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Preface

An emission-free mobility system is the only way to save the world from 
the greenhouse effect and other ecological issues. This belief has led to a 
tremendous growth in the demand for electric vehicles (EV) and hybrid 
electric vehicles (HEV), which are predicted to have a promising future 
based on the goals fixed by the European Commission’s Horizon 2020 pro-
gram. Consequently, progress can be seen as a result of the huge amount 
of ongoing research currently being conducted in the emerging EV/HEV 
sector. Hence, the technology needs to be supported by bringing an aca-
demic perspective to industrial demands in order to aid the development 
of proper documentation to direct this progress.

With this goal in mind, this book brings together the research that has 
been carried out in the EV/HEV sector and the leading role of advanced 
optimization techniques with artificial intelligence (AI). This is achieved 
by compiling the findings of various studies in the electrical, electronics, 
computer, and mechanical domains for the EV/HEV system. In addition 
to acting as a hub for information on these research findings, this book 
also addresses the challenges in the EV/HEV sector and provides proven 
solutions that involve the most promising AI techniques.

Since the commercialization of EVs/HEVs still remains a challenge in 
industries in terms of performance and cost, these are the two tradeoffs 
which need to be researched in order to arrive at an optimal solution. 
Therefore, this book focuses on the convergence of various technologies 
involved in EVs/HEVs. Since all countries will gradually shift from con-
ventional internal combustion (IC) engine-based vehicles to EVs/HEVs in 
the near future, it also serves as a useful reliable resource for multidisci-
plinary researchers and industry teams.

Among the contributors to this book are those from various esteemed 
national and international institutions; namely, Tanta University, Egypt; 
NIT Mizoram, NIT Meghalaya and NIT Pondicherry, India; Anna 
University Chennai, India; Thiagarajar College of Engineering, Madurai, 
India; and Vellore Institute of Technology, Vellore, India. I would like to 
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thank all the contributors for their valuable research contributions and 
time. My sincere thanks to Vellore Institute of Technology for providing 
all the support necessary to make this book a reality.  I would also like to 
extend my heartfelt gratitude to the Scrivener Publishing team for provid-
ing endless support over the course of the compilation of this book.

The Editors
May 2020
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IoT-Based Battery Management System  
for Hybrid Electric Vehicle

P. Sivaraman1* and C. Sharmeela2

1Leading Engineering Organisation, Chennai, India
2CEG, Anna University, Chennai, India

Abstract
The basic function of the BMS are to monitoring and control the battery process 
such as charging and discharging cycle, ensure the healthy condition of the battery, 
minimizing the risk of battery damaging by ensuring optimized energy is being 
delivered from the battery to power the vehicle. The use of monitoring circuit in 
BMS will monitor the key parameters of the battery like voltage, current, tempera-
ture during both charging and discharging situation. It estimates the power, State 
of Charge (SoC), State of Health (SoH) and ensures the healthiness based on the 
measurement. Balancing the cell is one of the important features of the BMS system. 
It will monitor the individual cells/group of cells connected in parallel and balanc-
ing the cells online. It also conducts the diagnostics of the battery to ensure the safe 
operation. If, BMS identified any one cell is weak, it will give intimation or alarm for 
cell replacement. It also provides the protection against overcharging, undercharg-
ing, overcurrent, under voltage, short circuit and temperature variations (low and 
high temperature). In recent years, Internet of Things (IoT) plays a major role in 
monitoring and control, also it enables the remote data logging facility for battery 
parameters, conditions, etc.

Keywords:  Electric vehicles, hybrid electric vehicles, batteries, internet of things, 
battery management system, Li-ion batteries, SoC, SoH

1.1	 Introduction

Lithium-Ion batteries are widely used in Electric Vehicle (EV) and Hybrid 
Electric Vehicle (HEV) due to its various advantages over other types of 

*Corresponding author: psivapse@gmail.com
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batteries. It has the unique feature which requires a Battery Management 
System (BMS) to actively monitor its parameters and also to ensure the 
reliable, control and safe operation of battery during their charging/
discharging cycle [1, 16].

The basic function of the BMS is to monitor and control the battery pro-
cess such as charging and discharging cycles, ensure the health condition 
of the battery, minimizing the risk of battery damaging by ensuring opti-
mized energy is being delivered from the battery to power the vehicle. The 
monitoring circuit in BMS is used to monitor the key parameters of the 
battery like voltage, current, temperature at both charging and discharg-
ing situations in order to ensure the safe operation. It estimates the power, 
SoC, SoH and ensures the healthiness based on the measurement [17]. The 
typical two-wheeler battery SoC status indication is shown in Figure 1.1.

It also monitors the EV and HEV ancillary systems like charger operations, 
protection and safety devices (fuses and circuit breakers), thermal manage-
ment, etc. Balancing the cell is one of the important features of the BMS sys-
tem. It will monitor the individual cells and/or group of cells connected in 
parallel and balancing the cells online. The diagnostics of the battery is con-
ducted to ensure the safe operation. If BMS identified any one cell is weak, 
then it will give intimation or alarm for cell replacement. It will also provide 
the protection against overcharging, undercharging, overcurrent, under 
voltage, short circuit and tempera\ture variations (both low and high tem-
peratures) [20, 21], i.e. it will provide the signals to protection devices if any 

Figure 1.1  Typical-two wheeler SoC status indication.
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parameter monitoring value exceeds the pre-set value or threshold value and 
will give the notification alarm [3, 4, 15]. It will control the charging, power 
down, power up and it communicates all the parameters to the vehicle [2].

The BMS acts as the interface with other systems of the vehicle like 
vehicle controller, motor controller, safety system, communication system 
and climate controller [5, 6]. The two or more numbers of battery strings 
are connected in parallel to a common DC bus. The BMS shall aggregate 
the string monitored data and communicate it with the main host system 
(vehicle master control system) [7, 8]. In recent years, Internet of Things 
(IoT) plays a major role in monitoring and control of the equipment for 
reliable and safe operation. IoT also enables the remote data logging facil-
ity for battery parameters, battery conditions, etc. [10, 16, 17].

This chapter explains the concept of IoT-based battery management 
system for EV and HEV.

1.2	 Battery Configurations

The battery packs are designed to deliver the higher voltage, higher current 
or both. The number of cells to be connected in series and number of cells 
to be connected in parallel is based on the voltage and current requirements 
to powering the electric motor in the vehicle [13]. The multiple individual 
cells are connected in series for higher voltage requirement. The battery 
pack voltage is the product of number of cells connected in series and cell 
voltage. The typical name plate details of Li-Ion cell are listed in Table 1.1.

Table 1.1  Typical name plate details of Li-Ion cell.

S. No. Specifications Value

1 Nominal voltage (V) 3.7

2 Maximum charge voltage (V) 4.2

3 Nominal capacity (mAh) 3,200

4 Maximum charge current (mA) 3,100

5 Maximum charge current C rating 1

6 Standard discharge current (mA) 620

7 Standard discharge current C rating 0.2

8 Maximum discharge current (A) 10



4  AI Techniques for Electric and Hybrid Electric Vehicles

The expression for voltage of the battery pack is given in Equation 1.1.

	 Vbattery pack = Ns × Vcell	 (1.1)

Where

Vbattery pack is voltage of the battery pack
Ns is number of cell connected in series
Vcell is cell voltage

Example 1: Calculate the battery pack voltage for 3.7 V, 3,100 mAh, 40 
numbers of series connected cells.

The cell voltage is 3.7 V.
No. of cells is 40.
Applying the number of cells and cell voltage in Equation 1.1, the bat-

tery pack voltage is 148 V.
The series connection of individual cells is called as Series Cell Modules 

(SCM) and is shown in Figure 1.2.
For higher current requirement multiple individual cells are connected 

in parallel. The battery pack current is the product of number of cells con-
nected in parallel and cell current. The expression for current of the battery 
pack is given in Equation 1.2.

	 Ibattery pack = Np × Icell	 (1.2)

Where

Ibattery pack is current of the battery pack
Np is number of cell connected in parallel
Icell is cell current

+ Cell − + Cell −

+ Cell − + Cell − + Cell −

+ Cell −
SCM

SCM

+ –

Figure 1.2  Series cell connection.
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Example 2: Calculate the battery pack voltage for 3.7 V, 3,100 mA, 10 
numbers of parallel connected cells.

The cell current is 3,100 mA.
No. of cells is 10.
Applying the number of cells and cell current in Equation 1.2, the bat-

tery pack current is 31,000 mA or 31 A.
The parallel connection of individual cells is called as Parallel Cell 

Modules (PCM) is shown in Figure 1.3.
The series and parallel connection of multiple number of cells is used to 

achieve the desired voltage and/or current. For an example, 2P5S module 
has the total number of 10 cells with 2 cells in parallel and 5 cells in series. 
Figure 1.4 shows the series and parallel configuration of 2P5S module.

1.3	 Types of Batteries for HEV and EV

The types of battery has to be chosen by considering technical require-
ments such as power and energy requirements, commercials involved in it 
[18, 19]. The different types of batteries for HEV and EV are listed below

+ Cell –

+ Cell –

+ Cell –

+ Cell –

+ Cell –

+ Cell –

PCM PCM PCM

+ –

Figure 1.3  Parallel cell connection.

+ Cell 1 –

+ Cell 6 – + Cell 7 – + Cell 10 –

+ –

+ Cell 2 – + Cell 5 –

Figure 1.4  Series and parallel cell connection of 2P5S.
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1.	 Energy battery
2.	 Power battery
3.	 Hybrid battery
-	 The energy battery is low C rating and economical.
-	 The power battery is higher C rating and expensive.
-	 Hybrid battery is a combination of small power battery with 

active or passive coupling, energy battery with ultra-capacitor.

The important parameters of battery pack selection for HEV are

1.	 Energy (kWh)
2.	 Continuous discharge power (kW)
3.	 Peak discharge power (kW)
4.	 Continuous charge power (kW)
5.	 Peak charge power (kW)
6.	 Storage and ambient temperature
7.	 No. of charging and discharging cycle
8.	 Cooling requirements
9.	 Weight (kg) Safety
10.	 Disposal/Recycling procedures
11.	 Mounting direction
12.	 Dimensions

1.4	 Functional Blocks of BMS

The basic function of the BMS is to monitor and control the battery process 
such as charging and discharging, ensure the health condition of the bat-
tery and minimizing the risk of battery from damage. BMS also ensure the 
optimized energy from the battery is being delivered to power the vehicle.

The monitoring circuit in BMS is used to monitor the key parameters of 
the battery during both charging and discharging conditions such as

•	 Voltage
•	 Current
•	 Power
•	 Cell temperature
•	 Ambient temperature

It estimates the State of Charge (SoC) and Depth of Discharge (DoD) of the 
battery based on the measurements.
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1.4.1	 Components of BMS System

The following components are minimum essential for BMS system:

1.	 Voltage sensor
2.	 Current sensor
3.	 Cell temperature sensor
4.	 Ambient temperature sensor
5.	 Interface circuits to communicate with vehicle controller
6.	 Interface circuit to communicate with remote device

A.  Voltage Sensor
The battery State of Charge (SoC) and State of Health (SoH) depends on 
cell voltage. The accuracy of cell voltage measurement plays a major role 
in estimation of battery SoC and SoH in travel. Inaccurate measurement 
of every milli voltage has an impact in battery SoC and SoH in travel. The 
selected/used voltage sensor shall have the better accuracy in cell voltage 
measurements during charging and discharging time period.

B.  Current Sensor
The current sensors are used to measure the current flowing in the circuit 
i.e., current flow from the charger to battery during the battery charging 
and current flow from the battery to vehicle electric motor during the dis-
charging. Current measurement of the battery pack is required to ensure 
the safety during the operation, to log abuse conditions and estimate SoC 
and SoH. The product of voltage and current is used to find the charging 
and discharging power in and out to the battery.

The measurement of current by using current sensors is done by two 
methods which are discussed below:

1.	 Shunt method
2.	 Hall effect sensor.

In shunt method, a shunt sensor (high precision resistor) of lower value 
in milli Ohm is connected in series with battery pack to measure the cur-
rent flow. The current flow in the circuit is calculated as per Ohms law and 
given in Equation 1.3.

	
=

	
(1.3)
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Where

I is current flow in A
Vshunt is voltage drop (V) in shunt
Rshunt is shunt resistance in Ω

The typical block diagram showing the measurement of current using 
shunt is represented in Figure 1.5.

The disadvantages of using shunt sensor for current measurement intro-
duced losses and it generates heat during their entire operation. Heat has 
to be dissipated properly without affecting the other equipment’s perfor-
mance. The resistance of shunt sensor changing with respect to tempera-
ture changes. Shunt resistance has to be calibrated with temperature.

Hall effect sensors or Hall sensors are used to measure the current flow 
in the circuit by measuring the magnetic field generated by current flowing 
in a circuit or wire.

The typical block diagram of measurement of current by using hall sen-
sor is shown in Figure 1.6.

Battery
Pack

Shunt
Sensor

Ampli�er

BMS

+ –

Figure 1.5  Measurement of current by using shunt sensor.

Battery
Pack

Hall
Sensor

Conditioning

BMS

+ –

Figure 1.6  Measurement of current by using hall sensor.
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C.  Cell Temperature Sensor
The battery pack characteristics and degradations during operation are 
affected by temperature. Sometimes changes in temperature is leading to 
cell failure. The cell temperature is measured by cell temperature sensor 
installed in top of the cell. The BMS is measuring the actual temperature 
on the cell during the charging and discharging time through this cell tem-
perature sensor. The accuracy of the measurement is important in order to 
find the healthiness of the battery.

D.  Ambient Temperature Sensor
The BMS is measuring the actual ambient temperature during the charging 
and discharging through ambient temperature sensor installed in the bat-
tery stack.

E.  Interface Circuits to Communicate With Vehicle Controller
All the measured and estimated parameters by BMS like SoC, SoH, power, 
temperature, etc., are communicated to vehicle controller for user infor-
mation. Interface circuits are used between the BMS and vehicle controller 
to transfer the data. From the vehicle display the users understand the SoC, 
SoH, expected km of driving, nearest charging station through GPS, prob-
lems like over temperature in cell, battery under voltage, etc.

F.  Interface Circuits to Communicate With Remote Device
This interface circuit enables the monitoring of vehicle parameters such 
as SoC, SoH, power, battery voltage, cell temperature, etc., from remote 
location. Various advantages are there for monitoring these parameters in 
remote devices like storing the history of the vehicle performance, tracking 
of vehicle location, etc.

G.  State of Charge
This State of Charge (SoC) is expressed as the ratio of amount of battery left 
at measurement time to amount of energy of the battery when it was new. 
The expression for SoC is given in Equation 1.4.

	

SoC Amount of energy left at measurement time= in the battery
Amount of energy of the battery when it was new
Battery residual AH

Battery no
=

mminal AH capacity

�

(1.4)
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The SoC of the battery is estimated based on voltage and Coulomb 
counting. The SoC, determines the usable capacity that is available for the 
usage and estimate the vehicle mileage.

H.  Depth of Discharge
The Depth of Discharge (DoD) of the battery is defined on the amount of 
capacity that is discharged from its overall capacity [23, 24]. It also indi-
rectly says the SoC of the battery after the discharge. The DoD is the ratio 
of discharged energy from the battery to overall energy capacity of the bat-
tery. The expression for DoD is given in Equation 1.5.

	
DoD Disch ed energy from the battery kWh

O
= arg ( )

vverall energy capacity of the battery kWh( ) �
(1.5)

Example 1: The battery pack overall capacity is 25 kWh of electric 
energy and 20 kWh energy is discharged. The DoD is 80%. It means, 80% 
of 25 kWh energy is discharged and 20% of 25kWh energy is available in 
the battery.

Example 2: The battery pack overall capacity is 50 AH and battery man-
ufacturer recommending 80% of DoD. What capacity of energy is available 
to discharge while considering the 80% DoD.

Answer: The energy availability for discharge by considering 80% DoD 
is calculated from Equation 1.6.

	

Energy availability
from the battery AH( )







==



Overall energy capacity
of the battery AH( )




×

×

DoD

=50 80%

�

(1.6)

Energy availability from the battery (Ah) = 40
The life of the battery depends on charging and discharging cycle of the 

battery and battery discharge capacity.

I.  Cell Diagnostics
During the vehicle operation, any of following things can go wrong and 
shall lead to performance degradation or failure of equipment:
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•	 Cell over temperature
•	 Higher current leakage
•	 Under voltage or over voltage.

The individual cell temperature may exceed the pre-set value during the 
vehicle operation. In series configurations, voltage variations are widely 
encountered and in parallel configurations, the leakage current problems 
are widely encountered. Sometimes these will lead to catastrophic failure 
of the equipment.

J.  Cell Balancing
Li-Ion batteries should not be overcharged for safe operation because over-
charging the Li-Ion batteries affects its internal materials. The BMS is mon-
itoring the battery pack voltage actively and cuts off the charger once any 
one cell reached the threshold value even others cells are not fully charged. 
Whenever cells are connected in parallel tend to self-balance all the cells 
that are connected in parallel, i.e., voltage in overcharged cells are balanc-
ing the undercharged cells results in self balancing. This cells balancing are 
classified into two types.

1.	 Passive cell balancing approach
2.	 Active cell balancing approach

The passive cell balancing is achieved by depletion of overcharged cells 
to make the cell Ah capacities to be equal.

The active cell balancing is achieved by diverting the overcharged cells 
to lesser charged cells to make the cell Ah capacities to be equal.

K.  Thermal Management for Battery Pack
The performance of the battery pack is depends on temperature and change 
in temperature affects the vehicle mileage [22]. The typical operating tem-
perature of the battery pack during on board of the vehicle is 5 to 40°C. If 
the temperature is high then battery performance is reduced and the tem-
perature is low then battery performance is increased.

1.5	 IoT-Based Battery Monitoring System

In general, IoT is a mediator or medium of communication between the var-
ious sensors (hardware) and application (software). The important task of 
IoT is to collect the data from the various hardware using different protocols, 
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remote location device configuration and its control [9, 11, 12, 14]. The gen-
eral block diagram of IoT-based system architecture is shown in Figure 1.7.

The voltage sensor, current sensor and temperature sensors are used to 
measure the battery parameters such as voltage, current, cell temperature and 
ambient temperature respectively used in the battery management system. The 
measured parameters are used to estimate the power flow, SoC, SoH, Depth of 
Discharge (DoD), etc., and communicate to vehicle master controller locally 

Customer
Application

Data analytics
and storage

IoT Platform

Sensors

Application
Layer

Middle
Layer

Hardware
Layer

Figure 1.7  General block diagram of IoT based system architecture.

Remote Device for
Analytics and
Data storage
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Voltage
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Ambient
Temperature
Sensor

Cell
Temperature
Sensor

Battery Pack

Figure 1.8  Block diagram of IoT based battery monitoring system.
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[12, 16, 17]. In an IoT-based system, these measured and estimated parameters 
are communicated to remote location via wireless communication [27]. The 
block diagram of IoT-based battery monitoring system is shown in Figure 1.8.

Wireless technology is a broad term. It includes necessary procedures 
and formats of connection or communication between two or more devices 
by using wireless signals [26, 27]. In literature, there are different types of 
wireless technologies that are for monitoring the battery system. They are

1.	 ZigBee communication
2.	 Wi-Fi communication
3.	 GSM communication
4.	 Bluetooth communication
5.	 GPRS communication
6.	 GPS

A.  Zigbee Communication
The Zigbee is a wireless communication is based on IEEE standard 802.15.4 
and used for connectivity and networking. All the devices available near 
the vicinity are connected via Zigbee communication. The advantage of 
Zigbee communications is flexibility in network structure resulting in 
higher number of devices connectivity. The disadvantage of Zigbee com-
munications are lesser coverage area and not secured network like Wi-Fi.

B.  Wi-Fi communication
The Wi-Fi is one of the popular wireless communications used to connect 
the multiple devices in lesser coverage area [25]. The advantages of Wi-Fi 
communications are mobility and convenient transfer of data. The disad-
vantages of Wi-Fi communications are security and connectivity range.

C.  Global System for Mobile Communication
Global System for Mobile (GSM) communication is one type of world-
wide popular wireless communication [28]. The frequency band for GSM 
communication is either 900 MHz or 1,800 MHz. The advantages of GSM 
communication are there are no roaming issues and it can be easy to imple-
ment. The disadvantage of GSM communication technology is license to 
be obtained every time for usage of this technology.

D.  Bluetooth Communication
The Bluetooth technology is widely used in mobile phone communication 
for transferring the data between multiple devices. The main advantage of 
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Bluetooth technology is that it is interference-free when used to transferring 
both data and voice for short distance. The disadvantages of Bluetooth tech-
nology are they are highly unsecure and have limited connectivity range.

E.  General Packet Radio Service Communication
The General Packet Radio Service (GPRS) is one of the wireless commu-
nication technologies widely used across the world particularly in mobile 
phones.

Advantages of GPRS:

•	 It enables wireless access from any location and anywhere in 
the network signal coverage

•	 It enables high-speed data transfer
•	 It supports various applications
•	 It provides higher bandwidth and point-to-point services
•	 The communication via GPRS in cheap as compared with 

GSM.

Disadvantages of GPRS:

•	 Limited number of users and also it cannot be used at a time 
in same location

•	 Limited in capacity for its users
•	 Small delay in transfer
•	 Not possible to use the GPRS outside the network coverage 

area.

F.  Global Positioning System (GPS) Communication
Global Positioning System (GPS) communication technology is 
satellite-based to transfer the data to GPS receiver across the world [28]. 
It transfers the signal at speed of light and GPS receiver receives the sig-
nal with slightly small difference because of distance between the satellites. 
The GPS-based system has an accuracy range of ±10 m.
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Abstract
Different electric motors have been used as electric vehicle propulsion schemes. 
As conventional sources are scarce, electric vehicles are emerging nowadays as an 
alternative solution for transportation. These are the most elegant green transport 
option, that takes very less power, and possesses high-speed operation compared 
to conventional vehicles. BLDC motors are suggested for use in an electric vehicle 
for high-speed noiseless operation, and the absence of brushes makes it almost 
maintenance-free. Vehicles carry the load for a specific distance within a partic-
ular time. And so, the speed and torque control are necessary to reach the desti-
nation with minimum expenditure. The less cost of semiconductor devices makes 
the supply section very economical for BLDC motor. Different control techniques, 
classical and artificial intelligence controllers, are preferred to control the BLDC 
motor based electric vehicles. Classical controllers have many benefits, but has a 
drawback of failure in optimizing system efficiency. Advances in artificial intel-
ligence applications like fuzzy-logic control, neural-network, genetic-algorithm, 
have substantially affected electric motor drives by providing optimal control. 
These different AI methods for PMBLDC motor drive are discussed in this chap-
ter to provide guidance and fast reference to readers and engineers researching in 
the field of an electric vehicle.

*Corresponding author: upama.eee@nitmz.ac.in
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2.1	 Introduction

Electric vehicles are more competent than internal combustion vehicles. 
So, we are proposing more electric vehicles than conventional cars. In this 
system, the idea of retrofitting traditional vehicles to electric vehicles is pro-
posed. A BLDC motor drive and its controller can be implemented as per 
the weight and torque specifications on existing standard vehicles, which 
will reduce the cost. BLDC motor has high torque, high efficiency, reduced 
noise, smooth speed control, and longer lifetime. As the name suggests, the 
brushless dc motor does not have brushes, and they are commutated elec-
tronically. These motors are also known for their high durability due to sim-
plicity in design and high rpm capabilities. They have applications in both 
small and large industries. The motor is controlled by a controller with the 
assist of the view of the rotor location. For sensing the rotor location, certain 
types of controllers employ magnetic sensors or revolving encoders.

In some cases, the sensorless technique is used to detect the position by 
knowing the back emf of the BLDC motor. It contains three output termi-
nals, and logic circuits operate these. Advanced systems use a microcon-
troller to manage an increase in velocity and speed.

The lead-acid battery energizes the brushless direct current motor. 
Accelerator consists of a varistor. The varistor output wills according to the 
acceleration, and this output is provided to the controller. The signal from 
the accelerator is the reference signal. The speed sensors placed in the BLDC 
motor offer the information of the real rpm of the motor. These two signals 
are compared in the controller, and the power output from the chopper drive 
is varied. The signal from the chopper is given back to the motor. According 
to the output from the chopper drive, the motor speed can be controlled. 

Battery Storage

Reference
Speed

Accelerator Drive

Controller

BLDC Motor Electric
vehicle (EV)

Speed
Sensor

Figure 2.1  The central control block diagram of BLDC Motor Drive.
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The central control block diagram of BLDC Motor Drive operated electric 
vehicle is shown in Figure 2.1.

2.2	 Introduction of Electric Vehicle

One or more than one powerful electric motor is placed in an electric vehi-
cle. BLDC motor is a trendy choice for EV impulsion. An electric vehicle 
can be supplied by a battery, solar panels, or electrical generator [1]. EVs are 
not limited to road vehicles like trains, cars, and buses, and they also include 
off-road transport like submarines, and surface vessels, electric aircraft, and 
spaceship. From the mid-19th century, the EVs first came into existence as 
electricity was then the most preferred for the impulsion for motor vehi-
cles. These electric cars were also providing a great comfort level, and their 
operation was also easy compared to the gasoline cars of that time. For so 
many past decades, internal combustion engines are considered to be the 
best suited for the transportation system. But electric power-operated vehi-
cles like the train and small vehicles also exist parallelly. In the 21st century, 
as technology advanced and even the awareness for the non-conventional 
source of energy increased, the EVs are now a new revolution. The 
do-it-yourself (DIY) engineers started working on it, and Federal programs 
are also implemented to increase this EV technology. It is projected that in 
the near future, EVs will replace most of the IC engine vehicles. 

2.2.1	 Historical Background of Electric Vehicle

A Hungarian priest, Ányos Jedlik, designed the primary electric vehicle with 
an electric motor in 1827 [2]. A few years down the line, in 1835, the minor-
range EV was  built by Dr. Sibrandus Stratingh, and Dr. Robert Anderson 
invented the electric carriage powered by non-rechargeable primary cells 
between 1832 and 1839. Early experimental electric cars were moving on rail 
tracks around the same period. In 1838, an electric locomotive was designed 
by a Scotsman named Robert Davidson. The first large scale production of 
the electric vehicle was done in America in the 1900s. After the advancement 
of cheap IC engine base cars by Ford, the electric vehicles were not used by 
the collective [3]. Lack of power storage arrangement, i.e., battery at that time, 
was the limitation of electric vehicles. Still, the electric train was very much 
accepted. Later in the 20th century, the United Kingdom encouraged the use 
of electric vehicles, and it was the most significant user at that time. Those 
days EV was used to do specialist roles such as chassis trucks, ambulances, 
forklifts, tractors, and domestic food supply. Lack of natural fossil resources 
forced the rapid growth of electric trains in Switzerland. After the invention 



20  AI Techniques for Electric and Hybrid Electric Vehicles

of rechargeable batteries by Edison, a massive percentage of cars in the USA 
were electric. As the road infrastructure improved and the availability of sub-
stantial petrochemical reservoirs in different states like Texas, Oklahoma, and 
California, resulted in the mass growth of cheap affordable internal combus-
tion-driven cars compare to EVs to operate over long distances [4]. 

2.2.2	 Advantages of Electric Vehicle

The advantages of implying electric vehicles are discussed below.

2.2.2.1	 Environmental

No tailpipe air emissions are emitted at the location where EVs power them. 
Usually, they also produce less pollution in terms of noise than a vehicle 
with an IC engine, in standstill or motion. The use of electric vehicles will 
have an immensely positive effect on the environment, except those coun-
tries that depend on coal-based thermal power plants for power generation 
[5, 6]. In Nepal, a distinct type of electric vehicle is invented, which helps 
to control the pollution created by other vehicles. A survey by Cambridge 
Econometrics shows that the EVs can minimize air pollution at such a rate 
that by 2050, the European countries will reduce 88% of CO2 emissions 
from cars. Millions of tons of toxic nitrogen oxides (NOx) will be removed 
from the environment per year by implementing EV technology. 

2.2.2.2	 Mechanical

They can convert energy back into stored electricity from movement like 
the regenerative braking systems. These vehicles are effortless, and they 
can utilize the full energy, which is converted to get the required speed and 
torque precisely [7]. This can be used to minimize the wear of the brake 
system and diminish the overall energy demand of a tour. Since BLDC 
engines are used to operate EVs, they are capable of providing noiseless 
and smooth and vibration-free operation compare to internal combustion 
engines [8]. 

2.2.2.3	 Energy Efficiency

The tank to wheel efficiency of an electric vehicle is better than ICE 
vehicles, and electric vehicles do not consume fuel while stationary 
compare to internal combustion engines. However, considering the well-
to-wheel  efficiency, which is less but still, the total emission of EVs is 
lesser compared to conventional gasoline or diesel-based cars [9–12]. 
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Well-to-wheel ability mainly depends on the method of electricity pro-
duction. In the total lifecycle of EVs and diesel vehicles, EVs produce 
lesser greenhouse gases [13]. 

2.2.2.4	 Cost of Charging Electric Vehicles

In different places, the cost of running an EV is different, as it mostly 
depends on the availability of fuel in that place. In some countries, the 
cost of fuel is so high that people prefer electric vehicles in compar-
ison to conventional vehicles. In the USA, the fuel cost of an electric 
vehicle is more than the gas-powered vehicles because of their block 
rate tariff  of electricity. A  survey  on  electricity  consumption  was  con-
ducted  by  Purdue  University,  where  it  was  found  that the  majority  of 
users in California are already paying in the third price tier for electricity 
each month. And so, merging electric vehicles will increase energy con-
sumption, which will lead them to the fourth tier of power. Due  to this 
increment, they have to pay $0.45 per kWh extra to give supply to their 
vehicles. A block rate tariff system aims to minimize the consumption or 
to save electricity. According to the author, Tyner, these electric vehicles 
are not feasible under this block rate tariff system [14]. 

2.2.2.5	 The Grid Stabilization 

As EVs can be attached to the electrical grid when not being used, lead 
acid-powered vehicles have the ability to even bring down the require-
ment for electricity by injecting power from their storage into the network 
through times of high usage thereby carrying out most of their loading at 
night when the generating capacity is not used [15]. Our present power gen-
erating system may need to mix-up through the variable non-conventional 
power sources such as wind and solar photovoltaic. These will require 
massive processing and loading capacity that could be exploited to change 
charging speeds and production energy during times of scarcity.

2.2.2.6	 Range

The traveling distance range is shorter in the case of the electric vehicle 
compared to internal combustion engines. Though the running cost of 
EVs is decreasing still, it needs to charge or re-fuel very often. It is not 
convenient to charge the vehicle repeatedly when traveling, and so, many 
consumers prefer to charge their vehicle at home as it has a longer charging 
period. 
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2.2.2.7	 Heating of EVs

In the winter season, EVs need much more energy to increase the tem-
perature inside the vehicle and also to defrost the car windows. In the IC 
engines, due to the combustion process, the interior of the vehicle already 
remains heated. The EVs are using batteries to provide energy to all the 
sections of the car, so, to give this much heat, it needs a high rating of cells. 
Otherwise, in the case of ordinary rating batteries, there will be extra pres-
sure for this energy requirement for heating. The electric vehicles can be 
preheated or cooled, with little or no need for battery energy while taking 
power from the grid, especially for short trips.

In newly approved designs, the passenger’s body heat is used with the 
super-insulated cabins that can warm the car. The most economical and 
feasible way is to implement a heat pump system to solve the EV’s thermal 
management. The system is capable of reducing the heat inside the vehi-
cle during the summer and increase the heat during the winter. Ricardo 
Arboix (2008) established a new theory of using a heat pump system com-
bining with EV-battery and  cabin thermal management. To  implement 
this theory in EV models, a heat exchanger is thermally connected with 
the traditional air conditioning module, which is supplied by the battery. 
The system has extended the battery life and overall performance of elec-
tric vehicles [16]. 

2.2.3	 Artificial Intelligence

The ability to execute tasks usually related to intelligent beings by 
computer-based logical operations is called artificial intelligence. The 
word is often functional to the development assignment of systems 
capable of human characteristic consistent processes like the talent 
to realize the sense, simplify, or be trained from prior knowledge. 
The progress of digital computers enhances the power of computers, 
which can be carried out to derive different types of mathematical 
models or playing brain games like an expert. But still, there is no 
comparison of the human brain as no computer program can do a 
task over broader provinces or in responsibilities requiring common 
familiarity. 

The British logician and computer pioneer Alan Mathison Turing car-
ried out the first significant effort in the area of AI in the middle of the 
20th century. In 1935 Turing described a conceptual computer machine 
composed of an infinite memory and a scanner moving back and for-
ward in the course of memories, character by character, interpreting 
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what it gets, and writing additional symbols. The scanner’s actions are 
instructed by an instruction program that is also stored as symbols 
in the memory. This is the stored-program principle of Turing, and it 
means the ability for the computer to work on its data and thus modify 
or enhance it [17].

2.2.4	 Basics of Artificial Intelligence

AI is the ability of a control process to suitably understand peripheral 
values, do proper training and study of the past statistics, and utilizes 
this in implementing precise goals and tasks through flexible alteration. 
In an AI control, the working condition or the environment is analyzed, 
and proper action is taken to enhance its rate of success. The utility 
function intended for an AI can be simple or complex. Objectives can 
be described or induced directly. If the AI is designed to “reinforce 
training,” goals can be directly triggered by encouraging some behav-
ioral styles or punishing others. Alternatively, by determining a “fit-
ness function” to transform and favorably imitate better effective AI 
systems. An evolution-based AI system can encourage goals, similar 
to how animals evolved to innately desire specific purposes, such as 
finding food [18].

AI has provided an enormous opportunity and scope for electrical 
automation and is bringing a grand change in the economic point of view 
as well as in organizational security and practical power. Ever since the 
advancement of AI, it has achieved a remarkable effect on the field of auto-
motive electrical control and all other areas of life. Its appearance has even 
shown out the direction for many fields to develop. AI in engineering has 
dramatically advanced the practice of physical, electrical automation, and 
it should be given complete consideration by related companies and staff 
[19, 20].

In the electrical field, electric vehicle control plays a crucial role. 
When  monitoring  is  obtained, output performance can be efficiently 
enhanced, increasing fabrication expenses and other resources. The pur-
pose of AI is mainly focused on a fuzzy and neural network-based con-
troller in electric vehicle control. Artificial intelligence in automation 
development can promote innovations and overall progress in electrical 
vehicle control. In contrast, power  system  malfunction  will  be  omitted, 
encouraging the relentless advancement of artificial intelligence software, 
forming a new path in electric vehicle control, through the concept of all 
facets of smart engineering implementation, allowing common existing 
conditions to start to improve [21].
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2.2.5	 Advantages of Artificial Intelligence in Electric Vehicle 

The idea of design AI control is not complicated. The typical conventional 
controller requires to consider the control gains according to the process 
plant. Still, there are typically other unpredictable variables in the system 
creation, such as adjusting parameters and numerical form, to make the 
system more complicated. AI management is not involved, so the object 
design not required to be controlled by the AI feature approximator. 
Results can be improved rapidly by properly adjusting related parameters. 
The fuzzy logic controller, for example, responds more quickly, and the per-
centage overshoot becomes very less. It’s easier to employ. The controller of 
AI is more accessible to fiddle with the standard controller and is flexible 
to the adaptation of new parameters or new sequences. The conventional 
control system is designed for a definite object, so the control action is 
perfect only for a distinct purpose. Still, it is not consistent with the effect 
of other control objects. The artificial intelligence control algorithm can 
obtain a reasonable estimate of consistency, whether for the particular or 
unfamiliar contribution of data.

2.3	 Brushless DC Motor

A brushless DC electric motor is an electronically switched synchronous 
DC motors, which are supplied by direct current via an inverter which 
produces a sequential electrical current to drive the motor through a 
control-loop. The controller maintains the required output of the motor by 
giving an exact energizing pulse to the stator winding. The BLDC motor and 
PMSM has an almost identical construction. Comparing to conventional 
brushed motors brushless motor have electronic control which provides 
high torque-to-weight ratio, high speed, increased proficiency, improved 
performance, condensed noise, longer service life (no brush and switch 
erosion) which means and the maintenance cost is very less, elimination 
of switching ionizing sparks, an overall reduction of electromagnetic inter-
ference (EMI). Instead of brushes, switching to electronics allows greater 
flexibility and non-existent capabilities. These motors are used in the cd 
drive, printer, hand-operated power tools, and aircraft, spaceship. The con-
ventional brushed motor came into existence during the early 19th cen-
tury. Whereas BLDC motor was possible to develop after the availability of 
solid-state devices in the 1960s [22, 23]. 

The semi-conductor electronics development in the 1970s enabled 
the elimination of the switch and brushes in DC motors [25–27]. Their 
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working life is very long as there is no friction loss due to the absence of 
brushes and only need to take care of the bearing arrangement. Though 
BLDC motors can solve certain drawbacks of brushed motors, it still has 
some disadvantages of less robust, more complex, and costly electronic 
console. A conventional brushless motor has a rotating magnetic field that 
spins around a static armature. An electrical regulator replaces the brushed 
DC motor’s brush/commutator unit, which periodically changes the stage 
to the windings to maintain the motor spinning by using electronic power 
elements [28].

Higher temperature weakens the permanent magnets and the isolation 
of the winding of BLDC motor, and so the performance and efficiency of 
a brushless motor are limited by heat. Still, these motors are more efficient 
than conventional motors when converting electricity into mechanical 
power because of the speed at which the input from the position sen-
sor decides the energy transformation. The enhanced efficiency is most 
exceptional in the performance curve of the engine’s no-load and low-load 
region. When applied to a high mechanical load, both the BLDC motor and 
the high-quality brushed motors are equal. A stepper and a BLDC motor 
have almost the same construction. But the differences are in operation 
as BLDC motor does not produce rotation in step, and stepper motors do 
not need a position sensor for detecting rotor location. It is also possible to 
hold a well-designed brushless motor system at zero rpm and finite torque. 
Brushless motors are superior to the brushed motors but still because of 
the complexity of control arrangement, and the overall expenditure avoids 
the BLDC motors from completely substituting conventional motors in 
several zones. Yet, many applications have been dominated by brushless 
motors, especially CD/DVD and hard drives, fans for cooling in electronic 
appliances, and in cordless power tools. BLDC motors of Low speed, low 
power configuration are used for gramophone recording in direct drive 
turntables. For electric vehicles, hybrid vehicles, and private transporters, 
brushless motors can be used. Many electric bicycles and RC models use 
brushless motors like the same principle of self-balancing scooter wheels, 
which are sometimes mounted in the wheel hub and the stator connected 
to the axle and the magnets placed on the revolving wheel [29]. 

2.4	 Mathematical Representation Brushless DC Motor

Before proceeding the control part, it is vital to find the governing equa-
tions of the system and then establish the mathematical model of the system. 
The three-phase synchronous machine and the BLDC motor has the same 
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mathematical model supplied by Voltage Source Inverter as  shown in Figure 
2.2. Though the presence of a permanent magnet rotor in the BLDC motor 
makes the dynamic characteristics different. The permanent magnet cylin-
drical rotor is used to makes the air gap uniform. The dynamic equations of 
phase voltages of three-phase star connected stator are mentioned below:
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Where, Ls = armature self-inductance.
Ms = armature mutual inductance.
rs = armature resistance.
Van, Vbn, and Vcn and are the phase voltages at the terminal.
Ia, Ib and Ic are motor input currents.
Ea, Eb, Ec are motor back-EMF.

The nature of flux distribution is trapezoidal in BLDC motor; due to this, 
the applicability of the d-q reference model prepared for PMSM becomes 
invalid. As the delivery of flux is trapezoidal, i.e., non-sinusoidal, it is wise to 
develop a phase variables model for PMBLDCM. The development of this 
phase variables model requires certain assumptions which are as follows: 
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Figure 2.2  VSI fed BLDC Motor.
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i.	 Iron and stray losses are not taken into account.
ii.	 The currents induced in rotor because harmonic fields of the 

stator are dismissed.
iii.	Inverter Control gives proper damping to the machine.

The BLDC motor model can be utilized for three phases. Still, based on 
the procedure of derivation, it is acceptable for the desired multiple phases.

The stator’s voltage equations are depicted below:
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Here rs are the per phase stator resistance and identical for all phases.

	 Ep = (B1V) N = N(B1rω) = Nϕaω = λpω	 (2.5)

In equation (2.5), N = Number of conductors arranged in series per 
phase, V = velocity, l = Conductor length, r = Rotor bore radius, ω = 
Angular velocity, B = Flux density.

The multiplication of (BLr) depicts ϕa which consists of dimensions 
similar to the flux, and it has direct proportionality with the air-gap flux, ϕg 
which is expressed below.
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For the balanced condition, the summation of phase currents of the sta-
tor is considered to be zero, which provides simplified inductance matrix 
as follows:
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The electromagnetic torque of the machine is 

	
T I E I E Ie as as bs bs cs cs
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ω
N m

	  
(2.8)

The spontaneously incited emfs are composed as follows. 

	 eas = fas (θr)λPω	 (2.9)

	 ebs = fbs (θr)λPω	 (2.10)

	 ecs = fcs (θr)λPω	 (2.11)

The functions fas (θr), fbs (θr) and fcs (θr) shown in Equations (2.9), (2.10) 
and (2.11) have an identical shape as of eas ebs ecs, with the positive peak as 
+1 and negative peak as −1. The electromagnetic torque, after incorporat-
ing the above functions, is 

	 Te = λp[fas (θr) ias + fbs (θr), ibs +fcs (θr), ics] (N–m)	  (2.12)

The reason for naming this machine as a DC machine is that the phase 
voltage equation of the BLDC motor and armature voltage equation of the 
DC machine is identical. The motion equation is as follows:
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Where, J = Inertia, B = Friction co-efficient and Tl = Load Torque.
The relationship between speed and position of the rotor is depicted by

	
d
dt

Prθ ω=
2 	

(2.14)

Joining all the pertinent conditions the framework in state equation 
structure is

	 x Ax Bu= + 	 (2.15)
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Where, 

	 x = [Ias  Ibs  Ics  ω  θr]
t	  (2.16)
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Where, 	 L1s = Ls – Ms	 (2.19)

	 u = [Vas Vbs Vcs Tl]
t	 (2.20)

The variable θr, i.e., rotor position, is necessary to get the value of the 
function as mentioned above. 
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2.5	  Closed-Loop Model of BLDC Motor Drive

As the open-loop system is more stable than the closed-loop system hence 
making the close loop BLDC drive as shown in Figure 2.3 more durable, as 
per the desired application, the different types of the controller, along with the 
converter topology, are used. The inner loop of the drive consists magnetic 
sensor, which is used to provide the information about the rotor position of 
the BLDC drive, and based on that information; the gate signal generator 
generates the commutating signals for three-phase VSI. The triggering pulse 
used for the converter is the back EMF of the motor, which is coming from 
the particular position of the rotor. Gate signal generator includes the back 
EMF generator and gate logic decoder, and the combined effect of these two 
signals along with the reference signal generates the triggering pulses.

The electronic commutation provides the rotor and stator of BLDC 
motor to run at the same frequency, and that is why it is called one type of 
synchronous motor. The system is powered with voltage source inverter/
switching power supply, which can be a universal bridge [30]. The con-
troller consists of a power converter in which three-phase VSI works as a 
brush of BLDC motor and to operate the VSI different types of converters 
like bidirectional converter, CUCK converters, SEPIC converters are used. 
These converters handle the power and power factor requirement of the 
drive. Along with the converters, the system consists of the BLDC motor, 
magnetic sensor, and different types of control algorithms [48–50]. There 
are different command signals like torque, voltage, speed, the current, 
which are used to generate the control signal for the system. The two main 
types of more popular drives are voltage source and current source based 
BLDC motor drive [31–33]. 

DC Current Source
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Converter
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Speed
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Control Unit

User Interface
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Figure 2.3  The overall model of BLDC motor for EV.
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2.5.1	 P-I Controller & I-P Controller 

Both the controllers, P-I and I-P, as shown in Figures 2.4 and 2.5, respec-
tively, minimizes the steady-state error of a process, but the P-I controller 
takes less time [24, 32–35].

The closed-loop transfer function of the P-I and I-P controller is given 
by Equations (2.21) and (2.22) respectively,
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Where the output and the input signal are represented by C(S) and R(S) 
respectively, Ki and Kp are the integral and proportional gains, Km and Tm 
is the mechanical gain and time constant of the motor drive. The transfer 
function considering the load torque is represented by Equation (2.23).
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Figure 2.4  Transfer function representation of P-I controller.
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Figure 2.5  Transfer function representation of I-P controller.
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It is seen from the above transfer functions that both the controllers have 
the same characteristic equations. Still, zero is added in the case of the IP con-
troller. Therefore, for a step input, the over-shoot is less for the I-P controller.

2.6	 PID Controller

The fast development of science and technology requires a system which 
has higher response speed higher control accuracy and higher stability, and 
PID controller is one of the latest control strategies in which traditional 
PID controller is used to controlling all the model of linear processes. The 
general representation of the PID controller is shown below in Figure 2.6. 
However, most of the industrial processes are not linear; some procedures 
are complex or unable to establish an arithmetical representation at the 
same time, so the common control of PID cannot accurately run such pro-
cesses [36]. For its simplicity and robustness, the Classic PID control tech-
nique is used. The theory of PID control is to define additive, integrative, 
and differential controls.

	 e (t) = x(t) – y(t)	  (2.24)

The PID controller is represented by the Equation (2.25), given below:
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Where, KP = Proportional controller gain, KI = Integral controller gain, and 
KD = Differential controller gain. The proportional link in the PID control-
ler is used to replicate the deviated signal. If a deviation is present, then it 
can reduce the deviation of the signal from the original one. The integral 
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Figure 2.6  Schematic of a PID controller.
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part minimizes or removes the steady-state error, and the differential part 
may reveal the changing tendency of the deviation signal. Before the incre-
ment of the deviation, the derivative controller introduces a sufficient cor-
rection factor, speeds up the system’s action, reduces the adjustment time. 
The problem with the classical controller is the appropriate selection of 
these gain parameters for the process plant. Different types of PID gain 
tuning methods are there, such as trial and error, Ziegler–Nichols meth-
ods, genetic algorithm techniques.

2.7	 Fuzzy Control 

BLDC drive operation is controlled in two ways; torque is the first, and 
speed is the second. These two parameters are controlled simultaneously 
by the fuzzy logic controllers. The first loop contains two loops with current 
control, and the second loop contains or adjusts the BLDC drive speed [37–
44]. Fuzzy linguistic logic is expressed in the form of rules of If and Then. 
These laws specify the set of values known as the fuzzy membership func-
tion. Figure 2.7 demonstrates various types of blurry membership apps.

For fuzzy logic control system models, the most important things are 
the selection of membership functions for inputs and outputs and based 
on these the design of if–then law, i.e., the fuzzy rule base. A membership 
function represents the degree of each input’s involvement in a graphical 
way. Every input and output response may have separate membership func-
tions. Instead of mathematical equations, Fuzzy logic presents functional 
linguistic laws [45–49]. Most processes are too complicated for effective 
simulation, even with advanced approaches in this process being unfeasi-
ble. However, the linguistic term of fuzzy logic provides a feasible method 
to define such a system’s operational characteristics. The overall fuzzy 
logic system is shown in Figure 2.8. Fuzzyfier, inference, and de-fuzzyfier 
become the three traits of abstract controllers. The number of membership 
functions determines the superiority of control by using a fuzzy controller, 
and the control quality depends on the number of membership functions.
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Figure 2.7  (a) Triangle, (b) trapezoid, and (c) bell membership functions.
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Therefore, to choose the number of functions, an adjustment must be 
considered between the quality and the computational time of control for 
the evaluation of the closed-loop control of BLDC motor drive. To describe 
the functions, seven linguistic variables are used for both input and out-
put variables. Table 2.1 displays the membership function logic rule base. 
From this table, it can be found that the combinations of two inputs, p1 and 
p2, provides different outputs like NB, PB, NM, NS, Z, PM, PS, MB. These 
outputs decide the different control actions of the system.

2.8	 Auto-Tuning Type Fuzzy PID Controller

While Ziegler and Nichols have proposed an efficient technique to adjust 
a PID controller’s coefficients and improve performance by optimizing 
the PID parameters using different optimization techniques but cannot 
guarantee that it will always be active, PID controller self-adjustment 
is required [50–56], and this fuzzy-PID controller meets the need. As 
shown in Figure 2.9, the controller consists of two parts: the traditional 
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Figure 2.8  General Fuzzy logic controller.

Table 2.1  Rule base of fuzzy logic controller.
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PID controller and the self-tuning Fuzzy Logic Control (FLC) part. Now 
the PID controller’s control operation after self-tuning can be defined as 
a self-tuning Fuzzy PID controller. Using the fuzzy rules to modify the 
online PID parameters where we are a blurred self-tuning PID control-
ler [57–61]. Here the error and the error shift frequency are denoted by 
e and ec, respectively. The terms Ke and kec are quantitative variables, ku 
is the ranking factor from all dimensions of the system, i.e., the stability, 
response rate, over-shoot, and stable system failure and the function of 
PID controller gains are as follows [62].

The proportional gain Kp was designed to speed up the system reaction 
time and increase the system’s regulatory accuracy. However, the harder it 
is to overshoot the more extensive system by Kp, or even volatile the sys-
tem. The price of Kp is too small. It reduces the accuracy of the regulation 
so that the response is slowed down, thereby extending the system’s regu-
latory time, static and dynamic characteristics. So, the derivative controller 
Kd is designed to improve these dynamic characteristics, mainly reduces 
the change in error in any direction in response to the process before the 
error occurs. Kd advances the brake response process and so the regulatory 
time extends, which reduces the system’s anti-jamming performance.

2.9	 Genetic Algorithm 

A genetic algorithm is an optimization tool, which means its job is to search 
for the ultimate solution(s) to a specific control problem by maximizing or 
minimizing some control variables. It works on the basis of the evolution-
ary computation by imitating the biological processes of reproducing fittest 
solution by the natural selection process [63, 64]. As evolution is random 
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Figure 2.9  Block representation of the Auto-tuning type Fuzzy PID control system.
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in nature, this optimization technique allows the level of randomization 
and the control to be set for a method [65]. These algorithms are much bet-
ter and more effective than random search or trial and error-based search 
[66] but need no further data on the issue. 

i.	 Encoding 
	� As in PID controller, there are three control gain need to be con-

trolled so, in this step first three separate binary strings are consid-
ered to represent the gain parameters Kp, Ki, and Kd to ensure the 
independence of the variables [67].

ii.	 Initialization 
	� Next, the random population is chosen within the boundaries. The 

limits for the controller gains have been selected in such a way that 
it should not lead to an unstable system.

iii.	Objective Function 
	� Now to determine the fitness level of the population, the objective 

function selection is essential. The integral of the squared error 
(ISE) is used to model a GA-PID controller.

iv.	 Fitness Function
	� The function of fitness is the function to be improved by the algo-

rithm [68]. The chromosome refers to the control solution to the 
process attempted by the genetic algorithm [69, 70].

v.	 Selection 
	� Roulette wheels have been applied to select individuals from a 

population. The offspring is produced based on the selected vari-
able. The preference variable depends on the individual’s health 
level, and the fitness value is higher than the individual’s offspring.

2.10	 Artificial Neural Network-Based Controller

An artificial neural network act as a controller by monitoring and alter-
ing the working condition of a dynamic system by using different types of 
signal. Neural Nets are correctly applied when the control problems are 
non-linear. The neural network can be implemented as a nonlinear con-
troller if the neural nets are successfully used. Along with it, the ANN con-
troller needs to know about the process plant and its parameters. There 
are several methodologies to train the ANN controller. A neural network 
consists of different layers, as shown in Figure 2.10 [70], where input layer 
nodes represent linguistic input variables. These nodes serve as identity 
roles in the membership network. 
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2.11	 BLDC Motor Speed Controller With ANN-Based 
PID Controller 

The overview of BLDC motor drives with a conventional and the ANN-
PID speed controller is shown in Figure 2.11. We know that the traditional 
feedback controller has many applications in industrial as well as com-
mercial applications. Earlier classical controller, i.e., PID, was used in con-
trolling the speed of BLDC motor, and it proves its effectiveness in different 
forms. In spite of the number of advantages, there are some disadvantages 
related to the PID controller. This controller works on the optimal setting 
of the plant. If any of the parameters of the plant are removed, or a new 
parameter is added, the controller action is disturbed because it is a fixed 
gain feedback controller. Therefore, the controller needs to be calculated 
repeatedly to get a new ideal setting. The system which is operated under 
variable time delay, large nonlinearity, and disturbance, the classical PID 
controller is not able to provide ultimate control action for that system. 
For these types of highly complex and nonlinear systems, only the PID 
controller is not enough to give the sustainable or desired result because 
of their limitations. For that purpose, many researchers are working on a 
PID controller combining with an artificial neural network (ANN). This 
approach is called a Neuro-PID intelligent controller. ANN controller is 
involved with any conventional controller like PI, IP, Fuzzy, to obtain the 
desired result in process or control industries. 

du

Output layer

Rule base layer

Membership layer

Input layer

Figure 2.10  Neural Network Layers.
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2.11.1	 PID Controller-Based on Neuro Action

ANN adaptive mechanism is used to measure the disturbance from the 
output and tunes the various parameter of the PID controller according to 
it. With the help of tuning the setting, it can diminish the noise and thus 
progresses the operation of the controller. Feedforward adaptive control 
does not include the inner closed-loop, and so its response is swift. But it 
has a disadvantage of the effect of unmeasured disturbances. These can be 
eliminated by proper tuning of PID gains by using neural networks.

The PID gains were balanced to achieve quick conjunction and the 
best control action for a simple process-based system. The neural network 
can be equipped by indenting the forward modal to act as a controller by 
proper training of reverse process design or as a simulator. The backprop-
agation algorithm is mostly considered in different types of applications 
among many neural network learning approaches. 

2.11.2	 ANN-Based on PID Controller 

The implementation of the flowchart of the ANN-PID controller is shown 
in Figure 2.12. Among the various control techniques, PID control is a 
significant method as it is not affected by noise and constant to change 
parameters [71]. The purpose of backpropagation is used in different types 
of neuro-controllers to train them to achieve as much as possible desired 
plant output. The PID speed controller is adopted with the ANN algorithm 
in the process industries because there are different types of non-linearity 
and Gaussian noise during the process. 

The control action of the neural system and the values of different PID 
parameters are selected suitably according to the specific problem. Neuro con-
trollers are classified in three ways. The first one is a series type second one is a 

Error Input

Ref. Input

+

–

ANN adaptive
Mechanism

PID Controller BLDC EV

Sampled
Output

Kp Ki Kd

Figure 2.11  ANN-based PID controller.
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parallel type, and the third one is the self-tuning type. The series type plays an 
essential role as a part of the neural network, and it shows the reverse dynam-
ics of the system. A parallel model adjusts the controller gain of a classical 
controller. Apart from that, the self-tuning neural controller tunes the various 
control parameter, including series, parallel, and conventional controller.

2.12	 Analysis of Different Speed Controllers

The performance analysis of the BLDC motor based on various parameters 
like rising and settling time, peak overshoot with a different type of speed 
controllers on electric vehicle is specified in Table 2.2 below. This compar-
ative analysis is validated, which is shown in Figure 2.13, the versatility in 
responses of speed controller as P, PI, and PID of the closed-loop BLDC 
Drive for Electric Vehicle. The idea can be established that the addition of 

Determine the structure of neural network
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of each
layer

Learning
rate and
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K = 1

K ≥ n
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ANN  learning: BP network weight and threshold

K = K + 1

end

Figure 2.12  PID control algorithm based on Artificial-Neural Network.
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each of the gain factors with the P controller decreases the overshoot of 
the system, which is best at the time of PID, but it also makes the system 
slow. Figure 2.14 clearly shows that the best-optimized output is achieved 
by implementing an artificial neural network on this closed-loop control 
of BLDC motor electrical vehicle drive. Here the optimized output has 

Table 2.2  Performance comparison of different speed controllers.

Controller

Specifications

Settling time Overshoot Rise time

PI Increase Increase Decrease

PID Decrease Decrease as 
compared to 
PI

Increase as 
compared 
to PI

FUZZY Decreases 
compared to 
PID

Decrease as 
compared to 
PID

Increase as 
compared to 
PID

GA Decreases 
compared to 
FUZZY

Decreases 
compared to 
FUZZY

Decreases 
compared to 
FUZZY

ANN Decreases 
compared to 
GA

Decreases 
compared to 
GA

Decreases 
compared to 
GA
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Figure 2.13  Comparative Step response of the closed-loop BLDC Drive for Electric 
Vehicle with P, PI and PID speed controller.
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zero overshoot and steady-state error, and also, the time response analysis 
has shown tremendous improvement. For any industrial application, the 
reliable output of a motor is needed. The modern method of calculating 
indexes of product efficiency is quite time-consuming. An artificial intel-
ligent controller can be used in Electric vehicles where there is inadequate 
machine awareness or great difficulty. For operators such as crossover and 
mutation, genetic algorithms may also be located to find optimal solutions 
in the search space as it has also shown a good response. But ANN is more 
important tools to find a reasonable solution to a complex issue fast. They‘re 
not fast, but they can do a decent quest. With the help of these parameters, 
we can conclude the relative stability or performance of BLDC motor the 
parameters which are mentioned here vary due to different type of loading 
like step loading continuous loading periodic loading, when applied for an 
optimum operation on an electric vehicle. These parameters are also rating 
dependent means if the rating of motor and reference speed is changed; 
these parameters are changed. 

2.13	 Conclusion

Electric vehicles are also facing new challenges with economic develop-
ment. It was challenging to adapt the traditional manual control to the 
current situation of society. The advent of AI technologies has fostered 
BLDC motor invention for the optimum operation of electric vehicle con-
trol, which is of great importance for electrical automation development. 
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This section discusses the artificial intelligence controller’s modules and 
functions, including its use to BLDC motor control. Artificial intelligence 
software has been commonly used in the area of regulation of electric vehi-
cles, supporting this subject’s level. However, there are still some issues in 
the specific application process. Relevant technical staff should, therefore, 
continue to study and evolve in terms of encouraging the rate of use of 
artificial intelligence software to achieve the development and progress of 
BLDC electric vehicle motor control. 
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Abstract
Today pollution is a preeminent threat to the environment. The primary sources 
of pollution are combustion of liquid fuels in industries or, in transportation in 
which percentage of pollution is more from transportation. The harmful gases 
which emit from vehicles by combustion of liquid fuels can only be controlled if 
the type of the fuel is changed from petroleum produced fuels to electricity. The 
brilliant and efficient option for controlling pollution is use of electric vehicles 
(EVs) in place of the conventional one. In electric vehicles, Active magnetic bear-
ing (AMB) is widely used, using which high speed with efficient performance, 
can be achieved. The major issue is from the control perspective as AMBs are 
highly nonlinear and unstable; the classical control approach alone cannot give 
efficient results. So, the artificial intelligence (AI) based control approaches like 
artificial neural network (ANN) based control, fuzzy logic control (FLC), par-
ticle swarm optimization (PSO) control, etc. along with the classical controller 
can increase the reliability and performance of the overall system. As the AMBs 
are used in most of the electric vehicle applications, their control like speed con-
trol and torque control can be smoothly achieved by the use of AI-based control 
techniques.
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3.1	 Introduction

In this era of technological advancement as the research in almost every 
area is on the boom. The young minds are on work under the guidance and 
acquaintance of the experienced one. Only through continuous research 
and practice, the idea for actively controlled electromagnetic bearing has 
been developed, and nowadays, research in this field is going on because 
of their various advantages and applications, which will be a boon to the 
current pollution problems of the world.

After the invention of petroleum and diesel engine, its consumption 
has been increased rapidly not only for transportation but in industries, 
aircraft, etc. Although the invention of diesel engine brings a revolution, 
nowadays the pollution scenario of the world itself tells the dark side of the 
excessive use of these inventions. If the consumption of petroleum-product 
fuels remains the same, pollution will be increased and in the future, the 
earth will be uninhabitable.

To control pollution, first, the major sources of pollution i.e. pollution 
from transportation vehicles, should be controlled and for this, the fuels 
which they are using to accelerate must be changed because using fuels 
originated from petroleum products like diesel, petrol, etc. after combus-
tion produces harmful gases. So much researches have been done on the 
fuels so that after their combustion less or no harmful gases will be emit-
ted. But changing the type of fuel is a broad area of research mostly when 

Table 3.1  Classification of various EVs.

Vehicle
Types

Propulsion
Devices

Energy
Carriers

Energy
Sources

Micro Hybrid

Mild Hybrid

Full Hybrid

PHEV

REV

BEV Motor

Engine Liquid Fuel Liquid Fuel

Electricity Battery
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the used source is electricity. The vehicles in which electricity is used as a 
fuel source is simply stated as Electric vehicles (EVs).

There are many types of Electric vehicles classified on the basis of their 
source and propulsion system. Table 3.1 shows classification of various EVs. 
Advancement in research took the Electric vehicle to a new level where, 
not one but two or more sources are used to make the propulsion. These 
types of EVs are defined as hybrid electric vehicles (HEVs). Those different 
sources must have one electric source combined with either hydrogen fuel 
cells or supercapacitor cells or any other advanced fuel cells [6].

Conventional vehicle which is powered by petroleum-based fuel and 
electric vehicles have their advantages and disadvantages:

•	 Pollution from conventional vehicles is too much as com-
pared to EVs as they are mostly powered from renewable 
energy sources.

•	 Reduction in carbon emission and nitrogen oxide gas with 
the use of EVs

•	 The requirement of initial torque is more for any kind of 
vehicle and conventional vehicles are good in this.

•	 For heavy industrial purpose, conventional vehicles are still 
in use as they are more efficient as compared to EVs.

•	 For EVs, (in the case of battery-powered electric vehicles, 
BEV) installation of charging stations is required as they are 
powered from battery that made them costly. By increasing 
the battery capacity this problem may resolve.

•	 Due to being powered from battery EVs have limited driving 
range with a high initial cost. The engine life is greater than 
the battery life because continuous charging and discharg-
ing of battery result in small battery life.

•	 Heavy vehicles such as cranes, trucks, lifter etc. still use con-
ventional engines as they need more power and high initial 
torque.

•	 The overall efficiency of any kind EVs is less as compared to 
the conventional vehicle engines.

Further research is still going on in this field to improve the performances 
of the EVs. Different approaches have been implemented and one of them is 
the use of magnetic bearing in the place of a conventional bearing [5].

A magnetic bearing is one in which there is no contact between the 
stationary part and the moving part with the use of magnetic levitation 
[1]. Depending upon the excitation used magnetic bearing is classified into 
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two types—(i) Active magnetic bearing (AMB) and (ii) Passive magnetic 
bearing (PMB).

As their names say, active magnetic bearing is one in which the required 
magnetic field is generated by supplying current in the coil of magnet and 
in passive magnetic bearing the required magnetic force is generated by a 
permanent magnet. A comparison will explain advantages and disadvan-
tages of active and passive magnetic bearing:

•	 Continuous use of passive magnetic bearing will degrade 
the performance of magnetic properties and overall perfor-
mance of the system but using active magnet in bearing will 
maintain the performance of the system.

•	 Supply is always required for active magnetic bearing for 
proper bearing action but in passive magnetic bearing per-
manent magnet will generate the required force.

•	 Heat, temperature, moist and other atmospheric factors 
affect the performance of the passive magnetic bearing but 
active magnetic bearing magnetic force totally depends on 
the current in the coils.

•	 Magnetic properties observed in passive magnetic bearing 
depend on the material used to make it and is limited but in 
active magnetic bearing that depends on the material and 
the supply current intensity.

•	 In bearing operation, the speed observed using PMB is less 
as compared to AMB. Using AMB highest possible speed 
can be reached allowed by the wear and tear resistance of the 
material of the coil.

•	 As controlling of these magnetic bearing is a major task, 
using PMB controlling will always be a problem as a closed 
control loop cannot be formed. But with AMB, a closed con-
trol loop can be formed and controlling techniques can be 
applied.

Due to the above-stated advantages, AMB is preferred over PMB for 
bearing operations. As to design the electric vehicles should follow basic 
requirements:

•	 High initial torque density and power density
•	 High efficiency at different torque and speed range
•	 High robustness in different atmospheric condition
•	 High reliability on long-range use
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•	 High torque capabilities to climb hills
•	 Fair and justifiable initial and running cost
•	 Safe even after long use of engine
•	 Wide torque and speed range
•	 Even for constant speed and torque operation, it should be 

efficient.

To achieve the above-stated requirements of EVs, active magnetic bear-
ing is best suited for bearing operations. Although AMB is an exemplary 
mechatronics product, and meanings of mechatronics will point to the 
information base for effectively managing AMB. The historical backdrop 
of AMB is quickly tended to: first uses of the electromagnetic suspension 
standard have been in exploratory material science, and proposals to uti-
lize this concept for suspending transportation vehicles for fast prepares 
return to 1937. There are different methods for structuring attractive sus-
pensions for a contact-free help—the AMB is only one of them [1].

Apart from transportation, AMB is used these days in various practical 
applications like in flywheel energy storage system, high-speed tools, watt-
hour meters, ventricular assist devices, artificial hearts, centrifugal compres-
sors, etc. [2]. Propelled vitality stockpiling frameworks for electric firearms 
and other pulsed weapons on battle vehicles present huge difficulties for 
rotor-bearing design. AMB is one available developing bearing alternative 
with significant points of interest regarding lifetime and rotational speed, 
and furthermore well coordinate into fast flywheel frameworks [3].

The use of AMB in EVs is a broad area of research and the major prob-
lem that arises is to control the levitation and then the bearing action. If 
the controlling is done properly the performance of AMB will be efficient. 
For controlling the AMB various classical controls are available but among 
them which is most efficient, can be observed only after mathematical 
modelling of the whole system with that controller. In the case of using 
a modern controller or, Artificial Intelligence controller such that many 
mathematical calculations are not required even these modern controllers 
are advance in performance [20].

Although AMBs have some disadvantages i.e. large in size, bulky, the 
cost is high due to the use of control circuit etc., its advantages overcome 
their disadvantages.

In the later section, basic components of an AMB is briefly described 
with the proposed AMB model for electric vehicles after that use of AMB 
in EVs is discussed and finally, control strategies for AMB are explained 
thoroughly, in which various modern controllers have been explained and 
their advantages and performances are discussed.
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3.2	 Basic Components of an Active Magnetic Bearing 
(AMB)

To obtain a proper bearing operation the very first and basic step is levi-
tation of the rotor at a particular air gap and to attain that, control tech-
niques are used because open-loop AMB is in itself a nonlinear and highly 
unstable system. The proposed active magnetic bearing system is shown in 
Figure 3.1 and all the parts have been briefly explained below.

3.2.1	 Electromagnet Actuator

First and foremost is the electromagnet actuator, which is U-shaped, iron 
cored with a copper winding in it as shown in Figure 3.1. The shape of 
actuator maybe ‘I’, ‘E’, ‘U’, etc. but for the proposed model a single-axis 
‘U’ shaped electromagnet actuator is considered. Depending upon the 
requirement single-axis single electromagnet actuator or, single-axis dou-
ble electromagnet actuator can be used. Iron core is used because it pro-
vides low core loss, low hysteresis, and high permeability. For winding, 
copper is used, which is stronger than aluminum, and lamination of cop-
per windings reduces eddy current losses.

When excitation is given to these windings, the actuator becomes an 
electromagnet and an increment in excitation increase the magnetically 
attractive power of this electromagnet. So, depending upon the current in 
the coils of this electromagnet the attractive power can be controlled.

3.2.2	 Rotor

The attractive force of the electromagnet actuator acts on the rotor, by 
totally compensating the gravity acting on it, that how levitation can be 
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Figure 3.1  Basic block diagram of an AMB with basic components.
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attained. For the proposed model of AMB, the rotor is made of ferromag-
netic material and shaped like a ball.

Relative permeability (μr) of ferromagnetic material is greater than one 
and relative permeability of diamagnetic materials is less than one.

	 μr < 1, Diamagnetic materials
	 μr > 1, Paramagnetic materials
	 μr >> 1, Ferromagnetic materials

The magnetic susceptibility (χm) can be also be observed to distinguish 
among the type of magnetic materials. i.e.

	 χm = μr–1	 (3.1)

Therefore, for Diamagnetic materials, χm <0, for paramagnetic materials 
χm >0 and for ferromagnetic material χm >>0.

3.2.3	 Controller

As stated earlier, since active magnetic bearings are nonlinear and have 
high instability, a controller is required for smooth and proper operation. 
Controllers may be classical or modern in nature, but the purpose remains 
the same i.e. to properly control the position of the rotor. In Figure 3.1 only 
one controller is shown but according to the proposed model of AMB as 
shown in Figure 3.2, basically two controllers are required. One to control 
the position of the rotor which is labeled as a position controller and sec-
ond is to control the current in the electromagnet actuator and labeled as 
current controller [25].

Ref.
Position Position

Controller
Current
Controller

Power Amplifier

Current
SensorCurrent Sensor Gain

Inner Closed loop

U
-t

yp
e 

ac
tu

at
or

Coils

Rotor Magnet force

Rotor weight

Air gap

Position Sensor
Position Sensor Gain

+ +
– –

Figure 3.2  Proposed Closed-loop AMB model.
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3.2.3.1	 Position Controller

Position signal coming from position sensor is compared with the refer-
ence position and the error signal is given as input to position controller, 
depending upon the calibration and setup value of controlling variables, 
position controller generates an output which is further fed for compari-
son from current sensor signal.

The position controller can be a classical controller like Proportional-
Integral (PI) controller, lead-lag controller, lead controller, Proportional-
Integral-Derivative (PID), etc. and in modern controller, they can be 
Fuzzy logic controller, Genetic Algorithm based PID controller etc. [4, 
23, 38].

3.2.3.2	 Current Controller

The current in the coil of electromagnet actuator is measured by current 
sensor and that signal is compared with the output of the position control-
ler, the compared output is given as input to current controller which gen-
erates output depending upon is design and controlling variables. Further, 
the output is fed to the power amplifier.

In the area of classical controller mostly Proportional-Integral (PI) con-
troller is used because of its fast response and better transient state per-
formance. Although modern controller may be used but in the aspect of 
reliability and performance, PI controller is best [25].

3.2.4	 Sensors

Apart from controllers, sensors also play a vital role in controlling of AMB. 
According to the proposed model of AMB, two controllers are used, so for 
each controller one sensor is proposed. The very first one sensor is:

3.2.4.1	 Position Sensor

It senses the real-time position of the rotor and generates a signal pro-
portional to it which further sends for comparison to the reference posi-
tion signal. There are various types of position sensors is available in the 
market like an Inductive type position sensor, laser type position sensor, 
IR type position sensor, capacitive type position sensor, etc. Depending 
upon the value of air gap between the electromagnet actuator and rotor, 
sensor is selected. But some time cost may also a factor for the selection 
of sensors.
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3.2.4.2	 Current Sensor

Senses the current in the coil and generates a signal analogous to it that 
signal is later sent to comparison with the output of position controller. 
Various current sensors are available in the market like Hall Effect type 
current sensor, etc.

3.2.5	 Power Amplifier

Power amplifiers are used to amplify the input current to the coil. The out-
put of current controller is needed to be amplified in order to make the 
hovering of rotor that work is done by power amplifier. They are designed 
in many forms like single switch power amplifier, half-bridge power ampli-
fier, full-bridge power amplifier, symmetrical type, unsymmetrical type, 
etc. [22].

In power amplifiers, the switching device is used, is mostly MOSFET 
and IGBT, which are costly. That is why most of the time, a single switch 
power amplifier is used to make the whole system cost-efficient.

The proposed AMB model is shown in Figure 3.2 here all the blocks 
and their significance have been briefly described. The working can be 
explained by dividing this whole block diagram into two closed loops. One 
is inner closed-loop and second is an outer closed loop.

In inner closed loop, current controller and power amplifier are con-
nected with current sensor in a feedback path. The current sensor senses 
the current in coil of electromagnet actuator and that signal is compared 
with the output of position controller, later that error signal is sent to cur-
rent controller and the output of current controller is amplified by the 
power amplifier. The inner closed loop tries to make the current in the 
electromagnetic coil such that the gravitational force acting on the ball is 
totally compensated by the attraction force of electromagnet at the refer-
ence position. i.e.

	 Fg = Fem	 (3.2)

Where Fg= gravitational force and Fem= attraction force of electromagnet.
In outer closed-loop, position controller, electromagnet actuator, and 

rotor are connected with position sensors in the feedback path. The posi-
tion sensor senses the actual position of the rotor and sends a signal which 
later compared by the reference position value, the error is further fed to 
position controller for controlling action. Here, the outer closed loop tries 
to make the position of the rotor at the reference position value.
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3.3	 Active Magnetic Bearing in Electric Vehicles System

Electric vehicles are boon to the environment and they are going to be basic 
and mostly preferable transportation systems in the near future for which 
AMB will become the support on which EVs will run. Various research 
and prototypes have been developed on the use of AMB in EVs.

Flywheel unit is one of the most significant approaches to capacity and 
recuperation vitality in electric vehicles. For acknowledging high vitality 
thickness, the flywheel unit consistently works fast. The active magnetic 
bearing (AMB) based flywheel unit is frequently utilized [3]. There is no 
uncertainty that energized vehicles are supplanting internal combustion 
motor vehicles for road transportation. Among them, electric vehicles 
(EVs) have been recognized as the greenest road transportation while half 
breed EVs have been labeled as the too ultra-low discharge vehicles [6].

Most of the vehicular applications required electrical energy sources and 
storage systems in which rotational operations are performed by the active 
magnetic bearings. Using active magnetic bearing (AMB) have their advan-
tages over the conventional bearings. Along with this, various research has 
been performed on the modeling and control prospective of Active mag-
netic bearing used for EVs [5]. Losses which occur with the use of conven-
tional bearing are one of the reasons for reduced efficiency of EVs, but with 
the help of AMB, that efficiency will be improved.

Energy stores in a flywheel energy storage system (FESS) is in the form 
of kinetic energy depends on a turning mass rotating by an electrical 
machine. As the kinetic energy is directly proportional to the square of 
rotating speed, more the speed of the rotor will generate more energy. A 
schematic diagram of a FESS is shown in Figure 3.3 which in EVs, works as 
a motor during charging and a generator during discharging. The contact 
between the actuator and rotor is eliminated by the AMB and using which 
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Figure 3.3  Flywheel energy storage using AMB for electric vehicles.
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the highest possible speed can be achieved. The casing is provided to cre-
ate a vacuum, and the output of the energy will be either directly fed to 
machines or, after converting it into DC its fed to batteries [22].

An important component of FESS is the electric machine, which should 
be such that, it will fulfill the robust requirements: high efficiency, higher 
power density, high robustness, and a wide speed range. Existing electric 
machines in addition to conventional bearing cannot meet those require-
ments like existing induction motor suffers from high rotor loss along with 
low power density and low efficiency in harsh and vacuum environment. So, 
the implementation of AMB in FESS improves overall system performance.

3.4	 Control Strategies of Active Magnetic Bearing 
for Electric Vehicles System

3.4.1	 Fuzzy Logic Controller (FLC)

In spite of the fact that the likelihood hypothesis has been a well-established 
and viable instrument to deal with uncertainty, it tends to be applied uniquely 
to circumstances whose qualities depend on irregular procedures, that is, 
forms in which the event of occasions is carefully dictated by some coinci-
dence. In any case, in all actuality, there end up being issues, an enormous 
class of them whose vulnerability is described by a non-irregular procedure. 
Here, the vulnerability may emerge because of halfway data about the issue, or 
because of data which isn’t completely dependable, or due inborn imprecision 
in the language with which the issue is characterized, or because of receipt of 
data from more than one source about the issue which is clashing [10, 11].

It is in such circumstances that the fuzzy set theory shows massive poten-
tial for compelling unraveling of the uncertainty in the issue. Fuzziness means 
‘vagueness’. Fuzzy set theory is a fantastic numerical concept to deal with the 
vulnerability emerging because of dubiousness. Understanding human dis-
course and perceiving written by hand characters are some normal examples 
where fuzziness shows [12]. It was L.A. Zadeh who propounded the fuzzy set 
hypothesis in his fundamental paper [28]. From that point forward, a great 
deal of hypothetical advancements has occurred in this field.

Figure 3.4 shows the working of a fuzzy logic controller (FLC), first, the 
applied crisp data input is fuzzified in fuzzy subsets by Fuzzification process 
later depending upon the designed rule-base inference process is applied 
to the fuzzified input [13]. Later the output of the inference process is con-
verted into crisp or analog type data for better understanding in defuzzifica-
tion process. Hence, the complete FLC working can be classified as [21, 24]:
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1.	 Fuzzification
2.	 Fuzzy inference process
3.	 Defuzzification

1. Fuzzification—The input data, which is crisp data in nature is converted 
into fuzzy subsets and sets for fuzzy operations. Input data are either 0 or, 1, 
yes or, no. But the fuzzified data may take a range of values between 0 and 1.
2. Fuzzy Inference Process—In this step, first the rules are designed using 
‘if-and-then’ method. Depending upon these rules output is generated 
which is further send to defuzzification. the two very important inferring 
procedures are:

a)	 Generalized Modus Ponens (GMP)
b)	 Generalized Modus Tollens (GMT)

3. Defuzzification—Various methods are available for defuzzification, or 
simply converting back the fuzzified inference process output in crisp data. 
The available methods are:

a)	 Centroids of Sum (COS)
b)	 Mean of Maxima (MOM)

3.4.1.1	 Designing of Fuzzy Logic Controller (FLC) Using MATLAB

MATLAB is a software that is a multi-paradigm numerical computing 
environment for pacing the research and scientific work [9]. The fuzzy 
Logic tool is available in MATLAB which can be used for designing the 
controller for the proposed AMB model. A layout of fuzzy logic tool of 
MATLAB is shown in Figure 3.5.
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Figure 3.4  Flow diagram of Fuzzy Logic Controller (FLC).
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Input variables and output variables can be defined from the member-
ship functions and shapes available in MATLAB library, which are triangu-
lar, trapezoidal, sigmoidal, etc.

In Figure 3.6, membership function 1 (mf1) is triangular in shape, 
mf2 is trapezoidal, mf3 is generalized bell-shaped, mf4 is Gaussian mf 
and mf5 is sigmoidal mf and mf6 is product of two sigmoidal mf. After 
setting up the input and output variables, rule base can be designed using 
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Figure 3.5  Fuzzy logic tool of MATLAB.
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Figure 3.6  Membership function editor of Fuzzy tool of MATLAB.
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‘if-and-then’ logic in rule editor of MATLAB. A simple layout is shown 
in Figure 3.7. By using input variables and output variables, rules will be 
created. In fuzzy inference process, these rules will be used, and output 
will be generated.

After creating the fuzzy logic controller, it can be used as a position con-
troller for the proposed AMB model as it is a modern controller so there is 
no tuning of control variables is required and a little disturbance in the sys-
tem can be easily controlled by the fuzzy logic controller [8]. A simulation 
of fuzzy logic controller as a position controller for the proposed model is 
shown in Figure 3.8.
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3.4.2	 Artificial Neural Network (ANN)

Neural systems (NN), which are rearranged models of the organic neuron 
framework, is an enormously parallel disseminated handling framework made 
up of exceptionally interconnected neural computing components that have 
the capacity to learn and along these lines gain information and make it acces-
sible for use. Different learning component exists to empower the NN procure 
information. NN models have been ordered into different kinds, depending on 
their learning components and different highlights. A few classes of NN allude 
to this learning procedure as preparing and the capacity to take care of an issue 
utilizing the information procured as derivation [24, 26].

NNs are disentangled impersonations of the focal sensory system, and 
clearly in this manner, have been roused by the sort of registering performed 
by the human cerebrum. The auxiliary constituents of a human mind named 
neurons are the substances, which perform calculations, for example, compre-
hension, consistent derivation, design acknowledgment, etc. Thus, the inno-
vation, which has been based on a disentangled impersonation of figuring by 
neurons of a mind, has been named Artificial neural systems (ANS) innova-
tion or, Artificial neural system (ANN) or, essentially Neural Network (NN) 
[36]. A diagram to understand the various layers of ANN is shown in Figure 
3.9 and a flowchart of ANN is shown in Figure 3.10.

3.4.2.1	 Artificial Neural Network Using MATLAB

Artificial neural network (ANN) is a tool using which parameters of 
controlling variables of any classical controller can be calculated. The 
advantage of ANN is, they are easy to understand and implement even 
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Figure 3.9  Various layers of ANN.
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by non-experts [15, 17]. The tedious mathematical observations for cal-
culating values of controlling variables in the classical controller like Kp 
(Proportional gain), KD (Derivative gain) and KI (Integral gain) can quickly 
be calculated by this tool [16].

In MATLAB, the ANN tool is available, which can be used to create 
an ANN-based classical controller; in this case, ANN-based Proportional-
Integral-Derivative (PID) controller [14, 35]. The first step is to select the 
dynamic time-series application. As shown in Figure 3.11.

Later, after selecting the type of problem from a given list, inputs are 
entered in a matrix form and then targeted output is also entered in matrix 
form. Through, MATLAB stands for Matrix Laboratory, all the data given 
and observed is in matrix form. A MATLAB layout of ANN tool which 
consist of inputs, outputs and hidden layers is shown in Figure 3.12.

The next step is to set the target of time steps for validation and testing 
for which the required amount is set in percentage. Further, it is to design 
network architecture by defining the number of neurons in the system, the 
hidden layer of the system, and the time delay. A layout is shown below.

Depending upon the requirement, hidden layer can be allotted on which 
training of neurons can be performed using any method from the follow-
ing training algorithm [37].
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Figure 3.10  Flow chart of working and implementation of ANN.
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1.	 Levenberg–Marquardt
2.	 Bayesian Regularization
3.	 Scaled Conjugate Gradient

Training can be performed up to several time until the error between the 
output and targeted output is minimized. The number of iterations can set 
accordingly to it. During training, a progress toll will open in which various 
parameters can be observed in real-time scenario as shown in Figure 3.13.

After the progress will be finished for the set values of the number of 
iterations. Different plots can be observed in plot window like the plot 
of error, performance plot, regression, time-series responses, etc. A list of 
available various plots is shown in Figure 3.14.

Select time
series app

Figure 3.11  Neural Network Tool of MATLAB.
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Figure 3.12  A layout of ANN tool of MATLAB.
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Those plots give a pictorial understanding of the output and the per-
formance of the ANN for the trained time series problem. When the error 
between the output and targeted output has minimized the values of con-
trolling variables of PID controller will be found. Using those values of 
controlling parameters PID controller for the Proposed AMB model can 
be designed in which the values of the controlling variable have been cali-
brated by ANN [19, 40, 41].

For verification of the output, which is gain values of the PID controller, 
can be done by writing a program or performing simulation in MATLAB 
& Simulink. In that simulation, various transient state parameters can be 
observed like rise time, delay time, peak time, peak overshoot, damping 
ratio, steady-state error, etc. The values of these transient state parameters 
should be controlling limits, and the proposed closed-loop should be sta-
ble [18]. For which the damping ratio (ζ) should be less than 1 (ζ <1).

Although, different mathematical approaches and methods are available 
to calculate the value of controlling variables of PID controller [27]. But with 
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the use of ANN that tedious and resilient mathematical calculation can be 
easily eliminated and the results are more accurate as compared to the results 
of a classical mathematical approach.

3.4.3	 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) described in the area of Artificial 
Intelligence. The term ‘Artificial Intelligence’ or ‘Artificial Life’ alludes 
to the hypothesis of re-enacting human conduct through calculation. 
It includes planning such PC frameworks that can execute errands that 
require human knowledge. For e.g., prior just people had the ability to per-
ceive the discourse of an individual. Be that as it may, presently, discourse 
acknowledgment is a typical component of any computerized gadget. 
This has gotten conceivable through computerized reasoning. Different 
instances of human insight may incorporate basic leadership, language 
interpretation, and visual discernment and so forth. There are different 
procedures that make it conceivable. These techniques to implement arti-
ficial intelligence into computers are popularly known as approaches to 
artificial intelligence [34].

PSO is initially ascribed to Kennedy, Eberhart, and Shi and was first 
expected for intimidating social conduct, as appeared in Figure 3.15, as an 
adapted portrayal of the development of living beings in a flying creature 
rush or fish school. The calculation was improved and it was seen to per-
form streamlining. The book by Kennedy and Eberhart depicts numerous 
philosophical parts of PSO and swarm insight. A broad overview of PSO 
applications is made by Poli [7].

PSO is a metaheuristic as it makes not many or no suspicions about 
the issue being upgraded and can look through enormous spaces of appli-
cant arrangements. In any case, metaheuristics, for example, PSO do not 

(a) (b)

Figure 3.15  (a) Fish school and (b) Flying creatures rush. Basic algorithm as proposed by 
Kennedy and Eberhart (1995).
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ensure an ideal arrangement is ever found. All the more explicitly, PSO 
does not utilize the inclination of the issue being upgraded, which implies 
PSO does not necessitate that the advancement issue is differentiable as is 
required by exemplary streamlining techniques, for example, angle plum-
mets and quasi newton strategies. PSO is, in this way, additionally utilized 
on enhancement issues that are somewhat irregular, boisterous, change 
after some time, and so on [29, 39].

3.4.4	 Particle Swarm Optimization (PSO) Algorithm

A fundamental variation of the PSO calculation works by having a populace 
(called a swarm) of competitor arrangements (called particles). These par-
ticles are moved around in the hunt space as per a couple of basic formulae. 
The developments of the particles are guided by their own best-referred to 
position in the pursuit space just as the whole swarm’s best-known position. 
At the point when improved positions are being found these will at that 
point come to control the developments of the swarm, the model appears in 
Figure 3.15. This figure shows a swarm or a school of winged creatures fly-
ing together, from the start they fly arbitrarily yet after, in some cases, when 
they find their ideal situation with the flawless speed they improved their 
position. The procedure is rehashed, and by doing so, it is trusted, yet not 
ensured, that an acceptable arrangement will, in the end, be found [30–32].

Considering the list of variables used in PSO as shown in Table 3.2 and 
after setting up the values of the particles and velocity using the following 
equation, the position of individual updates as:

	 y y vk
i

k
i

k
i

+ += +1 1 	 (3.1)

Table 3.2  List of variables used in PSO.

	 yk
i Position of particle

	 vk
i

Velocity of particle

	 pk
i

Best “remembered” individual particle position

	 pk
g

Best “remembered” swarm position

	 c1,c2 Cognitive parameters and social parameters

	 r1,r2 Random numbers between 0 and 1
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And the velocity calculated as:

	
v v c r p y c r p yk

i
k
i

k
i

k
i

k
g

k
i

+ = + −( ) −( )1 1 1 2 2 	
(3.2)

A flow diagram for PSO algorithm flow is shown in Figure 3.16:

Start

Define Weight vector, Population size,
Iteration

Initialize particles with velocity and
position

Evaluate fitness for each particles

Yes

Yes

No

No

No

Fitness < pbest

Fitness < gbest

Update and limit velocity and position

Iter > Max. Iter.
Or,

gbest < Desired
Goal

Update
gbest = fitness

Update
pbest = fitness

Calculate the error between required
and targeted Output

Stop

Figure 3.16  Flow chart of working and implementation of PSO.



70  AI Techniques for Electric and Hybrid Electric Vehicles

Which can be explained by the following steps,

1.	 Initialization
a)	 Set the values of constants kmaz,c1,c2
b)	 Initialization of position of particles randomly, y Do

i ∈  in 
IRn for i = 1,…,p

c)	 Initialization of velocity of particles randomly, 0 ≤ ≤v vo
i

o
max 

for i = 1,…,p
d)	 Set the value, k = 1

2.	 Optimization
a)	 Evaluate function value fk

i  using design space coordinates 
xk

i

b)	 If thenf f f f p yk
i

best
i

best
i

k
i

k
i

k
i≤ = =, 

c)	 If thenf f f f p yk
i

best
g

best
g

k
i

k
g

k
i≤ = =, 

d)	 If the termination condition is satisfied, then go to step 3, 
termination

e)	 Updating all position of particles vk
i  for i = 1,…..,p

f)	 Updating all velocities of particles  for 1,…..,p
g)	 Increment in value of k
h)	 Go to (a)

3.	 Termination

3.4.4.1	 Implementation of Particle Swarm Optimization 
for Electric Vehicles System

Particle swarm optimization technique is used to calculate gain values of a 
conventional controller like PID controller. The calculated value of the gains 
is fed to the PID controller for controlling the AMB as shown in Figure 3.17.

Objective Function

Ref.
Position

PSO Kp

KI

KD

PID
Controller AMB

To EVs System+

–

Figure 3.17  Implementation of PSO in AMB for EVs system.
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Before operating the PSO for calculation of gains value, various perfor-
mance index parameters and constant values have to be set [33]. A list of 
those parameters is shown in Table 3.3.

Here, for performance index, Integral of squared error (ISE) is selected 
and depending upon the observation weight factor is selected, which 
should be below 1. Number of iterations increases the accuracy of the cal-
culation, so almost 50–100 iterations are performed. Lower translation and 
higher translation frequency are selected depending upon the lower and 
upper bound of the system.

3.5	 Conclusion

Active magnetic bearings are inherently unstable and extremely nonlinear 
systems. Using this system in any application like electric vehicles requires 
controllers to achieve a smooth and successful bearing performance. From 
the conventional point of view, classical controllers are efficient, but the 
tuning of the controlling variables is always creating a huge problem. 
Implementation of an artificial control technique for the different con-
ditions in active magnetic bearing along with EV system is added a sig-
nificant advantage in its applications. As nowadays, various optimization 
techniques are developed, among which three most useful optimization 
techniques, which are Fuzzy logic, Artificial neural network, and Particle 
swarm Optimization techniques is briefly described in this review. Apart 
from these optimization techniques, others can also be implemented for 
this system, and they have their advantages. But due to the word limit, only 
three control techniques are discussed in this chapter. Most of the Electric 

Table 3.3  List of parameters.

S No. Parameters

1. Weight Factor

2. Iterations

3. Population Size

4. Lower Translation Frequency

5. Higher Translation frequency

6. Order of Approximation

7. Performance Index (ISE)
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vehicles are battery-powered EVs (BEVs), so they require long-lasting bat-
tery storage, low losses, and efficient performance, which can be contin-
uously provided by the flywheel energy storage system (FESS). However, 
with the use of conventional bearing in FESS, losses increase mostly 
due to friction and in the harsh environment, the performance of bear-
ing degraded. With the use of AMB, these problems can be eliminated as 
there is no contact between the stationary and rotatory parts and in a very 
harsh environment the AMB performance does not degrade. In the Fuzzy 
logic controller, tuning is done automatically because the rules of fuzzy 
inference system are designed for the very same purpose. But the remain-
ing two optimization techniques are used to calculate the controlling 
parameters or, the gains value of Proportional-Integral-Derivative (PID) 
controller, unlike fuzzy logic controller. Although there is a various combi-
nation of gain values for which the proposed AMB model is stable among 
them which one is best can be easily obtained by those two optimization 
techniques.

Every controller or, optimization techniques which are explained, have 
their advantages and disadvantages. If a controller or an optimization tech-
nique is useful in some aspects, it may be or may not be performing prop-
erly in other aspects. To get rid of these difficulties, hybrid optimization 
techniques can be used means two different optimization technique is used 
to optimize the system. This will eliminate the short coming of one optimi-
zation technique and improve the final output response.
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Abstract
This chapter aims at proposing a complete mathematical analysis and derivation 
of the small signal model for voltage-source inverter (VSI) with surface-mounted 
PMSM (SPMSM). The basic equations of the SPMSM model were developed and 
simulated using MATLAB/SIMULINK environment. In addition, the switch state 
functions were used to express the motor phase voltage and then develop mathe-
matical model for VSI. In order to control the machine speed from standstill to rated 
speed with rated load, the vector control strategy was applied. To design the speed 
loop and current loop, anti-windup PI controllers were used. To verify the effective-
ness of the presented analysis, some of obtained simulation results were discussed.

Keywords:  Surface mounted PM synchronous motor (SPMSM), voltage-source 
inverter (VSI), average model, small signal model, bode diagram

4.1	 Introduction

Power stages of PWM converters are nonlinear owing to the presence of at 
least one transistor and a diode [1–13]. In order to apply the known knowl-
edge of linear control theory, the power stages need to be averaged and lin-
earized [1]. Nonlinear power stages of PWM converters have been averaged 
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by predominantly two methods: the state-space averaging technique and 
the circuit averaging technique [1, 14]. Both methods have been employed 
extensively in the past with respect to numerous PWM converters [1, 15–20].

Three-phase voltage-source inverter (VSI) as shown in Figure 4.1 employs 
a three-leg six-switch network fed by a voltage source [3, 4]. The six switches 
which are typically MOSFETs or IGBTs are switched in a specified sequence 
based on the modulation technique employed to synthesize the required ac 
output voltage.

State-space averaging [15] and circuit-averaging [14] methods have 
been two of the popular methods for obtaining small-signal models of 
PWM power converters. The state-space averaging technique involves the 
averaging of the state equations associated with the different switching 
states of a converter. In the circuit-averaging technique, the averaging is 
performed on the switching component waveforms. The circuit-averaging 
technique tends to give a better physical insight into the circuit behavior. 
The primary aspect in the circuit-averaging technique is to replace the 
non-linear switching network of the converter by an equivalent averaged 
and linearized network [1, 2, 16].

The aim of this chapter is to propose a complete mathematical analysis 
and derivation of the small signal model for VSI with SPMSM. In addition, 
the switch state functions were used to express the motor phase voltage and 
then develop mathematical model for VSI. Moreover, the speed loop and 
current loop are designed based on the anti-windup PI controllers. 

The constant switching frequency is considered as 2.5 kHz.

Controller

VDC

VDC

VSI

Ia
Ib
ωr

Motor

Load

Va

Vb

Vc

Figure 4.1  Inverter-fed SPMSM system.
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Adopt id = 0 vector control strategy to control the machine from stand-
still to rated speed with rated load [21]. Use PI controller to design speed 
loop and current loop [22–25] with bandwidth fs = 10 Hz and fc = 300 Hz, 
respectively. The speed overshoot is required less than 5% and the settling 
time is within 0.5 s, and the limited current for the inverter is 50 A. The 
switching frequency is chosen as 2.5 kHz.

4.2	 Overall System Modelling 

4.2.1	 PMSM Dynamic Model

The dynamic model of surface-mounted PMSM (SPMSM) in the rotor 
synchronous d-q coordinate can be expressed as:

The voltage equation of the machine in the abc-coordinate is written as:

	 v R i d
dtabc s abc abc= +  ψ 	 (4.1)

In the rotating reference frame:

	 θr = ωrt
where, ωr is the electrical angular rotor-speed.

The abc reference frame to transformation rotor reference frame can be 
obtained using the following transformation matrix, T r and the angle θr 
based on the phase-axis relationship shown in Figure 4.2. 

dr

qr

Aθr

α 

B

C

β 

Figure 4.2  Phase–axis relationship of SPMSM.
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From which, the dq-axis voltage equations can be expressed as:	
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In addition, the stator dq-axis flux linkages can be written as:
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where, ψf is the flux of the magnets.
Moreover, the electromagnetic-torque expression is represented as:

	
T p ie f q= 3

2
ψ

	
(4.4)

Furthermore, the electromechanical torque equation is given as:

	
T J d

dt
B Te

rm
rm L= + +ω ω

	
(4.5)

where,
ωrm is the mechanical rotor speed, and TL is the load torque, N∙m.

4.2.2	 VSI-Fed SPMSM Mathematical Model

The switching model of the system in the abc coordinates can be expressed, 
based on Figure 4.3, as:
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By applying Kirchhoff Voltage Law:
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(4.6)

By summing the phase voltage equations in Equation (4.6),
Using, ia + ib + ic=0

Then,
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Figure 4.3  Switching model circuit of VSI-fed SPMSM.
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By using,
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which,
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On the other hand, the DC-side relations can be given as
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By applying the average operator:

	

di
dt L

E X d v
L

E X vph
ph dc





= −






− −






1 1
3

1 1
3

 .  eemf ph
R
L

i−


	
(4.9)

	

di
dt L

v v

dv
dt C

i d i

L

in
g dc

dc
L ph

T
ph

= −( )
= −( )





1

1 



  . 





 	

(4.10)



84  AI Techniques for Electric and Hybrid Electric Vehicles

where, 
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Based on Equation (4.9), the dqo model can be obtained, aided with the 
matrix, T, and the angle θr, as follows:
Coordinate transformation:

	 xdqo = T xabc; xabc = T–1 xdqo

From the average-model in Equation (4.9),
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Then,
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By omitting the zero-sequence component for balanced system, the 
dq-axis model of the VSI-fed SPMSM can be summarized as:
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Using,	 v vd q r femf emf
= =0;  ω ψ

Then, the final dq-axis model of VSI-fed SPMSM can be expressed as:
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4.3	 Mathematical Analysis and Derivation 
of the Small-Signal Model

4.3.1	 The Small-Signal Model of the System

From the dq-model,
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Applying small-signal model,

d
dt

i

i L

D

D
v

d

q

d

q
dc

ph

ph

ph

ph





















=














1  .  ++
















−




1 1
L

d

d
V

L

v

v
d

q
dc

d

q

ph

ph

emf

emf









 .  









− −























−0
0
ω

ω
.  




i

i
R
L

id

q

dph

ph

ph

iqph















�(4.13)

	

dv
dt C

i D D
i

i
dc

L d q
d

q
ph ph

ph

ph









= − 
















1  .  


−


































 d d
I

I
d q

d

q
ph ph

ph

ph

 . 















= −( )di
dt L

v vL

in
g dc



 

1

� (4.14)

4.3.2	 Small-Signal Model Transfer Functions

From the small-signal model in dq-coordinates in Equations (4.13) and (4.14),
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From which, put vg = 0
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Applying Laplace Transformation:

	

s

s

s

s

i

i
d

q

ph

0 0 0

0 0 0

0 0 0

0 0 0





























.





pph

v

i

R
L

D
L

R
L

D
L

dc

L

d

q





























=

−

− −

−

ω

ω

0

0

DD
C

D
C C

L

d q

in

−

−

































0 1

0 0 1 0






























+
−









i

i

v
i

V
L

d

q

dc

L

dc

ph

ph

0
II

C

V
L
I

C

d

dd

dc

q

d

q

ph

ph

0

0

0

−















































+

−
−

























1

0
0
0

0
1

0
0

L
L

vdemf


vvqemf

















90  AI Techniques for Electric and Hybrid Electric Vehicles

From which,
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Then,
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Using the following matrix inverse,
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From which,
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4.3.3	 Bode Diagram Verification
In order to validate the proposed derivation of the transfer functions, some com-
parative results with that obtained by Matlab/Simulink toolbox are presented in 
this subsection, as illustrated for the bode diagrams in Figure 4.4 to Figure 4.7.
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Figure 4.4  Bode diagram with the proposed analysis compared to that obtained by the 
Matlab toolbox. (a) Using the proposed derivation and analysis. (b) Using Matlab toolbox.
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Figure 4.5  Bode diagram with the proposed analysis compared to that obtained by the 
Matlab toolbox. (a) Using the proposed derivation and analysis.(b) Using Matlab toolbox.
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•	 Case 3: 
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Figure 4.6  Bode diagram with the proposed analysis compared to that obtained by the 
Matlab toolbox. (a) Using the proposed derivation and analysis. (b) Using Matlab toolbox.
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Figure 4.7  Bode diagram with the proposed analysis compared to that obtained by the 
Matlab toolbox. (a) Using the proposed derivation and analysis. (b) Using Matlab toolbox.
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All the results obtained and verified through the bode diagram confirms 
that there is a close correlation between the proposed analysis and deri-
vation of the small-signal transfer functions and that obtained from the 
Matlab/Simulink toolbox. This ensures the efficacy of the proposed math-
ematics for the adopted system modelling.

4.4	 Conclusion

In this chapter, the small signal model of a SPMSM fed with a voltage- 
source inverter (VSI) has been completely analyzed. In order to control the 
machine speed from standstill to the rated speed with rated load, the vec-
tor control strategy has been applied. In order to validate the efficacy of the 
presented mathematical analysis of the adopted model for VSI, some of the 
obtained simulation results have been discussed. The obtained results have 
confirmed, through the bode diagram, the efficacy of the proposed mathe-
matical derivations for the small signal model transfer functions compared 
with that obtained aided with Matlab/Simulink toolbox.
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Abstract
The diminution of fossil fuel due to substantial consumption has hastened the 
improvement of the electric vehicle. So, Plug-in Hybrid Electric Vehicle (PHEV) 
is widely used for transportation system to lessen the fossil fuel utilization. This is 
recognized to be the finest short-term solution to lessen greenhouse gas emission. 
In PHEV, the Energy Storage System (ESS) plays a key role. Even though some 
batteries supply both high power and high energy, they may overheat and their 
lifetime is short. Therefore, various power sources have to be implicated. Ultra-
capacitors, due to extended life cycle and instantaneous high power properties, 
are a prominent appendage for the energy storage system. An ultra-capacitor is 
incorporated in hybrid energy storage system to provide instant high power to 
the vehicle. In this chapter, battery and ultra-capacitors are modeled as a hybrid 
energy storage system of plug-in hybrid electric vehicle and they have been simu-
lated using MATLAB Simulink. Various cases such as acceleration and decelera-
tion of the vehicle have been discussed and results are analyzed. Simulation result 
corroborates that peak power demand requisite for the vehicle is delivered by the 
ultra-capacitor, thereby the main grid stress is reduced.  

Keywords:  Battery, ultra-capacitor, energy management, hybrid energy storage 
system, plug-in hybrid electric vehicle, acceleration, deceleration, driving mode

*Corresponding author: arunmozhi49@gmail.com

mailto:charlesrajas@


104  AI Techniques for Electric and Hybrid Electric Vehicles

5.1	 Introduction

In the past, various types of vehicles were available which used gasoline, 
diesel, biodiesel, compressed natural gases, etc., as fuel sources. Due to the 
usage of fossil fuel for vehicle transportation, the environment got affected. 
Environmental pollution and degradation became a major problem in the 
world. The main reason was the emission of greenhouse gases and indus-
trial waste. The problem cannot be eliminated but it can be reduced with 
the use of alternate source of energy for the vehicle i.e. from non-renewable 
source to renewable source. So, an electric vehicle was recognized to be the 
finest short-term solution.

The electric cars were invented in different countries by different inven-
tors. It is very hard to pinpoint the year of invention of electric vehicle. In 
18th century, the first electric vehicle was designed. But the positive result 
was gained by William Morrison of Des Moines, lowa in 1890–1891 in 
the United States. Its top speed is 23 kmph. Battery is the main source for 
driving the electric car and it gets exhausted easily. As charging stations are 
not available everywhere, it’s very difficult to charge the electric vehicle. To 
boost the capacity of the battery in an electric vehicle, the size of the bat-
tery must be increased which increases the total vehicular mass.

Another type called Hybrid Electric Vehicle (HEV) came into existence 
which uses both fuel and battery as a source for running the vehicle. The 
chemical energy of the fuel is transformed to mechanical energy to run 
the vehicle. Fuel source not only drives the vehicle but also charges the 
battery. The fuel to wheel efficiency of the hybrid electric vehicle is too low. 
To overcome this drawback, the alternate type of vehicle called Plug-In 
Hybrid Electric Vehicle (PHEV) is designed [1].

The experimental study about the battery—super-capacitor incorpo-
rated energy storage system [2, 3] for the electric vehicle application helps 
to find the solution for the installation of charging station [4–6]. Energy 
management [7–16] in and out of electric vehicle i.e. energy management 
in the energy storage system, energy management between the electric 
vehicle and charging station, etc., is essential to ensure the reliability of 
supply. The penetration of electric vehicles into the distribution system 
within the permissible limit i.e. optimal integration [17–20] reduces the 
main grid stress.

5.1.1	 Architecture of PHEV

The fuel economy is improved in PHEV due to the Charge-Depletion (CD) 
mode of the vehicle. In CD form, the vehicle is driven only with the energy 
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obtained from electric motor. Another mode called Charge-Sustaining 
mode, where the vehicle is operated like a traditional HEV. This is the main 
advantage of PHEV. If charging station is available everywhere, the prog-
ress of PHEV will be increased.

Owing to the direct charging of battery at the charging station, use of fuel 
source was trimmed down. While the State of Charge (SOC) of the battery is 
reduced to its threshold value, the energy requisite is supplied by the engine.

Figure 5.1 shows the architecture of Plug-in hybrid electric vehicle with 
the power flow directions. The sources of PHEV are fuel and energy stor-
age system. The fuel source is generally an Engine–Generator set, where 
the chemical energy of the fossil fuel or natural gases is converted to 
mechanical energy by the engine and the generator converts this mechani-
cal energy into electrical energy. The energy storage system consists of bat-
tery. The battery is charged from the charging station via interface circuit. 
The electrical energy from these sources is converted to mechanical energy 
via motor. 

5.1.2	 Energy Storage System 

The performance of PHEV varies depends on the Energy Storage System 
present in it. ESS consists of only battery in the normal EV. This ESS 

Engine Generator

Bidirectional power flow

Unidirectional power flow

Battery

Motor Wheels

Converter

Interface circuit

Figure 5.1  Architecture of plug-in hybrid electric vehicle.
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supplies the required high energy to the vehicle. But vehicles need both 
high energy and high power. Consequently, an ultra-capacitor is incorpo-
rated to supply high power to the vehicle. The energy storage system which 
consists of both ultra-capacitor and battery is recognized as Hybrid energy 
storage system (HESS).

5.2	 Problem Description and Formulation

5.2.1	 Problem Description

Now-a-days, plug-in hybrid electric vehicle is widely used for transpor-
tation system to reduce fossil fuel consumption. But in PHEV, the energy 
storage system plays a vital role. For the ESS of plug-in hybrid electric 
vehicle, energy is not the only requirement for an electric vehicle to drive. 
While driving along the slopes, the vehicle requires high power. So, HESS 
is brought in which is incorporated with the ultra-capacitor.

In the Plug-In Hybrid Electric Vehicle, the fuel to wheel efficiency is 
enhanced with the presence of Hybrid Energy Storage System i.e. Battery–
Ultra-capacitor model (BA–UC model). To increase the efficiency of the 
vehicle, the structure of HESS of PHEV is designed carefully as it mainly 
depends on the battery and the ultra-capacitor connection. And the power 
allocation between them reduces the energy loss in the vehicle. Thereby it 
enriches the fuel economy of the vehicle.

5.2.2	 Objective

The main contribution is to allocate the power between battery and the 
ultra-capacitor, and to evaluate a best power delivery between ultra-capacitor 
and battery pack in order to increase the reliability of energy storage sys-
tem of the plug-in hybrid electric vehicle.

5.2.3	 Problem Formulation

The inappropriate power allotment between the battery pack and the 
ultra-capacitor leads to high energy loss as it depends on the structure of 
HESS. If the energy loss is high, the energy output of the HESS to the vehi-
cle is low. Therefore the efficiency of the system is affected. Accordingly, the 
performance of the vehicle is diminished.
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5.3	 Modeling of HESS

The presence of electric motor in the plug-in hybrid electric vehicle miti-
gates the use of internal combustion engine. By this means emission of pol-
lutants and the fuel efficiency of the vehicle are increased. In the proposed 
system, the hybrid energy storage system of the PHEV consisting of both 
ultra-capacitor pack and battery pack are modeled.

The super-capacitor and the battery are connected in series with the 
boost converter and buck/boost converter respectively. The characteristics 
of both the energy sources are analyzed with the help of scope. The power 
required for the vehicle is calculated from the driving cycle pattern of the 
vehicle. 

 The battery parameters such as voltage, current and state of charge are 
monitored with the scope and the battery power is calculated from the bat-
tery voltage and battery current. Likewise, the super-capacitor parameters 
are also monitored and power of super-capacitor is calculated from the 
super-capacitor voltage and current. The power of HESS is calculated by 
adding the source powers i.e. an adder block is used. The voltage amplitude 
of the DC voltage source is set to 42 V.

The battery and the ultra-capacitor which are connected in series as 
shown in Figure 5.2 with the converters supplies the power required for 
the electric vehicle. Both the energy sources are charged and discharged 
according to the requirement. At the time of starting the SOC of the battery 

CAN Bus (Connects the energy storage system and electric vehicle)

DC/AC
converter

DC-DC
converter

Ultra-capacitor pack

Battery
pack

DC-DC
converter

Figure 5.2  Structure of proposed system.
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is 100%. When the vehicle gets started, the SOC of the battery decreases i.e. 
the battery starts discharging. While applying brake, ultra-capacitor gets 
charged due to regenerative braking. The incorporation of ultra-capacitor 
with the battery ensures the reliability of power supply to the vehicle.

The parameters of both the battery pack and the ultra-capacitor are 
given in Tables 5.1 and 5.2. The state of charge (SOC) of battery is initially 
100%. The parameters given in the table are used to identify the type of bat-
tery pack and the ultra-capacitor to be used in the energy storage system of 
plug-in hybrid electric vehicle.

5.4	 Results and Discussion

5.4.1	 Case 1: Gradual Acceleration of Vehicle

The characteristics of battery pack such as SOC, current and voltage for the 
gradual acceleration of the vehicle is plotted in Figure 5.3(a). The battery 
voltage was very high at initial stage and it was nominal due to constant 
load. In Figure 5.3(b), the characteristics of super-capacitor such as cur-
rent, voltage and SOC is plotted. The super-capacitor voltage was very high 
at initial stage and decreases due to load. 

Figure 5.3(c) shows the power delivered by the super-capacitor and the 
battery pack to the load. At the peak time the power required for the load is 

Table 5.1  Battery parameters.

Rated capacity  6.6 Ah

Nominal voltage 26.4.V

Initial state of charge 100%

Internal resistance 0.04

Table 5.2  Ultra-capacitor parameters.

Rated capacitance 500 F

Equivalent DC series resistance 2.1.mΩ

Number of series capacitor 6

Operating temperature 25 °C
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delivered by the ultra-capacitor. The power supplied by the super-capacitor 
is 1,500 W and the battery supplies 1,100 W. This power is calculated from 
the voltage and current values of the battery and super-capacitor. Figure 
5.3(d) shows the power supplied by the energy storage system and the 
power required for the electric vehicle. This power is the sum of the powers 
of both battery and super-capacitor and it is 2,600 W. The power required 
for the electric vehicle tracks the driving cycle pattern of the vehicle. In this 
the power required is set as 2,000 W. 

5.4.2	 Case 2: Gradual Deceleration of Vehicle

In Figure 5.4(a), the characteristics of battery pack such as SOC, current 
and voltage for the gradual deceleration of the vehicle is plotted. Initially 
the battery voltage was very high. Suddenly the voltage is decreased to 
a low value and then it increases gradually. The current is initially high 
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and decreases gradually due to deceleration. In Figure 5.4(b), the char-
acteristics of super-capacitor such as current, voltage and SOC is plotted. 
The super-capacitor voltage was very high at initial stage and decreases due 
to load.

Figure 5.4(c) shows the power delivered by the super-capacitor and the 
battery pack to the load. Due to deceleration of vehicle, the battery power 
is zero as no power required for the vehicle at braking. Figure 5.4(d) shows 
the power supplied by the energy storage system and the power required 
for the electric vehicle. During deceleration, the power required for the 
vehicle is negative.

5.4.3	 Case 3: Unsystematic Acceleration and Deceleration 
of Vehicle

The unsystematic acceleration and deceleration of the electric vehicle is 
shown in Figure 5.5. In Figure 5.5(a), the characteristics of battery pack 
such as SOC, current and voltage for sudden acceleration and deceleration 
of the vehicle is plotted. The battery current was zero at initial stage and 
it varies according to the unsystematic changes in the speed of the vehi-
cle. In Figure 5.5(b), the characteristics of super-capacitor such as current, 
voltage and SOC is plotted. The super-capacitor voltage was high and then 
maintained constant.
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Figure 5.5(c) shows the power delivered by the super-capacitor and 
the battery pack to the load. Due to the unsystematic acceleration and 
deceleration of vehicle, the battery power variation is high and it is zero 
during deceleration as no power is required for the vehicle at the time of 
braking. Figure 5.5(d) shows the power supplied by the energy storage 
system and the power required for the electric vehicle. During sudden 
application of acceleration and deceleration, the power required for the 
vehicle changes rapidly. During braking the vehicle power requirement 
is negative. 

5.5	 Conclusion

In this chapter, hybrid energy storage system of plug-in hybrid electric 
vehicle is modeled in MATLAB Simulink. The simulation result infers that 
the ultra-capacitor supply power during peak power demand. Due to the 
variation of speed, the electrical vehicle was driven in two modes such as 
acceleration mode and deceleration mode. These modes are analyzed from 
the simulation results. During acceleration, the battery SOC starts decreas-
ing i.e. battery is discharged as the vehicle consumes energy and during 
deceleration the battery power is zero as there is no power required for the 
vehicle while applying brake.
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Abstract
Due to the increasing importance of the power electronic devices in industrial 
applications, it becomes necessary to consider the reliability and predict the life 
of the components. This paper initially discusses the general reliability predic-
tion methods for power converters. In a converter, the life of the power electronic 
devices depends on the failure rate of the individual device. For the evaluation of 
failure rate of power semiconductor device temperature, current rating, voltage 
stress, application, quality and environment factors are considered. Life period of 
the device is decided by the bathtub curve. All the quantitative analysis projected 
in this work are based on the standard of MIL-217F N2.

Keywords:  Reliability, power electronic devices, failure rate, MIL-217F 
N2, reliability prediction

6.1	 Introduction

Nowadays, the usage of power electronic equipment has been widely 
increasing in industries. The operation time of the electronic equipment is 
directly proportional to the failure rate of the power electronic component. 
The failure of the power electronic component affects the overall reliability 
of the power electronic equipment [1–4]. To assess the reliability of the 
equipment, failure rate analysis is used. Most of the electronic equipment 
has more number of electronic components and power semiconductor 
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devices. Redundancy of electronic components is not included in elec-
tronic equipment. Hence the failure rate analysis can assume that if one of 
the component performance fails, the whole system has failed. Therefore, 
the reliability of the each component must be determined [5]. The reli-
ability of the component is dependent on the specified function in a given 
environment. All design phases of electronic equipment should be con-
sidered in reliability. In conceptual design stress cannot be determined 
exactly, the part count or part-stress methods can be applied. These meth-
ods consider the environment conditions and quality of the product and 
it permits to the detailed investigation of the system reliability [6–8]. The 
part-stress method needs the knowledge on the stresses and temperature 
profile of the component, but this method is applicable to the later phase of 
design process. In semiconductor material temperature and its variations 
influence the reliability of the component because it changes the thermal 
conditions in power semiconductor devices [9].

The paper aims at presenting a reliability prediction of the power semi-
conductor devices and quantitative evaluation of the reliability prediction. 
Here temperature, environment factors, voltage stress and current rating 
factor have been considered for reliability prediction.

6.2	 Conventional Methods for Prediction 
of Reliability for Power Converters

The product failure rate and lifecycle describes the reliability. Failure rate 
depends on the probability of the particular product at operational time 
interval. Failure chances in the device [t, t + ∆t] where ∆t = 0. It gives the 
failure chances in a certain time interval for defined boundary conditions 
of particular product. Failure rate is denoted by ‘λ’ [1, 10–14].

	 Failure rate w.r.t time λ(t) failure chances
hours

=
109 	  (6.1)

In most cases reliability R(t) of the electronic component can be assumed 
to decrease exponentially. 

Let us consider 
The failure rate λ(t) constant value = λ 
Total failure rate λtotal, number of components in a circuit ‘k’ k is sum of 

the all the individual failure rates λi in Equation (6.3)
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λtotal i

i

k

=
=

∑λ
1 	

(6.2)

Mean time to failure (MTTF) also considered for the reliability,

	
MTTF 1

total
=

λ 	
(6.3)

There are dissimilar methods for quantitative estimation of reliability. 
Few methods will be explained and compared. Widely used and accepted 
method is dependent on failure rate catalogs [15]. There are different fail-
ure rate catalogs which are based on the electronics and large empirical 
investigations [1, 16, 17]. Reliability prediction methods are mainly classi-
fied into three types:

1.	 Bottom-up statistical methods
2.	 Top-Down similarity analysis methods
3.	 Bottom-up physics of failure methods.

Bottom-up statistical method is applicable and provides the electronic 
component field failure rate and defect densities. It is a good indicator for 
the field reliability. The main disadvantage in this method is difficult to 
keep up to date and difficult to collect the good quality field data to use in 
method [18]. Difficult to compare the correlated variables (e. g. Quality vs 
Environment). Failure rate of the component is decided by the historical 
operational data of the component.

Top-Down similarity analysis method (e. g. TRACS) is dependent on 
the external failure rate data base of the particular product. This method 
reflect the actual reliability by employing the test data of the product but it 
should be performed before the system or product is commercialized [1, 
16]. The main disadvantages are the conversion of actual reliability data 
into field value is required and acceleration models are needed.

Bottom-up physics of failure method (e.g. FIDES) is useful for eval-
uation of the specific failure mechanisms and life time prediction of the 
product. The main disadvantages are it is not applicable to the prediction 
of field reliability, expensive and complex to apply on the system. Also it 
is not extendable to dynamic assessment of the reliability parameters for a 
real-time system [19].
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This paper explains about the failure rate of the electronic component by 
considering the historical data. Several methods are available to calculate the 
reliability of the electronic components. Each method project a wide range of 
variation in reliability prediction. These methods are not comparable in terns 
because the each method have different sensitive parameters and each method 
has different assumptions [4]. Here reliability of the electronic component has 
been calculated by using the bottom-up statistical method. Electronic com-
ponents reliability depends on the chances of failure.

6.3	 Calculation Process of the Electronic Component

Failing of number of units in a particular unit time is called failure rate. 
Every product has a failure rate defined over a specific periods of time and 
this failure rate chance is dependent in turn on the operational period of 
the component. It effects the operational life span of the product and pro-
ducing the failure period curve called as bath curve as shown in Figure 6.1.

Bathtub curve has divided the failure rate into three portions. The first 
portion is known as early failure rate period and it has greater failure rate 
because of the manufacture errors.

The manufacturers are mainly concentrated on the reduction of fail-
ure chances to reach the customer level. The second portion is known as 
useful life period [5]. In commercial applications focus on enhancing the 
duration of the life time to a satisfactory level. The existence of the prod-
uct beyond the useful life time corresponds to the wear out period. The 
product failure in this wear out portion is mainly due to the deterioration 
of time material, temperature, oxidization, deionization of material and 
chemical damage. The first and second sections provide the manufacturer 
warranty. The failure of the product depends on many heads namely such 

Early failure
period

Useful life period Wear out failure
period

Fa
ilu

re
 ra

te
 (λ

) 

Figure 6.1  Bathtub curve.
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as thermal, environment, quality and electrical stress on the component [6]. 
Component failure rate is denoted by λp, base failure rate of the component 
λb, quality factor Ni. All components failure rate as shown in Equation (6.5).

	
λ λ

i 1

n

=
=

∑Ni p

	
(6.4)

Where λ = failure rate of the whole system.
The reliability process for the failure method is dependent on which 

parameters have been considered. The involved factors in the failure rate of 
the product as shown in Figure 6.2.

The main influencing factors of reliability are shown in Figure 6.2. Some 
of the factors are dependent on the manufacturer end while other factors 
are dependent on the operational and natural factor (environment). The 
paper aims at presenting an evaluation of reliability to the power semicon-
ductor device. Reliability evaluation has been presented for the MOSFET.

6.4	 Reliability Prediction for MOSFETs

Several factors influence the reliability of the electronic components. The 
product of the effecting factor is called the failure rate of the product.

RELIABILITY

Considered parameters

Temperature
factor

Environment
factor

Natural factors

Operational factor

Quality factor

Failure rate of the product

Current rating
factor

Voltage stress
factor

Application
factor

Figure 6.2  Failure rate based reliability process flow chart.
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Failure rate of the component

	 λp = λb πT πR πS πA πQ πE Failure/106 h	 (6.5)

Where:

πT: Temperature factor
πR: Current rating factor
πS: Voltage stress factor
πA: Application factor
πQ: Quality factor
πE: Environment factor

Temperature is a main affecting factor on the life time of electronic com-
ponents. It is a dependent factor, which means it depends on the current 
and voltage applied to the component. Here the temperature factor is junc-
tion temperature [18, 19].

	
πT

jT
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273
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−
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





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1 1
298

	
(6.6)

Where: Tj = Junction temperature

0 °C is equal to the 273 K.
23 °C considered as the room temperature.

Application factor and environment factors are important for the selec-
tion of the power electronic components. The constant value of the envi-
ronment factor depends on the application of the product. Let us consider 
the marine application (Ns) [18].

	 Environment factor (πE) = NS = constant value.	 (6.8)

Manufactured material of the product decides the quality and life of the 
product (material e.g. JANTXV, JANTX, JAN). Quality has a direct effect 
on the component failure rate and it appear as a product quality factor. It is 
denoted by πQ [18, 19].

	 Quality factor (πQ) = material = constant	 (6.9)
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The operating failure rate of the product is dependent on the applied 
voltage across the power semiconductor device. Possibilities of the failure 
rates maximum caused due to the blocking voltage and peak currents. It 
appears as current rating factor πR and voltage stress factor πS [18, 19].

	 Current rating factor (πR) = (Irms)
0.40

	 (6.10)

Where Irms = RMS rated forward current

	 Voltage stress factor πS = (Vs)
1.9	 (6.11)

Where Vs = voltage stress

6.5	 Example: Reliability Prediction for Power 
Semiconductor Device

Let us consider one model of the IGBT and the assumed data of the power 
semiconductor device is maximum temperature across the junction 
150 °C, RMS current of the IGBT is 30 A and the IGBT is manufactured 
by the material of JANTX. The maximum applicable input voltage is 500 
V, case temperature is 75 °C. This model is used in the marine application. 
Reliability estimation has been done below

Formula for failure rate Equation (6.5),

	 λp = λb.πT.πQ.πE.πR.πS

λb is base failure rate = 0.002 (for all type devices same value)
πT is temperature factor	 = 150 °C
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+
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Where Tj = junction temperature.

0 °C temperature converted into Kelvin = 273
At room temperature 25 °C converted into Kelvin = 273 + 25 = 298
πQ is quality factor	             = 1.0
πE is environmental factor = Ns = marine application = 9.0
πR is current rating factor  = 30 A
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				    = (irms)
0.40 = (30)0.40 = 3.9

πS is voltage stress factor	 = 500 V = 0.5
				    = (Vs)

1.9 = (0.5)1.9 = 0.27

	 λp = λb.πT.πQ.πE.πR.πS = 0.002 * 21 * 1.0 * 9.0 * 3.9 * 0.27 = 0.437 
failure/106 h

Failure rate for assumed model switch = 0.437 failure/106 h.

6.6	 Example: Reliability Prediction for Resistor

Let us consider the resistor for the reliability prediction. Model number of the 
resistor is RC0603 1/10 W, operating temperature range is −55 °C to 155 °C, 
maximum working voltage is 75 V, maximum overload voltage is 150  V, 
dielectric withstand voltage is 100 V and ambient temperature is 70 °C.

Formula for failure rate Equation (6, 5),

	 λp = λb.πR.πQ.πE

λb is base failure rate
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πQ is quality factor = R quality = 0.1
πE is environmental factor = Ns = marine application = 5.0
Resistor factor 1MΩ πR = 1.1
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	 λp = λb.πR.πQ.πE

Failure rate of the resistor λp = 0.00090×1.1×5.0×0.1
	 = 0.000495 or 4.95× 10–4 W−s

The failure rate based reliability prediction has been done for the con-
sidered model of the power semiconductor and resistor. The procedure 
of the failure rate calculation and reliability dependent parameters are 
explained. The power semiconductor failure rate depends on the ambient 
temperature of the device.

6.7	 Conclusions

Several methods are used for reliability prediction. Some methods have their 
own data and other methods are depend on the additional data from other 
sources. The reliability prediction methods are not comparable because each 
method has own sensitive consideration parameters and focused on differ-
ent assumptions. Failure rate or mean time failure rate are considered for the 
electronic component reliability. The reliability has been explained and eval-
uated with the considerations namely JANTX material, maximum tempera-
ture, environment factor and application factors. By following MLI-217F N2 
standards failure rate of the IGBT has been calculated.
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Abstract
The current automotive industry is facing a huge transition from ICE to elec-
tric propulsion. However, the current infrastructure is not that EV-friendly so 
that majority of the population can trust this segment. This is where the Hybrid 
Electric Vehicle (HEV) comes into the picture offering a high fuel economy with-
out compromising the vehicle driving dynamics. It becomes increasingly import-
ant to have a comprehensive understanding of the working of HEV under different 
drive cycles and also the knowledge of an optimal battery type to prevent range 
anxiety. This paper presents a modeling of PMSM-based HEV with comparative 
evaluation of three different drive cycles viz. acceleration cruising and decelera-
tion for three distinct state of charge values for each drive cycle considering six 
major vehicle performance defining parameters namely—vehicle speed, battery 
power, torque sharing, final SOC value, ICE power and switching ON of hybrid 
mode. Additionally, a comparison on three different battery types—Lead acid, 
Li-ion and Ni-MH is presented based on their sizing and cost considerations for 
the proposed HEV model.

Keywords:  Battery, comparative study, degree of hybridness (H), hybrid electric 
vehicle (HEV), permanent magnet synchronous motor (PMSM), state of charge 
(SOC)
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7.1	 Introduction

The electric vehicle technology is capable of reducing the pollution level 
as well as not requiring fossil fuels and hence, they appear to be the 
best for green transportation. However, the current infrastructure is not 
perfectly suitable for such a segment to attract more market primarily 
because of the range anxiety issue of the EVs. Hybrid electric vehicles 
are currently one of the most favorable technologies and are attracting 
more and more attention [1]. HEVs have multiple power sources, and 
their fuel economy and emissions can be optimized through an opti-
mal power distribution called an energy management strategy [2, 3]. 
Possible combination of such power sources can be: fuel cell—battery, 
gasoline—flywheel and diesel—electric. As a result, HEVs should make 
transitions between different modes to achieve an optimal power distri-
bution [4].

For low power applications and economically low-end cars 
Permanent Magnet Synchronous Motor (PMSM) serves as a perfect 
option. They can be designed to operate over wide torque—speed range 
with superior torque density and power density [5]. Fast electrical 
torque response is required to ensure quick dynamic performance of 
the whole system in these applications. And dynamic current response 
directly affects the dynamic performance of torque [6]. Conventional 
energy system of HEV can only be a single battery module with low 
power density and short cycle life [7]. The single battery can lead to 
driving range as well as poor acceleration performance. The common 
solution is to design a large battery by increasing the size of battery 
to meet the requirements of high-power density [8]. But the cost of 
this kind of battery is bound to rise, and it would result in a waste of 
battery’s capacity and huge volume [9]. Hence, a comparative study on 
different battery types depending on their sizing and cost parameters 
becomes imperative.

The series-parallel architecture incorporates power-split devices allowing 
for power paths from Internal Combustion Engine (ICE) and batteries to 
the wheels that can be either mechanical, electromechanical or both of them 
[10].

In this study, authors have presented a PMSM based HEV simulation 
model which is capable to simulate different driving cycles depending 
upon the acceleration curve given as input in the signal builder block of 
Simulink. Additionally, a comparison on three different battery types—
Lead acid, Li-ion and Ni-MH is presented based on their sizing and cost 
considerations for the proposed HEV model.
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7.2	 Modeling of Hybrid Electric Vehicle

The HEV system being proposed consists of two main blocks viz. the 
Energy management system and the Electrical Subsystem. Figure 7.1 shows 
the block diagram of the proposed system. The energy management sys-
tem block further contains the Battery Management System (BMS) and the 
Hybrid Management System (HMS). The BMS is modeled such that it is 
responsible to maintain the SOC level of the battery between 40 and 80%. 
The HMS is responsible for switching ON/OFF the hybrid mode of the 
vehicle. This switching takes place depending upon the need for dynamic 
response of the vehicle like—requirement of excess torque while cruising, 
better power requirement while accelerating, etc.

The major parameters that were considered for modeling the HEV sys-
tem were torque and state of charge (SOC). The general electromagnetic 
torque equation for the PMSM motor is expressed as

	
T p L L I Ie d q m m= −( ) +
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�

(7.1)

In order to get maximum torque, the α has to be made equal to 90° and 
hence the above equation can be rewritten as

	
T p Ie q= 3

4
ϕ

	
(7.2)
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Figure 7.1  General block diagram of the proposed system.
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“Cost-killing” policies from automotive part-makers contribute to 
rethink the EV electric propulsion so that new optimizations and new 
topologies would be proposed [11]. This is where the hybrid machine has 
to be designed very carefully. The degree of hybridness (H) of a vehicle 
plays a very important role in this. H can be expressed by the equation

	
H

Sum of all traction power Electric motor
Sum

=
( )           

            of trction power of motor ICE power+ 	
(7.3)

The hybrid vehicle is characterized by two types on energy, fuel and 
electricity and the other model is totally based on electrical power source 
[12]. If the H value is around 50% then the HEV is considered as fully 
hybrid and it has almost equal propulsion power from both the sources. In 
the modeled system, the H value is 46.72% as the two traction powering 
components are IC Engine (57 kW @ 5,000rpm) and an electric motor 
(50 kw, 500 V). The different architectures of HEVs are discussed in the 
section below.

7.2.1	 Architectures Available for HEV

Hybrid Electrical Vehicles are generally implemented by different hybrid 
architectures such as: Series hybrid architecture, Parallel hybrid architec-
ture, Series-parallel hybrid architecture and Complex hybrid architecture. 
In series hybrid architecture the ICE is coupled with the generator to yield 
electricity for fully electric vehicle propulsion. The mechanical decoupling 
between the IC engine and the driven wheels allows the IC engine operat-
ing at its very narrow optimal region [13].

In parallel hybrid architecture both the ICE and electric motor are 
coupled with the transmission system using the same drive shaft to pro-
pel the hybrid electric vehicle, allowing them to directly supply torque to 
the wheels and hence multiple energy conversions are eliminated result-
ing in improved efficiency. This design utilizes the advantages of the elec-
tric motor and the ICE and combines them to form a more fuel-efficient 
vehicle [14].

In the series-parallel architecture, advantages of both the series as well 
as parallel configuration are incorporated. Here just like parallel hybrid 
architecture, both propulsion devices are mechanically coupled to wheels 
and provide traction [15].
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7.3	 Series—Parallel Hybrid Architecture

The proposed system uses two electrical machines—an electric motor and 
a generator. Figure 7.2 shows the architecture of the proposed HEV model 
for the purpose of analysis. In the series-parallel architecture, the power 
from the combustion engine is split up into a part (nearly) directly sent to 
the wheels and a part sent through power electronic converters [16]. The 
Toyota Prius is a well-known example of such a system. In this case, a plan-
etary gear is used for the power split [17, 18]. Although this architecture 
is more expensive than any of its parent architectures, it is one of the most 
preferred topologies for HEVs, especially when automakers target excel-
lent dynamic performance for their models. Similar to the parallel HEVs, 
the degree of hybridness is adjusted as a trade-off of performance, cruis-
ing speed, fuel economy, drivability, and driver’s comfort. Therefore, using 
the two electrical machines provides quiet and smooth running at lower 
speeds as in case of series hybrid architecture, as well as provides effortless 
high-speed cruising as in case of parallel hybrid architecture.

7.4	 Analysis With Different Drive Cycles

In this study, authors have followed a specific protocol for analyzing differ-
ent drive cycles. Each drive cycle is divided into 3 distinct cases depend-
ing upon the SOC values viz. 30%, 60% and 90%. Each of these cases is 
analyzed for 6 different parameters viz. Battery power, SOC, ICE power, 
Status of hybrid mode, car speed and torque sharing. The drive cycle input 
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Figure 7.2  Proposed architecture of the HEV system.
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is given through the signal builder block of the Simulink and the results are 
simulated. The analysis sections are presented below shows the simulation 
results for 4 major vehicle parameters.

7.4.1	 Acceleration Drive Cycle

In this cycle it is assumed that the vehicle is going to start from rest and the 
driver is accelerating the vehicle from 0 to 80% throttle (ramp signal) in 16 s of 
simulation time. Figure 7.3 shows the input signal given to the signal builder 
for this drive cycle. Each of the cases has been discussed in the sections below.

7.4.1.1	 For 30% State of Charge

For SOC value below the BMS level (30%) the performance of the model 
vehicle is not at par the normal conditions. The battery power shows a neg-
ative value (−21 kW) as the SOC is below the BMS limit so it cannot power 
the wheels instead it acts as a load. The maximum vehicle speed attained in 
this case is 55.59 kmph which is considerably low since only ICE is power-
ing the wheels and also its fraction of power is responsible for charging the 
battery due to the low SOC level. The percentage sharing of torque between 
the electric motor and IC Engine is dominated by electric motor which 
is attributed to the fact that the proposed model has a H value of 46.72% 
which comes under the fully hybrid category where electric motor domi-
nates the ICE. The electric motor torque is 100.7 N·m and the ICE torque 
is 80.98 N.m. This share of torque for the electric motor will increase as the 
SOC value increases. The final SOC is recorded as 31.93% which is greater 
than the initial SOC value as the battery is being charged. Figure 7.4 shows 
the simulation results for this case.
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Figure 7.3  Acceleration curve in the signal builder.
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7.4.1.2	 For 60% State of Charge

This case meets the SOC limit of the BMS and shows desired results for 
the vehicle parameters. The battery power is positive (17.44 kW) as the 
SOC level is adequate, the battery acts as a source and supplies power to 
the electric motor. This case meets the SOC limit of the BMS and shows 
desired results for the vehicle parameters. The battery power is positive 
(17.44 kW) as the SOC level is adequate, the battery acts as a source and 
supplies power to the electric motor. The vehicle attains a higher speed 
(80.74 kmph) compared to the 30% SOC case as both the electric motor 
and ICE will contribute in powering the wheels. The percentage share of 
motor torque is increased, having electric motor torque as 224.9 N.m and 
ICE torque as 99.89 N.m. The final SOC value is recorded as 55.77% which 
is less than the initial SOC value as the battery is supplying power to the 
electric motor. Figure 7.5 shows the simulation results for this case.

7.4.1.3	 For 90% State of Charge

This case also has the enough initial SOC value as per the BMS limits. 
All the vehicle parameters showed the same results as in the case of 60% 
SOC which perfectly matched the expectations as there should not be any 
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variation if the SOC value is adequate as per the BMS. The only parameter 
which was changed is the final SOC value at the end of simulation time 
which is recorded as 87.18%. Table 7.1 shows the summarized simulation 
results for the acceleration drive cycle.

7.5	 Cruising Drive Cycle

In this cycle the vehicle is in a constant cruising mode at 80% of throttle. The 
initial vehicle speed is made to be 0 kmph. The simulation time is kept as 16 s 
and the constant 0.8 is given as input in the signal builder block of Simulink. 
Figure 7.6 shows the input signal given to the signal builder for this drive 
cycle. This drive cycle showed similar results as that acceleration drive cycle 
but with improved magnitude of the parameters under study as in this drive 
cycle vehicle will be accelerating constantly at a higher acceleration value. 
Simulation results for this drive cycle have been summarized in the Table 7.2.

7.6	 Deceleration Drive Cycle

In this cycle, the vehicle is given with a short duration (5 s) cruising at 80% 
throttle so that a certain positive speed is attained and for the next 25 s the 
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vehicle is provided with a deceleration from 80% to −80% (ramp profile) 
so that deceleration can be studied. The initial vehicle speed is made to be 
0 kmph. The simulation time is kept as 30 s. Figure 7.7 shows the input 
signal given to the signal builder for this drive cycle. Each of the cases has 
been discussed in the sections below.

7.6.1	 For 30% State of Charge

For SOC value below the BMS level (30%) the performance of the 
model vehicle is again not par the normal conditions. The battery power 
shows a negative value (−21 kW) same as that of earlier drive cycles, as 
the SOC is below the BMS limit so it cannot power the wheels instead 
it acts as a load. The vehicle attains the maximum speed of 64.46 kmph 
at 16.32 s, as at this instant the vehicle acceleration changes its sign 
from positive to negative. The final speed is recorded as −28.43 kmph 
at the end of simulation time. The speed is negative because the vehicle 
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Figure 7.6  Cruising curve in the signal builder.

Time (sec)

Th
ro

tt
le

1

–1

0.5

–0.5

0

0 5 10 15

Deceleration Curve

20 25 30

Figure 7.7  Deceleration curve in the signal builder.



Analysis of PMSM-Based HEV Simulation Model  135

Ta
bl

e 
7.

2 
C

om
pa

rit
iv

e 
ev

al
ua

tio
n 

fo
r c

ru
isi

ng
 d

riv
e 

cy
cl

e.

SO
C

 (i
n 

%
)

H
yb

ri
d 

m
od

e 
(O

N
 st

at
e 

in
 s)

Ba
tte

ry
 

po
w

er
 

(k
W

)

Ve
hi

cl
e 

sp
ee

d 
(k

m
ph

)

Ba
tte

ry
-

m
ot

or
 

to
rq

ue
 

(N
•m

)
IC

E 
to

rq
ue

 
(N

•m
)

Fi
na

l S
O

C
 %

Ve
hi

cl
e 

po
w

er
 

(k
W

)

30
0.

05
–1

6
−2

1
65

.8
1

99
86

.3
3

31
.9

9
45

.8
9

60
0.

92
7–

16
18

.8
11

7.
5

16
8.

3
10

8.
8

50
.8

6
56

.9
8

90
0.

92
7–

16
18

.8
11

7.
5

16
8.

3
10

8.
8

83
.9

2
56

.9
8



136  AI Techniques for Electric and Hybrid Electric Vehicles

decelerates. There is equal percentage sharing of torque magnitude 
between the electric motor and IC Engine but the electric motor offers 
a negative torque (−186.3 N·m) due to the regenerative action of the 
electric motor, its magnitude is almost the same as that of ICE torque 
(186.8 N·m). The final SOC is recorded as 37.58% which is greater than 
the final SOC value achieved in other drive cycles this is due to the 
regenerative action of the electric motor. Figure 7.8 shows the simula-
tion results for this case.

7.6.2	 For 60% State of Charge

This case meets the SOC limit of the BMS, but the battery shows a negative 
value (−21 kW) which is due to the regenerative action of electric motor 
similar to the earlier cases and the battery gets charged (acts as load). The 
vehicle attains a maximum speed of 101.9 kmph at 16.32 s, as at this instant 
the vehicle acceleration changes its sign from positive to negative, similar 
to the earlier case. The final speed is recorded as 46.47 kmph at the end of 
simulation time. This speed is positive because the vehicle has the sufficient 
SOC so that it can power the electric motor helping the vehicle attain a 
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very high speed until 16.32 s and then it needs more time to come to rest. 
The net torque is −118.7 N.m which is purely due to the electric motor. 
The final SOC is recorded as 57.71% which is greater than the final SOC 
value achieved in other drive cycles of this SOC value (60%), due to the 
regenerative action of the electric motor. Figure 7.9 shows the simulation 
results for this case.

7.6.3	 For 90% State of Charge

This case also has enough initial SOC value as per the BMS limits. All 
the vehicle parameters showed the same results as in the case of 60% 
SOC as there should not be any variation if the SOC value is adequate 
as per the BMS. The only parameter which was changed is the final 
SOC value at the end of simulation time which is recorded as 88.86%. 
Table 7.3 shows the summarized simulation results for the cruising 
drive cycle.

The percentage share of torque between the ICE and the electric motor 
can be summarized in the Table 7.4, for each drive cycle which clearly 
shows that electric motor dominates ICE torque.
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7.7	 Analysis of Battery Types
Batteries are very complex electrochemical systems and their detailed 
review is beyond the scope of this work. In the present study, authors have 
presented a summarized comparison of battery types depending on their 
sizing and cost parameters.

Two parameters viz. gravimetric energy density (GED) and volumetric 
energy density (VED) are used to analyze the battery sizing. These can be 
given by the equations below:

	
Gravimetric energy density Wh

kg
Energy Wh

    



 =

( )
WWeight kg( ) 	

(7.4)

	
Volumetric energy density Wh

lit
Energy Wh
Volu

    ( ) =
( )

mme lit( ) 	
(7.5)

For the price-based comparison, price energy density has been taken into 
account for each battery type. This is given by the equation given below:

	
Pr

Pr
ice energy density Wh Energy Wh

ice
    n n( ) =

( )
( ) 	

(7.6)

Table 7.4  Torque sharing.

Drive cycle SOC (in %)
Battery-motor 

torque (in %) ICE torque (in %)
Acceleration 30 55.247 44.57

60 69.24 30.75
90 69.24 30.75

Cruising 30 53.41 46.58
60 60.73 39.26
90 60.73 39.26

Deceleration 30 50 50
60 100 0
90 100 0
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The necessary data for calculating these parameters have been referred 
from the website amazon.com. Table 7.5 shows a numerical tabulation of 
these parameters.

On the basis of these parameters it is evident that the Li Ion battery is the 
most compact and has highest energy density among the 3 batteries. The 
Lead Acid battery has the maximum size for the same rated energy den-
sity. Nickel Metal Hydride has intermediate compactness but has almost 
thrice the energy density of the Lead Acid battery. From the cost parameter 
row in Table 7.5 it can be deduced that One rupee produces 0.05083 Wh 
of energy by Lead Acid Battery which is the cheapest among all. Ni–MH 
appears to be the most expensive battery type with one rupee producing 
0.00979 Wh of energy.

7.8	 Conclusion

In this chapter authors have presented a side-by-side comparison of differ-
ent drive cycles viz. Acceleration, Cruising and Deceleration for multiple 
SOC values. Different driving topologies are considered for PMSM-based 
HEV model. Also, three different battery types are considered for the 
HEV model and are compared based on their sizing and cost parame-
ters to present the most optimal battery type for the proposed model. 
Comparative evaluation indicates that the system performs better when 
adequate amount of SOC is available to the system; all the parameters 
have shown better responses.

Based on the gravimetric and volumetric analysis of the battery types 
for the sizing comparison, the Li-ion battery offers maximum energy den-
sity for the same battery rating and hence is the most compact battery type 
considered for the comparison. The cost analysis of the battery portrays 
that the lead acid battery offers highest energy making it the most econom-
ical battery type considered. Considering both the sizing and cost param-
eters simultaneously and also the current trends in decreasing price of 
Li-ion battery, the most optimal battery is undoubtedly the Li-ion battery 

Table 7.5  Optimal battery type.
Parameter Energy density Lead acid Ni-MH Li-ion
Size Wh/Kg 32.69 98 209.3

Wh/lit 91.6 391.48 541.14
Cost Wh/₹ 0.05083 0.00979 0.01950
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for the HEV model considered. However, there are certain safety issues like 
battery leakage, overcharge, etc. which have to be taken care of seriously 
while using the Li-ion battery.

References

	 1.	 Wang, G., Yang, P., Zhang, J., Fuzzy optimal control and simulation of 
battery-ultracapacitor dual-energy source storage system for pure electric 
vehicle. 2010 Int. Conf. Intell. Control Inf. Process., pp. 555–560, 2010.

	 2.	 Plug-in, O.B., Charge-depleting control strategies and fuel hybrid electric 
vehicles. IEEE Trans. Veh. Technol., 60, 4, 1516–1525, 2011.

	 3.	 Wang, Y., Optimal control of the transient emissions and the fuel efficiency 
of a diesel hybrid electric vehicle. P. I. Mech. Eng. D., 227, 11, 1546–1561, 
2013.

	 4.	 Zhang, H., Zhang, Y., Yin, C., Hardware-in-the-Loop Simulation of Robust 
Mode Transition Control for a Series – Parallel Hybrid Electric Vehicle. 65, 
3, 1059–1069, 2016.

	 5.	 Yang, Z., Shang, F., Member, S., Brown, I.P., Comparative study of interior 
permanent magnet, induction, and switched reluctance motor drives for EV 
and HEV applications. IEEE Trans. Transp. Electrif., 1, 3, 245–254, 2015.

	 6.	 Wang, H. and Leng, J., Summary on development of permanent magnet syn-
chronous motor. 2018 Chinese Control Decis. Conf., pp. 689–693, 2018.

	 7.	 Camara, M.B., Gualous, H., Gustin, F., Berthon, A., Design and New Control 
of DC/DC Converters to Share Energy Between Supercapacitors and 
Batteries in Hybrid Vehicles. 57, 5, 2721–2735, 2008.

	 8.	 Qi, W., Yu-kun, S., Yong-hong, H., Study on the experiment of ultracapacitor 
in HES for HEV. 26th Chinese Control Decis. Conf. (2014 CCDC), pp. 4707–
4710, 2014.

	 9.	 Lukic, Srdjan M., Sanjaka G. Wirasingha, Fernando Rodriguez, Jian Cao, and 
Ali Emadi, Power management of an ultracapacitor/battery hybrid energy 
storage system in an HEV. in: 2006 IEEE Vehicle Power and Propulsion 
Conference, pp. 1–6, IEEE, 2006.

	 10.	 Chen, Keyu, Walter Lhomme, Alain Bouscayrol, and Alain Berthon, 
Comparison of two series-parallel hybrid electric vehicles focusing on 
control structures and operation modes. in: 2009 IEEE Vehicle Power and 
Propulsion Conference, pp. 1308–1315, IEEE, 2009.

	 11.	 De Sousa, L., Silvestre, B., Bouchez, B., A combined multiphase electric drive 
and fast battery charger for Electric Vehicles. in: 2010 IEEE Vehicle Power 
and Propulsion Conference, Lille, pp. 1–6, 2010.

	 12.	 Chau, K.T. and Chan, C.C., Emerging energy-efficient technologies for 
hybrid electric vehicles. in: Proc. IEEE, vol. 95, no. 4, pp. 821–835, April 2007.

	 13.	 Ehsani, Mehrdad, Yimin Gao, and John M. Miller., Hybrid electric vehicles: 
Architecture and motor drives. Proceedings of the IEEE, 95.4, 719–728, 2007.



142  AI Techniques for Electric and Hybrid Electric Vehicles

	 14.	 Lukic, S.M. and Member, S., Topological Overview of Hybrid Electric and 
Fuel Cell Vehicular Power System Architectures and Configurations. vol. 54, 
no. 3, pp. 763–770, 2005.

	 15.	 Zia, A. and Member, I., A comprehensive overview on the architecture of 
Hybrid Electric Vehicles (HEV). 2016 19th Int. Multi-Topic Conf., pp. 1–7.

	 16.	 Hoeijmakers, M.J. and Ferreira, J.A., The Electric Variable Transmission, 
IEEE, 42, 4, 1092–1100, 2006.

	 17.	 Hermance, D. and Shoichi, S., Hybrid electric vehicles take to the streets, 
IEEE spectrum 35, no. 11, 48–52, 1998.

	 18.	 Sasaki, S., Toyota's newly developed hybrid powertrain. in: Proceedings of 
the 10th International Symposium on Power Semiconductor Devices and ICs. 
ISPSD'98 (IEEE Cat. No. 98CH36212), pp. 17–22, IEEE, 1998.



143

Chitra A, P. Sanjeevikumar, Jens Bo Holm-Nielsen and S. Himavathi (eds.) Artificial Intelligent 
Techniques for Electric and Hybrid Electric Vehicles, (143–164) © 2020 Scrivener Publishing LLC

8

Modified Firefly-Based Maximum Power 
Point Tracking Algorithm for PV Systems 

Under Partial Shading Conditions
Chitra, A.1*, Yogitha, G.1, Karthik Sivaramakrishnan1, Razia Sultana, W.1  

and Sanjeevikumar, P.2

1School of Electrical Engineering, Vellore Institute of Technology, Vellore, India
2Department of Energy Technology, Aalborg University, Denmark

Abstract
On handling partial shading conditions the power obtained at the output from the 
PV modules decreases drastically and the P–V characteristics of the photovoltaic 
modules is non-linear with multiple peaks including several local peaks and giving 
a single global peak. In such condition, it is challenging to track exact global max-
imum power point (GMPP). Conventional MPPT methods like Perturbation and 
Observe, Incremental conductance, Hill-climbing, etc. often lose to track GMPP as 
they often get confused with local peak and global peak resulting in extracting less 
power from PV modules. This paper presents modified firefly algorithm which is 
nature inspired implemented to track the GMPP. Its tracking efficiency is compared 
with the original firefly and also incremental conductance algorithm. The simu-
lated results shows that the proposed algorithm can track high power, has better 
tracking quickness, and has effectively faster convergence time. The proposed mod-
ified firefly algorithm is fed to a DC–DC converter and the results are simulated.

Keywords:  Evolutionary algorithm, partial shading, MPPT, firefly algorithm, GMPP

8.1	 Introduction

Energy plays a noticeable part in the economic development and is import-
ant for the economy of a nation and even to the society. Future improvement 
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and economic development relies upon the long-term accessibility of 
energy from the sources that are accessible, non-polluting, affordable, 
secure and non-destructive [1]. At present, non-renewable energy sources 
are the significant energy provider worldwide. Fossil fuels discharge nitro-
gen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (NO), sulphur 
dioxide (SO2), and other different gases which when burnt create adverse 
impacts on the widely varied flora and fauna exists in the planet. The harm-
ful impacts incorporate, however not restricted to, green-house effect and 
air pollution. These days, the utilization of sustainable energy sources 
could diminish the greenhouse emissions and gives positive effect to the 
world. Among all renewable energy sources, solar photovoltaic standout 
among the most vital sustainable energy sources in view of the long-term 
benefits, free maintenance and ecological friendliness. Nonetheless, the 
low energy conversion efficiency and high initial cost of photovoltaic mod-
ule have been perceived as the significant prevention in its far spread 
acknowledgment. Tremendous measure of works have been done to 
increase the solar energy performance. With enhancing the most extreme 
power point tracking (MPPT) capacity, the solar system efficiencies can be 
created. It is one among the most conservative ways that can be possible. 
The primary challenge in the MPPT is the profoundly nonlinear character-
istics curves of PV source which changes in like manner to the environ-
mental impacts like temperature and solar irradiation. Since the V–I 
characteristics changes continuously, the maximum power point on P–V 
characteristics curve is not consistent, cause issues in the tracking execution. 
During partial shading conditions, where PV array receives a non-uniform 
solar irradiation, the maximum power-point tracking procedure turn out 
to be more complicated. The impact of partial shading is the PV curve 
complexity which gives various peaks and it is hard to track the real and 
exact true MPP. The MPPT procedures can be classified into two kinds 
which are conventional techniques and soft computing techniques. For the 
first type, the conventional or traditional techniques which incorporates 
hill-climbing (HC), P&O, fractional short-circuit and open-circuit voltage, 
incremental conductance (InCon). While for the second sort depends on 
soft computing technique which comprises of artificial neural network 
(ANN). Fuzzy logic controller (FLC) and evolutionary algorithm (EA). 
The conventional method is most generally utilized because of their advan-
tages and simplicity in implementation. Conventional strategies can give 
great dynamic and steady-state performance under general conditions. 
However, they ordinarily show high oscillation around the operating point 
and unfit to track MPP under fast changing solar irradiance. Moreover, 
none of the conventional systems have ability to manage partial shading 
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conditions (PSC). This is a result of the ineptitude of the conventional 
strategies to differentiate local and global peaks. In [2] and [3], the authors 
recommend that the P&O calculation is a standout among the most gener-
ally utilized algorithms in solar energy systems. Reference [3] calls atten-
tion to that the customary P&O algorithm neglects to track changing MPP 
amid changing irradiance and temperature conditions. Authors of [4] 
depict in detail the confinements of P&O algorithm in consistent ecologi-
cal conditions and recommend a two-advance P&O strategy to expand the 
productivity of the regular algorithm. Reference [5] states that the primary 
utilization of P&O technique for MPP tracking was in the 1970s for avia-
tion applications and states that the irritation period ought to be lower 
than the system settling time. The algorithm suffers from two major disad-
vantages. Determination of the ideal perturbation value is difficult. One 
should carefully perform the trade-off between speed of algorithm and 
accuracy to determine the perturbation value. A very small perturbation 
value slows down the algorithm, while a large perturbation value leads to 
higher oscillations around the MPP. In addition, when the irradiation and/
or cell temperature vary, the error in P&O algorithm is more. The incre-
mental conductance algorithm is more qualified than P&O for varying 
environment conditions. Nonetheless, the execution is comparatively 
complex. Moreover, the ΔV can be utilized to increasing the MPP tracking, 
however a high value of ΔV will make the system away around the MPP, 
which is not worthy. Executing the incremental conductance requires the 
current and the voltage output values from the panel. Along this, it requires 
one current sensor and current sensor. This algorithm is normally actual-
ized utilizing a microcontroller or a DSP. The authors exhibit the issues 
identified with ordinary P&O and InCon calculations and propose a  
variable-advance InCon technique for exact MPP tracking. They call the 
strategy as powerful self-optimization. Researches communicated their 
inventive by proposing soft computing techniques based on global search  
algorithm to discover global maxima amid shaded conditions. Among soft 
computing techniques ANN and FLC ended up proving their better 
dynamic and steady state execution than conventional techniques. These 
two strategies are hard to accomplish optimized design. FLC requires a 
specialist learning while ANN needs a lot of training information. To con-
quer these constraints, Evolutionary algorithm is the best method to man-
age the MPPT issue since it work in view of set of points rather than single 
point utilized as a part of conventional search and optimization strategies. 
Recently, a few EA techniques have been recommended, for example, the 
most prevalent ones among are particle swarm optimization (PSO), differ-
ential development (DE), Genetic Algorithm (GA). Among the EA methods, 
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PSO is exceedingly potential because of its simpler structure, fast compu-
tation capability and easy implementation. In [6], the writers actualize the 
PSO algorithm for PV system under the partial shading conditions. The 
working of the MPPT has been obviously clarified. The standard PSO has 
additionally been changed to meet the practical contemplations. The writ-
ers pass on that the MPPT effectiveness is higher than 99.9%, simple usage 
and better convergence. In [7], the authors audit the PSO technique with 
reference to solar PV. The writers say that the PSO algorithm is incredible 
and non-resistive since they don’t require any subordinate estimations. In 
[8], the author utilizes PSO to decide the exhibit volt-age and afterward 
track the MPP in an independent PV framework. The effectiveness of fol-
lowing is seen in [9] to be over 98% with a union time of 14 ms. The writers 
have utilized PSO with the capacity of direct duty ratio to track the MPP of 
system so as to wipe out the PI controller which is utilized to control the 
duty cycle. The outcomes demonstrate that the proposed strategy has bet-
ter execution when compared and the customary hill climbing algorithms. 
The authors of [10] suggest ant colony based search in the underlying 
phases of tracking took after by P&O technique. The proposed strategy, the 
local search capacity of P&O and global search capacity of ACO are both 
coordinated. This yields better performance, faster convergence and effi-
ciency. The [11] presents the ACO based control technique to tune the PI 
controller for tracking MPP. The ACO is optimized utilizing fractional 
open-circuit voltage (FOC) technique to quickly and precisely track the 
MPP. In this paper, the performance of the system with conventional and 
evolutionary algorithm under PSC is com-pared. A meta-heuristic algo-
rithm known as firefly algorithm is implemented and the modification is 
done for the firefly algorithm for tracking quickness, performance, track-
ing efficiency is improved in comparison with existing firefly algorithm 
and conventional incremental algorithm.

8.2	 System Block Diagram Specifications

The proposed system consists of a solar PV panel as a source. It is con-
nected to DC–DC boost converter with resistive load. The pulses to the 
boost converter are sent through a MPPT controller. System performance 
under partial shading conditions is tested with three different MPPT algo-
rithms namely incremental conductance, firefly algorithm and modified 
firefly algorithm. The system block diagram in shown in the Figure 8.1.

Solar panel is the main source of the system. A solar PV array of two 
panels is connected in series. The solar panel used is developed through 
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Simulink blocks present in MATLAB library and the panel specifications 
are taken from KC200GT solar panel data sheet. So two solar panels of a 
rating of 200 W are connected in series and the performance of the system 
only under PSC is considered and whether solar PV is operating at global 
peak and not at local peaks under PSC is observed. The solar specifications 
are mentioned in Table 8.1.

Boost converter is used to step-up the voltage at the load end. Here boost 
converter is used to connect with the load. The boost converter parameters L 
and C are designed using design specifications which are described in detail 
in Boost Converter Design section. Main objective of the work is to observe 
the modified firefly algorithm to get maximum power from the solar panel.

The MPPT block is used to extract the maximum power from the solar 
panel. Usually MPPT strategies are divided into 2 types conventional and evo-
lutionary. The most commonly employed MPPT strategies are P&O, incre-
mental conductance, hill-climbing, etc. all these conventional algorithms 

DC-DC
Boost

converter

SOLAR
PANEL

Firefly
MPPT

Algorithm

PWM
controller

Load

pulsesDuty
cycle

Figure 8.1  System block diagram.

Table 8.1  Solar specifications.

Specification Value

Imp 7.61 A

Vmp 26.3 V

Isc 8.21 A

Voc 32.9 V

Ns 54

Pmax 200.143 W
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failed to extract maximum power under PSC as they often get confuse at 
local peak and global peak. This problem is sorted by employing evolutional 
algorithm taken from natural phenomenon. Some of the commonly used 
evolutionary algorithms are practical swarm optimization-PSO, artificial 
neural network, genetic algorithm-GA, Ant colony optimization-ACO, etc.

8.3	 Photovoltaic System Modeling

A Photovoltaic cell is considered as foundation stone of the solar panel. 
Many such Photovoltaic cells are grouped to form PV modules and there-
after PV arrays are formed by arranging PV modules in parallel and series 
connection. These PV arrays are usually used in PV generation system to 
generate electricity. A single diode structure of a Photovoltaic cell is mod-
elled by using a current source, two resistors and a diode [12, 13]. The 
equivalent circuit of a single-diode photovoltaic cell is shown in Figure 8.2.

It consists of shunting resistance (Rs), series resistance (Rsh), the cell 
photo-current is represented by the current source Iph and a diode. Mostly, 
the value of Rs is so small whereas Rsh is very large, thus they are ignored 
to abridge the analysis. Generally based on the knowledge of semiconduc-
tors the main equation is mathematically derived and the V–I characteris-
tic equation of the ideal Photovoltaic cell is given as

	
I I I qv

akTPV  cell o cell= −






−








, , exp 1

	
(8.1)

Equation (8.1) stated above about the fundamental photovoltaic cell does 
not show the I–V characteristics of Photovoltaic array. The cells connected 

Ipv
D Rsh

RsId Ish
I

Figure 8.2  Equivalent circuit of single-diode model.
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in series will provide high voltage at the output whereas the parallel con-
nected cells increases the current at the output. In practical applications 
the arrays consists of numerous PV cells connected and its features at the 
endpoints of the Photovoltaic array involves the accumulation of the other 
parameters added to main equation as is given as

	
I I I v R I

v a
v R I

Rsc o
s

t

s

p
= − +



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−



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


 − +exp 1

	

(8.2)

The cell used in practical areas has a stronger influence of series resis-
tance Rs when the cell is operated in voltage source region and has a stron-
ger influence of shunted resistance Rp when it is operated in current source 
region. The prediction Isc ≈ Ipv is usually made during the modeling of 
solar PV cell because the parallel resistance Rp is high and serial resistance 
Rs is low in practical devices. The equation of diode saturation current is 
stated as
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(8.3)
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(8.4)

The saturation current Io depends on temperature so that according 
to practical temperature/voltage coefficient the temperature net effect is 
directly proportional of open-circuit voltage. Equation (8.3) shortens 
the complexity involved in the algorithm by eliminating the model error 
which is present near the open-circuit voltages, and thereby also at the 
many places on the I–V curve. The PV cell characteristics are the combi-
nation of the diode and current source. The diode I–V characteristics are 
derived separately and current source I–V characteristics are determined 
in separate fashion. In this case the diode and current source are circuited 
in parallel, hence by summing both the currents the characteristics of PV 
array are achieved. Figures 8.3 and 8.4 represent the P–V and I–V curves 
of a Photovoltaic cell.

It is inferred that the Photovoltaic cell functions as constant voltage 
source for the corresponding operating current at low values and as con-
stant current source for the corresponding operating voltages at low values.
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8.4	 Boost Converter Design

A DC–DC converter is one of the most important components of an inde-
pendent Photovoltaic system. The voltage level of PV panels will be con-
tinuously varied because of the place of the operating point through which 
the direct supply of the DC PV power to electric load may be inappropri-
ate. Usually, in a MPPT system the DC–DC converter is utilized to convert 
varying input power to a regulated power along with the desired level of 
voltage. Switch-mode DC–DC converters are presently most popular as 
they possess the advantages of high compatibility and small volume-size 
in comparison with other existing DC–DC converters. The main process 
of the DC–DC boost converter is to increase the voltage of the given DC 
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power in the input. The circuitry of the boost converter is shown in the 
following Figure 8.5.

Diode will be in reverse bias condition when during on state of the 
switch. The input voltage will be the cause for the inductor current to 
increase linearly. In this considered case the output will be isolated and 
capacitor will discharge to supply the load. And when the switch is in 
off condition, diode will be in forward bias i.e. diode is conducting. At 
this time the load will get supply from the inductor and the input volt-
age source. The inductor current waveform during the conduction is given 
below as we can see that the inductor current is continuous. During the 
steady state conduction of the converter. Duty ratio is given by Equation 
(8.5). The following equations calculate the operation of the inductor and 
capacitor in continuous conduction mode.

	
D V

V
d= −1
0 	

(8.5)

	
L V D

I f
d

L S
=

2 	
(8.6)

	
C I D

V fS
= 0

0 	
(8.7)

From Equation (8.5), we can see that the output voltage is increasing, as 
the switch’s duty cycle is increasing. Also if any change occurs in the duty 
cycle of the switch there will be changes in the current at the input and 
output of the above stated converter.

L
O
A
D

L
D

S CVd vo

Id Io

Figure 8.5  Boost converter.
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8.5	 Incremental Conductance Algorithm

This MPPT technique abides the principle that the slope of the P–V char-
acteristic is positive when the MPP is greater than the real power. When 
the MPP is lesser than real power the slope of PV curve is negative, and the 
slope is zero when the real power is same as the MPP. In other words, this 
strategy utilizes the V–I curve slope to track MPP. Consider the maximum 
power (PMPP) and power output (P) equations.

	 PMPP = VMPP *IMPP	 (8.8)

	 P = V *I	 (8.9)

Differentiate with respect to voltage,

	

dP
dV

I V dI
dV

= +




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  *
	

(8.10)

The differential of the power have to be equated to zero for the power to 
be maximum. In other words, this implies,

	
    I V dI

dV
+ ∗


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(8.11)

Which is approximated as,

	





I I
V

MPP

MPP  V
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(8.12)

By evaluating Equation (8.12), the MPP is tracked. The conditions to 
track MPP are as explained by Equations (8.13) to (8.15),
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(8.15)

The incremental conductance algorithm flowchart is stated below in the 
Figure 8.6.

8.6	 Under Partial Shading Conditions

In this condition, the shaded cell in the series connection will block the 
current from passing through it. To get away with this circumstance a 
bypass diode is circuited across the cells to make flow the current from the 
un-shaded cells. Because of this link of bypass diodes there will be multiple 
peaks formation in I–V and P–V graphs. The above modeled system is now 
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YES

Figure 8.6  Incremental conductance algorithm flowchart.
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simulated with the three different solar irradiation levels and the charac-
teristic curves of current, voltage and power are observed. In this report, 
two different shading patterns are considered for the clear understanding 
and also for analyzing the behavior of the PV system under different shad-
ing conditions. The two different shading patterns are: 1. For 1,000 and 800 
w/m2 irradiation level; 2. For 800 and 600 w/m2 irradiation level. The char-
acteristic curves of I–V and P–V for the two considered shading patterns 
with multiple peaks are represented in the Figures 8.7 and 8.8.

8.7	 Firefly Algorithm

The firefly algorithm, is relatively unique and evolutionary algorithm pro-
posed by Yang in 2008 [14–16]. FA is a bio-inspired stochastic optimiza-
tion technique based on swarm behavior and the population of fireflies 
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Figure 8.7  P–V characteristics under shading pattern 1.
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[17]. It is a meta-heuristic algorithm developed for the optimization of 
problems from the flashing nature and the movement of fireflies. The fire-
flies uses their fundamental flashes in order to draw attention of the prey 
towards them and also to find their coupling partners. The FA mainly con-
sists of two elements which are brightness and attraction degree. The firefly 
movement, direction and step size are determined by the brightness which 
is reflected from the location. Once the updating of attraction degree and 
brightness of fireflies is completed all the fireflies will move towards the 
brightest firefly in order to achieve optimization goal. In the case of expan-
sion problem, the firefly illumination will be always linear to the objective 
function value. The following three assumptions are made to simplify the 
implementation of firefly logic. Firstly, all the fireflies are of same gender 
so that each one can be get fascinated to the other firefly irrespective of 
their gender. Secondly, the relative brightness between the two fireflies is 
directly proportional to the degree of attractiveness which can be defined 
by calculating the relative distance between them. The firefly with the less 
brightness will move towards the firefly with more brightness until all 
the fireflies in the colony are compared except for itself. The firefly move 
randomly when there is no brighter one in that colony. Lastly the light 
intensity or brightness of a firefly is completely dependent on the value of 
objective function. Mathematically, the FA algorithm can be expressed by 
the following equations. Let i, j be the two fireflies which are located at the 
positions Xi and Xj, respectively and are separated by the distance rij. The 
distance between the two fireflies is formulated as

	
r X Xij ik jk

K

d

= −
=

∑( )2

1 	
(8.16)

Where Xik and Xjk are the ith and jth firefly’s spatial coordinates of kth 
component and d is the number of dimensions. For maximum power point 
applications the number of dimensions is considered as one. Thus, the dis-
tance between two fireflies is simplified as

	 rij = ||Xi – Xj||	 (8.17)

is the attraction degree which can be determined using the distance rij and 
is formulated by

	 β β γ( ) * exp( * )r rij
m= −0 	 (8.18)
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In the above mentioned equation, γ is the parameter which is related 
to the variations of light intensity and is named as absorption coefficient 
which has its range [0–10] and m is a integer and is chosen as 2 [18]. β0 is 
initial attractiveness at which is taken as 1. Thus, the brighter firefly defi-
nitely decides the other fireflies’ position in its particular neighbourhood 
[19]. For the case, if the brightness of jth is greater than the ith firefly, the 
position of firefly i is updated by the new position formula which is men-
tioned as below

	
X X r X X randi i ij j i= + − − + −







β α0
2 1

2
* exp( )* ( ) *γ

	
(8.19)

Where α is random movement value which has range of [0, 1] and it 
is a constant value throughout the execution of the program. For every 
single movement of firefly rand is a diffused random number which lies 
between 0 and 1. Equation (8.19) clearly depicts that the firefly movement 
is affected by the randomization and the brightness or attractiveness of 
a brighter firefly. This randomization concept affords a very good way to 
move in search of global scale by moving away from local search. In gen-
eral, the large value of α helps in facilitating the firefly globally while the 
small value tends to local search [20].

8.8	 Implementation Procedure

The boost converter poses as a platform between the load and the 
Photovotaic system. The firefly algorithm controls the operation of the 
DC–DC converter and directs it to work at its optimum duty cycle which 
corresponds to the MPP. The implementation steps of firefly algorithm 
towards MPPT undergo setting of parameter, firefly initialization, eval-
uation of brightness, updating firefly position, checking for termination 
criteria and reinitiating. All the mentioned steps are discussed in detail in 
the following steps:

Step 1: Setting of Parameters: Initialize the constant parameters of the 
firefly algorithm, namely γ, α, m, β0 number of fireflies N i.e. population 
size of fireflies in the colony, maximum iterations count which is the ter-
mination criteria of the algorithm. Duty cycle for the DC–DC converter is 
taken as the position of firefly. The obtained power from the Photovoltaic 
module is considered as the bright-ness of every firefly with respect to 
location of the firefly.
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Step 2: Firefly Initialization: All the fireflies are located in the permit-
ted space having upper boundary and lower boundary limitations. Here, 
the boundary limitations represent Dmax and Dmin which are the two 
extreme values of duty cycle of the converter. Dmax is set to 98% whereas 
Dmin in set to 20% in this work. Thus, it is cleared that the duty ratio is 
represented by the position of the firefly. The population size of fireflies is 
considered as 6 based on the general analysis that, if the number of fireflies 
increases it automatically results in the increased computing time, whereas 
the less population size of fireflies will be resulting in local maximum.

Step 3: Evaluation of Brightness: In this step, depending upon the fire-
fly position, the boost converter is operated and the Photovoltaic module’s 
power obtained at the ouput is considered as respective firefly’s light intensity 
or brightness corresponding to each duty ratio. For the entire population of 
fireflies this step is repeated and the brightness of each firefly is generated.

Step 4: Updating Firefly Position: The firefly possessing higher or maxi-
mum brightness will remain in its respective position while the other fire-
flies with less brightness will update their position accordingly. The new 
position of the firefly is calculated with the help of position formula which 
is mentioned in Equation (8.19).

Step 5: Checking for Termination Criteria: The optimization algorithm 
continues to execute upto the last iteration as mentioned in step 1 and the 
program is terminated once the termination criteria is reached. If this is 
not the case, it will go to step 3 and again the loop gets executed. The algo-
rithm is terminated if all the fireflies’ displacement value in successive steps 
achieves set lowest value. The boost converter works at optimum duty ratio 
parallel to the global maximum point once the firefly algorithm gets termi-
nated. The flowchart of the algorithm is stated in Figure 8.9.

8.9	 Modified Firefly Logic

With reference to the position formula as mentioned previously in 
Equation (8.19) in which α represents random value of distribution. The 
position equation represents three major terms which the movements of 
fireflies consist, they are, current location of firefly i, the locomotion of 
firefly i towards the other brighter firefly and the random movement of it 
which persists the period between [0, 1]. T. Niknam introduced modified 
firefly algorithm for the elucidating of the economic dispatch problems. 
It can be seen that there are two major parameters that has to be tuned to 
outperform the firefly algorithm in tracking efficiency and speed of MPP. 
The stated modified fire-fly algorithm decreases the randomness of all the 
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Figure 8.9  Firefly algorithm flowchart.
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fireflies by the help of utilizing α which is said to be the randomization 
parameter. In modified firefly algorithm process, the random parameter α 
will be updated for every iteration and the change of iterations is achieved 
by implementing a simple modification to α (randomization parameter). 
For each iteration, α is decremented by 0.0001. The tracking efficiency of 
the MPP will be increased by the MFA. By this way when compared to last 
iteration the firefly will move much faster for every next iteration. This 
modification improves the convergence rate than that of standard firefly 
algorithm with the same accuracy and effectiveness of tracking the MPP.

8.10	 Results and Discussions

For shading pattern 1: Figure 8.10 represents the power obtained at output, 
current and voltage from the solar panel with irradiation pattern of 1,000 
and 800 w/m2 for incremental conductance (a), Firefly (b) and Modified 
firefly algorithm (c). It can be inferred that with modified firefly algorithm 
maximum power of 330 W, firefly algorithm is able to trail 326 W from the 
total power of 335.5 W, whereas conventional algorithm (i.e. Incon) is able 
to extract 310 W of power only. It can be inferred that with modified firefly 
algorithm maximum voltage of 51.1 V, firefly algorithm is able to track 
50.2 V. Whereas conventional algorithm (i.e. Incon) is able to extract 47.9 V. 
It can be inferred that with modified firefly algorithm maximum current of 

po
w

er
vo

lta
ge

cu
rr

en
t

cu
rr

en
t

cu
rr

en
t

vo
lta

ge

vo
lta

ge

po
w

er

po
w

er

300

200

100 0

0.01 0.02 0.020.0150.005 0.01

0.020.0150.005 0.01

0.020.0150.005 0.01

0.02 0.0250.0150.005 0.01

0.02 0.0250.0150.005 0.01

0.02 0.0250.0150.005 0.01

0.03 0.04

0.01 0.02 0.03 0.04

0.01

Offset=0 Offset=0 Offset=0Time
(a) (b) (c)

Time Time
0.02 0.03 0.04

300

200

100

60

40

20

0

60

40

20

0

60

40

20

10 10

8

6
4

10

8

6
4

5

0

0

0

300

200

100

Figure 8.10  Output graphs for (a) Incremental Conductance, (b) Firefly algorithm and 
(c) Modified firefly algorithm for shading pattern 1.



160  AI Techniques for Electric and Hybrid Electric Vehicles

6.47 A, firefly algorithm is able to track 6.49 A, whereas conventional algo-
rithm (i.e. Incon) is able to extract 6.48 A. For shading pattern 2: Figure 
8.11 represents the power obtained at output, current and voltage from the 
solar panel with irradiation pattern of 800 and 600 w/m2 for incremental 
conductance (a), Firefly (b) and Modified firefly algorithm (c). It can be 
inferred that with modified firefly algorithm maximum power of 255 W, 
firefly algorithm is able to track 254 W from the total power of 268.5 W, 
whereas conventional algorithm (i.e. Incon) is able to extract 247 W of 
power only. It can be inferred that with modified firefly algorithm maxi-
mum voltage of 51.30 V, firefly algorithm is able to track 51.10 V. Whereas 
conventional algorithm (i.e. Incon) is able to extract 49.59 V. It can be 
inferred that with modified firefly algorithm maximum current of 4.97 A, 
firefly algorithm is able to track 4.97 A, whereas conventional algorithm 
(i.e. Incon) is able to extract 4.98 A. Table 8.2 shows the comparative results 
between incremental conductions, firefly and modified firefly algorithms. 
From these outcomes it can be inferred that the tracking efficiency of the 
modified firefly algorithm is high with 98.36% and 96.847% for the both 
shading patterns when compared to conventional and firefly algorithm.

With the better tracking speed of 6.4 ms for shading pattern 1 and 
1.8 ms for shading pattern 2. From the obtained results we can see that the 
modified firefly algorithm had higher efficiency and less tracking speed 
and also maximum power can be utilized from the solar panel.

po
w

er
vo

lta
ge

cu
rr

en
t

po
w

er
vo

lta
ge

cu
rr

en
t

po
w

er
vo

lta
ge

cu
rr

en
t

Time
(a) (b) (c)

Time Time

200

100

0

0 0.02 0.04 0.06 0.08 0.1

0

8

6

4

8

10

6
4

2

8

10

6

4

0.02 0.04 0.06 0.08 0.1

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

0 0.02 0.04 0.06 0.08 0.1

0 0.02 0.04 0.06 0.08 0.1 0

0

0.02 0.04 0.06 0.08 0.1

200
250

200

150

50

100100

0

60

40

20

0

60

40

20

0

60

40

20

0

Figure 8.11  Output graphs for (a) Incremental Conductance, (b) Firefly algorithm and 
(c) Modified firefly algorithm for shading pattern.



Firefly Algorithm for PV Systems  161

Ta
bl

e 
8.

2 
C

om
pa

ra
tiv

e 
st

ud
y 

of
 a

lg
or

ith
m

s.

Sh
ad

in
g 

pa
tte

rn
M

PP
T 

Te
ch

ni
qu

es
Po

w
er

 
(w

at
ts

)
Vo

lta
ge

 
(v

ol
ts

)
C

ur
re

nt
 

(a
m

pe
re

s)

M
ax

im
um

 
Po

w
er

 
(w

at
ts

)
Tr

ac
ki

ng
 

Effi
ci

en
cy

 (%
)

Tr
ac

ki
ng

 
sp

ee
d 

(m
s)

1
In

cr
em

en
ta

l
31

0.
6

47
.9

6.
48

33
5.

5
92

.5
78

15

FA
32

6
50

.2
6.

49
97

.1
68

8.
7

M
FA

33
0

51
.1

6.
47

98
.3

60
6.

4

2
In

cr
em

en
ta

l
24

7
49

.5
9

4.
98

26
8.

5
93

.8
01

1.
2

FA
25

4
51

.1
0

4.
97

96
.4

67
3.

2

M
FA

25
5

51
.3

0
4.

97
96

.8
47

1.
8



162  AI Techniques for Electric and Hybrid Electric Vehicles

8.11	 Conclusion

The simulation of MPPT strategy with MFA for PV system is implemented 
with the help of MATLAB/Simulink and the performance analysis of the 
system is presented. Our concept is to update parameter for each looping 
step only then to achieve quicker convergence which increases the tracking 
speed and tracking efficiency. Due to the significance of Photovoltaic sys-
tems specifically in the area of renewable energy sources, this paper presents 
an efficient method for tracking Maximum Power Point for photo-voltaic 
array using Modified Firefly Algorithm. A better performance is exhib-
ited by the proposed Modified Firefly Algorithm to track MPP even when 
shading conditions are partial. The performance comparison between 
incremental conductance, Firefly algorithm and Modified firefly algorithm 
are tabulated. The proposed algorithm was tested with varying irradiance 
and temperature conditions in order to simulate the results. Obtained sim-
ulated results show that the MFA can accurately track MPP and has supe-
rior tracking quickness. The stated algorithm decreases the fluctuations of 
the Firefly Algorithm in steady state condition.
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Abstract
Due to less consumption of energy and environmental pollution, electric vehicles 
(EV) have obtaining attention from everywhere the world especially in automo-
bile industry. Nowadays, Induction motor drives are the most appropriate drive 
for automobile industries to realize the most effective performance. For vari-
able speed applications of Industrial Drives, Induction motors are widely used. 
The drives used for electric vehicle applications conventionally fed by the volt-
age source inverter. The two speed control schemes for the induction motor are 
scalar control and vector control schemes. In ancient time, the motors used for 
electric vehicle applications is DC motor drives. Implementation of vector con-
trol scheme enhanced the performance of electric drives especially it gives a high 
performance in the drive system. In view of response time and efficiency, scalar 
control scheme is inferior to modern Vector control schemes, but it requires lesser 
hardware resources and thus reducing the cost. The decoupling of flux and torque 
producing component gives high performance in the drive system. The stator cur-
rent components are decoupled and can control separately. This paper discuss on 
investigating the closed loop system of voltage source inverter (VSI) fed Induction 
Motor Drive with scalar method and Vector method has been analyzed and com-
pared. A Sine Pulse Width Modulation (SPWM) technique is used to control the 
switching action in the drive system. Two decoupled components is controlled by 
PI controller included in this closed loop system. MATLAB/Simulink has been 
used to simulate and validate the results. Comparative evaluation of two control 
schemes have been plotted and analyzed. 
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Keywords:  Electric vehicle, induction motor, voltage source inverter, scalar 
control, field-oriented control, sine PWM, D–Q axes

9.1	 Introduction

Conventional automobiles currently in use causes sound pollution, air 
pollution, global warming and also it causes a rapid decrement of earth’s 
natural resources. Much research work is carrying out in the area of auto-
mobiles to reduce the pollution caused by conventional vehicles. The major 
challenge of this research is to keep high efficiency and safety in automo-
biles. As per the latest inventions electric vehicles can overcome the major-
ity of the drawback by the conventional vehicles. 

The ease of construction and availability of induction motor makes 
these motors utilize in many of the applications. The domestic appliance is 
mainly designed to operate at constant speed. So majority of home appli-
ances use induction motors as the workhorse. The selection of motor in 
an electric vehicle has great importance in its overall performance. It is 
not advisable for some applications to be in a variable speed environment 
which affects the total system performance. The best suitable motor for 
electric vehicle is induction motor because of its easy availability and con-
trol. For an electric vehicle the exact speed control is not necessary because 
of the inertia offered by the mechanical system. So the main aim is that the 
motor speed has to be maintained in a fixed reference value. The initial 
transient response has to be improved by the help of controllers and has to 
achieve a fast response system.

An inverter converts DC input into AC output of required magnitude and 
frequency. The output from the inverter can be fixed or variable magnitude/
variable frequency. The output obtaining from the inverter purely depends 
on the switching action performing by the circuit inside the inverter. The 
switch inside an inverter is controlled by the pulses applied from various 
pulse generating sources, it is generally accomplished by pulse width mod-
ulation (PWM) techniques [17]. There are different types PWMs available, 
depends on the requirement and most suitable PWMs using for the pro-
duction of output from the inverter by controlling the switching action. For 
better results from the inverter it is always advised to reduce the switching 
losses or harmonics by the switches. The output voltage expected from the 
inverter is a pure sinusoidal waveform. For large power applications a sinu-
soidal waveform will give good performance and for medium/low power 
applications square waveforms also acceptable. Figure 9.1 shows a basic 
diagram for a single phase inverter with four switches. There are mainly 
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two types of inverters: (1) voltage source inverter and (2) current source 
inverter [4]. 

In voltage source inverter, the signal produce on the output side func-
tions as a voltage source. Similarly, in current source inverter output signal 
functions as a current source. Voltage source inverter is the most com-
monly used type inverter. 

9.2	 Control Schemes of IM

Speed of induction motor can be controlled in different ways [2, 3]. The 
speed control methods employed are (1) Scalar control and (2) Vector con-
trol [7–9].

9.2.1	 Scalar Control

In a scalar control method [1], only magnitudes can be controlled. 
Induction motor is fed by inverter which is driven by PWM signals. To 
get a constant torque operation over the working range v/f ratio should 
be maintained constant. In scalar control method [18], follows an open 
loop control method so it has less cost compared to any other closed loop 
system method because of its simplified structure and design. No feedback 
path makes the practical implementation is easy compared to closed loop 

Gate Pulses

DC input

S3

S1 S2

S4

Output

Figure 9.1  Basic diagram of VSI.



168  AI Techniques for Electric and Hybrid Electric Vehicles

system. Figure 9.2 shows scalar control depends only on magnitude of con-
trol variable, and does not depend on the coupling effect of machine. The 
torque and flux are control by the magnitude of frequency/slip and magni-
tude of voltage respectively.

9.3	 Vector Control

Vector control method is also known as flux oriented control [6] or 
field oriented control. Vector control is mainly designed for control of 
machines. The main objective of vector control method is decoupling of 
flux and torque. High performance induction motor drive can be achieved 
by the vector control method [18]. In induction motor, the stator current is 
the vector sum of torque producing component and flux producing com-
ponent. In this method, the stator current is decoupled into torque com-
ponent (ids) and flux component (iqs) so each can control individually. A 
reference frame has to be chosen for different space vector variables. As 
supply frequency is constant, space variables are moving in the same angu-
lar velocity. Both torque and flux components are to be known as orthog-
onal to each other.

In FOC (Field Oriented Control), the input three axis vectors are con-
verted into two components (d & q). The flux producing stator current 
component represents by “d” component and the torque producing stator 
current component represents by “q” component. The input current vec-
tors converts into two dimensional vectors by the theory of Clarke–Park 

Wref

Speed Control Slip Regulator

Lookup table

VSI

IM

+

+

Figure 9.2  Block diagram of Inverter fed IM with scalar control.
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transformation. The torque and flux can be independently controlled by PI 
controllers. By using inverse Clarke–Park transformation, it is transformed 
back into three dimensional vectors.

Vector control can be implemented by two ways (Figure 9.3) [5, 13]: 
(1) Direct Field Oriented Control (DFOC) and (2) Indirect Field Oriented 
Control (IFOC) [10, 15, 16]. In Direct Field Oriented Control, the flux vec-
tor position is directly measured by sensor. Use of different sensors makes 
the system more costly. A special provision has to maintain for proper 
placement of sensor makes the system more expensive. In Indirect Field 
Oriented Control (IFOC), the flux vector position is calculated not directly 
as like DFOC. In IFOC, it is derived from the simple mathematical expres-
sions. From the mathematical modeling of induction motor can calculate 
the rotor flux position. IFOC technique has more accuracy than other 
methods. But calculation of rotor flux position from the model of induc-
tion motor makes the system more parameter-sensitive and complex. In 
IFOC, decoupling of torque component and flux component makes both 
work as individually and can control individually. 

9.4	 Modeling of Induction Machine

One of the types of induction motor is widely used for the applications in 
industries. Due to less cost most of the ac machine applications are satisfied 
by the usage of induction machines. The mathematical modeling has been 

M
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slip and
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Current and Voltage
Rotor
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Flux
reference

Torque
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Input Voltage

+

Figure 9.3  Vector control scheme.
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used to analyze the induction machines. Different mathematical model 
can adopt based on the requirement. A rotating magnetic field is devel-
oped inside the induction motor due to the flow of stator current through 
the stator windings. The rotating magnetic field in the air gap is the spatial 
combination of fields. The modeling of induction motor is categorized in 
two parts one represents stator parameters and the second one represents 
rotor parameters. Each part modeled uses two separate frames. The model 
is developed by synchronously rotating reference frame. Figures 9.4 and 
9.5 show the equivalent circuit of induction machine in two axis frames. 
The two frames are linked with the angle .

The transformation leads to: 
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In dq axis frame it can be rewritten as:
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	 iqd0s = Ksiabcs	  (9.5)
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The following equations have been derived from the equivalent circuit 
shown in the Figures 9.4 and 9.5. So from the equivalent circuit,

	
V R i d

dtds s ds ds d qs= + −λ ω λ
	

(9.8)
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(9.10)
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Where Vds & Vqs represents the stator voltage in dq axes and Vdr and Vdr 
represents the rotor voltages in dq axes. 

The linkage of flux can be shown mathematically below:
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Where,
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Ids & Iqs represents the stator current in dq axes, Idr & Iqr represents the 
rotor current in dq axes.

Ls, Lr and Lm are stator inductance, rotor inductance and mutual induc-
tance between stator and rotor respectively. The mechanical part of the 
machine can be represented as by the following equations.
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The Electromagnetic torque is given as,
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Differentiating,
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Apply inverse Park transformation:
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Rearranging above equation results:
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From Equation (9.17) it can be derived the following relation in two 
axes frame:
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A mathematical model with constant coefficents has been obtained as 
shown above in Equation (9.18). The value of mutual inductance does not 
vary with rotor movement. 

9.5	 Controller Design

Controller is one of the main parts of a closed loop system. The control-
ler may include some algorithm or processor which generates control 
signal from the signal it receive from the sensors. The types of control-
lers include Proportional, Derivative, Integral, Proportional–Derivative, 
Proportional–Integral and Proportional–Integral–Derivative controllers. 
Each has its own characteristics. In this system the conventional controller 
(Proportional–Integral controller) is widely used in electric drive applica-
tion such as electric vehicles. Proportional–Integral controller improves 
the steady state response of a system.

The Proportional–Integral controller converts the speed input command 
into torque component. The current reference components as follows:

	

i L
pL

i L T d
dt

T
qs

r

m

em

r

ds
m

r
r

r

*
*

*

*
*

*

=

= +










λ
λ λ1

	

(9.20)

The current references were converted to the corresponding voltage ref-
erences by the following equations,
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Where,
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9.6	 Simulations and Results

The change of load torque and change of speed were simulated in the plat-
form of MATLAB/Simulink. Both scalar and vector control responses 
are compared. The vector-controlled induction motor drive was found to 
get responses very quickly. The initial transients are the result of applying 
full terminal voltage to the machine. Figures 9.6–9.9 show the torque and 
speed responses of scalar and vector controlled drives [11, 12].
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Figure 9.6  Torque Response of a scalar-controlled drive.
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9.7	 Conclusions

This paper discussed the comparison between scalar control and vec-
tor control methods of an induction motor drive [6]. Both scalar and 
vector control scheme have been simulated and analyzed in MATLAB/
Simulink. Torque and Speed waveforms of induction motor have been 
simulated by MATLAB/Simulink. Selection of controlling schemes of 
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Figure 9.8  Speed Response of a scalar-controlled drive.
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drive is based on the performance of the speed and torque character-
istics. The PI controller in the feedback path improves the dynamic 
response of the system. From the simulation it is observed that inverter 
fed induction motor drive [14, 16] with vector control scheme gives high 
performance compared to scalar control schemeand also the torque 
ripples were less in vector control scheme compared to scalar control 
scheme. Even though vector control includes complex calculations, it 
provides a smooth control over the electric vehicle compared to scalar 
control scheme.
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Abstract
As the green movement increases in popularity, more and more Electric Vehicles 
(EVs) of all kinds from electric bicycles, bikes, cars, buses to trains grace the mode 
of transportation. Energy management in these vehicles is highly sensitive for 
upcoming design of the EVs and advancement in cheap sensing and computation 
will be challenged to provide better efficiency systems that can be adapted to a 
wide variety of different types of batteries and vehicles with vastly diverse perfor-
mance requirements. Multi-battery systems that combine a standard battery with 
Ultracapacitors (UC) are currently one of the most promising ways to increase 
battery lifespan and reduce operating costs. However, their performance cru-
cially depends on how they are designed and operated. This performance implies 
improved battery thermal stability, efficiency, and endurance. In this chapter, the 
problem of optimizing real-time energy management of hybrid battery systems is 
discussed.

Keywords:  Intelligent battery management system, hybrid energy storage 
system, electric vehicle, lithium-ion battery, ultracapacitor

10.1	 Introduction

Electric vehicles, partially or fully powered by batteries, are one of the most 
promising directions towards a more sustainable transportation system. 
However, the high costs, limited capacities, and long recharge times of 
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batteries are the obstacles for their widespread adoption. EV battery packs 
are made up of multiple cell modules arranged in series and in parallel.

Since many researchers have proved that the characteristics of high 
energy and current density with long shelf life of lithium-ion batteries 
those are widely used in EVs [1]. Unluckily, lithium-ion batteries having 
less power density and it can be unsafe if they are not operated within 
their Safety Operation Area (SOA) [2]. Therefore, a Battery Management 
System (BMS) must be used in every lithium-ion battery, especially for 
those used in electric vehicles. Many lithium-ion combinations such as 
lithium ion phosphate, lithium manganese, and lithium-titanate are giv-
ing better performance with EVs. These are thermally stable and offer low 
Equivalent Series Resistance (ESR) to support high current and if managed 
properly it could last up to 10 to 15 years.

Although the rapid technology development of lithium ion battery 
increases the applications in EVs the main drawback of that causes the 
Supercapacitors (SC) which is known as Ultracapacitors (UC)/Electrical 
Double Layer Capacitor (EDLC) to fill the gap. The shortcomings of 
Lithium ion battery are overcome by the nature of high power density 
and high degree of recyclability of SCs. They have added advantages of 
low internal resistance, wide operating temperature window, and high 
efficiency, despite that they have relatively low energy density [3]. These 
conflicting characteristics of both lithium ion battery and SCs satis-
fying the requirements of EV when they are combined and operated  
as hybrid.

This chapter emphasizes on a complementary aspect of the problem that 
is optimizing the energy efficiency of batteries in electric vehicles. There 
are two main sources of inefficiencies in batteries.

•	 The first one is that due to internal resistance, battery energy 
is partially wasted as heat when it is charged and discharged.

•	 The second one is that due to Peukert’s Law, the actual deliv-
ered capacity of a battery depends on the rate at which it is 
discharged.

Furthermore, current battery technology imposes relatively severe lim-
its on the number of charge/recharge cycles a battery can handle, thus 
reducing their lifespan and increasing operating costs.

The combination of SCs and batteries i.e., a Hybrid Energy Storage 
System (HESS) has been intensively inspected by many researchers [4, 5]. 
To achieve a proper energy management between battery and SC sev-
eral online and offline intelligent control strategies are used. The more 
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innovative and active strategy is to optimize the power flow with intelligent 
algorithms. To afford real time energy management, the model predictive 
control strategy [6–9] is used which exhibit high speed computation capa-
bility and predict the future load conditions.

This chapter is organized in the following manner: Section 10.2 dictates 
the different energy storage technologies. Section 10.3 explains the Battery 
management system (BMS). Section 10.4 discusses the Intelligent techniques 
for BMS of HESS. Section 10.5 includes the conclusion and comparison.

10.2	 Energy Storage System (ESS)

The Energy Storage Systems are the chemical technology in which elec-
trical energy is stored and discharged when it is necessary into the circuit 
in which it is connected. The important criteria in the selection of proper 
energy storage systems based on application, size, lifetime, response time, 
capital, maintenance costs, energy density, specific energy, specific power, 
self-discharge and other important aspects. Figure 10.1 gives the details of 
different types of energy storage system.

For EVs Energy Storage System is the heart of the system, if ESS failed 
to operate the whole system would stop. The energy storage system usu-
ally consists of batteries and capacitors are necessary for PHEVs and EVs. 
Furthermore, in order to improve the power density and life cycle of the 

Electrical

Electro
chemical

Mechanical

Thermal

Capacitor
Super capacitor
Super conducting magnetic storage

Secondary Batteries eg: Li-ion, NaS, Lead acid
Flow batteries
Fuel cell

Pumped energy storage
Compressed Air storage
Flywheel

Molten salt storage
Adiabatic Caes

Figure 10.1  Types of energy storage system.
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battery, the SC has been proposed to hybridize with the battery to form hybrid 
energy storage system. Presently batteries have improved technologies based 
on the applications such as Lithium-ion, Nickel metal hydride, and Lead acid 
for EV applications. Table 10.1 states the different batteries for differerent EVs.

10.2.1	 Lithium-Ion Batteries

Lithium has many advantages like largest energy density per weight and 
very light metal with high electrochemical potential of all metals. Due to 
this property it has many applications in battery variants to store electrical 
energy in which the anode is the lithium ion. The main drawback of it is 
unstable during charging and discharging which needs some safety mea-
sures by properly designing the battery. 

The other major advantage of Li-ion battery is maintenance free which is the 
highlight when compared to other batteries. The self discharge rate of the Li-ion 
battery is very less compared to the other batteries like lead-acid and Ni-MH 
batteries. The other drawback of  it is brittle in nature when the temperature 
limits exceeds. To get the safe and efficient operation of the Li-ion the best 
design of the battery management system is necessary which limits the voltage 
peak, temperature, and helps to operate within the specified current limit.

Despite the advantages of lithium-ion batteries, they also have certain 
drawbacks. Lithium ions are brittle. To maintain the safe operation of these 
batteries, they require a protective device to be built into each pack. This 
device, also referred to as the battery management system (BMS), limits 
the peak voltage of each cell during charging and prevents the cell voltage 
from dropping below a threshold during discharging.

10.2.1.1	 Lithium Battery Challenges

Lithium-ion batteries are presently used in most transportable consumer 
electronics applications such as cell phones and laptops because of their 
higher energy density relative to other electrical energy storage systems. 
They also have a high power-to-weight ratio, high energy efficiency, good 
high-temperature performance, and low self-discharge. Most components 
of lithium-ion batteries can be recycled, but the cost of material recov-
ery remains a challenge for the industry. Most of PHEVs and EVs use 
lithium-ion batteries, though the exact chemistry often varies from that of 
consumer electronics batteries. Research and development is ongoing to 
reduce cost and extend their useful life cycle.

Lithium-ion cells give a usual operating potential of 4 V at full charge 
and 2 V at full discharge. To reduce the level of current, which allows for 



184  AI Techniques for Electric and Hybrid Electric Vehicles

lesser, lighter and less costly cables and motors, the EV battery pack is nor-
mally stacked as a group of 100 to 200 series-connected cells. Though the 
voltages are high, the peak charge and discharge currents of EV battery 
stacks can exceed 200 A.

Charging any Lithium-ion cell to 100% of its SOC or discharging to 0% 
SOC will disgrace its capacity. Therefore, only a portion of a cell’s capacity 
can be used if the battery must have a long life. With very accurate control 
of the SOC of each Li-Ion cell, battery pack capacity can be maximized 
while its degradation is minimized. However, controlling hundreds of 
series-connected cells is quite tricky. Table 10.2 lists the properties of dif-
ferent Li-ion variants. Table 10.3 states the advantages and disadvantages 
of Li-ion variants.

The variants of Lithium-ion:

•	 Lithium iron phosphate (LFP)
•	 Lithium manganite (LMO)
•	 Lithium cobalt oxide (LCO)
•	 lithium-polymer (LP)
•	 lithium nickel–manganese–cobalt (LNMC) Batteries
•	 lithium titanate (LiT)

10.2.2	  Lithium–Ion Cell Modeling

The ideal battery model provides the equal voltage at both input and out-
put without any voltage drop i.e without any energy loss. But practically 
it has some energy loss due to its internal resistances as mentioned in the 
following figure. The batteries are modelled in different methods those 

Table 10.2  Properties of various Li-ion batteries [18].

Type of 
battery

Energy 
density 
(Wh/kg)

Power 
density 
(W/kg)

Life cycle 
(100%DOD)

Estimated 
cost 
($/KWh)

Li-titanate 
oxide

70 1,000 ≥10,000 ~860

LFP 120 200 ≥2,500 ~360

LMO 160 200 ≥2,000 ~360

LNMC 200 200 ≥2,000 ~360

Li-sulfur 500 – ~100 –
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are Equivalent Circuit Model, Lumped-Parameter Model, and Electro-
chemical model. Among the  all three the Electro-chemical model is the 
most efficient  and most robust accurate model.

The electrical equivalent model has to be developed of any component 
to test and evaluate the real time performance of that. So to test the battery 
management algorithm and performance the Li-ion cell has to be mathe-
matically modelled. The real time battery performance depends on many 
factors like loading condition, age of the battery, the operating temperature 
and many such conditions. It is very tedious to run the battery in all these 
conditions to test the battery management system performance. So the 
model of the battery is necessary for testing its performance.

Based on the accurate model of the battery the measurement of the bat-
tery parameters like SOC (state of charge) and SOH (state of health) will 
be accurate, hence it should always provide high fidelity and robustness. A 
typical usage of electrical equivalent battery model is shown in Figure 10.2.

The ideal battery model provides the equal voltage at both input and 
output without any voltage drop i.e without any energy loss. But practi-
cally it has some energy loss due to its internal resistances as mentioned in 
the following figure. The batteries are modelled in different methods those 
are Equivalent Circuit Model, Lumped-Parameter Model, and Electro-
chemical model. Among the  all three the Electro-chemical model is the 
most efficient  and most robust accurate model.

10.2.3	 Nickel-Metal Hydride Batteries

Nickel-metal hydride batteries used routinely in computer and medical 
equipment, offer reasonable specific energy and specific power capabilities. 
Nickel-metal hydride batteries have a much longer life cycle than lead-acid 

Rs

Vb Cp

Rs

Ib

+

+

–

–

Figure 10.2  Li-ion cell equivalent circuit model.
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batteries and are safe and abuse tolerant. These batteries have been widely 
used in hybrid electric vehicles. The main challenges with nickel-metal 
hydride batteries are their high cost, high self-discharge and heat genera-
tion at high temperatures, and the need to control hydrogen loss.

10.2.4	 Lead-Acid Batteries

Lead-acid batteries can be designed to be high power and are inexpensive, 
safe, and reliable. However, low specific energy, poor cold-temperature 
performance, and short calendar and cycle life impede their use. Advanced 
high-power lead-acid batteries are being developed, but these batteries are 
only used in commercially available electric-drive vehicles for ancillary 
loads.

10.2.5	 Ultracapacitors (UC)

Ultracapacitors store energy in a polarized liquid between an electrode and 
an electrolyte. Energy storage capacity increases as the liquid’s surface area 
increases. UCs can provide vehicles additional power during acceleration 
and hill climbing and help recover braking energy. They may also be useful 
as secondary energy-storage devices in electric-drive vehicles because they 
help electrochemical batteries level load power.

The UC provides a higher specific power and lower specific energy than 
batteries. Its specific power ranges from few kilowatts per kilogram and its 
specific energy ranges from few watt-hour per kilogram. Since it is hav-
ing low specific energy density and the dependence of terminal voltage 
on SOC, it is not suitable to use UCs alone in energy storage system of 
HEVs and EVs. So the UCs are best fit for using as auxiliary power source 
in HESS. Due to the load leveling effect of the UC, the high current dis-
charging from the battery and the high current charging to the battery by 
regenerative braking are minimized so that available energy, endurance, 
and life of the battery can be significantly increased. Table 10.4 shows the 
merits and demerits of different models of UC.

10.2.5.1	 Ultracapacitor Equivalent Circuit

The performance of an ultracapacitor may be represented by its termi-
nal voltages during discharge and charge with different current rates. The 
equivalent circuit has three parameters in a capacitor: the capacitance itself 
(its electric potential VC), the series resistance RS, and the dielectric leakage 
resistance, RL, as shown in Figures 10.3 and 10.4.
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Figure 10.3  Block diagram representation of UC.

Table 10.4  Merits and demerits of different models of UC.

Models of UC Merits Demerits

Electrochemical 
models [3]

Description of inside 
physical-chemical 
reactions; High possible 
accuracy

Heavy computation 
Immeasurability of 
some parameters

Equivalent circuit 
models [3]

Moderate accuracy; 
Absence of physical 
meanings; susceptible to 
aging process, relatively 
easy implementation and 
model identification

Absence of physical 
meanings; 
susceptible to aging 
process

Intelligent models 
[3]

Good modeling capability; 
disclosure of the 
influencing factors to 
desirable model output

Sensitive to training 
data quality and 
quantity; poor 
robustness

Fractional-order 
models [3]

Better capability to fitting 
experimental data; few 
model parameters

Heavy computation
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The terminal voltage of the UC can be represented by the following 
equation,

	 Vc=[V_co-∫_0^t i/C e^(t/(CR_L" "  )) dt ] e^(-(t/(CR_L )) )

 The energy stored in an UC can be obtained through the energy needed 
to change it to a certain voltage level, that is 

	 E_C=1/2 CV_C^2

The usable energy in an UC can also be expressed in State of Energy 
(SOE), which is defined as the ratio of the energy in the UC at a voltage of 
VC to the energy at full charged voltage, VCR, as expressed as

	 SOE=[V_C/V_CR ]^2

10.2.6	 Other Battery Technologies

Due to the lack of raw material and less safety other than Lithium ion bat-
teries few battery technologies have been developed with different charac-
teristics and improvements to make it suitable for EVs. Table 10.5 shows 
some other battery technologies.

i

Rs

IL
Vt

ic

Vc
RL

–

+

Figure 10.4  Equivalent circuit of UC.
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10.3	 Battery Management System

An efficient BMS is one of the primary component in EVs to guarantee the 
safe, reliable, efficient and long lasting operation of a Li-ion battery while 
dealing with the electric grid and challenging driving conditions not only 
that it also gives the information on the battery State Of Charge (SOC), 
State of Life (SOL), and State of Health (SOH). The BMS can sense the bat-
tery voltage, battery current and battery temperature to avoid over charge 
and over discharge conditions.

The crucial task of BMS is to rapidly and accurately measure the bat-
tery voltage and SOC. The BMS should include as many features like 

Table 10.5  Other types of batteries under development.

S. no. Type of battery Advantages Disadvantages

1 Sodium ion battery 
(SIB): battery 
that uses sodium 
ions as charge 
carriers [19]

cheap and abundant, 
can be completely 
drained without 
damaging, better 
columbic efficiency, 
stored and shipped 
safely.

poor power density

2 Potassium ion 
battery (KIB): 
uses potassium 
ions for charge 
transfer instead 
of lithium ions 
[20]

the cell design is 
simple, both the 
material and 
the fabrication 
procedure are 
cheaper, abundance 
and low cost, can be 
charged faster.

poor power and 
energy density.

3 Solid state battery 
(2017 by John 
Goodenough): 
battery technology 
that uses both 
solid electrodes 
and solid 
electrolytes [21]

higher energy density, 
safe, tolerance to 
high temperature, 
allows fast charging

expensive to make, 
low temperature 
operation may  
be challenging, 
may break due 
to mechanical 
stress.
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interfacing the data acquisition system which incorporate measurement 
of temperature and battery current and controllers used to maintain the 
cell balance. Cell balancing is a critical function for high-powered battery 
packs because it is vital that the charge level of all cells does not stray out-
side the recommended SOC range. BMS serves as the brain behind the 
battery packs to manage the output, charging and discharging and provide 
notifications on the status of the battery pack. They also afford significant 
control to protect the batteries from damage.

A simple and cost-effective technique for cell balancing, commonly 
used in EV/HEV designs today, is active and passive-balancing. With 
passive-balancing, a resistor is placed across a cell when its state of charge 
exceeds that of its neighbors. It should be noted that in passive-balancing 
wastes energy and can generate considerable heat. In active balancing the 
storage elements are used.

A BMS is an embedded system that is built and designed for the follow-
ing purpose:

✓✓ Protects cells of battery from damage in abuse/failure cases.
✓✓ Prolongs life of battery.
✓✓ Maintains battery in a state in which it can fulfil its func-

tional design requirements.
✓✓ Informs the application controller how to make the best use 

of the pack right now (e.g. Power limits, control charger, etc.)
✓✓ Inform the user about the status of the battery (e.g. SOC, 

SOH)

10.3.1	 Need for BMS

The Lithium-ion batteries have proved to be the battery of interest for 
Electric Vehicle manufacturers because of its high charge density and 
low weight. Even though these batteries pack in a lot of punch for its size 
they are highly unstable in nature. It is very important that these batter-
ies should never be over charged or under discharge at any circumstance 
which brings in the need to monitor its voltage and current. This process 
gets a bit tougher since there are a lot of cells put together to form a battery 
pack in EV and every cell should be individually monitored for its safety 
and efficient operation which requires a special dedicated system called the 
Battery Management System. Also to get the maximum efficiency from a 
battery pack, we should completely charge and discharge all the cells at the 
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same time at the same voltage which again calls in for a BMS. Apart from 
this the BMS is held responsible for many other functions as,

✓✓ To reduce cost associated with battery—includes labor, 
maintenance, operation, and replacement costs.

✓✓ To increase lifetime of the battery.
✓✓ Proper thermal management
✓✓ Cell balancing
✓✓ To ensure that the energy of the battery is optimized to 

power the product.
✓✓ To monitor and control the charging and discharging pro-

cess of the battery.
✓✓ To provide the present status of the battery
✓✓ Battery voltage/current, SOC, SOH, insulation resistance, 

etc.
✓✓ To enhance safety and protection of the battery unit
✓✓ To analyze fault and provide alarm.

10.3.2	 BMS Components

The battery management system (BMS) is comprised of several com-
ponents, including monitoring components close to the battery cells 

Mechanical
Development

Software
Development

Testing

Hardware
Development

• Complete Product Development from Concept to Prototype
• CAD Modeling, Drafting,
• CAE FEM, FEA, Thermal Analysis
• CFD Cooling Analysis

• Software design/development/Maintenance
• Software FMEA, Code optimization
• Model based design & development
• Diagnostics UDS, OBDII, J1939

• Independent testing/validation
• Verification & Validation Unit Testing, Software Testing, System Testing
• Hardware Testing Module testing, environmental testing
• Test Automation

• Hardware & EMC design/development
• DFMEA, Hazard Analysis, Worst case circuit analysis
• Value engineering for combining PCBs, cost reduction in each board
• PSPICE simulation and verification for complex ci rcuits and transient
  immunity analysis
• Safety critical projects SIL, ISO26262

Figure 10.5  BMS components [22].
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themselves, one or more power-conversion stages dictated by the needs 
of the vehicle, and intelligent controllers or embedded processors placed 
at strategic locations in the architecture to manage various aspects of the 
power subsystem. Figure 10.5 shows the components of BMS.

The following diagram depicts the different operating states of electric 
vehicle.

ELECTRIC VEHICLE OPERATIONAL STATES

PRE-DRIVE DRIVE POST DRIVE

• HEALTH STATUS CHECK
• BATTERIES

• Cell voltages
• Pack voltage
• SOC & SOH
• Temperature

• CONTOLLERS
• Microcontrollers (BMS & Powertrain)
• Peripherals
• Last run error data

• LOAD THE LAST RUN DATA
• SOC & SOH
• Kilometers run

• ESTABLISH COMMUNICATION
• CAN between BMS & Powertrain

• RELAY OPERATION
• Pre charge Relay
• Main Relay

• INVERTER FED BLDC MOTOR
  CONTROL
• Accelerator Pedal: Speed control (CAN)
• Brake (GPIO)
• Handbrake (GPIO)
• Forward/Reverse Gear (GPIO)

• CURRENT LIMIT CONTROL
• Protection by cycle by cycle current limiting
• CONDITION MONITORING AND
  PROTECTION
• Cell voltages
• Pack voltage
• SOC & SOH
• DC link current & voltage
• Motor current
• Temperatures

• DISPLAY
• SOC, SOH, RANGE & SPEED

• REGENERATIVE BRAKING
• Charge the batteries

• STORE THE RUN DATA
• SOC & SOH
• Kilometers run
• STORE THE ERROR DATA
• Microcontrollers (BMS &
• Peripherals

10.3.3	 BMS Architecture/Topology

The BMS is broadly classified into three types as centralized, distrib-
uted, modular. The merits and demerits of these types are described in 
Table 10.6.

10.3.4	 SOC/SOH Determination

One feature of the BMS is to keep track of the state of charge (SOC) of the 
battery. The SOC could signal the user and control the charging and dis-
charging process. There are three methods of determining SOC: through 
direct measurement, through coulomb counting and through the combi-
nation of the two techniques.

To measure the SOC directly, one could simply use a voltmeter because 
the battery voltage decreases more or less linearly during the discharging 
cycle of the battery. In the coulomb-counting method, the current going 
into or coming out of a battery is integrated to produce the relative value of 
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its charge. This is similar to counting the currency going into and out of a 
bank account to determine the relative amount in the account.

In addition, the two methods could be combined. The voltmeter could be 
used to monitor the battery voltage and calibrate the SOC when the actual 
charge approaches either end. Meanwhile, the battery current could be inte-
grated to determine the relative charge going into and coming out of the battery.

The state of health (SOH) is a measurement that reflects the general condi-
tion of a battery and its ability to deliver the specified performance compared 
with a fresh battery. Any parameter such as cell impedance or conductance 
that changes significantly with age could be used to indicate the SOH of the 
cell. In practice, the SOH could be estimated from a single measurement of 
either the cell impedance or the cell conductance. Table 10.7 gives details of 
different SOC and SOH methods advantages and disadvantages.

10.3.5	 Cell Balancing Algorithms

Cell balancing is a method of compensating weaker cells by equalizing the 
charge on all cells in the chain to extend the overall battery life. In chains of 
multi-cell batteries, small differences between the cells due to production 
tolerances or operating conditions tend to be magnified with each charge- 
discharge cycle. During charging, weak cells may be overstressed and become 
even weaker until they eventually fail, causing the battery to fail prematurely.

To provide a dynamic solution to this problem while taking into account 
the age and operating conditions of the cells, the BMS may incorporate 
one of the three cell balancing schemes to equalize the cells and prevent 
individual cells from becoming overstressed: the active balancing scheme, 
the passive balancing scheme and the charge shunting scheme. Table 10.8 
depicts the different cell balancing techniques.

10.3.6	 Data Communication

The communications function of a BMS may be provided though a data 
link used to monitor performance, log data, provide diagnostics or set sys-
tem parameters. The function may also be provided by a communications 
channel carrying system control signals.

The choice of the communications protocol is not determined by the 
battery, it is determined by the application of the battery. The BMS used in 
electric vehicles must communicate with the upper vehicle controller and 
the motor controller to ensure the proper operation of the vehicle. There 
are two major protocols used by the BMS to communicate with the vehicle 
through the data bus or the controller area network (CAN) bus. 
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Data buses include the RS232 connection and EIA-485 (also called the 
RS485 connection). The industry standard for on-board vehicle communi-
cations is the CAN bus, which is more commonly used in vehicle applica-
tions proper operation of the vehicle.

10.3.7	 The Logic and Safety Control

The various logic and safety control are:

1.	 Power up/down control 
2.	 Charging and discharging control 
3.	 Temperature/fault control

10.3.7.1	 Power Up/Down Control

The control of power and voltage is one of the major factors for battery 
management. The following diagrams (Figure 10.6) depict the control of 
power and voltage constraints by using four relays that are named as posi-
tive relay, precharge relay, negative relay, and charger relay. As per the algo-
rithm shown in the following flowchart (Figure 10.7) the power up/down 
control executes.

This control mainly to meet the voltage and power constraints under 
any fault conditions.
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Figure 10.6  Power up/down control [26].
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10.3.7.2	 Charging and Discharging Control

Batteries are more frequently damaged by inappropriate charging than by 
any other cause. Therefore, charging control is an essential feature of the 
BMS. For lithium-ion batteries, a 2-stage charging method called the con-
stant current–constant voltage (CC–CV) charging method is used.

During the first charging stage (the constant current stage), the charger 
produces a constant current that increases the battery voltage. When the 
battery voltage reaches a constant value, and the battery becomes nearly 
full, it enters the constant voltage (CV) stage. At this stage, the charger 
maintains the constant voltage as the battery current decays exponentially 
until the battery finishes charging. The primary goal of a BMS is to keep the 
battery from operating out of its safety zone. The BMS must protect the cell 
from any eventuality during discharging. Otherwise, the cell could operate 
outside of its limitations.

10.4	 Intelligent Battery Management System

The control of BMS for the HESS can be done by using many intelligent 
techniques based on rules like Fuzzy, artificial intelligence like Artificial 
Neural Network, optimization techniques and traffic flow-based. Many algo-
rithms are implemented based on these four types only. Each algorithm has 
its own merits and demerits. The following figure (Figure 10.8) shows the 
categories of intelligent BMS for HESS.

The common configuration of Intelligent BMS for HESS is denoted as 
the following figure (Figure 10.9). The battery and the UC are connected 
through the converter which controls the power flow between battery, 
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Figure 10.7  Power up/down control algorithm [26].
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UC and load. The DC to DC converter may be either half-bridge topol-
ogy, isolated dual active bridge, isolated half bridge topology, isolated full 
bridge topology. But the control of charging, discharging and power flow 
to load is controlled by the controller which may be rule-based, AI-based 
or optimization-based.

INTELLIGENT BMS FOR HESS

RULE BASED
OPTIMISATION

BASED
ARTIFICIAL

INTELLIGENCE BASED
TRAFFIC BASED

(look ahead)

Deterministic
rule based

Fuzzy rule
based

Thermostat
control

Filter based
control

Conventional

Adaptive

Global
optimisation

Linear
programming

Dynamic
programming

Real time
optimisation

Equivalent
Consumption
Minimization

Strategy

Machine
Learning Based Statistics based GPS based Traffic flow

sensor based

SVM

Learning vector
Quantization

method

Monte Carlo
method

Supervised
learning-Neural

Network

Figure 10.8  Categories of Intelligent BMS for HESS [27].
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The main purpose of the energy management system is to manage the 
power from UC and battery according to the load power demand. Figure 
10.10 shows the power split condition for different power demand con-
dition. The UC act as the buffer device which supplies the power during 
the high power demand and during the lower power demand it stores the 
energy and during the negative power demand both battery and UC stores 
the energy. The main role of the UC power is to supply and absorb the rel-
atively fast charging condition of the load power. The power flow control 
can be done by using any of the intelligent method.

10.4.1	 Rule-Based Control

The rule based control is classified further as deterministic and Fuzzy 
based methods. Then the thermostat type is the typical deterministic 
method, which is designed based on if-then-else based. Designed the ther-
mostat type control in which a threshold is set [29], beyond which the 
excess power is supplied by the UC. By using the another criteria as split-
ting the SOC of the battery and the SOC of the UC into different levels 
and organizing in a 2D map then by combining the rules based on the 
power demand better control had been achieved. The other method called 
as filter-based method is considering the frequency spectrum of the load 
profile [30, 31]. The low pass filter or band pass filters can be used to filter 
out the lower frequency of the load frequency spectrum and the battery 
power get supplied for that for that base load. But these typical methods 
has many uncertainties because of the nonlinearity in the load condition.

To overcome the non-linearity of the typical methods the fuzzy logic 
based method [32] is introduced for managing the power demand. By con-
sidering the SOC of both battery and UC, and the desired load power as 
inputs the power split ratio is set and based on that the power is supplied 
from either from battery or UC. For the Fuzzy adaptive strategy weight is 
assigned for all parameters based on the relative importance of that. By 
using the weighted sum approach the optimal operating points for each 
components of the HESS can be obtained to neutralize the conflicting 
objectives [33, 34].

10.4.2	 Optimization-Based Control

The optimization-based control is divided into global optimization and real-
time optimization method. The global optimization requires the knowl-
edge of entire driving cycle and it is suitable only for the known routes. In 
this the linear programming uses many piecewise—linear approximations 
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to optimize the HESS and the overall power train efficiency. In Hu et al. 
[35] performed simultaneous optimal sizing and energy management via 
convex programming. The major drawback of this is the approximation 
formulation of the problem and so it is restricted to uncomplicated HESS. 
At last the genetic algorithm is the option to solve the complex non-lin-
ear optimization problem [36, 37]. The major drawback of this is more 
time for computation and its black-box nature made it very difficult for the 
researcher to track the process.

The Equivalent consumption minimization strategy is a better concept 
to strategize EVs. For HESS applications in EVs the main objective is to 
obtain the highest possible efficiency at all times. The HESS components 
battery, UC, and DC to DC converter efficiencies are mapped under both 
charging and discharging condition then the optimization starts search-
ing to get the optimized power split ratio value [38] implemented this fuel 
minimization problem by using the Pontryagin’s minimum principle with 
Hamiltonian system.

10.4.3	 AI-Based Control

The above mentioned rule-based and optimization methods focus on sup-
ply side of the plant. But the actual problem also depends on the load side. 
Thus, the conventional methods are not properly designed for uncertainties. 
The advanced computing techniques which is AI-based like [39, 40] super-
vised learning and machine learning are giving more efficient control by giving 
proper training to the data and generate the proper control output variables. 
Figure 10.11 is an example of NN control for 5 inputs single output.

For a large number of data to obtain the meaningful data, a statistical 
analysis is necessary. For this particular solution we need more data to ana-
lyze which leads to the statistical-based control methods. Liang et al. [41] 
introduced a technique called Support Vector Machine (SVM) by taking 

demand
current

Supply voltage

Output power

UC SOC

Battery
SOC

Hidden layer

output

Control
ratio

Figure 10.11  Model of 5 input single output neural network [42].
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18 input variables to obtain the four driving pattern categories. Another 
method called Learning vector quantization network was applied for driv-
ing pattern classification. Monte Carlo approach was used on the historical 
data to get the useful data of load consumption. The main drawback of the 
AI approach is the probability of loss of information due to application of 
binary classification.

10.4.4	 Traffic (Look Ahead Method)-Based Control

The above discussed methods are either present-based or past-based strat-
egies. When the computation linked with past data obviously the time for 
computation become high. So only from the PID controller the derivative 
control made the sense to back looking nature. The feedforward network 
makes a strong compensation into the system [43, 44] found that the real-
time GPS data processing is done to detect the presence and relative posi-
tions of the stop signs, any obstacles and traffic signals within the certain 
distance and the judgement can be drawn from this inferred solution.

10.5	 Conclusion

The detailed discussion on BMS from basics to intelligent techniques to 
manage the HESS states that the current scenario is in need of hybrid bat-
tery system to satisfy the requirement of non-linear load demand. The load 
demand and the battery life has to be managed properly by adopting the 
proper intelligent control techniques. The main constraint in the battery 
management is that thebattery should operate in its SOA and then the life 
of the battery would not get affected. The integration of battery and UC has 
many challenges and issues to properly meet the load demand. Currently 
the EVs are built with UC as the major source and the battery is the buffer 
source to meet the current scenario.
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Abstract
To suppress the discharge of greenhouse gasses and to address the environmental 
sustainability electric vehicles impart a crucial role in the latest energy-efficient 
environment. To face this challenge, electric vehicles which take part the energy 
conversion mechanism, should not only demand exact demand in performance 
and efficiency while also vibration, cost, etc. This chapter significantly reports a 
comprehensive solution for permanent magnet motors employed in recent electric 
vehicles. Eventually, permanent magnet motors are openly employed in electric 
vehicles technology due to the quick advancements in permanent magnet materi-
als and several advanced constructional requirements like high torque to volume 
ratio, large power density, lower excitation losses, lesser noise and vibration, etc. 
compared to an induction motor. Additionally, permanent magnet synchronous 
machines could be designed to employ over extensive torque-speed operating 
regions with improved torque density and power density. Moreover the drawbacks 
of this strategy are operating cost and obtainability of the rare earth magnet mate-
rials. Specifically the generation of acoustic as well as electromagnetic noise and 
the range of power factors may be the challenging issues in electric vehicle drive.
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11.1	 Introduction

Society and mankind have been promisingly aware regarding the destruc-
tion it is effecting to the atmosphere and the role of electric vehicles are 
distinguished to act as a vital role in retrieving the balance. Presently the 
green energy sources generate lowers than 10% of the energy utilized in the 
electric grid, since majority of the electrical energy utilized for charging 
electric vehicles shall be generated from burning fossil fuels, such as coal, 
gas and oil, at the various generating units [1]. The transformation in the 
global atmosphere is one of the major environmental concerns in pres-
ent day’s scenario. The only initiative to overcome this critical hazardous 
is to reduce the level of greenhouse gases. In many developing countries 
several measures have been adopted to maintain the emission of harm-
ful gasses such as carbon dioxide, carbon monoxide, nitrous oxides to a 
sustainable limit. With the advancement of IoT (the internet of Things) 
technology, electric vehicles can be promisingly established as an advanced 
type of mobile intelligent power consumption device. In a typical smart 
grid technology, electric vehicles can be used as energy storage protocol. 
Smart grid technology can provide intelligent monitoring and a wide area 
communicating the network with greater control on all aspects of opera-
tions [2, 3]. As a result charging system, monitoring system, billing sys-
tem, entire data collection technology of a typical electric vehicle can be 
transformed into a smart system. Hence, this robust and intelligent control 
technology using IoT tools can be incorporated in a solar-powered electric 
vehicle for enhancing the environmental sustainability and future demand 
in a smart city.

Artificial Intelligence was provided a fruitful opportunity and scope for 
electrical automation in recent days. With an introduction to AI, control of 
electric vehicles becomes sophisticated as well as smart control. Moreover 
monitoring of all activities such as infrastructure, charging system, com-
munication system, security system of an electric vehicle will be highly 
benefitted through the adoption in AI. AI Management is not complicated, 
so the objects design not required to be controlled by the AI feature approx-
imator [4]. Results can be improved rapidly by properly adjusting related 
parameters. For an example fuzzy adaptive controllers respond more 
quickly and the percentage overshoot can be minimized in a significant 
manner. In this manuscript, efficiency calculations at various torque-speed 
operating ranges are considered to justify the comparative assessment of 
such motor topologies for the hybrid as well as electric vehicles applica-
tions in a descriptive manner [5, 6].
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This article is organized as follows: Section 11.2 reports the proposed 
design considerations of PMSM for electric vehicle, Section 11.3 describes 
the comparative assessment of the motor topologies, Section 11.4 rep-
resents the electric vehicle smart infrastructure, and Section 11.5 con-
cludes the paper.

11.2	 Proposed Design Considerations of PMSM 
for Electric Vehicle

With the advancement of permanent magnet materials such as samarium 
cobalt, alnico, rare earth magnets, economic construction, better dynamic 
response, improved speed range, high torque to weight ratio PMSM motors 
are vastly employed in modern electric vehicles.

Here we are optimizing the 45/70 kW drive motor for the medium size 
electric vehicle of the future. This incorporates improvements in basic 
working mechanisms while more attentions need to incorporate in mate-
rial construction and construction technology. The technology of hybrid 
vehicles provides greater flexibility on the motor performance [7]. An 
electric vehicle establishes a discrete torque-speed characteristic with fixed 
power operation from reference speed to maximum speed. The current 
carrying capability by the stator and rotor winding will be lesser for overall 
shape of structure in operation. The most significant advancement pres-
ently for PMSM machines is the invention of the daido magnet tube in 
magnequench material. This magnetic material serves the advantage of the 
high-energy magnet and containment tube. The Surface mounted motors 
generally provide a containment sleeve to maintain the several millimeters 
of the air gap to the magnetic circuit [8]. The typical important specifica-
tions for the design of the magnetic circuit are weight and minimum core 
losses while lowering the slot leakage to reduce the winding inductance. 
The proposed design is assumed for the selection of high power drives. The 
rotor structure comprises of a steel sleeve where the magnets are mounted, 
and a containment band has been combined on the outside. Majority of 
industrial motors utilize samarium cobalt which has excellent mechanical 
properties. In general, alloys of magnesium oxide are in common use and 
the tendency to design rotors located on standard size blocks, 1 × 0.5 × 5.5 
in. thick. Vector control or field oriented control makes PMSM machine 
more sophisticated and flexibility for high-performance applications. A 
typical constructional requirement for the proposed PMSM machine has 
been represented in Figure 11.1. In this diagram the different parts of 
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PMSM i.e. stator, rotor, position of magnets along with different paths for 
flux distribution has been demonstrated. Some practical economic design 
considerations for the high-speed heavy electric vehicles driven by PMSM 
are depicted in Table 11.1. This proposed technical specification for the 
designing of PMSM for electrical vehicles can be used by the designer or 
manufacturer in automobile industries [9, 10]. In the literature, a com-
prehensive discussion is established between an induction motor, PMSM 
motor and a switched reluctance motor for electric vehicle applications. 
A fast finite element analysis has adopted for such analytical design of 
IM. Finally various kinds of analysis such as noise and vibration, harness, 
etc. have been done and a suitable comparative performance analysis is 
achieved. Few authors proposed a solid rotor topology for high-speed inte-
rior PMSM constructed with a semi magnetic stainless steel. The proposed 
methodology has been validated using dynamic structural, static struc-
tural finite element method to meet the feasibility of the present design 
method. Some authors described a computational method for the design 
of an interior PMSM applicable for the traction systems [11]. Additionally 
by the introduction of FEM based technique saves the CPU time drasti-
cally without interrupting such accuracies. Few authors have addressed on 
multi objective optimal design procedure of IPMSM for high-performance 
applications. In this section, Taguchi method has been introduced while 
incorporating five multi-objective functions for a V shaped PMSM rotor.

Recently with the advancement of technology, energy-efficient motors 
are extensively used in electric vehicles technology as they operate at high-
est efficiency at some specified operating regions. In case of energy-efficient 
motor some characteristics like the power factor, efficiency, effect of noise 
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Figure 11.1  Typical constructional features of PMSM machine. Source: Permanent 
Magnet Motor Technology (Jacek F. Gieras, M. wing).



Permanent Magnet Motor Drives for EVs  211

and vibration, temperature rise, dynamic behavior are the main consider-
ations while designing the machine [12]. Production of noise and vibration 
in electric vehicles possess several inconveniences for high-performance 
applications. Therefore, reduction of acoustic noise and vibration in PMSM 
has a major concern in recent electric vehicles. During the designing of 
electric vehicles some important factors such as lamination structure, 
materials used for lamination, elimination of cogging torque, winding con-
figuration, magnetic permeability, length of the air-gap, etc. are taken into 
consideration for such better performance of modern electric vehicles in 
an energy-efficient environment [13].

11.3	  Impact of Digital Controllers

With the rapid advancement of discrete control theory, modern power elec-
tronics and the concept of signal conditioning and data acquisition systems 
ensure such sophisticated control techniques in motor drive applications 
[14]. Thus, there is a provision of Man to machine Interface (MMI) in 
order to enhance reliability, accuracy, flexibility of the system performance 
as compared to analog control implementation. The marvelous natures of 

Table 11.1  Recent economic design of PMSM (35 KW is continuous rating, 
70 KW is short time rating). Source: Electric Motor Drives, R. Krishnan.

Power (3.5:1 CPSR) (kW) 45 70 70 70 150

Speed max 12000 10 000 13 500 20 000 20 000

Stator OD (mm) 218 200 220 200 225

Rotor OD (mm) 141 113 141 113 145

Active length (mm) 80.5 190 97 110 160

Overall length (mm) 141 260 157 170 230

Stator voltage (V) 150 360 460 360 460

Max efficiency 96% 96% 98% 96.5% 98.6%

Winding L (mH) 0.1 1.78 1.37 0.85 0.28

Winding R (mV) 9.6 66 116 38 13.4

Poles 16 8 8 8 8

Stator/rotor mass (kg) 19 40 21 24 44
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analog controllers are due to the great advantages it possesses. Some of the 
best-known facts of analog controllers are for the user to comprehend eas-
ily due to its multirole features, high bandwidth and high-resolution. Like 
every device, the analog devices also possess limitations such as sensitivity 
to noise and temperature change. Digital controllers eradicate certain draw-
backs of the analog controllers. However, to eradicate complete drawbacks, 
more advanced digital controllers such as the Digital signal processor and 
FPGA provide superior performance in industrial applications [15].

11.3.1	 DSP-Based Digital Controller

Digital signal processor (DSP) controller is a state of the art system 
which has multi-fold advantages such as high-speed mathematical core 
and memory. Due to the controller’s high pace and advantages, it is used 
to solve complex problems related to motor speed and servo control. 
Hence, due to the multi-fold advantages, the DSP controllers are able to 
produce high yields and better results [16]. Also, fixed point DSPs are 
preferred for motor control for most applications a dynamic range of 16 
bits is enough.

11.3.2	 FPGA-Based Digital Controller

FPGA is a state of the art controller which has multiple advantages such as 
it is fast pace in nature and the design cycle being extremely short. The gate 
array logic circuitry is followed in the FPGA controller [17]. FPGAs are 
slightly traditional in nature and follow more of the hardware connection 
in nature than software. FPGAs do not have an operating system for pro-
cessing logic and hence use hardware methodology for logic processing. 
Though the connection and logic processing is hardware based, FPGA is 
an efficient and reliable technology [18].

11.4	  Electric Vehicles Smart Infrastructure

With the rapid progress of Internet of Things (IoT) technology and the 
renewable energy integration electric vehicles play a significant role for 
the sustainable development in the environment [19]. The technology so 
called Self-Monitoring Analysis and Reporting Technology (Smart) has 
been an innovative interest in the industries as well in research institutions 
for such strong foundation and robust control. To meet the latest vision a 
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huge change in the power supply infrastructure and traffic systems need 
to be incorporated. In fact drivers are supposed to get the reliability that 
they will be able to conveniently recharge their vehicle wherever they are 
[20]. The required closely meshed network of charging stations will only 
be obtained at sustainable cost with very smart and cost-effective electric 
charging systems that can be installed anywhere [21, 22]. Electricity is 
available everywhere, so that electric mobility can configure on a sound 
infrastructural basis. The charging stations are only energized after a regis-
tered user has activated the charging function. Thus, there is no danger of 
live cables being exposed even when a smart charging station is destroyed 
or knocked over in an accident. The proposed charging station can also be 
installed to display additional information such as road map, tourist guid-
ance in nearby places, etc. [23, 24].

Recently SIEMENS Technology Solution has been proposed and 
designed smart technology based charging solution for a modern electric 
vehicle is shown in Figure 11.2. In Figure 11.3 a typical IoT based archi-
tecture for a smart electric vehicle has been represented [25]. Generally, 
the entire architecture comprises of several elements like different sensors 
(motion sensor, optical sensor, smart sensor), network having wireless 
connectivity for communication; cloud computing, data storage devices 
and some security as well as safety devices [26, 27].

 

Figure 11.2  Smart technology based charging solution for a modern electric vehicle. 
Source: SIEMENS Technology solution.
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11.5	 Conclusion

This paper significantly describes the comprehensive review of different 
technologies for the development of electric vehicles. To protect the envi-
ronment from the emission of greenhouse gasses and for the sustainable 
development, electric vehicles are the promising technology used in differ-
ent developed countries. This proposed design analysis and various topol-
ogies considered for the benefit of an energy-efficient electric vehicle can 
be considered in recent automobile industries as well as in various research 
organizations to meet the future goal. Various kinds of PMSM drives such 
as interior PMSM, surface mounted PMSM, surface inset PMSM, line start 
PMSM, hybrid PMSM are categorized depending upon the rotor configu-
ration and design methods. Interior PMSM machine takes the advantage 
of generating greater flux linkage, lesser armature current to attend the 
optimum torque. Surface mounted machines are generally not adopted 
for very high-speed propulsion applications. Moreover these machines 
possess quiet lesser mechanical robustness compared with surface inset 
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PMSM machines. On the other hand, interior PMSM is suited in high-
speed applications and construction is mechanically sound. Furthermore, 
a line start PMSM with a cage-winding was employed in constant speed 
application and they are quiet efficient in comparison with conventional 
induction motor drives. Additionally, Hybrid PMSM machines may be 
constructed depending upon the arrangement of permanent magnets and 
the nature of air-gap flux distribution in various applications. Therefore, 
the various topologies of PMSM drives and the related comparative dis-
cussions could be helpful for the readers in the area of electric vehicles and 
sustainable development. Furthermore, this comprehensive report demon-
strates such fruitful methodologies and associated advancements to meet 
with smart technologies. Applications of ICT-based IoT tools in electric 
vehicles would be an innovative and sophisticated technology in recent 
days in different smart cities for sustainable industrial developments. 
Comparison analysis involves performance, efficiency, and configuration. 
The outcome of the proposed study would be an extensive interest towards 
the researchers as well as professional engineers for the sustainable devel-
opment in the environment.
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Abstract
The accurate estimation of magnitude and angle of flux is vital for good perfor-
mance of Direct Flux/Field Oriented Control (DFOC) of Asynchronous Motor 
(AM)/Induction Motor (IM). For this control, accurate value of flux plays a major 
role. The current equations (CE) of the motor estimate flux with stator current 
and rotor speed as the inputs without the need of difficult stator voltage PWM 
voltage measurement. Hence CE can be comfortably used for flux estimation. But 
CE majorly depends on the rotor resistance (Rr) and varies during motor opera-
tion. This leads to significant error in the flux estimation. To address this prob-
lem, an intelligent approach namely neural network is employed. A novel Neural 
Network (NN) approach for flux estimation is proposed in this paper. The pro-
posed approach uses stator current and rotor speed as the inputs similar to CE. 
The proposed NN based estimator is shown to handle rotor resistance variation 
problem as compared to current model-based flux estimator through MATLAB 
simulation.

Keywords:  Flux estimator, current model, intelligent technique, neural network, 
induction motor, direct field oriented control
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12.1	 Introduction

For high performance requirements in industries, Field Oriented Control 
(FOC) approach for induction motor is employed [1]. The torque and 
flux component can be independently controlled similar to the separately 
excited conduction motor which results in better dynamic response. For 
effective and efficient control, knowledge of magnitude and angle of motor 
flux is highly important which depends on the motor flux. The voltage 
equations (VE) and current equations (CE) can be used to compute flux. 
The low speed problems namely integrator drift and stator resistance vari-
ation are the two vital problems in VE [2, 3]. The VE also need complex 
Pulse Width Modulated (PWM) stator voltage measurement. The current 
model is free from one major problem that is drift and noise problems and 
compute rotor fluxes with only stator current and rotor speed and avoids 
stator voltage measurement. Hence CE can be used to compute rotor fluxes. 
The CE depends on Rr which varies during motor operation majorly due to 
temperature change and variation can be go upto 100% [4–6]. This leads to 
significant error in the flux and in turn in flux angle and magnitude estima-
tion. This will affect the performance of the drive system. Numerous rotor 
resistance estimation methods in on-line are dealt in the literature [4, 5, 7, 
8] to compute the change in the Rr. These methods require separate rotor 
resistance estimator. Because of this, the complexity of the drive system is 
increased.

An alternate solution using NN can be used for flux estimation. It offers 
better robustness as compared to conventional estimators. It involves only 
the computation of algebraic equations and does not have integral equa-
tions as compared to current model equations. Many NN model trained 
using data is proposed in the literature. The single hidden-layer feed-forward 
back-propagation neural network (SHLFFBP-NN) is proposed for flux com-
putation [9]. The Multi-hidden layer feed-forward back-propagation neural 
network (MHLFFBP-NN) is proposed to estimate flux [10, 11]. The cascade 
forward back-propagation neural network (CFBP-NN) is used to com-
pute rotor flux. The architecture is shown to provide needed accuracy with 
reduced number of neurons with ease in design as compared to (FFBP-NN) 
[13–16]. The flux estimator designed using CFBP-NN is used for speed 
estimation in sensorless indirect FOC of IM [14, 16, 17]. The same neu-
ral model is used for flux angle and magnitude computation for DFOC 
of IM [18]. The inputs to the flux estimator are chosen as direct (d) and 
quadrature (q) axis stator voltages and currents and the outputs are kept 
as d and q axis rotor fluxes. It is stated in [9] that it is not easy to measure 
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high frequency stator PWM voltage of the motor. Hence, in this proposed 
paper, the same neural architecture is used to compute rotor fluxes. But the 
NN model is designed to compute rotor fluxes without the knowledge of 
motor stator voltage which is major novelty in this paper.

12.2	 Direct Field-Oriented Control of IM Drive

Figure 12.1 shows the schematic diagram for the DFOC. The motor speed is 
compared with reference speed. The speed error is given as input to the pro-
portional-integral (PI) controller. The PI controller gives torque command 
as the output. The reference torque producing component of stator current 
is computed with the help of torque command. Similarly, the reference flux 
producing component of stator current is generated. The actual torque pro-
ducing component is compared with reference torque producing compo-
nent. The error is processed through the PI controller and corresponding 
reference d-axis voltage is generated. Similarly, q-axis voltage is generated. 
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Figure 12.1  DFOC with flux estimator.
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The d and q-axis reference voltage are transformed to 3 phase reference volt-
age using the field angle (1). The 3 phase reference voltage is compared with 
triangular wave. The pulses are generated to trigger the 3 phase inverter. The 
drive receives the inputs from the inverter. It is observed that the accuracy of 
flux estimation is very important for good performance of DFOC.
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12.3	 Conventional Flux Estimator

The CE which is presented in Equations (12.3) and (12.4) can be employed 
to compute the d and q-axis rotor fluxes.
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Where,
ids

s
	 —Stationary frame d axis current

iqs
s

	 —Stationary frame q axis current
Ψdr

s 	—Stationary Frame d axis rotor flux
Ψqr

s 	—Stationary Frame q axis rotor flux
Rr	 —Rotor resistance
Lr	 —Rotor inductance
Lm	 —Magnetizing inductance
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The advantage of using CE is that the DFOC operation can be brought 
down to zero speed. It is free from drift and noise problem as compared 
to voltage model equations. From the equations, it is understood that CE 
require only stator side currents and rotor side speed as inputs for flux 
computation and the model is independent of stator voltage. However, 
note that the estimation accuracy is affected by the rotor resistance varia-
tion. If the rotor resistance value in the CE is not matched with the actual 
motor rotor resistance, the CE fails to compute correct value of the flux.

12.4	 Rotor Flux Estimator Using CFBP-NN

To overcome the drawback of CE, estimator is designed using neural net-
work. The flux estimator is modeled using 6 inputs with only stator cur-
rent and rotor speed without the stator voltage as inputs. This is shown in 
Figure 12.2. This avoids the requirement of stator voltage measurement. 
Generally, voltage measurement is not required for DFOC. Only current 
and speed measurement are unavoidable requirements for DFOC and will 
serve as the inputs to the NN based flux estimator also. This eliminates the 
measurement of complex high frequency PWM stator motor voltage. The 
MATLAB/SIMULINK tool is used to simulate DFOC. 11,244 data were 
collected for various operating conditions. A three phase 1.1KW, 415 V, 
50 Hz, 4 poles, 7.5 Nm IM is used for study. The detailed parameter is 
given in [6]. For hidden layers, the tan-sigmoid function is chosen. For 
output layer, pure-linear function is chosen. The Levenberg Marquardt 
algorithm (LM) is used to train CFBP-NN. The Average Square Error 
(ASE) achieved is 5.61 × 10−6 with 13 hidden layers. The NN-Model has 

CFBP-NN
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isds (z)

sds (z)

sqs (z)

isqs (z)

ωr (z)
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Figure 12.2  The flux estimator using CFBP-NN showing inputs and outputs.
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the structure as 6-13(h)-2. The architecture of CFBP-NN for flux estima-
tion is shown in Figure 12.3. The architecture has multiple hidden layers 
with 1 neuron in each hidden layer. The layer receives inputs from all 
previous layers.

12.5	 Comparison of Proposed CFBP-NN With 
Existing CFBP-NN for Flux Estimation

The proposed CFBP-NN is compared with existing CFBP-NN [18] in terms 
of accuracy, computational complexity and type of inputs. The number of 
additions, multiplications and non-linear activation functions determines 
the computational complexity of the NN model based flux estimator. The 
number of mathematical operations can be computed using the formula 
[17]. The comparison is shown in Table 12.1. It is found that the proposed 
model gives the required accuracy similar to the existing model. The addi-
tions and multiplications required in proposed CFBP-NN model is lesser 
than in the model [18]. Also the proposed CFBP-NN model is free from 
stator voltage and does not need the requirement of tedious voltage mea-
surement process.

1-isds (z), 2-isqs (z), 3-isds (z

Layer 1

Layer 2

Layer 12

Layer 13

21 3 4 5 6

sds (z)

sqs (z)

−1), 4-isqs (z −1), 5-ωr (z), 6-ωr (z −1)

Figure 12.3  Flux Estimation using CFBP-NN Architecture.
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12.6	 Performance Study of Proposed CFBP-NN 
Using MATLAB/SIMULINK

The performance of CFBP-NN and current model is investigated for Rr 
variation problem. The drive is operating at 75 rad/s under 100% rated 
load. To study Rr variation problem in MATLAB, dq-stationary frame 
model for induction motor is developed and the variation is created. The 
Rr is varied in a step fashion at 3 s. 50% change is created. The rotor flux 
(d-axis) estimated using CE and CFBP-NN are presented in Figure 12.4(a) 
and Figure 12.4(b) respectively. The rotor flux (q-axis) estimated using CE 
and CFBP-NN are presented in Figure 12.5(a) and Figure 12.5(b) respec-
tively. Even in the presence of rotor resistance variation, the estimated flux 
using CFBP-NN tracks the actual flux of the machine. But flux estimated 
using CE deviates from the actual flux when the step change in Rr is effected 
at 3 s. For more clarity, the rotor flux locus diagram estimated using CE 
and CFBP-NN model is also shown in Figure 12.6(a) and Figure 12.6(b) 
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respectively. The radius of the actual flux locus is 0.9006 Wb. It is centered 
on the zero co-ordinates. The radius of the locus of the flux estimated using 
the CFBP-NN is found to be 0.8998 Wb. The locus of the flux estimated 
using the CFBP-NN is also centered similar to the actual flux locus. But the 
radius of the locus diagram of rotor flux estimated using CE is decreased to 
0.6522 Wb and fails to track the locus of actual flux.

The Figure 12.7(a) shows the magnitude of the flux estimated from CE. 
The magnitude of rotor flux deviates from the actual value. The magni-
tude of flux obtained using CFBP-NN tracks the actual value very closely 
(Figure 12.7(b)). The flux angle computed using CE deviates from the 
actual value as shown in Figure 12.8(a). The flux angle computed using 
CFBP-NN model tracks the actual very well (Figure 12.8(b)). Thus, the 
flux estimator designed using CFBP-NN is shown to very well handle the 
rotor resistance variation problem as compared to CE. The MSE is used as 
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Table 12.2  Comparison of the CFBP-NN with CE to estimate flux for various % 
Rotor Resistance Variation. 

%Rr change

d-axis rotor flux (MSE) q-axis rotor flux (MSE)

Current 
model

CFBP-NN 
model

Current 
model

CFBP-NN 
model

10 0.0025 2.6572×10−5 0.0026 2.7610×10−5

20 0.0090 2.7590×10−5 0.0088 2.8721×10−5

30 0.0176 2.8281×10−5 0.0177 3.0260×10−5

40 0.0277 2.9541×10−5 0.0277 3.1242×10−5

50 0.0382 3.0438×10−5 0.0388 3.2765×10−5
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the performance index for flux and field angle as it is instantaneous varying 
quantity. The % error is used as the performance index for resultant flux 
as it is constant with respect to time and not the instantaneous varying 
quantity. The computed MSE and %error is shown in Tables 12.2 and 12.3.

It is seen clearly that MSE of CE flux keeps on increases as the rotor 
resistance increases. But MSE of CFBP-NN flux shows good accuracy and 
tracks the actual flux very well. In the case of flux angle and magnitude, 
similar performance is observed.

12.7	 Practical Implementation Aspects of CFBP-NN-
Based Flux Estimator

To implement flux estimator designed using CFBP-NN in real time 
hardware, analog implementation technique with the use of operational 
amplifiers can be employed. But the digital technique to implement 
CFBP-NN based flux estimator has low noise sensitivity as compared to 
analog method of implementation. Also the development in the digital 
technology has made the NN estimator implementable on digital proces-
sors. The field programmable gate array (FPGA) preserves parallel oper-
ation and computes at high speed in real time as compared to sequential 
processor namely digital signal processor. To implement flux estimator 
designed using CFBP-NN in real time, the FPGA is found to be more 
suitable. This is because faster estimation of rotor flux is necessary to 
compute flux angle and magnitude for effective and efficient speed con-
trol. The major challenging issue in implementing CFBP-NN-based flux 
estimator on FPGA processor is to optimize execution time and resource. 
The execution time of CFBP-NN based estimator to a large extends 
depends on the computation of tan-sigmoid function. The tan-sigmoid 
function (5) contains non-linear exponent function. The series expan-
sion method can be used but it gives large truncation error. The trun-
cation error can be overcome by increasing the non-linear terms but it 
increases the computation time and also the resource. The LUT method 
can be used to reduce the computation time but higher accuracy requires 
more resource on FPGA. Hence Elliott function (6) is simple and does 
not contain any exponent function but it preserves non-linear nature 
similar to tan-sigmoid function. The plot of tan-sigmoid function and 
Elliott function is shown in Figure 12.9. The Elliott function contains 
only adder and divider function and provides faster rotor flux execution 
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time with required accuracy on FPGA. Hence Elliott function is a good 
alternate for tan-sigmoid function.

The Layer Multiplexing Technique (LMT) is proposed to realize reduced 
cost FPGA-based NN [16]. The same concept can be used to realize 
reduced cost NN-flux estimator. One neuron with maximum number of 
inputs is implemented. The same neuron is repeatedly used to realize com-
plete CFBP-NN-based flux estimator. The appropriate weights and biases 
for each neuron are correctly placed using the proper control logic. Using 
this method, the flux estimator using CFBP-NN is realized with the single 
neuron with 19 inputs. This method requires only 19 additions, 19 mul-
tiplications and 1 Elliott function. But without LMT, the implementation 
of CFBP-NN based flux estimator requires 194 additions, 194 multiplica-
tions, 13 Elliott functions which will increase the resource utilization in 
FPGA. Hence, using FPGA processor, the CFBP-NN can be implemented 
with Elliott function using LMT.
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12.8	 Conclusion

In this chapter, a novel NN-flux estimator is proposed to compute flux angle 
and magnitude in DFOC OF IM. The NN model is designed using cascade 
forward back propagation neural network. The Proposed CFBP-NN Model 
compute rotor fluxes without the knowledge of stator voltage of the motor 
drive and eliminates the need of cumbersome high frequency PWM volt-
age measurement process. The CFBP-NN based flux estimator uses current 
and rotor speed as the inputs which is harmonics free as compared to sta-
tor PWM voltage. The current and speed can be easily measured without 
much difficulty as compared to PWM stator voltage measurement. The 
proposed CFBP-NN based flux estimator is compared with CE for rotor 
resistance variation. The CFBP-NN model performs similar to CE with 
the drive operating with nominal rotor resistance value and outperforms 
when the drive operating with change in the rotor resistance. The prac-
tical implementation aspects of CFBP-NN based flux estimator are also 
comprehensively presented in this paper. Hence it can be concluded that 
the proposed CFBP-NN for flux computation is found to be promising for 
DFOC of IM.
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A Review on Isolated DC–DC 
Converters Used in Renewable 

Power Generation Applications
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Abstract
In this paper, we reported isolated DC–DC converters. Based on the review, the 
performances of isolated converters are evaluated. DC–DC CLCC and Dual active 
bridge (DAB) converters can attain bidirectional power flow, wide gain range, gal-
vanic isolation, high power density and high energy efficiency for bidirectional 
electric vehicle charging systems. Gallium Nitride (GaN) devices have zero reverse 
recovery losses, very low gate drive losses and low output charge compared to a 
silicon MOSFET, which makes GaN devices relevant for high-efficiency power 
converters. 

Keywords:  Solar PV, isolated converters, electric vehicles (EV), bi-directional 
converters

13.1	 Introduction

The maximum voltage gain of the cascaded boost converter, switched- 
capacitor converter and switched inductor converter are limited because of 
the high duty cycle. To overcome this problem, forward converter, bridge 
converter, fly-back and push-pull converter type isolated converters used 
to step-up the voltage [1]. Another common DC–DC isolated converter 
is the resonant converter, which can be used for the soft switching in the 
whole load spectrum. The full-bridge DC–DC current fed converter is 
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used to reduce the input current ripple. To attain smooth switching condi-
tions and to transfer energy the transformer parasitic elements are worked 
as resonant elements [2, 3]. An isolated auxiliary current pump module is 
operated as a generic supporting module for step-down/step-up DC–DC 
converters [4]. The three-port bidirectional isolated converter is designed 
for concurrent power managing of a rechargeable battery, PV panel, and 
load [5]. The current mode control system is designed and implemented in 
conjunction with an isolated auxiliary current pump module for interleaved 
boost converters [6]. The isolated power converter contains three-winding 
transformer, two full-bridge rectifiers and a half-bridge inverter. The 
switching circuit is connected in parallel or series can be applied to iso-
lated power converters to regulate the voltages [7]. The Isolated modular 
DC–DC converters need to be worked by an extreme ac-link frequency 
in order to decrease the size of the network, but this will result in boosted 
switching losses and reduced efficiency [8].

13.2	 Isolated DC–DC Converter for Electric 
Vehicle Applications

DC–DC isolated converters are widely applied in battery chargers for EVs. 
These isolated converters interface between energy storage unit along with 
DC voltage connection. DAB and CLLC DC–DC converters can achieve gal-
vanic isolation, wide gain range, high energy efficiency, bidirectional power 
flow, high power density and therefore have potential applications [9].

During the charging condition, the highest efficiency of the HBCLLC 
circuit is 96.5% and FBCLLC circuit is 95.0% in the discharging mode 
97.4% and 96.1% respectively shown in Figures 13.1a and b. For the 
HBDAB and FBDAB circuits during the charging mode, the highest effi-
ciencies are 93.9% and 95.1% in the discharging mode 94.3% and 93.5% 
(Figure 13.2a). At light load conditions the DAB switches lose ZVS and 
the single-phase shift control technique generates huge reactive power 
which decreases the efficiency in Bidirectional HBCLLC resonant con-
verter circuit. Based on the high-frequency a DAB-BDC control strat-
egy is derived from the conventional buck and boost DC–DC converter 
technique. The converter strategy ensures that buffering inductor cur-
rent is controlled in BCM or DCM which outcomes in high efficiency 
(Figure 13.2b).

The DAB DC–DC converter is presented in Figure 13.3. The current 
fed hybrid DC–DC DAB converter is used to decrease the high-frequency 
input ripple current. All the power MOSFETs switches using the ZVS 
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technique. The DAB converter is designed for low-voltage FC power con-
ditioning systems. The input side consists of two inductors and four power 
MOSFETs. The output side consists of four MOSFETs. 

The auxiliary half-bridge contains two power MOSFETs and two capac-
itors. The input and output sides are linked by the transformer T. Here, the 
transformer turns ratio is 1: n.

The maximum conversion efficiency is more than 95%. With increasing 
output power, the efficiency increases until the efficiency reach its maxi-
mum value.

An interleaved bidirectional DC–DC isolated converter as shown in 
Figure 13.4. Switching losses are fairly decreased due to soft switching of 
semi-conductor switches that is ZVS of secondary switches and ZCS of 
primary switches. The converter operates in the reverse mode as a con-
ventional full-bridge DC–DC voltage-fed converter by a load side filter. To 
attain ZCS of the low voltage side and ZVS of the high voltage side, normal 
phase modification modulation can be hired [11]. The efficiency compari-
son presented in Figure 13.5.

S1 S3

L1

Vm
+

–

ip

C1
Lm

n:1

Tr

im

Charging mode

Discharging modeS2 S4

C2

C0 R0 V0

+

–

S6

in

L2

S5 S7

S8

S1

Vm
+
–

C11

L1

C12 C22

C21

Lm
im

ln

n:1

Tr

L2

S3

S7

C0 R0 V0

–

+

Charging mode

Discharging mode

ip

S2

+ +

(a)

(b)
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The DC/DC bidirectional Three phase converter technique combines 
the six-leg converter and three-phase DAB converters. The topology can 
increase the power capability and withstand high currents of the DAB con-
verter, preserving related modulation technique without changing its main 
features. Compared to conventional current fed 3-  bidirectional DC-DC 
converters this converter has additional switches (Figure 13.6).

13.3	 Three-Phase DC–DC Converter

A three-phase DC–DC converter used as bidirectional converter in between 
the source and battery of the vehicle. The proposed 3-  DC–DC bidirec-
tional converter with six leg inverter have more current capability compared 
to 3-  DAB converter. This converter is relevant for EV charging. 

13.4	 Conclusion

The DC–DC isolated power converters extensively used in EV and dc 
microgrids. The CLLC converters are slightly better than the DAB con-
verters for comprehensive bidirectional EV charge systems. The voltage 
stress and di/dt value of the isolated three-port DC–DC bidirectional 
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converter main switch have been decreased compared to the equivalent 
hard-switched converter. The converter peak efficiency is 94.5%. The LLC 
can achieve an efficiency of 98.39% undercharging condition and 97.80% 
in discharged condition. The GaN converter achieved 98.8% efficiency at 
50% of the full load. 
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Abstract
From early 1900s when the speed control of the prime mover was concerned, sep-
arately excited DC machine were dominating in the field control of any electrical 
machine. A separately excited DC machine can be controlled in a decoupled man-
ner but for combustion engines, the torque and speed are highly coupled in nature. 
In V/F control to change the frequency we need to change the voltage to maintain 
the flux. But the problem is the transfer function of the system is of higher order, 
may be of 5th order transfer function. Due to this higher order system effect, the 
flux response becomes sluggish and it takes quite more time to settle down to 
the desired value. To improve the performance, vector control method of squirrel 
cage asynchronous induction machine is evolved which is nothing but to operate 
squirrel cage asynchronous induction machine analogous to a separately excited 
DC machine to obtain a better dynamic response. A complete analysis and simu-
lation of Indirect Field Oriented (IDFOC) control of asynchronous squirrel cage 
induction motor (ASCIM) and circuit concept is included in this chapter.

Keywords:  Separately excited DC machine, squirrel cage asynchronous 
induction machine, PID controller, fuzzy logic, vector control

14.1	 Introduction

In rotating electrical machine, electrical energy converted from electrical 
domain to mechanical domain in terms of torque and speed in rpm. In 
separately excited DC machine, the unique advantage is that machine can 
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be controlled in a decoupled manner even though the torque and speed 
are highly coupled in nature for mechanical prime movers. For an exam-
ple, we can say when we are riding our bike in a plane road, we can go to 
fifth gear to raise the speed but if suddenly inclined road is there or it is 
rough or the torque requirement is high, we cannot operate our bike in 
fifth gear. Definitely we have to come down to third or second because 
torque requirement is high, so these are the basic issue with internal com-
bustion engines. Due to this coupled nature, torque and speed cannot be 
controlled in an isolated manner but same thing is possible in separately 
excited DC machine because the torque and flux circuit those are electri-
cally isolated. So the torque and flux can be control in an isolated man-
ner in electrical prime mover. But the problem in the DC machine is, it’s 
not maintenance free and it cannot operate in hazardous environment like 
refineries or pharmaceuticals or any petrochemicals industries where the 
hazard free operation is desirable. So to avoid those kinds of things, squir-
rel cage asynchronous induction machine was evolved.

These machines are very robust, rugged and it can operate in hazard-
ous environment also. Due to these advantages, today if we take statistics 
of total prime mover of any process and power or any kind of industries, 
we can see more than 95% of prime movers are asynchronous induction 
motor. Here by the virtue of its construction, it is obvious that the rotor is 
getting magnetized due to stator field and as this is happening so definitely 
the rotor flux will be always lagged from the stator flux. That’s why the rotor 
will never able to catch the speed of the synchronous rotating speed of the 
stator flux. As it is always being lagging and it is not synchronous with stator 
flux speed, that’s why it is called asynchronous induction machine. These 
things make the task of control engineer very difficult when high perfor-
mance dynamic response of the machine is concerned in connection with 
the decoupled control of it.

We know in V/F control, to change the frequency, we need also to change 
the voltage to maintain the flux but the problem is the transfer function of the 
system is a higher order may be it is 5th order transfer function. Due to this 
higher order system effect, the flux response is become sluggish, so it is taking 
quite more time to settle down to the desired value. We can take an exam-
ple that we change the flux by changing the frequency to change the torque, 
because for an induction machine, torque is controlled by slip. So suddenly 
our requirement is to increase torque hence definitely we have to change the 
frequency, so we are changing the frequency, torque is getting changed but to 
maintain the flux, our voltage need to be changed. In this operation to main-
tain the flux, the asynchronous squirrel cage induction machine can be oper-
ated analogous to a separately excited machine using Vector control method. 
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So Vector control method of squirrel cage asynchronous induction machine 
is nothing but to operate squirrel cage asynchronous induction machine anal-
ogous to a separately excited DC machine by positioning the instantaneous 
rotor flux with the direct axis of synchronous rotating reference frame. If we 
are doing so, the torque equation of the asynchronous induction machine will 
be converted as separately excited DC machine which is nothing but called 
vector control or field oriented control.

14.2	 Dynamics of Separately Excited DC Machine

By nature of construction in Figure 14.1, the armature circuit and field 
circuit is isolated. There is no electrical connection in between, only some 
magnetically coupling exists. So in armature side, the armature current 
and in field side, the field current can be controlled separately. Which is 
not possible is induction machine. In above phasor diagram it is clear that 
rotor flux will be always lagged from the stator flux by a quadrature and it 
is not influenced by each other.

Torque equation of separately excited DC machine is

	 T = K Ψf Ia	 (14.1)

Where, K = constant
	 Ψf = field flux
	 Ia = Armature current

Back EMF equation of separately excited DC machine is

	 Eb = KωΨ	 (14.2)

Ia IaIf

If

Decoupled

Ψa

Ψf

Figure 14.1  Equivalent circuit of separately excited DC machine and phasor diagram of 
armature flux versus field flux.
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Where, K = constant
	 ω = rpm

	 Ψ = flux

From both the Equations (14.1) and (14.2), there is no relationship 
between torque and rpm and back EMF is totally independent of armature 
current. Both the armature flux (Ψa) and field flux (Ψf) are perpendicular 
to each other. So field flux is not getting interfered by armature flux and 
via versa. To change the torque we need to change the armature current by 
keeping field current constant.

14.3	 Clarke and Park Transforms

Clarke and Park transforms methods are normally fit in field-oriented con-
trol of three-phase AC machines. The Clarke transform transfer the time 
domain components of a three-phase system (in abc frame) to two compo-
nents in an orthogonal stationary frame (αβ). The Park transform transfer 
the components in the αβ frame to an orthogonal rotating reference frame 
(dq). Utilizing such transforms in a consecutive way simplifies computa-
tions by transferring AC voltage and current waveform into DC signals.

The DQZ transform is made of the Park and Clarke transformation 
matrices. The Clarke transforms converts vectors in the ABC reference 
frame to the αβγ reference frame. The primary value of the Clarke trans-
form is isolating that part of the ABC-referenced vector which is common 
to all three components of the vector; it isolates the common-mode com-
ponent (i.e., the Z component).

The Park transform converts vectors in the XYZ reference frame to the 
DQZ reference frame. The primary value of the Park transform is to rotate 
the reference frame of a vector at an arbitrary frequency. The Park trans-
form shifts the frequency spectrum of the signal such that the arbitrary 
frequency now appears as dc and the old dc appears as the negative of the 
arbitrary frequency.

In phasor diagram (Figure 14.2) consider stator α axis as a reference 
axis, this axis is perpendicular with stator β axis. Similarly q axis is 
perpendicular with d axis. The entire d and q axis is rotating with syn-
chronous speed. By differentiating Ѳs with respect to time, it will give 
synchronous speed. By differentiating Ѳr with respect to time, it will 
give mechanical speed of rotor. The difference between d axis and rotor 
α axis gives slip frequency.
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In phasor diagram

Let,
	 αs = stator phase A axis
	 αr = stator phase A axis
	 α–β = stator fixed reference frame
	 d–q = synchronous rotating reference frame

Let
	 Vsd = stator voltage component on direct axis of synchronous  

	        rotating reference frame.
	 Isd = stator current component on direct axis of synchronous rotat		

	      ing reference frame.
	 Rs = stator resistance.
	 ωs = synchronous frequency.
	 Vsq = stator voltage component on quadrature axis of synchronous 

	      rotating reference frame.
	 Ψsq = stator flux on quadrature axis of synchronous rotating 

	        reference frame.
	 Ψrq = rotor flux on quadrature axis of synchronous rotating  

	         reference frame.
	 Ψsd = stator flux on direct axis of synchronous rotating reference  

	       frame
	 Isq = stator current component on quadrature axis of synchronous  

	     rotating reference frame.
	 P (rot) = total rotational power.
	 Lss = total stator inductance (leakage + mutual)
	 Lrr = total rotor inductance (leakage + mutual)

q

stator β axis 

d axis

rotor α axis

stator α axis

ωs

Is iqs

ids
δ θs

θr
θsl

rotor β axis 

Figure 14.2  Phasor diagram.
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	 Lm = inductance of mutual part.
	 Ird = rotor direct axis current.
	 Irq = rotor quadrature axis current.
	 Г = torque
	 P = number of poles
Standard equation for stator direct axis voltage is given by

	
Vsd S sd s sqR I= + d sd

dt
Ψ Ψ– ω

	
(14.3)

	 Let Vsd (rot) = – ωs Ψsq	 (14.4)

Similarly Standard equation for stator direct axis voltage is given by

	
V R I d sq

dtsq S sq s sd= + +Ψ Ψω
	

(14.5)

	 Let Vsq (rot) = ωs Ψsd	 (14.6)

Total rotational power is given by

	 P(rot) = Vsd (rot) * Isd + Vsq (rot) Isq	 (14.7)

Substitute Equations (14.4) and (14.6) in Equation (14.7)

	 P(rot) = – ωs Ψsq Isd + ωs Ψsd Isq	 (14.8)

	 Let Ψsd = Lss Isd+ Lm Ird	 (14.9)

	 Ψsq = Lss Isq+ Lm Irq	 (14.10)

Equations (14.9) and (14.10) in Equation (14.8)

	 P (rot) = – ωs(Lss Isq + Lm Irq) Isd+ ωs(Lss Isd + Lm Ird) Isq
= ωs [−(Lss Isq+ Lm Irq) Isd + (Lss Isd + Lm Ird) Isq]
= ωs [−Lss Isq Isd − Lm Irq Isd + Lss Isd Isq + Lm Ird Isq]
= ωs [Lm Ird Isq − Lm Irq Isd]
= ωs Lm [Ird Isq − Irq Isd]	 (14.11)
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	 Let Ψrd = Lrr Ird+ Lm Isd	 (14.12)

	
Ird = −Ψrd  Lm Isd 

Lrr 

	 Ψrq = Lrr Irq+ Lm Isq	 (14.13)

	
Irq = + −Ψrq  Lm Isq 

Lrr 

Substituting back in equation (14.11)

	

 

I  [P rot Ls m( ) = − − −ω Ψ Ψrd  Lm Isd 
Lrr 

rq  Lm Isq 
Lrrr 

Lm  s  
Lrr 

 I

I

]

P rot L I I Ird m sq sd rq( ) = − −ω Ψ Ψ ssd m sq sd

rd rq sd

L I I

P rot I

+ 

−( ) = Lm  s  
Lrr 

ω Ψ ΨI 
	

(14.14)

We know that

	 P (rot) = Г*ωs (mech)	 (14.15)

In order to get mechanical speed, the synchronous speed will be divided 
by P

2
Equating Equations (14.14) and (14.15)

	
Γ Ψ Ψ∗ = − 

ω ωs
p / 2

Lm  s  
Lrr  rd sq rq sdI I

Torque is given by,

	
Γ Ψ Ψ= −





( )p  
s

Lm  s  
Lrr 

/ 2
ω

ω
rd sq rq sdI I
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Γ Ψ Ψ= −





( )P
2 rd sq rq sdI I

	
(14.16)

As 3 phases is converted to 2 phase, then for power balance, 3/2 is mul-
tiplied and torque Equation (14.16) is converted as

	
Γ Ψ Ψ= −





( )3
2 2

 P rd sq rq sdI I
	

(14.17)

Now let us assume
 

3
2 2

     P Lm
lrr

K=

We know vector control is nothing but to align instantaneous rotor flux 
with the direct axis of synchronous rotating reference frame which makes 
rotor quadrature axis flux to zero.

	 Ψrq = 0

So that Г = k (Ψrd Isq)
Let us assume Ψrd = Ψf and Isq = Ia

	 Г = k (Ψf Ia) which is analogous to Equation (14.1)

Rotor voltage on direct axis of synchronous reference frame is given by,

	
V R I d rd

dt
s r rqrd r rd= + − −  ( )Ψ Ψω ω

	
(14.18)

In the Figure 14.3, reference flux and isd is compared to obtain vsd. To 
establish vector control, we need to make Ψrq is equal to zero. In rotor 
construction of synchronous induction machine, the rotor bars are short 
circuited through short circuit ring at both the end. So as it is short cir-
cuited, voltage Vrd should be zero.

compReference flaux

isd

_

+
Vsd

Figure 14.3  Flux loop.
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Therefore,

	
R Ir rd + =d  rd

dt
Ψ 0 	 (14.19)

Assuming 
d  Lm imr

dt
( )

+ =R Lr rd 0  	 (14.20)

(Rotor getting magnetized by mutual part)

	 Ψrd  = Lrr Ird+ Lm isd = Lm imr	

	 Let Ird = Lm
Lrr

 (imr − isd)	 (14.21)

Using Equation (14.21) in Equation (14.20)

	

d Lm imr
dt

R Lm
Lrr

i i

d imr
dt r

i

r mr sd

mr

   

 

( )

(

( )
+ − =

+

0

1
Γ

−− =isd ) 0
	

(14.22)

Where Гr = rotor time constant.
In Laplace domain

	
s

r
i

rmr+






=1
Γ Γ

isd

	
(14.23)

So in steady state imr = isd

PIPIref speed
Vsq

Speed fb

_

+ +
_

isq

Isq ref

Figure 14.4  Speed loop and torque loop.
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Figure 14.4, consist of two loops namely speed loop and torque loop. 
The speed loops produces torque components i.e. Isq reference that will 
be compared with the actual isq. When reference speed is compared with 
speed feedback an error signal is generated. This error signal is compen-
sated using PI regulator and it’s producing Isq reference current. This Isq 
reference current again is compared with actual machine isq which is again 
regulated through PI regulator and then it produces Vsq.

	
Let V R i s r rdrq r rq= + + −( )d rq

dt
Ψ Ψω ω  

	
(14.24)

	
ω = − Rr irq

rd
 

Ψ 	
(14.25)

Where ωsl = slip speed.
Ψrq  = 0 = Lrr irq + Lm isq (as it is aligned with direct axis of syn. Rotating 

reference frame)

	
Let i irq sq

Lm 
Lrr

= −
	

(14.26)

Equation (14.26) in Equation (14.25)

	 ωsl = −
Rr *    Lm 

Lrr
 isq 

rd

−

Ψ

                       
= Rr

Lrr
isq 
Imr

	 Slip speed (ωsl) = 1       
Γr

isq
isd 	

(14.27)

	
ω ω ω θ

sl r s d s
dt

+ = =

	 θ ω ωs = sl r dt∫ +( )  	 (14.28)



Vector Control of Asynchronous Induction Motor  251

14.4	 Model Explanation

In Figure 14.5, simulation circuit mainly consists of inverter, current feed-
back loop, first order low pass filter, rpm sensor and ABC to DQ transfor-
mation where Ѳs is required to be estimated and which gives out Id and 
Iq components. A constant torque of 0.02 Nm is applied to the induction 
motor. For direct axis loop, the set magnetization current is compared with 
actual Id. The output from PI regulator consisting of corresponding gain 
and time constant is feed to the limiter. The limiter is always better, which 
will not allow the loop to shot up and used for anti-wind up protection. 
The output from this limiter is feed to the ABC to DQ transformation. The 
sensed speed compared with set speed, after compensator, feed to the lim-
iter, so the torque reference current may not shoot up more than 40 amp 
and then it’s again compared with Iq to generate quadrature voltage com-
ponent. Once the modulating signal i.e. Va, Vb, and Vc is generated from 
ABC to DQ transformation is compared with comparator to generate the 
switching pulses. Q1, Q3 and Q5 are the generated pulse form comparator 
which is given to the inverter IGBTs.
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Figure 14.5  Simulation circuit.



252  AI Techniques for Electric and Hybrid Electric Vehicles

Inverse rotor time constant is required for Ѳs estimation
Inverse rotor time constant = rotor resistances/(leakage + mutual) 

				       inductance
= 0.156/(0.00074 + 0.041)

Inverse rotor time constant	  = 3.73

14.5	 Motor Parameters

Figure 14.6, is a plot of direct axis current (Id) and quadrature axis current 
(Iq) with X axis in time domain in s. In this figure the direct axis current (Id) 
is dominating over quadrature axis current (Iq). Immediately after the start, 
the direct axis current get settled very fast but for quadrature current takes 
slightly more time to settle down, at around 0.6 s.

Figure 14.7 is a plot of three phase sequence current ISa, ISb and ISc in time 
domain in s which infer that the inrush current is well restricted to occur 
the soft start of the machine.

Figure 14.8 is a plot of speed in rpm verse time in s. In this plot, at begin-
ning the speed increases and becomes constant at set value which shows an 
improved dynamic response.

Figure 14.6 is a plot of direct axis voltage (Vd) and quadrature axis volt-
age (Vq) in time domain in s. In this figure the direct axis voltage (Vd) is 
dominating over quadrature axis voltage (Vq).

Figure 14.9 shows the instantaneous direct and quadrature axis voltage 
after the rotor flux is perfectly aligned with the direct axis of synchronous 
rotating reference frame which in turn converted to abc reference frame to 
generate the modulating signals for the PWM generation.

Id Iq
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–20

–40

–60

0 0.2 0.4
Time (s)
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0

Figure 14.6  Plot of direct axis current (Id) and quadrature axis current (Iq).
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We know from Equation (14.27), to obtain the slip speed, isq and isd will 
be divided and should be multiplied with inverse rotor time constant. In 
the model, the bottom most theta estimation loop, there is a gain block of 
value 3.73 (Inverse rotor time constant) just after the division. Now the 
slip speed is to be added with rotor speed to get synchronous speed. Entire 
control is established in stator side, hence the rotor speed is to be taken in 
stator side and then is to be added with sleep speed. Hence the RPM is con-
verted to radian/s by multiplying (π/30) and then by (P/2 for this model it 
is 3) to take it in stator side. In the model, RPM (marked as nm) is passed 
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Figure 14.7  Phase currents plot.
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through a gain block of value π/10 (which is(π/30)*3) and then added with 
slip speed to obtain synchronous speed. Finally it integrated to get rotor 
flux position (θs, marked as ‘theta’ in the model) which is fed to dq-abc 
block to generate modulating signal for inverter switching and to abc-dq 
block to convert three phase current to id and iq.

14.6	 PI Regulators Tuning

PI regulator tuning is mostly done by trial and error method but it needs more 
practical experience and proper knowledge of process control. In this model, 
we use second order tuning method. Three loops namely torque loop, flux loop 
and speed loop which has different natural frequencies but we need to tune 
both together to obtain high performance dynamic response from the motor. 
In tuning, each loop transfer function is simplified to a first order system using 
some fair approximation. After that the closed loop transfer function with 
compensator is established which consist of motor passive parameters like 
inductance, resistance and time constants, proportional gain (kp) and integral 
gain (ki) of the compensator. Then denominator is simplified and compared 
with standard second order control system equation (s2 + 2ξωns + ωn

2).
For better dynamic response and stable performance, all the loops are 

considered as critically damped with ζ = 1, please refer Figure 14.10, how 
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Figure 14.10  Second order response with respect to damping ratio.
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the response varied with ζ. Form the practical experience, if a motor used 
in fan or pump application, the natural frequencies of torque, flux and 
speed loops are considered 100, 10 and 1 Hz respectively. After the tun-
ing with simulation and lab module, the results obtained are tabulated in 
Tables 14.1 and 14.2. The performance again can be enhanced if PI regula-
tor is replaced with fuzzy controller.

Figure 14.11 presents the laboratory setup for rapid prototyping of the 
concept where semikron IGBTs are used and skyper32 driver circuit is 
installed to generate complementary switching pulses. This setup has been 
used to soft-start a 30kW asynchronous induction motor and all the per-
formance parameters are validated w.r.t. to the concept mentioned in this 
chapter.

Table 14.1  Motor specification values. 

Name Values

Rated frequency 50 Hz

No. of poles 6

Rated speed 1,000 rpm

Rotor resistance 0.156 Ω

Stator resistance 0.294 Ω

Stator inductance 0.00139 H

Rotor inductance 0.00074 H

Magnetizing inductance 0.041 H

Inertia 0.002 H

Viscous friction 0.001 Nm/(rad/s)

Table 14.2  Values different loops of 
PI controller. 

PI controller Kp Ki

Speed controller 0.13 0.4242

Flux controller 4.65 8.94

Torque controller 13.4 197.45
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14.7	 Future Scope to Include Fuzzy Control 
in Place of PI Controller

Fuzzy logic control is a special class of artificial intelligent. Normally when 
we need very tight control over the output, we need to introduce one com-
pensator, basically it will take the error signal which is nothing but the dif-
ferences between the desired set point and actual output obtained from the 
plant. Then it is transferred in very loop interval and producing controlled 
exaction to the plant so that it can maintain the output at the desired level. 
Conventionally we use PI regulator because it is very simple to implement 
but the thing is, to get very accurate high performance dynamic response, 
the tuning of the controller is very essential. Eventually the PI control-
ler only can take linear gains but some time due to some transient or due 
to nonlinearity of the plant if compensator required nonlinear gains, that 
time the PI regulator is not able to cater the requirement and we need to 
introduce a model free adaptive controller. The dynamic response of fuzzy 
controller is much better than the PI regulator and also fuzzy controller is a 
semi model free adaptive controller which can take non-linear gain factors.

In Figure 14.12, basic construction of fuzzy controller is shown which 
can be used in torque, flux and speed loop as a compensator for better 
dynamic response. The top model in Figure 14.12 is a classical PI controller 

Figure 14.11  Laboratory setup to benchmark the model.
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and bottom one is the fuzzy compensator. A second order plant transfer 
function is considered to establish the output response of both the cases 
with a unit step input. Figure 14.13 shows the comparison of PI and fuzzy 
controller where it exhibits better dynamic response.

For the above figure, it is obvious that PI regulator exhibits with over-
shoot whereas fuzzy controller provides better output response. Hence it 
is being proposed to replace the PI regulators in vector control by fuzzy 
controller as future work to improve the control.

14.8	 Conclusion

In process and power industries, speed control is very much concerned, that 
time we need to use some electrical prime movers through which we can vary 
the speed. But the problem somewhere arises that the torque and speed is 
needed to be controlled in an isolated manner. For that purpose this method is 
more useful. Conventionally the use of PI regulator it is very simple to imple-
ment but to get very accurate high performance dynamic response the tuning 
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den(s)
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du/dt

out 1 0.5in
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Figure 14.12  Fuzzy PI controller.
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of the controller is very essential. Perfect tuning is impossible unless each loop 
is linearized properly. In order to overcome this limitation the fuzzy controller 
can be used. The dynamic response of fuzzy controller is much better the PI 
regulator and also fuzzy controller is and semi model free adaptive control.
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