3.1);

delay (1);

lights (3.3);

delay (1);

}

}

void
 six (
 int
 t) {

unsigned long
 time;

unsigned long
 tempo_anterior = tempo = millis ();

while
 (time - previous_time <(t * 994)) {

time = millis ();

lights (1,1);

delay (1);

lights (1,2);

delay (1);

lights (1,3);

delay (1);

lights up (3.1);

delay (1);

lights (3.2);

delay (1);

lights (3.3);

delay (1);

}

}

The only thing that changes a bit is the
 setup ()
 function . In it

we use the
 randomSeed (analogRead (A0))
 command to

initialize the generation of pseudo-random numbers on the Arduino. For

the
 randomSeed
 function , we must pass a number that will be used

to generate this seed of random numbers. Like the pin

analog A0 is disconnected from any component, it will

return a noise, making the seed different each time

program execution.

Next, we use
 int number = random (1.6)
 to

store in the
 number
 variable a random value between 1 and 6,

generated by the
 random
 function . Then just use a structure of

if
 selection to check the number and call the function of the

corresponding number.

Each number will be kept lit for 5 seconds and then matrix will erase, indicating the end of execution, since the function
 loop ()
 is empty and has no command to execute.

To perform a new data draw, simply reset the Arduino.

You will be able to see this finished project working in

https://youtu.be/TzaHFa9i9qQ
 .

Good moves!

I think the main challenge of this project is to put it in a

box that accommodates the LEDs on display, so that it can be used

effectively as a given.

This may require you to return to project # 01 (chapter

2) and create your own Arduino, so that everything is small or

enough for the data to have, in addition to the LEDs, the Arduino and a

9V battery. It is also interesting to make the LEDs flash in

some sequence when no number is being drawn.

Good fun with your board games! And speaking of

games, how about we create our own video game? Very simple,

clear, but playable enough on a TV with an input

analog type RCA. Here we go?

6 CHALLENGE

[image:]

Figure 7.1: Components needed to create our video game

Take the two resistors and solder one terminal of each to a

cable routes. You will see in the next figure that I used the wire

red for that.

[image:]

Figure 7.2: Resistors on one of the cable wires

On the other side of the cable, weld the same wire that received the

resistors to the center of the RCA connector. In my case, I used the wire

red for the resistors, so on the other side of the cable, the wire

red will be welded to the center of the RCA connector. The other wire must

be welded to the other (external) terminal of the RCA connector.

[image:]

Figure 7.3: Wires soldered to the RCA connector

Now connect the other terminal of the 470Ω resistor to the digital pin

7, and the other terminal of the 1KΩ resistor to digital pin 9 of the

Arduino. The other wire, on the same side of the resistors, goes to the pin

Arduino GND.

[image:]

Figure 7.4: Connection with Arduino

The RCA connector goes to the video input on your television.

Ready! I said it would be easy, all connections with Arduino and TV's done! Let's go to the schedule.

You will first need to obtain the TVout library, which is

available at
 https://github.com/fbryan/tvout
 . To install it, follow

the procedures of project n 02 (chapter 3).

Now, let's go to the program:

#
 include
 <TVout.h>

#
 include
 <video_gen.h>

TVout tv;

int
 led = 13;

void
 setup () {

pinMode (led, OUTPUT);

if
 (tv.begin (NTSC, 128.96) == 0) {

digitalWrite (led, HIGH);

}
 else
 {

digitalWrite (led, LOW);

}

delay (1000);

tv.draw_rect (0,0,71,55, WHITE, BLACK);

tv.draw_line (0,0,10,10, WHITE);

tv.draw_circle (36,28,10, WHITE);

tv.set_pixel (36.28, WHITE);

}

void
 loop () {

}

At the beginning we have the import of the two libraries

necessary to generate images on the TV. We do this with
 #include

<TVout.h>
 and
 #include <video_gen.h>
 .

The next step is to create an object of type
 TVout
 called

tv
 , which will be used to execute the methods available for

create images on your TV. I also created a variable called

led
 , of the whole type, that receives the value
 13
 , to indicate the pin

digital display with a used LED, just to indicate the good

functioning of everything.

In the
 setup ()
 function , we set the digital LED pin as

output using
 pinMode (led, OUTPUT)
 . Then we use

tv.begin (NTSC, 128.96)
 to start imaging

with the NTSC standard and resolution of 128x96 pixels.

Supported standards are NTSC or PAL and the best resolution

in practice it needs to be discovered empirically. This function

returns
 0
 if initialization is normal;
 1
 if the resolution

horizontal is not a multiple of 8;
 2
 if the vertical resolution does not

be a multiple of 8; and
 3
 if there is not enough memory in the

Arduino. Therefore, we place it within a structure of

if
 selection . If the return is normal startup, we

the LED on digital pin 13 and we move on. If returned

any error code, the LED will be off, indicating something

[image:]

Figure 7.5: Result of the program on TV

Okay, picture on TV! Time to start creating our game. THE

first step will be to make the asteroids come out of the left of the screen and

go to the right. The program is as follows:

#
 include
 <TVout.h>

#
 include
 <video_gen.h>

TVout tv;

int
 led = 13;

int
 x = 0;

int
 y [5];

void
 setup () {

pinMode (led, OUTPUT);

if
 (tv.begin (NTSC, 128.96) == 0)

digitalWrite (led, HIGH);

else

digitalWrite (led, LOW);

delay (1000);

randomSeed (analogRead (A5));

for
 (
 int
 i = 0; i <5; i ++) y [i] = random (0, tv.hres ());

}

void
 loop () {

for
 (
 int
 i = 0; i <5; i ++) tv.set_pixel (x, y [i], WHITE);

delay (10);

for
 (
 int
 i = 0; i <5; i ++) tv.set_pixel (x, y [i], BLACK);

delay (10);

if
 (x> tv.hres ()) {

for
 (
 int
 i = 0; i <5; i ++) y [i] = random (0, tv.hres ());

x = 0;

}
 else
 {

x ++;

}

}

As you can see, importing and initializing the generation

of images are the same. So I’m not going to deal with them

again.

The entire variable
 x
 will be the column in which the asteroids should be

be, and the vector
 y will
 store the line for each asteroid. Note the

size
 5
 of the vector, that is, we will only have 5 asteroids at a time.

In the
 setup ()
 function , we use
 randomSeed (analogRead (A5))

to initialize the seed of random numbers. We spent as

parameter reading the analog pin A5, which is disconnected and

will generate a random noise, making the seed different

each time the program is started.

With

for (int

i = 0; i <5; i ++)

y [i]

=

random (0, tv.hres ())
 , we raffled one row for each asteroid and

we keep it in vector
 y
 . In this way, we will maintain the trajectory of

asteroid all the time along the same line, but varying only the

columns.

In the
 loop ()
 function , we use a repetition structure

for (int i = 0; i <5; i ++) tv.set_pixel (x, y [i], WHITE)
 for

light the pixels that will be our asteroids. Then we give 10

milliseconds to stay on the screen. Following, we make the

same thing, but to erase them, that way we will have the feeling

of movement.

See excerpt below:

if
 (x> tv.hres ()) {

for
 (
 int
 i = 0; i <5; i ++) y [i] = random (0, tv.hres ());

x = 0;

}
 else
 {

x ++;

}

In it, we check if the column (variable
 x
) where the asteroid is

is greater than the horizontal resolution of the screen. If so, you need to

draw a new position for the asteroid lines and return to

variable
 x
 to 0. That is, the asteroids will return to the left of the screen

and they will leave for the ship again in new positions of

attack.

If the column is not greater than the horizontal resolution of the screen,

one is added to the variable
 x
 so that the asteroid advances to the

right.

[image:]

Figure 7.6: Asteroids on the screen

You can see a video of this program running at

https://youtu.be/0cNT9CwF3YY
 .

Now we need to do the control and the ship!

For control, connect the potentiometer to the prot-o-board and a

from its side terminals to the 5V pin, the central one to the analog pin

A0 and the potentiometer terminal on the other side to the GND pin of the

Arduino.

[image:]

Figure 7.7: Potentiometer connected to Arduino

And to finish, the final program of the game:

#
 include
 <TVout.h>

#
 include
 <video_gen.h>

TVout tv;

int
 led = 13;

int
 x = 0;

int
 y [5];

int
 x_nave;

int
 y_nave;

void
 setup () {

pinMode (led, OUTPUT);

if
 (tv.begin (NTSC, 128.96) == 0)

digitalWrite (led, HIGH);

else

digitalWrite (led, LOW);

delay (1000);

randomSeed (analogRead (A5));

for
 (
 int
 i = 0; i <5; i ++) y [i] = random (0, tv.vres ());

x_nave = tv.hres () - 1;

y_nave = tv.vres () / 2;

}

void
 loop () {

int
 ctrl =
 map
 (analogRead (A0), 0.1024,0, tv.vres ());

tv.draw_line (x_nave, ctrl-2, x_nave, ctrl + 2, WHITE);

delay (10);

tv.draw_line (x_nave, ctrl-2, x_nave, ctrl + 2, BLACK);

for
 (
 int
 i = 0; i <5; i ++) tv.set_pixel (x, y [i], WHITE);

delay (10);

for
 (
 int
 i = 0; i <5; i ++) tv.set_pixel (x, y [i], BLACK);

if
 (x> tv.hres ()) {

for
 (
 int
 i = 0; i <5; i ++) y [i] = random (0, tv.hres ());

x = 0;

}
 else
 {

x ++;

}

if
 (x> = x_nave) {

for
 (
 int
 i = 0; i <5; i ++) {

if
 ((y [i]> = ctrl-2) && (y [i] <= ctrl + 2)) {

tv.clear_screen ();

for
 (
 int
 d = 0; d <tv.hres (); d ++) {

tv.draw_circle (tv.hres () / 2, tv.vres () / 2, d, WHITE);

delay (10);

}

delay (15000);

for
 (
 int
 i = 0; i <5; i ++) y [i] = random (0, tv.hres ());

tv.clear_screen ();

}

}

}

}

As usual, this program is a change from the previous one,

so let's just stick to what has changed. The variables

x_nave
 and
 y_nave
 will be used to store the
 x
 and
 y
 positions of the

ship.

In the
 setup ()
 function , the ship's position is one pixel before the

maximum horizontal value defined by
 x_nave = tv.hres () - 1
 , and

in the middle of the screen vertically, defined by
 y_nave =

tv.vres () / 2
 .

In the
 loop ()
 function , the magic happens! The movement of

asteroids will be the same, but the movement of the ship will be defined

by reading the potentiometer value made with
 int ctrl =

map (analogRead (A0), 0.1024,0, tv.vres ())
 . The entire variable

ctrl
 (control) will store the reading of analog pin A0, which

returns values between 0 and 1024, but will be converted

proportionally between 0 and the total screen resolution -

conversion is done by the
 map
 function .

THE

ship

will be

an

line

drawn

with

tv.draw_line (x_nave, ctrl-2, x_nave, ctrl + 2, WHITE)
 . Note

that its size is defined by subtracting 2 from the upper limit,

and sum of 2 at the lower limit of the line. When reading the

potentiometer will vary, the ship's position will also vary.

The verification of the collision of the asteroids with the spacecraft is

following block:

if
 (x> = x_nave) {

for
 (
 int
 i = 0; i <5; i ++) {

if
 ((y [i]> = ctrl-2) && (y [i] <= ctrl + 2)) {

tv.clear_screen ();

for
 (
 int
 d = 0; d <tv.hres (); d ++) {

tv.draw_circle (tv.hres () / 2, tv.vres () / 2, d, WHITE);

delay (10);

}

delay (15000);

for
 (
 int
 i = 0; i <5; i ++) y [i] = random (0, tv.hres ());

tv.clear_screen ();

}

}

}

The variable
 x
 is the position of the asteroid, and
 x_nave
 is the position of the

ship. If the asteroid has an
 x
 position greater than or equal to that of the ship,

is that they are in the same column, so it may be colliding. Enough

check that they are on the same line.

If the asteroid line is within the ship’s size,

checked with
 if ((y [i]> = ctrl-2) && (y [i] <= ctrl + 2))
 , and

the collision is detected, the sequence will be: clean the screen with

tv.clear_screen ()
 and make a circle grow from the

center

gives

screen,

drawn

with

tv.draw_circle (tv.hres () / 2, tv.vres () / 2, d, WHITE)

,

representing a catastrophic explosion.

Fifteen seconds will pass thanks to the
 delay (15000)
 , new

positions for asteroids will be drawn, the screen will be cleared

again and the game will restart.

[image:]

Figure 7.8: Asteroids towards the ship

Now just have fun!

A video of the game in action can be seen at

https://youtu.be/UDYPNbFKZQ0
 .

The sky is the limit! In fact, there are simply no limits! You can

put everything in a box and create your own console. THE

microcontroller can be inside a cartridge, which is

connected to the Arduino as if it were the console. That way, you

can record several different programs on several

different microcontrollers, and have cartridge-shaped games.

For creating games, there are a multitude of possibilities with

plots, movements, drawings, everything different than anybody

never thought, or even playing old games

known and loved. Counting points is also always a good idea

idea! A scoreboard creates the possibility to record records, and challenge

your family and friends to be more agile or faster.

But it's not all fun, you have to monitor and control

some things to avoid unnecessary expenses, for example,

electricity. Therefore, the next project is an alarm in which the

suggestion is to put it in the refrigerator, so as not to allow

forget your open door. Come on!

[image:]

Figure 8.1: Internal layout of a Reed key

In number 1, we have the terminals; number 2 is the ampoule of

glass; in number 3 we have the contacts, separated by a small

distance; the number 4 represents a magnet that, when approached

key, will make the contacts (3) touch each other, connecting the

circuit, and when the magnet is removed, the contacts will return to the

switching off the circuit.

As I mentioned, inside the magnetic alarm sensor, the

we have is a Reed switch (Reed-switch). So the wires that come out

of the sensor are the switch contacts.

[image:]

Figure 8.2: A magnetic alarm sensor - inside, there is a Reed switch

All of this makes the connection of the magnetic sensor to the Arduino the

even from a common button. Connect a 1KΩ resistor between the

digital pin 2 and GND, then connect one of the sensor wires to the pin

digital 2 and the other to pin 5V. See how it looks in the figure:

[image:]

Figure 8.3: The connection of the magnetic sensor to the Arduino

The resistor will function as an external PULL-DOWN resistor.

Note that, in project n 3 (chapter 4), we use the PULL-UP resistor

internal, but in this case I decided to show how to do it without using it.

PULL-DOWN will guarantee the
 LOW
 value on digital pin 2

while the button is not pressed (open). And it will guarantee the

HIGH
 value when it is closed, that is, pressed.

To test, let's create a code that, when the contacts of the

Reed switches are closed (that is, when the magnet is

next), the LED on digital pin 13 of the Arduino will be on.

When you move the magnet away, the Reed switch contacts will open and the

LED will go out. With that, we can verify in practice the

functioning of all this.

int
 led = 13;

int
 sensor = 2;

void
 setup () {

pinMode (led, OUTPUT);

pinMode (sensor, INPUT);

}

void
 loop () {

if
 (digitalRead (sensor) == HIGH) {

digitalWrite (led, HIGH);

}
 else
 {

digitalWrite (led, LOW);

}

}

The entire
 led
 variable indicates which digital pin the

LED that we will activate. The
 sensor
 variable indicates which pin

digital is linked to our Reed key. In the
 setup ()
 function , only

we set digital pin 13 (of the LED) as output, and digital pin 2

(from the sensor) as input.

In the
 loop ()
 function , we use
 digitalRead (sensor)
 to read the

state of the digital pin of the button, which is pin 2. It will return the

LOW
 (
 0
) values if the switch is open (off), or
 HIGH

(
 1
) if the key is closed (on). Knowing this, just use

an
 if
 selection structure
 (digitalRead (sensor) == HIGH)

to find out if the key is closed and, if it is, turn on the LED

with
 digitalWrite (led, HIGH)
 ; otherwise, we turn off the LED

with
 digitalWrite (led, LOW)
 .

After compiling and uploading the program to your

Arduino, you can test the operation of the program and the

sensor bringing the magnet closer to the sensor. When the magnet is

close enough, the LED on digital pin 13 on the Arduino should

light up; otherwise it must remain off. Note that

distance the magnet has an influence on the sensor can vary,

but it is usually approximately 2 centimeters.

[image:]

Figure 8.4: Magnet influencing the sensor and turning on the digital pin LED 13

Now let's change our code to capture the time when

that the refrigerator door was open:

int
 led = 13;

int
 sensor = 2;

int
 ctrl_abre = 0;

int
 ctrl_fecha = 0;

unsigned long
 tempo_abrir = 0;

unsigned long
 tempo_close = 0;

void
 setup () {

Serial.begin (9600);

pinMode (led, OUTPUT);

pinMode (sensor, INPUT);

}

void
 loop () {

if
 (digitalRead (sensor) == HIGH) {

digitalWrite (led, HIGH);

if
 (ctrl_abre == 0) {

close_time = millis ();

ctrl_abre = 1;

ctrl_fecha = 0;

Serial.print (
 "Door was opened by"
);

Serial.print ((closing_time - opening_time) / 1000);

Serial.println (
 "seconds"
);

}

}
 else
 {

digitalWrite (led, LOW);

if
 (ctrl_fecha == 0) {

open_time = millis ();

ctrl_fecha = 1;

ctrl_abre = 0;

}

}

}

I have declared two variables of the whole type to control whether the port

is open or closed. The variables have obvious names, with the that controls whether the door is open is the variable
 ctrl_abre
 , and the one that controls the closed door is
 ctrl_fecha
 . If
 ctrl_abre
 is with zero, the door is closed; if it has a value of 1, indicates that the door is open.

If the
 ctrl_fecha
 variable is zero, the port is

open; if it is 1, it is closed. They work

unlike each other.

I also declared two variables to count the time that the

door stayed open. They are
 unsigned long
 variables . THE

open_time
 variable
 will
 store the time the port was
 opened

open, and the
 time_close
 variable
 will
 capture the instant when the

door closed.

In the
 setup ()
 function , in addition to what we've already seen,

I started serial communication with the computer at 9600 baud. At

loop ()
 function , we read the sensor as we did in the previous code and

we control the LED of digital pin 13 in the same way. However,

I added a control structure to know when the door is open

open and closed. To detect the movement of the door, we use the

ctrl_abre
 and
 ctrl_fecha
 variables , as I explained

previously.

Here's how it worked: when the program starts,

it is assumed that the door is closed. So, the digital pin LED

13 lights up and the
 time_close
 variable receives the time since the

start of program execution using the
 millis ()
 function . THE

variable
 ctrl_abre
 receives 1, indicating false (that is, the port is not

is open), and
 ctrl_fecha
 receives 0, indicating true, since

the door is closed.

The calculation of how long the door was open is on the line

Serial.print ((closing_time - opening_time) / 1000)
 , which

subtracts from the instant the door closed and the instant

that opened. Everything is divided by 1000, as the measurement is in

milliseconds and we want the result in seconds. The text with the

time is sent to the Serial Monitor.

Pay attention to the
 millis ()
 function . It returns the time in

millisecond in which the program is running. She bursts

capacity of the variable more or less every 50 days, returning to

the zero. So, for your return, before that happens, we can

count the time without even using an internal or external clock.

Now, when the door is opened, the sensor off, the LED on the

digital pin 13 goes out, and the
 open_time
 variable receives the

execution until that moment. The variable
 ctrl_fecha
 receives 1 and

ctrl_abre
 receives 0, indicating that the door is open.

To test, compile and load the program on your Arduino and

open the Serial Monitor. Move the magnet away from the sensor to simulate

opening the door and, after a few seconds, move it closer to

back, simulating the refrigerator door closing.

[image:]

Figure 8.5: Result of the door opening and closing simulation

Now only three things are missing:

1. Include a buzzer so that an alarm goes off if the door is

open for a long time.

2. Make it possible to store how many times the refrigerator door has been

open since last startup and opening time

maximum. Of course, we will also need a means to

read this information.

3. Install in a real fridge!

Let's go for the buzzer! To save space, we’ll turn on the buzzer

directly to the Arduino. We could put it on the prot-o-board

along with everything else, but we will not let our project

turn a tangle of wires.

Connect the positive terminal of the buzzer to digital pin 11 and the

negative terminal to the Arduino GND.

[image:]

Figure 8.6: Buzzer connected directly to the Arduino

In the code, I will predict that the maximum time that the

refrigerator may be left open before the buzzer goes off will be 30

seconds. But as you will see, it will be easy to adjust this parameter.

int
 time = 0;

int
 max_time = 30;

int
 led = 13;

int
 sensor = 2;

int
 buzzer = 11;

int
 ctrl_abre = 0;

int
 ctrl_fecha = 0;

unsigned long
 tempo_abrir = 0;

unsigned long
 tempo_close = 0;

void
 setup () {

Serial.begin (9600);

pinMode (buzzer, OUTPUT);

pinMode (led, OUTPUT);

pinMode (sensor, INPUT);

}

void
 loop () {

if
 (digitalRead (sensor) == HIGH) {

digitalWrite (led, HIGH);

if
 (ctrl_abre == 0) {

close_time = millis ();

ctrl_abre = 1;

ctrl_fecha = 0;

Serial.print (
 "Door was opened by"
);

Serial.print ((closing_time - opening_time) / 1000);

Serial.println (
 "seconds"
);

}

}
 else
 {

digitalWrite (led, LOW);

time = millis () / 1000;

if
 (time - (close_time / 1000)> max_time) {

digitalWrite (buzzer, HIGH);

delay (150);

digitalWrite (buzzer, LOW);

delay (150);

}

if
 (ctrl_fecha == 0) {

open_time = millis ();

ctrl_fecha = 1;

ctrl_abre = 0;

time = 0;

}

}

}

Focusing only on the changes, notice that I have declared two new integer variables right at the beginning of the program. Are the
 time
 variables , initialized to zero, which will be used for counting the time until the buzzer goes off; and
 tempo_max
 , initialized to 30, which indicates the maximum time to be counted, in seconds, until fire the buzzer.

I have also declared a
 buzzer
 variable that is initialized with

11, indicating which digital pin on the Arduino the buzzer is connected to.

In the
 setup ()
 function , I used
 pinMode (buzzer, OUTPUT)
 to set the

digital buzzer pin (
 11
) for output (
 OUTPUT
).

In the
 loop ()
 function , provided that the sensor is open and

returning
 LOW
 (after the
 else
), I use the
 time
 variable to

receive the time elapsed to the instant, already in seconds. So the

division by 1000. The line that does this is in
 time = millis () /

1000
 .

With the
 if
 selection structure
 (time - (close_time /

1000)> time_max)
 , I check if the time elapsed since the

opening of the door is greater than the maximum time determined in the

variable
 tempo_max
 . The subtraction
 time - (close_time /

1000) will
 return the time elapsed between the recorded time of the

last door closing and the current time in seconds - for

that the division by 1000.

If this condition is true, the buzzer is turned off for 150

milliseconds and then shut down for the same amount of time,

causing an intermittent whistle to occur until the door of the

refrigerator is closed.

We will then save the number of door openings and the

times of these openings. I will use the EEPROM memory of

microcontroller. In the case of ATMEGA328 on Arduino

UNO, we will have 1KiB (kiloByte) available, which is way beyond the

that we therefore need enough.

I'll change the code again:

#
 include
 <EEPROM.h>

int
 time = 0;

int
 max_time = 30;

int
 led = 13;

int
 sensor = 2;

int
 buzzer = 11;

int
 ctrl_abre = 0;

int
 ctrl_fecha = 0;

int
 counter = -1;

unsigned long
 tempo_abrir = 0;

unsigned long
 tempo_close = 0;

void
 setup () {

Serial.begin (9600);

pinMode (buzzer, OUTPUT);

pinMode (led, OUTPUT);

pinMode (sensor, INPUT);

if
 (EEPROM.read (0)! = 9) {

EEPROM.write (0.9);

EEPROM.write (1.0);

EEPROM.write (2.0);

}

}

void
 loop () {

if
 (digitalRead (sensor) == HIGH) {

digitalWrite (led, HIGH);

if
 (ctrl_abre == 0) {

close_time = millis ();

ctrl_abre = 1;

ctrl_fecha = 0;

Serial.print (
 "Door was opened by"
);

Serial.print ((closing_time - opening_time) / 1000);

Serial.println (
 "seconds"
);

counter ++;

EEPROM.write (1, counter);

if
 (EEPROM.read (2) <(close_time - open_time) / 1000) {

EEPROM.write (2, round ((closing_time - opening_time) / 1000))

;

}

}

}
 else
 {

digitalWrite (led, LOW);

time = millis () / 1000;

if
 (time - (close_time / 1000)> max_time) {

digitalWrite (buzzer, HIGH);

delay (150);

digitalWrite (buzzer, LOW);

delay (150);

}

if
 (ctrl_fecha == 0) {

open_time = millis ();

ctrl_fecha = 1;

ctrl_abre = 0;

time = 0;

}

}

if
 (Serial.available ()> 0) {

char
 lido = toUpperCase (Serial.read ());

if
 (read ==
 'Q'
) {

Serial.println (
 "In this cycle the refrigerator door:"
);

Serial.print (
 "It was opened"
);

Serial.print (EEPROM.read (1));

Serial.println (
 "times."
);

Serial.print (
 "It was open for a maximum of"
);

Serial.print (EEPROM.read (2));

Serial.println (
 "seconds."
);

}

if
 (read ==
 'R'
) {

Serial.println (
 "Values reset, new cycle started."
);

counter = 0;

EEPROM.write (1.0);

EEPROM.write (2.0);

}

}

}

See that this time the changes were not big either.

I included the line
 #include <EEPROM.h>
 right in the first line of the code to import the EEPROM library, which contains all the methods to facilitate the use of this memory.

I declared a new variable, of the whole type, with the name of
 counter
 , initialized to
 -1
 . I gave this value because she is in the same section where the program goes through where it would detect

closing the door to initialize the time variables in the first time it boots. If you initialized it to 0, the count would be incorrect, counting a door opening and closing a

more than the real one.

In the
 setup ()
 function , I include the
 if
 condition
 (EEPROM.read (0)
 ! = 9)
 , which reads position 0 from the EEPROM memory and checks whether there is the number 9. The number 9 will be our indicator that this program has been executed previously and, as such, there is data already

recorded on the EEPROM. If it is not number 9 in position 0 of the

EEPROM, we use the command
 EEPROM.write (0.9)
 to put it

over there.

On the next two lines, we use the commands

EEPROM.write (1,0)
 and
 EEPROM.write (2,0)
 , which record the value

zero in positions 1 and 2 of the EEPROM memory. These two positions

will be used to store the number of times the

refrigerator is opened and closed, and what is the maximum time

remained open, respectively.

Most of the changes are in the
 loop ()
 function . I included

++ counter
 line to increment each time the door is closed

and then the line
 EEPROM.write (1, counter)
 for

store this value in position 1 of the EEPROM memory.

Next, I use the
 if
 selection structure
 (EEPROM.read (2) <

(closing_time - opening_time) / 1000)
 to check if the

time saved in position 2 of the EEPROM memory is less than

than measured at the door closing. If so, the time

stored in memory needs to be replaced by the current one, since

we are interested in the maximum time the door was open

in the current operating cycle. Otherwise, nothing is changed. The line

to record the time in position 2 of the EEPROM is

EEPROM.write (2, round ((closing_time - opening_time) /

1000))
 .

And to be able to see this data recorded on the EEPROM? Enough

open the Serial Monitor and send the letter
 Q
 (both capital and

lowercase).

That

it works

thanks

The

verification

if (Serial.available ()> 0)
 that was placed at the end of

loop ()
 function .

The
 Serial.available ()
 command returns the amount of

available bytes. So, if there is something sent by the user, he

will execute the command lines within it.

With the line
 char lido = toUpperCase (Serial.read ())
 ,

we created a variable called
 read
 of type
 char
 , which

will store what is read from the Serial Monitor converted to letter

uppercase. That way, if the user types
 q
 (lowercase), or
 Q

(capital), it will enter the condition, for example.

With
 if (read == 'Q')
 , we compare what was read from

Serial monitor with a capital
 Q.
 Within this condition,

we show the number of openings and closings of the door of the

refrigerator with the message
 “In this cycle the door

refrigerator: It was opened ”
 . Also with the reading of position 1 of the

EEPROM memory made with the command
 EEPROM.read (1)
 ,
 “

times ”
 . Continued with
 “It was open for a maximum of

“
 , With the reading of position 2 of the EEPROM memory made with the

command
 EEPROM.read (2)
 ,
 “seconds”
 .

To test, compile and upload Sketch to your Arduino.

Then, with the Serial Monitor open, open and close the sensor a few

and then send the letter
 Q
 or
 q
 :

[image:]

Figure 8.7: The result of accounting for door openings and closings in the Serial Monitor

There is still one last
 if
 selection structure
 (read == 'R')
 ,

that makes the values stored in positions 1 and 2 of the

EEPROM and also the counter variable are reset to zero if you want

start a new refrigerator door check cycle. For what

this happens, just send the letter
 R
 or
 r
 via Serial Monitor.

[image:]

Figure 8.8: Resetting the values stored in the EEPROM

Now just get a source to plug your Arduino into the outlet

and install the sensor on your refrigerator door. I used a source of

cell phone with 5V 1A and a USB cable with 2 meters to put it in the

place. To read the data, simply disconnect the USB cable from the source and

put on a computer.

You can see the video of this project installed in a

refrigerator and running at
 https://youtu.be/KHYyWZxV5lk
 .

As you may have noticed, I didn't prepare any cases for

no project. So, I think this may be one of the challenges

for this project: find a box that you can stick on

refrigerator, on the furniture or on the wall you have near it.

To put in the box, you will need a prot-o-board

smaller, or build your own printed circuit board. Another

interesting idea is to use a wireless connection to communicate

with Arduino, such as using a Bluetooth module.

In the next project, you can save the paths you take

around town or on trips using a GPS tracker, which

saves your geographical positions on an SD card.

[image:]

[image:]

Figure 9.2: View of the circuit of a GPS module together with the connector and wires

In the case of the module I'm using, I had to resort to

datasheet to know which pins correspond to which

functionality. To make this very evident, I extended the

connector following the color pattern of the datasheet: red for

5V, black for GND and yellow for serial transmitter (TX).

GPS modules are GPS signal receivers and provide, via

serial communication, the data obtained in the form of lines of text.

Well, let's connect everything and then understand exactly how

geolocation data is read.

Connect the 5V power pin on your GPS to the 5V pin on the

Arduino, the GPS GND pin on one of the Arduino GND pins and

the serial communication pin (TX) to digital pin 2 of the Arduino:

[image:]

Figure 9.3: GPS module connected to Arduino

Now let's go to the code to read the data that the GPS sends:

#
 include
 <SoftwareSerial.h>

SoftwareSerial gps (2,3);

void
 setup () {

gps.begin (4800);

Serial.begin (9600);

}

void
 loop () {

char
 read = 0;

Answer string =
 ""
 ;

while
 ((read = gps.read ())! = 10) {

if
 (read> 0) {

answer + = read;

}

}

if
 (! answer.equals (
 ""
)) {

Serial.println (answer);

}

}

The first thing to do is to import the library

SoftwareSerial
 , which will allow us to create a serial communication

with any two pins on the Arduino. This is necessary because

we can use digital pins 0 and 1, which are, respectively, RX and

TX native to Arduino. If we do that, we will commit to

ability to see data on the Serial Monitor.

With the
 SoftwareSerial gps
 line
 (2,3)
 , we indicate that

digital pins 2 and 3 will be used to, respectively, receive

(RX) and transmit (TX) serial data through the virtual serial port,

which will be created and will be called by
 gps
 . So we’ll call

the TX (transmitter) pin from the GPS to the RX (receiver) of the serial port

we are creating.

In the
 setup ()
 function , we use
 Serial.begin (9600)
 to

initialize the Arduino physical serial port, on pins 0 (RX) and 1

(TX), with a transfer rate of 9,600bps, as we already did in

almost all other projects. With the
 gps.begin (4800) line
 ,

initialize the virtual serial port created on pins 2 (RX) and 3 (TX),

with the transfer rate of 4.800bps, required for this module

GPS.

In the
 loop ()
 function , I created two variables, being
 read
 , that

is of type
 char
 and will receive each character sent by GPS; and the

answer
 , which is of type
 String
 and will receive the final string

containing all the geolocation data provided by the GPS. THE

fact is that the GPS sends the data through lines of text, using

as a comma separator and containing all data

geolocation. We will see this in detail shortly.

With the loop
 while ((read = gps.read ())! =

10)
 , we make the characters read until the character

ASCII number 10 is found, which is the end of

line. With the
 if
 selection
 (read> 0)
 , we are only sure that

the character is valid to be stored.

In
 response + = read
 , we accumulate the characters for

form the line of text containing all the data in the variable

answer. Finally we use the selection structure

if (! response.equals (""))
 to make sure that a

response line was formed (that is, different from empty) and

we show what was read on the Serial Monitor.

To view the data generated by the GPS, load the program at

your Arduino and open the Serial Monitor:

Figure 9.4: The data received by the GPS

Now let's understand all of that.

The lines you see on the Serial Monitor correspond to the

data obtained by satellites. They are shown in NMEA format

(National Marine Electronics Association) that are a set of

specifications of how GPS should be built and how

must present the data.

The NMEA standard says that each line must start with a dollar sign

($), the next 5 characters indicate the origin of the message, being

the first two for the origin (GP for GPS and GL for

GLONASS) and the next three for the message type (GSA,

GSV, RMC and GGA). All fields are separated by commas, and

each type of message has its specific fields, which I will

detail below.

Example line:

$ GPGSA, A, 3,26,21 ,,, 09,17 ,,,,,,, 10.8,02.1,10.6 * 07

Where:

Field

Example

description

1

THE

Operation mode, being:

A - automatic

M - manual

2

3

Correction type, being:

1 - not available

2 - 2D correction

3 - 3D correction

3

26,21 ,,, 09,17 ,,,,,,

Numbers of satellites used, from 1 to 32, maximum 12

by transmission

4

10.8

Dilution of position accuracy from 00.0 to 99.9

5

02.1

Horizontal dilution of position accuracy from 00.0 to

99.9

6

10.6

Vertical dilution of position accuracy from 00.0 to 99.9

7

07

Checksum. Hexadecimal number beginning with *

(asterisk) indicating a logical exclusive OR between

all characters returned between the $ character

(dollar sign) and * (asterisk) of the String.

GSA - General satellite data

Example line:

$ GPGSV, 2,1,08,26,50,016,40,09,50,173,39,21,43,316,38,17,41,144,42 *

7C

Where:

Field

Example

description

1

2

Total number of GSV messages to be transmitted

2

1

Current GSV message number

3

08

Total satellites in sight from 0 to 12

4

26

Satellite number, where:

01 to 32 - GPS

33 to 64 - SBAS

5

50

Satellite elevation from 00 to 99 degrees

6

016

Satellite azimuth from 00 to 359 degrees

7

40

Power from 00 to 99 dB, being null when receiving no data

8

7C

Checksum. Hexadecimal number beginning with * (asterisk) that

indicates a logical exclusive OR among all characters

returned between the $ (dollar sign) and * (asterisk) character of the String.

Example line:

$ GPRMC, 104549.04, A, 2447.2038, N, 12100.4990, E, 016.0,221.0,250304,003

.3, W, A * 22

Where:

Field

Example

description

1

104549.04

Universal time in hhmmss.ss format from 000000.00 to

235959.99

2

THE

Status, being:

GSV - Detailed satellite data

RMC - Minimum data recommended for GPS

A - valid position

V - navigation receiver alert

3

2447,2020

Latitude in ddmm.mmmm format with leading zeros

4

N

Latitudinal hemisphere indicator, N for North and S for South

5

12100.4990

Longitude in ddmm.mmmm format with leading zeros

6

AND

Longitudinal hemisphere indicator, E for East and W for

West

7

016.0

Knot speed from 000.0 to 999.99

8

221.0

Steering in degrees from 000.0 to 359.9

9

250304

Date in ddmmaa format

10

003.3

Magnetic range from 000.0 to 180.00 degrees

11

W

Magnetic variation direction, being:

And to the east

W west

12

THE

Operating mode indicator, being:

N - invalid data

A - self-employed

D - differential

E - estimated

13

22

Checksum. Hexadecimal number beginning with * (asterisk)

which indicates a logical exclusive OR between all characters

returned between the $ (dollar sign) and * (asterisk) character of the

String.

Example line:

$ GPGGA, 104549.04,2447.2038, N, 12100.4990, E, 1,06,01.7,00078.8, M, 0016

.3, M ,, * 5C

Where:

GGA - correction information

Field

Example

description

1

104549.04

Universal time from 000000.00 to 235959.99

2

2447,2020

Latitude in ddmm.mmmm format with leading zeros

3

N

Latitudinal hemisphere indicator, N for North and S for South

4

12100.4990

Longitude in ddmm.mmmm format with leading zeros

5

AND

Longitudinal hemisphere indicator, E for East and W for

West

6

1

Correction indicator for the quality of the position, being:

0 - invalid position

1 - valid position, SPS mode

2 - valid position, differential GPS mode

7

06

Number of satellites in use from 0 to 12

8

01.7

Horizontal dilution of accuracy from 0.0 to 99.9

9

00078.8

Altitude above sea level from -9999.9 to 17999.9

10

0016.3

Geoidal altitude from -999.9 to 9999.9

11

M (ASCII

77)

Time since the last valid transmission in seconds,

null being the case of not using Global Positioning

Differential (DGPS)

12

Differential station identification from 0000 to 1023

13

5C

Checksum. Hexadecimal number beginning with * (asterisk)

which indicates a logical exclusive OR between all characters

returned between the $ (dollar sign) and * (asterisk) character of the

String.

Knowing this, we can change our program to read only

strings of type RMC, which will give us latitude and longitude and other

basic information. We can also read only the strings

valid, that is, with field No. 2 in the letter A.

With the following code, the LED on digital pin 13 will be flashing

until a valid RMC string is read. While they are read

valid strings, the LED will be on constantly:

#
 include
 <SoftwareSerial.h>

SoftwareSerial gps (2,3);

int
 led = 13;

int
 led_status = LOW;

void
 setup () {

gps.begin (4800);

Serial.begin (9600);

pinMode (led, OUTPUT);

}

void
 loop () {

char
 read = 0;

Answer string =
 ""
 ;

while
 ((read = gps.read ())! = 10) {

if
 (read> 0) {

answer + = read;

}

}

if
 (! answer.equals (
 ""
)) {

if
 (response.indexOf (
 "RMC"
)> 0) {

if
 (response.charAt (17) ==
 'A'
) {

Serial.println (answer);

led_status = HIGH;

}
 else
 {

if
 (led_status == LOW) {

led_status = HIGH;

}
 else
 {

led_status = LOW;

}

}

}

}

digitalWrite (led, led_status);

}

This is an adaptation of the previous code, let's focus

just what has changed. I declared the
 led
 variable to indicate in

which digital pin the LED will be on. I also created a variable

called
 led_status
 , which will indicate the value sent to the pin

to turn the LED on or off.

In the
 setup ()
 function , I adjusted the digital LED pin as an output,

using the
 pinMode
 line
 (led, OUTPUT)
 . The rest has been changed

inside the
 loop ()
 function , in the selection structure

if (! response.equals (""))
 , that is, everything else will only happen

if a row with data is read.

With the
 if
 line
 (response.indexOf ("RMC")> 0)
 , I use

indexOf (string)
 method that returns the position where the string

sought was found; otherwise, it returns zero. That is, if

this method returns a value greater than zero, that is to say that

RMC was found in the string.

Then, with the
 if
 line
 (response.charAt (18) == 'A')
 ,

we check if the character of the 18th position of the answer string is equal to

letter A. The 18th position character is field # 2 of the message

type RMC, which indicates the GPS status, with A indicating that the

issued position is valid.

As the geographic position is valid, we send it to the Monitor

Serial and make the LED (
 led_status
) on

all the time. Otherwise the LED will flash, once it has

led_status
 LOW
 to delete it, in the next loop
 led_status
 will be

HIGH
 to light it.

Already moving towards recording on the SD card, next

code, we will separate the date, time, latitude, longitude and speed

in variables. In this case, I will use a vector to make things easier.

Soon after, we will connect the SD card module and record the

file with this data on the card.

#
 include
 <SoftwareSerial.h>

SoftwareSerial gps (2, 3);

int
 led = 13;

int
 led_status = LOW;

String field [13];

void
 setup () {

gps.begin (4800);

Serial.begin (9600);

pinMode (led, OUTPUT);

}

void
 loop () {

char
 read = 0;

Answer string =
 ""
 ;

while
 ((read = gps.read ())! = 10) {

if
 (read> 0) {

answer + = read;

}

}

if
 (! response.equals (
 ""
)) {

if
 (response.indexOf (
 "RMC"
)> 0) {

if
 (response.charAt (17) ==
 'A'
) {

decodeAnswer (response);

Serial.println (answer);

for
 (
 int
 i = 0; i <13; i ++) Serial.println (field [i]);

led_status = HIGH;

}
 else
 {

if
 (led_status == LOW) {

led_status = HIGH;

}
 else
 {

led_status = LOW;

}

}

}

}

digitalWrite (led, led_status);

}

void
 decodeAnswer (String r) {

int
 ant = 0;

int
 pos = 0;

for
 (
 int
 i = 0; i <13; i ++) {

pos = r.indexOf (
 ","
 , ant + 1);

field [i] = r.substring (ant, pos);

ant = pos + 1;

}

}

Let's just stick to what was incremented: I created a vector

called a
 field
 with 13 positions of type
 String
 . Each position

will store a NMEA RMC message field. At the end

of the program I created, a function called
 decodeResposta
 , that

receives a
 String
 that will be stored in variable
 r
 for use

in this function.

The idea is to find the commas, which are the separators of

fields, and save in each position of the vector a clipping of the string

NMEA corresponding to each field. We start with the variable

ant
 (which indicates the previous comma) with zero, that is, at the beginning of

string. The
 pos
 variable (which indicates the posterior comma) also

starts with zero and will be determined in the
 for
 loop .

Since the RMC message has 13 fields, our
 strength

goes up to 13 (remember that the vector starts at position 0), then

we use
 for (int i = 0; i <13; i ++)
 to create this loop.

Next, we use
 pos = r.indexOf (",", ant + 1)
 to

determine the position of the posterior comma, which will be the position of the

occurrence of the first comma after the next position beyond the

previous comma. In
 field [i] = r.substring (ant, pos)
 ,

we cut the data from the field, which is between the commas

found.

For the next loop, the position of the previous comma will be the position

of the posterior comma added by a. And so on, 12

times, until all fields are within the field vector.

In the
 loop ()
 function , I used the function we just created with

decodeAnswer (answer)
 , then sent it to the Monitor

Serial the string we received from the GPS using the line

Serial.println (answer)
 . Then with the
 for (int
 loop)

i = 1; i <13; i ++) Serial.println (field [i])
 , we send each

field separately. That way, we can check if everything is

right.

After sending the program to your Arduino, open the Monitor

Serial and you should see something like the figure:

[image:]

Figure 9.6: Google Maps showing any position in the middle of the ocean

The URL we formed indicates the Google API address

Maps, and the
 center
 variables indicate the geographic position of the

center of the map.
 size
 is the pixel size that the map must have

and the zoom index, which in our case is 15.

Now let's convert that latitude and longitude from NMEA to

decimal. For latitude, take the number consisting of the digits

hundredths and add to the number composed of the rest of the

digits divided by 60. See:

NMEA Latitude (GPS) = 2243.8038

Decimal latitude = 22 + (43.8038 / 60) = 22 + 0.7300633 =

22.7300633

For southern latitudinal hemisphere, the value must be negative; case

otherwise, positive.

Final decimal latitude = -22.7300633

Do the same for longitude, but using the digits of the

hundredths to form the first number:

Longitude NMEA (GPS) = 04719.3294

Decimal longitude = 47 + (19.3294 / 60) = 47 + 0.3221566 =

47.3221566

For western longitudinal hemisphere, the value must be negative;

otherwise, positive.

Final Decimal Longitude = -47.3221566

Now replace the latitude and longitude values in the URL with

the

what

we are done

in

calculate:

http://maps.googleapis.com/maps/api/staticmap?

center = -22.7, -47.3 & size = 500x500 & zoom = 15
 .

[image:]

Figure 9.7: Map with the correct coordinates, you found me!

Let's translate all of this into code!

#
 include
 <SoftwareSerial.h>

SoftwareSerial gps (2, 3);

int
 led = 13;

int
 led_status = LOW;

String field [13];

void
 setup () {

gps.begin (4800);

Serial.begin (9600);

pinMode (led, OUTPUT);

}

void
 loop () {

char
 read = 0;

Answer string =
 ""
 ;

while
 ((read = gps.read ())! = 10) {

if
 (read> 0) {

answer + = read;

}

}

if
 (! response.equals (
 ""
)) {

if
 (response.indexOf (
 "RMC"
)> 0) {

if
 (response.charAt (17) ==
 'A'
) {

decodeAnswer (response);

Serial.println (answer);

Serial.println (FormataHora (field [1]));

Serial.println (formataData (field [9]));

Serial.println (decNMEA (field [3], field [4]), 10);

Serial.println (decNMEA (field [5], field [6]), 10);

Serial.println (speedKM (field [7]));

led_status = HIGH;

}
 else
 {

if
 (led_status == LOW) {

led_status = HIGH;

}
 else
 {

led_status = LOW;

}

}

}

}

digitalWrite (led, led_status);

}

void
 decodeAnswer (String r) {

int
 ant = 0;

int
 pos = 0;

for
 (
 int
 i = 0; i <13; i ++) {

pos = r.indexOf (
 ","
 , ant + 1);

field [i] = r.substring (ant, pos);

ant = pos + 1;

}

}

float
 velocityKM (String v) {

return
 v.toFloat () * 1,852;

}

String formataHora (String hr) {

return
 hr.substring (0, 2) +
 ":"
 + hr.substring (2, 4) +
 ":"
 + hr.

substring (4, 6);

}

String formataData (String dt) {

return
 dt.substring (0, 2) +
 "/"
 + dt.substring (2, 4) +
 "/"
 + dt.

substring (4, 6);

}

double
 decNMEA (String l, String h) {

int
 a =
 int
 (l.toFloat ()) / 100;

double
 b = (1.toFloat () - (a * 100)) / 60;

if
 (h.equals (
 "W"
) || h.equals (
 "S"
)) {

return
 (a + b) * - 1;

}
 else
 {

return
 a + b;

}

}

In the
 loop ()
 function , we use the lines:

Serial.println (FormataHora (field [1]));

Serial.println (formataData (field [9]));

Serial.println (decNMEA (field [3], field [4]), 10);

Serial.println (decNMEA (field [5], field [6]), 10);

Serial.println (speedKM (field [7]));

To show the results on the Serial Monitor, we call the

functions that we created at the end of the program. The
 format
 function

receives a string and returns the same string, but with a two-

periods (
 :)
 every two characters, so that it is in the format of

hour.

The
 formatData
 function is the same as the
 FormatTime
 function , or

that is, it receives a string and returns the same string, but with a

slash (
 /
) every two characters so that it is in the date format.

The
 decNMEA
 function takes two strings. The first is latitude

or longitude, and the second the hemisphere. It performs the conversion

according to the algorithm explained previously, and returns the latitude

or the longitude in decimal (
 double
).

The function
 velocidadeKM
 takes a string with the speed

in knots obtained with GPS, and converts to a
 float
 value in

kilometers per hour.

[image:]

Figure 9.8: The data converted in the Serial Monitor

Finally, let's go to the SD card module!

You will also need an SD card, of course. He may have the

capacity that you find most convenient, as this will only limit the

amount of data that can be stored. Other than that, no

influences anything else in the project.

[image:]

Figure 9.10: The SD card module connected to the Arduino

Before we leave recording the GPS data on the card, let's

make a small program to test the module and see how the

recording works:

#
 include
 <SD.h>

void
 setup () {

Serial.begin (9600);

if
 (! SD.begin (4)) {

Serial.println (
 "There was an error initializing the SD module."
);

while
 (1);

}

Serial.println (
 "SD module initialized successfully."
);

}

void
 loop () {

String text =
 "Test recording on SD card"
 ;

File file = SD.open (
 "test.txt"
 , FILE_WRITE);

if
 (file) {

file.println (text);

file.close ();

Serial.println (
 "Text saved!"
);

while
 (1);

}

}

We will use the
 SD
 library already integrated with the Arduino IDE. Per

so, the first thing we do is import it with
 #include

<SD.h>
 .

In the
 setup ()
 function , we start serial communication with

Serial.begin (9600)
 . Showing data on the Serial Monitor will be

very useful to have a visual feedback of what is being done.

Next, we use a selection structure

if (! SD.begin (4))
 . The
 SD.begin (4)
 command starts the module

SD card indicating that digital pin 4 is the line selector (CS

- chip select line). It will return true if successful, and false

if not. So, we check with the
 if
 and, if the

initialization fails, we send a message to the communication

serial and we use
 while (1)
 to interrupt the execution of the

program with an infinite loop. If the initialization has

success, we show a message on the Serial Monitor with

Serial.println ("SD module initialized successfully.")
 .

In the
 loop ()
 function , we create a text variable, of type

String
 , to contain the message
 "Test recording on

SD card "
 that will be saved in the file to be created on the SD card.

We created the
 file
 variable as of type
 File
 . She receives the

pointer that references the file opened with

SD.open ("test.txt", FILE_WRITE)
 . In it
 "teste.txt"
 is the

file name, and
 FILE_WRITE
 the opening type, in this case, for

recording.

Keep in mind that files can only have

names in 8.3 format. That is, 8 characters for the name and 3 for the

extension.

The file opening modes are
 FILE_READ
 for reading,

and
 FILE_WRITE
 for recording. In the case of
 FILE_WRITE
 , if the

file already exists, the new content will be placed at the end of it

(append). If the file cannot be opened, the
 file
 variable

will receive the logical value
 FALSE
 , so we use a

if (file)
 to verify that the file was opened correctly.

With The archive Open correctly, we use
 file.println (text)
 to save the content of the variable

text
 in the file. In addition to the
 println
 method , which will break

line, it is also possible to use
 print
 so that there is no

line break.

Before the file is closed, recording will not take place

physically on the card. Therefore, it is important to remember to use

file.close ()
 . You can always use it at the end, after

send all content. But if you forget it, the data will not be

recorded on the card. The
 while (1)
 will create an infinite loop so that

nothing else is sent to the card.

After sending the program to your Arduino, open the Monitor

Serial and you should have a result like the figure below:

[image:]

Figure 9.11: Messages confirming the message has been saved to the SD card

The two possibilities of error may be that the module is not

functioning, or the file cannot be opened on the card (lack of

card or write protection):

[image:]

Figure 9.12: Error message due to problems with the module

Well, now that we know everything we need: get the data

and record files to the SD card. So, it's time to join

all!

I will use the latest version of the GPS program and join it with

that recording program on the SD card.

#
 include
 <SD.h>

#
 include
 <SoftwareSerial.h>

SoftwareSerial gps (2, 3);

int
 led = 7;

int
 led_status = LOW;

String field [13];

void
 setup () {

gps.begin (4800);

Serial.begin (9600);

pinMode (led, OUTPUT);

if
 (! SD.begin (4)) {

Serial.println (
 "There was an error initializing the SD module."
);

while
 (1);

}

}

void
 loop () {

File file = SD.open (
 "log_gps.txt"
 , FILE_WRITE);

char
 read = 0;

Answer string =
 ""
 ;

while
 ((read = gps.read ())! = 10) {

if
 (read> 0) {

answer + = read;

}

}

if
 (! response.equals (
 ""
)) {

if
 (response.indexOf (
 "RMC"
)> 0) {

if
 (response.charAt (17) ==
 'A'
) {

decodeAnswer (response);

Serial.println (answer);

if
 (file) {

file.print (decNMEA (field [3], field [4]), 10);

file.print (
 ","
);

file.print (decNMEA (field [5], field [6]), 10);

file.print (
 "|"
);

file.close ();

Serial.println (
 "Text saved!"
);

}

led_status = HIGH;

}
 else
 {

if
 (led_status == LOW) {

led_status = HIGH;

}
 else
 {

led_status = LOW;

}

}

}

}

digitalWrite (led, led_status);

}

void
 decodeAnswer (String r) {

int
 ant = 0;

int
 pos = 0;

for
 (
 int
 i = 0; i <13; i ++) {

pos = r.indexOf (
 ","
 , ant + 1);

field [i] = r.substring (ant, pos);

ant = pos + 1;

}

}

float
 velocityKM (String v) {

return
 v.toFloat () * 1,852;

}

String formataHora (String hr) {

return
 hr.substring (0, 2) +
 ":"
 + hr.substring (2, 4) +
 ":"
 + hr.

substring (4, 6);

}

String formataData (String dt) {

return
 dt.substring (0, 2) +
 "/"
 + dt.substring (2, 4) +
 "/"
 + dt.

substring (4, 6);

}

double
 decNMEA (String l, String h) {

int
 a =
 int
 (l.toFloat ()) / 100;

double
 b = (1.toFloat () - (a * 100)) / 60;

if
 (h.equals (
 "W"
) || h.equals (
 "S"
)) {

return
 (a + b) * - 1;

}
 else
 {

return
 a + b;

}

}

The only changes are: the LED digital pin number, which

I took it out of 13 and put it in 7, since 13 is used for the

SD cards. I did all the initializations to use the card module

SD, including importing the library. Finally, instead of

send the geographic data from the GPS to the Serial Monitor, I am

sending to the SD card.

I am not recording the date, time and speed, as this data

will not be needed to show on the map. But you can

store them without major problems following the same scheme.

I'm also recording latitude and longitude in the ready format

to generate the Google Maps URL, as I showed you earlier.

[image:]

Figure 9.13: Latitude and longitude recorded in the log_gps.txt file on the SD card.

To display these points on Google Maps, simply assemble the URL gives Following

form:

http://maps.googleapis.com/maps/api/staticmap?

size = 300x300 & path = content_of_log_gps.txt
 .

The
 content_log_log_gps.txt
 is a copy of the data

the SD card file. If we consider the data in the file

shown in the previous figure, the URL will look like this:

http://maps.googleapis.com/maps/api/staticmap?

size = 300x300 & path = -22.7, -47.3 | -22.7 36, -47.4 | -22.7, -47.5
 .

You will see a line on the map indicating the path these

geographical positions indicate:

Figure 9.14: View of the map generated with the previous URL in the internet browser

The only care you need to take is that a URL can be,

maximum 2048 characters. This fact limits the amount of

positions that can be shown. In addition, it is necessary to create a

specific page using the Google Maps API.

Although it is possible to just see the GPS LED flashing,

indicating its operation, a video of this project in

operation can be seen at
 https://youtu.be/mb2zIKeh-

q0
 .

There are so many challenges that you may even think about

something I would never think of, and vice versa. First, you can

put everything in a box that is waterproof, if you are going to

load the tracker on the bike, for example. If you are

car, you can have the Arduino powered on the

12 volt vehicle outlet.

It is possible to go much further by exchanging the SD card for a module

GPRS, and send it directly to the internet, online.

So, start creating your own professional GPS tracker.

You can also put some indicative LEDs to find out if the GPS

is returning valid positions or not, whether the card is inserted or

no, and even if there is any other error or status you want

go along. In order not to record too much data and then fill the card,

you can choose to record only after some time, some

distance or any predetermined change of direction.

In the next project, we will build a toy, because

nobody is iron and we need some fun with the

brothers, sisters or young children. Let's build a potato

hot!

[image:]

Figure 10.2: A buzzer, which at the top has the indication of the positive pin

In addition to the Arduino and the buzzer, the only things you

you will need will be a support for 9V batteries with plug to connect it

Arduino, and a battery too.

[image:]

Figure 10.3: The 9V battery plug

To mount the battery holder with the plug, simply solder the wire

positive (red) on the center pin of the plug, as in the figure:

[image:]

Figure 10.4: Soldering the positive (red) wire on the central pin of the plug and the negative (black) on the

external pin

Remember to leave the cover already on the wires so that it is

affixed to the connector later, that assembled, will be as

in the following figure:

[image:]

Figure 10.5: Battery clip with the connector mounted

To test that everything is OK, making sure that the positive of the

battery is connected to the center pin of the connector, connect a

battery to the support and the whole set to an Arduino:

[image:]

Figure 10.6: Set with the battery holder and connector connected to the Arduino!

Assembly will be simple, we will not use extra wires or

anything else. Let's take advantage of the buzzer's own pins

and connect the positive pin of the buzzer to the digital pin 11 of the Arduino, and the

negative pin from the buzzer to the Arduino GND pin, as in the figure

Following:

[image:]

Figure 10.7: The buzzer connected directly to the Arduino pins

That way, the project will be compact and can be easily

placed in any casing, as you will see later.

Let's go to the schedule:

int
 buzzer = 11;

int
 times = 0;

void
 setup () {

pinMode (buzzer, OUTPUT);

randomSeed (analogRead (A0));

times = random (10, 100);

for
 (
 int
 i = 0; i <= times; i ++) {

digitalWrite (buzzer, HIGH);

delay (100);

digitalWrite (buzzer, LOW);

delay (100);

}

digitalWrite (buzzer, HIGH);

delay (1000);

digitalWrite (buzzer, LOW);

}

void
 loop () {

}

I used two variables of the integer type. One is called a
 buzzer
 ,

to store the digital pin to which the buzzer is connected. You

you can change its value if you connect your buzzer to another pin

any. The other, called
 times
 , starts with zero and will indicate

the number of times the buzzer will sound.

I put all the code in the
 setup ()
 function so that, after

each round, it is necessary to press the Arduino reset button.

This makes it possible to control the start and end of each

round of play.

As you’ve noticed, the programming is simple and small, but let's go

to Details same like this.

With The
 pinMode (buzzer, OUTPUT)
 , we indicate that the buzzer pin (11)

it will be output, that is, we will put tension on it.

Then I use the command
 randomSeed (analogRead (A0))

to initialize the seed of pseudo-random numbers from the Arduino.

As we need to pass a number for the function to generate the

numbers, I passed analog pin A0 that is disconnected from

anything. This will result in a noise, increasing the chance

the generated numbers are totally different each time the

program starts running.

In the next line, with
 times = random (10, 100)
 , we generate

a random number between 10 and 100 and we store it in the variable

times. This will ensure that the buzzer will sound at least 10 times and at

maximum 100, allowing the potato to be exchanged between those

kidding, but not too short or too long, don't

making people bored.

The repetition structure
 for
 will cause the buzzer to be

triggered for 100 milliseconds, generating a short and

acute, and also remaining off for 100 milliseconds.

Thus, each repeat loop will last 200 milliseconds.

After the repetition loops are fulfilled, the buzzer will be

pressed for 1 second and then turned off, indicating the end

of the play round. To start over, just press the button

Arduino reset.

You will find a video of this project in operation

at
 https://youtu.be/gwo2ChgszKM
 .

The improvements can be endless, but I leave the challenge to this

project on using their artistic knowledge and building a

wrapper that creates the potato, so that it can be thrown between the

play participants. It will also be a lot of fun if, in

instead of beeps, you can make some melody, maybe some

wheel song that will look much better if you don't use a

buzzer, but a speaker.

You can also join this project to the one where

we built our own Arduino to eliminate the complete board.

This will make electronics more compact and easier to integrate with

wrapper you’ll create.

Now, if you found this project simple and easy, see what comes

next: a robot as easy to build and program as ours

hot potato! That's right, the simplest and easiest spider robot to

build the world without fear of making mistakes. Prepared?

Let's see what this is about!

Like any project, you will need an Arduino Uno:

[image:]
 Figure 11.1: The Arduino UNO

You will also need and two servo motors, which can be

small, as it will not be necessary to carry much weight:

[image:]

Figure 11.2: Two servo motors

1

1.2 DEVELOPING THE PROJECT

Servo motors are easy to control using an Arduino,

just use the Servo library that provides all the commands

necessary for this. The Servo library is already integrated with the IDE

Arduino. You can insert it into your project by clicking on the menu

Sketch
 , selecting the
 Include Library
 option and then

by clicking on the
 Servo
 option :

[image:]

Figure 11.3: How to select the Servo library to insert it into your project

A servo motor has 3 wires: two for power and one for

signal. The power cords are usually red for the

+ 5V, and brown for GND. The third, and usually yellow, is

the data wire, ie motor control.

To connect a servo motor to the Arduino, simply connect the wires

described on the correct pins: connect the red wire to a

+ 5V supply, the brown wire on a GND and the yellow wire on the

digital pin 2. It is important to know that the current used by a

servo motor can exceed 1A, that is, be much higher than the

available in Arduino. So
 never
 connect more than one servant

engine to your Arduino at the same time. This can damage both the

microcontroller and motors.

We are going to feed our servants through a set of

four batteries, which will result in 6V, within the tolerated by the servos

and also useful for powering the Arduino itself.

[image:]

Figure 11.4: Support for 4 1.5V batteries totaling 6V

To be able to power the Arduino and the engines, I will use a

plug with terminals. Thus, we will be able to derive the support wires

for batteries for the engines keeping the Arduino on.

[image:]

Figure 11.5: The terminal plug

So, just connect the battery holder wires and the

wires to power the engines.

[image:]

Figure 11.6: Battery and wire support for engines

We can now connect the motor control wires to the

Arduino to test them. Connect one of the motors to digital pin 2 and the

another to digital pin 3:

[image:]

Figure 11.7: Servo motors connected to Arduino

We can now test the operation of the engines with the

following code:

#
 include
 <Servo.h>

Servo motor_d;

Servo motor_t;

forward
 int
 = 2;

rear
 int
 = 3;

int
 i = 0;

void
 setup () {

motor_d.attach (front);

motor_t.attach (rear);

}

void
 loop () {

motor_d.write (i);

motor_t.write (i);

i ++;

if
 (i> 180) i = 0;

delay (100);

}

In this code, we import the
 Servo.h
 library that comes from

many facilities for moving the servo motors. Soon in

We then declare two objects, called
 motor_d
 (motor

front) and
 engine_t
 (rear engine), as being of the type

Servant
 .

The integer variables
 front
 , which receives 2, and
 rear
 ,

receiving 3, indicate the digital pins of the Arduino on which they will be

servo motors are connected. This makes it easier if you want, for a reason

any, change the pin motors.

The entire variable
 i
 , which receives 0, will serve as a counter for

we pass the angles to the engines at which we want to position them.

At

occupation

setup ()

,

we use the commands
 motor_d.attach (front)
 and
 motor_t.attach (rear)

to indicate which pin each servo motor is connected to. That

command assigns the digital pin to the object that was assigned to the

servant.

In the
 loop ()
 function , we use
 motor_d.write (i)
 and
 motor_t.write (i)
 to send (write) to the servo motor the
 angle at which we want to position them. Since variable
 i
 has the
 initial value zero, after the execution of these lines, the motors will be positioned at 0 . This will be abrupt and should make a loud noise characteristic.

Continuing, we increment a variable
 i
 with
 i ++
 . In Then, we check if the value of this variable is greater than 180 with
 if (i> 180)
 . Note that the maximum angle of a servo motor

is 180 . If this value is reached, we will return variable
 i
 to

zero, its initial value.

The
 delay (100)
 is just so that everything doesn't happen too much

fast and you can notice the gradual changes in angle.

As I mentioned, the engine will be positioned at all angles

between 0 and 180 gradually every 100 milliseconds. But later

reaching the maximum value, it will return to the starting position at once

at 0 .

Already thinking about the movement of the legs, it would be better if this

back was also gradual. Let's change the previous code:

#
 include
 <Servo.h>

Servo motor_d;

Servo motor_t;

forward
 int
 = 2;

rear
 int
 = 3;

int
 i = 0;

int
 meaning = 0;

void
 setup () {

motor_d.attach (front);

motor_t.attach (rear);

}

void
 loop () {

motor_d.write (i);

motor_t.write (i);

if
 (sense == 0) i ++;
 else
 i--;

if
 (i> 180) sense = 1;

if
 (i <0) sense = 0;

delay (100);

}

We created only the entire variable called
 sense
 and

we initialize it with 0. It will indicate in which direction the servo motor

must be moved. It defines that, when it is 0, the angles

will increase, and when it was 1, the angles will decrease.

the objects for the engines, and we determine variables for

represent which digital pins the motors are on. In the function

setup ()
 , we attach the motors to their pins, and use

motor_d.write (90)
 and
 motor_t.write (90)
 to position the

90 motors.

All this done, it's time to build your legs! Youre gonna need it of two clips # 10.

Using clips makes everything simpler, as we won't need

run after a piece of wire or iron. It also doesn't have to be

necessarily clips # 10. You can do with smaller clips,

that will make your legs shorter, or with clips

bigger, which will make the legs get longer. Do it

adaptation he deems necessary.

[image:]

Figure 11.8: Two clips # 10

Open the clips so they are as straight as possible.

[image:]

Figure 11.9: The open clip

Take the round head of your servo motor and place the clips

over it, so that it is in the middle of the clips.

[image:]

Figure 11.10: The head in the middle of the clips

Fold the clips and make a point, as in the following figure:

[image:]

Figure 11.11: Clips folded over the head

You should now attach the clips to the head, which will create the

our legs. You can use tape, glue or, like me, a

small thin copper wire to tie everything.

[image:]

Figure 11.12: Clips, head and wire to tie everything

[image:]

Figure 11.13: The first assembled leg

Then repeat again to create a second leg.

[image:]

Figure 11.14: The two legs assembled

These will be our front legs, which will be placed on what

will be the front and rear engine, placed on what will be the engine

rear.

[image:]

Figure 11.15: Legs installed on the engines

So let's assemble the body! Using double-sided tape or glue,

we will attach the motors below the Arduino:

[image:]

Figure 11.16: Motors with double-sided tapes

[image:]

Figure 11.17: Engines stuck under the Arduino

Time to put your legs on the engines:

[image:]

Figure 11.18: Legs installed

Now, adjusting your legs so that they are balanced,

put your spider robot on its feet. Remember to screw the head

to the engine so that everything stays assembled when

moving.

The code for the robot to start walking is as follows:

#
 include
 <Servo.h>

Servo motor_d;

Servo motor_t;

forward
 int
 = 2;

rear
 int
 = 3;

int
 i = 45, j = 90;

int
 meaning = 0;

void
 setup () {

motor_d.attach (front);

motor_t.attach (rear);

}

void
 loop () {

motor_d.write (i);

motor_t.write (j);

if
 (sense == 0) {

i ++;

j--;

}
 else
 {

i--;

j ++;

}

if
 (i> 90) sense = 1;

if
 (i <45) sense = 0;

delay (50);

}

[image:]

Figure 11.19: All standing

You will find a video of this project in operation

at
 https://youtu.be/q8gRwHqC6No
 .

He's a little clumsy, right ?! But worth it as a good

study of leg movements for a more elaborate and

complete.

Good challenges for this project are to increase it to make it

more attractive and practical. To start, I think you need to leave it

less clumsy and with more agile and fast movements.

You can also create your own Arduino, to let everything

small so that it can be placed next to the servo motors

inside a small box. Remember the battery, which is

practically the heaviest of the entire project, which should be

also somewhere. The legs may need to be

redesigned to support her weight.

Finally, I think that including two LEDs to create eyes too

will make our little insect more fun, even more in places

dark. Although these LEDs can light up only when the

environment is dark. This will be easy to do using a

luminosity.

With this project, we have reached the end of this book. But not at the end

of the possibilities that the Arduino, when coupled with components

electronics, sensors and a good dose of imagination, in

provide. Move on!

Use these projects as a starting point for others. Create the

yours from just one idea, but don't stop, stay in

movement always.

OEBPS/Image00102.jpg

OEBPS/Image00101.jpg

OEBPS/Image00104.jpg

OEBPS/Image00103.jpg

OEBPS/Image00106.jpg

OEBPS/Image00105.jpg

OEBPS/Image00107.jpg

OEBPS/Image00022.jpg

OEBPS/Image00023.jpg

OEBPS/Image00020.jpg

OEBPS/Image00021.jpg

OEBPS/Image00018.jpg

OEBPS/Image00098.jpg

OEBPS/Image00019.jpg

OEBPS/Image00100.jpg

OEBPS/Image00099.jpg

OEBPS/Image00026.jpg

OEBPS/Image00027.jpg

OEBPS/Image00024.jpg

OEBPS/Image00025.jpg

OEBPS/Image00003.jpg

OEBPS/Image00002.jpg

OEBPS/Image00005.jpg

OEBPS/Image00004.jpg

OEBPS/Image00007.jpg

OEBPS/Image00006.jpg

OEBPS/Image00113.jpg

OEBPS/Image00112.jpg

OEBPS/Image00115.jpg

OEBPS/Image00114.jpg

OEBPS/Image00117.jpg

OEBPS/Image00116.jpg

OEBPS/Image00011.jpg

OEBPS/Image00012.jpg

OEBPS/Image00009.jpg

OEBPS/Image00097.jpg

OEBPS/Image00010.jpg

OEBPS/Image00126.jpg

OEBPS/Image00095.jpg

OEBPS/Image00109.jpg

OEBPS/Image00008.jpg

OEBPS/Image00096.jpg

OEBPS/Image00108.jpg

OEBPS/Image00093.jpg

OEBPS/Image00111.jpg

OEBPS/Image00094.jpg

OEBPS/Image00110.jpg

OEBPS/Image00017.jpg

OEBPS/Image00015.jpg

OEBPS/Image00016.jpg

OEBPS/Image00001.jpg

OEBPS/Image00013.jpg

OEBPS/Image00000.jpg

OEBPS/Image00014.jpg

OEBPS/Image00091.jpg

OEBPS/Image00092.jpg

OEBPS/Image00089.jpg

OEBPS/Image00090.jpg

OEBPS/Image00088.jpg

OEBPS/Image00086.jpg

OEBPS/Image00087.jpg

OEBPS/Image00084.jpg

OEBPS/Image00085.jpg

OEBPS/Image00082.jpg

OEBPS/Image00083.jpg

OEBPS/Image00080.jpg

OEBPS/Image00081.jpg

OEBPS/Image00078.jpg

OEBPS/Image00079.jpg

OEBPS/Image00077.jpg

OEBPS/Image00075.jpg

OEBPS/Image00076.jpg

OEBPS/Image00073.jpg

OEBPS/Image00074.jpg

OEBPS/Image00071.jpg

OEBPS/Image00072.jpg

OEBPS/Image00069.jpg

OEBPS/Image00070.jpg

OEBPS/Image00068.jpg

OEBPS/Image00066.jpg

OEBPS/Image00067.jpg

OEBPS/Image00064.jpg

OEBPS/Image00065.jpg

OEBPS/Image00062.jpg

OEBPS/Image00063.jpg

OEBPS/Image00060.jpg

OEBPS/Image00061.jpg

OEBPS/Image00058.jpg

OEBPS/Image00059.jpg

OEBPS/Image00055.jpg

OEBPS/Image00056.jpg

OEBPS/Image00053.jpg

OEBPS/Image00054.jpg

OEBPS/Image00051.jpg

OEBPS/Image00052.jpg

OEBPS/Image00049.jpg

OEBPS/Image00050.jpg

OEBPS/Image00057.jpg

OEBPS/Image00124.jpg

OEBPS/Image00048.jpg

OEBPS/Image00123.jpg

OEBPS/Image00125.jpg

OEBPS/Image00128.jpg

OEBPS/Image00044.jpg

OEBPS/Image00045.jpg

OEBPS/Image00042.jpg

OEBPS/Image00118.jpg

OEBPS/Image00043.jpg

OEBPS/Image00040.jpg

OEBPS/Image00120.jpg

OEBPS/Image00041.jpg

OEBPS/Image00119.jpg

OEBPS/Image00038.jpg

OEBPS/Image00122.jpg

OEBPS/Image00039.jpg

OEBPS/Image00121.jpg

OEBPS/Image00046.jpg

OEBPS/Image00047.jpg

OEBPS/Image00033.jpg

OEBPS/Image00034.jpg

OEBPS/Image00031.jpg

OEBPS/Image00032.jpg

OEBPS/Image00029.jpg

OEBPS/Image00030.jpg

OEBPS/Image00028.jpg

OEBPS/Image00037.jpg

OEBPS/Image00035.jpg

OEBPS/Image00036.jpg

